

Lecture Notes in Computer Science 6604
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Martin Hofmann (Ed.)

Foundations
of Software Science and
Computational Structures

14th International Conference, FOSSACS 2011
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011
Saarbrücken, Germany, March 26–April 3, 2011
Proceedings

13

Volume Editor

Martin Hofmann
Ludwig-Maximilians-Universität München
Institut für Informatik
Oettingenstr. 67, 80538 München, Germany
E-mail: hofmann@ifi.lmu.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-19804-5 e-ISBN 978-3-642-19805-2
DOI 10.1007/978-3-642-19805-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 20119922505

CR Subject Classification (1998): F.3, F.1, F.4, D.3, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2011 was the 14th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised the usual five sister conferences (CC, ESOP, FASE, FOS-
SACS, TACAS), 16 satellite workshops (ACCAT, BYTECODE, COCV, DICE,
FESCA, GaLoP, GT-VMT, HAS, IWIGP, LDTA, PLACES, QAPL, ROCKS,
SVARM, TERMGRAPH, and WGT), one associated event (TOSCA), and seven
invited lectures (excluding those specific to the satellite events).

The five main conferences received 463 submissions this year (including 26
tool demonstration papers), 130 of which were accepted (2 tool demos), giving
an overall acceptance rate of 28%. Congratulations therefore to all the authors
who made it to the final programme! I hope that most of the other authors
will still have found a way of participating in this exciting event, and that you
will all continue submitting to ETAPS and contributing to make of it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2011 was organised by the Universität des Saarlandes in cooperation
with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

VI Foreword

It also had support from the following sponsors, which we gratefully thank:
DFG Deutsche Forschungsgemeinschaft; AbsInt Angewandte Infor-

matik GmbH; Microsoft Research; Robert Bosch GmbH; IDS Scheer

AG / Software AG; T-Systems Enterprise Services GmbH; IBM Re-

search; gwSaar Gesellschaft für Wirtschaftsförderung Saar mbH;

Springer-Verlag GmbH; and Elsevier B.V.

The organising team comprised:

General Chair: Reinhard Wilhelm
Organising Committee: Bernd Finkbeiner, Holger Hermanns (chair),

Reinhard Wilhelm, Stefanie Haupert-Betz,
Christa Schäfer

Satellite Events: Bernd Finkbeiner
Website: Hernán Baró Graf

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Parosh Abdulla (Uppsala), Gilles
Barthe (IMDEA-Software), Lars Birkedal (Copenhagen), Michael O’Boyle (Ed-
inburgh), Giuseppe Castagna (CNRS Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (Imperial College London), Bernd Finkbeiner (Saarbrücken) Cor-
mac Flanagan (Santa Cruz), Dimitra Giannakopoulou (CMU/NASA Ames),
Andrew D. Gordon (MSR Cambridge), Rajiv Gupta (UC Riverside), Chris Han-
kin (Imperial College London), Holger Hermanns (Saarbrücken), Mike Hinchey
(Lero, the Irish Software Engineering Research Centre), Martin Hofmann (LMU
Munich), Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop
(Vienna), Barbara König (Duisburg), Shriram Krishnamurthi (Brown), Juan de
Lara (Madrid), Kim Larsen (Aalborg), Rustan Leino (MSR Redmond), Gerald
Luettgen (Bamberg), Rupak Majumdar (Los Angeles), Tiziana Margaria (Pots-
dam), Ugo Montanari (Pisa), Luke Ong (Oxford), Fernando Orejas (Barcelona),
Catuscia Palamidessi (INRIA Paris), George Papadopoulos (Cyprus), David
Rosenblum (UCL), Don Sannella (Edinburgh), João Saraiva (Minho), Helmut
Seidl (TU Munich), Tarmo Uustalu (Tallinn), and Andrea Zisman (London).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer for agreeing to publish the
ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2011, Holger
Hermanns and his Organising Committee, for arranging for us to have ETAPS
in the most beautiful surroundings of Saarbrücken.

January 2011 Vladimiro Sassone
ETAPS SC Chair

Preface

FoSSaCS presents original papers on the foundations of software science. The
Programme Committee (PC) invited submissions on theories and methods to
support analysis, synthesis, transformation and verification of programs and soft-
ware systems. We received 100 full paper submissions; of these, 30 were selected
for presentation at FoSSaCS and inclusion in the proceedings. Also included is
an invited paper on “The Search for Structure in Quantum Computation” by
Prakash Panangaden, the FoSSaCS 2011 invited speaker.

Numbers of submissions and accepted papers at the last five FoSSaCS
conferences—2010 (Paphos), 2009 (York), 2008 (Budapest), 2007 (Braga), 2006
(Vienna)—were 86/25, 102/30, 124/33, 103/25, 107/28, respectively.

I thank all the authors of papers submitted to FoSSaCS 2011. I thank also
the members of the PC for their excellent work, as well as the external re-
viewers for the expert help and reviews they provided. Throughout the phases
of submission, evaluation, and production of the proceedings, we relied on the
invaluable assistance of the EasyChair system; we are very grateful to its devel-
oper Andrei Voronkov and his team. Last but not least, we would like to thank
the ETAPS 2011 Local Organizing Committee (chaired by Holger Hermanns)
and the ETAPS Steering Committee (chaired by Vladimiro Sassone) for their
efficient coordination of all the activities leading up to FoSSaCS 2011.

January 2011 Martin Hofmann

Conference Organization

Programme Committee

Amal Ahmed University of Indiana, USA
David Basin ETH Zurich, Switzerland
Krishnendu Chatterjee Institute of Science and Technology, Austria
Giorgio Ghelli University of Pisa, Italy
Daniel Hirschkoff ENS Lyon, France
Martin Hofmann Ludwig-Maximilians-Universität, Munich (Chair),

Germany
Marieke Huisman University of Twente, The Netherlands
Petr Jančar Technical University of Ostrava, Czech Republic
Andrew Kennedy Microsoft Research Cambridge, UK
Barbara König University of Duisburg-Essen, Germany
Martin Lange University of Kassel, Germany
Francois Laroussinie LIAFA (Paris 7), France
Markus Lohrey University of Leipzig, Germany
Heiko Mantel TU Darmstadt, Germany
Marino Miculan University of Udine, Italy
Andrzei Murawski University of Oxford, UK
Peter O’Hearn Queen Mary, University of London, UK
Dirk Pattinson Imperial College London, UK
Olivier Serre LIAFA (Paris 7 and CNRS), France
Natarajan Shankar SRI International, Menlo Park, USA
Thomas Streicher TU Darmstadt, Germany
Igor Walukiewicz University of Bordeaux, France
Nobuko Yoshida Imperial College London, UK
Greta Yorsh IBM T.J. Watson Research Center, USA

External Reviewers

Faris Abou-Saleh
Markus Aderhold
Fabio Alessi
Thorsten Altenkirch
Andrea Asperti
Fauzi Atig
Giorgio Bacci
Bahareh Badban
David Baelde

Steffen van Bakel
Nick Benton
Josh Berdine
Federico Bergenti
Ulrich Berger
Marco Bernardo
Gavin Bierman
Udi Boker
Filippo Bonchi

Viviana Bono
Laura Bozzelli
Benjamin Braatz
Tomas Brazdil
James Brotherston
Vaclav Brozek
H.J. Sander Bruggink
Antonio Bucciarelli
Arnaud Carayol

X Conference Organization

Franck Cassez
Karlis Cerans
Iliano Cervesato
Arthur Charguéraud
Thomas Chatain
Konstantinos

Chatzikokolakis
Thomas Colcombet
Sandro Coretti
Andrea Corradini
Silvia Crafa
Pieter Cuijpers
Fredrik Dahlqvist
Mohammad Torabi

Dashti
Claire David
Stéphane Demri
Yuxin Deng
Agostino Dovier
Laurent Doyen
Ross Duncan
Gilberto Filè
Emmanuel Filiot
Seth Fogarty
Vojtech Forejt
Luca Fossati
Laurent Fribourg
Oliver Friedmann
Fabio Gadducci
Vashti Galpin
Pierre Ganty
Richard Gay
Alfons Geser
Dan Ghica
Pietro Di Gianantonio
Hugo Gimbert
Marco Giunti
Rob van Glabbeek
Stefan Göller
Benjamin Grégoire
Dilian Gurov
Matthew Hague
Peter Hancock
Ichiro Hasuo
Frédéric Herbreteau

Tom Hirschowitz
Dieter Hofbauer
Florian Horn
Mathias Hülsbusch
Clément Hurlin
Michael Huth
Samuel Hym
Pierre Hyvernat
Roshan James
�Lukasz Kaiser
Daniel Kirsten
Felix Klaedtke
Bartek Klin
Naoki Kobayashi
Boris Koepf
Martin Kot
Vasileios Koutavas
Jean Krivine
Clemens Kupke
Manfred Kufleitner
Alexander Kurz
James Laird
Ivan Lanese
Markus Latte
Bjoern Lellmann
Serguei Lenglet
Marina Lenisa
Martin Leucker
Paul Blain Levy
Patrick Lincoln
Christof Löding
Sylvain Lombardy
Michele Loreti
Alexander Lux
Pasquale Malacaria
Bodo Manthey
Giulio Manzonetto
Radu Mardare
Nicolas Markey
Ralph Matthes
Richard Mayr
Conor McBride
Catherine Meadows
Ingmar Meinecke
Paul-André Melliès

Stefan Milius
Tri Ngo Minh
Rasmus Ejlers Møgelberg
Esfandiar Mohammadi
Maarten de Mol
Bruno Conchinha

Montalto
Jean-Yves Moyen
Markus Müller-Olm
Berndt Muller
Robert Myers
Sebastian Nanz
Damian Niwinski
Claudio Orlandi
Sam Owre
Michele Pagani
Luca Paolini
Gennaro Parlato
Sophie Pinchinat
Nir Piterman
Andrew Pitts
Francesca Poggiolesi
Erik Poll
John Power
Vinayak Prabhu
Sylvain Pradalier
Karin Quaas
Julian Rathke
Jason Reed
Klaus Reinhardt
Bernhard Reus
Noam Rinetzky
Mehrnoosh Sadrzadeh
Sylvain Salvati
Arnaud Sangnier
Alexis Saurin
Zdenek Sawa
Ivan Scagnetto
Sven Schewe
Alan Schmitt
Ulrich Schöpp
Lutz Schröder
Jan Schwinghammer
Stefan Schwoon
Mihaela Sighireanu

Conference Organization XI

Pawe�l Sobocinski
Matthieu Sozeau
Heiko Spies
Christoph Sprenger
Barbara Sprick
Jǐri Srba
Artem Starostin
Sam Staton
Henning Sudbrock
Kohei Suenaga
Grégoire Sutre
Nathalie Sznajder
Claus Thrane

Mark Timmer
Simone Tini
Alwen Tiu
Ashish Tiwari
Szymon Torunczyk
Mathieu Tracol
Ashutosh Trivedi
Aaron Turon
Nikos Tzevelekos
Daniele Varacca
Jamie Vicary
Daniel Wagner
Johannes Waldmann

Robert Walters
Florian Widmann
Thomas Wies
Thomas Wilke
Glynn Winskel
James Worrell
Peng Wu
Gianluigi Zavattaro
Marc Zeitoun
Wieslaw Zielonka
Damien Zufferey

Table of Contents

The Search for Structure in Quantum Computation (Invited Talk) 1
Prakash Panangaden

Coalgebra and Computability

Coalgebraic Walks, in Quantum and Turing Computation 12
Bart Jacobs

Similarity Quotients as Final Coalgebras . 27
Paul Blain Levy

What Do Reversible Programs Compute? . 42
Holger Bock Axelsen and Robert Glück

Type Theory

Irrelevance in Type Theory with a Heterogeneous Equality
Judgement . 57

Andreas Abel

When Is a Type Refinement an Inductive Type? . 72
Robert Atkey, Patricia Johann, and Neil Ghani

Complexity of Strongly Normalising λ-Terms via Non-idempotent
Intersection Types . 88

Alexis Bernadet and Stéphane Lengrand

Realizability and Parametricity in Pure Type Systems 108
Jean-Philippe Bernardy and Marc Lasson

Process Calculi

Sound Bisimulations for Higher-Order Distributed Process Calculus 123
Adrien Piérard and Eijiro Sumii

Deriving Labels and Bisimilarity for Concurrent Constraint
Programming . 138

Andrés Aristizábal, Filippo Bonchi, Catuscia Palamidessi,
Luis Pino, and Frank Valencia

XIV Table of Contents

Ordinal Theory for Expressiveness of Well Structured Transition
Systems . 153

Remi Bonnet, Alain Finkel, Serge Haddad, and
Fernando Rosa-Velardo

Automata Theory

Alternation Elimination for Automata over Nested Words 168
Christian Dax and Felix Klaedtke

Co-Büching Them All . 184
Udi Boker and Orna Kupferman

Minimizing Deterministic Lattice Automata . 199
Shulamit Halamish and Orna Kupferman

Regularity and Context-Freeness over Word Rewriting Systems 214
Didier Caucal and Trong Hieu Dinh

Quantitative Robustness Analysis of Flat Timed Automata 229
Rémi Jaubert and Pierre-Alain Reynier

A Game Approach to Determinize Timed Automata 245
Nathalie Bertrand, Amélie Stainer, Thierry Jéron, and Moez Krichen

A Practical Linear Time Algorithm for Trivial Automata Model
Checking of Higher-Order Recursion Schemes . 260

Naoki Kobayashi

Church Synthesis Problem for Noisy Input . 275
Yaron Velner and Alexander Rabinovich

Probabilistic Modal μ-Calculus with Independent Product 290
Matteo Mio

Semantics

A Step-Indexed Kripke Model of Hidden State via Recursive Properties
on Recursively Defined Metric Spaces . 305

Jan Schwinghammer, Lars Birkedal, and Kristian Støvring

A Modified GoI Interpretation for a Linear Functional Programming
Language and Its Adequacy . 320

Naohiko Hoshino

Estimation of the Length of Interactions in Arena Game Semantics 335
Pierre Clairambault

Table of Contents XV

Synchronous Game Semantics via Round Abstraction 350
Dan R. Ghica and Mohamed N. Menaa

Binding

Freshness and Name-Restriction in Sets of Traces with Names 365
Murdoch J. Gabbay and Vincenzo Ciancia

Polymorphic Abstract Syntax via Grothendieck Construction 381
Makoto Hamana

Security

Asymptotic Information Leakage under One-Try Attacks 396
Michele Boreale, Francesca Pampaloni, and Michela Paolini

A Trace-Based View on Operating Guidelines . 411
Christian Stahl and Walter Vogler

Program Analysis

HTML Validation of Context-Free Languages . 426
Anders Møller and Mathias Schwarz

On the Power of Cliques in the Parameterized Verification of Ad Hoc
Networks . 441

Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro

The Reduced Product of Abstract Domains and the Combination of
Decision Procedures . 456

Patrick Cousot, Radhia Cousot, and Laurent Mauborgne

Author Index . 473

The Search for Structure in Quantum
Computation

Prakash Panangaden

School of Computer Science,
McGill University and Computing Laboratory,

University of Oxford

Abstract. I give a non-comprehensive survey of the categorical quan-
tum mechanics program and how it guides the search for structure in
quantum computation. I discuss the example of measurement-based com-
puting which is one of the successes of such an enterprise and briefly
mention topological quantum computing which is an inviting target for
future research in this area.

1 Introduction

Quantum computation has attracted (and repelled!) many members of the com-
puter science community. On the one hand, people have been excited by new
possibilities: cryptography based on physics rather than on unproven complexity
assumptions [1], new algorithmic paradigms [2], error correction [3], solutions to
hitherto “impossible” distributed computation tasks [4] and dramatic new pos-
sibilities like teleportation [5]. On the other hand, people have been disturbed
by the strangeness of quantum mechanics which has rendered many of the tra-
ditional tools of theoretical computer science inapplicable.

In this paper I will attempt to convey something of the strangeness of quan-
tum mechanics as well as some of the attempts being made to come to grips with
quantum computation. The subjects of quantum algorithms and quantum infor-
mation theory are flourishing and there are dramatic new results arriving at a
regular pace. For the logic and semantics community it has been a rougher ride.
Defining programming languages has not been routine [6,7,8,9,10] and there are
many things that we do not understand yet. Entirely new challenges have been
posed for type systems. It is only this year that we have a decent definition of
weak bisimulation for a quantum process algebra. New models of computation
– like measurement-based computing [11] and topological quantum computing –
have emerged from the physics community which have posed challenges to the
theoretical computer science community to formalize properly.

I will survey some of these developments and then pose some challenges for
the future.

2 Strange Features of Quantum Mechanics

By now most people in theoretical computer science understand the “standard”
features of quantum mechanics: the state space is a Hilbert space, the evolution

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 1–11, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 P. Panangaden

of a system is described by a unitary map, observables are hermitian operators
(hence their eigenvalues are real) and the outcome of a measurement is proba-
bilistic and yields one of the eigenvalues of the observable being measured. Even
the originally surprising aspects of quantum mechanics are no longer surprises:
systems can be in superpositions of states and measurement outcomes are not
determined.

The concept of non-locality of information continues to confound many peo-
ple. Even Einstein referred to this as “spooky action at a distance.” The point
is that it is possible for the values of an observable to be not even defined in
some states. The following thought experiment, due to Mermin [12], illustrates
this dramatically. Consider the apparatus schematically shown below:

1 2 3 123

R

G

R

G

Set-up for Mermin’s thought experiment

In the centre there is a source of particles that emits them in pairs travelling in
opposite directions. The particles are detected by detectors that are separated
far enough that signals cannot pass between them. There are two detectors each
with 3 settings and 2 indicators: bulbs that flash red and green respectively. The
detectors are set independently and uniformly at random. The detectors are not
connected to each other or to the source.

Whatever the setting on a detector, the red or the green lights flash with equal
probability, but never both at the same time. When the settings are the same
the two detectors always agree. When the settings are different the detectors
agree 1

4 of the time! Why is this strange?
How could the detectors always agree when the settings are the same, even

though the actual colour seems to be chosen at random? There must be some
“hidden” property of the particles that determines which colour is chosen for
each setting; the two correlated particles must be identical with respect to this
property, whether or not the switches are set the same way. Let us write GGR
mean that for the three settings, 1, 2, 3, the detectors flash green, green and
red respectively for a type GGR particle. We are assuming it is meaningful to
attribute properties like GGR to a particle.

Suppose that the settings are different and we have an RRG particle: then for
two of the possible settings (1, 2 and 2, 1) the same colour flashes and for the other
four settings the colours are different. Thus 1

3 of the time the colours must match.
This applies for any of the combinations: RRG, RGR, GRR, GGR, GRG, RGG.
For particles of type RRR and GGG the colours always match whatever the
settings. The inescapable conclusion is that whatever the distribution of particle
types the probability that the lights match when the settings are different is at
least 1

3 ! This just ain’t what we see in nature.

The Search for Structure in Quantum Computation 3

We made some basic assumptions about detectors:
Locality: what happens at one detector cannot alter what happens at the other,
Causality: a detector cannot predict the future sequence of particles and alter

its behaviour.
No ordinary probabilistic automaton or MDP or whatever your favourite state-
based model is, can reproduce the observed behaviour without breaking locality
or causality. Capturing locality in an automaton means that the states of the
system are the cross product of the states of each detector and the behaviour of
each detector depends only on the local state.

The inequality,

Prob(lights agree|settings different) ≥ 1
3
,

is a simple special case of Bell’s inequality. Quantum mechanics predicts that this
inequality is violated. Bell’s inequality has been experimentally tested and it
is plainly violated but the experiments agree with the predictions of quantum
mechanics which also predicts that the inequality is violated.

The point of this discussion is that the probabilistic nature of quantum me-
chanics does not arise as an abstraction of things that could be known. State
is not enough to predict the outcomes of measurements; state is enough to
predict evolution to new states.

These non-local effects are what give quantum computation its power. Tele-
portation is just a dramatic example of this.

3 Categorical Quantum Mechanics and Graphical
Calculi

What formal techniques can be brought to bear on these kinds of systems? A key
contribution of the logic and semantics community is compositionality. The whole
point of denotational semantics was to provide a compositional understanding of
systems. In the case of quantum mechanics we need to understand how to describe
composite systems. It was known since the days of von Neumann [13] back in 1932
that the right way to combine the Hilbert spaces of two systems is by means of
the tensor product. The tensor product of Hilbert spaces is quite an elaborate
construction. It requires not just the construction of the tensor product of vector
spaces, but the definition of an inner product followed by a completion process
which is topological in nature. Ultimately, von Neumann was unhappy with the
elaborate mathematical machinery of Hilbert spaces and sought to retreat to some
new fundamental logical principles for axiomatizing quantum mechanics. This led
to the quantum logic programme [14] where the algebra of projection operators
on a Hilbert space became the inspiration for the logic.

A huge amount of work was spent on the quantum logic enterprise [15], but in
the end it is fair to say that it floundered on its inability to give a clean account
of compositionality. Nevertheless logical ideas are indeed fundamental and the
breakthrough idea was simple: axiomatize tensor product in the simplest way

4 P. Panangaden

possible. This is due to Abramsky and Coecke [16] in a paper which appeared
in the IEEE Symposium on Logic in Computer Science in 2004. As so often
happens, categorists had invented the right notions already: monoidal categories.
Though it may seem to many to not be an improvement to use fancy category
theory instead of fancy functional analysis, the fact is that a purely elementary
account can be given based on very simple process intuitions. A very accessible
account of this viewpoint is contained in a set of lecture notes by Bob Coecke
appropriately entitled, “Kindergarten Quantum Mechanics” [17].

At its most basic level then quantum mechanics is about how to hook up
processes, either by connecting them in sequence or placing them side by side
in parallel or combinations thereof. One can model processes as arrows in a
category; the objects of the categories represent the input and output types of
the processes. Categorical composition models sequential composition and the
tensor product models parallel composition. Indeed one can intuit the correct
axioms for tensor just from this modelling.

What is so special about quantum mechanics? Surely these are the same
axioms one would use for any kind of process. One can easily whip up a model
of, for example, asynchronous dataflow, as a monoidal category and indeed this
has been done. Clearly monoidal categories are far too general; one needs to
identify other crucial ingredients of quantum mechanics and incorporate them
into the axioms. The Abramsky-Coecke paper identified duality of input and
output as a crucial feature and the resulting class of categories are called by
them strongly compact-closed categories. It does not matter what the algebraic
axioms are because the essence of this structure is captured beautifully by a
graphical calculus [18].

Graphical notions are now common in physics having been famously intro-
duced by Feynman for keeping track of certain integrals that arise in quantum
electrodynamics [19,20]. Penrose introduced a beautiful graphical notation for
tensor analysis [21] which was placed on a firm mathematical footing by Joyal
and Street [22]. I highly recommend the excellent survey by Selinger [18] in
addition to the lecture notes of Coecke mentioned above.

The fundamental theorem [22] of the graphical language states that

Theorem 1. An equation holds between terms in the morphism language of
monoidal categories if and only if it holds up to planar isotopy in the graphical
language.

This means that diagrammatic manipulations can replace algebraic gymnastics.
Furthermore, many equations turn out to be trivial in the graphical language.

There are two fundamental structural aspects of quantum mechanics that are
captured by the categorical formalism. The first states that “objects have duals”;
in categorical jargon these are called autonomous categories. In diagrammatic
terms it means that every object A has a dual A∗ and one can reverse arrows
using duality. In a closed category one bend arrows around using the duals.
This gives quantum mechanics its reversible aspect. Finally, there is a structure
called a “dagger”; this is also a way of changing the direction of an arrow and it

The Search for Structure in Quantum Computation 5

closely corresponds to the adjoint operation in linear algebra. It is the presence
of this dagger structure that signals the role of complex numbers in quantum
mechanics. Analogues of the fundamental theorem hold [18] for all these richer
types of monoidal categories.

There are at least three important reasons for working at this level of ab-
stractness. First, one can explore variants of quantum mechanics that are close
to but not exactly the same as standard quantum mechanics. For example, the
category Rel of sets and binary relations is an impoverished example of “toy”
quantum mechanics. One can then explore what features one really needs for
various phenomena to manifest themselves and thus understand what is the
essence of quantum mechanics. For example, one can ask whether teleportation
could be done in Rel; it cannot! Another striking exploration of this kind is the
work by Coecke, Edwards and Spekkens [23] on formalizing a certain toy model
originally due to Spekkens and showing that there is a group-theoretic reason
for the difference between the two models.

Secondly, one can explore more exotic phenomena like multipartite quantum
entanglement [24] or interacting quantum observables [25] from a graphical view-
point and even find graph theoretical characterizations of these structures. As
soon as one has three or more entangled states the situation becomes much more
complicated. There are some preliminary hints of the role of these states in dis-
tributed computing tasks [4] but clearly much remains to be understood and
structural understanding will guide the way.

Finally, one can address foundational questions of quantum information and
quantum mechanics. In very striking recent work Abramsky [26] has analyzed
the issue of hidden variables in the toy relational model and has shown that
many of the no-go theorems survive even when one has only a “possibilistic”
view of nondeterminism.

4 Measurement-Based Computing

I now turn to a new computational model and analyze it from the viewpoint
of theoretical computer science. Traditionally, the main framework to explore
quantum computation has been the circuit model [27], based on unitary evolu-
tion. This is very useful for algorithmic development and complexity analysis
[28]. There are other models such as quantum Turing machines [29] among a
variety of others. They are all proved to be equivalent from the point of view of
expressive power. For higher-order sequential programming we have the typed
λ-calculus which stands out as the canonical programming language but there
is no such language for quantum computation.

Recently physicists have introduced novel ideas based on the use of measure-
ment and entanglement to perform computation [30,11,31]. This is very different
from the circuit model where measurement is done only at the end to extract
classical output. In measurement-based quantum computation the main opera-
tion to manipulate information and control computation is measurement. This is
surprising because measurement creates indeterminacy, yet it is used to express
deterministic computation defined by a unitary evolution.

6 P. Panangaden

The idea of computing based on measurements emerged from the telepor-
tation protocol [5]. The goal of this protocol is for an agent to transmit an
unknown qubit to a remote agent without actually sending the qubit. This pro-
tocol works by having the two parties share a maximally entangled state called
a Bell pair. The parties perform local operations – measurements and unitaries –
and communicate only classical bits. Remarkably, from this classical information
the second party can reconstruct the unknown quantum state. In fact one can
actually use this to compute via teleportation by choosing an appropriate mea-
surement [30]. This is the key idea of measurement-based computation.

It turns out that the above method of computing is actually universal. This
was first shown by Gottesman and Chuang [30] who used two-qubit measure-
ments and given Bell pairs. The one-way computer was then invented by
Raussendorf and Briegel [11,32] which used only single-qubit measurements with
a particular multi-party entangled state called the cluster state.

The computation proceeds in a sequence of phases; in the first phase a col-
lection of qubits are set up in a standard entangled state. Then measurements
are applied to individual qubits and the outcomes of the measurements may be
used to determine further adaptive measurements. Finally – again depending on
measurement outcomes – local unitary operators, called corrections, are applied
to some qubits; this allows the elimination of the indeterminacy introduced by
measurements. The phrase “one-way” is used to emphasize that the computation
is driven by irreversible measurements.

There are at least two reasons to take measurement-based models seriously:
one conceptual and one pragmatic. The main pragmatic reason is that the
one-way model is believed by physicists to lend itself to easier implementa-
tions [33,34,35]. Physicists have investigated various properties of the cluster
state and have accrued evidence that the physical implementation is scalable
and robust against decoherence [36]. Conceptually the measurement-based model
highlights the role of entanglement and separates the quantum and classical
aspects of computation; thus it clarifies, in particular, the interplay between
classical control and the quantum evolution process.

When this model was first presented it was couched in the language of Hamil-
tonians and evolution of quantum states. The design of even simple gates seemed
magical and an exercise in combinatorial ingenuity. Most importantly, the “proof”
of universality consisted in showing that the basic gates of the circuit model
could be implemented in the one-way model with the implicit understanding
that any network could then be encoded. What was missing was a compositional
translation and a proof that the semantics of the circuit was preserved.

Our approach to understanding the structural features of measurement-based
computation was to develop a formal calculus [37]. One can think of this as an
“assembly language” for measurement-based computation. It was the first pro-
gramming framework specifically based on the one-way model. In our paper we
developed a language for programs (we called them “patterns”) as sequences of
entanglements, measurements, and local corrections. We gave a careful treatment
of the composition and tensor product (parallel composition) of programs and

The Search for Structure in Quantum Computation 7

we have denotational semantics and operational semantics for these programs.
In this framework we were able to give a proof of universality. In fact, we were
able to modify the framework in apparently small ways but these had the effect
of greatly simplifying the implementations of circuits. More precisely we had an
extended notion of pattern, where inputs and outputs may overlap in any way
one wants them to, and this results in more efficient – in the sense of using fewer
qubits – implementations of unitaries. Specifically, our universal set consists of
patterns using only 2 qubits. From it we obtained a 3 qubit realization of the
Rz rotations and a 14 qubit realization for the controlled-U family: a significant
reduction over the hitherto known implementations [38].

However, there were more benefits to be gained from the exploration of this
structural view of measurement-based computing. We introduced a calculus of
patterns based on the special algebraic properties of the entanglement, measure-
ment and correction operators. These allowed local rewriting of patterns and
we showed that this calculus is sound in that it preserves the interpretation of
patterns. Most importantly, we derived from it a simple algorithm by which any
general pattern can be put into a standard form where entanglement is done
first, then measurements, then corrections. We call this standardization.

The consequences of the existence of such a procedure are far-reaching. Since
entangling comes first, one can prepare the entire entangled state needed dur-
ing the computation right at the start: one never has to do “on the fly” en-
tanglements. Furthermore, the rewriting of a pattern to standard form reveals
parallelism in the pattern computation. In a general pattern, one is forced to
compute sequentially and to strictly obey the command sequence, whereas, after
standardization, the dependency structure is relaxed, resulting in lower compu-
tational depth complexity [39].

Perhaps the most striking development in the theory of measurement-based
computing is the discovery of the concept of flow by Danos and Kashefi [40].
A variety of methods for constructing measurement patterns had already been
proposed that guarantee determinism by construction. They introduced a graph-
theoretic condition on the states used in measurement patterns that guarantees
a strong form of deterministic behavior for a class of one-way measurement pat-
terns defined over them. Remarkably, their condition bears only on the geometric
structure of the entangled graph states. This condition singles out a class of pat-
terns with flow, which is stable under sequential and parallel compositions and
is large enough to realize all unitary and unitary embedding maps.

Patterns with flow have interesting additional properties. First, they are
uniformly deterministic, in the sense that no matter what the measurements
are made, there is a set of corrections, which depends only on the underlying
geometry, that will make the global behaviour deterministic. Second, all compu-
tation branches have equal probabilities, which means in particular, that these
probabilities are independent of the inputs, and as a consequence, one can show
that all such patterns implement unitary embeddings. Third, a more restricted
class of patterns having both flow and reverse flow supports an operation of

8 P. Panangaden

adjunction, corresponding to time-reversal of unitary operations. This smaller
class implements all and only unitary transformations.

In the categorical quantum framework Coecke and Duncan [25] have looked at
interacting quantum observables in a diagrammatic formalism. There is a very
pleasing encoding of the one-way model into this framework and many of the
algebraic equations of the one-way model can be done by graphical manipula-
tions. It would be fascinating to understand flow and its relation to causality in
this way.

5 Topological Quantum Computing

I would like to close with a brief mention of a wide open area: topological quan-
tum computing. In quantum computation one is required to make excruciatingly
precise manipulations of qubits while preserving entanglement when all the while
the environment is trying to destroy entanglement. A very novel suggestion by
Kitaev [41] proposes the use of a new type of hypothetical particle called an
anyon [42,43] which has a topological character.

The mathematics and physics of anyons probe the most fundamental prin-
ciples of quantum mechanics. They involve a fascinating mix of experimen-
tal phenomena (the fractional quantum Hall effect), topology (braids), algebra
(Temperley-Lieb algebra, braid group and category theory) and quantum field
theory. Because of their topological nature, it is hoped that one can use them as
stable realizations of qubits for quantum computation, as proposed originally by
Kitaev. The idea of topological quantum computation has been actively pursued
by Freedman et al. [44,45].

There is rich algebraic structure to be understood and, as with the
measurement-based model, we need a computational handle on this. We have
nothing like a calculus or a standardization theorem. What is clear is that the ba-
sic interactions of the anyons can only be expressed in the categorical language.
One needs a rather rich kind of categorical structure called a modular tensor cat-
egory [46]. An expository account of this subject is given in [47]. Understanding
topological quantum computing from the viewpoint of computational structure
remains a big open problem.

Acknowledgments

I would like to thank McGill University and EPSRC for its generous support
during my sabbatical leave, NSERC (Canada) and the Office of Naval Research
(USA) for funding this research and the Computing Laboratory of the Univer-
sity of Oxford for its hospitality. I have benefitted from discussions with Sam-
son Abramsky, Bob Coecke, Vincent Danos, Ross Duncan, Julia Evans, Elham
Kashefi, Eric Paquette and Jamie Vicary.

The Search for Structure in Quantum Computation 9

References

1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers,
Systems and Signal Processing, Bangalore, India, pp. 175–179 (December 1984)

2. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: Goldwasser, S. (ed.) Proc. 35nd Annual Symposium on Foundations
of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos
(1994)

3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Computing 26, 1484–1509 (1997)

4. D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states.
Quantum Information and Computation 6(2), 173–183 (2006)

5. Bennett, C.H., Brassard, G., Crepeau, C., Josza, R., Peres, A., Wootters, W.:
Teleporting an unknown quantum state via dual classical and epr channels. Phys.
Rev. Lett. 70, 1895–1899 (1993)

6. Gay, S.: Quantum programming languages: Survey and bibliography. Bulletin of
the EATCS 86, 176–196 (2005)

7. Selinger, P.: Towards a quantum programming language. Mathematical Structures
in Computer Science 14(4), 527–586 (2004)

8. Selinger, P.: A brief survey of quantum programming languages. In: Kameyama, Y.,
Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 1–6. Springer, Heidelberg
(2004)

9. Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.)
Semantic Techniques in Quantum Computation. Cambridge University Press,
Cambridge (2009) (to appear)

10. van Tonder, A.: A lambda calculus for quantum computation. Siam Journal on
Computing 33(5), 1109–1135 (2004)

11. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86,
5188–5191 (2001)

12. Mermin, D.: Boojums all the way through. Cambridge University Press, Cambridge
(1990)

13. von Neumann, J.: Mathematisch Grunglagen der Quantenmechanik. Springer,
Heidelberg (1932); English translation. Princeton University Press, Princeton
(1955)

14. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals of Math-
ematics 37(4), 823–843 (1936)

15. Piron, C.: Foundations of quantum physics. W. A. Benjamin (1976)
16. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-

ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science: LICS
2004, pp. 415–425. IEEE Computer Society, Los Alamitos (2004)

17. Coecke, B.: Kindergarten quantum mechanics (2005), available on the ArXivquant-
ph/0510032

18. Selinger, P.: A survey of graphical languages for monoidal categories. In: New
Structures for Physics, pp. 289–356. Springer, Heidelberg (2010)

19. Feynman, R.P.: The theory of positrons. Physical Review 76, 749–759 (1949)
20. Feynman, R.P.: The space-time approach to quantum electrodynamics. Physical

Review 76, 769–789 (1949)

10 P. Panangaden

21. Penrose, R.: Applications of negative dimensional tensors. In: Welsh, D.J.A. (ed.)
Combinatorial Mathematics and its Applications. Academic Press, London (1971)

22. Joyal, A., Street, R.: The geometry of tensor calculus. Advances in Mathematics 88,
55–112 (1991)

23. Coecke, B., Edwards, B., Spekkens, R.: The group theoretic origin of non-locality
for qubits. Technical Report RR-09-04, OUCL (2009)

24. Coecke, B., Kissinger, A.: The compositional structure of multipartite quantum
entanglement. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 297–308. Springer,
Heidelberg (2010)

25. Coecke, B., Duncan, R.: Interacting quantum observables. In: Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008, Part II. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008)

26. Abramsky, S.: Relational hidden variables and non-locality, arXiv:1007.2754 (July
2010)

27. Deutsch, D.: Quantum computational networks. Proc. Roy. Soc. Lond. A 425 (1989)
28. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal of Com-

puting 5(26) (1997)
29. Deutsch, D.: Quantum theory, the Church-Turing Principle and the universal quan-

tum computer. Proc. Roy. Soc. Lond. A 400, 97 (1985)
30. Gottesman, D., Chuang, I.L.: Quantum teleportation is a universal computational

primitive. Nature 402 (1999)
31. Nielsen, M.A.: Universal quantum computation using only projective measurement,

quantum memory, and preparation of the 0 state. Physical Review A 308 (2003)
32. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum com-

putation on cluster states. Phys. Rev. A 68(2), 022312 (2003)
33. Nielsen, M.A.: Optical quantum computation using cluster states. Physical Review

Letters 93 (2004), quant-ph/0402005
34. Childs, A.M., Leung, D.W., Nielsen, M.A.: Unified derivations of measurement-

based schemes for quantum computation. Physical Review A 71 (2005), quant-
ph/0404132

35. Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation.
Physical Review Letters 95 (2005), quant-ph/0405157

36. Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Phys-
ical Review A 69 (2004), quant-ph/0307130

37. Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. Journal Of
The Association of Computing Machinery 52(2), article 8 (April 2007)

38. Vincent Danos, E.K., Panangaden, P.: Parsimonious and robust realizations of
unitary maps in the one-way model. Physical Review A 72, 064301 (2005)

39. Broadbent, A., Kashefi, E.: Parallelizing quantum circuits. Theoretical Computer
Science 410(26), 2489–2510 (2009)

40. Danos, V., Kashefi, E.: Determinism in the one-way model. Physical Review
A 74(5), 6 (2006)

41. Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1),
3–20 (2003)

42. Wilczek, F.: Magnetic flux, angular momentum, and statistics. Phys. Rev.
Lett. 48(17), 1144–1146 (1982)

The Search for Structure in Quantum Computation 11

43. Wilczek, F.: Quantum mechanics of fractional-spin particles. Phys. Rev.
Lett. 49(14), 957–959 (1982)

44. Freedman, M.H., Larsen, M., Wang, Z.: A modular functor which is universal for
quantum computation. Communications in Mathematical Physics 227(3), 605–622
(2002)

45. Freedman, M.H., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum comput-
ing. Bulletin of the AMS 40(1), 31–38 (2003)

46. Bakalov, B., Kirillov, A.: Lectures on tensor categories and modular functors.
American Mathematical Society in University Lecture Series (2001)

47. Panangaden, P., Paquette, E.: A categorical presentation of quantum computation
with anyons. In: New Structures for Physics, pp. 983–1026. Springer, Heidelberg
(2010)

Coalgebraic Walks,
in Quantum and Turing Computation

Bart Jacobs

Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen, The Netherlands

www.cs.ru.nl/B.Jacobs

Abstract. The paper investigates non-deterministic, probabilistic and
quantum walks, from the perspective of coalgebras and monads. Non-
deterministic and probabilistic walks are coalgebras of a monad (pow-
erset and distribution), in an obvious manner. It is shown that also
quantum walks are coalgebras of a new monad, involving additional con-
trol structure. This new monad is also used to describe Turing machines
coalgebraically, namely as controlled ‘walks’ on a tape.

1 Introduction

Coalgebras have emerged in theoretical computer science as a generic formal-
ism for state-based computing, covering various flavours of computation, like
deterministic, non-determinstic, probabilistic etc. In general, a coalgebra is a
transition map of the form X −→ · · ·X · · ·X · · · , where X is the state space
and the box captures the form of computation involved. For instance, it is a
powerset P(X) in case of non-determinism; many other coalgebraic classifica-
tions of systems are described in [11,1]. More formally, this box is a functor, or
often even a monad (in this paper) giving composition as monoid structure on
coalgebras. A question that is open for a long time is whether Turing machines
can also be modeled coalgebraically. More recently, the same question has been
asked for quantum computing.

This paper addresses both these questions and provides positive answers via
illustrations, starting from the notion of a random walk. Such walks exist in
non-deterministic, probabilistic and quantum form. A first goal is to describe all
three variants in a common (coalgebraic) framework, using monads. This effort
focuses on the quantum case, and leads to a new construction for monads (see
Proposition 2) that yields an appropriate monad for quantum walks, involving
a separate control structure.

Since quantum computation is inherently reversible, the framework of dagger
categories is needed. Examples of such categories are described in Section 5,
via suitable relations that capture ‘bi-coalgebraic’ computations. Among the
different kinds of walks, only the quantum walks give rise a unitary map.

Finally, an analogy is observed between quantum walks and Turing machines:
both involve a road/tape on which movement is steered by a separate control
structure. This will be captured coalgebraically, via the newly defined monads.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 12–26, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Coalgebraic Walks, in Quantum and Turing Computation 13

The approach of the paper is rather phenomenological, focusing on examples.
However, the material is supported by two general results (Propositions 2 and 3),
one of which is moved to the appendix; it describes how coalgebras of a monad,
with Kleisli composition, form a monoid in categories of algebras of the monad.

2 Three Monads for Computation Types

Category theory, especially the theory of monads, plays an important role in
the background of the current paper. The presentation however is intended to
be accessible—to a large extent—without familiarity with monads. We do use
three particular monads extensively, namely the powerset, multiset, and distri-
bution monad, and so we describe them here explicitly—without making their
monad structure explicit; cognoscenti will have no problem filling in this struc-
ture themselves.

The first monad is the finite powerset Pfin(X) = {U ⊆ X | U is finite}. Next,
a multiset is like a subset except that elements may occur multiple times. Hence
one needs a way of counting elements. Most generally this can be done in a
semiring, but in the current setting we count in the complex numbers C. Thus
the collection of (complex-valued) multisets of a set X is defined in terms of
formal linear combinations of elements of X , as in:

M(X) =
{

z1|x1 〉+ · · ·+ zn|xn 〉
∣∣∣ zi ∈ C and xi ∈ X

}
. (1)

Such a multiset
∑

i zi|xi 〉 ∈ M(X) can equivalently be described as a function
X → C with finite support (i.e. with only finitely many non-zero values).

The “ket” notation |x〉, for x ∈ X , is just syntactic sugar, describing x as
singleton multiset. It is Dirac’s notation for vectors, that is standard in physics.
The formal combinations in (1) can be added in an obvious way, and multiplied
with a complex number. Hence M(X) is a vector space over C, namely the free
one on X .

The distribution monad D contains formal convex combinations:

D(X)

=
{

r1|x1 〉+ · · ·+ rn|xn 〉
∣∣∣ ri ∈ [0, 1] with r1 + · · ·+ rn = 1 and xi ∈ X

} (2)

Such a convex combination is a discrete probability distribution on X .
Coalgebra provides a generic way of modeling state-based systems, namely

as maps of the form X → T (X), where T is a functor (or often a monad).
Basically, we only use the terminology of coalgebras, but not associated notions
like bisimilarity, finality or coalgebraic modal logic. See [11] for more information.

3 Walk the Walk

This section describes various ways of walking on a line—and not, for instance,
on a graph—using non-deterministic, probabilistic or quantum decisions about
next steps. Informally, one can think of a drunkard moving about. His steps are
discrete, on a line represented by the integers Z.

14 B. Jacobs

3.1 Non-deterministic Walks

A system for non-deterministic walks is represented as a coalgebra s : Z →
Pfin(Z) of the finite powerset monad Pfin . For instance, the one-step-left-one-
step-right walk is represented via the coalgebra:

s(k) = {k − 1, k + 1}

In such a non-deterministic system both possible successor states k − 1 and
k+1 are included, without any distinction between them. The coalgebra s : Z →
Pfin(Z) forms an endomap Z → Z in the Kleisli category K�(Pfin) of the powerset
monad. Repeated composition sn = s • · · · • s : Z → Z can be defined directly
in K�(Pfin). Inductively, one can define sn via Kleisli extension s# as in:

s0 = {−}
sn+1 = s# ◦ sn

where
s# : Pfin(Z) −→ Pfin(Z)

is U �−→
⋃
{s(m) | m ∈ U}.

Thus, sn(k) ⊆ Z describes the points that can be reached from k ∈ Z in n steps:

s0(k) = {k}
s1(k) = s(k) = {k − 1, k + 1}
s2(k) =

⋃
{s(m) | m ∈ s(k)} = s(k − 1) ∪ s(k + 1)

= {k − 2, k} ∪ {k, k + 2} = {k − 2, k, k + 2}
s3(k) = s(k − 2) ∪ s(k) ∪ s(k + 2) = {k − 3, k − 1, k + 1, k + 3} etc.

After n iterations we obtain a set with n + 1 elements, each two units apart:

sn(k) = {k − n, k − n + 2, k − n + 4, . . . , k + n− 2, k + n}.

Hence we can picture the non-deterministic walk, starting at 0 ∈ Z by indicating
the elements of sn(0) successively by + signs:

· · · -3 -2 -1 0 1 2 3 · · ·
+

��� ���
+

��� ��� +
��� ���

+
��� ��� +

��� ��� +
��� ���

+
���� ��� +

��� ��� +
��� ��� +

��� ����
+ + + + + etc.

(3)

What we have used is that coalgebras X → Pfin(X) carry a monoid structure
given by Kleisli composition. The set Pfin(X) is the free join semilattice on X .
The set of coalgebras X → Pfin(X) then also carries a semilattice structure,
pointwise. These two monoid structures (join and composition) interact appro-
priately, making the set of coalgebras X → Pfin(X) a semiring. This follows
from a quite general result about monads, see Proposition 3 in the appendix.
The semiring structure is used in Section 7 when we consider matrices of coal-
gebras.

Coalgebraic Walks, in Quantum and Turing Computation 15

3.2 Probabilistic Walks

Probabilistic walks can be described by replacing the powerset monad Pfin by
the (uniform) probability distribution monad D, as in:

Z
d �� D(Z) given by k � �� 1

2 |k − 1〉+ 1
2 |k + 1〉.

This coalgebra d is an endomap Z → Z in the Kleisli category K�(D) of the
distribution monad. This yields a monoid structure, and iterations dn : Z → Z
in K�(D). The Kleisli extension function d# : D(Z) → D(Z) can be described as:

d#(r1|k1 〉+ · · ·+ rn|kn 〉
)

= 1
2r1|k1 − 1〉+ 1

2r1|k1 + 1〉+ · · ·+ 1
2rn|kn − 1〉+ 1

2rn|kn + 1〉,

where on the right-hand-side we must, if needed, identify r|k 〉+ s|k 〉 with (r +
s)|k 〉. One has dn = d • · · · • d, where d • d = d# ◦ d.

The iterations dn, as functions dn : Z → D(Z), yield successively:

d0(k) = 1|k 〉
d1(k) = d(k) = 1

2 |k − 1〉+ 1
2 |k + 1〉

d2(k) = 1
4 |k − 2〉+ 1

4 |k 〉+ 1
4 |k 〉+ 1

4 |k + 2〉 = 1
4 |k − 2〉+ 1

2 |k 〉+ 1
4 |k + 2〉

d3(k) = 1
8 |k − 3〉+ 1

8 |k − 1〉+ 1
4 |k − 1〉+ 1

4 |k + 1〉+ 1
8 |k + 1〉+ 1

8 |k + 3〉
= 1

8 |k − 3〉+ 3
8 |k − 1〉+ 3

8 |k + 1〉+ 1
8 |k + 3〉 etc.

The general formula involves binomial coefficients describing probabilities:

dn(k) = (n
0)
2n |k − n〉+ (n

1)
2n |k − n + 2〉+ (n

2)
2n |k − n + 4〉+ . . .+

(n
n−1)
2n |k + n− 2〉+ (n

n)
2n |k + n〉.

This provides a distribution since all probabilities involved add up to 1, because
of the well-known sum formula for binomial coefficients:(

n
0

)
+
(
n
1

)
+
(
n
2

)
+ · · ·+

(
n

n−1

)
+
(
n
n

)
= 2n.

The resulting probabilistic walks starting in 0 ∈ Z can be pictured like in (3),
but this time with explicit probabilities:

· · · -3 -2 -1 0 1 2 3 · · ·
1

���� ����1
2

���
� ���

� 1
2

			
	

1
4

���
� ���

� 2
4

���
�

 1
4

			
	

1
8���� ��� 3

8��� ��� 3
8			

 1

8			 ���
1
16

4
16

6
16

4
16

1
16 etc.

(4)

The role of Pascal’s triangle in the description of the probability distributions
for such random walks is of course well-known.

16 B. Jacobs

3.3 Quantum Walks

In the quantum case the states k ∈ Z appear as base vectors, written as |k 〉 ∈
M(Z), in the free vector space M(Z) on Z, see Section 2. Besides these vectors,
one qubit, with base vectors | ↓ 〉 and | ↑ 〉, is used for the direction of the walk.
Thus, the space that is typically used in physics (see [5,12]) for quantum walks is:

C2 ⊗M(Z) with basis elements | ↓ 〉 ⊗ |k 〉, | ↑ 〉 ⊗ |k 〉,

where we may understand | ↑ 〉 =
(1
0

)
∈ C2 and | ↓ 〉 =

(0
1

)
∈ C2.

A single step of a quantum walk is then written as an endomap:

C2 ⊗M(Z)
q �� C2 ⊗M(Z)

| ↑ 〉 ⊗ |k 〉 � �� 1√
2
| ↑ 〉 ⊗ |k − 1〉+ 1√

2
| ↓ 〉 ⊗ |k + 1〉

| ↓ 〉 ⊗ |k 〉 � �� 1√
2
| ↑ 〉 ⊗ |k − 1〉 − 1√

2
| ↓ 〉 ⊗ |k + 1〉

(5)

Implictly the Hadamard transform H = 1√
2

(1 1
1 -1
)

is applied to the qubits in
C2. A tree of probabilities is now obtained by repeatedly applying q, say to a
start state | ↑ 〉 ⊗ |0〉, and subsequently measuring |k 〉. We write Probk for the
probability of seeing |k 〉 as outcome.

Thus, after one step we have:

q(| ↑ 〉 ⊗ |0〉) = 1√
2
| ↑ 〉 ⊗ | − 1〉+ 1√

2
| ↓ 〉 ⊗ |1〉,

giving probabilities Prob−1 = Prob1 =
∣∣ 1√

2

∣∣2 = 1
2 . After two steps we get:

q2(| ↑ 〉 ⊗ |0〉) = 1√
2
q(| ↑ 〉 ⊗ | − 1〉) + 1√

2
q(| ↓ 〉 ⊗ |1〉)

= 1
2 | ↑ 〉 ⊗ | − 2〉+ 1

2 | ↓ 〉 ⊗ |0〉+ 1
2 | ↑ 〉 ⊗ |0〉 − 1

2 | ↓ 〉 ⊗ |2〉
= 1

2 | ↑ 〉 ⊗ | − 2〉+ 1
2 (| ↑ 〉+ | ↓ 〉) ⊗ |0〉 − 1

2 | ↓ 〉 ⊗ |2〉,
with probabilities:

Prob−2 =
∣∣ 1
2

∣∣2 = 1
4 Prob0 =

∣∣1
2

∣∣2 +
∣∣1
2

∣∣2 = 1
2 Prob2 =

∣∣− 1
2

∣∣2 = 1
4 .

After 3 steps the outcomes begin to differ from the probabilistic outcomes,
see (4), due to interference between the different summands:

q3(| ↑ 〉 ⊗ |0〉)
= 1

2q(| ↑ 〉 ⊗ | − 2〉) + 1
2q(| ↓ 〉 ⊗ |0〉)

+ 1
2q(| ↑ 〉 ⊗ |0〉)− 1

2q(| ↓ 〉 ⊗ |2〉)
= 1

2
√

2
| ↑ 〉 ⊗ | − 3〉+ 1

2
√

2
| ↓ 〉 ⊗ | − 1〉+ 1

2
√

2
| ↑ 〉 ⊗ | − 1〉 − 1

2
√

2
| ↓ 〉 ⊗ |1〉

+ 1
2
√

2
| ↑ 〉 ⊗ | − 1〉+ 1

2
√

2
| ↓ 〉 ⊗ |1〉 − 1

2
√

2
| ↑ 〉 ⊗ |1〉+ 1

2
√

2
| ↓ 〉 ⊗ |3〉

= 1
2
√

2
| ↑ 〉 ⊗ | − 3〉+ 1√

2
| ↑ 〉 ⊗ | − 1〉+ 1

2
√

2
| ↓ 〉 ⊗ | − 1〉

− 1
2
√

2
| ↑ 〉 ⊗ |1〉+ 1

2
√

2
| ↓ 〉 ⊗ |3〉,

Coalgebraic Walks, in Quantum and Turing Computation 17

leading to probabilities:

Prob−3 = Prob1 = Prob3 =
∣∣ 1
2
√

2

∣∣2 = 1
8 Prob−1 =

∣∣ 1√
2

∣∣2 +
∣∣ 1
2
√

2

∣∣2 = 5
8 .

Thus there is a ‘drift’ to the left, see the following table of probabilities starting
from the initial state | ↑ 〉 ⊗ |0〉 ∈ C2 ⊗M(Z).

· · · -3 -2 -1 0 1 2 3 · · ·
1

���� ���
1
2

			
	 ���

�
1
2

 ���
1
4

			
	

 2
4

 ���

1
4

 ���
1
8����

 5
8

			
	 ���

� 1
8

 ���
1
8

 ���
1
16

5
8

1
8

1
8

1
16 etc.

(6)

The matrix involved—Hadamard’s H in this case—determines the drifting, and
thus how the tree is traversed.

4 A Coalgebraic/Monadic Description of Quantum Walks

In the previous section we have seen the standard way of describing quantum
walks, namely via endomaps C2 ⊗M(Z) → C2 ⊗M(Z). The question arises
if such walks can also be described coalgebraically, of the form Z → T (Z), for
a suitable monad T , just like for non-deterministic and probabilitistic walks in
Subsections 3.1 and 3.2. This section will show how to do so. The following
observation forms the basis.

Proposition 1. 1. For each n ∈ N, there is an isomorphism of vector spaces:

Cn ⊗M(X) ∼= M(n ·X),

natural in X—where n ·X is the n-fold coproduct X + · · ·+ X, also known
as copower of the set X.

2. As a consequence, there is a bijective correspondence between:

linear maps Cn ⊗M(X) −→ Cn ⊗M(Y)
==================================

functions X −→M(n · Y)n

Proof. 1. For convenience we restrict to n = 2. We shall write ⊕ for the product
of vector spaces, which is at the same time a coproduct of spaces (and hence
a ‘biproduct’). There is the following chain of (natural) isomorphisms

C2 ⊗M(X) = (C⊕ C)⊗M(X)
∼=
(
C⊗M(Z)

)
⊕
(
C⊗M(X)

)
since ⊗ distributes over ⊕

∼= M(X)⊕M(X) since C is tensor unit
∼= M(X + X),

where the last isomorphism exists because M is a free functor Sets → Vect,
and thus preserves coproducts.

18 B. Jacobs

2. Directly from the previous point, since:

Cn ⊗M(X) −→ Cn ⊗M(Y) in Vect
=======================
M(n ·X) −→M(n · Y) in Vect, by point 1
===================

n ·X −→M(n · Y) in Sets, since M is free
===============
X −→M(n · Y)n in Sets

�

Corollary 1. There is a bijective correspondence between linear endomaps

C2 ⊗M(Z) �� C2 ⊗M(Z)

as used for quantum walks in Subsection 3.3, and coalgebras

Z �� M(Z + Z)2

of the functor M(2 · −)2.

The coalgebra Z → M(Z + Z)2 corresponding to the linear endomap q : C2 ⊗
M(Z) → C2 ⊗M(Z) from Subsection 3.3 can be described explicitly as follows.

Z �� M(Z + Z)2

m � ��
〈

1√
2
κ1|m− 1〉+ 1√

2
κ2|m + 1〉, 1√

2
κ1|m− 1〉 − 1√

2
κ2|m + 1〉

〉 (7)

The κi, for i = 1, 2, are coprojections that serve as tags for ‘left’ and ‘right’ in a
coproduct (disjoint union) Z+Z. Notice that in this re-description tensor spaces
and their bases have disappeared completely.

Of course, at this stage one wonders if the the functor M(2·−)2 in Corollary 1
is also a monad—like powerset and distribution. This turns out to be the case,
as an instance of the following general “monad transformer” result.

Proposition 2. Let A be a category with finite powers Xn = X × · · · ×X and
copowers n ·X = X + · · ·+ X. For a monad T : A → A there is for each n ∈ N
a new monad T [n] : A → A by:

T [n](X) =
(
T (n ·X)

)n

with unit and Kleisli extension:

η[n]X = 〈T (κi) ◦ ηX〉i≤n f# =
(
μT (n·Y) ◦ T ([fi]i≤n)

)n
.

where in the latter case f is a map f = 〈fi〉i≤n : X → T [n](Y).

Proof. For convenience, and in order to be more concrete, we restrict to n = 2.
We leave it to the reader to verify that η[2] is natural and that its extension is

Coalgebraic Walks, in Quantum and Turing Computation 19

the identity: η[2]# = id. Of the two remaining properties of Kleisli extension,
f# ◦ η[2] = f and (g# ◦ f)# = g# ◦ f#, we prove the first one:

f# ◦ η[2] = (μ ◦ T ([f1, f2]))× (μ ◦ T ([f1, f2])) ◦ 〈T (κ1) ◦ η, T (κ2) ◦ η〉
= 〈μ ◦ T ([f1, f2]) ◦ T (κ1) ◦ η, μ ◦ T ([f1, f2]) ◦ T (κ2) ◦ η〉
= 〈μ ◦ T (f1) ◦ η, μ ◦ T (f2) ◦ η〉
= 〈μ ◦ η ◦ f1, μ ◦ η ◦ f2〉
= 〈f1, f2〉
= f. �

Kleisli extension yields the multiplication map T [n]2(X) → T [n](X) as extension
id# of the identity on T [n](X). Concretely, it can be described as:

[
T
(
n ·
(
T (n ·X)

)n)]n
[
μ ◦ T ([πi]i≤n)

]n
��
[
T (n ·X)

]n
The number n ∈ N in T [n] yields a form of control via n states, like in the
quantum walks in Subsection 3.3 where n = 2 and T = M. Indeed, there is a
similarity with the state monad transformer X �→ T (S × X)S , for T a monad
and S a fixed set of states (see e.g. [8]). If S is a finite set, say with size n = |S|,
T (S×−)S is the same as the monad T [n] = T (n ·−)n in Proposition 2 since the
product S ×X in Sets is the same as the copower n ·X .

Next we recall that M is an additive monad. This means that it maps finite
coproducts to products: M(0) ∼= 1 and M(X+Y) ∼= M(X)×M(Y), in a canon-
ical manner, see [2] for the details. This is relevant in the current setting, because
the endomap for quantum walks from Subsection 3.3 can now be described also
as a 4-tuple of coalgebras Z →M(Z), since:

C2 ⊗M(Z) �� C2 ⊗M(Z)
========================= (by Corollary 1)

Z �� M(Z + Z)2
====================== (by additivity of M)
Z �� (M(Z)×M(Z)

)2
M(Z)4

�

We shall write these four coalgebras corresponding to the endomap q in (5) as
cij : Z →M(Z), for i, j ∈ {1, 2}. Explicitly, they are given as follows.

c11(k) = 1√
2
|k − 1〉 c12(k) = 1√

2
|k − 1〉

c21(k) = 1√
2
|k + 1〉 c22(k) = − 1√

2
|k + 1〉.

As the notation already suggests, we can consider these four coalgebras as entries
in a 2× 2 matrix of coalgebras, in the following manner:

c =

(
c11 c12

c21 c22

)
=

(
λk. 1√

2
|k − 1〉 λk. 1√

2
|k − 1〉

λk. 1√
2
|k + 1〉 λk. − 1√

2
|k + 1〉

)
. (8)

20 B. Jacobs

Thus, the first column describes the output for input of the form | ↑ 〉 ⊗ |k 〉 =(|k 〉
0

)
, and the second column describes the result for | ↓ 〉 ⊗ |k 〉 =

(0
|k 〉
)
. By mul-

tiplying this matrix with itself one achieves iteration as used in Subsection 3.3.
This matrix notation is justified by the following observation.

Lemma 1. The set M(X)X of M-coalgebras on a set X forms a semiring. Ad-
dition is done pointwise, using addition on M(X), and multiplication is Kleisli
composition • for M, given by (d • c)(x)(z) =

∑
y c(x)(y) · d(y)(z). �

The proof is skipped because this lemma is a special instance of a more general
result, namely Proposition 3 in the appendix.

5 Reversibility of Computations

So far we have described different kinds of walks as different coalgebras Z →
Pfin(Z), Z → D(Z), and Z+ Z →M(Z+ Z). Next we investigate reversibility of
these coalgebras. It turns out that all these coalgebras are reversible, via a dagger
operation, but only the quantum case involves a ‘unitary’ operation, where the
dagger yields the inverse. The three dagger categories that we describe below
are captured in [4] as instance of a general construction of a category of ‘tame’
relations. Here we only look at the concrete descriptions.

We start with the non-deterministic case. Let BifRel be the category of sets
and bifinite relations. Object are sets X , and morphisms X → Y are relations
r : X × Y → 2 = {0, 1} such that:

– for each x ∈ X the set {y ∈ Y | r(x, y) �= 0} is finite;
– also, for each y ∈ Y the set {x ∈ X | r(x, y) �= 0} is finite.

This means that r factors both as function X → Pfin(Y) and as Y → Pfin(X).
Relational composition and equality relations make BifRel a category. For a
map r : X → Y there is an associated map r† : Y → X in the reverse direction,
obtained by swapping arguments: r†(y, x) = r(x, y). This makes BifRel a dagger
category.

The non-deterministic walks coalgebra s : Z → Pfin(Z) from Subsection 3.1 is
in fact such bifinite relation Z → Z in BifRel. Explicitly, as a map s : Z×Z → 2,
also called s, it is given by s(n, m) = 1 iff m = n−1 or m = n+1. The associated
dagger map s†, in the reverse direction, is s†(n, m) = 1 iff s(m, n) = 1 iff
n = m− 1 or n = m + 1; it is the same relation. In general, a map f in a dagger
category is unitary if f † is the inverse of f . The non-deterministic walks map s
is not unitary, since, for instance:

(s ◦ s†)(n, n′) = 1 ⇔ ∃m. s†(n, m) ∧ s(m, n′)

⇔ s(n− 1, n′) ∨ s(n + 1, n′)

⇔ n′ = n− 2 ∨ n′ = n ∨ n′ = n + 2.

This is not the identity map Z → Z given by idZ(n, n′) = 1 iff n = n′.

Coalgebraic Walks, in Quantum and Turing Computation 21

We turn to the probabilistic case, using a dagger category dBisRel of discrete
bistochastic relations. Objects are sets X and morphisms X → Y are maps
r : X×Y → [0, 1] that factor both as X → D(Y) and as Y → D(X). Concretely,
this means that for each x ∈ X there are only finitely many y ∈ Y with r(x, y) �=
0 and

∑
y r(x, y) = 1, and similarly in the other direction. These maps form a

category, with composition given by matrix multiplication and identity maps by
equality relations. The resulting category dBisRel has a dagger by reversal of
arguments, like in BifRel.

The probabilistic walks map d : Z → D(Z) from Subsection 3.2 is an endomap
d : Z → Z in dBisRel, given as:

Z× Z
d �� [0, 1] by d(n, m) =

{
1
2 if m = n− 1 or m = n + 1

0 otherwise.

Also in this case d is not unitary; for instance we do not get equality in:

(d ◦ d†)(n, n′) =
∑

m d†(n, m) · d(m, n′)

= 1
2 · d(n− 1, n′) + 1

2 · d(n + 1, n′)

=

⎧⎪⎪⎨
⎪⎪⎩

1
4 if n′ = n− 2 or n′ = n + 2
1
2 if n′ = n

0 otherwise.

Finally we turn to the quantum case, for which we use the dagger category
BifMRel of sets and C-valued multirelations. Objects are sets, and morphisms
r : X → Y are maps r : X × Y → C which factor both as X → M(Y) and
as Y → M(X). This means that for each x there are finitely many y with
r(x, y) �= 0, and similarly, for each y there are finitely many x with r(x, y) �= 0.
Composition and identities are as before. The dagger now not only involves
argument swapping, but also conjugation in C, as in r†(y, x) = r(x, y).

We have already seen that the quantum walks endomap C2 ⊗M(Z) → C2 ⊗
M(Z) corresponds to a coalgebra q : Z + Z → M(Z + Z). We now represent it
as endo map q : Z + Z → Z + Z in BifMRel given by:

(
Z + Z

)
×
(
Z + Z

) q �� C where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q(κ1n, κ1(n− 1)) = 1√
2

q(κ1n, κ2(n + 1)) = 1√
2

q(κ2n, κ1(n− 1)) = 1√
2

q(κ2n, κ2(n + 1)) = − 1√
2

(Only the non-zero values are described.) The dagger q† is:

q†(κ1(n− 1), κ1n) = 1√
2

q†(κ2(n + 1), κ1n) = 1√
2

q†(κ1(n− 1), κ2n) = 1√
2

q†(κ2(n + 1), κ2n) = − 1√
2

22 B. Jacobs

In the quantum case we do get a unitary map. This involves several elementary
verifications, of which we present an illustration:(

q ◦ q†
)
(κ1m, κ1n) =

∑
x q†(κ1m, x) · q(x, κ1n)

= q†(κ1m, κ1(m + 1)) · q(κ1(m + 1), κ1n)

+ q†(κ1m, κ2(m + 1)) · q(κ2(m + 1), κ1n)

=

{
1√
2
· 1√

2
+ 1√

2
· 1√

2
if n = m

0 otherwise

=

{
1 if κ1n = κ1m

0 otherwise

= id(κ1m, κ1n).

In a similar way one obtains
(
q ◦ q†

)
(κ1m, κ2n) = 0 = id(κ1m, κ2n), etc.

6 Summary, So Far

At this stage, before proceeding, we sum up what we have seen so far. Non-
deterministic and probabilistic walks are described quite naturally as coalgebras
of a monad, namely of the (finite) powerset Pfin and distribution monad D,
respectively. Quantum walks are usually described (by physicists) as endomaps
C2 ⊗M(Z) → C2 ⊗M(Z). But we have illustrated that they can equivalently
be described as coalgebras Z →M(2 ·Z)2 of a monad. Thus there is a common,
generic framework in which to describe various walks, namely as coalgebras of
monads. The monad yields a monoid structure on these coalgebras—via Kleisli
composition—which enables iteration. This monoid structure can be described
quite generally, for arbitrary monads, in the category of algebras of the monad,
see Proposition 3.

All these walks coalgebras are in fact endo maps in a suitable dagger category.
Only in the quantum case the walks form a unitary morphism.

Coalgebras of the form Z →M(2 ·Z)2 can equivalently be described as maps
Z + Z → M(Z + Z) or as a quadruple of coalgebras Z → M(Z). Four such
coalgebras are obtained because there is a qubit (in C2) involved that controls
the walking, see Subsection 3.3. More generally, if the control happens via Cn,
one obtains n2 coalgebras in a n×n matrix. A next step is to observe a similar-
ity to what happens in Turing machines: there one has a finite-state automaton
that controls a head which reads/writes/moves on a tape. This similarity will be
explored further in the next section, where we use the understanding of walks,
using the monad construction T [n] from Proposition 2, to capture Turing ma-
chines coalgebraically, as a “head walking on a tape”.

7 Turing Machines as Coalgebras

The idea we wish to explore further is that coalgebras of the form X → T [n](X) =
T (n · X)n of the monad T [n] from Propostion 2 can be understood as

Coalgebraic Walks, in Quantum and Turing Computation 23

computations of type T on state space X with n auxiliary states that control
the computation on X . This idea will be illustrated below for Turing machines.

We shall give a simple example of a non-deterministic Turing machine, for the
finite powerset monad T = Pfin . We use a tape with binary entries that stretches
in 2 dimension, and use the integers Z (like in walks) as index. Thus the type T of
tapes is given by T = 2Z × Z, consisting of pairs (t, p) where t : Z → 2 = {0, 1} is
the tape itself and p ∈ Z the current position of the head. One could use a more
general set Σ of tape symbols, and use maps Z → Σ as tapes. Commonly one
only uses a limited number of operations on a tape, given as abL or abR, with
meaning: if a is read at the current position, then write b, and subsequently move
one position left (or right) on the tape. Such operations can be used as labels of
transitions between control states. An example non-deterministic Turing machine
that can stop if it encounters two successive 0s to the right of the head can be
described by the following graph with three state 1, 2, 3.

1

00R

��

11R

�� 00R �� 2
00R �� 3

We do not include final states explicitly, but clearly the right-most state 3 does
not have any transitions and can thus be seen as final.

In line with the description of quantum walks, we shall use four equivalent
ways of describing this Turing machine.

1. As an endomap, in the category of join semilattices (which is the category
of algebras of the monad Pfin involved), described on base elements as:

23 ⊗ Pfin(T) �� 23 ⊗ Pfin(T)

1 ⊗ (t, p) � ��

{(
1 ⊗ (t, p + 1)

)
∨
(
2 ⊗ (t, p + 1)

)
if t(p) = 0

1 ⊗ (t, p + 1) otherwise

2 ⊗ (t, p) � ��

{
3 ⊗ (t, p + 1) if t(p) = 0

⊥ otherwise

3 ⊗ (t, p) � �� ⊥.

2. As a coalgebra of the monad Pfin(3 · −)3, namely:

T �� Pfin(T + T + T)3

(t, p) � ��

〈
{κ1(t, p + 1)} ∪ {κ2(t, p + 1) | t(p) = 0},
{κ3(t, p + 1) | t(p) = 0}, ∅

〉
3. As a 3 × 3 matrix of coalgebras T → Pfin(T), using that the monad Pfin is

additive (see [2]), so that Pfin(T+T+T)3 ∼=
(
Pfin(T)×Pfin(T)×Pfin(T)

)3 ∼=
Pfin(T)9.

24 B. Jacobs

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ(t, p). {(t, p + 1)} λ(t, p). ∅ λ(t, p). ∅

λ(t, p).

{
{(t, p + 1)} if t(p) = 0

∅ otherwise
λ(t, p). ∅ λ(t, p). ∅

λ(t, p). ∅ λ(t, p).

{
{(t, p + 1)} if t(p) = 0

∅ otherwise
λ(t, p). ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The entry at column i and row j describes the coalgebra for the transition
from control state i to j. This matrix representation of coalgebras makes
sense because the set of coalgebras X → Pfin(X) forms a semiring, as re-
marked at the end of Subsection 3.1.

4. As endo map 3 ·T → 3 ·T in the category BifRel, that is as bifinite relation
r :
(
T + T + T

)
×
(
T + T + T

)
→ C, given by the following non-zero cases.

r
(
κ1(t, p), κ1(t, p + 1)

)
, r

(
κ1(t, p), κ2(t, p + 1)

)
if t(p) = 0,

r
(
κ2(t, p), κ3(t, p + 1)

)
if t(p) = 0.

Via such modelling one can iterate the mappings involved and thus calculate suc-
cessor states. We give an example calculation, using the second representation
T → Pfin(T + T + T)3. An element of T will be described (partially) via expres-
sions like · · · 01011 · · · , where the underlining indicates the current position of
the head. Starting in the first state, represented by the label κ1, we get:

κ1(· · · 101001 · · ·) �−→ {κ1(· · · 101001 · · ·)}
�−→ {κ1(· · · 101001 · · ·), κ2(· · · 101001 · · ·)}
�−→ {κ1(· · · 101001 · · ·)}
�−→ {κ1(· · · 101001 · · ·), κ2(· · · 101001 · · ·)}
�−→ {κ1(· · · 101001 · · ·), κ2(· · · 101001 · · ·), κ3(· · · 101001 · · ·)}

Etcetera. Hopefully it is clear that this coalgebraic/monadic/relational modelling
of Turing machines is quite flexible. For instance, by changing the monad one
gets other types of computation on a tape: by taking the multiset monad M,
and requiring unitarity, one obtains quantum Turing machines (as in [10]). For
instance, coalgebraic walks like in Subsection 3.3 can be seen as a 2-state quan-
tum Turing machine with a singleton set of symbols (and thus only the head’s
position forming the tape-type T = Z).

The above (equivalent) representations of a Turing machine via the monad
construction T [n] distinguishes between the tape and the finitely many states
of a machine. In contrast, for instance in [9], a Turing machine is represented
as a coalgebra of the form X −→ Pfin

(
X × Γ × {	,
}

)Γ , where Γ is a set of
input symbols, and 	,
 represent left and right moves. There is only one state
space X , which implicitly combines both the tape and the states that steer the
computation.

Coalgebraic Walks, in Quantum and Turing Computation 25

8 Conclusions

The investigation of non-deterministic, probabilistic and quantum walks has led
to a coalgebraic description of quantum computation, in the form of qubits
acting on a set, via a new monad construction T [n]. It adds n-ary steering to T -
computations, not only for quantum walks but also in n-state Turing machines
(as controled ‘walks’ on a tape). The coalgebraic approach emphasises only the
one-directional aspect of computation. Via suitable categories of ‘bi-coalgebraic’
relations this bidirectional aspect can be made explicit, and the distinctive uni-
tary character of quantum computation becomes explicit. For the future, the
role of final coalgebras requires clarity, especially for the new monad T [n], for
instance for computing stationary (limiting) distributions. How to describe (uni-
directional) measurements coalgebraically will be described elsewhere.

References

1. Bartels, F., Sokolova, A., de Vink, E.: A hierarchy of probabilistic system types.
Theor. Comp. Sci. 327(1-2), 3–22 (2004)

2. Coumans, D., Jacobs, B.: Scalars, monads and categories (2010),
http://arxiv.org/abs/1003.0585

3. Jacobs, B.: Semantics of weakening and contraction. Ann. Pure & Appl.
Logic 69(1), 73–106 (1994)

4. Jacobs, B.: Dagger categories of tame relations (2011),
http://arxiv.org/abs/1101.1077

5. Kempe, J.: Quantum random walks – an introductory overview. Contemporary
Physics 44, 307–327 (2003)

6. Kock, A.: Bilinearity and cartesian closed monads. Math. Scand. 29, 161–174 (1971)
7. Kock, A.: Closed categories generated by commutative monads. Journ. Austr.

Math. Soc. XII, 405–424 (1971)
8. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In:

Principles of Programming Languages, pp. 333–343. ACM Press, New York (1995)
9. Pavlović, D., Mislove, M., Worrell, J.: Testing semantics: Connecting processes and

process logics. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019,
pp. 308–322. Springer, Heidelberg (2006)

10. Perdrix, S.: Partial observation of quantum Turing machine and weaker well-
formedness condition. In: Proceedings of: Quantum Physics and Logic and De-
velopment of Computational Models (2008),
http://web.comlab.ox.ac.uk/people/simon.perdrix/publi/weakerQTM.pdf

11. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comp. Sci. 249, 3–80
(2000)

12. Venegas-Andraca, S.: Quantum Walks for Computer Scientists. Morgan & Clay-
pool, San Francisco (2008)

A Coalgebras of a Monad Form a Monoid in Algebras

Let A = (A, I,⊗, �) be a symmetric monoidal closed category. A monad T =
(T, μ, η) is called monoidal (or commutative) if it comes with a ‘double strength’

http://arxiv.org/abs/1003.0585
http://arxiv.org/abs/1101.1077
http://web.comlab.ox.ac.uk/people/simon.perdrix/publi/weakerQTM.pdf

26 B. Jacobs

natural transformation dst : T (X)⊗T (Y) → T (X⊗Y) commuting appropriately
with the monoidal isomorphisms and with the unit η and multiplication μ. We
abbreviate st = dst ◦ (id ⊗ η) : T (X) ⊗ Y → T (X ⊗ Y) and st′ = dst ◦ (η ⊗
id) : X ⊗ T (Y) → T (X ⊗ Y). One can also express this double strength as
dst = μ ◦ T (st) ◦ st′ = μ ◦ T (st′) ◦ st, see [3] for details.

We assume that the categories A and Alg(T) has enough coequalisers so that
Alg(T) is also symmetric monoidal via the canonical constructions from [7,6],
with tensor ⊗T and tensor unit IT = T (I). The key property of this tensor of
algebras ⊗T is that there is a bijective correspondence:

(
TX

a→ X
)
⊗T
(
TY

b→ Y
) f ��

(
TZ

c→ Z
)

in Alg(T)
====================================

X ⊗ Y g
�� Z bihomomorphism

(9)

Such a map g : X ⊗ Y → Z is a bihomomorphism if the following diagram
commutes.

T (X)⊗ T (Y)
a⊗ b ��

dst �� T (X ⊗ Y)
T (g)

�� T (Z)
c��

X ⊗ Y
g �� Z

The next result may be read as: internal T -coalgebras form a monoid in
Alg(T).

Proposition 3. In the situation described above,

1. for each X ∈ A, the object T (X)X = X � T (X) in A “of T -coalgebras”
carries an algebra structure aX : T

(
T (X)X

)
→ T (X)X, obtained by abstrac-

tion Λ(−) as:

aX = Λ
(
T
(
T (X)X

)
⊗X

st �� T
(
T (X)X ⊗X)

T (ev)
�� T 2(X)

μ �� T (X)
)
.

2. This algebra aX ∈ Alg(T) carries a monoid structure in Alg(T) given by
Kleisli composition, with monoid unit u : IT → T (X)X defined as:

u = Λ
(
T (I)⊗X

st �� T (I ⊗X)
T (λ)
∼=

�� T (X)
)

The monoid multiplication m : T (X)X ⊗T T (X)X → T (X)X is obtained
via the correspondence (9) from the bihomomorphism T (X)X ⊗ T (X)X →
T (X)X that one gets by abstraction from:
(
T (X)X ⊗ T (X)X

)⊗ X

α−1 ∼=��
T (X)

T (X)X ⊗ (T (X)X ⊗ X
)id ⊗ ev�� T (X)X ⊗ T (X)

st′ �� T
(
T (X)X ⊗ X

) T (ev)�� T 2(X)

μ
��

Similarity Quotients as Final Coalgebras

Paul Blain Levy�

University of Birmingham, UK
P.B.Levy@cs.bham.ac.uk

Abstract. We give a general framework connecing a branching time
relation on nodes of a transition system to a final coalgebra for a suit-
able endofunctor. Examples of relations treated by our theory include
bisimilarity, similarity, upper and lower similarity for transition systems
with divergence, similarity for discrete probabilistic systems, and nested
similarity. Our results describe firstly how to characterize the relation in
terms of a given final coalgebra, and secondly how to construct a final
coalgebra using the relation.

Our theory uses a notion of “relator” based on earlier work of Thijs.
But whereas a relator must preserve binary composition in Thijs’ frame-
work, it only laxly preserves composition in ours. It is this weaker re-
quirement that allows nested similarity to be an example.

1 Introduction

A series of influential papers including [1,11,17,18,19] have developed a coalge-
braic account of bisimulation, based on the following principles.

– A transition system may be regarded as a coalgebra for a suitable endofunc-
tor F on Set (or another category).

– Bisimulation can be defined in terms of an operation on relations, called a
“relational extension” or “relator”.

– This operation may be obtained directly from F , if F preserves quasi-
pullbacks [3].

– Given a final F -coalgebra, two nodes of transition systems are bisimilar iff
they have the same anamorphic image–i.e. image in the final coalgebra.

– Any coalgebra can be quotiented by bisimilarity to give an extensional
coalgebra—one in which bisimilarity is just equality.

– One may construct a final coalgebra by taking the extensional quotient of a
sufficiently large coalgebra.

Thus a final F -coalgebra provides a “universe of processes” according to the
viewpoint that bisimilarity is the appropriate semantic equivalence.

More recently [2,4,7,12,13,22] there have been several coalgebraic studies of
simulation, in which the final F -coalgebra carries a preorder. This is valuable
for someone who wants to study bisimilarity and similarity together: equality
� Supported by EPSRC Advanced Research Fellowship EP/E056091.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 27–41, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

28 P.B. Levy

represents bisimilarity, and the preorder represents similarity. But someone who
is exclusively interested in similarity will want the universe of processes to be a
poset: if two nodes are mutually similar, they should be equal. In this paper we
shall see that such a universe is also a final coalgebra, for a suitable endofunctor
H on the category of posets.

For example, consider countably branching transition systems. In this case,
we shall see that H maps a poset A to the set of countably generated lower
sets, ordered by inclusion. A final H-coalgebra is a universe for similarity, in two
senses.

– On the one hand, we can use a final H-coalgebra to characterize similarity,
by regarding a transition system as a discretely ordered H-coalgebra.

– On the other hand, we can construct a final H-coalgebra, by taking a suffi-
ciently large transition system and quotienting by similarity.

We give this theory in Sect. 4. But first, in Sect. 3, we introduce the notion
of relator, which gives many notions of simulation, e.g. for transition systems
with divergence and Markov chains. Finally, in Sect. 5 we look at the example of
2-nested simulation; this requires a generalization of our theory where relations
are replaced by indexed families of relations.

2 Mathematical Preliminaries

Definition 1. (Relations)

1. For sets X and Y , we write X �R �� Y when R is a relation from X to Y ,
and Rel(X, Y) for the complete lattice of relations ordered by inclusion.

2. X �
(=X) �� X is the equality relation on X.

3. Given relations X �
R �� Y �

S �� Z , we write X �
R;S �� Z for the

composite.

4. Given functions Z
f �� X and W

g �� Y , and a relation X �
R �� Y ,

we write Z �
(f,g)−1R�� W for the inverse image {(z, w) ∈ Z ×W | f(z) R g(w)}.

5. Given a relation X �
R �� Y , we write Y �

Rc
�� X for its converse. R is

difunctional when R;Rc;R ⊆ R.

Definition 2. (Preordered sets)

1. A preordered set A is a set A0 with a preorder �A. It is a poset (setoid,
discrete setoid) when �A is a partial order (an equivalence relation, the
equality relation).

2. We write Preord (Poset, Setoid, DiscSetoid) for the category of pre-
ordered sets (posets, setoids, discrete setoids) and monotone functions.

3. The functor Δ : Set −→ Preord maps X to (X, =X) and X
f �� Y to

f . This gives an isomorphism Set ∼= DiscSetoid.

Similarity Quotients as Final Coalgebras 29

4. Let A and B be preordered sets. A bimodule A �
R �� B is a relation such

that (�A);R; (�B) ⊆ R. We write Bimod(A, B) for the complete lattice of

bimodules, ordered by inclusion. For an arbitrary relation A0 �
R �� B0 , its

bimodule closure A �
R �� B is (�A);R; (�B).

Definition 3. (Quotienting)

1. Let A be a preordered set. For x ∈ A, its principal lower set [x]A is
{y ∈ A | y �A x}. The quotient poset QA is {[x]A | x ∈ A} ordered by in-
clusion. (This is isomorphic to the quotient of A by the equivalence relation

(�A) ∩ (�A).) We write A
pA �� QA for the function x �→ [x]A.

2. Let A and B be preordered sets and A
f �� B a monotone function. The

monotone function QA
Qf �� QB maps [x]A �→ [f(x)]B.

3. Let A and B be preordered sets and A �
R �� B a bimodule. The bimodule

QA �
QR �� QB relates [x]A to [y]B iff x R y.

We give some examples of endofunctors on Set.

Definition 4. 1. For any set X and class K of cardinals, we write PKX for
the set of subsets X with cardinality in K. P is the endofunctor on Set

mapping X to the set of subsets of X and X
f �� Y to u �→ {f(x) | x ∈ u}.

It has subfunctors P [0,κ) and P [1,κ) where κ is a cardinal or ∞.
2. Maybe is the endofunctor on Set mapping X to X +1 = {Just x | x ∈ X}∪

{⇑} and X
f �� Y to Just x �→ Just f(x),⇑�→⇑.

3. A discrete subprobability distribution on a set X is a function d : X −→
[0, 1] such that

∑
x∈Xdx � 1 (so d is countably supported). For any U ⊆ X

we write dU
def=
∑

x∈Udx, and we write d ⇑def= 1− d(X). D is the endofunctor
on Set mapping X to the set of discrete subprobability distributions on X

and X
f �� Y to d �→ (y �→ d(f−1{y})).

Definition 5. Let C be a category.

1. Let F be an endofunctor on C. An F -coalgebra M is a C-object M · and mor-

phism M · ζM �� FM · . We write Coalg(C, F) for the category of
F -coalgebras and homomorphisms.

2. Let F and G be endofunctors on C, and F
α �� G a natural transforma-

tion. We write Coalg(C, α) : Coalg(C, F) −→ Coalg(C, G) for the functor

mapping M to (M ·, ζM ; αM ·) and M
f �� N to f .

30 P.B. Levy

Examples of coalgebras:

– a transition system is a P-coalgebra
– a countably branching transition system is a P [0,ℵ0]-coalgebra
– a transition system with divergence is a PMaybe-coalgebra
– a partial Markov chain is a D-coalgebra.

There are also easy variants for labelled systems.

Lemma 1. [8] Let C be a category and B a reflective replete (i.e. full and
isomorphism-closed) subcategory of C.

1. Let A ∈ ob C. Then A is a final object of C iff it is a final object of B.
2. Let F be an endofunctor on C. Then Coalg(B, F) is a reflective replete sub-

category of Coalg(C, F).

Examples of reflective replete subcategories:

– Poset of Preord, and DiscSetoid of Setoid. In each case the reflection is
given by Q with unit p.

– Setoid of Preord. At A, the reflection is (A0,≡), where ≡ is the least
equivalence relation containing �A, with unit idA0 .

3 Relators

3.1 Relators and Simulation

Any notion of simulation depends on a way of transforming a relation. For ex-

ample, given a relation X �R �� Y , we define

– PX �SimR �� PY to relate u to v when ∀x ∈ u.∃y ∈ v. x R y

– PX �
BisimR �� PY to relate u to v when ∀x ∈ u.∃y ∈ v. x R y and

∀y ∈ v. ∃x ∈ u. x R y.

for simulation and bisimulation respectively. In general:

Definition 6. Let F be an endofunctor on Set. An F -relator maps each relation

X �
R �� Y to a relation FX �

ΓR �� FY in such a way that the following hold.

– For any relations X �
R,S �� Y , if R ⊆ S then ΓR ⊆ ΓS.

– For any set X we have (=FX) ⊆ Γ(=X)

– For any relations X �
R �� Y �

S �� Z we have (ΓR); (ΓS) ⊆ Γ(R;S)

– For any functions Z
f �� X and W

g �� Y , and any relation

X �
R �� Y , we have Γ(f, g)−1R = (Ff, Fg)−1ΓR.

An F -relator Γ is conversive when Γ(Rc) = (ΓR)c for every relation X �
R �� Y .

Similarity Quotients as Final Coalgebras 31

For example: Sim is a P-relator, and Bisim is a conversive P-relator.
We can now give a general definition of simulation.

Definition 7. Let F be an endofunctor on Set, and let Γ be an F -relator. Let
M and N be F -coalgebras.

1. A Γ-simulation from M to N is a relation M · �
R �� N · such that R ⊆

(ζM , ζN)−1ΓR.
2. The largest Γ-simulation is called Γ-similarity and written �Γ

M,N .
3. M is Γ-encompassed by N , written M �Γ N , when for every x ∈ M there

is y ∈ N such that x �Γ
M,N y and y �Γ

N,M x.

For example: a Sim-simulation is an ordinary simulation, and a Bisim-simulation
is a bisimulation.

The basic properties of simulations are as follows.

Lemma 2. Let F be an endofunctor on Set, and Γ an F -relator.

1. Let M be an F -coalgebra. Then M �
(=M·) �� M is a Γ-simulation. Moreover

�Γ
M,M is a preorder on M ·—an equivalence relation if Γ is conversive.

2. Let M , N , P be F -coalgebras. If M �
R �� N �

S �� P are Γ-simulations

then so is M �
R;S �� P . Moreover (�Γ

M,N); (�Γ
N,P) � (�Γ

M,P).

3. Let M and N be F -coalgebras, and let Γ be conversive. If M �R �� N is a

simulation then so is N �R
c

�� M . Moreover (�Γ
M,N)c = (�Γ

N,M) and �Γ
M,N

is difunctional.

4. Let M
f �� N and M ′ g �� N ′ be F -coalgebra morphisms. If N �

R �� N ′

is a Γ-simulation then so is M �
(f,g)−1R �� M ′ . Moreover (f, g)−1(�Γ

N,N ′) =
(�Γ

M,M ′).
5. �Γ is a preorder on the class of F -coalgebras.

6. Let M
f �� N be an F -coalgebra morphism. Then x and f(x) are mutually

Γ-similar for all x ∈ M ·. Hence M � N , and if f is surjective then also
N � M .

An F -coalgebra is all-Γ-encompassing when it is greatest in the �Γ preorder. For
example, take the disjoint union of all transition systems carried by an initial
segment of N. This is an all-Bisim-encompassing P [0,ℵ0]-coalgebra, because every
node of a P [0,ℵ0]-coalgebra has only countably many descendants.

3.2 Relators Preserving Binary Composition

Definition 8. Let F be an endofunctor on Set. An F -relator Γ is said to
preserve binary composition when for all sets X, Y, Z and relations

X �
R �� Y �

S �� Z we have Γ(R;S) = (ΓR); (ΓS). If we also have Γ(=X) =
(=FX) for every set X, then F is functorial.

32 P.B. Levy

For example, Sim preserves binary composition and Bisim is functorial. We shall
examine relators preserving binary composition using the following notions.

Definition 9

1. A commutative square Z
g ��

f

��

Y

k

��
X

h
�� W

in Set is a quasi-pullback when

∀x ∈ X. ∀y ∈ Y. h(x) = k(y) ⇒ ∃z ∈ Z. x = f(z) ∧ g(z) = y

2. A commutative square C
g ��

f

��

B

k

��
A

h
�� D

in Preord is a preorder-quasi-pullback

when ∀x ∈ A. ∀y ∈ B. h(x) �D k(y) ⇒ ∃z ∈ C. x �A f(z) ∧ g(z) �B y

Definition 10. (adapted from [13]) Let F be an endofunctor on Set. A stable
preorder on F is a functor G : Set −→ Preord that makes Preord

(−)0
��

Set
F

��

G

�����������
Set

commute and sends quasi-pullbacks to preorder-quasi-pullbacks. It is a stable
equivalence relation on F when it is a functor Set −→ Setoid.

For any relation X �
R �� Y , we write X R

πR�� π′
R �� Y for the two projec-

tions. We can now give our main result.

Theorem 1. Let F be an endofunctor on Set. There is a bijection between

– F -relators preserving binary composition
– stable preorders on F

described as follows.

– Given an F -relator Γ preserving binary composition, we define the stable

preorder Γ̃ on F to map X to (FX, Γ(=X)) and X
f �� Y to Ff .

– Given a stable preorder G on F , we define the F -relator Ĝ to map a relation

X �
R �� Y to

{(x, y) ∈ FX × FY | ∃z ∈ FR. x �GX (FπR)z ∧ (Fπ′
R)z �GY y}

It restricts to a bijection between

– conversive F -relators preserving binary composition
– stable equivalence relations on F .

Similarity Quotients as Final Coalgebras 33

Corollary 1. [3] Let F be an endofunctor on Set.

1. Suppose F preserves quasi-pullbacks. Then we obtain a conversive functorial

F -relator F̂ mapping a relation X �R �� Y to

{(x, y) ∈ FX × FY | ∃z ∈ FR. x = (FπR)z ∧ (Fπ′
R)z = y}

2. Let Γ be a functorial F -relator. Then F preserves quasi-pullbacks and Γ = F̂ .

3.3 Further Examples of Relators

We first note several ways of constructing relators.

Lemma 3. 1. Let F be an endofunctor on Set, and (Γj)j∈J a family of F -
relators. Then �

j∈J

Γj : (X �
R �� Y) �→

⋂
j∈J

ΓjR

is an F -relator. If M and N are F -coalgebras, then M · �R �� N · is a�
j∈J Γj-simulation from M to N iff, for all j ∈ J , it is a Γj-simulation

from M to N .
2. Let F be an endofunctor on Set, and Γ an F -relator. Then

Γc : (X �
R �� Y) �→ (ΓRc)c

is an F -relator. If M and N are F -coalgebras, then M · �
R �� N · is a Γc-

simulation from M to N iff Rc is a Γ-simulation from N to M ; hence
(�Γc

M,N) = (�Γ
N,M)c.

3. Let F and G be endofunctors on Set and F
α �� G a natural transforma-

tion. Let Γ be an G-relator. Then

α−1Γ : (X �
R �� Y) �→ (αX , αY)−1ΓR

is an F -relator. If M and N are F -coalgebras, then M · �R �� N · is an
α−1Γ-simulation from M to N iff it is a Γ-simulation from Coalg(Set, α)M
to Coalg(Set, α)N ; hence (�α−1Γ

M,N) = (�Γ
Coalg(Set,α)M,Coalg(Set,α)N).

4. The identity operation on relations is an idSet-relator.
5. Let F and F ′ be endofunctors on Set. If Γ is an F -relator and Γ′ an F ′-

relator, then Γ′Γ is an F ′F -relator.

Note that Γ � Γc is the greatest conversive relator contained in Γ.
We give some relators for our examples:

– Via Def. 3(3), Sim and Bisim are P [0,κ)-relators and P [1,κ)-relators where κ
is a cardinal or ∞. Moreover Sim preserves binary composition, and if κ � 3
or κ � ℵ0 then Bisim is functorial. But for 4 � κ < ℵ0, the functors P [0,κ)

and P [1,κ) do not preserve quasi-pullbacks, so Bisim does not preserve binary
composition over them.

34 P.B. Levy

– We define PMaybe-relators, all preserving binary composition. For a relation

X �R �� Y ,

LowerSimR def= {(u, v) ∈ PMaybeX × PMaybeY |
∀x ∈ Just−1u. ∃y ∈ Just−1v. (x, y) ∈ R}

UpperSimR def= {(u, v) ∈ PMaybeX × PMaybeY |⇑�∈ u ⇒
⇑�∈ v

∧∀y ∈ Just−1v. ∃x ∈ Just−1u. (x, y) ∈ R)}
ConvexSim def= LowerSim �UpperSim

SmashSimR def= {(u, v) ∈ PMaybeX × PMaybeY |⇑�∈ u ⇒
⇑�∈ v

∧∀y ∈ Just−1v. ∃x ∈ Just−1u. (x, y) ∈ R
∧∀x ∈ Just−1u. ∃y ∈ Just−1v. (x, y) ∈ R}

InclusionSimR def= {(u, v) ∈ PMaybeX × PMaybeY |
∀x ∈ Just−1u. ∃y ∈ Just−1v. (x, y) ∈ R}
∧ ⇑∈ u ⇒⇑∈ v}

We respectively obtain notions of lower, upper, convex, smash and inclusion
simulation on transiton systems with divergence [10,20]. By taking converses
and intersections of these relators, we obtain—besides !—nineteen differ-
ent relators of which three are conversive. A more systematic analysis that
includes these is presented in [16].

– We define D-relators. For a relation X �
R �� Y

ProbSimR def= {(d, d′) ∈ DX ×DY | ∀U ⊆ X.dU � d′R(U)}
ProbBisimR def= {(d, d′) ∈ DX ×DY | ∀U ⊆ X.dU � d′R(U) ∧ d(⇑) � d′(⇑)}

where R(U) def= {y ∈ Y | ∃x ∈ U. (x, y) ∈ R}. In fact ProbBisim is the great-
est conversive relator contained in ProbSim. We obtain notions of simulation
and bisimulation on partial Markov chains as in [5,6,21,15,22]. By Thm. 1
of [14], ProbSim preserves binary composition and ProbBisim is functorial.

4 Theory of Simulation and Final Coalgebras

Throughout this section, F is an endofunctor on Set and Γ is an F -relator.

4.1 QFΓ-Coalgebras

Definition 11. FΓ is the endofunctor on Preord that maps A to (FA0, Γ(�A))

and A
f �� B to Ff .

Similarity Quotients as Final Coalgebras 35

Thus we obtain an endofunctor QFΓ on Preord. It restricts to Poset and also,
if Γ is conversive, to Setoid and to DiscSetoid.

For example, if A is a preordered set, then QP [0,ℵ0]
Sim A is (isomorphic to) the

set of countably generated lower sets, ordered by inclusion. The probabilistic
case is unusual: DProbSim is already an endofunctor on Poset, so applying Q
makes no difference (up to isomorphism). This reflects the fact that, for partial
Markov chains, mutual similarity is bisimilarity [6].

A QFΓ-coalgebra M is said to be final when the following equivalent condi-
tions hold:

– M is final in Coalg(Preord, QFΓ)
– M is final in Coalg(Poset, QFΓ).

If Γ is conversive, the following are equivalent to the above:

– M is final in Coalg(Setoid, QFΓ)
– M is final in Coalg(DiscSetoid, QFΓ).

These equivalences follow from Lemma 1.
We adapt Def. 7 and Lemma 2 from F -coalgebras to QFΓ-coalgebras.

Definition 12. Let M and N be QFΓ-coalgebras.

1. A simulation from M to N is a bimodule M · �
R �� N · such that R ⊆

(ζM , ζN)−1QΓR.
2. The greatest simulation is called similarity and written �M,N .
3. M is encompassed by N , written M � N , when for every x ∈ M there is

y ∈ N such that x �M,N y and y �N,M x.

Lemma 4. Let F be an endofunctor on Set, and Γ an F -relator.

1. Let M be a QFΓ-coalgebra. Then M �
(�M·) �� M is a simulation. Moreover

�Γ
M,M is a preorder on M ·

0—an equivalence relation if Γ is conversive—that
contains �M · .

2. Let M , N, P be QFΓ-coalgebras. If M �R �� N �S �� P are simulations

then so is M �
R;S �� P . Moreover (�M,N); (�N,P) � (�M,P).

3. Let M and N be QFΓ-coalgebras, and let Γ be conversive. If M �
R �� N is

a simulation then so is N �
Rc �� M —recall that this is (�N ·);Rc; (�M ·).

Moreover (�M,N)c = (�N,M) and �M,N is difunctional.

4. Let M
f �� N and M ′ g �� N ′ be QFΓ-coalgebra morphisms. If

N �
R �� N ′ is a simulation then so is M �

(f,g)−1R �� M ′ . Moreover
(�M,M ′) = (f, g)−1(�N,N ′).

5. � is a preorder on the class of QFΓ-coalgebras.

36 P.B. Levy

6. Let M
f �� N be an QFΓ-coalgebra morphism. Then x and f(x) are mu-

tually similar for all x ∈ M ·. Hence M � N , and if f is surjective then also
N � M .

We can also characterize coalgebra morphisms.

Lemma 5. Let M and N be QFΓ-coalgebras. For any function M ·
0

f �� N ·
0 ,

the following are equivalent.

1. M
f �� N is a QFΓ-coalgebra morphism.

2. M �
(f,N ·

0)
−1(�N·) �� N and N �

(N ·
0,f)−1(�N·) �� M are both

simulations.

A QFΓ-coalgebra N is all-encompassing when it is encompasses every
M ∈ Coalg(Preord, QFΓ), or equivalently every M ∈ Coalg(Poset, QFΓ),
or equivalently—if Γ is conversive—every M ∈ Coalg(Setoid, QFΓ) or every
M ∈ Coalg(Setoid, QFΓ). These equivalences follow from the surjectivity of the
units of the reflections.

4.2 Extensional Coalgebras

Definition 13. An extensional coalgebra is M ∈ Coalg(Poset, QFΓ) such that
(�M,M) = (�M ·). We write ExtCoalg(Γ) for the category of extensional coalge-
bras and coalgebra morphisms.

These coalgebras enjoy several properties.

Lemma 6. Let N be an extensional coalgebra.

1. If Γ is conversive, then N · is a discrete setoid.

2. Let M be a QFΓ-coalgebra and N
f �� M a coalgebra morphism. Then f

is order-reflecting and injective.

3. Let M be a QFΓ-coalgebra and M
f �� N an order-reflecting, injective

coalgebra morphism. Then M is extensional.
4. Let M be a QFΓ-coalgebra such that M � N . Then there is a unique QFΓ-

coalgebra morphism M
f �� N .

Thus ExtCoalg(Γ) is just a preordered class. It is a replete subcategory of
Coalg(Poset, QFΓ) and also—if Γ is conversive—of Coalg(DiscSetoid, QFΓ).
We next see that is reflective within Coalg(Preord, QFΓ).

Lemma 7. (Extensional Quotient) Let M be a QFΓ-coalgebra, and define pM
def=

p(M ·
0,�M,M).

1. There is a QFΓ-coalgebra QM carried by Q(M ·
0, �M,M), uniquely charac-

terized by the fact that M
pM �� QM is a coalgebra morphism.

Similarity Quotients as Final Coalgebras 37

2. QM , with unit pM , is a reflection of M in ExtCoalg(Γ).

More generally, a QFΓ-coalgebra M can be quotiented by any (�M ·)-containing
preorder that is an endosimulation on M ; but we shall not need this.

Lemma 8. Let M be a QFΓ-coalgebra. The following are equivalent.

1. M is a final QFΓ-coalgebra.
2. M is all-encompassing and extensional.
3. M is extensional, and encompasses all extensional QFΓ-coalgebras.

Lemma 9. Let M be a QFΓ-coalgebra. The following are equivalent.

1. M is all-encompassing.
2. M encompasses all extensional coalgebras.
3. QM is a final QFΓ-coalgebra.

4.3 Relating F -Coalgebras and QFΓ-Coalgebras

We have studied F -coalgebras and QFΓ-coalgebras separately, but now we con-
nect them: each F -coalgebra gives rise to a QFΓ-coalgebra, and the converse is
also true in a certain sense.

Definition 14. The functor ΔΓ : Coalg(Set, F) −→ Coalg(Preord, QFΓ) maps

– an F -coalgebra M = (M ·, ζM) to the QFΓ-coalgebra with carrier ΔM · and

structure ΔM · ζM �� FΓΔM · pFΓΔM·
�� QFΓΔM ·

– an F -coalgebra morphism M
f �� N to f .

Lemma 10. Let M and N be F -coalgebras. Then a Γ-simulation from M to N
is precisely a simulation from ΔΓM to ΔΓN . Hence (�ΔΓM,ΔΓN) = (�Γ

M,N),
and M �Γ N iff ΔΓM � ΔΓN .

We are thus able to use a final QFΓ-coalgebra to characterize similarity in F -
coalgebras.

Theorem 2. Let M be a final QFΓ-coalgebra; for any QFΓ-coalgebra P we write

P
aP �� M for its anamorphism. Let N and N ′ be F -coalgebras. Then

(�Γ
N,N ′) = (aΔΓN , aΔΓN ′)−1(�M ·)

Our other results require moving from a QFΓ-coalgebra to an F -coalgebra.

Lemma 11. Let M be a QFΓ-coalgebra. Then there is an F -coalgebra N and a

surjective QFΓ-coalgebra morphism ΔΓN
f �� M .

Theorem 3

1. Let M be an F -coalgebra. Then QΔΓM is a final QFΓ-coalgebra iff M is
all-Γ-encompassing.

2. Any final QFΓ-coalgebra is isomorphic to one of this form.

38 P.B. Levy

5 Beyond Similarity

5.1 Multiple Relations

We recall from [9] that a 2-nested simulation from M to N (transition systems)
is a simulation contained in the converse of similarity. Let us say that a nested
preordered set is a set equipped with two preorders �n (think 2-nested similarity)
and �o (think converse of similarity) such that (�n) ⊆ (�o) and (�n) ⊆ (�o). It
is a nested poset when �n is a partial order. By working with these instead of pre-
ordered sets and posets, we can obtain a characterization of 2-nested similarity
as a final coalgebra.

We fix a set I. For our example of 2-nested simulation, it would be {n, o}.

Definition 15. (I-relations)

1. For any sets X and Y , an I-relation X �
R �� Y is an I-indexed family

(Ri)i∈I of relations from X to Y . We write RelI(X, Y) for the complete
lattice of I-relations ordered pointwise.

2. Identity I-relations (=X) and composite I-relations R;S are defined point-
wise, as are inverse image I-relations (f, g)−1R for functions f and g.

We then obtain analogues of Def. 2 and 3. In particular, an I-preordered set A
is a set A0 equipped with an I-indexed family of preorders (�A,i)i∈I , and it is
an I-poset when

⋂
i∈I(�i) is a partial order. We thus obtain categories PreordI

and PosetI , whose morphisms are monotone functions, i.e. monotone in each
component. Given an I-preordered set A, the principal lower set of x ∈ A is
{y ∈ A | ∀i ∈ I. y �A,i x}. The quotient I-poset QA is {[x]A | x ∈ A} with ith

preorder relating [x]A to [y]A iff x �A,i y, and we write A
pA �� QA for the

function x �→ [x]A. Thus PosetI is a reflective replete subcategory of PreordI .
Returning to our example, a nested preordered set is a {n, o}-preordered set,

subject to some constraints that we ignore until Sect. 5.2.
For the rest of this section, let F be an endofunctor on Set, and Λ an F -

relator I-matrix, i.e. an I × I-indexed family of F -relators (Λi,j)i,j∈I . This gives
us an operation on I-relations as follows.

Definition 16. For any I-relation FX �
R �� FY , we define the I-relation

FX �
ΛR �� FY as (

⋂
j∈I Λi,jRj)i∈I .

For our example, we take the P-relator {n, o}-matrix TwoSim

TwoSimn,n
def= Sim TwoSimn,o

def= Simc

TwoSimo,n
def= ! TwoSimo,o

def= Simc

We can see that the operation R �→ ΛR has the same properties as a relator.

