ARCoSS

LNCS 6604

Martin Hofmann (Ed.)

Foundations
of Software Science and
Computational Structures

14th International Conference, FOSSACS 2011

Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2011
Saarbriicken, Germany, March/April 2011, Proceedings

heory
nd
ractice of
oftware

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

6604

Martin Hofmann (Ed.)

Foundations
of Software Science and
Computational Structures

14th International Conference, FOSSACS 2011
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011
Saarbriicken, Germany, March 26—April 3, 2011
Proceedings

@ Springer

Volume Editor

Martin Hofmann
Ludwig-Maximilians-Universitit Miinchen
Institut fiir Informatik

Oettingenstr. 67, 80538 Miinchen, Germany
E-mail: hofmann @ifi.Imu.de

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-19804-5 e-ISBN 978-3-642-19805-2
DOI 10.1007/978-3-642-19805-2

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 20119922505
CR Subject Classification (1998): F.3, F.1, F4, D.3,D.2

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2011 was the 14th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised the usual five sister conferences (CC, ESOP, FASE, FOS-
SACS, TACAS), 16 satellite workshops (ACCAT, BYTECODE, COCV, DICE,
FESCA, GaLoP, GT-VMT, HAS, IWIGP, LDTA, PLACES, QAPL, ROCKS,
SVARM, TERMGRAPH, and WGT), one associated event (TOSCA), and seven
invited lectures (excluding those specific to the satellite events).

The five main conferences received 463 submissions this year (including 26
tool demonstration papers), 130 of which were accepted (2 tool demos), giving
an overall acceptance rate of 28%. Congratulations therefore to all the authors
who made it to the final programme! I hope that most of the other authors
will still have found a way of participating in this exciting event, and that you
will all continue submitting to ETAPS and contributing to make of it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2011 was organised by the Universitat des Saarlandes in cooperation
with:

> European Association for Theoretical Computer Science (EATCS)
> European Association for Programming Languages and Systems (EAPLS)
> European Association of Software Science and Technology (EASST)

VI Foreword

It also had support from the following sponsors, which we gratefully thank:
DFG DEUTSCHE FORSCHUNGSGEMEINSCHAFT; ABSINT ANGEWANDTE INFOR-
MATIK GMBH; MICROSOFT RESEARCH; ROBERT BoscH GMBH; IDS SCHEER
AG / SOFTWARE AG; T-SYSTEMS ENTERPRISE SERVICES GMBH; IBM RE-
SEARCH; GWSAAR GESELLSCHAFT FUR WIRTSCHAFTSFORDERUNG SAAR MBH;
SPRINGER-VERLAG GMBH; and ELSEVIER B.V.

The organising team comprised:

General Chair: Reinhard Wilhelm

Organising Committee: Bernd Finkbeiner, Holger Hermanns (chair),
Reinhard Wilhelm, Stefanie Haupert-Betz,
Christa Schafer

Satellite Events: Bernd Finkbeiner

Website: Herndn Bars Graf

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Parosh Abdulla (Uppsala), Gilles
Barthe (IMDEA-Software), Lars Birkedal (Copenhagen), Michael O’Boyle (Ed-
inburgh), Giuseppe Castagna (CNRS Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (Imperial College London), Bernd Finkbeiner (Saarbriicken) Cor-
mac Flanagan (Santa Cruz), Dimitra Giannakopoulou (CMU/NASA Ames),
Andrew D. Gordon (MSR Cambridge), Rajiv Gupta (UC Riverside), Chris Han-
kin (Imperial College London), Holger Hermanns (Saarbriicken), Mike Hinchey
(Lero, the Irish Software Engineering Research Centre), Martin Hofmann (LMU
Munich), Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop
(Vienna), Barbara Konig (Duisburg), Shriram Krishnamurthi (Brown), Juan de
Lara (Madrid), Kim Larsen (Aalborg), Rustan Leino (MSR Redmond), Gerald
Luettgen (Bamberg), Rupak Majumdar (Los Angeles), Tiziana Margaria (Pots-
dam), Ugo Montanari (Pisa), Luke Ong (Oxford), Fernando Orejas (Barcelona),
Catuscia Palamidessi (INRIA Paris), George Papadopoulos (Cyprus), David
Rosenblum (UCL), Don Sannella (Edinburgh), Joao Saraiva (Minho), Helmut
Seidl (TU Munich), Tarmo Uustalu (Tallinn), and Andrea Zisman (London).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer for agreeing to publish the
ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2011, Holger
Hermanns and his Organising Committee, for arranging for us to have ETAPS
in the most beautiful surroundings of Saarbriicken.

January 2011 Vladimiro Sassone
ETAPS SC Chair

Preface

FoSSaCS presents original papers on the foundations of software science. The
Programme Committee (PC) invited submissions on theories and methods to
support analysis, synthesis, transformation and verification of programs and soft-
ware systems. We received 100 full paper submissions; of these, 30 were selected
for presentation at FoSSaCS and inclusion in the proceedings. Also included is
an invited paper on “The Search for Structure in Quantum Computation” by
Prakash Panangaden, the FoSSaCS 2011 invited speaker.

Numbers of submissions and accepted papers at the last five FoSSaCS
conferences—2010 (Paphos), 2009 (York), 2008 (Budapest), 2007 (Braga), 2006
(Vienna)—were 86/25, 102/30, 124/33, 103/25, 107/28, respectively.

I thank all the authors of papers submitted to FoSSaCS 2011. I thank also
the members of the PC for their excellent work, as well as the external re-
viewers for the expert help and reviews they provided. Throughout the phases
of submission, evaluation, and production of the proceedings, we relied on the
invaluable assistance of the EasyChair system; we are very grateful to its devel-
oper Andrei Voronkov and his team. Last but not least, we would like to thank
the ETAPS 2011 Local Organizing Committee (chaired by Holger Hermanns)
and the ETAPS Steering Committee (chaired by Vladimiro Sassone) for their
efficient coordination of all the activities leading up to FoSSaCS 2011.

January 2011 Martin Hofmann

Conference Organization

Programme Committee

Amal Ahmed
David Basin

Krishnendu Chatterjee

Giorgio Ghelli
Daniel Hirschkoff
Martin Hofmann

Marieke Huisman
Petr Jancar
Andrew Kennedy
Barbara Konig
Martin Lange
Francois Laroussinie
Markus Lohrey
Heiko Mantel
Marino Miculan
Andrzei Murawski
Peter O’Hearn
Dirk Pattinson
Olivier Serre
Natarajan Shankar
Thomas Streicher
Igor Walukiewicz
Nobuko Yoshida
Greta Yorsh

External Reviewers

Faris Abou-Saleh
Markus Aderhold
Fabio Alessi
Thorsten Altenkirch
Andrea Asperti
Fauzi Atig

Giorgio Bacci
Bahareh Badban
David Baelde

University of Indiana, USA
ETH Zurich, Switzerland
Institute of Science and Technology, Austria

University of Pisa, Italy

ENS Lyon, France

Ludwig-Maximilians-Universitéit, Munich (Chair),

Germany

University of Twente, The Netherlands
Technical University of Ostrava, Czech Republic
Microsoft Research Cambridge, UK
University of Duisburg-Essen, Germany
University of Kassel, Germany

LIAFA (Paris 7), France

University of Leipzig, Germany

TU Darmstadt, Germany

University of Udine, Italy

University of Oxford, UK

Queen Mary, University of London, UK
Imperial College London, UK

LIAFA (Paris 7 and CNRS), France
SRI International, Menlo Park, USA
TU Darmstadt, Germany

University of Bordeaux, France
Imperial College London, UK

IBM T.J. Watson Research Center, USA

Steffen van Bakel
Nick Benton
Josh Berdine
Federico Bergenti
Ulrich Berger
Marco Bernardo
Gavin Bierman
Udi Boker
Filippo Bonchi

Viviana Bono

Laura Bozzelli
Benjamin Braatz
Tomas Brazdil

James Brotherston
Vaclav Brozek

H.J. Sander Bruggink
Antonio Bucciarelli
Arnaud Carayol

X Conference Organization

Franck Cassez
Karlis Cerans
Iliano Cervesato
Arthur Charguéraud
Thomas Chatain
Konstantinos
Chatzikokolakis
Thomas Colcombet
Sandro Coretti
Andrea Corradini
Silvia Crafa
Pieter Cuijpers
Fredrik Dahlqvist
Mohammad Torabi
Dashti
Claire David
Stéphane Demri
Yuxin Deng
Agostino Dovier
Laurent Doyen
Ross Duncan
Gilberto File
Emmanuel Filiot
Seth Fogarty
Vojtech Forejt
Luca Fossati
Laurent Fribourg
Oliver Friedmann
Fabio Gadducci
Vashti Galpin
Pierre Ganty
Richard Gay
Alfons Geser
Dan Ghica
Pietro Di Gianantonio
Hugo Gimbert
Marco Giunti
Rob van Glabbeek
Stefan Goller
Benjamin Grégoire
Dilian Gurov
Matthew Hague
Peter Hancock
Ichiro Hasuo
Frédéric Herbreteau

Tom Hirschowitz
Dieter Hofbauer
Florian Horn
Mathias Hiilsbusch
Clément Hurlin
Michael Huth
Samuel Hym
Pierre Hyvernat
Roshan James
Lukasz Kaiser
Daniel Kirsten
Felix Klaedtke
Bartek Klin

Naoki Kobayashi
Boris Koepf
Martin Kot
Vasileios Koutavas
Jean Krivine
Clemens Kupke
Manfred Kufleitner
Alexander Kurz
James Laird

Ivan Lanese
Markus Latte
Bjoern Lellmann
Serguei Lenglet
Marina Lenisa
Martin Leucker
Paul Blain Levy
Patrick Lincoln
Christof Loding
Sylvain Lombardy
Michele Loreti
Alexander Lux
Pasquale Malacaria
Bodo Manthey
Giulio Manzonetto
Radu Mardare
Nicolas Markey
Ralph Matthes
Richard Mayr
Conor McBride
Catherine Meadows
Ingmar Meinecke
Paul-André Mellies

Stefan Milius
Tri Ngo Minh

Rasmus Ejlers Mggelberg

Esfandiar Mohammadi
Maarten de Mol
Bruno Conchinha
Montalto
Jean-Yves Moyen
Markus Miller-Olm
Berndt Muller
Robert Myers
Sebastian Nanz
Damian Niwinski
Claudio Orlandi
Sam Owre
Michele Pagani
Luca Paolini
Gennaro Parlato
Sophie Pinchinat
Nir Piterman
Andrew Pitts
Francesca Poggiolesi
Erik Poll
John Power
Vinayak Prabhu
Sylvain Pradalier
Karin Quaas
Julian Rathke
Jason Reed
Klaus Reinhardt
Bernhard Reus
Noam Rinetzky
Mehrnoosh Sadrzadeh
Sylvain Salvati
Arnaud Sangnier
Alexis Saurin
Zdenek Sawa
Ivan Scagnetto
Sven Schewe
Alan Schmitt
Ulrich Schépp
Lutz Schroder
Jan Schwinghammer
Stefan Schwoon
Mihaela Sighireanu

Pawel Sobocinski
Matthieu Sozeau
Heiko Spies
Christoph Sprenger
Barbara Sprick
Jifi Srba

Artem Starostin
Sam Staton
Henning Sudbrock
Kohei Suenaga
Grégoire Sutre
Nathalie Sznajder
Claus Thrane

Mark Timmer
Simone Tini
Alwen Tiu

Ashish Tiwari
Szymon Torunczyk
Mathieu Tracol
Ashutosh Trivedi
Aaron Turon
Nikos Tzevelekos
Daniele Varacca
Jamie Vicary
Daniel Wagner
Johannes Waldmann

Conference Organization

Robert Walters
Florian Widmann
Thomas Wies
Thomas Wilke
Glynn Winskel
James Worrell
Peng Wu
Gianluigi Zavattaro
Marc Zeitoun
Wieslaw Zielonka,
Damien Zufferey

XI

Table of Contents

The Search for Structure in Quantum Computation (Invited Talk)
Prakash Panangaden

Coalgebra and Computability

Coalgebraic Walks, in Quantum and Turing Computation
Bart Jacobs

Similarity Quotients as Final Coalgebras.......................
Paul Blain Levy

What Do Reversible Programs Compute?
Holger Bock Azelsen and Robert Gliick

Type Theory

Irrelevance in Type Theory with a Heterogeneous Equality
Judgement
Andreas Abel

When Is a Type Refinement an Inductive Type?
Robert Atkey, Patricia Johann, and Neil Ghani

Complexity of Strongly Normalising A-Terms via Non-idempotent
Intersection Typeso

Alexis Bernadet and Stéphane Lengrand

Realizability and Parametricity in Pure Type Systems
Jean-Philippe Bernardy and Marc Lasson

Process Calculi

Sound Bisimulations for Higher-Order Distributed Process Calculus

Adrien Piérard and FEijiro Sumii

Deriving Labels and Bisimilarity for Concurrent Constraint
Programming.
Andrés Aristizdbal, Filippo Bonchi, Catuscia Palamidessi,

Luis Pino, and Frank Valencia

12

27

42

o7

72

88

123

XIV Table of Contents

Ordinal Theory for Expressiveness of Well Structured Transition
SYSTEINS . . ottt
Remi Bonnet, Alain Finkel, Serge Haddad, and
Fernando Rosa-Velardo

Automata Theory

Alternation Elimination for Automata over Nested Words
Christian Dax and Felix Klaedtke

Co-Biiching Them All e
Udi Boker and Orna Kupferman

Minimizing Deterministic Lattice Automata
Shulamit Halamish and Orna Kupferman

Regularity and Context-Freeness over Word Rewriting Systems
Didier Caucal and Trong Hieu Dinh

Quantitative Robustness Analysis of Flat Timed Automata
Rémi Jaubert and Pierre-Alain Reynier

A Game Approach to Determinize Timed Automata..................
Nathalie Bertrand, Amélie Stainer, Thierry Jéron, and Moez Krichen

A Practical Linear Time Algorithm for Trivial Automata Model
Checking of Higher-Order Recursion Schemes
Naoki Kobayashi

Church Synthesis Problem for Noisy Input
Yaron Velner and Alexander Rabinovich

Probabilistic Modal p-Calculus with Independent Product
Matteo Mio

Semantics

A Step-Indexed Kripke Model of Hidden State via Recursive Properties
on Recursively Defined Metric Spaces. i,
Jan Schwinghammer, Lars Birkedal, and Kristian Stgvring

A Modified Gol Interpretation for a Linear Functional Programming
Language and Its Adequacyvinirininninann.
Naohiko Hoshino

Estimation of the Length of Interactions in Arena Game Semantics.
Pierre Clairambault

153

168

184

199

214

229

245

260

275

290

305

Table of Contents XV

Synchronous Game Semantics via Round Abstraction................. 350
Dan R. Ghica and Mohamed N. Menaa

Binding

Freshness and Name-Restriction in Sets of Traces with Names 365
Murdoch J. Gabbay and Vincenzo Ciancia

Polymorphic Abstract Syntax via Grothendieck Construction 381
Makoto Hamana

Security

Asymptotic Information Leakage under One-Try Attacks.............. 396
Michele Boreale, Francesca Pampaloni, and Michela Paolini

A Trace-Based View on Operating Guidelines 411
Christian Stahl and Walter Vogler

Program Analysis

HTML Validation of Context-Free Languages........................ 426
Anders Moller and Mathias Schwarz

On the Power of Cliques in the Parameterized Verification of Ad Hoc
NetWOrKS .ot 441
Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro

The Reduced Product of Abstract Domains and the Combination of
Decision Procedures 456
Patrick Cousot, Radhia Cousot, and Laurent Mauborgne

Author Index 473

The Search for Structure in Quantum
Computation

Prakash Panangaden

School of Computer Science,
McGill University and Computing Laboratory,
University of Oxford

Abstract. I give a non-comprehensive survey of the categorical quan-
tum mechanics program and how it guides the search for structure in
quantum computation. I discuss the example of measurement-based com-
puting which is one of the successes of such an enterprise and briefly
mention topological quantum computing which is an inviting target for
future research in this area.

1 Introduction

Quantum computation has attracted (and repelled!) many members of the com-
puter science community. On the one hand, people have been excited by new
possibilities: cryptography based on physics rather than on unproven complexity
assumptions [I], new algorithmic paradigms [2], error correction [3], solutions to
hitherto “impossible” distributed computation tasks [4] and dramatic new pos-
sibilities like teleportation [B]. On the other hand, people have been disturbed
by the strangeness of quantum mechanics which has rendered many of the tra-
ditional tools of theoretical computer science inapplicable.

In this paper I will attempt to convey something of the strangeness of quan-
tum mechanics as well as some of the attempts being made to come to grips with
quantum computation. The subjects of quantum algorithms and quantum infor-
mation theory are flourishing and there are dramatic new results arriving at a
regular pace. For the logic and semantics community it has been a rougher ride.
Defining programming languages has not been routine [BI7U8/9/T0] and there are
many things that we do not understand yet. Entirely new challenges have been
posed for type systems. It is only this year that we have a decent definition of
weak bisimulation for a quantum process algebra. New models of computation
— like measurement-based computing [I1] and topological quantum computing —
have emerged from the physics community which have posed challenges to the
theoretical computer science community to formalize properly.

I will survey some of these developments and then pose some challenges for
the future.

2 Strange Features of Quantum Mechanics

By now most people in theoretical computer science understand the “standard”
features of quantum mechanics: the state space is a Hilbert space, the evolution

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 1}11] 2011.
© Springer-Verlag Berlin Heidelberg 2011

2 P. Panangaden

of a system is described by a unitary map, observables are hermitian operators
(hence their eigenvalues are real) and the outcome of a measurement is proba-
bilistic and yields one of the eigenvalues of the observable being measured. Even
the originally surprising aspects of quantum mechanics are no longer surprises:
systems can be in superpositions of states and measurement outcomes are not
determined.

The concept of non-locality of information continues to confound many peo-
ple. Even Einstein referred to this as “spooky action at a distance.” The point
is that it is possible for the values of an observable to be not even defined in
some states. The following thought experiment, due to Mermin [12], illustrates
this dramatically. Consider the apparatus schematically shown below:

2 2

RCl 3 3 l)a
" D

Set-up for Mermin’s thought experiment

In the centre there is a source of particles that emits them in pairs travelling in
opposite directions. The particles are detected by detectors that are separated
far enough that signals cannot pass between them. There are two detectors each
with 3 settings and 2 indicators: bulbs that flash red and green respectively. The
detectors are set independently and uniformly at random. The detectors are not
connected to each other or to the source.

Whatever the setting on a detector, the red or the green lights flash with equal
probability, but never both at the same time. When the settings are the same
the two detectors always agree. When the settings are different the detectors
agree 1 of the time! Why is this strange?

How could the detectors always agree when the settings are the same, even
though the actual colour seems to be chosen at random? There must be some
“hidden” property of the particles that determines which colour is chosen for
each setting; the two correlated particles must be identical with respect to this
property, whether or not the switches are set the same way. Let us write GGR
mean that for the three settings, 1,2,3, the detectors flash green, green and
red respectively for a type GGR particle. We are assuming it is meaningful to
attribute properties like GGR to a particle.

Suppose that the settings are different and we have an RRG particle: then for
two of the possible settings (1, 2 and 2, 1) the same colour flashes and for the other
four settings the colours are different. Thus ;’ of the time the colours must match.
This applies for any of the combinations: RRG, RGR,GRR,GGR,GRG, RGG.
For particles of type RRR and GGG the colours always match whatever the
settings. The inescapable conclusion is that whatever the distribution of particle
types the probability that the lights match when the settings are different is at
least ;‘! This just ain’t what we see in nature.

The Search for Structure in Quantum Computation 3

We made some basic assumptions about detectors:
Locality: what happens at one detector cannot alter what happens at the other,
Causality: a detector cannot predict the future sequence of particles and alter

its behaviour.

No ordinary probabilistic automaton or MDP or whatever your favourite state-
based model is, can reproduce the observed behaviour without breaking locality
or causality. Capturing locality in an automaton means that the states of the
system are the cross product of the states of each detector and the behaviour of
each detector depends only on the local state.

The inequality,

1
Prob(lights agree|settings different) > .

is a simple special case of Bell’s inequality. Quantum mechanics predicts that this
inequality is violated. Bell’s inequality has been experimentally tested and it
is plainly violated but the experiments agree with the predictions of quantum
mechanics which also predicts that the inequality is violated.

The point of this discussion is that the probabilistic nature of quantum me-
chanics does not arise as an abstraction of things that could be known. State
is not enough to predict the outcomes of measurements; state is enough to
predict evolution to new states.

These non-local effects are what give quantum computation its power. Tele-
portation is just a dramatic example of this.

3 Categorical Quantum Mechanics and Graphical
Calculi

What formal techniques can be brought to bear on these kinds of systems? A key
contribution of the logic and semantics community is compositionality. The whole
point of denotational semantics was to provide a compositional understanding of
systems. In the case of quantum mechanics we need to understand how to describe
composite systems. It was known since the days of von Neumann [I3] back in 1932
that the right way to combine the Hilbert spaces of two systems is by means of
the tensor product. The tensor product of Hilbert spaces is quite an elaborate
construction. It requires not just the construction of the tensor product of vector
spaces, but the definition of an inner product followed by a completion process
which is topological in nature. Ultimately, von Neumann was unhappy with the
elaborate mathematical machinery of Hilbert spaces and sought to retreat to some
new fundamental logical principles for axiomatizing quantum mechanics. This led
to the quantum logic programme [14] where the algebra of projection operators
on a Hilbert space became the inspiration for the logic.

A huge amount of work was spent on the quantum logic enterprise [I5], but in
the end it is fair to say that it floundered on its inability to give a clean account
of compositionality. Nevertheless logical ideas are indeed fundamental and the
breakthrough idea was simple: axiomatize tensor product in the simplest way

4 P. Panangaden

possible. This is due to Abramsky and Coecke [16] in a paper which appeared
in the IEEE Symposium on Logic in Computer Science in 2004. As so often
happens, categorists had invented the right notions already: monoidal categories.
Though it may seem to many to not be an improvement to use fancy category
theory instead of fancy functional analysis, the fact is that a purely elementary
account can be given based on very simple process intuitions. A very accessible
account of this viewpoint is contained in a set of lecture notes by Bob Coecke
appropriately entitled, “Kindergarten Quantum Mechanics” [17].

At its most basic level then quantum mechanics is about how to hook up
processes, either by connecting them in sequence or placing them side by side
in parallel or combinations thereof. One can model processes as arrows in a
category; the objects of the categories represent the input and output types of
the processes. Categorical composition models sequential composition and the
tensor product models parallel composition. Indeed one can intuit the correct
axioms for tensor just from this modelling.

What is so special about quantum mechanics? Surely these are the same
axioms one would use for any kind of process. One can easily whip up a model
of, for example, asynchronous dataflow, as a monoidal category and indeed this
has been done. Clearly monoidal categories are far too general; one needs to
identify other crucial ingredients of quantum mechanics and incorporate them
into the axioms. The Abramsky-Coecke paper identified duality of input and
output as a crucial feature and the resulting class of categories are called by
them strongly compact-closed categories. It does not matter what the algebraic
axioms are because the essence of this structure is captured beautifully by a
graphical calculus [18].

Graphical notions are now common in physics having been famously intro-
duced by Feynman for keeping track of certain integrals that arise in quantum
electrodynamics [T9/20]. Penrose introduced a beautiful graphical notation for
tensor analysis [2I] which was placed on a firm mathematical footing by Joyal
and Street [22]. T highly recommend the excellent survey by Selinger [18] in
addition to the lecture notes of Coecke mentioned above.

The fundamental theorem [22] of the graphical language states that

Theorem 1. An equation holds between terms in the morphism language of
monoidal categories if and only if it holds up to planar isotopy in the graphical
language.

This means that diagrammatic manipulations can replace algebraic gymnastics.
Furthermore, many equations turn out to be trivial in the graphical language.
There are two fundamental structural aspects of quantum mechanics that are
captured by the categorical formalism. The first states that “objects have duals”;
in categorical jargon these are called autonomous categories. In diagrammatic
terms it means that every object A has a dual A* and one can reverse arrows
using duality. In a closed category one bend arrows around using the duals.
This gives quantum mechanics its reversible aspect. Finally, there is a structure
called a “dagger”; this is also a way of changing the direction of an arrow and it

The Search for Structure in Quantum Computation 5

closely corresponds to the adjoint operation in linear algebra. It is the presence
of this dagger structure that signals the role of complex numbers in quantum
mechanics. Analogues of the fundamental theorem hold [I8] for all these richer
types of monoidal categories.

There are at least three important reasons for working at this level of ab-
stractness. First, one can explore variants of quantum mechanics that are close
to but not exactly the same as standard quantum mechanics. For example, the
category Rel of sets and binary relations is an impoverished example of “toy”
quantum mechanics. One can then explore what features one really needs for
various phenomena to manifest themselves and thus understand what is the
essence of quantum mechanics. For example, one can ask whether teleportation
could be done in Rel; it cannot! Another striking exploration of this kind is the
work by Coecke, Edwards and Spekkens [23] on formalizing a certain toy model
originally due to Spekkens and showing that there is a group-theoretic reason
for the difference between the two models.

Secondly, one can explore more exotic phenomena like multipartite quantum
entanglement [24] or interacting quantum observables [25] from a graphical view-
point and even find graph theoretical characterizations of these structures. As
soon as one has three or more entangled states the situation becomes much more
complicated. There are some preliminary hints of the role of these states in dis-
tributed computing tasks [4] but clearly much remains to be understood and
structural understanding will guide the way.

Finally, one can address foundational questions of quantum information and
quantum mechanics. In very striking recent work Abramsky [26] has analyzed
the issue of hidden variables in the toy relational model and has shown that
many of the no-go theorems survive even when one has only a “possibilistic”
view of nondeterminism.

4 Measurement-Based Computing

I now turn to a new computational model and analyze it from the viewpoint
of theoretical computer science. Traditionally, the main framework to explore
quantum computation has been the circuit model [27], based on unitary evolu-
tion. This is very useful for algorithmic development and complexity analysis
[28]. There are other models such as quantum Turing machines [29] among a
variety of others. They are all proved to be equivalent from the point of view of
expressive power. For higher-order sequential programming we have the typed
A-calculus which stands out as the canonical programming language but there
is no such language for quantum computation.

Recently physicists have introduced novel ideas based on the use of measure-
ment and entanglement to perform computation [30/TTI3T]. This is very different
from the circuit model where measurement is done only at the end to extract
classical output. In measurement-based quantum computation the main opera-
tion to manipulate information and control computation is measurement. This is
surprising because measurement creates indeterminacy, yet it is used to express
deterministic computation defined by a unitary evolution.

6 P. Panangaden

The idea of computing based on measurements emerged from the telepor-
tation protocol [5]. The goal of this protocol is for an agent to transmit an
unknown qubit to a remote agent without actually sending the qubit. This pro-
tocol works by having the two parties share a maximally entangled state called
a Bell pair. The parties perform local operations — measurements and unitaries —
and communicate only classical bits. Remarkably, from this classical information
the second party can reconstruct the unknown quantum state. In fact one can
actually use this to compute via teleportation by choosing an appropriate mea-
surement [30]. This is the key idea of measurement-based computation.

It turns out that the above method of computing is actually universal. This
was first shown by Gottesman and Chuang [30] who used two-qubit measure-
ments and given Bell pairs. The one-way computer was then invented by
Raussendorf and Briegel [1132] which used only single-qubit measurements with
a particular multi-party entangled state called the cluster state.

The computation proceeds in a sequence of phases; in the first phase a col-
lection of qubits are set up in a standard entangled state. Then measurements
are applied to individual qubits and the outcomes of the measurements may be
used to determine further adaptive measurements. Finally — again depending on
measurement outcomes — local unitary operators, called corrections, are applied
to some qubits; this allows the elimination of the indeterminacy introduced by
measurements. The phrase “one-way” is used to emphasize that the computation
is driven by irreversible measurements.

There are at least two reasons to take measurement-based models seriously:
one conceptual and one pragmatic. The main pragmatic reason is that the
one-way model is believed by physicists to lend itself to easier implementa-
tions [33I34I35]. Physicists have investigated various properties of the cluster
state and have accrued evidence that the physical implementation is scalable
and robust against decoherence [36]. Conceptually the measurement-based model
highlights the role of entanglement and separates the quantum and classical
aspects of computation; thus it clarifies, in particular, the interplay between
classical control and the quantum evolution process.

When this model was first presented it was couched in the language of Hamil-
tonians and evolution of quantum states. The design of even simple gates seemed
magical and an exercise in combinatorial ingenuity. Most importantly, the “proof”
of universality consisted in showing that the basic gates of the circuit model
could be implemented in the one-way model with the implicit understanding
that any network could then be encoded. What was missing was a compositional
translation and a proof that the semantics of the circuit was preserved.

Our approach to understanding the structural features of measurement-based
computation was to develop a formal calculus [37]. One can think of this as an
“assembly language” for measurement-based computation. It was the first pro-
gramming framework specifically based on the one-way model. In our paper we
developed a language for programs (we called them “patterns”) as sequences of
entanglements, measurements, and local corrections. We gave a careful treatment
of the composition and tensor product (parallel composition) of programs and

The Search for Structure in Quantum Computation 7

we have denotational semantics and operational semantics for these programs.
In this framework we were able to give a proof of universality. In fact, we were
able to modify the framework in apparently small ways but these had the effect
of greatly simplifying the implementations of circuits. More precisely we had an
extended notion of pattern, where inputs and outputs may overlap in any way
one wants them to, and this results in more efficient — in the sense of using fewer
qubits — implementations of unitaries. Specifically, our universal set consists of
patterns using only 2 qubits. From it we obtained a 3 qubit realization of the
R, rotations and a 14 qubit realization for the controlled-U family: a significant
reduction over the hitherto known implementations [3§].

However, there were more benefits to be gained from the exploration of this
structural view of measurement-based computing. We introduced a calculus of
patterns based on the special algebraic properties of the entanglement, measure-
ment and correction operators. These allowed local rewriting of patterns and
we showed that this calculus is sound in that it preserves the interpretation of
patterns. Most importantly, we derived from it a simple algorithm by which any
general pattern can be put into a standard form where entanglement is done
first, then measurements, then corrections. We call this standardization.

The consequences of the existence of such a procedure are far-reaching. Since
entangling comes first, one can prepare the entire entangled state needed dur-
ing the computation right at the start: one never has to do “on the fly” en-
tanglements. Furthermore, the rewriting of a pattern to standard form reveals
parallelism in the pattern computation. In a general pattern, one is forced to
compute sequentially and to strictly obey the command sequence, whereas, after
standardization, the dependency structure is relaxed, resulting in lower compu-
tational depth complexity [39].

Perhaps the most striking development in the theory of measurement-based
computing is the discovery of the concept of flow by Danos and Kashefi [40].
A variety of methods for constructing measurement patterns had already been
proposed that guarantee determinism by construction. They introduced a graph-
theoretic condition on the states used in measurement patterns that guarantees
a strong form of deterministic behavior for a class of one-way measurement pat-
terns defined over them. Remarkably, their condition bears only on the geometric
structure of the entangled graph states. This condition singles out a class of pat-
terns with flow, which is stable under sequential and parallel compositions and
is large enough to realize all unitary and unitary embedding maps.

Patterns with flow have interesting additional properties. First, they are
uniformly deterministic, in the sense that no matter what the measurements
are made, there is a set of corrections, which depends only on the underlying
geometry, that will make the global behaviour deterministic. Second, all compu-
tation branches have equal probabilities, which means in particular, that these
probabilities are independent of the inputs, and as a consequence, one can show
that all such patterns implement unitary embeddings. Third, a more restricted
class of patterns having both flow and reverse flow supports an operation of

8 P. Panangaden

adjunction, corresponding to time-reversal of unitary operations. This smaller
class implements all and only unitary transformations.

In the categorical quantum framework Coecke and Duncan [25] have looked at
interacting quantum observables in a diagrammatic formalism. There is a very
pleasing encoding of the one-way model into this framework and many of the
algebraic equations of the one-way model can be done by graphical manipula-
tions. It would be fascinating to understand flow and its relation to causality in
this way.

5 Topological Quantum Computing

I would like to close with a brief mention of a wide open area: topological quan-
tum computing. In quantum computation one is required to make excruciatingly
precise manipulations of qubits while preserving entanglement when all the while
the environment is trying to destroy entanglement. A very novel suggestion by
Kitaev [41] proposes the use of a new type of hypothetical particle called an
anyon [42[43] which has a topological character.

The mathematics and physics of anyons probe the most fundamental prin-
ciples of quantum mechanics. They involve a fascinating mix of experimen-
tal phenomena (the fractional quantum Hall effect), topology (braids), algebra
(Temperley-Lieb algebra, braid group and category theory) and quantum field
theory. Because of their topological nature, it is hoped that one can use them as
stable realizations of qubits for quantum computation, as proposed originally by
Kitaev. The idea of topological quantum computation has been actively pursued
by Freedman et al. [44/45].

There is rich algebraic structure to be understood and, as with the
measurement-based model, we need a computational handle on this. We have
nothing like a calculus or a standardization theorem. What is clear is that the ba-
sic interactions of the anyons can only be expressed in the categorical language.
One needs a rather rich kind of categorical structure called a modular tensor cat-
egory [46]. An expository account of this subject is given in [47]. Understanding
topological quantum computing from the viewpoint of computational structure
remains a big open problem.

Acknowledgments

I would like to thank McGill University and EPSRC for its generous support
during my sabbatical leave, NSERC (Canada) and the Office of Naval Research
(USA) for funding this research and the Computing Laboratory of the Univer-
sity of Oxford for its hospitality. I have benefitted from discussions with Sam-
son Abramsky, Bob Coecke, Vincent Danos, Ross Duncan, Julia Evans, Elham
Kashefi, Eric Paquette and Jamie Vicary.

The Search for Structure in Quantum Computation 9

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and

coin tossing. In: Proceedings of IEEE International Conference on Computers,
Systems and Signal Processing, Bangalore, India, pp. 175-179 (December 1984)

. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-

toring. In: Goldwasser, S. (ed.) Proc. 35nd Annual Symposium on Foundations
of Computer Science, pp. 124-134. IEEE Computer Society Press, Los Alamitos
(1994)

. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM J. Computing 26, 1484-1509 (1997)

. D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states.

Quantum Information and Computation 6(2), 173-183 (2006)

. Bennett, C.H., Brassard, G., Crepeau, C., Josza, R., Peres, A., Wootters, W.:

Teleporting an unknown quantum state via dual classical and epr channels. Phys.
Rev. Lett. 70, 1895-1899 (1993)

. Gay, S.: Quantum programming languages: Survey and bibliography. Bulletin of

the EATCS 86, 176-196 (2005)

. Selinger, P.: Towards a quantum programming language. Mathematical Structures

in Computer Science 14(4), 527-586 (2004)

. Selinger, P.: A brief survey of quantum programming languages. In: Kameyama, Y.,

Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 1-6. Springer, Heidelberg
(2004)

. Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.)

Semantic Techniques in Quantum Computation. Cambridge University Press,
Cambridge (2009) (to appear)

van Tonder, A.: A lambda calculus for quantum computation. Siam Journal on
Computing 33(5), 1109-1135 (2004)

Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86,
5188-5191 (2001)

Mermin, D.: Boojums all the way through. Cambridge University Press, Cambridge
(1990)

von Neumann, J.: Mathematisch Grunglagen der Quantenmechanik. Springer,
Heidelberg (1932); English translation. Princeton University Press, Princeton
(1955)

Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals of Math-
ematics 37(4), 823-843 (1936)

Piron, C.: Foundations of quantum physics. W. A. Benjamin (1976)

Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science: LICS
2004, pp. 415-425. IEEE Computer Society, Los Alamitos (2004)

Coecke, B.: Kindergarten quantum mechanics (2005), available on the ArXivquant-
ph/0510032

Selinger, P.: A survey of graphical languages for monoidal categories. In: New
Structures for Physics, pp. 289-356. Springer, Heidelberg (2010)

Feynman, R.P.: The theory of positrons. Physical Review 76, 749-759 (1949)
Feynman, R.P.: The space-time approach to quantum electrodynamics. Physical
Review 76, 769-789 (1949)

10

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

P. Panangaden

Penrose, R.: Applications of negative dimensional tensors. In: Welsh, D.J.A. (ed.)
Combinatorial Mathematics and its Applications. Academic Press, London (1971)
Joyal, A., Street, R.: The geometry of tensor calculus. Advances in Mathematics 88,
55-112 (1991)

Coecke, B., Edwards, B., Spekkens, R.: The group theoretic origin of non-locality
for qubits. Technical Report RR~09-04, OUCL (2009)

Coecke, B., Kissinger, A.: The compositional structure of multipartite quantum
entanglement. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 297-308. Springer,
Heidelberg (2010)

Coecke, B., Duncan, R.: Interacting quantum observables. In: Aceto, L., Damgard,
I., Goldberg, L.A., Halldérsson, M.M., Ingdlfsdéttir, A., Walukiewicz, 1. (eds.)
ICALP 2008, Part II. LNCS, vol. 5126, pp. 298-310. Springer, Heidelberg (2008)
Abramsky, S.: Relational hidden variables and non-locality, arXiv:1007.2754 (July
2010)

Deutsch, D.: Quantum computational networks. Proc. Roy. Soc. Lond. A 425 (1989)
Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal of Com-
puting 5(26) (1997)

Deutsch, D.: Quantum theory, the Church-Turing Principle and the universal quan-
tum computer. Proc. Roy. Soc. Lond. A 400, 97 (1985)

Gottesman, D.; Chuang, I.L.: Quantum teleportation is a universal computational
primitive. Nature 402 (1999)

Nielsen, M.A.: Universal quantum computation using only projective measurement,
quantum memory, and preparation of the 0 state. Physical Review A 308 (2003)
Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum com-
putation on cluster states. Phys. Rev. A 68(2), 022312 (2003)

Nielsen, M.A.: Optical quantum computation using cluster states. Physical Review
Letters 93 (2004), quant-ph/0402005

Childs, A.M., Leung, D.W., Nielsen, M.A.: Unified derivations of measurement-
based schemes for quantum computation. Physical Review A 71 (2005), quant-
ph/0404132

Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation.
Physical Review Letters 95 (2005), quant-ph/0405157

Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Phys-
ical Review A 69 (2004), quant-ph/0307130

Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. Journal Of
The Association of Computing Machinery 52(2), article 8 (April 2007)

Vincent Danos, E.K., Panangaden, P.: Parsimonious and robust realizations of
unitary maps in the one-way model. Physical Review A 72, 064301 (2005)
Broadbent, A., Kashefi, E.: Parallelizing quantum circuits. Theoretical Computer
Science 410(26), 2489-2510 (2009)

Danos, V., Kashefi, E.: Determinism in the one-way model. Physical Review
A 74(5), 6 (2006)

Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1),
3-20 (2003)

Wilczek, F.: Magnetic flux, angular momentum, and statistics. Phys. Rev.
Lett. 48(17), 1144-1146 (1982)

43.

44.

45.

46.

47.

The Search for Structure in Quantum Computation 11

Wilczek, F.. Quantum mechanics of fractional-spin particles. Phys. Rev.
Lett. 49(14), 957-959 (1982)

Freedman, M.H., Larsen, M., Wang, Z.: A modular functor which is universal for
quantum computation. Communications in Mathematical Physics 227(3), 605622
(2002)

Freedman, M.H., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum comput-
ing. Bulletin of the AMS 40(1), 31-38 (2003)

Bakalov, B., Kirillov, A.: Lectures on tensor categories and modular functors.
American Mathematical Society in University Lecture Series (2001)

Panangaden, P., Paquette, E.: A categorical presentation of quantum computation
with anyons. In: New Structures for Physics, pp. 983—-1026. Springer, Heidelberg
(2010)

Coalgebraic Walks,
in Quantum and Turing Computation

Bart Jacobs

Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen, The Netherlands
www.cs.ru.nl/B. Jacobs

Abstract. The paper investigates non-deterministic, probabilistic and
quantum walks, from the perspective of coalgebras and monads. Non-
deterministic and probabilistic walks are coalgebras of a monad (pow-
erset and distribution), in an obvious manner. It is shown that also
quantum walks are coalgebras of a new monad, involving additional con-
trol structure. This new monad is also used to describe Turing machines
coalgebraically, namely as controlled ‘walks’ on a tape.

1 Introduction

Coalgebras have emerged in theoretical computer science as a generic formal-
ism for state-based computing, covering various flavours of computation, like
deterministic, non-determinstic, probabilistic etc. In general, a coalgebra is a
transition map of the form X — ---X---X ... | where X is the state space
and the box captures the form of computation involved. For instance, it is a
powerset P(X) in case of non-determinism; many other coalgebraic classifica-
tions of systems are described in [ITJT]. More formally, this box is a functor, or
often even a monad (in this paper) giving composition as monoid structure on
coalgebras. A question that is open for a long time is whether Turing machines
can also be modeled coalgebraically. More recently, the same question has been
asked for quantum computing.

This paper addresses both these questions and provides positive answers via
illustrations, starting from the notion of a random walk. Such walks exist in
non-deterministic, probabilistic and quantum form. A first goal is to describe all
three variants in a common (coalgebraic) framework, using monads. This effort
focuses on the quantum case, and leads to a new construction for monads (see
Proposition [) that yields an appropriate monad for quantum walks, involving
a separate control structure.

Since quantum computation is inherently reversible, the framework of dagger
categories is needed. Examples of such categories are described in Section [B]
via suitable relations that capture ‘bi-coalgebraic’ computations. Among the
different kinds of walks, only the quantum walks give rise a unitary map.

Finally, an analogy is observed between quantum walks and Turing machines:
both involve a road/tape on which movement is steered by a separate control
structure. This will be captured coalgebraically, via the newly defined monads.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 12 2011.
© Springer-Verlag Berlin Heidelberg 2011

Coalgebraic Walks, in Quantum and Turing Computation 13

The approach of the paper is rather phenomenological, focusing on examples.
However, the material is supported by two general results (Propositions[2 and [3),
one of which is moved to the appendix; it describes how coalgebras of a monad,
with Kleisli composition, form a monoid in categories of algebras of the monad.

2 Three Monads for Computation Types

Category theory, especially the theory of monads, plays an important role in
the background of the current paper. The presentation however is intended to
be accessible—to a large extent—without familiarity with monads. We do use
three particular monads extensively, namely the powerset, multiset, and distri-
bution monad, and so we describe them here explicitly—without making their
monad structure explicit; cognoscenti will have no problem filling in this struc-
ture themselves.

The first monad is the finite powerset Pg,, (X) = {U C X | U is finite}. Next,
a multiset is like a subset except that elements may occur multiple times. Hence
one needs a way of counting elements. Most generally this can be done in a
semiring, but in the current setting we count in the complex numbers C. Thus
the collection of (complex-valued) multisets of a set X is defined in terms of
formal linear combinations of elements of X, as in:

M(X):{Z1|$1>+~~+Zn|xn> zieCandxieX}. (1)

Such a multiset), z;|;) € M(X) can equivalently be described as a function
X — C with finite support (i.e. with only finitely many non-zero values).

The “ket” notation |x), for x € X, is just syntactic sugar, describing x as
singleton multiset. It is Dirac’s notation for vectors, that is standard in physics.
The formal combinations in () can be added in an obvious way, and multiplied
with a complex number. Hence M(X) is a vector space over C, namely the free
one on X.

The distribution monad D contains formal convex combinations:

D(X) @)
:{r1|x1>+~~+rn\xn> r; € [0,1] withr1+o~+rn:1andx¢€X}

Such a convex combination is a discrete probability distribution on X.
Coalgebra provides a generic way of modeling state-based systems, namely
as maps of the form X — T(X), where T is a functor (or often a monad).
Basically, we only use the terminology of coalgebras, but not associated notions
like bisimilarity, finality or coalgebraic modal logic. See [I1]] for more information.

3 Walk the Walk

This section describes various ways of walking on a line—and not, for instance,
on a graph—using non-deterministic, probabilistic or quantum decisions about
next steps. Informally, one can think of a drunkard moving about. His steps are
discrete, on a line represented by the integers Z.

14 B. Jacobs

3.1 Non-deterministic Walks

A system for non-deterministic walks is represented as a coalgebra s: Z —
Pfin(Z) of the finite powerset monad Pgy,. For instance, the one-step-left-one-
step-right walk is represented via the coalgebra:

s(k) = {k—1,k+1}

In such a non-deterministic system both possible successor states £k — 1 and
k+1 are included, without any distinction between them. The coalgebra s: Z —
Pfin(Z) forms an endomap Z — Z in the Kleisli category K¢(Ppy,) of the powerset
monad. Repeated composition s = s e --- e s: Z — Z can be defined directly
in K¢(Pfin). Inductively, one can define s™ via Kleisli extension s# as in:

#. Pr (7 (2
e Pin(®) — Pra(@)
sl = 57 o gn is U+~ U{s(m)|meU}.

s (k) = {k}
st(k) =s(k) = {k—1,k+1}
s2(k) =U{s(m) |m e s(k)} = s(k—1)Us(k+1)
= {k—2,k}U{k k+2} = {k— 2,k k+2}
s3(k)=s(k—2)Us(k)Us(k+2) = {k—3,k—1,k+1,k+3} etc.

After n iterations we obtain a set with n 4+ 1 elements, each two units apart:
s"k)y={k—nk—nmn+2k—n+4,....k+n—2,k+n}.

Hence we can picture the non-deterministic walk, starting at 0 € Z by indicating
the elements of s™(0) successively by + signs:

L ~
L L
I

+ + + etc.

What we have used is that coalgebras X — Ppn(X) carry a monoid structure
given by Kleisli composition. The set Pgp, (X) is the free join semilattice on X.
The set of coalgebras X — P, (X) then also carries a semilattice structure,
pointwise. These two monoid structures (join and composition) interact appro-
priately, making the set of coalgebras X — Pp,(X) a semiring. This follows
from a quite general result about monads, see Proposition Bl in the appendix.
The semiring structure is used in Section [7] when we consider matrices of coal-
gebras.

Coalgebraic Walks, in Quantum and Turing Computation 15

3.2 Probabilistic Walks

Probabilistic walks can be described by replacing the powerset monad Pg, by
the (uniform) probability distribution monad D, as in:

z 4-D@) givenby kI =1k—1)+ Lk+1).

This coalgebra d is an endomap Z — Z in the Kleisli category K¥(D) of the
distribution monad. This yields a monoid structure, and iterations d": Z — Z
in K¥(D). The Kleisli extension function d# : D(Z) — D(Z) can be described as:

d* (rilki) + -+l k)
=arilkr— 1)+ grilki + 1) 4+ Jrplkn — 1) + S7nlkn + 1),

where on the right—hand—side we must, if needed, identify r|k) + s|k) with (r +
s)|k). One has d” = d e --- e d, where d @ d = d* o d.
The iterations d", as functlons d": 7 — D(Z), yield successively:

d°(k) = 1| k)

d'(k)=dk) = Jk—1)+ S|k +1)
Ak)=1k=2)+ k) + LE)+ 3k+2) = Jk—2)+ k) + ik +2)
Bk)=Lk=3)+ L k—1)+ Hk—1)+ Lk+1)+ Lk +1)+ Lk+3)

Hk=3)+23k—1)+3k+1)+ Lk+3) et
The general formula involves binomial coefficients describing probabilities:

—n+2)+ ()

k—mn)+ <21) on

o lktn—2)+§)

o = O

on

E—n+4)+...+

).

This provides a distribution since all probabilities involved add up to 1, because
of the well-known sum formula for binomial coefficients:

©)+ @)+ G+ + G+ G) =2

The resulting probabilistic walks starting in 0 € Z can be pictured like in (),
but this time with explicit probabilities:

-3 -2 -1 0 1 2 3
1/1\1
/2\ /2\ 4)
1/ \3/ \3/ \1
LTI, I I,
etc.
16 16 16 16 16

The role of Pascal’s triangle in the description of the probability distributions
for such random walks is of course well-known.

16 B. Jacobs

3.3 Quantum Walks

In the quantum case the states k € Z appear as base vectors, written as |k) €
M(Z), in the free vector space M(Z) on Z, see Section 2l Besides these vectors,
one qubit, with base vectors | |) and | 1), is used for the direction of the walk.
Thus, the space that is typically used in physics (see [512]) for quantum walks is:

C? @ M(Z) with basis elements [LYy® k), |1)@® k),

where we may understand | 1) = ((1)) €eC?and|]) = ((1)) e C2.
A single step of a quantum walk is then written as an endomap:

q

C? ® M(Z) >C?2 @ M(Z)
[T)elk) = plT)elk=1)+ J,11)elk+1) (5)
[1) e k) = plT)elk=1)—= JI1)elk+1)

Implictly the Hadamard transform H = \}2 G _i) is applied to the qubits in

C2. A tree of probabilities is now obtained by repeatedly applying ¢, say to a
start state | T) ® |0), and subsequently measuring |k). We write Proby, for the
probability of seeing |k) as outcome.

Thus, after one step we have:

a1 1)el0) = LI el -1)+ LIl el1),
giving probabilities Prob_1; = Prob; = | \}2 |2 = ; After two steps we get:

(1) el0) = Lalt)el-1)+ La(l)e|)
=511yl =2)+5l1)el0)+5[1)el0)—3|1)e]2)
=slmyel=2)+3(1)+11)e0)—311)e|2)
with probabilities:

Prob o= 3= Prbo= [P +[3 =) Prob=|- =},

After 3 steps the outcomes begin to differ from the probabilistic outcomes,
see (), due to interference between the different summands:

F(11) 0)
= q(1) e | —2)+ a(l 1) |0)
+3a(1 1) 2 10) — ba(l 1) @]2))
=Lty el =3 4, L el — 1)+, L el —1) =, 1) ell)
ol Thel =L+, el =L el +,L 1) el3)
=0l Thel =3+ LiThel—1)+,L 1) e -1)
— Ll e 1)+, L, 1) e 13),

Coalgebraic Walks, in Quantum and Turing Computation 17

leading to probabilities:

Prob_s = Prob, = Prob- Prob_

3:’2\1/2‘ 1:’\}2‘2+’2\/2’

Thus there is a ‘drift’ to the left, see the following table of probabilities starting
from the initial state | 1) @ |0) € C? @ M(Z).

-3 -2 -1 0 1 2 3

LN
N N ©)
1/4\5/ \1/ \1
LN / ., / ., / N0
16 16 etc.

The matrix involved—Hadamard’s H in this case—determines the drifting, and
thus how the tree is traversed.

4 A Coalgebraic/Monadic Description of Quantum Walks

In the previous section we have seen the standard way of describing quantum
walks, namely via endomaps C? @ M(Z) — C? @ M(Z). The question arises
if such walks can also be described coalgebraically, of the form Z — T(Z), for
a suitable monad T, just like for non-deterministic and probabilitistic walks in
Subsections B and This section will show how to do so. The following
observation forms the basis.

Proposition 1. 1. For each n € N, there is an isomorphism of vector spaces:
CtoM(X) 2 M(n-X),

natural in X —where n - X is the n-fold coproduct X + --- + X, also known
as copower of the set X.
2. As a consequence, there is a bijective correspondence between:

linear maps C" @ M(X) — C" @ M(Y)
functions X — M(n-Y)"

Proof. 1. For convenience we restrict to n = 2. We shall write & for the product
of vector spaces, which is at the same time a coproduct of spaces (and hence
a ‘biproduct’). There is the following chain of (natural) isomorphisms

C2OM(X)=(CaC)® M(X)
= (CaM(2)® (CoM(X)) since ® distributes over &
& M(X)d M(X) since C is tensor unit
> M(X + X),

where the last isomorphism exists because M is a free functor Sets — Vect,
and thus preserves coproducts.

18 B. Jacobs

2. Directly from the previous point, since:

C"OM(X)— C"@ M(Y) in Vect

M- -X)— M(n-Y) in Vect, by point 1 .
n-X—M(n-Y) in Sets, since M is free
X —Mn-Y)" in Sets

Corollary 1. There is a bijective correspondence between linear endomaps
C? ® M(Z) >C?@ M(Z)
as used for quantum walks in Subsection[3.3, and coalgebras
Z >M(Z+7Z)?
of the functor M(2 - —)2.

The coalgebra Z — M(Z + Z)? corresponding to the linear endomap ¢q: C? ®
M(Z) — C? ® M(Z) from Subsection [3.3] can be described explicitly as follows.

Z >M(Z+Z)2

(7)
ml > <\}2m|m— 1)+ \}2n2|m—|—1>, \}2m|m— 1) — \}2,%2|m—|—1>>

The k;, for ¢ = 1, 2, are coprojections that serve as tags for ‘left’ and ‘right’ in a
coproduct (disjoint union) Z+ Z. Notice that in this re-description tensor spaces
and their bases have disappeared completely.

Of course, at this stage one wonders if the the functor M (2-—)? in Corollary/[I]
is also a monad—Ilike powerset and distribution. This turns out to be the case,
as an instance of the following general “monad transformer” result.

Proposition 2. Let A be a category with finite powers X" = X x --- x X and
copowers n-X =X +---+ X. For a monad T: A — A there is for each n € N
a new monad T'[n]: A — A by:

with unit and Kleisli extension:

n

nln]x = (T(xi) 0 nx)i<n J# = (premyy o T(filiza)) "
where in the latter case f is a map f = (fi)i<n: X — T[n](Y).

Proof. For convenience, and in order to be more concrete, we restrict to n = 2.
We leave it to the reader to verify that n[2] is natural and that its extension is

Coalgebraic Walks, in Quantum and Turing Computation 19

the identity: 7[2]* = id. Of the two remaining properties of Kleisli extension,
f#on[2] = f and (97 o f)* = g* o f#, we prove the first one:

f#on[2] = (o T([f1, f2])) x (o T([f1, fa])) o (T (k1) o 0, T(k2) o n)
= (o T([f1, f2]) o T(k1) o m, o T([f1, fa]) o T(k2) o n)
=(uoT(f1)on,uoT(f2)on)
=(uomo fi,pono fa)
= (f1, f2)
= f. O

Kleisli extension yields the multiplication map T'[n]?(X) — T'[n](X) as extension
id# of the identity on T'[n](X). Concretely, it can be described as:

v e T(mlien)]” .
(0 (T x))")] : I, 70 x)]

The number n € N in T[n] yields a form of control via n states, like in the
quantum walks in Subsection where n = 2 and T' = M. Indeed, there is a
similarity with the state monad transformer X + T(S x X)“, for T a monad
and S a fixed set of states (see e.g. [§]). If S is a finite set, say with size n = |5/,
T(S x —)% is the same as the monad T'[n] = T'(n- —)™ in Proposition 2l since the
product S x X in Sets is the same as the copower n - X.

Next we recall that M is an additive monad. This means that it maps finite
coproducts to products: M(0) = 1 and M(X+Y) =2 M(X)xM(Y), in a canon-
ical manner, see [2] for the details. This is relevant in the current setting, because
the endomap for quantum walks from Subsection [3.3] can now be described also
as a 4-tuple of coalgebras Z — M(Z), since:

C? ® M(Z) >C? @ M(Z)
Z > M(Z + Z)?

(by Corollary [I)

(by additivity of M)
Z = (MZ)x M(Z)?
l
M(2)*

We shall write these four coalgebras corresponding to the endomap ¢ in (&) as
¢ij: Z— M(Z), for i, j € {1,2}. Explicitly, they are given as follows.

en(k)= LIk—1) k)= }lk-1)
en(k) = LIk+1) en(k)=-lk+1).

As the notation already suggests, we can consider these four coalgebras as entries
in a 2 x 2 matrix of coalgebras, in the following manner:

o (e e Ak.\}2|k71> Ak.\}Q\ka . @)
Ca1 €22 Me. Jolk+1) Ak — ok +1)

20 B. Jacobs

Thus, the first column describes the output for input of the form | 1) ® |k) =
(l §>)7 and the second column describes the result for | |) ® |k) = (I 2>). By mul-
tiplying this matrix with itself one achieves iteration as used in Subsection
This matrix notation is justified by the following observation.

Lemma 1. The set M(X)X of M-coalgebras on a set X forms a semiring. Ad-
dition is done pointwise, using addition on M(X), and multiplication is Kleisli
composition e for M, given by (d e c)(z)(z) = >_, c(x)(y) - d(y)(2). O

The proof is skipped because this lemma is a special instance of a more general
result, namely Proposition 3l in the appendix.

5 Reversibility of Computations

So far we have described different kinds of walks as different coalgebras Z —
Pfin(Z), Z — D(Z), and Z+Z — M(Z+ Z). Next we investigate reversibility of
these coalgebras. It turns out that all these coalgebras are reversible, via a dagger
operation, but only the quantum case involves a ‘unitary’ operation, where the
dagger yields the inverse. The three dagger categories that we describe below
are captured in [4] as instance of a general construction of a category of ‘tame’
relations. Here we only look at the concrete descriptions.

We start with the non-deterministic case. Let BifRel be the category of sets
and bifinite relations. Object are sets X, and morphisms X — Y are relations
r: X xY — 2={0,1} such that:

— for each z € X the set {y € Y | r(z,y) # 0} is finite;
— also, for each y € Y the set {z € X | r(z,y) # 0} is finite.

This means that r factors both as function X — P, (V) and as Y — Ppp (X).
Relational composition and equality relations make BifRel a category. For a
map r: X — Y there is an associated map r7: ¥ — X in the reverse direction,
obtained by swapping arguments: r (y, z) = r(x, y). This makes BifRel a dagger
category.

The non-deterministic walks coalgebra s: Z — Pg, (Z) from Subsection Bl is
in fact such bifinite relation Z — Z in BifRel. Explicitly, as a map s: ZxZ — 2,
also called s, it is given by s(n,m) = 1 iff m = n—1 or m = n+1. The associated
dagger map s', in the reverse direction, is sT(n,m) = 1 iff s(m,n) = 1 iff
n=m—1orn=m+1; it is the same relation. In general, a map f in a dagger
category is unitary if f' is the inverse of f. The non-deterministic walks map s
is not unitary, since, for instance:

(sosT)(n,n') =1« 3,,.5"(n,m) A s(m,n’)
< s(n—1,n")Vs(n+1,n')
en=n—-2Vn =nvn =n+2.

This is not the identity map Z — Z given by idz(n,n') =1 iff n =n’.

Coalgebraic Walks, in Quantum and Turing Computation 21

We turn to the probabilistic case, using a dagger category dBisRel of discrete
bistochastic relations. Objects are sets X and morphisms X — Y are maps
r: X xY — [0,1] that factor both as X — D(Y') and as Y — D(X). Concretely,
this means that for each x € X there are only finitely many y € Y with r(z,y) #
0 and Zy r(z,y) = 1, and similarly in the other direction. These maps form a
category, with composition given by matrix multiplication and identity maps by
equality relations. The resulting category dBisRel has a dagger by reversal of
arguments, like in BifRel.

The probabilistic walks map d: Z — D(Z) from Subsection [3.2is an endomap
d: 7 — 7 in dBisRel, given as:

2

L itm=n—1 —n+1
zxz T-[0,1] by d(n,m) = Hm=n—lorm=n-t
0 otherwise.

Also in this case d is not unitary; for instance we do not get equality in:

(dod)(n,n') =3, d'(n,m) - dim,n’)
= ; ~d(n—1,n") + é ~d(n+1,n)

}1 ifn =n—2orn =n+2
— 1 : ! _
=19 5 ifn =n

0 otherwise.

Finally we turn to the quantum case, for which we use the dagger category
BifMRel of sets and C-valued multirelations. Objects are sets, and morphisms
r: X — Y are maps r: X x Y — C which factor both as X — M(Y) and
as Y — M(X). This means that for each = there are finitely many y with
r(z,y) # 0, and similarly, for each y there are finitely many = with r(x,y) # 0.
Composition and identities are as before. The dagger now not only involves
argument swapping, but also conjugation in C, as in rf(y,z) = r(z,v).

We have already seen that the quantum walks endomap C? ® M(Z) — C? ®
M(Z) corresponds to a coalgebra q: Z + Z — M(Z + Z). We now represent it
as endo map q: Z + Z — 7Z + 7Z in BifMRel given by:

qg(kin,k1(n—1)) = \}2
q q(kin, ka(n+1)) = ?
(Z + Z) X (Z + Z) >C where \42
q(kon, k1(n —1)) = 2
q(kan, w2(n+1)) = = 7,

(Only the non-zero values are described.) The dagger ¢ is:

qT(Hl(n - 1)7 Hln) = \}2 qT(HQ(n + 1)7 Hln) = \}2

q'(k1(n — 1), kan) = \}2 q'(k2(n + 1), kon) = 7\}2

22 B. Jacobs

In the quantum case we do get a unitary map. This involves several elementary
verifications, of which we present an illustration:

(g0 q")(kim, kan) = 3, ¢ (kim, z) - q(x, k1)
= q'(kim, k1(m + 1)) - q(k1(m + 1), k1)
+ ¢ (k1m, ka(m + 1)) - q(ka(m + 1), k1n)

1 1 1 1 e
_ \/2-\/2—1—\/2-\/2 ifn=m
0 otherwise
B 1 ifkin=r1m
10 otherwise

= id(k1m, kK1n).

In a similar way one obtains (q o qJ‘)(mm7 kon) = 0 = id(k1m, kon), etc.