Lemma 12

1. For any I-relations X �
R,S �� Y , if R � S then ΛR � ΛS.

2. For any set X we have (=FX) � Λ(=X)

Similarity Quotients as Final Coalgebras 39

3. For any I-relations X �
R �� Y �

S �� Z we have (ΛR); (ΛS) � Λ(R;S)

4. For any functions X ′ f �� X and Y ′ g �� Y and any I-relation

X �R �� Y , we have Λ(f, g)−1R = (Ff, Fg)−1ΛR.

Note by the way that TwoSim as a P-relator matrix does not preserve binary
composition. Now we adapt Def. 7.

Definition 17. Let M and N be F -coalgebras.

1. A Λ-simulation from M to N is an I-relation M · �
R �� N · such that for all

i, j ∈ I we have Ri ∈ (ζM , ζN)−1Λi,jRj , or equivalently R � Λ(ζM , ζN)−1R.
2. The largest Λ-simulation is called Λ-similarity and written �Λ

M,N .
3. N is said to Λ-encompass M when for every x ∈ M there is y ∈ N such

that, for all i ∈ I, we have x (�Γ
M,N,i) y and y (�Γ

N,M,i) x.

In our example, the n-component of �TwoSim
M,N is 2-nested similarity, and the

o-component is the converse of similarity from N to M .
The rest of the theory in Sect. 4 goes through unchanged, using Lemma 12.

5.2 Constraints

We wish to consider not all I-preordered sets (for a suitable indexing set I) but
only those that satisfy certain constraints. These constraints are of two kinds:

– a “positive constraint” is a pair (i, j) such that we require (�i) ⊆ (�j)
– a “negative constraint” is a pair (i, j) such that we require (�i) ⊆ (�j).

Furthermore the set of constraints should be “deductively closed”. For example,
if (�i) ⊆ (�j) and (�j) ⊆ (�k) then (�i) ⊆ (�k).

Definition 18. A constraint theory on I is a pair γ = (γ+, γ−) of relations on
I such that γ+ is a preorder and γ+; γ−; γ+ ⊆ γ− and γ−; γ− ⊆ γ+.

For our example, let γnest be the constraint theory on {n, o} given by

γ+
nest = {(n, n), (n, o), (o, o)} γ−

nest = {(n, o)}

A constraint theory γ gives rise to two operations γ+L and γ−L on relations
(where L stands for “lower adjoint”). They are best understood by seeing how
they are used in the rest of Def. 19.

Definition 19. Let γ be a constraint theory on I.

1. For an I-relation X �R �� Y , we define I-relations

– X �
γ+LR �� Y as (

⋃
j∈I(j,i)∈γ+ Rj)i∈I

– Y �
γ−LR �� X as (

⋃
j∈I(j,i)∈γ− Rc

j)i∈I .

40 P.B. Levy

2. An I-endorelation X �
R �� X is γ-symmetric when

– for all (j, i) ∈ γ+ we have Rj ⊆ Ri, or equivalently γ+LR � R
– for all (j, i) ∈ γ− we have Rc

j ⊆ Ri, or equivalently γ−LR � R.
3. We write Preordγ (Posetγ) for the category of γ-symmetric I-preordered

sets (I-posets) and monotone functions.

4. An I-relation X �
R �� Y is γ-difunctional when

– for all (j, i) ∈ γ+ we have Rj ⊆ Ri, or equivalently γ+LR � R
– for all (j, i) ∈ γ− we have Ri;Rc

j ;Ri ⊆ Ri, or equivalently
R; γ−LR;R � R.

For our example, Preordγnest and Posetγnest are the categories of nested pre-
ordered sets and nested posets respectively. In general, Posetγ is a reflective
replete subcategory of Preordγ and Preordγ of PreordI .

Now let F be an endofunctor and Λ an F -relator I-matrix.

Definition 20. Let γ be a constraint theory on I. Then Λ is γ-conversive when

�
l∈I

(l,k)∈γ+
Λj,l � Λi,k for all (j, i) ∈ γ+ and k ∈ I

�
l∈I

(l,k)∈γ−
Λc

j,l � Λi,k for all (j, i) ∈ γ− and k ∈ I

For our example, it is clear that the matrix TwoSim is γnest-conversive.

Lemma 13. Let γ be a constraint theory on I such that Λ is γ-conversive. For

every I-relation X �R �� Y we have γ+LΛR � Λγ+LR and γ−LΛR � Λγ−LR.

5.3 Generalized Theory of Simulation and Final Coalgebras (Sketch)

All the results of Sect. 4, in particular Thms. 2–3, generalize to the setting of a
set I with a constraint theory γ. We replace “conversive” by “γ-conversive”.

In our nested simulation example, we thus obtain an endofunctor P [0,ℵ0]
TwoSim

on Preordγnest that maps a nested preordered set A = (A0, (�A,n), (�A,o)) to
(P [0,ℵ0]A0, Sim(�A,n) ∩ Simc(�A,o), Simc(�A,o)). We conclude:

– (from Thm. 2) Given a final QP [0,ℵ0]
TwoSim-coalgebra M , we can use (�M ·,n)

and (�M ·,o) to characterize 2-nested similarity and similarity, respectively,
in countably branching transition systems.

– (from Thm. 3) Given a countably branching transition system that is all-
Bisim-encompassing (and hence all-TwoSim-encompassing), we can quotient
it by 2-nested similarity to obtain a final QP [0,ℵ0]

TwoSim-coalgebra.

Acknowledgements. I am grateful to Jean Goubault-Larrecq, Bartek Klin,
Alexander Kurz, Sam Staton and James Worrell for their help.

Similarity Quotients as Final Coalgebras 41

References

1. Aczel, P., Mendler, P.F.: A final coalgebra theorem. In: Dybjer, P., Pitts, A.M.,
Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer
Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)

2. Baltag, A.: A logic for coalgebraic simulation. ENTCS 33 (2000)
3. Carboni, A., Kelly, G.M., Wood, R.J.: A 2-categorical approach to change of base

and geometric morphisms I. Cah. Topologie Géom. Différ. Catégoriques 32(1), 47–
95 (1991), http://www.numdam.org/item?id=CTGDC_1991__32_1_47_0

4. Ĉırstea, C.: A modular approach to defining and characterising notions of simula-
tion. Inf. Comput. 204(4), 469–502 (2006)

5. Danos, D., Laviolette, P.: Bisimulation and cocongruence for probabilistic systems.
Information and Computation 204 (2006)

6. Desharnais, J.: A logical characterization of bisimulation for labelled Markov pro-
cesses. In: Proceedings of the 2nd International Workshop on Probabilistic Methods
in Verification, Univ. of Birmingham Technical Report CS-99-8, pp. 33–48 (1999)

7. Fábregas, I., de Frutos Escrig, D., Palomino, M.: Non-strongly stable orders also
define interesting simulation relations. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.)
CALCO 2009. LNCS, vol. 5728, pp. 221–235. Springer, Heidelberg (2009)

8. Freyd, P.J.: Algebraically complete categories. In: Proc. 1990 Como Category The-
ory Conf., Berlin. Lecture Notes in Mathematics, vol. 1488, pp. 95–104 (1991)

9. Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation
as a congruence. Information and Computation 100(2), 202–260 (1992)

10. Hennessy, M., Plotkin, G.D.: A term model for CCS. In: Dembiński, P. (ed.) MFCS
1980. LNCS, vol. 88, pp. 261–274. Springer, Heidelberg (1980)

11. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational
setting. Information and Computation 145(2), 107–152 (1998)

12. Hesselink, W.H., Thijs, A.: Fixpoint semantics and simulation. TCS 238(1-2), 275–
311 (2000)

13. Hughes, J., Jacobs, B.: Simulations in coalgebra. TCS 327(1-2), 71–108 (2004)
14. Kamae, T., Krengel, U., O’Brien, G.L.: Stochastic inequalities on partially ordered

spaces. The Annals of Probability 5(6), 899–912 (1977)
15. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information

and Computation 94(1), 1–28 (1991)
16. Levy, P.B.: Boolean precongruences (2009) (journal submission)
17. Rutten, J.: Universal coalgebra: a theory of systems. TCS 249(1), 3–80 (2000)
18. Sokolova, A.: Coalgebraic analysis of probabilistic systems. Ph.D. thesis, Technis-

che Universiteit Eindhoven (2005)
19. Staton, S.: Relating coalgebraic notions of bisimulation. In: Kurz, A., Lenisa, M.,

Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 191–205. Springer, Heidel-
berg (2009)

20. Ulidowski, I.: Equivalences on observable processes. In: Scedrov, A. (ed.) Proceed-
ings of the 7th Annual IEEE Symposium on Logic in Computer Science, pp. 148–
161. IEEE Computer Society Press, Santa Cruz (June 1992)

21. de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems:
a coalgebraic approach. Theoretical Computer Science 221 (1999)

22. Worrell, J.: Coinduction for recursive data types: partial orders, metric spaces and
ω-categories. ENTCS 33 (2000)

http://www.numdam.org/item?id=CTGDC_1991__32_1_47_0

What Do Reversible Programs Compute?

Holger Bock Axelsen and Robert Glück

DIKU, Department of Computer Science, University of Copenhagen
funkstar@diku.dk, glueck@acm.org

Abstract. Reversible computing is the study of computation models
that exhibit both forward and backward determinism. Understanding
the fundamental properties of such models is not only relevant for re-
versible programming, but has also been found important in other fields,
e.g., bidirectional model transformation, program transformations such
as inversion, and general static prediction of program properties.

Historically, work on reversible computing has focussed on reversible
simulations of irreversible computations. Here, we take the viewpoint
that the property of reversibility itself should be the starting point of
a computational theory of reversible computing. We provide a novel
semantics-based approach to such a theory, using reversible Turing ma-
chines (RTMs) as the underlying computation model.

We show that the RTMs can compute exactly all injective, computable
functions. We find that the RTMs are not strictly classically universal,
but that they support another notion of universality; we call this RTM-
universality. Thus, even though the RTMs are sub-universal in the classi-
cal sense, they are powerful enough as to include a self-interpreter. Lifting
this to other computation models, we propose r-Turing completeness as
the ‘gold standard’ for computability in reversible computation models.

1 Introduction

The computation models that form the basis of programming languages are
usually deterministic in one direction (forward), but non-deterministic in the
opposite (backward) direction. Most other well-studied programming models
exhibit non-determinism in both computation directions. Common to both of
these classes is that they are information lossy, because generally a previous
computation state cannot be recovered from a current state. This has implica-
tions on the analysis and application of these models. Reversible computing is the
study of computation models wherein all computations are organized two-way
deterministically, without any logical information loss.

Reversible computation models have been studied in widely different areas
ranging from cellular automata [11], program transformation concerned with the
inversion of programs [19], reversible programming languages [3,21], the view-
update problem in bidirectional computing and model transformation [14,6],
static prediction of program properties [15], digital circuit design [18,20], to
quantum computing [5]. However, between all these cases, the definition and
use of reversibility varies significantly (and subtly), making it difficult to apply

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 42–56, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

What Do Reversible Programs Compute? 43

results learned in one area to others. For example, even though reversible Turing
machines were introduced several decades ago [4], the authors have found that
there has been a blurring of the concepts of reversibility and reversibilization,
which makes it difficult to ascertain exactly what is being computed, in later
publications.

This paper aims to establish the foundational computability aspects for re-
versible computation models from a formal semantics viewpoint, using reversible
Turing machines (RTMs, [4]) as the underlying computation model, to answer
the question: What do reversible programs compute?

In reversible computation models, each atomic computation step must be
reversible. This might appear as too restrictive to allow general and useful com-
putations in reversible computation models. On the other hand, it might appear
from the seminal papers by Landauer [9] and Bennett [4], that reversibility is
not restrictive at all, and that all computations can be performed reversibly. We
show that both of these viewpoints are wrong, under the view that the functional
(semantical) behavior of a reversible machine should be logically reversible.

This paper brings together many different streams of work in an integrated
semantics formalism that makes reversible programs accessible to a precise anal-
ysis, as a stepping stone for future work that makes use of reversibility. Thus,
this paper is also an attempt to give a precise structure and basis for a founda-
tional computability theory of reversible languages, in the spirit of the semantics
approach to computability of Jones [8].

We give a formal presentation of the reversible Turing machines (Sect. 2), and,
using a semantics-based approach (Sect. 3), outline the foundational results of re-
versible computing (Sect. 4). We show the computational robustness of the RTMs
under reductions of the number of symbols and tapes (Sect. 5). Following a proof
tactic introduced by Bennett, we show that the RTMs can compute exactly all
injective, computable functions (Sect. 6). We study the question of universality,
and give a novel interpretation of the concept (RTM-universality) that applies
to RTMs, and prove constructively that the RTMs are RTM-universal (Sect. 7).
We propose r-Turing completeness (Sect. 8) as the measure for computability of
reversible computation models. Following a discussion of related work (Sect. 9)
we present our conclusions (Sect. 10).

2 Reversible Triple-Format Turing Machines

The computation model we shall consider here is the Turing machine (TM).
Recall that a Turing machine consists of a (doubly-infinite) tape of cells along
which a tape head moves in discrete steps, reading and writing on the tape
according to an internal state and a fixed transition relation. We shall here adopt
a triple format for the rules which is similar to Bennett’s quadruple format [4],
but has the advantage of being slightly easier to work with1.

1 It is straightforward to translate back and forth between triple, quadruple, and the
usual quintuple formats.

44 H.B. Axelsen and R. Glück

Definition 1 (Turing machine). A TM T is a tuple (Q, Σ, δ, b, qs, qf) where
Q is a finite set of states, Σ is a finite set of tape symbols, b ∈ Σ is the blank
symbol,

δ ⊆ (Q× [(Σ ×Σ) ∪ {←, ↓,→}]×Q) = Δ

is a partial relation defining the transition relation, qs ∈ Q is the starting state,
and qf ∈ Q is the final state. There must be no transitions leading out of qf nor
into qs. Symbols ←, ↓, → represent the three shift directions (left, stay, right).

The form of a triple in δ is either a symbol rule (q, (s, s′), q′) or a shift rule
(q, d, q′) where q, q′ ∈ Q, s, s′ ∈ Σ, and d ∈ {←, ↓,→}. Intuitively, a symbol rule
says that in state q, if the tape head is reading symbol s, write s′ and change
into state q′. A shift rule says that in state q, move the tape head in direction d
and change into state q′. It is easy to see how to extend the definition to k-tape
machines by letting

δ ⊆ (Q× [(Σ ×Σ)k ∪ {←, ↓,→}k]×Q) .

Definition 2 (Configuration). The configuration of a TM is a tuple (q, (l, s, r))
∈ Q × (Σ∗ × Σ × Σ∗) = C, where q ∈ Q is the internal state, l, r ∈ Σ∗ are the
parts of the tape to the left and right of the tape head represented as strings, and
s ∈ Σ is the symbol being scanned by the tape head2.

Definition 3 (Computation step). A TM T = (Q, Σ, δ, b, qs, qf) in configu-
ration C ∈ C leads to configuration C′ ∈ C, written as T # C � C′, defined for
s, s′ ∈ Σ, l, r ∈ Σ∗ and q, q′ ∈ Q by

T # (q, (l, s, r)) � (q′, (l, s′, r)) if (q, (s, s′), q′) ∈ δ ,
T # (q, (ls′, s, r)) � (q′, (l, s′, sr)) if (q,←, q′) ∈ δ ,
T # (q, (l, s, r)) � (q′, (l, s, r)) if (q, ↓, q′) ∈ δ ,
T # (q, (l, s, s′r)) � (q′, (ls, s′, r)) if (q,→, q′) ∈ δ .

Definition 4 (Local forward/backward determinism). A TM T = (Q, Σ, δ,
b, qs, qf) is locally forward deterministic iff for any distinct pair of transition rule
triples (q1, a1, q

′
1), (q2, a2, q

′
2) ∈ δ, if q1 = q2 then a1 = (s1, s

′
1) and a2 = (s2, s

′
2),

and s1 �= s2. A TM T is locally backward deterministic iff for any distinct pair of
triples (q1, a1, q

′
1), (q2, a2, q

′
2) ∈ δ, if q′1 = q′2 then a1 = (s1, s

′
1) and a2 = (s2, s

′
2),

and s′1 �= s′2.

As an example, the pair (q, (a, b), p) and (q, (a, c), p) respects backward deter-
minism (but not forward determinism); the pair (q, (a, b), p) and (r, (c, b), p) is
not backward deterministic; and neither is the pair (q, (a, b), p) and (r,→, p)3.

Definition 5 (Reversible Turing machine). A TM T is reversible iff it is
locally forward and backward deterministic.
2 When describing tape contents we shall use the empty string ε to denote the infinite

string of blanks bω, and shall usually omit it when unambiguous.
3 When we use typewriter font we usually refer to concrete instances, rather than

variables. Thus, in this example q and p refers to different concrete states.

What Do Reversible Programs Compute? 45

The reversible Turing machines (RTMs) are thus a proper subset of the set of
all Turing machines, with an easily decidable property. We need the following
important lemma. Note that this applies to each computation step.

Lemma 1. If T is a reversible Turing machine, then the induced computation
step relation T # · � · is an injective function on configurations.

3 Semantics for Turing Machines

What do Turing machines compute? In other words, what is the codomain and
definition of the semantics function [[·]] : TMs → ? for Turing machines? This
might seem an odd question seeing as we have just defined how TMs work, but
the answer depends on a concrete semantical choice, and has a profound effect
on the computational strength of the RTMs. (Note: For the rest of this paper,
we shall consider the relationship mainly between deterministic and reversible
Turing machines. Thus, all TMs are assumed to be fwd deterministic).

At this point, the expert reader might object that the original results by
Landauer [9] and Bennett [4] (cf. Lemmas 4 and 5) show exactly how we can
“reversibilize” any computation, and that the RTMs should therefore be able to
compute exactly what the TMs in general can compute. Furthermore, Morita
and Yamaguchi [13] exhibited a universal reversible Turing machine, so the uni-
versality of the RTMs should already be established. As we shall see, however, if
one takes reversibility as also including the input/output behaviour of the ma-
chines, neither of these claims hold: Reversibilization is not semantics preserving,
and the RTMs are not universal in the classical sense.

There are several reasons for considering the extensional behavior of RTMs
to itself be subject to reversibility.

– The reversible machines, computation models and programming languages,
form a much larger class than just the reversibilized machines of Landauer
and Bennett performing reversible simulations of irreversible machines.

– It leads to a richer and more elegant (functional) theory for reversible pro-
grams: Program composition becomes function composition, program inver-
sion becomes function inversion, etc., and we are able to use such properties
directly and intuitively in the construction of new reversible programs. This
is not the case for reversible simulations.

– If we can ad hoc dismiss part of the output configuration, there seems to
be little to constrain us from allowing such irreversibilities as part of the
computation process as well.

In order to talk about input/output behavior on tapes in a regular fashion, we
use the following definition.

Definition 6 (Standard configuration). A tape containing a finite, blank-
free string s ∈ (Σ\{b})∗ is said to be given in standard configuration for a TM
(Q, Σ, δ, b, qs, qf) iff the tape head is positioned to the immediate left of s on the
tape, i.e. if for some q ∈ Q, the configuration of the TM is (q, (ε, b, s)).

46 H.B. Axelsen and R. Glück

We shall consider the tape input/output (function) behavior. Here, the semantic
function of a Turing machine is defined by its effect on the entire configuration.

Definition 7 (String transformation semantics). The semantics [[T]] of a
TM T = (Q, Σ, δ, b, qs, qf) is given by the relation

[[T]] = {(s, s′) ∈ ((Σ\{b})∗ × (Σ\{b})∗) | T # (qs , (ε, b, s)) �∗ (qf , (ε, b, s′))}.

Intuitively, a computation is performed as follows. In starting state qs , with input
s given in standard configuration (qs , (ε, b, s)), repeatedly apply �, until the
machine halts (if it halts) in standard configuration (qf , (ε, b, s′)). To differentiate
between semantics and mechanics, we shall write T (x) to mean the computation
of [[T]](x) by the specific machine T . We say that T computes function f iff
[[T]] = f . Thus, the string transformation semantics of a TM T has type

[[T]] : Σ∗ ⇀ Σ∗ .

Under this semantics there is a one-to-one correspondence between input/output
strings and the configurations that represent them, so the machine input/output
behaviour is logically reversible. In contrast to this, the (implicit) semantics used
for decision problems (language recognition) gives us programs of type

[[T]]dp : Σ∗ ⇀ {accept , reject} ,

where halting configurations are projected down to a single bit. It is well known
that for classical Turing machines it does not matter computability-wise which of
these two semantics we choose. (There is a fairly straightforward translation from
languages to functions and vice versa.) Anticipating the Landauer embedding of
Lemma 4 it is easy to see that under the language recognition semantics then
the RTMs are universal: Given a TM T recognizing language L, there exists
an RTM T ′ that also recognizes L. However, under the string transformation
semantics the RTMs cannot be universal.

Theorem 1. If T is an RTM, then [[T]] is injective.

Proof. By induction, using Lemma 1. �$

It thus makes little sense to talk about what RTMs compute without explicitly
specifying the semantics.

4 Foundations of Reversible Computing

At this point it becomes necessary to recast the foundational results of reversible
computing in terms of the strict semantical interpretation above.

4.1 Inversion

If f is a computable injective function, is the inverse function f−1 computable?

What Do Reversible Programs Compute? 47

Lemma 2 (TM inversion, McCarthy [10]). Given a TM T computing an
injective function [[T]], there exists a TM M(T), such that [[M(T)]] = [[T]]−1.

It is interesting to note that McCarthy’s generate-and-test approach [10] does not
actually give the program inverter (computing the transformation M), but rather
an inverse interpreter, cf. [1]. However, we can turn an inverse interpreter into a
program inverter by specialization [7], so the transformation M is computable.

The generate-and-test method used by McCarthy is sufficient to show the
existence of an inverse interpreter, but unsuitable for practical usage as it is
very inefficient. For the RTMs there is an appealing alternative.

Lemma 3 (RTM inversion, Bennett [4]). Given an RTM T = (Q, Σ, δ, b, qs,

qf), the RTM T−1 def= (Q, Σ, inv(δ), b, qf , qs) computes the inverse function of
[[T]], i.e. [[T−1]] = [[T]]−1, where inv : Δ → Δ is defined as

inv(q, (s, s′), q′) = (q′, (s′, s), q) inv(q,←, q′) = (q′,→, q)
inv(q, ↓, q′) = (q′, ↓, q) inv(q,→, q′) = (q′,←, q) .

This remarkably simply transformation is one of the great insights in Bennett’s
seminal 1973 paper [4] that may superficially seem trivial. Here, we have addi-
tionally shown that it is an example of local (peephole) program inversion. Note
that the transformation only works as a program inversion under the string
transformation semantics, and not under language recognition. In the following,
we shall make heavy use of program inversion, so the direct coupling between
the mechanical and semantical transformation is significant.

4.2 Reversibilization

How can irreversible TMs computing (possibly non-injective) functions be re-
versibilized, i.e., transformed into RTMs?

Lemma 4 (Landauer embedding [9]). Given a 1-tape TM T = (Q, Σ, δ, b, qs,
qf), there is a 2-tape RTM L(T) such that [[L(T)]] : Σ∗ ⇀ Σ∗ ×R∗, and

[[L(T)]] = λx.([[T]](x), trace(T, x)),

where trace(T, x) is a complete trace of the specific rules from δ (enumerated as
R) that are applied during the computation T (x).

The Landauer embedding is named in honor of Rolf Landauer, who suggested the
idea of a trace to ensure reversibility [9]. It is historically the first example of what
we call “reversibilization,” the addition of garbage data to the output in order
to guarantee reversibility. The Landauer embedding shows that any computable
function can be injectivized such that it is computable by a reversible TM.

The size of the garbage data trace(T, x) is of order of the number of steps in the
computation T (x), which makes it in general unsuited for practical programming.
The trace is also machine-specific: Given functionally equivalent TMs T1 and T2,

48 H.B. Axelsen and R. Glück

i.e., [[T1]] = [[T2]], it will almost always be the case that [[L(T1)]] �= [[L(T2)]]. The
addition of the trace also changes the space consumption of the original program.

It is preferable that an injectivization generates extensional garbage data
(specific to the function) rather than intensional garbage data (specific to the
machine), since we would like to talk about semantics and ignore the mechanics.
This is attained in the following Lemma, known colloquially as “Bennett’s trick.”

Lemma 5 (Bennett’s method [4]). Given a 1-tape TM T = (Q, Σ, δ, b, qs, qf),
there exists a 3-tape RTM B(T), s.t.

[[B(T)]] = λx.(x, [[T]](x)) .

While the construction (shown below) is defined for 1-tape machines, it can be
extended to Turing machines with an arbitrary number of tapes. It is important
to note that neither Landauer embedding nor Bennett’s method are semantics
preserving as both reversibilizations lead to garbage:

[[L(T)]] �= [[T]] �= [[B(T)]] .

4.3 Reversible Updates

Bennett’s method implements a special case of a reversible update [3], where D
(below) is a simple “copying machine”, and the second input is initially blank:

Theorem 2. Assume that % : (Σ∗ × Σ∗) → Σ∗ is a (computable) operator
injective in its first argument: If b % a = c % a, then b = c. Let D be an RTM
computing the injective function λ(a, b).(a, b % a), and let T be any TM. Let
L1(T) be an RTM that applies L(T) to the first argument x of a pair (x, y)
(using an auxiliary tape for the trace.) We have4

[[L1(T)−1 ◦D ◦ L1(T)]] = λ(x, y).(x, y % [[T]](x)) .

Reversible updates models many reversible language constructs [21], and is also
useful when designing reversible circuits [16,17]. We found this generalization to
be of great practical use in the translation from high-level to low-level reversible
languages [2], as it directly suggests a translation strategy for reversible updates.

5 Robustness

The Turing machines are remarkably computationally robust. Using multiple
symbols, tapes, heads etc. has no impact on computability. Above, we have
been silently assuming that the same holds true for the RTMs: The Landauer
embedding takes n-tape machine to n+1-tape machines, the Bennett trick takes
1-tape machines to 3-tape machines, etc.
4 The mechanical concatenation of two machines T2 ◦ T1 is straightforward, and it is

an easy exercise to see that [[T2 ◦ T1]] = [[T2]] ◦ [[T1]].

What Do Reversible Programs Compute? 49

Are these assumptions justified? We have seen that a precise characterization
of the semantics turned out to have a huge impact on computational expressive-
ness (limiting us to injective functions.) It would not be unreasonable to expect
the RTMs to suffer additional restrictions wrt the parameters of machine space.

First, we consider the question of multiple symbols. Morita et al. [12] showed
how to simulate a 1-tape, 32-symbol RTM by a 1-tape 2-symbol RTM. One can
generalize this result to an arbitrary number of symbols. Furthermore, we also
need to adapt it to work when applying our string transformation semantics such
that the encodings can be efficient5.

Lemma 6 (m-symbol RTM to 3-symbol RTM). Given a 1-tape, m-symbol
RTM T = (Q, Σ, δ, b, qs, qf), |Σ| = m, there is a 1-tape, 3-symbol RTM T ′ =
(Q′, {b, 0, 1}, δ′, b, qs, qf) s.t. [[T]](x) = y iff [[T ′]](e(x)) = e(y), where e : (Σ\{b})∗
→ {0, 1}∗ is an injective binary encoding of (blank-free) strings, with b encoded
by a sequence of blanks.

Thus, the number of symbols in a tape alphabet is not important, and a fixed-size
alphabet (with at least 3 distinct symbols) can be used for all computations.

We now turn to the question of multiple tapes.

Lemma 7 (2-tape RTM to 1-tape RTM). Given a 2-tape RTM T , there
exists a 1-tape RTM T ′ s.t. [[T]](x, y) = (u, v) iff [[T ′]](〈x, y〉) = 〈u, v〉, where
〈x, y〉 = x1y1, x2y2, . . . is the pairwise character sequence (convolution) of strings
x and y (with blanks at the end of the shorter string as necessary.)

The main difficulty in proving this is that the original 2-tape machine may
allow halting configurations where the tape heads end up displaced an unequal
number of cells from their starting positions. Thus “zipping” the tapes into
one tape will not necessarily give the convolution of the outputs in standard
configuration. This is corrected by realigning the simulated tapes for each rule
where the original tape heads move differently.

This result generalizes to an arbitrary number of tapes. Combining these two
lemmas yields the following statement of robustness.

Theorem 3 (Robustness of the RTMs). Let T be a k-tape, m-symbol RTM.
Then there exists a 1-tape, 3-symbol RTM T ′ s.t.

[[T]](x1, . . . , xk) = (y1, . . . , yk) iff [[T ′]](e(〈x1, . . . , xk〉)) = e(〈y1, . . . yk〉) ,

where 〈·〉 is the convolution of tape contents, and e(·) is a binary encoding.

This retroactively justifies the use of the traditional transformational approaches.

6 Exact Computational Expressiveness of the RTMs

We have outlined the two classical reversibilizations that turn TMs into RTMs.
However, they are not semantics-preserving, and do not tell us anything about
5 A 2-symbol machine can only have unary input strings in standard configuration, as

one of the two symbols must be the blank symbol.

50 H.B. Axelsen and R. Glück

Inversion

� x

[[T]](x)�[[T]](x) �
�

�
�

B(M(T))

.......
.......
....................�
�

��........
....��.......................................

.....�
�

��
Benn

ett

�
�

�
�

� �M(T)[[T]](x) x

....................
.......
.......�

�
��.......

.....................................��............�
�

��McCarthy

�
�

�
���

� �S �
�

�
�

�
� � [[T]](x)B(M(T))−1�

�
�
�

� �
��

�
�
�

x B(T)
x

[[T]](x)
[[T]](x)

x

��
�

�
�

�

..........................
........

..
.........

.........
.....

..........................
........

..
.........

.........
.....

[[T]](x)x T

B
ennett

�

Fig. 1. Generating an RTM computing (injective) [[T]] from an irreversible TM T

the a priori computational expressiveness of RTMs. By Theorem 1 the RTMs
compute only injective functions. How many such functions can they compute?

Theorem 4 (Reversibilizing injections, Bennett [4]). Given a 1-tape TM
S1 s.t. [[S1]] is injective, and given a 1-tape TM S2 s.t. [[S2]] = [[S1]]−1, there
exists a 3-tape RTM T s.t. [[T]] = [[S1]].

We can use this to establish the exact computational expressiveness of the RTMs.

Theorem 5 (Expressiveness). The RTMs can compute exactly all injective
computable functions. That is, given a 1-tape TM T such that [[T]] is an injective
function, there is a 3-tape RTM T ′ such that [[T]] = [[T ′]].

This theorem then follows from the existence of a TM inverter (Lemma 2) and
Theorem 4. We make use of the construction used by Bennett to prove Theo-
rem 4, but now operating purely at the semantics level, making direct use of the
transformations, and without assuming that an inverse for T is given a priori.

Proof. We construct and concatenate three RTMs (see Fig. 1 for a graphical
representation.) First, construct B(T) by applying Lemma 5 directly to T :

[[B(T))]] = λx.(x, [[T]](x)) , B(T) ∈ RTMs

Second, construct the machine B(M(T))−1 by successively applying the trans-
formations of Lemmas 2, 5 and 3 to T :

[[B(M(T))−1]] = (λy.(y, [[T]]−1(y)))−1 , B(M(T))−1 ∈ RTMs

Third, we can construct an RTM S, s.t. [[S]] = λ(a, b).(b, a), that is, a machine
to exchange the contents of two tapes (in standard configuration). To see that
[[B(M(T))−1 ◦ S ◦B(T)]] = [[T]], we apply the machine to an input, x:

What Do Reversible Programs Compute? 51

[[B(M(T))−1 ◦ S ◦B(T)]](x) = [[B(M(T))−1 ◦ [[S]]]] (x, [[T]](x))
= [[B(M(T))−1]] ([[T]](x), x))
= (λy.(y, [[T]]−1(y)))−1 ([[T]](x), x)
= (λy.(y, [[T]]−1(y)))−1 ([[T]](x), [[T]]−1([[T]](x)))
= [[T]](x) . �$

Thus, the RTMs can compute exactly all the injective computable functions.
This suggests that the RTMs have the maximal computational expressiveness
we could hope for in any (effective) reversible computing model.

7 Universality

Having characterized the computational expressiveness of the RTMs, an obvi-
ous next question is that of computation universality. A universal machine is a
machine that can simulate the functional behaviour of any other machine. For
the classical, irreversible Turing machines, we have the following definition.

Definition 8 (Classical universality). A TM U is classically universal iff
for all TMs T , all inputs x ∈ Σ∗, and Gödel number �T 	 ∈ Σ∗ representing T :

[[U]](�T 	, x) = [[T]](x) .

The actual Gödel numbering �·	 : TMs → Σ∗ for a given universal machine
is not important, but we do require that it is computable and injective (up to
renaming of symbols and states).

Because [[U]] in this definition is a non-injective function, it is clear that no
classically universal RTM exists! Bennett [4] suggests that if U is a (classically)
universal machine, B(U) is a machine for reversibly simulating any irreversible
machine. However, B(U) is not itself universal, [[B(U)]] �= [[U]], and furthermore
we should not use reversible simulation of irreversible machines as a benchmark.

The appropriate question to ask is whether the RTMs are classically universal
for just their own class, i.e. where the interpreted machine T is restricted to being
an RTM. The answer is, again, no: Different programs may compute the same
function, so there exists RTMs T1 �= T2 such that [[T1]](x) = [[T2]](x), so [[U]] is
inherently non-injective, and therefore not computable by any RTM.

Classical universality is thus unsuitable if we want to capture a similar notion
wrt RTMs. We propose that a universal machine should be allowed to remember
which machine it simulates.

Definition 9 (Universality). A TM UTM is universal iff for all TMs T and
all inputs x ∈ Σ∗,

[[UTM]](�T 	, x) = (�T 	, [[T]](x)) .

52 H.B. Axelsen and R. Glück

This is equivalent to the original definition of classical universality6. Importantly,
it now suggests a concept of universality that can apply to RTMs.

Definition 10 (RTM-universality). An RTM URTM is RTM-universal iff for
all RTMs T and all inputs x ∈ Σ∗,

[[URTM]](�T 	, x) = (�T 	, [[T]](x)) .

Now, is there an RTM-universal reversible Turing machine, a URTM ?

Theorem 6 (URTM existence). There exists an RTM-universal RTM UR.

Proof. We show that an RTM UR exits, such that for all RTMs T , [[UR]](�T 	, x) =
(�T 	, [[T]](x)). Clearly, [[UR]] is computable, since T is a TM (so [[T]] is com-
putable), and �T 	 is given as input. We show that [[UR]] is injective: Assuming
(�T1	, x1) �= (�T2	, x2) we show that (�T1	, [[T1]](x1)) �= (�T2	, [[T2]](x2)). Either
�T1	 �= �T2	 or x1 �= x2 or both. Because the program text is passed through
to the output, the first and third cases are trivial. Assuming that x1 �= x2 and
�T1	 = �T2	, we have that [[T1]] = [[T2]], i.e. T1 and T2 are the same machine, and
so compute the same function. Because they are RTMs this function is injective
(by Theorem 1), so x1 �= x2 implies that [[T1]](x1) �= [[T2]](x2). Therefore, [[UR]]
is injective, and by Theorem 5 computable by some RTM UR. �$
We remark that this works out very nicely: RTM-universality is now simply
universality restricted to interpreting the RTMs, and while general universal-
ity is non-injective, RTM-universality becomes exactly injective by virtue of the
semantics of RTMs. Also, by interpreting just the RTMs, we remove the redun-
dancy (and reliance on reversibilization) inherent in the alternatives.

Given an irreversible TM computing the function of RTM-universality, The-
orem 5 provides us with a possible construction for an RTM-universal RTM.
However, we do not actually directly have such machines in the literature, and
in any case the construction uses the very inefficient generate-and-test inverter
by McCarthy. We can do better.

Lemma 8. There exists an RTM pinv, such that pinv is a program inverter for
RTM programs,

[[pinv]](�T) = �T−1	 .

This states that the RTMs are expressive enough to perform the program in-
version of Lemma 3. For practical Gödelizations this will only take linear time.

Theorem 7 (UTM to URTM). Given a classically universal TM U s.t.
[[U]](�T 	, x) = [[T]](x), the RTM UR defined as follows is RTM-universal.

UR = pinv1 ◦ (B(U))−1 ◦ S23 ◦ pinv1 ◦B(U) ,

where pinv1 is an RTM that applies RTM program inversion on its first argu-
ment, [[pinv1]](p, x, y) = ([[pinv]]p, x, y), and S23 is an RTM that swaps its second
and third arguments, [[S23]] = λ(x, y, z).(x, z, y).
6 Given UTM universal by Definition 9, snd ◦ UTM is classically universal, where snd

is a TM s.t. [[snd]] = λ(x, y).y. The converse is analogous.

What Do Reversible Programs Compute? 53

[[T]](x)
S23

pinv

B(U)−1

U

pinv

B(U)x

�T�

[[T]](x)

x

�T�

x

�T−1�
[[T]](x)

B
en

n
ett

x
[[T]](x)

�T�

Inversion

�T−1� �T�

Fig. 2. Constructing an RTM-universal RTM UR from a classically universal TM U

Proof. We must show that [[UR]](�T 	, x) = (�T 	, [[T]](x)) for any RTM T . To
show this, we apply UR to an input (�T 	, x). Fig. 2 shows a graphical represen-
tation of the proof.

[[UR]](�T 	, x) = [[pinv1 ◦ (B(U))−1 ◦ S23 ◦ pinv1 ◦B(U)]](�T 	, x)
= [[pinv1 ◦ (B(U))−1 ◦ S23 ◦ pinv1]](�T 	, x, [[T]](x))
= [[pinv1 ◦ (B(U))−1 ◦ S23]](�T−1	, x, [[T]](x))
= [[pinv1 ◦ (B(U))−1]](�T−1	, [[T]](x), x)
= [[pinv1]](�T−1	, [[T]](x))
= (�T 	, [[T]](x)) . �$

Note that this implies that RTMs can simulate themselves exactly as time-
efficiently as the TMs can simulate themselves, but the space usage of the con-
structed machine will, by using Bennett’s method, be excessive. However, there
is nothing that forces us to start with an irreversible (universal) machine, when
constructing an RTM-universal RTM, nor are reversibilizations necessarily re-
quired (as will be seen below).

A first principles approach to an RTM-universal reversible Turing machine,
which does not rely on reversibilization, remains for future work.

8 r-Turing Completeness

With a theory of the computational expressiveness and universality of the RTMs
at hand, we shall lift the discussion to computation models in general. What,
then, do reversible programs compute, and what can they compute?

Our fundamental assumption is that the RTMs (with the given semantics) are
a good and exhaustive model for reversible computing. Thus, for every program
p in a reversible programming language R, we assume there to be an RTM Tp,
s.t. [[p]]R = [[Tp]]. Thus, because the RTMs are restricted to computing injective
functions, reversible programs too compute injective functions only. On the other
hand, we have seen that the RTMs are maximally expressive wrt these functions,

54 H.B. Axelsen and R. Glück

and support a natural notion of universality. For this reason we propose the
following standard of computability for reversible computing.

Definition 11 (r-Turing completeness). A (reversible) programming lan-
guage R is called r-Turing complete iff for all RTMs T computing function [[T]],
there exists a program p ∈ R, such that [[p]]R = [[T]].

Note that we are here quite literal about the semantics: Given an RTM T , it will
not suffice to compute a Landauer embedded version of [[T]], or apply Bennett’s
trick, or, indeed any injectivization of [[T]]. Program p must compute [[T]], exactly.
Only if this is respected can we truly say that a reversible computation model
can compute all the injective, computable functions, i.e. is as computationally
expressive as we can expect reversible computation models to be.

Demonstrating r-Turing Completeness. A common approach to proving that a
language, or computational model, is Turing-complete, is to demonstrate that a
classically universal TM (a TM interpreter) can be implemented, and specialized
to any TM T . However, that is for classically universal machines and (in general)
irreversible languages, which compute non-injective functions. What about our
notion of RTM-universality (Definition 10) and reversible languages?

Assume that u ∈ R (where R is a reversible programming language) is an R-
program computing an RTM-universal interpreter [[u]]R(�T 	, x) = (�T 	, [[T]](x)).
Assume also that R is expressive enough to guarantee the existence of programs
wT ∈ R s.t. [[wT]]R = λx.(�T 	, x), (whose sole purpose is to hardcode �T 	 as an
input for u) and its inverse w−1

T ∈ R, [[w−1
T]]R = [[wT]]−1

R , for any RTM T . Note
that [[wT]]R is injective, so we do not violate our rule of R computing injective
functions by assuming wT and its inverse. Now [[u ◦ wT]]R = λx.(�T 	, [[T]](x)) �=
[[T]], because it leaves the representation �T 	 as part of the output. To complete
the specialization, we need to apply w−1

T as well. Thus, [[w−1
T ◦ u ◦ wT]]R = [[T]].

Therefore, completely analogous to the classical case, we may demonstrate r-
Turing completeness of a reversible computation model by implementing RTM-
universality (essentially, an RTM interpreter), keeping in mind that we must
respect the semantics exactly (by clean simulation that doesn’t leave garbage).

The authors have done exactly that to demonstrate r-Turing completeness of
the imperative, high level, reversible language Janus, and for reversible flowchart
languages in general, cf. [21,22] (where the r-Turing completeness concept was
informally proposed.) In these cases, we were able to exploit the reversibility of
the interpreted machines directly, and did not have to rely on reversibilization
of any kind, which eased the implementation greatly. Furthermore, the RTM-
interpreters are complexity-wise robust, in that they preserve the space and time
complexities of the simulated machines, which no reversibilization is liable to do.

9 Related Work

Morita et al. have studied reversible Turing machines [13,12] and other reversible
computation models, including cellular automata [11], with a different approach

What Do Reversible Programs Compute? 55

to semantics (and thus different results wrt computational strength) than the
present paper. Most relevant here is the universal RTM proposed in [13]. With
our strict semantics viewpoint, the construction therein does not directly demon-
strate neither RTM-universality nor classical universality, but rather a sort of
“traced” universality: Given a program for a cyclic tag system (a Turing complete
formalism) and an input, the halting configuration encompasses both the pro-
gram and output, but also the entire string produced by the tag system along the
way. We believe that this machine could possibly be transformed fairly straight-
forwardly into a machine computing a function analogous to [[B(U)]]. However,
it is not clear that cyclic tag systems should have a notion of reversibility, so the
construction in Fig. 2 is therefore not immediately applicable.

10 Conclusion

The study of reversible computation models complements that of deterministic
and non-deterministic computation models. We have given a foundational treat-
ment of a computability theory for reversible computing using a strict semantics-
based approach (where input/output behaviour must also be reversible), taking
reversible Turing machines as the underlying computational model. By formulat-
ing the classical transformational approaches to reversible computation in terms
of this semantics, we hope to have clarified the distinction between reversibility
and reversibilization, which may previously have been unclear.

We found that starting directly with reversibility leads to a clearer, cleaner,
and more useful functional theory for RTMs. Natural (mechanical) program
transformations such as composition and inversion now correspond directly to
the (semantical) function transformations. This carries over to other computa-
tion models as well.

We showed that the RTMs compute exactly all injective, computable func-
tions, and are thus not classically universal. We also showed that they are
expressive enough to be universal for their own class, with the concept of RTM-
universality. We introduced the concept of r-Turing completeness as the measure
of the computational expressiveness in reversible computing. As a consequence,
a definitive practical criterion for deciding the computation universality of a re-
versible programming computation model is now in place: Implement an RTM-
interpreter, in the sense of an RTM-universal machine.

Acknowledgements. The authors wish to thank Michael Kirkedal Thomsen for
help with the figures and Tetsuo Yokoyama for discussions on RTM-computability.

References

1. Abramov, S., Glück, R.: Principles of inverse computation and the universal re-
solving algorithm. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.)
The Essence of Computation. LNCS, vol. 2566, pp. 269–295. Springer, Heidelberg
(2002)

56 H.B. Axelsen and R. Glück

2. Axelsen, H.B.: Clean translation of an imperative reversible programming lan-
guage. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 144–163. Springer, Hei-
delberg (2011)

3. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)

4. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17, 525–532 (1973)

5. Feynman, R.: Quantum mechanical computers. Optics News 11, 11–20 (1985)
6. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators

for bi-directional tree transformations: A linguistic approach to the view update
problem. ACM Trans. Prog. Lang. Syst. 29(3), article 17 (2007)

7. Glück, R., Sørensen, M.: A roadmap to metacomputation by supercompilation. In:
Danvy, O., Thiemann, P., Glück, R. (eds.) Partial Evaluation. LNCS, vol. 1110,
pp. 137–160. Springer, Heidelberg (1996)

8. Jones, N.D.: Computability and Complexity: From a Programming Language Per-
spective. In: Foundations of Computing. MIT Press, Cambridge (1997)

9. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development 5(3), 183–191 (1961)

10. McCarthy, J.: The inversion of functions defined by Turing machines. In: Automata
Studies, pp. 177–181. Princeton University Press, Princeton (1956)

11. Morita, K.: Reversible computing and cellular automata — A survey. Theoretical
Computer Science 395(1), 101–131 (2008)

12. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.
Trans. IEICE, E 72(3), 223–228 (1989)

13. Morita, K., Yamaguchi, Y.: A universal reversible turing machine. In: Durand-
Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 90–98. Springer,
Heidelberg (2007)

14. Mu, S.-C., Hu, Z., Takeichi, M.: An algebraic approach to bi-directional updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer, Heidelberg
(2004)

15. Schellekens, M.: MOQA; unlocking the potential of compositional static average-
case analysis. Journal of Logic and Algebraic Programming 79(1), 61–83 (2010)

16. Thomsen, M.K., Axelsen, H.B.: Parallelization of reversible ripple-carry adders.
Parallel Processing Letters 19(2), 205–222 (2009)

17. Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for
quantum arithmetic. Journal of Physics A: Mathematics and Theoretical 42(38),
2002 (2010)

18. Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.)
ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

19. van de Snepscheut, J.L.A.: What computing is all about. Springer, Heidelberg
(1993)

20. Van Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. Interna-
tional Journal of Unconventional Computing 1(4), 339–355 (2005)

21. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: Proceedings of Computing Frontiers, pp. 43–54. ACM Press, New
York (2008)

22. Yokoyama, T., Axelsen, H.B., Glück, R.: Reversible flowchart languages and the
structured reversible program theorem. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 258–270. Springer, Heidelberg (2008)

Irrelevance in Type Theory with a
Heterogeneous Equality Judgement

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

andreas.abel@ifi.lmu.de

Abstract. Dependently typed programs contain an excessive amount of static
terms which are necessary to please the type checker but irrelevant for computa-
tion. To obtain reasonable performance of not only the compiled program but also
the type checker such static terms need to be erased as early as possible, prefer-
ably immediately after type checking. To this end, Pfenning’s type theory with
irrelevant quantification, that models a distinction between static and dynamic
code, is extended to universes and large eliminations. Novel is a heterogeneously
typed implementation of equality which allows the smooth construction of a
universal Kripke model that proves normalization, consistency and decidability.

Keywords: dependent types, proof irrelevance, heterogeneously typed equality,
algorithmic equality, logical relation, universal Kripke model.

1 Introduction and Related Work

Dependently typed programming languages such as Agda [9], Coq [13], and Epigram
[15] allow the programmer to express in one language programs, their types, rich in-
variants, and even proofs of these invariants. Besides code executed at run-time, depen-
dently typed programs contain much code needed only to pass the type checker, which
is a the same time the verifier of the proofs woven into the program.

Program extraction takes type-checked terms and discards parts that are irrelevant
for execution. Augustsson’s dependently typed functional language Cayenne [6] erases
types using a universe-based analysis. Coq’s extraction procedure has been designed
by Paulin-Mohring and Werner [21] and Letouzey [14] and discards not only types
but also proofs. The erasure rests on Coq’s universe-based separation between proposi-
tional (Prop) and computational parts (Set/Type). The rigid Prop/Set distinction has
the drawback of code duplication: A structure which is sometimes used statically and
sometimes dynamically needs to be coded twice, once in Prop and once in Set.

An alternative to the fixed Prop/Set-distinction is to let the usage context decide
whether a term is a proof or a program. Besides whole-program analyses such as data
flow, some type-based analyses have been put forward. One of them is Pfenning’s modal
type theory of Intensionality, Extensionality, and Proof Irrelevance [22] which intro-
duces functions with irrelevant arguments that play the role of proofs. Not only can
these arguments be erased during extraction, they can also be disregarded in type con-
version tests during type checking. This relieves the user of unnecessary proof burden

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 57–71, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

58 A. Abel

(proving that two proofs are equal). Furthermore, proofs can not only be discarded dur-
ing program extraction but directly after type checking, since they will never be looked
at again during type checking subsequent definitions.

In principle, we have to distinguish “post mortem” program extraction, let us call
it external erasure, and proof disposal during type checking, let us call it internal era-
sure. External erasure deals with closed expressions, programs, whereas internal erasure
deals with open expressions that can have free variables. Such free variables might be
assumed proofs of (possibly false) equations and block type casts, or (possibly false)
proofs of well-foundedness and prevent recursive functions from unfolding indefinitely.
For type checking to not go wrong or loop, those proofs can only be externally erased,
thus, the Prop/Set distinction is not for internal erasure. In Pfenning’s type theory,
proofs can never block computations even in open expressions (other than computa-
tions on proofs), thus, internal erasure is sound.

Miquel’s Implicit Calculus of Constructions (ICC) [17] goes further than Pfenning
and considers also parametric arguments as irrelevant. These are arguments which are
irrelevant for function execution but relevant during type conversion checking. Such
arguments may only be erased in function application but not in the associated type
instantiation. Barras and Bernardo [8] and Mishra-Linger and Sheard [19] have build
decidable type systems on top of ICC, but both have not fully integrated inductive types
and types defined by recursion (large eliminations). Barras and Bernardo, as Miquel,
have inductive types only in the form of their impredicative encodings, Mishra-Linger
[20] gives introduction and elimination principles for inductive types by example, but
does not show normalization or consistency.

Our long-term goal is to equip Agda with internal and external erasure. To this end, a
type theory for irrelevance is needed that supports user-defined data types and functions
and types defined by pattern matching. Experiments with my prototype implementation
MiniAgda [2] have revealed some issues when combining Miquel-style irrelevance with
large eliminations (see Ex. 2 in Sec. 2). Since it is unclear whether these issues can be
resolved, I have chosen to scale Pfenning’s notion of proof irrelevance up to inductive
types.

In this article, we start with the “extensionality and proof irrelevance” fragment of
Pfenning’s type theory in Reed’s version [23,24]. We extend it by a hierarchy of pred-
icative universes, yielding Irrelevant Intensional Type Theory IITT (Sec. 2). Based on
a heterogeneous algorithmic equality which compares two expressions, each in its own
context at its own type (Sec. 3), we smoothly construct a Kripke model that is both
sound and complete for IITT (Sec. 4). It allows us to prove soundness and completeness
of algorithmic equality, normalization, subject reduction, consistency, and decidability
of typing in one go (Sec. 5). The model is ready for data types, large eliminations, types
with extensionality principles, and internal erasure (Sec. 6).

The novel technical contributions of this work are a heterogeneous formulation of
equality in the specification of type theory, and the universal Kripke model that yields
all interesting meta-theoretic results at once.

The Kripke model is inspired by previous work on normalization by evaluation [3].
There we have already observed that a heterogeneous treatment of algorithmic equality
solves the problem of defining a Kripke logical relation that shows completeness of

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 59

algorithmic equality. Harper and Pfenning [12] hit the same problem, and their fix was
to erase dependencies in types. In weak type theories like the logical framework erasure
is possible, but it does not scale to large eliminations.

Related to our present treatment of IITT is Goguen’s Typed Operational Semantics
[11]. He proves meta-theoretic properties such as normalization, subject reduction, and
confluence by a Kripke logical predicate of well-typed terms. However, his notion of
equality is based on reduction and not a step-wise algorithm.

Awodey and Bauer [7] give a categorical treatment of proof irrelevance which is very
similar to Pfenning and Reed’s. However, they work in the setting of Extensional Type
Theory with undecidable type checking, I could not directly use their results for this
work.

Due to lack of space, proofs have been mostly omitted; more proofs are available in
an extended version of this article on the author’s home page.

2 Irrelevant Intensional Type Theory

In this section, we present Irrelevant Intensional Type Theory IITT which features two
of Pfenning’s function spaces [22], the ordinary “extensional” (x : U) → T and the
proof irrelevant (x÷U) → T . The main idea is that the argument of a (x÷U) → T
function is counted as a proof and can neither be returned nor eliminated on, it can
only be passed as argument to another proof irrelevant function or data constructor.
Technically, this is realized by annotating variables as relevant, x : U , or irrelevant,
x÷U , in the typing context, to restrict the use of irrelevant variables to use in irrelevant
arguments.

Expression and context syntax. We distinguish between relevant (t :u or simply t u) and
irrelevant application (t÷u). Accordingly, we have relevant (λx : U. T) and irrelevant
abstraction (λx÷U. T). Our choice of typed abstraction is not fundamental; a bidirec-
tional type-checking algorithm [10] can reconstruct type and relevance annotations at
abstractions and applications.

Var & x, y, X, Y
Sort & s ::= Setk (k ∈ N) universes
Ann & � ::= ÷ | : annotation: irrelevant, relevant
Exp & t, u, T, U ::= s | (x�U) → T sort, (ir)relevant function type

| x | λx�U. t | t �u lambda-calculus
Cxt & Γ, Δ ::= ' | Γ. x�T empty, (ir)relevant extension

Expressions are considered modulo α-equality, we write t ≡ t′ when we want to stress
that t and t′ identical (up to α).

Sorts. IITT is a pure type system (PTS) with infinite hierarchy of predicative universes
Set0 : Set1 : The universes are not cumulative. We have the PTS axioms Axiom =
{(Seti, Seti+1) | i ∈ N} and the rules Rule = {(Seti, Setj , Setmax(i,j)) | i, j ∈ N}. As
customary, we will write the side condition (s, s′) ∈ Axiom just as (s, s′) and likewise
(s1, s2, s3) ∈ Rule just as (s1, s2, s3). IITT is a full and functional PTS, which means
that for all s1, s2 there is exactly one s3 such that (s1, s2, s3). As a consequence, there
is no subtyping, types are unique up to equality.

60 A. Abel

Substitutions. σ are maps from variables to expressions. We require that the domain
dom(σ) = {x | σ(x) �= x} is finite. We write id for the identity substitution and [u/x]
for the singleton substitution σ with dom(σ) = {x} and σ(x) = u. Capture avoiding
parallel substitution of σ in t is written as juxtaposition tσ.

Contexts. Γ feature two kinds of bindings, relevant (x : U) and irrelevant (x ÷ U)
ones. Only relevant variables are in scope in an expression. Resurrection Γ⊕ turns all
irrelevant bindings x ÷ T into relevant x :T ones [22]. It is the tool to make irrelevant
variables, also called proof variables, available in proofs. Extending context Γ by some
bindings to context Δ is written Δ ≤ Γ .

Judgements of IITT

Γ context Γ is well-formed
Γ = # Γ ′ contexts Γ and Γ ′ are well-formed and equal
Γ # t : T in context Γ , expression t has type T
Γ # t : T = Γ ′ # t′ : T ′ typed expressions t and t′ are equal

Derived judgements

Γ # t÷ T ⇐⇒ Γ⊕ # t : T
Γ # t÷ T = Γ ′ # t′ ÷ T ′ ⇐⇒ Γ # t÷ T and Γ ′ # t′ ÷ T ′

Γ # t = t′ � T ⇐⇒ Γ # t � T = Γ # t′ � T
Γ # T ⇐⇒ Γ # T : s for some s
Γ # T = Γ ′ # T ′ ⇐⇒ Γ # T : s = Γ ′ # T ′ : s′ for some s, s′

Γ # T = T ′ ⇐⇒ # Γ and T ≡ s ≡ T ′ or Γ # T = Γ # T ′

Context well-formedness and typing. # Γ and Γ # t : T , extending Reed [23] to PTS
style. Note that there is no variable rule for irrelevant bindings (x÷ U) ∈ Γ .

'
Γ Γ # T : s

Γ. x�T

Γ

Γ # s : s′
(s, s′)

Γ # U : s1 Γ. x�U # T : s2

Γ # (x�U) → T : s3
(s1, s2, s3)

Γ (x :U) ∈ Γ

Γ # x : U

Γ. x�U # t : T

Γ # λx�U. t : (x�U) → T

Γ # t : (x�U) → T Γ # u � U

Γ # t �u : T [u/x]
Γ # t : T Γ # T = T ′

Γ # t : T ′

When we apply an irrelevant function Γ # t : (x÷U) → T to u, the argument u is
typed in the resurrected context Γ⊕ # u : U . This means that u is treated as a proof
and the proof variables become available.

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 61

Parallel computation (β) and extensionality (η)

Γ. x	U � t : T = Γ ′. x	U ′ � t′ : T ′ Γ � u 	 U = Γ ′ � u′ 	 U ′

Γ � (λx	U. t) �u : T [u/x] = Γ ′ � t′[u′/x] : T ′[u′/x]

Γ � t : (x	U) → T = Γ ′ � t′ : (x	U ′) → T ′

Γ � t : (x	U) → T = Γ ′ � λx	U ′. t′ �x : (x	U ′) → T ′

Equivalence rules

Γ � t : T

Γ � t : T = Γ � t : T

Γ � t : T = Γ ′ � t′ : T ′

Γ ′ � t′ : T ′ = Γ � t : T

Γ1 � t1 : T1 = Γ2 � t2 : T2 Γ2 � t2 : T2 = Γ3 � t3 : T3

Γ1 � t1 : T1 = Γ3 � t3 : T3

Compatibility rules

� Γ = � Γ ′

Γ � s : s′ = Γ ′ � s : s′
(s, s′)

(x :U) ∈ Γ Γ � U : s = Γ ′ � U ′ : s′ (x :U ′) ∈ Γ ′

Γ � x : U = Γ ′ � x : U ′

Γ � U : s1 = Γ ′ � U ′ : s′1
Γ. x	U � T : s2 = Γ ′. x	U ′ � T ′ : s′2

Γ � (x	U) → T : s3 = Γ ′ � (x	U ′) → T ′ : s′3

Γ. x	U � t : T = Γ ′. x	U ′ � t′ : T ′

Γ � λx	U. t : (x	U) → T = Γ ′ � λx	U ′. t′ : (x	U ′) → T ′

Γ � t : (x :U) → T = Γ ′ � t′ : (x :U ′) → T ′

Γ � u : U = Γ ′ � u′ : U ′

Γ � t u : T [u/x] = Γ ′ � t′ u′ : T ′[u′/x]

Γ � t : (x÷U) → T = Γ ′ � t′ : (x÷U ′) → T ′

Γ⊕ � u : U Γ ′⊕ � u′ : U ′

Γ � t ÷u : T [u/x] = Γ ′ � t′ ÷u′ : T ′[u′/x]

Conversion rule

Γ1 � t1 : T1 = Γ2 � t2 : T2 Γ2 � T2 = T ′
2

Γ1 � t1 : T1 = Γ2 � t2 : T ′
2

Fig. 1. Rules of heterogeneous equality

Equality. Figure 1 presents the rules to construct the judgement Γ # t : T = Γ ′ #
t′ : T ′. The novelty is the heterogeneous typing: we do not locally enforce that equal
terms must have equal types, but we will show it globally in Sec. 5. Note that in the
compatibility rule for irrelevant application, the function arguments may be completely
unrelated.

62 A. Abel

In heterogeneous judgements such as equality, we maintain the invariant that the two
contexts Γ and Γ ′ have the same shape, i. e., bind the same variables with the same
irrelevance status. Only the types bound to the variables maybe different in Γ and Γ ′.

Context equality # Γ = # Γ ′ is a partial equivalence relation (PER), i. e., a sym-
metric and transitive relation, given inductively by the following rules:

' = # '
Γ = # Γ ′ Γ # U = Γ ′ # U ′

Γ. x�U = # Γ ′. x�U ′

Typing and equality are closed under weakening. Typing enjoys the usual inversion
properties. To show substitution we introduce judgements Δ # σ : Γ for substitution
typing and Δ # σ : Γ = Δ′ # σ : Γ ′ for substitution equality which are given
inductively by the following rules:

Δ

Δ # σ : '
Δ # σ : Γ Γ # U Δ # σ(x) � Uσ

Δ # σ : Γ. x�U

Δ = # Δ′

Δ # σ : ' = Δ′ # σ′ : '

Δ # σ : Γ = Δ′ # σ′ : Γ ′ Γ # U = Γ ′ # U ′

Δ # σ(x) � Uσ = Δ′ # σ′(x) � U ′σ′

Δ # σ : Γ. x�U = Δ # σ′ : Γ ′. x�U ′

Lemma 1 (Substitution). Substitution equality is a PER. Further:

1. If Δ # σ : Γ and Γ # t : T then Δ # tσ : Tσ.
2. If Δ # σ : Γ = Δ′ # σ′ : Γ ′. and Γ # t : T = Γ ′ # t′ : T ′ then Δ # tσ : Tσ =

Δ′ # t′σ′ : T ′σ′.

Example 1 (Algebraic structures). 1 In type theory, we can model an algebraic structure
over a carrier set A by a record of operations and proofs that the operations have the
relevant properties. Consider an extension of IITT by tuples and Leibniz equality:

(x�A)×B : Setmax(i,j) for A : Seti and x � A # B : Setj
(a, b) : (x�A)×B for a : A and b : B[a/x]
let (x, y) = p in t : C for p : (x�A)×B and x � A, y :B # t : C

a ≡ b : Seti for A : Seti and a, b : A
refl : a ≡ a for A : Seti and a : A
sym p : b ≡ a for p : a ≡ b

In the presence of a unit type 1 : Seti with constructor () : 1, the class SemiGrp of
semigroups over a fixed A : Set0 can be defined as

Assoc : (A → A → A) → Set0
Assoc m = (a, b, c : A) → m (m a b) c ≡ m a (m b c)

SemiGrp : Set0
SemiGrp = (m : A → A → A)× (assoc ÷ Assoc m)× 1.

1 Inspired by the 2010-09-23 message of Andrea Vezzosi on the Agda mailing list.

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 63

We have marked the component assoc as irrelevant which means that two SemiGrp
structures over A are already equal when they share the operation m; the shape of the
associativity proofs might differ. For instance, consider the flip operator (in a slightly
sugared definition):

flip : SemiGrp → SemiGrp
flip (m, (assoc, u)) = (λa :A.λb :A. m b a, (sym assoc, ())

thm : (s : SemiGrp) → flip (flip s) ≡ s
thm s = refl

A proof thm that flip cancels itself is now trivial, since λab. (λab. m b a) b a = m by
βη-equality and the assoc-component is irrelevant. This saves us from constructing a
proof of sym (sym assoc) ≡ assoc and the type checker from validating it. While the
saving is small for this small example, it illustrates the principle.

Example 2 (Large Eliminations). 2 The ICC∗ [8] or EPTS [19] irrelevant function type
(x ÷ A) → B allows x to appear relevantly in B. This extra power raises some issues
with large eliminations. Consider

T : Bool → Set0
T true = Bool → Bool
T false = Bool

t = λF : (b÷Bool) → (T b → T b) → Set0.
λg : F false (λx : Bool. x) → Bool.
λa : F true (λx : Bool → Bool.λy : Bool. x y). g a.

The term t is well-typed in ICC∗ + T because the domain type of g and the type of a
are βη-equal after erasure (−)∗ of type annotations and irrelevant arguments:

(F false (λx : Bool. x))∗ = F (λxx)
=βη F (λxλy. x y) = (F true (λx : Bool → Bool.λy : Bool. x y))∗

While a Curry view supports this, it is questionable whether identity functions at dif-
ferent types should be viewed as one. It is unclear how a type-directed equality algo-
rithm (see Sec. 3) should proceed here; it needs to recognize that x : Bool is equal to
λy : Bool. x y : Bool → Bool. This situation is amplified by a unit type 1 with exten-
sional equality. When we change T true to 1 and the type of a to F true (λx : 1. ())
then t should still type-check, because λx. () is the identity function on 1. However,
η-equality for 1 cannot checked without types, and a type-directed algorithm would
end up checking x : Bool for equality with () : 1. This can never work, because by
transitivity we would get that any two booleans are equal.

Summarizing, we may conclude that the type of F bears trouble and needs to be
rejected. IITT does this because it forbids the irrelevant b in relevant positions such as
T b; ICC∗ lacks T altogether. Extensions of ICC∗ should at least make sure that b is
never eliminated, such as in T b. Technically, T would have to be put in a separate class
of recursive functions, those that actually compute with their argument. We leave the
interaction of the three different function types to future research.

2 Inspired by discussions with Ulf Norell during the 11th Agda Implementor’s Meeting.

64 A. Abel

3 Algorithmic Equality

The algorithm for checking equality in IITT is inspired by Harper and Pfenning [12].
Like theirs, it is type-directed, but in our case each term comes with its own type in
its own typing context. The algorithm proceeds stepwise, by alternating weak head
normalization and head symbol comparison. Weak head normal forms (whnfs) are given
by the following grammar:

Whnf & a, b, f, A, B, F ::= s | (x�U) → T | λx�U. t | n whnf
Wne & n, N ::= x | n �u neutral whnf

Weak head evaluation. t ↘ a and active application f @� u ↘ a are given by the
following rules.

t ↘ f f @� u ↘ a

t �u ↘ a a ↘ a

t[u/x] ↘ a

(λx�U. t)@� u ↘ a n @� u ↘ n �u

Instead of writing the propositions t ↘ a and P [a] we will sometimes simply write
P [↓t]. Similarly, we might write P [f @� u] instead of f @� u ↘ a and P [a]. In rules, it
is understood that the evaluation judgement is always an extra premise, never an extra
conclusion.

Type equality. Δ # A ⇐⇒ Δ′ # A′, for weak head normal forms, and Δ #
T ⇐̂⇒ Δ′ # T ′, for arbitrary well-formed types, checks that two given types are
equal in their respective contexts.

Δ # s ⇐⇒ Δ′ # s

Δ # N : s ←→ Δ′ # N ′ : s′

Δ # N ⇐⇒ Δ′ # N ′
Δ # ↓T ⇐⇒ Δ′ # ↓T ′

Δ # T ⇐̂⇒ Δ′ # T ′

Δ # U ⇐̂⇒ Δ′ # U ′ Δ. x :U # T ⇐̂⇒ Δ′. x :U ′ # T ′

Δ # (x�U) → T ⇐⇒ Δ′ # (x�U ′) → T ′

Structural equality. Δ # n : A ←→ Δ′ # n′ : A′ and Δ # n : T ←̂→ Δ′ # n′ : T ′

checks the neutral expressions n and n′ for equality and at the same time infers their
types, which are returned as output.

Δ # n : T ←̂→ Δ′ # n′ : T ′

Δ # n : ↓T ←→ Δ′ # n′ : ↓T ′
(x :T) ∈ Δ (x :T ′) ∈ Δ′

Δ # x : T ←̂→ Δ′ # x : T ′

Δ # n : (x :U) → T ←→ Δ′ # n′ : (x :U ′) → T ′

Δ # u : U ⇐̂⇒ Δ′ # u′ : U ′

Δ # n u : T [u/x] ←̂→ Δ′ # n′ u′ : T ′[u′/x]

Δ # n : (x÷U) → T ←→ Δ′ # n′ : (x÷U ′) → T ′

Δ # n ÷u : T [u/x] ←̂→ Δ′ # n′ ÷u′ : T ′[u′/x]

Note that the inferred types T [u/x] and T ′[u′/x] in the last rule are a priori different,
even if T is equal to T ′. This motivates a heterogeneously-typed algorithmic equality.

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 65

Type-directed equality. Δ # t : A ⇐⇒ Δ′ # t′ : A′ and Δ # t : T ⇐̂⇒ Δ′ #
t′ : T ′ checks terms t and t′ for equality and proceeds by the common structure of the
supplied types, to account for η.

Δ # T ⇐̂⇒ Δ′ # T ′

Δ # T : s ⇐⇒ Δ′ # T ′ : s′

Δ. x�U # t �x : T ⇐̂⇒ Δ′. x�U ′ # t′ �x : T ′

Δ # t : (x�U) → T ⇐⇒ Δ′ # t′ : (x�U ′) → T ′

Δ # ↓t : T ←̂→ Δ′ # ↓t′ : T ′

Δ # t : N ⇐⇒ Δ′ # t′ : N ′
Δ # t : ↓T ⇐⇒ Δ′ # t′ : ↓T ′

Δ # t : T ⇐̂⇒ Δ′ # t′ : T ′

Note that in the but-last rule we do not check that the inferred type T of ↓t equals
the ascribed type N . Since algorithmic equality is only invoked for well-typed t, we
now that this must always be the case. Skipping this test is a conceptually important
improvement over Harper and Pfenning [12].

Lemma 2 (Algorithmic equality is a Kripke PER). ←→, ←̂→, ⇐⇒, and ⇐̂⇒ are
symmetric and transitive and closed under weakening.

Extending structural equality to irrelevance, we let

Δ⊕ # n : A ←→ Δ⊕ # n : A Δ′⊕ # n′ : A′ ←→ Δ′⊕ # n′ : A′

Δ # n÷A ←→ Δ′ # n′ ÷A′

and analogously for Δ # n÷ T ←̂→ Δ′ # n′ ÷ T ′.

4 A Universal Kripke Model for IITT

In this section we build, based on algorithmic equality, a universal Kripke model of
typed terms that is both sound and complete for IITT. Following Goguen [11] and
previous work [3], we first define a semantic universe hierarchy Ti whose sole purpose
is to provide a measure for defining a logical relation and proving some of its properties.
The limit Tω corresponds to the proof-theoretic strength or ordinal of IITT.

4.1 An Induction Measure

We denote sets of expressions byA,B and functions from expressions to sets of expres-
sions byF . Let Â = {t | ↓t ∈ A} denote the closure ofA by weak head expansion. De-
pendent function space is defined as Π AF = {f ∈ Whnf | ∀u ∈ Â. f @� u ∈ F(u)}.

By recursion on i ∈ N we define inductively sets Ti ⊆ Whnf ×P(Whnf) as follows
[3, Sec. 5.1]:

(N, Wne) ∈ Ti (Setj , |Tj |) ∈ Ti
(Setj , Seti) ∈ Axiom

(U,A) ∈ T̂i ∀u ∈ Â. (T [u/x],F(u)) ∈ T̂i

((x�U) → T, Π AF) ∈ Ti

66 A. Abel

Herein, T̂i = {(T,A) | (↓T,A) ∈ Ti} and |Tj | = {A | (A,A) ∈ Tj for some A}.
The induction measure A ∈ Seti shall now mean the minimum height of a derivation
of (A,A) ∈ Ti for some A. Note that due to universe stratification, A ∈ Seti is smaller
than Seti ∈ Setj .

4.2 A Heterogeneously Typed Kripke Logical Relation

By induction on the maximum of the measures A ∈ Seti and A′ ∈ Seti′ we define two
Kripke relations

Δ # A : Seti
 Δ′ # A′ : Seti′
Δ # a : A
 Δ′ # a′ : A′.

together with their respective closures
̂ and the generalization to �. The clauses are
given in rule form.

Δ # N ⇐⇒ Δ′ # N ′

Δ # N : Seti = Δ′ # N ′ : Seti′

Δ # N : Seti
 Δ′ # N ′ : Seti′

Δ # n : ←̂→ Δ′ # n′ :
Δ # n : N = Δ′ # n′ : N ′

Δ # n : N
 Δ′ # n′ : N ′

Δ # Seti : Seti+1 = Δ′ # Seti : Seti+1

Δ # Seti : Seti+1
 Δ′ # Seti : Seti+1

Δ # U : Seti
̂ Δ′ # U ′ : Seti′

∀(Γ, Γ ′) ≤ (Δ, Δ′), Γ # u � U
̂ Γ ′ # u′ � U ′ =⇒
Γ # T [u/x] : Seti
̂ Γ ′ # T ′[u′/x] : Seti′

Δ # (x�U) → T : Seti = Δ′ # (x�U ′) → T ′ : Seti′

Δ # (x�U) → T : Seti
 Δ′ # (x�U ′) → T ′ : Seti′

∀(Γ, Γ ′) ≤ (Δ, Δ′), Γ # u � U
̂ Γ ′ # u′ � U ′ =⇒
Γ # f �u : T [u/x]
̂ Γ ′ # f ′ �u′ : T ′[u′/x]

Δ # f : (x�U) → T = Δ′ # f ′ : (x�U ′) → T ′

Δ # f : (x�U) → T
 Δ′ # f ′ : (x�U ′) → T ′

t ↘ a Δ # t = a : ↓T Δ′ # t′ = a′ : ↓T ′ t′ ↘ a′

Δ # a : ↓T
 Δ′ # a′ : ↓T ′

Δ # t : T
̂ Δ′ # t′ : T ′

Δ⊕ # a : A
 Δ⊕ # a : A Δ′⊕ # a′ : A′
 Δ′⊕ # a′ : A′

Δ # a÷A
 Δ′ # a′ ÷A′

Δ⊕ # t : T
̂ Δ⊕ # t : T Δ′⊕ # t′ : T ′
̂ Δ′⊕ # t′ : T ′

Δ # t÷ T
̂ Δ′ # t′ ÷ T ′

It is immediate that the logical relation contains only well-typed terms, is symmetric,
transitive, and closed under weakening.

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 67

Lemma 3 (Type and context conversion). If Δ # t : T
̂ Δ′ # t′ : T ′ and Δ′ #
T ′ : s′
̂ Δ′′ # T ′′ : s′′ then Δ # t : T
̂ Δ′′ # t′ : T ′′.

Lemma 4 (Escape from the logical relation). Let Δ # T : Seti
̂ Δ′ # T ′ : Seti′

1. Δ # T ⇐̂⇒ Δ # T ′.
2. If Δ # t : T
̂ Δ′ # t′ : T ′ then Δ # t : T ⇐̂⇒ Δ′ # t′ : T ′.
3. If Δ # n � T ←̂→ Δ′ # n′ � T ′ and Δ # n � T = Δ # n′ � T ′ then

Δ # n � T
̂ Δ # n′ � T ′.

4.3 Validity in the Model

Simultaneously and by induction on the length of Γ we define the PERs � Γ = � Γ ′

and Δ # σ : Γ
̂ Δ′ # σ′ : Γ ′ which presupposes the former. In rule notation this
reads:

� ' = � '
� Γ = � Γ ′ Γ � U = Γ ′ � U ′

� Γ. x�U = � Γ ′. x�U ′

Δ # σ : '
̂ Δ′ # σ′ : '

Δ # σ : Γ
̂ Δ′ # σ′ : Γ ′ Δ # σ(x) � Uσ
̂ Δ′ # σ′(x) � U ′σ′

Δ # σ : Γ. x�U
̂ Δ′ # σ′ : Γ ′. x�U ′

Again at the same time, we define the following abbreviations, also given in rule notation:

Γ � s = Γ ′ � s

Γ � T : s = Γ ′ � T ′ : s′

Γ � T = Γ ′ � T ′

� Γ = � Γ ′ Γ � T = Γ ′ � T ′

∀Δ # σ : Γ
̂ Δ′ # σ′ : Γ ′ =⇒ Δ # tσ : Tσ
̂ Δ′ # t′σ′ : T ′σ′

Γ � t : T = Γ ′ � t′ : T ′

Finally, let Γ � t : T ⇐⇒ Γ � t : T = Γ � t : T and � Γ ⇐⇒ � Γ = � Γ .

Lemma 5 (Context satisfiable). For the identity substitution id and � Γ = � Γ ′ we
have Γ # id : Γ
̂ Γ ′ # id : Γ ′.

Theorem 1 (Completeness of IITT rules). If Γ � t : T = Γ ′ � t′ : T ′ then Γ # t :
T = Γ ′ # t′ : T ′ and Γ # T = Γ ′ # T ′.

Theorem 2 (Fundamental theorem of logical relations)

1. If # Γ then � Γ .
2. If # Γ = # Γ ′ then � Γ = � Γ ′.
3. If Γ # t : T then Γ � t : T .
4. If Γ # t : T = Γ ′ # t′ : T ′ then Γ � t : T = Γ ′ � t′ : T ′.

68 A. Abel

5 Meta-theoretic Consequences of the Model Construction

After doing hard work in the construction of a universal model, the rest of the meta-
theory of IITT falls into our lap like a ripe fruit.

Normalization and subject reduction. An immediate consequence of the model con-
struction is that each term has a weak head normal form and that typing and equality is
preserved by weak head normalization.

Theorem 3 (Normalization and subject reduction). If Γ # t : T then t ↘ a and
Γ # t = a : T .

Correctness of algorithmic equality. Algorithmic equality is correct, i. e., sound, com-
plete, and terminating. Together, this entails decidability of equality in IITT. Algorith-
mic equality is built into the model at every step, thus, completeness is immediate:

Theorem 4 (Completeness of algorithmic equality). If Γ # t : T = Γ ′ # t′ : T ′

then Γ # t : T ⇐̂⇒ Γ ′ # t′ : T ′.

Termination of algorithmic equality is a consequence of full normalization, which we
have not defined explicitly, but which is implicit in the model.

Theorem 5 (Termination of algorithmic equality). If Δ # t : T and Δ′ # t′ : T ′

then the query Δ # t : T ⇐̂⇒ Δ′ # t′ : T ′ terminates.

Soundness of the equality algorithm is a consequence of subject reduction.

Theorem 6 (Soundness of algorithmic equality). Let Δ # t : T and Δ′ # t′ : T ′ and
Δ # T = Δ′ # T ′. If Δ # t : T ⇐̂⇒ Δ′ # t′ : T ′ then Δ # t : T = Δ′ # t′ : T ′.

Homogeneity. Although we defined IITT-equality heterogeneously, we can now show
that the heterogeneity was superficial, i. e., in fact do equal terms have equal types. This
was already implicit in the formulation of the equality algorithm which only compares
terms at types of the same shape. By rather than building homogeneity into the defini-
tion of equality, we obtain it as a global result.

Theorem 7 (Homogeneity). If Γ # t : T = Γ ′ # t′ : T ′ then # Γ = # Γ ′ and
Γ # T = Γ ′ # T ′.

Consistency. Importantly, not every type is inhabited in IITT, thus, it can be used as
a logic. A prerequisite is that types can be distinguished, which follows immediately
from completeness of algorithmic equality.

Theorem 8 (Consistency). X :Set0 � # t : X .

Decidability. To round off, we show that typing in IITT is decidable. Type checking
algorithms such as bidirectional checking [10] rely on injectivity of function type con-
structors, which is built into the definition of
:

Theorem 9 (Function type injectivity). If Γ # (x�U) → T : s = Γ ′ # (x�U ′) →
T ′ : s′ then Γ # U : s = Γ ′ # U ′ : s′ and Γ. x�U # T : s = Γ ′. x�U ′ # T ′ : s′.

Theorem 10 (Decidability of IITT). Equality Γ # t : T = Γ ′ # t′ : T ′ and typing
Γ # t : T are decidable.

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 69

6 Extensions

Data types and recursion. The semantics of IITT is ready to cope with inductive data
types like the natural numbers and the associated recursion principles. Recursion into
types, aka known as large elimination, is also accounted for since we have universes
and a semantics which does not erase dependencies (unlike Pfenning’s model [22]).

Types with extensionality principles. The purpose of having a typed equality algo-
rithm is to handle η-laws that are not connected to the shape of the expression (like
η-contraction for functions) but to the shape of the type only. Typically these are types
T with at most one inhabitant, i. e., the empty type, the unit type, singleton types or
propositions3. For such T we have the η-law

Γ # t, t′ : T

Γ # t = t′ : T

which can only be checked in the presence of type T . Realizing such η-laws gives addi-
tional “proof” irrelevance which is not covered by Pfenning’s irrelevant quantification
(x÷U) → T .

Internal erasure. Terms u ÷ U in irrelevant position are only there to please the type
checker, they are ignored during equality checking. This can be inferred from the sub-
stitution principle: If Γ. x÷U # T and Γ # u, u′ ÷ U , then Γ # T [u/x] = T [u′/x];
the type T has the same shape regardless of u, u′. Hence, terms like u serve the sole
purpose to prove some proposition and could be replaced by a dummy • immediately
after type-checking. This is an optimization which in the first place saves memory, but
if expressions are written to interface files and reloaded later, it also saves disk space
and execution time of saving and loaded. First experiments with an implementation of
internal erasure in Agda [9] shows that savings are huge, like in formalizing category
theory and algebra which uses structures with embedded proofs (see Example 1).

Internal erasure can be realized by making Γ # t ÷ T a judgement (as opposed to
just a notation for Γ⊕ # t : T) and adding the rule

Γ # t÷ T

Γ # • ÷ T
.

The rule states that if there is already a proof t of T , then • is a new proof of T . This
preserves provability while erasing the proof terms. Conservativity of this rule can be
proven as in joint work of the author with Coquand and Pagano [4].

Proof modality. Pfenning [22] suggests a modality + formed by the rule

Γ # t÷ T

Γ # t : +T
.

which for instance allows the definition of the subset type {x : U | T x} as Σx :
U.+(T x). Such a modality has been present in Nuprl as Squash type [20] and it is also
known as the type of proofs of (proposition) T [4,8]. Using the extensions of Example 1,
we can encode it as +T = (÷T)× 1.

3 Some care is necessary for the type of Leibniz equality [1,25].

70 A. Abel

7 Conclusions

We have extended Pfenning’s notion of irrelevance to a type theory IITT with universes
that accommodates types defined by recursion. A heterogeneous algorithmic equality
judgement has allowed a smooth construction of a universal Kripke model that is both
sound and complete for IITT, yielding normalization, consistency and decidability of
IITT. Inspired by a heterogeneously typed semantics, we have formulated the declara-
tive system with a heterogeneous equality judgement as well and demonstrated that this
also yields a sound specification of type theory.

Integrating irrelevance and data types in dependent type theory does not seem with-
out challenges. We have succeeded to treat Pfenning’s notion of irrelevance, but our
proof does not scale directly to parametric function types, a stronger notion of irrelevant
function types called implicit quantification by Miquel [18]4. Two more type theories
build on Miquel’s calculus [17], Barras and Bernardo’s ICC∗ [8] and Mishra-Linger
and Sheard’s Erasure Pure Type Systems (EPTS) [19], but none has offered a satisfying
account of large eliminations yet. Miquel’s model [16] features data types only as im-
predicative encodings. For irrelevant, parametric, and recursive functions to coexist it
seems like three different function types are necessary, e. g., in the style of Pfenning’s
irrelevance, extensionality and intensionality. We would like to solve this puzzle in
future work, not least to implement high-performance languages with dependent types.

Acknowledgments. Thanks to Bruno Barras, Bruno Bernardo, Thierry Coquand, Dan
Doel, Hugo Herbelin, Conor McBride, and Ulf Norell for discussions on irrelevance in
type theory. Thanks to Jason Reed, Conor McBride, and the anonymous referees for
suggesting improvements on the text. Work on a previous paper has been carried out
while being invited researcher at PPS, Paris, in the INRIA πr2 team headed by Pierre-
Louis Curien and Hugo Herbelin. I have benefited from presentations at JFLA 2010,
the Agda Implementer’s Meeting in March 2010 and the DTP workshop in 2010.

References

1. Abel, A.: Extensional normalization in the logical framework with proof irrelevant equality.
In: Danvy, O. (ed.) 2009 Wksh. on Normalization by Evaluation (2009)

2. Abel, A.: MiniAgda: Integrating sized and dependent types. In: Bove, A., Komendantskaya,
E., Niqui, M. (eds.) Wksh. on Partiality And Recursion in Interactive Theorem Provers
(PAR 2010) (2010)

3. Abel, A., Coquand, T., Dybjer, P.: Verifying a semantic βη-conversion test for martin-löf
type theory. In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp.
29–56. Springer, Heidelberg (2008)

4. Abel, A., Coquand, T., Pagano, M.: A modular type-checking algorithm for type theory with
singleton types and proof irrelevance. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608,
pp. 5–19. Springer, Heidelberg (2009)

5. Amadio, R.M. (ed.): FOSSACS 2008. LNCS, vol. 4962. Springer, Heidelberg (2008)

4 A function argument is parametric if it is irrelevant for computing the function result while the
type of the result may depend on it. In Pfenning’s notion, the argument must also be irrelevant
in the type.

Irrelevance in Type Theory with a Heterogeneous Equality Judgement 71

6. Augustsson, L.: Cayenne - a language with dependent types. In: Proc. of the 3rd ACM SIG-
PLAN Int. Conf. on Functional Programming (ICFP 1998). SIGPLAN Notices, vol. 34, pp.
239–250. ACM Press, New York (1999)

7. Awodey, S., Bauer, A.: Propositions as [Types]. J. Log. Comput. 14(4), 447–471 (2004)
8. Barras, B., Bernardo, B.: The implicit calculus of constructions as a programming language

with dependent types. In: Amadio [5], pp. 365–379
9. Bove, A., Dybjer, P., Norell, U.: A Brief Overview of Agda – A Functional Language with

Dependent Types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009.
LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009)

10. Coquand, T.: An algorithm for type-checking dependent types. In: Proc. of the 3rd Int. Conf.
on Mathematics of Program Construction, MPC 1995. Sci. Comput. Program., vol. 26, pp.
167–177. Elsevier, Amsterdam (1996)

11. Goguen, H.: A Typed Operational Semantics for Type Theory. PhD thesis, University of
Edinburgh, Available as LFCS Report ECS-LFCS-94-304 (August 1994)

12. Harper, R., Pfenning, F.: On equivalence and canonical forms in the LF type theory. ACM
Transactions on Computational Logic 6(1), 61–101 (2005)

13. INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.2 edition (2008),
http://coq.inria.fr/

14. Letouzey, P.: A new extraction for coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002.
LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003)

15. McBride, C., McKinna, J.: The view from the left. J. Func. Program (2004)
16. Miquel, A.: A model for impredicative type systems, universes, intersection types and sub-

typing. In: Proc. of the 15th IEEE Symp. on Logic in Computer Science (LICS 2000), pp.
18–29 (2000)

17. Miquel, A.: The Implicit Calculus of Constructions. In: Abramsky, S. (ed.) TLCA 2001.
LNCS, vol. 2044, pp. 344–359. Springer, Heidelberg (2001)

18. Miquel, A.: Le Calcul des Constructions implicite: syntaxe et sémantique. PhD thesis, Uni-
versité Paris 7 (December 2001)

19. Mishra-Linger, N., Sheard, T.: Erasure and polymorphism in pure type systems. In: Amadio
[5], pp. 350–364

20. Mishra-Linger, R.N.: Irrelevance, Polymorphism, and Erasure in Type Theory. PhD thesis,
Portland State University (2008)

21. Paulin-Mohring, C., Werner, B.: Synthesis of ML programs in the system Coq. J. Symb.
Comput. 15(5/6), 607–640 (1993)

22. Pfenning, F.: Intensionality, extensionality, and proof irrelevance in modal type theory. In:
LICS 2001: IEEE Symposium on Logic in Computer Science (June 2001)

23. Reed, J.: Proof irrelevance and strict definitions in a logical framework, Senior Thesis, pub-
lished as Carnegie-Mellon University technical report CMU-CS-02-153 (2002)

24. Reed, J.: Extending Higher-Order Unification to Support Proof Irrelevance. In: Basin, D.,
Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 238–252. Springer, Heidelberg (2003)

25. Werner, B.: On the strength of proof-irrelevant type theories. Logical Meth. in Comput. Sci. 4
(2008)

http://coq.inria.fr/

When Is a Type Refinement an Inductive Type?

Robert Atkey, Patricia Johann, and Neil Ghani�

University of Strathclyde
{Robert.Atkey,Patricia.Johann,Neil.Ghani}@cis.strath.ac.uk

Abstract. Dependently typed programming languages allow
sophisticated properties of data to be expressed within the type system.
Of particular use in dependently typed programming are indexed types
that refine data by computationally useful information. For example, the
N-indexed type of vectors refines lists by their lengths. Other data types
may be refined in similar ways, but programmers must produce purpose-
specific refinements on an ad hoc basis, developers must anticipate which
refinements to include in libraries, and implementations often store re-
dundant information about data and their refinements. This paper shows
how to generically derive inductive characterisations of refinements of in-
ductive types, and argues that these characterisations can alleviate some
of the aforementioned difficulties associated with ad hoc refinements.
These characterisations also ensure that standard techniques for pro-
gramming with and reasoning about inductive types are applicable to
refinements, and that refinements can themselves be further refined.

1 Introduction

One of the key aims of current research in functional programming is to reduce
the semantic gap between what programmers know about computational entities
and what the types of those entities can express about them. One particularly
promising approach is to parameterise, or index, types by extra information that
can be used to express properties of data having those types. For example, most
functional languages support a standard list data type parameterised over the
type of the data the lists contain, but for some applications it is also crucial
to know the length of a list. We may wish, for instance, to ensure that the list
argument to the tail function has non-zero length — i.e., is non-empty — or
that the lengths of the two list arguments to zip are the same.

A data type that equips each list with its length can be defined in the depen-
dently typed language Agda [26] by

data Vector (B : Set) : Nat -> Set where
VNil : Vector B Z
VCons : (n : Nat) -> B -> Vector B n -> Vector B (S n)

This declaration inductively defines a data type Vector which, for each choice of
element type B, is indexed by natural numbers and has two constructors: VNil,
� This work was funded by EPSRC grant EP/G068917/1.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 72–87, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

When Is a Type Refinement an Inductive Type? 73

which constructs a vector of B-data of length zero (i.e., Z), and VCons, which
constructs from an index n, an element of B, and a vector of B-data of length n, a
new vector of B-data of length n+1 (i.e., S n). The inductive type Vector can be
used to define functions on lists which are “length-aware” in a way that functions
which process data of standard list types cannot be. For example, length-aware
tail and zip functions can be given via the following types and definitions:

tail : (n : Nat) -> Vector B (S n) -> Vector B n
tail (VCons b bs) = bs

zip : (n : Nat) -> Vector B n -> Vector C n -> Vector (B x C) n
zip VNil VNil = VNil
zip (VCons b bs) (VCons c cs) = VCons (b , c) (zip bs cs)

Examples such as those above suggest that indexing types by computationally
relevant information has great potential. However, for this potential to be re-
alised, we must better understand how indexed types can be constructed. More-
over, since we want to ensure that all of the techniques developed for structured
programming with and principled reasoning about inductive types — such as
those championed in the Algebra of Programming [6] literature — are applica-
ble to the resulting indexed types, we also want these types to be inductive. This
paper therefore asks the following fundamental question:

Can elements of inductive types be systematically augmented with computa-
tionally relevant information to give indexed inductive types that store com-
putationally relevant information in their indices? If so, how?

That is, how can we refine a given inductive type to get a new such type, called
a refinement, that associates with each element of the given type its index?

One straightforward way to refine an inductive type is to use a refinement
function to compute the index for each of its elements, and then to associate
these indices to their corresponding elements. To refine lists by their lengths, for
example, we would start with the standard list data type and length function:

data List (B : Set) : Set where length : List B -> Nat
Nil : List B length Nil = Z
Cons : B -> List B -> List B length (Cons _ l) = S (length l)

and construct the following refinement type of indexed lists:

IdxList B n ∼= {x : List B | length x = n} (1)

This construction is global in that both the data type and the collection of
indices exist a priori, and the refinement is obtained by assigning, post facto, an
appropriate index to each data type element. But the construction suffers from
a serious drawback: the resulting refinement — IdxList here — need not be
inductive, and so is not a solution to the fundamental question posed above.

We propose an alternative construction of refinements that provides a com-
prehensive answer to the fundamental question raised above in the case when

74 R. Atkey, P. Johann, and N. Ghani

the given refinement function is computed by structural recursion over the data
type to be refined. This is often the case in practice. More specifically, we con-
struct, for each inductive type μF and each F -algebra α whose fold computes
the desired refinement function, a functor Fα whose least fixed point μFα is the
desired refinement. The characterisation of the refinement of μF by α as the
inductive type μFα allows the entire arsenal of structured programming tech-
niques to be brought to bear on them. This construction is also local in that the
indices of recursive substructures are readily available at the time a structurally
recursive program is written, rather than needing to be computed by inversion
from the index of the input data structure.

The functor Fα that we construct is intimately connected with the generic
structural induction rule for the inductive type μF [16,18]. This is perhaps not sur-
prising: structural induction proves properties of functions defined by structural
recursion on elements of inductive types. If the values of those functions are ab-
stracted into the indices of associated indexed inductive types, then the computa-
tionof thosevaluesneedno longer beperformedduring inductiveproofs. In essence,
we have shifted work away from computation and onto data. Refinement thus sup-
ports reasoning by structural induction “up to” the index of a term.

We adopt a semantic approachbased on category theory because it allows a high
degree of abstraction and economy, and exposes structure that might be lost were a
specific programming notation to be used. Although we have developed our theory
in the abstract setting of fibrations [20], we specialise to the families fibration over
the category of sets to improve accessibility and give concrete intuitions. A type-
theoretic answer to the fundamental question posed above has already been given
by McBride [23] using his notion of ornamenting a data type (see section 7).

The remainder of this paper is structured as follows. In section 2 we recall basic
categorical preliminaries. In section 3 we introduce a framework within which re-
finement may be developed [16,18]. We describe and illustrate our basic refinement
technique in section 4. In section 5 we show how to refine inductive types which are
themselves indexed. In section 6 we further extend our basic refinement technique
to allow partial refinement, in which indexed types are constructed from inductive
types not all of whose elements have indices. Finally, section 7 discusses applica-
tions to dependently typed programming, library development, and implementa-
tion, as well as future and related work.

2 Inductive Types and F -Algebras

A data type is inductive (in a category C) if it is the least fixed point μF of an
endofunctor on C. For example, if Set denotes the category of sets and functions,
Z is the set of integers, and + and × denote coproduct and product, respectively,
then the following data type of binary trees with integer leaves is μFTree for the
endofunctor FTreeX = Z + X ×X on Set:

data Tree : Set where
Leaf : Integer -> Tree
Node : (Tree x Tree) -> Tree

When Is a Type Refinement an Inductive Type? 75

Inductive types can also be understood in terms of the categorical notion of an
F -algebra. If C is a category and F : C → C is a functor, then an F -algebra is a
pair (A, α : FA → A) comprising an object A of C and a morphism α : FA → A
in C. The object A is called the carrier of the F -algebra, and the morphism α is
called its structure map. We usually refer to an F -algebra solely by its structure
map, since the carrier is present in the type of this map.

An F -algebra homomorphism from (α : FA → A) to (α′ : FB → B) is a
morphism f : A → B of C such that f ◦α = α′◦Ff . An F -algebra (α : FA → A)
is initial if, for any F -algebra (α′ : FB → B), there exists a unique F -algebra
morphism from α to α′. The initial F -algebra is unique up to isomorphism, and
Lambek’s Lemma further ensures that it is itself an isomorphism. Its carrier is
thus the least fixed point μF of F . We write (inF : F (μF) → μF) for the initial
F -algebra, and �α�F : μF → A for the unique morphism from (inF : F (μF) →
μF) to any F -algebra (α : FA → A). We write �−� for �−�F when F is clear
from context. Of course, not all functors have least fixed points. For instance,
the functor FX = (X → 2) → 2 on Set does not have any fixed point at all.

In light of the above, the data type Tree can be interpreted as the carrier of the
initial FTree-algebra. In functional programming terms, if (α : Z+A×A → A) is
an FTree-algebra, then �α� : Tree→ A is exactly the application of the standard
iteration function fold for trees to α (actually, to an “unbundling” of α into
replacement functions, one for each of FTree’s constructors). More generally, for
each functor F , the map �−�F : (FA → A) → μF → A is the iteration function
for μF .

If F is a functor on C, we write AlgF for the category of all F -algebras
and F -algebra homomorphisms between them. Identities and composition in
AlgF are taken directly from C. The existence of initial F -algebras is equivalent
to the existence of initial objects in AlgF . Recall that an adjunction between
two categories C and D consists of a left adjoint functor L and a right adjoint
functor R and an isomorphism natural in A and X between the set C(LA, X) of
morphisms in C from LA to X and the set D(A, RX) of morphisms in D from
A to RX . We say that the functor L is left adjoint to R, and that the functor R
is right adjoint to L, and write L , R.

We will make much use of the following theorem from [18]:

Theorem 1. If F : C → C and G : D → D are functors, L , R, and FL ∼= LG

is a natural isomorphism, then C
R

		⊥ D
L

 lifts to AlgF

R′
��⊥ AlgG

L′
��

.

Theorem 1 will be useful in conjunction with the fact that left adjoints preserve
colimits, and thus preserve initial objects. In the setting of the theorem, if G has
an initial algebra, then so does F . To compute the initial F -algebra in concrete
situations we need to know that L′(k : GA → A) = Lk ◦ pA where p is (one half
of) the natural isomorphism between FL and LG. Then the initial F -algebra is
given by applying L′ to the initial G-algebra, and so μF = L(μG).

76 R. Atkey, P. Johann, and N. Ghani

3 A Framework for Refinement

An object of Fam(Set) is a pair (A, P) comprising a set A and a function P : A →
Set; such a pair is called a family of sets. A morphism (f, f∼) : (A, P) → (B, Q)
of Fam(Set) is a pair of functions f : A → B and f∼ : ∀a. Pa → Q(fa). From
a programming perspective, a family (A, P) is an A-indexed type P , with Pa
representing the collection of data with index a. An alternative, logical view is
that (A, P) is a predicate representing a property P of data of type A, and that
Pa represents the collection of proofs that P holds for a. When Pa is inhabited,
P is said to hold for a. When Pa is empty, P is said not to hold for a.

The families fibration U : Fam(Set) → Set is the functor mapping each family
(A, P) to A and each morphism (f, f∼) to f . For each set A, the category
Fam(Set)A consists of families (A, P) and morphisms (f, f∼) between them such
that f = idA. We call Fam(Set)A the fibre of the families fibration over A.
A function f : A → B contravariantly generates a re-indexing functor f∗ :
Fam(Set)B → Fam(Set)A which maps (B, Q) to (A, Q ◦ f).

3.1 Truth and Comprehension

Each fibre Fam(Set)A has a terminal object (A, λa : A. 1), where 1 is the canon-
ical singleton set. This object is called the truth predicate for A. The mapping
of objects to their truth predicates extends to a functor K1 : Set → Fam(Set),
called the truth functor. In addition, for each family (A, P) we can define the
comprehension of (A, P), denoted {(A, P)}, to be the set {(a, p) | a ∈ A, p ∈
Pa}. The mapping of families to their comprehensions extends to a functor
{−} : Fam(Set) → Set, called the comprehension functor, and we end up with
the following pleasing collection of adjoint relationships:

Fam(Set)

, ,U

��
{−}

Set

K1

��
(2)

The families fibration U is thus a comprehension category with unit [19,20]. Like
every comprehension category with unit, U supports a natural transformation
π : {−} → U such that π(A,P)(a, p) = a for all (a, p) in {(A, P)}. In fact, U is
full, i.e., the functor from Fam(Set) to Set→ induced by π is full and faithful.

3.2 Indexed Coproducts and Indexed Products

For each function f : A → B and family (A, P), we can form the family
(B, λb. Σa∈A. (b = fa) × Pa), called the indexed coproduct of (A, P) along
f . The mapping of each family to its indexed coproduct along f extends to a
functor Σf : Fam(Set)A → Fam(Set)B which is left adjoint to the re-indexing
functor f∗. In the abstract setting of fibrations, a fibration with the property
that each re-indexing functor f∗ has a left adjoint Σf is called a bifibration, and

When Is a Type Refinement an Inductive Type? 77

the functors Σf are called op-re-indexing functors. These functors are often sub-
ject to the Beck-Chevalley condition for coproducts, which is well-known to hold
for the families fibration. This condition ensures that in certain circumstances
op-re-indexing commutes with re-indexing [20]. A bifibration which is also a full
comprehension category with unit is called a full cartesian Lawvere category [19].

For each function f : A → B and family (A, P) we can also form the family
(B, λb. Πa∈A.(b = fa) → Pa), called the indexed product of (A, P) along f .
The mapping of each family to its indexed product along f extends to a functor
Πf : Fam(Set)A → Fam(Set)B which is right adjoint to f∗. This gives the
following collection of relationships for each function f : A → B:

Fam(Set)B

⊥
⊥
f∗ �� Fam(Set)A

Σf

��

Πf

��

Like its counterpart for coproducts, the Beck-Chevalley condition for products
is often required. However, we do not make use of this condition in this paper.

At several places below we make essential use of the fact that the families
fibration has strong coproducts, i.e., that in the diagram

{(A, P)}
{ψ} ��

π(A,P)

��

{(B, Σf (A, P))}
π(B,Σf (A,P))

��
A

f �� B

(3)

where ψ is the obvious map of families of sets over f , {ψ} is an isomorphism.
This definition of strong coproducts naturally generalises the usual one [20], and
imposes a condition which is standard in models of type theory.

3.3 Liftings

A lifting of a functor F : Set → Set is a functor F̂ : Fam(Set) → Fam(Set)
such that FU = UF̂ . A lifting is truth-preserving if it satisfies K1F ∼= F̂K1.
Truth-preserving liftings for all polynomial functors — i.e., for all functors built
from identity functors, constant functors, coproducts, and products — are given
in [18]. Truth-preserving liftings were established for arbitrary functors in [16].
The truth-preserving lifting F̂ is defined on objects by

F̂ (A, P) = (FA, λa. {x : F{(A, P)} | Fπ(A,P)x = a}) = ΣFπ(A,P)K1(F{(A, P)})
(4)

The final expression is written point-free using the constructions of Sections 3.1
and 3.2.

Since F̂ is an endofunctor on Fam(Set), the category AlgF̂ of F̂ -algebras
exists. The families fibration U : Fam(Set) → Set extends to a fibration UAlg :
AlgF̂ → AlgF , called the algebras fibration induced by U . Moreover, writing KAlg

1

78 R. Atkey, P. Johann, and N. Ghani

and {−}Alg for the truth and comprehension functors, respectively, for UAlg, the
adjoint relationships from Diagram 2 all lift to give UAlg , KAlg

1 , {−}Alg. The
two adjunctions here follow from Theorem 1 using the fact that F̂ is a lifting
and preserves truth. That left adjoints preserve initial objects can now be used
to establish the following fundamental result from [16,18]:

Theorem 2. K1(μF) is the carrier μF̂ of the initial F̂ -algebra.

4 From Liftings to Refinements

In this section we show that the refinement of an inductive type μF by an
F -algebra (α : FA → A), i.e., the family

(A, λa : A. {x : μF | �α�x = a}) (5)

is inductively characterised as μFα where Fα : Fam(Set)A → Fam(Set)A is

Fα = ΣαF̂ (6)

An alternative, set-theoretic presentation of Fα is:

Fα(A, P) = (A, λa. {x : F{(A, P)} | α(Fπ(A,P)x) = a}) (7)

That is, Fα(A, P) is obtained by first building the FA-indexed type F̂ (A, P)
(cf. Equation 4), and then restricting membership to those elements whose α-
values are correctly computed from those of their immediate subterms. The proof
consists of the following three theorems, which are, as far as we are aware, new.

Theorem 3. For each F -algebra (α : FA → A), (AlgF̂)α
∼= AlgF α .

Proof. First note that (AlgF̂)α is isomorphic to the category (F̂ ↓ α∗) whose
objects are morphisms from F̂ (A, P) to α∗(A, P) in Fam(Set)FA and whose
morphisms are commuting squares. Then (F̂ ↓ α∗) ∼= AlgF α because Σα , α∗.

Theorem 3 can be used to prove the following key result:

Theorem 4. UAlg : AlgF̂ → AlgF is a bifibration.

Proof. That UAlg is a fibration, indeed a comprehension category with unit, is
proved in [18]. Next, let f be an F -algebra morphism from α : FA → A to
β : FB → B. We must show that the reindexing functor f∗Alg in UAlg has a left
adjoint ΣAlg

f . Such an adjoint can be defined using Theorem 1, Theorem 3, and
F βΣf

∼= ΣfFα. By Equation 6, the latter is equivalent to ΣβF̂Σf
∼= ΣfΣαF̂ .

From the definition of F̂ , we must show that for all (A, P) in Fam(Set)A,

ΣβΣFπΣf (A,P)K1F{Σf(A, P)} ∼= ΣfΣαΣFπ(A,P)K1F{(A, P)} (8)

When Is a Type Refinement an Inductive Type? 79

To see that this is the case, consider the following diagram:

F{(A, P)}
Fπ(A,P) ��

F{ψ}
��

FA
α ��

Ff

��

A

f

��
F{Σf(A, P)}

FπΣf (A,P)

�� FB
β

�� B

The left-hand square commutes because it is obtained by applying F to the
naturality square for π, and the right-hand square commutes because f is an
F -algebra morphism. Then ΣβΣFπΣf (A,P)ΣF{ψ} ∼= ΣfΣαΣFπ(A,P) because op-
re-indexing preserves composition. Equation 8 now follows by applying both of
these functors to K1F{(A, P)}, and then observing that F{ψ} is an isomorphism
since {ψ} is one by assumption (cf. Diagram 3), so that ΣF{ψ} is a right adjoint
(as well as a left adjoint) and thus preserves terminal objects.

We can now give an explicit characterisation for μFα. We have

Theorem 5. The functor Fα has an initial algebra with carrier Σ�α�K1(μF).