6 Summary, So Far

At this stage, before proceeding, we sum up what we have seen so far. Non-
deterministic and probabilistic walks are described quite naturally as coalgebras
of a monad, namely of the (finite) powerset Pp, and distribution monad D,
respectively. Quantum walks are usually described (by physicists) as endomaps
C?2 @ M(Z) — C?* ® M(Z). But we have illustrated that they can equivalently
be described as coalgebras Z — M(2-Z)? of a monad. Thus there is a common,
generic framework in which to describe various walks, namely as coalgebras of
monads. The monad yields a monoid structure on these coalgebras—via Kleisli
composition—which enables iteration. This monoid structure can be described
quite generally, for arbitrary monads, in the category of algebras of the monad,
see Proposition [B

All these walks coalgebras are in fact endo maps in a suitable dagger category.
Only in the quantum case the walks form a unitary morphism.

Coalgebras of the form Z — M (2-Z)? can equivalently be described as maps
Z+7Z — M(Z+Z) or as a quadruple of coalgebras Z — M(Z). Four such
coalgebras are obtained because there is a qubit (in C?) involved that controls
the walking, see Subsection More generally, if the control happens via C™,
one obtains n? coalgebras in a n X n matrix. A next step is to observe a similar-
ity to what happens in Turing machines: there one has a finite-state automaton
that controls a head which reads/writes/moves on a tape. This similarity will be
explored further in the next section, where we use the understanding of walks,
using the monad construction T'[n] from Proposition 2 to capture Turing ma-
chines coalgebraically, as a “head walking on a tape”.

7 Turing Machines as Coalgebras

The idea we wish to explore further is that coalgebras of the form X — T'[n](X) =
T(n - X)" of the monad T[n] from Propostion 2 can be understood as

Coalgebraic Walks, in Quantum and Turing Computation 23

computations of type T on state space X with n auxiliary states that control
the computation on X. This idea will be illustrated below for Turing machines.

We shall give a simple example of a non-deterministic Turing machine, for the
finite powerset monad 1" = Pg,. We use a tape with binary entries that stretches
in 2 dimension, and use the integers Z (like in walks) as index. Thus the type T of
tapes is given by T = 2% x Z, consisting of pairs (¢, p) where t: Z — 2 = {0, 1} is
the tape itself and p € Z the current position of the head. One could use a more
general set X of tape symbols, and use maps Z — X as tapes. Commonly one
only uses a limited number of operations on a tape, given as abL or abR, with
meaning: if a is read at the current position, then write b, and subsequently move
one position left (or right) on the tape. Such operations can be used as labels of
transitions between control states. An example non-deterministic Turing machine
that can stop if it encounters two successive Os to the right of the head can be
described by the following graph with three state 1, 2, 3.

00R

81 00R _, 00R _,

11R

We do not include final states explicitly, but clearly the right-most state 3 does
not have any transitions and can thus be seen as final.

In line with the description of quantum walks, we shall use four equivalent
ways of describing this Turing machine.

1. As an endomap, in the category of join semilattices (which is the category
of algebras of the monad Pg, involved), described on base elements as:

e (t,p) J@etpr)v(etp+1) iftp) =0
’ lo(t,p+1) otherwise
2@ (£,p) _ 3@ (t,p+1) ift(p)=0
7 L otherwise
3® (tap) ‘ > | .

2. As a coalgebra of the monad Pf, (3 - —)*, namely:
T > Ppin(T+T+T)>3
(t.p): - (tm(tp + 1)U (ralt.p 1) | 1) = 0).
{ra(t,p+1) | t(p) = 0}, 0)
3. As a 3 x 3 matrix of coalgebras T — Pg, (T), using that the monad Ppy, is

additive (see [2]), so that Py (T+T+T)? 2 (Pfin (T) X Pfin (T) x Pﬁ,l(’ll‘))‘3
Prin (T)°.

IR

24 B. Jacobs

At,p)-{(t,p+ 1)} A(t,p).0 A(t,p). 0
At.p). { {(t”’(j b ft’ifp)wzo A(t,p)- 0 A(t,p)-0

The entry at column ¢ and row j describes the coalgebra for the transition
from control state ¢ to j. This matrix representation of coalgebras makes
sense because the set of coalgebras X — Pg,(X) forms a semiring, as re-
marked at the end of Subsection 311

4. As endo map 3-T — 3T in the category BifRel, that is as bifinite relation
r: (’]I‘ + T+ T) X (’]I‘ + T+ ’]I‘) — C, given by the following non-zero cases.

r(ki(t,p), k1t p+1)), r(ki(t,p), k2(t,p+1)) if t(p) =0,
r(ka(t,p), ka(t,p+1)) if t(p) =0

Via such modelling one can iterate the mappings involved and thus calculate suc-
cessor states. We give an example calculation, using the second representation
T — Pgin (T + T+ T)3. An element of T will be described (partially) via expres-
sions like ---01011-- -, where the underlining indicates the current position of
the head. Starting in the first state, represented by the label 1, we get:

K1 (-+101001 - -+) —> {sy (- 101001 - -)}
— {k1(--- 101001 - -), k(- - - 101001 - - -)}
— {k1(---101001---)}
— {k1(--- 101001 - - -), k(- - - 101001 - - -)}
— {k1(---101001- - -), k(- -- 101001 - -), kg(- - - 101001 - - -)}

FEtcetera. Hopefully it is clear that this coalgebraic/monadic/relational modelling
of Turing machines is quite flexible. For instance, by changing the monad one
gets other types of computation on a tape: by taking the multiset monad M,
and requiring unitarity, one obtains quantum Turing machines (as in [I0]). For
instance, coalgebraic walks like in Subsection 3.3 can be seen as a 2-state quan-
tum Turing machine with a singleton set of symbols (and thus only the head’s
position forming the tape-type T = Z).

The above (equivalent) representations of a Turing machine via the monad
construction T'[n] distinguishes between the tape and the finitely many states
of a machine. In contrast, for instance in [9], a Turing machine is represented

as a coalgebra of the form X — Pg, (X x I' x {<1,l>})F7 where I is a set of
input symbols, and <,> represent left and right moves. There is only one state
space X, which implicitly combines both the tape and the states that steer the
computation.

Coalgebraic Walks, in Quantum and Turing Computation 25

8 Conclusions

The investigation of non-deterministic, probabilistic and quantum walks has led
to a coalgebraic description of quantum computation, in the form of qubits
acting on a set, via a new monad construction T'[n]. It adds n-ary steering to T-
computations, not only for quantum walks but also in n-state Turing machines
(as controled ‘walks’ on a tape). The coalgebraic approach emphasises only the
one-directional aspect of computation. Via suitable categories of ‘bi-coalgebraic’
relations this bidirectional aspect can be made explicit, and the distinctive uni-
tary character of quantum computation becomes explicit. For the future, the
role of final coalgebras requires clarity, especially for the new monad T'[n], for
instance for computing stationary (limiting) distributions. How to describe (uni-
directional) measurements coalgebraically will be described elsewhere.

References

1. Bartels, F., Sokolova, A., de Vink, E.: A hierarchy of probabilistic system types.
Theor. Comp. Sci. 327(1-2), 322 (2004)

2. Coumans, D., Jacobs, B.: Scalars, monads and categories (2010),
http://arxiv.org/abs/1003.0585

3. Jacobs, B.: Semantics of weakening and contraction. Ann. Pure & Appl
Logic 69(1), 73-106 (1994)

4. Jacobs, B.: Dagger categories of tame relations (2011),
http://arxiv.org/abs/1101.1077

5. Kempe, J.: Quantum random walks — an introductory overview. Contemporary
Physics 44, 307-327 (2003)

6. Kock, A.: Bilinearity and cartesian closed monads. Math. Scand. 29, 161-174 (1971)

7. Kock, A.: Closed categories generated by commutative monads. Journ. Austr.
Math. Soc. XII, 405-424 (1971)

8. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In:
Principles of Programming Languages, pp. 333-343. ACM Press, New York (1995)

9. Pavlovié, D., Mislove, M., Worrell, J.: Testing semantics: Connecting processes and
process logics. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019,
pp. 308-322. Springer, Heidelberg (2006)

10. Perdrix, S.: Partial observation of quantum Turing machine and weaker well-
formedness condition. In: Proceedings of: Quantum Physics and Logic and De-
velopment of Computational Models (2008),
http://web.comlab.ox.ac.uk/people/simon.perdrix/publi/weakerQTM. pdf

11. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comp. Sci. 249, 3-80
(2000)

12. Venegas-Andraca, S.: Quantum Walks for Computer Scientists. Morgan & Clay-
pool, San Francisco (2008)

A Coalgebras of a Monad Form a Monoid in Algebras

Let A = (A, I,®,—0) be a symmetric monoidal closed category. A monad T =
(T, p, n) is called monoidal (or commutative) if it comes with a ‘double strength’

http://arxiv.org/abs/1003.0585
http://arxiv.org/abs/1101.1077
http://web.comlab.ox.ac.uk/people/simon.perdrix/publi/weakerQTM.pdf

26 B. Jacobs

natural transformation dst: T(X)®T (V) — T(X ®Y") commuting appropriately
with the monoidal isomorphisms and with the unit 7 and multiplication u. We
abbreviate st = dst o (Id®n): T(X)®Y - T(X ®Y) and st’ =dsto (n®
id): X@T(®Y) - T(X ®Y). One can also express this double strength as
dst = o T'(st) ost’ = po T(st') o st, see [3] for details.

We assume that the categories A and Alg(T") has enough coequalisers so that
Alg(T) is also symmetric monoidal via the canonical constructions from [7lJ6],
with tensor ®7 and tensor unit I7 = T'(I). The key property of this tensor of
algebras ®7T is that there is a bijective correspondence:

(TX 4 X)e™ (1Y V) T (175 2) i Alg(r)

XY g~ Z bihomomorphism

9)

Such a map g: X ® Y — Z is a bihomomorphism if the following diagram
commutes.

T
TX) e TY) Srxey) YLz
a® bV g VC
X®Y -7

The next result may be read as: internal T-coalgebras form a monoid in
Alg(T).

Proposition 3. In the situation described above,

1. for each X € A, the object T(X)X = X — T(X) in A “of T-coalgebras”
carries an algebra structure ax : T(T(X)~) — T(X)*, obtained by abstrac-
tion A(—) as

T(ev) p

st >T2(X)

ax = A(T(T(X)X) 2X -T(r(x)¥ e X) - T(X)).

2. This algebra ax € Alg(T) carries a monoid structure in Alg(T) given by
Kleisli composition, with monoid unit u: IT — T(X)X defined as:

T(A

w= A(T(I) X S'-T(I®X) ng(X))

The monoid multiplication m: T(X)X @T T(X)X Xg(zs obtamed
via the correspondence [@) from the bzhomomorphzsm T(X
T(X)X that one gets by abstraction from:

1

Similarity Quotients as Final Coalgebras

Paul Blain Levy*

University of Birmingham, UK
P.B.Levy@cs.bham.ac.uk

Abstract. We give a general framework connecing a branching time
relation on nodes of a transition system to a final coalgebra for a suit-
able endofunctor. Examples of relations treated by our theory include
bisimilarity, similarity, upper and lower similarity for transition systems
with divergence, similarity for discrete probabilistic systems, and nested
similarity. Our results describe firstly how to characterize the relation in
terms of a given final coalgebra, and secondly how to construct a final
coalgebra using the relation.

Our theory uses a notion of “relator” based on earlier work of Thijs.
But whereas a relator must preserve binary composition in Thijs’ frame-
work, it only laxly preserves composition in ours. It is this weaker re-
quirement that allows nested similarity to be an example.

Introduction

A series of influential papers including [IITIIT7IT8ITI] have developed a coalge-
braic account of bisimulation, based on the following principles.

A transition system may be regarded as a coalgebra for a suitable endofunc-
tor F' on Set (or another category).

Bisimulation can be defined in terms of an operation on relations, called a
“relational extension” or “relator”.

This operation may be obtained directly from F', if F preserves quasi-
pullbacks [3].

Given a final F-coalgebra, two nodes of transition systems are bisimilar iff
they have the same anamorphic image—i.e. image in the final coalgebra.
Any coalgebra can be quotiented by bisimilarity to give an extensional
coalgebra—one in which bisimilarity is just equality.

One may construct a final coalgebra by taking the extensional quotient of a
sufficiently large coalgebra.

Thus a final F-coalgebra provides a “universe of processes” according to the
viewpoint that bisimilarity is the appropriate semantic equivalence.

More recently [2IAITUT2IT322] there have been several coalgebraic studies of
simulation, in which the final F-coalgebra carries a preorder. This is valuable
for someone who wants to study bisimilarity and similarity together: equality

* Supported by EPSRC Advanced Research Fellowship EP/E056091.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 27 |41| 2011.
© Springer-Verlag Berlin Heidelberg 2011

28 P.B. Levy

represents bisimilarity, and the preorder represents similarity. But someone who
is exclusively interested in similarity will want the universe of processes to be a
poset: if two nodes are mutually similar, they should be equal. In this paper we
shall see that such a universe is also a final coalgebra, for a suitable endofunctor
H on the category of posets.

For example, consider countably branching transition systems. In this case,
we shall see that H maps a poset A to the set of countably generated lower
sets, ordered by inclusion. A final H-coalgebra is a universe for similarity, in two
senses.

— On the one hand, we can use a final H-coalgebra to characterize similarity,
by regarding a transition system as a discretely ordered H-coalgebra.

— On the other hand, we can construct a final H-coalgebra, by taking a suffi-
ciently large transition system and quotienting by similarity.

We give this theory in Sect. @l But first, in Sect. Bl we introduce the notion
of relator, which gives many notions of simulation, e.g. for transition systems
with divergence and Markov chains. Finally, in Sect. 5] we look at the example of
2-nested simulation; this requires a generalization of our theory where relations
are replaced by indexed families of relations.

2 Mathematical Preliminaries
Definition 1. (Relations)

1. For sets X and Y, we write X R Y when R is a relation from X toY,
and Rel(X,Y") for the complete lattice of relations ordered by inclusion.

2. X (:\X)> X s the equality relation on X.

R;S
3. Given relations X 7|2>Y ‘\g>Z, we write X | >Z for the
composite.

4. Given functions Z ! >X and W Ty , and a relation X S Y,

—1
we write Z(f’g)| >RW for the inverse image {(z,w) € Z x W | f(2) R g(w)}.

5. Given a relation X ¥ >Y , we write 'Y R\C>X for its converse. R is
difunctional when R;R; R CR.

Definition 2. (Preordered sets)

1. A preordered set A is a set Ay with a preorder <a. It is a poset (setoid,
discrete setoid) when <4 is a partial order (an equivalence relation, the
equality relation).

2. We write Preord (Poset, Setoid, DiscSetoid) for the category of pre-
ordered sets (posets, setoids, discrete setoids) and monotone functions.

3. The functor A : Set — Preord maps X to (X,=x) and X ! >Y to
f. This gives an isomorphism Set = DiscSetoid.

Similarity Quotients as Final Coalgebras 29

4. Let A and B be preordered sets. A bimodule A R B is a relation such
that (€4);R;(<p) € R. We write Bimod(A, B) for the complete lattice of

bimodules, ordered by inclusion. For an arbitrary relation Ay R~ By , its
bimodule closure A R B is (€4);R; (<B)-
Definition 3. (Quotienting)

1. Let A be a preordered set. For x € A, its principal lower set [z]a is
{y€ A|y <az}. The quotient poset QA is {[x]a | x € A} ordered by in-
clusion. (This is isomorphic to the quotient of A by the equivalence relation

(A)N(=4).) We write A "= QA for the function x — [z]4.
2. Let A and B be preordered sets and A T B a monotone function. The
monotone function QA e, QB maps [x]a — [f(x)]B.
3. Let A and B be preordered sets and A R}
Qa ¢

We give some examples of endofunctors on Set.

> B a bimodule. The bimodule
. QB relates [z]a to [ylp iff x R y.

Definition 4. 1. For any set X and class K of cardinals, we write PXX for
the set of subsets X with cardinality in K. P is the endofunctor on Set

mapping X to the set of subsets of X and X I Y tour {f(z)]|x € u}.
It has subfunctors P1%%) and PU*) where & is a cardinal or co.
2. Maybe is the endofunctor on Set mapping X to X +1={Just z |z € X}U

{1} and X ! >Y to Just x — Just f(z), fi—1.
3. A discrete subprobability distribution on a set X is a function d : X —

[0, 1] such that) . yd, <1 (so d is countably supported). For any U C X
def

we write dU = Y wevda, and we write d V= 1—d(X). D is the endofunctor
on Set mapping X to the set of discrete subprobability distributions on X

and X 7=y tod— (ye d(f {y}),
Definition 5. Let C be a category.

1. Let F be an endofunctor on C. An F-coalgebra M is a C-object M" and mor-

phism M- CM>FM'. We write Coalg(C,F) for the category of

F'-coalgebras and homomorphisms.

2. Let F and G be endofunctors on C, and F > @G a natural transforma-
tion. We write Coalg(C,a) : Coalg(C,F) — Coalg(C,G) for the functor

mapping M to (M, Car;) and M ! >N tof.

30 P.B. Levy

Examples of coalgebras:

a transition system is a P-coalgebra

— a countably branching transition system is a P -coalgebra
a transition system with divergence is a PMaybe-coalgebra

a partial Markov chain is a D-coalgebra.

[OaNU]

There are also easy variants for labelled systems.

Lemma 1. [§] Let C be a category and B a reflective replete (i.e. full and
isomorphism-closed) subcategory of C.

1. Let A€ob C. Then A is a final object of C iff it is a final object of B.
2. Let F be an endofunctor on C. Then Coalg(B, F) is a reflective replete sub-
category of Coalg(C, F).

Examples of reflective replete subcategories:

— Poset of Preord, and DiscSetoid of Setoid. In each case the reflection is
given by @ with unit p.

— Setoid of Preord. At A, the reflection is (Ap,=), where = is the least
equivalence relation containing <4, with unit id4,.

3 Relators

3.1 Relators and Simulation
Any notion of simulation depends on a way of transforming a relation. For ex-

ample, given a relation X R~ Y , we define

- pX SiIPR

- PX >PY to relate v to v when Vz € u.3y € v. x R y and
Vy€ewv. Jx cu. xR y.

>PY torelate u to v whenVx € u.dy €cv. z Ry
BisilmR

for simulation and bisimulation respectively. In general:

Definition 6. Let F' be an endofunctor on Set. An F-relator maps each relation

X S Y to a relation FX TR FY in such a way that the following hold.

— For any relations X R\’S> Y,if RCS thenI'RCTS.
— For any set X we have (=px) C I'(=x)

— For any relations X ‘=Y § =27 we have (T'R); (TS) CT'(R;S)
— For any functions Z Iy X and W ">y , and any relation
X =V, we have I(f,9) 'R=(Ff,Fg)~'T'R.

An F-relator I" is conversive when I'(R®) = (I'R)¢ for every relation X Fsy.

Similarity Quotients as Final Coalgebras 31

For example: Sim is a P-relator, and Bisim is a conversive P-relator.
We can now give a general definition of simulation.

Definition 7. Let F' be an endofunctor on Set, and let I' be an F-relator. Let
M and N be F-coalgebras.

1. A T-simulation from M to N is a relation M- 7|2 > N such that R C
(CnmsCn) TR,

2. The largest T-simulation is called T-similarity and written Sy -

3. M is I'-encompassed by N, written M < N, when for every x € M there
is y € N such that x Sy vy and y Sy .

For example: a Sim-simulation is an ordinary simulation, and a Bisim-simulation
is a bisimulation.
The basic properties of simulations are as follows.

Lemma 2. Let F' be an endofunctor on Set, and I' an F-relator.

1. Let M be an F-coalgebra. Then M (:?4'; M is a I'-simulation. Moreover

§IX4’M is a preorder on M —an equivalence relation if I' is conversive.
2. Let M, N, P be F-coalgebras. If M R"~N $ =P are D-simulations
R;S
then sois M 1 > P . Moreover (Syy)i (Sh.p) E (Shrp)-
8. Let M and N be F-coalgebras, and let T' be conversive. If M "oN isa

simulation then sois N '\ = M . Moreover (Shin)s = (Shoa) and Sy
is difunctional.
4. Let M ! >N and M' 7 =N’ be F-coalgebra morphisms. If N 7|2>N’
9)TIR
is al'-simulation then sois M o g)\
(Shen)-
5. <V is a preorder on the class of F-coalgebras.

> M' . Moreover (f, g)_l(g?\z,z\n) =

6. Let M I N be an F-coalgebra morphism. Then x and f(x) are mutually
T-similar for all x € M. Hence M < N, and if f is surjective then also
N<xM.

An F-coalgebrais all-T'-encompassing when it is greatest in the <! preorder. For
example, take the disjoint union of all transition systems carried by an initial
segment of N. This is an all-Bisim-encompassing P%¥0l-coalgebra, because every
node of a PO-Rol_coalgebra has only countably many descendants.

3.2 Relators Preserving Binary Composition
Definition 8. Let F' be an endofunctor on Set. An F-relator T is said to
preserve binary composition when for all sets X,Y,Z and relations

x K=y 9§27 we have I'(R;S) = (I'R); (T'S). If we also have I'(=x) =
(=Fx) for every set X, then F is functorial.

32 P.B. Levy

For example, Sim preserves binary composition and Bisim is functorial. We shall
examine relators preserving binary composition using the following notions.

Definition 9

1. A commutative square Z Y~y inSetisa quasi-pullback when

f k
v v

X =W

Vee X.VyeY h(z)=k(y)=3Fz€Z. z=f(z)Ng(z)=y

2. A commutative square (' = B inPreord is a preorder-quasi-pullback

f k
\ v
A =D

when Ve € A.Vy € B. h(z) <p k(y) = 3z € C. 2 <a f(2) Ng(2) < ¥

Definition 10. (adapted from [13]) Let F be an endofunctor on Set. A stable
preorder on F' is a functor G : Set — Preord that makes Preord

/ ()0
\
Set . >Set

commute and sends quasi-pullbacks to preorder-quasi-pullbacks. It is a stable
equivalence relation on F' when it is a functor Set — Setoid.

For any relation X R~ Y , we write X <R " Y for the two projec-
tions. We can now give our main result.
Theorem 1. Let F be an endofunctor on Set. There is a bijection between

— F-relators preserving binary composition
— stable preorders on F

described as follows.

— Given an F-relator T' preserving binary composition, we define the stable

preorder T on F to map X to (FX,I'(=x)) and X ! >Y to Ff.
— Given a stable preorder G on F', we define the F-relator G to map a relation

X R >Y to
{(z,y) e FX x FY |3z € FR. © <gx (Frr)z A (F1%R)z <gvy vy}
It restricts to a bijection between

— conversive F-relators preserving binary composition
— stable equivalence relations on F'.

Similarity Quotients as Final Coalgebras 33

Corollary 1. [3] Let F be an endofunctor on Set.

1. Suppose F preserves quasi-pullbacks. Then we obtain a conversive functorial

F-relator F mapping a relation X s Y to
{(z,y) e FX x FY |3z € FR. v = (Frr)z A (Fri)z = y}

2. LetT be a functorial F-relator. Then F preserves quasi-pullbacks and I’ = F.

3.3 Further Examples of Relators
We first note several ways of constructing relators.

Lemma 3. 1. Let F be an endofunctor on Set, and (T';)jcs a family of F-
relators. Then

[- (x T=v) e~ DR
jeJ jeJ

is an F-relator. If M and N are F-coalgebras, then M- ¥ >N is a
ﬂjEJFj—simulation from M to N iff, for all 5 € J, it is a I'j-simulation
from M to N.

2. Let F' be an endofunctor on Set, and I' an F-relator. Then

re.(x 7\2>Y) — (I'R°)°

is an F-relator. If M and N are F-coalgebras, then M- R~ N is aTe-
simulation from M to N iff R¢ is a I'-simulation from N to M; hence
(Shrv) = (Shae)

3. Let F and G be endofunctors on Set and ' > @G a natural transforma-
tion. Let I' be an G-relator. Then

o' (x F=v) — (ax,ay) 'TR

is an F-relator. If M and N are F-coalgebras, then M- R~ N s an
a1 -simulation from M to N iff it is a T-simulation from Coalg(Set,a)M
-1
to Coalg(set>a)N; hence (SJ%LJ\IP) = (Sgoalg(Set,a)M,Coalg(Set,a)N)‘
4. The identity operation on relations is an idget-relator.

5. Let F and F' be endofunctors on Set. If T is an F-relator and I"' an F'-
relator, then I'T" is an F'F-relator.

Note that I' M I'“ is the greatest conversive relator contained in I'.
We give some relators for our examples:

— Via Def. B(@), Sim and Bisim are Pl%*)relators and P[\%)-relators where &
is a cardinal or co. Moreover Sim preserves binary composition, and if k < 3
or K > Ny then Bisim is functorial. But for 4 < k < Ny, the functors Pplo.x)
and P%) do not preserve quasi-pullbacks, so Bisim does not preserve binary
composition over them.

34 P.B. Levy

— We define PMaybe-relators, all preserving binary composition. For a relation

x Tsv,

LowerSimR = {(u,v) € PMaybeX x PMaybeY |
Vo € Just™'u. y € Just v, (z,y) € R}
UpperSimR = {(u,v) € PMaybeX x PMaybeY |[{1¢ u =
¢ v
AVy € Just™tv. 3z € Just™tu. (z,y) € R)}
ConvexSim = LowerSim M UpperSim
SmashSimR = {(u,v) € PMaybeX x PMaybeY |[f1¢ u =
Tt v
AVy € Just v, Jz € Just tu. (z,y) € R
AVz € Just tu. Jy € Just tw. (z,y) € R}
InclusionSimR = {(u,v) € PMaybeX x PMaybeY |
Vo € Just tu. 3y € Just v, (z,9) € R}
A E u =€ v}
We respectively obtain notions of lower, upper, convex, smash and inclusion
stmulation on transiton systems with divergence [10J20]. By taking converses
and intersections of these relators, we obtain—besides T—mnineteen differ-

ent relators of which three are conversive. A more systematic analysis that
includes these is presented in [16].

— We define D-relators. For a relation X 7|2 >Y

ProbSimR = {(d,d') € DX x DY | VU C X.dU < d'R(U)}
ProbBisimR = {(d,d') € DX x DY | VU C X.dU < d'R(U) Ad(1) < d' (1)}
where R(U) = {y € Y | 3z € U. (z,y) € R}. In fact ProbBisim is the great-
est conversive relator contained in ProbSim. We obtain notions of simulation
and bisimulation on partial Markov chains as in [BJ6I2TIT5122]. By Thm. 1
of [I4], ProbSim preserves binary composition and ProbBisim is functorial.

4 Theory of Simulation and Final Coalgebras
Throughout this section, F' is an endofunctor on Set and I' is an F-relator.

4.1 QFr-Coalgebras

Definition 11. Fr is the endofunctor on Preord that maps A to (F A, I'(<a4))
and A ! > B to Ff.

Similarity Quotients as Final Coalgebras 35

Thus we obtain an endofunctor QFr on Preord. It restricts to Poset and also,
if " is conversive, to Setoid and to DiscSetoid.

For example, if A is a preordered set, then QP%?;: A is (isomorphic to) the
set of countably generated lower sets, ordered by inclusion. The probabilistic
case is unusual: Dpyopsim 1S already an endofunctor on Poset, so applying Q)
makes no difference (up to isomorphism). This reflects the fact that, for partial
Markov chains, mutual similarity is bisimilarity [6].

A QFr-coalgebra M is said to be final when the following equivalent condi-
tions hold:

— M is final in Coalg(Preord, QFT)
— M is final in Coalg(Poset, QFr).

If T is conversive, the following are equivalent to the above:

— M is final in Coalg(Setoid, QFr)
— M is final in Coalg(DiscSetoid, QFr).

These equivalences follow from Lemma, [l
We adapt Def. [and Lemma 2] from F-coalgebras to QFr-coalgebras.

Definition 12. Let M and N be QFr-coalgebras.

1. A simulation from M to N is a bimodule M- 7\2 > N such that R C
(¢, CN) QTR

2. The greatest simulation is called similarity and written Sarn.
8. M is encompassed by N, written M < N, when for every x € M there is
y € N such that x SNy and y SN M T

Lemma 4. Let F' be an endofunctor on Set, and I' an F-relator.

Swm-) . .
1. Let M be a QFr-coalgebra. Then M (]\W;M is a simulation. Moreover
§IX4’M is a preorder on M;—an equivalence relation if I' is conversive—that
contains <.

2. Let M, N,P be QFr-coalgebras. If M R’ >N “|§>P are simulations
;S
then so is M 72| > P . Moreover (Sy,n); (Sn.p) C (Sm,p)-
8. Let M and N be QFr-coalgebras, and let T' be conversive. If M RN s

a simulation then so is N N = M —recall that this is (SN)RS (Sm)-
Moreover (Sy,n)¢ = (Sn,) and Sparn is difunctional.

4. Let M f>N and M’ 7 =N' be QFr-coalgebra morphisms. If

(f,g)l’172

R
N >N’ is a simulation then so is M > M' . Moreover

(Smr) = (£, 9) 7 (Swowr)-
5. X is a preorder on the class of QFr-coalgebras.

36 P.B. Levy

6. Let M d > N be an QFr-coalgebra morphism. Then x and f(xz) are mu-
tually similar for all x € M. Hence M < N, and if f is surjective then also
N<xM.

We can also characterize coalgebra morphisms.

Lemma 5. Let M and N be QFr-coalgebras. For any function M, ! > Ng ,
the following are equivalent.

1. M Iy N s a QFr-coalgebra morphism.

9 M (f,N(;)*ll(<N.) (No,f)*‘lKN.)

stmulations.

>N and N > M are both

A QFr-coalgebra N is all-encompassing when it is encompasses every
M € Coalg(Preord, QFr), or equivalently every M € Coalg(Poset, QFT),
or equivalently—if T' is conversive—every M € Coalg(Setoid, QFr) or every
M € Coalg(Setoid, QFr). These equivalences follow from the surjectivity of the
units of the reflections.

4.2 Extensional Coalgebras

Definition 13. An extensional coalgebra is M € Coalg(Poset, QFr) such that
(Sam) = (Sar). We write ExtCoalg(T') for the category of extensional coalge-
bras and coalgebra morphisms.

These coalgebras enjoy several properties.

Lemma 6. Let N be an extensional coalgebra.

1. If T is conversive, then N is a discrete setoid.

2. Let M be a QFr-coalgebra and N . M a coalgebra morphism. Then f
is order-reflecting and injective.

8. Let M be a QFr-coalgebra and M ! > N an order-reflecting, injective
coalgebra morphism. Then M is extensional.
4. Let M be a QFr-coalgebra such that M < N. Then there is a unique QFrp-

coalgebra morphism M d >N .

Thus ExtCoalg(I") is just a preordered class. It is a replete subcategory of
Coalg(Poset, QFr) and also—if T is conversive—of Coalg(DiscSetoid, QFT).
We next see that is reflective within Coalg(Preord, QFr).

Lemma 7. (Extensional Quotient) Let M be a QFr-coalgebra, and define ps £
Py, <nrar) -
1. There is a QFp-coalgebra QM carried by Q(My, Saar), uniquely charac-

terized by the fact that M P QM is a coalgebra morphism.

Similarity Quotients as Final Coalgebras 37

2. QM, with unit par, is a reflection of M in ExtCoalg(T).

More generally, a Q Fr-coalgebra M can be quotiented by any (<)-containing
preorder that is an endosimulation on M; but we shall not need this.

Lemma 8. Let M be a QFr-coalgebra. The following are equivalent.

1. M is a final QFr-coalgebra.
2. M is all-encompassing and extensional.
8. M is extensional, and encompasses all extensional QFr-coalgebras.

Lemma 9. Let M be a QFr-coalgebra. The following are equivalent.

1. M is all-encompassing.
2. M encompasses all extensional coalgebras.
3. QM is a final QFr-coalgebra.

4.3 Relating F-Coalgebras and QFr-Coalgebras

We have studied F-coalgebras and @ Fr-coalgebras separately, but now we con-
nect them: each F-coalgebra gives rise to a QQFr-coalgebra, and the converse is
also true in a certain sense.

Definition 14. The functor A" : Coalg(Set, F') — Coalg(Preord, QFr) maps
— an F-coalgebra M = (M, (pr) to the QFr-coalgebra with carrier AM™ and
> QIrAM

PrraM-

structure AM- <M> FrAM
— an F-coalgebra morphism M ! >N tof.

Lemma 10. Let M and N be F-coalgebras. Then a I'-simulation from M to N
is precisely a simulation from AUM to AUN. Hence (Sararary) = (§E4N),
and M < N iff AVM < ATN.

We are thus able to use a final @QFp-coalgebra to characterize similarity in F-
coalgebras.

Theorem 2. Let M be a final QFr-coalgebra; for any QFr-coalgebra P we write
P =M for its anamorphism. Let N and N’ be F-coalgebras. Then

(SJFV,N/) = (aarn,aarn) " H(<ar)
Our other results require moving from a Q) Fr-coalgebra to an F'-coalgebra.
Lemma 11. Let M be a QFr-coalgebra. Then there is an F'-coalgebra N and a
surjective QFr-coalgebra morphism AU N . M .
Theorem 3

1. Let M be an F-coalgebra. Then QATM is a final QFr-coalgebra iff M is
all-T'-encompassing.
2. Any final QFr-coalgebra is isomorphic to one of this form.

38 P.B. Levy

5 Beyond Similarity

5.1 Multiple Relations

We recall from [J] that a 2-nested simulation from M to N (transition systems)
is a simulation contained in the converse of similarity. Let us say that a nested
preordered set is a set equipped with two preorders <, (think 2-nested similarity)
and <, (think converse of similarity) such that (<,) C (<o) and (<n) C (20). It
is a nested poset when <, is a partial order. By working with these instead of pre-
ordered sets and posets, we can obtain a characterization of 2-nested similarity
as a final coalgebra.
We fix a set I. For our example of 2-nested simulation, it would be {n,o}.

Definition 15. (1-relations)

1. For any sets X and Y, an I-relation X R} >Y s an I-indexed family
(Ri)icr of relations from X to Y. We write Rel;(X,Y) for the complete
lattice of I-relations ordered pointwise.

2. Identity I-relations (=x) and composite I-relations R;S are defined point-
wise, as are inverse image I-relations (f,g) 'R for functions f and g.

We then obtain analogues of Def. Bl and Bl In particular, an I-preordered set A
is a set Ag equipped with an I-indexed family of preorders (<a)icr, and it is
an I-poset when (1, ;(<;) is a partial order. We thus obtain categories Preord;
and Poset;, whose morphisms are monotone functions, i.e. monotone in each
component. Given an I-preordered set A, the principal lower set of x € A is
{ye A|Viel. y<a,z}. The quotient I-poset QA is {[z]a | z € A} with ith

PA- QA for the
function x +— [x]4. Thus Poset; is a reflective replete subcategory of Preord;.
Returning to our example, a nested preordered set is a {n, o}-preordered set,
subject to some constraints that we ignore until Sect.
For the rest of this section, let F' be an endofunctor on Set, and A an F'-
relator I-matriz, i.e. an I x I-indexed family of F-relators (A; ;)i jer. This gives
us an operation on I-relations as follows.

preorder relating [x]4 to [y]la iff z <4, y, and we write A

Definition 16. For any I-relation FX R}~ Fy , we define the I-relation
FX "> FY a5 (Nje; AigRyier
For our example, we take the P-relator {n, o}-matrix TwoSim

TwoSimp p ' Sim TwoSimp o < Sim©

TwoSimg, = T TwoSim, , = Sim*
We can see that the operation R — AR has the same properties as a relator.
Lemma 12

1. For any I-relations X 72|’5> Y, if RCS then AR C AS.
2. For any set X we have (=px) C A(=x)

Similarity Quotients as Final Coalgebras 39

3. For any I-relations X ' >Y =2 we have (AR); (AS) C A(R;S)
4. For any functions X' Iy X and v '>=y and any I-relation
X F=y, we have A(f,9) 'R = (Ff,Fg) 'AR.

Note by the way that TwoSim as a P-relator matrix does not preserve binary
composition. Now we adapt Def. [1

Definition 17. Let M and N be F-coalgebras.

1. A A-simulation from M to N is an I-relation M- R~ N such that for all
i,j € I we have R; € (Cur, Cn) 1A j R, or equivalently R T A(Cur,)~ 'R.

2. The largest A-simulation is called A-similarity and written 5% N-

8. N is said to A-encompass M when for every x € M there is y € N such
that, for all i € I, we have x (,SR/[NL) y and y (§]FVMZ) T.

In our example, the n-component of g}ﬁ\,&m is 2-nested similarity, and the
o-component is the converse of similarity from N to M.
The rest of the theory in Sect. @ goes through unchanged, using Lemma

5.2 Constraints

We wish to consider not all I-preordered sets (for a suitable indexing set I') but
only those that satisfy certain constraints. These constraints are of two kinds:

— a “positive constraint” is a pair (4, j) such that we require (<;) C (<;)
— a “negative constraint” is a pair (¢,7) such that we require (<;) C (=;).

Furthermore the set of constraints should be “deductively closed”. For example,
if (<)) € (25) and (<;) € (>4) then (<)) C (<x).

Definition 18. A constraint theory on I is a pair v = (y*,~v7) of relations on
I such that v is a preorder and v ;4 ;7T C v~ and v ;7= C AT .

For our example, let Y65t be the constraint theory on {n,o} given by
7n+est = {(nv n)a (na0)> (0,0)} Vnest = {(n7o)}

A constraint theory ~ gives rise to two operations y** and 4% on relations
(where L stands for “lower adjoint”). They are best understood by seeing how
they are used in the rest of Def.

L

Definition 19. Let v be a constraint theory on I.

1. For an I-relation X R~ Y , we define I-relations
yHER
- X =Y as Ujerges+ Ridier
—L

¥y PR
- Y =X as (Ujergaer- Rfier-

40 P.B. Levy

2. An I-endorelation X R~ X 1s y-symmetric when
— for all (j,i) € v+ we have Rj C R;, or equivalently y"ER TR
— for all (j,i) € v~ we have RS C R;, or equivalently vy IRCR.
3. We write Preord., (Poset.) for the category of v-symmetric I-preordered
sets (I-posets) and monotone functions.

4. An I-relation X Ry is ~-difunctional when
— for all (j,i) € v+ we have Rj C R;, or equivalently y"ER TR
— for all (j,i) € ~~ we have RiiR5:Ri © Ry, or equivalently
R;vy IR;RCR.

For our example, Preord,, . and Poset, . are the categories of nested pre-
ordered sets and nested posets respectively. In general, Poset, is a reflective
replete subcategory of Preord, and Preord, of Preord;.

Now let F' be an endofunctor and A an F-relator /-matrix.

Definition 20. Let v be a constraint theory on I. Then A is y-conversive when

M ier X A1 C Ay forall (i) eyt and k€1
(l,k)ey

[er AS;EAix forall (j,i) €y~ andk €1
(Lk)ey™

For our example, it is clear that the matrix TwoSim is yyest-conversive.

Lemma 13. Let v be a constraint theory on I such that A is vy-conversive. For
every I-relation X ¥ =Y we have y*PAR C AyTLR and v LAR T Ay~ LR.

5.3 Generalized Theory of Simulation and Final Coalgebras (Sketch)

All the results of Sect. [l in particular Thms. BH3l generalize to the setting of a
set I with a constraint theory . We replace “conversive” by “y-conversive”.

In our nested simulation example, we thus obtain an endofunctor P%?V’:Z‘)S]im
on Preord,, , that maps a nested preordered set A = (Ao, (<an), (<4a,0)) to
(PIORol Ag, Sim(< a,n) N SIME (< a0), SIM (< 4,0)). We conclude:

— (from Thm.) Given a final QP%?;,};OS]im—coalgebra M, we can use (< n)
and (=) to characterize 2-nested similarity and similarity, respectively,
in countably branching transition systems.

— (from Thm. [3) Given a countably branching transition system that is all-

Bisim-encompassing (and hence all-TwoSim-encompassing), we can quotient

0,%0]

it by 2-nested similarity to obtain a final QP&WOSim—coalgebra.

Acknowledgements. I am grateful to Jean Goubault-Larrecq, Bartek Klin,
Alexander Kurz, Sam Staton and James Worrell for their help.

Similarity Quotients as Final Coalgebras 41

References

10.

11.

12.

13.
14.

15.
16.
17.
18.

19.

20.

21.

22.

. Aczel, P., Mendler, P.F.: A final coalgebra theorem. In: Dybjer, P., Pitts, A.M.,

Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer
Science. LNCS, vol. 389, pp. 357-365. Springer, Heidelberg (1989)

Baltag, A.: A logic for coalgebraic simulation. ENTCS 33 (2000)

Carboni, A., Kelly, G.M., Wood, R.J.: A 2-categorical approach to change of base
and geometric morphisms I. Cah. Topologie Géom. Différ. Catégoriques 32(1), 47—
95 (1991), http://www.numdam.org/item?id=CTGDC_1991__32_1_47_0

Cirstea, C.: A modular approach to defining and characterising notions of simula-
tion. Inf. Comput. 204(4), 469-502 (2006)

Danos, D., Laviolette, P.: Bisimulation and cocongruence for probabilistic systems.
Information and Computation 204 (2006)

Desharnais, J.: A logical characterization of bisimulation for labelled Markov pro-
cesses. In: Proceedings of the 2nd International Workshop on Probabilistic Methods
in Verification, Univ. of Birmingham Technical Report CS-99-8, pp. 33-48 (1999)
Fébregas, 1., de Frutos Escrig, D., Palomino, M.: Non-strongly stable orders also
define interesting simulation relations. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.)
CALCO 2009. LNCS, vol. 5728, pp. 221-235. Springer, Heidelberg (2009)

Freyd, P.J.: Algebraically complete categories. In: Proc. 1990 Como Category The-
ory Conf., Berlin. Lecture Notes in Mathematics, vol. 1488, pp. 95-104 (1991)
Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation
as a congruence. Information and Computation 100(2), 202-260 (1992)

Hennessy, M., Plotkin, G.D.: A term model for CCS. In: Dembinski, P. (ed.) MFCS
1980. LNCS, vol. 88, pp. 261-274. Springer, Heidelberg (1980)

Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational
setting. Information and Computation 145(2), 107-152 (1998)

Hesselink, W.H., Thijs, A.: Fixpoint semantics and simulation. TCS 238(1-2), 275—
311 (2000)

Hughes, J., Jacobs, B.: Simulations in coalgebra. TCS 327(1-2), 71-108 (2004)
Kamae, T., Krengel, U., O’Brien, G.L.: Stochastic inequalities on partially ordered
spaces. The Annals of Probability 5(6), 899-912 (1977)

Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94(1), 1-28 (1991)

Levy, P.B.: Boolean precongruences (2009) (journal submission)

Rutten, J.: Universal coalgebra: a theory of systems. TCS 249(1), 3-80 (2000)
Sokolova, A.: Coalgebraic analysis of probabilistic systems. Ph.D. thesis, Technis-
che Universiteit Eindhoven (2005)

Staton, S.: Relating coalgebraic notions of bisimulation. In: Kurz, A., Lenisa, M.,
Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 191-205. Springer, Heidel-
berg (2009)

Ulidowski, I.: Equivalences on observable processes. In: Scedrov, A. (ed.) Proceed-
ings of the 7th Annual IEEE Symposium on Logic in Computer Science, pp. 148—
161. IEEE Computer Society Press, Santa Cruz (June 1992)

de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems:
a coalgebraic approach. Theoretical Computer Science 221 (1999)

Worrell, J.: Coinduction for recursive data types: partial orders, metric spaces and
w-categories. ENTCS 33 (2000)

http://www.numdam.org/item?id=CTGDC_1991__32_1_47_0

What Do Reversible Programs Compute?

Holger Bock Axelsen and Robert Gliick

DIKU, Department of Computer Science, University of Copenhagen
funkstar@diku.dk, glueck@acm.org

Abstract. Reversible computing is the study of computation models
that exhibit both forward and backward determinism. Understanding
the fundamental properties of such models is not only relevant for re-
versible programming, but has also been found important in other fields,
e.g., bidirectional model transformation, program transformations such
as inversion, and general static prediction of program properties.

Historically, work on reversible computing has focussed on reversible
simulations of irreversible computations. Here, we take the viewpoint
that the property of reversibility itself should be the starting point of
a computational theory of reversible computing. We provide a novel
semantics-based approach to such a theory, using reversible Turing ma-
chines (RTMs) as the underlying computation model.

‘We show that the RTMs can compute exactly all injective, computable
functions. We find that the RTMs are not strictly classically universal,
but that they support another notion of universality; we call this RTM-
universality. Thus, even though the RTMs are sub-universal in the classi-
cal sense, they are powerful enough as to include a self-interpreter. Lifting
this to other computation models, we propose r-Turing completeness as
the ‘gold standard’ for computability in reversible computation models.

1 Introduction

The computation models that form the basis of programming languages are
usually deterministic in one direction (forward), but non-deterministic in the
opposite (backward) direction. Most other well-studied programming models
exhibit non-determinism in both computation directions. Common to both of
these classes is that they are information lossy, because generally a previous
computation state cannot be recovered from a current state. This has implica-
tions on the analysis and application of these models. Reversible computing is the
study of computation models wherein all computations are organized two-way
deterministically, without any logical information loss.

Reversible computation models have been studied in widely different areas
ranging from cellular automata [I1], program transformation concerned with the
inversion of programs [19], reversible programming languages [3I21], the view-
update problem in bidirectional computing and model transformation [146],
static prediction of program properties [15], digital circuit design [I8[20], to
quantum computing [5]. However, between all these cases, the definition and
use of reversibility varies significantly (and subtly), making it difficult to apply

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 42[56.]2011.
© Springer-Verlag Berlin Heidelberg 2011

What Do Reversible Programs Compute? 43

results learned in one area to others. For example, even though reversible Turing
machines were introduced several decades ago [], the authors have found that
there has been a blurring of the concepts of reversibility and reversibilization,
which makes it difficult to ascertain exactly what is being computed, in later
publications.

This paper aims to establish the foundational computability aspects for re-
versible computation models from a formal semantics viewpoint, using reversible
Turing machines (RTMs, [4]) as the underlying computation model, to answer
the question: What do reversible programs compute?

In reversible computation models, each atomic computation step must be
reversible. This might appear as too restrictive to allow general and useful com-
putations in reversible computation models. On the other hand, it might appear
from the seminal papers by Landauer [9] and Bennett [4], that reversibility is
not restrictive at all, and that all computations can be performed reversibly. We
show that both of these viewpoints are wrong, under the view that the functional
(semantical) behavior of a reversible machine should be logically reversible.

This paper brings together many different streams of work in an integrated
semantics formalism that makes reversible programs accessible to a precise anal-
ysis, as a stepping stone for future work that makes use of reversibility. Thus,
this paper is also an attempt to give a precise structure and basis for a founda-
tional computability theory of reversible languages, in the spirit of the semantics
approach to computability of Jones [§].

We give a formal presentation of the reversible Turing machines (Sect.[2]), and,
using a semantics-based approach (Sect.), outline the foundational results of re-
versible computing (Sect. Hl). We show the computational robustness of the RTMs
under reductions of the number of symbols and tapes (Sect. B]). Following a proof
tactic introduced by Bennett, we show that the RTMs can compute exactly all
injective, computable functions (Sect. [l). We study the question of universality,
and give a novel interpretation of the concept (RTM-universality) that applies
to RTMs, and prove constructively that the RTMs are RTM-universal (Sect. [T]).
We propose 7-Turing completeness (Sect. B) as the measure for computability of
reversible computation models. Following a discussion of related work (Sect. @)
we present our conclusions (Sect. [I0).

2 Reversible Triple-Format Turing Machines

The computation model we shall consider here is the Turing machine (TM).
Recall that a Turing machine consists of a (doubly-infinite) tape of cells along
which a tape head moves in discrete steps, reading and writing on the tape
according to an internal state and a fixed transition relation. We shall here adopt
a triple format for the rules which is similar to Bennett’s quadruple format [4],
but has the advantage of being slightly easier to work with.

L It is straightforward to translate back and forth between triple, quadruple, and the
usual quintuple formats.

44 H.B. Axelsen and R. Gliick

Definition 1 (Turing machine). A TM T is a tuple (Q, X,0,b,qs,qr) where
Q is a finite set of states, X is a finite set of tape symbols, b € X is the blank
symbol,

6C (@x[(ZxX)u{—],=}xQ)=A

s a partial relation defining the transition relation, qs € Q is the starting state,
and qr € Q s the final state. There must be no transitions leading out of q5 nor
into qs. Symbols —, |, — represent the three shift directions (left, stay, right).

The form of a triple in § is either a symbol rule (q,(s,s’),q") or a shift rule
(¢,d,q") where q,¢' € Q, s,s' € X, and d € {«, |, —}. Intuitively, a symbol rule
says that in state g, if the tape head is reading symbol s, write s’ and change
into state ¢’. A shift rule says that in state ¢, move the tape head in direction d
and change into state ¢’. It is easy to see how to extend the definition to k-tape
machines by letting

5C(Qx[(Zx D) U{— 1, =} x Q).

Definition 2 (Configuration). The configuration of a TM is a tuple (g, (I, s,1))
€ QX (X* x X x X*) =C, where g € Q is the internal state, [, € X* are the
parts of the tape to the left and right of the tape head represented as strings, and
s € X is the symbol being scanned by the tape head?.

Definition 3 (Computation step). A TM T = (Q, X, 9,b,qs,qy) in configu-
ration C € C leads to configuration C' € C, written as T + C ~» C’, defined for
s, €e X l,reX* and q,q € Q by

T F (q7 (l7 s7r)) ~ (q/7 (l7 s/’ T)) Zf (q7 (87 Sl)7q/) E 5 bl
TF(q,s,8,7)~ (¢, (1, 8,sr)) if (¢,<,q) €d,
T+ (q,(sr) ~(,Usr) i (¢l,d) €0,
TF(q,(,s,8r)~ (¢,Us,s,r) if (¢,—,4¢) €.

Definition 4 (Local forward/backward determinism). A TMT = (Q, X, 6,
b, ¢s, gy) is locally forward deterministic iff for any distinct pair of transition rule
triples (q1,a1,4}), (q2,a2,45) € 0, if 1 = qa then a1 = (s1,5]) and as = (s2,85),
and s1 # s2. A TM T is locally backward deterministic iff for any distinct pair of
triples (q1,a1,41), (g2, a2,¢5) € 0, if ¢} = ¢4 then a1 = (s1,5]) and az = (s2, 84),
and s # sb.

As an example, the pair (q, (a,b),p) and (q, (a,c),p) respects backward deter-
minism (but not forward determinism); the pair (q, (a,b),p) and (z, (c,b),p) is
not backward deterministic; and neither is the pair (q, (a,b),p) and (r,—,p).

Definition 5 (Reversible Turing machine). A TM T is reversible iff it is
locally forward and backward deterministic.

2 When describing tape contents we shall use the empty string e to denote the infinite
string of blanks b“, and shall usually omit it when unambiguous.

3 When we use typewriter font we usually refer to concrete instances, rather than
variables. Thus, in this example q and p refers to different concrete states.

What Do Reversible Programs Compute? 45

The reversible Turing machines (RTMs) are thus a proper subset of the set of
all Turing machines, with an easily decidable property. We need the following
important lemma. Note that this applies to each computation step.

Lemma 1. If T is a reversible Turing machine, then the induced computation
step relation T & -~ - is an injective function on configurations.

3 Semantics for Turing Machines

What do Turing machines compute? In other words, what is the codomain and
definition of the semantics function [-] : TMs — ? for Turing machines? This
might seem an odd question seeing as we have just defined how TMs work, but
the answer depends on a concrete semantical choice, and has a profound effect
on the computational strength of the RTMs. (Note: For the rest of this paper,
we shall consider the relationship mainly between deterministic and reversible
Turing machines. Thus, all TMs are assumed to be fwd deterministic).

At this point, the expert reader might object that the original results by
Landauer [9] and Bennett [4] (cf. Lemmas [and []) show exactly how we can
“reversibilize” any computation, and that the RTMs should therefore be able to
compute exactly what the TMs in general can compute. Furthermore, Morita
and Yamaguchi [I3] exhibited a universal reversible Turing machine, so the uni-
versality of the RTMs should already be established. As we shall see, however, if
one takes reversibility as also including the input/output behaviour of the ma-
chines, neither of these claims hold: Reversibilization is not semantics preserving,
and the RTMs are not universal in the classical sense.

There are several reasons for considering the extensional behavior of RTMs
to itself be subject to reversibility.

— The reversible machines, computation models and programming languages,
form a much larger class than just the reversibilized machines of Landauer
and Bennett performing reversible simulations of irreversible machines.

— It leads to a richer and more elegant (functional) theory for reversible pro-
grams: Program composition becomes function composition, program inver-
sion becomes function inversion, etc., and we are able to use such properties
directly and intuitively in the construction of new reversible programs. This
is not the case for reversible simulations.

— If we can ad hoc dismiss part of the output configuration, there seems to
be little to constrain us from allowing such irreversibilities as part of the
computation process as well.

In order to talk about input/output behavior on tapes in a regular fashion, we
use the following definition.

Definition 6 (Standard configuration). A tape containing a finite, blank-
free string s € (X\{b})* is said to be given in standard configuration for a TM
(Q,X,0,b,qs,qr) iff the tape head is positioned to the immediate left of s on the
tape, i.e. if for some q € Q, the configuration of the TM is (¢, (¢,b, s)).

46 H.B. Axelsen and R. Gliick

We shall consider the tape input/output (function) behavior. Here, the semantic
function of a Turing machine is defined by its effect on the entire configuration.

Definition 7 (String transformation semantics). The semantics [T] of a
TMT =(Q,X,0,b,qs,q5) is given by the relation

[T]=A{(s, ') € (Z\{o})" x (I\{bD") | T+ (g5, (£, b, 5)) ~" (g, (£, b, 8)) }-

Intuitively, a computation is performed as follows. In starting state q,, with input
s given in standard configuration (gs, (g,b,s)), repeatedly apply ~», until the
machine halts (if it halts) in standard configuration (gy, (¢,b, s')). To differentiate
between semantics and mechanics, we shall write T'(z) to mean the computation
of [T](x) by the specific machine T. We say that T computes function f iff
[T] = f. Thus, the string transformation semantics of a TM T has type

[T]: X% — X .

Under this semantics there is a one-to-one correspondence between input/output
strings and the configurations that represent them, so the machine input/output
behaviour is logically reversible. In contrast to this, the (implicit) semantics used
for decision problems (language recognition) gives us programs of type

[T)ap : & — {accept, reject} ,

where halting configurations are projected down to a single bit. It is well known
that for classical Turing machines it does not matter computability-wise which of
these two semantics we choose. (There is a fairly straightforward translation from
languages to functions and vice versa.) Anticipating the Landauer embedding of
Lemma [it is easy to see that under the language recognition semantics then
the RTMs are universal: Given a TM T recognizing language L, there exists
an RTM T that also recognizes L. However, under the string transformation
semantics the RTMs cannot be universal.

Theorem 1. If T is an RTM, then [T is injective.
Proof. By induction, using Lemma [l O

It thus makes little sense to talk about what RTMs compute without explicitly
specifying the semantics.

4 Foundations of Reversible Computing

At this point it becomes necessary to recast the foundational results of reversible
computing in terms of the strict semantical interpretation above.

4.1 Inversion

If f is a computable injective function, is the inverse function f~! computable?

What Do Reversible Programs Compute? 47

Lemma 2 (TM inversion, McCarthy [10]). Given a TM T computing an
injective function [T, there exists a TM M(T), such that [M(T)] = [T]~*.

It is interesting to note that McCarthy’s generate-and-test approach [10] does not
actually give the program inverter (computing the transformation M), but rather
an inverse interpreter, cf. [I]. However, we can turn an inverse interpreter into a
program inverter by specialization [7], so the transformation M is computable.

The generate-and-test method used by McCarthy is sufficient to show the
existence of an inverse interpreter, but unsuitable for practical usage as it is
very inefficient. For the RTMs there is an appealing alternative.

Lemma 3 (RTM inversion, Bennett [4]). Given an RTMT = (Q, X, 6,b, gs,

qr), the RTM T—! def (Q, X, inv(d),b,q5,qs) computes the inverse function of
[T], i.e. [T7Y] = [T]~%, where inv : A — A is defined as

(', (s',8),9) inv(q, <, q") = (¢',—,q)

(g, (s,5'),q) ,
(@, 1.9 inv(q, —,q") = (¢'s,q) .

inv(q, |,q")

This remarkably simply transformation is one of the great insights in Bennett’s
seminal 1973 paper [4] that may superficially seem trivial. Here, we have addi-
tionally shown that it is an example of local (peephole) program inversion. Note
that the transformation only works as a program inversion under the string
transformation semantics, and not under language recognition. In the following,
we shall make heavy use of program inversion, so the direct coupling between
the mechanical and semantical transformation is significant.

4.2 Reversibilization

How can irreversible TMs computing (possibly non-injective) functions be re-
versibilized, i.e., transformed into RTMs?

Lemma 4 (Landauer embedding [9]). Given a I-tape TM T = (Q, X, 4, b, qs,
qr), there is a 2-tape RTM L(T) such that [L(T)] : Z* — X* x R*, and

[L(T)] = Az.([T](x), trace (T, x)),

where trace(T,) is a complete trace of the specific rules from § (enumerated as
R) that are applied during the computation T'(x).

The Landauer embedding is named in honor of Rolf Landauer, who suggested the
idea of a trace to ensure reversibility [9]. It is historically the first example of what
we call “reversibilization,” the addition of garbage data to the output in order
to guarantee reversibility. The Landauer embedding shows that any computable
function can be injectivized such that it is computable by a reversible TM.
The size of the garbage data trace(T, x) is of order of the number of steps in the
computation T'(z), which makes it in general unsuited for practical programming.
The trace is also machine-specific: Given functionally equivalent TMs 77 and 715,

48 H.B. Axelsen and R. Gliick

ie., [Th] = [T2], it will almost always be the case that [L(71)] # [L(Z%2)]. The
addition of the trace also changes the space consumption of the original program.

It is preferable that an injectivization generates extensional garbage data
(specific to the function) rather than intensional garbage data (specific to the
machine), since we would like to talk about semantics and ignore the mechanics.
This is attained in the following Lemma, known colloquially as “Bennett’s trick.”

Lemma 5 (Bennett’s method [4]). Given a I-tape TMT = (Q, X,9,b,4s,q5),
there exists a S-tape RTM B(T), s.t.

[B(T)] = Aw.(x, [T](z)) -

While the construction (shown below) is defined for 1-tape machines, it can be
extended to Turing machines with an arbitrary number of tapes. It is important
to note that neither Landauer embedding nor Bennett’s method are semantics
preserving as both reversibilizations lead to garbage:

[L(D] # [T1# [B(T)] -

4.3 Reversible Updates

Bennett’s method implements a special case of a reversible update [3], where D
(below) is a simple “copying machine”, and the second input is initially blank:

Theorem 2. Assume that © : (X* x X*) — X* is a (computable) operator
injective in its first argument: If b® a = ¢ ® a, then b = c. Let D be an RTM
computing the injective function A(a,b).(a, b ® a), and let T be any TM. Let
Ly(T) be an RTM that applies L(T) to the first argument x of a pair (x,y)
(using an auziliary tape for the trace.) We hav

[L1(T)™" o Do Ly(T)] = Az, y)-(z,y © [T](x)) -

Reversible updates models many reversible language constructs [21], and is also
useful when designing reversible circuits [I6J17]. We found this generalization to
be of great practical use in the translation from high-level to low-level reversible
languages [2], as it directly suggests a translation strategy for reversible updates.

5 Robustness

The Turing machines are remarkably computationally robust. Using multiple
symbols, tapes, heads etc. has no impact on computability. Above, we have
been silently assuming that the same holds true for the RTMs: The Landauer
embedding takes n-tape machine to n+ 1-tape machines, the Bennett trick takes
1-tape machines to 3-tape machines, etc.

4 The mechanical concatenation of two machines T o T} is straightforward, and it is
an easy exercise to see that [Tz o Th] = [T2] o [11].

What Do Reversible Programs Compute? 49

Are these assumptions justified? We have seen that a precise characterization
of the semantics turned out to have a huge impact on computational expressive-
ness (limiting us to injective functions.) It would not be unreasonable to expect
the RTMs to suffer additional restrictions wrt the parameters of machine space.

First, we consider the question of multiple symbols. Morita et al. [12] showed
how to simulate a 1-tape, 32-symbol RTM by a 1-tape 2-symbol RTM. One can
generalize this result to an arbitrary number of symbols. Furthermore, we also
need to adapt it to work when applying our string transformation semantics such
that the encodings can be efficient!.

Lemma 6 (m-symbol RTM to 3-symbol RTM). Given a I-tape, m-symbol
RTM T = (Q, X,0,b,qs,qf), |X| = m, there is a 1-tape, 3-symbol RTM T’ =
(Q', 16,0, 11,8',b. 40 a5) .. [T1(x) =y iff [T')(e(x)) = e(y), where e : (5\{b})"
— {0, 1}* is an injective binary encoding of (blank-free) strings, with b encoded
by a sequence of blanks.

Thus, the number of symbols in a tape alphabet is not important, and a fixed-size
alphabet (with at least 3 distinct symbols) can be used for all computations.
We now turn to the question of multiple tapes.

Lemma 7 (2-tape RTM to 1l-tape RTM). Given a 2-tape RTM T, there
exists a 1-tape RTM T' s.t. [T|(z,y) = (u,v) iff [T']({z,y)) = (u,v), where
(x,y) = T1Y1, T2Y2, . . . s the pairwise character sequence (convolution) of strings
x and y (with blanks at the end of the shorter string as necessary.)

The main difficulty in proving this is that the original 2-tape machine may
allow halting configurations where the tape heads end up displaced an unequal
number of cells from their starting positions. Thus “zipping” the tapes into
one tape will not necessarily give the convolution of the outputs in standard
configuration. This is corrected by realigning the simulated tapes for each rule
where the original tape heads move differently.

This result generalizes to an arbitrary number of tapes. Combining these two
lemmas yields the following statement of robustness.

Theorem 3 (Robustness of the RTMs). Let T be a k-tape, m-symbol RTM.
Then there exists a 1-tape, 3-symbol RTM T’ s.t.

[T1(z1, . zk) = (Y1, - k) iff [T](e({z1,. .., 2x)) = e((y1, - - yk)),
where (-) is the convolution of tape contents, and e(-) is a binary encoding.

This retroactively justifies the use of the traditional transformational approaches.

6 Exact Computational Expressiveness of the RTMs

We have outlined the two classical reversibilizations that turn TMs into RTMs.
However, they are not semantics-preserving, and do not tell us anything about

5 A 2-symbol machine can only have unary input strings in standard configuration, as
one of the two symbols must be the blank symbol.

50 H.B. Axelsen and R. Gliick

- T »[T])) - B I
N ‘/]feo X N
gj Q[*téy %@‘\0‘ E
3 S 2
E M) - M) se
-+ . Y =
N N

[M M e m—

I A} I N I N

O L R S

L

Fig. 1. Generating an RTM computing (injective) [T from an irreversible TM T

the a priori computational expressiveness of RTMs. By Theorem [Il the RTMs
compute only injective functions. How many such functions can they compute?

Theorem 4 (Reversibilizing injections, Bennett [4]). Given a 1-tape TM
Sy s.t. [S1] is injective, and given a I-tape TM Ss s.t. [So] = [S1]7!, there
exists a 3-tape RTM T s.t. [T] = [S1].

We can use this to establish the exact computational expressiveness of the RTMs.

Theorem 5 (Expressiveness). The RTMs can compute exactly all injective
computable functions. That is, given a 1-tape TM T such that [T] is an injective
function, there is a 3-tape RTM T' such that [T] = [T'].

This theorem then follows from the existence of a TM inverter (Lemma [2]) and
Theorem @ We make use of the construction used by Bennett to prove Theo-
rem [but now operating purely at the semantics level, making direct use of the
transformations, and without assuming that an inverse for 7T is given a priori.

Proof. We construct and concatenate three RTMs (see Fig. [l for a graphical
representation.) First, construct B(T') by applying Lemma [Bl directly to T*:

[B(T))] = Ax.(z,[T](x)) , B(T) <€ RTMs

Second, construct the machine B(M (T'))~! by successively applying the trans-
formations of Lemmas 2 Bl and [B] to T':

[BOM(T) "' = (\y-(y. [T] ()™, B(M(T))™" € RTMs

Third, we can construct an RTM S, s.t. [S] = A(a,b).(b, a), that is, a machine
to exchange the contents of two tapes (in standard configuration). To see that
[B(M(T))=* oS o B(T)] = [T], we apply the machine to an input, z:

What Do Reversible Programs Compute? 51

Thus, the RTMs can compute exactly all the injective computable functions.
This suggests that the RTMs have the maximal computational expressiveness
we could hope for in any (effective) reversible computing model.

7 Universality

Having characterized the computational expressiveness of the RTMs, an obvi-
ous next question is that of computation universality. A universal machine is a
machine that can simulate the functional behaviour of any other machine. For
the classical, irreversible Turing machines, we have the following definition.

Definition 8 (Classical universality). A TM U is classically universal iff
for all TMs T, all inputs x € X*, and Gddel number "T ' € X* representing T :

[T, 2) = [T](=) .

The actual Goédel numbering -7 : TMs — X* for a given universal machine
is not important, but we do require that it is computable and injective (up to
renaming of symbols and states).

Because [U] in this definition is a non-injective function, it is clear that no
classically universal RTM exists! Bennett [4] suggests that if U is a (classically)
universal machine, B(U) is a machine for reversibly simulating any irreversible
machine. However, B(U) is not itself universal, [B(U)] # [U], and furthermore
we should not use reversible simulation of irreversible machines as a benchmark.

The appropriate question to ask is whether the RTMs are classically universal
for just their own class, i.e. where the interpreted machine T is restricted to being
an RTM. The answer is, again, no: Different programs may compute the same
function, so there exists RTMs Ty # Ty such that [T1](z) = [T2](x), so [U] is
inherently non-injective, and therefore not computable by any RTM.

Classical universality is thus unsuitable if we want to capture a similar notion
wrt RTMs. We propose that a universal machine should be allowed to remember
which machine it simulates.

Definition 9 (Universality). A TM Ury is universal iff for all TMs T and
all inputs © € X%,

[Urn]("T) = ("T7, [T1(2)) -

52 H.B. Axelsen and R. Gliick

This is equivalent to the original definition of classical universality@. Importantly,
it now suggests a concept of universality that can apply to RTMs.

Definition 10 (RTM-universality). An RTM Ugry is RTM-universal iff for
all RTMs T and all inputs x € X*,

[Urra]("T7,2) = ("1, [T](2)) -
Now, is there an RTM-universal reversible Turing machine, a URTM?
Theorem 6 (URTM existence). There exists an RTM-universal RTM Ug.

Proof. We show that an RTM Up, exits, such that for all RTMs T', [Ur]("T ", z) =
("T, [T](x)). Clearly, [Ur] is computable, since T is a TM (so [T] is com-
putable), and T is given as input. We show that [Ug] is injective: Assuming
("7, 1) # (TTe 7, x2) we show that (TTh7, [Th](x1)) # (TT27, [T2](x2)). Either
TT17 2 157 or 1 # xo or both. Because the program text is passed through
to the output, the first and third cases are trivial. Assuming that z; # x5 and
Ty ="T57, we have that [T1] = [T2], i-e. T1 and T3 are the same machine, and
so compute the same function. Because they are RT'Ms this function is injective
(by Theorem [I), so &1 # x2 implies that [T1](z1) # [T2](z2). Therefore, [Ug]
is injective, and by Theorem [B] computable by some RTM Ug. g

We remark that this works out very nicely: RTM-universality is now simply
universality restricted to interpreting the RTMs, and while general universal-
ity is non-injective, RTM-universality becomes exactly injective by virtue of the
semantics of RTMs. Also, by interpreting just the RTMs, we remove the redun-
dancy (and reliance on reversibilization) inherent in the alternatives.

Given an irreversible TM computing the function of RTM-universality, The-
orem [l provides us with a possible construction for an RTM-universal RTM.
However, we do not actually directly have such machines in the literature, and
in any case the construction uses the very inefficient generate-and-test inverter
by McCarthy. We can do better.

Lemma 8. There exists an RTM pinv, such that pinv is a program inverter for
RTM programs,
[pino](CT7) ="T-17 .

This states that the RTMs are expressive enough to perform the program in-
version of Lemma Bl For practical Godelizations this will only take linear time.

Theorem 7 (UTM to URTM). Given a classically universal TM U s.t.
[UNT", z) = [T](x), the RTM Ug defined as follows is RTM-universal.

Ugr = pinvy o (B(U))™* 0 Sa3 0 pinvy o B(U),

where pinvy is an RTM that applies RTM program inversion on its first argu-
ment, [pinv1](p, z,y) = ([pinv]p, x,y), and Sas is an RTM that swaps its second
and third arguments, [Sas] = A(z,y, 2).(x, z,y).

6 Given Ury universal by Definition [@ snd o Ury, is classically universal, where snd
is a TM s.t. [snd] = A(x,y).y. The converse is analogous.

What Do Reversible Programs Compute? 53

'_Tfl—' rra

(U)~! > [T](x)

Fig. 2. Constructing an RTM-universal RTM Urg from a classically universal TM U

Proof. We must show that [Ug]("T",z) = ("T7,[T](z)) for any RTM T. To
show this, we apply Ug to an input ("7, z). Fig. 2l shows a graphical represen-
tation of the proof.

[UR]("T7,) = [pinvy o (B(U)) ™! 0 Saz 0 pinvy o B(U)](TT7, z)

= [pinvy o (B(U))™! 0 So3 0 pinv [("T7, z, [T] (x))

= [pinvy o (B(U)) * o SQg]](rT 1z, [T](x))

= [pinvy o (BU)))T, [T](2), z)

= [pinu) ("T717, [T](2))

= ("1 [T](2)) - O

Note that this implies that RTMs can simulate themselves exactly as time-
efficiently as the TMs can simulate themselves, but the space usage of the con-
structed machine will, by using Bennett’s method, be excessive. However, there
is nothing that forces us to start with an irreversible (universal) machine, when
constructing an RTM-universal RTM, nor are reversibilizations necessarily re-
quired (as will be seen below).

A first principles approach to an RTM-universal reversible Turing machine,
which does not rely on reversibilization, remains for future work.

8 r-Turing Completeness

With a theory of the computational expressiveness and universality of the RTMs
at hand, we shall lift the discussion to computation models in general. What,
then, do reversible programs compute, and what can they compute?

Our fundamental assumption is that the RTMs (with the given semantics) are
a good and exhaustive model for reversible computing. Thus, for every program
p in a reversible programming language R, we assume there to be an RTM T,
s.t. [plr = [Tp]. Thus, because the RTMs are restricted to computing injective
functions, reversible programs too compute injective functions only. On the other
hand, we have seen that the RTMs are maximally expressive wrt these functions,

54 H.B. Axelsen and R. Gliick

and support a natural notion of universality. For this reason we propose the
following standard of computability for reversible computing.

Definition 11 (r-Turing completeness). A (reversible) programming lan-
guage R is called r-Turing complete iff for all RTMs T computing function [T],
there exists a program p € R, such that [p]r = [T].

Note that we are here quite literal about the semantics: Given an RTM T, it will
not suffice to compute a Landauer embedded version of [T], or apply Bennett’s
trick, or, indeed any injectivization of [T]. Program p must compute [T, ezactly.
Only if this is respected can we truly say that a reversible computation model
can compute all the injective, computable functions, i.e. is as computationally
expressive as we can expect reversible computation models to be.

Demonstrating r-Turing Completeness. A common approach to proving that a
language, or computational model, is Turing-complete, is to demonstrate that a
classically universal TM (a TM interpreter) can be implemented, and specialized
to any TM T'. However, that is for classically universal machines and (in general)
irreversible languages, which compute non-injective functions. What about our
notion of RTM-universality (Definition [[0]) and reversible languages?

Assume that u € R (where R is a reversible programming language) is an R-
program computing an RTM-universal interpreter [u]g("T 7, z) = ("T7, [T](x)).
Assume also that R is expressive enough to guarantee the existence of programs
wr € R s.t. Jwr]r = Az.("T7, z), (whose sole purpose is to hardcode "T7 as an
input for u) and its inverse wy.' € R, [wy'|r = [wr]z', for any RTM T'. Note
that Jwr]r is injective, so we do not violate our rule of R computing injective
functions by assuming wy and its inverse. Now [u o wr]r = Az.("T 7, [T](x)) #
[T], because it leaves the representation "7 as part of the output. To complete
the specialization, we need to apply w;l as well. Thus, [[w%l ocuowr|r = [T].

Therefore, completely analogous to the classical case, we may demonstrate r-
Turing completeness of a reversible computation model by implementing RTM-
universality (essentially, an RTM interpreter), keeping in mind that we must
respect the semantics exactly (by clean simulation that doesn’t leave garbage).

The authors have done exactly that to demonstrate r-Turing completeness of
the imperative, high level, reversible language Janus, and for reversible flowchart
languages in general, cf. [21I22] (where the r-Turing completeness concept was
informally proposed.) In these cases, we were able to exploit the reversibility of
the interpreted machines directly, and did not have to rely on reversibilization
of any kind, which eased the implementation greatly. Furthermore, the RTM-
interpreters are complexity-wise robust, in that they preserve the space and time
complexities of the simulated machines, which no reversibilization is liable to do.

9 Related Work

Morita et al. have studied reversible Turing machines [13|12] and other reversible
computation models, including cellular automata [11]], with a different approach

What Do Reversible Programs Compute? 55

to semantics (and thus different results wrt computational strength) than the
present paper. Most relevant here is the universal RTM proposed in [13]. With
our strict semantics viewpoint, the construction therein does not directly demon-
strate neither RTM-universality nor classical universality, but rather a sort of
“traced” universality: Given a program for a cyclic tag system (a Turing complete
formalism) and an input, the halting configuration encompasses both the pro-
gram and output, but also the entire string produced by the tag system along the
way. We believe that this machine could possibly be transformed fairly straight-
forwardly into a machine computing a function analogous to [B(U)]. However,
it is not clear that cyclic tag systems should have a notion of reversibility, so the
construction in Fig. 2 is therefore not immediately applicable.

10 Conclusion

The study of reversible computation models complements that of deterministic
and non-deterministic computation models. We have given a foundational treat-
ment of a computability theory for reversible computing using a strict semantics-
based approach (where input/output behaviour must also be reversible), taking
reversible Turing machines as the underlying computational model. By formulat-
ing the classical transformational approaches to reversible computation in terms
of this semantics, we hope to have clarified the distinction between reversibility
and reversibilization, which may previously have been unclear.

We found that starting directly with reversibility leads to a clearer, cleaner,
and more useful functional theory for RTMs. Natural (mechanical) program
transformations such as composition and inversion now correspond directly to
the (semantical) function transformations. This carries over to other computa-
tion models as well.

We showed that the RTMs compute exactly all injective, computable func-
tions, and are thus not classically universal. We also showed that they are
expressive enough to be universal for their own class, with the concept of RTM-
universality. We introduced the concept of r-Turing completeness as the measure
of the computational expressiveness in reversible computing. As a consequence,
a definitive practical criterion for deciding the computation universality of a re-
versible programming computation model is now in place: Implement an RTM-
interpreter, in the sense of an RTM-universal machine.

Acknowledgements. The authors wish to thank Michael Kirkedal Thomsen for
help with the figures and Tetsuo Yokoyama for discussions on RTM-computability.

References

1. Abramov, S., Gliick, R.: Principles of inverse computation and the universal re-
solving algorithm. In: Mogensen, T.Z&., Schmidt, D.A., Sudborough, I.H. (eds.)
The Essence of Computation. LNCS, vol. 2566, pp. 269-295. Springer, Heidelberg
(2002)

56

H.B. Axelsen and R. Gliick

. Axelsen, H.B.: Clean translation of an imperative reversible programming lan-
guage. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 144-163. Springer, Hei-
delberg (2011)

3. Axelsen, H.B., Gliick, R., Yokoyama, T.: Reversible machine code and its abstract

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56-69. Springer, Heidelberg (2007)

Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17, 525-532 (1973)

Feynman, R.: Quantum mechanical computers. Optics News 11, 11-20 (1985)
Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bi-directional tree transformations: A linguistic approach to the view update
problem. ACM Trans. Prog. Lang. Syst. 29(3), article 17 (2007)

Gliick, R., Sgrensen, M.: A roadmap to metacomputation by supercompilation. In:
Danvy, O., Thiemann, P., Gliick, R. (eds.) Partial Evaluation. LNCS, vol. 1110,

pp. 137-160. Springer, Heidelberg (1996)

Jones, N.D.: Computability and Complexity: From a Programming Language Per-
spective. In: Foundations of Computing. MIT Press, Cambridge (1997)

Landauer, R.: Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development 5(3), 183-191 (1961)

McCarthy, J.: The inversion of functions defined by Turing machines. In: Automata
Studies, pp. 177-181. Princeton University Press, Princeton (1956)

Morita, K.: Reversible computing and cellular automata — A survey. Theoretical
Computer Science 395(1), 101-131 (2008)

Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.
Trans. IEICE, E 72(3), 223-228 (1989)

Morita, K., Yamaguchi, Y.: A universal reversible turing machine. In: Durand-
Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 90-98. Springer,
Heidelberg (2007)

Mu, S.-C., Hu, Z., Takeichi, M.: An algebraic approach to bi-directional updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2-20. Springer, Heidelberg
2004)

(Schellekens, M.: MOQA; unlocking the potential of compositional static average-
case analysis. Journal of Logic and Algebraic Programming 79(1), 61-83 (2010)
Thomsen, M.K., Axelsen, H.B.: Parallelization of reversible ripple-carry adders.
Parallel Processing Letters 19(2), 205-222 (2009)

Thomsen, M.K., Gliick, R., Axelsen, H.B.: Reversible arithmetic logic unit for
quantum arithmetic. Journal of Physics A: Mathematics and Theoretical 42(38),
2002 (2010)

Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.)
ICALP 1980. LNCS, vol. 85, pp. 632-644. Springer, Heidelberg (1980)

van de Snepscheut, J.L.A.: What computing is all about. Springer, Heidelberg
1993)

g/an Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. Interna-

tional Journal of Unconventional Computing 1(4), 339-355 (2005)

Yokoyama, T., Axelsen, H.B., Gliick, R.: Principles of a reversible programming
language. In: Proceedings of Computing Frontiers, pp. 43-54. ACM Press, New

York (2008)

Yokoyama, T., Axelsen, H.B., Gliick, R.: Reversible flowchart languages and the
structured reversible program theorem. In: Aceto, L., Damgard, I., Goldberg, L.A.,
Halldérsson, M.M., Ingdlfsdéttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 258-270. Springer, Heidelberg (2008)

Irrelevance in Type Theory with a
Heterogeneous Equality Judgement

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich
andreas.abel@ifi.lmu.de

Abstract. Dependently typed programs contain an excessive amount of static
terms which are necessary to please the type checker but irrelevant for computa-
tion. To obtain reasonable performance of not only the compiled program but also
the type checker such static terms need to be erased as early as possible, prefer-
ably immediately after type checking. To this end, Pfenning’s type theory with
irrelevant quantification, that models a distinction between static and dynamic
code, is extended to universes and large eliminations. Novel is a heterogeneously
typed implementation of equality which allows the smooth construction of a
universal Kripke model that proves normalization, consistency and decidability.

Keywords: dependent types, proof irrelevance, heterogeneously typed equality,
algorithmic equality, logical relation, universal Kripke model.

1 Introduction and Related Work

Dependently typed programming languages such as Agda [9]], Coq [13]], and Epigram
[L5] allow the programmer to express in one language programs, their types, rich in-
variants, and even proofs of these invariants. Besides code executed at run-time, depen-
dently typed programs contain much code needed only to pass the type checker, which
is a the same time the verifier of the proofs woven into the program.

Program extraction takes type-checked terms and discards parts that are irrelevant
for execution. Augustsson’s dependently typed functional language Cayenne [6] erases
types using a universe-based analysis. Coq’s extraction procedure has been designed
by Paulin-Mohring and Werner [21]] and Letouzey [14] and discards not only types
but also proofs. The erasure rests on Coq’s universe-based separation between proposi-
tional (Prop) and computational parts (Set/Type). The rigid Prop/Set distinction has
the drawback of code duplication: A structure which is sometimes used statically and
sometimes dynamically needs to be coded twice, once in Prop and once in Set.

An alternative to the fixed Prop/Set-distinction is to let the usage context decide
whether a term is a proof or a program. Besides whole-program analyses such as data
flow, some type-based analyses have been put forward. One of them is Pfenning’s modal
type theory of Intensionality, Extensionality, and Proof Irrelevance [22] which intro-
duces functions with irrelevant arguments that play the role of proofs. Not only can
these arguments be erased during extraction, they can also be disregarded in type con-
version tests during type checking. This relieves the user of unnecessary proof burden

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 57 2011.
(© Springer-Verlag Berlin Heidelberg 2011

58 A. Abel

(proving that two proofs are equal). Furthermore, proofs can not only be discarded dur-
ing program extraction but directly after type checking, since they will never be looked
at again during type checking subsequent definitions.

In principle, we have to distinguish “post mortem” program extraction, let us call
it external erasure, and proof disposal during type checking, let us call it internal era-
sure. External erasure deals with closed expressions, programs, whereas internal erasure
deals with open expressions that can have free variables. Such free variables might be
assumed proofs of (possibly false) equations and block type casts, or (possibly false)
proofs of well-foundedness and prevent recursive functions from unfolding indefinitely.
For type checking to not go wrong or loop, those proofs can only be externally erased,
thus, the Prop/Set distinction is not for internal erasure. In Pfenning’s type theory,
proofs can never block computations even in open expressions (other than computa-
tions on proofs), thus, internal erasure is sound.

Miquel’s Implicit Calculus of Constructions (ICC) [[17] goes further than Pfenning
and considers also parametric arguments as irrelevant. These are arguments which are
irrelevant for function execution but relevant during type conversion checking. Such
arguments may only be erased in function application but not in the associated type
instantiation. Barras and Bernardo [8] and Mishra-Linger and Sheard [19] have build
decidable type systems on top of ICC, but both have not fully integrated inductive types
and types defined by recursion (large eliminations). Barras and Bernardo, as Miquel,
have inductive types only in the form of their impredicative encodings, Mishra-Linger
[20] gives introduction and elimination principles for inductive types by example, but
does not show normalization or consistency.

Our long-term goal is to equip Agda with internal and external erasure. To this end, a
type theory for irrelevance is needed that supports user-defined data types and functions
and types defined by pattern matching. Experiments with my prototype implementation
MiniAgda [2] have revealed some issues when combining Miquel-style irrelevance with
large eliminations (see Ex.[2lin Sec.2). Since it is unclear whether these issues can be
resolved, I have chosen to scale Pfenning’s notion of proof irrelevance up to inductive
types.

In this article, we start with the “extensionality and proof irrelevance” fragment of
Pfenning’s type theory in Reed’s version [23124]. We extend it by a hierarchy of pred-
icative universes, yielding Irrelevant Intensional Type Theory IITT (Sec.[2). Based on
a heterogeneous algorithmic equality which compares two expressions, each in its own
context at its own type (Sec. [B), we smoothly construct a Kripke model that is both
sound and complete for IITT (Sec.d). It allows us to prove soundness and completeness
of algorithmic equality, normalization, subject reduction, consistency, and decidability
of typing in one go (Sec.[3). The model is ready for data types, large eliminations, types
with extensionality principles, and internal erasure (Sec.[6).

The novel technical contributions of this work are a heterogeneous formulation of
equality in the specification of type theory, and the universal Kripke model that yields
all interesting meta-theoretic results at once.

The Kripke model is inspired by previous work on normalization by evaluation [3]].
There we have already observed that a heterogeneous treatment of algorithmic equality
solves the problem of defining a Kripke logical relation that shows completeness of

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 59

algorithmic equality. Harper and Pfenning [[12] hit the same problem, and their fix was
to erase dependencies in types. In weak type theories like the logical framework erasure
is possible, but it does not scale to large eliminations.

Related to our present treatment of IITT is Goguen’s Typed Operational Semantics
[[L1]. He proves meta-theoretic properties such as normalization, subject reduction, and
confluence by a Kripke logical predicate of well-typed terms. However, his notion of
equality is based on reduction and not a step-wise algorithm.

Awodey and Bauer [[7] give a categorical treatment of proof irrelevance which is very
similar to Pfenning and Reed’s. However, they work in the setting of Extensional Type
Theory with undecidable type checking, I could not directly use their results for this
work.

Due to lack of space, proofs have been mostly omitted; more proofs are available in
an extended version of this article on the author’s home page.

2 Irrelevant Intensional Type Theory

In this section, we present Irrelevant Intensional Type Theory IITT which features two
of Pfenning’s function spaces [22], the ordinary “extensional” (z : U) — T and the
proof irrelevant (z+U) — T. The main idea is that the argument of a (z=U) — T
function is counted as a proof and can neither be returned nor eliminated on, it can
only be passed as argument to another proof irrelevant function or data constructor.
Technically, this is realized by annotating variables as relevant, x : U, or irrelevant,
x -+ U, in the typing context, to restrict the use of irrelevant variables to use in irrelevant
arguments.

Expression and context syntax. We distinguish between relevant (¢ ‘u or simply ¢ «) and
irrelevant application (¢ ~). Accordingly, we have relevant (Az : U. T') and irrelevant
abstraction (Ax—+U.T"). Our choice of typed abstraction is not fundamental; a bidirec-
tional type-checking algorithm [[10] can reconstruct type and relevance annotations at
abstractions and applications.

Var 32,9y, X, Y
Sort 3 s = Set; (k€N) universes
Ann > % n= annotation: irrelevant, relevant

Exp 5t,u, T\U u=s|(axU) =T sort, (ir)relevant function type
| © | AaxU.t | t*u lambda-calculus
Cxt o21,A n=o| [axT empty, (ir)relevant extension

Expressions are considered modulo a-equality, we write ¢ = ¢’ when we want to stress
that ¢ and ¢’ identical (up to).

Sorts. IITT is a pure type system (PTS) with infinite hierarchy of predicative universes
Setq : Sety : The universes are not cumulative. We have the PTS axioms Axiom =
{(Set;, Set; ;1) | i € N} and the rules Rule = {(Set;, Set;, Setyax(i,j)) | 4,7 € N}. As
customary, we will write the side condition (s, s") € Axiom just as (s, s’) and likewise
(s1, 82, 83) € Rule just as (s1, s2,s3). IITT is a full and functional PTS, which means
that for all s1, so there is exactly one s3 such that (s, s2, s3). As a consequence, there
is no subtyping, types are unique up to equality.

60 A. Abel

Substitutions. ¢ are maps from variables to expressions. We require that the domain
dom(o) = {z | o(x) # x} is finite. We write id for the identity substitution and [u/x]
for the singleton substitution o with dom(o) = {2} and o(x) = w. Capture avoiding
parallel substitution of ¢ in ¢ is written as juxtaposition to.

Contexts. I feature two kinds of bindings, relevant (x : U) and irrelevant (z + U)
ones. Only relevant variables are in scope in an expression. Resurrection I'® turns all
irrelevant bindings « <+ 7T into relevant x : T ones [22]. It is the tool to make irrelevant
variables, also called proof variables, available in proofs. Extending context I by some
bindings to context A is written A < [

Judgements of IITT

I context I" is well-formed
FI =1 contexts I" and I"" are well-formed and equal
r+t¢:T in context I, expression ¢ has type T'

rct:T=I"+Ft:T typed expressions ¢ and ¢’ are equal

Derived judgements
I'+t+T = % t:T
'ct+=T=I"+t'=+T <— I'Ft+-TandI" ¢ =T
I't=tT — I'bFtxT=IFt'xT
=T <= [' T : sforsome s
r-T=I1"+T1' — I'FT:s=1"+FT:s forsome s, s’
r=17=1" — FlandT=s=T'or I VT =1 FT'

Context well-formedness and typing. + I"and I' -t : T, extending Reed [23]] to PTS
style. Note that there is no variable rule for irrelevant bindings (z +~ U) € I".

FI I'ET:s
Fo I xxT

I I'U:s; IaxU FT: s

!/
st:s’(s’s) I'b(zxU) — Tt s3 (51,52,53)

A (x:U) el IFaxU Ft:T
I'kz:U I'EXexU.t: (axU) =T

Ibt:(@U)>T TrFuxU T+t:T T +FT=T
I'Ft*u: Tu/x] I'kF¢: 17

When we apply an irrelevant function I" + ¢ : (z+U) — T to u, the argument w is
typed in the resurrected context I'® wu : U. This means that v is treated as a proof
and the proof variables become available.

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 61

Parallel computation () and extensionality (77)

FaxU Ft:T=T"2xU +t:T F'rtuxU=TI"Fu*xU
't (AexU.t)*u: Tu/z) =T ' /z] : T'u' /]

Prti(axU) =T =I"Ft:(xxU") > T
Ibt:(zxU) > T =TI" FdaxU" t' *z : (xxU') = T

Equivalence rules

r'et:T F+t:T=I"+¢:T
I'Et:T=IkFt:T "+t :T'=IkFt:T

F1|_t1:T1:F2|_t22T2 Fgl_tQZngpgl_tgiTg
Iy |_t1:T1:F3 |_t3:T3

Compatibility rules

Fr=F17 , (z:UYel T'FU:s=I"+U:s (z:U)el"
Fhsis=I"Fs:g &%) Fra:U=I"Fz:U

I'FU:s;,=I"+U' :5)
DaxxU FT:so=I".axU FT :5h
'k (axU) > T :s3=TI"F (zxU') = T : s},

FaxUbt:T=T"a2xU +t:T
IEXaxUt: (axU) =T =1" F daxU". ¢ : (xxU') — T'

F'tt:(z:U)—=T=I"Ft:(z:U)—=T I'tt:(zxU)—>T=I"+t:(z=U")—T
Ftuw:U=I"Fu': U Ir'® Fu:U e o U
btu:Tu/zl=I"+Ft'w :T'w/z] bt u:T/zl=T" VT /]

Conversion rule

F1|_t1ZT1:F2|_t22T2 FQ'_TQZTZI
F1 |_t1:T1:F2 "tz:Té

Fig. 1. Rules of heterogeneous equality

Equality. Figure [[l presents the rules to construct the judgement I - ¢ : T = I F
t’ . T'. The novelty is the heterogeneous typing: we do not locally enforce that equal
terms must have equal types, but we will show it globally in Sec. 5l Note that in the
compatibility rule for irrelevant application, the function arguments may be completely
unrelated.

62 A. Abel

In heterogeneous judgements such as equality, we maintain the invariant that the two
contexts I" and I"" have the same shape, i.e., bind the same variables with the same
irrelevance status. Only the types bound to the variables maybe different in I" and I".

Context equality - I" = F I is a partial equivalence relation (PER), i.e., a sym-
metric and transitive relation, given inductively by the following rules:

Fr=FI" TFU=I"FU
Fo=Fo F Lol = b I 2kl

Typing and equality are closed under weakening. Typing enjoys the usual inversion
properties. To show substitution we introduce judgements A F o : I' for substitution
typingand A - o : I' = A" F o : I for substitution equality which are given
inductively by the following rules:

FA AFo:T r+vu AFo(x)*xUo
AFo:o Aro: I xxU
ArFo:I'=A"+o' : I r+-uv=I1r'"+vu’
FA=FA Abo@)xUc=4"Fo'(zx)*xU'o’
ArFoc:o=4A"Fo ¢ Aro:TaxU=AFco : I zxU’

Lemma 1 (Substitution). Substitution equality is a PER. Further:

I. fAvo:Tand ' Ft:Tthen A Fto:To.
2 IfAvro:T'=A Vo :IMandl Ht:T=I"+Ft : T thenAtto:To=
A Hito T

Example 1 (Algebraic structures).[lIn type theory, we can model an algebraic structure
over a carrier set A by a record of operations and proofs that the operations have the
relevant properties. Consider an extension of IITT by tuples and Leibniz equality:

(zxA) x B :Setmax(i,j) for A:Set;andzx A - B : Set;

(a,b) :(axA) x B fora: Aandb: Bla/x]

let (z,y) =pint:C forp: (axA) x Bandzx A,y:B +t¢:C
a=b : Set; for A : Set; and a,b: A

refl ra=a for A: Set; anda : A

sym p b=a forp:a=0

In the presence of a unit type 1 : Set; with constructor () : 1, the class SemiGrp of
semigroups over a fixed A : Sety can be defined as

Assoc : (A— A — A) — Sety

Assocm = (a,b,c: A) = m (mab)c=ma(mbc)
SemiGrp : Setg

SemiGrp=(m: A — A — A) x (assoc + Assoc m) x 1.

! Inspired by the 2010-09-23 message of Andrea Vezzosi on the Agda mailing list.

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 63

We have marked the component assoc as irrelevant which means that two SemiGrp
structures over A are already equal when they share the operation m; the shape of the
associativity proofs might differ. For instance, consider the flip operator (in a slightly
sugared definition):

flip : SemiGrp — SemiGrp

flip (m, (assoc,u)) = (Aa: A.Xb: A.mba, (sym assoc, ())
thm : (s : SemiGrp) — flip (flips) = s
thm s = refl

A proof thm that flip cancels itself is now trivial, since Aab. (Aab.mba)ba = m by
(On-equality and the assoc-component is irrelevant. This saves us from constructing a
proof of sym (sym assoc) = assoc and the type checker from validating it. While the
saving is small for this small example, it illustrates the principle.

Example 2 (Large Eliminations)E The ICC* [8]] or EPTS [19] irrelevant function type
(x + A) — B allows z to appear relevantly in B. This extra power raises some issues
with large eliminations. Consider

T : Bool — Sety

T true = Bool — Bool

T false = Bool

t = AF : (b+Bool) — (T b — Tb) — Setg.

Ag : F false (Az : Bool. z) — Bool.
Aa : F true (Ax : Bool — Bool.\y : Bool.zy). g a.

The term ¢ is well-typed in ICC* + T because the domain type of g and the type of a
are On-equal after erasure (—)* of type annotations and irrelevant arguments:

(F false (A\x : Bool.z))" = F (\ax)
=gn F' (AxAy. zy) = (F true (Az : Bool — Bool.\y : Bool. zy))*

While a Curry view supports this, it is questionable whether identity functions at dif-
ferent types should be viewed as one. It is unclear how a type-directed equality algo-
rithm (see Sec.[3)) should proceed here; it needs to recognize that = : Bool is equal to
Ay : Bool. xy : Bool — Bool. This situation is amplified by a unit type 1 with exten-
sional equality. When we change T true to 1 and the type of a to F' true (Az : 1.())
then ¢ should still type-check, because Az. () is the identity function on 1. However,
n-equality for 1 cannot checked without types, and a type-directed algorithm would
end up checking z : Bool for equality with () : 1. This can never work, because by
transitivity we would get that any two booleans are equal.

Summarizing, we may conclude that the type of F' bears trouble and needs to be
rejected. IITT does this because it forbids the irrelevant b in relevant positions such as
T b; ICC* lacks T altogether. Extensions of ICC* should at least make sure that b is
never eliminated, such as in T b. Technically, T would have to be put in a separate class
of recursive functions, those that actually compute with their argument. We leave the
interaction of the three different function types to future research.

% Inspired by discussions with UIf Norell during the 11th Agda Implementor’s Meeting.

64 A. Abel

3 Algorithmic Equality

The algorithm for checking equality in IITT is inspired by Harper and Pfenning [12].
Like theirs, it is type-directed, but in our case each term comes with its own type in
its own typing context. The algorithm proceeds stepwise, by alternating weak head
normalization and head symbol comparison. Weak head normal forms (whnfs) are given
by the following grammar:

Whnf 3 a,b, f,A,B,F :=s | (axU) — T | AaxU.t | n whnf
Wne >n, N n=x | ntu neutral whnf

Weak head evaluation. t ™\, a and active application f @Q*u \, a are given by the
following rules.

t\ f faru N\ a tlu/z] \, a
t*u\, a a\, a AaU. 1) @*u \, a n@*u \, n*u
Instead of writing the propositions ¢ \, a and P[a] we will sometimes simply write
P[|t]. Similarly, we might write P[f @* u] instead of f @* v\, a and P[a]. In rules, it
is understood that the evaluation judgement is always an extra premise, never an extra
conclusion.

Type equality,. A F A < A’ + A/, for weak head normal forms, and A +
T < A’ + T, for arbitrary well-formed types, checks that two given types are
equal in their respective contexts.

AFN:s+—— A FN:s AFR|T < A [T
Abs — A Fs AFN < A N/ AFRT < A T

AFU & AU AxzUFT & A z2:U FT'
AF(axU) > T < A F (axU') = T’

Structural equality. A +n: A «— A Fn':AandAbn:T & A Fn':T
checks the neutral expressions n and n’ for equality and at the same time infers their
types, which are returned as output.

Abn:T & A bEn T (x:T)e A (x:T") e A
Abn:|T «— A 0/ |T Arbx: T« A Fx:T
Abn:(x:U)->T «— A Fn:(2:U) - T
Abu:U <= A Fud: U
Abnu:Tu/z] «—— A Fn'u : T'u/z]

Abn:(z+U) =T «— A Fn':(23U) - T
Abntu:Tu/z] < A Fn/ o T/ /2]

Note that the inferred types T'[u/x] and T'[v' /2] in the last rule are a priori different,
even if 7' is equal to 7”. This motivates a heterogeneously-typed algorithmic equality.

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 65

Type-directed equality. A Ft: A — A+t :AandA+t:T < A+
t' . T' checks terms ¢ and ¢’ for equality and proceeds by the common structure of the
supplied types, to account for 7.
AFT < A +T'
AFT:s < A FT":¢

AxxU Ft*x: T < A .axU Ht' *z: T
Abt:(axU) =T <= At (axU’) = T

Abt:T < A Ft/:T Abt:|T < A Ht: [T
AFt:N << A" -t : N’ ARt T AT
Note that in the but-last rule we do not check that the inferred type T of |t equals
the ascribed type V. Since algorithmic equality is only invoked for well-typed ¢, we
now that this must always be the case. Skipping this test is a conceptually important
improvement over Harper and Pfenning [12]].
Lemma 2 (Algorithmic equality is a Kripke PER). «——, «—, <, and <= are
symmetric and transitive and closed under weakening.

Extending structural equality to irrelevance, we let
AP Fn:A «—— AP Fn: A AP Fn/ A AP /A
AFn+A —— A Fn/+ A
and analogously for A Fn+T «—— A" Fn/ =T,

4 A Universal Kripke Model for IITT

In this section we build, based on algorithmic equality, a universal Kripke model of
typed terms that is both sound and complete for IITT. Following Goguen [11]] and
previous work [3]], we first define a semantic universe hierarchy 7; whose sole purpose
is to provide a measure for defining a logical relation and proving some of its properties.
The limit 7, corresponds to the proof-theoretic strength or ordinal of IITT.

4.1 An Induction Measure
We denote sets of expressions by A, 15 and functions from expressions to sets of expres-
sionsby F.Let A = {t | |t € A} denote the closure of A by weak head expansion. De-

pendent function space is defined as IT AF = {f € Whnf | Vu € A. f @ u € F(u)}.
By recursion on i € N we define inductively sets 7; C Whnf x P(Whnf) as follows

[3, Sec.5.1]:

(N,Wne) € 7, (Set;, |T;]) € T; (Set;, Set;) € Axiom

AT, Vue A(Tlu/a,Fw)eT,
(xxU) = T, ITAF) € T;

66 A. Abel

Herein, 7, = {(T, A) | (IT,A) € T;} and |T;| = {A | (A, A) € T; for some A}.
The induction measure A € Set; shall now mean the minimum height of a derivation
of (4, .A) € 7, for some .A. Note that due to universe stratification, A € Set; is smaller
than Set; € Set;.

4.2 A Heterogeneously Typed Kripke Logical Relation

By induction on the maximum of the measures A € Set; and A’ € Set;; we define two

Kripke relations
AFA:Set; ®A A : Sety
AFa:AQA a : A

together with their respective closures @ and the generalization to . The clauses are
given in rule form.

AFN << A FN Abn: & A Fn:
AFN:Set; =A" - N’ : Set; Abn:N=A"Fn: N
AFN:Set; ® A’ = N’ : Sety AFn:N®A Fn': N/

A+ Set; : Set,»+1 =AF Set; : Seti+1
A+ Setl- : Seti+1 @ A+ Seti : Seti+1

AFU:Set; ® A F U : Sety

V(LT < (AA), T FuxU®I Fu' U =
I'FTu/z]:Set; ® I - T'[u/a] : Sety

Al (xxU) — T :Set; = A" F (xxU’) — T" : Sety

AF (xxU) =T :Set; @ A’ F (zxU’) — T" : Sety

V(LT < (AA), T FuxU®TI Fu/ U =
I fru:Tu/z)® I F f*u T)
AL fi(exU)>T=A"Ff :(axU") =T
Abfi(@xlU)>T®A F f: (axU') — T

t\, a Arbt=a:|T A Ft'=d:|T '\, a
Abra:|T®A Fd:|T

AFt:T@A’ T

AP Fa:AQ@ AP Fa: A AP La :AQA®d A
Aba+A@A Fal = A

AP Ft:T®A® Ht:T AR T QA® ¢ : T
A Ft+T@A’ it =T
It is immediate that the logical relation contains only well-typed terms, is symmetric,
transitive, and closed under weakening.

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 67

Lemma 3 (Type and context conversion). [f A ¢ : T @ ARt T and A +
T:85Q@A" T :5"then At :T®A" Ht':T".

Lemma 4 (Escape from the logical relation). Ler A + T : Set; @ A" T : Sety

LAFT & AFT.

2 IfARL:T@®A Ft:T'thenAbFt:T < A Ft:T

3IAFEn«xT & A Fn'xT and A = nxT = A = n' «T' then
AFnxT®AFRxT.

4.3 Validity in the Model

Simultaneously and by induction on the length of I" we define the PERs |- I" = I I
and A Fo:I'® A’ + ¢’ : I'" which presupposes the former. In rule notation this
reads:

FI'= -1 rruv=r"mw+uv
Fo=IFo IFIaxU = |- I xxU’

AFU:O@A’I—U’:O

Abo:T®A Fo T AFJ(:L')*UU@A’FU’(:&)*U’U’
A l—U:F.x*U@A’ Fol I xxU’
Again at the same time, we define the following abbreviations, also given in rule notation:
'FT:s=I"IFT":5§
I'kFs=1I"lks reT=r"+1"
I =I-T1 rve7T=r"+17
VAo : TQA Fo': I = Artc:To® A Ft'o' : To’
'kt T=I"kFt:T
Finally,let '+ t:T < I'lFt:T=Tlrt:Tand F I < IFI' = IFT.

Lemma 5 (Context satisfiable). For the identity substitution id and |~ I' = |- I"" we
have I’ Fid: ' I +id: I,

Theorem 1 (Completeness of IITT rules). If ' I-¢: T =T1"I-t : T then " Ft:
T=I"+rt:Tandl VT=I"+T"

Theorem 2 (Fundamental theorem of logical relations)

1. If = I' then I I

2. If+T'=FI"then W = I-T".

3. IfI' =t:TthenI'I-t:T.

4 Ifrr=t:T=I"+t :T'then'l-t:T=1"I-¢:T.

68 A. Abel

5 Meta-theoretic Consequences of the Model Construction

After doing hard work in the construction of a universal model, the rest of the meta-
theory of IITT falls into our lap like a ripe fruit.

Normalization and subject reduction. An immediate consequence of the model con-
struction is that each term has a weak head normal form and that typing and equality is
preserved by weak head normalization.

Theorem 3 (Normalization and subject reduction). If I' -t : T thent ™\, a and
I'Ft=a:T.

Correctness of algorithmic equality. Algorithmic equality is correct, i. e., sound, com-
plete, and terminating. Together, this entails decidability of equality in IITT. Algorith-
mic equality is built into the model at every step, thus, completeness is immediate:

Theorem 4 (Completeness of algorithmic equality). If " -t : T =1" - ¢ : T’
then' Ht:T < I'" -t :T.

Termination of algorithmic equality is a consequence of full normalization, which we
have not defined explicitly, but which is implicit in the model.

Theorem 5 (Termination of algorithmic equality). [f A - ¢ : T and A" =t : T’
then the query A bt : T < A’ - t': T’ terminates.

Soundness of the equality algorithm is a consequence of subject reduction.

Theorem 6 (Soundness of algorithmic equality). Let A -t : T and A’ -t : T' and
AFT=AFT IfAFt:T < At :TthenAbt:T=A ¢ :T.

Homogeneity. Although we defined IITT-equality heterogeneously, we can now show
that the heterogeneity was superficial, i. e., in fact do equal terms have equal types. This
was already implicit in the formulation of the equality algorithm which only compares
terms at types of the same shape. By rather than building homogeneity into the defini-
tion of equality, we obtain it as a global result.

Theorem 7 (Homogeneity). If ' =t : T =I" -t : T then - ' = + I and
r=T=1"+1T"

Consistency. Importantly, not every type is inhabited in IITT, thus, it can be used as
a logic. A prerequisite is that types can be distinguished, which follows immediately
from completeness of algorithmic equality.

Theorem 8 (Consistency). X :Sety ¢ : X.

Decidability. To round off, we show that typing in IITT is decidable. Type checking
algorithms such as bidirectional checking [[10] rely on injectivity of function type con-
structors, which is built into the definition of (S):

Theorem 9 (Function type injectivity). If I’ = (zxU) - T : s = I" F (axU’) —
T :sthen ' FU :s=1"+FU :sand axU T :s=1".axU" +T": 5.

Theorem 10 (Decidability of IITT). Equality I’ =t : T = I'" =t : T' and typing
I' =t :T are decidable.

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 69

6 Extensions

Data types and recursion. The semantics of IITT is ready to cope with inductive data
types like the natural numbers and the associated recursion principles. Recursion into
types, aka known as large elimination, is also accounted for since we have universes
and a semantics which does not erase dependencies (unlike Pfenning’s model [22]).

Types with extensionality principles. The purpose of having a typed equality algo-
rithm is to handle n-laws that are not connected to the shape of the expression (like
n-contraction for functions) but to the shape of the type only. Typically these are types
T with at most one inhabitant, i. e., the empty type, the unit type, singleton types or
propositionsﬁ. For such T" we have the n-law

re=t¢¢:T
ret=t¢:T
which can only be checked in the presence of type 7. Realizing such n-laws gives addi-

tional “proof” irrelevance which is not covered by Pfenning’s irrelevant quantification
(z+U) — T.

Internal erasure. Terms u < U in irrelevant position are only there to please the type
checker, they are ignored during equality checking. This can be inferred from the sub-
stitution principle: If I a=U - T and I' F w,u’ + U, then I' + T[u/x] = T[u'/z];
the type T has the same shape regardless of u, u’. Hence, terms like u serve the sole
purpose to prove some proposition and could be replaced by a dummy e immediately
after type-checking. This is an optimization which in the first place saves memory, but
if expressions are written to interface files and reloaded later, it also saves disk space
and execution time of saving and loaded. First experiments with an implementation of
internal erasure in Agda [9]] shows that savings are huge, like in formalizing category
theory and algebra which uses structures with embedded proofs (see Example[T).

Internal erasure can be realized by making I" F ¢ + T a judgement (as opposed to
just a notation for I'® F ¢ : T') and adding the rule

I'-t+T
I'kFexT’
The rule states that if there is already a proof ¢ of T, then e is a new proof of T'. This

preserves provability while erasing the proof terms. Conservativity of this rule can be
proven as in joint work of the author with Coquand and Pagano [4]].

Proof modality. Pfenning [22] suggests a modality /A formed by the rule
I'=t+T
IFt: AT

which for instance allows the definition of the subset type {z : U | Tz} as Xz :
U. A(T z). Such a modality has been present in Nuprl as Squash type [20] and it is also
known as the type of proofs of (proposition) T [4]8]]. Using the extensions of Example[T]
we can encode it as AT = (+T) x 1.

3 Some care is necessary for the type of Leibniz equality [TI23]).

70 A. Abel

7 Conclusions

We have extended Pfenning’s notion of irrelevance to a type theory IITT with universes
that accommodates types defined by recursion. A heterogeneous algorithmic equality
judgement has allowed a smooth construction of a universal Kripke model that is both
sound and complete for IITT, yielding normalization, consistency and decidability of
IITT. Inspired by a heterogeneously typed semantics, we have formulated the declara-
tive system with a heterogeneous equality judgement as well and demonstrated that this
also yields a sound specification of type theory.

Integrating irrelevance and data types in dependent type theory does not seem with-
out challenges. We have succeeded to treat Pfenning’s notion of irrelevance, but our
proof does not scale directly to parametric function types, a stronger notion of irrelevant
function types called implicit quantification by Miquel [1 SE. Two more type theories
build on Miquel’s calculus [17], Barras and Bernardo’s ICC* [8] and Mishra-Linger
and Sheard’s Erasure Pure Type Systems (EPTS) [19]], but none has offered a satisfying
account of large eliminations yet. Miquel’s model [16]] features data types only as im-
predicative encodings. For irrelevant, parametric, and recursive functions to coexist it
seems like three different function types are necessary, e. g., in the style of Pfenning’s
irrelevance, extensionality and intensionality. We would like to solve this puzzle in
future work, not least to implement high-performance languages with dependent types.

Acknowledgments. Thanks to Bruno Barras, Bruno Bernardo, Thierry Coquand, Dan
Doel, Hugo Herbelin, Conor McBride, and Ulf Norell for discussions on irrelevance in
type theory. Thanks to Jason Reed, Conor McBride, and the anonymous referees for
suggesting improvements on the text. Work on a previous paper has been carried out
while being invited researcher at PPS, Paris, in the INRIA w12 team headed by Pierre-
Louis Curien and Hugo Herbelin. I have benefited from presentations at JFLA 2010,
the Agda Implementer’s Meeting in March 2010 and the DTP workshop in 2010.

References

1. Abel, A.: Extensional normalization in the logical framework with proof irrelevant equality.
In: Danvy, O. (ed.) 2009 Wksh. on Normalization by Evaluation (2009)

2. Abel, A.: MiniAgda: Integrating sized and dependent types. In: Bove, A., Komendantskaya,
E., Niqui, M. (eds.) Wksh. on Partiality And Recursion in Interactive Theorem Provers
(PAR 2010) (2010)

3. Abel, A., Coquand, T., Dybjer, P.: Verifying a semantic 3n-conversion test for martin-16f
type theory. In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp.
29-56. Springer, Heidelberg (2008)

4. Abel, A., Coquand, T., Pagano, M.: A modular type-checking algorithm for type theory with
singleton types and proof irrelevance. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608,
pp. 5-19. Springer, Heidelberg (2009)

5. Amadio, R.M. (ed.): FOSSACS 2008. LNCS, vol. 4962. Springer, Heidelberg (2008)

* A function argument is parametric if it is irrelevant for computing the function result while the
type of the result may depend on it. In Pfenning’s notion, the argument must also be irrelevant
in the type.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 71

. Augustsson, L.: Cayenne - a language with dependent types. In: Proc. of the 3rd ACM SIG-

PLAN Int. Conf. on Functional Programming (ICFP 1998). SIGPLAN Notices, vol. 34, pp.
239-250. ACM Press, New York (1999)

. Awodey, S., Bauer, A.: Propositions as [Types]. J. Log. Comput. 14(4), 447-471 (2004)
. Barras, B., Bernardo, B.: The implicit calculus of constructions as a programming language

with dependent types. In: Amadio [5], pp. 365-379

. Bove, A., Dybjer, P., Norell, U.: A Brief Overview of Agda — A Functional Language with

Dependent Types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009.
LNCS, vol. 5674, pp. 73-78. Springer, Heidelberg (2009)

Coquand, T.: An algorithm for type-checking dependent types. In: Proc. of the 3rd Int. Conf.
on Mathematics of Program Construction, MPC 1995. Sci. Comput. Program., vol. 26, pp.
167-177. Elsevier, Amsterdam (1996)

Goguen, H.: A Typed Operational Semantics for Type Theory. PhD thesis, University of
Edinburgh, Available as LFCS Report ECS-LFCS-94-304 (August 1994)

Harper, R., Pfenning, F.: On equivalence and canonical forms in the LF type theory. ACM
Transactions on Computational Logic 6(1), 61-101 (2005)

INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.2 edition (2008),
http://cog.inria.fr/

Letouzey, P.: A new extraction for coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002.
LNCS, vol. 2646, pp. 200-219. Springer, Heidelberg (2003)

McBride, C., McKinna, J.: The view from the left. J. Func. Program (2004)

Miquel, A.: A model for impredicative type systems, universes, intersection types and sub-
typing. In: Proc. of the 15th IEEE Symp. on Logic in Computer Science (LICS 2000), pp.
18-29 (2000)

Miquel, A.: The Implicit Calculus of Constructions. In: Abramsky, S. (ed.) TLCA 2001.
LNCS, vol. 2044, pp. 344-359. Springer, Heidelberg (2001)

Miquel, A.: Le Calcul des Constructions implicite: syntaxe et sémantique. PhD thesis, Uni-
versité Paris 7 (December 2001)

Mishra-Linger, N., Sheard, T.: Erasure and polymorphism in pure type systems. In: Amadio
[5], pp. 350-364

Mishra-Linger, R.N.: Irrelevance, Polymorphism, and Erasure in Type Theory. PhD thesis,
Portland State University (2008)

Paulin-Mohring, C., Werner, B.: Synthesis of ML programs in the system Coq. J. Symb.
Comput. 15(5/6), 607-640 (1993)

Pfenning, F.: Intensionality, extensionality, and proof irrelevance in modal type theory. In:
LICS 2001: IEEE Symposium on Logic in Computer Science (June 2001)

Reed, J.: Proof irrelevance and strict definitions in a logical framework, Senior Thesis, pub-
lished as Carnegie-Mellon University technical report CMU-CS-02-153 (2002)

Reed, J.: Extending Higher-Order Unification to Support Proof Irrelevance. In: Basin, D.,
Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 238-252. Springer, Heidelberg (2003)
Werner, B.: On the strength of proof-irrelevant type theories. Logical Meth. in Comput. Sci. 4
(2008)

http://coq.inria.fr/

When Is a Type Refinement an Inductive Type?

Robert Atkey, Patricia Johann, and Neil Ghani*

University of Strathclyde
{Robert.Atkey,Patricia.Johann,Neil.Ghani}@cis.strath.ac.uk

Abstract. Dependently typed programming languages allow
sophisticated properties of data to be expressed within the type system.
Of particular use in dependently typed programming are indexed types
that refine data by computationally useful information. For example, the
N-indexed type of vectors refines lists by their lengths. Other data types
may be refined in similar ways, but programmers must produce purpose-
specific refinements on an ad hoc basis, developers must anticipate which
refinements to include in libraries, and implementations often store re-
dundant information about data and their refinements. This paper shows
how to generically derive inductive characterisations of refinements of in-
ductive types, and argues that these characterisations can alleviate some
of the aforementioned difficulties associated with ad hoc refinements.
These characterisations also ensure that standard techniques for pro-
gramming with and reasoning about inductive types are applicable to
refinements, and that refinements can themselves be further refined.

1 Introduction

One of the key aims of current research in functional programming is to reduce
the semantic gap between what programmers know about computational entities
and what the types of those entities can express about them. One particularly
promising approach is to parameterise, or indez, types by extra information that
can be used to express properties of data having those types. For example, most
functional languages support a standard list data type parameterised over the
type of the data the lists contain, but for some applications it is also crucial
to know the length of a list. We may wish, for instance, to ensure that the list
argument to the tail function has non-zero length — i.e., is non-empty — or
that the lengths of the two list arguments to zip are the same.

A data type that equips each list with its length can be defined in the depen-
dently typed language Agda [26] by

data Vector (B : Set) : Nat -> Set where
VNil : Vector B Z
VCons : (n : Nat) -> B -> Vector B n -> Vector B (S n)

This declaration inductively defines a data type Vector which, for each choice of
element type B, is indexed by natural numbers and has two constructors: VNil,

* This work was funded by EPSRC grant EP/G068917/1.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 72@2011.
© Springer-Verlag Berlin Heidelberg 2011

When Is a Type Refinement an Inductive Type? 73

which constructs a vector of B-data of length zero (i.e., Z), and VCons, which
constructs from an index n, an element of B, and a vector of B-data of length n, a
new vector of B-data of length n+1 (i.e., S n). The inductive type Vector can be
used to define functions on lists which are “length-aware” in a way that functions
which process data of standard list types cannot be. For example, length-aware
tail and zip functions can be given via the following types and definitions:

tail : (n : Nat) -> Vector B (S n) -> Vector B n
tail (VCons b bs) = bs

zip : (n : Nat) -> Vector B n -> Vector C n -> Vector (B x C) n
zip VNil VNil = VNil
zip (VCons b bs) (VCons c cs) = VCons (b , c) (zip bs cs)

Examples such as those above suggest that indexing types by computationally
relevant information has great potential. However, for this potential to be re-
alised, we must better understand how indexed types can be constructed. More-
over, since we want to ensure that all of the techniques developed for structured
programming with and principled reasoning about inductive types — such as
those championed in the Algebra of Programming [6] literature — are applica-
ble to the resulting indexed types, we also want these types to be inductive. This
paper therefore asks the following fundamental question:

Can elements of inductive types be systematically augmented with computa-
tionally relevant information to give indexed inductive types that store com-
putationally relevant information in their indices? If so, how?

That is, how can we refine a given inductive type to get a new such type, called
a refinement, that associates with each element of the given type its index?
One straightforward way to refine an inductive type is to use a refinement
function to compute the index for each of its elements, and then to associate
these indices to their corresponding elements. To refine lists by their lengths, for
example, we would start with the standard list data type and length function:

data List (B : Set) : Set where 1length : List B -> Nat
Nil : List B length Nil =Z
Cons : B -> List B -> List B length (Cons _ 1) = S (length 1)

and construct the following refinement type of indexed lists:
IdxList Bn = {x:List B| length x =n} (1)

This construction is global in that both the data type and the collection of
indices exist a priori, and the refinement is obtained by assigning, post facto, an
appropriate index to each data type element. But the construction suffers from
a serious drawback: the resulting refinement — IdxList here — need not be
inductive, and so is not a solution to the fundamental question posed above.
We propose an alternative construction of refinements that provides a com-
prehensive answer to the fundamental question raised above in the case when

74 R. Atkey, P. Johann, and N. Ghani

the given refinement function is computed by structural recursion over the data
type to be refined. This is often the case in practice. More specifically, we con-
struct, for each inductive type uF and each F-algebra o whose fold computes
the desired refinement function, a functor F'* whose least fixed point uF® is the
desired refinement. The characterisation of the refinement of uF by « as the
inductive type pF'“ allows the entire arsenal of structured programming tech-
niques to be brought to bear on them. This construction is also local in that the
indices of recursive substructures are readily available at the time a structurally
recursive program is written, rather than needing to be computed by inversion
from the index of the input data structure.

The functor F'* that we construct is intimately connected with the generic
structural induction rule for the inductive type pF [T6JI8]. This is perhaps not sur-
prising: structural induction proves properties of functions defined by structural
recursion on elements of inductive types. If the values of those functions are ab-
stracted into the indices of associated indexed inductive types, then the computa-
tion of those values need no longer be performed during inductive proofs. In essence,
we have shifted work away from computation and onto data. Refinement thus sup-
ports reasoning by structural induction “up to” the index of a term.

We adopt a semantic approach based on category theory because it allows a high
degree of abstraction and economy, and exposes structure that might be lost were a
specific programming notation to be used. Although we have developed our theory
in the abstract setting of fibrations [20], we specialise to the families fibration over
the category of sets to improve accessibility and give concrete intuitions. A type-
theoretic answer to the fundamental question posed above has already been given
by McBride [23] using his notion of ornamenting a data type (seelsection 7).

The remainder of this paper is structured as follows. Inlsection 2l we recall basic
categorical preliminaries. In [section 3] we introduce a framework within which re-
finement may be developed [16/18]. We describe and illustrate our basic refinement
technique inlsection 4l Inlsection Hlwe show how to refine inductive types which are
themselves indexed. Inlsection 6lwe further extend our basic refinement technique
to allow partial refinement, in which indexed types are constructed from inductive
types not all of whose elements have indices. Finally, section 7 discusses applica-
tions to dependently typed programming, library development, and implementa-
tion, as well as future and related work.

2 Inductive Types and F-Algebras

A data type is inductive (in a category C) if it is the least fixed point uF' of an
endofunctor on C. For example, if Set denotes the category of sets and functions,
7Z is the set of integers, and + and X denote coproduct and product, respectively,
then the following data type of binary trees with integer leaves is pFryee for the
endofunctor Frree X = Z + X x X on Set:

data Tree : Set where
Leaf : Integer -> Tree
Node : (Tree x Tree) -> Tree

When Is a Type Refinement an Inductive Type? 75

Inductive types can also be understood in terms of the categorical notion of an
F-algebra. If C is a category and F : C — C is a functor, then an F-algebra is a
pair (A,a : FA — A) comprising an object A of C and a morphism ov: FA — A
in C. The object A is called the carrier of the F-algebra, and the morphism « is
called its structure map. We usually refer to an F-algebra solely by its structure
map, since the carrier is present in the type of this map.

An F-algebra homomorphism from (o : FA — A) to (¢/ : FB — B) is a
morphism f : A — B of C such that foa = o/oF f. An F-algebra (a: FA — A)
is initial if, for any F-algebra (o : FB — B), there exists a unique F-algebra
morphism from « to o’. The initial F-algebra is unique up to isomorphism, and
Lambek’s Lemma further ensures that it is itself an isomorphism. Its carrier is
thus the least fixed point pF of F. We write (inp : F(uF) — pF) for the initial
F-algebra, and (o) p : uF — A for the unique morphism from (ing : F(pF) —
pF) to any F-algebra (o : FA — A). We write (—) for (—)r when F' is clear
from context. Of course, not all functors have least fixed points. For instance,
the functor FX = (X — 2) — 2 on Set does not have any fixed point at all.