Proof. The categoryAlgF̂ has initial objectwhose carrier isK1(μF)byTheorem 2.
Since UAlg is a left adjoint and hence preserves initial objects, Proposition 9.2.2
of [20] ensures that the fibre (AlgF̂)α — and so, by Theorem 3, that AlgF α —
has an initial object whose carrier is Σ�α�K1(μF).

Instantiating Theorem 5 for Fam(Set) gives exactly the inductive characterisa-
tion of refinements we set out to find, namely that in Equation 5.

4.1 Some Specific Refinements

The following explicit formulas are used to compute refinements in the examples
below. In the expression Bα, B is the constantly B-valued functor.

Idα(A, P) = (A, λa.{x : {(A, P)} | α (π(A,P)x) = a})
Bα(A, P) = (A, λa.{x : B | α x = a})
(G + H)α(A, P) = (A, λa.{x : G {(A, P)} | α(inl(Gπ(A,P)x)) = a}

+ {x : H {(A, P)} | α(inr(Hπ(A,P)x)) = a})
= (A, λa. Gα◦inlPa + Hα◦inrPa)

(G×H)α(A, P) = (A, λa. {x1 : G {(A, P)}, x2 : H {(A, P)} |
α(Gπ(A,P)x1, Hπ(A,P)x2) = a}

Refinements of the identity and constant functors are as expected. Refinement
splits coproducts of functors into two cases, specialising the refining algebra for
each summand. It is not possible to decompose the refinement of a product of
functors G × H into refinements of G and H (possibly by algebras other than
α). This is because α may need to relate multiple elements to the overall index.

80 R. Atkey, P. Johann, and N. Ghani

Example 1. The inductive type of lists of elements of type B can be specified
by the functor FListX = 1 + B ×X. Writing Nil for the left injection and Cons
for the right injection into the coproduct FListX, the FList-algebra lengthalg :
FListN → N that computes the lengths of lists is

lengthalg Nil = 0
lengthalg (Cons(b, n)) = n + 1

The refinement of μFList by the algebra lengthalg is the least fixed point of

F lengthalg
List (N, P) = (N, λn.(n = 0) + {n1 : N, x1 : B, x2 : Pn1 | n = n1 + 1})

This formulation of μF lengthalg
List is essentially the declaration Vector from the

introduction with the implicit equality constraints in that definition made explicit.

Example 2. We can similarly refine μFTree by the FTree-algebra

sum : FTreeZ → Z
sum (Leaf z) = z
sum (Node (l, r)) = l + r

which sums the values in a tree. This gives the refinement μF sum
Tree , where

F sum
Tree (Z, P) = (Z, λn. {z : Z | z = n}+ {l, r : Z, x1 : Pl, x2 : Pr | n = l + r })

This corresponds to the Agda declaration

data IdxTree : Integer -> Set where
IdxLeaf : (z : Integer) -> IdxTree z
IdxNode : (l r : Integer) ->

IdxTree l -> IdxTree r -> IdxTree (l + r)

Refinement by the initial algebra (inF : F (μF) → μF) gives a μF -indexed type
inductively characterised by F in = Σin F̂ . Since in is an isomorphism, Σin is as
well. Thus F in ∼= F̂ , so that μF in = μF̂ = K1(μF), and each term is its own
index. By contrast, refinement by the final algebra (! : F1 → 1) (which always
exists because 1 is the terminal object of Set) gives a 1-indexed type inductively
characterised by F !. Since F ! ∼= F , we have μF ! = μF , and all terms have index
1. Refining by the initial algebra thus has maximal discriminatory power, while
refining by the terminal algebra has no discriminatory power.

5 Starting with Already Indexed Types

The development in section 4 assumes the type being refined is the initial algebra
of an endofunctor F on Set. This seems to preclude refining an inductive type
that is already indexed. But since we carefully identified the abstract structure
of Fam(Set) we needed, our results can be extended to any fibration having that
structure. In particular, we can refine indexed types using a change-of-base [20]:

When Is a Type Refinement an Inductive Type? 81

Fam(Set)A ×Set Fam(Set) ��

UA

��

�� Fam(Set)

U

��
Fam(Set)A

{−} �� Set

This diagram, which is a pullback in Cat, the (large) category of categories
and functors, generates a new fibration UA from the functors U and {−}. The
objects of Fam(Set)A×SetFam(Set) are (dependent) pairs ((A, P), ({(A, P)}, Y))
of predicates. Thus, Y is “double indexed” by both a ∈ A and x ∈ Pa.

The following theorem states that all the structure we require for our construc-
tions is preserved by the change-of-base construction. It also generalises to any
full cartesian Lawvere category with strong coproducts, so the change-of-base
construction may be iterated.

Theorem 6. UA is a full cartesian Lawvere category with strong coproducts.

Proof. First, UA is a fibration by construction. The truth functor is defined
by KA

1 (A, P) = ((A, P), K1{(A, P)}) and the comprehension functor is defined
by {((A, P), ({(A, P)}, Y))}A = Σπ(A,P)({(A, P)}, Y). Coproducts are defined
directly using the coproducts of U .

Example 3. To demonstrate the refinement of an already indexed inductive type
we consider a small expression language of well-typed terms. Let T = {int, bool}
be the set of possible base types. The language is μFwtexp for the functor Fwtexp :
Fam(Set)T → Fam(Set)T given by

Fwtexp(T, P) = (T, λt : T. {z : Z | t = int}+ {b : B | t = bool}
+ {t1, t2 : T, x1 : Pt1, x2 : Pt2 | t1 = t2 = t = int}
+ {t1, t2, t3 : T, x1 : Pt1, x2 : Pt2, x3 : Pt3 |

t1 = bool, t2 = t3 = t})

For any t, write IntConst, BoolConst, Add, and If for the four injections into
(snd (Fwtexp(T, P)) t. Letting B = {true, false} denoting the set of booleans, and
assuming there exist a T-indexed family T such that T int = Z and T bool = B,
we have a semantic interpretation of the extended language’s types. This can be
used to specify a “tagless” interpreter by giving an Fwtexp-algebra:

eval : Fwtexp(T, T) → (T, T)
eval = (id , λx : T. λt : snd (Fwtexp(T, T))x. case t of

IntConst z ⇒ z
BoolConst b ⇒ b
Add (int, int, z1, z2) ⇒ z1 + z2
If (bool, t, t, b, x1, x2) ⇒ if b then x1 else x2)

Refining μFwtexp by eval yields a type indexed by Σt : T. T t, i.e., by {(T, T)}.
This type associates to every well-typed expression that expression’s semantics.

82 R. Atkey, P. Johann, and N. Ghani

6 Partial Refinement

In Sections 4 and 5 we assumed that every element of an inductive type has an
index that can be assigned to it. Every list has a length, every tree has a number
of leaves, every well-typed expression has a semantic meaning, and so on. But
how can an inductive type be refined if only some data have values by which we
want to index? For example, how can the inductive type of well-typed expressions
of Example 3 be obtained by refining a data type of untyped expressions by an
algebra for type assignment? And how can the inductive type of red-black trees
be obtained by refining a data type of coloured trees by an algebra enforcing
the well-colouring properties? As these examples show, the problem of refining
subsets of inductive types is a common and naturally occurring one. Partial
refinement is a technique for solving this problem.

The key idea underlying the required generalisation of our theory is to move
from algebras to partial algebras. If F is a functor, then a partial F -algebra
is a pair (A, α : FA → (1 + A)) comprising a carrier A and a structure map
α : FA → (1+A). We write ok : A → 1+A and fail : 1 → 1+A for the injections
into 1 + A, and often refer to a partial algebra solely by its structure map. The
functor MA = 1 + A is (the functor part of) the error monad.

Example 4. The inductive type of expressions is μFexp for the functor FexpX =
Z+B+(X×X)+(X×X×X). Letting T = {int, bool} as in Example 3 and using
the obvious convention for naming the injections into FexpX, such expressions
can be type-checked using the following partial Fexp-algebra:

tyCheck : FexpT → 1 + T
tyCheck (IntConst z) = ok int
tyCheck (BoolConst b) = ok bool

tyCheck (Add (t1, t2)) =
{

ok int if t1 = int and t2 = int
fail otherwise

tyCheck (If (t1, t2, t3)) =
{

ok t2 if t1 = bool and t2 = t3
fail otherwise

Example 5. Let S = {R, B} be a set of colours. The inductive type of coloured
trees is μFctree for the functor FctreeX = 1 + S×X ×X. We write Leaf and Br
for injections into FctreeX. Red-black trees [11] are coloured trees satisfying the
following constraints:

1. Every leaf is black;
2. Both children of a red node are black;
3. For every node, all paths to leaves contain the same number of black nodes.

We can check whether or not a coloured tree is a red-black tree using the following
partial Fctree-algebra. Its carrier S×N records the colour of the tree in the first
component and the number of black nodes to any leaf, assuming this number is
the same for every leaf, in the second.

When Is a Type Refinement an Inductive Type? 83

checkRB : Fctree(S× N) → 1 + (S× N)
checkRB Leaf = ok (B, 1)

checkRB (Br (R, (s1, n1), (s2, n2))) =
{

ok (R, n1) if s1 = s2 = B and n1 = n2
fail otherwise

checkRB (Br (B, (s1, n1), (s2, n2))) =
{

ok (B, n1 + 1) if n1 = n2
fail otherwise

The process of (total) refinement described in section 4 constructs, from a func-
tor F with initial algebra (inF : F (μF) → μF) and an F -algebra α : FA → A,
a functor Fα such that μFα associates to each x : μF its index �α�x. If we
can compute an index for each element of μF from a partial F -algebra, then we
can apply the same technique to partially refine μF . The key to doing this is to
turn every partial F -algebra into a (total) F -algebra. Let λ be any distributive
law for the error monad M over the functor F . Then λ respects the unit and
multiplication of M (see [4] for details), and

Lemma 1. Every partial F -algebra κ : FA → 1 + A generates an F -algebra
κ : F (1 + A) → (1 + A) defined by κ = [fail, κ] ◦ λA.

Here, [fail, κ] is the cotuple of the functions fail and κ. Refining μF by the F -
algebra κ using the techniques of section 4 would result in an inductive type
indexed by 1 + A. But, as our examples show, what we actually want is an A-
indexed type that inductively describes only those terms having values of the
form ok a for some a ∈ A. Partial refinement constructs, from a functor F with
initial algebra (inF : F (μF) → μF) and a partial F -algebra κ : FA → 1 + A, a
functor F ?κ such that μF ?κ is the A-indexed type

(A, λa. {x : μF | �κ�x = ok a}) = ok∗Σ�κ�K1(μF) = ok∗μFκ (9)

As we will see in Theorem 7, if

F ?κ = ok∗ΣκF̂ (10)

then μF ?κ = (A, λa. {x : μF | �κ�x = ok a}). Indeed, since left adjoints preserve
initial objects, we can prove μF ?κ ∼= ok∗μFκ by lifting the following adjunction
to an adjunction between AlgF ?κ and AlgF κ via Theorem 1:

Fam(Set)A

Πok

��⊥ Fam(Set)1+A

ok∗��

To satisfy the precondition of Theorem 1, we prove that ok∗Fκ ∼= F ?κok∗ by
first observing that if F preserves pullbacks, then F̂ preserves re-indexing, i.e.,
for every function f , F̂ f∗ ∼= (Ff)∗F̂ . This is proved by direct calculation. Thus
if F preserves pullbacks, and if

ok∗Σκ
∼= ok∗Σκ(Fok)∗ (11)

84 R. Atkey, P. Johann, and N. Ghani

then ok∗Fκ = ok∗ΣκF̂ ∼= ok∗Σκ(Fok)∗F̂ ∼= ok∗ΣκF̂ok∗ = F ?κok∗. The first
equality is by Equation 6, the first isomorphism is by Equation 11, the second
isomorphism is by the preceding observation assuming that F preserves pull-
backs, and the final equality is by Equation 10. All container functors [1], and
hence all polynomial functors, preserve pullbacks. Finally, to verify Equation 11,
we require that the distributive law λ for M over F satisfies the following prop-
erty, which we call non-introduction of failure: for all x : F (1 + A) and y : FA,
λA x = ok y if and only if x = F ok y. This property strengthens the usual unit
axiom for λ in which the implication holds only from right to left. It ensures that
if applying λ does not result in failure, then no failures were present in the data
to which it was applied. In an arbitrary category, this property is formulated as
requiring the following square (i.e., the unit axiom for λ) to be a pullback:

FA
Fok ��

id
��

F (1 + A)

λA

��
FA

ok �� 1 + FA

Every container functor has a canonical distributive law for M satisfying the
non-introduction of failure property. We now have

Lemma 2. If the distributive law λ satisfies non-introduction of failure, then
Equation 11 holds.

Proof. Given (F (1 + A), P : F (1 + A) → Set), we have

(ok∗ ◦Σκ)(F (1 + A), P)
= (A, λa : A. {(x1 : F (1 + A), x2 : Px1) | [fail, κ](λAx1) = ok a})
∼= (A, λa : A. {x1 : FA, x2 : P (F okx1) | κx1 = ok a})
∼= (A, ok∗ ◦Σκ ◦ (F ok)∗(F (1 + A), P))

And, putting everything together, we get the correctness of partial refinement:

Theorem 7. If λ is a distributive law for M over F with the non-introduction
of failure property, and if F preserves pullbacks, then F ?κ has an initial algebra
whose carrier is given by Equation 9.

In fact, Theorem 7 holds in the more general setting of full cartesian Lawvere
category whose coproducts satisfy the Beck-Chevalley condition and whose base
categories satisfy extensivity [8]. Moreover, Theorem 6 extends to show that
these properties are also preserved by the change-of-base construction provided
all fibres of the original fibration satisfy extensivity.

7 Conclusions, Applications, Related and Future Work

We have given a clean semantic framework for deriving refinements of inductive
types which store computationally relevant information within the indices of

When Is a Type Refinement an Inductive Type? 85

refined types. We have also shown how indexed types can be refined further, and
how refined types can be derived even when some elements of the original type
do not have indices. In addition to its theoretical clarity, the theory of refinement
we have developed has potential applications in the following areas:

Dependently Typed Programming: Often a user is faced with a choice between
building properties of elements of types into more sophisticated types, or stating
these properties externally as, say, pre- and post-conditions. While the former
is clearly preferable because properties can then be statically type checked, it
also incurs an overhead which can deter its adoption. Supplying the programmer
with infrastructure to produce refined types as needed can reduce this overhead.
Libraries: Library implementors need no longer provide a comprehensive collec-
tion of data types, but rather methods for defining new data types. Similarly, our
results suggest that library implementors need not guess which refinements of
data types will prove useful to programmers, and can instead focus on providing
useful abstractions for creating more sophisticated data types from simpler ones.
Implementation: Current implementations of types such as Vector store all index
information. For example, a vector of length 3 will store the lengths 3, 2, and
1 of its subvectors. Brady [7] seeks to determine when this information can be
generated “on the fly” rather than stored. Our work suggests that the refinement
μFα can be implemented by simply implementing the underlying type μF , since
programs requiring indices can reconstruct these as needed. We thus provide a
user-controllable tradeoff between space and time efficiency.

Related Work: The work closest to that reported here is McBride’s work on
ornaments [23]. McBride defines a type of descriptions of inductive data types
along with a notion of one description “ornamenting” another. Despite the dif-
ferences between our fibrational approach and his type theoretic approach, the
notion of refinement presented in Sections 4 and 5 is very similar to his notion
of an algebraic ornament.

A line of research allowing the programmer to give refined types to construc-
tors of inductive data types was initiated by Freeman and Pfenning [15] and later
developed by Xi [27], Davies [12] and Dunfield [14] for ML-like languages, and by
Pfenning [24] and Lovas and Pfenning [22] for LF. The work of Kawaguchi et al.
[21] is also similar. This research begins with an existing type system and aims
to provide the programmer with a means of expressing richer properties of values
that are well-typeable in that type system. It is thus similar to the work reported
here, although we are working in (a syntax-free presentation of) an intrinsically
typed language, and this affects pragmatic considerations such as decidability
of type checking. We also formally prove that each refinement is isomorphic to
the richer, property-expressing data type it is intended to capture, rather than
leaving this to the programmer to justify on a refinement-by-refinement basis.

Refinement types have also been used elsewhere to give more precise types to
programs in existing programming languages (but not specifically to inductive
types). For example, Denney [13] and Gordon and Fournet [17] use subset types
to refine the type systems of ML-like languages. Subset types are also used
heavily in the PVS theorem prover [25].

86 R. Atkey, P. Johann, and N. Ghani

Our results extend the systematic code reuse delivered by generic program-
ming [2,3,5]: in addition to generating new programs we can also generate new
types from existing types. This area is being explored in Epigram [9], in which
codes for data types can be represented within a predicative intensional sys-
tem so that programs can generate new data types. It should be possible to
implement our refinement process using similar techniques.

Aside from the specific differences between our work and that discussed above,
a distinguishing feature of our work is the semantic methodology we use to
develop refinement. We believe that this methodology is new. We also believe
that a semantic approach is important: it can serve as a principled foundation
for refinement, as well as provide a framework in which to compare different
implementations. It may also lead to new algebraic insights into refinement which
complement the logical perspective of previous work.

Finally, we are interested in a number of extensions to the work reported
here. Many readers will wonder about the possibility of a more general monadic
refinement using, for example, Kleisli categories. We are working on this, but
due to space limitations have chosen to concentrate in this paper on partial
refinement, which is already sufficient to show that refinement is applicable to
sophisticated programming problems. In addition, many more indexed inductive
data types exist than can be produced by the refinement process described in
this paper. We leave it to future work to discover to what extent this developing
world of dependently typed data structures can be organised and characterised
by processes like refinement and its extensions.

Acknowledgements. We would like to thank Conor McBride, Frank Pfenning,
and Pierre-Evariste Dagand for helpful comments on this work.

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers - constructing strictly positive
types. Theoretical Computer Science 342, 3–27 (2005)

2. Altenkirch, T., McBride, C., Morris, P.: Generic Programming with Dependent
Types. In: Backhouse, R., Gibbons, J., Hinze, R., Jeuring, J. (eds.) SSDGP 2006.
LNCS, vol. 4719, pp. 209–257. Springer, Heidelberg (2007)

3. Backhouse, R., Gibbons, J., Hinze, R., Jeuring, J. (eds.): SSDGP 2006. LNCS,
vol. 4719. Springer, Heidelberg (2007)

4. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Heidelberg (1983)
5. Benke, M., Dybjer, P., Jansson, P.: Universes for generic programs and proofs in

dependent type theory. Nordic Journal of Computing 10(4), 265–289 (2003)
6. Bird, R.S., de Moor, O.: Algebra of Programming. Prentice Hall, Englewood Cliffs

(1997)
7. Brady, E., McBride, C., McKinna, J.: Inductive Families Need Not Store Their In-

dices. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085,
pp. 115–129. Springer, Heidelberg (2004)

8. Carboni, A., Lack, S., Walters, R.F.C.: Introduction to extensive and distributive
categories. Journal of Pure and Applied Algebra 84, 145–158 (1993)

9. Chapman, J., Dagand, P.-E., McBride, C., Morris, P.: The gentle art of levitation.
In: Proc. ICFP, pp. 3–14 (2010)

When Is a Type Refinement an Inductive Type? 87

10. Chuang, T.-R., Lin, J.-L.: An algebra of dependent data types. Technical Report
TR-IIS-06-012, Institute of Information Science, Academia Sinica, Taiwan (2006)

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press and McGraw-Hill (2001)

12. Davies, R.: Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon Uni-
versity, available as Technical Report CMU-CS-05-110 (2005)

13. Denney, E.: Refinement types for specification. In: Proc. PROCOMET, pp. 148–
166. Chapman and Hall, Boca Raton (1998)

14. Dunfield, J.: A Unified System of Type Refinements. PhD thesis, Carnegie Mellon
University, available as Technical Report CMU-CS-07-129 (2007)

15. Freeman, T., Pfenning, F.: Refinement types for ML. In: Proc. Symposium on
Programming Language Design and Implementation, pp. 268–277 (June 1991)

16. Ghani, N., Johann, P., Fumex, C.: Fibrational Induction Rules for Initial Algebras.
In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 336–350. Springer,
Heidelberg (2010)

17. Gordon, A.D., Fournet, C.: Principles and applications of refinement types. Tech-
nical Report MSR-TR-2009-147, Microsoft Research (October 2009)

18. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational
setting. Information and Computation 145(2), 107–152 (1998)

19. Jacobs, B.: Comprehension categories and the semantics of type dependency. The-
oretical Computer Science 107, 169–207 (1993)

20. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics, vol. 141. North Holland, Amsterdam (1999)

21. Kawaguchi, M., Rondon, P.M., Jhala, R.: Type-based data structure verification.
In: PLDI, pp. 304–315 (2009)

22. Lovas, W., Pfenning, F.: Refinement types for logical frameworks and their inter-
pretation as proof irrelevance. Log. Meth, in Comp. Sci. (2010) (to appear)

23. McBride, C.: Ornamental algebras, algebraic ornaments (2010) (unpublished note)
24. Pfenning, F.: Refinement types for logical frameworks. In: Barendregt, H., Nipkow,

T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 285–299. Springer, Heidelberg (1994)
25. Rushby, J., Owre, S., Shankar, N.: Subtypes for specifications: Predicate subtyping

in pvs. IEEE Transactions on Software Engineering 24(9), 709–720 (1998)
26. The Agda Team (2010), http://wiki.portal.chalmers.se/agda
27. Xi, H.: Dependently typed data structures. Revision after WAAAPL 1999 (2000)

http://wiki.portal.chalmers.se/agda

Complexity of Strongly Normalising λ-Terms
via Non-idempotent Intersection Types

Alexis Bernadet1,2 and Stéphane Lengrand1,3

1 École Polytechnique, France
2 École Normale Supérieur de Cachan, France

3 CNRS, France
{lengrand,bernadet}@lix.polytechnique.fr

Abstract. We present a typing system for the λ-calculus, with non-
idempotent intersection types. As it is the case in (some) systems with
idempotent intersections, a λ-term is typable if and only if it is strongly
normalising. Non-idempotency brings some further information into typ-
ing trees, such as a bound on the longest β-reduction sequence reducing
a term to its normal form.

We actually present these results in Klop’s extension of λ-calculus,
where the bound that is read in the typing tree of a term is refined into
an exact measure of the longest reduction sequence.

This complexity result is, for longest reduction sequences, the coun-
terpart of de Carvalho’s result for linear head-reduction sequences.

1 Introduction

Intersection types were introduced in [CD78], extending the simply-typed λ-
calculus with a notion of finite polymorphism. This is achieved by a new con-
struct A ∩B in the syntax of types and new typing rules such as:

M : A M : B

M : A ∩B

where M :A denotes that a term M is of type A.
One of the motivations was to characterise strongly normalising (SN) λ-terms,

namely the property that a λ-term can be typed if and only if it is strongly
normalising. Variants of systems using intersection types have been studied to
characterise other evaluation properties of λ-terms and served as the basis of
corresponding semantics [Lei86, Ghi96, DCHM00, CS07].

This paper refines with quantitative information the property that typability
characterises strong normalisation. Since strong normalisation ensures that all
reduction sequences are finite, we are naturally interested in identifying the
length of the longest reduction sequence. We do this with a typing system that
is very sensitive to the usage of resources when λ-terms are reduced.

This system results from a long line of research inspired by Linear Logic [Gir87].
The usual logical connectives of, say, classical and intuitionistic logic, are decom-
posed therein into finer-grained connectives, separating a linear part from a part

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 88–107, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Complexity of Strongly Normalising λ-Terms 89

that controls how and when the structural rules of contraction and weakening
are used in proofs. This can be seen as resource management when hypotheses,
or more generally logical formulae, are considered as resource.

The Curry-Howard correspondence, which originated in the context of intu-
itionistic logic [How80], can be adapted to Linear Logic [Abr93, BBdH93], whose
resource-awareness translates to a control of resources in the execution of pro-
grams (in the usual computational sense). From this, have emerged some versions
of linear logic that capture polytime functions [BM03, Laf04, GR07]. Also from
this has emerged a theory of λ-calculus with resource, with semantical support
(such as the differential λ-calculus) [ER03, BEM10]. In this line of research,
de Carvalho [dC05, dC09] obtained interesting measures of reduction lengths
in the λ-calculus by means of non-idempotent intersection types (as pionnered
by [KW99, NM04]).

Intersections were originally introduced as idempotent, with the equation A∩
A = A either as an explicit quotient or as a consequence of the system. This
corresponds to the understanding of the judgement M : A ∩ B as follows: M
can be used as data of type A or data of type B. But the meaning of M :
A ∩B can be strengthened in that M will be used once as data of type A and
once as data of type B. With this understanding, A ∩ A �= A, and dropping
idempotency of intersections is thus a natural way to study control of resources
and complexity. Using this, de Carvalho [dC09] has shown a correspondence
between the size of the typing derivation tree and the number of steps taken by
a Krivine machine to reduce the term. This relates to the length of linear head-
reductions, but if we remain in the realm of intersection systems that characterise
strong normalisation, then the more interesting measure is the length of the
longest reduction sequence. In this paper we get a result similar to de Carvalho’s,
but with the measure corresponding to strong normalisation.

First we define a system with non-idempotent intersection types. Then we
prove that if a term is typable then it is SN (soundness) and that if a term is SN
then it is typable (correctness). As opposed to idempotent intersection types,
the proof of correctness is very direct: we use a simple measure on typing trees
(the easy proof differs from that in [Val01], in that the typing system itself does
not perform β-reduction).

The proof of soundness gives us immediatly a bound of the maximum number
of β-reductions. So we have an inequality result for complexity. We would like
an equality result.

One of the reasons why we only have an inequality result is because, in a β-
reduction, the argument of the β-redex may disappear (we call this weakening).
One simple way to avoid the weakening problem without blocking computation
is to use Klop’s extension of λ-calculus:

M, N ::= . . . | [M, N]

In [M, N], N is a sub-term that was meant to be erased. To avoid weakenings,
we can replace every term λx.M such that x /∈ FV (M) with λx.[M, x].

We refer the reader to [Sør97, Xi97] for a survey on different techniques based
on the λI-calculus to infer normalisation properties. Intersection types in the

90 A. Bernadet and S. Lengrand

framework of Church-Klop’s calculus have been studied in e.g. [DCT07], but, to
our knowledge, they were always considered idempotent. Hence, the quantitative
analysis provided by non-idempotency was not carried out.

In order to obtain the complexity result we want, we still have to expect a
property on typing trees: optimality. This property is mostly on the “interface
types”. It is not too restrictive because the completeness theorem produces such
typing trees, but it is still quite so because we can prove that for each term, the
shape of such a derivation tree is unique (principality).

We can then prove that if π is a optimal-principal typing tree of M then
we can read off π the exact length of the longest reduction sequence starting
from M .

2 Syntax and Typing

In this section we present the calculus and the typing system that we are going
to use.

2.1 Lambda Calculus with Klop’s Extension

As said in the introduction, the language that we are going to type is the pure
λ-calculus extended with Klop’s construct [Klo80]:

Definition 1 (Syntax and reduction rules)

– Terms are defined by the following grammar

M, N ::= x | λx.M | MN | [M, N]

Unless otherwise stated, we do not consider any restriction on this syntax.
Sometimes we write N

−→
Mi for N M1 . . .Mn (when

−→
Mi is the vector of terms

M1 . . .Mn).
The free variables fv(M) of a term M are defined as usual and terms are

considered up to α-equivalence.
– The reduction rules are β-reduction and π-reduction (see e.g. [Klo80]):

β (λx.M) N −→ M{x := N}
π [M1, N]M2 −→ [M1 M2, N]

If S is a rule (such as β or π), or a system of rules (like βπ), we write
M −→S N for the congruent closure of the (system of) rule(s).

An interesting fragment of the calculus is Church-Klop’s λI [Klo80]:

Definition 2 (λI). A term M is in the λI-fragment if any abstraction λx.N
occurring in M is such that x ∈ fv(N).

Remark 1. The λI-fragment is stable under substitution and under −→βπ . If
M −→βπ N then fv(M) = fv(N) and P{x := M}−→+

βπ P{x := N} provided
that x ∈ fv(P).

Complexity of Strongly Normalising λ-Terms 91

Another obvious fragment is the pure λ-calculus1. Klop’s construct is only useful
here for the complexity results of section 5; we do not need it for soundness or
completeness (section 3). So if one is interested only in the pure λ-calculus, it is
possible to follow the proofs of these theorems while ignoring Klop’s construct.
As we will see later some theorems are not true for every reduction (for example,
the subject expansion property), so we define the reduction M ↪−−→N M ′, where
N is either a term or ε (a dummy placeholder) as follows:

Definition 3 (A restricted reduction relation)

x ∈ FV (M)

(λx.M)N ↪−−→ε M{x := N}
x /∈ FV (M)

(λx.M)N ↪−−→N M

M1 ↪−−→N M ′
1

M1M2 ↪−−→N M ′
1M2

M2 ↪−−→N M ′
2

M1M
′
2 ↪−−→N M1M

′
2

M ↪−−→N M x /∈ FV (N)

λx.M ↪−−→N λx.M [M1, N]M2 ↪−−→ε [M1 M2, N]

M1 ↪−−→N M ′
1

[M1, M2] ↪−−→N [M ′
1, M2]

M2 ↪−−→N M ′
2

[M1, M2] ↪−−→N [M1, M
′
2]

Fig. 1. ↪−−→-reduction

Fig. 1 formalises the reduction relation that can be be intuitively described as
follows: M ↪−−→N M ′ if and only if M −→βπ M ′ such that:

– either the reduction M −→βπ M ′ does not erase anything in which case
N = ε.

– or the reduction M −→βπ M ′ erases the term N within M and the free
variables of N are not bound by binders in M .

Remark 2. If M is a λI term then every reduction is in ↪−−→ε.

2.2 Intersection Types and Contexts

Definition 4 (Intersection types)
Our intersection types are defined by the following grammar:

A, B ::= F | A ∩B
F, G ::= τ | A→F
U, V ::= ω | A (General types)

1 This motivates our choice of sticking to the reduction rules of [Klo80] rather than
opting for the variant in [Bou03] where β-reduction can generate new instances of
Klop’s construct.

92 A. Bernadet and S. Lengrand

We consider the types up to associativity and commutativity of intersections.
The notation U ∩V extends the intersection construct to general types using the
following equations:

A ∩ ω = ω ∩A = A ω ∩ ω = ω

As opposed to [CD78, CD80] we do not have idempotency A = A ∩A.

Remark 3

– It would be possible to formalise the results of this paper without using
general types, but then in many definitions and proofs we would have to
deal with two or three cases instead of one.

– Notice that, by construction, if A → B is a type then B is not an intersection.
This limitation, which corresponds to the strict types of [vB92], is useful for
the key property of separation (Lemma 1).

Definition 5 (Type inclusion). We define inclusion on types as follows:

U ⊆ V if V = ω, or U = V , or U = A and V = B with A = B ∩C for some C.

Notice that this definition of inclusion is weaker than the traditional one origi-
nating from [BCDC83]. Indeed, inclusions between domains and co-domains of
function types do not induce inclusions between function types.

Remark 4. ⊆ is a partial order.

Definition 6 (Contexts)

– A context Γ is a total map from variables (x, y, z, . . .) to general types (U, V,
. . .) that has finite support, i.e. such that {x | Γ (x) �= ω} is finite.

– The expression (x1 :U1, ..., xn : Un), where for all i, j, xi �= xj, is defined as
the context Γ such that:
• For all i, Γ (xi) = Ui

• Γ (y) = ω for any other y
– Given two contexts Γ and Δ,

Γ ∩Δ is defined pointwise as: for all x, (Γ ∩Δ)(x) = Γ (x) ∩Δ(x), and
we write Γ ⊆ Δ for either Γ = Δ or there exists Γ ′ such that Γ = Γ ′ ∩Δ

Remark 5

– ⊆ is a partial order on contexts.
– Γ ⊆ Δ if and only if for all x, Γ (x) ⊆ Δ(x)

2.3 Typing System and Its Basic Properties

Definition 7 (Typing system)

– Fig. 2 inductively defines the derivability of typing judgements, of the form
Γ ### M :U . Typing trees will be denoted π, π′. . .

Complexity of Strongly Normalising λ-Terms 93

– To prove strong normalisation we will use a simple measure on typing trees:
we just count the number of occurences of rule (App).

So we write Γ ###n M :U (resp. Γ ###≤n M :U , resp. Γ ###<n M :U) if there
exists a typing tree π concluding Γ ### M :U and in π there are exactly (resp.
less than or equal to, resp. less than) n occurences of rule (App).

– We say that a term M is typable if there exist Γ and A such that Γ ### M :A

x :F ��� x :F

Γ ��� M :A Δ ��� M :B

Γ ∩ Δ ��� M :A ∩ B

Γ,x :U ��� M :F A ⊆ U

Γ ��� λx.M :A→F

Γ ��� M :A→B Δ ��� N :A
(App)

Γ ∩ Δ ��� MN :B

Γ ��� M :F Δ ��� N :A

Γ ∩ Δ ��� [M, N] :F ��� M :ω

Fig. 2. Typing system

In the rest of this section and for the proof of subject reduction we can ignore
everything about the measure: but taking it into account does not complicate
the proofs.

Remark 6. If Γ ###n M :U and Δ ###m M :V then Γ ∩Δ ###n+m M :U ∩ V

Lemma 1 (Separation). If Γ ###n M :U1 ∩ U2 then there exist Γ1, Γ2, n1 and
n2 such that Γ = Γ1 ∩ Γ2, n = n1 + n2, and Γ1 ###n1 M :U1 and Γ2 ###n2 M :U2.

Proof. By induction on the typing tree.

– If U1 = ω or U2 = ω it is trivial.

– If
Γ ###n M :C Δ ###m M :D

Γ ∩Δ ###n+m M :C ∩D
and C ∩D = A1 ∩A2 then there exist U1, U2,

V1, V2 such that C = U1 ∩U2, D = V1 ∩V2, A1 = U1 ∩ V1 and A2 = U2 ∩V2.
By induction, there exist n1, n2, m1, m2, Γ1, Γ2, Δ1, Δ2 such that n =

n1 + n2, m = m1 + m2, Γ = Γ1 ∩ Γ2, Δ = Δ1 ∩ Δ2, Γ1 ###n1 M : U1,
Γ2 ###n2 M :U2, Δ1 ###m1 M :V1, Δ2 ###m2 M :V2.

So we have Γ1 ∩Δ1 ###n1+m1 M :A1 and Γ2 ∩Δ2 ###n2+m2 M :A2.
– All the other cases are impossible, especially the application rule: if A→B

is a type, then B is not an intersection. This is why we used this restriction
in the begining.

A useful property can be inferred from the separation property:

Corollary 1 (Weakening). If Γ ###n M : U and U ⊆ V then there exists Γ ′

such that Γ ⊆ Γ ′ and Γ ′ ###≤n M :V .

94 A. Bernadet and S. Lengrand

3 Soundness and Completeness of the Typing System
w.r.t. Strong Normalisation

In this section we prove that a term is typable if and only if it is strongly
normalising.

3.1 Soundness

Here we prove that typed terms are strongly normalising.

Lemma 2 (Typing of substitution). If Γ, x :U ###n1 M :V and Δ ###n2 N :U
then Γ ∩Δ ###n1+n2 M{x := N} :V .

Proof. By induction on the typing tree of M .

– For the variable rule it is trivial.

– For ###0 M : ω with (Γ, x : U) = (), n1 = 0, V = ω. So we have U = ω, so
n2 = 0 and Δ = (). So we can conclude.

– For
Γ, x :U, y :W ###n1 M1 :F A ⊆ W

Γ, x :U ###n1 λy.M1 :A → F
with M = λy.M1, V = A → F ,

x �= y, y /∈ FV (N). From the induction hypothesis we have Γ, y :W ###n1+n2 :
M1{x := N}F so we can conclude.

– For
Γ1, x :U1 ###m1 M :A Γ2, x :U2 ###m2 M :B

Γ1 ∩ Γ2, x :U1 ∩ U2 ###m1+m2 M :A ∩B
with n1 = m1 + m2, U =

U1 ∩ U2, V = A ∩ B. By the use the Lemma 1, there exists Δ1, Δ2, m3,
m4, such that n2 = m3 + m4, Δ = Δ1 ∩Δ2, Δ1 ###m3 N :U1, Δ2 ###m4 N :U2.
By the induction hypothesis we have Γ1 ∩ Δ1 ###m1+m3 M{x := N} : A and
Γ2 ∩Δ2 ###m2+m4 M{x := N} :B so we can conclude.

– For the application rule and Klop’ construct rule we adapt the proof for the
intersection rule.

Theorem 1 (Subject Reduction for β)
If Γ ###n M : A and M −→β M ′ then there exists Γ ′ such that Γ ′ ###<n M ′ : A
and Γ ⊆ Γ ′.

Proof. First by induction on M −→β M ′ then by induction on A.

– If A is an intersection then we use the Lemma 1.

– For (λx.M1)M2 −→β M1{x := M2} with A not an intersection then there

exist B, Γ1, Γ2, n1, n2 such that n = n1+n2+1, Γ = Γ1∩Γ2, Γ1 ###n1 λx.M1 :
B → A and Γ2 ###n2 M2 : B. So there exists U such that B ⊆ U and Γ1, x :
U ###n1 M1 : A. So, from Corollary 1, there exists Δ such that Γ2 ⊆ Δ and
Δ ###≤n2 M2 :U . So by the use of the previous lemma we can conclude.

Complexity of Strongly Normalising λ-Terms 95

– If
M −→β M ′

λx.M −→β λx.M ′ with A is not an intersection, then there exist U , A2,

A3 such that A = A2 → A3, A2 ⊆ U Γ, x : U ###n M : A3. By the induction
hyptothesis there exist m, Δ, V such that Γ ⊆ Δ, m < n, U ⊆ V and
Δ, x : V ###m M ′ :A3. So we have A2 ⊆ V , so we have Δ ###m λx.M ′ :A2 → A3.

– The other cases are straightforward.

Lemma 3 (Subject Reduction for π). If Γ ###n M :A and M −→π M ′ then
Γ ###n M ′ :A.

Proof. Again, by induction first on A then on M −→π M ′. All cases are straight-
forward.

Corollary 2 (Soundness). If Γ ### M :A then M is SN.

Proof. The measure is decreased by β-reduction (Theorem 1), is invariant under
π-reduction (Lemma 3), and π-reduction on its own terminates. Strong normal-
isation follows by considering the corresponding lexicographic order.

Notice that in the particular case of ↪−−→, Subject Reduction can be stated
more precisely:

Theorem 2 (Subject Reduction for ↪−−→)
Assume Γ ### M :B and M ↪−−→N M ′.
If N �= ε there exist Δ and A such that Δ ### N :A otherwise let Δ = ().
There exists Γ ′ such that Γ ′ ### M ′ :B with Γ = Γ ′ ∩Δ.

Proof. By investigating the proof of Theorem 1.

In the even more particular case of the λI-fragment, where ↪−−→ε=−→βπ ,
Subject Reduction does not modify the context.

3.2 Completeness

We now prove that strongly normalising terms can be typed.

Lemma 4 (Typing of substitution). If Γ ### M{x := N} :B then there exist
Γ1, Γ2, U such that Γ = Γ1 ∩ Γ2 and Γ1, x :U ### M :B and Γ2 ### N :U .

Proof. By induction on the typing tree for M . If x /∈ fv(M) we take U = ω and
Γ2 = ().

Theorem 3 (Subject Expansion)
Assume Γ ### M ′ :B and M ↪−−→N M ′.
Assume Δ ### N :A if N �= ε, otherwise let Δ = ().
We have Γ ∩Δ ### M :B.

Proof. First by induction on B then by induction on M ↪−−→N M ′. The cases
are exactly those of Subject Reduction.

96 A. Bernadet and S. Lengrand

Remark 7. This is not true with general β-reduction. For example, (λz.a)(λy.yy)
is typable but (λz.(λx.a)(zz))(λy.yy) is not (it is not SN).

Lemma 5 (Shape of ↪−−→-normal forms). If a term cannot be reduced by
↪−−→ then it is of one of the following forms:

– λx.M
– [M, N]
– xM1 . . . Mn

Proof. Straightforward.

Theorem 4 (Completeness). If M is SN then there exist F and Γ such that
Γ ### M :F .

Proof. First by induction on the length of the longest −→βπ -reduction sequence
starting from M then by induction on the size of M .

– If there exists M ′ such that M ↪−−→N M ′ then we use the induction hy-
pothesis on M ′ (and if N �= ε we use it on N too, which is a strict sub-term
of M). Then we conclude with Theorem 3.

– If not then M is of one of these forms:

• If M = λx.N then we apply the induction hypothesis on N .
• If M = [M1, M2] then we apply the induction hypothesis on M1 and M2
• If M = xM1 . . . Mn then we apply the induction hypothesis on M1, . . . ,

Mn to get Γ1 ### M1 : F1, . . . , Γn ### Mn : Fn, so we pick a fresh atomic
type τ and we get:

(x :F1→· · ·→Fn→τ) ∩ Γ1 ∩ . . . ∩ Γn ### xM1 . . .Mn :τ

In the particular case of the λI-fragment, typing is preserved by arbitrary ex-
pansions, with no modification of context. Since normal forms can be typed,
any weakly normalising term can be typed, and are thus strongly normalising.
Equivalence between weak normalisation and strong normalisation in λI is a
well-known theorem that finds here a simple proof.

3.3 Corollaries

Corollary 3 (Characterisation of Strong Normalisation). M is typable if
and only if M is SN.

With the characterisation of strong normalisation and the subject expansion
theorem we have the following corollary.

Corollary 4. If M ↪−−→N M ′ and N is SN and M ′ is SN then M is SN.

This is a useful result, used for instance in many proofs of strong normalisation
(e.g. by reducibility candidates) for λ-terms that are typed in various systems. It
can also be seen as a generalisation the theorem that in λI, weak normalisation
is equivalent to strong normalisation.

Complexity of Strongly Normalising λ-Terms 97

4 Optimal and Principal Typing

As we showed in the previous section, the typing system of Fig. 2 above char-
acterises strongly normalising terms. Even better, the measure defined on the
typing tree of a term gives a bound on the length of longest reduction sequence.
But the typing system is too coarse to improve on that bound, so in order to
get a better result about complexity (as established in section 5) it needs to be
refined.

4.1 Optimal Typing

In this section we first notice that the typing trees produced by the proof of
completeness all satisfy a particular property that we call the optimal property.

This property involves the following notions:

Definition 8 (Subsumption and forgotten types)

– If π is a typing tree, we say that π uses subsumption if it features an occur-
rence of the abstraction rule where the condition A ⊆ U is neither A ⊆ A
nor A ⊆ ω.

– If π is a typing tree with no subsumption then we say that a type A is
forgotten in π if:
• π features an occurence of the abstraction rule where the condition is

A ⊆ ω,
• or π features an occurence of the typing rule for Klop’s construct [M, N]

where A is the type of N .
The multiset of forgotten types in π is written forg(π).

The optimal property also involves refining the grammar of types:

Definition 9 (Refined intersection types). A+, A− and A−− are defined
by the following grammar:

A+, B+ ::= τ | A−− → B+

A−−, B−− ::= A− | A−− ∩B−−

A−, B− ::= τ | A+ → B−

The degree of a type of the form A+ is the number of arrows in negative positions:

δ+(τ) := 0
δ+(A−− → B+) := δ−(A−−) + δ+(B+) + 1
δ−(A−− ∩B−−) := δ−(A−−) + δ−(B−−)
δ−(τ) := 0
δ−(A+ → B−) := δ+(A+) + δ−(B−)

We can finally define the optimal property:

Definition 10 (Optimal typing). A typing tree π concluding Γ ### M : A is
optimal if

98 A. Bernadet and S. Lengrand

– There is no subsumption in π

– A is of the form A+

– For every (x : B) ∈ Γ , B is of the form B−−

– For every forgotten type B in π, B is of the form B+.

We write Γ ###opt M :A+ if there exists such π.
The degree of such a typing tree is defined as

δ(π) = δ+(A+) + Σx : B−−∈Γ δ−(B−−) + ΣC+∈forg(π)δ
+(C+)

In this definition, A+ is an output type, A− is a basic input type (i.e. for a
variable to be used once), and A−− is the type of a variable that can be used
several times. The intuition behind this asymmetric grammar can be found in
linear logic:

Remark 8. A simple type T can be translated as a type T ∗ of linear logic [Gir87]
as follows:

τ∗ := τ
(T → S)∗ := !S∗ � T ∗

It can also be translated as T + and T− as follow:

τ+ := τ τ− := τ
(T → S)+ := !T− � S+ (T → S)− := T + � S−

And we have in linear logic: T− # T ∗ and T ∗ # T +

Now we can establish Subject Expansion for optimal trees:

Theorem 5 (Subject Expansion, optimal case)
Assume Γ ###opt M ′ :B and M ↪−−→N M ′.
Assume Δ ###opt N :A if N �= ε, otherwise let Δ = ().
We have Γ ∩Δ ###opt M :B.

Proof. By investigating the proof of Theorem 3, noticing that, in Lemma 4:

– if the typing tree of Γ ### M{x := N} :B does not use subsumption, neither
do those of Γ1, x :U ### M :B and Γ2 ### N :U ;

– the forgotten types in the typing tree of Γ ### M{x := N} : B are exactly
those in the typing trees of Γ1, x :U ### M :B and Γ2 ### N :U .

The multiset of forgotten types in the proof of Γ ∩ Δ ###opt M : B is that in the
proof of Γ ###opt M ′ :B (union that in the proof of Δ ###opt N :A if N �= ε).

From this we can derive a strengthened completeness theorem:

Theorem 6 (Completeness of optimal typing). If M is SN then there
exist A+ and Γ such that Γ ###opt M :A+.

Complexity of Strongly Normalising λ-Terms 99

This raises the question of why we did not set our theory (say, the characterisa-
tion of strongly normalising terms) with optimal typing from the start. First, the
optimal property is not preserved when going into sub-terms: if Γ ###opt (λx.M)N :
A+, then it is not necessarily the case that Γ ###opt N : B+ (it could be a type
B that is not of the form B+). Second the optimal property is not preserved
by arbitrary reductions, as the use of subsumption for typing abstractions is
necessary for Subject Reduction to hold.

Example 1
λx.x((λy.z)x) −→β λx.xz

However, Subject Reduction does hold for ↪−−→:

Theorem 7 (Subject Reduction, optimal case)
Assume Γ ###opt M :B and M ↪−−→N M ′.
If N �= ε there exist Δ and A such that Δ ### N :A , otherwise let Δ = ().
There exists Γ ′ such that Γ ′ ###opt M ′ :B with Γ = Γ ′ ∩Δ.

Proof. By investigating the proof of Theorem 1, noticing that, in Lemma 2:

– if the typing trees of Γ, x : U ###n1 M : V and Δ ###n2 N : U do not use sub-
sumption then neither does that of Γ ∩Δ ###n1+n2 M{x := N} :V ;

– the forgotten types in the typing trees of Γ, x :U ###n1 M :V and Δ ###n2 N :U
are those in Γ ∩Δ ###n1+n2 M{x := N} :V .

Again, the multiset of forgotten types in the proof of Γ ###opt M :B is that in the
proof of Γ ′ ###opt M ′ :B (union that in the proof of Δ ###opt N :A if N �= ε).

Remark 9. Notice the particular case of λI, where βπ reductions and expansions
both preserve optimal typings and multisets of forgotten types, and therefore
they preserve the degree of optimal typing trees.

4.2 Principal-Optimal Typing Trees

We now introduce the notion of principal typing, and for that we first define the
commutativity and associativity of the intersection rule.

Definition 11 (AC of the intersection rule). Let - be the smallest congru-
ence on typing trees containing the two equations

Γ ��� M :A Δ ��� M :B

Γ ∩ Δ ��� M :A ∩ B
�

Δ ��� M :B Γ ��� M :A

Γ ∩ Δ ��� M :A ∩ B

Γ1 ��� M :A1 Γ2 ��� M :A2

Γ1 ∩ Γ2 ��� M :A1 ∩ A2 Γ3 ��� M :A3

Γ1 ∩ Γ2 ∩ Γ3 ��� M :A1 ∩ A2 ∩ A3

� Γ1 ��� M :A1

Γ2 ��� M :A2 Γ3 ��� M :A3

Γ2 ∩ Γ3 ��� M :A2 ∩ A3

Γ1 ∩ Γ2 ∩ Γ3 ��� M :A1 ∩ A2 ∩ A3

100 A. Bernadet and S. Lengrand

Definition 12 (Principal typing)

– A substitution σ mapping the atomic types τ1, . . . , τn to the types F1, . . . , Fn

acts on types, contexts, judgements and typing trees, so we can write Aσ,
Γσ, πσ,. . .

– We write π ≤ π′ if there exists a substitution σ such that π′ - πσ.
(In that case if π concludes Γ ### M :A then π′ must conclude Γσ ### M :Aσ).

– A typing tree π concluding Γ ###opt M : A+ is said to be principal if for any
typing tree π′ concluding Γ ′ ###opt M :A′+ we have π ≤ π′.

Typing trees produced by the proof of the completeness theorem are principal:

Theorem 8 (Principal typing always exists). If M is SN then there exist
F , Γ and a principal typing tree π concluding Γ ###opt M :F .

Proof. The proof follows that of Theorems 4 and 6: first by induction on the
longest reduction sequence starting from M then by induction on the size of M .
The novelty resides in checking principality:

– If there exists M ′ such that M ↪−−→N M ′, we assume another optimal
typing π of M and use Theorem 7 to get an optimal typing π′ for M ′. By
principality, π′ must be an instance of the principal typing tree we have
recursively constructed for M ′ (and similarly for N if N �= ε). From this we
deduce that π is an instance of the one we got by Subject Expansion.

– If not then M is of one of these forms:

• M = λx.N or M = [M1, M2], in which case we call upon the induction
hypothesis,

• M = xM1 . . .Mn, in which case the induction hypothesis provide princi-
pal Γ1 ###opt M1 :A+

1 , . . . , Γn ###opt Mn :A+
n , and principality is ensured by

choosing a fresh atomic type τ in the type A+
1 →· · ·→A+

n→τ of x.

Remark 10. The shape of an optimal typing tree is unique but it is not syntax-
directed, so we cannot use this unicity to have an algorithm to directly compute
the typing tree (other than “executing” the term).

One can also notice that in λI, there is a direct link between the measure read
off from a principal optimal typing and its degree.

Lemma 6 (Degree of λI’s normal forms). If π is a principal typing tree of
Γ ###n

opt M : A, where M is a λI-term in βπ-normal form, then δ(π) = n. It is
also the number of applications in the term M .

Proof. Again, by inspecting the proof of completeness: every time we type M =
xM1 . . . Mn, using Γ1 ###opt M1 :A+

1 , . . . , Γn ###opt Mn :A+
n , we add as many arrows

by constructing the type A+
1 →· · ·→A+

n →τ as we use new occurrences of rule
(App).

Complexity of Strongly Normalising λ-Terms 101

5 Complexity

In this section we derive two complexity results, one for each fragment of our
calculus: Church-Klop’s λI-calculus and the pure λ-calculus.

5.1 Complexity Result for Church-Klop’s λI

In this section every term is assumed to be in the λI-fragment of the calculus.
Remember that in that fragment, ↪−−→ε is the same as −→βπ .

We first identify a smaller reduction relation
βsmall

↪−−→ (within λI) that will always
decrease the measure of optimal trees exactly by one.

Definition 13 (Small-reduction). Small-reduction, written
βsmall

↪−−→, is defined
in Fig. 3.

(λx.M) N
−→
Ni

βsmall

↪−−→ M{x := N} −→
Ni

N
βsmall

↪−−→ N ′ x /∈ fv(M)

(λx.[M, x]) N
−→
Ni

βsmall

↪−−→ (λx.[M, x]) N ′ −→Ni

N
βsmall

↪−−→ N ′

x
−→
Ni N

−→
Mj

βsmall

↪−−→ x
−→
Ni N ′ −→Mj

M
βsmall

↪−−→ M ′

λx.M
βsmall

↪−−→ λx.M ′

M
βsmall

↪−−→ M ′

[M, N]
βsmall

↪−−→ [M ′, N]

N
βsmall

↪−−→ N ′

[M, N]
βsmall

↪−−→ [M, N ′]

Fig. 3. Small-reduction

Remark 11. If a term can be reduced by −→β and not by −→π then it can be

reduced by
βsmall

↪−−→2.

Lemma 7 (Small reduction decreases the measure by 1)

If Γ ###n
opt M :A and M

βsmall

↪−−→ M ′ then Γ ###n−1
opt M ′ :A.

Proof. The typing tree is the one produced by the proof of Subject Reduction.
Checking that that tree is also optimal with measure n−1 is done by induction

on M (or equivalently by induction on the derivation of M
βsmall

↪−−→ M ′ then by
induction on n for those rules that feature a series of n applications).

2 We could call
βsmall

↪−−→ a strategy, but it does not necessarily determine a unique redex
to reduce.

102 A. Bernadet and S. Lengrand

The optimal property of typing is preserved in inductive steps, i.e. while

going into the term M and until the base case of
βsmall

↪−−→ is found (the first rule):

– In the first rule of
βsmall

↪−−→, notice that only one application is removed only
because we are in the λI-fragment.

– In the second rule, x has a type of the form B−, i.e. of the form C+
1 → · · ·→

C+
s → τ (with s ≥ n), so the typing of N is optimal. We can then use the

induction hypothesis to conclude.
– In the third rule, the type of x is a forgotten type, so by the optimal property

is must be of the form A+, and by construction N has the very same type.
This makes its typing optimal and we can then use the induction hypothesis
to conclude.

– In the fourth rule, the typing of M is optimal if that of λx.M is.
– In the fifth rule, the typing of M is optimal if that of [M, N] is (the two

terms have the same type in the same context).
– In the sixth rule, the type of N is a forgotten type, so by optimality is has

to be of the form A+, so again the typing of N is optimal.

Theorem 9 (Complexity result)
If Γ ###n

opt M : A with a principal typing tree of degree n′ then there exists a βπ-
normal form M ′ such that

M−→∗
π (−→β −→∗

π)n−n′
M ′

This reduction sequence from M to M ′ is of maximal length3.

Proof. By induction on n. We reduce by
βsmall

↪−−→ and −→π until hitting the normal
form M ′, also typed by Γ ###n′

opt M ′ :A with some principal typing tree of measure
n′. By Lemma 6, n′ is both the number of applications in M ′ and the degree of
its principal typing tree. That degree is not changed by expansions, so it is also
the degree of the principal typing tree of M which we started with.

5.2 Complexity Result for Pure λ-Calculus

In this section we derive a similar result for the pure λ-calculus. For this we
reduce the problem of pure λ to that of λI (treated above).

In order to make the distinction very clear about what terms are in pure λ
and what terms are in λI, we use two different notational styles: t, u, v, . . . for
pure λ-terms and T, U, V, . . . for λI-terms.

We want to exhibit in pure λ-calculus the longest reduction sequences, and
show that their lengths are exactly those that can be predicted in λI.

For the longest reduction sequences we simply use the perpetual strategy from
[vRSSX99], shown in Fig. 4.

3 As Subject reduction implies that any other reduction sequence has a length less
than or equal to n − n′.

Complexity of Strongly Normalising λ-Terms 103

x ∈ fv(t) or t′ is a β-normal form

(λx.t) t′
−→
tj � t{x := t′} −→

tj

t′ � t′′ x /∈ fv(t)

(λx.t) t′
−→
tj � (λx.t) t′′

−→
tj

t � t′

x
−→
tj t −→pj � x

−→
tj t′ −→pj

t � t′

λx.t � λx.t′

Fig. 4. A perpetual reduction strategy for λ

Remark 12. �⊆−→β

If t is not a β-normal form, then there is a λ-term t′ such that t � t′.

Although we do not need it here, it is worth mentioning that � defines a per-
petual strategy w.r.t. β-reduction, i.e. if M is not β-strongly normalising and
M � M ′, then neither is M ′ [vRSSX99]. In that sense it can be seen as the
worst strategy (the least efficient). We show here that it is the worst in a stronger
sense: it maximises the lengths of reduction sequences. For that we show that
the length of a reduction sequence produced by that strategy matches that of
the longest reduction sequence in λI. This requires encoding the syntax of the
pure λ-calculus into λI, as shown in Fig. 5 (from [Len05, Len06]).

i(x) := x i(λx.M) := λx.i(M) if x ∈ fv(M)
i(M N) := i(M) i(N) i(λx.M) := λx.[i(M), x] if x /∈ fv(M)

Fig. 5. Encoding from λ to λI

Lemma 8 ([Len05, Len06]). For any λ-terms t and u,

– fv(i(t)) = fv(t)
– i(t){x := i(u)} = i(t{x := u})

But this encoding will not allow the simulation of � by −→βπ in λI. To allow
the simulation we need to generalise the i-encoding into a larger encoding that
needs to be non-deterministic (i.e. to be a relation rather than a function).

Definition 14 (Relation between λ & λI [Len05, Len06]). The relation
G between λ-terms & λI-terms is given by the rules of Fig. 6 and (non-

deterministically) generalises the i encoding.

104 A. Bernadet and S. Lengrand

((λx.t) t′
−→
tj) G i((λx.t) t′

−→
tj)

t′ G T ′ x /∈ fv(t)

((λx.t) t′
−→
tj) G (i(λx.t) T ′ −−→i(tj))

∀j tj G Tj

(x
−→
tj) G (x

−→
Tj)

t G T x ∈ fv(T)

λx.t G λx.T

t G T N is a normal form for βπ

t G [T, N]

Fig. 6. Relation between λ & λI

Lemma 9 ([Len05, Len06])

1. If t is a β-normal form and t G T , then T is a βπ-normal form.
2. For any λ-term t, t G i(t).

In [Len06, KL07] it is shown that the perpetual strategy can be simulated in λI
through the i-encoding:

Theorem 10 (Strong simulation of � in λI [Len06, KL07])
If t G T and t � t′ then there exists T ′ in λIsuch that t′ G T ′ and T−→+

βπ T ′.

By inspecting the proof of the simulation in [Len06, KL07], one notices that

T−→+
βπ T ′ is in fact T (−→∗

π
βsmall

↪−−→ −→∗
π)T ′, which decreases the mea-

sure read off an optimal typing tree exactly by one.

Now given Lemma 9, this means that the perpetual strategy from [vRSSX99]
generates, from a given term t, a reduction sequence to its normal form t′ of the
same length as a reduction sequence, in λI, from i(t) to its normal form T ′ (with
t′ G T ′). This length can be predicted in the measure read off an optimal typing
tree for i(t); and it so happens that it is the same as the measure read off an
optimal typing tree for t:

Lemma 10 (Preservation of optimal typing by i). Let t be a pure λ-term.
If Γ ###n

opt t : A then Γ ###n
opt i(t) : A. If the typing is principal then it remains

principal and the degree is not changed.

Proof. By induction on the derivation tree we prove that if Γ ###n t : A with no
subsumption then Γ ###n i(t) :A with no subsumption and with the same forgotten
types.

Theorem 11 (Complexity result for λ)
If Γ ###n

opt t :A with a principal typing tree of degree n′ then there exists a β-normal
form t′ such that

t −→n−n′
β t′

This reduction sequence from t to t′ is of maximal length4.
4 As Subject reduction implies that any other reduction sequence has a length less

than or equal to n − n′.

Complexity of Strongly Normalising λ-Terms 105

6 Conclusion

We have defined a typing system for non-idempotent intersection types. We have
shown that it characterises strongly normalising terms in a more natural way
than idempotent intersection types do. With some reasonable restrictions on the
derivation tree we have obtained results on the maximum number of β-reductions
in a reduction sequence of a λ-term (with Klop’s extension).

We noticed a posteriori that our technology is similar to that which can be
found in e.g. [KW99, NM04]. One of the concerns of this line of research is how
the process of type inference compares to that of normalisation, in terms of
complexity classes (these two problems being parameterised by the size of terms
and a notion of rank for types).

The present paper shows how such a technology can actually provide an exact
equality, specific to each λ-term and its typing tree, between the number read
off the tree and the length of the longest reduction sequence. Of course this only
emphasises the fact that type inference is as hard as normalisation, but type
inference as a process is not a concern of this paper.

Our non-idempotent intersection type system and our results can be lifted
to other calculi featuring e.g. explicit substitutions, combinators, or algebraic
constructors and destructors (to handle integers, products, sums,. . .).

Idempotent intersection types have been used to provide model-based proofs
of strong normalisation for well-known typing systems (simple types, system F,
system Fω ,. . . ,). Such model constructions (I-filters [CS07], orthogonality) can
also be done with non-idempotent intersection types with no increased difficulty,
and with the extra advantage that the strong normalisation of terms in the
models is much simpler to prove. This is our next paper.

References

[Abr93] Abramsky, S.: Computational interpretations of linear logic. Theoret.
Comput. Sci. 111, 3–57 (1993)

[BBdH93] Benton, N., Bierman, G., de Paiva, V., Hyland, M.: A term calculus for
intuitionistic linear logic. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993.
LNCS, vol. 664, pp. 75–90. Springer, Heidelberg (1993)

[BCDC83] Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model
and the completeness of type assignment. J. of Symbolic Logic 48(4), 931–
940 (1983)

[BEM10] Bucciarelli, A., Ehrhard, T., Manzonetto, G.: Categorical models for sim-
ply typed resource calculi. ENTCS 265, 213–230 (2010)

[BM03] Baillot, P., Mogbil, V.: Soft lambda-calculus: a language for polynomial
time computation. CoRR, cs.LO/0312015 (2003)

[Bou03] Boudol, G.: On strong normalization in the intersection type discipline.
In: Hofmann, M. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 60–74. Springer,
Heidelberg (2003)

[CD78] Coppo, M., Dezani-Ciancaglini, M.: A new type assignment for lambda-
terms. Archiv für mathematische Logik und Grundlagenforschung 19, 139–
156 (1978)

106 A. Bernadet and S. Lengrand

[CD80] Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality
theory for the λ-calculus. Notre Dame J. of Formal Logic 21(4), 685–693
(1980)

[CS07] Coquand, T., Spiwack, A.: A proof of strong normalisation using domain
theory. Logic. Methods Comput. Science 3(4) (2007)

[dC05] de Carvalho, D.: Intersection types for light affine lambda calculus.
ENTCS 136, 133–152 (2005)

[dC09] de Carvalho, D.: Execution time of lambda-terms via denotational seman-
tics and intersection types. CoRR, abs/0905.4251 (2009)

[DCHM00] Dezani-Ciancaglini, M., Honsell, F., Motohama, Y.: Compositional charac-
terizations of lambda-terms using intersection types (extended abstract).
In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, p. 304.
Springer, Heidelberg (2000)

[DCT07] Dezani-Ciancaglini, M., Tatsuta, M.: A Behavioural Model for Klop’s Cal-
culus. In: Corradini, F., Toffalori, C. (eds.) Logic, Model and Computer
Science. ENTCS, vol. 169, pp. 19–32. Elsevier, Amsterdam (2007)

[ER03] Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theoret. Com-
put. Sci. 309(1-3), 1–41 (2003)

[Ghi96] Ghilezan, S.: Strong normalization and typability with intersection types.
Notre Dame J. Formal Loigc 37(1), 44–52 (1996)

[Gir87] Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–101 (1987)
[GR07] Gaboardi, M., Ronchi Della Rocca, S.: A soft type assignment system for

lambda -calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS,
vol. 4646, pp. 253–267. Springer, Heidelberg (2007)

[How80] Howard, W.A.: The formulae-as-types notion of construction. In: Seldin,
J.P., Hindley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus, and Formalism, pp. 479–490. Academic Press, London
(1980), Reprint of a manuscript written 1969

[KL07] Kesner, D., Lengrand, S.: Resource operators for the λ-calculus. Inform.
and Comput. 205, 419–473 (2007)

[Klo80] Klop, J.-W.: Combinatory Reduction Systems, volume 127 of Mathemati-
cal Centre Tracts. CWI, PhD Thesis (1980)

[KW99] Kfoury, A.J., Wells, J.B.: Principality and decidable type inference for
finite-rank intersection types. In: Proc. of the 26th Annual ACM Symp.
on Principles of Programming Languages (POPL 1999), pp. 161–174. ACM
Press, New York (1999)

[Laf04] Lafont, Y.: Soft linear logic and polynomial time. Theoret. Comput.
Sci. 318(1-2), 163–180 (2004)

[Lei86] Leivant, D.: Typing and computational properties of lambda expressions.
Theoretical Computer Science 44(1), 51–68 (1986)

[Len05] Lengrand, S.: Induction principles as the foundation of the theory of nor-
malisation: Concepts and techniques. Technical report, PPS laboratory,
Université Paris 7 (March 2005),
http://hal.ccsd.cnrs.fr/ccsd-00004358

[Len06] Lengrand, S.: Normalisation & Equivalence in Proof Theory & Type The-
ory. PhD thesis, Univ. Paris 7 & Univ. of St Andrews (2006)

[NM04] Neergaard, P.M., Mairson, H.G.: Types, potency, and idempotency: why
nonlinearity and amnesia make a type system work. In: Okasaki, C., Fisher,
K. (eds.) Proc. of the ACM International Conference on Functional Pro-
gramming, pp. 138–149. ACM Press, New York (September 2004)

http://hal.ccsd.cnrs.fr/ccsd-00004358

Complexity of Strongly Normalising λ-Terms 107

[Sør97] Sørensen, M.H.B.: Strong normalization from weak normalization in typed
lambda-calculi. Inform. and Comput. 37, 35–71 (1997)

[Val01] Valentini, S.: An elementary proof of strong normalization for intersection
types. Arch. Math. Log. 40(7), 475–488 (2001)

[vB92] van Bakel, S.: Complete restrictions of the intersection type discipline.
Theoret. Comput. Sci. 102(1), 135–163 (1992)

[vRSSX99] van Raamsdonk, F., Severi, P., Sørensen, M.H.B., Xi, H.: Perpetual reduc-
tions in λ-calculus. Inform. and Comput. 149(2), 173–225 (1999)

[Xi97] Xi, H.: Weak and strong beta normalisations in typed lambda-calculi. In:
de Groote, P. (ed.) TLCA 1997. LNCS, vol. 1210, pp. 390–404. Springer,
Heidelberg (1997)

Realizability and Parametricity
in Pure Type Systems

Jean-Philippe Bernardy1 and Marc Lasson2

1 Chalmers University of Technology and University of Gothenburg
2 ENS Lyon, Université de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA)

Abstract. We describe a systematic method to build a logic from any
programming language described as a Pure Type System (PTS). The
formulas of this logic express properties about programs. We define a
parametricity theory about programs and a realizability theory for the
logic. The logic is expressive enough to internalize both theories. Thanks
to the PTS setting, we abstract most idiosyncrasies specific to particular
type theories. This confers generality to the results, and reveals parallels
between parametricity and realizability.

1 Introduction

During the past decades, a recurring goal among logicians was to give a com-
putational interpretation of the reasoning behind mathematical proofs. In this
paper we adopt the converse approach: we give a systematic way to build a logic
from a programming language. The structure of the programming language is
replicated at the level of the logic: the expressive power of the logic (e.g. the
ability of expressing conjunctions) is directly conditioned by the constructions
available in the programming language (e.g. presence of products).

We use the framework of Pure Type Systems (PTS) to represent both the
starting programming language and the logic obtained by our construction. A
PTS [2, 3] is a generalized λ-calculus where the syntax for terms and types are
unified. Many systems can be expressed as PTSs, including the simply typed
λ-calculus, Girard and Reynolds polymorphic λ-calculus (System F) and its ex-
tension System Fω, Coquand’s Calculus of Constructions, as well as some exotic,
and even inconsistent systems such as λU [8]. PTSs can model the functional
core of many modern programming languages (Haskell, Objective Caml) and
proof assistants (Coq [25], Agda [19], Epigram [17]). This unified framework
provides meta-theoretical such as substitution lemmas, subject reduction and
uniqueness of types.

In Sec. 3, we describe a transformation which maps any PTS P to a PTS P 2.
The starting PTS P will be viewed as a programming language in which live
types and programs and P 2 will be viewed as a proof system in which live proofs
and formulas. The logic P 2 is expressive enough to state properties about the
programs. It is therefore a setting of choice to develop a parametricity and a
realizability theory.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 108–122, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Realizability and Parametricity in Pure Type Systems 109

Parametricity. Reynolds [23] originally developed the theory of parametricity
to capture the meaning of types of his polymorphic λ-calculus (equivalent to
Girard’s System F). Each closed type can be interpreted as a predicate that all
its inhabitants satisfy. Reynolds’ approach to parametricity has proven to be a
successful tool: applications range from program transformations to speeding up
program testing [28, 7, 4].

Parametricity theory can be adapted to other λ-calculi, and for each calculus,
parametricity predicates are expressed in a corresponding logic. For example,
Abadi et al. [1] remark that the simply-typed lambda calculus corresponds to
LCF [18]. For System F, predicates can be expressed in second order predicate
logic, in one or another variant [1, 16, 29]. More recently, Bernardy et al. [5]
have shown that parametricity conditions for a reflective PTS can be expressed
in the PTS itself.

Realizability. The notion of realizability was first introduced by Kleene [10] in
his seminal paper. The idea of relating programs and formulas, in order to study
their constructive content, was then widely used in proof theory. For example, it
provides tools for proving that an axiom is not derivable in a system (excluded
middle in [11, 26]) or that intuitionistic systems satisfy the existence property1

[9, 26]; see Van Oosten [27] for an historical account of realizability.
Originally, Kleene represented programs as integers in a theory of recursive

functions. Later, this technique has been extended to other notions of programs
like combinator algebra [24, 26] or terms of Gödel’s System T [12, 26] in Kreisel’s
modified realizability. In this article, we generalize the latter approach by using
an arbitrary pure type system as the language of programs.

Krivine [13] and Leivant [15] have used realizability to prove Girard’s repre-
sentation theorem2 [8] and to build a general framework for extracting programs
from proofs in second-order logic [14]. In this paper, we extend Krivine’s method-
ology to languages with dependent types, like Paulin-Mohring [20, 21] did with
the realizability theory behind the program extraction in the Coq proof assis-
tant [25].

Contributions. Viewed as syntactical notions, realizability and parametricity
bear a lot of similarities. Our aim was to understand through the generality of
PTSs how they are related. Our main contributions are:

– The general construction of a logic from the programming language of its
realizers with syntactic definitions of parametricity and realizability (Sec. 3).

– The proof that this construction is strongly normalizing if the starting pro-
gramming language is (Thm. 2).

– A characterization of both realizability in terms of parametricity (Thm. 6)
and parametricity in terms of realizability (Thm. 5).

1 If ∀x∃y,ϕ(x, y) is a theorem, then there exists a program f such that ∀x,ϕ(x, f(x)).
2 Functions definable in System F are exactly those provably total in second-order

arithmetic.

110 J.-P. Bernardy and M. Lasson

2 The First Level

In this section, we recall basic definitions and theorems about pure types systems
(PTSs). We refer the reader to [2] for a comprehensive introduction to PTSs. A
PTS is defined by a specification (S,A,R) where S is a set of sorts, A ⊆ S × S
a set of axioms and R ⊆ S × S × S a set of rules, which determines the typing
of product types. The typing judgement is written Γ # A : B. The notation
Γ # A : B : C is a shorthand for having both Γ # A : B and Γ # B : C
simultaneously.

Example 1 (System F). The PTS F has the following specification:

SF = {�, �} AF = {(�, �)} RF = {(�, �, �), (�, �, �)} .

It defines the λ-calculus with polymorphic types known as system F [8]. The rule
(�, �, �) corresponds to the formation of arrow types (usually written σ → τ) and
the rule (�, �, �) corresponds to quantification over types (∀α, τ).

Even though we use F as a running example throughout the article to illustrate
our general definitions our results apply to any PTS.

Sort annotations. We sometimes decorate terms with sort annotations. They
function as a syntactic reminder of the first component of the rule used to type a
product. We divide the set of variables into disjoint infinite subsets V =

⊔
{Vs|s ∈

S} and we write xs to indicate that a variable x belongs to Vs. We also annotate
applications F a with the sort of the variable of the product type of F . Using
this notation, the product rule and the application rule are written

Γ # A : s1 Γ, xs1 : A # B : s2

Γ # (Πxs1 : A. B) : s3

Product (s1, s2, s3) ∈ R

Γ # F : (Πxs : A. B) Γ # a : A .
Γ # (F a)s : B[x �→ a]

Application

Since sort annotations can always be recovered by using the type derivation, we
do not write them in our examples.

Example 2 (System F terms). In System F, we adopt the following convention:
the letters x, y, z, . . . range over V�, and α, β, γ, . . . over V�. For instance, the
identity program Id ≡ λ(α : �)(x : α).x is of type Unit ≡ Πα : �.α → α. The
Church numeral 0 ≡ λ(α : �)(f : α → α)(x : α).x has type Nat ≡ Πα : �.(α →
α) → (α → α) and the successor function on Church numerals Succ ≡ λ(n :
Nat)(α : �)(f : α → α)(x : α).f (n α f x) is a program of type Nat → Nat.

3 The Second Level

In this section we describe the logic to reason about the programs and types
written in an arbitrary PTS P , as well as basic results concerning the consistency
of the logic. This logic is also a PTS, which we name P 2. Because we carry out
most of our development in P 2, judgments refer to that system unless the symbol
is subscripted with the name of a specific system.

Realizability and Parametricity in Pure Type Systems 111

Definition 1 (second-level system). Given a PTS P = (S,A,R), we define
P 2 = (S2,A2,R2) by

S2 = S ∪ {.s/ | s ∈ S}
A2 = A ∪ {(.s1/, .s2/) | (s1, s2) ∈ A}
R2 = R ∪ {(.s1/, .s2/, .s3/), (s1, .s3/, .s3/) | (s1, s2, s3) ∈ R}

∪ {(s1, .s2/, .s2/) | (s1, s2) ∈ A}

Because we see P as a programming language and P 2 as a logic for reason-
ing about programs in P , we adopt the following terminology and conventions.
We use the metasyntactic variables s, s1, s2, . . . to range over sorts in S and
t, t1, t2, . . . to range over sorts in S2. We call type a term inhabiting a first-level
sort in some context (we write Γ # A : s for a type A), programs are inhabitants
of types (Γ # A : B : s for a program A of type B), formulas denote inhabitants
of a lifted sort (written Γ # A : .s/) and proofs are inhabitants of formulas
(Γ # A : B : .s/). We also say that types and programs are first-level terms,
and formulas and proofs are second-level terms.

If s is a sort of P , then .s/ is the sort of formulas expressing properties of
types of sort s. For each rule (s1, s2, s3) in R, (.s1/, .s2/, .s3/) maps constructs
of the programming language at the level of the logic, and (s1, .s3/, .s3/) allows
to build the quantification of programs of sort s1 in formulas of sort .s3/.

For each axiom (s1, s2) in A, we add the rule (s1, .s2/, .s2/) in order to build
the type of predicates of sort .s2/ parameterized by programs of sort s1.

Example 3. The PTS F2 has the following specification:

S2
F = { �, �, .�/, .�/ }

A2
F = { (�, �), (.�/, .�/) }

R2
F = { (�, �, �), (�, �, �), (.�/, .�/, .�/), (.�/, .�/, .�/)

(�, .�/, .�/), (�, .�/, .�/), (�, .�/, .�/) }.

We extend our variable-naming convention to V��� and V��� as follows: the
variables h, h1, h2, . . . range over V���, and the variables X , Y , Z, . . . range
over V���. The logic F2 is a second-order logic with typed individuals (Wadler
[29] gives another presentation of the same system). The sort � is the type of
types and the only inhabitant of �, while .�/ is the sort of propositions. .�/ is
inhabited by the type of propositions (.�/), the type of predicates (τ → .�/),
and in general the type of relations (τ1 → · · · → τn → .�/). The rules correspond
to various type of quantifications as follows:

– (.�/, .�/, .�/) allows to build implication between formulas, written P → Q.
– (�, .�/, .�/) allows to quantify over individuals (as in Πx : τ.P).
– (�, .�/, .�/) allows to quantify over types (as in Πα : �.P).
– (�, .�/, .�/) is used to build types of predicates depending on programs.
– (.�/, .�/, .�/) allows to quantify over predicates (as in ΠX : τ1 → · · · →

τn → .�/.P).

112 J.-P. Bernardy and M. Lasson

In F 2, truth can be encoded by ! ≡ ΠX : .�/.X → X and is proved by
Obvious ≡ λ(X : .�/)(h : X).h. The formula x =τ y ≡ ΠX : τ → .�/.X x →
X y define the Leibniz equality at type τ . The term Refl ≡ λ(α : �)(x : α)(X :
α → .�/)(h : X x).h is a proof of the reflexivity of equality Π(α : �)(x : α).x =α

x. And the induction principle over Church numerals is a formula N ≡ λx :
Nat .ΠX :Nat → .�/.(Πy : Nat .X y → X (Succ y)) → X 0 → X x.

3.1 Structure of P 2

Programs (or types) can never refer to proofs (nor formulas). In other words, a
first-level term never contains a second-level term: it is typable in P . Formally:

Theorem 1 (separation). For s ∈ S, if Γ # A : B : s (resp. Γ # B : s), then
there exists a sub-context Γ ′ of Γ such that Γ ′ #P A : B : s (resp. Γ ′ #P B : s).

Proof. By induction on the structure of terms, and relying on the generation
lemma [2, 5.2.13] and on the form of the rules in R2: assuming (t1, t2, t3) ∈ R2

then t3 ∈ S ⇒ (t1 ∈ S ∧ t2 ∈ S) and t2 ∈ S ⇒ (t1 ∈ S ∧ t3 ∈ S).

Lifting. The major part of the paper is about transformations and relations
between the first and the second level. The first and simplest transformation
lifts terms from the first level to the second level, by substituting occurrences of
a sort s by .s/ everywhere (see Fig. 1). The function is defined only on first-level
terms, and is extended to contexts in the obvious way. In addition to substituting
sorts, lifting performs renaming of a variable x in Vs to x̊ in V�s�.

Example 4. In F 2, the lifting of inhabited types gives rise to logical tautologies.
For instance, .Unit/ = .Πα : �.α → α/ = ΠX : .�/.X → X = !, and
.Nat/ = ΠX : .�/.(X → X) → (X → X).

Lemma 1 (lifting preserves typing)

Γ # A : B : s ⇒ .Γ / # .A/ : .B/ : .s/

x� = x̊

s� =
s�

Πx : A. B� = Πx̊ :
A�.
B�

λx : A. b� = λx̊ :
A�.
b�

A B� =
A�
B�

<>� = <>

Γ, x : A� =
Γ �, x̊ :
A�

�x�s�� = ẋs

�
s�� = s
�Πxs : A.B� = �B�
�Πx�s� : A.B� = Πẋs : �A�.�B�
�λxs : A.B� = �B�
�λx�s� : A.B� = λẋs : �A�.�B�
�(A B)s� = �A�
�(A B)�s�� = �A� �B�
�<>� = <>
�Γ, xs : A� = �Γ �
�Γ, x�s� : A� = �Γ �, ẋs : �A�.

Fig. 1. lifting (left) and projection (right)

Realizability and Parametricity in Pure Type Systems 113

Proof. A consequence of P 2 containing a copy of P with s mapped to .s/.
Lemma 2 (lifting preserves β-reduction)

A−→βB ⇒ .A/−→β.B/
Proof. By induction on the structure of A.

Projection. We define a projection from second-level terms into first-level terms,
which maps second-level constructs into first-level constructs. The first-level sub-
terms are removed, as well as the interactions between the first and second levels.
The reader may worry that some variable bindings are removed, potentially leav-
ing some occurrences unbound in the body of the transformed term. However,
these variables are first level, and hence their occurrences are removed too (by
the application case).

The function is defined only on second-level terms, and behaves differently
when facing pure second level or interaction terms. In order to distinguish these
cases, the projection takes sort-annotated terms as input. Like the lifting, the
projection performs renaming of each variable x in V�s� to ẋ in Vs. We postulate
that this renaming cancels that of the lifting: we have ˙̊x = x.

Example 5 (projections in F 2)

0!1 = Unit 0Obvious1 = Id 0Π(α : �)(x : α).x =α x1 = Unit 0N t1 = Nat

Lemma 3 (projection is the left inverse of lifting). 0.A/1 = A

Proof. By induction on the structure of A.

Lemma 4 (projection preserves typing)

Γ # A : B : .s/ ⇒ 0Γ 1 # 0A1 : 0B1 : s

Proof. By induction on the derivation Γ # A : B.

In contrast to lifting, which keeps a term intact, projection may remove parts of
a term, in particular abstractions at the interaction level. Therefore, β-reduction
steps may be removed by projection.

Lemma 5 (projection preserves or removes β-reduction)

If A−→βB, then either 0A1−→β0B1 or 0A1 = 0B1.

3.2 Strong Normalization

Theorem 2 (normalization). If P is strongly normalizing, so is P 2.

Proof. The proof is based on the observation that, if a term A is typable in P 2

and not normalizable, then at least either:

– one of the first-level subterms of A is not normalizable, or
– the first-level term 0A1 is not normalizable.

And yet 0A1 and the first-level subterms are typable in P (Thm. 1) which would
contradict the strong normalization of P .

114 J.-P. Bernardy and M. Lasson

3.3 Parametricity

In this section we develop Reynolds-style [23] parametricity for P , in P 2. While
parametricity theory is often defined for binary relations, we abstract from the
arity and develop the theory for an arbitrary arity n, though we omit the index
n when the arity of relations plays no role or is obvious from the context.

The definition of parametricity is done in two parts: first we define what it
means for a n-tuple of programs z to satisfy the relation generated by a type T
(z ∈ �T �n); then we define the translation from a program z of type T to a proof
�z�n that a tuple z satisfies the relation.

The definition below uses n + 1 renamings: one of them (̊·) coincides with that
of lifting, and the others map x respectively to x1, . . . , xn. The tuple A denotes n
terms Ai, where Ai is the term A where each free variable x is replaced by a fresh
variable xi.

Definition 2 (parametricity)

C ∈ �s� = C → .s/
C ∈ �Πx : A. B� = Πx : A. Πx̊ : x ∈ �A�. C x ∈ �B�
C ∈ �T � = �T �C otherwise

�x� = x̊
�λx : A. B� = λx : A. λx̊ : x ∈ �A�. �B�
�AB� = �A�B �B�
�T � = λz : T . z ∈ �T � otherwise

�<>� = <>

�Γ, x : A� = �Γ �, x : A, x̊ : x ∈ �A�
Because the syntax of values and types are unified in a PTS, each of the defini-
tions · ∈ �·� and �·� must handle all constructions. In both cases, this is done by
using a catch-all case (the last line) that refers to the other part of the definition.

Remark 1. For arity 0, parametricity specializes to lifting (�A�0 = .A/).

Example 6. For instance, in F2, we have

(f, g) ∈ �Π(α : �).α → Π(β : �).β → α� ≡ Π(α1 α2 : �)(X : α1 → α2 → .�/)
(β1 β2 : �)(Y : β1 → β2 → .�/)(x1 : α1)(x2 : α2).X x1 x2 →

Π(y1 : β1)(y2 : β2).Y y1 y2 → X (f α1 β1 x1 y1) (g α2 β2 x2 y2).

Theorem 3 (abstraction). If Γ # A : B : s, then �Γ � # �A� : (A ∈ �B�) : .s/

Proof. The result is a consequence of the following lemmas which are proved by
simultaneous induction on the typing derivation:

– A−→βB ⇒ �A�−→∗
β�B�

– Γ # A : B ⇒ �Γ � # A : B
– Γ # B : s ⇒ �Γ �, z : B # z ∈ �B� : .s/
– Γ # A : B : s ⇒ �Γ � # �A� : A ∈ �B�

Realizability and Parametricity in Pure Type Systems 115

A direct reading of the above result is as a typing judgement about translated
terms (as for lemmas 1 and 4): if A has type B, then �A� has type A ∈ �B�.
However, it can also be understood as an abstraction theorem for system P : if
a program A has type B in Γ , then various interpretations of A (A) in related
environments (�Γ �) are related, by the formula A ∈ �B�.

The system P 2 is a natural setting to express parametricity conditions for P .
Indeed, the interaction rules of the form (s, .s′/, .s′/) coming from axioms in P
are needed to make the sort case valid; and the interaction rules (s1, .s3/, .s3/)
are needed for the quantification over individuals in the product case.

3.4 Realizability

We develop here a Krivine-style [13] internalized realizability theory. Realizabil-
ity bears similarities both to the projection and the parametricity transforma-
tions defined above.

Definition 3 (realizability)

C � .s/ = C → .s/
C � Πxs : A.B = Πxs : A.C � B

C � Πx�s� : A.B = Π(ẋs : 0A1)(x�s� : ẋ � A).(C ẋ) � B
C � F = 〈F 〉C otherwise

〈x�s�〉 = x�s�

〈λxs : A.B〉 = λxs : A.〈B〉
〈λx�s� : A.B〉 = λ(ẋs : 0A1)(x�s� : ẋ � A).〈B〉
〈(AB)s〉 = (〈A〉B)s

〈(AB)�s�〉 = ((〈A〉 0B1)s 〈B〉)�s�
〈T 〉 = λzs : 0T 1. z � T otherwise

〈Γ, xs : A〉 = 〈Γ 〉, xs : A
〈Γ, x�s� : A〉 = 〈Γ 〉, ẋs : 0A1, x�s� : ẋ � A

Like the projection, the realizability transformation is applied on second-level
constructs, and behaves differently depending on whether it treats interaction
constructs or pure second-level ones. It is also similar to parametricity, as it is
defined in two parts. In the first part we define what it means for a program C
to realize a formula F (C � F); then we define the translation from a proof p to
a proof 〈p〉 that the program 0p1 satisfies the realizability predicate.

Theorem 4 (adequacy). If Γ # A : B : .s/, then 〈Γ 〉 # 〈A〉 : 0A1 � B : .s/

Proof (idea). Similar in structure to the proof of the abstraction theorem.

Example 7. In F 2, the formula y � N x unfolds to

Π(α : �)(X : Nat → α → �)(f : α → α).

(Π(n : Nat)(y : α).X n y → X (Succ n) (f y)) → Π(z : α).X 0 y → X x (y α f z)

116 J.-P. Bernardy and M. Lasson

In F 2 this formula may be used to prove a representation theorem. We can
prove that Σ # Πxy : Nat .y � N x ⇔ x =Nat y ∧ N x where Σ is a set of
extensionality axioms (∧ and ⇔ are defined by usual second-order encodings).
Let π be a proof of Πx : Nat .N x → N (f x) then # 0π1 : Nat → Nat and # 〈π〉 :
0π1 � Πx : Nat .N x → N (f x) which unfold to # 〈π〉 : Πxy : Nat .y � Nx →
0π1y � N(fx). Let m be a term in closed normal form such that # m : Nat,
we can prove N m and therefore m � N m. We now have a proof (under Σ)
that 0π1m � N (f m) and we conclude that 0π1m =Nat f m. We have proved
that the projection of any proof of Πx : Nat .N x → N (f x) can be proved
extensionally equal to f . See [29, 13, 15] for more details.

4 The Third Level

By casting both parametricity and realizability in the mold of PTSs, we are able
to discern the connections between them. The connections already surface in the
previous sections: the definitions of parametricity and realizability bear some
resemblance, and the adequacy and abstraction theorems appear suspiciously
similar. In this section we precisely spell out the connection: realizability and
parametricity can be defined in terms of each other.

Theorem 5 (realizability increases arity of parametricity). For any tuple
terms (B, C),(
B, C

)
∈ �A�n+1 = B �

(
C ∈ �A�n

)
and �A�n+1 = 〈�A�n〉.

Proof. By induction on the structure of A.

As a corollary, n-ary parametricity is the composition of lifting and n realizability
steps:

Corollary 1 (from realizability to parametricity)

C ∈ �A�n = C1 � C2 � · · · � Cn � .A/ and �A�n = 〈· · · 〈.A/〉 · · ·〉
(assuming right-associativity of �).

Proof. By induction on n. The base case uses �A�0 = .A/.

One may also wonder about the converse: is it possible to define realizability in
terms of parametricity? We can answer by the affirmative, but we need a bigger
system to do so. Indeed, we need to extend �·� to work on second-level terms,
and that is possible only if a third level is present in the system. To do so, we
can iterate the construction used in Sec. 3 to build a logic for an arbitrary PTS.

Definition 4 (third-level system). Given a PTS P = (S,A,R), we define
P 3 = (P 2)2, where the sort-lifting .·/ used by both instances of the ·2 transfor-
mation are the same.

Realizability and Parametricity in Pure Type Systems 117

Remark 2. Because the sort-lifting used by both instances of the ·2 transfor-
mation are the same, P 3 contains only three copies of P (not four). In fact
P 3 = (S3,A3,R3), where

S3 = S ∪ .S/ ∪ ..S//
A3 = A ∪ .A/ ∪ ..A//
R3 = R ∪ .R/ ∪ ..R//

∪ {(s1, .s3/, .s3/), (.s1/, ..s3//, ..s3//) | (s1, s2, s3) ∈ R}
∪ {(s1, .s2/, .s2/), (.s1/, ..s2//, ..s2//) | (s1, s2) ∈ A}

The �·� transformation is extended second-level constructs in P 2, mapping them
to third-level ones in P 3. The 0·1 transformation is be similarly extended, to
map the third level constructs to the second level, in addition of mapping the
second to the first one (only the first level is removed).

Given these extensions, we obtain that realizability is the composition of para-
metricity and projection.

Lemma 6. If A is a first-level term, then

A = 0C ∈ �A�11 and A = 0�A�11
Proof. By induction on the structure of A, using separation (Thm. 1).

Theorem 6 (from parametricity to realizability). If A is a second-level
term, then

C � A = 0.C/ ∈ �A�11 and 〈A〉 = 0�A�11
Proof. By induction on the structure of A, using the above lemma.

5 Extensions

5.1 Inductive Definitions

Even though our development assumes pure type systems, with only axioms
of the form (s1, s2), the theory easily accommodates the addition of inductive
definitions.

For parametricity, the way to extend the theory is exposed by Bernardy et al.
[5]. In brief: if for every inductive definition in the programming language there is
a corresponding inductive definition in the logic, then the abstraction theorem
holds. For instance, to the indexed inductive definition I corresponds �I�, as
defined below. (We write only one constructor cp for concision, but the result
applies to any number of constructors).

data I : Π(x1 : A1) · · · (xn : An).s where
cp : Π(x1 : Bp,1) · · · (xn1 : Bp,n1).I ap,1 · · ·ap,n

data �I� : I ∈ �Π(x1 : A1) · · · (xn : An).s� where
�cp� : cp ∈ �Π(x1 : Bp,1) · · · (xn1 : Bp,n1).I ap,1 · · · ap,n�

118 J.-P. Bernardy and M. Lasson

The result can be transported to realizability by following the correspondence
developed in the previous section. By taking the composition of �·� and 0·1 for
the definition of realizability, and knowing how to extend �·� to inductive types,
it suffices to extend 0·1 as well (respecting typing: Lem. 4). The corresponding
extension to realizability is compatible with the definition for a pure system (by
Thm. 6). Adequacy is proved by the composition of abstraction and Lem. 4.
The definition of 0·1 is straightforward: each component of the definition must
be transformed by 0·1. That is, for any inductive definition in the logic, there
must be another inductive definition in the programming language that realizes
it. For instance, given the definition I given below, one must also have 0I1. 〈I〉
is then given by 〈I〉 = 0�I�1, but can also be expanded as below.

data I : Π(x1 : A1) · · · (xn : An)..s/ where
cp : Π(x1 : Bp,1) · · · (xn1 : Bp,n1).I ap,1 · · ·ap,n

data 0I1 : 0Π(x1 : A1) · · · (xn : An)..s/1 where
0cp1 : 0Π(x1 : Bp,1) · · · (xn1 : Bp,n1).I ap,1 · · ·ap,n1

data 〈I〉 : 0I1 � (Π(x1 : A1) · · · (xn : An)..s/) where
〈cp〉 : 0cp1 � (Π(x1 : Bp,1) · · · (xn1 : Bp,n1).I ap,1 · · · ap,n)

We can use inductive types to encode usual logical connectives, and derive real-
izability for them.

Example 8 (conjunction). The encoding of conjunction in a sort .s/ is as follows:

data ∧ : .s/ → .s/ → .s/ where
conj : Π P Q : .s/.P → Q → P ∧ Q

If we apply the projection operator to the conjunction we obtain the type of its
realizers: the cartesian product in s.

data × : s → s → s where
(,) : Π α β : s.α → β → α× β

Now we can apply our realizability construction to obtain a predicate telling
what it means to realize a conjunction.

data 〈∧〉 : Π(α : s).(α → .s/) →
Π(β : s).(β → .s/) →
α× β → s where

〈conj〉 : Π(α : s)(P : α → .s/)
(β : s)(Q : β → .s/)(x : α)(y : β).
P x → Q y → 〈∧〉α P β Q (x, y)

By definition, t � P ∧Q means 〈∧〉 0P 1 〈P 〉 0Q1 〈Q〉 t. We have

t � P ∧Q ⇔ (π1 t) � P ∧ (π2 t) � Q

where π1 and π2 are projections upon Cartesian product.

Realizability and Parametricity in Pure Type Systems 119

We could build the realizers of other logical constructs in the same way: we would
obtain a sum-type for the disjunction, an empty type for falsity, and a box type
for the existential quantifier. All the following properties (corresponding to the
usual definition of the realizability predicate) would then be satisfied:

– t � P ∨Q ⇔ case twith ι1 x → x � P | ι2 x → x � Q.
– t � ⊥ ⇔ ⊥ and t � ¬P ⇔ Π(x : 0P 1).¬(x � P)
– t � ∃x : A.P ⇔ ∃x : A.(unbox t) � P

where case . . .with . . . is the destruction of the sum type, and unbox is the
destructor of the box type.

5.2 Program Extraction and Computational Irrelevance

An application of the theory developed so far is the extraction of programs from
proofs. Indeed, an implication of the adequacy theorem is that the program
0A1, obtained by projection of a proof A of a formula B, corresponds to an
implementation of B, viewed as a specification. One says that 0·1 implements
program extraction.

For example, applying extraction to an expression involving vectors (V ec :
(A : .�/) → Nat → .�/) yields a program over lists. This means that programs
can be justified in the rich system P 2, and realized in the simple system P .
Practical benefits include a reduction in memory usage: Brady et al. [6] measure
an 80% reduction using a technique with similar goals.

While P 2 is already much more expressive than P , it is possible to further in-
crease the expressive power of the system, while retaining the adequacy theorem,
by allowing quantification of first-level terms by second-level terms.

Definition 5 (P 2′
). Let P = (S,A,R), we define P 2′

= (S2′
,A2′

,R2′
)

S2′
= S ∪ {.s/ | s ∈ S}

A2′
= A ∪ {(.s1/, .s2/) | (s1, s2) ∈ A}

R2′
= R ∪ {(.s1/, .s2/, .s3/), (s1, .s3/, .s3/), (.s1/, s3, s3) | (s1, s2, s3) ∈ R}

∪ {(s1, .s2/, .s2/), (.s1/, s2, s2) | (s1, s2) ∈ A}

The result is a symmetric system, with two copies of P . Within either side of the
system, one can reason about terms belonging to the other side. Furthermore,
either side has a computational interpretation where the terms of the other side
are irrelevant. For the second level, this interpretation is given by 0·1.

Even though there is no separation between first and second level in P 2′
,

adequacy is preserved: the addition of rules of the form (.s1/, s2, s3) only adds
first level terms, which are removed by projection.

6 Related Work and Conclusion

Our work is based on Krivine-style realizability [13] and Reynolds-style para-
metricity [23], which have both spawned large bodies of work.

120 J.-P. Bernardy and M. Lasson

Logics for parametricity. Study of parametricity is typically semantic, includ-
ing the seminal work of Reynolds [23]. There, the concern is to capture the
polymorphic character of λ-calculi (typically System F) in a model.

Mairson [16] pioneered a different angle of study, where the expressions of the
programming language are (syntactically) translated to formulas describing the
program. That style has then been picked by various authors before us, including
Abadi et al. [1], Plotkin and Abadi [22], Bernardy et al. [5].

Plotkin and Abadi [22] introduce a logic for parametricity, similar to F2, but
with several additions. The most important addition is that of a parametricity
axiom. This addition allows to prove the initiality of Church-style encoding of
types.

Wadler [29] defines essentially the same concepts as us, but in the special case
of System F. He points out that realizability transforms unary parametricity
into binary parametricity, but does not generalize to arbitrary arity. We find the
n = 0 case particularly interesting, as it shows that parametricity can be con-
structed purely in terms of realizability and a trivial lifting to the second level.
We additionally show that realizability can be obtained by composing realizabil-
ity and projection, while Wadler only defines the realizability transformation as
a separate construct.

The parametricity transformation and the abstraction theorem that we expose
here are a modified version of [5]. The added benefits of the present version is
that we handle finite PTSs, and we allow the target system to be different from
the source. The possible separation of source and targets is already implicit in
that paper though. The way we handle finite PTSs is by separating the treatment
of types and programs.

Realizability. Our realizability construction can be understood as an extension
of the work of Paulin-Mohring [20], providing a realizability interpretation for
a variant of the Calculus of Construction. Paulin-Mohring [20] splits CC in
two levels; one where � becomes Prop and one where it becomes Spec. Perhaps
counter-intuitively, Prop lies in what we call the first level; and Spec lies in
the second level. Indeed, Prop is removed from the realizers. The system is
symmetric, as the one we expose in Sec. 5.2, in the sense that there is both
a rule (Spec,Prop,Prop) and (Prop,Spec,Spec). In order to see that Paulin-
Mohring’s construction as a special case of ours, it is necessary to recognize a
number of small differences:

1. The sort Spec is transformed into Prop in the realizability transformation,
whereas we would keep Spec.

2. The sorts of the original system use a different set of names (Data and
Order). Therefore the sort Spec is transformed into Data in the projection,
whereas we would use Prop.

3. The types of Spec and Prop inhabit the same sort, namely Type.
4. There is elimination from Spec to Prop, breaking the computational irrele-

vance in that direction.

The first two differences are essentially renamings, and thus unimportant.

Realizability and Parametricity in Pure Type Systems 121

Connections. We are unaware of previous work showing the connection between
realizability and parametricity, at least as clearly as we do. Wadler [29] comes
close, giving a version of Thm. 5 specialized to System F, but not its converse,
Thm. 6. Mairson [16] mentions that his work on parametricity is directly inspired
by that of Leivant [15] on realizability, but does not formalize the parallels.
Conclusion. We have given an account of parametricity and realizability in the
framework of PTSs. The result is very concise: the definitions occupy only a
dozen of lines. By recognizing the parallels between the two, we are able to
further shrink the number of primitive concepts.

Our work points the way towards the transportation of every parametricity
theory into a corresponding realizability theory, and vice versa.

Acknowledgments. Thanks to Andreas Abel, Thorsten Altenkirch, Thierry Co-
quand, Peter Dybjer and Guilhem Moulin for helpful comments and discussions.

References

[1] Abadi, M., Cardelli, L., Curien, P.: Formal parametric polymorphism. In: Proc.
of POPL 1993, pp. 157–170. ACM, New York (1993)

[2] Barendregt, H.P.: Lambda calculi with types. In: Handbook of Logic in Computer
Science, vol. 2, pp. 117–309 (1992)

[3] Berardi, S.: Type Dependence and Constructive Mathematics. PhD thesis, Dipar-
timento di Informatica, Torino (1989)

[4] Bernardy, J.-P., Jansson, P., Claessen, K.: Testing polymorphic properties. In:
Gordon, A. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 125–144. Springer, Heidelberg
(2010)

[5] Bernardy, J.-P., Jansson, P., Paterson, R.: Parametricity and dependent types. In:
Proc. of ICFP 2010, pp. 345–356. ACM, New York (2010)

[6] Brady, E., McBride, C., McKinna, J.: Inductive families need not store their
indices. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS,
vol. 3085, pp. 115–129. Springer, Heidelberg (2004)

[7] Gill, A., Launchbury, J., Peyton Jones, S.: A short cut to deforestation. In: Proc.
of FPCA, pp. 223–232. ACM, New York (1993)

[8] Girard, J.-Y.: Interprétation fonctionnelle et elimination des coupures de
l’arithmétique d’ordre supérieur. Thése d’état, Université de Paris 7 (1972)

[9] Harrop, R.: On disjunctions and existential statements in intuitionistic systems of
logic. Mathematische Annalen 132(4), 347–361 (1956)

[10] Kleene, S.C.: On the interpretation of intuitionistic number theory. J. of Symbolic
Logic 10(4), 109–124 (1945)

[11] Kleene, S.C.: Introduction to metamathematics. Wolters-Noordhoff (1971)
[12] Kreisel, G.: Interpretation of analysis by means of constructive functionals of finite

types. In: Heyting, A. (ed.) Constructivity in mathematics, pp. 101–128 (1959)
[13] Krivine, J.-L.: Lambda-calcul types et modèles. Masson (1990)
[14] Krivine, J.-L., Parigot, M.: Programming with proofs. J. Inf. Process. Cy-

bern. 26(3), 149–167 (1990)
[15] Leivant, D.: Contracting proofs to programs. Logic and Comp. Sci., pp. 279–327

(1990)
[16] Mairson, H.: Outline of a proof theory of parametricity. In: Hughes, J. (ed.)

FPCA 1991. LNCS, vol. 523, pp. 313–327. Springer, Heidelberg (1991)

122 J.-P. Bernardy and M. Lasson

[17] McBride, C., McKinna, J.: The view from the left. J. Funct. Program. 14(01),
69–111 (2004)

[18] Milner, R.: Logic for Computable Functions: description of a machine implemen-
tation. Artificial Intelligence (1972)

[19] Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers Tekniska Högskola (2007)

[20] Paulin-Mohring, C.: Extracting Fω’s programs from proofs in the calculus of con-
structions. In: POPL 1989, pp. 89–104. ACM, New York (1989)

[21] Paulin-Mohring, C.: Extraction de programmes dans le Calcul des Constructions.
PhD thesis, Université Paris 7 (1989)

[22] Plotkin, G., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M.,
Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 361–375. Springer, Heidelberg
(1993)

[23] Reynolds, J.C.: Types, abstraction and parametric polymorphism. Information
processing 83(1), 513–523 (1983)

[24] Staples, J.: Combinator realizability of constructive finite type analysis.
Cambridge Summer School in Mathematical Logic, pp. 253–273 (1973)

[25] The Coq development team. The Coq proof assistant (2010)
[26] Troelstra, A.: Realizability. In: Handbook of proof theory. Elsevier, Amsterdam

(1998)
[27] Van Oosten, J.: Realizability: a historical essay. Mathematical Structures in Comp.

Sci. 12(03), 239–263 (2002)
[28] Wadler, P.: Theorems for free. In: Proc. of FPCA 1989, pp. 347–359. ACM,

New York (1989)
[29] Wadler, P.: The Girard–Reynolds isomorphism. Theor. Comp. Sci. 375(1–3), 201–

226 (2007)

Sound Bisimulations for Higher-Order Distributed
Process Calculus�

Adrien Piérard and Eijiro Sumii��

Tohoku University
{adrien,sumii}@kb.ecei.tohoku.ac.jp

Abstract. While distributed systems with transfer of processes have become per-
vasive, methods for reasoning about their behaviour are underdeveloped. In this
paper we propose a bisimulation technique for proving behavioural equivalence
of such systems modelled in the higher-order π-calculus with passivation (and
restriction). Previous research for this calculus is limited to context bisimulations
and normal bisimulations which are either impractical or unsound. In contrast,
we provide a sound and useful definition of environmental bisimulations, with
several non-trivial examples. Technically, a central point in our bisimulations is
the clause for parallel composition, which must account for passivation of the
spawned processes in the middle of their execution.

1 Introduction

1.1 Background

Higher-order distributed systems are ubiquitous in today’s computing environment. To
name but a few examples, companies like Dell and Hewlett-Packard sell products using
virtual machine live migration [14,3], and Gmail users execute remote JavaScript code
on local browsers. In this paper we call higher-order the ability to transfer processes,
and distribution the possibility of location-dependent system behaviour. In spite of the
de facto importance of such systems, they are hard to analyse because of their inherent
complexity.

The π-calculus [8] and its dialects prevail as models of concurrency, and several vari-
ations of these calculi have been designed for distribution. First-order variations include
the ambient calculus [1] and Dπ [2], while higher-order include more recent Homer [4]
and Kell [15] calculi. In this paper, we focus on the higher-order π-calculus with pas-
sivation [7], a simple high-level construct to express distribution. It is an extension of
the higher-order π-calculus [9] (with which the reader is assumed to be familiar) with

located processes a[P] and two additional transition rules: a[P]
a〈P 〉−−−→ 0 (PASSIV), and

a[P] α−→ a[P ′] if P
α−→ P ′ (TRANSP).

� Appendix with full proofs at http://www.kb.ecei.tohoku.ac.jp/˜adrien/
pubs/SoundAppendix.pdf

�� This research is partially supported by KAKENHI 22300005, the Nakajima Foundation, and
the Casio Science Promotion Foundation. The first author is partially supported by the Global
COE Program CERIES.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 123–137, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.kb.ecei.tohoku.ac.jp/~{}adrien/pubs/SoundAppendix.pdf
http://www.kb.ecei.tohoku.ac.jp/~{}adrien/pubs/SoundAppendix.pdf

124 A. Piérard and E. Sumii

The new syntax a[P] reads as “process P located at a” where a is a name. Rule
TRANSP specifies the transparency of locations, i.e. that a location has no impact on
the transitions of the located process. Rule PASSIV indicates that a located process can
be passivated, that is, be output to a channel of the same name as the location. Using
passivation, various characteristics of distributed systems are expressible. For instance,
failure of process P located at a can be modelled like a[P] | a(X).fail −→ 0 | fail , and
migration of process Q from location b to c like b[P] | b(X).c[X]−→ 0 | c[P].