In light of the above, the data type Tree can be interpreted as the carrier of the
initial Frpee-algebra. In functional programming terms, if (a: Z+ Ax A — A) is
an Frrec-algebra, then (o] : Tree — A is exactly the application of the standard
iteration function fold for trees to a (actually, to an “unbundling” of « into
replacement functions, one for each of Fryee’s constructors). More generally, for
each functor F, the map (—)r : (FA — A) — uF — A is the iteration function
for pF.

If F is a functor on C, we write Alg, for the category of all F-algebras
and F-algebra homomorphisms between them. Identities and composition in
Algp are taken directly from C. The existence of initial F-algebras is equivalent
to the existence of initial objects in Algr. Recall that an adjunction between
two categories C and D consists of a left adjoint functor L and a right adjoint
functor R and an isomorphism natural in A and X between the set C(LA, X) of
morphisms in C from LA to X and the set D(A, RX) of morphisms in D from
A to RX. We say that the functor L is left adjoint to R, and that the functor R
is right adjoint to L, and write L - R.

We will make much use of the following theorem from [I§]:

Theorem 1. If F:C— C and G : D — D are functors, L4 R, and FL = LG
L L

18 a natural isomorphism, then C <1 _D lifts to Algp <. _ Alg. .
R R

Mheorem 1] will be useful in conjunction with the fact that left adjoints preserve
colimits, and thus preserve initial objects. In the setting of the theorem, if G has
an initial algebra, then so does F'. To compute the initial F-algebra in concrete
situations we need to know that L'(k : GA — A) = Lk o ps where p is (one half
of) the natural isomorphism between F'L and LG. Then the initial F-algebra is
given by applying L’ to the initial G-algebra, and so pF' = L(uG).

76 R. Atkey, P. Johann, and N. Ghani
3 A Framework for Refinement

An object of Fam(Set) is a pair (A, P) comprising a set A and a function P : A —
Set; such a pair is called a family of sets. A morphism (f, f~) : (A4, P) — (B, Q)
of Fam(Set) is a pair of functions f : A — B and f~ : Va. Pa — Q(fa). From
a programming perspective, a family (4, P) is an A-indexed type P, with Pa
representing the collection of data with index a. An alternative, logical view is
that (A, P) is a predicate representing a property P of data of type A, and that
Pa represents the collection of proofs that P holds for a. When Pa is inhabited,
P is said to hold for a. When Pa is empty, P is said not to hold for a.

The families fibration U : Fam(Set) — Set is the functor mapping each family
(A, P) to A and each morphism (f, f~) to f. For each set A, the category
Fam(Set) 4 consists of families (A, P) and morphisms (f, f~) between them such
that f = ida. We call Fam(Set)4 the fibre of the families fibration over A.
A function f : A — B contravariantly generates a re-indexing functor f* :
Fam(Set)p — Fam(Set) 4 which maps (B, Q) to (A, Q o f).

3.1 Truth and Comprehension

Each fibre Fam(Set) 4 has a terminal object (A, Aa : A. 1), where 1 is the canon-
ical singleton set. This object is called the truth predicate for A. The mapping
of objects to their truth predicates extends to a functor K; : Set — Fam(Set),
called the truth functor. In addition, for each family (A, P) we can define the
comprehension of (A, P), denoted {(A, P)}, to be the set {(a,p) | a € A,p €
Pa}. The mapping of families to their comprehensions extends to a functor
{—} : Fam(Set) — Set, called the comprehension functor, and we end up with
the following pleasing collection of adjoint relationships:

Fam(Set) (2)

U —|) K14 J{-}
\

Set

The families fibration U is thus a comprehension category with unit [I9/20]. Like
every comprehension category with unit, U supports a natural transformation
7 : {—} — U such that 74 p)(a,p) = a for all (a,p) in {(A, P)}. In fact, U is
full, i.e., the functor from Fam(Set) to Set™ induced by 7 is full and faithful.

3.2 Indexed Coproducts and Indexed Products

For each function f : A — B and family (A, P), we can form the family
(B, Ab. Xaca. (b = fa) x Pa), called the indexed coproduct of (A, P) along
f- The mapping of each family to its indexed coproduct along f extends to a
functor X't : Fam(Set) 4 — Fam(Set)p which is left adjoint to the re-indexing
functor f*. In the abstract setting of fibrations, a fibration with the property
that each re-indexing functor f* has a left adjoint Xy is called a bifibration, and

When Is a Type Refinement an Inductive Type? 7

the functors X't are called op-re-indezing functors. These functors are often sub-
ject to the Beck-Chevalley condition for coproducts, which is well-known to hold
for the families fibration. This condition ensures that in certain circumstances
op-re-indexing commutes with re-indexing [20]. A bifibration which is also a full
comprehension category with unit is called a full cartesian Lawvere category [19].

For each function f : A — B and family (A, P) we can also form the family
(B, Ab. ITyca.(b = fa) — Pa), called the indezed product of (A, P) along f.
The mapping of each family to its indexed product along f extends to a functor
II; : Fam(Set)s — Fam(Set)p which is right adjoint to f*. This gives the
following collection of relationships for each function f: A — B:

s
T
Fam(Set)p f* > Fam(Set)a
< 1

Iy

Like its counterpart for coproducts, the Beck-Chevalley condition for products
is often required. However, we do not make use of this condition in this paper.

At several places below we make essential use of the fact that the families
fibration has strong coproducts, i.e., that in the diagram

{v}

{(A,P)} = {(B, Z5(4, P))} (3)
T(A,P) T(B,Z;(A,P))
\ v
A T -p

where 1 is the obvious map of families of sets over f, {#} is an isomorphism.
This definition of strong coproducts naturally generalises the usual one [20], and
imposes a condition which is standard in models of type theory.

3.3 Liftings

A lifting of a functor F : Set — Set is a functor F' : Fam(Set) — Fam(Set)
such that FU = UF. A lifting is truth-preserving if it satisfies K1 F = FK;.
Truth-preserving liftings for all polynomial functors — i.e., for all functors built
from identity functors, constant functors, coproducts, and products — are given
in [I8]. Truth-preserving liftings were established for arbitrary functors in [16].
The truth-preserving lifting F is defined on objects by

F(A,P)= (FA Xa. {z: F{(A,P)} | Fr(a,pyr = a}) = ZFW(A,P)Kl(F{(A7Pz};
4
The final expression is written point-free using the constructions of Sections 3.11
and
Since F is an endofunctor on Fam(Set), the category Algg of F -algebras
exists. The families fibration U : Fam(Set) — Set extends to a fibration U8 :
Alg s — Algp, called the algebras fibration induced by U. Moreover, writing K ﬁ 'e

78 R. Atkey, P. Johann, and N. Ghani

and {—}A'g for the truth and comprehension functors, respectively, for UA'®, the

adjoint relationships from all lift to give UAE 4 K18 é—}’*'g. The
two adjunctions here follow from [Theorem 1l using the fact that LF] is a lifting
and preserves truth. That left adjoints preserve initial objects can now be used
to establish the following fundamental result from [TGJI8]:

Theorem 2. K(uF) is the carrier pF of the mz’tial@algebm.

4 From Liftings to Refinements

In this section we show that the refinement of an inductive type uF by an
F-algebra (o : FA — A), i.e., the family

(A ha: A {x: uF | (o)x =a}) (5)

is inductively characterised as uF® where F* : Fam(Set)4 — Fam(Set)4 is

Fe=X,F (6)
An alternative, set-theoretic presentation of F'¢ is:
F*(A,P) = (A a. {z: F{(A,P)} | o(Fm(a,pyx) = a}) (7)

That is, F*(A, P) is obtained by first building the F A-indexed type F(A, p)
(cf. [Equation 4)), and then restricting membership to those elements whose a-
values are correctly computed from those of their immediate subterms. The proof
consists of the following three theorems, which are, as far as we are aware, new.

Theorem 3. For each F-algebra (ov: FA — A), (Algg)a = Algpa.

Proof. First note that (Alg), is isomorphic to the category (F' | o*) whose
objects are morphisms from F(A, P) to a*(A, P) in Fam(Set)ra and whose
morphisms are commuting squares. Then (F' | o*) & Algpa because X, 4 o*.

[Theorem 3l can be used to prove the following key result:
Theorem 4. UAE : Algy — Algp is a bifibration.

Proof. That UM€ is a fibration, indeed a comprehension category with unit, is
proved in [I8]. Next, let f be an F-algebra morphism from o : FA — A to
B3 : FB — B. We must show that the reindexing functor f*A'8 in U”'® has a left
adjoint E?'g. Such an adjoint can be defined using [ITheorem 1| [Theorem 3 and
FPY; = 5, F~ By the latter is equivalent to XsFX; = X5, F.
From the definition of F', we must show that for all (A, P) in Fam(Set) 4,

EﬁzFﬂ'zf(A,P)KlF{Zf(A7p)} = ZfZOéZFﬂ'(A,P)KlF{(Aa P)} (8)

When Is a Type Refinement an Inductive Type? 79

To see that this is the case, consider the following diagram:

Fr
F{A,P)} T aFaA C =4
F{y} Ff f
v v v
F{X;(A, P)} h > FB > B
T2 (A,P) B

The left-hand square commutes because it is obtained by applying F' to the
naturality square for 7, and the right-hand square commutes because f is an
F-algebra morphism. Then XgXpry 4 p Xr(yy = X202 Fr, p, because op-
re-indexing preserves composition. [Equation 8 now follows by applying both of
these functors to K1 F{(A4, P)}, and then observing that F'{t} is an isomorphism
since {¢} is one by assumption (cf. [Diagram 3)), so that Xy, is a right adjoint
(as well as a left adjoint) and thus preserves terminal objects.

We can now give an explicit characterisation for pF'*. We have
Theorem 5. The functor F* has an initial algebra with carrier Xq) Kq(puF').

Proof. The category Alg has initial object whose carrier is K1 (pF') by[Theorem 21
Since UM'® is a left adjoint and hence preserves initial objects, Proposition 9.2.2
of [20] ensures that the fibre (Algs)o — and so, by Theorem 3| that Algp. —
has an initial object whose carrier is Yq) K1 (pF).

Instantiating [Theorem 5l for Fam(Set) gives exactly the inductive characterisa-
tion of refinements we set out to find, namely that in

4.1 Some Specific Refinements

The following explicit formulas are used to compute refinements in the examples
below. In the expression B%, B is the constantly B-valued functor.

1d*(A, P) = (A af{z: {(A,P)} | o (r(apz) = a})
B*(A, P) = (A a{z:B|ax=a})
(G+H)*(A,P) = (A a{z : G {(A, P)} | a(inl(Gr(a,py)) = a}
+ {a: H {(A, P)} | alinr(Hr (s,) = a})
_ (A7)\a. GocomIPa + HaomrPa)
(G x H)*(A, P) = (A, a. {21:G {(A,P)}, w2: H {(A,P)} |
Oz(G’]T(A,p)(ﬂl, H71'(A7p)(£2) = CL}

Refinements of the identity and constant functors are as expected. Refinement
splits coproducts of functors into two cases, specialising the refining algebra for
each summand. It is not possible to decompose the refinement of a product of
functors G x H into refinements of G and H (possibly by algebras other than
«). This is because o may need to relate multiple elements to the overall index.

80 R. Atkey, P. Johann, and N. Ghani

Example 1. The inductive type of lists of elements of type B can be specified
by the functor Fr;:X = 1+ B x X. Writing Nil for the left injection and Cons
for the right injection into the coproduct Fr;s:X, the Fr;s¢-algebra lengthalg :
Fris:N — N that computes the lengths of lists is

lengthalg Nil =0
lengthalg (Cons(b,n)) =n+1

The refinement of uFr;s¢ by the algebra lengthalg is the least fixed point of

Flengthals (N PY = (N, An.(n = 0) + {ny : N,y : B,y : Pny | n=ny +1})
This formulation of pFl"9" is essentially the declaration Vector from the
introduction with the implicit equality constraints in that definition made explicit.

Example 2. We can similarly refine pFrree by the Frpee-algebra

sum : Frreeo — 7
sum (Leaf z) =z
sum (Node (I,r)) =1+

which sums the values in a tree. This gives the refinement uF3%" where

Foin(Z,P)=(Z,n. {z:Z|z=n}+{l,r: Z,x1 : Plyzg : Pr|n=1+711})

Tree
This corresponds to the Agda declaration

data IdxTree : Integer -> Set where
IdxLeaf : (z : Integer) -> IdxTree z
IdxNode : (1 r : Integer) ->
IdxTree 1 -> IdxTree r -> IdxTree (1 + r)

Refinement by the initial algebra (ing : F(uF) — pF) gives a pF-indexed type
inductively Characterlsed by Fi* = EmF Since in is an isomorphism, Y, is as
well. Thus F* = F| so that uF™ = pF = K (uF), and each term is its own
index. By contrast, refinement by the final algebra (! : F1 — 1) (which always
exists because 1 is the terminal object of Set) gives a 1-indexed type inductively
characterised by F'. Since F' = F, we have uF' = puF, and all terms have index
1. Refining by the initial algebra thus has maximal discriminatory power, while
refining by the terminal algebra has no discriminatory power.

5 Starting with Already Indexed Types

The development in[Section 4] assumes the type being refined is the initial algebra
of an endofunctor F' on Set. This seems to preclude refining an inductive type
that is already indexed. But since we carefully identified the abstract structure
of Fam(Set) we needed, our results can be extended to any fibration having that
structure. In particular, we can refine indexed types using a change-of-base [20]:

When Is a Type Refinement an Inductive Type? 81

Fam(Set) 4 Xget Fam(Set) > Fam(Set)
_

v U
! {-} v
Fam(Set) 4 > Set
This diagram, which is a pullback in Cat, the (large) category of categories
and functors, generates a new fibration U4 from the functors U and {—}. The
objects of Fam(Set) 4 Xsct Fam(Set) are (dependent) pairs ((4, P), ({(4, P)},Y))
of predicates. Thus, Y is “double indexed” by both a € A and z € Pa.

The following theorem states that all the structure we require for our construc-
tions is preserved by the change-of-base construction. It also generalises to any
full cartesian Lawvere category with strong coproducts, so the change-of-base
construction may be iterated.

Theorem 6. U4 is a full cartesian Lawvere category with strong coproducts.

Proof. First, U4 is a fibration by construction. The truth functor is defined
by K{*(A, P) = ((A, P), K1{(A, P)}) and the comprehension functor is defined
by {((4,P),({(A, P)},Y))}* = Yrarm {(A,P)},Y). Coproducts are defined
directly using the coproducts of U.

Example 3. To demonstrate the refinement of an already indezxed inductive type
we consider a small expression language of well-typed terms. Let T = {int, bool}
be the set of possible base types. The language is pFyteap for the functor Fyieqp :
Fam(Set)r — Fam(Set)r given by

Foteap(T,P) = (T, Xt : T. {z:Z |t =int} + {b: B | t = bool}
-+ {tl,tg : T, x1: Pty, a2 : Pty | t1 =ty =t= int}
-+ {tl,tg,tg 1T, x1: Pt1, xo: Pty, x3: Pts ‘
t1 = b00|,t2 = t3 = t})

For any t, write IntConst, BoolConst, Add, and If for the four injections into
(snd (Futeap(T, P)) t. Letting B = {true, false} denoting the set of booleans, and
assuming there exist a T-indexed family T such that T int = Z and T bool = B,
we have a semantic interpretation of the extended language’s types. This can be
used to specify a “tagless” interpreter by giving an Fyieqp-algebra:

eval © Fyteqp(T,T) — (T,T)
eval = (id, Az : T. At : snd (Futeap(T,T)) x. case t of
IntConst 2 =z
BoolConst b =0
Add (int, int, 21, 22) = 21 + 22
If (bool,t,t,b,x1,x2) = if b then x1 else x2)

Refining pFutesp by eval yields a type indexed by Xt : T. Tt, i.e., by {(T,T)}.
This type associates to every well-typed expression that expression’s semantics.

82 R. Atkey, P. Johann, and N. Ghani

6 Partial Refinement

In [Sections 4] and [Hl we assumed that every element of an inductive type has an
index that can be assigned to it. Every list has a length, every tree has a number
of leaves, every well-typed expression has a semantic meaning, and so on. But
how can an inductive type be refined if only some data have values by which we
want to index? For example, how can the inductive type of well-typed expressions
of be obtained by refining a data type of untyped expressions by an
algebra for type assignment? And how can the inductive type of red-black trees
be obtained by refining a data type of coloured trees by an algebra enforcing
the well-colouring properties? As these examples show, the problem of refining
subsets of inductive types is a common and naturally occurring one. Partial
refinement is a technique for solving this problem.

The key idea underlying the required generalisation of our theory is to move
from algebras to partial algebras. If F' is a functor, then a partial F-algebra
is a pair (A,a : FA — (1 4+ A)) comprising a carrier A and a structure map
a:FA— (1+A). We write ok : A — 14+ A and fail : 1 — 14 A for the injections
into 1 + A, and often refer to a partial algebra solely by its structure map. The
functor MA =1+ A is (the functor part of) the error monad.

Example 4. The inductive type of expressions is p1Feqp for the functor Fezp X =
Z4B+ (X x X)+ (X x X x X). Letting T = {int, bool} as in[Ezample 3 and using
the obvious convention for naming the injections into Fegp X, such expressions
can be type-checked using the following partial Fezp-algebra:

tyCheck t FegpT — 14T
tyCheck (IntConst z) = ok int
tyCheck (BoolConst b) = ok bool

_ Jokint ift; =int and ty = int
tyCheck (Add (t,12)) = fail otherwise
_ ok tQ ’Lf t1 = bool and tQ = t3
tyCheck (If (t1,t2,3)) = fail otherwise
Example 5. Let S = {R,B} be a set of colours. The inductive type of coloured
trees is WFoiree for the functor FeireeX = 14+ S x X X X. We write Leaf and Br
for injections into FeireeX . Red-black trees [T1)] are coloured trees satisfying the
following constraints:

1. FEwvery leaf is black;
2. Both children of a red node are black;
3. For every node, all paths to leaves contain the same number of black nodes.

We can check whether or not a coloured tree is a red-black tree using the following
partial Feiree-algebra. Its carrier S X N records the colour of the tree in the first
component and the number of black nodes to any leaf, assuming this number is
the same for every leaf, in the second.

When Is a Type Refinement an Inductive Type? 83

checkRB i Fetree(SxN) =1+ (SxN)
checkRB Leaf =ok (B,1)

checkRB (Br (R, (s1,m1), (sa,1z))) = { O (Rm) #f s1= 52 =B and my =ng

fail otherwise
k (B 1) 4 =
checkRB (Br (B, (s1,m1), (s2,na)) = { O (B 1) m = ma

The process of (total) refinement described in [section 4] constructs, from a func-
tor F with initial algebra (inp : F(uF) — pF) and an F-algebra o : FA — A,
a functor F'* such that uF® associates to each z : puF' its index (o)z. If we
can compute an index for each element of uF' from a partial F-algebra, then we
can apply the same technique to partially refine pF'. The key to doing this is to
turn every partial F-algebra into a (total) F-algebra. Let A be any distributive
law for the error monad M over the functor F. Then A respects the unit and
multiplication of M (see [4] for details), and

Lemma 1. Every partial F-algebra k : FA — 1+ A generates an F-algebra
K:F(1+A)— (1+ A) defined by k = [fail, k] o \4.

Here, [fail, k] is the cotuple of the functions fail and x. Refining uF' by the F-
algebra x using the techniques of [section 41 would result in an inductive type
indexed by 1 4+ A. But, as our examples show, what we actually want is an A-
indexed type that inductively describes only those terms having values of the
form ok a for some a € A. Partial refinement constructs, from a functor F' with
initial algebra (inp : F(uF) — pF) and a partial F-algebra k: FA — 14+ A, a
functor F7* such that uF’* is the A-indexed type

(A, M. {z: pF | (K)x = ok a}) = ok™ X K1 (uF) = ok™ uF"™ (9)
As we will see in[Theorem 7 if

F'™ = ok* 2 F (10)

then uF*"® = (A, \a. {z : uF | (k)z = ok a}). Indeed, since left adjoints preserve
initial objects, we can prove uF’" = ok*uF* by lifting the following adjunction
to an adjunction between Alg . and Algp. via [Theorem 1t

ok™
Fam(Set) 4 = 1 Fam(Set)144
Hok

To satisfy the precondition of [Theorem 1l we prove that ok*F* = F7%ok* by
first observing that if F' preserves pullbacks, then F preserves re-indexing, i.e.,
for every function f, F f*2(Ff)*F This is proved by direct calculation. Thus
if F' preserves pullbacks, and if

ok™ X, = ok™ X, (Fok)* (11)

84 R. Atkey, P. Johann, and N. Ghani

then ok™F* = ok* X F = ok* X, (Fok)*F = ok*X, Fok* = F"ok*. The first
equality is by the first isomorphism is by the second
isomorphism is by the preceding observation assuming that F' preserves pull-
backs, and the final equality is by All container functors [I], and
hence all polynomial functors, preserve pullbacks. Finally, to verify [Equation 11}
we require that the distributive law A for M over F satisfies the following prop-
erty, which we call non-introduction of failure: for all x : F(1+ A) and y : FA,
Aax = ok y if and only if x = F oky. This property strengthens the usual unit
axiom for A in which the implication holds only from right to left. It ensures that
if applying A does not result in failure, then no failures were present in the data
to which it was applied. In an arbitrary category, this property is formulated as
requiring the following square (i.e., the unit axiom for A) to be a pullback:

FA "= F(1+ A)

id Aa
\ ok \
FA >14+FA

Every container functor has a canonical distributive law for M satisfying the
non-introduction of failure property. We now have

Lemma 2. If the distributive law)\ satisfies non-introduction of failure, then

holds.

Proof. Given (F(1+ A),P: F(1+ A) — Set), we have

(ok™ o Z)(F(1+A), P)

=(A a: A {(z1: F(14 A),z9 : Pxy) | [fail, k](Aax1) = ok a})
(

(

IR

A da: A {x1: FA xo : P(Fokxy) | kzy = ok a})
> (A,0k* o X, o (Fok)*(F(1+ A), P))

And, putting everything together, we get the correctness of partial refinement:

Theorem 7. If \ is a distributive law for M over F with the non-introduction
of failure property, and if F preserves pullbacks, then F** has an initial algebra

whose carrier is given by |Equation 9

In fact, [Theorem 7 holds in the more general setting of full cartesian Lawvere
category whose coproducts satisfy the Beck-Chevalley condition and whose base
categories satisfy extensivity [8]. Moreover, [Theorem 6] extends to show that
these properties are also preserved by the change-of-base construction provided
all fibres of the original fibration satisfy extensivity.

7 Conclusions, Applications, Related and Future Work

We have given a clean semantic framework for deriving refinements of inductive
types which store computationally relevant information within the indices of

When Is a Type Refinement an Inductive Type? 85

refined types. We have also shown how indexed types can be refined further, and
how refined types can be derived even when some elements of the original type
do not have indices. In addition to its theoretical clarity, the theory of refinement
we have developed has potential applications in the following areas:

Dependently Typed Programming: Often a user is faced with a choice between
building properties of elements of types into more sophisticated types, or stating
these properties externally as, say, pre- and post-conditions. While the former
is clearly preferable because properties can then be statically type checked, it
also incurs an overhead which can deter its adoption. Supplying the programmer
with infrastructure to produce refined types as needed can reduce this overhead.
Libraries: Library implementors need no longer provide a comprehensive collec-
tion of data types, but rather methods for defining new data types. Similarly, our
results suggest that library implementors need not guess which refinements of
data types will prove useful to programmers, and can instead focus on providing
useful abstractions for creating more sophisticated data types from simpler ones.
Implementation: Current implementations of types such as Vector store all index
information. For example, a vector of length 3 will store the lengths 3, 2, and
1 of its subvectors. Brady [7] seeks to determine when this information can be
generated “on the fly” rather than stored. Our work suggests that the refinement
wF® can be implemented by simply implementing the underlying type pF’, since
programs requiring indices can reconstruct these as needed. We thus provide a
user-controllable tradeoff between space and time efficiency.

Related Work: The work closest to that reported here is McBride’s work on
ornaments [23]. McBride defines a type of descriptions of inductive data types
along with a notion of one description “ornamenting” another. Despite the dif-
ferences between our fibrational approach and his type theoretic approach, the
notion of refinement presented in and [is very similar to his notion
of an algebraic ornament.

A line of research allowing the programmer to give refined types to construc-
tors of inductive data types was initiated by Freeman and Pfenning [I5] and later
developed by Xi [27], Davies [12] and Dunfield [14] for ML-like languages, and by
Pfenning [24] and Lovas and Pfenning [22] for LF. The work of Kawaguchi et al.
[21] is also similar. This research begins with an existing type system and aims
to provide the programmer with a means of expressing richer properties of values
that are well-typeable in that type system. It is thus similar to the work reported
here, although we are working in (a syntax-free presentation of) an intrinsically
typed language, and this affects pragmatic considerations such as decidability
of type checking. We also formally prove that each refinement is isomorphic to
the richer, property-expressing data type it is intended to capture, rather than
leaving this to the programmer to justify on a refinement-by-refinement basis.

Refinement types have also been used elsewhere to give more precise types to
programs in existing programming languages (but not specifically to inductive
types). For example, Denney [I3] and Gordon and Fournet [17] use subset types
to refine the type systems of ML-like languages. Subset types are also used
heavily in the PVS theorem prover [25].

86 R. Atkey, P. Johann, and N. Ghani

Our results extend the systematic code reuse delivered by generic program-
ming [2I35]: in addition to generating new programs we can also generate new
types from existing types. This area is being explored in Epigram [0], in which
codes for data types can be represented within a predicative intensional sys-
tem so that programs can generate new data types. It should be possible to
implement our refinement process using similar techniques.

Aside from the specific differences between our work and that discussed above,
a distinguishing feature of our work is the semantic methodology we use to
develop refinement. We believe that this methodology is new. We also believe
that a semantic approach is important: it can serve as a principled foundation
for refinement, as well as provide a framework in which to compare different
implementations. It may also lead to new algebraic insights into refinement which
complement the logical perspective of previous work.

Finally, we are interested in a number of extensions to the work reported
here. Many readers will wonder about the possibility of a more general monadic
refinement using, for example, Kleisli categories. We are working on this, but
due to space limitations have chosen to concentrate in this paper on partial
refinement, which is already sufficient to show that refinement is applicable to
sophisticated programming problems. In addition, many more indexed inductive
data types exist than can be produced by the refinement process described in
this paper. We leave it to future work to discover to what extent this developing
world of dependently typed data structures can be organised and characterised
by processes like refinement and its extensions.

Acknowledgements. We would like to thank Conor McBride, Frank Pfenning,
and Pierre-Evariste Dagand for helpful comments on this work.

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers - constructing strictly positive
types. Theoretical Computer Science 342, 3-27 (2005)

2. Altenkirch, T., McBride, C., Morris, P.: Generic Programming with Dependent
Types. In: Backhouse, R., Gibbons, J., Hinze, R., Jeuring, J. (eds.) SSDGP 2006.
LNCS, vol. 4719, pp. 209-257. Springer, Heidelberg (2007)

3. Backhouse, R., Gibbons, J., Hinze, R., Jeuring, J. (eds.): SSDGP 2006. LNCS,
vol. 4719. Springer, Heidelberg (2007)

4. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Heidelberg (1983)

5. Benke, M., Dybjer, P., Jansson, P.: Universes for generic programs and proofs in
dependent type theory. Nordic Journal of Computing 10(4), 265-289 (2003)

6. Bird, R.S., de Moor, O.: Algebra of Programming. Prentice Hall, Englewood Cliffs
(1997)

7. Brady, E., McBride, C., McKinna, J.: Inductive Families Need Not Store Their In-
dices. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085,
pp. 115-129. Springer, Heidelberg (2004)

8. Carboni, A., Lack, S., Walters, R.F.C.: Introduction to extensive and distributive
categories. Journal of Pure and Applied Algebra 84, 145-158 (1993)

9. Chapman, J., Dagand, P.-E., McBride, C., Morris, P.: The gentle art of levitation.
In: Proc. ICFP, pp. 3-14 (2010)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.
27.

When Is a Type Refinement an Inductive Type? 87

Chuang, T.-R., Lin, J.-L.: An algebra of dependent data types. Technical Report
TR-IIS-06-012, Institute of Information Science, Academia Sinica, Taiwan (2006)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press and McGraw-Hill (2001)

Davies, R.: Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon Uni-
versity, available as Technical Report CMU-CS-05-110 (2005)

Denney, E.: Refinement types for specification. In: Proc. PROCOMET, pp. 148-
166. Chapman and Hall, Boca Raton (1998)

Dunfield, J.: A Unified System of Type Refinements. PhD thesis, Carnegie Mellon
University, available as Technical Report CMU-CS-07-129 (2007)

Freeman, T., Pfenning, F.: Refinement types for ML. In: Proc. Symposium on
Programming Language Design and Implementation, pp. 268-277 (June 1991)
Ghani, N.; Johann, P., Fumex, C.: Fibrational Induction Rules for Initial Algebras.
In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 336-350. Springer,
Heidelberg (2010)

Gordon, A.D., Fournet, C.: Principles and applications of refinement types. Tech-
nical Report MSR-TR-2009-147, Microsoft Research (October 2009)

Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational
setting. Information and Computation 145(2), 107-152 (1998)

Jacobs, B.: Comprehension categories and the semantics of type dependency. The-
oretical Computer Science 107, 169-207 (1993)

Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics, vol. 141. North Holland, Amsterdam (1999)

Kawaguchi, M., Rondon, P.M., Jhala, R.: Type-based data structure verification.
In: PLDI, pp. 304-315 (2009)

Lovas, W., Pfenning, F.: Refinement types for logical frameworks and their inter-
pretation as proof irrelevance. Log. Meth, in Comp. Sci. (2010) (to appear)
McBride, C.: Ornamental algebras, algebraic ornaments (2010) (unpublished note)
Pfenning, F.: Refinement types for logical frameworks. In: Barendregt, H., Nipkow,
T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 285-299. Springer, Heidelberg (1994)
Rushby, J., Owre, S., Shankar, N.: Subtypes for specifications: Predicate subtyping
in pvs. IEEE Transactions on Software Engineering 24(9), 709-720 (1998)

The Agda Team (2010), http://wiki.portal.chalmers.se/agda

Xi, H.: Dependently typed data structures. Revision after WAAAPL 1999 (2000)

http://wiki.portal.chalmers.se/agda

Complexity of Strongly Normalising A-Terms
via Non-idempotent Intersection Types

Alexis Bernadet!? and Stéphane Lengrand!-?

! Ecole Polytechnique, France
2 ¥cole Normale Supérieur de Cachan, France
3 CNRS, France
{lengrand,bernadet}@lix.polytechnique.fr

Abstract. We present a typing system for the A-calculus, with non-
idempotent intersection types. As it is the case in (some) systems with
idempotent intersections, a A-term is typable if and only if it is strongly
normalising. Non-idempotency brings some further information into typ-
ing trees, such as a bound on the longest S-reduction sequence reducing
a term to its normal form.

We actually present these results in Klop’s extension of A-calculus,
where the bound that is read in the typing tree of a term is refined into
an exact measure of the longest reduction sequence.

This complexity result is, for longest reduction sequences, the coun-
terpart of de Carvalho’s result for linear head-reduction sequences.

1 Introduction

Intersection types were introduced in [CDT8|, extending the simply-typed A-
calculus with a notion of finite polymorphism. This is achieved by a new con-
struct AN B in the syntax of types and new typing rules such as:

M:A M:B
M:ANB

where M : A denotes that a term M is of type A.

One of the motivations was to characterise strongly normalising (SN) A-terms,
namely the property that a A-term can be typed if and only if it is strongly
normalising. Variants of systems using intersection types have been studied to
characterise other evaluation properties of A-terms and served as the basis of
corresponding semantics [Lei86, [Ghi96, [DCHMOQ, [CSOT].

This paper refines with quantitative information the property that typability
characterises strong normalisation. Since strong normalisation ensures that all
reduction sequences are finite, we are naturally interested in identifying the
length of the longest reduction sequence. We do this with a typing system that
is very sensitive to the usage of resources when A-terms are reduced.

This system results from a long line of research inspired by Linear Logic [Gir87].
The usual logical connectives of, say, classical and intuitionistic logic, are decom-
posed therein into finer-grained connectives, separating a linear part from a part

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 838 2011.
© Springer-Verlag Berlin Heidelberg 2011

Complexity of Strongly Normalising A-Terms 89

that controls how and when the structural rules of contraction and weakening
are used in proofs. This can be seen as resource management when hypotheses,
or more generally logical formulae, are considered as resource.

The Curry-Howard correspondence, which originated in the context of intu-
itionistic logic [How80], can be adapted to Linear Logic [Abr93, IBBdH93], whose
resource-awareness translates to a control of resources in the execution of pro-
grams (in the usual computational sense). From this, have emerged some versions
of linear logic that capture polytime functions [BMO03| [Laf04, [GROT]. Also from
this has emerged a theory of A-calculus with resource, with semantical support
(such as the differential A-calculus) [ER03, BEMIO]. In this line of research,
de Carvalho [dCO5, [dC09] obtained interesting measures of reduction lengths
in the A-calculus by means of non-idempotent intersection types (as pionnered
by [KW99, NMO04]).

Intersections were originally introduced as idempotent, with the equation AN
A = A either as an explicit quotient or as a consequence of the system. This
corresponds to the understanding of the judgement M : A N B as follows: M
can be used as data of type A or data of type B. But the meaning of M :
AN B can be strengthened in that M will be used once as data of type A and
once as data of type B. With this understanding, A N A # A, and dropping
idempotency of intersections is thus a natural way to study control of resources
and complexity. Using this, de Carvalho [dC09] has shown a correspondence
between the size of the typing derivation tree and the number of steps taken by
a Krivine machine to reduce the term. This relates to the length of linear head-
reductions, but if we remain in the realm of intersection systems that characterise
strong normalisation, then the more interesting measure is the length of the
longest reduction sequence. In this paper we get a result similar to de Carvalho’s,
but with the measure corresponding to strong normalisation.

First we define a system with non-idempotent intersection types. Then we
prove that if a term is typable then it is SN (soundness) and that if a term is SN
then it is typable (correctness). As opposed to idempotent intersection types,
the proof of correctness is very direct: we use a simple measure on typing trees
(the easy proof differs from that in [Val01], in that the typing system itself does
not perform [-reduction).

The proof of soundness gives us immediatly a bound of the maximum number
of (-reductions. So we have an inequality result for complexity. We would like
an equality result.

One of the reasons why we only have an inequality result is because, in a (-
reduction, the argument of the S-redex may disappear (we call this weakening).
One simple way to avoid the weakening problem without blocking computation
is to use Klop’s extension of \-calculus:

M,N = ...|[M,N]

In [M, N], N is a sub-term that was meant to be erased. To avoid weakenings,
we can replace every term Az.M such that © ¢ FV (M) with Az.[M, z].

We refer the reader to [Ser97, [Xi97] for a survey on different techniques based
on the Al-calculus to infer normalisation properties. Intersection types in the

90 A. Bernadet and S. Lengrand

framework of Church-Klop’s calculus have been studied in e.g. [DCT07], but, to
our knowledge, they were always considered idempotent. Hence, the quantitative
analysis provided by non-idempotency was not carried out.

In order to obtain the complexity result we want, we still have to expect a
property on typing trees: optimality. This property is mostly on the “interface
types”. It is not too restrictive because the completeness theorem produces such
typing trees, but it is still quite so because we can prove that for each term, the
shape of such a derivation tree is unique (principality).

We can then prove that if = is a optimal-principal typing tree of M then
we can read off m the exact length of the longest reduction sequence starting
from M.

2 Syntax and Typing

In this section we present the calculus and the typing system that we are going
to use.

2.1 Lambda Calculus with Klop’s Extension

As said in the introduction, the language that we are going to type is the pure
A-calculus extended with Klop’s construct [Klo80):

Definition 1 (Syntax and reduction rules)

— Terms are defined by the following grammar
M,N = x| .M | MN | [M,N]

Unless otherwise statedi)ue do not consider any rest_r)iction on this syntax.
Sometimes we write N M; for N My ... M, (when M; is the vector of terms
My ...M,).
The free variables fu(M) of a term M are defined as usual and terms are
considered up to a-equivalence.
— The reduction rules are S-reduction and w-reduction (see e.g. [Klo80]):

8 (MaM)N— M{z:=N}
7 [My, N]My — [M; M5, N]

If S is a rule (such as B or w), or a system of rules (like Br), we write
M —g N for the congruent closure of the (system of) rule(s).

An interesting fragment of the calculus is Church-Klop’s Al [KIo80]:

Definition 2 (AI). A term M is in the AI-fragment if any abstraction A\x.N
occurring in M is such that x € fu(N).

Remark 1. The Al-fragment is stable under substitution and under — 4 . If
M — 4. N then fo(M) = fo(N) and P{x := M}—" 3, P{z:= N} provided
that € fo(P).

Complexity of Strongly Normalising A-Terms 91

Another obvious fragment is the pure A-caleuludl. Klop’s construct is only useful
here for the complexity results of section B we do not need it for soundness or
completeness (section B]). So if one is interested only in the pure A-calculus, it is
possible to follow the proofs of these theorems while ignoring Klop’s construct.
As we will see later some theorems are not true for every reduction (for example,
the subject expansion property), so we define the reduction M ——y M’, where
N is either a term or € (a dummy placeholder) as follows:

Definition 3 (A restricted reduction relation)

x € FV(M) x ¢ FV(M)
(A M)N —— M{z := N} A M)N ——n M
M, ——n M, Moy ——n M}
MMy ——nN M{Mz M1M§ — N MlMé

M <y Mz ¢ FV(N)

oMy e M NIMy s My Mo, N)
My —— N M My —— N M;
[Ml?MQ] N [M{?MQ] [MleQ] R [Mleé]

Fig. 1. ——-reduction

Fig. [formalises the reduction relation that can be be intuitively described as
follows: M ——n M" if and only if M — 45 M' such that:

— either the reduction M — 45 M " does mnot erase anything in which case
N =ce.

— or the reduction M — g M’ erases the term N within M and the free
variables of N are not bound by binders in M.

Remark 2. If M is a Al term then every reduction is in ——..

2.2 Intersection Types and Contexts

Definition 4 (Intersection types)
Our intersection types are defined by the following grammar:

A,B:= F|ANB
F,G == 7| A=F
UV:i=wlA (General types)

! This motivates our choice of sticking to the reduction rules of [KIo80] rather than
opting for the variant in [Bou03] where S-reduction can generate new instances of
Klop’s construct.

92 A. Bernadet and S. Lengrand

We consider the types up to associativity and commutativity of intersections.
The notation U NV extends the intersection construct to general types using the
following equations:

ANw=wnA=A4A wNw=w
As opposed to [CD78, [CD80] we do not have idempotency A = AN A.

Remark 3

— It would be possible to formalise the results of this paper without using
general types, but then in many definitions and proofs we would have to
deal with two or three cases instead of one.

— Notice that, by construction, if A — B is a type then B is not an intersection.
This limitation, which corresponds to the strict types of [vB92], is useful for
the key property of separation (Lemma [I]).

Definition 5 (Type inclusion). We define inclusion on types as follows:
UCV ifV=w,orU=V,orU=AandV = B with A= BNC for some C.

Notice that this definition of inclusion is weaker than the traditional one origi-
nating from [BCDC83]. Indeed, inclusions between domains and co-domains of
function types do not induce inclusions between function types.

Remark 4. C is a partial order.
Definition 6 (Contexts)

— A context I' is a total map from variables (x,y, z,...) to general types (U, V,
...) that has finite support, i.e. such that {x | ['(x) # w} is finite.
— The expression (x1:Ux, ..., x, : Uy), where for all i, j, x; # x;, is defined as
the context I' such that:
e Foralli, I'(x;) =U;
e I'(y) = w for any other y
— Given two contexts I' and A,
I'N A is defined pointwise as: for all x, (I' N A)(z) = I'(x) N A(z), and
we write I' C A for either I' = A or there exists I'" such that ' =1"N A

Remark 5

— C is a partial order on contexts.
— I' C Aif and only if for all , I'(z) C A(x)

2.3 Typing System and Its Basic Properties
Definition 7 (Typing system)

— Fig. [inductively defines the derivability of typing judgements, of the form
I't M:U. Typing trees will be denoted 7, 7’ ..

Complexity of Strongly Normalising A-Terms 93

— To prove strong normalisation we will use a simple measure on typing trees:
we just count the number of occurences of rule (App).

So we write I' V™ M :U (resp. I' <" M:U, resp. I <" M:U) if there

exists a typing tree w concluding I' = M :U and in 7 there are exactly (resp.

less than or equal to, resp. less than) n occurences of rule (App).
— We say that a term M is typable if there exist I’ and A such that I' + M : A

I'M:A A+ M:B
z:Fkx: F I'NAF M:ANB

U M:F ACU I'M:A—-B AR N:A

(App)
'k M\x.M:A—F I'NAF MN:B

I'M:F AF N:A
I'nAv [M,N]:F FM:w

Fig. 2. Typing system

In the rest of this section and for the proof of subject reduction we can ignore
everything about the measure: but taking it into account does not complicate
the proofs.

Remark 6. U T'F" M:U and AF™ M:V then TNAR"™ M:UNV

Lemma 1 (Separation). If I’ F" M :U; NUs, then there exist I, Iy, nq and
ng such that ' = 1 NIy, n=mn1 +ng, and It V™" M:U; and Iy F™* M :Us.
Proof. By induction on the typing tree.
— If Uy = w or Uy = w it is trivial.
I'F"M:C AF™ M:D
— If and CND = A; N Ay then there exist Uy, Us,
I'NAF"™ M:CNnD

Vi, Vo such that C = Uy NUy, D=ViNVe, Ay =U1NV; and Ay = U N V5.
By induction, there exist ny, ns, my, ma, I, I, Ay, As such that n =
ny+ng, m=my+me, I' = I[1NIy A= A NAy, Fll'nlMiUl,
FQ |_n2 M:U27 Al |_m1]\42‘/17 AQ |_m2 MVYQ
So we have I N Ay F™ ™ M: Ay and TN Ay F™2T™2 M A,.
— All the other cases are impossible, especially the application rule: if A—B
is a type, then B is not an intersection. This is why we used this restriction
in the begining.

A useful property can be inferred from the separation property:

Corollary 1 (Weakening). If ' " M : U and U C V then there exists I"
such that I C I and I'" =" M:V.

94 A. Bernadet and S. Lengrand

3 Soundness and Completeness of the Typing System
w.r.t. Strong Normalisation

In this section we prove that a term is typable if and only if it is strongly
normalising.

3.1 Soundness
Here we prove that typed terms are strongly normalising.

Lemma 2 (Typing of substitution). If I'z:U F™ M:V and AF" N:U
then I N A" M{z:= N}:V.

Proof. By induction on the typing tree of M.

— For the variable rule it is trivial.

— For F M :w with (Ix:U)=(),n =0,V =w. So we have U = w, so
ny =0 and A = (). So we can conclude.

Ia:UyWE" M:F ACW
T

INz:UF" My.M:A— F
x #vy, y ¢ FV(N). From the induction hypothesis we have I',y: W F™ 172
Mi{z := N} F so we can conclude.
IN,z:Uy F™ M:A I, z:Uy V™ M:B
— For with ny = my +mo, U =
NNy,z:U NU, F™T™ M:ANB
Ui NUy, V = AN B. By the use the Lemma [I] there exists Ay, Ag, mg,
my, such that no = m3 +my, A= A1 N Ay, AL F™ N:Up, Ay F™ N:Us.
By the induction hypothesis we have I} N Ay F™1™s M{z:=N}:A and
IoN Ay F™4 M{z .= N}: B so we can conclude.

~ Fo with M = \y.M;, V = A — F,

— For the application rule and Klop’ construct rule we adapt the proof for the
intersection rule.

Theorem 1 (Subject Reduction for)
IfTE" M:A and M —5 M’ then there exists I such that I F<" M’ A
and ' C I".

Proof. First by induction on M — 5 M " then by induction on A.

— If A is an intersection then we use the Lemma [I]
— For (e M)My — 5 Mi{x = My} with A not an intersection then there

exist B, I', Iy, ni, ng such that n = ny+no+1, I' = I'NIs, I " Az My :
B — A and I, ™ M, : B. So there exists U such that B C U and I,z :
U™ M :A. So, from Corollary [l there exists A such that I € A and

AFS"2 M, :U. So by the use of the previous lemma we can conclude.

Complexity of Strongly Normalising A-Terms 95

M %ﬂ M/
with A is not an intersection, then there exist U, Asg,
o.M — 5 Ax.M’

As such that A = Ay — A3, Ay CU I,z : UF" M:A3. By the induction
hyptothesis there exist m, A, V such that ' C A, m < n, U C V and
A,z VE™ M':Az. Sowe have Ay C V,sowehave A F™ \x.M’: Ay — As.

— The other cases are straightforward.

- If

Lemma 3 (Subject Reduction for 7). If I' " M:A and M —, M’ then
r'v" M A.

Proof. Again, by induction first on A then on M —_ M’. All cases are straight-
forward.

Corollary 2 (Soundness). If I' = M: A then M is SN.

Proof. The measure is decreased by -reduction (Theorem[]), is invariant under
m-reduction (Lemma [B]), and 7-reduction on its own terminates. Strong normal-
isation follows by considering the corresponding lexicographic order.

Notice that in the particular case of ——, Subject Reduction can be stated
more precisely:

Theorem 2 (Subject Reduction for ——)

Assume ' M:B and M ——x M’.

If N # € there exist A and A such that A& N:A otherwise let A = ().
There exists I such that I'"' = M':B with I’ =TI N A.

Proof. By investigating the proof of Theorem [l

In the even more particular case of the Al-fragment, where ——c=—4_,
Subject Reduction does not modify the context.

3.2 Completeness

We now prove that strongly normalising terms can be typed.

Lemma 4 (Typing of substitution). If I' - M{xz := N}: B then there exist
I, Io, U such that ' =11 NI% and I, z: U+ M:B and [, + N:U.

Proof. By induction on the typing tree for M. If z ¢ fv(M) we take U = w and
L= ().

Theorem 3 (Subject Expansion)

Assume '+ M':B and M ——x M'.

Assume A N:A if N # €, otherwise let A = ().
We have ' N A+ M:B.

Proof. First by induction on B then by induction on M «——x M’. The cases
are exactly those of Subject Reduction.

96 A. Bernadet and S. Lengrand

Remark 7. This is not true with general S-reduction. For example, (Az.a)(Ay.yy)
is typable but (Az.(Az.a)(zz))(Ay.yy) is not (it is not SN).

Lemma 5 (Shape of ——-normal forms). If a term cannot be reduced by
—— then it is of one of the following forms:

- .M
- [MaN]
- .’L‘Ml -~-Mn

Proof. Straightforward.

Theorem 4 (Completeness). If M is SN then there exist F' and I such that
I' M:F.

Proof. First by induction on the length of the longest — 5 -reduction sequence
starting from M then by induction on the size of M.

— If there exists M’ such that M ——px M’ then we use the induction hy-
pothesis on M’ (and if N # € we use it on N too, which is a strict sub-term
of M). Then we conclude with Theorem [3

— If not then M is of one of these forms:

e If M = Ax.N then we apply the induction hypothesis on N.

o If M = [M;, M>] then we apply the induction hypothesis on My and Ms

o If M =xM; ... M, then we apply the induction hypothesis on M, ...,
M, toget I+ M,:Fy, ..., I, F M, : F,, so we pick a fresh atomic
type 7 and we get:

(x:Fi— - —F,—»r)nn...NOykaMy ... M,

In the particular case of the A\I-fragment, typing is preserved by arbitrary ex-
pansions, with no modification of context. Since normal forms can be typed,
any weakly normalising term can be typed, and are thus strongly normalising.
Equivalence between weak normalisation and strong normalisation in Al is a
well-known theorem that finds here a simple proof.

3.3 Corollaries

Corollary 3 (Characterisation of Strong Normalisation). M is typable if
and only if M is SN.

With the characterisation of strong normalisation and the subject expansion
theorem we have the following corollary.

Corollary 4. If M ——px M’ and N is SN and M’ is SN then M is SN.

This is a useful result, used for instance in many proofs of strong normalisation
(e.g. by reducibility candidates) for A-terms that are typed in various systems. It
can also be seen as a generalisation the theorem that in A\I, weak normalisation
is equivalent to strong normalisation.

Complexity of Strongly Normalising A-Terms 97

4 Optimal and Principal Typing

As we showed in the previous section, the typing system of Fig. 2l above char-
acterises strongly normalising terms. Even better, the measure defined on the
typing tree of a term gives a bound on the length of longest reduction sequence.
But the typing system is too coarse to improve on that bound, so in order to
get a better result about complexity (as established in section [{) it needs to be
refined.

4.1 Optimal Typing

In this section we first notice that the typing trees produced by the proof of
completeness all satisfy a particular property that we call the optimal property.
This property involves the following notions:

Definition 8 (Subsumption and forgotten types)

— If 7 is a typing tree, we say that w uses subsumption if it features an occur-
rence of the abstraction rule where the condition A C U is neither A C A
nor A C w.

— If m is a typing tree with no subsumption then we say that a type A is
forgotten in 7 if:

o 7 features an occurence of the abstraction rule where the condition is
ACuw,
e orm features an occurence of the typing rule for Klop’s construct [M, N]
where A is the type of N.
The multiset of forgotten types in 7 is written forg(m).

The optimal property also involves refining the grammar of types:

Definition 9 (Refined intersection types). A%, A~ and A=~ are defined
by the following grammar:

AT BT = 717|A " — Bt
A" B " u= AT |AT"NB "~
A=,B~ u= 7| At — B~

The degree of a type of the form A™ is the number of arrows in negative positions:

5t (7) =0

SH(A=™ = BT) == § (A) +67(BT)+1
S (A~ NB):=6 (A)+6 (B)
60~ (7) =0

5~ (At - B7) = (AN +46(B)

We can finally define the optimal property:

Definition 10 (Optimal typing). A typing tree © concluding I' - M : A is
optimal if

98 A. Bernadet and S. Lengrand

There is no subsumption in 7

— A is of the form AT

For every (x: B) € I', B is of the form B~~

— For every forgotten type B in w, B is of the form B™T.

We write I' o M : AT if there exists such .
The degree of such a typing tree is defined as

(5(77) = (5+(A+) + X . B——erd” (B__) + Ec+€fo,g(w)(5+(c+)

In this definition, AT is an output type, A~ is a basic input type (i.e. for a
variable to be used once), and A~ is the type of a variable that can be used
several times. The intuition behind this asymmetric grammar can be found in
linear logic:

Remark 8. A simple type T can be translated as a type T™* of linear logic [Gir87]
as follows:
T =T

(T — 9) =18 —-T*
It can also be translated as T and T~ as follow:

Tt =T T~ =T
(T — S)T =T~ — ST (T—8)" =Tt -5~

And we have in linear logic: T~ F T* and T* - T+

Now we can establish Subject Expansion for optimal trees:

Theorem 5 (Subject Expansion, optimal case)
Assume I'bope M':B and M ——n M.

Assume A bope N:A if N # €, otherwise let A= ().
We have ' A Fope M :B.

Proof. By investigating the proof of Theorem [3] noticing that, in Lemma [}

— if the typing tree of I' = M{x := N}: B does not use subsumption, neither
do those of I, x:U F M:B and Iy + N:U;

— the forgotten types in the typing tree of I'+ M{x:= N} : B are exactly
those in the typing trees of I'1,2:U F M:B and I[5 + N:U.

The multiset of forgotten types in the proof of I' N A oy M : B is that in the
proof of I' boe M': B (union that in the proof of A b N: A if N # €).

From this we can derive a strengthened completeness theorem:

Theorem 6 (Completeness of optimal typing). If M is SN then there
exist AT and I' such that I’ bo M: AT,

Complexity of Strongly Normalising A-Terms 99

This raises the question of why we did not set our theory (say, the characterisa-
tion of strongly normalising terms) with optimal typing from the start. First, the
optimal property is not preserved when going into sub-terms: if I" Fon (Az.M)N :
AT then it is not necessarily the case that I" ko N : BT (it could be a type
B that is not of the form BT). Second the optimal property is not preserved
by arbitrary reductions, as the use of subsumption for typing abstractions is
necessary for Subject Reduction to hold.

Ezample 1
Ar.z((A\y.2)x) —5 Az.22

However, Subject Reduction does hold for ——:

Theorem 7 (Subject Reduction, optimal case)

Assume I'bFope M:B and M ——n M.

If N # € there exist A and A such that A& N:A | otherwise let A = ().
There exists I such that I'" ko M':B with I' = I'" N A.

Proof. By investigating the proof of Theorem [I noticing that, in Lemma

— if the typing trees of Iz : U F"* M :V and AF"? N :U do not use sub-
sumption then neither does that of ' N A ™™ M{z:= N}:V;

— the forgotten types in the typing trees of I, z:U F™* M:V and AF"? N:U
are those in 'N A F" 4" M{z:= N}:V.

Again, the multiset of forgotten types in the proof of I o, M : B is that in the
proof of I'' ko M': B (union that in the proof of A bop N: A if N # €).

Remark 9. Notice the particular case of AI, where B7 reductions and expansions
both preserve optimal typings and multisets of forgotten types, and therefore
they preserve the degree of optimal typing trees.

4.2 Principal-Optimal Typing Trees

We now introduce the notion of principal typing, and for that we first define the
commutativity and associativity of the intersection rule.

Definition 11 (AC of the intersection rule). Let ~ be the smallest congru-
ence on typing trees containing the two equations

I'M:A AF M:B AF M:B I'k M:A

I'nAr M:ANB - I'NAkF M:ANB
Ik M:Ay Is bk M:As IsF M:As I3 b+ M:As
I'nnizk M:A1 N Az I's+ M:As ~ Itk M:A; InNIsk M:A;N As

InNNIlyNIsk M:A; N AN Az InNNIbnNnIsk M:A;NAxN Az

100 A. Bernadet and S. Lengrand

Definition 12 (Principal typing)

— A substitution o mapping the atomic types 11, ..., T, to the types Fy, ..., F,
acts on types, contexts, judgements and typing trees, so we can write Ao,
l'o, mo,...

— We write m < @' if there exists a substitution o such that ©’ ~ wo.

(In that case if m concludes I' b M : A then ©" must conclude I'oc = M : Ao).

— A typing tree m concluding I' Foe M : AT is said to be principal if for any
typing tree ©' concluding I Fow M : A we have m < 7',

Typing trees produced by the proof of the completeness theorem are principal:

Theorem 8 (Principal typing always exists). If M is SN then there exist
F, I" and a principal typing tree m concluding I' Fope M : F.

Proof. The proof follows that of Theorems @l and [first by induction on the
longest reduction sequence starting from M then by induction on the size of M.
The novelty resides in checking principality:

— If there exists M’ such that M ——py M’, we assume another optimal
typing m of M and use Theorem [1 to get an optimal typing 7’ for M’. By
principality, 7" must be an instance of the principal typing tree we have
recursively constructed for M’ (and similarly for N if N # €). From this we
deduce that 7 is an instance of the one we got by Subject Expansion.

— If not then M is of one of these forms:

e M = Xx.N or M = [M;, Ms], in which case we call upon the induction

hypothesis,
e M =axM;...M,, in which case the induction hypothesis provide princi-
pal Iy Fox My: A, ..., T} Fow M, : Al and principality is ensured by

choosing a fresh atomic type 7 in the type Af —---—Af—7 of z.

Remark 10. The shape of an optimal typing tree is unique but it is not syntax-
directed, so we cannot use this unicity to have an algorithm to directly compute
the typing tree (other than “executing” the term).

One can also notice that in A\I, there is a direct link between the measure read
off from a principal optimal typing and its degree.

Lemma 6 (Degree of A\I’s normal forms). If 7 is a principal typing tree of
I'boe M2 A, where M is a M -term in Br-normal form, then §(m) = n. It is
also the number of applications in the term M.

Proof. Again, by inspecting the proof of completeness: every time we type M =
xMjy ... My, using I't Foe My: AT, ..., Iy Fow My: Al we add as many arrows
by constructing the type Af—w . -—>A;‘L‘ —7 as we use new occurrences of rule
(App).

Complexity of Strongly Normalising A-Terms 101

5 Complexity

In this section we derive two complexity results, one for each fragment of our
calculus: Church-Klop’s Al-calculus and the pure A-calculus.

5.1 Complexity Result for Church-Klop’s AI

In this section every term is assumed to be in the AI-fragment of the calculus.
Remember that in that fragment, ——. is the same as —;_ .

We first identify a smaller reduction relation oot (within A7) that will always
decrease the measure of optimal trees exactly by one.

Definition 13 (Small-reduction). Small-reduction, written m, 1s defined
in Fig. [3

—> Bsmall

(A\z.M) N N, &% Mz .= N} N,

Bsmall

N <—— N’ x ¢ fo(M)

(\z.[M,z]) N N, 2% (\z.[M,2]) N' N,

/ Bsmall

M <<= M’

N &

— Bsmall - Bsmall

— ;)
x Ny N M; &~ x N; N M; o.M <5 g M’

M Em A RNy N
Bsmall / Bsmall ,
[MzN](_—>[M?N] [MzN];—>[M7N}

Fig. 3. Small-reduction

Remark 11. If a term can be reduced by — 4 and not by — . then it can be

reduced by mﬁ

Lemma 7 (Small reduction decreases the measure by 1)
TS M:A and M MY then T FIETY M- A
Proof. The typing tree is the one produced by the proof of Subject Reduction.

Checking that that tree is also optimal with measure n—1 is done by induction

on M (or equivalently by induction on the derivation of M et M’ then by

induction on n for those rules that feature a series of n applications).

Bsmall
2 We could call <= a strategy, but it does not necessarily determine a unique redex
to reduce.

102 A. Bernadet and S. Lengrand

The optimal property of typing is preserved in inductive steps, i.e. while

going into the term M and until the base case of LForet, is found (the first rule):

— In the first rule of ﬂ, notice that only one application is removed only
because we are in the A\I-fragment.

— In the second rule, x has a type of the form B~ i.e. of the form Cf' —
CF — 7 (with s > n), so the typing of N is optimal. We can then use the
induction hypothesis to conclude.

— In the third rule, the type of x is a forgotten type, so by the optimal property
is must be of the form A™, and by construction N has the very same type.
This makes its typing optimal and we can then use the induction hypothesis
to conclude.

— In the fourth rule, the typing of M is optimal if that of Az.M is.

— In the fifth rule, the typing of M is optimal if that of [M, N] is (the two
terms have the same type in the same context).

— In the sixth rule, the type of N is a forgotten type, so by optimality is has
to be of the form AT, so again the typing of IV is optimal.

Theorem 9 (Complexity result)
If I Foe M : A with a principal typing tree of degree n' then there ewists a [B7-
normal form M’ such that

M——* (—>ﬁ L)n—n'M/

This reduction sequence from M to M' is of mazximal lengt}E‘.

ﬂsmall

Proof. By induction on n. We reduce by —— and — . until hitting the normal
form M’, also typed by I’ I-Z,; M': A with some principal typing tree of measure
n/. By Lemma[Gl n’ is both the number of applications in M’ and the degree of
its principal typing tree. That degree is not changed by expansions, so it is also
the degree of the principal typing tree of M which we started with.

5.2 Complexity Result for Pure A-Calculus

In this section we derive a similar result for the pure A-calculus. For this we
reduce the problem of pure A to that of AI (treated above).

In order to make the distinction very clear about what terms are in pure A
and what terms are in AI, we use two different notational styles: ¢, u,v,... for
pure A-terms and T,U, V... for AI-terms.

We want to exhibit in pure A-calculus the longest reduction sequences, and
show that their lengths are exactly those that can be predicted in AI.

For the longest reduction sequences we simply use the perpetual strategy from
[vRSSX99], shown in Fig. [l

3 As Subject reduction implies that any other reduction sequence has a length less
than or equal to n —n’.

Complexity of Strongly Normalising A-Terms 103

x € fu(t) or t' is a B-normal form t' o~ x ¢ fu(t)
Azt t' t, =tz =t} 1, Az t)t' T ~ Ozt t" &,
t ! st
mt-j)tﬁwmt-j)tlﬁ Azt ~ Azt

Fig. 4. A perpetual reduction strategy for A

Remark 12. ~~C— 4
If ¢ is not a S-normal form, then there is a A-term ¢ such that ¢ ~ ¢’

Although we do not need it here, it is worth mentioning that ~~ defines a per-
petual strategy w.r.t. S-reduction, i.e. if M is not (-strongly normalising and
M ~~ M’, then neither is M’ [vRSSX99]. In that sense it can be seen as the
worst strategy (the least efficient). We show here that it is the worst in a stronger
sense: it maximises the lengths of reduction sequences. For that we show that
the length of a reduction sequence produced by that strategy matches that of
the longest reduction sequence in AI. This requires encoding the syntax of the
pure A-calculus into AI, as shown in Fig. [(from [Len05, [Len06]).

i(x) =z iAz.M) = Az.i(M) if x € fo(M)
i i iAz.M) = Iz.[i(M),z] ifx ¢ fo(M)

E
2
|
=
=
¥
=
|

Fig. 5. Encoding from A to Al

Lemma 8 ([Len05), Len06]). For any A-terms t and u,

= folit)) = fo(t)
— i(t){z = i(w)} = i(t{x == u})

But this encoding will not allow the simulation of ~» by — . in Al. To allow
the simulation we need to generalise the i-encoding into a larger encoding that
needs to be non-deterministic (i.e. to be a relation rather than a function).