One way to analyse the behaviour of systems is to compare implementations and
specifications. Such comparison calls for satisfying notions of behavioural equivalence,
such as reduction-closed barbed equivalence (and congruence) [5], written ≈ (and ≈c

respectively) in this paper.
Unfortunately, these equivalences have succinct definitions that are not very practi-

cal as a proof technique, for they both include a condition that quantifies over arbitrary
processes, like: if P ≈ Q then ∀R. P | R ≈ Q | R. Therefore, more convenient defi-
nitions like bisimulations, for which membership implies behavioural equivalence, and
which come with a co-inductive proof method, are sought after.

Still, the combination of both higher order and distribution has long been considered
difficult. Recent research on higher-order process calculi led to defining sound context
bisimulations [10] (often at the cost of appealing to Howe’s method [6] for proving
congruence) but those bisimulations suffer from their heavy use of universal quantifica-
tion: suppose that νc̃.a〈M〉.P X νd̃.a〈N〉.Q, where X is a context bisimulation; then
it is roughly required that for any process R, we have νc̃.(P | R{M/X}) X νd̃.(Q |
R{N/X}). Not only must we consider the outputs M and N , but we must also handle
interactions of arbitrary R with the continuation processes P and Q. Alas, this almost
comes down to showing reduction-closed barbed equivalence! In the higher-order π-
calculus, by means of encoding into a first-order calculus, normal bisimulations [10]
coincide with (and are a practical alternative to) context bisimulations. Unfortunately,
normal bisimulations have proved to be unsound in the presence of passivation (and
restriction) [7]. While this result cast a doubt on whether sound normal bisimulations
exist for higher-order distributed calculi, it did not affect the potential of environmental
bisimulations [16,17,12,13] as a useful proof technique for behavioural equivalence in
those calculi.

1.2 Our Contribution

To the best of our knowledge, there are not yet any useful sound bisimulations for
higher-order distributed process calculi. In this paper we develop environmental (weak)
bisimulations for the higher-order π-calculus with passivation, which (1) are sound with
respect to reduction-closed barbed equivalence, (2) can actually be used to prove be-
havioural equivalence of non-trivial processes (with restrictions), and (3) can also be
used to prove reduction-closed barbed congruence of processes (see Corollary 1). To
prove reduction-closed barbed equivalence (and congruence), we find a new clause to
guarantee preservation of bisimilarity by parallel composition of arbitrary processes.
Unlike the corresponding clause in previous research [7,13], it can also handle the
later removal (i.e. passivation) of these processes while keeping the bisimulation proofs
tractable. Several examples are given, thereby supporting our claim of the first useful

Sound Bisimulations for Higher-Order Distributed Process Calculus 125

bisimulations for a higher-order distributed process calculus. Moreover, we define an
up-to context variant of the environmental bisimulations that significantly lightens the
burden of equivalence proofs, as utilised in the examples.

Overview of the bisimulation: We now outline the definition of our environmental
bisimulations. (Generalities on environmental bisimulations can be found in [12].) We
define an environmental bisimulation X as a set of quadruples (r, E , P, Q) where r is a
set of names (i.e. channels and locations), E is a binary relation (called the environment)
on terms, and P , Q are processes. The bisimulation is a game where the processes P
and Q are compared to each other by an attacker (or observer) who knows and can use
the terms in the environment E and the names in r. For readability, the membership
(r, E , P, Q) ∈ X is often written P XE;r Q, and should be understood as “processes P
and Q are bisimilar, under the environment E and the known names r.”

The environmental bisimilarity is co-inductively defined by several conditions con-
cerning the tested processes and the knowledge. As usual with weak bisimulations, we
require that an internal transition by one of the processes is matched by zero or more
internal transitions by the other, and that the remnants are still bisimilar.

As usual with (more recent and less common) environmental bisimulations, we re-
quire that whenever a term M is output to a known channel, the other tested process
can output another term N to the same channel, and that the residues are bisimilar un-
der the environment extended with the pair (M, N). The extension of the environment
stands for the growth of knowledge of the attacker of the bisimulation game who ob-
served the outputs (M, N), although he cannot analyse them. This spells out like: for

any P XE;r Q and a ∈ r, if P
νc̃.a〈M〉−−−−−→ P ′ for fresh c̃, then Q

νd̃.a〈N〉
=====⇒ Q′ for fresh d̃

and P ′ XE∪{(M,N)};r Q′.
Unsurprisingly, input must be doable on the same known channel by each process,

and the continuations must still be bisimilar under the same environment since nothing
is learnt by the context. However, we require that the input terms are generated from the
context closure of the environment. Intuitively, this closure represents all the processes
an attacker can build by combining what he has learnt from previous outputs. Roughly,
we define it as:

(E ; r)� = {(C[M̃], C[Ñ]) | C context , fn(C) ⊆ r, M̃ E Ñ}
where M̃ denotes a sequence M0, . . . , Mn, and M̃EÑ means that for all 0 ≤ i ≤ n,
MiENi. Therefore, the input clause looks like: for any P XE;r Q, a ∈ r and (M, N) ∈
(E ; r)�, if P

a(M)−−−→ P ′, then Q
a(N)
===⇒Q′ and P ′ XE;r Q′.

The set r of known names can be extended at will by the observer, provided that the
new names are fresh: for any P XE;r Q and n fresh, we have P XE;r∪{n} Q.

Parallel composition: The last clause is crucial to the soundness and usefulness of
environmental bisimulations for languages with passivation, and not as straightforward
as the other clauses. The idea at its base is that not only may an observer run arbitrary
processes R in parallel to the tested ones (as in reduction-closed barbed equivalence),
but he may also run arbitrary processes M, N he assembled from previous observations.
It is critical to ensure that bisimilarity (and hopefully equivalence) is preserved by such
parallel composition, and that this property can be easily proved. As (E ; r)� is this set of

126 A. Piérard and E. Sumii

processes that can be assembled from previous observations, we would naively expect
the appropriate clause to look like:

For any P XE;r Q and (M, N) ∈ (E ; r)�, we have P |M XE;r Q |N
but this subsumes the already impractical clause of reduction-closed barbed equivalence
which we want to get round. Previous research [7,13] uses a weaker condition:

For any P XE;r Q and (M, N) ∈ E , we have P |M XE;r Q |N
arguing that (E ; r)� can informally do no more observations than E , but this clause is
unsound in the presence of passivation. The reason behind the unsoundness is that, in
our settings, not only can a context spawn new processes M , N , but it can also remove
running processes it created by passivating them later on. For example, consider the
following processes P = a〈R〉.!R and Q = a〈0〉.!R. Under the above weak condition,
it would be easy to construct an environmental bisimulation that relates P and Q. How-
ever, a process a(X).m[X] may distinguish them. Indeed, it may receive processes R
and start running it in location m, or may receive process 0 and run a copy of R from
!R. If R is a process doing several sequential actions (for example if R = lock .unlock)
and is passivated in the middle of its execution, then the remaining processes after pas-
sivation would not be equivalent any more.

To account for this new situation, we decide to modify the condition on the provenance
of process that can be spawned, drawing them from {(a[M], a[N]) | a ∈ r, (M, N) ∈
E}, thus giving the clause:

For any P XE;r Q, a ∈ r and (M, N) ∈ E , we have P | a[M] XE;r Q | a[N].
The new condition allows for any running process that has been previously created by
the observer to be passivated, that is, removed from the current test. This clause is much
more tractable than the first one using (E ; r)� and, unlike the second one using only E ,
leads to sound environmental bisimulations (albeit with a limitation; see Remark 1).

Example: With our environmental bisimulations, non-trivial equivalence of higher-
order distributed processes can be shown, such as P0 = !a[e | e] and Q0 = !a[e] | !a[e],
where e abbreviates e(X).0 and e is e〈0〉.0. We explain here informally how we build
a bisimulation X relating those processes.

X = {(r, E , P, Q) | r ⊇ {a, e}, E = {0, e, e, e | e} × {0, e, e},
P ≡ P0 |

∏n
i=1 li[Mi], Q ≡ Q0 |

∏n
i=1 li[Ni], n ≥ 0,

l̃ ∈ r, (M̃, Ñ) ∈ E}

Since we want P0 XE;r Q0, the spawning clause of the bisimulation requires that for
any (M1, N1) ∈ E and l1 ∈ r, we have P0 | l1[M1] XE;r Q0 | l1[N1]. Then, by repeat-
edly applying this clause, we obtain (P0 |

∏n
i=1 li[Mi]) XE;r (Q0 |

∏n
i=1 li[Ni]). Since

the observer can add fresh names at will, we require r to be a superset of the free names
{a, e} of P0 and Q0. Also, we have the intuition that the only possible outputs from P
and Q are processes e | e, e, e, and 0. Thus, we set ahead E as the Cartesian product of
{0, e, e, e | e} with {0, e, e}, that is, the combination of expectable outputs. We empha-
size that it is indeed reasonable to relate e, e and e | e to 0, e and e in E for the observer
cannot analyse the pairs: he can only use them along the tested processes P and Q
which, by the design of environmental bisimulations, will make up for the differences.

Sound Bisimulations for Higher-Order Distributed Process Calculus 127

P0 | a[γ] |∏n
i=1 li[Mi] (i)

= P0 |∏n+1
i=1 li[Mi] for ln+1 = a, Mn+1 = γ

P0 |∏n
i=1 li[Mi] P0 |∏n−1

i=1 li[Mi] (ii)

P0 |∏n−1
i=1 li[Mi] | ln[M ′

n] (iii)

≡ P0 | a[e | e] |∏n−1
i=1 li[Mi] | ln[M ′

n]

= P0 |∏n+1
i=1 li[M ′

i]

for M ′
i = Mi (0 ≤ i ≤ n − 1), Mn

α−→ M ′
n,

ln+1 = a, Mn+1 = e | e.

Q0 | a[0] |∏n
i=1 li[Ni] (i)

= Q0 |∏n+1
i=1 li[Ni] for ln+1 = a, Nn+1 = 0

Q0 |∏n
i=1 li[Ni] Q0 |∏n−1

i=1 li[Ni] (ii)

Q0 | a[0] |∏n
i=1 li[Ni] (iii)

= Q0 |∏n+1
i=1 li[Ni] for ln+1 = a, Nn+1 = 0

γ ∈ {e, e}

ln〈Mn〉

α ∈ {e, e}

γ

ln〈Nn〉

α

Fig. 1. Simulation of observable transitions

Let us now observe the possible transitions from P and their corresponding transi-
tions from Q by glossing over two pairs of trees, where related branches represent the
correspondences. (Simulation in the other direction is similar and omitted for brevity.)
First, let us consider the input and output actions as shown in Figure 1. (i) When P0
does an input action e or an output action e, it leaves behind a process a[e] or a[e],
respectively. Q0 can also do the same action, leaving a[0]. Since both (e, 0) and (e, 0)
are in E , we can add the leftover processes to the respective products

∏
; (ii) output by

passivation is trivial to match (without loss of generality, we only show the case i = n),
and (iii) observable actions α of an Mn, leaving a residue M ′

n, are matched by one of
Q0’s a[α], leaving a[0]. To pair with this a[0], we replicate an a[e |e] from P0, and then,
as in (i), they add up to the products

∏
.

In a similar way, we explain how τ transitions of P are matched by Q, with another
pair of transitions trees described in Figure 2.

(1) When an a[e | e] from P0 turns into a[0], Q does not have to do any action,
for we work with weak bisimulations. By replication, Q can produce a copy a[e] (or
alternatively a[e]) from Q0, and since (0, e) is in E , we can add the a[0] and the copy
a[e] to the products

∏
; (2) P can also make a reaction between two copies of a[e | e]

in P0, leaving behind a[e] and a[e]. As in (1), Q can draw two copies of a[e] from Q0,
and each product can be enlarged by two elements; (3) it is also possible for Mn = e | e
to do a τ transition, becoming M ′

n = 0. It stands that (M ′
n, Nn) ∈ E and we are done;

(4) very similarly, two processes Mn and Mn−1 may react, becoming M ′
n and M ′

n−1.
It stands also that (M ′

n−1, Nn−1) and (M ′
n, Nn) are in E , so the resulting processes are

still related; (5) it is possible for Mn to follow the transition Mn
α−→M ′

n and react with
a copy from P0 which leaves behind a[α] (since α has been consumed to conclude the

128 A. Piérard and E. Sumii

P0 | a[0] | Qn
i=1 li[Mi] (1)

= P0 | Qn+1
i=1 li[Mi] for ln+1 = a, Mn+1 = 0

P0 | a[e] | a[e] | Qn
i=1 li[Mi] (2)

= P0 | Qn+2
i=1 li[Mi] for ln+1 = ln+2 = a, Mn+1 = e, Mn+2 = e

P0 | Qn
i=1 li[M ′

i] (3)

for Mi = M ′
i (0 ≤ i ≤ n − 1), Mn

τ−→ M ′
n

P0 | Qn
i=1 li[Mi] P0 | Qn

i=1 li[M ′
i] (4)

for Mi = M ′
i (0 ≤ i ≤ n − 2), Mn−1

e−→ M ′
n−1, Mn

e−→ M ′
n

P0 | a[α] | Qn
i=1 li[M ′

i] = P0 | Qn+1
i=1 li[M ′

i] (5)

for M ′
i = Mi (0 ≤ i ≤ n − 1), Mn

α−→ M ′
n,

α ∈ {e, e}, ln+1 = a, Mn+1 = α

P0 | a[e] | Qn−1
i=1 li[Mi] = P0 | Qn

i=1 l′i[M
′
i] (6)

for l′i = li, M ′
i = Mi (0 ≤ i ≤ n − 1), l′n = a, M ′

n = e

P0 | Qn−2
i=1 li[Mi] | ln−1[M ′

n−1] (7)

≡ P0 | a[e | e] | Qn−2
i=1 li[Mi] | ln−1[M ′

n−1] = P0 | Qn
i=1 l′i[M

′
i]

for M ′
i = Mi (0 ≤ i ≤ n − 2), Mn−1

e−→ M ′
n−1,

l′i = li (0 ≤ i ≤ n − 1), l′n = a, M ′
n = e | e

Q0 | Qn
i=1 li[Ni] ≡ Q0 | a[e] | Qn

i=1 li[Ni] (1)

= Q0 | Qn+1
i=1 li[Ni] for ln+1 = a, Nn+1 = e

Q0 | Qn
i=1 li[Ni] ≡ Q0 | a[e] | a[e] | Qn

i=1 li[Ni] (2)

= Q0 | Qn+2
i=1 li[Ni] for ln+1 = ln+2 = a, Nn+1 = Nn+2 = e

Q0 | Qn
i=1 li[Ni] (3)

Q0 | Qn
i=1 li[Ni] Q0 | Qn

i=1 li[Ni] (4)

Q0 | Qn
i=1 li[Ni] ≡ Q0 | a[e] | Qn

i=1 li[Ni] (5)

= Q0 | Qn+1
i=1 li[Ni] for ln+1 = a, Nn+1 = e

Q0 | a[0] | Qn−1
i=1 li[Ni] = Q0 | Qn

i=1 l′i[N
′
i] (6)

for l′i = li, N ′
i = Ni (0 ≤ i ≤ n − 1), l′n = a, N ′

n = 0

Q0 | a[0] | Qn−1
i=1 li[Ni] = Q0 | Qn

i=1 l′i[N
′
i] (7)

for l′i = li, N ′
i = Ni (0 ≤ i ≤ n − 1), l′n = a, N ′

n = 0

Fig. 2. Simulation of internal transitions (dotted lines mean zero transitions)

Sound Bisimulations for Higher-Order Distributed Process Calculus 129

reaction). Again, it stands that M ′
n and Nn are related by E , and that we can draw an

a[e] from Q0 to pair it with the residue M ′
n in the products

∏
; (6) also, a copy a[e | e]

from P0 may passivate an li[Mi], provided li = e, and leave a residue a[e]. Q can do
the same passivation using Q0’s a[e], and leave a[0]. As it happens that (e, 0) is in E ,
the residues can be added to the products too; (7) finally, the process ln[Mn], if ln = e,
may be passivated by Mn−1, reducing the size of P ’s product. Q can passivate ln[Nn]
too, using a copy a[e] from P0, which becomes a[0] after the reaction. Q’s product too
is shorter, but we need to add the a[0] to it. To do so, we draw a copy a[e | e] from P0,
and since (e | e, 0) is in E , a[e | e] and a[0] are merged into their respective product.

This ends the sketch of the proof that X is an environmental bisimulation, and there-
fore that !a[e | e] and !a[e] | a[e] are behaviourally equivalent.

1.3 Overview of the Paper

The rest of this paper is structured as follows. In Section 2 we describe the higher-order
π-calculus with passivation. In Section 3 we formalize our environmental bisimulations.
In Section 4 we give some examples of bisimilar processes. In Section 5, we bring up
some future work to conclude our paper.

2 Higher-Order π-Calculus with Passivation

We introduce a slight variation of the higher-order π-calculus with passivation [7]—
HOπP for short—through its syntax and a labelled transitions system.

2.1 Syntax

The syntax of our HOπP processes P , Q is given by the following grammar, very
similar to that of Lenglet et al. [7] (the higher-order π-calculus extended with located
processes and their passivation):

P, Q ::= 0 | a(X).P | a〈M〉.P | (P | P) | a[P] | νa.P | !P | run(M)
M, N ::= X | ‘P

X ranges over the set of variables, and a over the set of names which can be used for
both locations and channels. a[P] denotes the process P running in location a. To define
a general up-to context technique (Definition 2, see also Section 5), we distinguish terms
M , N from processes P , Q and adopt explicit syntax for processes as terms ‘P and their
execution run(M).

2.2 Labelled Transitions System

We define n , fn , bn and fv to be the functions that return respectively the set of names,
free names, bound names and free variables of a process or an action. We abbreviate a
(possibly empty) sequence x0, x1, . . . , xn as x̃ for any meta-variable x. The transition
semantics of HOπP is given by the following labelled transition system, which is based
on that of the higher-order π-calculus (omitting symmetric rules PAR-R and REACT-R):

130 A. Piérard and E. Sumii

a(X).P
a(M)−−−→ P{M/X}

HO-IN

a〈M〉.P a〈M〉−−−→ P
HO-OUT

P1
α−→ P ′

1 bn(α) ∩ fn(P2) = ∅
P1 | P2

α−→ P ′
1 | P2

PAR-L
!P | P α−→ P ′

!P α−→ P ′ REP

P1
(νb̃).a〈M〉−−−−−−→ P ′

1 P2
a(M)−−−→ P ′

2 {b̃} ∩ fn(P2) = ∅
P1 | P2

τ−→ νb̃.(P ′
1 | P ′

2)
REACT-L

P
α−→ P ′ a �∈ n(α)

νa.P
α−→ νa.P ′ GUARD

P
(νb̃).a〈M〉−−−−−−→ P ′ c �= a c ∈ fn(M) \ {b̃}

νc.P
ν(b̃,c).a〈M〉−−−−−−−→ P ′

EXTR

extended with the following three rules:

P
α−→ P ′

a[P] α−→ a[P ′]
TRANSP

a[P]
a〈‘P 〉−−−→ 0

PASSIV

run(‘P) τ−→ P
RUN

Assuming again knowledge of the standard higher-order π-calculus [9,11], we only ex-
plain below the three added rules that are not part of it. The Transp rule expresses
the transparency of locations, the fact that transitions can happen below a location and
be observed outside its boundary. The Passiv rule illustrates that, at any time, a pro-
cess running under a location can be passivated (stopped and turned into a term) and
sent along the channel corresponding to the location’s name. Quotation of the process
output reminds us that higher-order communications transport terms. Finally, the Run
rule shows how, at the cost of an internal transition, a process term be instantiated. As
usual with small-steps semantics, transition does not progress for undefined cases (such
as run(X)) or when the assumptions are not satisfied.

Henceforth, we shall write a.P to mean a〈‘0〉.P and a.P for a(X).P if X �∈ fv(P).
We shall also write ≡ for the structural congruence, whose definition is standard (see
the appendix, Definition A.1).

3 Environmental Bisimulations of HOπP

Given the higher-order nature of the language, and in order to get round the universal
quantification issue of context bisimulations, we would like observations (terms) to
be stored and reusable for further testing. To this end, let us define an environmental
relationX as a set of elements (r, E , P, Q) where r is a finite set of names, E is a binary
relation (with finitely many free names) on variable-closed terms (i.e. terms with no
free variables), and P and Q are variable-closed processes.

We generally write x⊕S to express the set union {x} ∪ S. We also use graphically
convenient notation P XE;r Q to mean (r, E , P, Q) ∈ X and define the term context
closure (E ; r)� = E ∪ {(‘P, ‘Q) | (P, Q) ∈ (E ; r)◦} with the process context closure
(E ; r)◦ = {(C[M̃], C[Ñ]) | M̃EÑ , C context, bn(C) ∩ fn(E , r) = ∅, fn(C) ⊆ r},
where a context is a process with zero or more holes for terms. Note the distinction of
terms ‘P , ‘Q from processes P , Q. We point out that (∅; r)� is the identity on terms

Sound Bisimulations for Higher-Order Distributed Process Calculus 131

with free names in r, that (E ; r)� includes E by definition, and that the context closure
operations are monotonic on E (and r). Therefore, for any E and r, the set (E ; r)�

includes the identity (∅; r)� too. Also, we use the notations S.1 and S.2 to denote the
first and second projections of a relation (i.e. set of pairs) S. Finally, we define weak
transitions =⇒ as the reflexive, transitive closure of

τ−→, and
α=⇒ as =⇒ α−→ =⇒ for α �= τ

(and define
τ=⇒ as =⇒).

We can now define environmental bisimulations formally:

Definition 1. An environmental relationX is an environmental bisimulation if P XE;r Q
implies:

1. if P
τ−→ P ′, then ∃Q′. Q =⇒Q′ and P ′ XE;r Q′,

2. if P
a(M)−−−→ P ′ with a ∈ r, and if (M, N) ∈ (E ; r)�, then ∃Q′. Q

a(N)
===⇒ Q′ and

P ′ XE;r Q′,

3. if P
νb̃.a〈M〉−−−−−→ P ′ with a ∈ r and b̃ �∈ fn(r, E .1), then ∃Q′, N. Q

νc̃.a〈N〉
=====⇒ Q′ with

c̃ �∈ fn(r, E .2) and P ′ X(M,N)⊕E;r Q′,
4. for any (‘P1, ‘Q1) ∈ E and a ∈ r, we have P | a[P1] XE;r Q | a[Q1],
5. for any n �∈ fn(E , P, Q), we have P XE;n⊕r Q, and
6. the converse of 1, 2 and 3 on Q’s transitions.

Modulo the symmetry resulting from clause 6, clause 1 is usual; clause 2 enforces
bisimilarity to be preserved by any input that can be built from the knowledge, hence
the use of the context closure; clause 3 enlarges the knowledge of the observer with the
leaked out terms. Clause 4 allows the observer to spawn (and immediately run) terms
concurrently to the tested processes, while clause 5 shows that he can also create fresh
names at will.

A few points related to the handling of free names are worth mentioning: as the set
of free names in E is finite, clause 5 can always be applied; therefore, the attacker can
add arbitrary fresh names to the set r of known names so as to use them in terms M and
N in clause 2. Fresh b̃ and c̃ in clause 3 also exist thanks to the finiteness of free names
in E and r.

We define environmental bisimilarity ∼ as the union of all environmental bisimula-
tions, and it holds that it is itself an environmental bisimulation (all the conditions above
are monotone on X). Therefore, P ∼E;r Q if and only if P XE;r Q for some environ-
mental bisimulation X . We do particularly care about the situation where E = ∅ and
r = fn(P, Q). It corresponds to the equivalence of two processes when the observer
knows all of their free names (and thus can do all observations), but has not yet learnt
any output pair.

For improving the practicality of our bisimulation proof method, let us devise an up-
to context technique [11, p. 86]: for an environmental relation X , we write P X �

E;r Q

if P ≡ νc̃.(P0 | P1), Q ≡ νd̃.(Q0 | Q1), P0 XE′;r′ Q0, (P1, Q1) ∈ (E ′; r′)◦, E ⊆
(E ′; r′)�, r ⊆ r′, and {c̃} ∩ fn(r, E .1) = {d̃} ∩ fn(r, E .2) = ∅. As a matter of fact,
this is actually an up-to context and up-to environment and up-to restriction and up-to
structural congruence technique, but because of the clumsiness of this appellation we
will restrain ourselves to “up-to context” to preserve clarity. To roughly explain the

132 A. Piérard and E. Sumii

convenience behind this notation and its (long) name: (1) “up-to context” states that we
can take any (P1, Q1) from the (process) context closure (E ′; r′)◦ of the environment E ′

(with free names in r′) and execute them in parallel with processes P0 and Q0 related
by XE′;r′ ; similarly, we allow environments E with terms that are not in E ′ itself but
are in the (term) context closure (E ′; r′)�; (2) “up-to environment” states that, when
proving the bisimulation clauses, we please ourselves with environments E ′ that are
larger than the E requested by Definition 1; (3) “up-to restriction” states that we also
content ourselves with tested processes P , Q with extra restrictions νc̃ and νd̃ (i.e. less
observable names); (4) finally, “up-to structural congruence” states that we identify all
processes that are structurally congruent to νc̃.(P0 | P1) and νd̃.(Q0 |Q1).

Using this notation, we define environmental bisimulations up-to context as follows:

Definition 2. An environmental relation X is an environmental bisimulation up-to
context if P XE;r Q implies:

1. if P
τ−→ P ′, then ∃Q′. Q =⇒Q′ and P ′ X �

E;r Q′,

2. if P
a(M)−−−→ P ′ with a ∈ r, and if (M, N) ∈ (E ; r)�, then ∃Q′. Q

a(N)
===⇒ Q′ and

P ′ X �
E;r Q′,

3. if P
νb̃.a〈M〉−−−−−→ P ′ with a ∈ r and b̃ �∈ fn(r, E .1), then ∃Q′, N. Q

νc̃.a〈N〉
=====⇒ Q′ with

c̃ �∈ fn(r, E .2) and P ′ X �
(M,N)⊕E;r Q′,

4. for any (‘P1, ‘Q1) ∈ E and a ∈ r, we have P | a[P1] X �
E;r Q | a[Q1],

5. for any n �∈ fn(E , P, Q), we have P XE;n⊕r Q, and
6. the converse of 1, 2 and 3 on Q’s transitions.

The conditions on each clause (except 5, which is unchanged for the sake of technical
convenience) are weaker than that of the standard environmental bisimulations, as we
require in the positive instances bisimilarity modulo a context, not just bisimilarity it-
self. It is important to remark that, unlike in [12] but as in [13], we do not need a specific
context to avoid stating a tautology in clause 4; indeed, we spawn terms (‘P1, ‘Q1) ∈ E
immediately as processes P1 and Q1, while the context closure can only use the terms
under an explicit run operator.

We prove the soundness (under some condition; see Remark 1) of environmental
bisimulations as follows. Full proofs are found in the appendix, Section B but are
nonetheless sketched below.

Lemma 1 (Input lemma). If (P1, Q1) ∈ (E ; r)◦ and P1
a(M)−−−→ P ′

1 then ∀N.∃Q′
1.

Q1
a(N)−−−→Q′

1 and (P ′
1, Q

′
1) ∈ ((M, N)⊕E ; r)◦.

Lemma 2 (Output lemma). If (P1, Q1) ∈ (E ; r)◦, {b̃}∩fn(E , r) = ∅ and P1
νb̃.a〈M〉−−−−−→

P ′
1 then ∃Q′

1, N. Q1
νb̃.a〈N〉−−−−−→Q′

1, (P ′
1, Q

′
1) ∈ (E ; b̃⊕r)◦ and (M, N) ∈ (E ; b̃⊕r)�.

Definition 3 (Run-erasure). We write P ≤ Q if P can be obtained by (possibly repeat-
edly) replacing zero or more subprocesses run(‘R) of Q with R, and write P Y−

E;r Q
for P ≤ Y�

≤E≥;r ≥ Q.

Sound Bisimulations for Higher-Order Distributed Process Calculus 133

Definition 4 (Simple environment). A process is called simple if none of its subpro-
cesses has the form νa.P or a(X).P with X ∈ fv (P). An environment is called simple
if all the processes in it are simple. An environmental relation is called simple if all of
its environments are simple (note that the tested processes may still be non-simple).

Lemma 3 (Reaction lemma). For any simple environmental bisimulation up-to con-
text Y , if P Y−

E;r Q and P
τ−→ P ′, then there is a Q′ such that Q

τ=⇒Q′ and P ′ Y−
E;r Q′.

Proof sketch. Lemma 1 (resp. 2) is proven by straightforward induction on the transition

derivation of P1
a(M)−−−→P ′

1 (resp. P1
νb̃.a〈M〉−−−−−→P ′

1). Lemma 3 is proven last, as it uses the
other two lemmas (for the internal communication case).

Lemma 4 (Soundness of up-to context). Simple bisimilarity up-to context is included
in bisimilarity.

Proof sketch. By checking that {(r, E , P, Q) | P Y−
E;r Q} is included in ∼, where Y

is the simple environmental bisimilarity up-to context. In particular, we use Lemma 1
for clause 2, Lemma 2 for clause 3, and Lemma 3 for clause 1 of the environmental
bisimulation.

Our definitions of reduction-closed barbed equivalence ≈ and congruence ≈c are stan-
dard and omitted for brevity; see the appendix, Definition B.2 and B.3

Theorem 1 (Barbed equivalence from environmental bisimulation)
If P Y−

∅;fn(P,Q) Q for a simple environmental bisimulation up-to contextY , then P ≈ Q.

Proof sketch. By verifying that each clause of the definition of ≈ is implied by mem-
bership of Y−, using Lemma 4 for the parallel composition clause.

Corollary 1 (Barbed congruence from environmental bisimulation)
If a〈‘P 〉 Y−

∅;a⊕fn(P,Q) a〈‘Q〉 for a simple environmental bisimulation up-to context Y ,
then P ≈c Q.

We recall that, in context bisimulations, showing the equivalence of a〈‘P 〉 and a〈‘Q〉
almost amounts to testing the equivalence of P and Q in every context. However, with
environmental bisimulations, only the location context in clause 4 of the bisimulation
has to be considered.

Remark 1. The extra condition “simple” is needed because of a technical difficulty in
the proof of Lemma 3: when an input process a(X).P is spawned under location b
in parallel with an output context νc.a〈M〉.Q (with c ∈ fn(M)), they can make the
transition b[a(X).P | νc.a〈M〉.Q] τ−→ b[νc.(P{M/X} | Q)], where the restriction op-
erator νc appears inside the location b (and therefore can be passivated together with
the processes); however, our spawning clause only gives us b[a(X).P] | νc.a〈M〉.Q τ−→
νc.(b[P{M/X}] | Q) and does not cover the above case. Further investigation is re-
quired to overcome this difficulty (although we have not yet found a concrete coun-
terexample of soundness, we conjecture some modification to the bisimulation clauses
would be necessary). Note that, even if the environments are simple, the tested processes
do not always have to be simple, as in Example 4 and 5. Moreover, thanks to up-to con-
text, even the output terms (including passivated processes) can be non-simple.

134 A. Piérard and E. Sumii

4 Examples

Here, we give some examples of HOπP processes whose behavioural equivalence is
proven with the help of our environmental bisimulations. In each example, we prove the
equivalence by exhibiting a relation X containing the two processes we consider, and
by showing that it is indeed a bisimulation up-to context (and environment, restriction
and structural congruence). We write P | . . . | P for a finite, possibly null, product of
the process P .

Example 1. e | !a[e] | !a[0] ≈ !a[e] | !a[0]. (This example comes from [7].)

Proof. Take X = {(r, ∅, e | P, P) | r ⊇ {a, e}} ∪ {(r, ∅, P, P) | r ⊇ {a, e}} where
P = !a[e] | !a[0]. It is immediate to verify that whenever P

α−→ P ′, we have P ′ ≡ P ,
and therefore that transition e | P α−→ e | P ′ ≡ e | P can be matched by P

α−→ P ′ ≡ P

and conversely. Also, for e | P e−→ P , we have that P
e−→ !a[e] | a[0] | !a[0] ≡ P and we

are done since (r, ∅, P, P) ∈ X . Moreover, the set r must contain the free names of P ,
and to satisfy clause 5 about adding fresh names, bigger r’s must be allowed too. The
passivations of a[e] and a[0] can be matched by syntactically equal actions with the pairs
of output terms (‘e, ‘e) and (‘0, ‘0) included in the identity, which in turn is included in
the context closure (∅; r)�. Finally clause 4 of the bisimulation is vacuously satisfied
because the environment is empty. We therefore have e | !a[e] | !a[0] ≈ !a[e] | !a[0] from
the soundness of environmental bisimulation up-to context.

Example 2. !a | !e ≈ !a[e].

Proof sketch. Take X = {(r, E , P, Q) | r ⊇ {a, e, l1, . . . , ln} | E = {(‘0, ‘e)}, n ≥ 0,
P = !a | !e |

∏n
i=1 li[0], Q = !a[e] |

∏n
i=1 li[e] | a[0] | . . . | a[0]}. See the appendix,

Example C.1 for the rest of the proof.

Example 3. !a[e] | !b[e] ≈ !a[b[e |e]]. This example shows the equivalence proof of more
complicated processes with nested locations.

Proof sketch. Take:

X = {(r, E , P, Q) | r ⊇ {a, e, b, l1, . . . , ln},
P0 = !a[e] | !b[e], Q0 = !a[b[e | e]],
P = P0 |

∏n
i=1 li[Pi] | b[0] | . . . | b[0],

Q = Q0 |
∏n

i=1 li[Qi],
(‘P̃ , ‘Q̃) ∈ E , n ≥ 0},

E = {(‘x, ‘y) | x ∈ {0, e, e}, y ≡∈ {0, e, e, (e | e), b[0], b[e], b[e], b[e | e]}} .

See the appendix, Example C.2 for the rest of the proof.

Example 4. c(X).run(X) ≈ νf.(f [c(X).run(X)] | !f(Y).f [run(Y)]). The latter pro-
cess models a system where a process c(X).run(X) runs in location f , and executes
any process P it has received. In parallel is a process f(Y).f [run(Y)] which can passi-
vate f [P] and respawn the process P under the same location f . Informally, this models
a system which can restart a computer and resume its computation after a failure.

Sound Bisimulations for Higher-Order Distributed Process Calculus 135

Proof. Take X = X1 ∪ X2 where:

X1 = {(r, ∅, c(X).run(X), νf.(f [c(X).run(X)] | !f(Y).f [run(Y)])) | r ⊇ {c}},
X2 = {(r, ∅, P, Q) | r ⊇ c⊕fn(R), S = run(‘run(. . . ‘run(‘R) . . .)),

P ∈ {run(‘R), R}, Q = νf̃ .(f [S] | !f(Y).[run(Y)])}.

As usual, we require that r contains at least the free name c of the tested processes. All
outputs belong to (∅; r)� since they come from a process R drawn from (∅; r)�, and
therefore, we content ourselves with an empty environment ∅. Also, by the emptiness
of the environment, clause 4 of environmental bisimulations is vacuously satisfied.

Verification of transitions of elements of X1, i.e. inputs of some ‘R (with (‘R, ‘R) ∈
(∅; r)�) from c, is immediate and leads to checking elements of X2. For elements of
X2, we observe that P = run(‘R) can do one τ transition to become R, while Q
can do an internal transition passivating the process run(‘R) running in f and place
it inside f [run(‘)], again and again. Q can also do τ transitions that consume all the
run(‘)’s until it becomes R. Whenever P (resp. Q) makes an observable transition, Q
(resp. P) can consume the run(‘)’s and weakly do the same action as they exhibit
the same process. We observe that all transitions preserve membership in X2 (thus
in X), and therefore we have that X is an environmental bisimulation up-to context,
which proves the behavioural equivalence of the original processes c(X).run(X) and
c(X).νf.(f [c(X).run(X)] | !f(Y).f [run(Y)]).

Example 5. c(X).run(X) ≈ c(X).νa.(a〈X〉 | !νf.(f [a(X).run(X)] | f(Y).a〈Y 〉)).
This example is a variation of Example 4 modelling a system where computation is
resumed on another computer after a failure.

Proof. Take X = X1 ∪ X2 ∪ X3 where:

X1 = {(r, ∅, c(X).run(X), c(X).νa.(a〈X〉 | F)) | r ⊇ {c}},
X2 = {(r, ∅, P1, νa.(F |R1 | R2 | a〈‘P2〉)) |

r ⊇ {c}⊕fn(P), P1, P2 ∈ {run(‘P), P}, R1 = a〈N1〉 | . . . | a〈Nn〉,
R2 = νl1.(l1[Q1] | l1(Y).a〈Y 〉) | . . . | νlm.(lm[Qm] | lm(Y).a〈Y 〉),
N1, . . . , Nn, ‘Q1, . . . , ‘Qm =‘run(‘run(. . . ‘run(‘a(X).run(X)) . . .)), n ≥ 0},

X3 = {(r, ∅, P1, νa.(F |R1 | R2 | νl.(l[P2] | l(Y).a〈Y 〉))) |
r ⊇ {c}⊕fn(P), P1, P2 ∈ {run(‘P), P}, R1 = a〈N1〉 | . . . | a〈Nn〉,
R2 = νl1.(l1[Q1] | l1(Y).a〈Y 〉) | . . . | νlm.(lm[Qm] | lm(Y).a〈Y 〉),
N1, . . . , Nn, ‘Q1, . . . , ‘Qm =‘run(‘run(. . . ‘run(‘a(X).run(X)) . . .)), n ≥ 0},

F = !νf.(f [a(X).run(X)] | f(Y).a〈Y 〉).

The set of names r and the environment share the same fate as those of Example 4
for identical reasons. For ease, we write lhs and rhs to conveniently denote each of the
tested processes.

Verification of the bisimulation clauses of X1 is immediate and leads to a member
(r, ∅, run(‘P), νa.(a〈‘P 〉 | F)) of X2 for some ‘P with (‘P, ‘P) ∈ (∅; r)�. For X2, lhs
can do an internal action (consuming its outer run(‘)) that rhs does not have to follow
since we work with weak bisimulations, and the results is still inX2; conversely, internal
actions of rhs do not have to be matched. Some of those transitions that rhs can do are

136 A. Piérard and E. Sumii

reactions between replications from F . All those transitions creates elements of either
R1 or R2 that can do nothing but internal actions and can be ignored further in the proof
thanks to the weakness of our bisimulations.

Whenever lhs does an observable action α, that is, when P1 = P
α−→P ′, rhs must do

a reaction between a〈‘P2〉 and F , giving νl.(l[P2] | l(Y).a〈Y 〉) α=⇒νl.(l[P ′] | l(Y).a〈Y 〉)
which satisfies X3’s definition. Moreover, all transitions of P1 or P2 in X3 can be
matched by the other, hence preserving the membership in X3. Finally, a subprocess
νl.(l[P2] | l(Y).a〈Y 〉) of rhs of X3 can do a τ transition to a〈‘P2〉 and the residues
belong back to X2.

This concludes the proof of behavioural equivalence of the original processes c(X).
run(X) and c(X).νa.(a〈X〉.!νf.(f [a(X).run(X)] | f(Y).f [run(Y)])).

5 Discussion and Future Work

In the original higher-order π-calculus with passivation described by Lenglet et al. [7],
terms are identified with processes: its syntax is just P ::= 0 | X | a(X).P | a〈P 〉.P |
(P |P) | a[P] | νa.P | !P . We conjecture that it is also possible to develop sound envi-
ronmental bisimulations (and up-to context, etc.) for this version of HOπP, as we [12]
did for the standard higher-order π-calculus. However we chose not to cover directly the
original higher-order π-calculus with passivation, for two reasons: (1) the proof method
of [12] which relies on guarded processes and a factorisation trick using the spawn-
ing clause of the bisimulation is inadequate in the presence of locations; (2) there is a
very strong constraint in clause 4 of up-to context in [12, Definition E.1 (Appendix)]
(the context has no hole for terms from E). By distinguishing processes from terms, not
only is our up-to context method much more general, but our proofs are also direct and
technically simple. Although one might argue that the presence of the run operator is a
burden, by using Definition 3, one could devise an “up-to run” technique and abstract
run(. . . ‘run(‘P)) as P , making equivalence proofs easier to write and understand.

As described in Remark 1, removing the limitation on the environments is left for fu-
ture work. We also plan to apply environmental bisimulations to (a substantial subset of)
the Kell calculus so that we can provide a practical alternative to context bisimulations
in a more expressive higher-order distributed process calculus. In the Kell calculus, lo-
cations are not transparent: one discriminates messages on the grounds of their origins
(i.e. from a location above, below, or from the same level). For example, consider the
(simplified) Kell processes P = a〈M〉.!b[a] and Q = a〈N〉.!b[a] where M = a and
N = 0. They seem bisimilar assuming environmental bisimulations naively like those
in this paper: intuitively, both P and Q can output (respectively M and N) to channel a,
and their continuations are identical; passivation of spawned l[M] and l[N] for known
location l would be immediately matched; finally, the output to channel a under l, turn-
ing P ’s spawned l[M] into l[0], could be matched by an output to a under b by Q’s
replicated b[a]. However, M and N behave differently when observed from the same
level (or below), for example as in l[M | a(Y).ok] and l[N | a(Y).ok] even under the
presence of !b[a]. More concretely, the context [·]1 |a(X).c[X |a(Y).ok] distinguishes P
and Q, showing the unsoundness of such naive definition. This suggests that, to define
sound environmental bisimulations in Kell-like calculi with non-transparent locations,

Sound Bisimulations for Higher-Order Distributed Process Calculus 137

we should require a stronger condition such as bisimilarity of M and N in the output
clause. Developments on this idea are in progress.

References

1. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS,
vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

2. Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Information
and Computation 173, 82–120 (2002)

3. Hewlett-Packard: Live migration across data centers and disaster tolerant virtualiza-
tion architecture with HP storageworks cluster extension and Microsoft Hyper-V,
http://h20195.www2.hp.com/V2/GetPDF.aspx/4AA2-6905ENW.pdf

4. Hildebrandt, T., Godskesen, J.C., Bundgaard, M.: Bisimulation congruences for Homer: a
calculus of higher-order mobile embedded resources. Technical Report TR-2004-52, IT Uni-
versity of Copenhagen (2004)

5. Honda, K., Yoshida, N.: On reduction-based process semantics. Theoretical Computer Sci-
ence 151(2), 437–486 (1995)

6. Howe, D.J.: Proving congruence of bisimulation in functional programming languages
(1996)

7. Lenglet, S., Schmitt, A., Stefani, J.-B.: Normal bisimulations in calculi with passivation. In:
de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 257–271. Springer, Heidelberg
(2009)

8. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge University
Press, Cambridge (1999)

9. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis, University of Edinburgh (1992)

10. Sangiorgi, D.: Bisimulation for higher-order process calculi. Information and Computa-
tion 131, 141–178 (1996)

11. Sangiorgi, D.: The π-calculus: a Theory of Mobile Processes. Cambridge University Press,
Cambridge (2001)

12. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-order lan-
guages. In: Proceedings of the Twenty-Second Annual IEEE Symposium on Logic in Com-
puter Science, pp. 293–302 (2007)

13. Sato, N., Sumii, E.: The higher-order, call-by-value applied pi-calculus. In: Hu, Z. (ed.)
APLAS 2009. LNCS, vol. 5904, pp. 311–326. Springer, Heidelberg (2009)

14. Schmidt, D., Dhawan, P.: Live migration with Xen virtualization software,
http://www.dell.com/downloads/global/power/ps2q06-20050322-
Schmidt-OE.pdf

15. Schmitt, A., Stefani, J.-B.: The kell calculus: A family of higher-order distributed process
calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 146–178. Springer,
Heidelberg (2005)

16. Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. Theoretical Computer Sci-
ence 375(1-3), 169–192 (2007); Extended abstract appeared in Proceedings of 31st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 161–
172 (2004)

17. Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. Journal of
the ACM 54, 1–43 (2007); Extended abstract appeared in Proceedings of 32nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 63–
74 (2005)

http://h20195.www2.hp.com/V2/GetPDF.aspx/4AA2-6905ENW.pdf
http://www.dell.com/downloads/global/power/ps2q06-20050322-Schmidt-OE.pdf
http://www.dell.com/downloads/global/power/ps2q06-20050322-Schmidt-OE.pdf

Deriving Labels and Bisimilarity
for Concurrent Constraint Programming�

Andrés Aristizábal1, Filippo Bonchi2, Catuscia Palamidessi1,
Luis Pino1, and Frank Valencia1

1 Comète, LIX, Laboratoire de l’École Polytechnique associé à l’INRIA
2 CNRS - Laboratoire de l’Informatique du Parallélisme, ENS Lyon

Abstract. Concurrent constraint programming (ccp) is a well-established model
for concurrency. Bisimilarity is one of the central reasoning techniques in
concurrency. The standard definition of bisimilarity, however, is not completely
satisfactory for ccp since it yields an equivalence that is too fine grained. By
building upon recent foundational investigations, we introduce a labelled transi-
tion semantics and a novel notion of bisimilarity that is fully abstract w.r.t. the
typical observational equivalence in ccp.

Introduction

Concurrency is concerned with systems of multiple computing agents, usually called
processes, that interact with each other. Process calculi treat processes much like the
λ-calculus treats computable functions. They provide a language in which processes
are represented by terms, and computational steps are represented as transitions be-
tween them. These formalisms are equipped with equivalence relations that determine
what processes are deemed indistinguishable. Bisimilarity is one of the main represen-
tative of these. It captures our intuitive notion of process equivalence; two processes are
equivalent if they can match each other’s moves. Furthermore, it provides an elegant
co-inductive proof technique based on the notion of bisimulation.

Concurrent Constraint Programming (ccp) [26] is a well-established formalism that
combines the traditional algebraic and operational view of process calculi with a declar-
ative one based upon first-order logic. In ccp, processes interact by adding (or telling)
and asking information (namely, constraints) in a medium (the store). Ccp is paramet-
ric in a constraint system indicating interdependencies (entailment) between constraints
and providing for the specification of data types and other rich structures. The above fea-
tures have recently attracted a renewed attention as witnessed by the works [23,9,5,4]
on calculi exhibiting data-types, logic assertions as well as tell and ask operations.

There have been few attempts to define a notion of bisimilarity for ccp. The ones
we are aware of are those in [26] and [19] upon which we build. These equivalences
are not completely satisfactory: We shall see that the first one may tell apart processes
with identical behaviour, while the second quantifies over all possible inputs from the
environment, and hence it is not clear whether it can lead to a feasible proof technique.

� This work has been partially supported by the project ANR-09-BLAN-0169-01 PANDA and
by the INRIA DRI Equipe Associée FORCES.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 138–152, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 139

The goal of this paper is to define a notion of bisimilarity for ccp which will allow to
benefit of the feasible proof and verification techniques typically associated with bisim-
ilarity. Furthermore, we aim at studying the relationship between this equivalence and
other existing semantic notions for ccp. In particular, its elegant denotational character-
ization based on closure operators [27] and the connection with logic [19].

Labels and Bisimilarity from Reductions. Bisimilarity relies on labelled transitions:
each evolution step of a system is tagged by some information aimed at capturing
the possible interactions of a process with the environment. Nowadays process calculi
tend to adopt reduction semantics based on unlabelled transitions and barbed congru-
ence [21]. The main drawback of this approach is that to verify barbed congruences it
is often necessary to analyze the behaviour of processes under every context.

This scenario has motivated a novel stream of research [29,18,11,28,7,25,13,6] aimed
at defining techniques for “deriving labels and bisimilarity” from unlabeled reduction
semantics. The main intuition is that labels should represent the “minimal contexts al-
lowing a process to reduce”. The theory of reactive systems by Leifer and Milner [18]
provides a formal characterization (by means of a categorical construction) of such
“minimal contexts” and it focuses on the bisimilarity over transition systems labeled as:

P
C−→ P ′ iff C[P] −→ P ′ and C is the minimal context allowing such reduction.

In [7,6], it is argued that the above bisimilarity is often too fine grained and an alter-
native, coarser, notion of bisimilarity is provided. Intuitively, in the bisimulation game,

each move (transition) P
C−→ P ′, has to be matched it with a move C[Q] −→ Q′.

Labels and Bisimilarity for ccp. The operational semantics of ccp is expressed by re-
ductions between configurations of the form 〈P, d〉 −→ 〈P ′, d′〉 meaning that the pro-
cess P with store d may reduce to P ′ with store d′. From this semantics we shall derive
a labeled transition system for ccp by exploiting the intuition of [29,18]. The transition
〈P, d〉 e−→ 〈P ′, d′〉 means that e is a “minimal constraint” (from the environment) that
needs to be added to d to reduce from 〈P, d〉 into 〈P ′, d′〉.

Similar ideas were already proposed in [26] but, the recent developments in [6] en-
lighten the way for obtaining a fully abstract equivalence. Indeed, the standard notion
of bisimilarity defined on our labeled semantics can be seen as an instance of the one
proposed in [18]. As for the bisimilarity in [26], it is too fine grained, i.e., it separates
processes which are indistinguishable. Instead, the notion of bisimulation from [6] (in-
stantiated to the case of ccp) is fully abstract with respect to the standard observational
equivalence given in [27]. Our work can therefore be also regarded as a compelling
application of the theory of reactive systems.

Contributions. We provide a labelled transition semantics and a novel notion of la-
belled bisimilarity for ccp by building upon the work in [26,6]. We also establish a
strong correspondence with existing ccp notions by providing a fully-abstract charac-
terization of a standard observable behaviour for infinite ccp processes: The limits of
fair computations. From [27] this implies a fully-abstract correspondence with the clo-
sure operator denotational semantics of ccp. Therefore, this work provides ccp with a
new co-inductive proof technique, coherent with the existing ones, for reasoning about
process equivalence.

Missing proofs and additional examples are in [1].

140 A. Aristizábal et al.

1 Background

In this section we recall the syntax, the operational semantics and the observational
equivalence of concurrent constraint programming (ccp). We begin with the notion of
constraint system. We presuppose some basic knowledge of domain theory (see [2]).

1.1 Constraint Systems

The ccp model is parametric in a constraint system specifying the structure and inter-
dependencies of the information that processes can ask and tell. Following [27,10], we
regard a constraint system as a complete algebraic lattice structure in which the or-
dering � is the reverse of an entailment relation (c � d means that d contains “more
information” than c, hence c can be derived from d). The top element false represents
inconsistency, the bottom element true is the empty constraint, and the least upper
bound (lub) $ represents the join of information.

Definition 1. A constraint system C is a complete algebraic lattice (Con ,Con0,�
,$, true, false) where Con (the set of constraints) is a partially ordered set w.r.t. �,
Con0 is the subset of finite elements of Con , $ is the lub operation, and true, false are
the least and greatest elements of Con , respectively.

Recall that C is a complete lattice iff every subset of Con has a least upper bound in
Con . An element c ∈ Con is finite iff for any directed subset D of Con , c �

⊔
D

implies c � d for some d ∈ D. C is algebraic iff each element c ∈ Con is the least
upper bound of the finite elements below c.

In order to model hiding of local variables and parameter passing, in [27] the notion
of constraint system is enriched with cylindrification operators and diagonal elements,
concepts borrowed from the theory of cylindric algebras (see [14]).

Let us consider a (denumerable) set of variables Var with typical elements x, y, z, . . .
Define ∃Var as the family of operators ∃Var = {∃x | x ∈ Var} (cylindric operators)
and DVar as the set DVar = {dxy | x, y ∈ Var} (diagonal elements).

A cylindric constraint system over a set of variables Var is a constraint system whose
support set Con ⊇ DVar is closed under the cylindric operators ∃Var and quotiented
by Axioms C1− C4, and whose ordering � satisfies Axioms C5− C7 :

C1. ∃x∃yc = ∃y∃xc C2. dxx = true

C3. if z �= x, y then dxy = ∃z(dxz $ dzy) C4. ∃x(c $ ∃xd) = ∃xc $ ∃xd

C5. ∃xc � c C6.if c � d then ∃xc � ∃xd C7. if x �= y then c � dxy $ ∃x(c $ dxy)

where c, ci, d indicate finite constraints, and ∃xc $ d stands for (∃xc) $ d. For our
purposes, it is enough to think the operator ∃x as existential quantifier and the constraint
dxy as the equality x = y.

We assume notions of free variable and of substitution that satisfy the following
conditions, where c[y/x] is the constraint obtained by substituting x by y in c and
fv(c) is the set of free variables of c: (1) if y /∈ fv(c) then (c[y/x])[x/y] = c; (2)
(c $ d)[y/x] = c[y/x] $ d[y/x]; (3) x /∈ fv(c[y/x]); (4) fv(c $ d) = fv (c) ∪ fv (d).

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 141

We now define the cylindric constraint system that will be used in all the examples.

Example 1 (The S Constraint System). Let S = (ω + 1, 0,∞, =, <, succ) be a first-

order structure whose domain of interpretation is ω + 1 def= ω ∪ {∞}, i.e., the natural
numbers extended with a top element∞. The constant symbols 0 and∞ are interpreted
as zero and infinity, respectively. The symbols =, < and succ are all binary predicates
on ω + 1. The symbol = is interpreted as the identity relation. The symbol < is inter-
preted as the set of pairs (n, m) s.t., n ∈ ω, m ∈ ω + 1 and n strictly smaller than m.
The symbol succ is interpreted as the set of pairs (n, m) s.t., n, m ∈ ω and m = n + 1.

Let Var be an infinite set of variables. Let L be the logic whose formulae φ are:

φ ::= t | φ1 ∧ φ2 | ∃xφ and t ::= e1 = e2 | e1 < e2 | succ(e1, e2) where e1 and e2

are either 0 or ∞ or variables in V ar. Note that formulas like x = n or x < n (for n =
1, 2, . . .) do not belong to L. A useful abbreviation to express them is succn(x, y) def=
∃y0 . . .∃yn(

∧
0<i≤n succ(yi−1, yi) ∧ x = y0 ∧ y = yn). We use x = n as shorthand

for succn(0, x) and x < n as shorthand for ∃y(x < y ∧ y = n).
A variable assignment is a function μ : Var −→ ω + 1. We use A to denote the set

of all assignments; P(X) to denote the powerset of a set X , ∅ the empty set and ∩ the
intersection of sets. We use M(φ) to denote the set of all assignments that satisfy the
formula φ, where the definition of satisfaction is as expected.

We can now introduce a constraint system as follows: the set of constraints is P(A),
and define c � d iff c ⊇ d. The constraint false is ∅, while true is A. Given two
constraints c and d, c$d is the intersection c∩d. By abusing the notation, we will often
use a formula φ to denote the corresponding constraint, i.e., the set of all assignments
satisfying φ. E.g. we use 1 < x � 5 < x to mean M(1 < x) �M(5 < x).

From this structure, let us now define the cylindric constraint system S as follows.
We say that an assignment μ′ is an x-variant of μ if ∀y �= x, μ(y) = μ′(y). Given
x ∈ Var and c ∈ P(A), the constraint ∃xc is the set of assignments μ such that exists
μ′ ∈ c that is an x-variant of μ. The diagonal element dxy is x = y. �$

We make an assumption that will be pivotal in Section 3. Given a partial order (C,�),
we say that c is strictly smaller than d (written c
 d) if c � d and c �= d. We say that
(C,�) is well-founded if there exists no infinite descending chains · · ·
 cn
 · · ·

c1
 c0. For a set A ⊆ C, we say that an element m ∈ A is minimal in A if for all
a ∈ A, a �
 m. We shall use min(A) to denote the set of all minimal elements of A.
Well-founded order and minimal elements are related by the following result.

Lemma 1. Let (C,�) be a well-founded order and A ⊆ C. If a ∈ A, then ∃m ∈
min(A) s.t., m � a.

In spite of its being a reasonable assumption, well-foundedness of (Con ,�) is not
usually required in the standard theory of ccp. We require it because the above lemma
is fundamental for proving the completeness of labeled semantics (Lemma 5).

1.2 Syntax

Concurrent constraint programming (ccp) was proposed in [30] and then refined in
[26,27]. We restrict ourselves to the summation-free fragment of ccp. The distinctive

142 A. Aristizábal et al.

confluent nature of this fragment is necessary for showing that our notion of bisimilarity
coincides with the observational equivalence for infinite ccp processes given in [27].

Definition 2. Assume a cylindric constraint system C=(Con ,Con0,�,$, true, false)
over a set of variables Var . The ccp processes are given by the following syntax:

P, Q . . . ::= tell(c) | ask(c) → P | P ‖ Q | ∃xP | p(z)

where c ∈ Con0, x ∈ Var , z ∈ Var∗. We use Proc to denote the set of all processes.

Finite processes. Intuitively, the tell process tell(c) adds c to the global store. The
addition is performed regardless the generation of inconsistent information. The ask
process ask(c) → P may execute P if c is entailed from the information in the store.
The process P ‖ Q stands for the parallel execution of P and Q; ∃x is a hiding opera-
tor, namely it indicates that in ∃xP the variable x is local to P . The occurrences of x
in ∃xP are said to be bound. The bound variables of P , bv (P), are those with a bound
occurrence in P , and its free variables, fv (P), are those with an unbound occurrence.

Infinite processes. To specify infinite behaviour, ccp provides parametric process def-
initions. A process p(z) is said to be a procedure call with identifier p and actual
parameters z. We presuppose that for each procedure call p(z1 . . . zm) there exists a

unique procedure definition possibly recursive, of the form p(x1 . . .xm) def= P where
fv(P) ⊆ {x1, . . . , xm}. Furthermore we require recursion to be guarded: I.e., each pro-
cedure call within P must occur within an ask process. The behaviour of p(z1 . . . zm)
is that of P [z1 . . . zm/x1 . . . xm], i.e., P with each xi replaced with zi (applying α-
conversion to avoid clashes). We shall use D to denote the set of all process definitions.

Although we have not defined yet the semantics of processes, we find it instructive
to illustrate the above operators with the following example. Recall that we shall use S
in Ex. 1 as the underlying constraint system in all examples.

Example 2. Consider the following (family of) process definitions.

upn(x) def= ∃y(tell(y = n) ‖ ask (y = n) → up(x, y))

up(x, y) def= ∃y′(tell(y < x∧succ2(y, y′)) ‖ ask(y < x∧succ2(y, y′)) → up(x, y′))

Intuitively, upn(x), where n is a natural number, specifies that x should be greater than
any natural number (i.e., x = ∞ since x ∈ ω +1) by telling (adding to the global store)
the constraints yi+1 = yi + 2 and yi < x for some y0, y1, . . . with y0 = n. The process
up0 (x) ‖ ask(42 < x) → tell(z = 0), can set z = 0 when it infers from the global
store that 42 < x. (This inference is only possible after the 22nd call to up.) �$

1.3 Reduction Semantics

To describe the evolution of processes, we extend the syntax by introducing a process
stop representing successful termination, and a process ∃e

xP representing the evolution
of a process of the form ∃xP , where e is the local information (local store) produced
during this evolution. The process ∃xP can be seen as a particular case of ∃e

xP : it
represents the situation in which the local store is empty. Namely, ∃xP = ∃true

x P .

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 143

Table 1. Reduction semantics for ccp (The symmetric Rule for R3 is omitted)

R1 〈tell(c), d〉 −→ 〈stop, d � c〉 R2
c 	 d

〈ask (c) → P, d〉 −→ 〈P, d〉

R3
〈P, d〉 −→ 〈P ′, d′〉

〈P ‖ Q, d〉 −→ 〈P ′ ‖ Q, d′〉
R4

〈P, e � ∃xd〉 −→ 〈P ′, e′ � ∃xd〉
〈∃e

xP, d〉 −→ 〈∃e′
x P ′, d � ∃xe′〉

R5
〈P [z/x], d〉 −→ γ′

〈p(z), d〉 −→ γ′
where p(x) def= P is a process definition in D

A configuration is a pair 〈P, d〉 representing the state of a system; d is a constraint
representing the global store, and P is a process in the extended syntax. We use Conf
with typical elements γ, γ′, . . . to denote the set of configurations. The operational
model of ccp can be described formally in the SOS style by means of the transition
relation between configurations−→ ⊆ Conf × Conf defined in Table 1.

Rules R1-R3 and R5 are easily seen to realize the above process intuitions. Rule R4
is somewhat more involved. Here, we show an instructive example of its use.

Example 3. We have the below reduction of P = ∃e
x(ask (y > 1) → Q) where the

local store is e = x < 1, and the global store d′ = d $ α with d = y > x, α = x > 1.

R2

R4

(y > 1) � e $ ∃xd′

〈ask (y > 1) → Q, e $ ∃xd′〉 −→ 〈Q, e $ ∃xd′〉

〈P, d′〉 −→ 〈∃e
xQ, d′ $ ∃xe〉

Note that the x in d′ is hidden, by using existential quantification in the reduction ob-
tained by Rule R2. This expresses that the x in d′ is different from the one bound by the
local process. Otherwise an inconsistency would be generated (i.e., (e $ d′) = false).
Rule R2 applies since (y > 1) � e $ ∃xd′. Note that the free x in e $ ∃xd′ is hidden in
the global store to indicate that is different from the global x. �$

1.4 Observational Equivalence

The notion of fairness is central to the definition of observational equivalence for ccp.
To define fair computations, we introduce the notions of enabled and active processes,
following [12]. Observe that any transition is generated either by a process tell(c) or by
a process ask (c) → Q. We say that a process P is active in a transition t = γ −→ γ′

if it generates such transition; i.e if there exist a derivation of t where R1 or R2 are used

144 A. Aristizábal et al.

to produce a transition of the form 〈P, d〉 −→ γ′′. Moreover, we say that a process P is
enabled in a configuration γ if there exists γ′ such that P is active in γ −→ γ′.

Definition 3. A computation γ0 −→ γ1 −→ γ2 −→ . . . is said to be fair if for each
process enabled in some γi there exists j ≥ i such that the process is active in γj .

Note that a finite fair computation is guaranteed to be maximal, namely no outgoing
transitions are possible from its last configuration.

The standard notion of observables for ccp are the results computed by a process for
a given initial store. The result of a computation is defined as the least upper bound of
all the stores occurring in the computation, which, due to the monotonic properties of
ccp, form an increasing chain. More formally, given a finite or infinite computation ξ
of the form 〈Q0, d0〉 −→ 〈Q1, d1〉 −→ 〈Q2, d2〉 −→ . . . the result of ξ, denoted by
Result(ξ), is the constraint

⊔
i di. Note that for a finite computation the result coincides

with the store of the last configuration.
The following theorem from [27] states that all the fair computations of a configura-

tion have the same result (due to fact that summation-free ccp is confluent).

Theorem 1 (from [27]). Let γ be a configuration and let ξ1 and ξ2 be two computations
of γ. If ξ1 and ξ2 are fair, then Result(ξ1) = Result(ξ2).

This allows us to set Result(γ) def= Result(ξ) for any fair computation ξ of γ.

Definition 4. (Observational equivalence) Let O : Proc → Con0 → Con be given
by O(P)(d) = Result(〈P, d〉). We say that P and Q are observational equivalent,
written P ∼o Q, iff O(P) = O(Q).

Example 4. Consider the processes P = up0(x) ‖ up1(y) and Q = ∃z(tell(z = 0) ‖
ask(z = 0) → fairup(x, y, z)) with up0 and up1 as in Ex. 2 and fairup(x, y, z) def=

∃z′(tell(z < x ∧ succ(z, z′)) ‖ ask ((z < x) ∧ succ(z, z′)) → fairup(y, x, z′)))

Let s(γ) denote the store in the configuration γ. For every infinite computation ξ :
〈P, true〉 = γ0 −→ γ1 −→ . . . with (1 < y) �� s(γi) for each i ≥ 0, ξ is not fair and
Result(ξ) = (x = ∞). In contrast, every infinite computation ξ : 〈Q, true〉 = γ0 −→
γ1 −→ . . . is fair and Result(ξ) = (x = ∞ ∧ y = ∞). Nevertheless, under our fair
observations, P and Q are indistinguishable, i.e., O(P) = O(Q). �$

2 Saturated Bisimilarity for ccp

We introduce a notion of bisimilarity in terms of (unlabelled) reductions and barbs and
we prove that this equivalence is fully abstract w.r.t. observational equivalence.

2.1 Saturated Barbed Bisimilarity

Barbed equivalences have been introduced in [21] for CCS, and have become the stan-
dard behavioural equivalences for formalisms equipped with unlabeled reduction se-
mantics. Intuitively, barbs are basic observations (predicates) on the states of a system.

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 145

The choice of the “right” barbs is a crucial step in the barbed approach, and it is
usually not a trivial task. For example, in synchronous languages like CCS or π-calculus
both the inputs and the outputs are considered as barbs, (see e.g. [21,20]), while in the
asynchronous variants only the outputs (see e.g. [3]). Even several works (e.g. [24,15])
have proposed abstract criteria for defining “good” barbs.

We shall take as barbs all the finite constraints in Con0. This choice allows us to
introduce a barbed equivalence (Def. 7) that coincides with the standard observational
equivalence (Def. 4). It is worth to note that in∼o, the observables are all the constraints
in Con and not just the finite ones.

We say that γ = 〈P, d〉 satisfies the barb c, written γ ↓c, iff c � d; γ weakly satisfies
the barb c, written γ ⇓c, iff γ −→∗ γ′ and γ′ ↓c

1.

Definition 5. (Barbed bisimilarity) A barbed bisimulation is a symmetric relation R
on configurations such that whenever (γ1, γ2) ∈ R:

(i) if γ1 ↓c then γ2 ↓c,
(ii) if γ1 −→ γ′

1 then there exists γ′
2 such that γ2 −→ γ′

2 and (γ′
1, γ

′
2) ∈ R.

We say that γ1 and γ2 are barbed bisimilar, written γ1 ∼̇b γ2, if there exists a barbed
bisimulation R s.t. (γ1, γ2) ∈ R. We write P ∼̇b Q iff 〈P, true〉 ∼̇b 〈Q, true〉.
Congruence characterization. One can verify that ∼̇b is an equivalence. However, it
is not a congruence; i.e., it is not preserved under arbitrary contexts. A context C is a
term with a hole [−] s.t., replacing it with a process P yields a process term C[P]. E.g.,
C = tell(c) ‖ [−] and C[tell(d)] = tell(c) ‖ tell(d).

Example 5. Let us consider the context C = tell(a) ‖ [−] and the processes P =
ask (b) → tell(d) and Q = ask (c) → tell(d) with a, b, c, d �= true, b � a and
c �� a. We have 〈P, true〉∼̇b〈Q, true〉 because both configurations cannot move and
they only satisfy the barb true. But 〈C[P], true〉�∼̇b〈C[Q], true〉, because the former
can perform three transitions (in sequence), while the latter only one. �$

An elegant solution to modify bisimilarity for obtaining a congruence has been in-
troduced in [22] for the case of weak bisimilarity in CCS. This work has inspired the
introduction of saturated bisimilarity [7] (and its extension to the barbed approach [6]).
The basic idea is simple: saturated bisimulations are closed w.r.t. all the possible con-
texts of the language. In the case of ccp, it is enough to require that bisimulations are
upward closed as in condition (iii) below.

Definition 6. (Saturated barbed bisimilarity). A saturated barbed bisimulation is a
symmetric relation R on configurations such that whenever (γ1, γ2) ∈ R with γ1 =
〈P, d〉 and γ2 = 〈Q, e〉:

(i) if γ1 ↓c then γ2 ↓c,
(ii) if γ1 −→ γ′

1 then there exists γ′
2 such that γ2 −→ γ′

2 and (γ′
1, γ

′
2) ∈ R,

(iii) for every a ∈ Con0, (〈P, d $ a〉, 〈Q, e $ a〉) ∈ R.

We say that γ1 and γ2 are saturated barbed bisimilar, written γ1 ∼̇sb γ2, if there
exists a saturated barbed bisimulation R s.t. (γ1, γ2) ∈ R. We write P ∼̇sb Q iff
〈P, true〉∼̇sb〈Q, true〉.

1 As usual, −→∗ denotes the reflexive and transitive closure of −→.

146 A. Aristizábal et al.

Definition 7. (Weak saturated barbed bisimilarity). Weak saturated barbed bisimilarity
(≈̇sb) is obtained from Def. 6 by replacing −→ with −→∗ and ↓c with ⇓c.

Since ∼̇sb is itself a saturated barbed bisimulation, it is obvious that it is upward closed.
This fact also guarantees that it is a congruence w.r.t. all the contexts of ccp: a context
C can modify the behaviour of a configuration γ only by adding constraints to its store.
The same holds for ≈̇sb.

2.2 Correspondence with Observational Equivalence

We now show that ≈̇sb coincides with the observational equivalence ∼o. From [27] it
follows that ≈̇sb coincides with the standard denotational semantics for ccp.

First, we recall some basic facts from domain theory central to our proof. Two (pos-
sibly infinite) chains d0 � d1 � · · · � dn � . . . and e0 � e1 � · · · � en � . . . are
said to be cofinal if for all di there exists an ej such that di � ej and, viceversa, for all
ei there exists a dj such that ei � dj .

Lemma 2. Let d0 � d1 � · · · � dn � . . . and e0 � e1 � · · · � en � . . . be two
chains. (1) If they are cofinal, then they have the same limit, i.e.,

⊔
di =

⊔
ei. (2) If the

elements of the chains are finite and
⊔

di =
⊔

ei, then the two chains are cofinal.

In the proof, we will show that the stores of any pairs of fair computations of equivalent
processes form pairs of cofinal chains. First, the following result relates weak barbs and
fair computations.

Lemma 3. Let 〈P0, d0〉 −→ 〈P1, d1〉 −→ . . . −→ 〈Pn, dn〉 −→ . . . be a (possi-
bly infinite) fair computation. If 〈P0, d0〉 ⇓c then there exist a store di (in the above
computation) such that c � di.

Theorem 2. P∼oQ if and only if P ≈̇sbQ.

Proof. The proof proceeds as follows:

– From ≈̇sb to ∼o. Suppose that 〈P, true〉 ≈̇sb 〈Q, true〉 and take a finite input
b ∈ Con0. Let

〈P, b〉 −→ 〈P0, d0〉 −→ 〈P1, d1〉 −→ . . . −→ 〈Pn, dn〉 −→ . . .

〈Q, b〉 −→ 〈Q0, e0〉 −→ 〈Q1, e1〉 −→ . . . −→ 〈Qn, en〉 −→ . . .

be two fair computations. Since ≈̇sb is upward closed, 〈P, b〉 ≈̇sb 〈Q, b〉 and thus,
for all di, 〈Q, b〉 ⇓di . By Lemma 3, it follows that there exists an ej (in the above
computation) such that di � ej . Analogously, for all ei there exists a dj such
that ei � dj . Then the two chains are cofinal and by Lemma 2.1, it holds that⊔

di =
⊔

ei, that means O(P)(b) = O(Q)(b).
– From ∼o to ≈̇sb. Suppose that P ∼o Q. We first show that for all b ∈ Con0, 〈P, b〉

and 〈Q, b〉 satisfy the same weak barbs. Let

〈P, b〉 −→ 〈P0, d0〉 −→ 〈P1, d1〉 −→ . . . −→ 〈Pn, dn〉 −→ . . .

〈Q, b〉 −→ 〈Q0, e0〉 −→ 〈Q1, e1〉 −→ . . . −→ 〈Qn, en〉 −→ . . .

be two (possibly infinite) fair computations. Since P ∼o Q, then
⊔

di =
⊔

ei.
Since all the stores of computations are finite constraints (only finite constraints

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 147

can be added to the store), then by Lemma 2.2, it holds that for all di there exists
an ej such that di � ej . Now suppose that 〈P, b〉 ⇓c. By Lemma 3, it holds that
there exists a di (in the above computation) such that c � di. Thus c � di � ej

that means 〈Q, b〉 ⇓c.
With this observation it is easy to prove that

R = {(γ1, γ2) | ∃b s.t. 〈P, b〉 −→∗ γ1, 〈Q, b〉 −→∗ γ2}

is a weak saturated barbed bisimulation (Def. 7). Take (γ1, γ2) ∈ R.
If γ1 ⇓c then 〈P, b〉 ⇓c and, by the above observation, 〈Q, b〉 ⇓c. Since ccp is

confluent, also γ2 ⇓c.
The fact that R is closed under −→∗ is evident from the definition of R. While

for proving that R is upward-closed take γ1 = 〈P ′, d′〉 and γ2 = 〈Q′, e′〉. It is easy
to see that for all a ∈ Con0, 〈P, b $ a〉 −→∗ 〈P ′, d′ $ a〉 and 〈Q, b $ a〉 −→∗

〈Q′, e′ $ a〉. Thus, by definition of R, (〈P ′, d′ $ a〉, 〈Q′, e′ $ a〉) ∈ R. �$

3 Labeled Semantics

Although ∼̇sb is fully abstract, it is at some extent unsatisfactory because of the upward-
closure (namely, the quantification over all possible a ∈ Con0 in condition (iii)) of
Def. 6. We shall deal with this by refining the notion of transition by adding to it a label
that carries additional information about the constraints that cause the reduction.

Labelled Transitions. Intuitively, we will use transitions of the form

〈P, d〉 α−→ 〈P ′, d′〉

where label α represents a minimal information (from the environment) that needs to
be added to the store d to evolve from 〈P, d〉 into 〈P ′, d′〉, i.e., 〈P, d $ α〉 −→ 〈P ′, d′〉.
From a more abstract perspective, our labeled semantic accords with the proposal of
[29,18] of looking at “labels as the minimal contexts allowing a reduction”. In our
setting we take as contexts only the constraints that can be added to the store.

The Rules. The labelled transition −→ ⊆ Conf ×Con0×Conf is defined by the rules
in Table 3. We shall only explain rules LR2 and LR4 as the other rules are easily seen
to realize the above intuition and follow closely the corresponding ones in Table 1.

The rule LR2 says that 〈ask (c) → P, d〉 can evolve to 〈P, d$α〉 if the environment
provides a minimal constraint α that added to the store d entails c, i.e., α ∈ min{a ∈
Con0 | c � d $ a }. Note that assuming that (Con ,�) is well-founded (Sec. 1.1) is
necessary to guarantee that α exists whenever {a ∈ Con0 | c � d $ a } is not empty.

To give an intuition about LR4, it may be convenient to first explain why a naive
adaptation of the analogous reduction rule R4 in Table 1 would not work. One may be
tempted to define the rule for the local case, by analogy to the labelled local rules in
other process calculi (e.g., the π-calculus) and R4, as follows:

(*)
〈P, e $ ∃xd〉 α−→ 〈Q, e′ $ ∃xd〉

〈∃e
xP, d〉 α−→ 〈∃e′

x Q, d $ ∃xe′〉
where x �∈ fv(α)

148 A. Aristizábal et al.

Table 2. Labelled Transitions (The symmetric Rule for LR3 is omitted)

LR1 〈tell(c), d〉 true−→ 〈stop, d � c〉

LR2
α ∈ min{a ∈ Con0 | c � d � a }
〈ask (c) → P, d〉 α−→ 〈P, d � α〉

LR3
〈P, d〉 α−→ 〈P ′, d′〉

〈P ‖ Q, d〉 α−→ 〈P ′ ‖ Q, d′〉

LR4
〈P [z/x], e[z/x] � d〉 α−→ 〈P ′, e′ � d � α〉

〈∃e
xP, d〉 α−→ 〈∃e′[x/z]

x P ′[x/z], ∃x(e′[x/z]) � d � α〉
x
∈ fv(e′), z
∈ fv(P) ∪ fv(e � d � α)

LR5
〈P [z/x], d〉 α−→ γ′

〈p(z), d〉 α−→ γ′
where p(x)

def
= P is a process definition in D

This rule however is not “complete” (in the sense of Lemma 5 below) as it does not
derive all the transitions we wish to have.

Example 6. Let P as in Ex. 3, i.e., P = ∃x<1
x (ask (y > 1) → Q) and d = y > x.

Note that α = x > 1 is a minimal constraint that added to d enables a reduction from P .
In Ex. 3 we obtained the transition: 〈P, d $α〉 −→ 〈∃x<1

x Q, d$α$ ∃x(x < 1)〉 Thus,
we would like to have a transition from 〈P, d〉 labelled with α. But such a transition
cannot be derived with Rule (*) above since x ∈ fv(α). �$

Now, besides the side condition, another related problem with Rule (*) arises from the
existential quantification ∃xd in the antecedent transition 〈P, e$∃xd〉 α−→ 〈Q, e′$∃xd〉.
This quantification hides the effect of d on x and thus is not possible to identify the x
in α with the x in d. The information from the environment α needs to be added to the
global store d, hence the occurrences of x in both d and α must be identified. Notice
that dropping the existential quantification of x in d in the antecedent transition does
identify the occurrences of x in d with those in α but also with those in the local store
e thus possibly generating variable clashes.

The rule LR4 in Table 2 solves the above-mentioned issues by using in the antecedent
derivation a fresh variable z that acts as a substitute for the free occurrences of x in P
and its local store e. (Recall that T [z/x] represents T with x replaced with z). This way
we identify with z the free occurrences of x in P and e and avoid clashes with those in
α and d. E.g., for the process defined in the Ex.6, using LR4 (and LR2) one can derive

〈ask (y > 1) → Q[z/x], z < 1 $ y > x〉 x>1−→ 〈Q[z/x], z < 1 $ y > x $ x > 1〉

〈∃x<1
x (ask (y > 1) → Q), y > x〉 x>1−→ 〈∃x<1

x Q, ∃x(x < 1) $ y > x $ x > 1〉

The labeled semantics is sound and complete w.r.t. the unlabeled one. Soundness states
that 〈P, d〉 α−→ 〈P ′, d′〉 corresponds to our intuition that if α is added to d, P can

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 149

reach 〈P ′, d′〉. Completeness states that if we add a to (the store in) 〈P, d〉 and reduce
to 〈P ′, d′〉, it exists a minimal information α � a such that 〈P, d〉 α−→ 〈P ′, d′′〉 with
d′′ � d′.

Lemma 4. (Soundness). If 〈P, d〉 α−→ 〈P ′, d′〉 then 〈P, d $ α〉 −→ 〈P ′, d′〉.

Lemma 5. (Completeness). If 〈P, d$a〉 −→ 〈P ′, d′〉 then ∃α, b s.t. 〈P, d〉 α−→ 〈P ′, d′′〉
and α $ b = a, d′′ $ b = d′.

Corollary 1. 〈P, d〉 true−→ 〈P ′, d′〉 if and only if 〈P, d〉 −→ 〈P ′, d′〉.

By virtue of the above, we will write −→ to mean
true−→.

4 Strong and Weak Bisimilarity

Having defined our labelled transitions for ccp, we now proceed to define an equiva-
lence that characterizes ∼̇sb without the upward closure condition.

When defining bisimilarity over a labeled transition system, barbs are not usually
needed because they can be somehow inferred by the labels of the transitions. For ex-
ample in CCS, P ↓a iff P

a−→. The case of ccp is different: barbs cannot be removed
from the definition of bisimilarity because they cannot be inferred by the transitions.
In order to remove barbs from ccp, we could have inserted labels showing the store of
processes (as in [26]) but this would have betrayed the philosophy of “labels as minimal
constraints”. Then, we have to define bisimilarity as follows.

Definition 8. (Syntactic bisimilarity). A syntactic bisimulation is a symmetric relation
R on configurations such that whenever (γ1, γ2) ∈ R:

(i) if γ1 ↓c then γ2 ↓c,
(ii) if γ1

α−→ γ′
1 then ∃γ′

2 such that γ2
α−→ γ′

2 and (γ′
1, γ

′
2) ∈ R.

We say that γ1 and γ2 are syntactically bisimilar, written γ1 ∼S γ2, if there exists a
syntactic bisimulation R such that (γ1, γ2) ∈ R.

We called the above bisimilarity “syntactic”, because it does not take into account the
“real meaning” of the labels. This equivalence coincides with the one in [26] (apart
from the fact that in the latter, barbs are implicitly observed by the transitions) and,
from a more general point of view can be seen as an instance of bisimilarity in [18] (by
identifying contexts with constraints). In [7], it is argued that the equivalence in [18] is
often over-discriminating. This is also the case of ccp, as illustrated in the following.

Example 7. Let P = ask (x < 10) → tell(y = 0) and Q = ask (x < 5) →
tell(y = 0). The configurations γ1 = 〈P ‖ Q, true〉 and γ2 = 〈P ‖ P, true〉 are

not equivalent according to ∼S . Indeed γ1
x<10−→ γ′

1
x<5−→ γ′′

1 , while γ2 after performing

γ2
x<10−→ γ′

2 can only perform γ′
2

true−→ γ′′
2 . However γ1 ∼̇sb γ2. �$

To obtain coarser equivalence (coinciding with ∼̇sb), we define the following.

Definition 9. (Strong bisimilarity). A strong bisimulation is a symmetric relation R on
configurations such that whenever (γ1, γ2) ∈ R with γ1 = 〈P, d〉 and γ2 = 〈Q, e〉 :

150 A. Aristizábal et al.

(i) if γ1 ↓c then γ2 ↓c,
(ii) if γ1

α−→ γ′
1 then ∃γ′

2 s.t. 〈Q, e $ α〉 −→ γ′
2 and (γ′

1, γ
′
2) ∈ R.

We say that γ1 and γ2 are strongly bisimilar, written γ1 ∼̇ γ2, if there exists a strong
bisimulation R such that (γ1, γ2) ∈ R.

To give some intuition about the above definition, let us recall that in 〈P, d〉 α−→ γ′ the
label α represents minimal information from the environment that needs to be added to
the store d to evolve from 〈P, d〉 into γ′. We do not require the transitions from 〈Q, e〉
to match α. Instead (ii) requires something weaker: If α is added to the store e, it should
be possible to reduce into some γ′′ that it is in bisimulation with γ′. This condition is
weaker because α may not be a minimal information allowing a transition from 〈Q, e〉
into a γ′′ in the bisimulation, as shown in the previous example.

Definition 10. (Weak bisimilarity). A weak bisimulation is a symmetric relation R on
configurations such that whenever (γ1, γ2) ∈ R with γ1 = 〈P, d〉 and γ2 = 〈Q, e〉 :

(i) if γ1 ↓c then γ2 ⇓c,
(ii) if γ1

α−→ γ′
1 then ∃γ′

2 s.t. 〈Q, e $ α〉 −→∗ γ′
2 and (γ′

1, γ
′
2) ∈ R.

We say that γ1 and γ2 are weakly bisimilar, written γ1 ≈̇ γ2, if there exists a weak
bisimulation R such that (γ1, γ2) ∈ R.

Example 8. We can show that tell(true) ≈̇ ask(c) → tell(d) when d � c. Intuitively,
this corresponds to the fact that the implication c ⇒ d is equivalent to true when c
entails d. Let us take γ1 = 〈tell(true), true〉 and γ2 = 〈ask(c) → tell(d), true〉.
Their labeled transition systems are the following: γ1

true−→ 〈stop, true〉 and γ2
c−→

〈tell(d), c〉 true−→ 〈stop, c〉. It is now easy to see that the symmetric closure of the
relation R given below is a weak bisimulation.

R = {(γ2, γ1), (γ2, 〈stop, true〉), (〈tell(d), c〉, 〈stop, c〉), (〈stop, c〉, 〈stop, c〉)} �$

The following theorem states that strong and weak bisimilarity coincide, resp., with
∼̇sb and ≈̇sb. Hence γ1 and γ2 in the above example are also in ≈̇sb (and, by Thm 2,
also in ∼o). It is worth noticing that any saturated barbed bisimulation (Def. 7) relating
γ1 and γ2 is infinite in dimension, since it has to relate 〈tell(true), a〉 and 〈ask(c) →
tell(d), a〉 for all constraints a ∈ Con0. Instead, the relation R above is finite and it
represents (by virtue of the following theorem) a proof also for γ1≈̇sbγ2.

Theorem 3. ∼̇sb = ∼̇ and ≈̇sb = ≈̇.

5 Conclusions, Related and Future Work

In this paper we introduced labeled semantics and bisimilarity for ccp. Our equivalence
characterizes the observational semantics introduced in [27] based on limits of infi-
nite computations, by means of a co-inductive definition. It follows from [27] that our
bisimilarity coincides with the equivalence induced by the standard closure operators

Deriving Labels and Bisimilarity for Concurrent Constraint Programming 151

semantics of ccp. Therefore, our weak bisimulation approach represents a novel sound
and complete proof technique for observational equivalence in ccp.

Our work is also interesting for the research programme on “labels derivation”. Our
labeled semantics can be regarded as an instance of the one introduced at an abstract
level in [18]. Syntactical bisimulation (Def. 8) as an instance of the one in [18], while
strong and weak bisimulations (Def. 9 and Def. 10) as instances of those in [6]. Further-
more, syntactical bisimulation intuitively coincides with the one in [26], while saturated
barbed bisimulation (Def. 6) with the one in [19]. Recall that syntactical bisimilarity is
too fine grained, while saturated barbed bisimulation requires the relation to be upward
closed (and thus, infinite in dimension). Our weak bisimulation instead is fully abstract
and avoid the upward closure. Summarizing, the framework in [6] provides us an ab-
stract approach for deriving a novel interesting notion of bisimulation.

It is worth noticing that the restriction to the summation-free fragment is only needed
for proving the coincidence with [27]. The theorem in Section 2.1 still holds in the
presence of summation. Analogously, we could extend all the definitions to infinite
constraints without invalidating these theorems.

Some recent works [9,17,16] have defined bisimilarity for novel languages featuring
the interaction paradigms of both ccp and the π-calculus. In these works, bisimilarity
is defined starting from transition systems whose labels represent communications in
the style of the π-calculus. Instead we employ barbs on a purely unlabeled semantics.
Preliminary attempts have shown that defining a correspondence with our semantics is
not trivial. We left this for an extended version of the paper.

As shown e.g. in [19] there are strong connections between ccp processes and logic
formulae. As future work we would like to investigate whether our present results can be
adapted to provide a novel characterization of logic equivalence in terms of bisimilarity.
Preliminary results show that at least the propositional fragment, without negation, can
be characterized in terms of bisimilarity.

Finally, we are implementing a checker for our equivalence by employing [8].

References

1. Extended version. Technical report,
http://www.lix.polytechnique.fr/ luis.pino/files/
FOSSACS11-extended.pdf

2. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Science, pp.
1–168. Clarendon Press, Oxford (1994)

3. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous pi-
calculus. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 147–
162. Springer, Heidelberg (1996)

4. Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS, pp. 332–341. IEEE
Computer Society, Los Alamitos (2010)

5. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: Mobile processes, nominal
data, and logic. In: LICS, pp. 39–48 (2009)

6. Bonchi, F., Gadducci, F., Monreale, G.V.: Reactive systems, barbed semantics, and the mo-
bile ambients. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 272–287.
Springer, Heidelberg (2009)

http://www.lix.polytechnique.fr/~luis.pino/files/FOSSACS11-extended.pdf
http://www.lix.polytechnique.fr/~luis.pino/files/FOSSACS11-extended.pdf

152 A. Aristizábal et al.

7. Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In: LICS, pp.
69–80 (2006)

8. Bonchi, F., Montanari, U.: Minimization algorithm for symbolic bisimilarity. In: Castagna,
G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 267–284. Springer, Heidelberg (2009)

9. Buscemi, M.G., Montanari, U.: Open bisimulation for the concurrent constraint pi-calculus.
In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 254–268. Springer, Heidelberg
(2008)

10. de Boer, F.S., Pierro, A.D., Palamidessi, C.: Nondeterminism and infinite computations in
constraint programming. Theor. Comput. Sci. 151(1), 37–78 (1995)

11. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph
rewriting. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 151–166.
Springer, Heidelberg (2004)

12. Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Confluence in concurrent con-
straint programming. Theor. Comput. Sci. 183(2), 281–315 (1997)

13. Di Gianantonio, P., Honsell, F., Lenisa, M.: Rpo, second-order contexts, and lambda-
calculus. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 334–349. Springer,
Heidelberg (2008)

14. Henkin, J.M.L., Tarski, A.: Cylindric Algebras (Part I). North-Holland, Amsterdam (1971)
15. Honda, K., Yoshida, N.: On reduction-based process semantics. Theor. Comput. Sci. 151(2),

437–486 (1995)
16. Johansson, M., Bengtson, J., Parrow, J., Victor, B.: Weak equivalences in psi-calculi. In:

LICS, pp. 322–331 (2010)
17. Johansson, M., Victor, B., Parrow, J.: A fully abstract symbolic semantics for psi-calculi.

CoRR, abs/1002.2867 (2010)
18. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In:

Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg
(2000)

19. Mendler, N.P., Panangaden, P., Scott, P.J., Seely, R.A.G.: A logical view of concurrent con-
straint programming. Nord. J. Comput. 2(2), 181–220 (1995)

20. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University
Press, Cambridge (1999)

21. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS,
vol. 623, pp. 685–695. Springer, Heidelberg (1992)

22. Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for ccs.
FI 16(1), 171–199 (1992)

23. Palamidessi, C., Saraswat, V.A., Valencia, F.D., Victor, B.: On the expressiveness of linearity
vs persistence in the asychronous pi-calculus. In: LICS, pp. 59–68 (2006)

24. Rathke, J., Sassone, V., Sobociński, P.: Semantic barbs and biorthogonality. In: Seidl, H. (ed.)
FOSSACS 2007. LNCS, vol. 4423, pp. 302–316. Springer, Heidelberg (2007)

25. Rathke, J., Sobocinski, P.: Deconstructing behavioural theories of mobility. In: IFIP TCS,
vol. 273, pp. 507–520. Springer, Heidelberg (2008)

26. Saraswat, V.A., Rinard, M.C.: Concurrent constraint programming. In: POPL, pp. 232–245
(1990)

27. Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent constraint
programming. In: POPL, pp. 333–352 (1991)

28. Sassone, V., Sobocinski, P.: Reactive systems over cospans. In: LICS, pp. 311–320 (2005)
29. Sewell, P.: From rewrite rules to bisimulation congruences. In: Sangiorgi, D., de Simone, R.

(eds.) CONCUR 1998. LNCS, vol. 1466, pp. 269–284. Springer, Heidelberg (1998)
30. Saraswat, V.A.: Concurrent Constraint Programming. PhD thesis, Carnegie-Mellon Univer-

sity (1989)

Ordinal Theory for Expressiveness of Well
Structured Transition Systems

Remi Bonnet1, Alain Finkel1, Serge Haddad1,�, and Fernando Rosa-Velardo2,��

1 Ecole Normale Supérieure de Cachan, LSV, CNRS UMR 8643, Cachan, France
{remi.bonnet,alain.finkel,serge.haddad}@lsv.ens-cachan.fr

2 Sistemas Informáticos y Computación, Universidad Complutense de Madrid
fernandorosa@sip.ucm.es

Abstract. To the best of our knowledge, we characterize for the first
time the importance of resources (counters, channels, alphabets) when
measuring expressiveness of WSTS. We establish, for usual classes of
wpos, the equivalence between the existence of order reflections (non-
monotonic order embeddings) and the simulations with respect to
coverability languages. We show that the non-existence of order reflec-
tions can be proved by the computation of order types. This allows us to
solve some open problems and to unify the existing proofs of the WSTS
classification.

1 Introduction

WSTS. Infinite-state systems appear in a lot of models and applications: stack
automata, counter systems, Petri nets or VASSs, reset/transfer Petri nets, fifo
(lossy) channel systems, parameterized systems. Among these infinite-state sys-
tems, a part of them, called Well-Structured Transition Systems (WSTS) [8]
enjoys two nice properties: there is a well partial ordering (wpo) on the set of
states and the transition relation is monotone with respect to this wpo.

The theory of WSTS has been successfully applied for the verification of safety
properties of numerous infinite-state models like Lossy Channel Systems, exten-
sions of Petri Nets like reset/transfer and Affine Well Nets [9], or broadcast
protocols. Most of the positive results are based on the decidability of the cov-
erability problem (whether an upward closed set of states is reachable from the
initial state) for WSTS, under natural effectiveness hypotheses. The reachability
problem, on the contrary, is undecidable even for the class of Petri nets extended
with reset or transfer transitions.

Expressiveness. Well Structured Languages [10] were introduced as a measure
of the expressiveness of subclasses of WSTS. More precisely, the language of an
instance of a model is defined as the class of finite words accepted by it, with
� Authors partially supported by the Agence Nationale de la Recherche, AVERISS

(grant ANR-06-SETIN-001) and AVERILES (grant ANR-05-RNTL-002).
�� Author partially supported by the MEC Spanish project DESAFIOS10 TIN2009-

14599-C03-01, and the CAM program PROMETIDOS S2009/TIC-1465.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 153–167, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

154 R. Bonnet et al.

coverability as accepting condition, that is, generated by traces that reach a state
which is bigger than a given final state. Convincing arguments show that the
class of coverability languages is the right one. For instance, though reachability
languages are more precise than coverability languages, the class of reachability
languages is RE for almost all Petri Nets extensions containing Reset Petri Nets
or Transfer Petri Nets.

The expressive power of WSTS comes from two natural sources: from the
structure of the state space and from the semantics of the transition relation.
These two notions were often extremely interwined in the proofs. We propose
ourselves to separate them in order to have a formal and generalizable method.

The study of the state space is related to the relevance of resources: A natural
question when confronted to an extension of a model is whether the additional
resources actually yield an increase in expressiveness. For example, if we look at
Timed Automata, clocks are a strict resource: Timed Automata with k clocks
are less expressive that Timed Automata with k + 1 clocks [4]. Surprisingly,
no similar results exist for well-known models like Petri Nets (with respect to
the number of places) or Lossy Channel Systems (with respect to the number
of channels, or number of symbols in the alphabet) except in some particular
recent works [7].

Ordinal theory for partial orders. Ordinals are a well-known representation
of well-founded total orders. Thanks to de Jongh, Parikh, Schmidt ([11], [17])
and others, this representation has been extended to well partial orders. We
are mainly interested in the order type of a wpo, which can be understood as
the “size” of the order. The order types of the union, product, and finite words
have been computed since de Jongh and Parikh. Recently, Weiermann [18] has
completed this view by computing the order type for multisets.

Contribution. First, we introduce order reflections, a variation of order em-
beddings that are allowed to be non-monotonic. We define a notion of witnessing,
that reflects the ability of a WSTS to recognize a wpo through a coverability
language. We establish the equivalence between the existence of order reflections
and the simulations with respect to coverability languages, modulo the ability
of the WSTS classes to witness their own state space.

Second, we show how to use results from the theory of ordinals, and more
precisely the properties of maximal order types, studied by de Jongh and Parikh
[11] and Schmidt [17] to easily prove the absence of reflections.

Last, we study Lossy Channel Systems and extensions of Petri Nets. We show
that most of known classes of WSTS are self-witnessing. This allows us to unify
and simplify the existing proofs regarding the classification of WSTS, also solving
the open problem [15] of the relative expressiveness of two Petri Nets extensions
called ν-Petri Nets and Data Nets, also yielding that the number of unbounded
places for these Petri Nets extensions and the size of the alphabet for Lossy
Channel Systems are relevant resources when considering their expressiveness.

Related work. Coverability languages have been used to discriminate the ex-
pressive power of several WSTS, like Lossy Channel Systems or several mono-
tonic extensions of Petri Nets. In [10] several pumping lemmas are proved to

Ordinal Theory for Expressiveness of Well Structured Transition Systems 155

discriminate between extensions of Petri Nets. In [1,2] the expressive power of
Petri Nets is proved to be strictly below that of Affine Well Nets, and Affine
Well Nets are proved to be strictly less expressive than Lossy Channel Systems.
Similar results are obtained in [15], though some significant problems are left
open, like the distinction between ν-Petri Nets [14] and Data Nets [13] that we
solve here.
Outline. The rest of the paper is organized as follows. In Section 2 we introduce
wpos, WSTS and ordinals. Then in Section 3 we develop the study of reflections
and its links with expressiveness of WSTS. Afterwards in Section 4 we apply our
result to the classical models of Petri Nets and Lossy Channel Systems. Section 5
presents the extension of our results applicable to more recent models of WSTS.
Finally we conclude and give perspectives to this work in Section 6.

For lack of space, some proofs have been omitted. We refer the interested
reader to [6] that contains the appendices with all proofs.

2 Preliminaries and WSTS

Well Orders. (X,≤X) is a quasi-order (qo) if ≤X is a reflexive and transitive
binary relation on X . For a qo we write x <X y iff x ≤X y and y �≤X x. A partial
order (po) is an antisymmetric quasi-order. Given any qo (X,≤X), the quotient
set X/ ≡≤X is a po where x ≡≤X y is defined by x ≤X y ∧ y ≤X x. Hence, in
all the paper, we will suppose that (X,≤X) is a po.

The downward closure of a subset A ⊆ X is defined as ↓A = {x ∈ X | ∃x′ ∈
A, x ≤ x′}. A subset A is downward closed iff ↓A = A. A po (X,≤X) is a well
partial order (wpo) if for every infinite sequence x0, x1, . . . ∈ X there are i and
j with i < j such that xi ≤ xj . Equivalently, a po is a wpo when there are no
strictly decreasing (for inclusion) sequences of downward closed sets.

We will shorten (X,≤X) to X when the underlying order is obvious. Similarly,
≤ will be used instead of ≤X when X can be deduced from the context.

If X and Y are wpos, their cartesian product, denoted X × Y is well ordered
by (x, y) ≤X×Y (x′, y′) ⇐⇒ x ≤X x′ ∧ y ≤Y y′. Their disjoint union, denoted
X � Y is well ordered by:

z ≤X�Y z′ ⇐⇒
{

z, z′ ∈ X
z ≤X z′ or

{
z, z′ ∈ Y
z ≤Y z′

A po (X,≤) is total (or linear) if for any x, x′ ∈ X either x ≤ x′ or x′ ≤ x. If
(Xi,≤i) are total po for i ∈ N we can define the (irreflexive) total order <lex in⋃

k X1 × ... × Xk by (x1, ..., xp) <lex (x′
1, ..., x

′
q) iff there is i ∈ {1, ..., min(p, q)}

such that xj = x′
j for j < i and xi <i x′

i or (x1, ..., xp) = (x′
1, ..., x

′
p) and q > p.

Then ≤lex given by x ≤lex x′ iff x = x′ or x <lex x′ is a total order.

Functions. Given a partial function (shortly: function) f : X → Y , the domain
of f is defined by dom(f) = {x ∈ X | ∃y ∈ Y, f(x) = y} and its range
by range(f) = {y ∈ Y | ∃x ∈ X, f(x) = y}. A function f is surjective if
range(f) = Y and it is total if dom(f) = X . Total functions are called mappings.
A mapping f is injective if for all x, x′, f(x) = f(x′) =⇒ x = x′. Finally, let

156 R. Bonnet et al.

us consider a mapping f : if X and Y are ordered, f is increasing (resp. strictly
increasing) if x ≤X y =⇒ f(x) ≤Y f(y) (resp. if x <X y =⇒ f(x) <Y f(y));
f is an order embedding (shortly: embedding) if f(x) ≤Y f(x′) ⇐⇒ x ≤X x′. A
bijective order embedding is called an order isomorphism (shortly: isomorphism).
Multisets. Given a set X , we denote by X⊕ the set of finite multisets of
X , that is, the set of mappings m : X → N with a finite support sup(m) =
{x ∈ X | m(x) �= 0}. We use the set-like notation {|...|} for multisets when
convenient, with {|xn|} describing the multiset containing x n times. We use +
and − for multiset operations. If X is a wpo then so is X⊕ ordered by ≤⊕ defined
by {|x1, . . . , xn|} ≤⊕ {|x′

1, . . . , x
′
m|} if there is an injection h : {1, . . . , n} →

{1, . . . , m} such that xi ≤X x′
h(i) for each i ∈ {1, . . . , n}.

Words. Given a set X , any u = x1 · · ·xn with n ≥ 0 and xi ∈ X , for all
i, is a finite word on X . We denote by X∗ the set of finite words on X . If
n = 0 then u is the empty word, which is denoted by ε. A language L on X is
a subset of X∗. Given L and L′ two languages on X∗, we define the language
LL′ = {uv | u ∈ L, v ∈ L′}. If X is a wpo then so is X∗ ordered by ≤X∗ which is
defined as follows: x1 . . . xn ≤X∗ x′

1 . . . x′
m if there is a strictly increasing mapping

h : {1, . . . , n} → {1, . . . , m} such that xi ≤X x′
h(i) for each i ∈ {1, . . . , n}.

Ordinals below ε0. In this paper, we shall work with set theoretical ordinals.
Let us recall a few properties of these objects. The class of ordinals is totally
ordered by inclusion, and each ordinal α is equal to the set of ordinals {β | β <
α} below it. Every total well order (X,≤X) is isomorphic to a unique ordinal
ot(X,≤X), called the order type of X .

In the context of ordinals, we define 0 = ∅, n = {0, ..., n − 1} and ω = N,
ordered by the usual order. Moreover, given α and α′ ordinals, we define α + α′

as the order type of ({0} × α) ∪ ({1} × α′) ordered by ≤lex. In the same way,
α ∗ α′ is defined as the order type of α′ × α ordered by ≤lex. Note that these
operations are not commutative: we have 1 + ω = ω �= ω + 1. This definition
of + and ∗ coincides with the usual operations on N for ordinals below ω and

we have α +
k· · · + α = α ∗ k. Exponentiation can be similarly defined, but for

simplicity of presentation, we let this definition outside this short introduction
to ordinals. Note that the most important properties of exponentiation can be
obtained from the ordering on Cantor’s Normal Forms (CNF) that we develop
below.

In this paper, we will work with ordinals below ε0, that is, those that can be

bounded by a tower ωω···
ω

. These can be represented by the hierarchy of ordinals
in CNF that is recursively given by the following rules:

C0 = {0}.
Cn+1 =

{
ωα1 + · · · + ωαp | p ∈ N, α1, . . . , αp ∈ Cn and α1 ≥ · · · ≥ αp

}
ordered

by:

ωα1 + · · · + ωαp ≤ ωα′
1 + · · · + ωα′

q ⇐⇒ (α1, . . . , αp) ≤lex (α′
1, . . . , α

′
q)

Each ordinal below ε0 has a unique CNF. If α = ωβ1 + · · · + ωβn , we denote by
Cantor(α) the multiset {|β1, . . . , βn|}.

Ordinal Theory for Expressiveness of Well Structured Transition Systems 157

WSTS. A Labelled Transition System (LTS) is a tuple S = 〈X, Σ,→〉 where
X is the set of states, Σ is the labelling alphabet and →⊆ X × (Σ ∪ {ε}) × X

is the transition relation. We write x
a−→ x′ to say that (x, a, x′) ∈→. This

relation is extended for u ∈ Σ∗ by x
u−→ x′ ⇐⇒ x

a1−→ x1...xk−1
ak−→ x′ and

u = a1a2 · · · ak (note that some ai’s can be ε). A Well Structured Transition
System (shortly a WSTS) is a tuple S = (X, Σ,→,≤), where (X, Σ,→) is an
lts, and ≤ is a wpo on X , satisfying the following monotonicity condition: for all
x1, x2, x

′
1 ∈ X, u ∈ Σ∗, x1 ≤ x′

1, x1
u−→ x2 implies the existence of x′

2 ∈ X such
that x′

1
u−→ x′

2 and x2 ≤ x′
2. For a class X of wpos, we will denote by WSTSX

the class of WSTS with state space in X, or just WSTSX for WSTS{X}.

Coverability and Reachability Languages. Trace languages, reachability
languages and coverability languages are natural candidates for measuring the
expressive power of classes of WSTS. Given a WSTS S and two states x0 and
xf , the reachability language is LR(S, x0, xf) = {u ∈ Σ∗ | x0

u→xf} while the
coverability language is L(S, x0, xf) = {u ∈ Σ∗ | x0

u→x, x ≥ xf}. Let us remark
that all trace languages are coverability languages in taking xf =⊥ where ⊥ is
the least element of X .

The class of reachability languages is the set of recursively enumerable lan-
guages for almost all Petri nets extensions containing reset Petri nets or transfer
Petri nets. Thus such a criterium does not discriminates sufficiently . One could
consider infinite coverability languages. A sensible accepting condition in this
case could be repeated coverability, that is, the capacity of covering a given
marking infinitely often, in the style of Büchi automata. However, analogously
to what happens with reachability, repeated coverability is generally undecid-
able, which makes ω-languages a bad candidate to study the relative expressive
power of WSTS. In conclusion, we will use the class of coverability languages,
as in [10,1,2,15].

For two classes of WSTS, S1 and S2, we write S1 � S2 whenever for every
language L(S1, x1, x

′
1) with S1 ∈ S1, and x1, x

′
1 two states of S1, there exists

another system S2 ∈ S2 and two states x2, x
′
2 of S2 such that L(S2, x2, x

′
2) =

L(S1, x1, x
′
1). When S1 � S2 and S2 � S1, one denotes the equivalence of classes

by S1 � S2. We write S1 ≺ S2 for S1 � S2 and S2 � S1.

The Lossy semantics. The lossy semantics Sl of a WSTS S with space X
is the original system S completed by all ε-transitions x

ε→y, for all x, y ∈ X
such that y < x. We observe that Sl satisfies the monotonicity condition, hence
Sl is still a WSTS; and moreover, due to the lossy semantics, one has: for all
x1, x2 ∈ X, u ∈ Σ∗, x1

u→x2 implies x1
u→x′

2 for all x′
2 ≤ x2. For any x0, xf , we

have: L(S, x0, xf) = L(Sl, x0, xf).

3 A Method for Comparing WSTS

In this section we propose a method to compare the expressiveness of WSTS
mainly based on their state space. We will prove some results that will provide
us with tools to establish strict relations between classes of WSTS.

158 R. Bonnet et al.

3.1 A New Tool: Order Reflections

Definition 1. Let (X,≤X) and (Y,≤Y) be two partially ordered sets. A mapping
ϕ : X → Y is an order reflection (shortly: reflection) if ϕ(x) ≤Y ϕ(x′) implies
x ≤X x′ for all x, x′ ∈ X.

We will write X � Y if there is an embedding from X to Y and X �refl Y if
there is a reflection from X to Y . We will use �� and ��refl for their negation and
� and �refl for their antisymmetric version (i.e. X � Y ⇐⇒ X � Y ∧Y �� X).
Here are some basic properties of reflections we will use throughout the paper:
for any set X , any injective mapping to (X, =) is a reflection; every reflection is
injective; the composition of two reflections is a reflection (so �refl is a qo).

Furthermore, if ϕ is an embedding from X to Y then X is isomorphic to
ϕ(X) and hence can be identified to it. Clearly, existence of embeddings are a
stronger requirement than the existence of reflections. In particular, it can be
the case that a wpo X cannot be embedded in another wpo Y , even if there are
reflections from X to Y , as implied by the following result.

Proposition 1. The following properties hold:

- Nk �refl N⊕, for any k > 0.
- Nk �� N⊕ for any k ≥ 3 (but N2 � N⊕).

3.2 Expressiveness of WSTS and Order Reflections

Reflections are more appropriate than embeddings for the comparison of WSTS.
In particular, the existence of a reflection implies the relation between the cor-
responding classes of WSTS.

Theorem 1. Let X and Y be two wpo. We have:

X �refl Y =⇒ WSTSX � WSTSY

This is easily shown by taking a WSTS of state space X , looking at its lossy
equivalent through the order reflection, and realizing this is another WSTS which
recognizes the same language. The detailed proof is in the appendix of [6].

We would like to obtain the converse of the previous result: X ��refl Y =⇒
WSTSX �� WSTSY . First, we only present this result for “simple” state spaces.
The case of more complex state spaces will be handled in later sections.

Given an alphabet Σ = {a1, ..., ak}, we define Σ by Σ = {a1, · · · , ak} where
ai’s are fresh symbols (i.e. Σ ∩ Σ = ∅). This notation is extended to words by
u = a1 · · ·ak for u = a1 · · · ak ∈ Σ∗. In the same way, given L ⊆ Σ∗, we have
L = {u | u ∈ L} ⊆ Σ

∗
.

Definition 2. Let X be a wpo and Σ a finite alphabet. A surjective partial func-
tion from Σ∗ to X is called a Σ-representation of X. Given a Σ-representation
γ of X, we define Lγ = {uv | u, v ∈ dom(γ) and γ(v) ≤ γ(u)}. A language
L ∈ (Σ ∪ Σ̄)∗ is a γ-witness (shortly: witness) of X if L∩ dom(γ)dom(γ) = Lγ.

Ordinal Theory for Expressiveness of Well Structured Transition Systems 159

In particular, Lγ is a witness of X for any Σ-representation γ of X . Intuitively,
given a witness L of X , the fact that a WSTS can recognize L witnesses that
the WSTS can represent the structure of X : it is capable of accepting all words
starting with some u (representing some state γ(u)), followed by some v that
represents γ(v) ≤ γ(u). Witness languages are useful in proving strict relations
between classes of WSTS:

Theorem 2. Let L be a witness of X. If X ��refl Y then there are no y0, yf ∈ Y
and no S ∈ WSTSY such that L = L(S, y0, yf).

Proof. Assume by contradiction that L is a covering language of a WSTS S
whose state space is Y with y0 and yf as initial and final states, respectively.
For each x ∈ X , let us take ux ∈ Σ∗ such that γ(ux) = x. The word uxux is
recognized by S, hence we can find yx and y′

x such that y0
ux−−→ yx

ux−−→ y′
x ≥ yf .

We define ϕ(x) = yx. Let us see that ϕ is an order reflection from X to Y ,
thus reaching a contradiction. Assume that ϕ(x) ≤ ϕ(x′). Since S is a WSTS
any sequence fireable from ϕ(x) is also fireable from ϕ(x′) and the state reached
by this subsequence is greater or equal than the one reached from ϕ(x). Hence,
the state reached after ux′ux is bigger than the one reached after uxux, which
means that ux′ux ∈ L ∩ dom(γ)dom(γ), implying x ≤ x′, so that ϕ is an order
reflection.

The simple state spaces we mentioned before, will be the ones produced by the
following grammar:

Γ ::= Q (finite set with equality)
| N (naturals with the standard order)
| Σ∗ (words on a finite set with the order defined in Section 2)
| Γ × Γ (cartesian product with the order defined in Section 2)

As N is isomorphic to Σ∗ when Σ is a singleton, any set produced by Γ is
isomorphic to a set Q × Σ∗

1 × · · · × Σ∗
k where Q and each Σi are finite sets.

Proposition 2. Let X be a set produced by the grammar Γ . Then, there is a
witness of X that is recognized by a WSTS of state space X.

When a WSTS can recognize a witness of its own state space the following holds:

Proposition 3. Let X be a wpo produced by Γ and Y any wpo. Then,

X �refl Y ⇐⇒ WSTSX � WSTSY

Proof. The direction from left to right is given by Theorem 1. For the converse,
let us prove that X ��refl Y ⇒ WSTSX � WSTSY . We can find a witness L
of X recognized by a WSTS of state space X (Prop. 2). By Theorem 2, this
language can not be recognized by a WSTS of state space Y , hence the result.

160 R. Bonnet et al.

3.3 Self-witnessing WSTS Classes

The reason we were able to build our equivalence between the existence of a
reflection from X to Y and WSTSX � WSTSY for any wpo X produced by Γ
was Prop. 2. However, we conjecture that for any state space X that embeds
N⊕, there is no WSTS of state space X that can recognize a witness of X . This
prompts us to define a new notion:

Definition 3. Let X be a class of wpos and S a class of WSTS whose state
spaces are included in X. (X,S) is self-witnessing if, for all X ∈ X, there exists
S ∈ S that recognizes a witness of X.

We will shorten (X,S) as S when the state space is not explicitly needed. We
extend the relation �refl to classes of wpo by X �refl X′ if for any X ∈ X,
there exists X ′ ∈ X′ such that X �refl X ′.

Proposition 4. Let (X,S) be a self-witnessing WSTS class and S′ a WSTS
class using state spaces inside X′. Then, S � S′ =⇒ X �refl X′.
Moreover, if S′ = WSTSX′ , S � S′ ⇐⇒ X �refl X′.

Proof. Let us show the first implication. Let X ∈ X. Since (X,S) is self-
witnessing, there is S ∈ S that recognizes L, a witness of X . Because S � S′,
there is S′ ∈ S′ recognizing L. S′ has state space X ′ ∈ X′, and by Theorem 2,
X �refl X ′.

For the second implication, for any X ∈ X, we have X ′ ∈ X′ such that
X �refl X ′. Because of Theorem 1, WSTSX � WSTSX′ . Hence, WSTSX �
WSTSX′ .

We will see in sections 4 and 5 that many usual classes of WSTS, even those
outside the algebra Γ , are self-witnessing.

3.4 How to Prove the Non-existence of Reflections?

Because of Prop. 3 and Prop. 4, the non existence of reflections will be a powerful
tool to prove strict relations between WSTS. We provide here a simple way from
order theory. Let us recall that a linearization of a po ≤X is a linear order ≤′

X

on X such that x ≤X y =⇒ x ≤′
X y. A linearization of a wpo is a well total

order, hence isomorphic to an ordinal. We extend the definition of order types
to non-total wpos:

Definition 4. Let (X,≤X) be a wpo. The maximal order type (shortly: order
type) of (X,≤X) is ot(X,≤X) = sup {ot(X,≤′

X) | ≤′
X linearization of ≤X}.

The existence of the sup comes from ordinal theory. de Jongh and Parikh [11]
even show that this sup is actually attained. Let Down(X) be the set of down-
ward closed subsets of X . Then, another well-known characterization of the
maximal order type is the following (proofs of propositions 5 and 6 are in the
appendix of [6]):

Ordinal Theory for Expressiveness of Well Structured Transition Systems 161

Proposition 5. ot(X)+1 = sup {α | ∃f : α → Down(X), f strictly increasing}

This leads us to the proposition that we use to separate many classes of WSTS:

Proposition 6. [18] Let X and Y be two wpos. X �refl Y =⇒ ot(X) ≤ ot(Y).

The order types of the usual state spaces used for WSTS are known. We will
recall some classic results on these order types, but we need the following defi-
nitions of addition and multiplication on ordinals to be able to characterize the
order types of X � Y and X × Y . Remember (Section 2) that an ordinal α be-
low ε0 is uniquely determined by Cantor(α), hence the validity of the following
definition.

Definition 5. (Hessenberg 1906, [11]) The natural addition, denoted ⊕, and the
natural multiplication, denoted ⊗, are defined by:

Cantor(α ⊕ α′) = Cantor(α) + Cantor(α′)
Cantor(α ⊗ α′) = {|β ⊕ β′ | β ∈ Cantor(α), β′ ∈ Cantor(α′)|}

We already know that the order type of a finite set (with any order) is its
cardinality and that the order type of N is ω. De Jongh and Parikh [11], and
Schmidt [17] have shown a way to compose order types with the disjoint union,
the cartesian product, and the Higman ordering. A more recent and difficult
result, by Weiermann [18], provides us with the order type of multisets. These
results are summed up here:

Proposition 7. ([11], [17], [18])

– ot(X � Y) = ot(X) ⊕ ot(Y)
– ot(X × Y) = ot(X) ⊗ ot(Y)

– ot(X∗) =

{
ωωot(X)−1

if X finite
ωωot(X)

otherwise (for ot(X) < ε0)
– ot(X⊕) = ωot(X) for ot(X) < ε0

Formulas exist even for ot(X) ≥ ε0. We refer the interested reader to [11] and
[18] for the complete formulas. With these general results we can obtain many
strict relations between wpo.

Corollary 1. The following strict relations hold for any k > 0:

(1) Nk �refl Nk+1 (4) Nk�refl N⊕

(2) (Nk)⊕�refl (Nk+1)⊕ (5) Nk�refl Σ∗ (for |Σ| > 1)
(3) (Nk)∗�refl (Nk+1)∗

Proof. The non-strict relations in (1), (2) and (3) are clear, and for (4) this is
Prop. 1. For (5), ϕ(n1, . . . , nk) = an1b . . . bank is a reflection. Strictness follows
from Prop. 6 and the following order types, obtained according to the previous
results: ot(Nk) = ωk, ot((Nk)⊕) = ωωk

, ot((Nk)∗) = ωωωk

, and ot(Σ∗) = ωω|Σ|−1
.

162 R. Bonnet et al.

4 Vector Addition Systems and Lossy Channel Systems

The state spaces described by Prop. 3 are exactly those of Petri Nets and Lossy
Channel Systems. We will look more closely at these systems to see the impli-
cation of this theorem regarding their expressiveness.

4.1 Vector Addition Systems and Petri Nets

We work with Vector Addition Systems with States (VASS), which are equivalent
to Petri nets. A VASS of dimension k is a tuple (Q, T, δ, Σ, λ), where Q is a finite
(and non-empty) set of control sates, T is a finite set of transitions, δ : T →
Q×Zk×Q, Σ is the finite labelling alphabet, and λ : T → Σ∪{ε} is the mapping
which labels transitions. Transition t is enabled in (p, x) if δ(t) = (p, y, q) for
some q ∈ Q and some y ∈ Zk with x ≥ −y, in which case t can occur, reaching
state (q, x + y). VASS are WSTS by taking (p, x) ≤ (q, y) iff p = q and x ≤ y.
The transition relation → of the WSTS associated with the VASS is defined by:
((p, x), a, (q, x + y)) ∈→ if there is a transition t ∈ T which is enabled in (p, x)
such that δ(t) = (p, y, q) and λ(t) = a.

Let us denote by VASSk the class of VASS with dimension k. Notice that the
state space of any VASS with dimension k is in Xk = {Q×Nk | Q finite}. Then
we have the following:

Theorem 3. For any k > 0, VASSk �� WSTSXk−1 .

Proof. We remark that the WSTS defined in the proof of Prop. 2 is actually
a lossy VASS when X = Q × Nk. This induces that we can take the non-lossy
version of this VASS, which is still a WSTS. Hence, VASSk is self-witnessing,
and therefore so is WSTSXk

. Since Nk ��refl Q × Nk−1 for all finite Q (indeed,
ot(Nk) = ωk �≤ ωk−1 ∗ |Q| = ot(Q × Nk−1)), we have Xk ��refl Xk−1 and by
Prop. 4 we conclude.

We remark that even the class of lossy VASS with dimension k is not included
in the class of WSTS with state space in Xk−1. Moreover, if we consider Affine
Well Nets (AWN) (an extension of Petri nets with whole-place operations like
transfers or resets), and denote by AWN k the class of AWN with k unbounded
places (therefeore, with state space in Xk), we can obtain from the previous
result the following simple consequences.

Corollary 2. VASSk ≺ VASSk+1 �� AWN k for all k ≥ 0.

4.2 Lossy Channel Systems

Let Op denote any vector of k operations on a (fifo) channel such that for every
i ∈ {1, . . . , k}, Op(i) is either a send operation !a on channel i, a receive operation
?a from channel i (a ∈ A), a test for emptyness ε? on channel i or a null operation
nop. Let us denote OPk the set of operations Op.

Ordinal Theory for Expressiveness of Well Structured Transition Systems 163

A Lossy Channel System (LCS)1 with k channels is a tuple (Q, A, T, δ, Σ, λ)
where Q is a finite (and non-empty) set of states, A is the finite set of messages, T
is a finite set of transitions, δ : T → Q×OPk×Q, Σ is the labelling alphabet and
λ : T → Σ∪{ε} is the mapping which labels transitions. The set of configurations
is Q × (A∗)k.

For (non lossy) channel systems, transition t is enabled in (p, u1, . . . , uk) if
δ(t) = (p, Op, q) for some q ∈ Q and some Op ∈ OPk, and for all i ∈ {1, . . . , k},
if Op(i) = nop then ui = u′

i, if Op(i) = ε? then ui = u′
i = ε, if Op(i) =!a then

u′
i = uia and if Op(i) =?a then ui = au′

i, in which case t can occur, reaching
state (q, u′

1, . . . , u
′
k).

The semantics of LCS is given as the lossy version of the previous semantics,
when considering the canonic order in Q × (A∗)k for which LCS are WSTS.

If Σp is defined by Σp = {α1, ..., αp} where αi’s are constant symbols, we
define LCS(k, p) as the subclass of LCS with k channels and set of messages
Σp. We have:

Theorem 4. LCS(k, p) ≺ LCS(k + 1, p) ≺ LCS(1, p + 1)

Proof. LCS(k, p) � LCS(k+1, p) clearly holds. The proof that LCS(k+1, p) �
LCS(1, p + 1) is based on the well-known fact that one can simulate the k + 1
channels by inserting a new symbol k times as delimiters. A proof is available
in the appendix of [6]. For the strictness, we remark again that the WSTS
introduced in the proof of Prop. 2 is actually a LCS, that is, given a state
space X = Q × (Σ∗

p)k, we can find S in LCS(k, p) and a witness L of X such
that S recognizes L. This implies that LCS(k, p) is self-witnessing. For all k and
p, ot(Q×(Σ∗

p)k) = ωωp−1∗k ∗|Q|. This implies that (Σ∗
p)k+1 ��refl Q×(Σ∗

p)k and
Σ∗

p+1 ��refl Q×(Σ∗
p)k for all Q. To conclude we only need to apply proposition 4.

Moreover, in [2] the authors prove that AWN ≺ LCS. We can easily get back
this result:

Proposition 8. LCS(1, 2) �� AWN.

Proof. As in the previous result, we remark that LCS(1, 2) and AWN are self-
witnessing. Thus, we only need to apply Prop. 4, considering that for any k > 0,
Σ∗

2 ��refl Nk (Cor. 1).

This result is tight: LCS(0, p) � FA (Finite Automata), LCS(k, 1) � VASSk.

5 Petri Nets Extensions with Data

Many extensions of Petri nets with data have been defined in the literature to
gain expressive power for better modeling capabilities. Data Nets (DN) [13] are
a monotonic extension of Petri nets in which tokens are taken from a linearly
1 This definition is a slight variation of the usal one in order to uniformise presentation

of VASS and LCS without effect on their expressive power.

164 R. Bonnet et al.

a

c0

c1

c1

d0

d0

d1
d1

b

d2

q1q1 q2q2 p1p1

stst

aq1
aq2

a1

āq1
āq2

ā1

a

aa

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

xν

x

x
xxy

y

Fig. 1. Net in ν-PN 1 recognizing a witness of (Q × N)⊕ with |Q| = 2

ordered and dense domain, and transitions can perform whole place operations
like transfers, resets or broadcasts. A similar model, in which tokens can only
be compared with equality, is that of ν-Petri Nets (ν-PN) [14]. The relative
expressive power of DN and ν-PN has been an open problem since [15]. In this
section we prove that ν-PN ≺ DN . We work with the subclass of DN without
whole place operations, called Petri Data Net (PDN), since DN � PDN [2].

Now we briefly define ν-PN . The definition of PDN is in the appendix of
[6]. We consider an infinite set Id of names, a set Var of variables and a subset
of special variables Υ ⊂ Var for fresh name creation. A ν-PN is a tuple N =
(P, T, F, Σ, λ), where P and T are finite disjoint sets, F : (P × T) ∪ (T × P) →
Var⊕, Σ is the finite labelling alphabet, and λ : T → (Σ∪{ε}) labels transitions.

A marking is a mapping M : P → Id⊕. A mode is an injection σ : Var(t) →
Id . A transition t can be fired with mode σ for a marking M if for all p ∈ P ,
σ(F (p, t)) ⊆ M(p) and for every ν ∈ Υ , σ(ν) /∈ M(p) for all p. In that case we

have M
λ(t)→M ′, where M ′(p) = (M(p) − σ(F (p, t))) + σ(F (t, p)) for all p ∈ P .

Markings can be identified up to renaming of names. Thus, markings of a
ν-PN with k places can be represented as elements in (Nk)⊕, each tuple repre-
senting the occurrences in each place of one name [16]. E.g., if P = {p1, p2} and
M is such that M(p1) = {|a, a, b|} and M(p2) = {|b|}, then we can represent M
as {|(2, 0), (1, 1)|}.

The i-th place of a ν-PN is bounded if every tuple (n1, ..., nk) in every reach-
able marking satisfies ni ≤ b, for some b ≥ 0. Therefore, a bounded place may
contain arbitrarily many names, provided each of them appears a bounded num-
ber of times.

Let us denote by ν-PN k the class of ν-PN with k unbounded places. If a net
in ν-PN k has m places bounded by some b ≥ 0, then we can use as state space
(Q×Nk)⊕ with Q = {0, ..., b}m (finite and non-empty). Thus, the state space of
nets in ν-PN k is in X⊕

k = {(Q×Nk)⊕ | Q finite}. Analogously, the class PDN k

of PDN with k unbounded places has X∗
k = {(Q×Nk)∗ | Q finite} as set of state

spaces. Moreover, we take X⊕ = {(Nk)⊕ | k > 0} and X∗ = {(Nk)∗ | k > 0}.

Proposition 9. For every k ≥ 0, ν-PN k and PDN k are self-witnessing.

Ordinal Theory for Expressiveness of Well Structured Transition Systems 165

Proof. The proof for PDN k is in the long version [6]. Let us see it for ν-PNk.
Let (Q × Nk)⊕ ∈ X⊕

k . We consider an alphabet Σ = {aq | q ∈ Q} ∪ {a1, ..., ak}
and we define γ : Σ∗ → (Q × Nk)⊕ by

γ(aq1a
n1

1
1 ...a

nk
1

kaql
a

n1
l

1 ...a
nk

l

k) = {|(q1, n
1
1, ..., n

k
1), ..., (ql, n

1
l , ..., n

k
l)|}

Let us build N in ν-PNk such that L(N) ∩ dom(γ)dom(γ) = Lγ . Assume Q =
{q1, ..., qr}. Fig. 1 shows the case with k = 1 and r = 2.

The only unbounded places of N are p1, ..., pk (hence N ∈ ν-PN k). We consider
q1, ..., qr as places, a place st that stores all the names that have been used (once
each name, hence bounded), and places c0, c1, ..., ck containing one name in mu-
tual exclusion. When the name is in c0 it is non-deterministically copied in some
q (action labelled by aq), and moved to c1. For every, 1 ≤ i ≤ k, when the name
is in ci it can be copied arbitrarily often to pi (labelled by ai). At any time, this
name can be transferred to ci+1 when i < k or to st for i = k (labelled by ε). In
the last case a fresh name is put in c0 (thanks to ν ∈ Υ).

The second phase is analogous, with control places d0, d1, ..., dk+1, marked in
mutual exclusion with names taken from st. At any point, the name in dk+1 can
be removed, and one name moved from st to d0 (labelled by ε). That name must
appear in some q. Thus, for each q we have a transition that removes the name
from d0 and q and puts it in d1 (labelled by āq). For each 1 ≤ i ≤ k, the name
in di can be removed zero or more times from pi (labelled by āi). At any point,
the name is transferred from di to di+1 (labelled by ε).

The initial and final marking is that with a name in c0 and another name in dk+1
(and empty elsewhere). It holds that L(N)∩dom(γ)dom(γ) = Lγ , so we conclude.

Notice that since ν-PN k and PDN k are self-witnessing for every k ≥ 0, so are
ν-PN and PDN .

Proposition 10. X∗
1 ��refl X⊕, X⊕

k+1 ��refl X⊕
k and X∗

k+1 ��refl X∗
k for all k.

Proof. X∗
1 ��refl X⊕ holds because ot(N∗) = ωωω �≤ ωωk

= ot((Nk)⊕), so that
N∗ ��refl (Nk)⊕ for all k. The others are obtained similarly, considering that

ot((Q × Nk)⊕) = ωωk∗|Q| and ot((Q × Nk)∗) = ωωωk∗|Q|
.

Corollary 3. ν-PN ≺ PDN . Moreover, PDN 1 �� ν-PN .

Proof. ν-PN � PDN is from [15]. PDN 1 �� ν-PN is a consequence of Prop. 4,
considering that both classes are self-witnessing, and that X∗

1 ��refl X⊕.

We can even be more precise in the hierarchy of Petri Nets extensions.

Proposition 11. For any k ≥ 0, ν-PN k ≺ ν-PN k+1 and PDN k ≺ PDN k+1.

Proof. Clearly ν-PN k � ν-PN k+1 and PDN k � PDN k+1 for any k ≥ 0. For the
converses, again we can apply Prop. 4, considering that all the classes considered
are self-witnessing and that X⊕

k+1 ��refl X⊕
k and X∗

k+1 ��refl X∗
k hold.

Finally, we can strengthen the result AWN ≺ ν-PN proved in [15] in a very
straightforward way.

166 R. Bonnet et al.

Proposition 12. ν-PN 1 �� AWN

Proof. Both AWN and ν-PN 1 are self-witnessing, and X⊕
1 ��refl {Nk | k > 0}

because N⊕ ��refl Nk for all k (indeed, ot(N⊕) = ωω �≤ ωk = ot(Nk)). By Prop. 4
we conclude.

Again, the previous result is tight. Indeed, a ν-PN with no unbounded places
can be simulated by a Petri net, so that ν-PN 0 � VASS .

6 Conclusion and Perspectives

To show a strict hierarchy of WSTS classes, we have proposed a generic method
based on two principles: the ability of WSTS to recognize some specific wit-
ness languages linked to their state space, and the use of order theory to show
the absence of order reflections from one wpo to another. This allowed us to
unify some existing results, while also solving open problems. We summarize
the current picture on expressiveness of WSTS below w.r.t number of resources
and type of resources. On the other hand, showing equivalence between WSTS
classes is a problem deeply linked to the semantics of the models, and hence that
remains to be solved on a case-by-case basis.

Quantitative results. (All results are new.)
For every k ∈ N VASSk ≺ VASSk+1 �� AWN k

For every k, p ∈ N LCS(k, p) ≺ LCS(k + 1, p) ≺ LCS(1, p + 1)
For every k ∈ N ν-PN k ≺ ν-PN k+1 and PDN k ≺ PDN k+1

Qualitative results. (New results are ν-PN ≺ DN and PDN � TdPN)
VASS ≺ M ≺ DN � PDN � TdPN

where M is either ν-PN or LCS
TdPN [3] are Timed Petri nets and we have proved the related result in a companion report [5].

An interesting case that remains open is the relative expressiveness of LCS
and ν-PN . Their state space are quite distinct but their order type are the same
for some values of their parameters. We conjecture that there is no reflection
from one to the other, but such a proof would require more than order type
analysis.

As all the models that we have studied in this paper use a state space whose
order type is bounded by ε0, it is tempting to look at WSTS that would use
a greater state space. It is known that the Kruskal ordering has an order type
greater than ε0 [17], even for unlabelled binary trees. However, studies of WSTS
based on trees have been quite scarce [12]. We believe some interesting problems
might lie in this direction.

Acknowledgements. We would like to thank the anonymous reviewers for their
numerous comments and suggestions, that allowed us to greatly improve the
quality of this paper.

Ordinal Theory for Expressiveness of Well Structured Transition Systems 167

References

1. Abdulla, P.A., Delzanno, G., Van Begin, L.: Comparing the Expressive Power of
Well-Structured Transition Systems. In: Duparc, J., Henzinger, T.A. (eds.) CSL
2007. LNCS, vol. 4646, pp. 99–114. Springer, Heidelberg (2007)

2. Abdulla, P.A., Delzanno, G., Van Begin, L.: A Language-Based Comparison of
Extensions of Petri Nets with and without Whole-Place Operations. In: Dediu,
A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp.
71–82. Springer, Heidelberg (2009)

3. Abdulla, P.A., Nylen, A.: Timed Petri Nets and BQOs. In: Colom, J.-M., Koutny,
M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)

4. Alur, R., Courcoubetis, C., Henzinger, T.A.: The Observational Power of Clocks.
In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 162–177.
Springer, Heidelberg (1994)

5. Finkel, A., Bonnet, R., Haddad, S., Rosa-Velardo, F.: Comparing Petri Data Nets
and Timed Petri Nets. LSV Research Report 10-23 (2010)

6. Finkel, A., Bonnet, R., Haddad, S., Rosa-Velardo, F.: Ordinal Theory for
Expresiveness of Well-Structured Transition Systems. LSV Research Report 11-
01 (2011)

7. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermann and Primitive-
Recursive Bounds with Dickson’s Lemma. CoRR abs/1007.2989 (2010)

8. Finkel, A.: A generalization of the procedure of karp and miller to well structured
transition systems. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 499–
508. Springer, Heidelberg (1987)

9. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing
petri net extensions. Information and Computation 195(1-2), 1–29 (2004)

10. Geeraerts, G., Raskin, J., Van Begin, L.: Well-structured languages. Acta
Informatica 44, 249–288 (2007)

11. de Jongh, D.H.J., Parikh, R.: Well partial orderings and hierarchies. Indagationes
Mathematicae (Proceedings) 80, 195–207 (1977)

12. Kouchnarenko, O., Schnoebelen, P.: A Formal Framework for the Analysis
of Recursive-Parallel Programs. In: Malyshkin, V.E. (ed.) PaCT 1997. LNCS,
vol. 1277, pp. 45–59. Springer, Heidelberg (1997)

13. Lazic, R., Newcomb, T.C., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with
Tokens Which Carry Data. Fund. Informaticae 88(3), 251–274 (2008)

14. Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in Petri Net
systems. Fund. Informaticae 88(3), 329–356 (2008)

15. Rosa-Velardo, F., Delzanno, G.: Language-Based Comparison of Petri Nets with
black tokens, pure names and ordered data. In: Dediu, A.-H., Fernau, H.,
Mart́ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 524–535. Springer, Hei-
delberg (2010)

16. Rosa-Velardo, F., de Frutos-Escrig, D.: Forward Analysis for Petri Nets with Name
Creation. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128,
pp. 185–205. Springer, Heidelberg (2010)

17. Schmidt, D.: Well-partial orderings and their maximal order types. Fakultät
für Mathematik der Ruprecht-Karls-Universität Heidelberg. Habilitationsschrift
(1979)

18. Weiermann, A.: A Computation of the Maximal Order Type of the Term Ordering
on Finite Multisets. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009.
LNCS, vol. 5635, pp. 488–498. Springer, Heidelberg (2009)

Alternation Elimination for Automata over
Nested Words�

Christian Dax and Felix Klaedtke

Computer Science Department, ETH Zurich, Switzerland

Abstract. This paper presents constructions for translating alternating
automata into nondeterministic nested-word automata (NWAs). With
these alternation-elimination constructions at hand, we straightforwardly
obtain translations from various temporal logics over nested words from
the literature like CaRet and μNWTL, and extensions thereof to NWAs,
which correct, simplify, improve, and generalize the previously given
translations. Our alternation-elimination constructions are instances of
an alternation-elimination scheme for automata that operate over the
tree unfolding of graphs. We obtain these instances by providing con-
structions for complementing restricted classes of automata with respect
to the graphs given by nested words. The scheme generalizes
our alternation-elimination scheme for word automata and the presented
complementation constructions generalize existing complementation con-
structions for word automata.

1 Introduction

The regular nested-word languages [6] (a.k.a. visibly pushdown languages [5]) ex-
tend the classical regular languages by adding a hierarchical structure to words.
Such hierarchical structures in linear sequences occur often and naturally. For
instance, an XML document is a linear sequence of characters, where the open-
ing and closing tags structure the document hierarchically. Another example
from system verification are the traces of imperative programs, where the hi-
erarchical structure is given by the calls and returns of subprograms. Many
automata-theoretic methods for reasoning about regular languages carry over to
regular nested-word languages. Instead of word automata one uses nested-word
automata (NWAs) [6] or equivalently visibly pushdown automata [5], a restricted
class of pushdown automata, where the input symbols determine when the push-
down automaton can push or pop symbols from its stack. For instance, model
checking regular nested-word properties of recursive state machines, which can
model control flows of imperative programs [3, 4], and of Boolean programs [7],
which are widely used as abstractions in software model checking, can be car-
ried out in an automata-theoretic setting, similar to finite-state model check-
ing [23]. That is, the traces of a recursive state machine or a Boolean program are
described by an NWA and the negation of the specification, which is given as
� This work was partially supported by the Swiss National Science Foundation (SNF).

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 168–183, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Alternation Elimination for Automata over Nested Words 169

a formula in a temporal logic over nested words like CaRet [4], NWTL [2], and
μNWTL [10], is translated into a language-equivalent NWA. It is then checked
whether the intersection of the automata’s languages is empty.

In this paper, we view a nested word as a graph with linear and hierarchical
edges. The nodes of the graph are the positions of the nested word. A linear
edge connects two neighboring positions and a hierarchical edge connects every
call with its matching return position. We present constructions for translat-
ing alternating automata that take as input the graphs of nested words into
NWAs. These constructions are of immediate relevance for translating tempo-
ral logics over nested words like CaRet, NWTL, and μNWTL and extensions
thereof to language-equivalent NWAs. A temporal-logic formula is first trans-
lated into such an alternating automaton and from this alternating automaton
one obtains an NWA by applying such an alternation-elimination construction.
Translations of declarative specification languages into alternating automata are
usually rather direct and easy to establish due to the rich combinatorial structure
of alternating automata. Translating an alternating automaton into a nondeter-
ministic automaton is a purely combinatorial problem. Hence, using alternating
automata as an intermediate step is a mathematically elegant way to formalize
such translations and to establish their correctness.

We obtain the alternation-elimination constructions for automata that de-
scribe nested-word languages from a construction scheme, which we previously
presented for word automata [11] and which we generalize in this paper to au-
tomata that operate over the tree unfolding of graphs. In a nutshell, the construc-
tion scheme shows that the problem of translating an alternating automaton into
a nondeterministic automaton reduces to the problem of complementing an ex-
istential automaton, i.e., an automaton that nondeterministically inspects only
a single branch in the tree unfolding of the given input graph. To obtain the
instances of the construction scheme for nested words, we also provide comple-
mentation constructions for restricted classes of existential automata, namely,
automata that operate over graphs that represent nested words.

The main benefit of our approach for translating temporal logics over nested
words to NWAs is its simplicity and modularity compared to state-of-the-art ap-
proaches. By our scheme, complicated translations are divided into smaller inde-
pendent parts. Moreover, ingredients of the presented constructions are based on
existing well established and thoroughly optimized constructions and techniques
for nondeterministic word automata, which we generalize to automata that oper-
ate over the tree unfolding of the graphs given by nested words. First, we extend
our complementation constructions for classes of nondeterministic two-way co-
Büchi word automata [11] to classes of existential co-Büchi automata, where the
inputs are the graphs of nested words. Our new constructions take the non-local
transitions, which stem from the hierarchical structure of nested words, of an
existential automaton into account. Intuitively, in such transitions, the read-only
head of the automaton jumps from a call directly to the corresponding return
or vice versa. Second, in the presented alternation-elimination constructions for
alternating parity automata, where the inputs are the graphs of nested words,

170 C. Dax and F. Klaedtke

we also use and generalize techniques and constructions from [13, 14, 22, 19] for
word automata. Finally, as a by product, we obtain a complementation con-
struction for NWAs along the lines of the construction in [13] for complementing
nondeterministic Büchi word automata.

We see our contributions as follows. First, based on a general alternation-
elimination scheme for automata that operate over the tree unfolding of graphs
and several complementation constructions, we provide alternation-elimination
constructions for the class of automata that take the graphs of nested words as in-
put with the Büchi and the parity acceptance conditions. Second, we modularize,
simplify, and correct existing translations from temporal logics over nested words
to NWAs. Third, with the presented complementation constructions we illustrate
that various constructions for word automata generalize with some modifications
to constructions for automata that describe nested-word languages.

We proceed as follows. In Section 2, we recapitulate basic definitions and
define alternating automata. In Section 3, we present our general alternation-
elimination scheme. In Section 4, we present complementation constructions for
restricted classes of existential automata with respect to nested-word languages.
Furthermore, we instantiate our scheme with these constructions. Finally, in
Section 5, we sketch applications of these instances. In particular, we present
our translations of various temporal logics over nested words into language-
equivalent NWAs. Omitted proof details can be found in the full version of the
paper, which is publicly available from the authors’ web pages.

2 Preliminaries

In this section, we fix the notation and terminology that we use in the remainder
of the text.

Propositional Logic. We denote the set of positive Boolean formulas over the set
P of propositions by Bool+(P), i.e., Bool+(P) consists of the formulas that are
inductively built from the Boolean constants tt and ff, the propositions in P ,
and the connectives ∨ and ∧. For M ⊆ P and b ∈ Bool+(P), we write M |= b
iff b evaluates to true when assigning true to the propositions in M and false to
the propositions in P \M . Moreover, we write M |≡ b if M is a minimal model
of b, i.e., M |= b and there is no p ∈M such that M \ {p} |= b.

Words and Trees. We denote the set of finite words over the alphabet Σ by Σ∗,
the set of infinite words over Σ by Σω, and the empty word by ε. The length
of a word w is written as |w|, where |w| = ω when w is an infinite word. For a
word w, wi denotes the symbol of w at position i < |w|. We write v � w if v is
a prefix of the word w.

A (Σ-labeled) tree is a function t : T → Σ, where T ⊆ N∗ satisfies the
conditions: (i) T is prefix-closed (i.e., v ∈ T and u � v imply u ∈ T) and (ii) if
vi ∈ T and i > 0 then v(i− 1) ∈ T . The elements in T are called the nodes of t
and the empty word ε is called the root of t. A node vi ∈ T with i ∈ N is called
a child of the node v ∈ T . A branch in t is a word π ∈ N∗ ∪ Nω such that either

Alternation Elimination for Automata over Nested Words 171

Table 1. Types of acceptance conditions

type finite description α, acceptance condition A

α = F ⊆ Q
Büchi A := {π ∈ Qω | inf(π) ∩ F �= ∅}
co-Büchi A := {π ∈ Qω | inf(π) ∩ F = ∅}

α = {F0, . . . , F2k−1} ⊆ 2Q, where F0 ⊆ F1 ⊆ · · · ⊆ F2k−1

parity A :=
{
π ∈ Qω

∣∣ min{i | Fi ∩ inf(π) �= ∅} is even
}

co-parity A :=
{
π ∈ Qω

∣∣ min{i | Fi ∩ inf(π) �= ∅} is odd
}

α = {(B1, C1), . . . , (Bk, Ck)} ⊆ 2Q × 2Q

Rabin A :=
⋃

i{π ∈ Qω | inf(π) ∩ Bi �= ∅ and inf(π) ∩ Ci = ∅}
Streett A :=

⋂
i{π ∈ Qω | inf(π) ∩ Bi = ∅ or inf(π) ∩ Ci �= ∅}

π ∈ T and π does not have any children, or π is infinite and every finite prefix of
π is in T . We write t(π) for the word t(ε)t(π0)t(π0π1) . . . t(π0π1 . . . πn−1) ∈ Σ∗

if π is a finite word of length n and t(ε)t(π0)t(π0π1) . . . ∈ Σω if π is infinite.

Alternating Automata. In the following, we define alternating automata, where
the inputs are graphs. Such an automaton is essentially an alternating tree au-
tomaton that operates over the tree unfolding of the given input.1 We obtain
the classical automata models for words and trees when viewing words and trees
in a rather straightforward way as graphs of the following form and restricting
the inputs to the respective class of graphs.

Let D be a nonempty finite set. We call the elements in D directions. A D-
skeleton is a directed, edge-labeled, and pointed graph

(
V, (Ed)d∈D, vI

)
, where

V is a set of vertices, the relation Ed ⊆ V × V describes the edges with label
d ∈ D, and vI ∈ V is the source. We denote the set of labels of the outgoing
edges of the vertex v ∈ V by �(v). For an alphabet Σ and a set S of D-skeletons,
the set of input graphs ΣS is the set of pairs (S, λ) with S ∈ S and λ : V → Σ,
where V is the set of vertices of S.

Let S be a nonempty set ofD-skeletons. An alternating S-automaton is a tuple
A =

(
Q,Σ, (δD′)D′⊆D, qI , A

)
, where Q is a finite set of states, Σ is a nonempty

finite alphabet, δD′ : Q×Σ → Bool+(Q×D′) is the transition function for the
directions D′ ⊆ D, qI ∈ Q is the initial state, and A ⊆ Qω is the acceptance
condition. The acceptance condition A is usually specified in a certain finite
way—the type of an acceptance condition. Commonly used types of acceptance
conditions are listed in Table 1, where inf(π) denotes the set of states that occur
infinitely often in π ∈ Qω and the integer k is the index of the automaton. If
A is specified by the type τ , we say that A is an alternating τ S-automaton.
Moreover, if the type of the acceptance condition is clear from the context, we
1 The reasons for having graphs as inputs is that it allows us to establish a broadly

applicable alternation-elimination scheme (Section 3). In particular, we can use this
automata model with the alternation-elimination scheme for translating temporal
logics over nested words into NWAs (Section 5) by viewing nested words as graphs,
where we restrict the inputs to that class of graphs (Section 4).

172 C. Dax and F. Klaedtke

just give the finite description α instead of A. For instance, an alternating Büchi
S-automaton is given as a tuple

(
Q,Σ, (δD′)D′⊆D, qI , α

)
with α ⊆ Q.

Let A =
(
Q,Σ, (δD′)D′⊆D, qI , A

)
be an alternating S-automaton and G ∈ ΣS

with G = (S, λ) and S =
(
V, (Ed)d∈D, vI

)
. A run of A on G is a tree r : R →

V ×Q with some R ⊆ N∗ such that r(ε) = (vI , qI) and for each node x ∈ R with
r(x) = (v, p), we have M |≡ δ�(v)(p, λ(v)), where

M :=
{
(q, d) ∈ Q×D′ ∣∣ x has a child y with r(y) = (v′, q) and (v, v′) ∈ Ed

}
.

Roughly speaking, A starts scanning an input graph from the skeleton’s initial
vertex, where A is in its initial state. The label (v, p) of the node x in the
run is the current configuration of A. That is, A is currently in the state p
and the read-only head is at the position v in the input graph. The transition
δD′(p, λ(v)) specifies a constraint that has to be fulfilled by the automaton’s
successor states, where D′ is the set of labels �(v) in which the read-only head
can move at the current position. An infinite branch π in a run r with r(π) =
(v0, q0)(v1, q1) . . . is accepting if q0q1 . . . ∈ A. The run r is accepting if every
infinite branch in r is accepting. The language of A is the set L(A) := {G ∈ ΣS |
there is an accepting run of A on G}.

We call an alternating S-automaton A =
(
Q,Σ, (δD′)D′⊆D, qI , A

)
existential

if δD′ returns a disjunction for all inputs, for all D′ ⊆ D. Note that a run r of an
existential automaton consists of a single branch π. To increase readability, we
call r(π) also a run. Existential automata are closely related to nondeterministic
automata in the sense that an existential automaton also nondeterministically
chooses its successor state in a run with respect to the current configuration and
its transition function. However, an existential automaton only inspects a single
path of the input graph, since together with the chosen successor state it picks
a single direction in which it moves its read-only head.

3 Alternation-Elimination Scheme

In this section, we generalize our alternation-elimination scheme for word au-
tomata, which we presented in [11], to automata that operate over graphs.

3.1 Reduction to Complementation

The scheme only applies to automata with an acceptance condition for which so-
called memoryless runs are sufficient. Formally, for an alternating S-automaton
A, we require that L(A) = M(A), where the set M(A) is defined as follows. A
run r : R → V ×Q of the alternating S-automaton A =

(
Q,Σ, (δD′)D′⊆D, qI , A

)
on (S, λ) ∈ ΣS with S =

(
V, (Ed)d∈D, vI

)
is memoryless if equally labeled

nodes have isomorphic subtrees, i.e., for all x, y ∈ R and z ∈ N∗, if r(x) =
r(y) then xz ∈ R iff yz ∈ R and whenever xz ∈ R then r(xz) = r(yz). We
define M(A) := {G ∈ ΣS | there is an accepting memoryless run of A on G}.
Obviously, L(A) ⊇ M(A). For an alternating S-automata A with the Büchi, co-
Büchi, parity, or Rabin acceptance condition, it is well known that the converse

Alternation Elimination for Automata over Nested Words 173

L(A) ⊆ M(A) also holds. However, if A is, e.g., an alternating S-automata with
the Streett acceptance condition, then L(A) ⊆ M(A) does not hold in general.

Since the children of equally labeled nodes in a memoryless run r : R → V ×Q
are also equally labeled, we can represent a memoryless run by the function
σr : V ×Q→ 2Q×D, where

σr(v, q) :=
{
(q′, d)∈Q×D

∣∣ there are nodes x, y∈R such that y is a child of x,

r(x) = (v, q), r(y) = (v′, q′), and (v, v′) ∈ Ed

}
.

By “currying” the function σr, we obtain the function λr : V → Γ , where Γ is
the set of functions from Q to 2Q×D. We represent the run r as the input graph
Gr := (S, λr) ∈ Γ S. We point out that the graph representation of the run has
the same skeleton S as the skeleton of the given input graph G.

We now define an existential S-automaton R that scans input graphs in (Σ×
Γ)S, i.e., input graphs of A that are annotated with information about the
configurations of the runs of A. R refutes whenever the annotations correspond
to an accepting memoryless run of A on A’s input graph. Formally, R is the
existential S-automaton

(
Q,Σ × Γ, (ηD′)D′⊆D, qI , Q

ω \ A
)
, where its transition

function ηD′ : Q× (Σ × Γ) → Bool+(Q×D′) for D′ ⊆ D is defined as

ηD′
(
q, (a, g)

)
:=

{∨
(p,d)∈g(q)(p, d) if g(q) |≡ δD′(q, a),

tt otherwise.

Intuitively, R works as follows. It uses its nondeterminism to inspect a path in
the skeleton of the input graph. There are two cases in which R accepts the given
input graph. (1) The annotations on the inspected path do not correspond to a
branch in a memoryless run of A. (2) The annotations yield an infinite sequence
of states that is not accepting for A, i.e., the sequence is not in A.

The formal statement about R’s language is given in Lemma 1 below, where
we use the following notation. Let G = (S, λ) be an input graph in (Σ×Γ)S. G�Σ

denotes the input graph in ΣS by projecting G’s labeling to the first component,
i.e., G�Σ := (S, λ�Σ) with λ�Σ(v) := a for λ(v) = (a, g). Analogously, G�Γ

denotes the input graph in Γ S with the skeleton S and the labeling λ�Γ (v) := g.

Lemma 1. For any input graph G ∈ (Σ × Γ)S, it holds

G �∈ L(R) iff
there is an accepting memoryless run r of A on G�Σ

such that G�Γ and Gr are isomorphic.

The following theorem allows us to reduce the problem of constructing for A a
language-equivalent nondeterministic automaton to the problem of complement-
ing R. Note that from an existential automaton that accepts the complement
of R, we easily obtain a nondeterministic automaton that accepts L(A) by pro-
jecting the alphabet Σ × Γ to Σ. The benefit of this reduction is that it only
requires a complementation construction for existential automata. In Section 4,
we give such complementation constructions for specific automata classes.

Theorem 1. If L(A) = M(A) then L(A) = {G�Σ | G �∈ L(R)}.

174 C. Dax and F. Klaedtke

3.2 Inherited Properties

In the following, we show that the existential S-automaton R from Section 3.1
inherits properties from the alternating S-automaton A. We exploit these prop-
erties in our complementation constructions in Section 4.

Let A =
(
Q,Σ, (δD′)D′⊆D, A

)
be an alternating S-automaton and let W ⊆

D. The automaton A is W -way if δD′(q, a) ∈ Bool+(Q × (D′ ∩ W)), for all
D′ ⊆ D, q ∈ Q, and a ∈ Σ. Intuitively, A moves its read-only head only
along edges in the input graph that are labeled by directions in W . A weaker
condition on the allowed movements of the automaton’s read-only head is the
following. Intuitively, the automaton A is eventually W -way when it eventually
moves its read-only head only along edges that are labeled by directions in W .
Formally, this condition is defined as follows. Let G ∈ ΣS be an input graph
with G = (S, λ) and S =

(
V, (Ed)d∈D, vI

)
. We define ΠG(A) as the set of words

(q0, v0)(q1, v1) . . . ∈ (Q× V)ω with (q0, v0) = (qI , vI) and for all i ∈ N, there is
some d ∈ �(vi) and a minimal model M of δ�(vi)(qi, λ(vi)) such that (qi+1, d) ∈M
and (vi, vi+1) ∈ Ed. The automaton A is eventually W -way if for every input
graph G ∈ ΣS and every word (q0, v0)(q1, v1) . . . ∈ ΠG(A), there is an index
n ∈ N such that for all i ≥ n, we have (vi, vi+1) ∈ Ed, for some d ∈W .

The following definition of weak automata generalizes the standard defini-
tion [13, 17], where the automata’s acceptance condition is a Büchi acceptance
condition. Let A be the alternating S-automaton

(
Q,Σ, (δD′)D′⊆D, qI , A

)
. We

call a state set S ⊆ Q accepting if inf(r(π)) ⊆ S implies r(π) ∈ A, for each run r
and each infinite branch π in r. Analogously, we call S rejecting if inf(r(π)) ⊆ S
implies r(π) /∈ A, for each run r and each infinite branch π in r. The automaton
A is weak if there is a partition Q1, . . . , Qn of Q such that (i) each Qi is either
accepting or rejecting and (ii) there is a partial order � on the Qis such that for
every p ∈ Qi, q ∈ Qj , a ∈ Σ, D′ ⊆ D, and d ∈ D′, if (q, d) occurs in δD′(p, a)
then Qj � Qi. The automaton A is very weak if each Qi is a singleton. The
intuition of weakness is that each infinite branch of a run of a weak automaton
that gets trapped in one of the Qis is accepting iff Qi is accepting.

Lemma 2. Let R be the existential S-automaton as defined in Section 3.1 for
the S-automaton A. Moreover, let W ⊆ D. The following properties hold.

(i) If A is (eventually) W -way then R is (eventually) W -way.
(ii) If A is (very) weak then R is (very) weak.

4 Instances for Automata over Nested Words

In this section, we present alternation-elimination constructions for several class-
es of automata that take as input the graphs of nested words. We obtain these
constructions from our alternation-elimination scheme by providing complemen-
tation constructions for existential automata.

Alternation Elimination for Automata over Nested Words 175

4.1 Automata over Nested Words

Nested words [5, 6] are linear sequences equipped with a hierarchical structure.
In this paper, we impose this structure by tagging letters with brackets.2 More
formally, a nested word over Σ is a word over the tagged alphabet Σ̂ := Σint ∪
Σcall ∪ Σret , where the sets Σint := Σ, Σcall := {〈a | a ∈ Σ}, and Σret := {a〉 |
a ∈ Σ} are pairwise disjoint. A position i ∈ N in a nested word w ∈ Σ̂ω with
wi ∈ Σint is an internal position. Similarly, if wi ∈ Σcall then i is a call position
and if wi ∈ Σret then i is a return position. Observe that with the attached
brackets 〈 and 〉 to the letters in Σ, we implicitly group words into subwords.
This grouping can be nested. However, not every bracket at a position in a nested
word needs to have a matching bracket. The call and return positions in a nested
word without matching brackets are called pending.

Intuitively speaking, a nested-word (Büchi) automaton [5,6], NWA for short,
N is a nondeterministic pushdown automaton3 that pushes a stack symbol when
reading a letter in Σcall , pops a stack symbol when reading a letter in Σret (in
case it is not the bottom stack symbol), and does not use its stack when reading
a letter in Σint . The NWA N accepts a word in Σ̂ω if there is run on that word
that visits infinitely often an accepting state. We denote the set of nested words
for which there is an accepting run of N by L(N).

In the following, we view nested words as input graphs, where the hierarchical
structure is made explicit by adding to each position the edges that point to
its successor and predecessor positions. Formally, these input graphs with their
skeletons are defined as follows. Let D be the set {−2,−1, 0, 1, 2} and let S be
the set of D-skeletons S =

(
V, (�d)d∈D, vI

)
, where V = N, vI = 0, and the edge

relations are as follows: �0 is the identity relation over N, �1 is the successor
relation over N, and �2 is a matching jump relation. That is, for all i, j ∈ N, the
relation �2 satisfies the conditions (1) if i�2 j then i < j, (2) |{k | i�2 k}| ≤ 1
and |{k | k�2 j}| ≤ 1, and (3) if i�2 j then there are no i′, j′ ∈ N with i′ �2 j

′

and i < i′ ≤ j < j′. The relations �−1 and �−2 are the inverses of �1 and
�2, respectively. For a nested word w ∈ Σ̂ω, the input graph Gw makes the
matching jump relation, which is implicitly given by w, explicit. That is, the
D-skeleton S =

(
N, (�d)d∈D, 0

)
∈ S and the labeling λ : N → Σ̂ of the input

graph Gw fulfill the following conditions: (a) For all i ∈ N, it holds λ(i) = wi.
(b) For all i, j ∈ N, if i�2 j then λ(i) ∈ Σcall and λ(j) ∈ Σret . (c) Pending call
and return positions do not cross, i.e., for all k ∈ N with λ(k) ∈ Σcall , if there is
no k′ ∈ N with k �2 k

′ then for all j > k with λ(j) ∈ Σret , there is some i ∈ N
with i �2 j. (d) The pending positions do not cross with the matching jump

2 In [6], nested words are differently defined by not leaving the hierarchical structure
implicit by tagging letters with brackets but by making it explicit with a so-called
matching relation �⊆ ({−∞} ∪ N) × (N ∪ {+∞}). Both definitions are equivalent
in the sense that there is a straightforward bijection between them [6].

3 We point out that the stack in the definition in [6] of nested-word automata is
implicit. Due to space limitations, we omit the precise definition of nested-word
automata.

176 C. Dax and F. Klaedtke

relation �2, i.e., for all k ∈ N with λ(k) ∈ Σcall ∪Σret , if there is no k′ ∈ N with
k �2 k

′ or k′ �2 k then there are no i, j ∈ N with i�2 j and i < k < j.
The following theorem shows that alternating automata are expressive enough

to describe the class of nested-word languages recognizable by NWAs.

Theorem 2. For every NWA N, there is an alternating Büchi S-automaton A

such that for every nested word w ∈ Σ̂ω, we have w ∈ L(N) iff Gw ∈ L(A).
Furthermore, A is {1, 2}-way and has O(n2s) states, where n is the number of
states of N and s is the number of N’s stack symbols.

This result might be surprising since an NWA processes a nested word sequen-
tially and has a stack to store additional information at call positions, which it
can use later at the corresponding matching return positions. An alternating au-
tomaton does not have a stack. However, instead each node in the input graph of
a nested-word explicitly carries the information whether it is a pending or non-
pending position. Moreover, for a non-pending position, the matching return or
call position, respectively, is also explicitly given to the alternating automaton.

The reason for the blowup in the alternating automaton’s state space is that
the alternating automaton splits the computation at each non-pending call posi-
tion, which must synchronize at the corresponding return position. This synchro-
nization is implemented by guessing and causes a blow-up of the factor O(ns)
in the state space. We omit the details of this transformation construction since
it is similar to a construction in [10] for so-called jumping automata, which are
very similar to our alternating automata when restricting their inputs to the
graph representation of nested words.

4.2 Complementing Existential co-Büchi Automata

In this subsection, we present a complementation construction that translates an
eventually {1, 2}-way existential co-Büchi S-automaton A into an NWA N with
L(N) = {w ∈ Σ̂ω | Gw �∈ L(A)}. We also optimize this construction for more
restricted automata classes. Recall that we immediately obtain translations of
alternating Büchi automata over the graph representation of nested words to
NWAs by instantiating our alternating-elimination scheme with these comple-
mentation constructions. The complementation constructions utilize the follow-
ing lemma that characterizes the graph representations of nested words that are
not accepted by the eventually {1, 2}-way existential co-Büchi S-automaton A.

In the following, we abbreviate existential co-Büchi S-automaton by the
acronym ECA and assume that A =

(
Q, Σ̂, (δD′)D′⊆D, qI , F

)
. Furthermore, for

D′ ⊆ D, δd
D′(P, a) denotes the set of states that can be reached from a state

in P ⊆ Q by reading the letter a ∈ Σ̂ and following a d-labeled edge, i.e.,
δd
D′(P, a) :=

⋃
p∈P {q | the proposition (q, d) occurs in δD′(p, a)}.

Lemma 3. For the eventually {1, 2}-way ECA A and a nested word w ∈ Σ̂ω,
we have Gw �∈ L(A) iff there are words R ∈ (2Q)ω and S ∈ (2Q\F)ω that fulfill
the following conditions, where (�d)d∈D is the family of edge relations of the
D-skeleton of Gw:

Alternation Elimination for Automata over Nested Words 177

(1) qI ∈ R0.
(2) For all i, j ∈ N and d ∈ D with i�d j, we have δd

�(i)(Ri, wi) ⊆ Rj.
(3) For all i ∈ N and q ∈ Ri, we have ∅ |�≡ δ�(i)(q, wi).
(4) S0 = R0 \ F .
(5) For all i, j∈N and d∈D with d > 0 and i�dj, we have δd

�(i)(Si, wi)\F ⊆ Sj.
(6) There are infinitely many n ∈ N such that Sn = ∅, Sn+1 = Rn+1 \ F , and

for all i, j ∈ N with i�2 j and i ≤ n, we have j ≤ n.

The conditions (1) and (2) ensure that the word R contains all the runs (h0, q0)
(h1, q1) . . . of the existential automaton A on the given input graph, i.e., qi ∈ Rhi ,
for all i ∈ N. The conditions (3) to (6) on the words R and S ensure that all the
runs are rejecting. Recall that an input graph is rejected if it is not accepted by a
finite run and every infinite run visits a state in F infinitely often. Condition (3)
ensures that there is no finite accepting run. All the infinite runs are rejecting if
the word R can be split into infinitely nonempty segments such that each run of
the existential automaton that starts at the beginning of a segment will visit a
state in F before reaching the end of the segment. The conditions (4) to (6) on
the word S ensure the existence of such a splitting. In particular, the ns from
condition (6) mark the end positions of the segments in the splitting.

We remark that we have given in [11] a similar characterization for word au-
tomata. The main differences to nested words are as follows. First, the
conditions (2) and (5) additionally take the non-local moves of the existential
automaton between matched call and return positions into account. Second,
condition (6) additionally requires that a segment in the splitting of the word
R must not end between a call and its matching return position. Without this
additional requirement there might be runs that pass the end of a segment with
a non-local move without visiting a state in F .

We now turn to the construction of the NWA, which generalizes our construc-
tion in [11] for complementing the word language of an eventually {1}-way ECA,
which in turn on is based on the breakpoint construction [16]. The additional
constraints for the non-local moves in the conditions (2), (5), and (6) are han-
dled by using the stack of the NWA. In particular, whenever the NWA is at a
non-pending call position, it guesses its configuration at the matching return po-
sition and pushes it on the stack. When reaching the matching return position,
it checks the correctness of the guess by popping an element from the stack.
Furthermore, the NWA uses the stack to recognize whether it has processed a
matched call while not having reached its matching return position yet by using
a bit that is pushed on the stack at non-pending calls and popped from the stack
at their matching returns.

Theorem 3. For an eventually {1, 2}-way ECA A with n states, there is an
NWA N with O(24n) states, O(24n) stack symbols, and L(N) = {w ∈ Σ̂ω | Gw �∈
L(A)}.

In the following, we optimize our complementation construction for restricted
classes of eventually {1, 2}-way ECAs. When A is also very weak, we can char-
acterize the graph representations of nested words that are not accepted by A

178 C. Dax and F. Klaedtke

by similar conditions as those given in Lemma 3. However, the existence of the
word S together with the conditions (4) and (5) are not required anymore and
condition (6) is replaced by the following condition:

There is no q ∈ Q \ F and no h ∈ Nω such that q ∈ Rh0 and for
all j ∈ N, there is a direction d ∈ {1, 2} such that hj �d hj+1 and
q ∈ δd

�(hj)(q, whj).
(6’)

Intuitively, condition (6’) requires that no run of the existential automaton gets
trapped in a state in Q \ F .

We exploit this specialized characterization to optimize our complementation
construction from Theorem 3. Intuitively, the NWA checks that no run of the
existential automaton A gets trapped in a state in Q\F . Again, the construction
is similar to a construction in [11] for complementing the word language of very
weak, eventually {1}-way ECAs. However, a subtle difference is that if a run
does not get trapped in a state in Q\F between a non-pending call position and
the corresponding return position then we additionally must ensure that the run
also does not get trapped along the hierarchical edges that directly connect call
positions with their matching return positions.

Theorem 4. For a very weak, eventually {1, 2}-way ECA A with n states, there
is an NWA N with O(22nn) states, O(22nn) stack symbols, and L(N) = {w ∈
Σ̂ω | Gw �∈ L(A)}.

Finally, we consider the case where A is {1, 2}-way for which we can simplify
condition (2), since the automaton moves its read-only head only forward:

For all i, j ∈ N and d ∈ D with d > 0 and i �d j, we have
δd
�(i)(Ri, wi) ⊆ Rj . (2’)

We directly obtain the following two theorems as special cases of the Theorems 3
and 4, respectively. In a nutshell, we reduce the state space of the NWA by
removing the state components that are used to check the consistency of the
transitions that move the read-only head along the backward edges {−1,−2}.

Theorem 5. For a {1, 2}-way ECA A with n states, there is an NWA N with
O(22n) states, O(22n) stack symbols, and L(N) = {w ∈ Σ̂ω | Gw �∈ L(A)}.

Theorem 6. For a very weak, {1, 2}-way ECA A with n states, there is an
NWA N with O(2nn) states, O(2nn) stack symbols, and L(N) = {w ∈ Σ̂ω |
Gw �∈ L(A)}.

4.3 Alternation Elimination for Parity Automata

In this subsection, we present constructions that translate an alternating parity
S-automaton A, APA for short from now on, into an NWA N with L(N) = {w ∈
Σ̂ω | Gw ∈ L(A)}.

Our first alternating-elimination construction assumes that the given APA A

is eventually {1, 2}-way. The construction comprises two steps: We first translate

Alternation Elimination for Automata over Nested Words 179

A into an alternating Büchi automaton A′ from which we then obtain in a
second construction step the NWA N. In the second construction step, we use
an optimized variant of the alternating-elimination construction based on the
complementation construction from Theorem 3 that exploits the fact that the
runs of A′ have some special form. We remark that both construction steps
use and generalize techniques from [13, 14] for complementing nondeterministic
automata over infinite words.

Theorem 7. For an eventually {1, 2}-way APA A with index k and n states,
there is an NWA N with 2O(nk log n) states, 2O(nk log n) stack symbols, and L(N) =
{w ∈ Σ̂ω | Gw ∈ L(A)}.

By some additional work, we obtain the more general alternation-elimination
construction for APAs, where we do not require that the given APA is eventually
{1, 2}-way. Recall that by our alternation-elimination scheme, it suffices to give
a construction for complementing existential parity automata over nested words.
The first ingredient of that complementation construction is a generalization of
Shepherdson’s translation [19,21] of 2-way nondeterministic finite word automata
to deterministic ones that are 1-way. This generalization is obtained with only
minor modifications and translates {−2,−1, 0, 1, 2}-way existential automata to
existential {1, 2}-way automata. The second ingredient is a complementation
construction for existential {1, 2}-way automata, which we easily obtain from
Theorem 7 by dualizing [18] the transition function of the given automaton and
its acceptance condition, i.e., we swap the Boolean connectives (∧ and ∨) and the
Boolean constants (tt and ff) in the automaton’s transitions, and we complement
its acceptance condition, which can be easily done by incrementing the parities
of the states by 1. By instantiating our alternation-elimination scheme with a
combination—along the same lines as in [20, 22]—of these two ingredients we
obtain the following result.

Corollary 1. For an APA A with index k and n states, there is an NWA N

with 2O((nk)2) states, 2O((nk)2) stack symbols, and L(N)={w∈Σ̂ω | Gw ∈L(A)}.

5 Applications and Concluding Remarks

A first and immediate application of our alternation-elimination constructions is
a construction for complementing NWAs: For a given NWA N, we first construct
by Theorem 2 a {1, 2}-way alternating Büchi automaton A. We complement A’s
language by dualizing A [18]. Note that A’s Büchi acceptance condition becomes
a co-Büchi acceptance condition in the dualized automaton. Since a co-Büchi
acceptance condition can be written as a parity acceptance condition with index
2, we can apply Theorem 7 to the dualized automaton and obtain an NWA N̄

with L(N̄) = Σ̂ω \L(N). The NWA N̄ has 2O(n2s log ns) states and stack symbols,
where n is the number of states of N and s is the number of N’s stack symbols.

This construction generalizes the complementation construction in [13] from
nondeterministic Büchi word automata to NWAs. However, observe that we ob-
tain a worse upper bound, namely, 2O(n2s log ns) instead of 2O(n log n). One reason

180 C. Dax and F. Klaedtke

is that the construction for NWAs has to take the stack into account. Another
reason is that we first translate the NWA A by Theorem 2 into an alternating
automaton that does not have a stack but takes the graph representation of
nested words as inputs. This translation causes a blowup of the factor O(ns) in
the automaton’s state space. It is also worth pointing out that our complementa-
tion construction based on alternating automata does not match the best known
upper bound 2O(n2) for complementing NWAs [6]. This better upper bound is
achieved by splitting the complementation construction into two separate con-
structions, which are later combined by a simple product construction. Only one
of these two constructions involves a complementation construction, where only
nondeterministic Büchi word automata need to be complemented. It remains
open whether our complementation construction based on Theorem 7 can be
optimized so that it matches or improves the upper bound 2O(n2).

Our second and main application area of the presented alternation-elimination
constructions is the translation of temporal logics over nested words into NWAs
for effectively solving the satisfiability problem and the model-checking prob-
lem for recursive state machines and Boolean programs. From the constructions
in Section 4, we straightforwardly obtain such translations, which we sketch
in the following and which improve, extend, and correct previously presented
translations. Overall, our translations together with our results in [11] and [12]
demonstrate that complementation constructions for restricted classes of nonde-
terministic automata are at the core in translating temporal logics into nonde-
terministic automata; thus they are also at the core in the automata-theoretic
approach to model checking and satisfiability checking.

In [10], Bozzelli introduces the temporal logic μNWTL, which extends the
linear-time μ-calculus [8] by next modalities for the calls and returns in nested
words. μNWTL has the same expressive power as NWAs. Our alternation-
elimination scheme allow us to modularize and optimize Bozzelli’s monolithic
translation to NWAs. Similar to Bozzelli, we first translate a μNWTL formula
into an alternating parity automaton (alternating jump automaton in Bozzelli’s
paper, respectively) with k parities, where k is the alternation depth of the given
μNWTL formula. The size of the automaton is linear in the formula length. We
then apply Corollary 1 to obtain an NWA. The size of the resulting NWA is
2O((nk)2), where n is the size of the alternating parity automaton. For formulas
that do not refer to the past or only in a restricted way such that the alternating
parity automaton is eventually {1, 2}-way, we can use Theorem 7 to reduce this
upper bound to 2O(nk log n).

In [2, 4], the respective authors introduce the temporal logics CaRet and
NWTL, which extend the classical linear-time temporal logic LTL. The exten-
sions consist of new modalities that take the hierarchical structure of nested
words into account. In other words, the new modalities allow one to express
properties along the different paths in a nested word. NWTL subsumes CaRet
and is first-order complete. For both these logics, the authors of the respective

Alternation Elimination for Automata over Nested Words 181

papers also provide translations into NWAs. Their translations are direct, i.e.,
they do not use alternating automata as an intermediate step. Although the
techniques used in such direct translations are rather standard, they are complex
and their correctness proofs are cumbersome. As a matter of fact, the translation
in [2] is flawed.4

Instead of directly constructing the NWA from a CaRet or an NWTL formula,
we utilize our alternation-elimination scheme. In more detail, we first translate
the given formula into an alternating automaton with a Büchi acceptance condi-
tion. As for LTL, the translation for CaRet and NWTL into alternating automata
is straightforward and linear in the formula length, since each temporal operators
in CaRet and also NWTL only allows us to specify a property along a single path
in the graph representation of nested words. Moreover, the obtained automaton
is eventually {1, 2}-way and very weak. Then, by instantiating the alternation-
elimination scheme with the complementation constructions from Theorem 4,
we obtain from such an alternating automaton an NWA.

The benefits of this translation is as follows. Its correctness is easier to es-
tablish. The difficult part is the alternation-elimination construction. However,
by our scheme its correctness proof boils down of proving the correctness of a
complementation construction for existential automata. Moreover, we can han-
dle the future-only fragment of CaRet and NWTL more efficiently by using the
specialized instance of our alternation-elimination scheme that we obtain from
Theorem 6. Finally, our translation can easily be adapted to extensions of NWTL
and other temporal logics. Similar to LTL and word automata [24], NWTL and
thus also CaRet are strictly less expressive than NWAs.5 For LTL, several exten-
sions and variants have been proposed to overcome this limitation. Among them
are Wolper’s ETL [24] and the industrial-strength logic PSL [1]. Similar exten-
sions are possible for NWTL to increase its expressiveness. For instance, we can
extend NWTL with the PSL-specific temporal operators that allow one to use
(semi-extended) regular expressions. With our alternation-elimination scheme,
we obtain a translation to NWAs with only minor modifications. Namely, the
translation into alternating automata is standard, see e.g., [9, 12]. Furthermore,
since the alternating automata are not necessarily very weak any more, we use
the complementation construction from Theorem 3 instead of the more spe-
cialized one from Theorem 4 to instantiate the alternation-elimination scheme.
However, it is open whether and which PSL-like extensions [15] of NWTL are
capable of expressing all NWA-recognizable languages.

4 A counterexample is given by the NWTL formula ♦aff, where ♦a is the “abstract”
version of classical eventually modality ♦ in LTL. The constructed NWA accepts
the nested word

(〈∅ ∅ ∅〉)ω, which is not a model of the formula ♦aff since ♦aff is
unsatisfiable. More generally speaking, the constructions in [2] disregards unfoldings
of least fixpoint formulas along the jumps from call to return positions. It should
be possible to correct their tableaux-based construction by using the technique for
ensuring condition (6) of Lemma 3 in our automaton construction from Theorem 3.

5 The language of nested words in which every position is internal and the proposition
p holds at every even position witnesses that NWTL cannot express all nested-word
regular languages.

182 C. Dax and F. Klaedtke

References

1. IEEE standard for property specification language (PSL). IEEE Std 1850TM
(October 2005)

2. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. Log. Methods Comput. Sci. 4(4) (2008)

3. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.W., Yannakakis, M.:
Analysis of recursive state machines. ACM Trans. Progr. Lang. Syst. 27(4), 786–
818 (2005)

4. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)

5. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: ACM Symposium on
Theory of Computing (STOC), pp. 202–211. ACM Press, New York (2004)

6. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43
(2009)

7. Ball, T., Rajamani, S.K.: Boolean programs: A model and process for software
analysis. Technical Report MSR-TR-2000-14, Microsoft Research (2000)

8. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B.,
Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398,
pp. 62–74. Springer, Heidelberg (1989)

9. Ben-David, S., Bloem, R., Fisman, D., Griesmayer, A., Pill, I., Ruah, S.: Automata
construction algorithms optimized for PSL. Technical report, The Prosyd Project
(2005), http://www.prosyd.org

10. Bozzelli, L.: Alternating automata and a temporal fixpoint calculus for visibly
pushdown languages. In: Caires, L., Li, L. (eds.) CONCUR 2007. LNCS, vol. 4703,
pp. 476–491. Springer, Heidelberg (2007)

11. Dax, C., Klaedtke, F.: Alternation elimination by complementation. In: Cervesato,
I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 214–
229. Springer, Heidelberg (2008)

12. Dax, C., Klaedtke, F., Lange, M.: On regular temporal logics with past. Acta
Inform. 47(4), 251–277 (2010)

13. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Trans. Comput. Log. 2(3), 408–429 (2001)

14. Kupferman, O., Vardi, M.Y.: Complementation constructions for nondeterministic
automata on infinite words. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005.
LNCS, vol. 3440, pp. 206–221. Springer, Heidelberg (2005)

15. Lange, M.: Linear time logics around PSL: Complexity, expressiveness, and a little
bit of succinctness. In: Caires, L., Li, L. (eds.) CONCUR 2007. LNCS, vol. 4703,
pp. 90–104. Springer, Heidelberg (2007)

16. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoret. Comput.
Sci. 32(3), 321–330 (1984)

17. Muller, D., Saoudi, A., Schupp, P.: Alternating automata, the weak monadic theory
of trees and its complexity. Theoret. Comput. Sci. 97(2), 233–244 (1992)

18. Muller, D., Schupp, P.: Alternating automata on infinite trees. Theoret. Comput.
Sci. 54(2–3), 267–276 (1987)

19. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development 3(2), 198–200 (1959)

20. Vardi, M.Y.: A temporal fixpoint calculus. In: ACM Symposium on Principles of
Programming Languages (POPL), pp. 250–259. ACM Press, New York (1988)

http://www.prosyd.org

Alternation Elimination for Automata over Nested Words 183

21. Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata.
Inform. Process. Lett. 30(5), 261–264 (1989)

22. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998)

23. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Symposium on Logic in Computer Science
(LICS), pp. 332–344. IEEE Computer Society, Los Alamitos (1986)

24. Wolper, P.: Temporal logic can be more expressive. Information and Control 56
(1-2), 72–99 (1983)

Co-Büching Them All

Udi Boker and Orna Kupferman

School of Computer Science and Engineering
Hebrew University, Israel

{udiboker,orna}@cs.huji.ac.il

Abstract. We solve the open problems of translating, when possible, all common
classes of nondeterministic word automata to deterministic and nondeterminis-
tic co-Büchi word automata. The handled classes include Büchi, parity, Rabin,
Streett and Muller automata. The translations follow a unified approach and are
all asymptotically tight.

The problem of translating Büchi automata to equivalent co-Büchi automata
was solved in [2], leaving open the problems of translating automata with richer
acceptance conditions. For these classes, one cannot easily extend or use the con-
struction in [2]. In particular, going via an intermediate Büchi automaton is not
optimal and might involve a blow-up exponentially higher than the known lower
bound. Other known translations are also not optimal and involve a doubly expo-
nential blow-up.

We describe direct, simple, and asymptotically tight constructions, involving
a 2Θ(n) blow-up. The constructions are variants of the subset construction, and
allow for symbolic implementations. Beyond the theoretical importance of the
results, the new constructions have various applications, among which is an im-
proved algorithm for translating, when possible, LTL formulas to deterministic
Büchi word automata.

1 Introduction

Finite automata on infinite objects are widely used in formal verification and synthe-
sis of nonterminating systems. The automata-theoretic approach to verification reduces
questions about systems and their specifications to automata-theoretic problems like
language containment and emptiness [10,18]. Recent industrial-strength specification-
languages such as Sugar, ForSpec and PSL 1.01 include regular expressions and/or
automata, making automata-theory even more essential and popular [1].

There are various classes of automata, characterized by their branching mode and ac-
ceptance condition. Each class has its advantages, disadvantages, and common usages.
Accordingly, an important challenge in the the study of automata on infinite objects is
to provide algorithms for translating between the different classes. For most transla-
tions, our community was able to come up with satisfactory solutions, in the sense that
the state blow-up involved in the algorithm is proved to be unavoidable. Yet, for some
translations there is still a significant gap between the best known algorithm and the
corresponding lower bound.

Among these open problems are the translations of nondeterministic automata to
equivalent deterministic and nondeterministic co-Büchi automata (NCW and DCW),

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 184–198, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Co-Büching Them All 185

when possible.1 In [2], we introduced the augmented subset construction and used it
for translating a nondeterministic Büchi automaton (NBW) to NCW and DCW, when
possible. We left open the problems of translating automata with richer acceptance con-
ditions (parity, Rabin, Streett and Muller) to co-Büchi automata. For these classes, one
cannot easily extend or use the construction in [2], and the gap between the lower and
upper bounds is still significant (for some of the classes it is even exponential). In this
paper, we solve these problems and study the translation of nondeterministic parity
(NPW), Streett (NSW), Rabin (NRW), and Muller (NMW) word automata to NCW
and to DCW.

A straightforward approach is to translate an automaton of the richer classes via an
intermediate NBW. This approach, however, is not optimal. For example, starting with
an NSW with n states and index k, the intermediate NBW has n2k states, thus the NCW
would have n2k+n2k

states, making the dependency in k doubly-exponential. Note that
the exponential blow-up in the translation of NSW or NMW to NBW cannot be avoided
[15]. A different approach is to translate the original automaton, for example an NRW,
to an equivalent DPW, which can then be translated to an equivalent DCW over the same
structure [5]. However, translating an NRW to an equivalent DPW might be doubly
exponential [4], with no matching lower bound, even for the problem of translating to a
DCW, let alone translating to NCW.

Thus, the approaches that go via intermediate automata are far from optimal, and our
goal is to find a direct translation of these stronger classes of automata to NCW and
DCW. We first show that for NSW, an equivalent NCW can be defined on top of the
augmented subset construction (the product of the original automaton with its subset
construction). The definition of the corresponding co-Büchi acceptance condition is
more involved in this case than in the case of translating an NBW, but the blow-up stays
the same. Thus, even though NSW are exponentially more succinct than NBW, their
translation to NCW is of exactly the same state complexity as is the one for NBW! This
immediately provides an n2n upper bound for the translation of NSW to NCW. As in
the case of translating an NBW, we can further determinize the resulting augmented
subset construction, getting a 3n upper bound for the translation of NSW to DCW. Both
bounds are asymptotically tight, having matching lower bounds by the special cases of
translating NBW to NCW [2] and NCW to DCW [3]. The above good news apply also
to the parity and the generalized-Büchi acceptance conditions, as they are special cases
of the Streett condition.

For NRW and NMW, the situation is more complicated. Unfortunately, an equiva-
lent NCW cannot in general be defined on top of the augmented subset construction.
Moreover, even though the results on NSW imply a translation of NRW[1] (that is,
a nondeterministic Rabin automaton with a single pair) to NCW, one cannot hope to
proceed via a decomposition of an NRW with index k to k NRW[1]s. Indeed, the un-
derlying NRW[1]s may not be NCW-realizable, even when the NRW is, and the same
for NMWs. We show that still, the NCW can be defined on top of k copies of the aug-
mented subset construction, giving rise to a kn2n upper bound for the translation to
NCW. Moreover, we show that when translating to an equivalent DCW, the k copies

1 The co-Büchi condition is weaker than the Büchi acceptance condition, and not all ω-regular
languages are NCW-recognizable, hence the “when possible”.

186 U. Boker and O. Kupferman

can be determinized separately, while connected in a round-robin fashion, which gives
rise to a k3n blow-up. As with the other cases, the blow-up involved in the transla-
tions is asymptotically tight. The state blow-up involved in the various translations is
summarized in Table 1 of the Section 6.

Beyond the theoretical challenge in tightening the gaps, and the fact they are related
to other gaps in our knowledge [6], these translations have immediate important ap-
plications in formal methods. The interest in the co-Büchi condition follows from its
simplicity and its duality to the Büchi acceptance condition. The interest in the stronger
acceptance conditions follows from their richness and succinctness. In particular, stan-
dard translations of LTL to automata go via intermediate generalized Büchi automata,
which are then being translated to Büchi automata. For some algorithms, it is possible
to give up the last step and work directly with the generalized Büchi automaton [8]. It
follows from our results that the same can be done with the algorithm of translating LTL
formulas to NCW and DCW. By the duality of the co-Büchi and Büchi conditions, one
can construct a DBW for ψ by dualizing the DCW for ¬ψ. Thus, since the translation
of LTL to NSW may be exponentially more succinct than a translation to NBW, our
construction suggests the best known translation of LTL to DBW, when exists.

An important and useful property of our constructions is the fact they have only a
one-sided error when applied to automata whose language is not NCW-recognizable.
Thus, given an automaton A, the NCW C and the DCW D we construct are always
such that L(A) ⊆ L(C) = L(D), while L(A) = L(C) = L(D) in case A is NCW-
recognizable. Likewise, given an LTL formula ψ, the DBW Dψ we construct is always
such that L(Dψ) ⊆ L(ψ), while L(Dψ) = L(ψ) in case ψ is DBW-recognizable. As
specified in Section 5, this enables us to extend the scope of the applications also to
specifications that are not NCW-realizable.

2 Preliminaries

Given an alphabet Σ, a word over Σ is a (possibly infinite) sequence w = w1 · w2 · · ·
of letters in Σ. For two words, x and y, we use x � y to indicate that x is a pre-
fix of y and x ≺ y to indicate that x is a strict prefix of y. An automaton is a tu-
ple A = 〈Σ,Q, δ,Q0, α〉, where Σ is the input alphabet, Q is a finite set of states,
δ : Q × Σ → 2Q is a transition function, Q0 ⊆ Q is a set of initial states, and α
is an acceptance condition. We define several acceptance conditions below. Intuitively,
δ(q, σ) is the set of states that A may move into when it is in the state q and it reads
the letter σ. The automaton A may have several initial states and the transition function
may specify many possible transitions for each state and letter, and hence we say that
A is nondeterministic. In the case where |Q0| = 1 and for every q ∈ Q and σ ∈ Σ, we
have that |δ(q, σ)| ≤ 1, we say that A is deterministic. The transition function extends
to sets of states and to finite words in the expected way, thus for a set of states S and a
finite word x, δ(S, x) is the set of states that A may move into when it is in a state in S
and it reads x. Formally, δ(S, ε) = S and δ(S,w · σ) =

⋃
q∈δ(S,w) δ(q, σ). We abbrevi-

ate δ(Q0, x) by δ(x), thus δ(x) is the set of states that A may visit after reading x. For
an automaton A and a state q of A, we denote by Aq the automaton that is identical to
A, except for having {q} as its set of initial states. An automaton without an acceptance
condition is called a semi-automaton.

Co-Büching Them All 187

A run r = r0, r1, · · · of A on w = w1 ·w2 · · · ∈ Σω is an infinite sequence of states
such that r0 ∈ Q0, and for every i ≥ 0, we have that ri+1 ∈ δ(ri, wi+1). Note that while
a deterministic automaton has at most a single run on an input word, a nondeterministic
automaton may have several runs on an input word. We sometimes refer to r as a word
in Qω or as a function from the set of prefixes of w to the states of A. Accordingly, we
use r(x) to denote the state that r visits after reading the prefix x.

Acceptance is defined with respect to the set inf(r) of states that the run r visits in-
finitely often. Formally, inf(r) = {q ∈ Q | for infinitely many i ∈ IN, we have ri =
q}. As Q is finite, it is guaranteed that inf(r) �= ∅. The run r is accepting iff the set
inf(r) satisfies the acceptance condition α.

Several acceptance conditions are studied in the literature. We consider here six:

– Büchi, where α ⊆ Q, and r is accepting iff inf(r) ∩ α �= ∅.
– co-Büchi, where α ⊆ Q, and r is accepting iff inf(r) ⊆ α. Note that the definition

we use is less standard than the inf(r) ∩ α = ∅ definition; clearly, inf(r) ⊆ α iff
inf(r) ∩ (Q \ α) = ∅, thus the definitions are equivalent. We chose to go with this
variant as it better conveys the intuition that, as with the Büchi condition, a visit in
α is a “good event”.

– parity, where α = {α1, α2, . . . , α2k} with α1 ⊂ α2 ⊂ · · · ⊂ α2k = Q, and r is
accepting if the minimal index i for which inf(r) ∩ αi �= ∅ is even.

– Rabin, where α = {〈α1, β1〉, 〈α2, β2〉, . . . , 〈αk, βk〉}, with αi, βi ⊆ Q and r is
accepting iff for some 1 ≤ i ≤ k, we have that inf(r)∩αi �= ∅ and inf(r)∩βi = ∅.

– Streett, where α = {〈β1, α1〉, 〈β2, α2〉, . . . , 〈βk, αk〉}, with βi, αi ⊆ Q and r is
accepting iff for all 1 ≤ i ≤ k, we have that inf(r) ∩ βi = ∅ or inf(r) ∩ αi �= ∅.

– Muller, where α = {α1, α2, . . . , αk}, with αi ⊆ Q and r is accepting iff for some
1 ≤ i ≤ k, we have that inf(r) = αi.

The number of sets in the parity and Muller acceptance conditions or pairs in the Rabin
and Streett acceptance conditions is called the index of the automaton. An automaton
accepts a word if it has an accepting run on it. The language of an automaton A, denoted
L(A), is the set of words that A accepts. We also say that A recognizes the language
L(A). For two automata A and A′, we say that A and A′ are equivalent if L(A) =
L(A′).

We denote the different classes of automata by three letter acronyms in {D,N} ×
{B, C, P, R, S, M} × {W}. The first letter stands for the branching mode of the au-
tomaton (deterministic or nondeterministic); the second letter stands for the acceptance-
condition type (Büchi, co-Büchi, parity, Rabin, Streett, or Muller); and the third letter
indicates that the automaton runs on words. We say that a language L is γ-recognizable
or γ-realizable if L can be recognized by an automaton in the class γ.

Different classes of automata have different expressive power. In particular, while
NBWs recognize all ω-regular languages [12], DBWs are strictly less expressive than
NBWs, and so are DCWs [11]. In fact, a language L is in DBW iff its complement is
in DCW. Indeed, by viewing a DBW as a DCW and switching between accepting and
non-accepting states, we get an automaton for the complementing language, and vice
versa. The expressiveness superiority of the nondeterministic model over the determin-
istic one does not apply to the co-Büchi acceptance condition. There, every NCW has

188 U. Boker and O. Kupferman

an equivalent DCW [13]. As for parity, Rabin, Streett and Muller automata, both the
deterministic and nondeterministic models recognize all ω-regular languages [17].

Our constructions for translating the various automata to co-Büchi automata will use
the augmented subset construction [2], which is the product of an automaton with its
subset construction.

Definition 1 (Augmented subset construction). [2] Let A = 〈Σ,Q, δ,Q0〉 be a semi-
automaton. The augmented subset construction A′ of A is the product of A with its
subset construction. Formally, A′ = 〈Σ,Q′, δ′, Q′

0〉, where

– Q′ = Q × 2Q. That is, the states of A′ are all the pairs 〈q, E〉 where q ∈ Q and
E ⊆ Q.

– For all 〈q, E〉 ∈ Q′ and σ ∈ Σ, we have δ′(〈q, E〉, σ) = δ(q, σ)×{δ(E, σ)}. That
is, A′ nondeterministically follows A on its Q-component and deterministically
follows the subset construction of A on its 2Q-component.

– Q′
0 = Q0 × {Q0}.

3 Translating to NCW

In this section we study the translation, when possible, of NPWs, NRWs, NSWs, and
NMWs to NCWs. Since the Büchi acceptance condition is a special case of these
stronger conditions, the 2Ω(n) lower bound from [2] applies, and the challenge is to
come up with matching upper bounds. While nondeterministic Rabin, Streett, and
Muller automata are not more expressive than nondeterministic Büchi automata, they
are more succinct: translating an NRW, NSW, and NMW with n states and index k
to an NBW, results in an NBW with O(nk), O(n2k), and O(n2k) states, respectively
[15,16]. Note that an NPW is a special case of both an NSW and an NRW.

A first attempt to translate NRWs, NSWs, and NMWs to NCWs is to go via interme-
diate NBWs, which can be translated to NCWs by the augmented subset construction
[2]. By the blow-ups above, however, this results in NCWs that are far from optimal.
A second attempt is to apply the augmented subset construction directly on the input
automaton, and check the possibility of defining on top of it a suitable co-Büchi accep-
tance condition.

It is not hard to see that this second attempt does not work for all automata. Consider
for example the Rabin acceptance condition. Note that the augmented subset construc-
tion does not alter a deterministic automaton. Also, DRWs are not DCW-type [7] (that
is, there is a DRW A whose language is DCW-recognizable, but still no DCW equiva-
lent to A can be defined on top of the structure of A). It follows that there are NRWs
whose language is NCW-recognizable, but still no NCW recognizing them can be de-
fined on top of the automaton obtained by applying the augmented subset construction
on them (see Theorem 2 for a concrete example).

With this in mind, this section is a collection of good news. First, we show in Sub-
section 3.1 that NSWs (and NPWs) can be translated to NCWs on top of the augmented
subset construction. Second, while this is not valid for NRWs and NMWs, we show
in Subsection 3.2 that they can be translated to NCWs on top of a union of copies of

Co-Büching Them All 189

the augmented subset construction. Moreover, the translation of the obtained NCWs to
equivalent DCWs does not involve an additional exponential blow-up (see Section 4).

We first provide some basic lemmata from [2]. We start with a property relating
states of a DCW (in fact, any deterministic automaton) that are reachable via words
that lead to the same state in the subset construction of an equivalent nondeterministic
automaton.

Lemma 1. [2] Consider a nondeterministic automaton A with a transition function
δA and a DCW D with a transition function δD such that L(A) = L(D). Let d1 and d2
be states of D such that there are two finite words x1 and x2 such that δD(x1) = d1,
δD(x2) = d2, and δA(x1) = δA(x2). Then, L(Dd1) = L(Dd2).

For automata on finite words, if two states of the automaton have the same language,
they can be merged without changing the language of the automaton. While this is
not the case for automata on infinite words, the lemma below enables us to do take
advantage of such states.

Lemma 2. [2] Consider a DCW D = 〈Σ,D, δ,D0, α〉. Let d1 and d2 be states in
D such that L(Dd1) = L(Dd2). For all finite words u and v, if δ(d1, u) = d1 and
δ(d2, v) = d2 then for all words w ∈ (u + v)∗ and states d ∈ δ(d1, w) ∪ δ(d2, w), we
have L(Dd) = L(Dd1).

The next lemma takes further advantage of DCW states recognizing the same language.

Lemma 3. [2] Let D = 〈Σ,D, δ,D0, α〉 be a DCW. Consider a state d ∈ D. For all
nonempty finite words v and u, if (v∗ · u+)ω ⊆ L(Dd) and for all words w ∈ (v + u)∗

and states d′ ∈ δ(d, w), we have L(Dd′
) = L(Dd), then vω ∈ L(Dd).

3.1 From NSW to NCW

The translation of an NSW to an NCW, when exists, can be done on top of the aug-
mented subset construction, generalizing the acceptance condition used for translating
an NBW to an NCW.

In the translation of an NBW to an NCW, we start with an NBW B and define a state
〈b, E〉 of the augmented subset construction to be co-Büchi accepting if there is some
path p in B, taking 〈b, E〉 back to itself via a Büchi accepting state. The correctness
of the construction follows from the fact that an NCW-recognizable language is closed
under pumping such cycles. Thus, if B accepts a word that includes a subword along
which p is read, then B also accepts words obtained by pumping the subword along
which p is read. In turns out that this intuition is valid also when we start with an NSW
S: a state 〈s, E〉 of the augmented subset construction is co-Büchi accepting if there is
some path p in S, taking 〈s, E〉 back to itself, such that p visits αi or avoid βi for every
pair i in the Streett acceptance condition. This guarantees that pumping p infinitely
often results in a run that satisfies the Streett condition, which in turn implies that an
NCW-recongnizable language is closed under such pumping.

We formalize and prove this idea below.

190 U. Boker and O. Kupferman

Theorem 1. For every NSW S with n states that is NCW-recognizable, there is an
equivalent NCW C with at most n2n states.

Proof. Let S = 〈Σ,S, δS , S0, 〈β1, α1〉, . . . 〈βk, αk〉〉. We define the NCW C = 〈Σ,C,
δC , C0, αC〉 as the augmented subset construction of S with the following acceptance
condition: a state is a member of αC if it is reachable from itself along a path whose
projection on S visits αi or avoids βi for every 1 ≤ i ≤ k.

Formally, 〈s, E〉 ∈ αC if there is a finite word z = z1z2 · · · zm of length m and
a sequence of m + 1 states 〈s0, E0〉 . . . 〈sm, Em〉 such that 〈s0, E0〉 = 〈sm, Em〉 =
〈s, E〉, and for all 0 ≤ l < m we have 〈sl+1, El+1〉 ∈ δC(〈sl, El〉, zl+1), and for every
1 ≤ i ≤ k, either there is 0 ≤ l < m such that sl ∈ αi or sl �∈ βi for all 0 ≤ l < m.
We refer to z as the witness for 〈s, E〉. Note that z may be the empty word.

We prove the equivalence of S and C. Note that the 2S-component of C proceeds in
a deterministic manner. Therefore, each run r of S induces a single run of C (the run in
which the S-component follows r). Likewise, each run r of C induces a single run of
S, obtained by projecting r on its S-component.

We first prove that L(S) ⊆ L(C). Note that this direction is always valid, even if S
is not NCW-recognizable. Consider a word w ∈ L(S). Let r be an accepting run of S
on w. We prove that the run r′ induced by r is accepting. Let J ⊆ {1, . . . , k} denote
the set of indices of acceptance-pairs whose β-element is visited infinitely often by r.
That is, J = {j | βj ∩ inf(r) �= ∅}. Consider a state 〈s, E〉 ∈ inf(r′). We prove that
〈s, E〉 ∈ αC . Since 〈s, E〉 appears infinitely often in r′ and r is accepting, it follows
that there are two (not necessarily adjacent) occurrences of 〈s, E〉, between which r
visits αj for all j ∈ J and avoids βi for all i �∈ J . Hence, we have the required witness
for 〈s, E〉, and we are done.

We now prove that L(C) ⊆ L(S). Consider a word w ∈ L(C), and let r be an
accepting run of C on w. Let J ⊆ {1, . . . , k} denote the set of indices of acceptance-
pairs whose β-element is visited infinitely often by r. That is, J = {j | (βj × 2S) ∩
inf(r) �= ∅}. If J is empty then the projection of r on its S-component is accepting,
and we are done. Otherwise, we proceed as follows. For every j ∈ J , let 〈sj , Ej〉 be a
state in (βj × 2S) ∩ inf(r).

By the definition of J , all the states 〈sj , Ej〉, with j ∈ J , are visited infinitely often
in r, whereas states whose S-component is in βi, for i �∈ J , are visited only finitely
often in r. Accordingly, the states 〈sj , Ej〉, with j ∈ J , are strongly connected via a
path that does not visit βi, for i �∈ J . In addition, for every 〈sj , Ej〉, with j ∈ J , there is
a witness zj for the membership of 〈sj , Ej〉 in αC , going from 〈sj , Ej〉 back to itself via
αj and either avoiding βi or visiting αi, for every 1 ≤ i ≤ k. Let 〈s, E〉 be one of these
〈sj , Ej〉 states, and let x be a prefix of w such that r(x) = 〈s, E〉. Then, there is a finite
word z along which there is a path from 〈s, E〉 back to itself, visiting all αj for j ∈ J
and either avoiding βi or visiting αi for every 1 ≤ i ≤ k. Therefore, x · zω ∈ L(S).

Recall that the language of S is NCW-recognizable. Let D = 〈Σ,D, δD, D0, αD〉
be a DCW equivalent to S. Since L(S) = L(D) and x · zω ∈ L(S), it follows that the
run ρ of D on x · zω is accepting. Since D is finite, there are two indices, l and m, such
that l < m, ρ(x · zl) = ρ(x · zm), and for all prefixes y of x · zω such that x · zl � y,
we have ρ(y) ∈ αD. Let q be the state of D such that q = ρ(x · zl).

Co-Büching Them All 191

Consider the run η of D on w. Since r visits 〈s, E〉 infinitely often and D is finite,
there must be a state d ∈ D and infinitely many prefixes p1, p2, . . . of w such that
for all i ≥ 1, we have r(pi) = 〈s, E〉 and η(pi) = d. We claim that the states q
and d of D satisfy the conditions of Lemma 1 with x0 being p1 and x1 being x · zl.
Indeed, δD(p1) = d, δD(x · zl) = q, and δS(p1) = δS(x · zl) = E. For the latter
equivalence, recall that δS(x) = E and δS(E, z) = E. Hence, by Lemma 1, we have
that L(Dq) = L(Dd).

Recall the sequence of prefixes p1, p2, For all i ≥ 1, let pi+1 = pi · ti. We
now claim that for all i ≥ 1, the state d satisfies the conditions of Lemma 3 with u
being zm−l and v being ti. The second condition is satisfied by Lemma 2. For the first
condition, consider a word w′ ∈ (v∗ · u+)ω. We prove that w′ ∈ L(Dd). Recall that
there is a run of Ss on v that goes back to s while avoiding βi for all i �∈ J and there
is a run of Ss on u that goes back to s while visiting αj for all j ∈ J and either
visiting αi or avoiding βi for all i �∈ J . (Informally, u “fixes” all the problems of v, by
visiting αj for every βj that v might visit.) Recall also that for the word p1, we have
that r(p1) = 〈s, E〉 and η(p1) = d. Hence, p1 · w′ ∈ L(S). Since L(S) = L(D), we
have that p1 · w′ ∈ L(S). Therefore, w′ ∈ L(Dd).

Thus, by Lemma 3, for all i ≥ 1 we have that tωi ∈ L(Dd). Since δD(d, ti) = d,
it follows that all the states that D visits when it reads ti from d are in αD. Note that
w = p1 · t1 · t2 · · · . Hence, since δD(p1) = d, the run of D on w is accepting, thus
w ∈ L(D). Since L(D) = L(S), it follows that w ∈ L(S), and we are done. ��

Two common special cases of the Streett acceptance condition are the parity and the
generalized Büchi acceptance conditions. In a generalized Büchi automaton with states
Q, the acceptance condition is α = {α1, α2, . . . , αk} with αi ⊆ Q, and a run r is
accepting if inf(r) ∩ αi �= ∅ for all 1 ≤ i ≤ k. Theorem 1 implies that an NCW-
recognizable nondeterministic parity or generalized Büchi automaton with n states can
be translated to an NCW with n2n states, which can be defined on top of the augmented
subset construction.

3.2 From NRW and NMW to NCW

In this section we study the translation of NRWs and NMWs to NCWs, when exists.
Unfortunately, for these automata classes we cannot define an equivalent NCW on top
of the augmented subset construction. Intuitively, the key idea of Subsection 3.1, which
is based on the ability to pump paths that satisfy the acceptance condition, is not valid
in the Rabin and the Muller acceptance conditions, as in these conditions, visiting some
“bad” states infinitely often need not be compensated by visiting some “good” ones
infinitely often. We formalize this in the example below, which consists of the fact that
DRWs are not DCW-type [7].

Theorem 2. There is an NRW and an NMW that are NCW-recognizable but an equiv-
alent NCW for them cannot be defined on top of the augmented subset construction.

Proof. Consider the NRW A appearing in Figure 1. The language of A consists of
all words over the alphabet {0, 1} that either have finitely many 0’s or have finitely

192 U. Boker and O. Kupferman

many 1’s. This language is clearly NCW-recognizable, as it is the union of two NCW-
recognizable languages. Since A is deterministic and the augmented subset construction
does not alter a deterministic automaton, it suffices to show that there is no co-Büchi
acceptance condition α′ that we can define on the structure of A and get an equivalent
language. Indeed, α′ may either be ∅, {q0}, {q1}, or {q0, q1}, none of which provides
the language of A. Since every NRW has an equivalent NMW over the same structure,
the above result also applies to the NMW case. ��

A:

α = {〈q0, q1〉, 〈q1, q0〉}q1q0

1

10 0

Fig. 1. The NRW A, having no equivalent NCW on top of its augmented subset construction

Consider an NRW or an NMW A with index k. Our approach for translating A to an
NCW is to decompose it to k NSWs over the same structure, and apply the augmented
subset construction on each of the components. Note that the components may not
be NCW-realizable even when A is, thus, we should carefully analyze the proof of
Theorem 1 and prove that the approach is valid.

We now formalize and prove the above approach. We start with the decomposition
of an NRW or an NMW with index k into k NSWs over the same structure.

Lemma 4. Every NRW or NMW A with index k is equivalent to the union of k NSWs
over the same structure as A.

Proof. An NRW A with states A and index k is the union of k NRWs with index 1 over
the same structure as A. Since a single-indexed Rabin acceptance condition {〈α1, β1〉}
is equivalent to the Streett acceptance condition {〈α1, ∅〉, 〈A, β1〉}, we are done.

An NMW A with states A and index k is the union of k NMWs with index 1 over
the same structure as A. Since a single-indexed Muller acceptance condition {α1} is
equivalent to the Streett acceptance condition {〈A\α1, ∅〉}∪

⋃
s∈α1

{〈A, {s}〉}, we are
done. ��

Next we show that a union of k NSWs can be translated to a single NSW over their
union.

Lemma 5. Consider k NSWs, S1, . . . ,Sk, over the same structure. There is an NSW S
over the disjoint union of their structures, such that L(S) =

⋃k
i=1 L(Si).

Proof. We obtain the Streett acceptance condition of S by taking the union of the Streett
acceptance conditions of the NSWs S1, . . . ,Sk. Note that while the underlying NSWs
are interpreted disjunctively (that is, in order for a word to be accepted by the union,
there should be an accepting run on it in some Si), the pairs in the Streett condition
are interpreted conjunctively (that is, in order for a run to be accepting, it has to satisfy
the constraints by all the pairs in the Streett condition). We prove that still L(S) =

Co-Büching Them All 193

⋃k
i=1 L(Si). First, if a run r of S is an accepting run of an underlying NSW Si, then

the acceptance conditions of the other underlying NSWs are vacuously satisfied. Hence,
if a word is accepted by Si for some 1 ≤ i ≤ k, then S accepts it too. For the other
direction, if a word w is accepted in S, then its accepting run in S is also an accepting
run of one of the underlying NSWs, thus w is in

⋃k
i=1 L(Si). ��

Finally, we combine the translation to Streett automata with the augmented subset con-
struction and get the required upper bound for NRW and NMW.

Theorem 3. For every NCW-recognizable NRW or NMW with n states and index k,
there is an equivalent NCW C with at most kn2n states.

Proof. Consider an NRW or an NMW A with n states and index k. By Lemmas 4 and
5, there is an NSW S whose structure consists of k copies of the structure of A such that
L(S) = L(A). Let C be the NCW equivalent to S, defined over the augmented subset
construction of S, as described in Theorem 1. Note that S has nk states, thus a naive
application of the augmented subset construction on it results in an NCW with kn2kn

states. The key observation, which implies that we get an NCW with only kn2n states,
is that applying the augmented subset construction on S, the deterministic component
of all the underlying NCWs is the same, and it coincides with the subset construction
applied to A. To see this, assume that A = 〈Σ,A,A0, δ, α〉. Then, S = 〈Σ,A ×
{1, . . . , k}, A0 × {1, . . . , k}, δ′, α′〉, where for all a ∈ A, 1 ≤ j ≤ k, and σ ∈ Σ, we
have that δ′(〈a, j〉, σ) = δ(a, σ) × {j}. Applying the augmented subset construction,
we get the product of S and its subset construction, where the latter has a state for every
reachable subset of S. That is, a subset G′ ⊆ S is a state of the subset construction if
there is a finite word u for which δ′(u) = G′. Since for all a ∈ A, 1 ≤ j ≤ k, and
σ ∈ Σ, we have that δ′(〈a, j〉, σ) = δ(a, σ) × {j}, it follows that G′ is of the form
G× {j} for all 1 ≤ j ≤ k and some G ⊆ A. Hence, there are up to 2|A| = 2n states in
the subset construction of S. Thus, when we apply the augmented subset construction
on S, we end up with an NCW with only kn2n states, and we are done. ��

4 Translating to DCW

In a first sight, the constructions of Section 3, which translate a nondeterministic word
automaton to an NCW, are not useful for translating it to a DCW, as the determiniza-
tion of an NCW to a DCW has an exponential state blow-up. Yet, we show that the
special structure of the constructed NCW allows to determinize it without an additional
exponential blow-up. The key to our construction is the observation that the augmented
subset construction is transparent to additional applications of the subset construction.
Indeed, applying the subset construction on an NCW C with state space B × 2B, one
ends up in a deterministic automaton with state space {{〈q, E〉 | q ∈ E} : E ⊆ B},
which is isomorphic to 2B .

The standard breakpoint construction [13] uses the subset construction as an inter-
mediate layer in translating an NCW with state space C to a DCW with state space
3C . Thus, the observation above suggests that applying it on our special NCW C would
not involve an additional exponential blow-up on top of the one involved in going from
some automaton A to C. As we show in Theorem 4 below, this is indeed the case.

194 U. Boker and O. Kupferman

Starting with an NSW, the determinization of the corresponding NCW is straightfor-
ward, following [13]’s construction. However, when starting with an NRW or an NMW,
the k different parts of the corresponding NCW (see Theorem 3) might cause a doubly-
exponential blowup. Fortunately, we can avoid it by determinizing each of the k parts
separately and connecting them in a round-robin fashion. We refer to the construction
in Theorem 4 as the breakpoint construction.

Theorem 4. For every DCW-recognizable NPW, NSW, NRW, or NMW A with n states
there is an equivalent DCW D with O(3n) states.

Proof. We start with the case A is an NSW. The DCW D follows all the runs of the
NCW C constructed in Theorem 1. Let αC ⊆ A × 2A be the acceptance condition of
C. The DCW D accepts a word if some run of C remains in αC from some position.2

At each state, D keeps the corresponding subset of the states of C, and it updates it
deterministically whenever an input letter is read. In order to check that some run of C
remains in αC from some position, the DCW D keeps track of runs that do not leave
αC . The key observation in [13] is that keeping track of such runs can be done by
maintaining the subset of states that belong to these runs.

Formally, let A = 〈Σ,A, δA, A0, αA〉. We define a function f : 2A → 2A by
f(E) = {a | 〈a,E〉 ∈ αC}. Thus, when the subset component of D is in state E, it
should continue and check the membership in αC only for states in f(E). We define the
DCW D = 〈Σ,D, δD, D0, αD〉 as follows.

– D = {〈S,O〉 | S ⊆ A and O ⊆ S ∩ f(S)}.
– For all 〈S,O〉 ∈ D and σ ∈ Σ, the transition function is defined as follows.

• If O �= ∅, then δD(〈S,O〉, σ) = {〈δA(S, σ), δA(O, σ) ∩ f(S)〉}.
• If O = ∅, then δD(〈S,O〉, σ) = {〈δA(S, σ), δA(S, σ) ∩ f(S)〉}.

– D0 = {〈A0, ∅〉}.
– αD = {〈S,O〉 | O �= ∅}.

Thus, the run of D on a word w has to visit states in 2A × {∅} only finitely often,
which holds iff some run of C on w eventually always visits αC . Since each state of D
corresponds to a function from A to the set { “in S ∩O”, “in S \O”, “not in S”}, its
number of states is at most 3|A|.