Definition 14 (Relation between A\ & A [Len05, [Len06]). The relation
G between A-terms € X -terms is given by the rules of Fig. [@ and (non-
deterministically) generalises the i encoding.

104 A. Bernadet and S. Lengrand

g1 x ¢ fo(t)
(D) ') Gi(Aet) ') (Dat)t')G (i(Aat) T i(t,))
Vi 9T tGT zefo(T) tGT N isanormal form for

(x1;) G (zT;) Azt G AT tG [T, N]

Fig. 6. Relation between A & AJ

Lemma 9 ([Len05, Len06])

1. If t is a B-normal form and t G T, then T is a Br-normal form.
2. For any A-term t, t G i(t).

In [Len06, IKLO7] it is shown that the perpetual strategy can be simulated in AT
through the i-encoding:

Theorem 10 (Strong simulation of ~ in A\ [Len06), [KLO07])
Ift GT and t ~ t' then there exists T' in AN such that t' G T' and T—" 5, T".

By inspecting the proof of the simulation in [Len06l [KLOT], one notices that

.. Bsma .
T—tg, T'is in fact T(—*, Ll —*;)T”, which decreases the mea-

sure read off an optimal typing tree exactly by one.

Now given Lemma [@ this means that the perpetual strategy from [vRSSX99]
generates, from a given term ¢, a reduction sequence to its normal form ¢’ of the
same length as a reduction sequence, in AI, from i(¢) to its normal form 7" (with
t" G T’). This length can be predicted in the measure read off an optimal typing
tree for i(t); and it so happens that it is the same as the measure read off an
optimal typing tree for ¢:

Lemma 10 (Preservation of optimal typing by i). Let t be a pure A\-term.
If Tkae t 2 A then I ko i(t) © A. If the typing is principal then it remains
principal and the degree is not changed.

Proof. By induction on the derivation tree we prove that if I' F" t: A with no
subsumption then I " i(¢) : A with no subsumption and with the same forgotten

types.
Theorem 11 (Complexity result for \)

n

If I Fo t: A with a principal typing tree of degree n' then there exists a B-normal
form t' such that

n—n' ¢

t— 3
This reduction sequence from t to t' is of mazimal lengt/ﬂ.

4 As Subject reduction implies that any other reduction sequence has a length less
than or equal to n —n’.

Complexity of Strongly Normalising A-Terms 105

6 Conclusion

We have defined a typing system for non-idempotent intersection types. We have
shown that it characterises strongly normalising terms in a more natural way
than idempotent intersection types do. With some reasonable restrictions on the
derivation tree we have obtained results on the maximum number of g-reductions
in a reduction sequence of a A-term (with Klop’s extension).

We noticed a posterior: that our technology is similar to that which can be
found in e.g. [KW99, [NM04]. One of the concerns of this line of research is how
the process of type inference compares to that of normalisation, in terms of
complexity classes (these two problems being parameterised by the size of terms
and a notion of rank for types).

The present paper shows how such a technology can actually provide an exact
equality, specific to each A-term and its typing tree, between the number read
off the tree and the length of the longest reduction sequence. Of course this only
emphasises the fact that type inference is as hard as normalisation, but type
inference as a process is not a concern of this paper.

Our non-idempotent intersection type system and our results can be lifted
to other calculi featuring e.g. explicit substitutions, combinators, or algebraic
constructors and destructors (to handle integers, products, sums,...).

Idempotent intersection types have been used to provide model-based proofs
of strong normalisation for well-known typing systems (simple types, system F,
system F,,...,). Such model constructions (I-filters [CSO7], orthogonality) can
also be done with non-idempotent intersection types with no increased difficulty,
and with the extra advantage that the strong normalisation of terms in the
models is much simpler to prove. This is our next paper.

References

[Abro3] Abramsky, S.: Computational interpretations of linear logic. Theoret.
Comput. Sci. 111, 3-57 (1993)

[BBAH93] Benton, N., Bierman, G., de Paiva, V., Hyland, M.: A term calculus for
intuitionistic linear logic. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993.
LNCS, vol. 664, pp. 75-90. Springer, Heidelberg (1993)

[BCDC83] Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model
and the completeness of type assignment. J. of Symbolic Logic 48(4), 931
940 (1983)

[BEM10] Bucciarelli, A., Ehrhard, T., Manzonetto, G.: Categorical models for sim-
ply typed resource calculi. ENTCS 265, 213-230 (2010)

[BMO3] Baillot, P., Mogbil, V.: Soft lambda-calculus: a language for polynomial
time computation. CoRR, ¢s.LO/0312015 (2003)

[Bou03] Boudol, G.: On strong normalization in the intersection type discipline.
In: Hofmann, M. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 60-74. Springer,
Heidelberg (2003)

[CD78] Coppo, M., Dezani-Ciancaglini, M.: A new type assignment for lambda-
terms. Archiv fiir mathematische Logik und Grundlagenforschung 19, 139-
156 (1978)

106 A. Bernadet and S. Lengrand

[CDSO]

[CS07]
[dCO05]
[dC09]

[DCHMOO0]

[DCTO7]

[ERO3]
[Ghi96)]
[Gir87]
[GROT]

[How80]

[KL07]
[K1080)]

[KW99)

[Laf04]
[Leis6]

[Len05]

[Len06]

[NMO4]

Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality
theory for the A-calculus. Notre Dame J. of Formal Logic 21(4), 685-693
(1980)

Coquand, T., Spiwack, A.: A proof of strong normalisation using domain
theory. Logic. Methods Comput. Science 3(4) (2007)

de Carvalho, D.: Intersection types for light affine lambda calculus.
ENTCS 136, 133-152 (2005)

de Carvalho, D.: Execution time of lambda-terms via denotational seman-
tics and intersection types. CoRR, abs/0905.4251 (2009)
Dezani-Ciancaglini, M., Honsell, F., Motohama, Y.: Compositional charac-
terizations of lambda-terms using intersection types (extended abstract).
In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, p. 304.
Springer, Heidelberg (2000)

Dezani-Ciancaglini, M., Tatsuta, M.: A Behavioural Model for Klop’s Cal-
culus. In: Corradini, F., Toffalori, C. (eds.) Logic, Model and Computer
Science. ENTCS, vol. 169, pp. 19-32. Elsevier, Amsterdam (2007)
Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theoret. Com-
put. Sci. 309(1-3), 1-41 (2003)

Ghilezan, S.: Strong normalization and typability with intersection types.
Notre Dame J. Formal Loigc 37(1), 44-52 (1996)

Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1-101 (1987)
Gaboardi, M., Ronchi Della Rocca, S.: A soft type assignment system for
lambda -calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS,
vol. 4646, pp. 253-267. Springer, Heidelberg (2007)

Howard, W.A.: The formulae-as-types notion of construction. In: Seldin,
J.P., Hindley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus, and Formalism, pp. 479-490. Academic Press, London
(1980), Reprint of a manuscript written 1969

Kesner, D., Lengrand, S.: Resource operators for the A-calculus. Inform.
and Comput. 205, 419-473 (2007)

Klop, J.-W.: Combinatory Reduction Systems, volume 127 of Mathemati-
cal Centre Tracts. CWI, PhD Thesis (1980)

Kfoury, A.J., Wells, J.B.: Principality and decidable type inference for
finite-rank intersection types. In: Proc. of the 26th Annual ACM Symp.
on Principles of Programming Languages (POPL 1999), pp. 161-174. ACM
Press, New York (1999)

Lafont, Y.: Soft linear logic and polynomial time. Theoret. Comput.
Sci. 318(1-2), 163-180 (2004)

Leivant, D.: Typing and computational properties of lambda expressions.
Theoretical Computer Science 44(1), 51-68 (1986)

Lengrand, S.: Induction principles as the foundation of the theory of nor-
malisation: Concepts and techniques. Technical report, PPS laboratory,
Université Paris 7 (March 2005),
http://hal.ccsd.cnrs.fr/ccsd-00004358

Lengrand, S.: Normalisation & Equivalence in Proof Theory & Type The-
ory. PhD thesis, Univ. Paris 7 & Univ. of St Andrews (2006)

Neergaard, P.M., Mairson, H.G.: Types, potency, and idempotency: why
nonlinearity and amnesia make a type system work. In: Okasaki, C., Fisher,
K. (eds.) Proc. of the ACM International Conference on Functional Pro-
gramming, pp. 138-149. ACM Press, New York (September 2004)

http://hal.ccsd.cnrs.fr/ccsd-00004358

[Ser97]
[Val01]
[vB92]
[VRSSX99]

[Xi97]

Complexity of Strongly Normalising A-Terms 107

Sgrensen, M.H.B.: Strong normalization from weak normalization in typed
lambda-calculi. Inform. and Comput. 37, 35-71 (1997)

Valentini, S.: An elementary proof of strong normalization for intersection
types. Arch. Math. Log. 40(7), 475-488 (2001)

van Bakel, S.: Complete restrictions of the intersection type discipline.
Theoret. Comput. Sci. 102(1), 135-163 (1992)

van Raamsdonk, F., Severi, P., Sgrensen, M.H.B., Xi, H.: Perpetual reduc-
tions in A-calculus. Inform. and Comput. 149(2), 173-225 (1999)

Xi, H.: Weak and strong beta normalisations in typed lambda-calculi. In:
de Groote, P. (ed.) TLCA 1997. LNCS, vol. 1210, pp. 390-404. Springer,
Heidelberg (1997)

Realizability and Parametricity
in Pure Type Systems

Jean-Philippe Bernardy' and Marc Lasson?

! Chalmers University of Technology and University of Gothenburg
2 ENS Lyon, Université de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA)

Abstract. We describe a systematic method to build a logic from any
programming language described as a Pure Type System (PTS). The
formulas of this logic express properties about programs. We define a
parametricity theory about programs and a realizability theory for the
logic. The logic is expressive enough to internalize both theories. Thanks
to the PTS setting, we abstract most idiosyncrasies specific to particular
type theories. This confers generality to the results, and reveals parallels
between parametricity and realizability.

1 Introduction

During the past decades, a recurring goal among logicians was to give a com-
putational interpretation of the reasoning behind mathematical proofs. In this
paper we adopt the converse approach: we give a systematic way to build a logic
from a programming language. The structure of the programming language is
replicated at the level of the logic: the expressive power of the logic (e.g. the
ability of expressing conjunctions) is directly conditioned by the constructions
available in the programming language (e.g. presence of products).

We use the framework of Pure Type Systems (PTS) to represent both the
starting programming language and the logic obtained by our construction. A
PTS [2,13] is a generalized A-calculus where the syntax for terms and types are
unified. Many systems can be expressed as PTSs, including the simply typed
A-calculus, Girard and Reynolds polymorphic A-calculus (System F) and its ex-
tension System Fw, Coquand’s Calculus of Constructions, as well as some exotic,
and even inconsistent systems such as AU [8]. PTSs can model the functional
core of many modern programming languages (Haskell, Objective Caml) and
proof assistants (CoqQ [25], Agda [19], Epigram [17]). This unified framework
provides meta-theoretical such as substitution lemmas, subject reduction and
uniqueness of types.

In Sec. Bl we describe a transformation which maps any PTS P to a PTS P2.
The starting PTS P will be viewed as a programming language in which live
types and programs and P? will be viewed as a proof system in which live proofs
and formulas. The logic P? is expressive enough to state properties about the
programs. It is therefore a setting of choice to develop a parametricity and a
realizability theory.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 108122, [2011.
© Springer-Verlag Berlin Heidelberg 2011

Realizability and Parametricity in Pure Type Systems 109

Parametricity. Reynolds [23] originally developed the theory of parametricity
to capture the meaning of types of his polymorphic A-calculus (equivalent to
Girard’s System F). Each closed type can be interpreted as a predicate that all
its inhabitants satisfy. Reynolds’ approach to parametricity has proven to be a
successful tool: applications range from program transformations to speeding up
program testing (28, [7, 4].

Parametricity theory can be adapted to other A-calculi, and for each calculus,
parametricity predicates are expressed in a corresponding logic. For example,
Abadi et al. [1] remark that the simply-typed lambda calculus corresponds to
LCF [18]. For System F, predicates can be expressed in second order predicate
logic, in one or another variant [1, [L6, |29]. More recently, Bernardy et al. [5]
have shown that parametricity conditions for a reflective PTS can be expressed
in the PTS itself.

Realizability. The notion of realizability was first introduced by Kleene [10] in
his seminal paper. The idea of relating programs and formulas, in order to study
their constructive content, was then widely used in proof theory. For example, it
provides tools for proving that an axiom is not derivable in a system (excluded
middle in [11,26]) or that intuitionistic systems satisfy the ezistence pmpert
[9, 26]; see Van Oosten [27] for an historical account of realizability.

Originally, Kleene represented programs as integers in a theory of recursive
functions. Later, this technique has been extended to other notions of programs
like combinator algebra 24, 126] or terms of Gédel’s System T |12, 26] in Kreisel’s
modified realizability. In this article, we generalize the latter approach by using
an arbitrary pure type system as the language of programs.

Krivine [13] and Leivant |15] have used realizability to prove Girard’s repre-
sentation theorenf] [8] and to build a general framework for extracting programs
from proofs in second-order logic [14]. In this paper, we extend Krivine’s method-
ology to languages with dependent types, like Paulin-Mohring [20, [21] did with
the realizability theory behind the program extraction in the CoQ proof assis-
tant [25].

Contributions. Viewed as syntactical notions, realizability and parametricity
bear a lot of similarities. Our aim was to understand through the generality of
PTSs how they are related. Our main contributions are:

— The general construction of a logic from the programming language of its
realizers with syntactic definitions of parametricity and realizability (Sec.[3]).

— The proof that this construction is strongly normalizing if the starting pro-
gramming language is (Thm. [2]).

— A characterization of both realizability in terms of parametricity (Thm. [6)
and parametricity in terms of realizability (Thm. [).

L If Vo 3y, o(z,y) is a theorem, then there exists a program f such that Va, o(x, f(z)).
2 Functions definable in System F are exactly those provably total in second-order
arithmetic.

110 J.-P. Bernardy and M. Lasson

2 The First Level

In this section, we recall basic definitions and theorems about pure types systems
(PTSs). We refer the reader to [2] for a comprehensive introduction to PTSs. A
PTS is defined by a specification (S,.4,R) where S is a set of sorts, A C S xS
a set of axioms and R C S x § x § a set of rules, which determines the typing
of product types. The typing judgement is written I" = A : B. The notation
I' - A: B: C is a shorthand for having both ' H A: Band I' v B : C
simultaneously.

Ezample 1 (System F). The PTS F has the following specification:
Sr = {x,0} Ar = {(x,0)} Rr = {(k,*,%), (O, %, %)}

It defines the A-calculus with polymorphic types known as system F [8]. The rule
(%, %, %) corresponds to the formation of arrow types (usually written o — 7) and
the rule (O, %, x) corresponds to quantification over types (Va, 7).

Even though we use F as a running example throughout the article to illustrate
our general definitions our results apply to any PTS.

Sort annotations. We sometimes decorate terms with sort annotations. They
function as a syntactic reminder of the first component of the rule used to type a
product. We divide the set of variables into disjoint infinite subsets V = | [{Vs|s €
S} and we write z® to indicate that a variable z belongs to V,. We also annotate
applications F'a with the sort of the variable of the product type of F. Using
this notation, the product rule and the application rule are written

I'FA:s; Ia%t : AF B: sy I'-F:(lIz°: A B) I'Fa:A
' (Iz* : A.B) : s3 I' (Fa)s: Blx— d]
PRODUCT (s1,82,53) € R APPLICATION

Since sort annotations can always be recovered by using the type derivation, we
do not write them in our examples.

Ezample 2 (System F terms). In System F, we adopt the following convention:
the letters z, y, z, ... range over V,, and «, (3, 7, ... over V. For instance, the
identity program Id = A« : *)(z : «).z is of type Unit = I« : x.a — a. The
Church numeral 0 = Ao : *)(f : @« — a)(x : a).z has type Nat = ITav : *.(av —
a) — (o — «) and the successor function on Church numerals Suce = A(n :
Nat)(a: %)(f : @« = a)(z : @).f (na f z) is a program of type Nat — Nat.

3 The Second Level

In this section we describe the logic to reason about the programs and types
written in an arbitrary PTS P, as well as basic results concerning the consistency
of the logic. This logic is also a PTS, which we name P?. Because we carry out
most of our development in P?, judgments refer to that system unless the symbol
I is subscripted with the name of a specific system.

Realizability and Parametricity in Pure Type Systems 111

Definition 1 (second-level system). Given a PTS P = (S, A, R), we define
P? = (8%, A%, R?) by

S?2 =S U{[s]|s€S}

A2 =AU {([s1], [s2]) | (s1,52) € A}

722 =R Ll{((8113[82]7{53])7(817{5313[83]) |(51352783) € 7€}
U {(s1, [s2], [s2]) | (s1,52) € A}

Because we see P as a programming language and P? as a logic for reason-
ing about programs in P, we adopt the following terminology and conventions.
We use the metasyntactic variables s, si, S2,... to range over sorts in S and
t,t1,ta, ... to range over sorts in S2. We call type a term inhabiting a first-level
sort in some context (we write I' F A : s for a type A), programs are inhabitants
of types (I'+ A : B : s for a program A of type B), formulas denote inhabitants
of a lifted sort (written I" = A : [s]) and proofs are inhabitants of formulas
(I' = A: B :[s]). We also say that types and programs are first-level terms,
and formulas and proofs are second-level terms.

If s is a sort of P, then [s] is the sort of formulas expressing properties of
types of sort s. For each rule (s1,s2,s3) in R, ([s1], [s2], [s3]) maps constructs
of the programming language at the level of the logic, and (s1, [s3], [s3]) allows
to build the quantification of programs of sort s; in formulas of sort [s3].

For each axiom (s1, s2) in A, we add the rule (s1, [s2], [s2]) in order to build
the type of predicates of sort [se]| parameterized by programs of sort s;.

Ezample 3. The PTS F? has the following specification:

* 0, [+, [0] }
*0), ([+], [01) }
)s ([« [[+1), (1031, [T+1)

) O [x1s D), (B, [T I1) -

We extend our variable-naming convention to Vi and Vo as follows: the
variables h, hy, hg, ... range over V},), and the variables X, Y, Z, ... range
over Vigy. The logic F? is a second-order logic with typed individuals (Wadler
[29] gives another presentation of the same system). The sort = is the type of
types and the only inhabitant of OJ, while [x] is the sort of propositions. [(J] is
inhabited by the type of propositions ([*]), the type of predicates (1 — [x]),
and in general the type of relations (1y — -+ — 7, — [x]). The rules correspond
to various type of quantifications as follows:

{
{
{

qwmwﬁw

(5%,), (O

,(D*i
(x, [00], 0]

([x1, [*], [*]) allows to build implication between formulas, written P — Q.
(%, [*], [*]) allows to quantify over individuals (as in ITx : 7.P).
— (4, [*], [*]) allows to quantify over types (as in ITa : x.P).
(%, [O7, [d]) is used to build types of predicates depending on programs.
([O], [*], [*]) allows to quantify over predicates (as in IIX : 74 — -+ —
Tn — [*].P).

112 J.-P. Bernardy and M. Lasson

In F? truth can be encoded by T = IIX : [«].X — X and is proved by
Obvious = A(X : [*])(h : X).h. The formula x =, y = IX : 7 — [*|. Xz —
X y define the Leibniz equality at type 7. The term Refl = Ao : x)(z : «)(X :
a — [x]|)(h : X z).h is a proof of the reflexivity of equality IT (o : x)(z : o).z =,
2. And the induction principle over Church numerals is a formula N = Az :
Nat .JI1X :Nat — [x|.(I{y : Nat. Xy — X (Succ y)) - X0 — X z.

3.1 Structure of P2

Programs (or types) can never refer to proofs (nor formulas). In other words, a
first-level term never contains a second-level term: it is typable in P. Formally:

Theorem 1 (separation). For s € S, if ' A: B :s (resp. ' - B : s), then
there exists a sub-context I of I' such that I"+p A: B:s (resp. [I"+p B : s).

Proof. By induction on the structure of terms, and relying on the generation
lemma [2, 5.2.13] and on the form of the rules in R?: assuming (¢1,t2,t3) € R>
thent3€S=>(t1 ES/\tQES) andt2682>(t1€8/\t368).

Lifting. The major part of the paper is about transformations and relations
between the first and the second level. The first and simplest transformation
lifts terms from the first level to the second level, by substituting occurrences of
a sort s by [s] everywhere (see Fig.[I]). The function is defined only on first-level
terms, and is extended to contexts in the obvious way. In addition to substituting
sorts, lifting performs renaming of a variable z in Vs to & in V.

Ezxample 4. In F?, the lifting of inhabited types gives rise to logical tautologies.
For instance, [Unit] = [Ha : xa — o] = IX : [¥].X — X = T, and
[Nat] =X : [x].(X = X) = (X — X).

Lemma 1 (lifting preserves typing)
I'-A:B:s=[I'lF[A]:[B]:[s]

LxMJ =z°

L[s1] =s
[z] — i |[Tz*: A.B] = |B]
[s] = [s] | [Tz : A.B| = IT&° : |A].| B
[[Iz: A.B] = Iz : [A].[B] [\z®: A.B| = |B]
[Az:A.b] = \&:[A].[b] [Az!*1: A.B| =xi°: |A].|B]
[AB] =[A][B] L(AB)] = 4]
f<>] s [((AB)ra] = [A] [B]
[Mo:Al =[I,%:[A] |<>] =<>

|\lz*: A = |

|_F,a:M Al =),2°: A

Fig. 1. lifting (left) and projection (right)

Realizability and Parametricity in Pure Type Systems 113

Proof. A consequence of P? containing a copy of P with s mapped to [s].

Lemma 2 (lifting preserves (-reduction)
A*)ﬁB = (A} —3 [31
Proof. By induction on the structure of A.

Projection. We define a projection from second-level terms into first-level terms,
which maps second-level constructs into first-level constructs. The first-level sub-
terms are removed, as well as the interactions between the first and second levels.
The reader may worry that some variable bindings are removed, potentially leav-
ing some occurrences unbound in the body of the transformed term. However,
these variables are first level, and hence their occurrences are removed too (by
the application case).

The function is defined only on second-level terms, and behaves differently
when facing pure second level or interaction terms. In order to distinguish these
cases, the projection takes sort-annotated terms as input. Like the lifting, the
projection performs renaming of each variable x in V[, to & in Vs. We postulate

that this renaming cancels that of the lifting: we have & = x.

Example 5 (projections in F?)

| T] =Unit |[Obvious| =1d |H(a:*)(z:«a).x =4 x| =Unit |Nt|]=Nat

Lemma 3 (projection is the left inverse of lifting). [[A]| = A

Proof. By induction on the structure of A.

Lemma 4 (projection preserves typing)
I'A:B:[s]=|I|F|A|:|B]:s

Proof. By induction on the derivation I+ A : B.

In contrast to lifting, which keeps a term intact, projection may remove parts of
a term, in particular abstractions at the interaction level. Therefore, S-reduction
steps may be removed by projection.

Lemma 5 (projection preserves or removes [-reduction)

If A—3B, then either |A|—p|B] or |A] = |B].

3.2 Strong Normalization
Theorem 2 (normalization). If P is strongly normalizing, so is P2.

Proof. The proof is based on the observation that, if a term A is typable in P2
and not normalizable, then at least either:

— one of the first-level subterms of A is not normalizable, or
— the first-level term | A] is not normalizable.

And yet | A| and the first-level subterms are typable in P (Thm.[I)) which would
contradict the strong normalization of P.

114 J.-P. Bernardy and M. Lasson

3.3 Parametricity

In this section we develop Reynolds-style [23] parametricity for P, in P2. While
parametricity theory is often defined for binary relations, we abstract from the
arity and develop the theory for an arbitrary arity n, though we omit the index
n when the arity of relations plays no role or is obvious from the context.

The definition of parametricity is done in two parts: first we define what it
means for a n-tuple of programs z to satisfy the relation generated by a type T'
(z € [T]n); then we define the translation from a program z of type T to a proof
[2]» that a tuple z satisfies the relation.

The definition below uses n + 1 renamings: one of them (*) coincides with that
of lifting, and the others map x respectively to x1,...,x,. The tuple A denotes n
terms A;, where A; is the term A where each free variable x is replaced by a fresh
variable x;.

Definition 2 (parametricity)

Cels] =C — [s]

Ce[llz: A Bl=Hx:A. Il :x € [A].Cz € [B]
C e [T] = [T] C otherwise

[x] =2z

[Mx: A. B] =Xx: A Az :x e [A].[B]

[AB] = [A] B[B]

[T] =Xz :T.z € [T] otherwise

[<>] =<>

[T,z A] =[I,z:Az:xe[A]

Because the syntax of values and types are unified in a PTS, each of the defini-
tions - € [-] and [-] must handle all constructions. In both cases, this is done by
using a catch-all case (the last line) that refers to the other part of the definition.

Remark 1. For arity 0, parametricity specializes to lifting ([A]o = [A]).
Example 6. For instance, in F2, we have

(f,9) €[H(a:x).a—I(B:%x).0—a] =H(agas:*) (X :a; — ag — [*])

(B1 B2 : %)(Y : f1 — B2 — [*])(x1 : a1)(x2 : an). X 21 29 —
H(yr: B1)(yz : B2).Y yry2 — X (f a1 Brayyr) (9 o2 B2 22 y2).

Theorem 3 (abstraction). If '+ A: B:s, then [['|F [A] : (A € [B]) : [s]
Proof. The result is a consequence of the following lemmas which are proved by
simultaneous induction on the typing derivation:

— A—>5B:>[[A]]—>2;[[B]]
~I'FA:B=[[FA:B
—I'tB:s=([I'],z: BFze[B]:[s]
—I'FA:B:s=[IF[A]:Ac[B]

Realizability and Parametricity in Pure Type Systems 115

A direct reading of the above result is as a typing judgement about translated
terms (as for lemmas [Il and H)): if A has type B, then [A] has type A € [B].
However, it can also be understood as an abstraction theorem for system P: if
a program A has type B in I, then various interpretations of A (A) in related
environments ([I']) are related, by the formula A € [B].

The system P2 is a natural setting to express parametricity conditions for P.
Indeed, the interaction rules of the form (s, [s'], [s']) coming from axioms in P
are needed to make the sort case valid; and the interaction rules (s1, [s3], [$3])
are needed for the quantification over individuals in the product case.

3.4 Realizability

We develop here a Krivine-style [13] internalized realizability theory. Realizabil-
ity bears similarities both to the projection and the parametricity transforma-
tions defined above.

Definition 3 (realizability)

ClF [s] =C — [s]

Cl-Ilz®: AB =1IIxz*: ACIFB

CIF Izl : AB=11(2°: |A])(zl*] : & IF A).(C &) I+ B
Cl+-F = (F) C otherwise

<xrs1> — sl

(\z® : A.B) = Az : A(B)

Malsl - ABY =A@ : A (21 : 2 - A).(B)
((AB)s) = ((4) B)s

(AB)rs7) = (((4) |B])s (B))rs1
(=A\z%: L |. z Ik T otherwise
(I, x® : A) ={(I'),z°*: A

(=(I),3: |A],2l*1 .2 IF A

Like the projection, the realizability transformation is applied on second-level
constructs, and behaves differently depending on whether it treats interaction
constructs or pure second-level ones. It is also similar to parametricity, as it is
defined in two parts. In the first part we define what it means for a program C'
to realize a formula F' (C' I+ F'); then we define the translation from a proof p to
a proof (p) that the program |p| satisfies the realizability predicate.

Theorem 4 (adequacy). If '+ A: B: [s], then (I') - (A) : |A] IF B : [s]

Proof (idea). Similar in structure to the proof of the abstraction theorem.

Ezxample 7. In F?, the formula y IF N 2 unfolds to
H(a:%)(X :Nat - a — *)(f : a — a).

(II(n:Nat)(y: a).Xny — X (Succn) (fy) - (z:a) X0y - Xz(yafz)

116 J.-P. Bernardy and M. Lasson

In F? this formula may be used to prove a representation theorem. We can
prove that X' - ITzy : Nat.y IF Nz & = =Nat Yy A N2 where X' is a set of
extensionality axioms (A and < are defined by usual second-order encodings).
Let 7 be a proof of ITx : Nat Nz — N (f x) then - |7| : Nat — Nat and F (r) :
|7] Ik Iz : Nat Nz — N (f 2) which unfold to & (x) : [Tz y : Nat .y IF No —
|7]y IF N(fz). Let m be a term in closed normal form such that F m : Nat,
we can prove N m and therefore m I N m. We now have a proof (under X)
that |7|m IF N (fm) and we conclude that |7] m =nat f m. We have proved
that the projection of any proof of ITx : Nat Nz — N (fx) can be proved
extensionally equal to f. See [29, 13, [15] for more details.

4 The Third Level

By casting both parametricity and realizability in the mold of PTSs, we are able
to discern the connections between them. The connections already surface in the
previous sections: the definitions of parametricity and realizability bear some
resemblance, and the adequacy and abstraction theorems appear suspiciously
similar. In this section we precisely spell out the connection: realizability and
parametricity can be defined in terms of each other.

Theorem 5 (realizability increases arity of parametricity). For any tuple
terms (B, C),

(B,C) € [A]n+1 = B IF (C’ € [[A]]n) and [A]ln+1 = ([A]n)-
Proof. By induction on the structure of A.

As a corollary, n-ary parametricity is the composition of lifting and n realizability
steps:

Corollary 1 (from realizability to parametricity)

CelAln=CilkColk--- - CulF [A] and [Aln = (- (JA])--)

(assuming right-associativity of IF).
Proof. By induction on n. The base case uses [A]o = [A4].

One may also wonder about the converse: is it possible to define realizability in
terms of parametricity? We can answer by the affirmative, but we need a bigger
system to do so. Indeed, we need to extend [-] to work on second-level terms,
and that is possible only if a third level is present in the system. To do so, we
can iterate the construction used in Sec.[3 to build a logic for an arbitrary PTS.

Definition 4 (third-level system). Given a PTS P = (S, A, R), we define

P3 = (PZ)Q, where the sort-lifting [-] used by both instances of the -2 transfor-
mation are the same.

Realizability and Parametricity in Pure Type Systems 117

Remark 2. Because the sort-lifting used by both instances of the -2 transfor-
mation are the same, P3 contains only three copies of P (not four). In fact
P3 = (83, A3, R3), where

S =8 U [SIU[[S]

A3 =A U [A]U[[A]]

R}*=R U [R]U[[R]]
U {(s1, (s3], [s3]); ([s1] [[s3]1, [s3]1) | (s1,52,83) € R}
U {(s1, [s2], [s21), (Ts1] [Tsal T, [Ts2]1) [(s1,82) € A}

The [-] transformation is extended second-level constructs in P?, mapping them
to third-level ones in P2. The |-] transformation is be similarly extended, to
map the third level constructs to the second level, in addition of mapping the
second to the first one (only the first level is removed).

Given these extensions, we obtain that realizability is the composition of para-
metricity and projection.

Lemma 6. If A is a first-level term, then
A=|C € [A]] and A= [A]1]
Proof. By induction on the structure of A, using separation (Thm. [).

Theorem 6 (from parametricity to realizability). If A is a second-level
term, then

Cl+A=|[C] € [A]L] and (A) = [[A]1]

Proof. By induction on the structure of A, using the above lemma.

5 Extensions
5.1 Inductive Definitions

Even though our development assumes pure type systems, with only axioms
of the form (s1,s2), the theory easily accommodates the addition of inductive
definitions.

For parametricity, the way to extend the theory is exposed by Bernardy et al.
[5]. In brief: if for every inductive definition in the programming language there is
a corresponding inductive definition in the logic, then the abstraction theorem
holds. For instance, to the indexed inductive definition I corresponds [I], as
defined below. (We write only one constructor ¢, for concision, but the result
applies to any number of constructors).

data [:II(zy: Ay)- - (x, : Ay).s where
cp: I(x1:Bp1) - (@ny : Bpny)-Lapi--apn

data [[]:] € [H(x1: A1) - (xn : Ayp).s]| where
[ep] 2 ep € [II(z1 : Bpa) -+ (Tny : Bpny)-Lap1--apal

118 J.-P. Bernardy and M. Lasson

The result can be transported to realizability by following the correspondence
developed in the previous section. By taking the composition of [-] and |-] for
the definition of realizability, and knowing how to extend [-] to inductive types,
it suffices to extend || as well (respecting typing: Lem. []). The corresponding
extension to realizability is compatible with the definition for a pure system (by
Thm. [B). Adequacy is proved by the composition of abstraction and Lem. [4
The definition of |-] is straightforward: each component of the definition must
be transformed by |-]. That is, for any inductive definition in the logic, there
must be another inductive definition in the programming language that realizes
it. For instance, given the definition I given below, one must also have |I]. (I)
is then given by (I) = |[I]], but can also be expanded as below.

data I:II(z1: A1) (xn: Ay).[s] where
cp: II(x1:Bp1) - (@ny : Bpny)-Lapi--apn

data [I]: | (z1: A1) (z, : An).[s]] where
lep) + | HI(x1: Bpa) -+ (@ny : Bpny)-Lapa---apn]
data (I): |I|IF (II(z1: A1)+ (2n : An).[s]) where
(ep) : lep) IF (I (x1: Bp1) - (zny : Bpny)Lapt---apn)

We can use inductive types to encode usual logical connectives, and derive real-
izability for them.

Ezample 8 (conjunction). The encoding of conjunction in a sort [s] is as follows:

data A :[s| — [s] — [s] where
conj: IPQ:[s].P—-Q—PANQ

If we apply the projection operator to the conjunction we obtain the type of its
realizers: the cartesian product in s.

data X :s— s— s where
(,):Haf:s.a—B—axp

Now we can apply our realizability construction to obtain a predicate telling
what it means to realize a conjunction.

data (A) : IT(a: s).(a — [s]) —
H(G:5).(8—[s]) =
a X f — s where
(conj) : I(a:s)(P:a—s])
(B:6)(@Q: 0 = [s])(z:a)(y: B).
Prx—Qy— (NaPpBQ(z,y)
By definition, ¢ IF P A @ means (A) | P| (P) |Q] (Q)t. We have
tIFPAQ < (mt)lFPA(mt)IFQ

where 71 and 7 are projections upon Cartesian product.

Realizability and Parametricity in Pure Type Systems 119

We could build the realizers of other logical constructs in the same way: we would
obtain a sum-type for the disjunction, an empty type for falsity, and a box type
for the existential quantifier. All the following properties (corresponding to the
usual definition of the realizability predicate) would then be satisfied:

—tlFPVQ & casetwithiyz — 2 lF Pliecx — zl-Q.
—thkle landtl--P < II(x: |P]).~(xIFP)
—tlk3x: AP < 3z : A.(unbox t) I- P

where case...with... is the destruction of the sum type, and unbox is the
destructor of the box type.

5.2 Program Extraction and Computational Irrelevance

An application of the theory developed so far is the extraction of programs from
proofs. Indeed, an implication of the adequacy theorem is that the program
| A], obtained by projection of a proof A of a formula B, corresponds to an
implementation of B, viewed as a specification. One says that |-] implements
program extraction.

For example, applying extraction to an expression involving vectors (Vec :
(A:[x]) = Nat — [*]) yields a program over lists. This means that programs
can be justified in the rich system P2, and realized in the simple system P.
Practical benefits include a reduction in memory usage: Brady et al. |6] measure
an 80% reduction using a technique with similar goals.

While P? is already much more expressive than P, it is possible to further in-
crease the expressive power of the system, while retaining the adequacy theorem,
by allowing quantification of first-level terms by second-level terms.

Definition 5 (P?). Let P = (S, A, R), we define P¥ = (8%, A% | R?)

S¥ =S U{[s]|seS}

AQ: =AU {([s1],[s2]) | (s1,52) € A}

R2 =RU {({5113 [SQ—Ia {531)3 (517 {5313 [83])7 ({51]733353) | (51352783) € R}
U {(s1, [s2], [s21), ([s1], 82, 82) | (s1,82) € A}

The result is a symmetric system, with two copies of P. Within either side of the
system, one can reason about terms belonging to the other side. Furthermore,
either side has a computational interpretation where the terms of the other side
are irrelevant. For the second level, this interpretation is given by |[-].

Even though there is no separation between first and second level in P2/,
adequacy is preserved: the addition of rules of the form ([s1], s2,s3) only adds
first level terms, which are removed by projection.

6 Related Work and Conclusion

Our work is based on Krivine-style realizability [13] and Reynolds-style para-
metricity |23], which have both spawned large bodies of work.

120 J.-P. Bernardy and M. Lasson

Logics for parametricity. Study of parametricity is typically semantic, includ-
ing the seminal work of Reynolds [23]. There, the concern is to capture the
polymorphic character of A-calculi (typically System F) in a model.

Mairson [16] pioneered a different angle of study, where the expressions of the
programming language are (syntactically) translated to formulas describing the
program. That style has then been picked by various authors before us, including
Abadi et al. [1], Plotkin and Abadi [22], Bernardy et al. [5].

Plotkin and Abadi [22] introduce a logic for parametricity, similar to F2, but
with several additions. The most important addition is that of a parametricity
axiom. This addition allows to prove the initiality of Church-style encoding of
types.

Wadler [29] defines essentially the same concepts as us, but in the special case
of System F. He points out that realizability transforms unary parametricity
into binary parametricity, but does not generalize to arbitrary arity. We find the
n = 0 case particularly interesting, as it shows that parametricity can be con-
structed purely in terms of realizability and a trivial lifting to the second level.
We additionally show that realizability can be obtained by composing realizabil-
ity and projection, while [Wadlern only defines the realizability transformation as
a separate construct.

The parametricity transformation and the abstraction theorem that we expose
here are a modified version of [5]. The added benefits of the present version is
that we handle finite PTSs, and we allow the target system to be different from
the source. The possible separation of source and targets is already implicit in
that paper though. The way we handle finite PTSs is by separating the treatment
of types and programs.

Realizability. Our realizability construction can be understood as an extension
of the work of Paulin-Mohring [20], providing a realizability interpretation for
a variant of the Calculus of Construction. Paulin-Mohring [20] splits CC in
two levels; one where x becomes Prop and one where it becomes Spec. Perhaps
counter-intuitively, Prop lies in what we call the first level; and Spec lies in
the second level. Indeed, Prop is removed from the realizers. The system is
symmetric, as the one we expose in Sec. 5.2 in the sense that there is both
a rule (Spec, Prop, Prop) and (Prop, Spec, Spec). In order to see that Paulin-
Mohring’s construction as a special case of ours, it is necessary to recognize a
number of small differences:

1. The sort Spec is transformed into Prop in the realizability transformation,
whereas we would keep Spec.

2. The sorts of the original system use a different set of names (Data and

Order). Therefore the sort Spec is transformed into Data in the projection,

whereas we would use Prop.

The types of Spec and Prop inhabit the same sort, namely Type.

4. There is elimination from Spec to Prop, breaking the computational irrele-
vance in that direction.

@

The first two differences are essentially renamings, and thus unimportant.

Realizability and Parametricity in Pure Type Systems 121

Connections. We are unaware of previous work showing the connection between
realizability and parametricity, at least as clearly as we do. Wadler [29] comes
close, giving a version of Thm. [specialized to System F, but not its converse,
Thm. 6l Mairson |[16] mentions that his work on parametricity is directly inspired
by that of Leivant [15] on realizability, but does not formalize the parallels.

Conclusion. We have given an account of parametricity and realizability in the
framework of PTSs. The result is very concise: the definitions occupy only a
dozen of lines. By recognizing the parallels between the two, we are able to
further shrink the number of primitive concepts.

Our work points the way towards the transportation of every parametricity
theory into a corresponding realizability theory, and wvice versa.

Acknowledgments. Thanks to Andreas Abel, Thorsten Altenkirch, Thierry Co-
quand, Peter Dybjer and Guilhem Moulin for helpful comments and discussions.

References

[1] Abadi, M., Cardelli, L., Curien, P.: Formal parametric polymorphism. In: Proc.
of POPL 1993, pp. 157-170. ACM, New York (1993)

[2] Barendregt, H.P.: Lambda calculi with types. In: Handbook of Logic in Computer
Science, vol. 2, pp. 117-309 (1992)

[3] Berardi, S.: Type Dependence and Constructive Mathematics. PhD thesis, Dipar-
timento di Informatica, Torino (1989)

[4] Bernardy, J.-P., Jansson, P., Claessen, K.: Testing polymorphic properties. In:
Gordon, A. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 125-144. Springer, Heidelberg
(2010)

[5] Bernardy, J.-P., Jansson, P., Paterson, R.: Parametricity and dependent types. In:
Proc. of ICFP 2010, pp. 345-356. ACM, New York (2010)

[6] Brady, E., McBride, C., McKinna, J.: Inductive families need not store their
indices. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS,
vol. 3085, pp. 115-129. Springer, Heidelberg (2004)

[7] Gill, A., Launchbury, J., Peyton Jones, S.: A short cut to deforestation. In: Proc.
of FPCA, pp. 223-232. ACM, New York (1993)

[8] Girard, J.-Y.: Interprétation fonctionnelle et elimination des coupures de
Parithmétique d’ordre supérieur. Thése d’état, Université de Paris 7 (1972)

[9] Harrop, R.: On disjunctions and existential statements in intuitionistic systems of
logic. Mathematische Annalen 132(4), 347-361 (1956)

[10] Kleene, S.C.: On the interpretation of intuitionistic number theory. J. of Symbolic
Logic 10(4), 109-124 (1945)

[11] Kleene, S.C.: Introduction to metamathematics. Wolters-Noordhoff (1971)

[12] Kreisel, G.: Interpretation of analysis by means of constructive functionals of finite
types. In: Heyting, A. (ed.) Constructivity in mathematics, pp. 101-128 (1959)

[13] Krivine, J.-L.: Lambda-calcul types et modéles. Masson (1990)

[14] Krivine, J.-L., Parigot, M.: Programming with proofs. J. Inf. Process. Cy-
bern. 26(3), 149-167 (1990)

[15] Leivant, D.: Contracting proofs to programs. Logic and Comp. Sci., pp. 279-327
(1990)

[16] Mairson, H.: Outline of a proof theory of parametricity. In: Hughes, J. (ed.)
FPCA 1991. LNCS, vol. 523, pp. 313-327. Springer, Heidelberg (1991)

122

[17]
[18]
[19]
[20]
21]

[22]

[23]
[24]

[25]
[26]

[27]
[28]

[29]

J.-P. Bernardy and M. Lasson

McBride, C., McKinna, J.: The view from the left. J. Funct. Program. 14(01),
69-111 (2004)

Milner, R.: Logic for Computable Functions: description of a machine implemen-
tation. Artificial Intelligence (1972)

Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers Tekniska Hogskola (2007)

Paulin-Mohring, C.: Extracting Fw’s programs from proofs in the calculus of con-
structions. In: POPL 1989, pp. 89-104. ACM, New York (1989)

Paulin-Mohring, C.: Extraction de programmes dans le Calcul des Constructions.
PhD thesis, Université Paris 7 (1989)

Plotkin, G., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M.,
Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 361-375. Springer, Heidelberg
(1993)

Reynolds, J.C.: Types, abstraction and parametric polymorphism. Information
processing 83(1), 513-523 (1983)

Staples, J.: Combinator realizability of constructive finite type analysis.
Cambridge Summer School in Mathematical Logic, pp. 2563-273 (1973)

The Coq development team. The Coq proof assistant (2010)

Troelstra, A.: Realizability. In: Handbook of proof theory. Elsevier, Amsterdam
(1998)

Van Oosten, J.: Realizability: a historical essay. Mathematical Structures in Comp.
Sci. 12(03), 239-263 (2002)

Wadler, P.: Theorems for free. In: Proc. of FPCA 1989, pp. 347-359. ACM,
New York (1989)

Wadler, P.: The Girard—Reynolds isomorphism. Theor. Comp. Sci. 375(1-3), 201-
226 (2007)

Sound Bisimulations for Higher-Order Distributed
Process Calculus*

Adrien Piérard and Eijiro Sumii**

Tohoku University
{adrien, sumii}@kb.ecei.tohoku.ac.jp

Abstract. While distributed systems with transfer of processes have become per-
vasive, methods for reasoning about their behaviour are underdeveloped. In this
paper we propose a bisimulation technique for proving behavioural equivalence
of such systems modelled in the higher-order m-calculus with passivation (and
restriction). Previous research for this calculus is limited to context bisimulations
and normal bisimulations which are either impractical or unsound. In contrast,
we provide a sound and useful definition of environmental bisimulations, with
several non-trivial examples. Technically, a central point in our bisimulations is
the clause for parallel composition, which must account for passivation of the
spawned processes in the middle of their execution.

1 Introduction
1.1 Background

Higher-order distributed systems are ubiquitous in today’s computing environment. To
name but a few examples, companies like Dell and Hewlett-Packard sell products using
virtual machine live migration [143]], and Gmail users execute remote JavaScript code
on local browsers. In this paper we call higher-order the ability to transfer processes,
and distribution the possibility of location-dependent system behaviour. In spite of the
de facto importance of such systems, they are hard to analyse because of their inherent
complexity.

The 7-calculus [8] and its dialects prevail as models of concurrency, and several vari-
ations of these calculi have been designed for distribution. First-order variations include
the ambient calculus [1] and D7 [2], while higher-order include more recent Homer [4]]
and Kell [[15] calculi. In this paper, we focus on the higher-order m-calculus with pas-
sivation [7], a simple high-level construct to express distribution. It is an extension of

the higher-order m-calculus [9]] (with which the reader is assumed to be familiar) with
located processes o[P] and two additional transition rules: a[P)] KRN (PASSIV), and

a[P] % a[P'] if P % P’ (TRANSP).

* Appendix with full proofs at http://www.kb.ecei.tohoku.ac.jp/ adrien/
pubs/SoundAppendix.pdf
** This research is partially supported by KAKENHI 22300005, the Nakajima Foundation, and
the Casio Science Promotion Foundation. The first author is partially supported by the Global
COE Program CERIES.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 1231137] 2011.
(© Springer-Verlag Berlin Heidelberg 2011

http://www.kb.ecei.tohoku.ac.jp/~{}adrien/pubs/SoundAppendix.pdf
http://www.kb.ecei.tohoku.ac.jp/~{}adrien/pubs/SoundAppendix.pdf

124 A. Piérard and E. Sumii

The new syntax a[P] reads as “process P located at a” where a is a name. Rule
TRANSP specifies the transparency of locations, i.e. that a location has no impact on
the transitions of the located process. Rule PASSIV indicates that a located process can
be passivated, that is, be output to a channel of the same name as the location. Using
passivation, various characteristics of distributed systems are expressible. For instance,
failure of process P located at a can be modelled like a[P] | a(X).fail — 0| fail, and
migration of process @) from location b to ¢ like b[P] | b(X).c[X] — 0| ¢[P].

One way to analyse the behaviour of systems is to compare implementations and
specifications. Such comparison calls for satisfying notions of behavioural equivalence,
such as reduction-closed barbed equivalence (and congruence) [5l], written ~ (and =,
respectively) in this paper.

Unfortunately, these equivalences have succinct definitions that are not very practi-
cal as a proof technique, for they both include a condition that quantifies over arbitrary
processes, like: if P = @ then VR. P | R ~ @ | R. Therefore, more convenient defi-
nitions like bisimulations, for which membership implies behavioural equivalence, and
which come with a co-inductive proof method, are sought after.

Still, the combination of both higher order and distribution has long been considered
difficult. Recent research on higher-order process calculi led to defining sound context
bisimulations [10] (often at the cost of appealing to Howe’s method [6]] for proving
congruence) but those bisimulations suffer from their heavy use of universal quantifica-
tion: suppose that v¢.a(M).P X vd.a(N).Q, where X is a context bisimulation; then
it is roughly required that for any process R, we have v.(P | R{M/X}) X vd.(Q |
R{N/X}). Not only must we consider the outputs A/ and IV, but we must also handle
interactions of arbitrary R with the continuation processes P and Q. Alas, this almost
comes down to showing reduction-closed barbed equivalence! In the higher-order -
calculus, by means of encoding into a first-order calculus, normal bisimulations [10]
coincide with (and are a practical alternative to) context bisimulations. Unfortunately,
normal bisimulations have proved to be unsound in the presence of passivation (and
restriction) [7]. While this result cast a doubt on whether sound normal bisimulations
exist for higher-order distributed calculi, it did not affect the potential of environmental
bisimulations [16l17/12l13] as a useful proof technique for behavioural equivalence in
those calculi.

1.2 Our Contribution

To the best of our knowledge, there are not yet any useful sound bisimulations for
higher-order distributed process calculi. In this paper we develop environmental (weak)
bisimulations for the higher-order 7-calculus with passivation, which (1) are sound with
respect to reduction-closed barbed equivalence, (2) can actually be used to prove be-
havioural equivalence of non-trivial processes (with restrictions), and (3) can also be
used to prove reduction-closed barbed congruence of processes (see Corollary [I)). To
prove reduction-closed barbed equivalence (and congruence), we find a new clause to
guarantee preservation of bisimilarity by parallel composition of arbitrary processes.
Unlike the corresponding clause in previous research [7l13], it can also handle the
later removal (i.e. passivation) of these processes while keeping the bisimulation proofs
tractable. Several examples are given, thereby supporting our claim of the first useful

Sound Bisimulations for Higher-Order Distributed Process Calculus 125

bisimulations for a higher-order distributed process calculus. Moreover, we define an
up-to context variant of the environmental bisimulations that significantly lightens the
burden of equivalence proofs, as utilised in the examples.

Overview of the bisimulation: We now outline the definition of our environmental
bisimulations. (Generalities on environmental bisimulations can be found in [12]].) We
define an environmental bisimulation X’ as a set of quadruples (r, £, P, Q) where r is a
set of names (i.e. channels and locations), £ is a binary relation (called the environment)
on terms, and P, () are processes. The bisimulation is a game where the processes P
and @ are compared to each other by an attacker (or observer) who knows and can use
the terms in the environment £ and the names in r. For readability, the membership
(r,€, P,Q) € X is often written P X, @), and should be understood as “processes P
and () are bisimilar, under the environment £ and the known names r.”

The environmental bisimilarity is co-inductively defined by several conditions con-
cerning the tested processes and the knowledge. As usual with weak bisimulations, we
require that an internal transition by one of the processes is matched by zero or more
internal transitions by the other, and that the remnants are still bisimilar.

As usual with (more recent and less common) environmental bisimulations, we re-
quire that whenever a term M is output to a known channel, the other tested process
can output another term N to the same channel, and that the residues are bisimilar un-
der the environment extended with the pair (M, N). The extension of the environment
stands for the growth of knowledge of the attacker of the bisimulation game who ob-
served the outputs (M, N), although he cannot analyse them. This spells out like: for

any P X, Qanda € r,if P P’ for fresh ¢, then Q % Q' for fresh d
and P’ ‘XSU{(M N} Q.

Unsurprisingly, input must be doable on the same known channel by each process,
and the continuations must still be bisimilar under the same environment since nothing
is learnt by the context. However, we require that the input terms are generated from the
context closure of the environment. Intuitively, this closure represents all the processes
an attacker can build by combining what he has learnt from previous outputs. Roughly,
we define it as:

(&;7)* = {(C[M],C[N)) | C context, fn(C) C r, M EN}
where M denotes a sequence Mo, ..., M,, and MEN means that for all 0 <i<n,
M;E N;. Therefore, the input clause looks like: for any P X . @, a € 7 and (M,N) €
&), it P2 P then @ 2L @ and P X, Q).
The set r of known names can be extended at will by the observer, provided that the
new names are fresh: for any P X, @ and n fresh, we have P X\, Q.

ve.a{M)
—_—t

Parallel composition: The last clause is crucial to the soundness and usefulness of
environmental bisimulations for languages with passivation, and not as straightforward
as the other clauses. The idea at its base is that not only may an observer run arbitrary
processes R in parallel to the tested ones (as in reduction-closed barbed equivalence),
but he may also run arbitrary processes M, N he assembled from previous observations.
It is critical to ensure that bisimilarity (and hopefully equivalence) is preserved by such
parallel composition, and that this property can be easily proved. As (€;7)* is this set of

126 A. Piérard and E. Sumii

processes that can be assembled from previous observations, we would naively expect
the appropriate clause to look like:

Forany P X, Q and (M, N) € (&;7)*, wehave P | M X, Q| N
but this subsumes the already impractical clause of reduction-closed barbed equivalence
which we want to get round. Previous research [[7113]] uses a weaker condition:
Forany P X, Qand (M,N) € £, wehave P | M X, Q[N

arguing that (€;r)* can informally do no more observations than £, but this clause is
unsound in the presence of passivation. The reason behind the unsoundness is that, in
our settings, not only can a context spawn new processes M, N, but it can also remove
running processes it created by passivating them later on. For example, consider the
following processes P = a(R).!R and @ = a(0).!R. Under the above weak condition,
it would be easy to construct an environmental bisimulation that relates P and (). How-
ever, a process a(X).m[X] may distinguish them. Indeed, it may receive processes R
and start running it in location m, or may receive process 0 and run a copy of R from
IR.If R is a process doing several sequential actions (for example if R = lock.unlock)
and is passivated in the middle of its execution, then the remaining processes after pas-
sivation would not be equivalent any more.

To account for this new situation, we decide to modify the condition on the provenance
of process that can be spawned, drawing them from {(a[M],a[N]) | a € 7, (M, N) €
£}, thus giving the clause:

Forany P X¢.,. Q, a € rand (M, N) € £, we have P | a[M] X, Q| a[N].
The new condition allows for any running process that has been previously created by
the observer to be passivated, that is, removed from the current test. This clause is much

more tractable than the first one using (€;r)* and, unlike the second one using only &,
leads to sound environmental bisimulations (albeit with a limitation; see Remark[T)).

Example: With our environmental bisimulations, non-trivial equivalence of higher-
order distributed processes can be shown, such as Py = lafe | €] and Q¢ = la[e] | la[e],
where e abbreviates e(X).0 and e is e(0).0. We explain here informally how we build
a bisimulation X relating those processes.

X:{(r,g,P,Q)\r:_){a,e}, 5:{O,e,e,e\e}x{0,e,e},
fEPOLH;rgllz[Mz}a QEQO|H7:117,[N1L nZOa
ler, (M,N)e&}

Since we want Py X, Qo, the spawning clause of the bisimulation requires that for
any (M1, N1) € € and [y € 7, we have Py | I1[M1] X, Qo | [1[N1]. Then, by repeat-
edly applying this clause, we obtain (Pp | [Ti_; Li[Mi]) X, (Qo | TT;—, li[Vi]). Since
the observer can add fresh names at will, we require 7 to be a superset of the free names
{a, e} of Py and Q. Also, we have the intuition that the only possible outputs from P
and @ are processes € | e, e, e, and 0. Thus, we set ahead & as the Cartesian product of
{0,¢e,e,e]| e} with {0, e, e}, that is, the combination of expectable outputs. We empha-
size that it is indeed reasonable to relate e, e and e | e to 0, e and e in £ for the observer
cannot analyse the pairs: he can only use them along the tested processes P and ()
which, by the design of environmental bisimulations, will make up for the differences.

Sound Bisimulations for Higher-Order Distributed Process Calculus 127

&
(e Py afy] [TTE, LM ©
/ - P |Hn+l [Z] for ln+1 =a, Mpi1 =7

Lo (M.,,)

n

Po | TI7y LM =5 Py | TT05) M) (ii)
Q\Jpom VLM | M) (i)
Slee) =Ry lale| e |15 LM | (M)
= Py | TI 1s[M]]

for M/=M; (0<i<n—1), M, > M},
ln+1 = a, Mn+1 :€|6.

g Qo | al0] | TT7, Li[Ni] @@
= Qo | TTI5 LN for lnt1 =a, Nut1 =0
§ ())
Qo [T[i, LIN:] — Qo | Hi:l 1i[N3] (i)

&/ Qo | al0] | TT7, Li[Vi] (iii)

= Qo | TI7 Li[N:] for ln41 = a, Nny1 =0

Fig. 1. Simulation of observable transitions

Let us now observe the possible transitions from P and their corresponding transi-
tions from @ by glossing over two pairs of trees, where related branches represent the
correspondences. (Simulation in the other direction is similar and omitted for brevity.)
First, let us consider the input and output actions as shown in Figure [[l (i) When P,
does an input action e or an output action e, it leaves behind a process ale] or ale],
respectively. Qo can also do the same action, leaving a[0]. Since both (e, 0) and (e, 0)
are in £, we can add the leftover processes to the respective products [[; (ii) output by
passivation is trivial to match (without loss of generality, we only show the case ¢ = n),
and (iii) observable actions « of an M,,, leaving a residue M, are matched by one of
Qo’s alal, leaving a[0]. To pair with this a[0], we replicate an a[e | ¢] from Py, and then,
as in (i), they add up to the products [].

In a similar way, we explain how 7 transitions of P are matched by (), with another
pair of transitions trees described in Figure 2

(1) When an ale | e] from P, turns into a[0], @ does not have to do any action,
for we work with weak bisimulations. By replication, () can produce a copy ale] (or
alternatively ale]) from @, and since (0, ¢) is in £, we can add the a[0] and the copy
ale] to the products []; (2) P can also make a reaction between two copies of ale | €]
in Py, leaving behind ale] and ale]. As in (1), @ can draw two copies of ae] from Qo,
and each product can be enlarged by two elements; (3) it is also possible for M,, = e|e
to do a 7 transition, becoming M,, = 0. It stands that (M, N,,) € £ and we are done;
(4) very similarly, two processes M,, and M,,_; may react, becoming M, and M, _,.
It stands also that (M),_,, N,_1) and (M}, N,,) are in &, so the resulting processes are

n—

still related; (5) it is possible for M,, to follow the transition M, N M and react with
a copy from P, which leaves behind a[a] (since « has been consumed to conclude the

128 A. Piérard and E. Sumii

Po | al0] | TT7, Ls[M:])
=Py | 14 LM for lny1 =a, Myuiq =0
Py | ale] | ale] | TTiZ, L:[M;] 2

= P | [I/77 Li[M] for lny1 = lngz = ay Mypy1 =€, Myjo=¢

Po [TTiZ, Ls[M]] 3)
/—forMi_M{(Ogign—l),Mn;MJl
Po [TTiZ, L[Mi] — Po | TT}, Li[M]] 4)
\\) for M; = M/ (0<i<n—2), Mn_1 = M, 1, M, > M,
Po|alo] | TTiL, L[M] = Po| T2, L] ©)

for M/ =M; (0<i<n-—1), M, = M,
[eAS {B,E}, lnt1 =0, Mpt1 =«

Py lale) | TS kM) = Po | T, G[M]] (6)
for I} =1, M =M; (0<i<n—1),l,=a M, =¢
Po | TIPS UM | by [My] ™

=P |ale | e | T2 GIM] | lna[My] = Po| TT7Z, GIMY]

for M} =M; (0<i<n—2), Mp_1 5 M)_,
l=010<i<n-—1),1l,=a, M, =¢|e

o7 Qo | I, LiNs] = Qo[ale] [TTi-, L[Nd] (M
//’/ _Q0|H”+ll[3] for lnt1 =a,Npi1 =€
S o QoI TT LN = Qolale] | ale] | T, LING) @)
= Qo | T2 LIN] for lngr = lnia = a, Nug1 = Npsa = e
07 m Qo TT LN 3)
Qo | TTiz, Li[Ni] - -» Qo [TT7, Li[Nd])

-7 Qo [TIZy LIN:] = Qo | ale] | TIiZ, L[V ®)

= Qo | TN Li[NS] for lns1 = a, Noy1 =e

Qo | al0] | TI)Z) LINi] = Qo | TTi=, GINVI] ©)
for I} =1;, N;:N-(ogz‘gn—l), I, =a, N, =0

Qo | al0] | TIZ) LINi] = Qo | TTi=, LINVI])

for lj=10;, NN=N; (0<i<n-1), 1, =a, N, =0

Fig. 2. Simulation of internal transitions (dotted lines mean zero transitions)

Sound Bisimulations for Higher-Order Distributed Process Calculus 129

reaction). Again, it stands that M/ and N,, are related by £, and that we can draw an
ale] from Qg to pair it with the residue M}, in the products [[; (6) also, a copy ale | €]
from Py may passivate an [;[M;], provided I; = e, and leave a residue a[e]. @ can do
the same passivation using Qo’s a[e], and leave a[0]. As it happens that (e, 0) is in &,
the residues can be added to the products too; (7) finally, the process [,,[M,], if L, = e,
may be passivated by M,,_1, reducing the size of P’s product.) can passivate [,,[N,,]
too, using a copy ale] from Py, which becomes a[0] after the reaction. ’s product too
is shorter, but we need to add the a[0] to it. To do so, we draw a copy ale | €] from Py,
and since (e | e,0) isin &, ale | €] and a[0] are merged into their respective product.

This ends the sketch of the proof that X is an environmental bisimulation, and there-
fore that la[e | €] and lale] | ale] are behaviourally equivalent.