We proceed to the case A is an NRW or an NMW. Here, by Theorem 3, A has an
equivalent NCW C with kn2n states. The NCW C is obtained by applying the aug-
mented subset construction on k copies of A, and thus has k unconnected components,
C1, . . . , Ck that are identical up to their acceptance conditions αC1 , . . . , αCk

.
Since the k components of C all have the same A× 2A structure, applying the stan-

dard subset construction on C, one ends up with a deterministic automaton that is iso-
morphic to 2A. Applying the standard breakpoint construction on C, we could thus hope
to obtain a deterministic automaton with only 3|A| states. This construction, however,
has to consider the different acceptance conditions αi, maintaining in each state not
only a pair 〈S,O〉, but a tuple 〈S,O1, . . . , Ok〉, where each Oi ⊆ S corresponds to

2 Readers familiar with the construction of [13] may find it easier to view the construction here as
one that dualizes a translation of universal co-Büchi automata to deterministic Büchi automata,
going through universal Büchi word automata – these constructed by dualizing Theorem 1.

Co-Büching Them All 195

the standard breakpoint construction with respect to αi. Such a construction, however,
involves a kn blow-up.

We circumvent this blow-up by determinizing each of the Ci’s separately and con-
necting the resulting Di’s in a round-robin fashion, moving from Di to Di (mod k)+1
when the set O, which maintains the set of states in paths in which Di avoids αi, be-
comes empty. Now, there is 1 ≤ i ≤ k such that Ci has a run that eventually gets stuck
in αi iff there is 1 ≤ i ≤ k such that in the round-robin construction, the run gets stuck
in a copy that corresponds to Di in states with O �= ∅.

Formally, for every 1 ≤ i ≤ k, we define a function fi : 2A → 2A by fi(E) =
{a | 〈a,E〉 ∈ αCi}. We define the DCW D = 〈Σ,D, δD, D0, αD〉 as follows.

– D = {〈S,O, i〉 | S ⊆ A, O ⊆ S ∩ fi(S), and i ∈ {1, . . . k}}.
– For all 〈S,O, i〉 ∈ D and σ ∈ Σ, the transition function is defined as follows.

• If O �= ∅, then δD(〈S,O, i〉, σ) = {〈S′, O′, i′〉}, where S′ = δA(S, σ), O′ =
δA(O, σ) ∩ fi(S) and i′ = i (mod k) + 1 if O′ = ∅ and i otherwise.

• If O = ∅, then δD(〈S,O, i〉, σ) = {〈S′, O′, i′〉}, where S′ = δA(S, σ), O′ =
δA(S, σ) ∩ fi(S) and i′ = i (mod k) + 1 if O′ = ∅ and i otherwise.

– D0 = {〈A0 of C1, ∅〉}.
– αD = {〈S,O, i〉 | O �= ∅}.

A run of D is accepting if it gets stuck in one of the sets of accepting states. Since
the different parts of C are unconnected, we have that a run of C is accepting iff it gets
stuck in the accepting states of one of the Ci’s. Hence, a word is accepted by C iff it is
accepted by D, and we are done.

��

By [3], one cannot avoid the 3n state blow-up for translating an NCW to a DCW. Since
this lower bound clearly holds also for the stronger conditions, we can conclude with
the following.

Theorem 5. The tight bound for the state blow-up in the translation, when possible, of
NPW, NSW, NRW and NMW to an equivalent DCW is Θ(3n).

5 Applications

The translations of nondeterministic automata to NCW and DCW are useful in various
applications, mainly in procedures that currently involve determinization. The idea is
to either use an NCW instead of a deterministic Büchi or parity automaton, or to use a
DBW instead of a deterministic parity automaton. We elaborated on these applications
in [2], where the starting point was NBWs. In this section we show that the starting
point for the applications can be automata with richer acceptance conditions, and that
starting with the richer acceptance conditions (and hence, with automata that may be
exponentially more succinct!), involves no extra cost.

In addition, all the applications described in [2] that involve a translation of LTL for-
mulas to NCWs, DCWs or DBWs, can now use an intermediate automaton of the richer
classes rather than an NBW. Here too, this can lead to an exponential saving. Indeed, the

196 U. Boker and O. Kupferman

exponential succinctness of NSW with respect to NBW [15] is proved using languages
that can be described by LTL formulas of polynomial length. It follows that there are
LTL formulas whose translation to NSW would be exponentially more succinct than
their translation to NBW. Moreover, in practice, tools that translate LTL to NBW go
through intermediate generalized-Büchi automata, which are a special case of NSW.
Our results suggest that in the applications described below, one need not blow-up the
state space by going all the way to an NBW.

We first note two important features of the translations. The first feature is the fact
that the constructions in Theorems 1, 3, and 4 are based on the subset construction, have
a simple state space, are amenable to optimizations, and can be implemented symbol-
ically [14]. The second feature has to do with the one-sided error of the construction,
when applied to automata that are not NCW-recognizable: Theorems 1, 3 and 4 guar-
antee that if the given automaton is NCW-recognizable, then the constructions result in
equivalent automata. As stated below, if this is not the case, then the constructions have
only a one-sided error.

Lemma 6. For an automaton A, let C be the NCW obtained by the translations of
Theorems 1 and 3, and let D be the DCW obtained from A by applying the breakpoint
construction of Theorem 4. Then, L(A) ⊆ L(C) = L(D).

Proof. It is easy to see that the proof of the L(A) ⊆ L(C) direction in Theorems 1
and 3, as well as the equivalence of C and D in Theorem 4, do not rely on the assumption
that A is NCW-recognizable. ��

Below we list the main applications. More details can be found in [2] (the descrip-
tion of the problems is the same, except that there the input or intermediate automata
are NBWs, whereas here we can handle, at the same complexity, all other acceptance
conditions).

– Deciding whether a given automaton (NSW, NPW, NRW, or NMW) is NCW-
recognizable.

– Deciding whether a given LTL formula is NCW- or DBW-recognizable.
– Translating an LTL formula to a DBW: For an LTL formula ψ, let L(ψ) denote the

set of computations satisfying ψ. Then, the following is an easy corollary of the
duality between DBW and DCW.

Lemma 7. Consider an LTL formula ψ that is DBW-recognizable. Let A¬ψ be a
nondeterministic automaton acceptingL(¬ψ), and let Dψ be the DBW obtained by
dualizing the breakpoint construction of A¬ψ. Then, L(Dψ) = L(ψ).

Note that one need not translate the LTL formula to an NBW, and can instead
translate it to a nondeterministic generalized Büchi or even to a Streett automaton,
which are more succinct.

– Translating LTL formula to the alternation-free μ-calculus.

Using the one-sided error. The one-sided error of the constructions suggest applications
also for specifications that are not NCW-recognizable. The translation to DBW, for

Co-Büching Them All 197

example, can be used in a decision procedure for CTL
 even when the path formulas
are not DBW-recognizable.

We demonstrate below how the one-sided error can be used for solving LTL synthe-
sis. Given an arbitrary LTL formula ψ, let Dψ be the DBW constructed as in Lemma 7.
Lemma 6 implies that L(Dψ) ⊆ L(ψ). The polarity of the error (that is, Dψ underap-
proximates ψ) is the helpful one. If we get a transducer that realizes Dψ, we know that
it also realizes ψ, and we are done. Moreover, as suggested in [9], in case Dψ is unreal-
izable, we can check, again using an approximating DBW, whether ¬ψ is realizable for
the environment. Only if both ψ is unrealizable for the system and ¬ψ is unrealizable
for the environment, we need precise realizability. Note that then, we can also conclude
that ψ is not in DBW.

6 Discussion

The simplicity of the co-Büchi condition and its duality to the Büchi condition makes
it an interesting theoretical object. Its many recent applications in practice motivate
further study of it. Translating automata of rich acceptance conditions to co-Büchi au-
tomata is useful in formal verification and synthesis, yet the state blow-up that such
translations involve was a long-standing open problem. We solved the problem, and
provided asymptotically tight constructions for translating all common automata classes
to nondeterministic and deterministic co-Büchi automata.

All the constructions are extensions of the augmented subset construction and break-
point construction, which are in turn an extension of the basic subset construction. In
particular, the set of accepting states is induced by simple reachability queries in the
graph of the automaton. Hence, the constructed automata have a simple state space and
are amenable to optimizations and to symbolic implementations.

The state blow-up involved in the various translations is summarized in Table 1.

Table 1. The state blow-up involved in the translation, when possible, of a word automaton with
n states and index k to an equivalent NCW and DCW

From � To NCW DCW

NBW, NPW, NSW n2n 3n

NRW, NMW kn2n k3n

Since the lower bounds for the translations are known for the special case of the ori-
gin automaton being an NBW, this is a “good news” paper, providing matching upper
bounds. The new translations are significantly, in some cases exponentially, better than
known translations. In particular, they show that the exponential blow-ups in the trans-
lation of NSW to NBW and of NBW to NCW are not additive. This is quite rare in the
theory of automata on infinite words. The good news is carried over to the applications
of the translations. In particular, our results suggest that one need not go via intermedi-
ate NBWs in the translation of LTL formulas to DBWs, and that working instead with
intermediate NSWs can result in DBWs that are exponentially smaller.

198 U. Boker and O. Kupferman

Acknowledgments

We thank an anonymous reviewer for a delicate observation on the proof of Theorem 4.

References

1. Accellera. Accellera organization inc. (2006), http://www.accellera.org
2. Boker, U., Kupferman, O.: Co-ing Büchi made tight and helpful. In: Proc. 24th IEEE Symp.

on Logic in Computer Science, pp. 245–254 (2009)
3. Boker, U., Kupferman, O., Rosenberg, A.: Alternation removal in büchi automata. In:

Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.)
ICALP 2010. LNCS, vol. 6199, pp. 76–87. Springer, Heidelberg (2010)

4. Cai, Y., Zhang, T., Luo, H.: An improved lower bound for the complementation of Rabin
automata. In: Proc. 24th IEEE Symp. on Logic in Computer Science, pp. 167–176 (2009)

5. Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic ω-automata vis-a-vis deterministic
Büchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 378–
386. Springer, Heidelberg (1994)

6. Kupferman, O.: Tightening the exchange rates between automata. In: Duparc, J., Henzinger,
T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 7–22. Springer, Heidelberg (2007)

7. Kupferman, O., Morgenstern, G., Murano, A.: Typeness for ω-regular automata. In:
Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 324–338. Springer, Heidelberg (2004)

8. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006)

9. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. 46th IEEE Symp. on
Foundations of Computer Science, pp. 531–540 (2005)

10. Kurshan, R.P.: Computer Aided Verification of Coordinating Processes. Princeton Univ.
Press, Princeton (1994)

11. Landweber, L.H.: Decision problems for ω–automata. Mathematical Systems Theory 3, 376–
384 (1969)

12. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Informa-
tion and Control 9, 521–530 (1966)

13. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer
Science 32, 321–330 (1984)

14. Morgenstern, A., Schneider, K.: From LTL to symbolically represented deterministic au-
tomata. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp.
279–293. Springer, Heidelberg (2008)

15. Safra, S., Vardi, M.Y.: On ω-automata and temporal logic. In: Proc. 21st ACM Symp. on
Theory of Computing, pp. 127–137 (1989)

16. Seidl, H., Niwiński, D.: On distributive fixed-point expressions. Theoretical Informatics and
Applications 33(4-5), 427–446 (1999)

17. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science,
pp. 133–191 (1990)

18. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115(1), 1–37 (1994)

http://www.accellera.org

Minimizing Deterministic Lattice Automata

Shulamit Halamish and Orna Kupferman

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
{lamit,orna}@cs.huji.ac.il

Abstract. Traditional automata accept or reject their input, and are therefore
Boolean. In contrast, weighted automata map each word to a value from a semir-
ing over a large domain. The special case of lattice automata, in which the semir-
ing is a finite lattice, has interesting theoretical properties as well as applications
in formal methods. A minimal deterministic automaton captures the combina-
toric nature and complexity of a formal language. Deterministic automata are
used in run-time monitoring, pattern recognition, and modeling systems. Thus,
the minimization problem for deterministic automata is of great interest, both
theoretically and in practice.

For traditional automata on finite words, a minimization algorithm, based on
the Myhill-Nerode right congruence on the set of words, generates in polynomial
time a canonical minimal deterministic automaton. A polynomial algorithm is
known also for weighted automata over the tropical semiring. For general deter-
ministic weighted automata, the problem of minimization is open. In this paper
we study minimization of lattice automata. We show that it is impossible to de-
fine a right congruence in the context of lattices, and that no canonical minimal
automaton exists. Consequently, the minimization problem is much more com-
plicated, and we prove that it is NP-complete. As good news, we show that while
right congruence fails already for finite lattices that are fully ordered, for this set-
ting we are able to combine a finite number of right congruences and generate a
minimal deterministic automaton in polynomial time.

1 Introduction

Automata theory is one of the longest established areas in Computer Science. Standard
applications of automata theory include pattern matching, syntax analysis, and formal
verification. In recent years, novel applications of automata-theoretic concepts have
emerged from numerous sciences, like biology, physics, cognitive sciences, control,
and linguistics. These novel applications require significant advances in fundamental
aspects of automata theory [2]. One such advance is a transition from a Boolean to
a multi-valued setting: while traditional automata accept or reject their input, and are
therefore Boolean, novel applications, for example in speech recognition and image
processing [18], are based on weighted automata, which map an input word to a value
from a semiring over a large domain [7].

Focusing on applications in formal verification, the multi-valued setting arises di-
rectly in quantitative verification [10], and indirectly in applications like abstraction
methods, in which it is useful to allow the abstract system to have unknown assignments
to atomic propositions and transitions [9], query checking [5], which can be reduced to

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 199–213, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

200 S. Halamish and O. Kupferman

model checking over multi-valued systems, and verification of systems from inconsis-
tent viewpoints [11], in which the value of the atomic propositions is the composition
of their values in the different viewpoints.

Recall that in the multi-valued setting, the automata map words to a value from a
semiring over a large domain. A distributive finite lattice is a special case of a semiring.
A lattice 〈A,≤〉 is a partially ordered set in which every two elements a, b ∈ A have
a least upper bound (a join b) and a greatest lower bound (a meet b). In many of the
applications of the multi-valued setting described above, the values are taken from finite
lattices. For example (see Figure 2), in the abstraction application, researchers use the
lattice L3 of three fully ordered values [3], as well as its generalization to Ln [6]. In
query checking, the lattice elements are sets of formulas, ordered by the inclusion order
[4]. When reasoning about inconsistent viewpoints, each viewpoint is Boolean, and
their composition gives rise to products of the Boolean lattice, as in L2,2 [8]. Finally,
when specifying prioritized properties of system, one uses lattices in order to specify
the priorities [1].

In [13], the authors study lattice automata, their theoretical properties, and decision
problems for them. In a nondeterministic lattice automaton on finite words (LNFA, for
short), each transition is associated with a transition value, which is a lattice element
(intuitively indicating the truth of the statement “the transition exists”), and each state
is associated with an initial value and an acceptance value, indicating the truth of the
statements “the state is initial/accepting”, respectively. Each run r of an LNFA A has a
value, which is the meet of the values of all the components of r: the initial value of the
first state, the transition value of all the transitions taken along r, and the acceptance
value of the last state. The value of a word w is then the join of the values of all the
runs of A on w. Accordingly, an LNFA over an alphabet Σ and lattice L induces an
L-language L : Σ∗ → L. Note that traditional finite automata (NFAs) can be viewed
as a special case of LNFAs over the lattice L2. In a deterministic lattice automaton on
finite words (LDFA, for short), at most one state has an initial value that is not ⊥ (the
least lattice element), and for every state q and letter σ, at most one state q′ is such that
the value of the transition from q on σ to q′ is not ⊥. Thus, an LDFA A has at most one
run (whose value is not ⊥) on each input word, and the value of this run is the value of
the word in the language of A.

For example, the LDFA A in Figure 1 below is over the alphabetΣ = {0, 1, 2} and
the lattice L = 〈2{a,b,c,d},⊆〉. All states have acceptance value {a, b, c, d}, and this is
also the initial value of the single initial state. The L-language of A is L : Σ∗ → L such
that L(ε) = {a, b, c, d}, L(0) = {c, d}, L(0 · 0) = {d}, L(1) = {a, b}, L(1 · 0) = {a},
L(2) = {c, d}, L(2 · 0) = {c}, and L(x) = ∅ for all other x ∈ Σ∗.

A minimal deterministic automaton captures the combinatoric nature and complexity
of a formal language. Deterministic automata are used in run-time monitoring, pattern
recognition, and modeling systems. Thus, the minimization problem for deterministic
automata is of great interest, both theoretically and in practice. For traditional automata
on finite words, a minimization algorithm, based on the Myhill-Nerode right congru-
ence on the set of words, generates in polynomial time a canonical minimal determin-
istic automaton [20,21]. In more detail, given a regular language L over Σ, then the
relation ∼L⊆ Σ∗ × Σ∗, where x ∼L y iff for all z ∈ Σ∗ we have that x · z ∈ L iff

Minimizing Deterministic Lattice Automata 201

A A2

0, {c, d}

1, {a, b}

2, {c, d}

0, {d}

0, {c}

0, {a}

0, {c, d}
1, {a, b}

2, {c, d}

0, {c}

0, {c, d}

1, {a, b}
2, {c, d}

0, {d}

A1

0, {a, d} 0, {a, c}

Fig. 1. An LDFA with two different minimal LDFAs

y · z ∈ L, is an equivalence relation, its equivalence classes correspond to the states
of a minimal automaton for A, and they also uniquely induce the transitions of such
an automaton. Further, given a deterministic automaton for L, it is possible to use the
relation ∼L in order to minimize it in polynomial time.

A polynomial algorithm is known also for deterministic weighted automata over the
tropical semiring [18]. In such automata, each transition has a value in R, each state
has an initial and acceptance values in R, and the value of a run is the sum of the values
of its components. Unlike the case of DFAs, in the case of weighted automata there
may be several different minimal automata. They all, however, have the same graph
topology, and only differ by the values assigned to the transitions and states. In other
words, there is a canonical minimal topology, but no canonical minimal automaton. For
semirings that are not the tropical semiring, and in particular, for lattice automata, the
minimization problem is open.

In this work we study the minimization problem for lattice automata. An indication
that the problem is not easy is the fact that in the latticed setting, the “canonical topol-
ogy” property does not hold. To see this, consider again the LDFA A in Figure 1. Note
that an automaton for L(A) must have at least three states. Indeed, if it has at most
two then the word w = 000 would not get the value ⊥, whereas L(000) = ⊥. Hence,
the automata A1 and A2 presented on its right are two minimal automata for L. Their
topologies differ by the transition leaving the initial state with the letter 11.

The absence of the “canonical topology” property suggests that efforts to construct
the minimal LDFA by means of a right congruence are hopeless. The main difficulty
in minimizing LDFAs is that the “configuration” of an automaton consists not only of
the current state, but also of the run that leads to the state, and the value accumulated
reaching it2. Attempts to somehow allow the definition of the right congruence to refer
to lattice values (as is the case in the successful minimization of weighted automata
over the tropical semiring [18]) do not succeed. To see this, consider even a simpler

1 Note that the automata A1 and A2 are not simple, in the sense that the transitions are associated
with values from the lattice that are not ⊥ or �. The special case of simple lattice automata,
where the value of a run is determined only by the value associated with the last state of the
run is simpler, and has been solved in the context of fuzzy automata [17,22]. We will get back
to it in Section 2.2.

2 It is interesting to note that also in the context of deterministic Büchi automata, there is no
single minimal topology for a minimal automaton. As with LDFAs, this has to do with the fact
that the outcome of a run depends on its on-going behavior, rather than its last state only.

202 S. Halamish and O. Kupferman

model of LDFA, in which all acceptance values are � (the greatest value in the lattice,
and thus, L(x ·z) ≤ L(x) for all x, z ∈ Σ∗). A natural candidate for a right congruence
for an L-language L is the relation ∼L⊆ Σ∗ ×Σ∗ such that x ∼L x

′ iff for all z ∈ Σ∗

there exists l ∈ L such thatL(x ·z) = L(x)∧ l and L(x′ ·z) = L(x′)∧ l. Unfortunately,
the relation is not even transitive. For example, for the language L of the LDFA A in
Figure 1, we have 0 ∼L 1 and 1 ∼L 2, but 0 �∼L 2.

We formalize these discouraging indications by showing that the problem of LDFA
minimization is NP-complete. This is a quite surprising result, as this is the first pa-
rameter in which lattice automata are more complex than weighted automata over the
tropical semiring. In particular, lattice automata can always be determinized [13,15],
which is not the case for weighted automata over the tropical semiring [18]. Also, lan-
guage containment between nondeterministic lattice automata can be solve in PSPACE
[13,14], whereas the containment problem for weighted automata on the tropical semir-
ing is undecidable [16]. In addition, lattices have some appealing properties that general
semirings do not, which make them seem simpler. Specifically, the idempotent laws
(i.e., a ∨ a = a and a ∧ a = a) as well as the absorption laws (i.e., a ∨ (a ∧ b) = a and
a∧(a∨b) = a), do not hold in a general semiring, and do hold for lattices. Nevertheless,
as mentioned, we are able to prove that their minimization is NP-complete.

Our NP-hardness proof is by a reduction from the vertex cover problem [12]. The
lattice used in the reduction is L ⊂ 2E , for the set E of edges of the graph, with the
usual set-inclusion order. The reduction strongly utilizes on the fact that the elements of
2E are not fully ordered. The most challenging part of the reduction is to come up with
a lattice that, on the one hand, strongly uses the fact L is not fully ordered, yet on the
other hand is of size polynomial in E (and still satisfies the conditions of closure under
meet and join).

As pointed above, the NP-hardness proof involved a partially ordered lattice, embod-
ied in the “subset lattice”, and strongly utilizes on the order being partial. This suggests
that for fully ordered lattices, we may still be able to find a polynomial minimization
algorithm. On the other hand, as we shall show, the property of no canonical minimal
LDFA is valid already in the case of fully ordered lattice, which suggests that no poly-
nomial algorithm exists. As good news, we show that minimization of LDFAs over fully
ordered lattices can nevertheless be done in polynomial time. The idea of the algorithm
is to base the minimization on linearly many minimal DFAs that correspond to the dif-
ferent lattice values. The fact the values are fully ordered enables us to combine these
minimal automata into one minimal LDFA.

Due to lack of space, some proofs are omitted in this version and can be found in the
full version, on the authors’ home pages.

2 Preliminaries

This section introduces the definitions and notations related to lattices and lattice au-
tomata, as well as some background about the minimization problem.

Minimizing Deterministic Lattice Automata 203

2.1 Lattices and Lattice Automata

Let 〈A,≤〉 be a partially ordered set, and let P be a subset ofA. An element a ∈ A is an
upper bound on P if a ≥ b for all b ∈ P . Dually, a is a lower bound on P if a ≤ b for
all b ∈ P . An element a ∈ A is the least element of P if a ∈ P and a is a lower bound
on P . Dually, a ∈ A is the greatest element of P if a ∈ P and a is an upper bound on
P . A partially ordered set 〈A,≤〉 is a lattice if for every two elements a, b ∈ A both the
least upper bound and the greatest lower bound of {a, b} exist, in which case they are
denoted a ∨ b (a join b) and a ∧ b (a meet b), respectively. A lattice is complete if for
every subset P ⊆ A both the least upper bound and the greatest lower bound of P exist,
in which case they are denoted

∨
P and

∧
P , respectively. In particular,

∨
A and

∧
A

are denoted � (top) and ⊥ (bottom), respectively. A lattice 〈A,≤〉 is finite if A is finite.
Note that every finite lattice is complete. A lattice 〈A,≤〉 is distributive if for every
a, b, c ∈ A, we have a∧ (b∨ c) = (a∧ b)∨ (a∧ c) and a∨ (b∧ c) = (a∨ b)∧ (a∨ c).

{b}

1

0

L2

{a, b}

{a} {c}

{b, c}

∅
2{a,b,c}

{a, b, c}

{a, c}

0

1

(1,1)

(0,0)

L2,2

(1,0)(0,1)

n − 1

n − 2

Ln

Fig. 2. Some lattices

In Figure 2 we describe some finite lattices. The elements of the lattice L2 are the
usual truth values 1 (true) and 0 (false) with the order 0 ≤ 1. The lattice Ln contains
the values 0, 1...n − 1, with the order 0 ≤ 1 ≤ ... ≤ n − 1. The lattice L2,2 is the
Cartesian product of two L2 lattices, thus (a, b) ≤ (a′, b′) if both a ≤ a′ and b ≤ b′.
Finally, the lattice 2{a,b,c} is the power set of {a, b, c} with the set-inclusion order. In
this lattice, for example, {a} ∨ {b} = {a, b}, {a} ∧ {b} = ⊥, {a, c} ∨ {b} = �, and
{a, c} ∧ {b} = ⊥.

Consider a lattice L (we abuse notation and refer to L also as a set of elements, rather
than a pair of a set with an order on it). For a set X of elements, an L-set over X is a
function S : X → L assigning to each element of X a value in L. It is convenient to
think about S(x) as the truth value of the statement “x is in S”. We say that an L-set S
is Boolean if S(x) ∈ {�,⊥} for all x ∈ X .

Consider a lattice L and an alphabet Σ. An L-language is an L-set over Σ∗. Thus,
an L-language L : Σ∗ → L assigns a value in L to each word over Σ.

A deterministic lattice automaton on finite words (LDFA, for short) is a tuple A =
〈L, Σ,Q,Q0, δ, F 〉, where L is a finite lattice, Σ is an alphabet, Q is a finite set of
states, Q0 ∈ LQ is an L-set of initial states, δ ∈ LQ×Σ×Q is an L-transition-relation,
and F ∈ LQ is an L-set of accepting states. The fact A is deterministic is reflected in
two conditions onQ0 and δ. First, there is at most one state q ∈ Q, called the initial state

204 S. Halamish and O. Kupferman

of A, such that Q0(q) �= ⊥. In addition, for every state q ∈ Q and letter σ ∈ Σ, there
is at most one state q′ ∈ Q, called the σ-destination of q, such that δ(q, σ, q′) �= ⊥.
The run of an LDFA on a word w = σ1 · σ2 · · ·σn is a sequence r = q0, . . . , qn of
n + 1 states, where q0 is the initial state of A, and for all 1 ≤ i ≤ n it holds that qi
is the σi-destination of qi−1. Note that A may not have a run on w. The value of w is
val(w) = Q0(q0)∧

∧n
i=1 δ(qi−1, σi, qi) ∧F (qn). Intuitively,Q0(q0) is the value of q0

being initial, δ((qi−1, σi, qi)) is the value of qi being a successor of qi−1 when σi is the
input letter, F (qn) is the value of qn being accepting, and the value of r is the meet of all
these values. The traversal value of w is tr val (w) = Q0(q0) ∧

∧n
i=1 δ(qi−1, σi, qi),

and its acceptance value is F (qn). The L-language of A, denoted L(A), maps each
wordw to the value of its run in A. Note that since A is deterministic, it has at most one
run on w whose value is not ⊥. This is why we talk about the traversal and acceptance
values of words rather than of runs.

Note that traditional deterministic automata over finite words (DFA, for short) cor-
respond to LDFA over the lattice L2. Indeed, over L2, a word is mapped to the value �
if the run on it uses only transitions with value � and its final state has value �.

An LDFA is simple if Q0 and δ are Boolean. Note that the traversal value of a run r
of a simple LDFA is either ⊥ or �, thus the value of r is induced by F . Simple LDFAs
have been studied in the context of fuzzy logic and automata [17,22].

Analyzing the size of A, one can refer to |L|, |Q|, and |δ|. Since the emphasize in
this paper is on the size of the state space, we use |A| to refer to the size of its state
space. Our complexity results, however, refer to the size of the input, and thus take into
an account the other components of A as well, and in particular the size of L.

2.2 Minimizing LDFAs

We now turn to discuss the problem of minimizing LDFA. We describe the difficulties of
the problem, and present some examples that are important for the full comprehension
of the issue.

A first attempt to minimize lattice automata would be to follow the classical paradigm
for minimizing DFA using the Myhill Nerode theorem [20,21]. In fact, for the case of
simple LDFA, the plan proceeds smoothly (see [17,22], where the problem is discussed
by means of fuzzy automata)3: Given an L-language L, we extend the definition of ∼L

to fit the nature of L-languages. For all x, x′ ∈ Σ∗, we say that x ∼L x′ iff for all
z ∈ Σ∗ it holds that L(x · z)=L(x′ · z). Clearly, ∼L is an equivalence relation, since it
is based on the equality relation. As in the case of DFA, we can build a minimal simple
LDFA Amin for L such that |Amin| = | ∼L |. We construct it in the same manner, only
that here the acceptance values are defined such that F ([x]) = L(x). Also, we can show
that every simple LDFA for L must have at least | ∼L | states. Indeed, if this is not the
case then we have two words x, x′ ∈ Σ∗ reaching the same state q, while x �∼L x

′. The
contradiction is reached when we read the distinguishing tail z from q as in the case of
DFA, due to the fact that in simple LDFA the value of the words is solely determined
by the final state.

3 Several variants of fuzzy automata are studied in the literature. The difficulties we cope with
in the minimization of our lattice automata are not applied to them, and indeed they can be
minimized by variants of the minimization construction described here [19].

Minimizing Deterministic Lattice Automata 205

So, simple lattice automata can be minimized in polynomial time, and the key for
proving it was a generalization of the right congruence to require agreement on the
values of the words. Encouraged by this, we now turn to examine the case of gen-
eral LDFAs. Unfortunately, the generalization does not seem to work here. To see the
difficulties in the latticed setting, consider an L-language L over Σ = L such that
L(l1 · l2 · · · ln) =

∧n
i=1 li. The language L can be recognized by an LDFA A with

a single state q. The initial and acceptance values of q are �, and for every l ∈ Σ,
there is an l-transition with value l from q to itself. Thus, the single run of A on an
input word maps it to the meet of all letters. Clearly, there exist x, x′ ∈ Σ∗ such that
L(x) �= L(x′), and still A has only one state. Thus, despite being mapped to different
values, x and x′ reach the same state in A. This observation shows a crucial difference
between the setting of DFAs or simple LDFAs and the one of general LDFA. It is only
in the latter, that a “configuration” of a word is not only the state it reaches but also
the traversal value accumulated when reading it. In our example, the words x and x′

have a different traversal value, which is implicit in the LDFA, and an attempt to distin-
guish between words according to the values they have accumulated results in LDFAs
with needlessly more states. Accordingly, a right congruence that may be helpful for
minimization should take into an account the value accumulated by the words, and in
particular, in the case of L above, should have only one equivalence class.

Following the above discussion, we now try to define an equivalence relation for
LDFA that does take into an account the accumulated traversal values. Let us first con-
sider a simpler model of LDFAs in which all acceptance values are �. Note that in this
model, for all x, z ∈ Σ∗ we have that L(x · z) ≤ L(x). Let L be an L-language in the
model above. We define a relation ∼L⊆ Σ∗ ×Σ∗ such that x ∼L x

′ iff for all z ∈ Σ∗

there exists l ∈ L such that L(x · z) = L(x) ∧ l and L(x′ · z) = L(x′) ∧ l. Note that
the relation ∼L indeed takes into a consideration the values accumulated when x and
x′ are read. Indeed, x and x′ are equivalent iff for all tails z ∈ Σ∗ there exists some
l ∈ L such that z can be read with the value l after reading either x or x′. Unfortunately,
the relation is not even transitive. For example, for the language L of the LDFA A in
Figure 1, we have 0 ∼L 1 and 1 ∼L 2, but 0 �∼L 2.

We have seen some evidences that minimization of LDFAs cannot follow the mini-
mization paradigm for DFAs and even not the one for deterministic weighted automata
over the tropical semiring. In the rest of the paper we formalize these evidences by
showing that the problem is NP-complete. We also challenge them by describing a
polynomial algorithm for minimization of LDFAs over fully ordered lattices – a special
case for which the evidences apply.

3 Minimizing General LDFA

In this section we study the problem of minimizing LDFAs and show that unlike the
case of DFAs, and even the case of weighted DFAs over the tropical semiring, which
can be minimized in polynomial time, here the problem is NP-complete. We consider
the corresponding decision problem MINLDFA={〈A, k〉 : A is an LDFA and there
exists an LDFA A′ with at most k states such that L(A′) = L(A)}.

Theorem 1. MINLDFA is NP-complete.

206 S. Halamish and O. Kupferman

Proof. We start with membership in NP. Given A and k, a witness to their membership
in MINLDFA is an LDFA A′ as required. Since |A′| = k, its size is linear in the input.
Deciding language equivalence between LDFAs is NLOGSPACE-complete [13], thus
we can verify that L(A′) = L(A) in polynomial time.

For the lower bound, we show a polynomial time reduction from the Vertex Cover
problem (VC, for short), proved to be NP-complete in [12]. Recall that VC={〈G, k〉 : G
is an undirected graph with a vertex cover of size k}, where a vertex cover of a graph
G = 〈V,E〉 is a set C ⊆ V such that for all edges (u, v) ∈ E we have u ∈ C or v ∈ C.

Before we describe the reduction, we need some definitions. Consider an undirected
graph G = 〈V,E〉. Let n = |V | and m = |E|. For simplicity, we assume that V and
E are ordered, thus we can refer to the minimum element in a set of vertices or edges.
For v ∈ V , let touch(v) = {e : e = (v, u) for some u}. For e = (v1, v2) ∈ E, let
far (e) = min{e′ : e′ �∈ touch(v1) ∪ touch(v2)}. That is, far (e) is the minimal edge
that is not adjacent to e. Note that if {e′ : e′ �∈ touch(v1) ∪ touch(v2)} = ∅, then
{v1, v2} is a VC of size two, so we can assume that far (e) is well defined.

Example 1. In the graphG below, we have, for example, touch(1)={a, b}, touch(2)=
{d, e}, far (a) = d, far (b) = e, and far(c) = e.

1 2

3 4 5

a b

c

d e

touch(v){e, far(e)}
{a, d} {c, e}{b, e}

{a}{b}{c}{d}{e}

{a, b}{d, e}{a, c}{b, c, d}{e}{e, a}

G

Fig. 3. A graph and its corresponding lattice

We now turn to describe the reduction. Given an input G = 〈V,E〉, we construct an
LDFA A = 〈L, Q,Σ, δ,Q0, F 〉 as follows:

– L ⊆ 2E contains the following elements: {∅, E} ∪ {{e} : e ∈ E} ∪ {{e, far(e)} :
e ∈ E} ∪ {touch(v) : v ∈ V }, with the usual set-inclusion relation. In particular,
⊥ = ∅ and � = E. Note that L contains at most 2 + n + 2m elements (“at
most” since {e, far(e)} may be identical to {far (e), far (far (e))}). For example,
the graph in Example 1 induces the lattice shown on its right (for clarity, we omit the
elements � and ⊥ in the figure). Note that in this example we have {a, far(a)} =
{far(a), far (far (a))}, so we omit the unnecessary element.

We claim that though L does not contain all the elements in 2E , the operators
join andmeet are well defined for all l1, l2 ∈ L.4 In the case l1 and l2 are ordered,

4 We note that this point has been the most challenging part of the reduction, as on the one
hand, we have to strongly use the fact L is not fully ordered (as we show in Section 4, poly-
nomial minimization is possible for LDFAs over fully ordered lattice), yet on the other hand
the reduction has to be polynomial and thus use only polynomially many values of the subset
lattice.

Minimizing Deterministic Lattice Automata 207

the closure for both join and meet is obvious. Otherwise, we handle the operators
separately as follows. We start with the case ofmeet. Closing tomeet is easy since
l1∧l2 never contains more than one edge. Indeed, if l1, l2 are of the form touch(v1),
touch(v2) then their meet is the single edge (v1, v2). In all other possibilities for
l1 and l2 that are not ordered, one of them contains at most two edges, so the fact
they are not ordered implies that they have at most one edge in their meet. As for
join, given l1 and l2 let S = {l : l ≥ l1 and l ≥ l2}. We claim that all the elements
in S are ordered, thus we can define l1 ∨ l2 to be the minimal element in S. Assume
by way of contradiction that S contains two elements l and l′ that are not ordered.
On the one hand, l ∧ l′ ≥ l1 ∨ l2. Since l1 and l2 are not ordered, this implies that
l ∧ l′ is of size at least two. On the other hand, as we argued above, the meet of
two elements that are not ordered contains at most one edge, and we have reached
a contradiction.

– Q = {qinit , q0, ..., qm−1}.
– Σ = {e0, ..., em−1} ∪ {#}.
– For 0 ≤ i < m, we define δ(qinit , ei, qi)={ei, far (ei)} and δ(qi,#, q(i+1)modm)=
{ei}. For all other q ∈ Q and σ ∈ Σ, we define δ(q, σ, q) = ⊥.

– Q0(qinit) = �, and Q0(q) = ⊥ for all other q ∈ Q.
– F (q) = � for all q ∈ Q.

For example, the graph G in Example 1 induces the LDFA AG below.

qinit

a, {a, d}

b, {b, e}
c, {c, e}
d, {d, a}

e, {e, a}

qinit

q1

q2

q3

q4

a, {a, d}

b, {b, e}

c, {c, e}

d, {d, a}

e, {e, a}

#, {a}

#, {b}

#, {c}

#, {d}

#, {e}

#, {a, c}

#, {b, c, d}

#, {e}

q0

qv0

qv1

qv2

AG: Amin
G :

Fig. 4. The LDFA induced by G, and the minimal LDFA that corresponds to the 3-cover {3, 4, 5}

It is not hard to see that the L-language induced by A, denoted L, is such that for all
e ∈ Σ, we have that L(e) = {e, far(e)} and L(e · #) = {e}. In addition, L(ε) = �,
and for all other w ∈ Σ∗, we have that L(w) = ⊥. Also, A is indeed deterministic, and
has m + 1 states. Finally, since the components of A are all of size polynomial in the
input graph, the reduction is polynomial.

In the full version we proved that G has a k-VC iff there is an LDFA with k + 1
states for L.

4 Minimizing an LDFA over a Fully Ordered Lattice

In Section 3, we saw that the problem of minimizing LDFAs is NP-complete. The hard-
ness proof involved a partially ordered lattice, embodied in the “subset lattice”, and

208 S. Halamish and O. Kupferman

strongly utilized on the order being partial. This suggests that for fully ordered lattices,
we may still be able to find a polynomial minimization algorithm. On the other hand,
as we show below, the property of no canonical minimal LDFA is valid already in the
case of fully ordered lattice, and there is a tight connection between this and the fact we
could not come up with a polynomial algorithm in the general case.

Example 2. Let L = 〈{0, 1, 2, 3},≤〉, and let L be the L-language over Σ = {0, 1, 2},
whereL(ε) = 3,L(0) = 3,L(0·0) = 1,L(1) = 1,L(1·0) = 1, L(2) = 3,L(2·0) = 2,
and L(x) = 0 for all other x ∈ Σ∗.

Note that L is monotonic, in the sense that for all x, z ∈ Σ∗, we have that L(x · z) ≤
L(x). For monotonic L-languages, it is tempting to consider the relation ∼L⊆ Σ∗×Σ∗

such that x ∼L x′ iff for all z ∈ Σ∗ there exists l ∈ L such that L(x · z) = L(x) ∧ l
and L(x′ · z) = L(x′) ∧ l. It is not hard to see, however, that 0 ∼L 1 and 1 ∼L 2,
but 0 �∼L 2. Thus, even for monotonic languages over a fully ordered lattice, a relation
that takes the accumulated values into account is not transitive, and there are two minimal
LDFAs with different topologies forL. In the first, the letters 0 and 1 lead to a state from
which the letter 0 is read with the value 1, and in the second, the letters 1 and 2 lead to a
state from which 0 is read with the value 2.

In this section we show that in spite of the non-canonicality, we are able to minimize
them in polynomial time. We describe a polynomial time algorithm that is given an
LDFA A = 〈L,Q,Σ,δ,Q0,F 〉 over a fully ordered lattice, and returns an LDFA Amin

with a minimal number of states, such that L(Amin) = L(A).
Let L = {0, 1, ..., n − 1} be the fully ordered lattice, let L : Σ∗ → L be the

language of A, and let m = maxw∈Σ∗L(w); that is, m is the maximal value of a
word in L(A). Finally, let q0 ∈ Q be the single state with initial value that is not ⊥.
For each 1 ≤ i ≤ m we define a DFA Ai that accepts exactly all words w such that
L(w) ≥ i. Note that it is indeed enough to consider only the automata A1, ...,Am, as
Am+1, ...,An−1 are always empty and hence not needed, and A0 is not needed as well,
as L(A0) = Σ∗.

For 1 ≤ i ≤ m, we define Ai = 〈Qi,Σ,δi,q0,Fi〉 as follows:

– Qi ⊆ Q contains exactly all states that are both reachable from q0 using transitions
with value at least i, and also have some state with acceptance value at least i that is
reachable from them using zero or more transitions with value at least i. Note that
q0 ∈ Qi for all i.

– δi contains all transitions that their value in A is at least i and that both their source
and destination are in Qi.

– Fi ⊆ Qi contains all states their acceptance value in A is at least i.

For readers that wonder why we do not define δi first, as these transitions with value at
least i, and then defineQi andFi according to reachability along δi, note that such a def-
inition would result in different automata that are not trim, as it may involve transitions
that never lead to an accepting state in Ai, and states that are equivalent to a rejecting
sink. As we will see later, the fact that all the components in our Ai are essential is
going to be important.

Note that for all 1 < i ≤ m, we have that Qi ⊆ Qi−1, δi ⊆ δi−1, and Fi ⊆ Fi−1.
Also, it is not hard to see that Ai indeed accepts exactly all wordsw such thatL(w) ≥ i.

Minimizing Deterministic Lattice Automata 209

We now turn back to the given LDFA A and describe how it can be minimized using
A1, ...,Am. First, we apply a pre-processing on A that reduces the values appearing
in A to be the minimal possible values (without changing the language). Formally, we
define A′ = 〈L, Q,Σ, δ′, Q0, F

′〉, where

– For all q, q′ ∈ Q and σ ∈ Σ, we have that δ′(q, σ, q′) = max{i : (q, σ, q′) ∈ δi}.
– For all q ∈ Q, we have that F ′(q) = max{i : q ∈ Fi}.

Note that since for all 1 < i ≤ m, we have that δi ⊆ δi−1 and Fi ⊆ Fi−1, then for
all 1 ≤ i ≤ m, we also have that δ′(q, σ, q′) ≥ i iff (q, σ, q′) ∈ δi and F ′(q) ≥ i iff
q ∈ Fi.

Lemma 1. L(A) = L(A′).

By Lemma 1, it is enough to minimize A′. We start with applying the algorithm for min-
imizing DFA on A1, ...,Am. Each such application generates a partition of the states of
Ai into equivalence classes.5 Let us denote the equivalence classes produced for Ai by
Hi = {Si

1, S
i
2, ..., S

i
ni
}.

Now, we construct from A′ a minimal automaton Amin = 〈L,Qmin,Σ,δmin,Q0min ,
Fmin〉 as follows.

– We obtain the set Qmin by partitioning the states of A′ into sets, each inducing a
state in Qmin. The partitioning process is iterative: we maintain a disjoint partition
Pi of the states Q, starting with one set containing all states, and refining it along
the iterations. The refinement at the i-th iteration is based on Hi, and guarantees
that the new partition Pi agrees with Hi, meaning that states that are separated
in Hi are separated in Pi as well. At the end of this process, the sets of the final
partition constitute Qmin.

More specifically, the algorithm has m + 1 iterations, starting with i = 0, end-
ing with i = m. Let us denote the partition obtained at the i-th iteration by Pi =
{T i

1, ..., T
i
di
}. At the first iteration, for i = 0, we have that d0 = 1, and T 0

1 = Q. At
the i-th iteration, for i > 0, we are given the partition Pi−1 = {T i−1

1 , ..., T i−1
di−1

},

and generate Pi = {T i
1, ..., T

i
di
} as follows. For each 1 ≤ j ≤ di−1, we ex-

amine T i−1
j and partition it further. We do it in two stages. First, we examine

Si
1, S

i
2, ..., S

i
ni

and for each 1 ≤ k ≤ ni we compute the set U i
j,k = T i−1

j ∩ Si
k,

and if U i
j,k �= ∅, then we add U i

j,k to Pi. Thus, we indeed separate the states that

are separated in Hi. At the second stage, we consider the states in T i−1
j that do

not belong to U i
j,k for all k. Note that these states do not belong to Qi, so Ai is

indifferent about them. This is the stage where we have a choice in the algorithm.
We choose an arbitrary k for which U i

j,k �= ∅, and add these states to U i
j,k. If no

such k exists, we know that no state in T i−1
j appears in Qi, so we have no reason

to refine T i−1
j , and we can add T i−1

j to Pi. Finally, we define Qmin to be the sets
of Pm.

5 Note that, by definition, all the states in Qi have some accepting state reachable from them,
so the fact we do not have a rejecting state is not problematic, as such a state would have
constitute a singleton state in all the partitions we are going to consider.

210 S. Halamish and O. Kupferman

– The transition relation δmin is defined as follows. Consider a state T ∈ Qmin. We
choose one state qT

rep ∈ T to be a representative of T , as follows. Let iTmax =
max{i : there is q ∈ T s.t. q ∈ Qi}, and let qT

rep be a state in T ∩ QiT
max

.
Note that T ∩ QiT

max
may contain more than one state, in which case we can as-

sume Q is ordered and take the minimal. We now define the transitions leaving
T according to the original transitions of qT

rep in A′. For σ ∈ Σ, let qdest ∈ Q

be the σ-destination of qT
rep in A′. For all T ′ ∈ Qmin, if qdest ∈ T ′ we define

δmin(T, σ, T ′) = δ′(qT
rep, σ, qdest); otherwise, δmin(T, σ, T ′) = 0.

– For all T ∈ Qmin, if q0 ∈ T , where q0 is the initial state of A′, we define
Q0min(T) = Q0(q0); otherwise, Q0min(T) = 0.

– For all T ∈ Q, we define Fmin(T) = F ′(qT
rep).

An example illustrating an execution of the algorithm can be found in the full version.
Let Lmin = L(Amin) and L′ = L(A′). We prove that the construction is correct.

Thus, Lmin = L′, |Amin| is minimal, and the time complexity of the construction of
Amin is polynomial.

We first prove thatLmin = L′. For q, q′ ∈ Q, we say that q ∼i q
′ iff there exists some

class S ∈ Hi such that q, q′ ∈ S. Also, we say that q ≡i q
′ iff for all j ≤ i it holds that

q ∼j q
′. Note that although ∼i and ≡i are equivalence relations overQi ×Qi, they are

not equivalence relations over Q×Q, as they are not reflexive. Indeed, for q ∈ Q \Qi,
there is no class S ∈ Hi such that q ∈ S, so q �∼i q and of course q �≡i q. However, it
is easy to see that ∼i and ≡i are both symmetric and transitive over Q×Q.

Lemma 2 below explains the essence of the relation ≡i. As we shall prove, if q ≡i q
′

then q and q′ agree on the transition and acceptance values in A′, if these values are less
than i.

Lemma 2. For q, q′ ∈ Q, if q ≡i q
′ then for all j < i, the following hold.

– For all σ ∈ Σ, we have δ′(q, σ, s) = j iff δ′(q′, σ, s′) = j, where s, s′ ∈ Q are the
σ-destinations of q, q′ in A′, respectively. .

– F ′(q) = j iff F ′(q′) = j.

In the case of DFA, we know that each state of the minimal automaton for L corre-
sponds to an equivalence class of ∼L, and the minimization algorithm merges all the
states of the DFA that correspond to each class into a single state. Consequently, the
transition function of the minimal automaton can be defined according to one of the
merged states, and the definition is independent of the state being chosen. In the case
of our Amin, things are more complicated, as states that are merged in Amin do not
correspond to equivalence classes. We still were able, in the definition of the transitions
and acceptance values, to chose a state qT

rep, for each state T . Lemma 3 below explains
why working with the chosen state is sound.

The lemma considers a word w ∈ Σ∗, and examines the connection between a state
qi in the run of A′ on w and the corresponding state Ti in the run of Amin on w. It
shows that if L′(w) ≥ l for some l ∈ L, then qi ≡l q

Ti
rep for all i. Thus, the states

along the run of Amin behave the same as the corresponding states in A′ on values that
are less than l, and may be different on values that are at least l, as long as they are
both at least l. Intuitively, this is valid since after reaching a value l, we can replace all
subsequent values l′ ≥ l along the original run with any other value l′′ ≥ l.

Minimizing Deterministic Lattice Automata 211

Lemma 3. Let w = σ1σ2...σk be a word in Σ∗, and let q0, q1, ..., qk and T0, T1, ..., Tk

be the runs of A′ and Amin on w respectively. For l ∈ L, if L′(w) ≥ l then for all
0 ≤ i ≤ k it holds that qi ≡l q

Ti
rep.

Based on the above, we now turn to prove that Lmin = L′. Let w ∈ Σ∗, and let l =
L′(w). We show that Lmin(w) = l. Let r′ = q0, q1, ..., qk and rmin = T0, T1, ..., Tk be
the runs of A′ and Amin on w respectively.

We first show that Lmin(w) ≥ l. Consider the values read along r′, which are
Q0(q0), δ′(q0, σ1, q1), . . ., δ′(qk−1, σk, qk), and F ′(qk). Since L′(w) = l we know
that all these values are at least l. By Lemma 3 we get that for all 0 ≤ i ≤ k it holds
that qi ≡l q

Ti
rep. Then by applying the first part of Lemma 2 on q0, ..., qk−1 and the sec-

ond part on qk, we get that the values δ′(qT0
rep, σ1, s0), . . ., δmin(qTk−1

rep , σk, sk−1) and
Fmin(qTk

rep) are all at least l, where si is the σi-destination of qTi
rep for all 0 ≤ i < k.

Thus, we get that δmin(T0, σ1, T1), . . . , δmin(Tk−1, σk, Tk) and Fmin(Tk) are all at
least l as well, since these values are defined according to qT0

rep, ..., q
Tk
rep. Together with

the fact that the initial value remains the same in Amin, we get that Lmin(w) ≥ l.
In order to prove thatLmin(w) ≤ l, we show that at least one of the values read along

rmin is l. Since L′(w) = l, at least one of the values read along r′ is l. If this value is
Q0(q0) then we are done, since by definition Q0(T0) = Q0(q0). Otherwise, it must be
one of the values δ′(q0, σ1, q1), . . . , δ′(qk−1, σk, qk) or F ′(qk). Let qd be the state from
which the value l is read for the first time along r′, either as a transition value (d < k)
or as an acceptance value (d = k). We claim that qd ∈ Ql+1 (note that if l = m, then
clearly Lmin(w) ≤ l, thus, we assume that l < m, so Ql+1 is well defined). If d = 0,
then we are done, since q0 ∈ Ql+1 by definition. Otherwise, we look at the transition
(qd−1, σd, qd). By the definition of qd, we know that δ′(qd−1, σd, qd) ≥ l+1, and by the
definition of δ′ it then follows that (qd−1, σd, qd) ∈ δl+1. Thus, we get that qd ∈ Ql+1.
Now, by the definition ofQl+1, there exists some state ql+1

acc ∈ Q with acceptance value
at least l + 1 that is reachable from qd in A using zero or more transitions with value
at least l + 1. Let w′ be the word read along these transitions from qd to ql+1

acc , and let
w′′ = σ1, ..., σd ·w′. It is easy to see thatL′(w′′) ≥ l+1. Thus, we can apply Lemma 3,
and get that qd ≡l+1 q

Td
rep. Then, by applying Lemma 2 on qd and qTd

rep we conclude that
the value l is read from Td along rmin, and we are done.

We now turn to prove that |Amin| is minimal. Let N = |Amin|. We describe below
N different words w1, ..., wN ∈ Σ∗, and prove that for all i �= j the words wi and wj

cannot reach the same state in an LDFA for L. Clearly, this implies that an LDFA for L
must contain at least N states, so |Amin| is indeed minimal.

We define the words w1, ..., wN as follows. Let T1, ..., TN be the states of Amin,
and let qT1

rep, ..., q
TN
rep be their representatives respectively. We go back to the original

automaton A, and for each such representative q, we define the following:

– reach(q) = {w ∈ Σ∗ : δ(q0, w, q)>0}, where q0 is the initial state of A.
– maxval(q) = max{δ(q0, w, q) : w ∈ reach(q)}. Note that maxval(q) considers

only the traversal values of the words reaching q.
– maxw(q) is w ∈ Σ∗ for which δ(q0, w, q) = maxval(q). Note that there may be

several such words, so we can take the lowest one by lexicographic order, to make
it well defined.

212 S. Halamish and O. Kupferman

For all 1 ≤ i ≤ N , we now define wi = maxw(qTi
rep). Note that these words are indeed

different, as they reach different states in the deterministic automaton A. Consider two
different indices i and j. We prove that the words maxw(qTi

rep) and maxw(qTj
rep) cannot

reach the same state in an LDFA for L. Consider the states qTi
rep and qTj

rep. These states
belong to different sets in Qmin. Let 1 ≤ l ≤ m be the index of the iteration in which
they were first separated.

We use the following lemmas:

Lemma 4. The states qTi
rep and qTj

rep belong to different classes in Hl.

Lemma 5. tr val(maxw (qTi
rep)) ≥ l and tr val (maxw(qTj

rep)) ≥ l in all LDFA for L.

Based on the above, we prove that the words maxw(qTi
rep) and maxw(qTj

rep) cannot reach
the same state in an LDFA for L. By Lemma 4, there is a distinguishing tail z ∈ Σ∗.
That is, without loss of generality, z is read in A from qTi

rep with value at least l, and

is read from q
Tj
rep with value less than l. Let us examine the words maxw(qTi

rep) · z and

maxw(qTj
rep) · z. By applying Lemma 5 on A, we get that L(A)(maxw(qTi

rep) · z) ≥ l

and that L(A)(maxw (qTj
rep) · z) < l. Now, let U be an LDFA for L, and assume by

way of contradiction that maxw(qTi
rep) and maxw(qTj

rep) are reaching the same state in
U . Let q be that state. Applying Lemma 5 on U , we get that both maxw(qTi

rep) and

maxw(qTj
rep) are reaching q with traversal value at least l. Now, let us examine the value

vz with which z is read from q. If vz ≥ l, then L(U)(maxw(qTj
rep) · z) ≥ l, which

contradicts the fact that L(A)(maxw(qTj
rep) · z) < l. On the other hand, if vz < l, then

L(U)(maxw(qTi
rep) · z) < l, which contradicts the fact that L(A)(maxw(qTi

rep) · z) ≥ l.
Thus, we conclude that |Amin| is minimal.
It is not hard to see that each of the three stages of the algorithm (constructing the au-

tomata A1,A2, . . . ,Am and minimizing them, generating A′ from A, and constructing
Amin from A′) can be implemented in polynomial time. In the full version we analyse
the complexity in detail, and show that the overall complexity is O(|L|(|Q| log |Q| +
|δ|)).

We can now conclude with the following.

Theorem 2. An LDFA over a fully ordered lattice can be minimized in polynomial time.

References

1. Alur, R., Kanade, A., Weiss, G.: Ranking automata and games for prioritized require-
ments. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 240–253. Springer,
Heidelberg (2008)

2. ESF Network programme. Automata: from mathematics to applications (AutoMathA)
(2010), http://www.esf.org/index.php?id=1789

3. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics.
In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer,
Heidelberg (1999)

http://www.esf.org/index.php?id=1789

Minimizing Deterministic Lattice Automata 213

4. Bruns, G., Godefroid, P.: Temporal logic query checking. In: Proc. 16th LICS, pp. 409–420.
IEEE Computer Society, Los Alamitos (2001)

5. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 450–463. Springer, Heidelberg (2000)

6. Chechik, M., Devereux, B., Gurfinkel, A.: Model-checking infinite state-space systems with
fine-grained abstractions using SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057,
pp. 16–36. Springer, Heidelberg (2001)

7. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Springer,
Heidelberg (2009)

8. Easterbrook, S., Chechik, M.: A framework for multi-valued reasoning over inconsistent
viewpoints. In: Proc. 23rd Int. Conf. on Software Engineering, pp. 411–420. IEEE Computer
Society Press, Los Alamitos (2001)

9. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

10. Henzinger, T.A.: From boolean to quantitative notions of correctness. In: Proc. 37th POPL,
pp. 157–158 (2010)

11. Hussain, A., Huth, M.: On model checking multiple hybrid views. Technical Report
TR-2004-6, University of Cyprus (2004)

12. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer
Computations, pp. 85–103 (1972)

13. Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.
LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)

14. Kupferman, O., Lustig, Y.: Latticed simulation relations and games. International Journal on
the Foundations of Computer Science 21(2), 167–189 (2010)

15. Kirsten, D., Mäurer, I.: On the determinization of weighted automata. Journal of Automata,
Languages and Combinatorics 10(2/3), 287–312 (2005)

16. Krob, D.: The equality problem for rational series with multiplicities in the tropical emiring
is undecidable. Journal of Algebra and Computation 4, 405–425 (1994)

17. Li, Y., Pedrycz, W.: Minimization of lattice finite automata and its application to the decom-
position of lattice languages. Fuzzy Sets and Systems 158(13), 1423–1436 (2007)

18. Mohri, M.: Finite-state transducers in language and speech processing. Computational
Linguistics 23(2), 269–311 (1997)

19. Malik, D.S., Mordeson, J.N., Sen, M.K.: Minimization of fuzzy finite automata. Information
Sciences 113, 323–330 (1999)

20. Myhill, J.: Finite automata and the representation of events. Technical Report WADD
TR-57-624, pp. 112–137, Wright Patterson AFB, Ohio (1957)

21. Nerode, A.: Linear automaton transformations. Proceedings of the American Mathematical
Society 9(4), 541–544 (1958)

22. Zekai, L., Lan, S.: Minimization of lattice automata. In: Proc. 2nd ICFIE, pp. 194–205 (2007)

Regularity and Context-Freeness over Word
Rewriting Systems

Didier Caucal and Trong Hieu Dinh

LIGM, UMR CNRS 8049, Université Paris-Est, Marne-la-Valle, France
{caucal,dinh}@univ-mlv.fr

Abstract. We describe a general decomposition mechanism to express
the derivation relation of a word rewriting system R as the composition
of a (regular) substitution followed by the derivation relation of a sys-
tem R′ ∪ D, where R′ is a strict sub-system of R and D is the Dyck
rewriting system. From this decomposition, we deduce that the system
R (resp. R−1) preserves regular (resp. context-free) languages whenever
R′ ∪ D (resp. its inverse) does. From this we can deduce regularity and
context-freeness preservation properties for a generalization of tagged
bifix systems.

1 Introduction

A central problem in the reachability analysis of word rewriting systems is, given
a language L and a system R, to determine the set −→∗

R(L) of all words which
can be derived by R from some word in L. Though this set is not recursive in
general for L finite, a lot of attention has been devoted to the characterization of
rewriting systems whose derivation relation −→∗

R preserves classes of languages
with good decidability or closure properties. In particular, a system R is said to
preserve regularity (resp. context-freeness) if, for any regular (resp. context-free)
language L, −→∗

R(L) is also regular (resp. context-free).
Many classes of rewriting systems preserving regularity or context-freeness

can be found in the literature. For instance, it is well known that the prefix
derivation of any finite rewriting system preserves regularity [8,9], and that the
so-called context-free systems (systems whose left-hand sides are of length at
most 1) preserve context-free languages and their inverse derivations preserve
regularity (see for instance [6]). In [13], Hofbauer and Waldmann proved that
the derivation of any finite deleting system preserves regularity and that its in-
verse derivation preserves context-freeness, thus completing a result by Hibbard
[12]. They provided a clever decomposition of the derivation relation into a fi-
nite substitution followed by the derivation of an inverse context-free system
and a restriction to the original alphabet. From this, they were able to deduce
many previously known preservation results. In [10], Endrullis, Hofbauer and
Waldmann gave a general decomposition of the derivation of any system into a
context-free system followed by an inverse context-free system with empty right
hand sides. The main contribution of our paper is to use this derivation decom-
position idea to extend the decomposition of [13] to infinite rewriting systems
with prefix and suffix rules.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 214–228, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Regularity and Context-Freeness over Word Rewriting Systems 215

Our construction is based on the following observation. Given a word u =
a1 . . . an, let us write ←−u = ←−an . . .

←−a1 and −→u = −→an . . .
−→a1 where ←−a and −→a are fresh

letters for all a. Let R be a rewriting system and u → v ∈ R be one of its rules,
and consider factors of the form ←−u1v

−→u2 with u1u2 = u. The intended meaning
is that as an effect of this rewrite rule, right-hand side v can be inserted at a
certain position i in a word provided that u1 can be erased to the left of position
i and u2 to the right. In other words, applying rule u → v to a word can be
simulated by first inserting some such factor ←−u1v

−→u2 at an appropriate position,
and then erasing factors of the form u←−u or −→u u. This double-phased procedure
described in [10] can be performed as a substitution followed by a normalization
using inverse context-free rules of the form −→a a → ε and a←−a → ε (constituting
what we call the Dyck rewriting system, see also [15]).

Under certain syntactical criteria, this simulation step can be used to eliminate
rewrite rules from the original rewriting system altogether. More precisely, we
are able to decompose the derivation of a system R into a (regular) substitution
h, whose role is to insert factors (as described above) corresponding to some
subset R′ of R, followed by the derivation according to a system S ∪D, where
S is simply R − R′ and D denotes the Dyck system; we say that R can be
decomposed into S. As a consequence, the derivation of R (resp. R−1) preserves
regularity (resp. context-freeness) if the derivation of S ∪ D (resp. its inverse)
does. This remains true even for infinite systems, as long as the relation R′ is
recognizable.

This result can be used to characterize several families of systems whose
derivations preserve regularity or context-freeness. First, we observe that in the
case of deleting systems the decomposition yields an empty S (i.e. all rules can be
simulated and eliminated from R). Since the Dyck system is inverse context-free,
this indeed extends the result of [13] to infinite (recognizable) systems. Moreover,
contrary to [13] our decomposition only uses a single inverse context-free system,
namely D. Note however that many other systems can be directly decomposed
into the empty system, for instance the well-known prefix rewriting systems
(which encode pushdown system transition relations), their bifix variant, and
left-to-right systems; in the finite case, most of these systems can also be sim-
ulated by deleting systems [13]. As an example, since multi-pushdown systems
as defined in [7] can be seen as left-to-right systems, we can recover from our
results that their transition relations preserve context-freeness and their inverse
preserves regularity.

Our main application concerns tagged systems, which generalize the notions
of prefix and suffix rewriting. Given a set of special symbols called tags, which
we separate into prefix and suffix tags, we consider rules of the form #u−→#′v,
where #,#′ are prefix tags and u does not contain any tags. We also allow suffix,
bifix, and untagged rules which are defined similarly. Since v may contain tags,
this strictly extends the earlier notions of tagged systems defined in [1]. If the set
of tagged rules is recognizable and the set of untagged rules is context-free, we
show that our decomposition result applies, which entails that the derivation of
such a system (resp. its inverse) preserves context-freeness (resp. regularity). This

216 D. Caucal and T.H. Dinh

result still holds when we do not partition the set of tags, at the cost of imposing
that tags in the left-hand side of a rule remain invariant in the corresponding
right-hand side. Both results extend previously known preservation properties
of simpler tagged systems [1].

The remainder of the paper is organized as follows. After some elementary no-
tations and definitions, Section 2 presents our derivation decomposition theorem,
and relates it to the class of deleting systems. Section 3 details several classes
of rewriting systems whose known preservation results can be recovered using
our technique (prefix, suffix and bifix systems in Section 3.1) or for which new
preservation results can be shown (left-to-right systems in Section 3.2, tagged
systems in Section 3.3).

2 Derivation Decomposition

This section focuses on regularity and context-freeness preservation properties
for rewriting systems. After reviewing some known preservation results (Sec-
tion 2.2), we generalize the derivation decomposition of [13] to arbitrary rewrit-
ing systems (Section 2.3), which allows us to deduce new preservation properties.
We start by recalling some basic definitions and notations.

2.1 Notations

For ease of notation, a singleton {x} will often be identified with x. The image
by a binary relation R ⊆ E×F of a subset P ⊆ E by a binary relation R is
R(P) = {y | ∃x ∈ P, xR y}. Let N be a finite set of symbols (called an alphabet),
we write Alph(u) = {u(i) | 1 ≤ i ≤ |u|} the set of letters occurring in a word
u ∈ N∗ (whose u(i) the letter of u at position i). This is extended by union to any
language P over N : Alph(P) = {a | ∃u ∈ P, a ∈ Alph(u) }. The concatenation
of binary relations R,S onN∗ is R.S = {(ux, vy) | uRv∧xS y}, and the left and
right concatenation of R by a language P ⊆ N∗ is R.P = R.IdP = {(uw, vw) |
uRv ∧ w ∈ P} and P.R = IdP .R, where IdP = {(w,w) | w ∈ P} denotes the
identity relation on P .

A regular language over N is the language recognized by a finite automaton
labelled in N (or N∗). A substitution h over N is a binary relation on N∗ whose
image h(a) is defined for every letter a ∈ N and extended by morphism to words:
h(a1. . .an) = h(a1). . .h(an) for all n ≥ 0 and a1, . . ., an ∈ N . It is said to be
finite (resp. regular) if h(a) is a finite (resp. regular) language for all a ∈ N .
A recognizable relation R on N∗ is a finite union of binary products of regular
languages: R = U1×V1 ∪ . . . ∪ Up×Vp for some p ≥ 0 and regular languages
U1, V1, . . . , Up, Vp. A transducer A over N is an automaton labelled in N∗×N∗

whose language is interpreted as a binary relation, called a rational relation [4].
A word rewriting system (or just system) R over an alphabet N is a binary

relation on N∗ seen as a set of rules (u, v); we do not assume R to be finite.
Let Alph(R) be the set of letters of R. The rewriting relation (or single step
reduction) of R is the binary relation −→R = N∗.R.N∗, i.e. xuy −→R xvy for

Regularity and Context-Freeness over Word Rewriting Systems 217

all uRv and x, y ∈ N∗; we also sometimes write xuy −→R,|x| xvy to denote
the position |x| where the rule is applied. Note that (−→R)−1 = −→R−1 . The
derivation relation (or reduction relation) −→∗

R of R is the reflexive and tran-
sitive closure (under composition) of −→R, i.e. u −→∗

R v if there exist n ≥ 0
and u0, . . . , un ∈ N∗ such that u = u0 −→R u1 . . .−→R un = v. Note that
(−→∗

R)−1 = −→∗
R−1 .

A context-free grammar over N is a finite relation R ⊆ M×(M ∪ N)∗ for
some alphabet M disjoint of N ; it generates from u ∈ (M ∪N)∗ the context-free
language L(R, u) = {v ∈ N∗ | u −→∗

R v}.

2.2 Preservation Properties

A first and very well-known preservation result is that any rational relation R
(and its inverse) preserves regularity: the image R(L) of any regular language
L remains regular. It is also well-known in the field of language theory that the
family of context-free languages is also closed under rational relations [4].

Lemma 2.1. Any rational relation preserves regularity and context-freeness.

Since both recognizable relations and regular substitutions are special cases of
rational relations, it follows that regular and context-free languages are also
closed under direct and inverse recognizable relations and regular substitutions.

In this paper, we are concerned with the characterization of classes of rewriting
systems whose derivation relations preserve regularity or context-freeness, using
a general decomposition mechanism detailed in the next subsection. A simple
way to simulate the application of a rewriting rule (uv, w) to a word x is to
insert, at the appropriate position in x, a factor ←−u w−→v whose intended meaning
is that at this position, right-hand side w can appear after applying the rule if a
factor u can be deleted on the left and v on the right. After this word is inserted,
appropriate deletions are performed using a single rewriting system called the
Dyck system. Therefore, the language preservation properties of that rewriting
system play a central role in our study.

Formally, let R ⊆ N∗×N∗ be a rewriting system, and consider a new alphabet←→
N =

−→
N ∪ ←−

N consisting of two disjoint copies of N , with
−→
N = {−→a | a ∈ N}

and
←−
N = {←−a | a ∈ N}. This notation is extended to words over N as follows:

−−−−−→a1 . . . an = −→an . . .
−→a1 and ←−−−−−a1 . . . an = ←−an . . .

←−a1 for any n ≥ 0 and a1, . . . , an ∈ N .
The Dyck system D = N↓ ∪ ↓N defined over N = N∪←→

N is the union of the right
and left Dyck systems N↓ = {(−→a a, ε) | a ∈ N} and ↓N = { (a←−a , ε) | a ∈ N}.

For any rule (uv, w) inR, the word xwy obtained by rewriting xuvy can also be
derived from the word xu←−u w−→v vy using D. Note that when u = ε (resp. v = ε),
it suffices to use N↓ (resp. ↓N). It is a classical and widely-used result that the
derivation relation of N↓ preserves regularity [3] but not context-freeness. An
example [14] is to take the context-free languages L and M solutions of the
equations L = −→a La∪M and M = b∪aMM−→a . So −→∗

N↓(L) is not context-free:

∗−→
N↓

(L) ∩ b∗ = {b2n | n ≥ 0}

218 D. Caucal and T.H. Dinh

Furthermore the derivation ofN↓−1 preserves context-freeness but not regularity:

∗−→
N↓−1

(ε) ∩ −→a ∗a∗ = {−→a nan | n ≥ 0}

which is not regular (but is context-free). We thus call the system N↓ reg/cf-
preserving, as defined below.

Definition 2.2. A system R is reg/cf-preserving if its derivation relation pre-
serves regularity and its inverse derivation preserves context-freeness.
A system R is cf/reg-preserving if R−1 is reg/cf-preserving.

One can extend the reg/cf-preservation of the (right) Dyck system to wider
classes of rewriting systems. We say that a binary relation R on N∗ is a context-
free system if R ⊆ (N ∪ {ε})×N∗ with R(a) a context-free language for all
a ∈ N ∪ {ε}. The system D−1 is a context-free system.

Proposition 2.3 ([5]). Context-free systems are cf/reg-preserving.

Another class of cf/reg-preserving systems is defined in [12]. A system R is called
context-limited if there exists a partial ordering < on N such that for any rule
(u, v) ∈ R, any letter of u is less than some letter of v: ∀ a ∈ Alph(u) ∃ b ∈
Alph(v) a < b. It is shown that the derivation relations of finite context-limited
systems preserve context-free languages [12]. Additionally, the inverse R−1 of a
context-limited system R is called a deleting system, and the derivation relation
of any finite deleting system preserves regularity [13].

Proposition 2.4 ([12,13]). Finite context-limited systems are cf/reg-preserving.

This proposition follows from the decomposition [13] of the derivation relation
of any finite deleting system R into a finite substitution h over an extended
alphabet composed with the derivation of the inverse of a finite context-free
system S, and followed by a restriction to the original alphabet:

∗−→
R

=
(
h ◦ ∗−→

S−1

)
∩N∗×N∗.

In the following section, we extend this reasoning to arbitrary rewriting system.
We will see in particular that in the case of deleting systems, S−1 can always be
chosen to be the Dyck system.

2.3 Decomposition

In this subsection we build up on the technical ideas behind Proposition 2.4
and propose a more general notion of derivation decomposition for arbitrary
rewriting systems. As already sketched in the previous section, the application
of a single rewriting rule (uv, w) to a word x can be simulated by inserting the
factor ←−u w−→v inside x, and then deleting the extra letters using the Dyck system.
We make use of this idea by identifying sets of rules whose role in the derivation
can be accurately simulated by this process.

Regularity and Context-Freeness over Word Rewriting Systems 219

More precisely, for a given rewriting system R over some alphabet N , we
identify a subset of rules R′ ⊆ R such that

∗−→
R

=
(
h ◦ ∗−→

(R−R′)∪D

)
∩N∗×N∗

where h is a substitution inserting factors of the form ←−u w−→v . This decomposition
is performed by eliminating left or right recursion from the system. Formally,
for any R ⊆ N∗×N∗ and M ⊆ N , we define the sub-system

RM = {(u, v) ∈ R | Alph(uv) ∩M �= ∅}

consisting of all the rules of R with a letter in M ; hence R−RM is the maximal
sub-system of R over N−M . We want to decompose the derivation of R into the
composition of some substitution h together with the derivation of the system
(R−RM) ∪D for suitable subsets M of N .

Definition 2.5. A set M ⊆ Alph(R) is called a prefix sub-alphabet of R if

R ⊆ MN∗ ×M(N −M)∗ ∪ N∗ × (N −M)∗.

This definition means that for each rule (u, av) ∈ R with a ∈ N , v has no letter
in M , and if a ∈ M then u must begin by a letter in M (see Example 2.8).
Note that the set of prefix sub-alphabets of R is closed under union and we
can compute its maximal element (with respect to inclusion). For any prefix
sub-alphabet M of R, we define over N the language

P = {←−u w−→v | uv Rw ∧ u ∈ (N −M)∗ ∧ v ∈ MN∗}

and the substitution hM : N −→ 2N
∗

with hM (x) = P ∗x if x ∈M and hM (x) =
x otherwise. Both the language P and the substitution hM are regular whenever
RM is recognizable. When M is a prefix sub-alphabet of R, we can decompose
−→∗

R by removing RM from R.

Lemma 2.6. For any prefix sub-alphabet M of R and for any u ∈ N
∗
,

∗−→
R∪D

(u) ∩N∗ = ∗−→
(R−RM)∪D

(
hM (u)

)
∩N∗.

Proof. Let us write S = (R −RM) ∪D and h = hM .
⊇: We first establish two preliminary observations.

First, whenever a factor −→v (resp ←−v) can be removed during a derivation by
R∪D, one can always rearrange the derivation steps so that at some point factor
v appears immediately to the right (resp. left) of −→v (resp. ←−v), and the resulting
factor −→v v (resp. v←−v) is deleted using D. Formally, for any u,w ∈ N

∗
and any

v, z ∈ N∗,

w−→v u ∗−→
R∪D

z =⇒ ∃ w, u ∗−→
R∪D

vw ∧ ww
∗−→

R∪D
z,

u←−v w ∗−→
R∪D

z =⇒ ∃ w, u ∗−→
R∪D

wv ∧ ww
∗−→

R∪D
z.

220 D. Caucal and T.H. Dinh

This can be proven by induction on derivation length. For any R ⊆ N∗×N∗, let

←→
R = {←−u w−→v | (uv, w) ∈ R}

We have
∗−→

R∪D

(
u[
←→
R]
)
∩N∗ ⊆ ∗−→

R∪ D
(u) for any u ∈ N∗

,

meaning that even randomly inserting factors from
←→
R in u does not increase the

set of words in N∗ obtained by derivation using R∪D. In other words, the specific
positions at which h inserts factors is only relevant for the converse inclusion
(which is proven below). The proof is done using the previous observation and
for some word x ∈ u[

←→
R], by induction on the minimal number of insertions of

words of
←→
R which must be performed in order to obtain x from u.

Now let u ∈ N
∗
, since h(u) ⊆ u[

←→
R] and S ⊆ R∪D and by the above inclusion

we obtain

∗−→
S

(h(u)) ∩N∗ ⊆ ∗−→
R∪D

(
u[
←→
R]
)
∩N∗ ⊆ ∗−→

R∪D
(u).

⊆: Let u −→∗
R∪D v with u ∈ N

∗
. Let us show that h(v) ⊆ −→∗

S

(
h(u)

)
. To

prove this inclusion, we need to make sure that the insertion process performed
by h does not prevent any of the words originally derivable from u using R ∪D
to be also derivable from h(u) using S. Intuitively, this is guaranteed by the
definition of the set P and the substitution hM which only inserts factors at
specific positions.

By induction on the length of the derivation of v from u, it remains to check the
inclusion for u −→R∪D v. Let u = xu0y and v = xv0y for some (u0, v0) ∈ R∪D.
We distinguish the three complementary cases below.

Case 1: (u0, v0) �∈ RM ∪ D. By definition u0, v0 ∈ (N − M)∗. This means
that neither u0 nor v0 is affected by h: we have h(u) = h(x)u0h(y) and
h(v) = h(x)v0h(y). Hence

h(v) = h(x)v0h(y) ⊆ −→
{(u0,v0)}

(
h(x)u0h(y)

)
⊆ ∗−→

S

(
h(u)

)
.

Case 2: (u0, v0) ∈ D. By definition, v0 = ε. Thus

h(v) = h(x)h(y) ⊆ −→
D

(
h(x)u0h(y)

)
⊆ ∗−→

S

(
h(xu0y)

)
= ∗−→

S

(
h(u)

)
.

Case 3: (u0, v0) ∈ RM . This rule can be of two types, corresponding to the two
subcases below.
Case 3.1: u0 ∈ MN∗ and v0 ∈ M(N −M)∗. We have h(x)P ∗u0h(y) ⊆ h(u)

and h(v) = h(x)P ∗v0h(y). As v0−→u0 ∈ P , h(x)P ∗v0−→u0u0h(y) ⊆ h(u).
Hence

h(v) = h(x)P ∗v0h(y) ⊆ ∗−→
D

(h(x)P ∗v0−→u0u0h(y)) ⊆ ∗−→
S

(h(u)).

Regularity and Context-Freeness over Word Rewriting Systems 221

Case 3.2: u0 ∈ N∗MN∗ and v0 ∈ (N − M)∗. We have u0 = u′0#u′′0
with u′0 ∈ (N − M)∗, # ∈ M , u′′0 ∈ N∗, and

←−
u′0v0

−−→
#u′′0 ∈ P . Hence

h(x)u′0P
∗#u′′0h(y) ⊆ h(u), which implies in particular that

h(x)u′0
←−
u′0v0

−→
u′′0

−→
#u′′0h(y) ⊆ h(u).

Finally we obtain that

h(v) = h(x)v0h(y) ⊆ ∗−→
D

(
h(x)u′0

←−
u′0v0

−→
u′′0

−→
#u′′0h(y)

)
⊆ ∗−→

S
(h(u)).

This concludes the proof that h(v) ⊆ −→∗
S(h(u)) for u −→∗

R∪ D v. As v ∈ h(v),
we finally get −→∗

R∪D(u) ⊆ −→∗
S(h(u)). ��

A similar decomposition can also be achieved using suffix sub-alphabets instead
of prefix ones. A subset M of N is a suffix sub-alphabet of R if

R ⊆ N∗M×(N −M)∗M ∪ N∗×(N −M)∗.

It can also be seen as a prefix sub-alphabet of R̃ = {(ũ, ṽ) | uRv }, where
ũ = u(|u|). . .u(1) is the mirror of word u. Lemma 2.6 remains true for any suffix
sub-alphabet M , with the difference that hM (x) = xQ∗ for all x ∈ M with
Q = {←−u w−→v | uvRw ∧ u ∈ N∗M ∧ v ∈ (N −M)∗}.

Using prefix and suffix sub-alphabets, we can now iterate this decomposition
process as long as at least one such sub-alphabet remains. We say that R ⊆
N∗×N∗ is u-decomposable for u ∈ (2N)∗ if u = ε, or u = Mv with M a prefix
or suffix sub-alphabet of R and R−RM is v-decomposable. For any u ∈ (2N)∗,
we define the sub-system Ru of R as Ru = Ru(1) ∪ . . .∪Ru(|u|) = Ru(1)∪...∪u(|u|)
consisting of the subset of rules of R with at least one letter in u(1)∪ . . .∪u(|u|).

When the letters of u are prefix and suffix sub-alphabets, we define the substi-
tution hu : N −→ 2N

∗
by hu = hu(1) ◦ . . . ◦ hu(|u|) where for every 1 ≤ i ≤ |u|,

hu(i) is the substitution associated to the prefix, or suffix but not prefix, sub-
alphabet u(i) of R. Note that if Ru is recognizable, hu is a regular substitution.
Let us now iterate the decomposition of Lemma 2.6.

Proposition 2.7. If R is u-decomposable then
∗−→
R

=
(
hu ◦ ∗−→

(R−Ru)∪ D

)
∩N∗×N∗.

Proof. We have
∗−→
R

= ∗−→
R∪D

∩ N∗×N∗

=
(
hu(1) ◦ ∗−→

(R−Ru(1))∪D

)
∩ N∗×N∗ by Lemma 2.6

=
(
hu(1) ◦ . . . ◦ hu(|u|) ◦ ∗−→

(R−Ru(1)...−Ru(|u|))∪D

)
∩ N∗×N∗

=
(
hu ◦ ∗−→

(R−Ru)∪D

)
∩ N∗×N∗.

��

222 D. Caucal and T.H. Dinh

We say that R is decomposable into S if R is u-decomposable for some u and
R − Ru = S. This decomposition relation is reflexive and transitive. Let us
illustrate this mechanism on an example.

Example 2.8. Consider the rewriting system R = {(abb, ab), (a, ε), (cb, cc)} and
the derivation caabb −→R caab −→R cab −→R cb −→R cc.

As {a} is a prefix sub-alphabet of R, and by Lemma 2.6, we have

∗−→
R

=
(
ha ◦ ∗−→

R′ ∪D

)
∩N∗×N∗

with R′ = {(cb, cc)} and ha(a) = {−→a , ab−→b −→
b −→a }∗a.

As {b} is a prefix sub-alphabet of R′ (but not of R), we have

∗−→
R′ ∪D

∩ N
∗×N∗ =

(
hb ◦ ∗−→

D

)
∩ N

∗×N∗

with hb(b) = {←−c cc−→b }∗b. Thus R is {a}{b}-decomposable into ∅ and

∗−→
R

=
(
hab ◦ ∗−→

D

)
∩N∗×N∗

with hab(a) = hb(ha(a)) = {−→a , a{←−c cc−→b }∗b−→b −→
b −→a }∗a and hab(b) = hb(ha(b)) =

hb(b) = {←−c cc−→b }∗b. For instance

u = c.−→a a.−→a a←−c cc−→b b−→b −→
b −→a a.b.b ∈ hab(caabb) and u

∗−→
D

cc.

FinallyR is terminating (no infinite derivation) althoughR is not match-bounded
[11]. ��

For any letter a ∈ N − Im(R) which does not appear in the right hand sides of
rules of R, {a} is a prefix (or suffix) sub-alphabet of R and we call a a reducible
letter of R. We say that R is reducible into S if R is u-decomposable into S for
some word u composed only of reducible letters (of the successive remaining sub-
relations). Note that this is not the case of the rewriting system in the above
example, even though it is decomposable into the empty system. The systems
which can be reduced into ∅ or {(ε, ε)} are exactly the deleting systems.

Proposition 2.9. R is deleting if and only if R is reducible into ∅ or {(ε, ε)}.

When R is decomposable into S and R − S is recognizable, we say there is a
recognizable decomposition of R into S. Let us apply Proposition 2.7 to that
setting.

Theorem 2.10. For R recognizable decomposable into S,

∗−→
S ∪D

preserves regularity =⇒ ∗−→
R

preserves regularity,

∗−→
S−1 ∪D−1

preserves context-freeness =⇒ ∗−→
R−1

preserves context-freeness.

Regularity and Context-Freeness over Word Rewriting Systems 223

Proof. By Proposition 2.7, there is a regular substitution h such that for all L ⊆
N∗, −→∗

R(L) = −→∗
S ∪D(h(L)) ∩N∗ and −→∗

R−1(L) = h−1
(
−→∗

S−1 ∪D−1(L)
)
∩

N∗. Since h is a regular substitution, this proves the theorem. ��

Note that we cannot suppress D or D−1 in Theorem 2.10, and that the reverse
implications are false. Indeed the system S = {(#a, bb#), (b&,&a)} has a rational
derivation, hence its derivation preserves regularity and context-freeness, but
−→∗

S∪D does not preserve regularity:

∗−→
S ∪D

(
(#−→

&)∗#a(←−# &)∗
)
∩ #a∗ = {#a2n | n ≥ 0}

and −→∗
S∪D−1 does not preserve context-freeness:

∗−→
S ∪D−1

(a) ∩ (−→# &)∗a∗(←−& #)∗ = {(−→# &)na2n

(←−& #)n | n ≥ 0}.

To conclude this section, let us apply Theorem 2.10 together with Proposition 2.3
to transfer regularity and context-freeness preservation properties from context-
free systems to a larger class of rewriting systems.

Proposition 2.11. If R−1 is recognizable decomposable into S−1 where S is a
context-free system, then R is cf/reg-preserving.

By Lemma 2.9, this proposition strictly generalizes Proposition 2.4 by allowing a
recognizable set of rules: indeed any recognizable deleting system is recognizable-
decomposable into the empty rewriting system (or {(ε, ε)}), whose inverse is
trivially a context-free system. This entails that recognizable context-limited
systems are cf/reg-preserving. In the following section we give several other ap-
plications of Theorem 2.10 and Proposition 2.11.

3 Applications

In this section, we provide several consequences and applications of the decom-
position technique presented in the previous section. In particular, we show how
to derive from Theorem 2.10 preservation properties for the classes of prefix,
suffix and bifix systems as well as their tag-adding variants.

3.1 Prefix, Suffix and Bifix Systems

Proposition 2.4 was already applied in [13] to the prefix derivations of finite
systems. Using Theorem 2.10, this can be extended to any recognizable system.

The prefix rewriting of a system R is the binary relation �−→R = R.N∗ =
−→R,0, i.e. uy �−→R vy for any uRv and y ∈ N∗. As expected, the prefix deriva-
tion �−→∗

R of R is the reflexive and transitive closure of the prefix rewriting
relation. For any finite system, the regularity of the set of words reached by
prefix derivation from a given word [8] is a particular case of the rationality of
the prefix derivation; this remains true for any recognizable system.

224 D. Caucal and T.H. Dinh

Proposition 3.1 ([9]). The prefix derivation of any recognizable system is a
rational relation.

Proof. Let R =
⋃n

i=1 Ui×Vi be a recognizable rewriting system, and # �∈ N be a
new symbol, and consider the system #R = {(#u,#v) | uRv}. By definition, {#}
is a prefix sub-alphabet of #R, which is thus recognizable and #-decomposable
into ∅. For any L ⊆ N∗, �−→∗

R(L) = #−1
(
−→∗

#R(#L)
)

which by Theorem 2.10,
is regular whenever L is regular. By Proposition 2.7, the last equality is equiva-
lent to

∗�−→
R

(L) = ∗−→
N↓
(
{v−→u | uRv}∗L

)
∩N∗.

Since �−→∗
R−1(U) and �−→∗

R(V) remain regular for any regular languages U, V ,
the relation R =

⋃n
i=1 �−→∗

R−1(Ui) × �−→∗
R(Vi) is recognizable, hence

∗�−→
R

= IdN∗ ∪ �−→
R

= IdN∗ ∪ R.N∗

is recognized by a finite transducer. ��

The rules of a system R can also be applied only to suffixes. The suffix rewriting
of R is the binary relation −→|R = N∗.R, i.e. wu −→|R wv for any uRv and
w ∈ N∗. Note that the rewriting relation of a suffix system is isomorphic to that
of a prefix one: u −→|R v if and only if ũ �−→R̃ ṽ where R̃ = {(ũ, ṽ) | uRv}.
Hence Proposition 3.1 holds for suffix systems as well.

Finally we allow the application of rules both to prefixes and suffixes. The bifix
rewriting relation of R is �−→|R = �−→R ∪ −→|R. There exists a generalization
of Proposition 3.1 to this type of rewriting.

Proposition 3.2 ([15]). The bifix derivation of any recognizable system is a
rational relation.

Proof. We take two new symbols #,& �∈ N and we define the recognizable system
S = #R∪R& = {(#u,#v) | uRv}∪{(u&, v&) | uRv}. The sets {#} and {&} are
respectively prefix and suffix sub-aphabets of S. Thus S is #&-decomposable in
∅. For any L ⊆ N∗, �−→|∗

R(L) = #−1
(
−→∗

S(#L&)
)
&−1 which by Theorem 2.10, is

regular whenever L is regular. By Proposition 2.7, the last equality is equivalent
to ∗

�−→|
R

(L) = ∗−→
D

(
{v−→u | uRv}∗L{←−u v | uRv}∗

)
∩N∗.

This is a possible first step of the construction, given in [15], of a finite transducer
recognizing �−→|∗

R. ��

3.2 Left-to-Right Derivation

Let us apply Theorem 2.10 to another restriction of the derivation. The left-to-
right derivation ↪→∗

R of a system R is defined by

u
∗
↪→
R
v ⇐⇒ u0 −→

R,p1
u1 . . .−→

R,pn

un with p1 ≤ . . . ≤ pn, u0 = u and un = v.

Regularity and Context-Freeness over Word Rewriting Systems 225

The left-to-right derivation and leftmost derivation are incomparable. In partic-
ular, applying a rewrite rule at some position i could in a leftmost derivation
enable another rule at some position strictly smaller than i. However, in a left-
to-right derivation, successive rewriting positions must be just increasing.

Proposition 3.3. The left-to-right derivation of any recognizable system pre-
serves context-freeness, and its inverse preserves regularity.

Proof. We consider a new symbol # �∈ N and the system S = {(u,#v) | uRv}.
By choosing {#} as a prefix sub-alphabet, we can recognizably decompose S−1

into ∅. Note that S−1 is deleting for R finite. By Proposition 2.11, −→∗
S thus

preserves context-freeness and −→∗
S−1 preserves regularity. Furthermore −→∗

S

can be performed from left to right: −→∗
S = ↪→∗

S . Let π be the morphism
defined by π(#) = ε and π(a) = a for any a ∈ N . We have

∗
↪→
R

= {(u, π(v)) | u ∈ N∗ ∧ u ∗
↪→
S
v}.

Thus for every L ⊆ N∗,

∗
↪→
R

(L) = π
(∗
↪→
S

(L)
)

= π
(∗−→

S
(L)
)

hence ↪→∗
R(L) is context-free whenever L is. Finally for any L ⊆ N∗,

(∗
↪→
R

)−1(L) = ∗−→
S−1

(
π−1(L)

)
∩N∗

which is regular whenever L is regular. ��

Note that Proposition 2.3, when restricted to recognizable rewriting systems, is
a corollary of Proposition 3.3. Indeed for any R ⊆ (N ∪{ε})×N∗, the derivation
−→∗

R is equal to ↪→∗
R. Also note that inverse preservation properties do not hold

in general. For instance when R = {(a, bab)}, we have ↪→∗
R(a) = {bnabn | n ≥ 0}

hence ↪→∗
R does not preserve regularity. Conversely −→∗

N↓−1 = ↪→∗
N↓−1 hence(

↪→∗
N↓−1

)−1 = −→∗
N↓ which does not preserve context-freeness.

We conclude this section on left-to-right derivation by showing that the left-to-
right derivation of any rewriting system can be described using prefix derivation.
To any R ⊆ N∗×N∗, we associate the labelled transition system (i.e. labelled
graph) R̂ over N ∪ {ε} defined as

R̂ = {u ε−→ v | uRv} ∪ {a a−→ ε | a ∈ N}

and its prefix transition graph

R̂.N∗ = {uw ε−→ vw | uRv ∧ w ∈ N∗} ∪ {aw a−→w | a ∈ N ∧w ∈ N∗}.

The words obtained by left-to-right derivation by R from a word u are precisely
the words v labelling paths u=⇒v

R̂.N∗ ε (in other words recognized by R̂.N∗)
from vertex u to vertex ε.

226 D. Caucal and T.H. Dinh

Lemma 3.4. For any system R, u ↪→∗
R v ⇐⇒ u =⇒v

R̂.N∗ ε.

By Proposition 3.3 and Lemma 3.4, we get ↪→∗
R(L) = L(R̂.N∗, L, ε), the language

of words labelling paths in the graph R̂.N∗ between vertices in L and the vertex ε.
This is a context-free language whenever L is context-free and R is recognizable
[9]. When R is finite and taking a new symbol p representing a control state,
the system pR̂ = {pu−→ε pv | uRv} ∪ {pa−→a p | a ∈ N} can be seen as a
pushdown automaton with stack alphabet N (as customary, pushdown rules can
be straightforwardly obtained by adding new states and rules). We have just
described the effective construction of a pushdown automaton recognizing the
language ↪→∗

R(L) by empty stack and with possible initial stack content each
word in L.

3.3 Tagged and Tag-Adding Systems

We will now apply Theorem 2.10 to the derivation of systems generalizing bifix
derivation. We consider a finite set M of special symbols called tags. Bifix sys-
tems can be easily simulated and extended by adding tags at the first and last
position of the sides of the rules, enforcing that the first and/or last tags of each
side of a rule must be the same [1].

Definition 3.5. Given disjoint sets M and N , a tagged bifix system over M∪N
is a system

R ⊆ (M ∪ {ε})N∗(M ∪ {ε})×(M ∪N)∗

such that for any rule (u, v) ∈ R, (u(1) ∈ M ∨ u(|u|) ∈ M) and

u(1) ∈M =⇒ u(1) = v(1) and u(|u|) ∈ M =⇒ u(|u|) = v(|v|).

In such a system all tags are preserved by the rewriting process. Without this
condition, we could transform any finite system R over N into the tagged system

R• = {(•u, •v) | uRv} ∪ {(•a,#a) | a ∈ N} ∪ {(&a, •a) | a ∈ N}
∪ {(#a, a•) | a ∈ N} ∪ {(a•,&a) | a ∈ N}

with M = {#a | a ∈ N} ∪ {&a | a ∈ N} ∪ {•}. We have u −→∗
R v ⇐⇒

•u −→∗
R• •v for any u, v ∈ N∗. Since −→∗

R is not recursive in general, neither is
−→∗

R• . The rationality of bifix derivation can be extended to the derivation of
tagged bifix systems.

Proposition 3.6 ([1]). The derivation relation of any recognizable tagged bifix
system is rational.

Before further extending this class of systems by allowing tag-adding and infix
rules, we consider systems whose tag set M is partitioned into a subset Mp of
prefix tags and a subset Ms of suffix tags: Mp ∪Ms = M and Mp ∩Ms = ∅.

Regularity and Context-Freeness over Word Rewriting Systems 227

Definition 3.7. A tag-adding prefix/suffix system is a system

R ⊆ (Mp ∪ {ε})N∗(Ms ∪ {ε})×(M ∪N)∗

such that for any rule (u, v) ∈ R,(
u(1) ∈ Mp =⇒ v(1) ∈Mp

)
and

(
u(|u|) ∈ Ms =⇒ v(|v|) ∈ Ms

)
.

Considering tags #,& ∈ M and a letter a ∈ N , the two-rule system R =
{(#a,&), (&, a#)} cannot be a tag-adding prefix/suffix system since the tag #

would be simultaneaously prefix and suffix. For this system, neither the direct
nor the inverse derivation preserve regularity:
∗−→
R

(
(#a)∗

)
∩a∗#∗ = {an#n | n ≥ 0} and ∗−→

R−1

(
(#a)∗

)
∩#∗a∗ = {#nan | n ≥ 0}.

We say that a tag-adding prefix/suffix systemR is context-free if R ∩N∗×N∗ is a
context-free system and R−N∗×N∗ is recognizable. Let us apply Theorem 2.10.

Proposition 3.8. Any context-free tag-adding prefix/suffix system is cf/reg-
preserving.

Proof. Let R be a context-free tag-adding prefix/suffix system. The sets Mp

and Ms are respectively prefix and suffix sub-alphabets of R−1. Thus R−1 is
MpMs-decomposable into (R∩N∗×N∗)−1 and by Proposition 2.11, R is cf/reg-
preserving. ��
A particular case of a tag-adding prefix system (Ms = ∅) is given by a recogniz-
able system R ⊆MN∗×(MN∗)+ which is cf/reg-preserving by Proposition 3.8,
and also by Proposition 3.3 : the derivation is equal to its left-to-right deriva-
tion. These particular systems generalize the first model of dynamic networks of
pushdown systems [7].

We will now use Proposition 3.8 to obtain the same closure properties for the
following extension of tagged bifix systems.

Definition 3.9. A tag-adding bifix system is a system

R ⊆ (M ∪ {ε})N∗(M ∪ {ε})×(M ∪N)∗

such that for any rule (u, v) ∈ R,(
u(1) ∈M =⇒ u(1) = v(1)

)
and

(
u(|u|) ∈ M =⇒ u(|u|) = v(|v|)

)
.

Note that the previous system {(#a,&), (&, a#)} is not tag-adding bifix. Propo-
sition 3.8 remains valid for such systems when they are context-free, i.e. when
R ∩N∗×N∗ is a context-free system and R−N∗×N∗ is recognizable.

Theorem 3.10. Any context-free tag-adding bifix system is cf/reg-preserving.

Note that Proposition 3.8 and Theorem 3.10 can both be generalized to the
systems R such that R − N∗×N∗ is recognizable and (R ∩ N∗×N∗) ∪ D−1 is
cf/reg-preserving.

Theorem 3.10 generalizes Theorem 7 of [1]: for any ‘tagged infix system with
tag removing rules’ R, its inverse R−1 is a particular tag-adding bifix system
hence −→∗

R preserves regularity. As a corollary, Theorem 3.10 also positively
answers a conjecture stated in [2] (page 99).

228 D. Caucal and T.H. Dinh

4 Conclusion

In this paper we presented a decomposition mechanism for word rewriting sys-
tems, allowing us to transfer the simultaneous regularity and inverse context-
freeness preservation of the Dyck system to several classes of rewriting systems.

We are currently investigating more general criteria to widen the scope of this
result and to extend this decomposition to terms.

Many thanks to Antoine Meyer for helping us make this paper readable, and
to anonymous referees for helpful comments.

References

1. Altenbernd, J.: On bifix systems and generalizations. In: Mart́ın-Vide, C., Otto,
F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 40–51. Springer, Heidelberg
(2008)

2. Altenbernd, J.: Reachability over word rewriting systems. Ph.D. Thesis, RWTH
Aachen, Germany (2009)

3. Benois, M.: Parties rationnelles du groupe libre. C.R. Académie des Sciences, Série
A 269, 1188–1190 (1969)

4. Berstel, J.: Transductions and context-free languages. Teubner, Stuttgart (1979)
5. Book, R., Jantzen, M., Wrathall, C.: Monadic thue systems. Theoretical Computer

Science 19, 231–251 (1982)
6. Book, R., Otto, F.: String-rewriting systems. Texts and Monographs in Computer

Science. Springer, Heidelberg (1993)
7. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic

networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005)

8. Büchi, R.: Regular canonical systems. Archiv für Mathematische Logik und
Grundlagenforschung 6, 91–111 (1964)

9. Caucal, D.: On the regular structure of prefix rewriting. Theoretical Computer
Science 106, 61–86 (1992); originally published In: Arnold, A. (ed.) CAAP 1990.
LNCS, vol. 431, pp. 61–86. Springer, Heidelberg (1990)

10. Endrullis, J., Hofbauer, D., Waldmann, J.: Decomposing terminating rewrite
relations. In: Geser, A., Sondergaard, H. (eds.) Proc. 8th WST, pp. 39–43 (2006),
http://www.acm.org/corr/, Computing Research Repository

11. Geser, A., Hofbauer, D., Waldmann, J.: Match-bounded string rewriting systems.
Applicable Algebra in Engineering, Communication and Computing 15, 149–171
(2004)

12. Hibbard, T.: Context-limited grammars. JACM 21(3), 446–453 (1974)
13. Hofbauer, D., Waldmann, J.: Deleting string rewriting systems preserve regularity.

Theoretical Computer Science 327, 301–317 (2004); originally published In: Ésik,
Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 301–317. Springer, Heidelberg
(2003)

14. Jantzen, M., Kudlek, M., Lange, K.J., Petersen, H.: Dyck1-reductions of context-
free languages. In: Budach, L., Bakharajev, R., Lipanov, O. (eds.) FCT 1987.
LNCS, vol. 278, pp. 218–227. Springer, Heidelberg (1987)

15. Karhumäki, J., Kunc, M., Okhotin, A.: Computing by commuting. Theoretical
Computer Science 356, 200–211 (2006)

http://www.acm.org/corr/

Quantitative Robustness Analysis
of Flat Timed Automata�

Rémi Jaubert

 and Pierre-Alain Reynier

LIF, Université Aix-Marseille & CNRS, France
{remi.jaubert,pierre-alain.reynier}@lif.univ-mrs.fr

Abstract. Whereas formal verification of timed systems has become a very ac-
tive field of research, the idealized mathematical semantics of timed automata
cannot be faithfully implemented. Recently, several works have studied a para-
metric semantics of timed automata related to implementability: if the specifica-
tion is met for some positive value of the parameter, then there exists a correct
implementation. In addition, the value of the parameter gives lower bounds on
sufficient resources for the implementation. In this work, we present a symbolic
algorithm for the computation of the parametric reachability set under this se-
mantics for flat timed automata. As a consequence, we can compute the largest
value of the parameter for a timed automaton to be safe.

1 Introduction

Verification of real-time systems. In the last thirty years, formal verification of reactive,
critical, or embedded systems has become a very active field of research in computer
science. It aims at checking that (the model of) a system satisfies (a formula express-
ing) its specifications. The importance of taking real-time constraints into account in
verification has quickly been understood, and the model of timed automata [AD94] has
become one of the most established models for real-time systems, with a well studied un-
derlying theory, the development of mature model-checking tools (UPPAAL [BDL04],
KRONOS [BDM+98], ...), and numerous success stories.

Implementation of real-time systems. Implementing mathematical models on physical
machines is an important step for applying theoretical results on practical examples.
This step is well-understood for many untimed models that have been studied (e.g.,
finite automata, pushdown automata). In the timed setting, while timed automata are
widely-accepted as a framework for modelling real-time aspects of systems, it is known
that they cannot be faithfully implemented on finite-speed CPUs [CHR02]. Studying the
“implementability” of timed automata is thus a challenging issue of obvious theoretical
and practical interest.

A semantical approach. Timed automata are governed by a mathematical, idealized
semantics, which does not fit with the digital, imprecise nature of the hardware on

� Partly supported by the French projects ECSPER (ANR-09-JCJC-0069) and DOTS (ANR-06-
SETI-003), and by the European project QUASIMODO (FP7-ICT-STREP-214755).

�� Funded by a doctoral grant of “Conseil Régional Provence-Alpes-Côte d’Azur”.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 229–244, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

230 R. Jaubert and P.-A. Reynier

which they will possibly be implemented. An implementation semantics has been de-
fined in [DDR05] in order to take the hardware into account: that semantics models a
digital CPU which, every δP time units (at most), reads the value of the digital clock
(updated every δL time units), computes the values of the guards, and fires one of the
available transitions. A timed automaton is then said to be implementable if there exist
positive values for those parameters (δP and δL) for which, under this new semantics,
the behaviours of the automaton satisfy its specification. In order to study it efficiently,
this semantics is over-approximated by the AASAP semantics, which consists in “en-
larging” the constraints on the clocks by some parameter δ. For instance, “x ∈ [a, b]” is
transformed into “x ∈ [a− δ, b+ δ]”. Moreover, a formal link is drawn in [DDR05] be-
tween these two semantics: as soon as δ > 4δP +3δL, the AASAP semantics simulates
the semantics of the implementation. As a consequence, implementability can be en-
sured by establishing the existence of some positive δ for which the AASAP semantics
meets the specification.

Robustness problems. We call the above problem (existence of some positive δ) the
qualitative problem of robustness. This problem was proven decidable for different
kind of properties: the problem is PSPACE-complete for safety properties [Pur00,
DDMR08] and LTL formula [BMR06]. It is EXPTIME-complete for a fragment of
the timed logic MTL [BMR08]. In addition, for safety properties, it is proven in [Pur00,
DDMR08] that if there exists a safe positive value of δ, then the system is also safe for
a specific value of the form 1/2|A|. While this allows to deduce a correct value for the
parameter δ, computing the largest value of δ for which the AASAP semantics meets
the specification was still an open problem. We are interested here in this last problem,
which we call the quantitative problem of robustness for safety properties.

Our contributions. In this paper, we prove that the quantitative robustness problem for
safety properties is decidable for flat timed automata (i.e. where each location belongs
to at most one cycle). In addition, we show that the maximal safe value of δ is a rational
number. To this end, we solve a more general problem: we prove that it is possible to
compute, for a flat timed automaton, its reachability set parameterized by δ. We call it
the parametric reachability set. For this computation, we present a forward algorithm
based on parametric zones (recall that a zone is a constraint on clocks). As a parametric
forward analysis does not terminate for (flat) timed automata, we need some accelera-
tion techniques. To solve the qualitative robustness problem, different algorithms have
been proposed in [Pur00, DDMR08, DK06] which compute an enlarged reachability set
corresponding to states reachable for any positive perturbation, and include an acceler-
ation of cycles. The algorithm we propose can be understood as a parametric version
of the symbolic algorithm proposed in [DK06] for flat timed automata. We then tackle
two issues: the termination of our procedure and its correctness. For the first aspect, as
we are in a parametric setting, we need completely new arguments of termination (the
number of parametric zones we compute cannot be bounded as it is the case for zones).
Considering a graph representation of zones introduced in [CJ99a], we obtain proofs
of termination depending only on the number of clocks, and not on the constants ap-
pearing in the automaton. To our knowledge, this constitutes an original approach in the
context of timed automata. Regarding correctness, we identify under which conditions
the enlarged reachability set coincides with the standard reachability set. This allows

Quantitative Robustness Analysis of Flat Timed Automata 231

us to propose an algorithm computing the parametric reachability set of a flat timed
automaton.

Related work. Since its definition in [Pur00, DDR05], the approach based on the AASAP
semantics has received much attention, and other kind of perturbations, like the drift of
clocks, have been studied [DDMR08, ALM05, Dim07]. In the case of safety proper-
ties and under some natural assumptions, this perturbation is equivalent to constraint
enlargement and relies on similar techniques, as proven in [DDMR08]. Also, several
works have considered variants of the robustness problem. In [SF07, SFK08], the case
of systems with bounded life-time or regular resynchronization of clocks is considered,
while in [Dim07], a symbolic algorithm is proposed to handle strict constraints.

Many other notions of “robustness” have been proposed in the literature in order
to relax the mathematical idealization of the semantics of timed automata, see for in-
stance [GHJ97, OW03, BBB+07]. Those approaches are different from ours, since they
roughly consist in dropping “isolated” or “unlikely” executions, and are thus more re-
lated to language theoretical issues than to implementability issues.

Finally, our work is somewhat related to parametric timed automata. It is proven
in [WT99] that emptiness is already undecidable for timed automata with three clocks
and one parameter. In our setting, decidability results follow from strong restrictions
on the use of the parameter. They correspond to the notion of upper parameter intro-
duced in [HRSV02], but the problems we consider are different. In addition, to obtain
termination, we introduce acceleration techniques based on [CJ99a]. Two recent works
[BIL06, BIK10] also rely on [CJ99a] to propose acceleration techniques, but these con-
cern flat counter automata with an integer-valued parameter.

Organisation of the paper. In Section 2, we introduce standard definitions. We present
in Section 3 the definition of the enlarged reachability set, and a modification of the
algorithm of [DK06] for its computation. In Section 4, we first recall the graph repre-
sentation of constraints, then present how we use it to obtain a new acceleration tech-
nique, and finally we present our parametric algorithm and its proof of termination and
of correction.

2 Definitions

2.1 Timed Automata, Zones

Let X = {x1, . . . , xn} be a finite set of clock variables. We extend it with a fictive
clock x0, whose value will always be 0, and denote by X the set X ∪ {x0}. An atomic
(clock) constraint on X is of the form x−y≤k, where x �= y ∈ X and k ∈ Q. Note that
we only consider non-strict inequalities. This makes sense as we will later enlarge these
constraints. We say that the constraint is non-diagonal if the comparison involves the
clock x0. We denote by G(X) (resp. Gnd(X)) the set of (clock) constraints (resp. non-
diagonal constraints) defined as conjunctions of atomic constraints (resp. non-diagonal
atomic constraints).

A (clock) valuation v for X is an element of RX
≥0. A valuation v ∈ RX

≥0 is extended

to RX
≥0 by v(x0) = 0. If v ∈ RX

≥0 and t ∈ R≥0, we write v + t for the valuation
assigning v(x) + t to every clock x ∈ X . If r ⊆ X , v[r ← 0] denotes the valuation

232 R. Jaubert and P.-A. Reynier

assigning 0 to every clock in r and v(x) to every clock in X \ r. Whether a valuation
v ∈ RX

≥0 satisfies a constraint g ∈ G(X), written v |= g, is defined inductively as
follows: the conjunction is handled naturally, and v |= x − y≤k iff v(x) − v(y)≤k
(recall that v(x0) = 0). The set of valuations satisfying a constraint g is denoted �g�.

A zone Z over X is a convex subset of RX
≥0 which can be defined as the set of

valuations satisfying a clock constraint, i.e. there exists g ∈ G(X) such that Z = �g�.
We note Zones(X) the set of zones on X . The zone RX

≥0 is denoted �.

Definition 1 (Timed Automaton). A TA is a tuple A = (L, �0,X , Σ, T) where L is
a finite set of locations, �0 ∈ L is an initial location, X is a finite set of clocks, Σ is a
finite set of actions, and T ⊆ L× Gnd(X) ×Σ × 2X × L is a finite set of transitions.

We define the semantics of A as a timed transition system �A� = 〈S, S0, Σ,→〉. The
set S of states of �A� is L × RX

≥0 and S0 = {(�0, v0) | v0(x) = v0(y), ∀x, y ∈
X}. A transition in �A� is composed either of a delay move (�, v) d−→ (�, v + d),
with d ∈ R>0, or of a discrete move (�, v) σ−→ (�′, v′) when there exists a transition
(�, g, σ, r, �′) ∈ T with v |= g, and v′ = v[r ← 0]. The graph �A� is thus an infinite

transition system. A run of �A� is a finite or infinite sequence (�0, v0)
σ1−→ (�1, v1)

d1−→
(�1, v1 + d1)

σ2−→ (�2, v2) . . . where for each i ≥ 1, di ∈ R≥0, and (�0, v0) ∈ S0. A
state (�, v) is reachable in �A� iff there exists a run from an initial state (�0, v0) ∈ S0
to (�, v); the set of reachable states is denoted Reach(A).

Note that standard definitions of timed automata also allow invariants on locations
which restrict time elapsing. For the sake of simplicity, we do not consider this technical
addition here, however all our results hold in presence of invariants.

A cycle of A is a finite sequence of transitions corresponding to a cycle of the un-
derlying finite state automaton. We say that a timed automaton is flat if each location
belongs to at most one cycle. A progress cycle is a cycle where each clock is reset at
least once. We say A is progressive if it only contains progress cycles.

Assumptions. As our results rely on previous works on robustness in TA
[Pur00, DDMR08], we assume that our TA are progressive, and that all the clocks are
always bounded by some constantM . In addition, as the algorithm we propose is based
on [DK06], we also require our timed automata to be flat.

�0 �1 �2 Bad
x1=1±Δ

x2:=0

x1 ≤ 2+Δ

x1:=0

x2 ≥ 2−Δ

x2:=0

x1 ≤ 0+Δ

x2 ≥ α−Δ with α=2, A(δ) avoids Bad iff δ≤0.

with α=3, A(δ) avoids Bad iff δ<1/3.

Fig. 1. A timed automaton A, with its parametric semantics

2.2 Parametric Objects

We define the parametric semantics introduced in [Pur00] that enlarges the set of runs
of timed automata. This semantics can be defined in terms of timed automata extended
with one parameter, denoted Δ, with syntactic constraints on the use of this parameter.

Quantitative Robustness Analysis of Flat Timed Automata 233

We denote by PG(X) the set of parametric (clock) constraints generated by the
grammar 1 g ::= g ∧ g | x − y≤k + bΔ, where x �= y ∈ X , k ∈ Q and b ∈ N
(Δ represents a delay and b represents the accumulation of this delay, see Example 1).
Given a parametric constraint g and δ ∈ Q≥0, we denote by g(δ) the constraint obtained
by evaluating the parameter Δ in δ. As the parameter helps in “relaxing” the clock
constraint, we have that δ ≤ δ′ implies �g(δ)� ⊆ �g(δ′)�.

Definition 2 (Parametric Zone). A parametric zone Z over X is a partial mapping
from Q≥0 to zones over X , which satisfies the following properties: (i) its domain
dom(Z) is an interval with rational bounds, and (ii) it can be defined as the parametric
satisfiability set of a parametric clock constraint, i.e. there exists g ∈ PG(X) such that
for all δ ∈ dom(Z),Z(δ) = �g(δ)�. We denote by PZones(X) the set of parametric
zones on X 2.

By default the considered domain for a parametric zone is Q≥0. Given a rational interval
I , we denote Z|I the parametric zone whose domain is restricted to I i.e., dom(Z|I) =
dom(Z)∩I , and which coincides with Z on dom(Z|I). Given Z,Z ′ ∈ PZones(X), we
define Z ⊆ Z ′ if, and only if, we have dom(Z) ⊆ dom(Z ′), and for any δ ∈ dom(Z),
Z(δ) ⊆ Z ′(δ). We say that a parametric zone Z is non-empty if there exists δ ∈
dom(Z) such that Z(δ) �= ∅. Let Z be a non-empty parametric zone. As the mapping
represented by Z is monotone, we define δ¬∅(Z) = inf{δ≥0 | Z(δ) �= ∅} the minimal
value of the parameter for the zone it denotes to be nonempty. As Z only involves non-
strict linear inequalities, δ¬∅(Z) is a rational number and we have Z(δ¬∅(Z)) �= ∅
(provided that δ¬∅(Z) ∈ dom(Z)).

Definition 3 (Parametric Semantics [Pur00, DDMR08]). Let A = (L, �0, X , Σ, T)
be a TA. The parametric semantics of A consists in replacing each constraint g ∈
Gnd(X) appearing in some transition of A by the parametric constraint obtained by
enlarging it with the parameterΔ. Formally, each atomic constraint of the form x−y≤k
is replaced by the parametric constraint x− y≤k +Δ.

Given δ ∈ Q≥0, the instantiation of all constraints of A in δ leads to a timed automa-
ton that we denote by A(δ). The semantics used implies the following monotonicity
property: δ ≤ δ′ ⇒ Reach(A(δ)) ⊆ Reach(A(δ′)). An example of timed automaton is
shown in Figure 1.

2.3 Symbolic Computations Using (Parametric) Zones

A symbolic state is apair (�, Z) ∈ L×Zones(X).Consider a transition t=(�, g, σ, r, �′) ∈
T of a TA A. We define the operator Postt computing the symbolic successors over
t starting from the zone Z , with Z ∈ Zones(X), by Postt(Z) = {v′ ∈ RX

≥0 | ∃v ∈
Z, ∃d ∈ R>0 : v |= g∧v′ = v[r ← 0]+d}. It is well known that Postt(Z) is still a zone.
We define similarly the operator Pret for the set of predecessors by t. Given a sequence
of transitions �, we define the operators Post
 and Pre
 as the compositions of these op-
erators for each transition of �. We define the set of successors from a symbolic state by
Succ(�, Z) = {(�′, Z ′) ∈ L×Zones(X) | ∃t = (�, g, σ, r, �′) ∈ T s.t. Z ′ = Postt(Z)}.

1 Compared with L/U TA introduced in [HRSV02], our parameter is “upper”.
2 In the sequel, Z and Y denote a zone, while Z and Y denote a parametric zone.

234 R. Jaubert and P.-A. Reynier

In order to perform parametric computations, we will use parametric zones. Our
parametric constraints are less expressive3 than those considered in [AAB00]. In par-
ticular, we can perform the operations of intersection, time elapsing, clock reset, inclu-
sion checking... and extend operators Post
 and Pre
 to a parametric setting. We denote
these extensions by PPost
 and PPre
. We also define the operator Succ(�,Z), where
Z ∈ PZones(X), using the PPost operator.

3 The Enlarged Reachability Set Reach∗(A)

Definition of Reach∗(A). We are interested here in the quantitative problem of ro-
bustness for safety properties: given a set of states Bad to be avoided, compute the
maximal value of δ for the system to be safe, i.e. the value δmax = sup{δ ≥ 0 |
Reach(A(δ)) ∩ Bad = ∅} (recall the monotonicity of Reach(A(δ)) w.r.t. δ). Note that
the value δmax may be safe or not (see Examples in [JR10]).

In this paper, we propose an algorithm that computes a representation of the para-
metric reachability set of a flat timed automaton. It is then easy to derive the optimal
value δmax. A forward parametric computation of reachable states does not terminate
in general for timed automata. Indeed, the coefficient on parameter Δ (coefficient b in
Definition 2) cannot always be bounded (see Example 1). Such a phenomenon is due to
cycles: it can be the case that a state (�, v) is reachable for any δ > 0, but the length of
paths allowing to reach (�, v) in A(δ) diverges when δ converges to 0.

Example 1. Consider the timed automaton represented on Figure 1. State (�2, v) with
v(x1) = 0 and v(x2) = 2 is reachable in �A(δ)� for any δ > 0. Let us denote by t1
(resp. t2) the transition from �1 to �2 (resp. from �2 to �1), and let � = t1t2. In �A(δ)�,
this state is reachable only after 1

2δ ! iterations of the cycle � (see Figure 2).

before the first iteration of Post�:

0
x1

x2

1

1

2

2

1−δ

�1

after one iteration of Post�:

0
x1

x2

1

1

2

2

1−3δ

1+2δ

�2

�1

after two iterations:

0
x1

x2

1

1

2

2

1−5δ

1+4δ

�2

�1

Fig. 2. Reachable states during the parametric forward analysis of A(δ)

3 Note that in our setting, one can define a data structure more specific than parametric DBMs
considered in [AAB00]. Indeed, we do not need to split DBMs as the constraints only involve
conjunctions. Moreover, we can perform basic operations (future, reset, intersection with an
atomic constraint) in quadratic time, as for DBMs, see [Jau09].

Quantitative Robustness Analysis of Flat Timed Automata 235

This difficulty has first been identified by Puri in [Pur00] when studying the qualitative
robustness problem, and solved by computing the enlarged reachability set defined as

Reach∗(A)
def
=
⋂

δ∈Q>0
Reach(A(δ)). It is the set of states of the automaton reachable

by an arbitrarily small value of the parameter. While [Pur00] proposed an algorithm
based on the region graph, we use an algorithm proposed in [DK06] which relies on
zones, as it is better suited for a parametric setting. The drawback of [DK06] is that it
requires the timed automaton to be flat as it enumerates cycles of the automaton.

Algorithm 1. Computation of Reach∗(A)
Require: a progressive flat timed automaton A with bounded clocks.
Ensure: the set Reach∗(A).
1: Compute νY.Pre�(Y), νY.Post�(Y), for each cycle � in A.
2: Wait = {(�0, Z0)} ; // Initial states
3: Passed = ∅ ;
4: while Wait �= ∅ do
5: - pop (�, Z) from Wait ;
6: - if ∀(�,Z′) ∈ Passed, Z � Z′ then
7: - - if there exists a cycle � around location � then
8: - - - if Z ∩ νY.Pre�(Y) �= ∅ then
9: - - - - Wait = Wait ∪ Succ(�, νY.Post�(Y));

10: - - - - Passed = Passed ∪ {(�, νY.Post�(Y))};
11: - - Wait = Wait ∪ Succ(�,Z) ;
12: - - Passed = Passed ∪ {(�, Z)} ;
13: return Passed ;

A new procedure for the computation of Reach∗. We present Algorithm 1 which is a
modification of the algorithm proposed in [DK06] to compute Reach∗. This modifi-
cation allows us in Section 4 to prove the termination of a parametric version of this
algorithm.

The original algorithm proposed in [DK06] relies on the notion of stable zone of a
cycle �. This zone represents states having infinitely many predecessors and successors
by �, and is defined as the intersection of two greatest fixpoints:W
 = νY.Post
(Y) ∩
νY.Pre
(Y). Then, the algorithm is obtained by the following modifications of the stan-
dard forward analysis of the timed automaton: for each new symbolic state (�, Z) con-
sidered, if there exists a cycle � around location �, and if Z intersects the stable zone
W
, then the stable zone is marked as reachable. The correction of this algorithm relies
on the following property of the stable zone: given two valuations v, v′ ∈ W
, for any
δ > 0, there exists a path in �A(δ)� from state (�, v) to state (�, v′) (while such a path
may not exist in �A�). The addition of the stable zone can be viewed as the acceleration
of cycle �.

Our new algorithm is obtained as follows: (i) at line 8, we test the intersection of Z
with νY.Pre
(Y) instead of W
, and (ii) at line 9 and 10, instead of declaring W
 as
reachable, we declare νY.Post
(Y) reachable. We state below that this modification is
correct.

236 R. Jaubert and P.-A. Reynier

Theorem 1. Algorithm 1 is sound and complete.

Proof. We show that Algorithm 1 is equivalent to that of [DK06]. As W
 is included
in both greatest fixpoints, the completeness of the algorithm is trivial. To prove the
soundness, let us consider the region graph construction (see for instance [AD94]). We
do not recall this standard construction as it will only be used in this proof. As there are
finitely many regions, it is easy to verify that if a region is included in νY.Pre
(Y), it has
infinitely many successors by � and then one of them is included in W
. In other terms,
the test of line 8 of intersection with νY.Pre
(Y) instead of W
 simply anticipates
the acceleration of the cycle �. Similarly, any region included in νY.Post
(Y) is the
successor of a region included in W
. Thus, our modification can be understood as a
speed-up of the original algorithm of [DK06]. ��
We also state the following Lemma whose proof follows from a similar reasoning:

Lemma 1. Let � be a cycle of a TA A. Then we have:
νY.Pre
(Y) �= ∅ ⇔ νY.Pre
(Y) ∩ νY.Post
(Y) �= ∅ ⇔ νY.Post
(Y) �= ∅

4 Parametric Computation of Reach(A(δ))

4.1 Representing Constraints as a Graph

In the sequel, we will use a representation of clock constraints as a weighted directed
graph introduced in [CJ99a, CJ99b]. Due to lack of space, we recall here only succinctly
its definition. Intuitively, the value of a clock can be recovered from its date of reset and
the current time. The vertices of the graph represent these values, with one duplicate for
each fired transition. Constraints on clock values are expressed as weights on arcs.

More formally, recall that n = |X |, X = {x1, . . . , xn}, x0 is a fictive clock whose
value is always zero, and X = X ∪ {x0}. We introduce a new clock τ which is never
reset and thus represents the total elapsed time. In addition, for each clock xi ∈ X we
let variable Xi denote Xi = τ − xi. Note that for xi ∈ X , Xi thus represents last date
of reset of clock xi. For the special case of x0, we haveX0 = τ (as x0 always has value
0). We denote

−→
V the vector defined as (τ,X1, . . . , Xn) which is a vector of (symbolic)

variables. For a transition t = (�, g, σ, r, �′), we define the formula T t(
−→
V ,

−→
V ′) which

expresses the relationship between values of the variables before (represented by
−→
V)

and after the firing of the transition (represented by
−→
V ′ = (τ ′, X ′

1, . . . , X
′
n)):

T t(
−→
V ,

−→
V ′) :=

n∧
i=1

⎛
⎝Xi≤τ ∧X ′

i≤τ ′ ∧ τ≤τ ′ ∧
∧

xi∈r

τ = X ′
i ∧

∧
xi /∈r

Xi = X ′
i ∧ g

⎞
⎠

where g is the constraint g where for any i, clock xi is replaced by τ −Xi.
Let � = t1 . . . tm be a sequence of transitions. For j ∈ {0, . . . ,m}, we denote by

−→
V j the vector (τ j , Xj

1 , . . . , X
j
n). Then we define formula T
(

−→
V 0,

−−→
V m) expressing the

constraints between variables before and after the firing of the sequence � as follows:

T
(
−→
V 0,

−−→
Vm) := ∃

−→
V 1, . . . ,

−−−→
V m−1.

m−1∧
j=0

T tj+1(
−→
V j ,

−−−→
V j+1)

Quantitative Robustness Analysis of Flat Timed Automata 237

We associate with formula T
(
−→
V 0,

−−→
Vm) a weighted directed graph whose vertices are

variables used to define the formula, and arcs represent constraints of the formula:

Definition 4 (GraphG�

). Let � = t1 . . . tm be a sequence of transitions. The weighted

directed graphG�

 has a set of vertices S =

⋃m
j=0 V

j , where V j = {τ j , Xj
1 , . . . , X

j
n}.

Given two vertices X,X ′ ∈ S and a weight c ∈ Q, there is an arc from X to X ′

labelled by c if and only if the formula T
(
−→
V 0,

−−→
V m) contains the constraintX−X ′≤c.

1

−1

X0
2

τ0

X0
1

2

X1
2

τ1

X1
1

−2

X2
2

τ2

X2
1

Example 2. Consider the sequence of transitions � =
t1t2 in the TA of Figure 1 defined in Example 1. The
graph depicted on the left-side figure with plain arcs rep-
resents G�

 (arcs without label have weight 0). For in-
stance, the arc from vertex X1

2 to vertex τ1, labelled by
−2, represents the lower bound for the clock x2 in t2
which means: x2 ≥ 2.

For any path p, we write w(p) the total weight of the path. Suppose now that there
is no cycle of negative weight in graph G�

 . Let P

beg (resp. P

end) denote the set of

minimal weighted paths from a vertex in V 0 (resp. in V |
|) to another vertex in V 0

(resp. in V |
|). We define the following mapping which interprets these shortest paths
as clock constraints:

C(p) = xl − xi ≤ w(p) if

{
p ∈ P

beg starts in X0
i and ends in X0

l

p ∈ P

end starts in X |
|

i and ends in X |
|
l

From Propositions 12 and 13 of [CJ99b], we have the following properties:

Proposition 1. Let � be a sequence of transitions. Then we have:

– there exists a cycle γ with w(γ) < 0 in G�

 ⇔ Post
(�) = ∅ ⇔ Pre
(�) = ∅

– if there is no cycle of negative weight, then:
�∧p∈P �

end
C(p)� = Post
(�) and �∧p∈P �

beg
C(p)� = Pre
(�)

More generally, given a zone Z , we define the graph denoted GZ

 by adding the con-

straints ofZ on the vertices in V 0. MappingC applied on paths in P

end then defines the

zone Post
(Z). Similarly, the zone Pre
(Z) can be represented by adding constraints
of Z on vertices in V |
|.

Example 3 (Example 2 continued.). Consider now the zone Z = �x1 − x2 = 1� (it
corresponds to the set of reachable valuations after firing transition �0 → �1 in TA of
Figure 1), then additional dotted arcs allow to representGZ

 .

It is easy to verify that this construction extends to a parametric setting: considering
parametric constraints on arcs, we obtain a graph representation of the parametric com-
putation of symbolic successors or predecessors. Note that a path p in this context will
have a weight of the form k + bΔ, where b ∈ N represents the number of atomic con-
straints of the TA used in p. In particular, while the value of a path depends on the value
of Δ, its existence does not.

238 R. Jaubert and P.-A. Reynier

Given a zone defined as the result of the firing of a sequence of transitions, this
representation allows to recover how the constraints are obtained. Thus, the graph stores
the complete history of the constraints.

In the sequel, we use this construction in the particular case of the iteration of a
cycle �, given as a sequence of transitions of a TA. Let Zinit be a zone. We con-
sider two sequences of zones (Z�

k)k≥0 (resp. (Zinit
k)k≥0) defined by Z�

0 = � (resp.
Zinit

0 = Zinit) and Z∗
k+1 = Post
(Z∗

k) (where ∗ denotes either � or init). Note that
by monotonicity of Post
, the sequence (Z�

k)k≥0 is decreasing and converges towards
Z�
∞ = νY.Post
(Y). According to Proposition 1, note that constraints defining zone

Z�
k (resp. Zinit

k) can be obtained from shortest paths in graphG�

k (resp.Ginit

k). As the
cycle � will be clear from the context, we will omit to mention it in the subscript, and
use notationsG�

k and Ginit
k respectively.

Moreover, we will only be interested in vertices at the frontier between the different
copies of the graph of �. Then, given a clock xi ∈ X and an index j ≤ k, vertex Xj

i

now denotes the date of reset of clock xi after the j-th execution of � (this notation is a
shorthand for the notation Xj×|
|

i , as this last notation will never be used anymore).

Definition 5. Let N = |X |2. A return path is a pair r = (p1, p2) of paths in the graph
G�

N such that there exist two clocks xu, xv ∈ X and two indices 0≤i<j≤N verifying:

– p1 and p2 are included in the subgraph associated with i-th to j-th copies of �
– p1 is a shortest path from vertex Xj

u to vertex X i
u

– p2 is a shortest path from vertex X i
v to vertex Xj

v

The weight of r is defined as w(r) = w(p1) + w(p2). The set of return paths is finite
and is denoted R.

4.2 Accelerating Computations of Greatest Fixpoints

Let � be a cycle. In this subsection, we only consider the operator Post
, but all our
results also apply to the operator Pre
. We consider the decreasing sequence (Z�

k)k≥0
converging towards Z�

∞ = νY.Post
(Y) =
⋂

k≥0 Z
�
k . We prove the following lemma

which provides a bound for termination only dependant on the number of clocks. Note
that this result does not require the cycle � to be progressive neither the clocks to be
bounded.

Lemma 2. Let N = |X |2, and k ≥ N . If Z�
k+1 � Z�

k , then we have Z�
∞ = ∅.

Proof. First, we prove that Z�
k+1 � Z�

k implies that there exists r ∈ R used in some
shortest path of Z�

k+1 witness of the disequality. Indeed, as Z�
k+1 � Z�

k , there exists
a bound b = ”xp − xq ≤ ·” with 0 ≤ p �= q ≤ n, whose constraint is strictly
smaller in Z�

k+1 than in Z�
k . In Z�

k+1, the constraint on b is obtained as a shortest
path between vertices Xk+1

p and Xk+1
q in the graph G�

k+1. Let c be such a path. By
definition of G�

k and G�
k+1, the path c must use arcs in G�

1 (otherwise c would also
exist in G�

k). The graph G�
k+1 is the concatenation of k + 1 copies of the graph of

�. For each occurrence of �, c goes through a pair of vertices when it enters/leaves it.
Finally, as k + 1 > N = |X |2, there exists a pair that occurs twice, we denote these

Quantitative Robustness Analysis of Flat Timed Automata 239

0 i j k+1>|X|2

� � � � � �

Xi
u

Xi
v

Xj
u

Xj
v

Xk+1
q

Xk+1
p

Fig. 3. Pumping lemma : a path from Xk+1
q to Xk+1

p using arcs in G�
1 exhibits a return path

between pairs of vertices (Xi
u, Xi

v) and (Xj
u, Xj

v)

two clocks xu and xv . Thus c contains a return path r ∈ R (see Figure 3 representing
the graph G�

k+1 and the return path r in the shortest path c).
Second, as Z�

k+1 � Z�
k , we have w(r) < 0. By contradiction, if w(r) > 0 then c

would not be a shortest path and if w(r) = 0 then c would also exist in G�
k .

Finally, the existence of a return path r ∈ R such that w(r) < 0 implies that Z�
∞ =

∅ (= νY.Post
(Y)). When k grows, one can build new paths by repeating this return
path. As its weight is negative, the weights of the paths we build diverge towards −∞.
In particular, the constraint of the zone Z�

∞ on the clock difference xp − xq cannot
be finite (as it is the limit of a sequence diverging towards −∞), and thus we obtain
Z�
∞ = ∅. ��

We can now compute, in the parametric setting, the greatest fixpoint of PPost
 for every

cycle � of the automaton. We first evaluate the parametric zones Z = PPost

N

(�) and
Z ′ = PPost
(Z). Then, we determine the minimal value δ0 = min{δ ≥ 0 | Z(δ) =
Z ′(δ)}. This definition is correct as Z ′ ⊆ Z and, for large enough values of δ, all para-
metric constraints are equivalent to �. Thus, we have νY.PPost
(Y)(δ) �= ∅ which
implies by Lemma 2 that Z(δ) = Z ′(δ). Finally the greatest fixpoint can be represented
by Z|[δ0;+∞[as Lemma 2 ensures that the fixpoint is empty for all δ < δ0.

4.3 Parametric Forward Analysis with Acceleration

We present Algorithm 2 for the parametric computation of Reach(A(δ)). It can be
understood as an adaptation in a parametric setting of Algorithm 1. First, at line 1 we
perform parametric computation of greatest fixpoints using the procedure proposed in
Section 4.2. Second, the test of intersection between the current zone and the greatest
fixpoint of Pre
 is realized in a parametric setting by the computation at line 8 of δmin =
δ¬∅(Z ∩ νY.PPre
(Y)). Finally, we split the domain of the current parametric zone
into intervals I1 and I2. In interval I1, no acceleration is done for cycles and thus the set
Reach(A(δ)) is computed. Acceleration techniques are used only for interval I2, and
for these values the algorithm computes the set Reach∗(A(δ)). We prove below that in
this case, the equality Reach(A(δ)) = Reach∗(A(δ)) holds. Note that the test at line
9 allows to handle differently the particular case of value δmin which does not always
require to apply acceleration.

Theorem 2. Algorithm 2 terminates and is correct.

In the sequel, we denote N = |X |2 and δ

¬∅ = δ¬∅(νY.PPre
(Y)) =

δ¬∅(νY.PPost
(Y)) (by Lemma 1). Before turning to the proof, we state the following

240 R. Jaubert and P.-A. Reynier

Algorithm 2. Parametric Computation of the Reachability Set

Require: a progressive flat timed automaton A with bounded clocks.
Ensure: the set Reach(A(δ)) for all δ ∈ R≥0.
1: Compute νY.PPre�(Y) and νY.PPost�(Y) for each cycle � of A.
2: Wait = {(�0,Z0)} ; // Initial States
3: Passed = ∅ ;
4: while Wait �= ∅ do
5: — pop (�,Z) from Wait ;
6: — if ∀(�,Z ′) ∈ Passed, Z � Z ′ then
7: — — if there exists a cycle � around location � then
8: — — — δmin = δ¬∅(Z ∩ νY.PPre�(Y)) ;
9: — — — if δmin = δ¬∅(νY.PPre�(Y)) then

10: — — — — I1 = [0; δmin] ; I2 =]δmin; +∞[;
11: — — — else
12: — — — — I1 = [0; δmin[; I2 = [δmin; +∞[;
13: — — — Wait = Wait ∪ Succ(�,Z|I1) ∪ Succ(�,Z|I2) ∪ Succ(�, νY.PPost�(Y)|I2) ;
14: — — — Passed = Passed ∪ (�,Z|I1) ∪ (�,Z|I2) ∪ (�, νY.PPost�(Y)|I2) ;
15: — — else
16: — — — Wait = Wait ∪ Succ(�,Z) ;
17: — — — Passed = Passed ∪ (�,Z) ;
18: return Passed ;

Lemma whose proof is given in [JR10]. Intuitively, it establishes that when all return
paths have a positive weight, then either (i) the starting zone has finitely many succes-
sors and then it converges to the empty set after at most N steps, or (ii) it has infinitely
many successors and then it converges towards νY.Post
(Y). In this last case, the en-
larged reachability set corresponds to the standard reachability set. Its proof relies on
pumping techniques presented in Section 4.2. To illustrate property (ii), let consider the
timed automaton of Figure 1, for which the enlarged reachability set strictly contains
the standard reachability set. One can verify that there exists a return path associated
with � = t1t2 which has weight 0.

Lemma 3. Let � be such that for any return path r ∈ R, we have w(r) > 0. Then we
have:

(i) If Zinit ∩ νY.Pre
(Y) = ∅, then Zinit
N = ∅.

(ii) If Zinit ∩ νY.Pre
(Y) �= ∅, then Zinit
∞ = Z�

∞(= νY.Post
(Y)).

Unlike Lemma 2, we use the progress cycle assumption to prove this lemma.
Recall that the TA we consider are flat. As a consequence, in the following proofs of

termination and correctness, we will only consider a simple cycle �.

Termination. Consider a parametric symbolic state (�,Z) and a cycle � starting in �.
We have to prove that all the elements added to the Wait list have a finite number of suc-
cessors. This is trivial for the successors of (�, νY.PPost
(Y)|I2) as νY.PPost
(Y)|I2
is by definition a fixpoint of PPost
. We now focus on the successors of (�,Z|I1) and
(�,Z|I2). Note that we have δmin ≥ δ

¬∅.

Quantitative Robustness Analysis of Flat Timed Automata 241

– Case of (�,Z|I2): We prove property (∗) PPost

N

(Z|I2) ⊆ νY.PPost
(Y)|I2 .
Then the computation is stopped by the test of line 6 as the greatest fixpoint has
been added to the Passed list. To prove (∗), we prove it holds for any δ ∈ I2.
Fix some δ ∈ I2 and define Zinit = Z|I2(δ). We consider the two sequences
(Z∗

i)i≥0 w.r.t. cycle � enlarged by δ. Note that as δ ≥ δmin ≥ δ

¬∅, we have

νY.PPost
(Y)(δ) �= ∅. By Lemma 2, this entails Z�
N = νY.PPost
(Y)(δ). By

monotonicity of Post
, Zinit
N ⊆ Z�

N holds. This yields the result.
– Case of (�,Z|I1): We distinguish two cases whether δmin > δ

¬∅ or not.
If δmin > δ

¬∅: for any δ ∈ [δ

¬∅, δmin[, Lemma 3.(i) can be applied on cycle � en-

larged by δ. This implies that for any δ ∈ [δ

¬∅, δmin[, we have PPost

N

(Z|I1)
(δ) = ∅. Then this property also holds for any δ ∈ I1, by monotonicity of Z
and PPost
.

If δmin = δ

¬∅: the complete proof of this last case is more technical and is com-

pletely described in [JR10]. We only present here a sketch of proof. First note
that for any fixed value of δ < δmin, as the zone does not intersect the greatest
fixpoint of Pre
, the zone has finitely many successors. However, this argu-
ment cannot be lifted to a parametric setting as this number diverges when δ
converges towards δmin. By definition of δ

¬∅, some return paths, which we
call optimal, have a weight equal to 0 in δ

¬∅ (and are thus strictly negative on
[0, δ

¬∅[). Our proof consists in first showing that there exists some integer k for
which after k steps, all shortest paths go through optimal return paths. Then,
considering q as the least common multiple of lengths of optimal return paths,

we can prove the following inclusion PPost

k+q

(Z|I1) ⊆ PPost

k

(Z|I1). The
algorithm stops by test of line 6.

Correctness. As explained before, the algorithm is a standard forward analysis which
may add some additional behaviours, according to test of line 8. We distinguish three
cases:

1. For δ ∈ [0, δmin[: For these values, the algorithm simply performs a forward
analysis. As a consequence, the correctness is trivial.

2. For δ ∈]δmin,+∞[: For all these values, the addition occurs, and then the algo-
rithm is equivalent to Algorithm 1. By correction of Algorithm 1, this implies that
it computes the set Reach∗(A(δ)). We will prove that for all these values, we have
the equality Reach(A(δ)) = Reach∗(A(δ)). Therefore we need to prove that what
has been added to obtain Reach∗(A(δ)) was already in Reach(A(δ)). Note that the
only addition is the greatest fixpoint of Post
. The property is then a direct conse-
quence of Lemma 3.(ii) as it states that the greatest fixpoint is reachable from the
initial states. It is easy to verify that Lemma 3.(ii) can indeed be applied.

3. For δ = δmin: There are two cases, whether δmin = δ

¬∅ or not. If the equality

holds, then δmin ∈ I1 and the reasoning developed at point 1. also applies. If δmin >
δ

¬∅ holds, then δmin ∈ I2 and we can apply reasoning of point 2. as Lemma 3.(ii)

also applies because we have δmin > δ

¬∅.

242 R. Jaubert and P.-A. Reynier

4.4 Quantitative Safety

Once the reachable state space of the automaton is computed by Algorithm 2, it is easy
to compute the maximal value of the parameter such that the system avoids some set of
bad states. Simply compute the value δ¬∅ on each parametric zone associated with a bad
location and keep the lower one: δmax = min{δ¬∅(Z) | ∃� ∈ Bad such that (�,Z) ∈
Passed}. We thus obtain:

Theorem 3. The quantitative robustness problem for safety properties is decidable for
flat progressive timed automata with bounded clocks. In addition, the value δmax is a
rational number.

5 Conclusion

In this paper, we considered the quantitative robustness problem for safety properties,
which aims at computing the largest value of the parameter Δ under which the TA is
safe. We proposed a symbolic forward algorithm for the computation of the parametric
reachability set for flat timed automata. We proved its termination by means of original
arguments using a representation of zones by graphs. As a consequence, it allows us to
compute the largest safe value of the parameter, and prove it is a rational number.

Among perspectives, we are first implementing the algorithm using a data structure
specific to the parametric zones used in our setting. Second, we want to study the com-
plexity of our algorithm. The difficulty is due to the argument of termination in the last
case which leads to a large value and may be improved.

We also aim at enlarging the class of TA for which we can solve the quantitative
robustness problem. For instance, if the parameter is not always introduced on guards
with coefficient 1, but with other coefficients in N>0, we believe that our algorithm can
also be applied. A challenging topic concerns the hypothesis of flatness: first, [CJ99a]
proves that timed automata can be flattened, and we want to study whether their result
can be combined with ours. Second, we plan to investigate a parametric extension of the
algorithm introduced in [Dim07] which can be seen as an extension of that of [DK06]
to non-flat TA.

Finally, we believe that it should be possible to solve the quantitative robustness
problem for flat TA for other specifications like for instance LTL properties.

References

[AAB00] Annichini, A., Asarin, E., Bouajjani, A.: Symbolic techniques for parametric
reasoning about counter and clock systems. In: Emerson, E.A., Sistla, A.P. (eds.)
CAV 2000. LNCS, vol. 1855, pp. 419–434. Springer, Heidelberg (2000)

[AD94] Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer
Science 126(2), 183–235 (1994)

[ALM05] Alur, R., La Torre, S., Madhusudan, P.: Perturbed timed automata. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer,
Heidelberg (2005)

Quantitative Robustness Analysis of Flat Timed Automata 243

[BBB+07] Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Probabilistic and
topological semantics for timed automata. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 179–191. Springer, Heidelberg (2007)

[BDL04] Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

[BDM+98] Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos:
a model-checking tool for real-time systems. In: Y. Vardi, M. (ed.) CAV 1998.
LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)

[BIK10] Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic
relations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 227–242. Springer, Heidelberg (2010)

[BIL06] Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 577–588. Springer, Heidelberg (2006)

[BMR06] Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of linear-time
properties in timed automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN
2006. LNCS, vol. 3887, pp. 238–249. Springer, Heidelberg (2006)

[BMR08] Bouyer, P., Markey, N., Reynier, P.-A.: Robust analysis of timed automata via
channel machines. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962,
pp. 157–171. Springer, Heidelberg (2008)

[CHR02] Cassez, F., Henzinger, T.A., Raskin, J.-F.: A comparison of control problems
for timed and hybrid systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC
2002. LNCS, vol. 2289, pp. 134–148. Springer, Heidelberg (2002)

[CJ99a] Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–
257. Springer, Heidelberg (1999)

[CJ99b] Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. Re-
search Report LSV-99-6, Laboratoire Spécification et Vérification, ENS Cachan,
France, 44 pages (July 1999)

[DDMR08] De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed au-
tomata. Formal Methods in System Design 33(1-3), 45–84 (2008)

[DDR05] De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: from timed
models to timed implementations. Formal Aspects of Computing 17(3), 319–
341 (2005)

[Dim07] Dima, C.: Dynamical properties of timed automata revisited. In: Raskin, J.-
F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 130–146.
Springer, Heidelberg (2007)

[DK06] Daws, C., Kordy, P.: Symbolic robustness analysis of timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 143–155. Springer,
Heidelberg (2006)

[GHJ97] Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler, O.
(ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)

[HRSV02] Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. Journal of Logic and Algebraic Programming
(2002)

[Jau09] Jaubert, R.: Aspects quantitatifs dans la réalisation de contrôleurs temps-réels
robustes. Mémoire de Master Recherche, Master Informatique Fondamentale,
Marseille (2009)

[JR10] Jaubert, R., Reynier, P.-A.: Quantitative robustness analysis of flat timed
automata. Research Report 00534896, HAL (2010)

244 R. Jaubert and P.-A. Reynier

[OW03] Ouaknine, J., Worrell, J.B.: Revisiting digitization, robustness and decidability
for timed automata. In: Proc. LICS 2003. IEEE Computer Society Press, Los
Alamitos (2003)

[Pur00] Puri, A.: Dynamical properties of timed automata. Discrete Event Dynamic
Systems 10(1-2), 87–113 (2000)

[SF07] Swaminathan, M., Fränzle, M.: A symbolic decision procedure for robust safety
of timed systems. In: Proc. TIME 2007, p. 192. IEEE Computer Society Press,
Los Alamitos (2007)

[SFK08] Swaminathan, M., Fränzle, M., Katoen, J.-P.: The surprising robustness of
(closed) timed automata against clock-drift. In: Ausiello, G., Karhumäki, J.,
Mauri, G., Ong, L. (eds.) Proc. TCS 2008. IFIP, vol. 273, pp. 537–553. Springer,
Heidelberg (2008)

[WT99] Wong-Toi, H.: Analysis of slope-parametric rectangular automata. In: Antsaklis,
P.J., Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S.S. (eds.) HS 1997. LNCS,
vol. 1567, pp. 390–413. Springer, Heidelberg (1999)

A Game Approach
to Determinize Timed Automata

Nathalie Bertrand1, Amélie Stainer1, Thierry Jéron1, and Moez Krichen2

1 INRIA Rennes - Bretagne Atlantique, Rennes, France
2 Institute of Computer Science and Multimedia, Sfax, Tunisia

Abstract. Timed automata are frequently used to model real-time sys-
tems. Their determinization is a key issue for several validation problems.
However, not all timed automata can be determinized, and determiniz-
ability itself is undecidable. In this paper, we propose a game-based algo-
rithm which, given a timed automaton with ε-transitions and invariants,
tries to produce a language-equivalent deterministic timed automaton,
otherwise a deterministic over-approximation. Our method subsumes two
recent contributions: it is at once more general than the determiniza-
tion procedure of [4] and more precise than the approximation algorithm
of [11].

1 Introduction

Timed automata (TA), introduced in [1], form a usual model for the specification
of real-time embedded systems. Essentially TAs are an extension of automata
with guards and resets of continuous clocks. They are extensively used in the
context of many validation problems such as verification, control synthesis or
model-based testing. One of the reasons for this popularity is that, despite the
fact that they represent infinite state systems, their reachability is decidable,
thanks to the construction of the region graph abstraction.

Determinization is a key issue for several problems such as implementability,
diagnosis or test generation, where the underlying analyses depend on the observ-
able behavior. In the context of timed automata, determinization is problematic
for two reasons. First, determinizable timed automata form a strict subclass of
timed automata [1]. Second, the problem of the determinizability of a timed
automaton, (i.e. does there exist a deterministic TA with the same language
as a given non-deterministic one?) is undecidable [9,14]. Therefore, in order to
determinize timed automata, two alternatives have been investigated: either re-
stricting to determinizable classes or choosing to ensure termination for all TAs
by allowing over-approximations, i.e. deterministic TAs accepting more timed
words. For the first approach, several classes of determinizable TAs have been
identified, such as strongly non-Zeno TAs [3], event-clock TAs [2], or TAs with
integer resets [13]. In a recent paper, Baier, Bertrand, Bouyer and Brihaye [4]
propose a procedure which does not terminate in general, but allows one to de-
terminize TAs in a class covering all the aforementioned determinizable classes.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 245–259, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

246 N. Bertrand et al.

It is based on an unfolding of the TA into a tree, which introduces a new clock
at each step, representing original clocks by a mapping; a symbolic determiniza-
tion using the region abstraction; a folding up by the removal of redundant
clocks. To our knowledge, the second approach has only been investigated by
Krichen and Tripakis [11]. They propose an algorithm that produces a deter-
ministic over-approximation based on a simulation of the TA by a deterministic
TA with fixed resources (number of clocks and maximal constant). Its locations
code (over-approximate) estimates of possible states of the original TA, and it
uses a fixed policy governed by a finite automaton for resetting clocks.

Our method combines techniques from [4] and [11] and improves those two
approaches, despite their notable differences. Moreover, it deals with both invari-
ants and ε-transitions, but for clarity we present these treatments as extensions.
Our method is also inspired by a game approach to decide the diagnosability
of TAs with fixed resources presented by Bouyer, Chevalier and D’Souza in [8].
Similarly to [11], the resulting deterministic TA is given fixed resources (num-
ber of clocks and maximal constant) in order to simulate the original TA by a
coding of relations between new clocks and original ones. The core principle is
the construction of a finite turn-based safety game between two players, Spoiler
and Determinizator, where Spoiler chooses an action and the region of its oc-
currence, while Determinizator chooses which clocks to reset. Our main result
states that if Determinizator has a winning strategy, then it yields a determin-
istic timed automaton accepting exactly the same timed language as the initial
automaton, otherwise it produces a deterministic over-approximation. Our ap-
proach is more general than the procedure of [4], thus allowing one to enlarge
the set of timed automata that can be automatically determinized, thanks to an
increased expressive power in the coding of relations between new and original
clocks, and robustness to some language inclusions. Contrary to [4] our tech-
niques apply to a larger class of timed automata: TAs with ε-transitions and
invariants. It is also more precise than the algorithm of [11] in several respects:
an adaptative and timed resetting policy, governed by a strategy, compared to
a fixed untimed one and a more precise update of the relations between clocks,
even for a fixed policy, allow our method to be exact on a larger class of TAs.
The model used in [11] includes silent transitions, and edges are labeled with
urgency status (eager, delayable, or lazy), but urgency is not preserved by their
over-approximation algorithm. These observations illustrate the benefits of our
game-based approach compared to existing work.

The structure of the paper is as follows. In Section 2 we recall definitions and
properties relative to timed automata, and present the two recent pieces of work
to determinize timed automata or provide a deterministic over-approximation.
Section 3 is devoted to the presentation of our game approach and its properties.
Extensions of the method to timed automata with invariants and ε-transitions
are then presented in Section 4. A comparison with existing methods is detailed
in Section 5.

Due to space limitation, most proofs are omitted in this paper. All details can
be found in the research report [6].

A Game Approach to Determinize Timed Automata 247

2 Preliminaries

In this section, we start by introducing the model of timed automata, and then
review two approaches for their determinization.

2.1 Timed Automata

We start by introducing notations and useful definitions concerning timed au-
tomata [1].

Given a finite set of clocks X , a clock valuation is a mapping v : X → R≥0. We
note 0 the valuation that assigns 0 to all clocks. If v is a valuation over X and
t ∈ R≥0, then v+ t denotes the valuation which assigns to every clock x ∈ X the
value v(x)+ t, and ←→v = {v+ t | t ∈ R} denotes past and future timed extensions
of v. For X ′ ⊆ X we write v[X′←0] for the valuation equal to v on X \X ′ and
to 0 on X ′, and v|X′ for the valuation v restricted to X ′.

Given a non-negative integer M , an M -bounded guard, or simply guard when
M is clear from context, over X is a finite conjunction of constraints of the form
x ∼ c where x ∈ X, c ∈ [0,M] ∩ N and ∼∈ {<,≤,=,≥, >}. We denote by
GM (X) the set of M -bounded guards over X . Given a guard g and a valuation
v, we write v |= g if v satisfies g. Invariants are restricted cases of guards: given
M ∈ N, an M -bounded invariant over X is a finite conjunction of constraints
of the form x � c where x ∈ X, c ∈ [0,M] ∩ N and � ∈ {<,≤}. We denote
by IM (X) the set of invariants. Given two finite sets of clocks X and Y , a
relation between clocks of X and those of Y is a finite conjunction C of atomic
constraints of the form x− y ∼ c where x ∈ X, y ∈ Y, ∼∈ {<,=, >} and c ∈ N.
When, moreover, the constant c is constrained to belong to [−M ′,M], for some
constants M,M ′ ∈ N, we denote by RelM,M ′(X,Y) the set of relations between
X and Y .

Definition 1. A timed automaton (TA) is a tuple A=(L, �0, F,Σ,X,M,E, Inv)
such that: L is a finite set of locations, �0 ∈ L is the initial location, F ⊆ L is the
set of final locations, Σ is a finite alphabet, X is a finite set of clocks, M ∈ N,
E ⊆ L×GM (X)×(Σ∪{ε})×2X×L is a finite set of edges, and Inv : L → IM (X)
is the invariant function.

The constantM is called the maximal constant of A, and we will refer to (|X |,M)
as the resources of A. The semantics of a timed automaton A is given as a timed
transition system TA = (S, s0, SF , (R≥0 × (Σ ∪ {ε})),→) where S = L × RX

≥0 is
the set of states, s0 = (�0, 0) the initial state, SF = F × RX

≥0 the final states,
and →⊆ S × (R≥0 × (Σ ∪ {ε})) × S the transition relation composed of moves
of the form (�, v)

τ,a−→ (�′, v′) whenever there exists an edge (�, g, a,X ′, �′) ∈ E
such that v + τ |= g ∧ Inv(�), v′ = (v + τ)[X′←0] and v′ |= Inv(�′).

A run ρ of A is a finite sequence of moves starting in s0, i.e., ρ = s0
τ1,a1−→

s1 · · ·
τk,ak−→ sk. Run ρ is said accepting if it ends in sk ∈ SF . A timed word over

Σ is an element (ti, ai)i≤n of (R≥0 × Σ)∗ such that (ti)i≤n is nondecreasing.
The timed word associated with ρ is w = (ti1 , ai1) . . . (tim , aim) where (ai ∈

248 N. Bertrand et al.

Σ iff ∃n, ai = ain) and ti =
∑i

j=1 τj . We write L(A) for the language of A,
that is the set of timed words w such that there exists an accepting run which
reads w. We say that two timed automata A and B are equivalent whenever
L(A) = L(B).

A deterministic timed automaton (abbreviated DTA) A is a TA such that for
every timed word w, there is at most one run in A reading w. A is determinizable
if there exists a deterministic timed automaton B with L(A) = L(B). It is
well-known that some timed automata are not determinizable [1]; moreover, the
determinizability of timed automata is an undecidable problem, even with fixed
resources [14,9].

An example of a timed automaton is depicted in Figure 1. This nondetermin-
istic timed automaton has �0 as initial location (denoted by a pending incoming
arrow), �3 as final location (denoted by a pending outgoing arrow) and accepts
the following language: L(A) = {(t1, a) · · · (tn, a)(tn+1, b) | tn+1 < 1}.

�0

�1

�2

�3

0 < x < 1, a0 < x < 1, a

0 < x < 1, a, {x}

0 < x < 1, b, {x}

x = 0, b

Fig. 1. A timed automaton A

The region abstraction forms a partition of valuations over a given set of
clocks. It allows one to make abstractions in order to decide properties like the
reachability of a location. We letX be a finite set of clocks, andM ∈ N. We write
%t& and {t} for the integer part and the fractional part of a real t, respectively.
The equivalence relation ≡X,M over valuations over X is defined as follows:
v ≡X,M v′ if (i) for every clock x ∈ X , v(x) ≤ M iff v′(x) ≤ M ; (ii) for every
clock x ∈ X , if v(x) ≤ M , then %v(x)& = %v′(x)& and {v(x)} = 0 iff {v′(x)} = 0
and (iii) for every pair of clocks (x, y) ∈ X2 such that v(x) ≤ M and v(y) ≤ M ,
{v(x)} ≤ {v(y)} iff {v′(x)} ≤ {v′(y)}. The equivalence relation is called the
region equivalence for the set of clocks X w.r.t. M , and an equivalence class is
called a region. The set of regions, given X and M , is denoted RegX

M . A region r′

is a time-successor of a region r if there is v ∈ r and t ∈ R≥0 such that v+ t ∈ r′.
The set of all time-successors of r is denoted −→r .

In the following, we often abuse notations for guards, invariants, relations and
regions, and write g, I, C and r, respectively, for both the constraints over clock
variables and the sets of valuations they represent.

2.2 Existing Approaches to the Determinization of TAs

To overcome the non-feasibility of determinization of timed automata in gen-
eral, two alternatives have been explored: either exhibiting subclasses of timed

A Game Approach to Determinize Timed Automata 249

automata which are determinizable and provide determinization algorithms, or
constructing deterministic over-approximations. We relate here, for each of these
directions, a recent contribution.

Determinization procedure. An abstract determinization procedure which effec-
tively constructs a deterministic timed automaton for several classes of deter-
minizable timed automata is presented in [4]. Given a timed automaton A, this
procedure first produces a language-equivalent infinite timed tree, by unfolding
A, introducing a fresh clock at each step. This allows one to preserve all tim-
ing constraints, using a mapping from clocks of A to the new clocks. Then, the
infinite tree is split into regions, and symbolically determinized. Under a clock-
boundedness assumption, the infinite tree with infinitely many clocks can be
folded up into a timed automaton (with finitely many locations and clocks). The
clock-boundedness assumption is satisfied for several classes of timed automata,
such as event-clock TAs [2], TAs with integer resets [13] and strongly non-Zeno
TAs [3], which can thus be determinized by this procedure. The resulting deter-
ministic timed automaton is doubly exponential in the size of A.

Deterministic over-approximation. By contrast, Krichen and Tripakis propose
an algorithm applicable to any timed automaton A, which produces a deter-
ministic over-approximation, that is a deterministic TA B accepting at least all
timed words in L(A) [11]. This TA B is built by simulation of A using only
information carried by clocks of B. A location of B is then a state estimate of
A consisting of a (generally infinite) set of pairs (�, v) where � is a location of
A and v a valuation over the union of clocks of A and B. This method is based
on the use of a fixed finite automaton (the skeleton) which governs the resetting
policy for the clocks of B. The size of obtained deterministic timed automaton
B is also doubly exponential in the size of A.

3 A Game Approach

In [8], given a plant —modeled by a timed automaton— and fixed resources,
the authors build a game where some player has a winning strategy if and only
if the plant can be diagnosed by a timed automaton using the given resources.
Inspired by this construction, given a timed automaton A and fixed resources,
we derive a game between two players Spoiler and Determinizator, such that if
Determinizator has a winning strategy, then a deterministic timed automaton
B with L(B) = L(A) can be effectively generated. Moreover, any strategy for
Determinizator (winning or not) yields a deterministic over-approximation for
A. For simplicity, we present here the method for timed automa without ε-
transitions and for which all invariants are true. The general case is presented,
for clarity, as extension in Section 4.

3.1 Definition of the Game

Let A = (L, �0, F,Σ,X,M,E) be a timed automaton. We aim at building a
deterministic timed automaton B with L(A) = L(B) if possible, or L(A) ⊆ L(B).

250 N. Bertrand et al.

In order to do so, we fix resources (k,M ′) for B and build a finite 2-player turn-
based safety game GA,(k,M ′). Players Spoiler and Determinizator alternate moves,
and the objective of player Determinizator is to avoid a set of bad states (to be
defined later). Intuitively, in the safe states, for sure, no over-approximation has
been performed.

For simplicity, we first detail the approach in the case where A has no ε-
transitions and all invariants are true.

Let Y be a set of clocks of cardinality k. The initial state of the game is a
state of Spoiler consisting of location �0 (initial location of A) together with the
simplest relation between X and Y : ∀x ∈ X, ∀y ∈ Y, x − y = 0, and a marking
� (no over-approximation was done so far), together with the null region over
Y . In each of its states, Spoiler challenges Determinizator by proposing an M ′-
bounded region r over Y , and an action a ∈ Σ. Determinizator answers by
deciding the set of clocks Y ′ ⊆ Y he wishes to reset. The next state of Spoiler
contains a region over Y (r′ = r[Y ′←0]), and a finite set of configurations: triples
formed of a location of A, a relation between clocks in X and clocks in Y , and a
boolean marking (� or ⊥). A state of Spoiler thus constitutes a states estimate
of A, and the role of the markings is to indicate whether over-approximations
possibly happened. A state of Determinizator is a copy of the preceding states
estimate together with the move of Spoiler. Bad states player Determinizator
wants to avoid are on the one hand states of the game where all configurations
are marked ⊥ and, on the other hand, states where all final configurations (if
any) are marked ⊥.

Formally, given A and (k,M ′) we define GA,(k,M ′) = (V, v0,Act, δ,Bad) where:

– The set of vertices V is partitioned into VS and VD, respectively vertices of
Spoiler and Determinizator. Vertices of VS and VD are labeled respectively
in 2L×RelM,M′(X,Y)×{�,⊥}×RegY

M ′ and 2L×RelM,M′(X,Y)×{�,⊥}×(RegY
M ′ ×Σ);

– v0 = ({0}, {(�0, X − Y = 0,�)}) is the initial vertex and belongs to player
Spoiler1;

– Act = (RegY
M ′ ×Σ) ∪ 2Y is the set of possible actions;

– δ ⊆ VS × (RegY
M ′ ×Σ) × VD ∪ VD × 2Y × VS is the set of edges;

– Bad = {({(�j, Cj ,⊥)}j, r)} ∪ {({(�j, Cj , bj)}j , r) | {�j}j ∩ F �= ∅ ∧ ∀j, �j ∈
F ⇒ bj = ⊥} is the set of bad states.

We now detail the edge relation which defines the possible moves of the players.
Given vS = ({(�j, Cj , bj)}j , r) ∈ VS a state of Spoiler and (r′, a) one of its
moves, the successor state is defined, provided r′ is a time-successor of r, as
the state vD = ({(�j, Cj , bj)}j , (r′, a)) ∈ VD if ∃(�, C, b) ∈ {(�j , Cj , bj)}j and

∃� g,a,X′
−−−−→ �′ ∈ E s.t. [r′ ∩ C]|X ∩ g �= ∅.
Given vD = ({(�j, Cj , bj)}j , (r′, a)) ∈ VD a state of Determinizator and

Y ′ ⊆ Y one of its moves, the successor state of vD is the state (E , r′[Y ′←0]) ∈ VS

where E is obtained as the set of all elementary successors of configurations in

1 X − Y = 0 is a shortcut to denote the relation ∀x ∈ X, ∀y ∈ Y, x − y = 0.

A Game Approach to Determinize Timed Automata 251

{(�j, Cj , bj)}j by (r′, a) and by resetting Y ′. Precisely, if (�, C, b) is a configura-
tion, its elementary successors set by (r′, a) and Y ′ is:

Succe[r′, a, Y ′](�, C, b)=

⎧⎪⎨⎪⎩(�′, C′, b′)

∣∣∣∣∣∣∣
∃� g,a,X′

−−−−→ �′ ∈ E s.t. [r′ ∩ C]|X ∩ g �= ∅
C′ = up(r′, C, g,X ′, Y ′)
b′ = b ∧ ([r′ ∩C]|X ∩ ¬g = ∅)

⎫⎪⎬⎪⎭
where up(r′, C, g,X ′, Y ′) is the update of the relation between clocks in X and
Y after the moves of the two players, that is after taking action a in r′, re-
setting X ′ ⊆ X and Y ′ ⊆ Y , and forcing the satisfaction of g. Formally,
up(r′, C, g,X ′, Y ′) =

←−−−−−−−−−−−−−−−−→
(r′ ∩ C ∩ g)[X′←0][Y ′←0]. Boolean b′ is set to ⊥ if either

b = ⊥ or the induced guard [r′ ∩ C]|X over-approximates g. In the update, the
intersection with g aims at stopping runs that for sure will correspond to timed
words out of L(A); the boolean b anyway takes care of keeping track of the
possible over-approximation. Region r′, relation C and guard g can all be seen
as zones (i.e. unions of regions) over clocks X ∪ Y . It is standard that elemen-
tary operations on zones, such as intersections, resets, future and past, can be
performed effectively. As a consequence, the update of a relation can also be
computed effectively.

Given the labeling of states in the game GA,(k,M ′), the size of the game is
doubly exponential in the size of A. We will see in Subsection 3.3 that the
number of edges in GA,(k,M ′) can be impressively decreased, since restricting to
atomic resets (resets of at most one clock at a time) does not diminish the power
of Determinizator.

As an example, the construction of the game is illustrated on the nondeter-
ministic timed automaton A depicted in Figure 1, for which we construct the
associated game GA,(1,1) represented in Figure 2. Rectangular states belong to
Spoiler and circles correspond to states of Determinizator. Note that, for the sake
of simplicity, the labels of states of Determinizator are omitted in the picture.
Gray states form the set Bad. Let us detail the computation of the successors
of the top left state by the move ((0, 1), b) of Spoiler and moves (∅ or {y}) of
Determinizator. To begin with, note that b cannot be fired from �0 in A, there-
fore the first configuration has no elementary successor. We then consider the
configuration which contains the location �1. The guard induced by x − y = 0
and y ∈ (0, 1) is simply 0 < x < 1 and the guard of the corresponding tran-
sition between �1 and �3 in A is exactly 0 < x < 1, moreover this transition
resets x. As a consequence, the successors states contain a configuration marked
� with location �3 and, respectively, relations −1 < x − y < 0 and x − y = 0
for the two different moves of Determinizator. Last, when considering the con-
figuration with location �2, we obtain elementary successors marked ⊥. Indeed,
the guard induced by this move of Spoiler and the relation −1 < x − y < 0 is
−1 < x < 1 whereas the corresponding guard in A is x = 0. To preserve all
timed words accepted by A, we represent these configurations, but they imply
over-approximations. Thus the successor states contain a configuration marked

252 N. Bertrand et al.

�0, x − y = 0,� {0}
�0, x − y = 0,�

(0,1)�1, x − y = 0,�
�2,−1 < x − y < 0,�

�3,−1 < x − y < 0,�
(0,1)

�3,−1 < x − y < 0,⊥

�3, x − y = 0,� {0}
�3, x − y = 0,⊥

�0, 0 < x − y < 1,�
{0}�1, 0 < x − y < 1,�

�2, x − y = 0,�

�0, 0 < x − y,⊥
(0,1)�1, 0 < x − y,⊥

�2,−1 < x − y < 0,⊥

�0, 0 < x − y < 1,⊥
{0}�1, 0 < x − y < 1,⊥

�2, x − y = 0,⊥

�3, x − y = 0,� {0}

�3, x − y = 0,⊥ {0}�3, 0 < x − y < −1,⊥ (0, 1)

{y}
(0, 1), a

(0, 1), b

(0, 1), a
{0}

, b

{0}, a

{y}

∅

(0, 1), b

{y}

∅

(0, 1), a

{y}

∅

∅

(0, 1), a

(0, 1), b

{y}

(0, 1), a

{y}
∅

(0, 1), b

{0}, b
{0}, a

{y}∅

{y}

∅

{y}
∅

{y}
∅ {y}

∅

Fig. 2. The game GA,(1,1) and an example of winning strategy σ for Determinizator

⊥ with location �3 and the same respective relations as before, thanks to the
intersection with the initial guard x = 0 in A.

3.2 Properties of the Strategies

Given A a timed automaton and resources (k,M ′), the game GA,(k,M ′) is a
finite-state safety game. It is well known that, for this kind of games, winning
strategies can be chosen positional and they can be computed in linear time
in the size of the arena [10]. In the following, we simply write strategies for
positional strategies. We will see in Subsection 3.3 that positional strategies
(winning or not) are indeed sufficient in our framework. A strategy for player
Determinizator thus assigns to each state vD ∈ VD a set Y ′ ⊆ Y of clocks to be
reset; the successor state is then vS ∈ VS such that (vD, Y

′, vS) ∈ δ.
With every strategy for Determinizator σ we associate the timed automaton

Aut(σ) obtained by merging a transition of Spoiler with the transition chosen
by Determinizator just after, and setting final locations as states of Spoiler con-
taining at least one final location of A. If a strategy σS for Spoiler is fixed too,

A Game Approach to Determinize Timed Automata 253

we denote by Aut(σ, σS) the resulting sub-automaton2. The main result of the
paper is stated in the following theorem and links strategies of Determinizator
with deterministic over-approximations of the initial timed language.

Theorem 1. Let A a timed automaton, and k,M ′ ∈ N. For every strategy σ
of Determinizator in GA,(k,M ′), Aut(σ) is a deterministic timed automaton over
resources (k,M ′) and satisfies L(A) ⊆ L(Aut(σ)). Moreover, if σ is winning,
then L(A) = L(Aut(σ)).

The full proof is given in the general case (with ε-transitions and invariants in
A) in the research report [6]. We however give below its main ideas.

Proof (Sketch of proof). Given a strategy σ, we show that L(A) ⊆ L(Aut(σ)) by
induction on the length of the runs. The induction step is based on the fact that
induced guards for A and relations always are over-approximated in the game.
Moreover, if σ is winning, we show that L(A) = L(Aut(σ)). Indeed, any safe state
(v /∈ Bad) contains at least one configuration marked �. The latter is necessarily
obtained from a configuration marked � without any over-approximation. Hence
any run ending in a safe state has an equivalent run in A.

Back to our running example, on Figure 2, a winning strategy for Determiniza-
tor is represented by the bold arrows. This strategy yields the deterministic
equivalent for A depicted in Figure 3.

�0, x − y = 0,� {0}
�0, x − y = 0,�

(0,1)�1, x − y = 0,�
�2,−1 < x − y < 0,�

�3, x − y = 0,� {0}
�3, x − y = 0,⊥

0 < y < 1, a

0 < y < 1, a

0 < y < 1, b

{y}

Fig. 3. The deterministic TA Aut(σ) obtained by our construction

Remark 1. Because of the undecidability of the determinizability with fixed re-
sources [14,9], contrary to the diagnosability problem, there is no hope to have a
reciprocal statement to the one of Theorem 1 in the following sense: if A can be
determinized with resources (k,M ′) then Determinizator has a winning strategy
in GA,(k,M ′). Figure 4 illustrates this phenomenon by presenting a timed automa-
ton A which is determinizable with resources (1, 1), but for which all strategies
for Determinizator in GA,(1,1) are losing. Intuitively the self loop on �0 forces
Determinizator to reset the clock in his first move; afterwards on each branch
of the automaton (passing through �1, �2 or �3) the behavior of A is strictly
over-approximated in the game. However, since these over-approximations cover
each others, this losing strategy yields a deterministic equivalent to A.

2 In the case where σ and/or σS have arbitrary memory, we abuse notation and write
Aut(σ) and Aut(σ, σS) for the resulting potentially infinite objects.

254 N. Bertrand et al.

�0 �2 �4

�1

�3

0 < x < 1, a

0 < x < 1, a

0 < x < 1, a

0 < x < 1, a

x = 1, a

1 < x, a

0 < x < 1, a, {x}

Fig. 4. A determinizable TA for which there is no winning strategy for Determinizator

3.3 Choosing a Good Losing Strategy

Standard techniques allow one to check whether there is a winning strategy for
Determinizator, and in the positive case, extract such a strategy [10]. However,
if Determinizator has no winning strategy to avoid the set of bad states, it is of
interest to be able to choose a good losing strategy. To this aim, we introduce
a natural partial order over the set of strategies of Determinizator based on the
distance to the set Bad: dBad(A) denotes the minimal number of steps in some
automaton A to reach Bad from the initial state.

Definition 2. Let σ1 and σ2 be strategies of Determinizator in GA,(k,M ′). Strat-
egy σ1 is said finer than σ2, denoted σ1 ' σ2, if for every strategy σS of Spoiler,
dBad(Aut(σ1, σS)) ≥ dBad(Aut(σ2, σS)).

Given this definition, an optimal strategy for Determinizator is a minimal ele-
ment for the partial order '. Note that, if they exist, winning strategies are the
optimal ones since against all strategies of Spoiler, the corresponding distance
to Bad is infinite. The set of optimal strategies can be computed effectively by
a fix-point computation using a rank function on the vertices of the game.

With respect to this partial order on strategies, positional strategies are suf-
ficient for Determinizator.

Proposition 1. For every strategy σ of Determinizator with arbitrary memory,
there exists a positional strategy σ′ such that σ′ ' σ.

Strategy σ′ is obtained from σ by letting for each state the first choice made in σ;
this cannot decrease the distance to Bad. Strategies of interest for Determinizator
can be even more restricted. Indeed, any timed automaton can be turned into an
equivalent one with atomic resets only, using a construction similar to the one
that removes clock transfers (updates of the form x := x′) [7]. Thus, for every
strategy for Determinizator there is finer one which resets at most one clock on
each transition, which can be turned into a finer positional strategy thanks to
Proposition 1. As a consequence, with respect to ', positional strategies that
only allow for atomic resets are sufficient for Determinizator.

A Game Approach to Determinize Timed Automata 255

4 Extension to ε-Transitions and Invariants

In Section 3 the construction of the game and its properties were presented for a
restricted class of timed automata. Let us now briefly explain how to extend the
previous construction to deal with ε-transitions and invariants. The extension is
presented in details in [6].

ε-transitions. We aim at building an over-approximation without ε-transitions.
An ε-closure is performed for each state during the construction of the game. To
this attempt, states of the game have to be extended since ε-transitions might be
enabled only from some time-successors of the region associated with the state.
Therefore, each configuration is associated with a proper region which is a time-
successor of the initial region of the state. The ε-closure is effectively computed
the same way as successors in the original construction when Determinizator
does not reset any clock; computations thus terminate for the same reasons.

Invariants. Ignoring all invariants surely yields an over-approximation. In order
to be more precise (while preserving the over-approximation) with each state of
the game is associated the most restrictive invariant which contains invariants of
all the configurations in the state. In the computation of the successors, invariants
are treated similarly to guards and their validity is verified at the transition’s tar-
get. A state whose invariant is strictly over-approximated is not safe.

5 Comparison with Existing Methods

The method we presented is both more precise than the algorithm of [11] and
more general than the procedure of [4]. Let us detail these two points. Note that
a deeper comparison with existing work can be found in [6].

5.1 Comparison with [11]

First of all, our method covers the application area of [11] since each time the
latter algorithm produces a deterministic equivalent with resources (k,M ′) for a
timed automaton A, there is a winning strategy for Determinizator in GA,(k,M ′).

Moreover, contrary to the method presented in [11], our game-approach is
exact on deterministic timed automata: given a DTA A over resources (k,M),
Determinizator has a winning strategy in GA,(k,M). This is a consequence of
the more general fact that, in our approach, a winning strategy can be seen
as a timed generalization of the notion of skeleton [11], and solving our game
amounts to finding a relevant timed skeleton.

As an example, the algorithm of [11] run on the timed automaton of Figure 1
produces a strict over-approximation, represented on Figure 5.

Our approach also improves the updates of the relations between clocks by
taking the original guard into account. Precisely, when computing upS , an inter-
section with the guard in the original TA is performed. This improvement allows
one, even under the same resetting policy, to refine the over-approximation given
by [11].

256 N. Bertrand et al.

�0, x = y

�0, 0 < x − y < 1
�1, 0 < x − y < 1
�2, x = y

�0, 0 ≤ x − y
�1, 0 ≤ x − y
�2, x = y

�3, 0 ≤ x − y

0 < y < 1, a, {y}

0 ≤ y < 1, a, {y}

0 ≤ y < 1, a, {y}
0 ≤ y < 1, b, {y}

0 ≤ y < 1, b, {y}

Fig. 5. The result of algorithm [11] on the running example

5.2 Comparison with [4]

Our approach generalizes the one in [4] since, for any timed automaton A such
that the procedure in [4] yields an equivalent deterministic timed automaton
with k clocks and maximal constant M ′, there is a winning strategy for Deter-
minizator in GA,(k,M ′). This can be explained by the fact that relations between
clocks of A and clocks in the game allow one to record more information than
the mapping used in [4]. Moreover, our approach strictly broadens the class of
automata determinized by the procedure of [4] in two respects. First of all, our
method allows one to cope with some language inclusions, contrary to [4]. For
example, the TA depicted on the left-hand side of Figure 6 cannot be treated
by the procedure of [4] but is easily determinized using our approach. In this
example, the language of timed words accepted in location �3 is not determiniz-
able. This will cause the failure of [4]. However, all timed words accepted in �3
also are accepted in �4 and the language of timed words accepted in �4 is clearly
determinizable. Our approach allows one to deal with such language inclusions,
and will thus provide an equivalent deterministic timed automaton. Second, the
relations between clocks of the TA and clocks of the game are more precise than
the mapping used in [4], since the mapping can be seen as restricted relations:
a conjunction of constraints of the form x − y = 0. The precision we add by
considering relations rather than mappings is sometimes crucial for the deter-
minization. For example, the TA represented on the right-hand side of Figure 6
can be determinized by our game-approach, but not by [4].

Apart from strictly broadening the class of timed automata that can be auto-
matically determinized, our approach performs better on some timed automata
by providing a deterministic timed automaton with less resources. This is the
case on the running example of Figure 1. The deterministic automaton obtained

�0

�4

�1 �2

�3

b

a

a, {x} x = 1, a

a a

b
�0 �1

x = 1

x ≥ 2x = 1, {x}

Fig. 6. Examples of determinizable TAs not treatable by [4]

A Game Approach to Determinize Timed Automata 257

�0, y0 {0}
�0, y0

(0, 1) × {0}�1, y0

�2, y1

�3, y0 {0}
�3, y1

�3, y0 {0} × (0, 1)

0 < y0 < 1, a, {y1}

0 < y0 < 1, a, {y1}

y1 = 0, b, {y0}

0 < y1 < y0 < 1, b, {y0}

Fig. 7. The result of procedure [4] on the running example

by [4] is depicted in Figure 7: it needs 2 clocks when our method produces a
single-clock TA.

The same phenomenon happens with timed automata with integer resets.
Timed automata with integer resets, introduced in [13], form a determinizable
subclass of timed automata, where every edge (�, g, a,X ′, �′) satisfies X ′ �= ∅ if
and only if g contains an atomic constraint of the form x = c for some clock x.

Proposition 2. For every timed automaton A with integer resets and maximal
constant M , Determinizator has a winning strategy in GA,(1,M).

Intuitively, a single clock is needed to represent clocks of A since they all share
a common fractional part. A complete proof is given in [6].

As a consequence of Proposition 2, any timed automaton with integer resets
can be determinized into a doubly exponential single-clock timed automaton
with the same maximal constant. This improves the result given in [4] where any
timed automaton with integer resets and maximal constant M can be turned
into a doubly exponential deterministic timed automaton, using M + 1 clocks.
Moreover, our procedure is optimal on this class thanks to the lower-bound
provided in [12].

Last, our method even when restricted to equality relations (conjunctions of
constraints of the form x − y = c) extends the procedure of [4], whose effective
construction when the number of new clocks is fixed, is detailed in the technical
report [5]. Note that the latter construction is similar to our approach restricted
to mappings instead of relations. We detail in [6] the benefits of (even equality)
relations and explain how the sufficient conditions for termination provided in [4]
can be weakened in our context.

5.3 Comparison of the Extension with ε-Transition and Invariants

Let us now compare our extended approach with the approach of [11] since the
determinization procedure of [4] does not deal with invariants and ε-transitions.

The model in [11] consists of timed automata with silent transitions and ac-
tions are classified depending on their urgency: eager, lazy or delayable. First
of all, the authors propose an ε-closure computation which does not terminate
in general, and bring up the fact that termination can be ensured by some
abstraction. Second, the urgency in the model is not preserved by their over-
approximation construction which only produces lazy transitions. Note that we
classically decided to use invariants to model urgency, but our approach could

258 N. Bertrand et al.

be adapted to the same model as the one they use, while preserving urgency
much more often, the same way as we do for invariants.

6 Conclusion

In this paper, we proposed a game-based approach for the determinization of
timed automata. Given a timed automaton A (with ε-transitions and invariants)
and resources (k,M), we build a finite turn-based safety game between two
players Spoiler and Determinizator, such that any strategy for Determinizator
yields a deterministic over-approximation of the language of A and any winning
strategy provides a deterministic equivalent for A. Our construction strictly
covers and improves two existing approaches [11,4].

In the research report [6] we detail how to adapt the framework to generate de-
terministic under-approximations, or even deterministic approximations combin-
ing under- and over-approximations. The motivation for this generalization is to
tackle the problem of off-line model-based test generation for non-deterministic
timed automata specifications.

In future work, we plan to investigate how our game-based approach proposed
here can be applied to other models and/or other problems.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer
Science 126(2), 183–235 (1994)

2. Alur, R., Fix, L., Henzinger, T.A.: A determinizable class of timed automata. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 1–13. Springer, Heidelberg (1994)

3. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed
automata. In: Proceedings of the 5th IFAC Symposium on System Structure and
Control (SSSC 1998), pp. 469–474. Elsevier Science, Amsterdam (1998)

4. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata
determinizable? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 43–54. Springer, Heidel-
berg (2009)

5. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata
determinizable? Research Report LSV-09-08, Laboratoire Spécification et
Vérification, ENS Cachan, France, April 2009, 32 pages (2009)

6. Bertrand, N., Stainer, A., Jéron, T., Krichen, M.: A game approach to determinize
timed automata. Research Report 7381, INRIA (September 2010),
http://hal.inria.fr/inria-00524830

7. Bouyer, P.: From Qualitative to Quantitative Analysis of Timed Systems. Mémoire
d’habilitation, Université Paris 7, Paris, France (January 2009)

8. Bouyer, P., Chevalier, F., D’Souza, D.: Fault diagnosis using timed automata.
In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 219–233. Springer,
Heidelberg (2005)

9. Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer, P.
(eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer, Heidelberg (2006)

http://hal.inria.fr/inria-00524830

A Game Approach to Determinize Timed Automata 259

10. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)

11. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal
Methods in System Design 34(3), 238–304 (2009)

12. Manasa, L., Krishna, S.N.: Integer reset timed automata: Clock reduction and
determinizability. CoRR arXiv:1001.1215v1 (2010)

13. Suman, P.V., Pandya, P.K., Krishna, S.N., Manasa, L.: Timed automata with
integer resets: Language inclusion and expressiveness. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 78–92. Springer, Heidelberg (2008)

14. Tripakis, S.: Folk theorems on the determinization and minimization of timed
automata. Information Processing Letters 99(6), 222–226 (2006)

A Practical Linear Time Algorithm for Trivial
Automata Model Checking of Higher-Order

Recursion Schemes

Naoki Kobayashi

Tohoku University

Abstract. The model checking of higher-order recursion schemes has
been actively studied and is now becoming a basis of higher-order pro-
gram verification. We propose a new algorithm for trivial automata
model checking of higher-order recursion schemes. To our knowledge, this
is the first practical model checking algorithm for recursion schemes that
runs in time linear in the size of the higher-order recursion scheme, under
the assumption that the size of trivial automata and the largest order
and arity of functions are fixed. The previous linear time algorithm was
impractical due to a huge constant factor, and the only practical previous
algorithm suffers from the hyper-exponential worst-case time complex-
ity, under the same assumption. The new algorithm is remarkably simple,
consisting of just two fixed-point computations. We have implemented
the algorithm and confirmed that it outperforms Kobayashi’s previous
algorithm in a certain case.

1 Introduction

The model checking of higher-order recursion schemes [9,20] (higher-order model
checking, for short) has been studied extensively, and recently applied to higher-
order program verification [12,10,18,17,21]. A higher-order recursion scheme
[9,20] is a grammar for describing a possibly infinite tree, and the higher-order
model checking is concerned about whether the tree described by a given higher-
order recursion scheme satisfies a given property (typically expressed by the
modal μ-calculus or tree automata). Higher-order model checking can be consid-
ered a generalization of finite-state and pushdown model checking. Just as soft-
ware model checkers for procedural languages like BLAST [4] and SLAM [3] have
been constructed based on finite-state and pushdown model checking, one may
hope to construct software model checkers for higher-order functional languages
based on higher-order model checking. Some evidence for such a possibility has
been provided recently [12,10,18,17,21].

The main obstacle in applying higher-order model checking to program ver-
ification is its extremely high worst-case complexity: n-EXPTIME complete-
ness [20] (where n is the order of a given higher-order recursion scheme).
Kobayashi and Ong [12,16] showed that, under the assumption that the size
of properties and the largest order and arity of functions are fixed, the model

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 260–274, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Practical Linear Time Algorithm for Trivial Automata Model Checking 261

checking is actually linear time in the size of the higher-order recursion scheme
for the class of properties described by trivial automata [2], and polynomial time
for the full modal μ-calculus. Their algorithms were however of only theoretical
interest; because of a huge constant factor (which is n-fold exponential in the
other parameters), they are runnable only for recursion schemes of order 2 at
highest.

The only practical algorithm known to date is Kobayashi’s hybrid algorithm
[10], used in the first higher-order model checker TRecS [11]. According to
experiments, the algorithm runs remarkably fast in practice, considering the
worst-case complexity of the problem. The worst-case complexity of the hybrid
algorithm is, however, actually worse than Kobayashi’s näıve algorithm [12]:
Under the same assumption that the other parameters are fixed, the worst-case
time complexity of the hybrid algorithm [10] is still hyper-exponential in the size
of the recursion scheme. In fact, one can easily construct a higher-order recursion
scheme for which the hybrid algorithm suffers from an n-EXPTIME bottleneck
in the size of the recursion scheme. Thus, it remained as a question whether
there is a practical algorithm that runs in time polynomial in the size of the
higher-order recursion scheme. The question is highly relevant for applications
to program verification [12,18], as the size of a higher-order recursion scheme
corresponds to the size of a program.

The present paper proposes the first (arguably) practical, linear time1 algo-
rithm for trivial automata model checking of recursion schemes (i.e. the problem
of deciding whether the tree generated by a given recursion scheme G is ac-
cepted by a given trivial automaton B). Like Kobayashi and Ong’s previous al-
gorithms [12,10,16], the new algorithm is based on a reduction of model checking
to intersection type inference, but the algorithm has also been inspired by game
semantics [20,1] (though the game semantics is not explicitly used). The resulting
algorithm is remarkably simple, consisting of just two fixedpoint computations.
We have implemented the new algorithm, and confirmed that it outperforms
Kobayashi’s hybrid algorithm [10] in a certain case. Another advantage of the
new algorithm is that it works for non-deterministic trivial automata, unlike the
hybrid algorithm (which works only for deterministic trivial automata).

Unfortunately, the current implementation of the new algorithm is signifi-
cantly slower than the hybrid algorithm [10] (which already incorporates a num-
ber of optimizations) in most cases. However, the new algorithm provides a hope
that, with further optimizations, one may eventually obtain a model checking
algorithm that scales to large programs (because of the fixed-parameter linear
time complexity).

The rest of this paper is structured as follows. Section 2 reviews higher-order
recursion schemes and previous type-based model checking algorithms for recur-
sion schemes. Section 3 presents a new model checking algorithm, and Section 4
proves the correctness of the algorithm. Section 5 reports preliminary experi-
ments. Section 6 discusses related work and Section 7 concludes.

1 Under the same assumption as [12,16] that the other parameters are fixed.

262 N. Kobayashi

2 Preliminaries

We write dom(f) for the domain of a map f . We write x̃ for a sequence x1, . . . , xk,
and write [t1/x1, . . . , tk/xk]u for the term obtained from u by replacing x1, . . . , xk

in u with t1, . . . , tk. A Σ-labeled tree (where Σ is a set of symbols), written T , is
a map from [m]∗ (where m is a positive integer and [m] = {1, . . . ,m}) to Σ such
that (i) ε ∈ dom(T), (ii) xi ∈ dom(T) implies {x, x1, . . . , x(i−1)} ⊆ dom(T) for
any x ∈ [m]∗ and i ∈ [m].

Higher-Order Recursion Schemes. A higher-order recursion scheme [20] is a tree
grammar for generating an infinite tree, where non-terminal symbols can take
parameters. To preclude illegal parameters, each non-terminal symbol has a sort.
The set of sorts is given by: κ ::= o | κ1 → κ2. Intuitively, the sort o describes
trees, and the sort κ1 → κ2 describes functions that take an element of sort κ1
as input, and return an element of sort κ2. The arity and order are defined by:

arity(o) = 0 arity(κ1 → κ2) = 1 + arity(κ2)
order(o) = 0 order (κ1 → κ2) = max (1 + order (κ1), κ2)

Formally, a higher-order recursion scheme (recursion scheme, for short) is a
quadruple G = (Σ,N ,R, S), where Σ is a set of symbols called terminals and
N is a set of symbols called non-terminals. Each terminal or non-terminal α
has an associated sort, denoted by sort(α). The order of the sort of a terminal
must be 0 or 1. We write arity(α) for arity(sort(α)) and call it the arity of
α. (Thus, Σ is a ranked alphabet.) R, called rewriting rules, is a finite map
from N to λ-terms of the form λx̃.t where t is an applicative term constructed
from the variables x̃, terminals, and non-terminals. R(F) must have sort sort(F)
(under the standard simple type system). S is a special non-terminal called the
start symbol. The order of a recursion scheme G is the largest order of the sorts
of its non-terminals. We use lower letters for terminals, and upper letters for
non-terminals.

Given a recursion scheme G, the rewriting relation −→G is the least relation
that satisfies: (i) F u1 . . . , uk −→G [u1/x1, . . . , uk/xk]t if R(F) = λx1. · · ·λxk.t,
and (ii) a t1 · · · tn −→G a t1 · · · ti−1 t

′
i ti+1 · · · tn if ti −→G t′i.

2 The value tree
of G, written [[G]], is the (possibly infinite) (Σ ∪ {⊥})-labelled tree generated
by a fair, maximal reduction sequence from S. More precisely, define t⊥ by
(a t1 · · · tk)⊥ = a t1

⊥ · · · tk⊥, and (F t1 · · · tk)⊥ = ⊥. [[G]] is
⊔
{t⊥ | S −→∗

G t},
where

⊔
is the least upper bound with respect to the least compatible (i.e. closed

under contexts) relation (on trees that satisfies ⊥ (T for every tree T .

Example 1. Consider the recursion scheme G0 = ({a, b, c}, {S, F},R, S), where
R and the sorts of symbols are given by:

R = {S �→ F b c, F �→ λf.λx.(a (f x) (F f (f x)))}
a : o → o → o, b : o → o, c : o, S : o, F : (o → o) → o → o

2 Note that we allow only reductions of outermost redexes.

A Practical Linear Time Algorithm for Trivial Automata Model Checking 263

a

b

c

a

b

b

c

a

b a

b b

· · ·· · ·
· · ·

(a)

q0

q0

q1

q0

q0

q1

q1

q0

q0 q0

q1 q0

· · ·· · ·
· · ·

(b)

Fig. 1. The tree generated by the recursion scheme G0 and a run tree of it

S is rewritten as follows, and the tree in Figure 1(a) is generated.

S −→ F b c → a (b c) (F b (b c)) → a (b c) (a (b(b c)) (F b (b (b c))) → · · ·

Trivial Automata Model Checking. The aim of model-checking a higher-order
recursion scheme is to check whether the tree generated by the recursion scheme
satisfies a certain regular property. In the present paper, we consider the proper-
ties described by trivial automata [2], which are sufficient for program verification
problems considered in [12,18].

A trivial automaton B is a quadruple (Σ,Q,Δ, q0), where Σ is a set of input
symbols,Q is a finite set of states,Δ ⊆ Q×Σ×Q∗ is a transition function, and q0
is the initial state. A Σ-labeled tree T is accepted by B if there is a Q-labeled tree
R (called a run tree) such that: (i) dom(T) = dom(R); (ii) R(ε) = q0; and (iii) for
every x ∈ dom(R), (R(x), T (x), R(x1) · · ·R(xm)) ∈ Δ where m = arity(T (x)).
For a trivial automaton B = (Σ,Q,Δ, q0) (with ⊥ �∈ Σ), we write B⊥ for the
trivial automaton (Σ ∪ {⊥}, Q,Δ∪ {(q,⊥, ε) | q ∈ Q}, q0).

The trivial automata model checking is the problem of deciding whether [[G]]
is accepted by B⊥, given a recursion scheme G and a trivial automaton B.3

Example 2. Consider the trivial automaton B0 = ({a, b, c}, {q0, q1}, Δ, q0), where
Δ = {(q0, a, q0q0), (q0, b, q1), (q1, b, q1), (q0, c, ε), (q1, c, ε)}. B0 accepts a {a, b, c}-
labeled ranked tree just if a does not occur below b. The tree generated by G0
of Example 1 is accepted by B0. The run tree is shown in Figure 1(b).

Type Systems Equivalent to Trivial Automata Model Checking. One can con-
struct an intersection type system (parameterized by a trivial automaton B =
(Σ,Q,Δ, q0)) that is equivalent to trivial automata model checking, in the sense
that a recursion scheme G is well typed if, and only if, [[G]] is accepted by B⊥ [12].
Define the set of types by:

θ (atomic types) ::= q | τ → θ τ (intersections) ::=
∧
{θ1, . . . , θm}

Here, q ranges over the states of B. We often write θ1 ∧ · · · ∧ θm or
∧

i∈{1,...,m} θi

for
∧
{θ1, . . . , θm}. We also write � for

∧
∅, and θ for

∧
{θ}.

∧
binds tighter

3 In the literature [20,16], it is often assumed that the value tree of G does not contain
⊥. Under that assumption, the acceptance by B⊥ and B are equivalent.

264 N. Kobayashi

than →. Intuitively, q is a refinement of sort o, describing trees accepted by B
with the initial state replaced by q. θ1 ∧ · · · ∧ θm → θ describes functions that
take an element that has types θ1, . . . , θm as input, and return an element of
type θ. For example, q0 ∧ q1 → q0 describes a function that takes a tree that
can be accepted from both q0 and q1, and returns a tree accepted from q0. We
define the refinement relation θ :: κ inductively by: (i) q :: o for every q ∈ Q and
(ii) (

∧
i∈S θi → θ) :: (κ1 → κ2) if ∀i ∈ S.θi :: κ1 and θ :: κ2.

The typing rules for terms and rewriting rules are given as follows.

(q, a, q1 · · · qk) ∈ Δ

Γ)B a : q1 → · · · qk → q

x : θ ∈ Γ
Γ)B x : θ

∀i ∈ S.(Γ)B t : θi)
Γ)B t :

∧
i∈S θi

Γ)B t1 : τ → θ
Γ)B t2 : τ
Γ)B t1t2 : θ

Γ, x : θ1, . . . , x : θm)B t : θ
x �∈ dom(Γ)

Γ)B λx.t : θ1 ∧ · · · ∧ θm → θ

dom(Γ) ⊆ dom(R)
∀(F : θ) ∈ Γ.(Γ)B R(F) : θ)

)B R : Γ

Here, Γ is a set of bindings of the form x :θ where non-terminals are also treated
as variables, and Γ may contain more than one binding for each variable. We
write dom(Γ) for {x | x : θ ∈ S}. A recursion scheme G = (Σ,N ,R, S) is well
typed under Γ , written)B G : Γ , if)B R : Γ , ∀(F : θ) ∈ Γ.(θ :: sort(F)), and
S : q0 ∈ Γ . We write)B G if)B G : Γ for some Γ .

The following theorem guarantees the correspondence between model checking
and type checking.

Theorem 1 (Kobayashi [12]). [[G]] is accepted by B⊥ if and only if)B G.

Example 3. Recall the recursion scheme G0 in Example 1 and the trivial automa-
ton B0 in Example 2.)B0 G0 : Γ holds for Γ = {S : q0, F : (q1 → q1) ∧ (q1 →
q0) → q1 → q0}

Theorem 1 above yields a straightforward, fixedpoint-based model checking algo-
rithm. Let ShrinkG,B be the function on type environments defined by:
ShrinkG,B(Γ) = {F : θ ∈ Γ | Γ)B R(F) : θ}, and let Γmax be {F : θ |
F ∈ N , θ :: sort(F)}. Then, by the definition,)B G : Γ if and only if there
exists Γ ⊆ Γmax such that Γ ⊆ ShrinkG,B(Γ) and S : q0 ∈ Γ . (Note that
Γ ⊆ ShrinkG,B(Γ) if and only if)B R : Γ .) Thus, to check whether)B G holds,
it is sufficient to compute the greatest fixedpoint Γgfp of ShrinkG,B and checks
whether S : q0 ∈ Γgfp. This is Kobayashi’s näıve algorithm.

NAIVE ALGORITHM [12]:
1. Γ := Γmax;
2. Repeat Γ := ShrinkG,B(Γ) until Γ = ShrinkG,B(Γ);
3. Output whether S : q0 ∈ Γ.

Suppose that the size of B and the largest size of sorts of symbols are fixed.
Then, the size of Γmax is linear in the size of G, since for a given κ, the number
of types that satisfy θ :: κ is bounded above by a constant. Thus, using Rehof
and Mogensen’s optimization [22], the above algorithm is made linear in the size

A Practical Linear Time Algorithm for Trivial Automata Model Checking 265

of G. The algorithm does not work in practice, however, as the constant factor is
too large. Even at the first iteration of the fixedpoint computation, we need to
pick each binding F : θ from Γmax and check whether Γmax)B R(F) : θ holds.
This is impractical, as Γmax is too large; In fact, even when |Q| = 2, for a symbol
of sort ((o → o) → o) → o, the number of corresponding types is 2513 ≈ 10154.

Kobayashi’s hybrid algorithm [10] starts the greatest fixedpoint computation
from a type environment much smaller than Γmax. To find an appropriate start-
point of the fixedpoint computation, his algorithm reduces the recursion scheme a
finite number of times, and infers candidates of the types of each non-terminal,
by observing how each non-terminal is used in the reduction sequence. The
following is an outline of the hybrid algorithm (see [10] for more details):

HYBRID ALGORITHM [10]:
1. Reduce S a finite number of steps;
2. If a property violation is found, output ‘no’ and halt;
3. Γ := type bindings extracted from the reduction sequence;
4. Repeat Γ := ShrinkG,B(Γ) until Γ = ShrinkG,B(Γ);
5. If S : q0 ∈ Γ then output ‘yes’ and halt;
6. Go back to 1 and reduce S further.

The algorithm works well in practice [10,18], but has some limitations: (i) No
theoretical guarantee that the algorithm is efficient. In fact, the worst-case run-
ning time is hyper-exponential [13]: see Section 5. (ii) The efficiency of the al-
gorithm crucially depends on the selection of terms to be reduced in Step 1.
The implementation relies on heuristics for choosing reduced terms, and there
is no theoretical justification for it. (iii) It works only for deterministic trivial
automata (i.e. trivial automata such that |Δ ∩ {q} × {a} × Q∗| ≤ 1 for every
q ∈ Q, a ∈ Σ.) Though it is possible to extend the algorithm to remove the
restriction, it is unclear whether the resulting algorithm is efficient in practice.

The limitations above motivated us to look for yet another algorithm, which
is efficient both in practice and in theory (where an important criterion for the
latter is that the time complexity should be linear in the size of the recursion
scheme, under the assumption that the other parameters are fixed). That is the
subject of this paper, discussed in the following sections.

3 The New Model Checking Algorithm

3.1 Main Idea

In the previous section, a reader may have wondered why we do not compute the
least fixedpoint, instead of the greatest one. The näıve least fixedpoint computa-
tion however does not work. Let us define FB by: FB(Γ) = {F : θ | Γ)B R(F) :
θ}. How about computing the least fixedpoint Γlfp of FB, and checking whether
S : q0 ∈ Γlfp? This does not work for two reasons. First of all, S : q0 ∈ Γlfp is not
a necessary condition for the well-typedness of G. For example, for G0 of Exam-
ple 1, Γlfp = ∅. Secondly, for each iteration to compute FB(∅),F2

B(∅),F3
B(∅), . . .,

266 N. Kobayashi

we have to guess a type θ of F and check whether Γ)B R(F) : θ. The possi-
ble types of F are however too many, hence the same problem as the greatest
fixedpoint computation.

The discussion above however suggests that a least fixedpoint computation
may work if, in Γ)B R(F) : θ, (i) we relax the condition on Γ (that Γ must have
been obtained from the previous iteration steps), and (ii) we impose a restriction
on θ, to disallow θ to be synthesized “out of thin air”. This observation motivates
us to modify FB(Γ) as follows:

F ′
B(Γ) =

⋃
{{F : θ′} ∪ Γ ′ | Γ ′)B R(F) : θ′, Γ �O Γ ′, θ �P θ′, (F : θ) ∈ Γ}.

Here, Γ �O Γ ′ (which will be defined later) indicates that Γ ′ is not identical, but
somehow similar to Γ . The condition “θ �P θ′ for some F : θ ∈ Γ” also indicates
that F : θ′ is somehow similar to an existing type binding F : θ of Γ .

To see how �O and �P may be defined, let us consider G0 and B0 of Exam-
ples 1 and 2. In order for [[G0]] to be accepted by B0

⊥, S should have type q0.
So, let us first put S : q0 into the initial type environment: Γ0 := {S : q0}.

Now, in order for the body F b c of S to have type q0, F must have a type of
the form · · · → · · · → q0. So, let us put F : � → � → q0: Γ1 := {S : q0, F : � →
� → q0}.

Let us now look at the definition of F , to check whether the body of F has
type � → � → q0. The body doesn’t, but it has a slightly modified type: (� →
q0) → � → q0, so we update the type of F : Γ2 := {S :q0, F :(� → q0) → � → q0}.

Going back to the definition of S, we know that F is required to have a type
like (q1 → q0) → � → q0 (because b has type q1 → q0, not � → q0). Thus, we
further update the type of F : Γ3 := {S : q0, F : (q1 → q0) → � → q0}.

By looking at the definition of F again, we know that x should have type q1
and that f should have q1 as a return type, from the first and second arguments of
a respectively. Thus, we get an updated type environment: Γ4 := {S :q0, F :(q1 →
q0) ∧ (� → q1) → q1 → q0}. By checking the definition of S again, we get:

Γ5 := {S : q0, F : (q1 → q0) ∧ (q1 → q1) → q1 → q0}.

Thus, we have obtained enough type information for G0 (recall Example 3).
In the above example, the type of F has been expanded as follows.

� �O � → � → q0 �P (� → q0) → � → q0 �O (q1 → q0) → � → q0
�P (q1 → q0) ∧ (� → q1) → q1 → q0 �O (q1 → q0) ∧ (q1 → q1) → q1 → q0.

Here, the expansions represented by �O come from constraints on call sites of
F , and those represented by �P come from constraints on the definition of F .
We shall formally define these expansion relations and obtain a fixedpoint-based
model checking algorithm in the following sections.

Remark 1. A reader familiar with game semantics [1,20] may find a connection
between the type expansion sequence above and a play of a function. For exam-
ple, the type (� → q0) → � → q0 may be considered an abstraction of a state of

A Practical Linear Time Algorithm for Trivial Automata Model Checking 267

a play where the opponent of F has requested a tree of type q0, and the propo-
nent has requested a tree of type q0 in response. The type (q1 → q0) → � → q0
represents the next state, where the opponent has requested a tree of type q1 in
response, and the type (q1 → q0) ∧ (� → q1) → q1 → q0 represents the state
where, in response to it, the proponent has requested trees of type q1 to the
first and second arguments. Thus, the expansion relations �O and �P represent
opponent’s and proponent’s moves respectively. Although we do not make this
connection formal, this game semantic intuition may help understand how our
algorithm described below works. In particular, the intuition helps us under-
stand why necessary type information can be obtained by gradually expanding
types as in the example above; for a valid type of a function,4 there should be a
corresponding play of the function, and by following the play, one can obtain a
type expansion sequence that leads to the valid type.

3.2 Expansion Relations

We now formally define the expansion relations �O and �P mentioned above.
They are inductively defined by the following rules.

q �O q q �P q
τ �P τ ′ θ �O θ′

τ → θ �O τ ′ → θ′
τ �O τ ′ θ �P θ′

τ → θ �P τ ′ → θ′

∀j ∈ S′ \ S.∃q.θ′j = � → · · · → � → q
∀j ∈ S.θj �O θ′j S ⊆ S′∧

j∈S θj �O

∧
j∈S′ θ′j

∀j ∈ S.θj �P θ′j∧
j∈S θj �P

∧
j∈S θ

′
j

Note that the four relations: θ �O θ′, τ �O τ ′, θ �P θ′, and τ �P τ ′ are
defined simultaneously. Notice also that �P and �O are swapped in the argument
position of arrow types; this is analogous to the contravariance of the standard
subtyping relation in the argument position of function types. Another way to
understand the relations is: θ �O θ′ (θ �P θ′, resp.) holds if θ′ is obtained from
θ by adding atomic types (of the form q) to positive (negative, resp.) positions.

In the last two rules, S can be an empty set. So, we can derive � �O � → q0,
from which � → � → q0 �P (� → q0) → � → q0 follows. The expansion
relation �O is extended to type environments by: Γ �O Γ ′ if and only if ∀x ∈
dom(Γ) ∪ dom(Γ ′).Γ (x) �O Γ ′(x)). Here, Γ (x) =

∧
{θ | x : θ ∈ Γ}. Γ �P Γ ′ is

defined in a similar manner.
Let ≤ be the standard subtyping relation on intersection types. Then, θ2 �O

θ1 or θ1 �P θ2 imply θ1 ≤ θ2, but not vice versa. For example, � → q0 ≤ (q1 →
q0) → q0 but � → q0 ��P (q1 → q0) → q0.

3.3 Type Generation Rules

We now define the relation Γ1 � Γ2)B
P t : θ1 � θ2, which means that, given

a candidate of type judgment Γ1) t : θ1 (which may not be valid), a valid
4 Strictly speaking, we should interpret a type as a kind of linear type; for example,

the type q1 → q0 should be interpreted as a function that takes a tree of type q1 and
uses it at least once to return a tree of type q0.

268 N. Kobayashi

judgment Γ2)B t : θ2 is obtained by “adjusting” Γ1 and θ1 in a certain manner.
Γ1 � Γ2)B

P t : θ1 � θ2 corresponds to the condition (Γ2)B t : θ2) ∧ (Γ1 �O

Γ2)∧ (θ1 �P θ2) used in the informal definition of F ′
B in Section 3.1. In fact, the

rules below ensure that Γ1 �Γ2)B
P t : θ1 � θ2 implies that (Γ2)B t : θ2)∧ (Γ1 �O

Γ2)∧ (θ1 �P θ2) holds. Thus, the “adjustment” of Γ1 and θ1 is allowed only in a
restricted manner. For example, (f :q1 → q0)�(f :q1 → q0, x:q1))B

P f x : q0�q0 is
allowed, but (f :� → q0)� (f : q1 → q0, x : q1))B

P f x : q0 � q0 is not. In the latter,
the change of the type of function f makes the assumption on the behavior of
f that upon receiving a request for tree of type q0, f requests a tree of type q1
as an argument. That assumption is speculative and should be avoided, as its
validity can be determined only by looking at the environment, not the term
f x.

Definition 1. Γ1 � Γ2)B
P t : θ1 � θ2 and Γ1 � Γ2)B

P t : τ1 � τ2 are the least
relations that satisfy the following rules.

θ1 �P θ2

x : θ2 � x : θ2)B
P x : θ1 � θ2

(VarP)
τ1 �O θ2

x : τ1 � x : θ2)B
P x : θ2 � θ2

(VarO)

(q, a, q1 · · · qn) ∈ Δ ∀i ∈ {1, . . . , n}.τi ∈ {�, qi}
∅ � ∅)B

P a : (τ1 → · · · → τn → q) � (q1 → · · · → qn → q)
(Const)

Γ1 � Γ
′
1)B

P t1 : (τ → θ) � (τ ′ → θ′) Γ2 � Γ
′
2)B

P t2 : τ ′′ � τ ′

Γ1 ∪ Γ2 � Γ
′
1 ∪ Γ ′

2)B
P t1t2 : θ � θ′

(App)

(Γ1, x : τ1) � (Γ2, x : τ2))B
P t : θ1 � θ2

Γ1 � Γ2)B
P λx.t : (τ1 → θ1) � (τ2 → θ2)

(Abs)

∀i ∈ S.(Γi � Γ
′
i)B

P t : θi � θ
′
i)

(
⋃

i∈S Γi) � (
⋃

i∈S Γ
′
i))B

P t : (
∧

i∈S .θi) � (
∧

i∈S .θ
′
i)

(Int)

In the rules above, we write x :
∧

i∈S θi for {x :θi | i ∈ S}. It is implicitly assumed
that the sort of each variable is respected, i.e., if x : θ ∈ Γ , then θ :: sort(x) must
hold. The rule VarP is used for adjusting the type of x to the type provided by
the environment, while the rule VarO is used for adjusting the environment to
the type of x. For example, (x:q1 → q2)�(x : q1 → q2))B

P x : (� → q2)�(q1 → q2)
is obtained from the former, and x :� � (x : � → q2))B

P x : (� → q2) � (� → q2)
is obtained from the latter. In the rule App, the left and right premises adjust
the types of the function and the argument respectively. (In the game semantic
view, the former accounts for a move of the function, and the latter accounts for
a move of the argument.)

3.4 Model Checking Algorithm

We are now ready to describe the new algorithm. Let G = (Σ,N ,R, S) be a
recursion scheme and B be a trivial automaton. Define ExpandG,B by:

A Practical Linear Time Algorithm for Trivial Automata Model Checking 269

ExpandG,B(Γ) = Γ∪(
⋃

{Γ ′∪{F :θ′} | Γ1�Γ
′)B

P R(F) : θ�θ′, F :θ ∈ Γ, Γ1 ⊆ Γ})

Our new algorithm just consists of two fixedpoint computations:

NEW ALGORITHM:
1. Γ := {S : q0};
2. Repeat Γ := ExpandG,B(Γ) until Γ = ExpandG,B(Γ);
3. Repeat Γ := ShrinkG,B(Γ) until Γ = ShrinkG,B(Γ);
4. Output whether S : q0 ∈ Γ.

We first expand the set of type candidates by using ExpandG,B, and then shrink
it by filtering out invalid types by ShrinkG,B. The only change from the näıve
algorithm is that Γmax has been replaced by the least fixedpoint of ExpandG,B.

Example 4. Recall G0 and B0 of Examples 1 and 2. Let Γ0 = {S : q0}. We have:

Γ1 = ExpandG0,B0
(Γ0) = {S : q0, F : � → � → q0}

Γ2 = ExpandG0,B0
(Γ1) = Γ1 ∪ {F : (� → q0) → � → q0}

Γ3 = ExpandG0,B0
(Γ2) = Γ2 ∪ {F : (q1 → q0) → � → q0, . . .}

Γ4 = ExpandG0,B0
(Γ3) = Γ3 ∪ {F : (q1 → q0) → q1 → q0, . . .}

Γ5 = ExpandG0,B0
(Γ4) = Γ3 ∪ {F : (q1 → q0) ∧ (� → q1) → q1 → q0, . . .}

Γ6 = ExpandG0,B0
(Γ5) = Γ4 ∪ {F : (q1 → q0) ∧ (q1 → q1) → q1 → q0, . . .}

Γ7 = ExpandG0,B0
(Γ6) = Γ6

In the second step (for computing Γ2), the type (� → q0) → � → q0 of F is
obtained from the following derivation.

∅ � f : � → q0 �B
P a (f x) : (� → q0) � (q0 → q0) Δ1 � Δ1 �B

P (F f (f x)) : q0 � q0

Δ1 � Δ2 �B
P a (f x) (F f (f x)) : q0 � q0

Δ1 � Δ1 �B
P λf.λx.a (f x) (F f (f x)) : � → � → q0 � (� → q0) → � → q0

Here, Δ1 = F : � → � → q0, Δ2 = Δ1 ∪ {f : � → q0}, and ∅ � f : � → q0)B
P

a (f x) : (� → q0) � (q0 → q0) is derivable from ∅ � f : (� → q0))B
P f : � → q0 �

� → q0 and ∅ � ∅)B
P a : (� → � → q0) � (q0 → q0 → q0).