1.3 Overview of the Paper

The rest of this paper is structured as follows. In Section[2l we describe the higher-order
m-calculus with passivation. In Section Blwe formalize our environmental bisimulations.
In Section] we give some examples of bisimilar processes. In Section 3 we bring up
some future work to conclude our paper.

2 Higher-Order 7-Calculus with Passivation

We introduce a slight variation of the higher-order m-calculus with passivation [[7]—
HO=P for short—through its syntax and a labelled transitions system.

2.1 Syntax

The syntax of our HO7P processes P, () is given by the following grammar, very
similar to that of Lenglet et al. [7] (the higher-order w-calculus extended with located
processes and their passivation):

P,Q :=0] a(X).P | a(M).P | (P|P) | alP] | va.P | P | run(M)
M,N:=X | ‘P

X ranges over the set of variables, and a over the set of names which can be used for
both locations and channels. a[P] denotes the process P running in location a. To define
a general up-to context technique (Definition2] see also Section[3)), we distinguish terms
M, N from processes P, () and adopt explicit syntax for processes as terms ‘ P and their
execution run(M).

2.2 Labelled Transitions System

We define n, fn, bn and fv to be the functions that return respectively the set of names,
free names, bound names and free variables of a process or an action. We abbreviate a
(possibly empty) sequence xg, 1, - . . , T, as T for any meta-variable x. The transition
semantics of HO7P is given by the following labelled transition system, which is based
on that of the higher-order -calculus (omitting symmetric rules PAR-R and REACT-R):

130 A. Piérard and E. Sumii

() Ho-IN (a1 Ho-ouTt
a(X).P ==L P{M/X} a(M).P =L p
PL 5P bn(a)Nfa(P) =10 IP|P =P
1= B o) ,f P) =0 b et | . Rep
Pl‘P2—>P1‘P2 'P—>P

LD, P P L P (B fa(P) = 0

.o~ REACT-L
Py | P — vb.(Py| P2)

Py

p w0aM) c#a cefn(M)\{b}
GUARD V(E,c).a(IVI>
ve. P

P% P ad¢n(a)

/

EXTR

va.P % va.P P’

extended with the following three rules:

PASSIV RUN

PP
RANSP .
RAS N run(‘P) = P

T
a[P] = a[P'] alP]

Assuming again knowledge of the standard higher-order 7-calculus [9/11]], we only ex-
plain below the three added rules that are not part of it. The Transp rule expresses
the transparency of locations, the fact that transitions can happen below a location and
be observed outside its boundary. The Passiv rule illustrates that, at any time, a pro-
cess running under a location can be passivated (stopped and turned into a term) and
sent along the channel corresponding to the location’s name. Quotation of the process
output reminds us that higher-order communications transport terms. Finally, the Run
rule shows how, at the cost of an internal transition, a process term be instantiated. As
usual with small-steps semantics, transition does not progress for undefined cases (such
as run(X)) or when the assumptions are not satisfied.

Henceforth, we shall write a.P to mean a(‘0).P and a.P for a(X).Pif X & fo(P).
We shall also write = for the structural congruence, whose definition is standard (see
the appendix, Definition A.1).

3 Environmental Bisimulations of HO#P

Given the higher-order nature of the language, and in order to get round the universal
quantification issue of context bisimulations, we would like observations (terms) to
be stored and reusable for further testing. To this end, let us define an environmental
relation X as a set of elements (r, £, P, Q) where r is a finite set of names, £ is a binary
relation (with finitely many free names) on variable-closed terms (i.e. terms with no
free variables), and P and () are variable-closed processes.

We generally write 2.5 to express the set union {x} U S. We also use graphically
convenient notation P X,) to mean (r,€,P,Q) € X and define the term context
closure (E;r)* = EU{(‘P,‘Q) | (P,Q) € (&;r)°} with the process context closure
(&r)° = {(C[M],C[N]) | MEN, C context, bn(C) N fn(€,7) = 0, f(C) C 1},
where a context is a process with zero or more holes for terms. Note the distinction of
terms ‘P, ‘Q from processes P, Q. We point out that (§; r)* is the identity on terms

Sound Bisimulations for Higher-Order Distributed Process Calculus 131

with free names in r, that (£;7)* includes £ by definition, and that the context closure
operations are monotonic on £ (and r). Therefore, for any £ and r, the set (&;7)*
includes the identity (@;r)* too. Also, we use the notations S.1 and S.2 to denote the
first and second projections of a relation (i.e. set of pairs) S. Finally, we define weak
transitions = as the reflexive, transitive closure of —, and Zas= S = fora *T
(and define = as =).

We can now define environmental bisimulations formally:

Definition 1. An environmental relation X is an environmental bisimulation if P X, Q)
implies:

1. ifP5 P!, then3Q". Q = Q' and P’ Xe.,. @',

2. if P o) pr with a € r, and if (M,N) € (&;r)*, then 3Q’. Q a(:NL Q' and
P/XE'TQ/’

3. ifP YoM pr ith a € rand b & fn(r,£.1), then 3Q", N. Q rea(NY Q' with

c ¢ fn(r,£.2) and P' X3 nyoe. @
4. forany (‘P1,‘Q1) € € and a € v, we have P | a[P1] X¢.,. Q | a[Q1],
5. foranyn & fn(€, P,Q), we have P X .o, Q, and

6. the converse of 1, 2 and 3 on Q)’s transitions.

Modulo the symmetry resulting from clause [6] clause [is usual; clause 2] enforces
bisimilarity to be preserved by any input that can be built from the knowledge, hence
the use of the context closure; clause[3lenlarges the knowledge of the observer with the
leaked out terms. Clause [allows the observer to spawn (and immediately run) terms
concurrently to the tested processes, while clause [5l shows that he can also create fresh
names at will.

A few points related to the handling of free names are worth mentioning: as the set
of free names in £ is finite, clause [can always be applied; therefore, the attacker can
add arbitrary fresh names to the set r of known names so as to use them in terms M and
N in clause 2] Fresh b and ¢ in clause 3l also exist thanks to the finiteness of free names
in & and r.

We define environmental bisimilarity ~ as the union of all environmental bisimula-
tions, and it holds that it is itself an environmental bisimulation (all the conditions above
are monotone on X). Therefore, P ~.,. Q if and only if P X, Q) for some environ-
mental bisimulation X. We do particularly care about the situation where £ =) and
r = fn(P,Q). It corresponds to the equivalence of two processes when the observer
knows all of their free names (and thus can do all observations), but has not yet learnt
any output pair.

For improving the practicality of our bisimulation proof method, let us devise an up-
to context technique [[11, p. 86]: for an environmental relation X, we write P X, g;r Q

if P=ve(Py|P),Q = vd(Qo| Q1) P Xer o Qo, (P1,Q1) € (E577)°, & C
(&Y, r C o' and {¢} N fu(r,£.1) = {d} N fn(r,£.2) = 0. As a matter of fact,
this is actually an up-to context and up-to environment and up-to restriction and up-to

structural congruence technique, but because of the clumsiness of this appellation we
will restrain ourselves to “up-to context” to preserve clarity. To roughly explain the

132 A. Piérard and E. Sumii

convenience behind this notation and its (long) name: (1) “up-to context” states that we
can take any (P;, Q1) from the (process) context closure (£';7')° of the environment £’
(with free names in r’) and execute them in parallel with processes Py and Qg related
by Xg/,,v; similarly, we allow environments £ with terms that are not in &’ itself but
are in the (term) context closure (£';7')*; (2) “up-to environment” states that, when
proving the bisimulation clauses, we please ourselves with environments £’ that are
larger than the £ requested by Definition [T} (3) “up-to restriction” states that we also
content ourselves with tested processes P, () with extra restrictions v¢ and vd (i.e. less
observable names); (4) finally, “up-to structural congruence” states that we identify all
processes that are structurally congruent to v¢.(Py | Py) and vd.(Qo | Q1)

Using this notation, we define environmental bisimulations up-to context as follows:

Definition 2. An environmental relation X is an environmental bisimulation up-to
context if P X, Q) implies:

1. ifP5 P then3Q'. Q = Q' and P’ Xz, Q'

2. P M pritha € v, and if (M, N) € (&), then 3Q. Q 2L @ and
Pz, Q,

3.0 P M b itha € rand b & fa(r, £.1), then 3Q', N. Q “=22L o itk
g fu(r,£.2) and P Xy e Q'

4. forany ("P1,‘Q1) € € and a € r, we have P | a[P1] X£.. Q | a[Q1],

5. foranyn & fn(€, P,Q), we have P X .o, Q, and

6. the converse of 1, 2 and 3 on Q)’s transitions.

The conditions on each clause (except[3l which is unchanged for the sake of technical
convenience) are weaker than that of the standard environmental bisimulations, as we
require in the positive instances bisimilarity modulo a context, not just bisimilarity it-
self. It is important to remark that, unlike in [12]] but as in [[13]], we do not need a specific
context to avoid stating a tautology in clause[d} indeed, we spawn terms (‘Py,‘Q1) € €
immediately as processes P; and (01, while the context closure can only use the terms
under an explicit run operator.

We prove the soundness (under some condition; see Remark [I)) of environmental
bisimulations as follows. Full proofs are found in the appendix, Section B but are
nonetheless sketched below.

Lemma 1 (Input lemma). If (P1,Q1) € (£;7)° and P, o, P/ then VN.3Q.

Q1 2N QL and (P, Q}) € (M, N)&E; r)°.

Lemma 2 (Outputlemma). If (Py, Q1) € (&;7)°, {b}Nfn(E,r) = @andle

Pl then 3Q, N. Q1 20 o1 (P, QL) € (€:b@r)° and (M, N) € (E;b@r)*.
Definition 3 (Run-erasure). We write P < Q) if P can be obtained by (possibly repeat-

edly) replacing zero or more subprocesses run(‘R) of Q with R, and write P Ve Q
for P < y;sz;r > Q.

Sound Bisimulations for Higher-Order Distributed Process Calculus 133

Definition 4 (Simple environment). A process is called simple if none of its subpro-
cesses has the form va.P or a(X).P with X € fu(P). An environment is called simple
if all the processes in it are simple. An environmental relation is called simple if all of
its environments are simple (note that the tested processes may still be non-simple).

Lemma 3 (Reaction lemma). For any simple environmental bisimulation up-to con-
text Y, if P Ve, Q and P L P/, then there is a Q' such that Q = Q' and P’ Ver Q.

Proof sketch. Lemmal[Il (resp.2)) is proven by straightforward induction on the transition

L M vh.a(M) .
derivation of P; o), P/ (resp. P, vhaiM), P}). Lemmal[3lis proven last, as it uses the

other two lemmas (for the internal communication case).

Lemma 4 (Soundness of up-to context). Simple bisimilarity up-to context is included
in bisimilarity.

Proof sketch. By checking that {(r,&, P, Q) | P Y, @} is included in ~, where Y
is the simple environmental bisimilarity up-to context. In particular, we use Lemmal/i]

for clause 2] Lemma 2] for clause 3] and Lemma [l for clause [1 of the environmental
bisimulation.

Our definitions of reduction-closed barbed equivalence ~ and congruence =, are stan-
dard and omitted for brevity; see the appendix, Definition B.2 and B.3

Theorem 1 (Barbed equivalence from environmental bisimulation)
IfP Y, (P,Q) Q for a simple environmental bisimulation up-to context Y, then P ~ Q).

Proof sketch. By verifying that each clause of the definition of = is implied by mem-
bership of Y ~, using Lemma M for the parallel composition clause.

Corollary 1 (Barbed congruence from environmental bisimulation)
If a(‘P) wa(l@fn(P Q) a(‘Q) for a simple environmental bisimulation up-to context),
then P ~. Q.

We recall that, in context bisimulations, showing the equivalence of a(‘P) and a({‘Q)
almost amounts to testing the equivalence of P and () in every context. However, with
environmental bisimulations, only the location context in clause [4] of the bisimulation
has to be considered.

Remark 1. The extra condition “simple” is needed because of a technical difficulty in
the proof of Lemma [3 when an input process a(X).P is spawned under location b
in parallel with an output context vc.a(M).Q (with ¢ € fn(M)), they can make the
transition b[a(X).P | ve.a(M).Q] = blve.(P{M/X} | Q)], where the restriction op-
erator vc appears inside the location b (and therefore can be passivated together with
the processes); however, our spawning clause only gives us b[a(X).P] | ve.a(M).Q =
ve.(b[P{M/X}] | Q) and does not cover the above case. Further investigation is re-
quired to overcome this difficulty (although we have not yet found a concrete coun-
terexample of soundness, we conjecture some modification to the bisimulation clauses
would be necessary). Note that, even if the environments are simple, the tested processes
do not always have to be simple, as in Example[d and[3l Moreover, thanks to up-to con-
text, even the output terms (including passivated processes) can be non-simple.

134 A. Piérard and E. Sumii

4 Examples

Here, we give some examples of HO7P processes whose behavioural equivalence is
proven with the help of our environmental bisimulations. In each example, we prove the
equivalence by exhibiting a relation X" containing the two processes we consider, and
by showing that it is indeed a bisimulation up-to context (and environment, restriction
and structural congruence). We write P | ... | P for a finite, possibly null, product of
the process P.

Example 1. e |lale] | la]0] =~ la[e] | !a[0]. (This example comes from [7].)

Proof. Take X = {(r, 0, e| P, P) | r 2 {a,e}} U{(r,0,P,P) | r 2 {a,e}} where
P = la[e] | la[0]. It is immediate to verify that whenever P % P’, we have P’ = P,
and therefore that transition ¢ | P~ ¢ | P’ = e | P can be matched by P % P’ = P
and conversely. Also, for e | P % P, we have that P 5 lae] | a[0] | !a[0] = P and we
are done since (r,), P, P) € X. Moreover, the set 7 must contain the free names of P,
and to satisfy clause [3] about adding fresh names, bigger r’s must be allowed too. The
passivations of a[e] and a[0] can be matched by syntactically equal actions with the pairs
of output terms (‘e, ‘e) and (0, ‘0) included in the identity, which in turn is included in
the context closure ({); 7)*. Finally clause [] of the bisimulation is vacuously satisfied
because the environment is empty. We therefore have e | la[e] | la]0] =~ la[e] | la[0] from
the soundness of environmental bisimulation up-to context.

Example 2. la|le =~ lale].

Proof sketch. Take X = {(r, £, P, Q) | r 2 {a,¢e,l1,...,1,} | E ={(0,¢)}, n >0,
P =la|le| [T, L[0], @ =lale] | [T, Lile] | al0]]...]|al0]}. See the appendix,
Example C.1 for the rest of the proof.

Example 3. lale]|!ble] =~ la[b[e|e]]. This example shows the equivalence proof of more
complicated processes with nested locations.

Proof sketch. Take:

X={(r,& P, Q)|r 2{a,ebly,... ,
Py =lale] | 'ble], Qo = la[ble] €]],
P =Py |T[;_ L[P][b[0]] ... |b[0],
Q = Qo | TTi=, L[Ql,
(‘P,'Q) €&, n >0},
E ={(z,'y) | x € {0,e,e}, y =€ {0,e,e, (e e),bl0],ble], ble], ble | €]} } .

See the appendix, Example C.2 for the rest of the proof.

Example 4. ¢(X).run(X) = vf.(flc(X).run(X)] | 1f(Y).f[run(Y)]). The latter pro-
cess models a system where a process ¢(X).run(X) runs in location f, and executes
any process P it has received. In parallel is a process f(Y").f[run(Y")] which can passi-
vate f[P] and respawn the process P under the same location f. Informally, this models
a system which can restart a computer and resume its computation after a failure.

Sound Bisimulations for Higher-Order Distributed Process Calculus 135

Proof. Take X = X1 U &5 where:

Xl - {(7”, ’ (X) run()v ([C
X2 = {(7", P 7 Q) ‘ r D CEBfn()
P e {run(‘R),

(X).run(X)] [Lf (V). flrun(Y)])) | 7 2 {c}},
, S =run(‘run(...‘run(‘R)...)),

R}, Q=vf(fIS]|'f(¥)-[run(Y)])}.

As usual, we require that r contains at least the free name c of the tested processes. All
outputs belong to (f);7)* since they come from a process R drawn from (();r)*, and
therefore, we content ourselves with an empty environment (). Also, by the emptiness
of the environment, clause @] of environmental bisimulations is vacuously satisfied.
Verification of transitions of elements of X7, i.e. inputs of some ‘R (with (‘R,‘R) €
(@;7)*) from ¢, is immediate and leads to checking elements of X5. For elements of
X, we observe that P = run(‘R) can do one 7 transition to become R, while Q
can do an internal transition passivating the process run(‘R) running in f and place
it inside f[run(‘)], again and again. @) can also do 7 transitions that consume all the
run(‘)’s until it becomes R. Whenever P (resp. Q) makes an observable transition, Q)
(resp. P) can consume the run(‘)’s and weakly do the same action as they exhibit
the same process. We observe that all transitions preserve membership in X5 (thus
in &), and therefore we have that X' is an environmental bisimulation up-to context,
which proves the behavioural equivalence of the original processes ¢(X).run(X) and

(X) v [(fle(X)run(X)] [1 (V). frun(Y)]).
Example 5. ¢(X).run(X) =~ c(X).va.(a{X) | Wf.(fla(X).run(X)] | f(Y).a(Y))).

This example is a variation of Example 4] modelling a system where computation is
resumed on another computer after a failure.

Proof. Take X = X1 U Xy U X3 where:

A ={(r, 0, c(X).run(X), ¢(X)va.(a(X) | F)) | r 2 {c}},
Xy = {(r, @ Py, va.(F | Ry | Ry | a('Py))) |

T Q {c}®fn(P), P1,P; € {run(‘P),P}, R1=a(N1)|...|a(Ny,),

Ry = vl (W[Q1] [L(Y).a(Y)) [| vl (b [Qu] | 1n (Y)-a(Y)),

Ny, oy Ny Qe Que="run(‘run(. . . ‘run(‘a(X).run(X))...)), n > 0},
X = {0, 0, Py, va(F | By | Ra| l(1[Ps) | 1(Y).a(Y) |

r 2 {c}®fm(P), P1,Py € {run(‘P),P}, Ry =a(N1)|...|a(Ny,),

Ro =vl1.(L[@Q1] | L(Y).aY) | .o | Vi (1 [Q] | Lin (V) .a(Y)),

Ny, oy N Qe Que="run(‘run(. . . ‘run(‘a(X).run(X))...)), n > 0},
F =W (fla(X)run(X)] | F(¥).a(Y).

The set of names r and the environment share the same fate as those of Example @]
for identical reasons. For ease, we write lhs and rhs to conveniently denote each of the
tested processes.

Verification of the bisimulation clauses of X7; is immediate and leads to a member
(r,0, run(*P),va.(a(*P) | F)) of X, for some ‘P with (‘P,‘P) € (0;r)*. For X, lhs
can do an internal action (consuming its outer run(‘)) that rhs does not have to follow
since we work with weak bisimulations, and the results is still in X5; conversely, internal
actions of rhs do not have to be matched. Some of those transitions that ris can do are

Q

136 A. Piérard and E. Sumii

reactions between replications from F'. All those transitions creates elements of either
R; or R, that can do nothing but internal actions and can be ignored further in the proof
thanks to the weakness of our bisimulations.

Whenever /s does an observable action «, that is, when P, = P = P’, rhs must do
areaction between a(‘Py) and F, giving vI.(I[P2] | 1(Y).a{Y)) = vI.(I[P'] |1(Y).a(Y))
which satisfies X3’s definition. Moreover, all transitions of P; or P, in X3 can be
matched by the other, hence preserving the membership in A. Finally, a subprocess
VI.([P] | 1(Y).a(Y")) of rhs of X5 can do a 7 transition to a{‘P>) and the residues
belong back to As.

This concludes the proof of behavioural equivalence of the original processes ¢(X).
run(X) and ¢(X).va.(a(X)Wwf.(fla(X).run(X)] | f(Y).frun(Y))])).

5 Discussion and Future Work

In the original higher-order 7-calculus with passivation described by Lenglet ef al. [7],
terms are identified with processes: its syntax is just P := 0| X | a(X).P | a(P).P |
(P|P) | a[P] | va.P | !P. We conjecture that it is also possible to develop sound envi-
ronmental bisimulations (and up-to context, etc.) for this version of HO#P, as we [12]
did for the standard higher-order 7-calculus. However we chose not to cover directly the
original higher-order 7-calculus with passivation, for two reasons: (1) the proof method
of [12]] which relies on guarded processes and a factorisation trick using the spawn-
ing clause of the bisimulation is inadequate in the presence of locations; (2) there is a
very strong constraint in clause 4 of up-to context in [12, Definition E.1 (Appendix)]
(the context has no hole for terms from £). By distinguishing processes from terms, not
only is our up-to context method much more general, but our proofs are also direct and
technically simple. Although one might argue that the presence of the run operator is a
burden, by using Definition[3] one could devise an “up-to run” technique and abstract
run(. .. ‘run(‘P)) as P, making equivalence proofs easier to write and understand.

As described in Remark[]] removing the limitation on the environments is left for fu-
ture work. We also plan to apply environmental bisimulations to (a substantial subset of)
the Kell calculus so that we can provide a practical alternative to context bisimulations
in a more expressive higher-order distributed process calculus. In the Kell calculus, lo-
cations are not transparent: one discriminates messages on the grounds of their origins
(i.e. from a location above, below, or from the same level). For example, consider the
(simplified) Kell processes P = a{M).!b[a] and Q@ = a(N).!b[a] where M = a and
N = 0. They seem bisimilar assuming environmental bisimulations naively like those
in this paper: intuitively, both P and () can output (respectively M and N) to channel a,
and their continuations are identical; passivation of spawned [[M] and [[N] for known
location [would be immediately matched; finally, the output to channel a under [, turn-
ing P’s spawned [[M] into [[0], could be matched by an output to a under b by Q’s
replicated b[a]. However, M and N behave differently when observed from the same
level (or below), for example as in {[M | a(Y").ok] and I[N | a(Y").0k] even under the
presence of !b[a]. More concretely, the context [-]1 |a(X).c[X |a(Y).ok] distinguishes P
and @, showing the unsoundness of such naive definition. This suggests that, to define
sound environmental bisimulations in Kell-like calculi with non-transparent locations,

Sound Bisimulations for Higher-Order Distributed Process Calculus 137

we should require a stronger condition such as bisimilarity of M and N in the output
clause. Developments on this idea are in progress.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS,
vol. 1378, pp. 140-155. Springer, Heidelberg (1998)

Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Information
and Computation 173, 82—120 (2002)

Hewlett-Packard: Live migration across data centers and disaster tolerant virtualiza-
tion architecture with HP storageworks cluster extension and Microsoft Hyper-V,
http://h20195.www2 . hp.com/V2/GetPDF .aspx/4AA2-6905ENW. pdf
Hildebrandt, T., Godskesen, J.C., Bundgaard, M.: Bisimulation congruences for Homer: a
calculus of higher-order mobile embedded resources. Technical Report TR-2004-52, IT Uni-
versity of Copenhagen (2004)

Honda, K., Yoshida, N.: On reduction-based process semantics. Theoretical Computer Sci-
ence 151(2), 437486 (1995)

Howe, D.J.: Proving congruence of bisimulation in functional programming languages
(1996)

Lenglet, S., Schmitt, A., Stefani, J.-B.: Normal bisimulations in calculi with passivation. In:
de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 257-271. Springer, Heidelberg
(2009)

Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge University
Press, Cambridge (1999)

Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis, University of Edinburgh (1992)

Sangiorgi, D.: Bisimulation for higher-order process calculi. Information and Computa-
tion 131, 141-178 (1996)

Sangiorgi, D.: The w-calculus: a Theory of Mobile Processes. Cambridge University Press,
Cambridge (2001)

Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-order lan-
guages. In: Proceedings of the Twenty-Second Annual IEEE Symposium on Logic in Com-
puter Science, pp. 293-302 (2007)

Sato, N., Sumii, E.: The higher-order, call-by-value applied pi-calculus. In: Hu, Z. (ed.)
APLAS 2009. LNCS, vol. 5904, pp. 311-326. Springer, Heidelberg (2009)

Schmidt, D., Dhawan, P.: Live migration with Xen virtualization software,
http://www.dell.com/downloads/global /power/ps2g06-20050322—
Schmidt-OE.pdf

Schmitt, A., Stefani, J.-B.: The kell calculus: A family of higher-order distributed process
calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 146-178. Springer,
Heidelberg (2005)

Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. Theoretical Computer Sci-
ence 375(1-3), 169-192 (2007); Extended abstract appeared in Proceedings of 31st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 161—
172 (2004)

Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. Journal of
the ACM 54, 1-43 (2007); Extended abstract appeared in Proceedings of 32nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 63—
74 (2005)

http://h20195.www2.hp.com/V2/GetPDF.aspx/4AA2-6905ENW.pdf
http://www.dell.com/downloads/global/power/ps2q06-20050322-Schmidt-OE.pdf
http://www.dell.com/downloads/global/power/ps2q06-20050322-Schmidt-OE.pdf

Deriving Labels and Bisimilarity
for Concurrent Constraint Programming™

Andrés Aristizabal!, Filippo Bonchi?, Catuscia Palamidessi!,
Luis Pino!, and Frank Valencia®

! Comete, LIX, Laboratoire de 1'Ecole Polytechnique associé a I'INRIA
2 CNRS - Laboratoire de I"Informatique du Parallélisme, ENS Lyon

Abstract. Concurrent constraint programming (ccp) is a well-established model
for concurrency. Bisimilarity is one of the central reasoning techniques in
concurrency. The standard definition of bisimilarity, however, is not completely
satisfactory for ccp since it yields an equivalence that is too fine grained. By
building upon recent foundational investigations, we introduce a labelled transi-
tion semantics and a novel notion of bisimilarity that is fully abstract w.r.t. the
typical observational equivalence in ccp.

Introduction

Concurrency is concerned with systems of multiple computing agents, usually called
processes, that interact with each other. Process calculi treat processes much like the
A-calculus treats computable functions. They provide a language in which processes
are represented by terms, and computational steps are represented as transitions be-
tween them. These formalisms are equipped with equivalence relations that determine
what processes are deemed indistinguishable. Bisimilarity is one of the main represen-
tative of these. It captures our intuitive notion of process equivalence; two processes are
equivalent if they can match each other’s moves. Furthermore, it provides an elegant
co-inductive proof technique based on the notion of bisimulation.

Concurrent Constraint Programming (ccp) [26] is a well-established formalism that
combines the traditional algebraic and operational view of process calculi with a declar-
ative one based upon first-order logic. In ccp, processes interact by adding (or telling)
and asking information (namely, constraints) in a medium (the store). Ccp is paramet-
ric in a constraint system indicating interdependencies (entailment) between constraints
and providing for the specification of data types and other rich structures. The above fea-
tures have recently attracted a renewed attention as witnessed by the works [[23/915/4]]
on calculi exhibiting data-types, logic assertions as well as tell and ask operations.

There have been few attempts to define a notion of bisimilarity for ccp. The ones
we are aware of are those in [26] and [19] upon which we build. These equivalences
are not completely satisfactory: We shall see that the first one may tell apart processes
with identical behaviour, while the second quantifies over all possible inputs from the
environment, and hence it is not clear whether it can lead to a feasible proof technique.

* This work has been partially supported by the project ANR-09-BLAN-0169-01 PANDA and
by the INRIA DRI Equipe Associée FORCES.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 1381152.}o11.
(© Springer-Verlag Berlin Heidelberg 2011

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 139

The goal of this paper is to define a notion of bisimilarity for ccp which will allow to
benefit of the feasible proof and verification techniques typically associated with bisim-
ilarity. Furthermore, we aim at studying the relationship between this equivalence and
other existing semantic notions for ccp. In particular, its elegant denotational character-
ization based on closure operators [27] and the connection with logic [19].

Labels and Bisimilarity from Reductions. Bisimilarity relies on labelled transitions:
each evolution step of a system is tagged by some information aimed at capturing
the possible interactions of a process with the environment. Nowadays process calculi
tend to adopt reduction semantics based on unlabelled transitions and barbed congru-
ence [21]. The main drawback of this approach is that to verify barbed congruences it
is often necessary to analyze the behaviour of processes under every context.

This scenario has motivated a novel stream of research [29)18)/11/28)7,25l13,6] aimed
at defining techniques for “deriving labels and bisimilarity” from unlabeled reduction
semantics. The main intuition is that labels should represent the “minimal contexts al-
lowing a process to reduce”. The theory of reactive systems by Leifer and Milner [18]]
provides a formal characterization (by means of a categorical construction) of such
“minimal contexts” and it focuses on the bisimilarity over transition systems labeled as:

PSS piffC [P] — P’ and C is the minimal context allowing such reduction.
In [[706]], it is argued that the above bisimilarity is often too fine grained and an alter-
native, coarser, notion of bisimilarity is provided. Intuitively, in the bisimulation game,

each move (transition) P —— P, has to be matched it with a move C Q — Q.

Labels and Bisimilarity for ccp. The operational semantics of ccp is expressed by re-
ductions between configurations of the form (P, d) — (P’, d’) meaning that the pro-
cess P with store d may reduce to P’ with store d’. From this semantics we shall derive
a labeled transition system for ccp by exploiting the intuition of [29l/18]. The transition
(P,d) -5 (P’ d’) means that e is a “minimal constraint” (from the environment) that
needs to be added to d to reduce from (P, d) into (P’,d’).

Similar ideas were already proposed in [26] but, the recent developments in [6] en-
lighten the way for obtaining a fully abstract equivalence. Indeed, the standard notion
of bisimilarity defined on our labeled semantics can be seen as an instance of the one
proposed in [[18]. As for the bisimilarity in [26], it is too fine grained, i.e., it separates
processes which are indistinguishable. Instead, the notion of bisimulation from [6] (in-
stantiated to the case of ccp) is fully abstract with respect to the standard observational
equivalence given in [27]. Our work can therefore be also regarded as a compelling
application of the theory of reactive systems.

Contributions. We provide a labelled transition semantics and a novel notion of la-
belled bisimilarity for ccp by building upon the work in [26l6]. We also establish a
strong correspondence with existing ccp notions by providing a fully-abstract charac-
terization of a standard observable behaviour for infinite ccp processes: The limits of
fair computations. From [27] this implies a fully-abstract correspondence with the clo-
sure operator denotational semantics of ccp. Therefore, this work provides ccp with a
new co-inductive proof technique, coherent with the existing ones, for reasoning about
process equivalence.
Missing proofs and additional examples are in [[1]].

140 A. Aristizabal et al.

1 Background

In this section we recall the syntax, the operational semantics and the observational
equivalence of concurrent constraint programming (ccp). We begin with the notion of
constraint system. We presuppose some basic knowledge of domain theory (see [2]).

1.1 Constraint Systems

The ccp model is parametric in a constraint system specifying the structure and inter-
dependencies of the information that processes can ask and tell. Following [27010], we
regard a constraint system as a complete algebraic lattice structure in which the or-
dering C is the reverse of an entailment relation (¢ £ d means that d contains “more
information” than c, hence ¢ can be derived from d). The top element false represents
inconsistency, the bottom element true is the empty constraint, and the least upper
bound (lub) U represents the join of information.

Definition 1. A constraint system C is a complete algebraic lattice (Con, Cong, C
, U, true, false) where Con (the set of constraints) is a partially ordered set w.r.t. C,
Cony is the subset of finite elements of Con, L is the lub operation, and true, false are
the least and greatest elements of Con, respectively.

Recall that C is a complete lattice iff every subset of Con has a least upper bound in
Con. An element ¢ € Con is finite iff for any directed subset D of Con, ¢ C | |D
implies ¢ C d for some d € D. C is algebraic iff each element ¢ € Con is the least
upper bound of the finite elements below c.

In order to model hiding of local variables and parameter passing, in [27]] the notion
of constraint system is enriched with cylindrification operators and diagonal elements,
concepts borrowed from the theory of cylindric algebras (see [[14]).

Let us consider a (denumerable) set of variables Var with typical elements z, y, z, . . .
Define 3y, as the family of operators Iy, = {3, | * € Var} (cylindric operators)
and Dy, as the set Dy, = {dyy | z,y € Var} (diagonal elements).

A cylindric constraint system over a set of variables Var is a constraint system whose
support set Con 2 Dy, is closed under the cylindric operators Jy,,- and quotiented
by Axioms C1 — C4, and whose ordering C satisfies Axioms C5 — C7 :

C1. 3,3,c = 3,3,c C2. d,, = true
C3. if z # z,y then dpy = 3, (dy> U d.y) C4. Ip(cU Ipd) = FpcU3d
C5.3,¢cC ¢ C6.ifc C d then 3¢ C 3,d CT. if & # y then ¢ T dyy U Iz (c U dyy)

where ¢, ¢;, d indicate finite constraints, and 3¢ Ul d stands for (3,¢) U d. For our
purposes, it is enough to think the operator 3, as existential quantifier and the constraint
dyy as the equality z = y.

We assume notions of free variable and of substitution that satisfy the following
conditions, where c[y/x] is the constraint obtained by substituting = by y in ¢ and
fu(c) is the set of free variables of ¢: (1) if y ¢ fu(c) then (cly/z])[x/y] = ¢ (2)
(cUd)ly/z] = cly/x]Udly/z]; 3) x & fo(cly/z]); @) fo(cUd) = fo(c) U fo(d).

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 141

We now define the cylindric constraint system that will be used in all the examples.

Example 1 (The S Constraint System). Let S = (w + 1,0, 00, =, <, succ) be a first-

. . L def .
order structure whose domain of interpretation is w + 1 = w U {0}, i.e., the natural

numbers extended with a top element co. The constant symbols 0 and oo are interpreted
as zero and infinity, respectively. The symbols =, < and succ are all binary predicates
on w + 1. The symbol = is interpreted as the identity relation. The symbol < is inter-
preted as the set of pairs (n,m) s.t., n € w, m € w + 1 and n strictly smaller than m.
The symbol succ is interpreted as the set of pairs (n,m) s.t., n,m € wand m =n+ 1.

Let Var be an infinite set of variables. Let £ be the logic whose formulae ¢ are:

Gu=t|d1 ANpa|Jpp and t = e; =ea | €1 < e | succ(er,ez) Where e; and ez

are either 0 or co or variables in Var. Note that formulas like x = norx < n (forn =

1,2,...) do not belong to L. A useful abbreviation to express them is succ™(z, y) def

o - Iyn(Nocicy, succ(yi—1,y:) N = yo Ay = yn). We use & = n as shorthand
for succ™(0,) and x < n as shorthand for 3,(z < y Ay = n).

A variable assignment is a function y : Var — w + 1. We use A to denote the set
of all assignments; P (X) to denote the powerset of a set X, () the empty set and N the
intersection of sets. We use M (¢) to denote the set of all assignments that satisfy the
formula ¢, where the definition of satisfaction is as expected.

We can now introduce a constraint system as follows: the set of constraints is P (.A),
and define ¢ C d iff ¢ D d. The constraint false is @, while true is A. Given two
constraints ¢ and d, cLId is the intersection ¢ d. By abusing the notation, we will often
use a formula ¢ to denote the corresponding constraint, i.e., the set of all assignments
satisfying ¢. E.g. weuse 1 <z C 5 < x to mean M(1 < z) C M(5 < z).

From this structure, let us now define the cylindric constraint system S as follows.
We say that an assignment p’ is an x-variant of p if Vy # z, u(y) = ' (y). Given
x € Var and ¢ € P(A), the constraint 3¢ is the set of assignments p such that exists
i € cthatis an z-variant of . The diagonal element d, is © = y. O

We make an assumption that will be pivotal in SectionBl Given a partial order (C, C),
we say that c is strictly smaller than d (written ¢ C d) if ¢ C d and ¢ # d. We say that
(C,C) is well-founded if there exists no infinite descending chains - -- C ¢, C -+ C
c1 C c¢o. Foraset A C C, we say that an element m € A is minimal in A if for all
a € A, a iZ m. We shall use min(A) to denote the set of all minimal elements of A.
Well-founded order and minimal elements are related by the following result.

Lemma 1. Ler (C,C) be a well-founded order and A C C. If a € A, then Im €
min(A) s.t., m C a.

In spite of its being a reasonable assumption, well-foundedness of (Con,C) is not
usually required in the standard theory of ccp. We require it because the above lemma
is fundamental for proving the completeness of labeled semantics (Lemma[3)).

1.2 Syntax

Concurrent constraint programming (ccp) was proposed in [30] and then refined in
[26127]]. We restrict ourselves to the summation-free fragment of ccp. The distinctive

142 A. Aristizabal et al.

confluent nature of this fragment is necessary for showing that our notion of bisimilarity
coincides with the observational equivalence for infinite ccp processes given in [27].

Definition 2. Assume a cylindric constraint system C=(Con, Cong, C, L, true, false)
over a set of variables Var. The ccp processes are given by the following syntax:

P,Q... == tell(c) |ask(c) > P| P | Q|3 P|p(z)
where ¢ € Cong,x € Var, z € Var®™. We use Proc to denote the set of all processes.

Finite processes. Intuitively, the tell process tell(c) adds c to the global store. The
addition is performed regardless the generation of inconsistent information. The ask
process ask(c) — P may execute P if ¢ is entailed from the information in the store.
The process P || Q stands for the parallel execution of P and Q; 3, is a hiding opera-
tor, namely it indicates that in 3_ P the variable z is local to P. The occurrences of x
in 3, P are said to be bound. The bound variables of P, bv(P), are those with a bound
occurrence in P, and its free variables, fv(P), are those with an unbound occurrence.

Infinite processes. To specify infinite behaviour, ccp provides parametric process def-
initions. A process p(z) is said to be a procedure call with identifier p and actual
parameters z. We presuppose that for each procedure call p(z; ... z,,) there exists a

unique procedure definition possibly recursive, of the form p(x; ... 2y,) P where
fo(P) C {x1,..., 2y} Furthermore we require recursion to be guarded: I.e., each pro-
cedure call within P must occur within an ask process. The behaviour of p(z1 . .. z,,)
is that of Plz1 ...z, /21 ... 2], i.e., P with each z; replaced with z; (applying a-
conversion to avoid clashes). We shall use D to denote the set of all process definitions.

Although we have not defined yet the semantics of processes, we find it instructive
to illustrate the above operators with the following example. Recall that we shall use S
in Ex.[Ilas the underlying constraint system in all examples.

Example 2. Consider the following (family of) process definitions.
def
up, () = 3, (tell(y =n) || ask (y =n) — up(z,y))

up(z,y) = 3, (tell(y < zAsucc®(y,y")) || ask(y < zAsuce®(y,y')) — up(,y')

Intuitively, up,, (), where n is a natural number, specifies that x should be greater than
any natural number (i.e., z = oo since x € w + 1) by telling (adding to the global store)
the constraints ;1 = y; + 2 and y; < x for some yo, y1, . . . with yg = n. The process
upo(z) || ask(42 < z) — tell(z = 0), can set z = 0 when it infers from the global
store that 42 < z. (This inference is only possible after the 22" call to up.) O

1.3 Reduction Semantics

To describe the evolution of processes, we extend the syntax by introducing a process
stop representing successful termination, and a process 3, P representing the evolution
of a process of the form 3, P, where e is the local information (local store) produced
during this evolution. The process 3, P can be seen as a particular case of 35 P: it
represents the situation in which the local store is empty. Namely, 3, P = 3¢ P,

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 143

Table 1. Reduction semantics for ccp (The symmetric Rule for R3 is omitted)

R1 (tell(c),d) — (stop,d U c) R2 ced
(ask (¢) — P,d) — (P,d)

(P,d)y — (P',d") (P,eU3zd) — (P’ e’ LU 3,d)
R3 R4)
(P Q,dy — (P'|| Q,d") (FSP,d) — (35 P',d U Te’)
Plz/x],d) — +
RS (Plz/z].d) 7 where p(x) E pis a process definition in D

(p(2),d) —~'

A configuration is a pair (P, d) representing the state of a system; d is a constraint
representing the global store, and P is a process in the extended syntax. We use Conf
with typical elements 7,~’, ... to denote the set of configurations. The operational
model of ccp can be described formally in the SOS style by means of the transition
relation between configurations — C Conf x Conf defined in Table[1l

Rules R1-R3 and RS are easily seen to realize the above process intuitions. Rule R4
is somewhat more involved. Here, we show an instructive example of its use.

Example 3. We have the below reduction of P = 3¢ (ask (y > 1) — @) where the
local store is e = x < 1, and the global store ' = d U awithd =y >z, =z > 1.

(y>1)Cel 3d
R2

R4 (ask (y > 1) — Q,elTpd) — (Q,ell 3,d")

(P,d")y — (F2Q,d' U3 e)

Note that the = in d’ is hidden, by using existential quantification in the reduction ob-
tained by Rule R2. This expresses that the x in d’ is different from the one bound by the
local process. Otherwise an inconsistency would be generated (i.e., (e U d") = false).
Rule R2 applies since (y > 1) C el 3,d’. Note that the free = in e LI 3,d’ is hidden in
the global store to indicate that is different from the global x. O

1.4 Observational Equivalence

The notion of fairness is central to the definition of observational equivalence for ccp.
To define fair computations, we introduce the notions of enabled and active processes,
following [12]]. Observe that any transition is generated either by a process tell(c) or by
aprocess ask (¢) — (. We say that a process P is active in a transition t = v — ~/
if it generates such transition; i.e if there exist a derivation of ¢ where R1 or R2 are used

144 A. Aristizabal et al.

to produce a transition of the form (P, d) — ~". Moreover, we say that a process P is
enabled in a configuration ~ if there exists v/ such that P is active in v — +/.

Definition 3. A computation vy — ~v1 — Yo — ... is said to be fair if for each
process enabled in some y; there exists j > i such that the process is active in ;.

Note that a finite fair computation is guaranteed to be maximal, namely no outgoing
transitions are possible from its last configuration.

The standard notion of observables for ccp are the results computed by a process for
a given initial store. The result of a computation is defined as the least upper bound of
all the stores occurring in the computation, which, due to the monotonic properties of
ccp, form an increasing chain. More formally, given a finite or infinite computation &
of the form (Qo,do) — (Q1,d1) — (Q2,d2) — ... the result of &, denoted by
Result(£), is the constraint | |, d;. Note that for a finite computation the result coincides
with the store of the last configuration.

The following theorem from [27] states that all the fair computations of a configura-
tion have the same result (due to fact that summation-free ccp is confluent).

Theorem 1 (from [27]). Let v be a configuration and let &1 and &5 be two computations
of v. If &1 and & are fair, then Result(&1) = Result(&2).

This allows us to set Result(7y) et Result(€) for any fair computation £ of ~.

Definition 4. (Observational equivalence) Let O : Proc — Cong — Con be given
by O(P)(d) = Result({P,d)). We say that P and Q are observational equivalent,
written P ~, Q, iff O(P) = O(Q).

Example 4. Consider the processes P = upo(x) || upi(y) and Q = 3, (tell(z = 0) ||

ask(z = 0) — fairup(z,y, z)) with upy and up; as in Ex.Rland fairup(z,y, 2) et

3, (tell(z < z A suce(z,2")) || ask ((z <) A suce(z,2")) — fairup(y, z,2")))

Let s(v) denote the store in the configuration v. For every infinite computation & :
(P, true) = v9 — y1 — ... with (1 < y) IZ s(v;) for each ¢ > 0, £ is not fair and
Result(§) = (x = o0). In contrast, every infinite computation & : (Q, true) = vo —
v1 — ... 1s fair and Result(§) = (x = oo Ay = 0). Nevertheless, under our fair
observations, P and () are indistinguishable, i.e., O(P) = O(Q).]

2 Saturated Bisimilarity for ccp

We introduce a notion of bisimilarity in terms of (unlabelled) reductions and barbs and
we prove that this equivalence is fully abstract w.r.t. observational equivalence.

2.1 Saturated Barbed Bisimilarity

Barbed equivalences have been introduced in [21]] for CCS, and have become the stan-
dard behavioural equivalences for formalisms equipped with unlabeled reduction se-
mantics. Intuitively, barbs are basic observations (predicates) on the states of a system.

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 145

The choice of the “right” barbs is a crucial step in the barbed approach, and it is
usually not a trivial task. For example, in synchronous languages like CCS or 7-calculus
both the inputs and the outputs are considered as barbs, (see e.g. [21)20]), while in the
asynchronous variants only the outputs (see e.g. [3]). Even several works (e.g. [24115])
have proposed abstract criteria for defining “good” barbs.

We shall take as barbs all the finite constraints in C'ong. This choice allows us to
introduce a barbed equivalence (Def.[7) that coincides with the standard observational
equivalence (Def.[)). It is worth to note that in ~,, the observables are all the constraints
in Con and not just the finite ones.

We say that v = (P, d) satisfies the barb ¢, written ~y |, iff ¢ C d; v weakly satisfies
the barb c, written y |, iff ¥ —* 7/ and 7/ | [I.

Definition 5. (Barbed bisimilarity) A barbed bisimulation is a symmetric relation R
on configurations such that whenever (y1,72) € R:

(i) if 71 L then vz |,
(ii) if y1 — 7| then there exists v} such that 5 — 4 and (v1,7%) € R.

We say that v1 and o are barbed bisimilar, written v, ~y 7o, if there exists a barbed
bisimulation R s.t. (y1,72) € R. We write P ~, Q iff (P, true) ~p (Q, true).

Congruence characterization. One can verify that ~; is an equivalence. However, it
is not a congruence; i.e., it is not preserved under arbitrary contexts. A context C' is a

term with a hole [—] s.t., replacing it with a process P yields a process term C[P]. E.g.,
C =tell(c) || [-] and C[tell(d)] = tell(c) || tell(d).

Example 5. Let us consider the context C' = tell(a) || [—] and the processes P =
ask (b) — tell(d) and @ = ask (¢) — tell(d) with a,b,¢,d # true,b C a and
¢ £ a. We have (P, true)~y(Q, true) because both configurations cannot move and
they only satisfy the barb true. But (C[P], true) #,{C[Q), true), because the former
can perform three transitions (in sequence), while the latter only one. g

An elegant solution to modify bisimilarity for obtaining a congruence has been in-
troduced in [22] for the case of weak bisimilarity in CCS. This work has inspired the
introduction of saturated bisimilarity 7] (and its extension to the barbed approach [6]]).
The basic idea is simple: saturated bisimulations are closed w.r.t. all the possible con-
texts of the language. In the case of ccp, it is enough to require that bisimulations are
upward closed as in condition (4i%) below.

Definition 6. (Saturated barbed bisimilarity). A saturated barbed bisimulation is a
symmetric relation R on configurations such that whenever (y1,7v2) € R with 1 =
(P,d) and 2 = (@, ¢):

(i) if 11 Lethenya |,
(ii) if y1 — 7| then there exists v such that 5 — 5 and (v1,7%) € R,

(iii) for every a € Cong, ((P,dUa),{(Q,eUa)) € R.

We say that v, and o are saturated barbed bisimilar, written 1 ~g, 7o, if there
exists a saturated barbed bisimulation R s.t. (y1,72) € R. We write P ~g, Q iff
(P, true)~ . (Q, true).

! As usual, —* denotes the reflexive and transitive closure of —.

146 A. Aristizabal et al.

Definition 7. (Weak saturated barbed bisimilarity). Weak saturated barbed bisimilarity
(%) is obtained from Def.[8 by replacing — with —* and | . with ..

Since ~y, is itself a saturated barbed bisimulation, it is obvious that it is upward closed.
This fact also guarantees that it is a congruence w.r.t. all the contexts of ccp: a context
C can modify the behaviour of a configuration y only by adding constraints to its store.
The same holds for ~ ;.

2.2 Correspondence with Observational Equivalence

We now show that =, coincides with the observational equivalence ~,. From [27] it
follows that %, coincides with the standard denotational semantics for ccp.

First, we recall some basic facts from domain theory central to our proof. Two (pos-
sibly infinite) chains dg T d; C - - Cd, E ... andeg Eeg E --- Ce, C ... are
said to be cofinal if for all d; there exists an e; such that d; T e; and, viceversa, for all
e; there exists a d; such that e; C d;.

Lemma2. Letdg Tdi C---Cd,C...andegCe1 T ---Ce, T ... betwo
chains. (1) If they are cofinal, then they have the same limit, i.e., | |d; = | | e;. (2) If the
elements of the chains are finite and | | d; = | | e;, then the two chains are cofinal.

In the proof, we will show that the stores of any pairs of fair computations of equivalent
processes form pairs of cofinal chains. First, the following result relates weak barbs and
fair computations.

Lemma 3. Let (Py,dy) — (P1,d1) — ... — (Py,d,) — ... be a (possi-
bly infinite) fair computation. If (Py,do) . then there exist a store d; (in the above
computation) such that ¢ C d;.

Theorem 2. P~ ,Q if and only if P=4,Q).
Proof. The proof proceeds as follows:
— From 74, to ~,. Suppose that (P, true) =g (Q,true) and take a finite input
b € Cong. Let
(P,b) — (Py,dp) — (P1,d1) — ... — (Pp,dp) — ...

(Q,b) — (Qo,e0) — (Q1,e1) — ... — (Qn,en) — ...

be two fair computations. Since /=, is upward closed, (P, b) &, (@, b) and thus,
for all d;, (Q,b) q4,. By Lemmal[3] it follows that there exists an e; (in the above
computation) such that d; T e;. Analogously, for all e; there exists a d; such
that e; © d;. Then the two chains are cofinal and by Lemma 211, it holds that
|ld; = |]ei, that means O(P)(b) = O(Q)(b).

— From ~, to &,. Suppose that P ~,). We first show that for all b € Cony, (P, b)
and (Q, b) satisfy the same weak barbs. Let

<P,b> — <P(),d()> — <P1,d1> —_— ... — <Pn,dn> — ...
<Q7b> — <Q0760> — <Q1761> A — <Q’naen> — ...

be two (possibly infinite) fair computations. Since P ~, @, then | |d; = | |e;.
Since all the stores of computations are finite constraints (only finite constraints

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 147

can be added to the store), then by Lemma[l2, it holds that for all d; there exists
an e; such that d; C e;. Now suppose that (P,b) |}.. By Lemma[3 it holds that
there exists a d; (in the above computation) such that ¢ C d;. Thus ¢ C d; T e;
that means (@, b) ..

With this observation it is easy to prove that

R ={(71,72) | Fs.t. (P,b) —* 71, (Q,b) —* 72}

is a weak saturated barbed bisimulation (Def.[7). Take (y1,72) € R.

If 1 | then (P,b) |. and, by the above observation, (@, b) {.. Since ccp is
confluent, also v2 {..

The fact that R is closed under —* is evident from the definition of R. While
for proving that R is upward-closed take v; = (P’,d’) and y; = (Q’, €’). It is easy
to see that for all a € Cong, (P,bUa) —* (P',d' Ua) and (Q,b U a) —*
(@', ¢’ U a). Thus, by definition of R, ((P’,d' U a),(Q',e' Ua)) € R. |

3 Labeled Semantics

Although ~, is fully abstract, it is at some extent unsatisfactory because of the upward-
closure (namely, the quantification over all possible a € Cong in condition (7i7)) of
Def.[6l We shall deal with this by refining the notion of transition by adding to it a label
that carries additional information about the constraints that cause the reduction.

Labelled Transitions. Intuitively, we will use transitions of the form
(P,d) = (P',d)

where label « represents a minimal information (from the environment) that needs to
be added to the store d to evolve from (P, d) into (P’,d'}, i.e., (P,d Ua) — (P',d’).
From a more abstract perspective, our labeled semantic accords with the proposal of
[29/18]] of looking at “labels as the minimal contexts allowing a reduction”. In our
setting we take as contexts only the constraints that can be added to the store.

The Rules. The labelled transition — C Conf x Cong x Conf is defined by the rules
in Table 3l We shall only explain rules LR2 and LR4 as the other rules are easily seen
to realize the above intuition and follow closely the corresponding ones in Table [1l

The rule LR2 says that (ask (¢) — P, d) can evolve to (P, dLl«) if the environment
provides a minimal constraint « that added to the store d entails ¢, i.e., & € min{a €
Cong|c C d U a }. Note that assuming that (Con, C) is well-founded (Sec. [LT) is
necessary to guarantee that « exists whenever {a € Cong|c C dU a } is not empty.

To give an intuition about LR4, it may be convenient to first explain why a naive
adaptation of the analogous reduction rule R4 in Table [Tl would not work. One may be
tempted to define the rule for the local case, by analogy to the labelled local rules in
other process calculi (e.g., the w-calculus) and R4, as follows:

(PeU3pd) % (Q, ¢/ U3,d)
() N / where z & fi(«)
(3P, d) — (35 Q,d U3

148 A. Aristizabal et al.

Table 2. Labelled Transitions (The symmetric Rule for LR3 is omitted)

true

LR1 (tell(c),d) — (stop,d U c)

a € min{a € Cong|cCdUa} (P,d) =5 (P',d')
LR2 LR3

(ask (¢) = P,d) = (P,dUq) (P Q,d) = (P || Q,d)

(P[z/x],e[z/x]Ud) 5 (P’ UdU Q) ,
LR4 ; z e fo(e'),z ¢ fo(P)U fuleUd U)
(3P, dy 5 (AP /2], 3ule[x/2]) Ld U a)

Plz/x|,d N ~ o
LR5 L where p(x) “ pisa process definition in D

(p(2),d) =+

This rule however is not “complete” (in the sense of Lemma [3 below) as it does not
derive all the transitions we wish to have.

Example 6. Let P as in Ex.[3l i.e., P = 32<!(ask (y > 1) — Q)andd =y > .
Note that @ = x > 1 is a minimal constraint that added to d enables a reduction from P.
In Ex. Bl we obtained the transition: (P, d L) — (32<1Q,d U U3, (x < 1)) Thus,
we would like to have a transition from (P, d) labelled with «.. But such a transition
cannot be derived with Rule (*) above since = € fi(a). O

Now, besides the side condition, another related problem with Rule (*) arises from the
existential quantification 3,.d in the antecedent transition (P, elU3,d) —— (Q, €’Li3,.d).
This quantification hides the effect of d on x and thus is not possible to identify the x
in « with the x in d. The information from the environment o needs to be added to the
global store d, hence the occurrences of x in both d and o must be identified. Notice
that dropping the existential quantification of x in d in the antecedent transition does
identify the occurrences of x in d with those in « but also with those in the local store
e thus possibly generating variable clashes.

The rule LR4 in Table[2]solves the above-mentioned issues by using in the antecedent
derivation a fresh variable z that acts as a substitute for the free occurrences of x in P
and its local store e. (Recall that T'[z /x| represents T" with x replaced with z). This way
we identify with z the free occurrences of x in P and e and avoid clashes with those in
a and d. E.g., for the process defined in the Ex[6] using LR4 (and LR2) one can derive

(ask (y > 1) — Qz/a],z<1Uy>z) 23 (Qlz/a],z < 1Uy >z Uz > 1)

(FrHask (y > 1) — Q),y>a) == (FQ,F(z < YUy >zUz > 1)

The labeled semantics is sound and complete w.r.t. the unlabeled one. Soundness states
(03

that (P,d) — (P’,d’) corresponds to our intuition that if « is added to d, P can

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 149

reach (P’, d’). Completeness states that if we add « to (the store in) (P, d) and reduce
to (P’,d'), it exists a minimal information o C a such that (P, d) > (P’,d") with
d'Cd.

Lemma 4. (Soundness). If (P,d) —~ (P',d') then (P,d U &) — (P',d').

Lemma 5. (Completeness). If (P, dUa) — (P’,d') then 3o, bs.t. (P,d) — (P',d")
andoaUlb=aqa, d"Ub=4d

Corollary 1. (P,d) ™S (P'.d') if and only if (P,d) — (P, d').

. . . ¢
By virtue of the above, we will write — to mean e

4 Strong and Weak Bisimilarity

Having defined our labelled transitions for ccp, we now proceed to define an equiva-
lence that characterizes ~;, without the upward closure condition.

When defining bisimilarity over a labeled transition system, barbs are not usually
needed because they can be somehow inferred by the labels of the transitions. For ex-
ample in CCS, P |, iff P —%. The case of ccp is different: barbs cannot be removed
from the definition of bisimilarity because they cannot be inferred by the transitions.
In order to remove barbs from ccp, we could have inserted labels showing the store of
processes (as in [26]]) but this would have betrayed the philosophy of “labels as minimal
constraints”. Then, we have to define bisimilarity as follows.

Definition 8. (Syntactic bisimilarity). A syntactic bisimulation is a symmetric relation
R on configurations such that whenever (y1,72) € R:

(i) if m lathen Y2 le .
(ii) if 1 — 7y} then 34 such that v — ~5 and (v1,7%) € R.

We say that 1 and o are syntactically bisimilar, written v1 ~g s, if there exists a
syntactic bisimulation R such that (y1,72) € R.

We called the above bisimilarity “syntactic”, because it does not take into account the
“real meaning” of the labels. This equivalence coincides with the one in [26] (apart
from the fact that in the latter, barbs are implicitly observed by the transitions) and,
from a more general point of view can be seen as an instance of bisimilarity in [18]] (by
identifying contexts with constraints). In [7], it is argued that the equivalence in [18§]] is
often over-discriminating. This is also the case of ccp, as illustrated in the following.

Example 7. Let P = ask (x < 10) — tellly = 0)and @ = ask (z < 5) —
tell(y = 0). The configurations vy; = <P | Q,true) and vo = (P || P, true) are

not equlvalent according to ~g. Indeed v; — z<1d 1 z<8 =— ¢, while 75 after performing
<1 ; true
Y2 <l ~v4 can only perform 75 — 4. However T s Va2 O

To obtain coarser equivalence (coinciding with ~), we define the following.

Definition 9. (Strong bisimilarity). A strong bisimulation is a symmetric relation R on
configurations such that whenever (y1,7v2) € R with y1 = (P, d) and v2 = (Q, €) :

150 A. Aristizabal et al.

(i) if y1 lcthen vy |,
(i) if 1 —] then 3vh s.t. (Q,eUa) — 74 and (v1,7}) € R.

We say that v1 and o are strongly bisimilar, written 1 ~ 7o, if there exists a strong
bisimulation R such that (y1,72) € R.

To give some intuition about the above definition, let us recall that in (P, d) —— ~' the
label « represents minimal information from the environment that needs to be added to
the store d to evolve from (P, d) into v'. We do not require the transitions from (Q,)
to match «. Instead (ii) requires something weaker: If « is added to the store e, it should
be possible to reduce into some "’ that it is in bisimulation with . This condition is
weaker because & may not be a minimal information allowing a transition from (Q, e)
into a " in the bisimulation, as shown in the previous example.

Definition 10. (Weak bisimilarity). A weak bisimulation is a symmetric relation R on
configurations such that whenever (y1,7v2) € R with y1 = (P, d) and v2 = (Q, €) :

(i) ify1 lc theny2 |,
(i1) if y1 ~ 7} then T} s.t. (@, e Lia) —* 74 and (+},7) € R.

We say that vy, and vy are weakly bisimilar, written vy, = 7y, if there exists a weak
bisimulation R such that (y1,72) € R.

Example 8. We can show that tell(true) & ask(c) — tell(d) when d C c. Intuitively,
this corresponds to the fact that the implication ¢ = d is equivalent to ¢rue when c
entails d. Let us take 71 = (tell(¢rue), true) and v, = (ask(c) — tell(d), true).

Their labeled transition systems are the following: v frug (stop, true) and v, ——
(tell(d), ¢) frug (stop, ¢). It is now easy to see that the symmetric closure of the

relation R given below is a weak bisimulation.

R ={(v2:m), (72, {stop, true)), ((tell(d), c), (stop, c)), ({stop, ¢), (stop, c))} O

The following theorem states that strong and weak bisimilarity coincide, resp., with
~gp and 24,. Hence 1 and 2 in the above example are also in &, (and, by Thm[2]
also in ~,). It is worth noticing that any saturated barbed bisimulation (Def.[7) relating
~1 and 72 is infinite in dimension, since it has to relate (tell(¢rue), a) and (ask(c) —
tell(d), a) for all constraints a € Conyg. Instead, the relation R above is finite and it
represents (by virtue of the following theorem) a proof also for 1~ y2.

Theorem 3. ~y, = ~and=y, = ~.

5 Conclusions, Related and Future Work

In this paper we introduced labeled semantics and bisimilarity for ccp. Our equivalence
characterizes the observational semantics introduced in [27] based on limits of infi-
nite computations, by means of a co-inductive definition. It follows from [27] that our
bisimilarity coincides with the equivalence induced by the standard closure operators

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 151

semantics of ccp. Therefore, our weak bisimulation approach represents a novel sound
and complete proof technique for observational equivalence in ccp.

Our work is also interesting for the research programme on “labels derivation”. Our
labeled semantics can be regarded as an instance of the one introduced at an abstract
level in [18]. Syntactical bisimulation (Def.[g)) as an instance of the one in [18]], while
strong and weak bisimulations (Def.[Bland Def.[TQ) as instances of those in [6]]. Further-
more, syntactical bisimulation intuitively coincides with the one in [26], while saturated
barbed bisimulation (Def. [6) with the one in [19]. Recall that syntactical bisimilarity is
too fine grained, while saturated barbed bisimulation requires the relation to be upward
closed (and thus, infinite in dimension). Our weak bisimulation instead is fully abstract
and avoid the upward closure. Summarizing, the framework in [6] provides us an ab-
stract approach for deriving a novel interesting notion of bisimulation.

It is worth noticing that the restriction to the summation-free fragment is only needed
for proving the coincidence with [27]. The theorem in Section 2.1] still holds in the
presence of summation. Analogously, we could extend all the definitions to infinite
constraints without invalidating these theorems.

Some recent works [9l17l16] have defined bisimilarity for novel languages featuring
the interaction paradigms of both ccp and the w-calculus. In these works, bisimilarity
is defined starting from transition systems whose labels represent communications in
the style of the m-calculus. Instead we employ barbs on a purely unlabeled semantics.
Preliminary attempts have shown that defining a correspondence with our semantics is
not trivial. We left this for an extended version of the paper.

As shown e.g. in [19] there are strong connections between ccp processes and logic
formulae. As future work we would like to investigate whether our present results can be
adapted to provide a novel characterization of logic equivalence in terms of bisimilarity.
Preliminary results show that at least the propositional fragment, without negation, can
be characterized in terms of bisimilarity.

Finally, we are implementing a checker for our equivalence by employing []].

References

1. Extended version. Technical report,
http://www.lix.polytechnique.fr/ luis.pino/files/
FOSSACSll-extended.pdf

2. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Science, pp.
1-168. Clarendon Press, Oxford (1994)

3. Amadio, R.M., Castellani, 1., Sangiorgi, D.: On bisimulations for the asynchronous pi-
calculus. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 147—
162. Springer, Heidelberg (1996)

4. Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS, pp. 332-341. IEEE
Computer Society, Los Alamitos (2010)

5. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: Mobile processes, nominal
data, and logic. In: LICS, pp. 39-48 (2009)

6. Bonchi, F., Gadducci, F., Monreale, G.V.: Reactive systems, barbed semantics, and the mo-
bile ambients. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 272-287.
Springer, Heidelberg (2009)

http://www.lix.polytechnique.fr/~luis.pino/files/FOSSACS11-extended.pdf
http://www.lix.polytechnique.fr/~luis.pino/files/FOSSACS11-extended.pdf

152

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

A. Aristizabal et al.

Bonchi, F., Konig, B., Montanari, U.: Saturated semantics for reactive systems. In: LICS, pp.
69-80 (2006)

Bonchi, F., Montanari, U.: Minimization algorithm for symbolic bisimilarity. In: Castagna,
G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 267-284. Springer, Heidelberg (2009)

Buscemi, M.G., Montanari, U.: Open bisimulation for the concurrent constraint pi-calculus.
In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 254-268. Springer, Heidelberg
(2008)

de Boer, E.S., Pierro, A.D., Palamidessi, C.: Nondeterminism and infinite computations in
constraint programming. Theor. Comput. Sci. 151(1), 37-78 (1995)

Ehrig, H., Konig, B.: Deriving bisimulation congruences in the DPO approach to graph
rewriting. In: Walukiewicz, 1. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 151-166.
Springer, Heidelberg (2004)

Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Confluence in concurrent con-
straint programming. Theor. Comput. Sci. 183(2), 281-315 (1997)

Di Gianantonio, P., Honsell, F., Lenisa, M.: Rpo, second-order contexts, and lambda-
calculus. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 334-349. Springer,
Heidelberg (2008)

Henkin, J.M.L., Tarski, A.: Cylindric Algebras (Part I). North-Holland, Amsterdam (1971)
Honda, K., Yoshida, N.: On reduction-based process semantics. Theor. Comput. Sci. 151(2),
437-486 (1995)

Johansson, M., Bengtson, J., Parrow, J., Victor, B.: Weak equivalences in psi-calculi. In:
LICS, pp. 322-331 (2010)

Johansson, M., Victor, B., Parrow, J.: A fully abstract symbolic semantics for psi-calculi.
CoRR, abs/1002.2867 (2010)

Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243-258. Springer, Heidelberg
(2000)

Mendler, N.P., Panangaden, P., Scott, P.J., Seely, R.A.G.: A logical view of concurrent con-
straint programming. Nord. J. Comput. 2(2), 181-220 (1995)

Milner, R.: Communicating and mobile systems: the 7-calculus. Cambridge University
Press, Cambridge (1999)

Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS,
vol. 623, pp. 685-695. Springer, Heidelberg (1992)

Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for ccs.
FI 16(1), 171-199 (1992)

Palamidessi, C., Saraswat, V.A., Valencia, F.D., Victor, B.: On the expressiveness of linearity
vs persistence in the asychronous pi-calculus. In: LICS, pp. 59-68 (2006)

Rathke, J., Sassone, V., Sobocinski, P.: Semantic barbs and biorthogonality. In: Seidl, H. (ed.)
FOSSACS 2007. LNCS, vol. 4423, pp. 302-316. Springer, Heidelberg (2007)

Rathke, J., Sobocinski, P.: Deconstructing behavioural theories of mobility. In: IFIP TCS,
vol. 273, pp. 507-520. Springer, Heidelberg (2008)

Saraswat, V.A., Rinard, M.C.: Concurrent constraint programming. In: POPL, pp. 232-245
(1990)

Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent constraint
programming. In: POPL, pp. 333-352 (1991)

Sassone, V., Sobocinski, P.: Reactive systems over cospans. In: LICS, pp. 311-320 (2005)
Sewell, P.: From rewrite rules to bisimulation congruences. In: Sangiorgi, D., de Simone, R.
(eds.) CONCUR 1998. LNCS, vol. 1466, pp. 269-284. Springer, Heidelberg (1998)
Saraswat, V.A.: Concurrent Constraint Programming. PhD thesis, Carnegie-Mellon Univer-
sity (1989)

Ordinal Theory for Expressiveness of Well
Structured Transition Systems

Remi Bonnet!, Alain Finkel', Serge Haddad*, and Fernando Rosa-Velardo?**

! Ecole Normale Supérieure de Cachan, LSV, CNRS UMR 8643, Cachan, France
{remi .bonnet ,alain.finkel,serge. haddad}@lsv .ens-cachan.fr
2 Sistemas Informéticos y Computacién, Universidad Complutense de Madrid
fernandorosa@sip.ucm.es

Abstract. To the best of our knowledge, we characterize for the first
time the importance of resources (counters, channels, alphabets) when
measuring expressiveness of WSTS. We establish, for usual classes of
wpos, the equivalence between the existence of order reflections (non-
monotonic order embeddings) and the simulations with respect to
coverability languages. We show that the non-existence of order reflec-
tions can be proved by the computation of order types. This allows us to
solve some open problems and to unify the existing proofs of the WSTS
classification.

1 Introduction

WSTS. Infinite-state systems appear in a lot of models and applications: stack
automata, counter systems, Petri nets or VASSs, reset/transfer Petri nets, fifo
(lossy) channel systems, parameterized systems. Among these infinite-state sys-
tems, a part of them, called Well-Structured Transition Systems (WSTS) [g]
enjoys two nice properties: there is a well partial ordering (wpo) on the set of
states and the transition relation is monotone with respect to this wpo.

The theory of WSTS has been successfully applied for the verification of safety
properties of numerous infinite-state models like Lossy Channel Systems, exten-
sions of Petri Nets like reset/transfer and Affine Well Nets [9], or broadcast
protocols. Most of the positive results are based on the decidability of the cov-
erability problem (whether an upward closed set of states is reachable from the
initial state) for WSTS, under natural effectiveness hypotheses. The reachability
problem, on the contrary, is undecidable even for the class of Petri nets extended
with reset or transfer transitions.

Expressiveness. Well Structured Languages [10] were introduced as a measure
of the expressiveness of subclasses of WSTS. More precisely, the language of an
instance of a model is defined as the class of finite words accepted by it, with

* Authors partially supported by the Agence Nationale de la Recherche, AVERISS
(grant ANR-06-SETIN-001) and AVERILES (grant ANR-05-RNTL-002).

** Author partially supported by the MEC Spanish project DESAFIOS10 TIN2009-
14599-C03-01, and the CAM program PROMETIDOS S2009/TIC-1465.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 153 2011.
© Springer-Verlag Berlin Heidelberg 2011

154 R. Bonnet et al.

coverability as accepting condition, that is, generated by traces that reach a state
which is bigger than a given final state. Convincing arguments show that the
class of coverability languages is the right one. For instance, though reachability
languages are more precise than coverability languages, the class of reachability
languages is RE for almost all Petri Nets extensions containing Reset Petri Nets
or Transfer Petri Nets.

The expressive power of WSTS comes from two natural sources: from the
structure of the state space and from the semantics of the transition relation.
These two notions were often extremely interwined in the proofs. We propose
ourselves to separate them in order to have a formal and generalizable method.

The study of the state space is related to the relevance of resources: A natural
question when confronted to an extension of a model is whether the additional
resources actually yield an increase in expressiveness. For example, if we look at
Timed Automata, clocks are a strict resource: Timed Automata with & clocks
are less expressive that Timed Automata with k 4+ 1 clocks [4]. Surprisingly,
no similar results exist for well-known models like Petri Nets (with respect to
the number of places) or Lossy Channel Systems (with respect to the number
of channels, or number of symbols in the alphabet) except in some particular
recent works [7].

Ordinal theory for partial orders. Ordinals are a well-known representation
of well-founded total orders. Thanks to de Jongh, Parikh, Schmidt ([I1], [I7])
and others, this representation has been extended to well partial orders. We
are mainly interested in the order type of a wpo, which can be understood as
the “size” of the order. The order types of the union, product, and finite words
have been computed since de Jongh and Parikh. Recently, Weiermann [I8] has
completed this view by computing the order type for multisets.

Contribution. First, we introduce order reflections, a variation of order em-
beddings that are allowed to be non-monotonic. We define a notion of witnessing,
that reflects the ability of a WSTS to recognize a wpo through a coverability
language. We establish the equivalence between the existence of order reflections
and the simulations with respect to coverability languages, modulo the ability
of the WSTS classes to witness their own state space.

Second, we show how to use results from the theory of ordinals, and more
precisely the properties of maximal order types, studied by de Jongh and Parikh
[11] and Schmidt [I7] to easily prove the absence of reflections.

Last, we study Lossy Channel Systems and extensions of Petri Nets. We show
that most of known classes of WSTS are self-witnessing. This allows us to unify
and simplify the existing proofs regarding the classification of WSTS, also solving
the open problem [I5] of the relative expressiveness of two Petri Nets extensions
called v-Petri Nets and Data Nets, also yielding that the number of unbounded
places for these Petri Nets extensions and the size of the alphabet for Lossy
Channel Systems are relevant resources when considering their expressiveness.

Related work. Coverability languages have been used to discriminate the ex-
pressive power of several WSTS, like Lossy Channel Systems or several mono-
tonic extensions of Petri Nets. In [I0] several pumping lemmas are proved to

Ordinal Theory for Expressiveness of Well Structured Transition Systems 155

discriminate between extensions of Petri Nets. In [II2] the expressive power of
Petri Nets is proved to be strictly below that of Affine Well Nets, and Affine
Well Nets are proved to be strictly less expressive than Lossy Channel Systems.
Similar results are obtained in [15], though some significant problems are left
open, like the distinction between v-Petri Nets [14] and Data Nets [13] that we
solve here.

Outline. The rest of the paper is organized as follows. In Section 2l we introduce
wpos, WSTS and ordinals. Then in Section Blwe develop the study of reflections
and its links with expressiveness of WSTS. Afterwards in Section [we apply our
result to the classical models of Petri Nets and Lossy Channel Systems. Section [B]
presents the extension of our results applicable to more recent models of WSTS.
Finally we conclude and give perspectives to this work in Section [l

For lack of space, some proofs have been omitted. We refer the interested
reader to [6] that contains the appendices with all proofs.

2 Preliminaries and WSTS

Well Orders. (X,<x) is a quasi-order (qo) if <x is a reflexive and transitive
binary relation on X. For a qo we write z <x y iff z <x y and y Lx x. A partial
order (po) is an antisymmetric quasi-order. Given any qo (X, <x), the quotient
set X/ =<, is a po where © =< y is defined by <x y Ay <x z. Hence, in
all the paper, we will suppose that (X, <x) is a po.

The downward closure of a subset A C X is defined as |[A={r e X |3’ €
A, x <az'}. A subset A is downward closed iff |[A = A. A po (X,<x) is a well
partial order (wpo) if for every infinite sequence g, 21, ... € X there are i and
J with 7 < j such that z; < z;. Equivalently, a po is a wpo when there are no
strictly decreasing (for inclusion) sequences of downward closed sets.

We will shorten (X, <x) to X when the underlying order is obvious. Similarly,
< will be used instead of <x when X can be deduced from the context.

If X and Y are wpos, their cartesian product, denoted X x Y is well ordered
by (x,y) <xxvy (¢',y) <= z <x 2’ Ay <y y'. Their disjoint union, denoted
X WY is well ordered by:

2,2 e X . {Z,Z’GY

’
z < 2 =
>XWY {Z SX P 2 <y P

A po (X, <) is total (or linear) if for any x,2’ € X either x < 2/ or 2/ < . If
(X, <;) are total po for i € N we can define the (irreflexive) total order <j, in
U X1 % oo x X by (21,0, 2p) <iew (7, .., 25) iff there is i € {17;..,mm(p, q)}

such that z; = 2 for j <i and z; <; @ or (z1,...,xp) = (21, ...,23,) and g > p.

Then <j., given by x <je, 2’ iff x = 2’ or x <j, o’ is a total order.

Functions. Given a partial function (shortly: function) f : X — Y, the domain
of f is defined by dom(f) = {«# € X | Jy € Y, f(z) = y} and its range
by range(f) = {y € Y | 3z € X, f(x) = y}. A function f is surjective if
range(f) =Y and it is total if dom(f) = X. Total functions are called mappings.
A mapping [is injective if for all z,2', f(z) = f(2') = =z = 2/. Finally, let

156 R. Bonnet et al.

us consider a mapping f: if X and Y are ordered, f is increasing (resp. strictly
increasing) if ¥ <x y = f(x) <y f(y) (resp. if v <x y = f(z) <y f(y));
f is an order embedding (shortly: embedding) if f(z) <y f(z') <= =z <x a'. A
bijective order embedding is called an order isomorphism (shortly: isomorphism).
Multisets. Given a set X, we denote by X® the set of finite multisets of
X, that is, the set of mappings m : X — N with a finite support sup(m) =
{z € X | m(z) # 0}. We use the set-like notation {|...[} for multisets when
convenient, with {|z"[} describing the multiset containing = n times. We use +
and — for multiset operations. If X is a wpo then so is X® ordered by < defined
by {|lz1,...,zal} <@ {zi,...,2,,|} if there is an injection h : {1,...,n} —
{1,...,m} such that z; <x zj,, for each i € {1,...,n}.

Words. Given a set X, any v = x1---x, with n > 0 and z; € X, for all
i, is a finite word on X. We denote by X* the set of finite words on X. If
n = 0 then wu is the empty word, which is denoted by €. A language L on X is
a subset of X*. Given L and L’ two languages on X*, we define the language
LL ={uv|ue L,ve L'}.If X is a wpo then so is X* ordered by <x- which is
defined as follows: z ...z, <x- x} ...z}, if there is a strictly increasing mapping
h:{l,...,n} —{1,...,m} such that x; <x @}, for eachi € {1,...,n}.

Ordinals below ¢y. In this paper, we shall work with set theoretical ordinals.
Let us recall a few properties of these objects. The class of ordinals is totally
ordered by inclusion, and each ordinal « is equal to the set of ordinals {8 | § <
a} below it. Every total well order (X, <x) is isomorphic to a unique ordinal
ot(X,<x), called the order type of X.

In the context of ordinals, we define 0 = @), n = {0,....,n — 1} and w = N,
ordered by the usual order. Moreover, given « and o’ ordinals, we define o + o/
as the order type of ({0} x a) U ({1} x ') ordered by <;e,. In the same way,
a * o' is defined as the order type of o’ x a ordered by <j,. Note that these
operations are not commutative: we have 1 + w = w # w + 1. This definition
of + and * coincides with the usual operations on N for ordinals below w and

we have a + K + a = a * k. Exponentiation can be similarly defined, but for
simplicity of presentation, we let this definition outside this short introduction
to ordinals. Note that the most important properties of exponentiation can be
obtained from the ordering on Cantor’s Normal Forms (CNF) that we develop
below.

In this paper, we will “yvork with ordinals below ¢p, that is, those that can be

bounded by a tower w® . These can be represented by the hierarchy of ordinals
in CNF that is recursively given by the following rules:
Co ={0}.

Cn+1:{wa1+~-~—|—w% | peN, oL, ...,0p €0y anda12~~2ap}ordered
by:

’ !’
Wt w <wN et wT = (e, 0p) Sper (A, Q)

Each ordinal below € has a unique CNF. If & = w?' + ... + w’* we denote by
Cantor(a) the multiset {|f1, ..., Bul}-

Ordinal Theory for Expressiveness of Well Structured Transition Systems 157

WSTS. A Labelled Transition System (LTS) is a tuple § = (X, X, —) where
X is the set of states, X is the labelling alphabet and —=C X x (XU {e}) x X
is the transition relation. We write z % 2/ to say that (z,a,2’) €—. This
relation is extended for u € X* by 2 — 2/ <= & —5 21..25-1 —5 2/ and
u = ajag---ar (note that some a;’s can be €). A Well Structured Transition
System (shortly a WSTS) is a tuple S = (X, X, —, <), where (X, Y, —) is an
Its, and < is a wpo on X, satisfying the following monotonicity condition: for all
x1, 20,2} € X,u € X%, x1 < 2, x1 5 x5 implies the existence of 25, € X such
that 2} - 25 and 2o < z4. For a class X of wpos, we will denote by WSTSx
the class of WSTS with state space in X, or just WSTS x for WSTSx;.

Coverability and Reachability Languages. Trace languages, reachability
languages and coverability languages are natural candidates for measuring the
expressive power of classes of WSTS. Given a WSTS S and two states zg and
z ¢, the reachability language is Lr(S, w0, 7s) = {u € X* | zo—>z;} while the
coverability language is L(S, zo, zf) = {u € X* | o>, = > x4 }. Let us remark
that all trace languages are coverability languages in taking x; =1 where L is
the least element of X.

The class of reachability languages is the set of recursively enumerable lan-
guages for almost all Petri nets extensions containing reset Petri nets or transfer
Petri nets. Thus such a criterium does not discriminates sufficiently . One could
consider infinite coverability languages. A sensible accepting condition in this
case could be repeated coverability, that is, the capacity of covering a given
marking infinitely often, in the style of Biichi automata. However, analogously
to what happens with reachability, repeated coverability is generally undecid-
able, which makes w-languages a bad candidate to study the relative expressive
power of WSTS. In conclusion, we will use the class of coverability languages,
as in [TOTRITH].

For two classes of WSTS, S; and Sy, we write S; < S, whenever for every
language L(S1,x1,2)) with &1 € Sq, and 1, 2] two states of 81, there exists
another system Sy € Sy and two states xo,xh of Sy such that L(Ss,z2,25) =
L(S1,21,2)). When S; < S and Sy < Sy, one denotes the equivalence of classes
by S1 ~ Ss. We write S; < Sy for S; < S, and Sy f S;.

The Lossy semantics. The lossy semantics §; of a WSTS S with space X
is the original system S completed by all e-transitions z-5y, for all z,y € X
such that y < x. We observe that S; satisfies the monotonicity condition, hence
S; is still a WSTS; and moreover, due to the lossy semantics, one has: for all
x1,29 € X,u € X*, 152 implies 1} for all 25, < 5. For any 2o, Tf, We
have: L(S,zo, xf) = L(S;, zo, xy).

3 A Method for Comparing WSTS

In this section we propose a method to compare the expressiveness of WSTS
mainly based on their state space. We will prove some results that will provide
us with tools to establish strict relations between classes of WSTS.

158 R. Bonnet et al.

3.1 A New Tool: Order Reflections

Definition 1. Let (X, <x) and (Y, <y) be two partially ordered sets. A mapping
v : X — Y is an order reflection (shortly: reflection) if p(x) <y @(a') implies
x<xa foralz,z’ € X.

We will write X T Y if there is an embedding from X to Y and X C,.¢ Y if
there is a reflection from X to Y. We will use £ and Z,..; for their negation and
C and Crey for their antisymmetric version (ie. X CY <= X CYAY Z X).
Here are some basic properties of reflections we will use throughout the paper:
for any set X, any injective mapping to (X, =) is a reflection; every reflection is
injective; the composition of two reflections is a reflection (so C,. f1isa qo).

Furthermore, if ¢ is an embedding from X to Y then X is isomorphic to
©(X) and hence can be identified to it. Clearly, existence of embeddings are a
stronger requirement than the existence of reflections. In particular, it can be
the case that a wpo X cannot be embedded in another wpo Y, even if there are
reflections from X to Y, as implied by the following result.

Proposition 1. The following properties hold:

-NF C,ept N®| for any k > 0.
-NF Z N® for any k >3 (but N2 C N9),

3.2 Expressiveness of WSTS and Order Reflections

Reflections are more appropriate than embeddings for the comparison of WSTS.
In particular, the existence of a reflection implies the relation between the cor-
responding classes of WSTS.

Theorem 1. Let X and Y be two wpo. We have:

XCepnY = WSTS x < WSTSy

This is easily shown by taking a WSTS of state space X, looking at its lossy
equivalent through the order reflection, and realizing this is another WSTS which
recognizes the same language. The detailed proof is in the appendix of [6].

We would like to obtain the converse of the previous result: X Z,.5; ¥ =
WSTSx £ WSTSy. First, we only present this result for “simple” state spaces.
The case of more complex state spaces will be handled in later sections.

Given an alphabet X' = {a1, ..., ar}, we define X' by X' = {aq, - ,ar} where
a;’s are fresh symbols (i.e. ¥ N X =). This notation is extended to words by
u = ay---ar for u = ay---ax € X*. In the same way, given L C X*, we have
L={ulueL}CX".

Definition 2. Let X be a wpo and X a finite alphabet. A surjective partial func-
tion from X* to X is called a X -representation of X. Given a X -representation
v of X, we define L, = {uv | u,v € dom(y) and v(v) < ~v(u)}. A language
L e (ZUX)* is ay-witness (shortly: witness) of X if LN dom(y)dom(y) = L.,.

Ordinal Theory for Expressiveness of Well Structured Transition Systems 159

In particular, L., is a witness of X for any Y-representation vy of X. Intuitively,
given a witness L of X, the fact that a WSTS can recognize L witnesses that
the WSTS can represent the structure of X: it is capable of accepting all words
starting with some wu (representing some state y(u)), followed by some v that
represents y(v) < y(u). Witness languages are useful in proving strict relations
between classes of WSTS:

Theorem 2. Let L be a witness of X. If X Urcs1 Y then there are no yo,yr € Y
and no S € WSTSy such that L = L(S, yo,ys)-

Proof. Assume by contradiction that L is a covering language of a WSTS S
whose state space is Y with yo and ys as initial and final states, respectively.
For each z € X, let us take u, € X* such that y(u;) = x. The word u,u, is

recognized by S, hence we can find y, and g/, such that yo N T yh > yy.

We define p(z) = y,. Let us see that ¢ is an order reflection from X to Y,
thus reaching a contradiction. Assume that ¢(x) < @(z’). Since S is a WSTS
any sequence fireable from ¢(x) is also fireable from ¢(z’) and the state reached
by this subsequence is greater or equal than the one reached from ¢(x). Hence,
the state reached after u, u, is bigger than the one reached after u,u,, which
means that uzu, € L N dom(vy)dom(y), implying x < 2/, so that ¢ is an order
reflection.

The simple state spaces we mentioned before, will be the ones produced by the
following grammar:

I':=qQ (finite set with equality)
| N (naturals with the standard order)
| X* (words on a finite set with the order defined in Section [2))
| I'xT (cartesian product with the order defined in Section [2)

As N is isomorphic to X* when X is a singleton, any set produced by I is
isomorphic to a set @ x LT x --- x X} where @) and each X; are finite sets.

Proposition 2. Let X be a set produced by the grammar I'. Then, there is a
witness of X that is recognized by a WSTS of state space X.

When a WSTS can recognize a witness of its own state space the following holds:

Proposition 3. Let X be a wpo produced by I' and Y any wpo. Then,

X Erefi Y <— WSTSx <X WSTSy

Proof. The direction from left to right is given by Theorem[Il For the converse,
let us prove that X Z,.p1 Y = WSTSx ﬁ WSTSy. We can find a witness L
of X recognized by a WSTS of state space X (Prop. Bl). By Theorem [2 this
language can not be recognized by a WSTS of state space Y, hence the result.

160 R. Bonnet et al.

3.3 Self-witnessing WSTS Classes

The reason we were able to build our equivalence between the existence of a
reflection from X to Y and WSTSx < WSTSy for any wpo X produced by I'
was Prop. @l However, we conjecture that for any state space X that embeds
N®, there is no WSTS of state space X that can recognize a witness of X. This
prompts us to define a new notion:

Definition 3. Let X be a class of wpos and S a class of WSTS whose state
spaces are included in X. (X, S) is self-witnessing if, for all X € X, there exists
S € S that recognizes a witness of X.

We will shorten (X, S) as S when the state space is not explicitly needed. We
extend the relation T, to classes of wpo by X T,z X' if for any X € X,
there exists X’ € X’ such that X C,.p; X'

Proposition 4. Let (X,S) be a self-witnessing WSTS class and S' a WSTS
class using state spaces inside X'. Then, S =8 = X L,y X'.
Moreover, if 8" = WSTSx/, S XS <= X L,z X"

Proof. Let us show the first implication. Let X € X. Since (X,S) is self-
witnessing, there is S € S that recognizes L, a witness of X. Because S < S/,
there is 8’ € S’ recognizing L. S’ has state space X’ € X', and by Theorem [2]
X Erefl X'.

For the second implication, for any X € X, we have X’ € X’ such that
X Cret X'. Because of Theorem [I, WSTSx < WSTS x/. Hence, WSTSx <
WSTSx:.

We will see in sections] and [l that many usual classes of WSTS, even those
outside the algebra I', are self-witnessing.

3.4 How to Prove the Non-existence of Reflections?

Because of Prop.[Bland Prop. [, the non existence of reflections will be a powerful
tool to prove strict relations between WSTS. We provide here a simple way from
order theory. Let us recall that a linearization of a po <x is a linear order <’y
on X such that x <x y = z < y. A linearization of a wpo is a well total
order, hence isomorphic to an ordinal. We extend the definition of order types
to non-total wpos:

Definition 4. Let (X,<x) be a wpo. The maximal order type (shortly: order
type) of (X, <x) is ot(X, <x) = sup {ot(X, <) | < linearization of <x}.

The existence of the sup comes from ordinal theory. de Jongh and Parikh [11]
even show that this sup is actually attained. Let Down(X) be the set of down-
ward closed subsets of X. Then, another well-known characterization of the
maximal order type is the following (proofs of propositions [{] and [l are in the
appendix of [6]):

Ordinal Theory for Expressiveness of Well Structured Transition Systems 161

Proposition 5. ot(X)+1 = sup {a | If : « — Down(X), f strictly increasing}
This leads us to the proposition that we use to separate many classes of WSTS:
Proposition 6. [18] Let X andY be two wpos. X Crep1 Y = ot(X) < ot(Y).

The order types of the usual state spaces used for WSTS are known. We will
recall some classic results on these order types, but we need the following defi-
nitions of addition and multiplication on ordinals to be able to characterize the
order types of X WY and X x Y. Remember (Section [2l) that an ordinal o be-
low g¢ is uniquely determined by Cantor(a), hence the validity of the following
definition.

Definition 5. (Hessenberg 1906, [11]) The natural addition, denoted &, and the
natural multiplication, denoted ®, are defined by:
Cantor(a @ o) = Cantor(a) + Cantor(a’)
Cantor(a@a’) ={& F' | 8 € Cantor(a), 3 € Cantor(a')[}

We already know that the order type of a finite set (with any order) is its
cardinality and that the order type of N is w. De Jongh and Parikh [IT], and
Schmidt [I7] have shown a way to compose order types with the disjoint union,
the cartesian product, and the Higman ordering. A more recent and difficult
result, by Weiermann [I8], provides us with the order type of multisets. These
results are summed up here:

Proposition 7. ([11), [17], [18])

—ot(XWY)=o0t(X)Dot(Y)
— ot(X XY) =o0t(X) ® ot(Y)
. WO e X finite
— ot(X*) = ot(X) .
w¥ otherwise (for ot(X) < €p)
— ot(X®) = WX for ot(X) < €

Formulas exist even for ot(X) > ey. We refer the interested reader to [I1] and
[18] for the complete formulas. With these general results we can obtain many
strict relations between wpo.

Corollary 1. The following strict relations hold for any k > 0:
(1) NF Cpop NEHI (4) N*Cop; N®
(2) (N*)®Cpepy (NFHH)® (5) N*Corepr % (for |X] > 1)
(3) (N®)* Crepr (NMHY)*

Proof. The non-strict relations in (1), (2) and (3) are clear, and for (4) this is
Prop. [l For (5), ¢(ni,...,ng) = a™b...ba™ is a reflection. Strictness follows
from Prop. [dl and the following order types, obtained according to the previous

: Wk _
results: ot (N¥) = w¥, ot (N*)®) = we" ot((NF)*) = w*” | and ot(2*) = w7

162 R. Bonnet et al.

4 Vector Addition Systems and Lossy Channel Systems

The state spaces described by Prop. 3 are exactly those of Petri Nets and Lossy
Channel Systems. We will look more closely at these systems to see the impli-
cation of this theorem regarding their expressiveness.

4.1 Vector Addition Systems and Petri Nets

We work with Vector Addition Systems with States (VASS), which are equivalent
to Petri nets. A VASS of dimension k is a tuple (Q, T\, §, X', \), where @ is a finite
(and non-empty) set of control sates, T is a finite set of transitions, 6 : T —
QxZF x@Q, X is the finite labelling alphabet, and A : T — YU{e} is the mapping
which labels transitions. Transition ¢ is enabled in (p,z) if 6(¢) = (p,y,q) for
some ¢ € Q and some y € Z* with 2 > —y, in which case ¢ can occur, reaching
state (¢,z + y). VASS are WSTS by taking (p,z) < (¢q,y) iff p = ¢ and = < y.
The transition relation — of the WSTS associated with the VASS is defined by:
((p,x),a,(q,z+1y)) €— if there is a transition ¢ € T which is enabled in (p, x)
such that §(t) = (p,y, q) and \(t) = a.

Let us denote by VASS) the class of VASS with dimension k. Notice that the
state space of any VASS with dimension k is in X, = {Q x N* | Q finite}. Then
we have the following:

Theorem 3. For any k > 0, VASS, A WSTSx,_,.-

Proof. We remark that the WSTS defined in the proof of Prop. 2l is actually
a lossy VASS when X = @Q x N¥. This induces that we can take the non-lossy
version of this VASS, which is still a WSTS. Hence, VASS} is self-witnessing,
and therefore so is WSTSx, . Since N* Zres1 @ X N*=1 for all finite @ (indeed,
ot(NF) = wk £ k=1 «|Q| = ot(Q x N*71)), we have Xy Z i Xp—1 and by
Prop. @ we conclude.

We remark that even the class of lossy VASS with dimension k is not included
in the class of WSTS with state space in Xj_1. Moreover, if we consider Affine
Well Nets (AWN) (an extension of Petri nets with whole-place operations like
transfers or resets), and denote by AWN, the class of AWN with k& unbounded
places (therefeore, with state space in Xj), we can obtain from the previous
result the following simple consequences.

Corollary 2. VASS), < VASSii1 £ AWNy for all k > 0.

4.2 Lossy Channel Systems

Let Op denote any vector of k operations on a (fifo) channel such that for every
i €{1,...,k}, Op(i) is either a send operation !a on channel i, a receive operation
?a from channel ¢ (a € A), a test for emptyness €? on channel ¢ or a null operation
nop. Let us denote O P the set of operations Op.

Ordinal Theory for Expressiveness of Well Structured Transition Systems 163

A Lossy Channel System (LCS with k channels is a tuple (Q, A, T, 0, X, \)
where @ is a finite (and non-empty) set of states, A is the finite set of messages, T
is a finite set of transitions, § : T'— Q X OP, X @Q, X' is the labelling alphabet and
A : T — YU{e} is the mapping which labels transitions. The set of configurations
is Q x (A*)*.

For (non lossy) channel systems, transition ¢ is enabled in (p,uq,...,ux) if
4(t) = (p, Op, q) for some ¢ € Q and some Op € OPy, and for all i € {1,...,k},
if Op(i) = nop then u; = u}, if Op(i) = €? then u; = u = ¢, if Op(i) =la then
u; = u;a and if Op(i) =7a then w; = au}, in which case ¢t can occur, reaching
state (g, uf,...,up).

The semantics of LCS is given as the lossy version of the previous semantics,
when considering the canonic order in @ x (A*)* for which LCS are WSTS.

If ¥, is defined by X, = {au,...,a,} where «;’s are constant symbols, we
define LCS(k,p) as the subclass of LC'S with k channels and set of messages
2. We have:

Theorem 4. LCS(k,p) < LCS(k+1,p) < LCS(1,p+1)

Proof. LCS(k,p) = LCS(k+1,p) clearly holds. The proof that LC'S(k+1,p) <
LCS(1,p+1) is based on the well-known fact that one can simulate the k + 1
channels by inserting a new symbol k times as delimiters. A proof is available
in the appendix of [6]. For the strictness, we remark again that the WSTS
introduced in the proof of Prop. [is actually a LCS, that is, given a state
space X = @ x (Z;)k, we can find § in LCS(k,p) and a witness L of X such
that S recognizes L. This implies that LCS(k, p) is self-witnessing. For all k£ and
p, 0t (Q x (Z5)F) = w*"""*k |Q|. This implies that (Zo) L Zrepr @ x (27)F and
201 Erept @X (Z;)k for all Q. To conclude we only need to apply proposition[dl

Moreover, in [2] the authors prove that AWN < LCS. We can easily get back
this result:

Proposition 8. LCS(1,2) £ AWN.

Proof. As in the previous result, we remark that LC'S(1,2) and AWN are self-
witnessing. Thus, we only need to apply Prop. [l considering that for any k > 0,
X% Zyept NF (Cor.).

This result is tight: LC'S(0,p) ~ FA (Finite Automata), LC'S(k,1) ~ VASS}.

5 Petri Nets Extensions with Data

Many extensions of Petri nets with data have been defined in the literature to
gain expressive power for better modeling capabilities. Data Nets (DN) [13] are
a monotonic extension of Petri nets in which tokens are taken from a linearly

! This definition is a slight variation of the usal one in order to uniformise presentation
of VASS and LCS without effect on their expressive power.

164 R. Bonnet et al.

x x
do T T /J-\ T
O [ar]
dy
¥ y do x
L x x
stO m
e o/

Fig. 1. Net in v-PN; recognizing a witness of (Q x N)® with |Q| = 2

ordered and dense domain, and transitions can perform whole place operations
like transfers, resets or broadcasts. A similar model, in which tokens can only
be compared with equality, is that of v-Petri Nets (v-PN) [14]. The relative
expressive power of DN and v-PN has been an open problem since [15]. In this
section we prove that v-PN < DN. We work with the subclass of DN without
whole place operations, called Petri Data Net (PDN), since DN ~ PDN [2].
Now we briefly define v-PN. The definition of PDN is in the appendix of
[6]. We consider an infinite set Id of names, a set Var of variables and a subset
of special variables 7" C Var for fresh name creation. A v-PN is a tuple N =
(P,T,F,X,)\), where P and T are finite disjoint sets, F: (P x T)U (T x P) —
Var®, X is the finite labelling alphabet, and A : T — (X' U{e}) labels transitions.
A marking is a mapping M : P — Id®. A mode is an injection o : Var(t) —
Id. A transition t can be fired with mode o for a marking M if for all p € P,
o(F(p,t)) € M(p) and for every v € T, o(v) ¢ M(p) for all p. In that case we

have M)\g)M’7 where M'(p) = (M (p) — o(F(p,t))) + o(F(t,p)) for all p € P.

Markings can be identified up to renaming of names. Thus, markings of a
v-PN with k places can be represented as elements in (N¥)® each tuple repre-
senting the occurrences in each place of one name [16]. E.g., if P = {p1,p2} and
M is such that M(p1) = {|a,a,b]} and M (ps) = {|b[}, then we can represent M
as {/(2,0), (1, 1)}

The i-th place of a v-PN is bounded if every tuple (nq,...,ny) in every reach-
able marking satisfies n; < b, for some b > 0. Therefore, a bounded place may
contain arbitrarily many names, provided each of them appears a bounded num-
ber of times.

Let us denote by v-PNy, the class of v-PN with k unbounded places. If a net
in v-PN, has m places bounded by some b > 0, then we can use as state space
(Q x N*)® with @ = {0,...,b}™ (finite and non-empty). Thus, the state space of
nets in v-PNy, is in X = {(Q x N¥)® | @ finite}. Analogously, the class PDN
of PDN with k unbounded places has X} = {(Q x N*)* | @ finite} as set of state
spaces. Moreover, we take X® = {(N¥)® | k > 0} and X* = {(N*)* | k > 0}.

Proposition 9. For every k > 0, v-PNy, and PDNy are self-witnessing.

Ordinal Theory for Expressiveness of Well Structured Transition Systems 165

Proof. The proof for PDN, is in the long version [6]. Let us see it for v-PNj.
Let (Q x N¥)® € X, We consider an alphabet ¥ = {a, | ¢ € Q} U {a1,...,ax}
and we define v : X¥* — (Q x N¥)® by

1 k 1 k
Y(agalt..apt..agalt..at) = {(qi,nt, ey nf), s (@0 o nf)

Let us build N in v-PNj, such that L(N) N dom(y)dom(y) = L. Assume Q =
{q1,..-,qr }. Fig. [l shows the case with k =1 and r = 2.

The only unbounded places of N are p1, ..., px. (hence N € v-PNy). We consider
q1,---, gr as places, a place st that stores all the names that have been used (once
each name, hence bounded), and places ¢, c1, ..., ¢, containing one name in mu-
tual exclusion. When the name is in ¢g it is non-deterministically copied in some
g (action labelled by a4), and moved to ¢;. For every, 1 < ¢ < k, when the name
is in ¢; it can be copied arbitrarily often to p; (labelled by a;). At any time, this
name can be transferred to ¢;41 when i < k or to st for i = k (labelled by €). In
the last case a fresh name is put in ¢y (thanks tov € 7).

The second phase is analogous, with control places dy, ds, ..., dx1+1, marked in
mutual exclusion with names taken from st. At any point, the name in diy; can
be removed, and one name moved from st to dy (labelled by €). That name must
appear in some ¢. Thus, for each ¢ we have a transition that removes the name
from dy and ¢ and puts it in dy (labelled by a,). For each 1 <4 < k, the name
in d; can be removed zero or more times from p; (labelled by a;). At any point,
the name is transferred from d; to d; 41 (labelled by €).

The initial and final marking is that with a name in ¢y and another name in dj1
(and empty elsewhere). It holds that L(N') Ndom(y)dom(vy) = L, so we conclude.

Notice that since v-PN and PDNy are self-witnessing for every k > 0, so are
v-PN and PDN.

Proposition 10. X} Z,.5; X%, X?H Lrefi X? and Xy Lrept Xy, for all k.

Proof. X} Zyest X® holds because ot(N*) = w** £ w*" = ot((N¥)®), so that
N* Zyep1 (N¥)® for all k. The others are obtained similarly, considering that

Ll./'k*
ot((Q x N*)®) = " *IQl and ot((Q x NF)*) =+ 7'%".
Corollary 3. v-PN < PDN. Moreover, PDN1 A v-PN.

Proof. v-PN < PDN is from [I5]. PDN; A v-PN is a consequence of Prop. M
considering that both classes are self-witnessing, and that X} Z,.z X%.

We can even be more precise in the hierarchy of Petri Nets extensions.
Proposition 11. For any k > 0, v-PNj, < v-PN 41 and PDNj, < PDN 4.

Proof. Clearly v-PNj, < v-PNy41 and PDNy = PDNy4 for any k > 0. For the
converses, again we can apply Prop.d] considering that all the classes considered
are self-witnessing and that XI?H Lrefi X,iB and X7 | Zresr X, hold.

Finally, we can strengthen the result AWN < v-PN proved in [I5] in a very
straightforward way.

166 R. Bonnet et al.

Proposition 12. v-PN; A AWN

Proof. Both AWN and v-PN; are self-witnessing, and X Z,.z; {N* | & > 0}
because N® [Z,..;; NF for all k (indeed, ot(N®) = w* £ wk = ot(N¥)). By Prop.H
we conclude.

Again, the previous result is tight. Indeed, a v-PN with no unbounded places
can be simulated by a Petri net, so that v-PNg ~ VASS.

6 Conclusion and Perspectives

To show a strict hierarchy of WSTS classes, we have proposed a generic method
based on two principles: the ability of WSTS to recognize some specific wit-
ness languages linked to their state space, and the use of order theory to show
the absence of order reflections from one wpo to another. This allowed us to
unify some existing results, while also solving open problems. We summarize
the current picture on expressiveness of WSTS below w.r.t number of resources
and type of resources. On the other hand, showing equivalence between WSTS
classes is a problem deeply linked to the semantics of the models, and hence that
remains to be solved on a case-by-case basis.

Quantitative results. (All results are new.)
For every k € N VASS) < VASSj41 A AWN,
For every k,p € N LCS(k,p) < LCS(k+1,p) < LCS(1,p+ 1)
For every k € N v-PNj;, < v-PNy41 and PDNj, < PDN 1

Qualitative results. (New results are v-PN < DN and PDN ~ TdPN)
VASS < M < DN ~ PDN ~ TdPN
where M is either v-PN or LCS

TdPN [3] are Timed Petri nets and we have proved the related result in a companion report [5].

An interesting case that remains open is the relative expressiveness of LC'S
and v-PN. Their state space are quite distinct but their order type are the same
for some values of their parameters. We conjecture that there is no reflection
from one to the other, but such a proof would require more than order type
analysis.

As all the models that we have studied in this paper use a state space whose
order type is bounded by €, it is tempting to look at WSTS that would use
a greater state space. It is known that the Kruskal ordering has an order type
greater than ey [I7], even for unlabelled binary trees. However, studies of WSTS
based on trees have been quite scarce [12]. We believe some interesting problems
might lie in this direction.

Acknowledgements. We would like to thank the anonymous reviewers for their
numerous comments and suggestions, that allowed us to greatly improve the
quality of this paper.

Ordinal Theory for Expressiveness of Well Structured Transition Systems 167

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Abdulla, P.A., Delzanno, G., Van Begin, L.: Comparing the Expressive Power of
Well-Structured Transition Systems. In: Duparc, J., Henzinger, T.A. (eds.) CSL
2007. LNCS, vol. 4646, pp. 99-114. Springer, Heidelberg (2007)

. Abdulla, P.A.] Delzanno, G., Van Begin, L.: A Language-Based Comparison of

Extensions of Petri Nets with and without Whole-Place Operations. In: Dediu,
A.H., Tonescu, A.M., Martin-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp.
71-82. Springer, Heidelberg (2009)

. Abdulla, P.A., Nylen, A.: Timed Petri Nets and BQOs. In: Colom, J.-M., Koutny,

M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53-70. Springer, Heidelberg (2001)

. Alur, R., Courcoubetis, C., Henzinger, T.A.: The Observational Power of Clocks.

In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 162-177.
Springer, Heidelberg (1994)

. Finkel, A., Bonnet, R., Haddad, S., Rosa-Velardo, F.: Comparing Petri Data Nets

and Timed Petri Nets. LSV Research Report 10-23 (2010)

. Finkel, A., Bonnet, R., Haddad, S., Rosa-Velardo, F.: Ordinal Theory for

Expresiveness of Well-Structured Transition Systems. LSV Research Report 11-
01 (2011)

. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermann and Primitive-

Recursive Bounds with Dickson’s Lemma. CoRR abs/1007.2989 (2010)

. Finkel, A.: A generalization of the procedure of karp and miller to well structured

transition systems. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 499
508. Springer, Heidelberg (1987)

. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing

petri net extensions. Information and Computation 195(1-2), 1-29 (2004)
Geeraerts, G., Raskin, J., Van Begin, L.: Well-structured languages. Acta
Informatica 44, 249-288 (2007)

de Jongh, D.H.J., Parikh, R.: Well partial orderings and hierarchies. Indagationes
Mathematicae (Proceedings) 80, 195-207 (1977)

Kouchnarenko, O., Schnoebelen, P.: A Formal Framework for the Analysis
of Recursive-Parallel Programs. In: Malyshkin, V.E. (ed.) PaCT 1997. LNCS,
vol. 1277, pp. 45-59. Springer, Heidelberg (1997)

Lazic, R., Newcomb, T.C., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with
Tokens Which Carry Data. Fund. Informaticae 88(3), 251-274 (2008)
Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in Petri Net
systems. Fund. Informaticae 88(3), 329-356 (2008)

Rosa-Velardo, F., Delzanno, G.: Language-Based Comparison of Petri Nets with
black tokens, pure names and ordered data. In: Dediu, A.-H., Fernau, H.,
Martin-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 524-535. Springer, Hei-
delberg (2010)

Rosa-Velardo, F., de Frutos-Escrig, D.: Forward Analysis for Petri Nets with Name
Creation. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128,
pp. 185-205. Springer, Heidelberg (2010)

Schmidt, D.: Well-partial orderings and their maximal order types. Fakultét
fiir Mathematik der Ruprecht-Karls-Universitdt Heidelberg. Habilitationsschrift
(1979)

Weiermann, A.: A Computation of the Maximal Order Type of the Term Ordering
on Finite Multisets. In: Ambos-Spies, K., Lowe, B., Merkle, W. (eds.) CiE 2009.
LNCS, vol. 5635, pp. 488-498. Springer, Heidelberg (2009)

Alternation Elimination for Automata over
Nested Words*

Christian Dax and Felix Klaedtke

Computer Science Department, ETH Zurich, Switzerland

Abstract. This paper presents constructions for translating alternating
automata into nondeterministic nested-word automata (NWAs). With
these alternation-elimination constructions at hand, we straightforwardly
obtain translations from various temporal logics over nested words from
the literature like CaRet and uNWTL, and extensions thereof to NWAs,
which correct, simplify, improve, and generalize the previously given
translations. Our alternation-elimination constructions are instances of
an alternation-elimination scheme for automata that operate over the
tree unfolding of graphs. We obtain these instances by providing con-
structions for complementing restricted classes of automata with respect
to the graphs given by nested words. The scheme generalizes
our alternation-elimination scheme for word automata and the presented
complementation constructions generalize existing complementation con-
structions for word automata.

1 Introduction

The regular nested-word languages [6] (a.k.a. visibly pushdown languages [5]) ex-
tend the classical regular languages by adding a hierarchical structure to words.
Such hierarchical structures in linear sequences occur often and naturally. For
instance, an XML document is a linear sequence of characters, where the open-
ing and closing tags structure the document hierarchically. Another example
from system verification are the traces of imperative programs, where the hi-
erarchical structure is given by the calls and returns of subprograms. Many
automata-theoretic methods for reasoning about regular languages carry over to
regular nested-word languages. Instead of word automata one uses nested-word
automata (NWAs) [6] or equivalently visibly pushdown automata [5], a restricted
class of pushdown automata, where the input symbols determine when the push-
down automaton can push or pop symbols from its stack. For instance, model
checking regular nested-word properties of recursive state machines, which can
model control flows of imperative programs [3,[4], and of Boolean programs [7],
which are widely used as abstractions in software model checking, can be car-
ried out in an automata-theoretic setting, similar to finite-state model check-
ing [23]. That is, the traces of a recursive state machine or a Boolean program are
described by an NWA and the negation of the specification, which is given as

* This work was partially supported by the Swiss National Science Foundation (SNF).

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 168 [183]2011.
© Springer-Verlag Berlin Heidelberg 2011

Alternation Elimination for Automata over Nested Words 169

a formula in a temporal logic over nested words like CaRet [4], NWTL [2], and
pNWTL [I0], is translated into a language-equivalent NWA. It is then checked
whether the intersection of the automata’s languages is empty.

In this paper, we view a nested word as a graph with linear and hierarchical
edges. The nodes of the graph are the positions of the nested word. A linear
edge connects two neighboring positions and a hierarchical edge connects every
call with its matching return position. We present constructions for translat-
ing alternating automata that take as input the graphs of nested words into
NWAs. These constructions are of immediate relevance for translating tempo-
ral logics over nested words like CaRet, NWTL, and uNWTL and extensions
thereof to language-equivalent NWAs. A temporal-logic formula is first trans-
lated into such an alternating automaton and from this alternating automaton
one obtains an NWA by applying such an alternation-elimination construction.
Translations of declarative specification languages into alternating automata are
usually rather direct and easy to establish due to the rich combinatorial structure
of alternating automata. Translating an alternating automaton into a nondeter-
ministic automaton is a purely combinatorial problem. Hence, using alternating
automata as an intermediate step is a mathematically elegant way to formalize
such translations and to establish their correctness.

We obtain the alternation-elimination constructions for automata that de-
scribe nested-word languages from a construction scheme, which we previously
presented for word automata [I1] and which we generalize in this paper to au-
tomata that operate over the tree unfolding of graphs. In a nutshell, the construc-
tion scheme shows that the problem of translating an alternating automaton into
a nondeterministic automaton reduces to the problem of complementing an ex-
istential automaton, i.e., an automaton that nondeterministically inspects only
a single branch in the tree unfolding of the given input graph. To obtain the
instances of the construction scheme for nested words, we also provide comple-
mentation constructions for restricted classes of existential automata, namely,
automata that operate over graphs that represent nested words.

The main benefit of our approach for translating temporal logics over nested
words to NWAs is its simplicity and modularity compared to state-of-the-art ap-
proaches. By our scheme, complicated translations are divided into smaller inde-
pendent parts. Moreover, ingredients of the presented constructions are based on
existing well established and thoroughly optimized constructions and techniques
for nondeterministic word automata, which we generalize to automata that oper-
ate over the tree unfolding of the graphs given by nested words. First, we extend
our complementation constructions for classes of nondeterministic two-way co-
Biichi word automata [I1] to classes of existential co-Biichi automata, where the
inputs are the graphs of nested words. Our new constructions take the non-local
transitions, which stem from the hierarchical structure of nested words, of an
existential automaton into account. Intuitively, in such transitions, the read-only
head of the automaton jumps from a call directly to the corresponding return
or vice versa. Second, in the presented alternation-elimination constructions for
alternating parity automata, where the inputs are the graphs of nested words,

170 C. Dax and F. Klaedtke

we also use and generalize techniques and constructions from [I3}[14,22T9] for
word automata. Finally, as a by product, we obtain a complementation con-
struction for NWAs along the lines of the construction in [I3] for complementing
nondeterministic Biichi word automata.

We see our contributions as follows. First, based on a general alternation-
elimination scheme for automata that operate over the tree unfolding of graphs
and several complementation constructions, we provide alternation-elimination
constructions for the class of automata that take the graphs of nested words as in-
put with the Biichi and the parity acceptance conditions. Second, we modularize,
simplify, and correct existing translations from temporal logics over nested words
to NWAs. Third, with the presented complementation constructions we illustrate
that various constructions for word automata generalize with some modifications
to constructions for automata that describe nested-word languages.

We proceed as follows. In Section [2, we recapitulate basic definitions and
define alternating automata. In Section [3, we present our general alternation-
elimination scheme. In Section [, we present complementation constructions for
restricted classes of existential automata with respect to nested-word languages.
Furthermore, we instantiate our scheme with these constructions. Finally, in
Section [B] we sketch applications of these instances. In particular, we present
our translations of various temporal logics over nested words into language-
equivalent NWAs. Omitted proof details can be found in the full version of the
paper, which is publicly available from the authors’ web pages.

2 Preliminaries

In this section, we fix the notation and terminology that we use in the remainder
of the text.

Propositional Logic. We denote the set of positive Boolean formulas over the set
P of propositions by Bool™(P), i.e., Bool™ (P) consists of the formulas that are
inductively built from the Boolean constants tt and ff, the propositions in P,
and the connectives V and A. For M C P and b € Bool™(P), we write M = b
iff b evaluates to true when assigning true to the propositions in M and false to
the propositions in P\ M. Moreover, we write M E b if M is a minimal model
of b, i.e., M |= b and there is no p € M such that M \ {p} = b.

Words and Trees. We denote the set of finite words over the alphabet X by X*,
the set of infinite words over X' by X* and the empty word by . The length
of a word w is written as |w|, where |w| = w when w is an infinite word. For a
word w, w; denotes the symbol of w at position i < |w|. We write v < w if v is
a prefix of the word w.

A (X-labeled) tree is a function ¢ : T — X, where T' C N* satisfies the
conditions: (i) T is prefix-closed (i.e., v € T and u < v imply u € T) and (ii) if
vi € T and ¢ > 0 then v(i — 1) € T. The elements in T" are called the nodes of ¢
and the empty word ¢ is called the root of t. A node vi € T with ¢ € N is called
a child of the node v € T'. A branch in t is a word m € N* UN“ such that either

Alternation Elimination for Automata over Nested Words 171

Table 1. Types of acceptance conditions

type finite description «, acceptance condition A
a=FCQ
Biichi A:={reQ®|inf(r)NF #£0}

co-Biichi A:={reQ”|inf(r)NF =0}

o = {Fo, e ,ngfl} Q 2Q, Where Fo Q F1 Q e g ngfl
parity A:={m € Q| min{i | F; Ninf(r) # 0} is even}
co-parity A= {7r € Q¥ | min{s | F; Ninf(r) # 0} is odd}

o = {(Bl,C’l),. ey (Bk,C’k)} C 2Q X 2Q
Rabin A= {r € Q¥ |inf(m) N B; # 0 and inf(r) N C; =0}
Streett A:=N{r e Q¥ |inf(r)NB; =0 or inf(r) NC; # 0}

m € T and 7 does not have any children, or 7 is infinite and every finite prefix of
mis in T. We write ¢(m) for the word t(e)t(mo)t(mom1) .. . t(mom1 ... Tp—1) € X*
if 7 is a finite word of length n and t(g)t(mg)t(mom1) ... € X if 7 is infinite.

Alternating Automata. In the following, we define alternating automata, where
the inputs are graphs. Such an automaton is essentially an alternating tree au-
tomaton that operates over the tree unfolding of the given input We obtain
the classical automata models for words and trees when viewing words and trees
in a rather straightforward way as graphs of the following form and restricting
the inputs to the respective class of graphs.

Let D be a nonempty finite set. We call the elements in D directions. A D-
skeleton is a directed, edge-labeled, and pointed graph (V, (Ed)dep,v[), where
V' is a set of vertices, the relation Ey C V x V describes the edges with label
d € D, and vy € V is the source. We denote the set of labels of the outgoing
edges of the vertex v € V by £(v). For an alphabet X' and a set 8§ of D-skeletons,
the set of input graphs X° is the set of pairs (S,\) with S € Sand A: V — X,
where V is the set of vertices of S.

Let 8 be a nonempty set of D-skeletons. An alternating S-automaton is a tuple
A= (Q, X, (6D/)D/gp,qI,A), where () is a finite set of states, X is a nonempty
finite alphabet, dp/ : Q@ x X — Bool™ (Q x D') is the transition function for the
directions D' C D, q; € @ is the initial state, and A C Q% is the acceptance
condition. The acceptance condition A is usually specified in a certain finite
way—the type of an acceptance condition. Commonly used types of acceptance
conditions are listed in Table[I] where inf(7) denotes the set of states that occur
infinitely often in m € @ and the integer k is the indezx of the automaton. If
A is specified by the type 7, we say that A is an alternating 7 S-automaton.
Moreover, if the type of the acceptance condition is clear from the context, we

! The reasons for having graphs as inputs is that it allows us to establish a broadly
applicable alternation-elimination scheme (Section [B]). In particular, we can use this
automata model with the alternation-elimination scheme for translating temporal
logics over nested words into NWAs (Section [B]) by viewing nested words as graphs,
where we restrict the inputs to that class of graphs (Section M.

172 C. Dax and F. Klaedtke

just give the finite description « instead of A. For instance, an alternating Biichi
8-automaton is given as a tuple (Q, X, (0p/)p'cp,qr,) with o C Q.

Let A = (Q, X, (0p)pcp,qr, A) be an alternating $-automaton and G € X
with G = (S,A) and S = (V, (Eq)aep,vi). A run of A on G is a tree r : R —
V x Q with some R C N* such that r(¢) = (vr, qr) and for each node z € R with
r(z) = (v, p), we have M [E 0y, (p, A(v)), where

M :={(q,d) € @ x D’ |z has a child y with r(y) = (v/,¢) and (v,v') € Eq}.

Roughly speaking, A starts scanning an input graph from the skeleton’s initial
vertex, where A is in its initial state. The label (v,p) of the node z in the
run is the current configuration of A. That is, A is currently in the state p
and the read-only head is at the position v in the input graph. The transition
0p/(p, A(v)) specifies a constraint that has to be fulfilled by the automaton’s
successor states, where D’ is the set of labels £(v) in which the read-only head
can move at the current position. An infinite branch 7 in a run r with r(r) =
(vo,qo)(v1,q1) ... is accepting if gog1... € A. The run r is accepting if every
infinite branch in 7 is accepting. The language of A is the set L(A) := {G € £% |
there is an accepting run of A on G}.

We call an alternating $-automaton A = (Q, X, (6p’)pcp,ar, A) existential
if 0 ps returns a disjunction for all inputs, for all D’ C D. Note that a run r of an
existential automaton consists of a single branch w. To increase readability, we
call 7() also a run. Existential automata are closely related to nondeterministic
automata in the sense that an existential automaton also nondeterministically
chooses its successor state in a run with respect to the current configuration and
its transition function. However, an existential automaton only inspects a single
path of the input graph, since together with the chosen successor state it picks
a single direction in which it moves its read-only head.

3 Alternation-Elimination Scheme

In this section, we generalize our alternation-elimination scheme for word au-
tomata, which we presented in [I], to automata that operate over graphs.

3.1 Reduction to Complementation

The scheme only applies to automata with an acceptance condition for which so-
called memoryless runs are sufficient. Formally, for an alternating S-automaton
A, we require that L(A) = M(A), where the set M (A) is defined as follows. A
run 7 : R — V x Q of the alternating 8-automaton A = (Q, X, (0p)pcp,qr, A)
on (S,\) € X% with § = (V, (Ed)deD, v1) is memoryless if equally labeled
nodes have isomorphic subtrees, i.e., for all z,y € R and z € N* if r(z) =
r(y) then zz € R iff yz € R and whenever xz € R then r(zz) = r(yz). We
define M(A) := {G € X% | there is an accepting memoryless run of A on G}.
Obviously, L(A) O M(A). For an alternating S-automata A with the Biichi, co-
Biichi, parity, or Rabin acceptance condition, it is well known that the converse

Alternation Elimination for Automata over Nested Words 173

L(A) C M(A) also holds. However, if A is, e.g., an alternating S-automata with
the Streett acceptance condition, then L(A) C M(A) does not hold in general.

Since the children of equally labeled nodes in a memorylessrunr : R — V x @
are also equally labeled, we can represent a memoryless run by the function
0"V x Q — 29%D where

o (v,q):= {(q’, d)e@QxD | there are nodes x,y € R such that y is a child of z,
T(Cﬂ) = (U>Q)v T(y) = (Ulaq/)a and (U,UI) S Ed} .

By “currying” the function ¢, we obtain the function A" : V' — I', where I" is
the set of functions from Q to 22*P. We represent the run r as the input graph
G" := (S,\") € I'. We point out that the graph representation of the run has
the same skeleton S as the skeleton of the given input graph G.

We now define an existential 8-automaton R that scans input graphs in (X' x
I3, ie., input graphs of A that are annotated with information about the
configurations of the runs of A. R refutes whenever the annotations correspond
to an accepting memoryless run of A on A’s input graph. Formally, R is the
existential $-automaton (Q, X x I, (np/)prcp, qr, Q% \ A), where its transition
function np : Q x (X x I') — Boolt(Q x D') for D' C D is defined as

np’ (q, (a,g)) = {V(Pvd)Ey(q) (p,d) if g(q) Edpi(q,a),

tt otherwise.

Intuitively, R works as follows. It uses its nondeterminism to inspect a path in
the skeleton of the input graph. There are two cases in which R accepts the given
input graph. (1) The annotations on the inspected path do not correspond to a
branch in a memoryless run of A. (2) The annotations yield an infinite sequence
of states that is not accepting for A, i.e., the sequence is not in A.

The formal statement about R’s language is given in Lemma [l below, where
we use the following notation. Let G = (S, A) be an input graph in (X xI")%. G5
denotes the input graph in X% by projecting G’s labeling to the first component,
ie, Gix = (S,\z) with A\;2(v) := a for A(v) = (a,g). Analogously, G|r
denotes the input graph in I'S with the skeleton S and the labeling Ar(v) == g.

Lemma 1. For any input graph G € (X x I')®, it holds
G ¢ L(R) iff

there is an accepting memoryless run r of A on G5
such that Gyr and G" are isomorphic.

The following theorem allows us to reduce the problem of constructing for A a
language-equivalent nondeterministic automaton to the problem of complement-
ing R. Note that from an existential automaton that accepts the complement
of R, we easily obtain a nondeterministic automaton that accepts L(A) by pro-
jecting the alphabet X' x I' to Y. The benefit of this reduction is that it only
requires a complementation construction for existential automata. In Section [4]
we give such complementation constructions for specific automata classes.

Theorem 1. If L(A) = M(A) then L(A) = {Gx | G € L(R)}.

174 C. Dax and F. Klaedtke

3.2 Inherited Properties

In the following, we show that the existential §-automaton R from Section [3]
inherits properties from the alternating S-automaton A. We exploit these prop-
erties in our complementation constructions in Section Ml

Let A = (Q, X, (5D/)D/gD,A) be an alternating S-automaton and let W C
D. The automaton A is W-way if dp/(q,a) € Bool™(Q x (D' N W)), for all
D' C D, q € Q, and a € X. Intuitively, A moves its read-only head only
along edges in the input graph that are labeled by directions in W. A weaker
condition on the allowed movements of the automaton’s read-only head is the
following. Intuitively, the automaton A is eventually W-way when it eventually
moves its read-only head only along edges that are labeled by directions in W.
Formally, this condition is defined as follows. Let G € X be an input graph
with G = (S,\) and S = (V, (Eq)aep,vr). We define I1g(A) as the set of words
(go,v0)(q1,v1) ... € (@ x V)* with (qo,v0) = (¢r,vr) and for all ¢ € N, there is
some d € £(v;) and a minimal model M of 6,(,,)(q:, A(v;)) such that (g;41,d) € M
and (v;,vi+1) € E4. The automaton A is eventually W-way if for every input
graph G € X% and every word (qo,v0)(q1,v1) ... € IIg(A), there is an index
n € N such that for all ¢ > n, we have (v;,v;+1) € Eq4, for some d € W.

The following definition of weak automata generalizes the standard defini-
tion [I3l[17], where the automata’s acceptance condition is a Biichi acceptance
condition. Let A be the alternating 8-automaton (Q, X, (6p/)pcp,qr, A). We
call a state set S C @ accepting if inf(r(7)) C S implies r(7) € A, for each run r
and each infinite branch 7 in r. Analogously, we call S rejecting if inf(r(7)) C S
implies r(7) ¢ A, for each run r and each infinite branch 7 in r. The automaton
A is weak if there is a partition Q1,...,Q, of @ such that (i) each Q; is either
accepting or rejecting and (ii) there is a partial order < on the @;s such that for
every p € Q;, ¢ € Qj,a€ X, D' C D, and d € D', if (q,d) occurs in dp/(p, a)
then @; = Q;. The automaton A is very weak if each @Q); is a singleton. The
intuition of weakness is that each infinite branch of a run of a weak automaton
that gets trapped in one of the @Q);s is accepting iff (); is accepting.

Lemma 2. Let R be the existential S-automaton as defined in Section [for
the §-automaton A. Moreover, let W C D. The following properties hold.

(i) If A is (eventually) W-way then R is (eventually) W-way.

(i1) If A is (very) weak then R is (very) weak.

4 Instances for Automata over Nested Words

In this section, we present alternation-elimination constructions for several class-
es of automata that take as input the graphs of nested words. We obtain these
constructions from our alternation-elimination scheme by providing complemen-
tation constructions for existential automata.

Alternation Elimination for Automata over Nested Words 175
4.1 Automata over Nested Words

Nested words [5L[6] are linear sequences equipped with a hierarchical structure.
In this paper, we impose this structure by tagging letters with brackets] More
formally, a nested word over X' is a word over the tagged alphabet Y=Y U
Yeant U Xret, where the sets Xy := X, Yoy :={{a | a € X}, and Yo := {a) |
a € X} are pairwise disjoint. A position ¢ € N in a nested word w € 2¢ with
w; € Yine is an internal position. Similarly, if w; € X4y then i is a call position
and if w; € X, then i is a return position. Observe that with the attached
brackets (and) to the letters in X, we implicitly group words into subwords.
This grouping can be nested. However, not every bracket at a position in a nested
word needs to have a matching bracket. The call and return positions in a nested
word without matching brackets are called pending.

Intuitively speaking, a nested-word (Biichi) automaton [5,[6], NWA for short,
N is a nondeterministic pushdown automaton that pushes a stack symbol when
reading a letter in X4y, pops a stack symbol when reading a letter in X, (in
case it is not the bottom stack symbol), and does not use its stack when reading
a letter in X;,;. The NWA N accepts a word in 3 if there is run on that word
that visits infinitely often an accepting state. We denote the set of nested words
for which there is an accepting run of N by L(N).

In the following, we view nested words as input graphs, where the hierarchical
structure is made explicit by adding to each position the edges that point to
its successor and predecessor positions. Formally, these input graphs with their
skeletons are defined as follows. Let D be the set {—2,—1,0,1,2} and let 8 be
the set of D-skeletons S = (V, (™4)deDs UI), where V = N, v; = 0, and the edge
relations are as follows: Mg is the identity relation over N, /™ is the successor
relation over N, and ™9 is a matching jump relation. That is, for all 7, 7 € N, the
relation M, satisfies the conditions (1) if i ™o j then i < j, (2) {k |i 2k} <1
and {k | k™2 7} <1, and (3) if i j then there are no ¢/, j/ € N with ¢/ ™, j
and ¢ < i < j < j'. The relations ™_; and ™_5 are the inverses of ™ and
M5, respectively. For a nested word w € f]‘", the input graph G,, makes the
matching jump relation, which is implicitly given by w, explicit. That is, the
D-skeleton S = (N, (md)dep,()) € 8 and the labeling A : N — Y of the input
graph G, fulfill the following conditions: (a) For all ¢ € N, it holds A\(i) = w;.
(b) For all 4,5 € N, if i "9 j then A(7) € Xean and A(j) € Xret. (c) Pending call
and return positions do not cross, i.e., for all k € N with A(k) € Xy, if there is
no k' € N with k ™9 k' then for all j > k with A(j) € Xy, there is some ¢ € N
with ¢ ™5 j. (d) The pending positions do not cross with the matching jump

2 In [6], nested words are differently defined by not leaving the hierarchical structure
implicit by tagging letters with brackets but by making it explicit with a so-called
matching relation ~ C ({—oo} UN) x (NU {4+00}). Both definitions are equivalent
in the sense that there is a straightforward bijection between them [6].

3 We point out that the stack in the definition in [6] of nested-word automata is
implicit. Due to space limitations, we omit the precise definition of nested-word
automata.

176 C. Dax and F. Klaedtke

relation Mg, i.e., for all k € N with A(k) € Xcqu U Xyet, if there is no &' € N with
k™o k' or k' ™5 k then there are no 7,5 € N with 4 ™9 7 and 7 < k < j.

The following theorem shows that alternating automata are expressive enough
to describe the class of nested-word languages recognizable by NWAs.

Theorem 2. For every NWA N, there is an alternating Bichi S-automaton A
such that for every nested word w € X%, we have w € L(N) iff G € L(A).
Furthermore, A is {1,2}-way and has O(n?s) states, where n is the number of
states of N and s is the number of N’s stack symbols.

This result might be surprising since an NWA processes a nested word sequen-
tially and has a stack to store additional information at call positions, which it
can use later at the corresponding matching return positions. An alternating au-
tomaton does not have a stack. However, instead each node in the input graph of
a nested-word explicitly carries the information whether it is a pending or non-
pending position. Moreover, for a non-pending position, the matching return or
call position, respectively, is also explicitly given to the alternating automaton.

The reason for the blowup in the alternating automaton’s state space is that
the alternating automaton splits the computation at each non-pending call posi-
tion, which must synchronize at the corresponding return position. This synchro-
nization is implemented by guessing and causes a blow-up of the factor O(ns)
in the state space. We omit the details of this transformation construction since
it is similar to a construction in [I0] for so-called jumping automata, which are
very similar to our alternating automata when restricting their inputs to the
graph representation of nested words.

4.2 Complementing Existential co-Biichi Automata

In this subsection, we present a complementation construction that translates an
eventually {1, 2}-way existential co-Biichi §-automaton A into an NWA N with
LN) = {w € 5 | Gy ¢ L(A)}. We also optimize this construction for more
restricted automata classes. Recall that we immediately obtain translations of
alternating Biichi automata over the graph representation of nested words to
NWAs by instantiating our alternating-elimination scheme with these comple-
mentation constructions. The complementation constructions utilize the follow-
ing lemma that characterizes the graph representations of nested words that are
not accepted by the eventually {1,2}-way existential co-Biichi §-automaton A.

In the following, we abbreviate existential co-Biichi S-automaton by the
acronym ECA and assume that A = (Q, ﬁ’, (0p')prcpsar, F) Furthermore, for
D' C D, §%,(P,a) denotes the set of states that can be reached from a state
in P C @ by reading the letter a € Y and following a d-labeled edge, i.e.,
§%,(P,a) = Upep{a | the proposition (g, d) occurs in 6pr(p, a)}.

Lemma 3. For the eventually {1,2}-way ECA A and a nested word w € 5%,
we have Gy, & L(A) iff there are words R € (29)% and S € (29\) that fulfill
the following conditions, where ("™ q)aep 1is the family of edge relations of the
D-skeleton of Gy, :

Alternation Elimination for Automata over Nested Words 177

(1) qr € Ro.

(2) Foralli,j € N and d € D with i ™q j, we have 6?(2.)(Ri,wi) C R;.

(8) For alli € N and q € R;, we have 0 [640 (q, w;).

(4) So=Ro\ F.

(5) Foralli,jeN and d€ D withd > 0 and i™4j, we have 53(1)(Si,wi)\F CS;.

(6) There are infinitely many n € N such that Sp, = 0, Sp41 = Rue1 \ F, and
foralli,j € N withi ™9 j and ¢ < n, we have j < n.

The conditions (Il) and (2)) ensure that the word R contains all the runs (ho, o)
(h1,q1) ... of the existential automaton A on the given input graph, i.e., ¢; € Rp,,
for all 4 € N. The conditions (@]) to (@) on the words R and S ensure that all the
runs are rejecting. Recall that an input graph is rejected if it is not accepted by a
finite run and every infinite run visits a state in F' infinitely often. Condition (3))
ensures that there is no finite accepting run. All the infinite runs are rejecting if
the word R can be split into infinitely nonempty segments such that each run of
the existential automaton that starts at the beginning of a segment will visit a
state in F' before reaching the end of the segment. The conditions (@) to (@) on
the word S ensure the existence of such a splitting. In particular, the ns from
condition (@) mark the end positions of the segments in the splitting.

We remark that we have given in [I1] a similar characterization for word au-
tomata. The main differences to nested words are as follows. First, the
conditions ([2)) and (@) additionally take the non-local moves of the existential
automaton between matched call and return positions into account. Second,
condition (@) additionally requires that a segment in the splitting of the word
R must not end between a call and its matching return position. Without this
additional requirement there might be runs that pass the end of a segment with
a non-local move without visiting a state in F.

We now turn to the construction of the NWA, which generalizes our construc-
tion in [I1] for complementing the word language of an eventually {1}-way ECA,
which in turn on is based on the breakpoint construction [16]. The additional
constraints for the non-local moves in the conditions (), (@), and (@) are han-
dled by using the stack of the NWA. In particular, whenever the NWA is at a
non-pending call position, it guesses its configuration at the matching return po-
sition and pushes it on the stack. When reaching the matching return position,
it checks the correctness of the guess by popping an element from the stack.
Furthermore, the NWA uses the stack to recognize whether it has processed a
matched call while not having reached its matching return position yet by using
a bit that is pushed on the stack at non-pending calls and popped from the stack
at their matching returns.

Theorem 3. For an eventually {1,2}-way ECA A with n states, there is an
NWA N with O(2*") states, O(2*") stack symbols, and L(N) = {w € ¥ | G, &
L(A)}

In the following, we optimize our complementation construction for restricted
classes of eventually {1,2}-way ECAs. When A is also very weak, we can char-
acterize the graph representations of nested words that are not accepted by A

178 C. Dax and F. Klaedtke

by similar conditions as those given in Lemma [Bl However, the existence of the
word S together with the conditions) and (@) are not required anymore and
condition (@) is replaced by the following condition:

There is no ¢ € @ \ F and no h € N¥ such that ¢ € Ry, and for
all j € N, there is a direction d € {1,2} such that h; g hj;1 and @)
AS 5?(;Lj)(Q>whj)-

Intuitively, condition (@l]) requires that no run of the existential automaton gets
trapped in a state in Q \ F.

We exploit this specialized characterization to optimize our complementation
construction from Theorem Bl Intuitively, the NWA checks that no run of the
existential automaton A gets trapped in a state in @\ F. Again, the construction
is similar to a construction in [IT] for complementing the word language of very
weak, eventually {1}-way ECAs. However, a subtle difference is that if a run
does not get trapped in a state in @\ F' between a non-pending call position and
the corresponding return position then we additionally must ensure that the run
also does not get trapped along the hierarchical edges that directly connect call
positions with their matching return positions.

Theorem 4. For a very weak, eventually {1,2}-way ECA A with n states, there
is an NWA N with O(2*"n) states, O(2*"n) stack symbols, and L(N) = {w €
XY | Gy & L(A)}.

Finally, we consider the case where A is {1,2}-way for which we can simplify
condition (@), since the automaton moves its read-only head only forward:

For all ¢,7 € Nand d € D with d > 0 and ¢ ™y j, we have

We directly obtain the following two theorems as special cases of the Theorems 3]
and M, respectively. In a nutshell, we reduce the state space of the NWA by
removing the state components that are used to check the consistency of the
transitions that move the read-only head along the backward edges {—1, —2}.

Theorem 5. For a {1,2}-way ECA A with n states, there is an NWA N with
O(22") states, O(22") stack symbols, and L(N) = {w € X% | G, & L(A)}.

Theorem 6. For a very weak, {1,2}-way ECA A with n states, there is an
NWA N with O(2™n) states, O(2™n) stack symbols, and L(N) = {w € X¢ |
Gu & L(A)}.

4.3 Alternation Elimination for Parity Automata

In this subsection, we present constructions that translate an alternating parity
8-automaton A, APA for short from now on, into an NWA N with L(N) = {w €
XY | Gy € L(A)}.

Our first alternating-elimination construction assumes that the given APA A
is eventually {1, 2}-way. The construction comprises two steps: We first translate

Alternation Elimination for Automata over Nested Words 179

A into an alternating Biichi automaton A’ from which we then obtain in a
second construction step the NWA N. In the second construction step, we use
an optimized variant of the alternating-elimination construction based on the
complementation construction from Theorem [3 that exploits the fact that the
runs of A’ have some special form. We remark that both construction steps
use and generalize techniques from [I3][14] for complementing nondeterministic
automata over infinite words.

Theorem 7. For an eventually {1,2}-way APA A with index k and n states,
there is an NWA N with 20(nklogn) gpqtes, 20(nklogn) stack symbols, and L(N) =
{weX¥ |Gy € L(A)}.

By some additional work, we obtain the more general alternation-elimination
construction for APAs, where we do not require that the given APA is eventually
{1,2}-way. Recall that by our alternation-elimination scheme, it suffices to give
a construction for complementing existential parity automata over nested words.
The first ingredient of that complementation construction is a generalization of
Shepherdson’s translation [19J21] of 2-way nondeterministic finite word automata
to deterministic ones that are 1-way. This generalization is obtained with only
minor modifications and translates {—2, —1,0, 1, 2}-way existential automata to
existential {1,2}-way automata. The second ingredient is a complementation
construction for existential {1,2}-way automata, which we easily obtain from
Theorem [by dualizing [18] the transition function of the given automaton and
its acceptance condition, i.e., we swap the Boolean connectives (A and V) and the
Boolean constants (tt and ff) in the automaton’s transitions, and we complement
its acceptance condition, which can be easily done by incrementing the parities
of the states by 1. By instantiating our alternation-elimination scheme with a
combination—along the same lines as in [20,22]—of these two ingredients we
obtain the following result.

Corollary ZZl For an APA 2}1 with index k and n states, there is an NWA N
with 20(F)7) states, 20(F)°) stack symbols, and L(N)={w € X | G, € L(A)}.

5 Applications and Concluding Remarks

A first and immediate application of our alternation-elimination constructions is
a construction for complementing NWAs: For a given NWA N we first construct
by Theorem [a {1,2}-way alternating Biichi automaton A. We complement A’s
language by dualizing A [I8]. Note that A’s Biichi acceptance condition becomes
a co-Biichi acceptance condition in the dualized automaton. Since a co-Biichi
acceptance condition can be written as a parity acceptance condition with index
2, we can apply Theorem [0 to the dualized automaton and obtain an NWA N
with L(N) = £\ L(N). The NWA N has 20("*s10875) states and stack symbols,
where n is the number of states of N and s is the number of N’s stack symbols.

This construction generalizes the complementation construction in [I3] from
nondeterministic Biichi word automata to NWAs. However, observe that we ob-
tain a worse upper bound, namely, 20(n*slogns) jngtead of 20(M1°8™) . One reason

180 C. Dax and F. Klaedtke

is that the construction for NWAs has to take the stack into account. Another
reason is that we first translate the NWA A by Theorem 2] into an alternating
automaton that does not have a stack but takes the graph representation of
nested words as inputs. This translation causes a blowup of the factor O(ns) in
the automaton’s state space. It is also worth pointing out that our complementa-
tion construction based on alternating automata does not match the best known
upper bound 20(n*) for complementing NWAs [6]. This better upper bound is
achieved by splitting the complementation construction into two separate con-
structions, which are later combined by a simple product construction. Only one
of these two constructions involves a complementation construction, where only
nondeterministic Bilichi word automata need to be complemented. It remains
open whether our complementation construction based on Theorem [l can be
optimized so that it matches or improves the upper bound 20(n?)

Our second and main application area of the presented alternation-elimination
constructions is the translation of temporal logics over nested words into NWAs
for effectively solving the satisfiability problem and the model-checking prob-
lem for recursive state machines and Boolean programs. From the constructions
in Section H, we straightforwardly obtain such translations, which we sketch
in the following and which improve, extend, and correct previously presented
translations. Overall, our translations together with our results in [I1] and [I2]
demonstrate that complementation constructions for restricted classes of nonde-
terministic automata are at the core in translating temporal logics into nonde-
terministic automata; thus they are also at the core in the automata-theoretic
approach to model checking and satisfiability checking.

In [I0], Bozzelli introduces the temporal logic uNWTL, which extends the
linear-time p-calculus [8] by next modalities for the calls and returns in nested
words. uNWTL has the same expressive power as NWAs. Our alternation-
elimination scheme allow us to modularize and optimize Bozzelli’s monolithic
translation to NWAs. Similar to Bozzelli, we first translate a uNWTL formula
into an alternating parity automaton (alternating jump automaton in Bozzelli’s
paper, respectively) with k parities, where k is the alternation depth of the given
uNWTL formula. The size of the automaton is linear in the formula length. We
then apply Corollary [to obtain an NWA. The size of the resulting NWA is
20((”’“)2)7 where n is the size of the alternating parity automaton. For formulas
that do not refer to the past or only in a restricted way such that the alternating
parity automaton is eventually {1,2}-way, we can use Theorem [7l to reduce this
upper bound to 20(nklogn)

In [2,/4], the respective authors introduce the temporal logics CaRet and
NWTL, which extend the classical linear-time temporal logic LTL. The exten-
sions consist of new modalities that take the hierarchical structure of nested
words into account. In other words, the new modalities allow one to express
properties along the different paths in a nested word. NWTL subsumes CaRet
and is first-order complete. For both these logics, the authors of the respective

Alternation Elimination for Automata over Nested Words 181

papers also provide translations into NWAs. Their translations are direct, i.e.,
they do not use alternating automata as an intermediate step. Although the
techniques used in such direct translations are rather standard, they are complex
and their correctness proofs are cumbersome. As a matter of fact, the translation
in [2] is flawed [

Instead of directly constructing the NWA from a CaRet or an NWTL formula,
we utilize our alternation-elimination scheme. In more detail, we first translate
the given formula into an alternating automaton with a Biichi acceptance condi-
tion. As for LTL, the translation for CaRet and NWTL into alternating automata
is straightforward and linear in the formula length, since each temporal operators
in CaRet and also NWTL only allows us to specify a property along a single path
in the graph representation of nested words. Moreover, the obtained automaton
is eventually {1, 2}-way and very weak. Then, by instantiating the alternation-
elimination scheme with the complementation constructions from Theorem [
we obtain from such an alternating automaton an NWA.

The benefits of this translation is as follows. Its correctness is easier to es-
tablish. The difficult part is the alternation-elimination construction. However,
by our scheme its correctness proof boils down of proving the correctness of a
complementation construction for existential automata. Moreover, we can han-
dle the future-only fragment of CaRet and NWTL more efficiently by using the
specialized instance of our alternation-elimination scheme that we obtain from
Theorem[fl Finally, our translation can easily be adapted to extensions of NWTL
and other temporal logics. Similar to LTL and word automata [24], NWTL and
thus also CaRet are strictly less expressive than NWAs il For LTL, several exten-
sions and variants have been proposed to overcome this limitation. Among them
are Wolper’s ETL [24] and the industrial-strength logic PSL [I]. Similar exten-
sions are possible for NWTL to increase its expressiveness. For instance, we can
extend NWTL with the PSL-specific temporal operators that allow one to use
(semi-extended) regular expressions. With our alternation-elimination scheme,
we obtain a translation to NWAs with only minor modifications. Namely, the
translation into alternating automata is standard, see e.g., [9,[12]. Furthermore,
since the alternating automata are not necessarily very weak any more, we use
the complementation construction from Theorem [instead of the more spe-
cialized one from Theorem Ml to instantiate the alternation-elimination scheme.
However, it is open whether and which PSL-like extensions [I5] of NWTL are
capable of expressing all NWA-recognizable languages.

4 A counterexample is given by the NWTL formula ?ff, where (¢ is the “abstract”
version of classical eventually modality ¢ in LTL. The constructed NWA accepts
the nested word ((# @))“, which is not a model of the formula 0“ff since ¢*ff is
unsatisfiable. More generally speaking, the constructions in [2] disregards unfoldings
of least fixpoint formulas along the jumps from call to return positions. It should
be possible to correct their tableaux-based construction by using the technique for
ensuring condition (IEI) of Lemma Bl in our automaton construction from Theorem
The language of nested words in which every position is internal and the proposition
p holds at every even position witnesses that NWTL cannot express all nested-word
regular languages.

(9]

182 C. Dax and F. Klaedtke
References
1. IEEE standard for property specification language (PSL). IEEE Std 1850TM

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

(October 2005)
Alur, R., Arenas, M., Barceld, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. Log. Methods Comput. Sci. 4(4) (2008)

. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.W., Yannakakis, M.:

Analysis of recursive state machines. ACM Trans. Progr. Lang. Syst. 27(4), 786—
818 (2005)

. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and

returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467-481. Springer, Heidelberg (2004)

. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: ACM Symposium on

Theory of Computing (STOC), pp. 202-211. ACM Press, New York (2004)

. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1-43

(2009)

. Ball, T., Rajamani, S.K.: Boolean programs: A model and process for software

analysis. Technical Report MSR-TR-~2000-14, Microsoft Research (2000)

. Baniegbal, B., Barringer, H.: Temporal logic with fixed points. In: Baniegbal, B.,

Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398,
pp. 62-74. Springer, Heidelberg (1989)

. Ben-David, S., Bloem, R., Fisman, D., Griesmayer, A., Pill, I., Ruah, S.: Automata

construction algorithms optimized for PSL. Technical report, The Prosyd Project
(2005), http://www.prosyd.org

Bozzelli, L.: Alternating automata and a temporal fixpoint calculus for visibly
pushdown languages. In: Caires, L., Li, L. (eds.) CONCUR 2007. LNCS, vol. 4703,
pp. 476-491. Springer, Heidelberg (2007)

Dax, C., Klaedtke, F.: Alternation elimination by complementation. In: Cervesato,
I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 214—
229. Springer, Heidelberg (2008)

Dax, C., Klaedtke, F., Lange, M.: On regular temporal logics with past. Acta
Inform. 47(4), 251-277 (2010)

Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Trans. Comput. Log. 2(3), 408-429 (2001)

Kupferman, O., Vardi, M.Y.: Complementation constructions for nondeterministic
automata on infinite words. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005.
LNCS, vol. 3440, pp. 206-221. Springer, Heidelberg (2005)

Lange, M.: Linear time logics around PSL: Complexity, expressiveness, and a little
bit of succinctness. In: Caires, L., Li, L. (eds.) CONCUR 2007. LNCS, vol. 4703,
pp. 90-104. Springer, Heidelberg (2007)

Miyano, S., Hayashi, T.: Alternating finite automata on w-words. Theoret. Comput.
Sci. 32(3), 321-330 (1984)

Muller, D., Saoudi, A., Schupp, P.: Alternating automata, the weak monadic theory
of trees and its complexity. Theoret. Comput. Sci. 97(2), 233-244 (1992)

Muller, D., Schupp, P.: Alternating automata on infinite trees. Theoret. Comput.
Sci. 54(2-3), 267276 (1987)

Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development 3(2), 198-200 (1959)

Vardi, M.Y.: A temporal fixpoint calculus. In: ACM Symposium on Principles of
Programming Languages (POPL), pp. 250-259. ACM Press, New York (1988)

http://www.prosyd.org

21.

22.

23.

24.

Alternation Elimination for Automata over Nested Words 183

Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata.
Inform. Process. Lett. 30(5), 261-264 (1989)

Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628—-641. Springer,
Heidelberg (1998)

Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Symposium on Logic in Computer Science
(LICS), pp. 332-344. IEEE Computer Society, Los Alamitos (1986)

Wolper, P.: Temporal logic can be more expressive. Information and Control 56
(1-2), 72-99 (1983)

Co-Biiching Them All

Udi Boker and Orna Kupferman

School of Computer Science and Engineering
Hebrew University, Israel
{udiboker, orna}l@cs.huji.ac.il

Abstract. We solve the open problems of translating, when possible, all common
classes of nondeterministic word automata to deterministic and nondeterminis-
tic co-Biichi word automata. The handled classes include Biichi, parity, Rabin,
Streett and Muller automata. The translations follow a unified approach and are
all asymptotically tight.

The problem of translating Biichi automata to equivalent co-Biichi automata
was solved in [2]], leaving open the problems of translating automata with richer
acceptance conditions. For these classes, one cannot easily extend or use the con-
struction in [2]]. In particular, going via an intermediate Biichi automaton is not
optimal and might involve a blow-up exponentially higher than the known lower
bound. Other known translations are also not optimal and involve a doubly expo-
nential blow-up.

We describe direct, simple, and asymptotically tight constructions, involving
a 20 blow-up. The constructions are variants of the subset construction, and
allow for symbolic implementations. Beyond the theoretical importance of the
results, the new constructions have various applications, among which is an im-
proved algorithm for translating, when possible, LTL formulas to deterministic
Biichi word automata.

1 Introduction

Finite automata on infinite objects are widely used in formal verification and synthe-
sis of nonterminating systems. The automata-theoretic approach to verification reduces
questions about systems and their specifications to automata-theoretic problems like
language containment and emptiness [LO/18]]. Recent industrial-strength specification-
languages such as Sugar, ForSpec and PSL 1.01 include regular expressions and/or
automata, making automata-theory even more essential and popular [1].

There are various classes of automata, characterized by their branching mode and ac-
ceptance condition. Each class has its advantages, disadvantages, and common usages.
Accordingly, an important challenge in the the study of automata on infinite objects is
to provide algorithms for translating between the different classes. For most transla-
tions, our community was able to come up with satisfactory solutions, in the sense that
the state blow-up involved in the algorithm is proved to be unavoidable. Yet, for some
translations there is still a significant gap between the best known algorithm and the
corresponding lower bound.

Among these open problems are the translations of nondeterministic automata to
equivalent deterministic and nondeterministic co-Biichi automata (NCW and DCW),

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 1841198] 2011.
(© Springer-Verlag Berlin Heidelberg 2011

Co-Biiching Them All 185

when possibleﬂ In [2]], we introduced the augmented subset construction and used it
for translating a nondeterministic Biichi automaton (NBW) to NCW and DCW, when
possible. We left open the problems of translating automata with richer acceptance con-
ditions (parity, Rabin, Streett and Muller) to co-Biichi automata. For these classes, one
cannot easily extend or use the construction in [2], and the gap between the lower and
upper bounds is still significant (for some of the classes it is even exponential). In this
paper, we solve these problems and study the translation of nondeterministic parity
(NPW), Streett (NSW), Rabin (NRW), and Muller NMW) word automata to NCW
and to DCW.

A straightforward approach is to translate an automaton of the richer classes via an
intermediate NBW. This approach, however, is not optimal. For example, starting with
an NSW with n states and index k, the intermediate NBW has n2* states, thus the NCW
would have n2*+n2" states, making the dependency in k doubly-exponential. Note that
the exponential blow-up in the translation of NSW or NMW to NBW cannot be avoided
[L5]. A different approach is to translate the original automaton, for example an NRW,
to an equivalent DPW, which can then be translated to an equivalent DCW over the same
structure [5]. However, translating an NRW to an equivalent DPW might be doubly
exponential [4], with no matching lower bound, even for the problem of translating to a
DCW, let alone translating to NCW.

Thus, the approaches that go via intermediate automata are far from optimal, and our
goal is to find a direct translation of these stronger classes of automata to NCW and
DCW. We first show that for NSW, an equivalent NCW can be defined on top of the
augmented subset construction (the product of the original automaton with its subset
construction). The definition of the corresponding co-Biichi acceptance condition is
more involved in this case than in the case of translating an NBW, but the blow-up stays
the same. Thus, even though NSW are exponentially more succinct than NBW, their
translation to NCW is of exactly the same state complexity as is the one for NBW! This
immediately provides an n2™ upper bound for the translation of NSW to NCW. As in
the case of translating an NBW, we can further determinize the resulting augmented
subset construction, getting a 3" upper bound for the translation of NSW to DCW. Both
bounds are asymptotically tight, having matching lower bounds by the special cases of
translating NBW to NCW [2] and NCW to DCW [3]]. The above good news apply also
to the parity and the generalized-Biichi acceptance conditions, as they are special cases
of the Streett condition.

For NRW and NMW, the situation is more complicated. Unfortunately, an equiva-
lent NCW cannot in general be defined on top of the augmented subset construction.
Moreover, even though the results on NSW imply a translation of NRW[1] (that is,
a nondeterministic Rabin automaton with a single pair) to NCW, one cannot hope to
proceed via a decomposition of an NRW with index & to & NRW[1]s. Indeed, the un-
derlying NRW[1]s may not be NCW-realizable, even when the NRW is, and the same
for NMWs. We show that still, the NCW can be defined on top of k copies of the aug-
mented subset construction, giving rise to a kn2™ upper bound for the translation to
NCW. Moreover, we show that when translating to an equivalent DCW, the k copies

! The co-Biichi condition is weaker than the Biichi acceptance condition, and not all w-regular
languages are NCW-recognizable, hence the “when possible”.

186 U. Boker and O. Kupferman

can be determinized separately, while connected in a round-robin fashion, which gives
rise to a k3™ blow-up. As with the other cases, the blow-up involved in the transla-
tions is asymptotically tight. The state blow-up involved in the various translations is
summarized in Table[T] of the Section[6l

Beyond the theoretical challenge in tightening the gaps, and the fact they are related
to other gaps in our knowledge [6], these translations have immediate important ap-
plications in formal methods. The interest in the co-Biichi condition follows from its
simplicity and its duality to the Biichi acceptance condition. The interest in the stronger
acceptance conditions follows from their richness and succinctness. In particular, stan-
dard translations of LTL to automata go via intermediate generalized Biichi automata,
which are then being translated to Biichi automata. For some algorithms, it is possible
to give up the last step and work directly with the generalized Biichi automaton [8]. It
follows from our results that the same can be done with the algorithm of translating LTL
formulas to NCW and DCW. By the duality of the co-Biichi and Biichi conditions, one
can construct a DBW for ¢ by dualizing the DCW for —). Thus, since the translation
of LTL to NSW may be exponentially more succinct than a translation to NBW, our
construction suggests the best known translation of LTL to DBW, when exists.

An important and useful property of our constructions is the fact they have only a
one-sided error when applied to automata whose language is not NCW-recognizable.
Thus, given an automaton 4, the NCW C and the DCW D we construct are always
such that L(A) C L(C) = L(D), while L(A) = L(C) = L(D) in case A is NCW-
recognizable. Likewise, given an LTL formula), the DBW D,, we construct is always
such that L(Dy) C L(v), while L(Dy) = L(v) in case 1) is DBW-recognizable. As
specified in Section [3 this enables us to extend the scope of the applications also to
specifications that are not NCW-realizable.

2 Preliminaries

Given an alphabet X', a word over X' is a (possibly infinite) sequence w = w1 - wy - - -
of letters in Y. For two words, x and y, we use x = y to indicate that x is a pre-
fix of y and x < y to indicate that x is a strict prefix of y. An automaton is a tu-
ple A = (¥, Q,9,Qo, a), where X is the input alphabet,) is a finite set of states,
§: Q x X — 29 is a transition function, Qo C Q is a set of initial states, and «
is an acceptance condition. We define several acceptance conditions below. Intuitively,
d(g,0) is the set of states that A may move into when it is in the state ¢ and it reads
the letter o. The automaton .4 may have several initial states and the transition function
may specify many possible transitions for each state and letter, and hence we say that
A is nondeterministic. In the case where |QQp| = 1 and for every ¢ € Q and 0 € X, we
have that |§(g, o)| < 1, we say that A is deterministic. The transition function extends
to sets of states and to finite words in the expected way, thus for a set of states .S and a
finite word x, (S, x) is the set of states that .A may move into when it is in a state in S
and it reads x. Formally, §(S, €) = S and 6(S, w- o) = U,e5(5,1) 0(¢; 7). We abbrevi-
ate 0(Qo, z) by &(x), thus §(x) is the set of states that .4 may visit after reading z. For
an automaton 4 and a state ¢ of A, we denote by A7 the automaton that is identical to
A, except for having {¢} as its set of initial states. An automaton without an acceptance
condition is called a semi-automaton.

Co-Biiching Them All 187

Arunr =rg,r1,--- of Aonw = wy -ws --- € X is an infinite sequence of states
such that g € Qo, and forevery ¢ > 0, we have that ;1 € §(r;, w;+1). Note that while
a deterministic automaton has at most a single run on an input word, a nondeterministic
automaton may have several runs on an input word. We sometimes refer to r as a word
in Q% or as a function from the set of prefixes of w to the states of 4. Accordingly, we
use r(x) to denote the state that r visits after reading the prefix x.

Acceptance is defined with respect to the set in f(r) of states that the run r visits in-
finitely often. Formally, inf(r) = {¢ € @Q | for infinitely many ¢ € IN, we have r; =
q}. As Q@ is finite, it is guaranteed that inf(r) # (. The run r is accepting iff the set
inf(r) satisfies the acceptance condition .

Several acceptance conditions are studied in the literature. We consider here six:

— Biichi, where o C @, and 7 is accepting iff inf(r) N« # 0.

— co-Biichi, where o C @, and r is accepting iff in f () C «. Note that the definition
we use is less standard than the in f(r) N« = () definition; clearly, in f(r) C « iff
inf(r)N(Q\ «) = 0, thus the definitions are equivalent. We chose to go with this
variant as it better conveys the intuition that, as with the Biichi condition, a visit in
«ais a “good event”.

— parity, where & = {a1,q9,...,at} Witha; C az C -+ C agr = @, and 7 is
accepting if the minimal index ¢ for which in f(r) N «; # @ is even.

— Rabin, where a = {{(«a1, 1), (a2, B2), ..., {ak, Br)}, with «;, 3; C @ and r is
accepting iff for some 1 < i < k, we have thatin f(r)Na; # O andinf(r)NG; = 0.

— Streett, where o« = {(01, 1), (B2, a2),..., Bk, ak)}, with 8;,; C @ and r is
accepting iff for all 1 <7 < k, we have that inf(r) N 3; = 0 orinf(r) Na; # 0.

— Muller, where a = {1, ag, ..., ax}, with o; C @Q and r is accepting iff for some
1 < <k, wehave thatinf(r) = «,.

The number of sets in the parity and Muller acceptance conditions or pairs in the Rabin
and Streett acceptance conditions is called the index of the automaton. An automaton
accepts a word if it has an accepting run on it. The language of an automaton .4, denoted
L(A), is the set of words that .4 accepts. We also say that A recognizes the language
L(A). For two automata A and A’, we say that .4 and A" are equivalent if L(A) =
L(A).

We denote the different classes of automata by three letter acronyms in {D, N} X
{B,C,P,R,S,M} x {W}. The first letter stands for the branching mode of the au-
tomaton (deterministic or nondeterministic); the second letter stands for the acceptance-
condition type (Biichi, co-Biichi, parity, Rabin, Streett, or Muller); and the third letter
indicates that the automaton runs on words. We say that a language L is ~y-recognizable
or y-realizable if L can be recognized by an automaton in the class .

Different classes of automata have different expressive power. In particular, while
NBWs recognize all w-regular languages [[12]], DBWs are strictly less expressive than
NBWs, and so are DCWs [[11]. In fact, a language L is in DBW iff its complement is
in DCW. Indeed, by viewing a DBW as a DCW and switching between accepting and
non-accepting states, we get an automaton for the complementing language, and vice
versa. The expressiveness superiority of the nondeterministic model over the determin-
istic one does not apply to the co-Biichi acceptance condition. There, every NCW has

188 U. Boker and O. Kupferman

an equivalent DCW [13]]. As for parity, Rabin, Streett and Muller automata, both the
deterministic and nondeterministic models recognize all w-regular languages [17].

Our constructions for translating the various automata to co-Biichi automata will use
the augmented subset construction [2], which is the product of an automaton with its
subset construction.

Definition 1 (Augmented subset construction). (2] Let A = (X, Q, §, Qo) be a semi-
automaton. The augmented subset construction A’ of A is the product of A with its
subset construction. Formally, A’ = (¥,Q’, ¢, Qy), where

- Q' = Q x 2%. That is, the states of A’ are all the pairs (q, E) where q € Q and
ECQ.

- Forall (¢, F) € Q' ando € X, we have §'({q, E),0) = §(q,0) x {6(E, 0)}. That
is, A’ nondeterministically follows A on its Q-component and deterministically
follows the subset construction of A on its 29 -component.

- Q= Qo x {Qo}.

3 Translating to NCW

In this section we study the translation, when possible, of NPWs, NRWs, NSWs, and
NMWs to NCWs. Since the Biichi acceptance condition is a special case of these
stronger conditions, the 2(") Jower bound from [2]] applies, and the challenge is to
come up with matching upper bounds. While nondeterministic Rabin, Streett, and
Muller automata are not more expressive than nondeterministic Biichi automata, they
are more succinct: translating an NRW, NSW, and NMW with n states and index k
to an NBW, results in an NBW with O(nk), O(n2*), and O(n?k) states, respectively
[[L5/16]). Note that an NPW is a special case of both an NSW and an NRW.

A first attempt to translate NRWs, NSWs, and NMWs to NCWs is to go via interme-
diate NBWs, which can be translated to NCWs by the augmented subset construction
[2]. By the blow-ups above, however, this results in NCWs that are far from optimal.
A second attempt is to apply the augmented subset construction directly on the input
automaton, and check the possibility of defining on top of it a suitable co-Biichi accep-
tance condition.

It is not hard to see that this second attempt does not work for all automata. Consider
for example the Rabin acceptance condition. Note that the augmented subset construc-
tion does not alter a deterministic automaton. Also, DRWs are not DCW-type [7] (that
is, there is a DRW A whose language is DCW-recognizable, but still no DCW equiva-
lent to A can be defined on top of the structure of A). It follows that there are NRWs
whose language is NCW-recognizable, but still no NCW recognizing them can be de-
fined on top of the automaton obtained by applying the augmented subset construction
on them (see Theorem[2 for a concrete example).

With this in mind, this section is a collection of good news. First, we show in Sub-
section [3.J]that NSWs (and NPWs) can be translated to NCWs on top of the augmented
subset construction. Second, while this is not valid for NRWs and NMWs, we show
in Subsection [3.2] that they can be translated to NCWs on top of a union of copies of

Co-Biiching Them All 189

the augmented subset construction. Moreover, the translation of the obtained NCWs to
equivalent DCWs does not involve an additional exponential blow-up (see Section[4).

We first provide some basic lemmata from [2]. We start with a property relating
states of a DCW (in fact, any deterministic automaton) that are reachable via words
that lead to the same state in the subset construction of an equivalent nondeterministic
automaton.

Lemma 1. /2] Consider a nondeterministic automaton A with a transition function
0.4 and a DCW D with a transition function 6p such that L(A) = L(D). Let dy and ds
be states of D such that there are two finite words x1 and xo such that ép(x1) = dj,
Sp(w2) = da, and S 4(x1) = 6.4(x2). Then, L(D4) = L(D%).

For automata on finite words, if two states of the automaton have the same language,
they can be merged without changing the language of the automaton. While this is
not the case for automata on infinite words, the lemma below enables us to do take
advantage of such states.

Lemma 2. [2] Consider a DCW D = (X, D, 6, Dy,). Let di and dy be states in
D such that L(D%) = L(D%). For all finite words u and v, if 6(dy,u) = dy and
d(dz, v) = dg then for all words w € (u + v)* and states d € §(dy,w) U §(da,w), we
have L(D?) = L(D%).

The next lemma takes further advantage of DCW states recognizing the same language.

Lemma 3. [2] Let D = (X, D, 6, Dy, &) be a DCW. Consider a state d € D. For all
nonempty finite words v and u, if (v* - ut)? C L(D?) and for all words w € (v + u)*
and states d' € §(d,w), we have L(D?) = L(D?), then v* € L(D%).

3.1 From NSW to NCW

The translation of an NSW to an NCW, when exists, can be done on top of the aug-
mented subset construction, generalizing the acceptance condition used for translating
an NBW to an NCW.

In the translation of an NBW to an NCW, we start with an NBW B and define a state
(b, E') of the augmented subset construction to be co-Biichi accepting if there is some
path p in B, taking (b, E') back to itself via a Biichi accepting state. The correctness
of the construction follows from the fact that an NCW-recognizable language is closed
under pumping such cycles. Thus, if B accepts a word that includes a subword along
which p is read, then B also accepts words obtained by pumping the subword along
which p is read. In turns out that this intuition is valid also when we start with an NSW
S: astate (s, E') of the augmented subset construction is co-Biichi accepting if there is
some path p in S, taking (s, E') back to itself, such that p visits «; or avoid j3; for every
pair ¢ in the Streett acceptance condition. This guarantees that pumping p infinitely
often results in a run that satisfies the Streett condition, which in turn implies that an
NCW-recongnizable language is closed under such pumping.

We formalize and prove this idea below.

190 U. Boker and O. Kupferman

Theorem 1. For every NSW S with n states that is NCW-recognizable, there is an
equivalent NCW C with at most n2" states.

Proof. LetS = (X, S,0s,S0, {01, 1), ... {Bk, ar)). We define the NCW C = (¥, C,
dc, Co, ac) as the augmented subset construction of S with the following acceptance
condition: a state is a member of ac if it is reachable from itself along a path whose
projection on S visits «; or avoids 3; forevery 1 < i < k.

Formally, (s, E) € «c if there is a finite word z = 2129 - - - 2, of length m and
a sequence of m + 1 states (sg, Eg) ... {Sm, Em) such that (s, Eo) = (S, Em) =
(s, E), and for all 0 < I < m we have (s;+1, E14+1) € 0c({s1, Ei), zi+1), and for every
1 <4 <k, either thereis 0 < [< msuchthat s; € q; ors; € G; forall 0 <[< m.
We refer to z as the witness for (s, E'). Note that z may be the empty word.

We prove the equivalence of S and C. Note that the 2°-component of C' proceeds in
a deterministic manner. Therefore, each run r of S induces a single run of C (the run in
which the S-component follows r). Likewise, each run r of C induces a single run of
S, obtained by projecting r on its .S-component.

We first prove that L(S) C L(C). Note that this direction is always valid, even if S
is not NCW-recognizable. Consider a word w € L(S). Let r be an accepting run of S
on w. We prove that the run ' induced by r is accepting. Let J C {1,...,k} denote
the set of indices of acceptance-pairs whose (-element is visited infinitely often by r.
Thatis, J = {j | B; Ninf(r) # 0}. Consider a state (s, E) € inf(r’). We prove that
(s, E) € ac. Since (s, E') appears infinitely often in 7’ and r is accepting, it follows
that there are two (not necessarily adjacent) occurrences of (s, E'), between which r
visits «; for all j € J and avoids §; for all ¢ ¢ J. Hence, we have the required witness
for (s, E), and we are done.

We now prove that L(C) C L(S). Consider a word w € L(C), and let r be an
accepting run of C on w. Let J C {1,...,k} denote the set of indices of acceptance-
pairs whose 3-element is visited infinitely often by 7. That is, J = {j | (8; x 2%) N
inf(r) # (0}. If J is empty then the projection of r on its S-component is accepting,
and we are done. Otherwise, we proceed as follows. For every j € J, let (s;, E;) be a
state in (3; x 2%) Ninf(r).

By the definition of J, all the states (s, E;), with j € J, are visited infinitely often
in 7, whereas states whose S-component is in 3;, for ¢ ¢ J, are visited only finitely
often in r. Accordingly, the states (s;, E;), with j € J, are strongly connected via a
path that does not visit 3;, for ¢ ¢ J. In addition, for every (s;, E;), with j € J, there is
a witness z; for the membership of (s;, E;) in o, going from (s;, E;) back to itself via
o and either avoiding 3; or visiting «;, forevery 1 < ¢ < k. Let (s, E') be one of these
(sj, E;) states, and let x be a prefix of w such that r(z) = (s, E). Then, there is a finite
word z along which there is a path from (s, E') back to itself, visiting all ¢; for j € J
and either avoiding [3; or visiting «; for every 1 < i < k. Therefore, « - 2* € L(S).

Recall that the language of S is NCW-recognizable. Let D = (X', D, dp, Dy, ap)
be a DCW equivalent to S. Since L(S) = L(D) and = - 2 € L(S), it follows that the
run p of D on z - 2% is accepting. Since D is finite, there are two indices, [and m, such
that | < m, p(z - 2) = p(x - z™), and for all prefixes y of x - z* such that z - 2! < y,
we have p(y) € ap. Let g be the state of D such that ¢ = p(z - 2*).

Co-Biiching Them All 191

Consider the run n of D on w. Since r visits (s, E') infinitely often and D is finite,
there must be a state d € D and infinitely many prefixes pi, po,... of w such that
for all i > 1, we have r(p;) = (s, E) and n(p;) = d. We claim that the states ¢
and d of D satisfy the conditions of Lemma [I] with ¢ being p; and x; being x - 2t
Indeed, 0p(p1) = d, 5p(x - 2') = ¢, and ds(p1) = ds(x - 2!) = E. For the latter
equivalence, recall that §s(z) = E and ds(F, z) = E. Hence, by Lemmalll we have
that L(D?) = L(D?).

Recall the sequence of prefixes pi,po,.... For all ¢+ > 1, let p;41 = p; - t;. We
now claim that for all ¢ > 1, the state d satisfies the conditions of Lemma [3] with
being 2! and v being ¢;. The second condition is satisfied by Lemma[2l For the first
condition, consider a word w’ € (v* - u)“. We prove that w’ € L(D?). Recall that
there is a run of §° on v that goes back to s while avoiding 3; for all ¢ ¢ J and there
is a run of &% on u that goes back to s while visiting o; for all j € J and either
visiting «; or avoiding 3; for all ¢ ¢ J. (Informally, u “fixes” all the problems of v, by
visiting a; for every (3; that v might visit.) Recall also that for the word p;, we have
that r(p1) = (s, E) and n(p1) = d. Hence, p; - v’ € L(S). Since L(S) = L(D), we
have that p; - w’ € L(S). Therefore, w' € L(D?).

Thus, by Lemma[3] for all i > 1 we have that t* € L(D?). Since ép(d,t;) = d,
it follows that all the states that D visits when it reads ¢; from d are in ap. Note that
w = py - t1 - t2---. Hence, since dp(p1) = d, the run of D on w is accepting, thus
w € L(D). Since L(D) = L(S), it follows that w € L(S), and we are done. O

Two common special cases of the Streett acceptance condition are the parity and the
generalized Biichi acceptance conditions. In a generalized Biichi automaton with states
Q, the acceptance condition is @ = {1, ag,...,a;} with o; C @, and a run 7 is
accepting if inf(r) N a; # 0 for all 1 < ¢ < k. Theorem [] implies that an NCW-
recognizable nondeterministic parity or generalized Biichi automaton with n states can
be translated to an NCW with n2"™ states, which can be defined on top of the augmented
subset construction.

3.2 From NRW and NMW to NCW

In this section we study the translation of NRWs and NMWs to NCWs, when exists.
Unfortunately, for these automata classes we cannot define an equivalent NCW on top
of the augmented subset construction. Intuitively, the key idea of Subsection[3.1] which
is based on the ability to pump paths that satisfy the acceptance condition, is not valid
in the Rabin and the Muller acceptance conditions, as in these conditions, visiting some
“bad” states infinitely often need not be compensated by visiting some “good” ones
infinitely often. We formalize this in the example below, which consists of the fact that
DRWs are not DCW-type [7]].

Theorem 2. There is an NRW and an NMW that are NCW-recognizable but an equiv-
alent NCW for them cannot be defined on top of the augmented subset construction.

Proof. Consider the NRW A appearing in Figure [The language of A consists of
all words over the alphabet {0, 1} that either have finitely many 0’s or have finitely

192 U. Boker and O. Kupferman

many 1’s. This language is clearly NCW-recognizable, as it is the union of two NCW-
recognizable languages. Since 4 is deterministic and the augmented subset construction
does not alter a deterministic automaton, it suffices to show that there is no co-Biichi
acceptance condition ¢’ that we can define on the structure of A and get an equivalent
language. Indeed, o’ may either be (), {go}, {q1} or {qo, 1}, none of which provides
the language of .A. Since every NRW has an equivalent NMW over the same structure,
the above result also applies to the NMW case. g

A: 1

‘@a‘ o= {(qo,q1), (q1,q0)}

Fig. 1. The NRW A, having no equivalent NCW on top of its augmented subset construction

Consider an NRW or an NMW A with index k. Our approach for translating A to an
NCW is to decompose it to K NSWs over the same structure, and apply the augmented
subset construction on each of the components. Note that the components may not
be NCW-realizable even when A is, thus, we should carefully analyze the proof of
Theorem [T and prove that the approach is valid.

We now formalize and prove the above approach. We start with the decomposition
of an NRW or an NMW with index k into £ NSWs over the same structure.

Lemma 4. Every NRW or NMW A with index k is equivalent to the union of k NSWs
over the same structure as A.

Proof. An NRW A with states A and index k is the union of K NRWs with index 1 over
the same structure as A. Since a single-indexed Rabin acceptance condition {{a1, 81)}
is equivalent to the Streett acceptance condition {{y, 1), (A, 51)}, we are done.

An NMW A with states A and index k is the union of K NMWs with index 1 over
the same structure as .A. Since a single-indexed Muller acceptance condition {c; } is
equivalent to the Streett acceptance condition { (A \ a1, 0) } Ul ¢, {(4; {s})}, we are
done. O

Next we show that a union of kK NSWs can be translated to a single NSW over their
union.

Lemma 5. Consider k NSWs, S1, ..., Sk, over the same structure. There is an NSW S
over the disjoint union of their structures, such that L(S) = Ule L(S).

Proof. We obtain the Streett acceptance condition of S by taking the union of the Streett
acceptance conditions of the NSWs S, . .., Sk. Note that while the underlying NSWs
are interpreted disjunctively (that is, in order for a word to be accepted by the union,
there should be an accepting run on it in some S;), the pairs in the Streett condition
are interpreted conjunctively (that is, in order for a run to be accepting, it has to satisfy
the constraints by all the pairs in the Streett condition). We prove that still L(S) =

Co-Biiching Them All 193

Ule L(S;). First, if a run r of S is an accepting run of an underlying NSW §;, then
the acceptance conditions of the other underlying NSWs are vacuously satisfied. Hence,
if a word is accepted by S; for some 1 < 7 < k, then S accepts it too. For the other
direction, if a word w is accepted in S, then its accepting run in S is also an accepting

run of one of the underlying NSWs, thus w is in Ule L(S;). |

Finally, we combine the translation to Streett automata with the augmented subset con-
struction and get the required upper bound for NRW and NMW.

Theorem 3. For every NCW-recognizable NRW or NMW with n states and index k,
there is an equivalent NCW C with at most kn2™ states.

Proof. Consider an NRW or an NMW A with n states and index k. By Lemmas 4 and
[there is an NSW S whose structure consists of k copies of the structure of .A such that
L(S) = L(A). Let C be the NCW equivalent to S, defined over the augmented subset
construction of S, as described in Theorem [l Note that S has nk states, thus a naive
application of the augmented subset construction on it results in an NCW with kn2"
states. The key observation, which implies that we get an NCW with only kn2" states,
is that applying the augmented subset construction on S, the deterministic component
of all the underlying NCWs is the same, and it coincides with the subset construction
applied to A. To see this, assume that A = (X, A, Ap,d,). Then, § = (¥ A x
{1,...,k},Ag x {1,...,k},0',c/), where foralla € A;1 < j < k,ando € X, we
have that ¢'({a, j),0) = d(a, o) x {j}. Applying the augmented subset construction,
we get the product of S and its subset construction, where the latter has a state for every
reachable subset of S. That is, a subset G’ C S is a state of the subset construction if
there is a finite word u for which §’(u) = G’. Since for alla € A,1 < j < k, and
o € X, we have that §'({a,j),0) = d(a,0) x {j}, it follows that G’ is of the form
G x {j} forall 1 < j <k andsome G C A. Hence, there are up to 2141 = 27 gtates in
the subset construction of S. Thus, when we apply the augmented subset construction
on S, we end up with an NCW with only kn2" states, and we are done. O

4 Translating to DCW

In a first sight, the constructions of Section[3] which translate a nondeterministic word
automaton to an NCW, are not useful for translating it to a DCW, as the determiniza-
tion of an NCW to a DCW has an exponential state blow-up. Yet, we show that the
special structure of the constructed NCW allows to determinize it without an additional
exponential blow-up. The key to our construction is the observation that the augmented
subset construction is transparent to additional applications of the subset construction.
Indeed, applying the subset construction on an NCW C with state space B x 25, one
ends up in a deterministic automaton with state space {{(¢, E) | ¢ € E} : E C B},
which is isomorphic to 25.

The standard breakpoint construction [13]] uses the subset construction as an inter-
mediate layer in translating an NCW with state space C' to a DCW with state space
3C. Thus, the observation above suggests that applying it on our special NCW C would
not involve an additional exponential blow-up on top of the one involved in going from
some automaton A to C. As we show in Theorem] below, this is indeed the case.

194 U. Boker and O. Kupferman

Starting with an NSW, the determinization of the corresponding NCW is straightfor-
ward, following [13]’s construction. However, when starting with an NRW or an NMW,
the k different parts of the corresponding NCW (see Theorem[3)) might cause a doubly-
exponential blowup. Fortunately, we can avoid it by determinizing each of the k parts
separately and connecting them in a round-robin fashion. We refer to the construction
in Theorem @ as the breakpoint construction.

Theorem 4. For every DCW-recognizable NPW, NSW, NRW, or NMW A with n states
there is an equivalent DCW D with O(3™) states.

Proof. We start with the case A is an NSW. The DCW D follows all the runs of the
NCW C constructed in Theorem[Il Let ae € A x 24 be the acceptance condition of
C. The DCW D accepts a word if some run of C remains in o¢ from some position@
At each state, D keeps the corresponding subset of the states of C, and it updates it
deterministically whenever an input letter is read. In order to check that some run of C
remains in a¢ from some position, the DCW D keeps track of runs that do not leave
ac. The key observation in [13] is that keeping track of such runs can be done by
maintaining the subset of states that belong to these runs.

Formally, let A = (X, A,54, Ao, 4). We define a function f : 24 — 24 by
f(E) = {a| {(a, E) € ac}. Thus, when the subset component of D is in state E, it
should continue and check the membership in e only for states in f(E). We define the
DCW D = (¥, D, dp, Do, ap) as follows.

D={(5,0)|SCAand O C SN f(9)}.

For all (S,0) € D and o € X, the transition function is defined as follows.
e If O # 0, then §p((S,0),0) = {(04(S,0),04(0,0) N f(S))}.
e IfO =0, then 6p((S,0),0) = {(6.4(S,0),04(S,0) N f(S))}.

Doy = {(40,0)}.

ap ={(5,0)[O # 0}.

Thus, the run of D on a word w has to visit states in 24 x {()} only finitely often,
which holds iff some run of C on w eventually always visits a¢. Since each state of D
corresponds to a function from A to the set { “in SN O”,“in S\ O”, “notin S}, its
number of states is at most 314!,

We proceed to the case A is an NRW or an NMW. Here, by Theorem[3] A has an
equivalent NCW C with kn2"™ states. The NCW C is obtained by applying the aug-
mented subset construction on & copies of A, and thus has k& unconnected components,
Ci,...,Cy that are identical up to their acceptance conditions ac,, ..., ac, .

Since the k& components of C all have the same A x 24 structure, applying the stan-
dard subset construction on C, one ends up with a deterministic automaton that is iso-
morphic to 24. Applying the standard breakpoint construction on C, we could thus hope
to obtain a deterministic automaton with only 3141 states. This construction, however,
has to consider the different acceptance conditions «;, maintaining in each state not
only a pair (S, O), but a tuple (S, O, ..., O), where each O; C S corresponds to

2 Readers familiar with the construction of [13] may find it easier to view the construction here as
one that dualizes a translation of universal co-Biichi automata to deterministic Biichi automata,
going through universal Biichi word automata — these constructed by dualizing Theorem [l

Co-Biiching Them All 195

the standard breakpoint construction with respect to «;. Such a construction, however,
involves a k™ blow-up.

We circumvent this blow-up by determinizing each of the C;’s separately and con-
necting the resulting D;’s in a round-robin fashion, moving from D; t0 D; (mod k)+1
when the set O, which maintains the set of states in paths in which D; avoids «;, be-
comes empty. Now, there is 1 < ¢ < k such that C; has a run that eventually gets stuck
in ¢; iff there is 1 < ¢ < k such that in the round-robin construction, the run gets stuck
in a copy that corresponds to D; in states with O # (.

Formally, for every 1 < i < k, we define a function f; : 24 — 24 by f;(E) =
{a | {a, E) € ac, }. We define the DCW D = (X, D, dp, Dy, ap) as follows.

- D={(50,i)| SCAOCSNFfi(S),andi € {1,...k}}.
For all (S,0,4) € D and o € X, the transition function is defined as follows.
o If O #), then 6p((S,0,i),0) = {(S',0",)}, where S’ = §4(S,0), 0" =
04(0,0)N fi(S)and ¢’ =4 (mod k) + 1if O’ = () and 7 otherwise.
e If O =0, then 6p((S,0,i),0) = {(S",0",)}, where S’ = §4(S,0), 0" =
d4(S,0)N fi(S)and ¢ =i (mod k) + 1if O’ = () and 7 otherwise.
- Do = {<A0 OfC1,@>}.
ap = {<SvaZ> | O # (D}

A run of D is accepting if it gets stuck in one of the sets of accepting states. Since
the different parts of C are unconnected, we have that a run of C is accepting iff it gets
stuck in the accepting states of one of the C;’s. Hence, a word is accepted by C iff it is
accepted by D, and we are done.

O

By [3]], one cannot avoid the 3" state blow-up for translating an NCW to a DCW. Since
this lower bound clearly holds also for the stronger conditions, we can conclude with
the following.

Theorem 5. The tight bound for the state blow-up in the translation, when possible, of
NPW, NSW, NRW and NMW to an equivalent DCW is ©(3™).

S Applications

The translations of nondeterministic automata to NCW and DCW are useful in various
applications, mainly in procedures that currently involve determinization. The idea is
to either use an NCW instead of a deterministic Biichi or parity automaton, or to use a
DBW instead of a deterministic parity automaton. We elaborated on these applications
in [2l], where the starting point was NBWs. In this section we show that the starting
point for the applications can be automata with richer acceptance conditions, and that
starting with the richer acceptance conditions (and hence, with automata that may be
exponentially more succinct!), involves no extra cost.

In addition, all the applications described in [2]] that involve a translation of LTL for-
mulas to NCWs, DCWs or DBWs, can now use an intermediate automaton of the richer
classes rather than an NBW. Here too, this can lead to an exponential saving. Indeed, the

196 U. Boker and O. Kupferman

exponential succinctness of NSW with respect to NBW [[15]] is proved using languages
that can be described by LTL formulas of polynomial length. It follows that there are
LTL formulas whose translation to NSW would be exponentially more succinct than
their translation to NBW. Moreover, in practice, tools that translate LTL to NBW go
through intermediate generalized-Biichi automata, which are a special case of NSW.
Our results suggest that in the applications described below, one need not blow-up the
state space by going all the way to an NBW.

We first note two important features of the translations. The first feature is the fact
that the constructions in Theorems[Il Bl and[] are based on the subset construction, have
a simple state space, are amenable to optimizations, and can be implemented symbol-
ically [14]. The second feature has to do with the one-sided error of the construction,
when ap