By repeatedly applying ShrinkG,B to Γ6, we obtain: Γ = {S : q0, F : (q1 →
q0) ∧ (q1 → q1) → q1 → q0, F : (� → q0) → � → q0, . . .} as a fixedpoint. Since
S : q0 ∈ Γ , we know that G0 is well-typed, i.e. [[G]] is accepted by B⊥.

The least fixedpoint Γ6 of ExpandG0,B0
contains type bindings like F : (� →

q0) → � → q0, which are not required for typing G (recall Example 3). However,
ExpandG0,B0

does not add completely irrelevant type bindings like F :� → � →
q1. Thus, we can expect that the least fixedpoint of ExpandG0,B0

is often much
smaller than Γmax, which will be confirmed by the experiments in Section 5.

4 Correctness of the Algorithm

This section discusses the correctness and complexity of the algorithm.

270 N. Kobayashi

Termination and Complexity. The termination follows immediately from the
following facts: (i) Γ increases monotonically in the first loop, (ii) Γ decreases
monotonically in the second loop, and (iii) Γ ranges over a finite set.

Theorem 2. The algorithm always terminates and outputs “yes” or “no”.

From the termination argument, the complexity result also follows.

Theorem 3. Suppose that both (i) the largest size of the sorts of non-terminals
and terminals of G and (ii) the size of automaton B are fixed. Then, the algorithm
terminates in time quadratic in |G|.

Proof. By the assumption, the size of Γmax is O(|G|). Thus, the two loops termi-
nate in O(|G|) iterations. At each iteration, ExpandG,B(G) and ShrinkG,B(G)
can be computed in time O(|G|),5 hence the result. ��

Actually, we can use Rehof and Mogensen’s algorithm [22] to accelerate the above
algorithm, and obtain a linear time algorithm. (The idea is just to recompute
ExpandG,B and ShrinkG,B only for variables whose relevant bindings were up-
dated. As Γ (x) is updated only a constant number of times for each variable x,
and the number of typing bindings that are affected by the update is a constant,
the resulting algorithm runs in time linear in |G|.) More precisely, if the number
of states of B is |Q| and the largest arity of functions is A, the algorithm runs
in time O(|G|expn(p(A|Q|)), where p(x) is a polynomial of x, and expn(x) is
defined by: exp0(x) = x, expk+1(x) = 2expk(x).

Soundness. The soundness of the algorithm follows immediately from that of
Kobayashi’s type system [12] (or Theorem 1): note that Γ at the last line of the
algorithm satisfies Γ ⊆ ShrinkG,B(Γ).

Theorem 4. If the algorithm outputs “yes”, then [[G]] is accepted by B⊥.

Completeness. A recursion scheme is in normal form if each rewrite rule is either
of the form (i) F �→ λx̃.t where t does not contain terminals, or (ii) F �→ λx̃.a x̃.
We show that the algorithm is complete when the given recursion scheme is in
normal form.6 We now prove the completeness, i.e., if [[G]] is accepted by B⊥,
then the algorithm outputs “yes”. From the game semantic intuition described
in Remark 1, the reason for the completeness is intuitively clear: If a function
behaves as described by a type θ in a reduction sequence of the given recursion
scheme, then there should be a sequence of interactions between the function and
the environment that conforms to θ. As the sequence of interactions evolves, the
5 To guarantee this, we need to normalize the rewrite rules of G in advance [16], so

that the size of body R(F) of each non-terminal F is bounded by a constant.
6 Note that this does not lose generality, as we can always transform a recursion scheme

into an equivalent recursion scheme in normal form before applying the algorithm,
by introducing the rule A �→ λx̃.a x̃ for each terminal a, and replace all the other
occurrences of a with A. We conjecture that the algorithm is complete without the
normal form assumption.

A Practical Linear Time Algorithm for Trivial Automata Model Checking 271

function’s behavior should gradually evolve from � → · · · → � → q (which
represents a state where the environment has just called the function to ask for
a tree of type q) to � → · · · → (� → · · · → � → q′) → · · · → � → q (which
represents a state where the function has responded to ask the environment to
provide a tree of type q′), and eventually to θ. Such evolution of the function’s
type can be computed by ExpandG,B, and θ should be eventually generated.

The actual proof is however rather involved. We defer the proof to the ex-
tended version [14] and just state the theorem here.

Theorem 5. Suppose G is in normal form. If [[G]] is accepted by B⊥, then the
algorithm outputs “yes”.

5 Experiments

We have implemented the new model checking algorithm, and tested it for several
recursion schemes. The result of the preliminary experiments is shown in Table 1.
The experiments were conducted on a machine with Intel(R) Xeon(R) CPU with
3Ghz and 8GB memory. More information about the benchmark is available at
http://www.kb.ecei.tohoku.ac.jp/~koba/gtrecs/.

The column “order” shows the order of the recursion scheme. The columns
“hybrid” and “new” show the running times of the hybrid and new algorithms
respectively, measured in seconds. The cell marked by “–” in the column “hybrid”
shows that the hybrid algorithm has timed out (where the time limit is 10 min.)
or run out of stack. The columns “Γ1” and “Γ2” show the numbers of atomic
types in the type environment Γ after the first and second loops of the new
algorithm.

The table on the lefthand side shows the result for the following recursion
scheme Gn,m [13]:

{S �→ F0 Gn−1 · · · G2 G1 G0,
F0 �→ λf.λx̃.F1 (F1 f) x̃, · · · , Fm−1 �→ λf.λx̃.Fm (Fm f) x̃, Fm �→ λf.λx̃.Gn f x̃,
Gn �→ λf.λz.λ.x̃.f (f z) x̃, · · · ,G2 �→ λf.λz.f (f z),G1 �→ λz.a z,G0 �→ c}

S is reduced to aexpn(m)(G0) and then to aexpn(m)(c). The verified property
is that the number of a is even. The hybrid algorithm [10] requires O(expn(m))
expansions to extract the type information on G0, so that it times out except
for the case n = 3,m = 1. In contrast, the new algorithm works even for the
case n = 4,m = 10. For a fixed n, the size of type environments (the columns
Γ1 and Γ2) is almost linear in m. The running times are not linear in m due
to the näıveness of the current implementation, but exponential slowdown with
respect to m is not observed. As expected, the sizes of type environments (the
columns Γ1 and Γ2) are much smaller than that of Γmax. For G3,1, the size of
Γmax is about 3×22057, so that the näıve algorithm does not work even for G3,1.

In the table on the righthand side, Example1 is the recursion scheme given in
Example 1, where the trivial automaton is given in Example 2. The recursion
schemes Twofiles – Lock2 have been taken from the benchmark set used in

http://www.kb.ecei.tohoku.ac.jp/~koba/gtrecs/

272 N. Kobayashi

Table 1. The result of experiments. Times are in seconds.

order hybrid new Γ1 Γ2

G3,1 3 0.002 0.021 61 41
G3,5 3 – 0.135 161 97
G3,10 3 – 0.382 286 167
G4,1 4 – 0.563 302 206
G4,5 4 – 14.856 1079 703
G4,10 4 – 43.815 2054 1328

order hybrid new Γ1 Γ2

Example1 2 0.002 0.002 15 13
Twofiles 3 0.001 0.228 468 187
FileWrong 3 0.001 0.116 398 142
FileOcamlc 3 0.003 1.162 1610 414
Lock2 3 0.013 98.785 2464 1191
Nondet 3 N.A. 0.013 77 63

[10], obtained by encoding the resource usage verification problems [12]. We
have used the refined encoding given in [15] however.7 Unfortunately, for these
recursion schemes, the new algorithm is slower than the hybrid algorithm by
several orders of magnitude. Further optimization is required to see whether
this is a fundamental limitation of the new algorithm. Finally, Nondet is an
order-3 recursion scheme that generates a tree representation of an infinite list
[(0, 1); (1, 2); (2, 3); · · ·], where each natural number n is represented by the tree
sn(z). A non-deterministic trivial automaton is used for expressing the property
that each pair in the list is either a pair of an even number and an odd number,
or a pair of an odd number and an even number. Our new algorithm works well,
while the hybrid algorithm (which works only for deterministic trivial automata)
is not directly applicable.8

6 Related Work

We have already discussed the main related work in Section 1. There are sev-
eral algorithms for the model checking of higher-order recursion schemes (some of
which are presented in the context of showing the decidability). Besides those al-
ready mentioned [20,12,10,16], Hague et al. [6] reduce the modal μ-calculus model
checking to a parity game over the configuration graph of a collapsible pushdown
automaton. Aehlig [2] gives a trivial automata model checking algorithm based
on a finite semantics, which runs in a fixed-parameter non-deterministic linear
time in the size of the recursion scheme. For recursion schemes with the so called
safety restriction, Knapik et al. [9] give another decision procedure, which reduces
a model checking problem for an order-n recursion scheme to that for an order-
(n−1) recursion scheme. As mentioned already, however, the only practical previ-
ous algorithm (which was ever implemented) is Kobayashi’s hybrid algorithm [10],
to our knowledge. Its worst-case complexity is hyper-exponential in the size of re-
cursion schemes, unlike our new algorithm. Recently, Lester et al. [19] extended

7 The encoding in [12] produces order-4 recursion schemes, while that of [15] produces
order-3 recursion schemes. An additional optimization is required to handle the
encoding of [12]: see [14].

8 As mentioned in Section 6, Lester et al. [19] recently extended the hybrid algorithm
to deal with alternating Büchi automata.

A Practical Linear Time Algorithm for Trivial Automata Model Checking 273

the hybrid algorithm to deal with alternating Büchi automata. As the basic
mechanism for collecting type information remains the same, their algorithm
also suffers from the same worst-case behavior as Kobayashi’s hybrid algorithm.

As mentioned already, though our new algorithm is type-based, it has been
inspired from game semantics [1,20]. In the previous type-based approach [12],
the types of a function provide coarse-grained information about the function’s
behavior, in the sense that the types tell us information about complete runs of
the function. On the other hand, the game-semantic view provides more fine-
grained information, about partial runs of a function. For example, F : � → q0
belonging to the least fixedpoint of ExpandG,B means that F may be called in a
context where a tree of type q0 is required, not necessarily that F returns a tree
of type q0 for arbitrary arguments. This enabled us to collect type information
by a least fixedpoint computation, yielding a realistic linear time algorithm.

As explained in Section 2, the model checking of higher-order recursion
schemes has been reduced to the type checking problem for an intersection
type system. Thus, our algorithm may have some connection to intersection
type inference algorithms [7,5]. The connection is however not so clear. To our
knowledge, the existing inference algorithms have a process corresponding to
β-normalization [5], so that even for terms without recursion, the worst-case
complexity of intersection type inference is non-elementary in the program size.

7 Conclusion

Studies of the model checking of higher-order recursion schemes have started
from theoretical interests [8,9], but it is now becoming the basis of automated
verification tools for higher-order functional programs [12,18,17,21]. Thus, it is
very important to develop an efficient model checker for higher-order recur-
sion schemes. The new algorithm presented in this paper is the first one that
is efficient both in theory (in the sense that it is fixed-parameter linear time)
and in practice (in the sense that it is runnable for recursion schemes of or-
der 3 or higher). The practical efficiency is however far from satisfactory (recall
Section 5), so that further optimization of the algorithm is necessary. As the
structure of the new algorithm is simple, we expect that it is more amenable to
various optimization techniques, such as BDD representation of types. A com-
bination of the hybrid and new algorithms also seems useful. It does not seem
so difficult to extend the new algorithm to obtain a practical fixed-parameter
polynomial time algorithm for the full modal μ-calculus; It is left for future work.

References

1. Abramsky, S., McCusker, G.: Game semantics. In: Computational Logic:
Proceedings of the 1997 Marktoberdorf Summer School, pp. 1–56. Springer,
Heidelberg (1999)

2. Aehlig, K.: A finite semantics of simply-typed lambda terms for infinite runs of
automata. Logical Methods in Computer Science 3(3) (2007)

274 N. Kobayashi

3. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static
analysis. In: Proc. of POPL, pp. 1–3 (2002)

4. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. International Journal on Software Tools for Technology Transfer 9(5-6),
505–525 (2007)

5. Carlier, S., Polakow, J., Wells, J.B., Kfoury, A.J.: System E: Expansion variables for
flexible typing with linear and non-linear types and intersection types. In: Schmidt,
D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 294–309. Springer, Heidelberg (2004)

6. Hague, M., Murawski, A., Ong, C.-H.L., Serre, O.: Collapsible pushdown automata
and recursion schemes. In: Proceedings of 23rd Annual IEEE Symposium on Logic
in Computer Science, pp. 452–461. IEEE Computer Society, Los Alamitos (2008)

7. Kfoury, A.J., Wells, J.B.: Principality and type inference for intersection types
using expansion variables. Theor. Comput. Sci. 311(1-3), 1–70 (2004)

8. Knapik, T., Niwinski, D., Urzyczyn, P.: Deciding monadic theories of hyperalge-
braic trees. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 253–267.
Springer, Heidelberg (2001)

9. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In:
Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222.
Springer, Heidelberg (2002)

10. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
2009, pp. 25–36. ACM Press, New York (2009), see also [13]

11. Kobayashi, N.: TRecS (2009), http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/
12. Kobayashi, N.: Types and higher-order recursion schemes for verification of high-

erorder programs. In: Proc. of POPL, pp. 416–428 (2009), see also [13]
13. Kobayashi, N.: Model checking higher-order programs. A revised and extended

version of [12] and [10], available from the author’s web page (2010)
14. Kobayashi, N.: A practical linear time algorithm for trivial automata model

checking of higher-order recursion schemes (2010), an extended version
http://www.kb.ecei.tohoku.ac.jp/~koba/gtrecs/

15. Kobayashi, N., Ong, C.-H.L.: Complexity of model checking recursion schemes
for fragments of the modal mu-calculus. In: Albers, S., Marchetti-Spaccamela, A.,
Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp.
223–234. Springer, Heidelberg (2009)

16. Kobayashi, N., Ong, C.-H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: Proceedings of LICS 2009,
pp. 179–188. IEEE Computer Society Press, Los Alamitos (2009)

17. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and cegar for higher-order
model checking (July 2010) (unpublished manuscript)

18. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree transduc-
ers and recursion schemes for program verification. In: Proc. of POPL, pp. 495–508
(2010)

19. Lester, M.M., Neatherway, R.P., Ong, C.-H.L., Ramsay, S.J.: Model check-
ing liveness properties of higher-order functional programs (2010) (unpublished
manuscript)

20. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS 2006, pp. 81–90. IEEE Computer Society Press, Los Alamitos
(2006)

21. Ong, C.-H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. In: Proceedings of POPL 2011 (to appear, 2011)

22. Rehof, J., Mogensen, T.: Tractable constraints in finite semilattices. Science of
Computer Programming 35(2), 191–221 (1999)

http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/
http://www.kb.ecei.tohoku.ac.jp/~koba/gtrecs/

Church Synthesis Problem for Noisy Input

Yaron Velner and Alexander Rabinovich

The Blavatnik School of Computer Science, Tel Aviv University, Israel

Abstract. We study two variants of infinite games with imperfect in-
formation. In the first variant, in each round player-1 may decide to hide
his move from player-2. This captures situations where the input signal
is subject to fluctuations (noises), and every error in the input signal
can be detected by the controller. In the second variant, all of player-
1 moves are visible to player-2; however, after the game ends, player-1
may change some of his moves. This captures situations where the input
signal is subject to fluctuations; however, the controller cannot detect
errors in the input signal.

We consider several cases, according to the amount of errors allowed
in the input signal: a fixed number of errors, finitely many errors and
the case where the rate of errors is bounded by a threshold. For each
of these cases we consider games with regular and mean-payoff winning
conditions. We investigate the decidability of these games.

There is a natural reduction for some of these games to (perfect infor-
mation) multidimensional mean-payoff games recently considered in [7].
However, the decidability of the winner of multidimensional mean-payoff
games was stated as an open question. We prove its decidability and
provide tight complexity bounds.

1 Introduction

The algorithmic theory of infinite games is a powerful and flexible framework
for the design of reactive systems (see e.g., [12]). It is well known for instance,
that the construction of a controller acting indefinitely within its environment
amounts to the computation of a winning strategy in an infinite game. For the
case of regular games, algorithmic solutions of the synthesis problem have been
developed, providing methods for the automatic construction of controllers. The
basis of this approach is the Büchi-Landweber Theorem, which states that in
a regular infinite game, i.e., a game over a finite game graph with a winning
condition given by an ω-regular language, a finite state winning strategy for the
winner can be constructed [4]. Much work has been devoted to the generalizations
and extensions of this fundamental result. One well known extension are mean-
payoff games where the winning condition is an ω language recognized by an
automaton with a mean-payoff acceptance condition. These games have been
studied since the end of the seventies [11,17] and still attract a large interest.
Another well known extension are games with imperfect information. In most
of the previous work, the setting of an imperfect information game is given
by a game graph with a coloring of the state space that defines equivalence

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 275–289, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

276 Y. Velner and A. Rabinovich

classes of indistinguishable states called observations [9,15], and the strategies
are observation-based (i.e., they rely on the past sequence of observations rather
than on states).

In the present paper we investigate games with errors which are different kind
of imperfect information games.

To present games with errors it is convenient to refer to the simplest format
of infinite games, also called Gale-Stewart games. In such game we abstract from
graphs but just let the two players choose letters from a finite alphabetsΣ1, Σ2 in
turn. A play is built up a sequence

(
b0
a0

)(
b1
a1

)(
b2
a2

)
· · · ∈ (Σ1×Σ2)ω. A natural view

is to consider the sequence a = a0a1 . . . as the input stream and the sequence
b = b0b1 . . . as the output stream. In the Gale-Stewart game, the play is won by
player-2 if the ω word

(
b0
a0

)(
b1
a1

)(
b2
a2

)
. . . satisfies the winning condition, i.e., if it

belongs to a given specification language L ⊆ (Σ1 ×Σ2)ω.
We consider a game with detected errors where in each round of the game,

player-1 has the possibility to hide his move from the opponent; however, player-
2 can detect whether player-1 hides a move. Player-1 needs to decide on the value
of the hidden moves, only at the end of the game. Hence, at the end of the game
he replaces his hidden moves in the produced play ρ by letters from Σ1 and this
defines an interpretation Int(ρ) ∈ (Σ1 × Σ2)ω for the play ρ. Round i ∈ N has
an error if player-1 decides to hide his move in round i. This game captures
the cases where the input signal is noisy and the controller can detect errors in
the input signal. We also consider a game with undetected errors where in each
round player-2 is fully aware of player-1 moves; however, at the end of the game
player-1 can change some of his moves, i.e., player-1 provides an interpretation
Int(ρ) ∈ (Σ1 × Σ2)ω for the play ρ. An error is made in round i ∈ N if at the
end of the game player-1 decides to change his move in round i. Note that in
this game, an error is determined according to the interpretation of the play.
This game captures the cases where the input signal is noisy and the controller
cannot detect errors in the input signal.

We measure the amount of errors in a play according to two scales. The error
count scale counts the number of errors in a play (the result is in N∪{∞}). The
error rate of a play ρ is lim supn→∞

1
n · (number of errors in first n rounds).

In both games a limitation on the amount of errors allowed for player-1 is
given by one of the following conditions types. The first type of conditions is a
bound n ∈ N on the error count. The second type of conditions requires that
the error count of a play is finite. The third type of conditions is a bound δ ∈ Q

on the error rate. The last type seems to be the most interesting for real life
applications.

For a specification language L: Player-1 is the winner of a play with detected
errors if the play satisfies the amount of errors limitation and there exists an
interpretation Int /∈ L. Player-1 is the winner of a play with undetected errors
if there exists an interpretation Int /∈ L which satisfies the amount of errors
limitation.

We consider the cases where the specification language is either an ω regular
language or when the language is recognizable by a mean-payoff automaton.

Church Synthesis Problem for Noisy Input 277

We investigate the decidability of who is the winner, and the computability of
the winning strategies. In addition, we investigate the bounded number of errors
problem which asks if there exists n ∈ N such that player-1 is the winner of a
game when he allowed to do at most n errors.

Table 1 summarizes our decidability results for games with detected and un-
detected errors with regular and mean-payoff winning condition.

Table 1. � - Decidable. ✕ - Undecidable. ? - Open.

Bounded1 Finite2 Rate3 δ = 0 Rate3 δ ∈ (0, 1) Rate3 δ = 1
Regular MP Regular MP Regular MP Regular MP Regular MP

Detected � � � � � � � ✕ � ✕

Undetected ? ? � ? ? ? ✕ ✕ � ✕

We reduced games with detected errors and a mean-payoff winning condition
to multidimensional mean-payoff games.

A multidimensional mean-payoff game, introduced in [7], is played on a fi-
nite weighted graph by two players. The edges of the graphs are labeled by
k-dimensional vectors w ∈ Zk. The game is played as follows. A pebble is placed
on a designated initial vertex of the game graph G = (V,E). The game is played
in rounds in which the player owning the position where the pebble lies moves
the pebble to an adjacent position of the graph using an outgoing edge. An in-
finite play results an infinite path π = e0e1 · · · ∈ Eω through the game graph.
The energy level vector of the finite path e0e1 . . . en−1 is EL(e0e1 . . . en−1) =∑n−1

i=1 w(ei). The infinite path π produces two mean-payoff vectors. MP(π) =
lim infn→∞ 1

n ·EL(e0e1 . . . en−1) and MP(π) = lim supn→∞
1
n ·EL(e0e1 . . . en−1).

Hence, the vector associated to a play ρ which induces an infinite path πρ is
the 2k dimensional vector

−−→
MP(ρ) = (MP(πρ),MP(πρ)). The winning condition

for player-2 is given by a threshold ν = 〈ν1, . . . , ν2k〉 ∈ Q2k, which induces 2k
boolean variables xν

i
.=

−−→
MP(ρ)i ≥ νi, and by a boolean formula on xν

i (for
i = 1, . . . , 2k).

In [7] the players were restricted to use only finite state strategies. The play π
produced by finite state strategies is always quasi periodic and MP(π) = MP(π).

It was proved in [7] that when the players are restricted to use the finite state
strategies and the winning condition is a conjunction of the form

∧2k
i=1 x

ν
i , then

it is decidable who is the winner. The decidability of who is the winner when
players are allowed to use arbitrary strategies was stated as an open question. We
prove that this problem is decidable and provide tight bounds on its complexity.
The lower complexity bounds are easily derived from [7,3].

We investigate the case where the winning condition is given by the for-
mula ϕ∧ MeanPayoffInf≥(ν)

.=
∧k

i=1 x
ν
i or by the formula ϕ∧ MeanPayoffSup≥(ν)

.=

1 Decidability of the bounded number of errors problem.
2 Games with finitely many errors.
3 Games with the errors rate limitation δ.

278 Y. Velner and A. Rabinovich

∧2k
i=k+1 x

ν
i . We show that the problem who wins ϕ∧ MeanPayoffInf≥(ν) games is

Strongly coNP complete, while there exists a pseudo-polynomial algorithm which
determines the winner for a condition of the form ϕ∧ MeanPayoffSup≥(ν).

We also consider the case where the winning condition is given by a positive
boolean formula which depends only on the MP(πρ) vector or on the MP(πρ)
vector, and prove decidability for this case.

This paper is organized as follows. In the next section we introduce notations
and well known definitions. In section 3, we provide formal definitions of games
with errors. In sections 4-5, we investigate regular games with errors. In section
6, we investigate mean-payoff games with errors. In section 7, we investigate mul-
tidimensional mean-payoff games and complete the proof of the main theorem
of section 6. Due to lack of space, only the outlines of the proofs are presented.

2 Definitions

Words and languages. Let Σ be a finite alphabet. A finite word over Σ is
w = σ0σ1 . . . σn, for n ∈ N and σi ∈ Σ. An infinite word over Σ is w =
σ0σ1 . . . σn . . . Let w = σ0σ1 . . . σn . . . , we denote σi by w(i). For j > i ≥ 0,
w[i, j] = w(i)w(i + 1) . . . w(j − 1)w(j), w[0, n − 1] is a prefix of length n of w.
w[i,∞] is a suffix of w starting from position i. For every i ≥ 0, w[i, i − 1] is
defined to be the empty word ε. We denote by Σ∗ the set of all finite words,
and by Σω the set of all infinite words. A language is a subset of Σ∗, and an ω
language is a subset of Σω. In the sequel, when it is clear from the context, we
shall also refer to an ω language L ⊆ Σω as a language. A word overΣ = Σ1×Σ2
is w =

(σ2(0)
σ1(0)

)(σ2(1)
σ1(1)

)
. . .

(σ2(n)
σ1(n)

)
. . . We denote

(σ2(i)
σ1(i)

)
by w(i), σ1(i) by w(i)1 and

σ2(i) by w(i)2, for j = 1, 2 we denote σj(0)σj(1) . . . by wj .

Gale-Stewart game. A Gale-Stewart game is a two-player game of perfect
information. The game is defined using an alphabet Σ = Σ1×Σ2 and a language
L ⊆ (Σ1 × Σ2)ω, and is denoted by GL. The two players alternate turns, and
each player is aware of all moves before making the next one. A play of game has
ω rounds. At round i ∈ N: first player-1 chooses σ1 ∈ Σ1, then player-2 chooses
σ2 ∈ Σ2. At the end of the play, an ω word w =

(σ2(0)
σ1(0)

)(σ2(1)
σ1(1)

)
. . . is formed.

Player-2 wins the play if w ∈ L.

Strategies. A player-1 strategy is τ : (Σ1×Σ2)∗ → Σ1. A play ρ =
(σ2(0)
σ1(0)

)(σ2(1)
σ1(1)

)
. . . is consistent with player-1 strategy τ if τ(

(σ2(0)
σ1(0)

)(σ2(1)
σ1(1)

)
. . .

(σ2(i)
σ1(i)

)
) = σ1(i+1)

for every i ∈ N. A player-2 strategy is τ : (Σ1×Σ2)∗×Σ1 → Σ2. The consistency
of a play with player-2 strategy is defined similarly. Player-j (for j = 1, 2) is the
winner of game GL if it has a strategy τ such that in every play consistent with
τ , player-j wins.

Automaton. An automaton over Σ is a tuple A = (Σ,Q,Q0, E) Where Σ is a
finite alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states and E ⊆
Q×Q×Σ is a transition relation. Automaton A is deterministic if |Q0| = 1 and
∀q ∈ Q, ∀σ ∈ Σ, ∀q1, q2 ∈ Q if (q, q1, σ) ∈ E and (q, q2, σ) ∈ E then q1 = q2. For
infinite word ρ = σ1σ2 . . . a run of ρ is an infinite sequence π = q0e0q1e1 . . . with

Church Synthesis Problem for Noisy Input 279

q0 ∈ Q0 and ei = (qi, qi+1, ρ(i)) ∈ E for every i ∈ N. The set of all states reach-
able by a finite word ρ is E∗(ρ) = {q ∈ Q | ρ has a (finite) run that ends in q}.

Language recognized by automaton. Let A = (Σ,Q,Q0, E). An acceptance
condition for A is a set φ ⊆ (Q×E)ω, note that we are interested only in the cases
where φ has a finite description. An infinite word is accepted by automaton A
and condition φ if it has a run π such that π ∈ φ. The set of all ω words accepted
by automaton A and condition φ is denoted by LA,φ. In the sequel, when the
acceptance condition φ it is clear from the context, we shall omit it and denote
the language by LA.

Acceptance conditions (objectives). Let p : Q → N be a priority function
and w : E → Z be a weight function. The energy level of a finite path γ =
q0e0q1e1...en−1qn is EL(w, γ) =

∑n−1
i=0 w(ei), and the mean-payoff value of an

infinite path π = q0e0q1e1... is defined by either MP(w, π) = lim supn→∞
1
n ·

EL(w, π[0, n − 1]) or by MP(w, π) = lim infn→∞ 1
n · EL(w, π[0, n − 1]). In the

sequel, when the weight function w is clear from the context we will omit it and
simply write EL(γ) and MP(π) or MP(π). We denote by Inf (π) the set of states
that occur infinitely often in π. We consider the following conditions:

– Parity condition. The parity condition ParityA(p) = {π ∈ (Q × E)ω |
min{p(q)|q ∈ Inf (π)} is even} requires that the minimum priority visited
infinitely often is even.

– Mean-payoff condition. Given a threshold ν ∈ Q, and ∼∈ {>,≥} the mean-
payoff condition is either

• MeanPayoffSup∼(ν) = {π ∈ (Q× E)ω |MP(π) ∼ ν}
• MeanPayoffInf∼(ν) = {π ∈ (Q× E)ω |MP(π) ∼ ν}

Mean-payoff conditions defined with ∼∈ {<,≤} are obtained by duality since
lim supn→∞ xn = − lim infn→∞ −xn.

– Tail objective, Informally the class of tail objectives is the class of objectives
that are independent of all finite prefixes. Formally φ ⊆ (Q × E)ω is a tail
objective if for every π ∈ (Q× E)ω , π ∈ φ ⇔ every suffix of π is in φ.

Language defined by a MSO formula. Let ϕ(X1, X2) be a formula of
Monadic Second-order logic over the signature {<}, where X1 and X2 are set
(second-order) variables. We define the language Lϕ ⊆ ({0, 1}×{0, 1})ω as usual.
Let w =

(σ2(0)
σ1(0)

)(σ2(1)
σ1(1)

)
. . . be an ω word. Let P1, P2 be monadic predicates on

N defined as: P1(t) ⇔ w(t)1 = 1 and P2(t) ⇔ w(t)2 = 1 for every t ∈ N. Then
w ∈ Lϕ iff (N, <) |= ϕ(P1, P2). A language L ⊆ ({0, 1} × {0, 1})ω is MSO de-
finable if there exists a MSO formula ϕ(X1, X2) such that L = Lϕ. The MSO
definable languages over an alphabet Σ1 ×Σ2 are defined similarly [16].

ω regular languages. It is well-known that the class of ω language definable
by MSO formulas is the same as the class recognizable by parity automata. An
ω language is regular if it is definable by a MSO formula.

280 Y. Velner and A. Rabinovich

3 Games with Errors

We define two versions of games with errors. Informally we want to distinguish
the case where player-2 can detect errors made by player-1, from the case where
errors cannot be detected during the play.

The first case is captured by games with detected errors, and the second case
is captured by games with undetected errors.

3.1 Games with Detected Errors

Let z be a symbol not in Σ1. We use z to represent a (detected) error.

Play with detected errors. A play with detected errors has ω rounds. In
round i ∈ N: First player-1 chooses σ1 ∈ Σ1 ∪ {z}, then player-2 responds with
σ2 ∈ Σ2.

A play with detected errors ρ ∈ ((Σ1 ∪ {z})×Σ2)ω is formed. In the sequel if
it is clear from the context, we shall refer a to play with detected errors simply
as a play.
Interpretation of a play with detected errors. Let ρ be a play with detected
errors. ρ′ ∈ (Σ1 ×Σ2)ω is an interpretation of ρ if for every i ∈ N, ρ(i)2 = ρ′(i)2
and if ρ(i)1 �= z then ρ(i)1 = ρ′(i)1. The set of interpretations of a play ρ is
denoted by Interp(ρ). We define the interpretation of a play prefix similarly.
Error count and error rate. Let ρ be a play with detected errors.

The error count of a play prefix ρ[0, n] is denoted by EC (ρ[0, n]) and it is the
number of occurrences of z in ρ[0, n]. The error rate of a play ρ is denoted by
ER(ρ) and is defined as lim supn→∞

1
n · EC (ρ[0, n− 1]).

Winning conditions for plays with detected errors. A winning condition
is a tuple (L, χ), where L ⊆ (Σ1 ×Σ2)ω is the target objective, and χ ⊆ ((Σ1 ∪
{z}) × Σ2)ω is the quantitative threshold objective. For a play with detected
errors ρ, we consider three types of quantitative thresholds.
– Fixed number of errors. For m ∈ N, ρ ∈ χ ⇔ EC (ρ[0, n− 1]) ≤ m for every
n ≥ 0.

– Finite number of errors. ρ ∈ χ if z does not occur infinitely often in ρ.
– Error rate. For δ ∈ Q, ρ ∈ χ ⇔ ER(ρ) ≤ δ.

Let ρ be a play with detected errors, player-2 wins in ρ if Interp(ρ) ⊆ L or if
ρ /∈ χ.

We name a class of games according to the target objective and the quantita-
tive threshold. For example, the class of games with ω regular language target
objective and any quantitative threshold χ is named: Regular games with de-
tected errors.

In the sequel, if the target objective is clear from the context, we omit the
name of the target objective. In addition instead of defining χ explicitly we
simply state the threshold value (i.e., n, fin or δ).

Definition 1. Let L ⊆ (Σ1 ×Σ2)ω be the target objective.
1. DEn(L) is a game with detected errors and a winning condition (L, n).
2. DEfin(L) is a game with detected errors and a winning condition (L,fin).
3. DEδ(L) is a game with detected errors and a winning condition (L, δ).

Church Synthesis Problem for Noisy Input 281

Strategies for plays with detected errors. A strategy determines player
next move according to the history of moves (of both players) in the play. For-
mally, a player-1 strategy is a function τ1 : ((Σ1 ∪ {z}) ×Σ2)∗ → (Σ1 ∪ {z}), a
player-2 strategy is a function τ2 : ((Σ1 ∪ {z}) ×Σ2)∗ × (Σ1 ∪ {z}) → Σ2.

A play with detected errors ρ is played according to player-1 strategy τ1 if
ρ(i)1 = τ1(ρ[0, i− 1]) for i ≥ 0. A play according to player-2 strategy is defined
similarly.

Finite-memory strategies. A strategy of player-1 is a finite-memory strategy
if it can be encoded by a deterministic transducer (M,m0, αu, αn) where M is
a finite set (the memory of the strategy), m0 ∈ M is the initial memory value,
αu : M × (Σ1 ∪{z})×Σ2 →M is an update function, and αn : M → Σ1 ∪{z} is
the next move function. The size of the strategy is the cardinality of M . In every
round, letm be the current memory value, then the strategy chooses σ1 = αn(m)
as player-1 next move and the memory is updated to αu(m,σ1, σ2), where σ2 is
player-2 move. Finite-memory strategy for player-2 is defined similarly.

Winning strategy. Player-i strategy τi (for i = 1, 2) is a winning strategy if
for every play played according to τi, player-i wins. If player-i has a winning
strategy, player-i is said to be the winner of the game.

3.2 Games with Undetected Errors

In this game, player-1 errors are not detected by player-2, thus the error count
and error rate cannot be measured by the amount of zs in the play. In this
subsection we give appropriate definitions for plays, play interpretation, error
count, error rate, and winning conditions.

Play with undetected errors. A play with undetected error is defined exactly
as a play (without errors) in section 2. Thus every play with undetected errors
forms ρ ∈ (Σ1 ×Σ2)ω.

Interpretation of play with undetected errors. Let ρ ∈ (Σ1 × Σ2)ω be
a play with undetected errors. ρ′ ∈ (Σ1 × Σ2)ω is an interpretation of ρ if
ρ(i)2 = ρ′(i)2 for every i ≥ 0. The set of interpretations of a play ρ is denoted
by Interp(ρ). The interpretations of a play prefix are defined similarly.

Error count and error rate. Since errors are not detected, the existence of
an error in a certain position of the play is relative to a specific interpretation
of the play. i.e., for play ρ, different interpretations ρ1, ρ2 may define different
error positions.

Let ρ be a play with undetected errors, and ρ′ ∈ Interp(ρ). ρ′ is said to have
an error in position i if ρ(i)1 �= ρ′(i)1 The Error count of the finite play prefix
ρ and ρ′ ∈ Interp(ρ), denoted by EC (ρ, ρ′), is the number of positions in ρ with
errors relatively to ρ′.

The error rate of a play ρ and ρ′ ∈ Interp(ρ) is denoted by ER(ρ, ρ′) =
lim supn→∞

1
n · EC (ρ[0, n− 1], ρ′[0, n− 1]).

282 Y. Velner and A. Rabinovich

Winning conditions for plays with undetected errors. For L ⊆ (Σ1 ×
Σ2)ω, the winning condition is a tuple (L, χ). We refer to L as the target objective,
and to χ ⊆ ((Σ1 ×Σ2)ω × (Σ1 ×Σ2)ω) as the quantitative threshold objective.
For a play with undetected errors ρ, we consider three types of quantitative
thresholds.

– Fixed number of errors. Form ∈ N, (ρ, ρ′) ∈ χ⇔ EC (ρ[0, n−1], ρ′[0, n−1]) ≤
m for every n ≥ 0.

– Finite number of errors. (ρ, ρ′) ∈ χ ⇔ ρ′ ∈ Interp(ρ) and ρ′ differs from ρ
in finite number of positions.

– Error rate. For δ ∈ Q, (ρ, ρ′) ∈ χ ⇔ ER(ρ, ρ′) ≤ δ.

Let ρ be a play with undetected errors, player-2 wins in play ρ if for every
ρ′ ∈ Interp(ρ), either ρ′ ∈ L or (ρ, ρ′) /∈ χ.

We name a class of games according to the target objective and the quanti-
tative threshold. For example a class of games with languages recognized by a
mean-payoff automatons as a target objective, and any quantitative threshold χ
is named: mean-payoff games with undetected errors.

In the sequel, if the target objective is clear from the context, we omit the
name of the target objective. In addition instead of defining χ explicitly we
simply state the threshold value (i.e., n, fin or δ).

Definition 2. Let L be the target objective.

1. UDEn(L) is a game with undetected errors and a winning condition (L, n).
2. UDEfin(L) is a game with undetected errors and a winning condition (L,fin).
3. UDEδ(L) is a game with undetected errors and a winning condition (L, δ).

4 Regular Games with Detected Errors

Regular games with detected errors consists of ω regular language L and an error
threshold objective χ.

Decision problem. Deciding who is the winner :

– Input: An ω regular language L ⊆ (Σ1×Σ2)ω (given either as a MSO formula
or as a parity automaton), numbers n ∈ N and δ ∈ Q.

– Output: decide who is the winner of DEn(L), DEfin(L) and DEδ(L).

Computation problems

– The computability of winning parameters problem is:
• Input: ω regular language L ⊆ (Σ1 ×Σ2)ω

• Output: Find the minimal n ∈ N such that player-1 is the winner of
DEn(L) and the minimal δ ∈ Q such that player-1 is the winner of
DEδ(L).

– The computability of winning strategy problem is:
• Input: An ω regular language L ⊆ Σ1×Σ2)ω , numbers n ∈ N and δ ∈ Q.
• Output: A finite description of the winning strategies for the winning

player of DEn(L), DEfin(L) and DEδ(L).

Church Synthesis Problem for Noisy Input 283

The main result of this section is

Theorem 1. Let L be an ω regular language.

1. For every n ∈ N and δ ∈ Q It is decidable who is the winner of DEn(L),
DEfin(L) and DEδ(L).

2. The winning parameters problem is computable.
3. The winning strategy problem is computable.

A proof outline for Theorem 1. We present an immediate reduction from
DEn(L) and DEfin(L) games, where L is an ω regular language to regular games
without errors.

In addition we present a reduction from DEδ(L) games, where L is an ω
regular language to mean-payoff parity games (studied in [5]). This reduction
together with results of [5] imply the decidability of who is the winner of DEδ(L)
game and the computability of the minimal δ such that player-1 is the winner
of DEδ(L).

The computability of the minimal m ∈ N such that player-1 is the winner of
DEm(L) for an ω regular language L is obtained by the following lemma.

Lemma 1. Let A = (Σ1 ×Σ2, Q,Q0, E) be a an automaton, and let φ be a tail
objective. Then player-2 is the winner of DEfin(LA,φ) ⇔ player-2 is the winner
of DEm(LA,φ) for m = 2|Q|.

Due to Lemma 1 and Theorem 1(1) and since every parity objective is a tail
objective, one can decide the winner of DEn(L) for every n = 0, 1, . . . , 2|Q| and
return the minimal n such that player-1 is the winner of DEn(L).

Need of infinite memory strategies. The following proposition asserts the
need of infinite memory strategies for player-1 for regular games with detected
errors and error rate threshold.

Proposition 1. There exists an ω regular language L ⊆ (Σ1 × Σ2)ω and a
threshold δ ∈ Q such that player-1 is the winner of DEδ(L), however player-1
does not have a finite memory winning strategy.

Proof (of Proposition 1). Fix Σ1 = Σ2 = {a, b}. Consider the following ω lan-
guage L ⊆ (Σ1 × Σ2)ω . A tuple (X1, X2) ∈ (Σ1 × Σ2)ω is in the language L if
the following conditions are hold.

1. (∃ωtX1(t) = b) → (∃t(∀t′ > t(X2(t′) = a)))
2. (∀tX1(t) = a) → (∃ωt(X2(t) = b))

First, let us show that for δ = 0, player-1 is the winner of DEδ(L). The following
strategy τ is a winning strategy for player-1: In round i ∈ N, if there exists n ∈ N
such that i = 2n, play z, otherwise play a.

Clearly the error rate of a play played according to τ is 0. Player-1 violates
the target objective in the following way. If player-2 played infinitely often b,
then the play interpretation which replaces every occurrence of z with b violates
the first condition. If player-2 played finitely often b, then the play interpretation
which replaces every occurrence of z with a violates the second condition.

284 Y. Velner and A. Rabinovich

Thus, player-1 is the winner of DEδ(L).
Second, the reader can verify that for every n ∈ N, every player-1 finite

memory winning strategy for DE 1
n
(L) requires memory size of at least n. Hence,

player-1 does not have a finite memory winning strategy for DEδ(L) for δ = 0,
which concludes the proof of proposition 1. �

5 Regular Games with Undetected Errors

Analyzing games with errors is much more difficult when the errors are not
detected. As in section 4 we are interesting in the decidability of who is the
winner and in the computation of winning parameters and winning strategies.
However, we are able to give only partial answer to these questions.

The main result of this section is:

Theorem 2. The following problem is undecidable.
– Input: δ ∈ (0, 1) ∩Q and an ω regular language L.
– Question: Decide who is the winner of UDEδ(L).

A proof outline for Theorem 2. In [10,8] it was proved that the universal-
ity problem of a non-deterministic mean-payoff automaton is undecidable. We
provide a reduction from this problem to the problem of who is the winner of
UDEδ(L) game.

The next remark deals with the simple cases.

Remark 1. Let L be an ω regular language.
1. For n ∈ N it is decidable who is the winner of UDEn(L), and a winning

strategy is computable.
2. It is decidable who is the winner of UDEfin(L), and the winning strategy is

computable.
3. For δ = 1, it is decidable who is the winner of UDEδ(L), and the winning

strategy is computable.
Proof (of Remark 1). All items in Remark 1 are immediately proved by encoding
the winning condition as a MSO formula. �

The following two decision problems remain open.
1. The bounded errors problem asks if for an ω-regular language L, there exists
n ∈ N such that player-1 is the winner of UDEn(L).

2. The zero error rate problem, asks for an ω-regular language L and for δ = 0,
who is the winner of DEδ(L).

At first glance one can hope to answer the bounded number of errors problem
with the same technique used in Lemma 1, i.e., try to prove that if for an ω-
regular language L player-2 is the winner of UDEfin(L), then there existsmL ∈ N
such that player-2 is the winner of UDEmL(L). The next proposition show that
this is not the case.

Proposition 2. There exists an ω regular language L such that player-1 is
the winner of UDEfin(L), however for every n ∈ N player-2 is the winner of
UDEn(L).

Church Synthesis Problem for Noisy Input 285

6 Mean-Payoff Games with Errors

Quantitative languages do not enjoy the same robustness as ω regular languages.
In particular, the class of quantitative languages recognized by the deterministic
mean-payoff automata is a strict subset of the class of quantitative languages
recognized by the non-deterministic mean-payoff automata [8]. In addition,
deterministic mean-payoff automatons are not closed under the conjunction
operation [8].

In this section we consider only quantitative languages defined by a de-
terministic mean-payoff automaton. We also assume that the mean-payoff
condition is an objective of the form of MeanPayoffInf≥(0). However unless
noted otherwise, the proofs can be easily modified for MeanPayoffInf>(0),
MeanPayoffSup≥(0) and MeanPayoffSup>(0) objectives.

The next theorem is the main result of this section.

Theorem 3. Let L ⊆ (Σ1 × Σ2)ω be a quantitative language recognized by a
mean-payoff automaton A.
1. For every δ > 0, it is undecidable who is the winner of DEδ(L).
2. For every δ > 0, it is undecidable who is the winner of UDEδ(L).
3. For every n ∈ N it is decidable who is the winner of DEn(L) and of DEfin(L).
4. For δ = 0, it is decidable who is the winner of DEδ(L). Moreover, player-2

is the winner of DEδ(L), for δ = 0 ⇔ player-2 is the winner DEfin(L)1.

A proof outline for Theorem 3. The first two items are proved by an imme-
diate reduction from the universality problem of non-deterministic mean-payoff
automatons. This problem was proved to be undecidable in [10,8].

For the last two items we prove that for every quantitative language defined
by a mean-payoff automaton A, there exists a computable mA such that: Player-
1 is the winner of DEmA(L) ⇔ Player-1 is the winner of DEfin(L) ⇔ Player-1
is the winner of DEδ(L) for δ = 0.

Determining the winner of DEm(L) for fixed m ∈ N is done by a reduction
to a game without errors with winning condition of the form

⋂f(m)
i=1 Li, where

f(m) is computable from m and Li is a quantitative language computable from
L, m and i. The proof is concluded with the following lemma.

Lemma 2. Let A1, . . . ,Ak be mean-payoff automatons. Let L =⋂k
i=1 LAi,MeanPayoffInf≥(0). Then it is decidable who is the winner of the

Gale-Stewart game GL.

The proof of Lemma 2 is given is section 7.
Need for infinite memory strategies. The following proposition assert that
player-2 has to use infinite memory strategies for DEn games even for n = 1.

Proposition 3. There exists an ω language L recognized by a mean-payoff au-
tomaton such that player-2 is the winner of DEn(L) for every n ∈ N, however
player-2 does not have a finite memory winning strategy for DEn(L) even for
n = 1.
1 The proof of item 4 holds only for MeanPayoffInf≥(0) objective.

286 Y. Velner and A. Rabinovich

7 Multidimensional Mean-Payoff Games

Multidimensional mean-payoff games are an extension of mean-payoff games to
graphs with multidimensional weights. A multidimensional mean-payoff objec-
tive is a boolean combination of one dimensional mean-payoff objectives. For
example, let G be a graph with weight function w : E → Z2, and ν ∈ Q. Let
φ1 be the MeanPayoffInf≥(ν) objective according to the projection of w to the
first dimension, and φ2 be the MeanPayoffInf≥(ν) objective according to the
projection of w to the second dimension. A possible multidimensional objective
can be any boolean combination of φ1 and φ2.

One interesting form of multidimensional objective is a conjunction of one
dimensional mean-payoff objectives. This objective was introduced in [7]. How-
ever, the decidability of who is the winner was proved only for the case where
player-2 is restricted to finite memory strategies. The general case (i.e., when
player-2 strategy is not limited to finite memory) was stated as an open question.
In this section we prove decidability and present tight complexity bounds to the
question of who is the winner. Thus we answer an open question from [7], and
complete the proof of Theorem 3.

Another interesting multidimensional objective is a positive boolean combi-
nation of one dimensional mean-payoff objectives. For this case we prove decid-
ability of who is the winner.

Since in this section we consider games without errors, we find it convenient
to use the standard definitions of games on graphs presented below.

Game graph. A game graph G = 〈Q,E〉 consists of a finite set Q of states
partitioned into player-1 states Q1 and player-2 statesQ2. The graph is bipartite,
i.e., E ⊆ (Q1 ×Q2)∪ (Q2 ×Q1). In addition, every state must have an outdegree
of at least 1.

Plays and strategies. A game on G starting from an initial state q0 ∈ Q
is played in rounds as follows. If the game is in a player-1 state, then player-1
chooses an outgoing edges; otherwise the game is in a player-2 state, and player-2
chooses an outgoing edges. The game results is a play from q0, i.e., an infinite
path ρ = q0e0q1e1 . . . such that ei is an edge from qi to qi+1 for all i ≥ 0. A
strategy for player-1 is a function τ : (Q×E)∗×Q1 → E. A strategy for player-2
is a function τ : (Q× E)∗ ×Q2 → E.

Mean-payoff vector. Let G be a game graph, k ∈ N, and w : E → Zk be a
multi-dimension weight function for the edges. We denote by wi the projection
of w to dimension i. Let π ∈ (Q×E)ω be an infinite path (i.e., play) in G. The
mean-payoff vector

−−→
MP(π) = (MP(π)1, . . . ,MP(π)k,MP(π)1, . . . ,MP(π)k) has

2k dimensions. In the first k dimensions, MP(π)i = MP(wi, π), for i = 1, . . . , k.
Similarly, in the last k dimensions, MP(π)i = MP(wi, π), for i = 1, . . . , k.

Multidimensional mean-payoff objectives. For a k-dimensional game and
S ⊆ {1, . . . , k} and ν ∈ Q we denote by

∧
MeanPayoffSup≥

S (ν) the following
objectives:

Church Synthesis Problem for Noisy Input 287

Player-2 wins
∧

MeanPayoffSup≥
S (ν) in a play π if MP(π)i ≥ ν, for every

i ∈ S.

The objectives
∧

MeanPayoffSup>
S (ν),

∧
MeanPayoffInf≥S (ν) and∧

MeanPayoffInf>S (ν), are defined similarly. When S = {1, . . . , k} we
will drop the subscript and write

∧
MeanPayoffSup≥(ν) instead of∧

MeanPayoffSup≥
{1,...,k}(ν).

An objective is conjunctive if it is a conjunction of conditions of the form
MP(π)i ∼ ν and MP(π)i ∼ ν, where ∼∈ {>,≥}.∨∧

MeanPayoffInf≥,>(ν) is the class of objectives of the form∨
i∈{1,...,m}

∧
j∈Si

MP(π)j ∼ ν, where ∼∈ {>,≥} and S1, . . . , Sm ⊆ {1, . . . , k}.∧∨
MeanPayoffSup≥,>(ν) is the class of objectives of the form∨

i∈{1,...,m}
∧

j∈Si
MP(π)j ∼ ν, where ∼∈ {>,≥} and S1, . . . , Sm ⊆ {1, . . . , k}.

Let w be a weight function and b, c ∈ Q such that b > 0, and π be a play.
Then MP(w, π)i ≥ ν iff MP(w′, π)i ≥ bν+c, where w′ is a weight function equal
to w in all dimensions except i and w′

i = bwi + c. Similar equivalences hold for
MP .

For −→ν ∈ Q2k an objective MultiDimensionMeanPayoff(−→ν) is defined as
{π ∈ (Q × E)ω|−−→MP(π) ≥ −→ν }. Clearly determining the winner of a game with
MultiDimensionMeanPayoff(−→ν) objective is log-space reducible to determining
the winner of a game with conjunctive objective.

The next two theorems are the main result of this section.

Theorem 4. For every finite game graph G = 〈Q,E〉 with a weight function
w : E → Zk, and a conjunctive objective φ: player-1 has a winning strategy iff
he has a memoryless winning strategy.

Theorem 5. For input: game graph G = 〈Q,E,w : E → Zk〉, initial state
q ∈ Q and ν ∈ Q. The problem of deciding whether player-2 is the winner for a
multidimensional mean-payoff objective φ is

1. In coNP ∩ NP when φ ∈ {
∧

MeanPayoffSup≥(ν),
∧

MeanPayoffSup>(ν)}.
Moreover the problem of determining the winner is in P̃ (i.e., it has a pseudo-
polynomial-time algorithm) and there is a polynomial time Cook reduction to
the problem of determining the winner of a (one dimensional) mean-payoff
game.

2. (Strongly) coNP complete when
φ ∈ {

∧
MeanPayoffInf≥(ν),

∧
MeanPayoffInf>(ν)}.

3. (Strongly) coNP complete when φ is an arbitrary conjunctive objective.
4. (Strongly) coNP complete when φ ∈

∨∧
MeanPayoffInf≥,>(ν) and

(Strongly) NP complete when φ ∈
∧∨

MeanPayoffSup≥,>(ν).

We recall that an algorithm runs in pseudo-polynomial time, for input G =
〈Q,E,w : E → Zk〉, if its running time is polynomial in the size of G and the
description of w, when the values of the weight function w are represented in
unary. A (co)NP-complete problem is called strongly (co)NP-complete if it is
proven that it cannot be solved by a pseudo-polynomial time algorithm unless
P=NP.

288 Y. Velner and A. Rabinovich

We would like to note that the lower bounds of Theorems 5(2)-(3) are easily
obtained from proofs of lower bounds in [7]. Our proof of Theorems 5(2) relies
on the corresponding result of [7] for the case when the players are restricted to
use only finite state memory strategies.

We are now ready to prove Lemma 2.

Proof of Lemma 2. We begin with the following remark.

Remark 2. Let A1, A2 be automatons with a
∧

MeanPayoffInf≥(0) objective.
Then there exists an automaton A3 with a

∧
MeanPayoffInf≥(0) objective such

that LA3 = LA1 ∩LA2 . Moreover A3 is computable from A1 and A2, and |A3| =
|A1| × |A2|.

By Remark 2 we conclude the proof of Lemma 2 in the following way.
Let A1, . . . ,Ak be a one dimension mean-payoff automatons. Let L =⋂k

i=1 LAi,MeanPayoffInf≥(0). Then one can compute a k dimensional mean-payoff
automaton A such that LA,

∧
MeanPayoffInf≥(0) = L. By Theorem 5 deciding the

winner in the Gale-Stewart game defined by L is decidable.
Moreover, Remark 2 implies that Theorem 3 can be extended also to quan-

titative languages defined by a multidimensional mean-payoff automaton with∧
MeanPayoffInf≥(0) objective.
Note that by the same arguments we can prove Lemma 2 for∧
MeanPayoffInf>(0),

∧
MeanPayoffSup≥(0) and

∧
MeanPayoffSup>(0)

objectives.

8 Conclusion and Further Work

In this work we investigated games with errors and obtained decidability results
described in Table 1. Our proofs immediately imply a 2-EXPTIME upper bound
for the complexity of determining the winner of a game with errors (for the
decidable fragments). Further work is required to give tighter complexity bounds.
Further work may also consider additional classes of specification languages.
While Table 1 contains five open problems, we believe that the following two open
problems may have applications outside the framework of games with errors.

1. Decidability of the bounded number of errors problem for regular games with
undetected errors.

2. Decidability of who is the winner of UDEδ(L) game for ω regular language
L and δ = 0.

We also investigated multidimensional mean-payoff games and provided com-
plexity bounds for interesting fragments of these games. The following two in-
teresting problems are open.

1. Decidability of who is the winner for arbitrary multidimensional mean-payoff
objective (as defined in section 7). For example, the decidability of who is
the winner for the objective

{π ∈ (Q× E)ω|(MP (π)1 ≥ 0) ∧ (MP(π)2 ≥ 0) ∨ (MP(π)3 ≥ 0)}
was not determined in this paper.

Church Synthesis Problem for Noisy Input 289

2. Complexity of solving multidimensional mean-payoff games with fixed num-
ber of dimensions and a

∧
MeanPayoffInf≥(0) objective. Specifically whether

the problem of determining the winner is in NP∩coNP, and/or in P̃?

References

1. Alur, R., Degorre, A., Maler, O., Weiss, G.: On omega-languages defined by mean-
payoff conditions. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp.
333–347. Springer, Heidelberg (2009)

2. Bjorklund, H., Sandberg, S., Vorobyov, S.: Memoryless determinacy of parity and
mean payoff games: a simple proof. Theoretical Computer Science 310, 365–378
(2004)

3. Brázdil, T., Jancar, P., Kucera, A.: Reachability games on extended vector addi-
tion systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489.
Springer, Heidelberg (2010)

4. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transactions of the AMS 138, 295–311 (1969)

5. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean payoff parity games. In:
Proc. of LICS, pp. 178–187. IEEE Computer Society, Los Alamitos (2005)

6. Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6199, pp. 599–610. Springer, Heidelberg (2010)

7. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Generalized mean payoff
and Energy Games. To appear in Proc. of FSTTCS (2010)

8. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-
Payoff Automaton Expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010)

9. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-
regular games with imperfect information,. In: Ésik, Z. (ed.) CSL 2006. LNCS,
vol. 4207, pp. 287–302. Springer, Heidelberg (2006)

10. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Torunczyk, S.: Energy and
Mean-Payoff Games with Imperfect Information. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)

11. Ehrenfeucht, A., Mycielski, J.: International journal of game theory. Positional
Strategies for Mean-Payoff Games 8, 109–113 (1979)

12. Grädel, E., Thomas, W., Wilke, T.: Automata, Logics, and Infinite Games. LNCS,
vol. 2500. Springer, Heidelberg (2002)

13. Holtmann, M., Kaiser, L., Thomas, W.: Degrees of Lookahead in Regular Infi-
nite Games. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 252–266.
Springer, Heidelberg (2010)

14. Kosaraju, S.R., Sullivan, G.F.: Detecting cycles in dynamic graphs in polynomial
time. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, pp. 398–406 (1988)

15. Reif, J.H.: The complexity of two-player games of incomplete information. Journal
of Computer and System Sciences 29(2), 274–301 (1984)

16. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, vol. B, pp. 133–191. Elsevier Science Pub., Amsterdam (1990)

17. Zwick, U., Paterson, M.: The Complexity of Mean Payoff Games on Graphs.
Theoretical Computer Science 158, 343–359 (1996)

Probabilistic Modal μ-Calculus
with Independent Product

Matteo Mio

LFCS, School of Informatics, University of Edinburgh

Abstract. The probabilistic modal μ-calculus pLμ (often called the
quantitative μ-calculus) is a generalization of the standard modal μ-
calculus designed for expressing properties of probabilistic labeled tran-
sition systems. The syntax of pLμ formulas coincides with that of the
standard modal μ-calculus. Two equivalent semantics have been studied
for pLμ, both assigning to each process-state p a value in [0, 1] represent-
ing the probability that the property expressed by the formula will hold
in p: a denotational semantics and a game semantics given by means of
two player stochastic games. In this paper we extend the logic pLμ with
a second conjunction called product, whose semantics interprets the two
conjuncts as probabilistically independent events. This extension allows
one to encode useful operators, such as the modalities with probability
one and with non-zero probability. We provide two semantics for this ex-
tended logic: one denotational and one based on a new class of games
which we call tree games. The main result is the equivalence of the two
semantics. The proof is carried out in ZFC set theory extended with
Martin’s Axiom at the first uncountable cardinal.

1 Introduction

The modal μ-calculus Lμ [10] is a very expressive logic, for expressing properties
of reactive systems (labeled transition systems), obtained by extending classical
propositional modal logic with least and greatest fixed point operators. In the last
decade, a lot of research has focused on the study of reactive systems that exhibit
some kind of probabilistic behavior, and logics for expressing their properties
[14,5,9,6,8]. Probabilistic labeled transition systems (PLTS’s) [15] are a natural
generalization of standard LTS’s to the probabilistic setting, as they allow both
(countable) non-deterministic and probabilistic choices.

The probabilistic modal μ-calculus pLμ, introduced in [14,9,5], is a generaliza-
tion of Lμ designed for expressing properties of PLTS’s. This logic was originally
named the quantitative μ-calculus, but since other μ-calculus-like logics, designed
for expressing properties of non-probabilistic systems, have been given the same
name (e.g. [7]), we adopt the probabilistic adjective. The syntax of the logic pLμ
coincides with that of the standard μ-calculus. The denotational semantics of
pLμ [14,5] generalizes that of Lμ, by interpreting every formula F as a map
�F � : P → [0, 1], which assigns to each process p a degree of truth. In [12], the
authors introduce an alternative semantics for the logic pLμ. This semantics,

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 290–304, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Probabilistic Modal μ-Calculus with Independent Product 291

given in term of two player stochastic (parity) games, is a natural generalization
of the two player (non-stochastic) game semantics for the logic Lμ [16]. As in Lμ
games, the two players play a game starting from a configuration 〈p, F 〉, where
the objective for Player 1 is to produce a path of configurations along which the
outermost fixed point variable X unfolded infinitely often is bound by a greatest
fixed point in F . On a configuration of the form 〈p,G1 ∨ G2〉, Player 1 chooses
one of the disjuncts Gi, i∈ {1, 2}, by moving to the next configuration 〈p,Gi〉.
On a configuration 〈p,G1 ∧ G2〉, Player 2 chooses a conjunct Gi and moves to
〈p,Gi〉. On a configuration 〈p, μX.G〉 or 〈p, νX.G〉 the game evolves to the con-
figuration 〈p,G〉, after which, from any subsequent configuration 〈q,X〉 the game
again evolves to 〈q,G〉. On configurations 〈p, 〈a〉G〉 and 〈p, [a]G〉, Player 1 and
2 respectively choose a transition p

a−→ d in the PLTS and move the game to
〈d,G〉. Here d is a probability distribution (this is the key difference between pLμ
and Lμ games) and the configuration 〈d,G〉 belongs to Nature, the probabilistic
agent of the game, who moves on to the next configuration 〈q,G〉 with proba-
bility d(q). This game semantics allows one to interpret formulae as expressing,
for each process p, the (limit) probability of a property, specified by the formula,
holding at the state p. In [12], the equivalence of the denotational and game se-
mantics for pLμ on finite models, was proven. The result was recently extended
to arbitrary models by the present author [13].

In this paper we consider an extension of the logic pLμ obtained by adding to
the syntax of the logic a second conjunction operator (·) called product and its De
Morgan dual operator called coproduct (+). We call this extension the probabilis-
tic modal μ-calculus with independent product, or just pLμ�. The denotational
semantics of the product operator is defined as �F · G�(p) = �F �(p) · �G�(p),
where the product symbol in the right hand side is multiplication on reals. Such
an operator was already considered in [9] as a possible generalization of standard
boolean conjunction to the lattice [0, 1]. Our logic pLμ+ is novel in containing
both ordinary conjunctions and disjunctions (∧ and ∨) and independent prod-
ucts and coproducts (· and +). While giving a denotational semantics to pLμ+
is straightforward, the major task we undertake in this paper is to extend the
game semantics of [12] to the new connectives. The game semantics implements
the intuition that H1 ·H2 expresses the probability that H1 and H2 both hold
if verified independently of each other.

To capture formally this intuition we introduce a game semantics for the logic
pLμ+ in which independent execution of many instances of the game is allowed.
Our games build on those for pLμ outlined above. Novelty arises in the game
interpretation of the game-states 〈p,H1 ·H2〉 and 〈p,H1 + H2〉: when during
the execution of the game one of these kinds of nodes is reached, the game is
split into two concurrent and independent sub-games continuing their execu-
tions from the states 〈p,H1〉 and 〈p,H2〉 respectively. The difference between
the game-interpretation of product and coproduct operators is that on a prod-
uct configuration 〈p,H1 ·H2〉, Player 1 has to win in both generated sub-games,
while on a coproduct configuration 〈p,H1 +H2〉 Player 1 needs to win just one
of the two generated sub-games.

292 M. Mio

Fig. 1. Illustrative example

To illustrate the main ideas, let us consider the PLTS of figure 1(a) and
the pLμ formula F = 〈a〉〈a〉tt which asserts the possibility of performing two
consecutive a-steps. The probability of F being satisfied at p is 1

2 , since after the
first a-step, the process 0 is reached with probability 1

2 and no further a-step is
possible. Let us consider the pLμ+ formula H=μX.F +X . Figure 1(b) depicts
a play in the game starting from the configuration 〈p,H〉 (fixed-point unfolding
steps are omitted). The branching points represent places where coproduct is
the main connective, and each Ti represents play in one of the independent
subgames for 〈p, F 〉 thereupon generated. We call such a tree, describing play on
all independent subgames, a branching play. Since all branches are coproducts,
and the fixpoint is a least fixpoint, the objective for Player 1 is to win at least
one of the games Ti. Since the probability of winning a particular game Ti is 1

2 ,
and there are infinitely many independent such games, almost surely Player 1
will win one of them. Therefore the game semantics assigns H at p the value 1.

The above example illustrates an interesting application of the new operators,
namely the possibility of encoding the qualitative probabilistic modalities P>0F
(F holds with probability greater than zero) and P=1F (F holds with probability
one), which are equivalent to the pLμ+ formulae μX.F +X and νX.F ·X re-
spectively. These encodings, which are easily seen to be correct denotationally,
provide a novel game interpretation for the qualitative probabilistic modalities,
which makes essential use of the new branching features of pLμ� games (giv-
ing a direct game interpretation to the qualitative modalities seems no easier
than giving the game semantics for the whole of pLμ�.) Moreover, they show
that the interpretation of pLμ+ formulae is, in general, not continuous on the
free variables: P>0Y is an example of pLμ+ formula discontinuous on Y , since
�P>0Y �ρ(p)=1 if ρ(Y)(p)>0 and �P>0Y �ρ(p)=0 otherwise, where ρ interprets
every variable Y as a map from process-states to [0, 1]. Other useful proper-
ties can be expressed by using these probabilistic modalities in the scope of
fixed point operators. Some interesting formulae include μX.

(
〈a〉X ∨ (P=1H)

)
,

νX.
(
P>0〈a〉X

)
and P>0

(
νX.〈a〉X

)
: the first assigns to a process p the probabil-

ity of eventually reaching, by means of a sequence of a-steps, a state in which

Probabilistic Modal μ-Calculus with Independent Product 293

H holds with probability one; the second, interpreted on a process p, has value
1 if there exists an infinite sequence of possible (in the sense of having proba-
bilty greater than 0) a-steps starting from p, and 0 otherwise; the third formula,
express a stronger property, namely it assigns to a process p value 1 if the prob-
ability of making (starting from p) an infinite sequence of a-steps is greater than
0, and value 0 otherwise. Moreover, every property expressible in the qualitative
fragment of PCTL [8] can be formulated as a pLμ� formula.

Formalizing the pLμ+ games outlined above is a surprisingly technical un-
dertaking. To account for the branching plays that arise, we introduce a general
notion of tree game which is of interest in its own right. Tree games generalize
2-player stochastic games, and are powerful enough to encode certain classes of
games of imperfect information such as Blackwell games [2]. Tree games can also
be used to formulate other notions that appear in the literature on stochastic
games such as qualitative determinacy [3,1] and branching-time winning objec-
tives [4]. This, as well as the encoding of qualitative PCTL mentioned above,
will appear in the author’s forthcoming PhD thesis.

A further level of difficulty arises in expressing when a branching play in a
pLμ+ game is considered an objective for Player 1. This is delicate because
branching plays can contain infinitely many interleaved occurrences of product
and coproduct operations (so our simple explanation of such nodes above does
not suffice). To account for this, branching plays are themselves considered as
ordinary 2-player (parity) games with coproduct nodes as Player 1 nodes, and
product nodes as Player 2 nodes. Player 1’s goal in the outer pLμ+ game is
to produce a branching play for which, when itself considered as a game, the
inner game, he has a winning strategy. To formalize the class of tree games
whose objective is specified by means of inner games, we introduce the notion
of 2-player stochastic meta-game.

Our main technical result is the equivalence of the denotational semantics and
the game semantics for the logic pLμ+. As in [13] the proof of equivalence of
the two semantics is based on the unfolding method of [7]. However there are
significant complications, notably, the transfinite inductive characterization of
the set of winning branching plays in a given pLμ+-game (section 6) and the
lack of denotational continuity on the free variables taken care by the game-
theoretic notion of robust Markov branching play (section 7). Moreover, because
of the complexity of the objectives described by means of inner games, the
proof is carried out in ZFC set theory extended with MAℵ1 (Martin’s Axiom at
ℵ1) which is known to be consistent with ZFC. We leave open the question of
whether our result is provable in ZFC alone; we do not know if this is possible
even restricting the equivalence problem to finite models.

The rest of the paper is organized as follows: in section 2, we fix some termi-
nology and discuss the property MAℵ1 . In section 3, we define the syntax and
the denotational semantics of the logic pLμ+. In section 4, the class of stochastic
tree games, and its sub-class given by two player stochastic meta-parity games,
are introduced in detail. In section 5, the game semantics of pLμ+ is defined
in terms of two player stochastic meta-parity games. In section 6, we provide

294 M. Mio

a transfinite inductive characterization of the objective of the game associated
with a formula μX.F . In section 7, we sketch the main ideas of the proof of the
main theorem, which states the equivalence of the two semantics.

2 Background Definitions and Notation

Definition 1 (Probability distributions). A probability distribution d over
a set X is a function d :X→ [0, 1] such that

∑
x∈X d(x) = 1. The support of d,

denoted by supp(d) is defined as the set {x ∈X | d(x) > 0}. We denote with
D(X) the set of probability distributions over X .

Definition 2 (PLTS [15]). Given a countable set L of labels, a Probabilistic
Labeled Transition System is a pair 〈P, { a−→}a∈L〉, where P is a countable set of
states and a−→⊆P×D(P) for every a ∈ L. In this paper we restrict our attention
to those PLTS such that for every p∈P and every a∈L, the set {d | p a−→ d} is
countable. We refer to the countable set

⋃
a∈L

⋃
p∈P {d | p a−→ d} as the set of

probability distributions of the PLTS.

Definition 3 (Lattice operations). Given a set X , we denote with 2X the
set of all subsets Y ⊆ X . Given a complete lattice (X,<), we denote with⊔

: 2X →X and
�

: 2X →X the operations of join and meet respectively.

In the following we assume standard notions of basic topology and basic measure
theory. The topological spaces we consider will always be 0-dimensional Polish
spaces. We specify a probability measure on such a space by assigning compatible
values in [0, 1] to basic clopen sets. Such an assignment extends, using standard
technology, to a probability measure μ on Borel sets, whence to a complete
probability measure, again called μ, on all μ-measurable sets.

Martin’s Axiom (MA), from set theory, states that, for every infinite cardi-
nal κ < 2ω, a certain property MAκ holds. In this paper we use the property
MAℵ1as an axiom. This is implied by MA+¬CH (where CH is the Continuum
Hypothesis), itself implies ¬CH, and is relatively consistent with ZFC set the-
ory. Rather than explaining MAℵ1 in detail, we instead list the consequences of
it that we need. Let μ be a σ-finite Borel measure on a Polish space X , and let
Ω be the collection of μ-measurable sets; then every Σ1

2 subset of X is in Ω and
for every {Xα}α<ω1 increasing ⊆-chain of sets Xα ∈Ω indexed by the ordinals
α<ω1 (where ω1 is the first uncountable ordinal), the statements

⋃
α<ω1

Xα∈Ω
(ω1-completeness) and μ(

⋃
α<ω1

Xα) =
⊔

α<ω1
μ(Xα) (ω1-continuity) hold. We

refer [11] for a detailed proof of equivalent properties, in the special case of
the Lebesgue measure on reals. As asserted there, the proofs generalize to the
measure spaces considered in this paper.

3 The Logic pLμ�
Given a set Var of propositional variables ranged over by the letters X , Y and
Z, and a set of labels L ranged over by the letters a, b and c, the formulae of
the logic pLμ+ are defined by the following grammar:

Probabilistic Modal μ-Calculus with Independent Product 295

F,G ::= X | [a]F | 〈a〉F | F ∧G | F ∨G | F ·G | F +G | νX.F | μX.F

which extends the syntax of the standard μ-calculus with a new kind of conjunc-
tion (·) and disjunction (+) operators called product and coproduct respectively.
As usual the operators νX.F and μX.F bind the variable X in F . A formula is
closed if it has no free variables.

Given a PLTS 〈P, { a−→}a∈L〉 we denote with (P → [0, 1]) and with (D(P)→
[0, 1]) the complete lattices of functions from P and from D(P) respectively, to
the real interval [0, 1] with the pointwise order. Given a function f :P → [0, 1],
we denote with f :D(P)→ [0, 1] the lifted function defined as follows:

f
def= λd.

(∑
p∈P d(p)·f(p)

)
.

A function ρ :Var→(P→ [0, 1]) is called an interpretation of the variables. Given
a function f :P→ [0, 1] we denote with ρ[f/X] the interpretation that assigns f
to the variable X , and ρ(Y) to all other variables Y . The denotational semantics
�F �ρ :P → [0, 1] of the pLμ+ formula F , under the interpretation ρ, is defined
by structural induction on F as follows:

�X�ρ = ρ(X)
�G ∨H�ρ = �G�ρ � �H�ρ�G ∧H�ρ = �G�ρ � �H�ρ�G+H�ρ = λp.

(�G�ρ(p) + �H�ρ(p)
)

�G ·H�ρ = λp.
(�G�ρ(p) · �H�ρ(p)

)
�〈a〉G�ρ = λp.

(⊔
{ �G�ρ(d) | p a−→ d}

)
�[a]G�ρ = λp.

(�
{ �G�ρ(d) | p a−→ d}

)
�μX.G�ρ = least fixed point of λf.(�G�ρ[f/X])�νX.G�ρ = greatest fixed point of λf.(�G�ρ[f/X])

where the symbols · and + in the definitions of �G · H�ρ and �G + H�ρ are
standard multiplication on reals and the function x+ y=x+y−xy, which is the
De Morgan dual of multiplication with respect to the negation ¬x=1−x. Since
the interpretation assigned to every pLμ+ operator is monotone, the existence of
the least and greatest fixed points is guaranteed by the Knaster-Tarski theorem.
Moreover the least and the greatest fixed points can be computed inductively
as follows: �μX.G�ρ =

⊔
α�μX.G�α

ρ and �νX.G�ρ =
�

α�νX.G�α
ρ where α, β are

ordinals and �μX.G�α
ρ and �νX.G�α

ρ are defined as follows:

�μX.G�α
ρ =

⊔
β<α�G�ρ[�μX.G�β

ρ /X] and �νX.G�α
ρ =

�
β<α�G�ρ[�νX.G�β

ρ /X]

4 Stochastic Tree Games

In this (unavoidably long) section we introduce a new class of games which we
call stochastic two player tree games, or just 2 1

2 -player tree games. Stochastic
tree games generalizes standard two player stochastic games by allowing a new

296 M. Mio

class of branching nodes on which the execution of the game is split in indepen-
dent concurrent sub-games. Formally, stochastic tree games are infinite duration
games played by Player 1, Player 2 and a third probabilistic agent named Na-
ture, on a Arena A=〈(S,E), (S1, S2, SN , B), π〉, where (S,E) is a directed graph
with countable set of vertices S and transition relation E, (S1, S2, SN , B) is a
partition of S and π : SN → D(S). The states in S1, S2, SN and B are called
Player 1 states, Player 2 states, probabilistic states and branching states respec-
tively. We denote with E(s), for s∈S, the set {s′ | (s, s′) ∈ E}. As a technical
constraint, we require that supp(π(s))⊆E(s), for every s∈SN .

Definition 4 (Paths in A). We denote with Pω and P<ω the sets of infinite
and finite paths in A. Given a finite path s∈P<ω we denote with last(s) the
last state s ∈ S of s. We denote with P<ω

1 and P<ω
2 the sets of finite paths

s such that last(s) ∈ S1 and last(s) ∈ S2 respectively. We write s � s′, with
s, s′ ∈P<ω, if s′ = s.s, for some s∈ S, where as usual the dot symbol denotes
the concatenation operator. We denote with Pt the set of terminated paths, i.e.
the set of paths s such that E(last(s))=∅. We denote with P the set Pω ∪ Pt

and we refer to this set as the set of completed paths in A. Given a finite path
s∈P<ω, we denote with Os the set of all completed paths having s as prefix.
We consider the standard topology on P where the countable basis for the open
sets is given by the clopen sets Os, for s∈P<ω.

Definition 5 (Tree in A). A tree in the arena A is a collection C={si}i∈I of
finite paths si∈P<ω , such that

1. C is down-closed: if s∈C and s′ is a prefix of s, then s′∈C.
2. C has a root: there exists exactly one finite path {s} of length one in C. The

path {s}, denoted by root(C), is called the root of the tree C.

We consider the nodes s of C as labeled by the last function.

Definition 6 (Uniquely and fully branching nodes of a tree). A node s
in a tree T is said to be uniquely branching in T if either E(last(s))=∅ or s has
a unique successor in T . Similarly, s is fully branching in T if, for every s∈E(s),
it holds that s.s∈T .

An outcome of the game in A, which we call a branching play, is a possibly
infinite tree T in A defined as follows:

Definition 7 (Branching play in A). A branching play in the arena A is a
tree T in A such that, for every node s∈T the following conditions holds:

1. If last(s)∈S1 ∪ S2 ∪ SN then s branches uniquely in T .
2. If last(s)∈B then s branches fully in T .

We denote with T the set of branching plays T in the arena A.

A branching play T represents a possible execution of the game from the state s
labeling the root of T . The nodes of T with more than one child are all labeled
with a state s ∈ B and are the branching points of the game; their children
represent the independent instances of play generated at the branching point.

Probabilistic Modal μ-Calculus with Independent Product 297

Definition 8 (Topology on T). Given a finite tree F in A, we say that F is
a branching-play prefix, if there exists some T ∈ T , such that F ⊆ T . Given a
branching-play prefix F , we denote with OF ⊆ T the set of all branching plays
T , such that F ⊆ T . We fix the topology on T , where the basis for the open sets
is given by the clopen sets OF , for every branching-play prefix F . It is routine
to show that this is a 0-dimensional Polish space.

As usual when working with stochastic games, it is useful to look at the possible
outcomes of a play up-to the behavior of Nature. In the context of standard
two player stochastic games this amounts at considering Markov chains. In our
setting the following definition of Markov branching play is natural:

Definition 9 (Markov branching play in A). A Markov branching play in
A is a tree M in A such that for every node s ∈M , the following conditions
holds:

1. If last(s)∈S1 ∪ S2 then s branches uniquely in T .
2. If last(s)∈SN ∪B then s branches fully in T .

A Markov branching play, is similar to a branching play except that probabilistic
choices of Nature have not been resolved.

Definition 10 (Probability measure MM). Every Markov branching play
M determines a probability assignment MM to every basic clopen set OF ⊆T ,
for F a branching-play prefix, defined as follows:

MM (OF) def=

{∏
{π(s, s′) | s.s.s′∈F ∧ s∈SN} if F ⊆ M

0 otherwise

It is the above definition that implements the probabilistic independence of the
sub-branching plays that follows a branching node s. The assignment MM ex-
tends to a unique complete probability measure MM on the measurable space
ΩM of all MM -measurable sets. By MAℵ1 , the collection ΩM is ω1-complete,
and the probability measure MM is ω1-continuous.

Definition 11 (Measurable space of branching plays in A). We define the
measurable space (T , Ω) of branching plays in A taking Ω =

⋂
M ΩM , where M

ranges over Markov branching plays in A. We say that a set X⊆T is measurable
if X ∈ Ω. The fact that the σ-algebra Ω is closed under arbitrary ω1-unions
follows from the remark above that ΩM , for every M , is ω1-complete. Given any
Markov branching play M in A, the (ω1-continuous) probability measure MM ,
induced by M on the measurable space ΩM restricts to a unique (ω1-continuous)
probability measure on the smaller space Ω, which we denote again with MM .

Definition 12 (Two player stochastic tree game). A two player stochastic
tree game (or a 2 1

2 -player tree game) is given by a pair 〈A, Φ〉, where A is a
stochastic tree game arena as described above, and Φ ⊆ T , which is the objective
for Player 1, is a measurable set of branching plays in A.

298 M. Mio

Definition 13 (Expected value of a Markov branching play). Let 〈A, Φ〉
be a 2 1

2 -player tree game, and M a Markov branching play in A. We define the
expected value of M as: E(M) = M(Φ). The value E(M) should be understood
as the probability for Player 1 to win the play.

As usual in game theory, players’ moves are determined by strategies.

Definition 14 (Deterministic strategies). An (unbounded memory deter-
ministic) strategy σ1 for Player 1 in A is defined as a function σ1 :P<ω

1 →S∪{•}
such that σ1(s)∈E(last(s)) if E(last(s)) �=∅ and σ1(s)=• otherwise. Similarly a
strategy σ2 for Player 2 is defined as a function σ2 :P<ω

2 →S∪{•}. A pair 〈σ1, σ2〉
of strategies, one for each player, is called a strategy profile and determines the
behaviors of both players.

Note that the above definition of strategy captures the intended behavior of the
game; both players when acting on a given instance of the game, know all the
history of the actions happened on that sub-game, but have no knowledge of the
evolution of the other independent parallel sub-games.

Definition 15 (M s0
σ1,σ2

). Given an initial state s0 ∈ S and a strategy profile
〈σ1, σ2〉 a unique Markov branching play M s0

σ1,σ2
is determined:

1. the root of M is labeled with s0,
2. For every s∈M s0

σ1,σ2
, if last(s)=s with s∈S1 not a terminal state, then the

unique child of s in M s0
σ1,σ2

is s.
(
σ1(s)

)
.

3. For every s∈M s0
σ1,σ2

, if last(s)=s with s∈S2 not a terminal state, then the
unique child of s in M s0

σ1,σ2
is s.

(
σ2(s)

)
.

Definition 16 (Upper and lower values of a 2 1
2 -player tree game). Let

G = 〈A, Φ〉 be a 2 1
2 -player tree game. We define the lower and upper values of

G on the state s, denoted by V als↓(G) and V als↑(G) respectively, as follows:

V als↓(G) =
⊔

σ1

�
σ2
E(M s

σ1,σ2
) V als↑(G) =

�
σ2

⊔
σ1
E(M s

σ1,σ2
)

V als↓(G), represents the limit probability of Player 1 winning, when the game
begins in s, by choosing his strategy σ1 first and then letting Player 2 pick an
appropriate counter strategy σ2. Similarly V als↑(G) represents the limit proba-
bility of Player 1 winning, when the game begins in s, by first letting Player 2
choose a strategy σ2 and then picking an appropriate counter strategy σ1. In
case V als↓(G)=V als↑(G), we say that the game G at s is determined.

Definition 17 (ε-optimal strategies). Let G = 〈A, Φ〉 be a 2 1
2 -player tree

game. We say that a strategy σ1 for Player 1 in G is ε-optimal, for ε> 0, if for
every state s, the following inequality holds:

�
σ2
E(M s

σ1,σ2
) > V als↓(G) − ε.

Similarly we say that a strategy σ2 for Player 2 in G is ε-optimal, for ε>0, if for
every state s, the following inequality holds:

⊔
σ1
E(M s

σ1,σ2
) < V als↑(G) + ε.

Clearly ε-optimal strategies for Player 1 and Player 2 always exist for every ε>0.

Probabilistic Modal μ-Calculus with Independent Product 299

An interesting class of 2 1
2 -player tree games is given by what we call meta-

games. A meta-game is a 2 1
2 -player tree game G, which we refer to as the outer

game, in which branching plays are themselves interpreted as (ordinary) two
player games and the objective Φ of G is defined as the set of branching plays
T in which this inner game is winnable for a given player taking part in it. We
illustrate this notion by formalizing the class of 2 1

2 -player meta-parity games.
A 2 1

2 -player meta-parity game G is specified by a 2 1
2 -player tree game arena

A=〈(S,E), {S1, S2, SN , B}, π〉 and a parity structure P which is a pair 〈Pr, P l〉,
where Pr :S→{0, ..., n}, for some n ∈ N, and Pl :B→{1, 2}. The function Pr
assigns a priority to each state s ∈ S. This is needed to define the set W ⊆ P ,
of completed paths s such that

– if s is finite, then Pr(last(s)) is even,
– if s is infinite, then the least priority among those that appear (assigned by
Pr to the states of s) infinitely often in s is even.

The function Pl assigns a player identifier to each state s ∈B. This allows to
consider each branching play T in A as the game GT played by Player 1 and
Player 2 on the tree T : Player 1 moves on a node s of T , such that Pl(last(s)) =
1, by choosing a successor in the (possibly empty) set of children of s. Similarly
Player 2 moves on the node s of T such that Pl(last(s)) = 2. The result of a play
in the game GT is a completed path in T . We say that Player 1 wins a play if the
resulting path is in W ; Player 2 wins otherwise. Since W is a parity objective
we have that GT is a parity game. The meta-parity game G can therefore be
defined formally as a stochastic two player tree game, as follows:

Definition 18 (Two player stochastic meta-parity game). A two player
stochastic meta-parity game specified by the pair 〈A,P〉, is formally defined as
the 2 1

2 -player tree game 〈A, Φ〉 where Φ is defined as follows:

Φ = {T | T ∈ T and Player 1 has a winning strategy in GT }
The definition is good because the measurabilty of Φ follows from MAℵ1and the
following Lemma.

Lemma 1. The set Φ is a Δ1
2 set and hence a Σ1

2 set in T .

5 Game Semantics of pLμ�
In this section we describe the pLμ+ game GF

ρ associated to each triple con-
sisting of a PLTS 〈P, { a−→}a∈L〉, a (possibly open) pLμ+ formula F , and an
interpretation of the variables ρ. For convenience, we assume that F is normal
[16], i.e., every occurrence of a μ or ν binder binds a distinct variable, and no
variable appears both free and bound. The game GF

ρ is a 2 1
2 -player meta-parity

game specified by the arena AF
ρ = 〈(S,E), (S1, S2, SN , B), π〉 and parity struc-

ture P = 〈Pr, P l〉 defined as follows. The countable set S of vertices of the
directed graph (S,E) is given by the set.

S = (P×Sub (F)) ∪ (D×Sub (F)) ∪ {⊥,�}

300 M. Mio

where P is the set of processes, Sub(F) is the set of sub-formulae of F (defined as
usual, e.g. [16]), D is the set of distributions in the PLTS (see definition 2) and
{⊥,�} are two special states. The relation E is defined as follows: E(〈d,G〉)=
{〈p,G〉 | p∈ supp(d)} for every d ∈D; E(〈p,G〉) is defined by case analysis on
the outermost connective of G as follows:

1. if G=X , with X free in F , then E(〈p,G〉)={⊥,�}.
2. if G=X , with X bound in F by the subformula !X.H , with ! ∈ {μ, ν}, then
E(〈p,G〉)={〈p,H〉}.

3. if G=!X.H , with !∈{μ, ν}, then E(〈p,G〉)={〈p,H〉}.
4. if G=〈a〉H then E(〈p,G〉)={〈d,H〉 | p a−→ d}.
5. if G=[a]H then E(〈p,G〉)={〈d,H〉 | p a−→ d}.
6. if G=H ∗H ′ with ∗ ∈ {∨,∧,+, ·} then E(〈p,G〉)={〈p,H〉, 〈p,H ′〉}

The relation E is defined on the two special game states � and ⊥ as E(�) =
E(⊥) = ∅. This makes � and ⊥ terminal states of the game. The partition
(S1, S2, SN , B) of S is defined as follows: every state 〈p,G〉 with G’s main con-
nective in {〈a〉,∨, μX} or with G = X where X is a μ-variable, is in S1; dually
every state 〈p,G〉 with G’s main connective in {[a] ,∧, νX} or with G = X where
X is a ν-variable, is in S2. Every state of the form 〈d,G〉 or 〈p,X〉, with X free
in F , is in SN . Every state 〈p,G〉 whose G’s main connective is · or + is in B.
Lastly we define the terminal states ⊥ and � to be in S1 and S2 respectively.
The function π : SN → D(S) assigns a probability distribution to every state
under the control of Nature (thus specifying its indended probabilistic behavior)
and it is defined as π(〈d,G〉)(〈p,G〉) = d(p) on all states of the form 〈d,G〉; all
other states in SN are of the form 〈p,X〉, with X free in F ; the function π is
defined on these states as follows:

π(〈p,X〉)(s) def=

⎧⎨⎩
ρ(X)(p) if s = �
1 − ρ(X)(p) if s = ⊥
0 otherwise

The priority assignment Pr : S→ {0, ..., n} is defined, by picking a sufficiently
large n, as usual in μ-calculus games: an odd priority is assigned to the states
〈p,X〉 with X a μ-variable and dually an even priority is assigned to the states
〈p,X〉 with X a ν-variable, in such a way that if Z subsumes Y in F then
Pr(〈p, Z〉) < Pr(〈p, Y 〉). Moreover, for every terminal state s ∈ S, we define
Pr(s) = 1 if s ∈ S1, and Pr(s) = 0 if s ∈ S2. Lastly, the fuction Pl :B→{1, 2}
is defined as Pl(〈p,G1 +G2) = 1 and Pl(〈p,G1 ·G2) = 2 for every p ∈ P and
G1, G2∈Sub(F).

Note that if no (co)product operators occur in F , then B = ∅, and the game
is equivalent to the one in [12,13] for the logic pLμ. We are now ready to state
our main result.

Theorem 1 (MAℵ1). Given a PLTS 〈P, { a−→}a∈L〉, for every process p ∈ P ,
interpretation of the variables ρ and pLμ+ formula F , the equalities

V al
〈p,F 〉
↓ (GF

ρ) = V al
〈p,F 〉
↑ (GF

ρ) = �F �ρ(p)

hold. In particular the game GF
ρ is determined.

Probabilistic Modal μ-Calculus with Independent Product 301

6 Inductive Characterization of the Objective of GμX.F
ρ

In this section we provide a transfinite inductive characterization of the set ΦμX.G

of winning branching plays of the game GμX.F
ρ needed in the proof of Theorem

1. Let us consider the game GF
ρ , where X appears free in F . Note that the two

arenas AF
ρ and AμX.F

ρ are similar as they differ only in the following aspects:

1. The set of states SμX.F of AμX.F
ρ is the same as the set of states SF of AF

ρ ,
plus the set of states of the form 〈p, μX.F 〉, which however play almost no
role in the game because these nodes have only one successor (〈p, F 〉) and
are not reachable by any other state.

2. More significantly, the nodes of the form 〈p,X〉, which are present in both
game arenas, are Player 1 states in GμX.F

ρ (they have unique successor
〈p, F 〉), and Nature states in GF

ρ (they have two terminal successors � and
⊥ reachable with probabilities ρ(X)(p) and 1−ρ(X)(p) respectively).

Moreover observe that the player assignments PlF and PlμX.F are identical,
and the priority assigments PrF and PrμX.F differ only on the game-states s
of the form 〈p,X〉: PrF (s) = 0 and PrμX.F (s) =m for some odd m∈N. A GF

ρ

branching play T , rooted in 〈p, F 〉 can be depicted as in figure 2(a), where the
triangle represents the set of paths in T never reaching a state of the form 〈q,X〉,
for q ∈ P , and the other edges represents the, possibly empty, collection of paths
{si}i∈I⊆N reaching a state of the form 〈pi, X〉 which is (necessarily) followed by
a terminal state bi ∈ {�,⊥}. Similarly a branching play T in GμX.F

ρ , rooted in
〈p, F 〉, can be depicted as in figure 2(b). We extract the common part between
the branching plays GF

ρ and GμX.F
ρ by defining the notion of branching pre-play.

Definition 19 (Branching pre-play). Let T be a branching play in GF
ρ and

let I index the (necessarily countable) collection of nodes of the form 〈pi, X〉 in
T . The branching pre-play T [xi]i∈I , which can be depicted as in figure 2(c), is
the tree obtained from the branching play T by removing all subtrees rooted in
states of the form 〈pi, X〉.
Given a I-indexed family {bi}i∈I , where bi∈{�,⊥}, we denote with T [bi]i∈I the
branching play in GF

ρ obtained by adding, for every i ∈ I, the child bi to the
leaf 〈pi, X〉 of T [xi]i∈I . Similarly given a family {Ti}i∈I of branching plays in
GμX.F , where each Ti is rooted at 〈pi, G〉, we denote with T [Ti]i∈I the branching
play in GμX.F

ρ obtained by adding the subtree Ti after the leaf 〈pi, X〉. Clearly
every branching play T rooted at 〈p, F 〉 in GF

ρ is uniquely of the form T ′[bi]i∈I

for appropriate T ′[xi]i∈I and {bi}i∈I . Similarly every branching play T rooted
at 〈p, F 〉 in GμX.F

ρ is of the form T ′[Ti]i∈I for appropriate T ′[xi]i∈I and {Ti}i∈I .

Definition 20. The function mX :T μX.F →T F , from branching plays in GμX.F
ρ

to branching plays in GF
ρ , is defined for every subset X ⊆ T μX.F as follows:

mX(T [Ti]i∈I) = T [Ti∈X]i∈I where Ti∈X def=
{

� if Ti ∈ X
⊥ otherwise

302 M. Mio

Fig. 2. Branching plays and pre-plays

Lemma 2. If X ⊆ T μX.F is a measurable set, then mX is a measurable map.

We now define the operator R, of which ΦμX.G is the least fixed point.

Definition 21. The operator R : 2T
μX.F →2T

μX.F

is defined as follows:

R(X) def= m−1
X (ΦF) = {T [Ti]i∈I | T [Ti∈X]i∈I ∈ ΦF }

Theorem 2. The set ΦμX.F is the least fixed point of the monotone operator R,
which is guaranteed to exists by the Knaster-Tarski theorem. Hence the set ΦμX.F

ρ

can be defined as
⋃

α R
α where Rα is defined for every ordinal α as

⋃
β<αR(Rβ).

The following lemma, which is essential for our proof of Theorem 1, states that
the fixed points is reached in at most ω1 steps.

Lemma 3.
⋃

α R
α =

⋃
α<ω1

Rα.

7 Proof of Theorem 1

In this section we sketch the main ideas of the proof of Theorem 1. We first
introduce a property that is going to be useful in proving the main result:

Definition 22 (Robust Markov branching plays). Fix a pLμ+ game GF
ρ ,

a free variable X in F and an N-indexed collection {εn}n∈N of reals in (0, 1]. Let
M be a Markov branching play in GF

ρ . Let {xi}i∈I⊆N be the set of vertices in
M labeled with states of the form 〈p,X〉. Since X is free in F , these vertices are
necessarily connected to the two leafs ⊥ and � by two edges e�i and e⊥i marked
with the probabilities λi and 1−λi respectively. Let M+ be the same Markov
branching play where, for each i ∈ I, the probability attached to the edge e�i

Probabilistic Modal μ-Calculus with Independent Product 303

is replaced with min{1, λi + εi}, and the probability attached to the edge e⊥i is
replaced by max{0, (1−λi)− εi}. Similarly let M− be as M where, for all i ∈ I,
the probabilities attached to the edge e�i is replaced with max{0, λi − εi}, and
the probability attached to the edge e⊥i is replaced by min{1, (1− λi) + εi}. We
say that M is robust if and only if both inequalities E(M+)≤E(M)+

∑
i∈I εi

and E(M−)≥E(M)−
∑

i∈I εi hold, for every collection {εn}n∈N.

The notion of robustness can be informally described as follows: in the Markov
branching play M+ we increase the probability associated with the branching
plays having paths ending in � immediately following a configuration 〈p,X〉;
by doing so we increase the value, see Definition 13, of the original M and,
in a similar way we decrease the value of M by moving to M−. A Markov
branching play is robust if small changes (either in the direction of M+ or M−)
in the probabilities (labeling the edges e�i and e⊥i , i ∈ I) produce bounded (by∑

i∈I εi) changes in the overall value of the Markov branching play. Note that
altering the probabilities in M uniformly (i.e. taking {εi}i∈I such that for every
i �= j, εi = εj), may produce, in general, unbounded changes in the value of M ;
this reflect the discontinuity of the denotational interpretation of pLμ+ formulae
on the free variables.

In order to prove Theorem 1, we prove the following stronger theorem:

Theorem 3 (MAℵ1). Given a PLTS 〈P, { a−→}a∈L〉, for every pLμ+ formula
F and for every interpretation ρ, the following assertions hold for every p∈P :

1. �F �ρ(p) ≥ V al
〈p,F 〉
↑ (GF

ρ)

2. �F �ρ(p) ≤ V al
〈p,F 〉
↓ (GF

ρ)
3. Every Markov branching play M rooted in 〈p, F 〉 in GF

ρ is robust.

The proof is by induction on the structure of F , and resembles the unfold-
ing method of [7,13]. The most difficult case in proving point 1 is when F is
of the form μX.H (and dually the case νX.H is difficult for point 2). This is
proven showing that, for every ε > 0, there exists a strategy σε

2 for Player 2
in GμX.H

ρ , such that for every counter-strategy σ1 for Player 1, the inequality

E(M 〈p,μX.G〉
σ1,σε

2
)<�μX.H�ρ(p)+ε holds. As in [7,13], the strategy σε

2 is constructed
using δ-optimal strategies for Player 2 in the game GH

ργ (where ργ = �μX.H�ρ)
which exist by induction hypothesis. The idea behind the construction of σε

2
is the following: initially the strategy σε

2 behaves as some δ0-optimal strategy
τ0 for Player 2 in GH

ργ ; if at some point of the play the game reaches a con-
figuration of the form 〈p,X〉, then Player 2 improves his play and, depend-
ing on the history of the previously played moves, starts behaving as some
δ1-optimal strategy τ1 for Player 2 in GH

ργ and so on; the strictly decreasing
sequence {δi}i∈N is carefully chosen, so that the desired ε-bound follows from
the induction hypothesis of robustness for Markov branching plays of GH

ργ . The

desired inequality E(M 〈p,μX.G〉
σ1,σε

2
)<�μX.H�ρ(p)+ε, thanks to Theorem 2, Lemma

3 and the fact that M〈p,μX.H〉
σ1,σε

2
is ω1-continuous under MAℵ1 , is equivalent to

304 M. Mio

⊔
α<ω1

M〈p,μX.H〉
σ1,σε

2
(Rα) < �μX.H�ρ(p)+ ε. The proof that this last inequality

holds, is by ordinal induction.

Acknowledgments. I thank my PhD supervisor, Alex Simpson, for helpful sugges-
tions. This research was supported by studentships from LFCS and the IGS at the
School of Informatics, Edinburgh, and by EPSRC research grant EP/F042043/1.

References

1. Bertrand, N., Genest, B., Gimbert, H.: Qualitative determinacy and decidability
of stochastic games with signals. In: LICS 2009, IEEE Symposium on Logic in
Computer Science, Los Angeles, USA (2009)

2. Blackwell, D.: Infinite Gδ games with imperfect information. Matematyki
Applicationes Mathematicae, Hugo Steinhaus Jubilee Volume (1969)

3. Brázdil, T., Brozek, V., ı́n Kucera, A., Obdrzálek, J.: Qualitative reachability in
stochastic BPA games. In: STACS, pp. 207–218 (2009)

4. Brázdil, T., Brozek, V., Forejt, V., Kucera, A.: Stochastic games with branching-
time winning objectives. In: LICS, pp. 349–358 (2006)

5. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games.
Journal of Computer and System Sciences 68, 374–397 (2004)

6. Deng, Y., van Glabbeek, R.: Characterising probabilistic processes logically. In:
Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 278–293.
Springer, Heidelberg (2010)

7. Fischer, D., Gradel, E., Kaiser, L.: Model checking games for the quantitative
μ-calculus. In: Theory of Computing Systems. Springer, New York (2009)

8. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6 (1994)

9. Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: LICS
1997, Washington, DC, USA, p. 111. IEEE Computer Society, Los Alamitos (1997)

10. Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer
Science, 333–354 (1983)

11. Martin, D.A., Solovay, R.M.: Internal Cohen extensions. Ann. Math. Logic 2, 143–
178 (1970)

12. McIver, A., Morgan, C.: Results on the quantitative μ-calculus qMμ. ACM Trans.
Comput. Logic 8(1), 3 (2007)

13. Mio, M.: The equivalence of denotational and game semantics for the probabilistic
μ-calculus. In: 7th Workshop on Fixed Points in Computer Science (2010)

14. Morgan, C., McIver, A.: A probabilistic temporal calculus based on expectations.
In: Groves, L., Reeves, S. (eds.) Proc. Formal Methods. Springer, Heidelberg (1997)

15. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, Laboratory for Computer Science, M.I.T. (1995)

16. Stirling, C.: Modal and temporal logics for processes. Springer, Heidelberg (2001)

A Step-Indexed Kripke Model of Hidden State
via Recursive Properties on Recursively Defined

Metric Spaces

Jan Schwinghammer1, Lars Birkedal2, and Kristian Støvring3

1 Saarland University
2 IT University of Copenhagen

3 DIKU, University of Copenhagen

Abstract. Frame and anti-frame rules have been proposed as proof rules
for modular reasoning about programs. Frame rules allow one to hide ir-
relevant parts of the state during verification, whereas the anti-frame
rule allows one to hide local state from the context. We give the first
sound model for Charguéraud and Pottier’s type and capability system
including both frame and anti-frame rules. The model is a possible worlds
model based on the operational semantics and step-indexed heap rela-
tions, and the worlds are constructed as a recursively defined predicate
on a recursively defined metric space.

We also extend the model to account for Pottier’s generalized frame
and anti-frame rules, where invariants are generalized to families of in-
variants indexed over pre-orders. This generalization enables reasoning
about some well-bracketed as well as (locally) monotonic uses of local
state.

1 Introduction

Reasoning about higher-order stateful programs is notoriously difficult, and often
involves the need to track aliasing information. A particular line of work that
addresses this point are substructural type systems with regions, capabilities
and singleton types [2,8,9]. In this context, Pottier [14] presented the anti-frame
rule as a proof rule for hiding invariants on encapsulated state: the description
of a piece of mutable state that is local to a procedure can be removed from the
procedure’s external interface (expressed in the type system). The benefits of
hiding invariants on local state include simpler interface specifications, simpler
reasoning about client code, and fewer restrictions on the procedure’s use because
potential aliasing is reduced. Thus, in combination with frame rules that allow
the irrelevant parts of the state to be hidden during verification, the anti-frame
rule provides an important ingredient for modular reasoning about programs.

Essentially, the frame and anti-frame rules exploit the fact that programs
cannot access non-local state directly. However, in an ML-like language with
higher-order procedures and the possibility of call-backs, the dependencies on
non-local state can be complex; consequently, the soundness of frame and anti-
frame rules is anything but obvious.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 305–319, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

306 J. Schwinghammer, L. Birkedal, and K. Støvring

Pottier [14] sketched a soundness proof for the anti-frame rule by a progress
and preservation argument, which rests on assumptions about the existence of
certain recursively defined types and capabilities. (He has since formalized the
details in Coq.) More recently, Birkedal et al. [6] developed a step-indexed model
of Charguéraud and Pottier’s type and capability system with higher-order frame
rules, but without the anti-frame rule. This was a Kripke model in which ca-
pabilities are viewed as assertions (on heaps) that are indexed over recursively
defined worlds: intuitively, these worlds are used to represent the invariants that
have been added by the frame rules.

Proving soundness of the anti-frame rule requires a refinement of this idea, as
one needs to know that additional invariants do not invalidate the invariants on
local state which have been hidden by the anti-frame rule. This requirement can
be formulated in terms of a monotonicity condition for the world-indexed asser-
tions, using an order on the worlds that is induced by invariant extension, i.e.,
the addition of new invariants [17]. (The fact that ML-style untracked references
can be encoded from strong references with the anti-frame rule [14] also indicates
that a monotonicity condition is required: Kripke models of ML-style references
involve monotonicity in the worlds [7,1].) More precisely, in the presence of the
anti-frame rule, it turns out that the recursive domain equation for the worlds
involves monotonic functions with respect to an order relation on worlds, and
that this order is specified using the isomorphism of the recursive world solution
itself. This circularity means that standard existence theorems, in particular the
one used in [6], cannot be applied to define the worlds. Thus Schwinghammer
et al. [17], who considered a separation logic variant of the anti-frame rule for
a simple language (without higher-order functions, and untyped), had to give
the solution to a similar recursive domain equation by a laborious inverse-limit
construction.

In the present paper we develop a new model of Charguéraud and Pottier’s
system, which can also be used to show soundness of the anti-frame rule. More-
over, we show how to extend our model to show soundness of Pottier’s generalized
frame and anti-frame rules, which allow hiding of families of invariants [15]. The
new model is a non-trivial extension of the earlier work because, as pointed out
above, the anti-frame rule is the “source” of a circular monotonicity requirement.

Our approach can loosely be described as a metric space analogue of Pitts’
approach to relational properties of domains [13] and thus consists of two steps.
First, we consider a recursive metric space domain equation without any mono-
tonicity requirement, for which we obtain a solution by appealing to a standard
existence theorem. Second, we carve out a suitable subset of what might be
called hereditarily monotonic functions. We show how to define this recursively
specified subset as a fixed point of a suitable operator. The resulting subset
of monotonic functions is, however, not a solution to the original recursive do-
main equation; hence we verify that the semantic constructions used to justify
the anti-frame rule in [17] suitably restrict to the recursively defined subset of
hereditarily monotonic functions. This results in a considerably simpler model
construction than the earlier one in loc. cit. We show that our approach scales by

A Step-Indexed Kripke Model of Hidden State via Recursive Properties 307

extending the model to also allow for hiding of families of invariants, and using
it to prove the soundness of Pottier’s generalized frame and anti-frame rules [15].

Contributions. In summary, the contributions of this paper are (1) the de-
velopment of a considerably simpler model of recursive worlds for showing the
soundness of the anti-frame rule; (2) the use of this model to give the first sound-
ness proof of the anti-frame rule in the expressive type and capability system of
Charguéraud and Pottier; and (3) the extension of the model to include hiding of
families of invariants, and showing the soundness of generalized frame and anti-
frame rules. Moreover, at a conceptual level, we augment our earlier approach to
constructing (step-indexed) recursive possible worlds based on a programming
language’s operational semantics via metric spaces [6] by a further tool, viz.,
defining worlds as recursive subsets of recursive metric spaces.

Outline. In the next section we give a brief overview of Charguéraud and
Pottier’s type and capability system [8,14] with higher-order frame and anti-
frame rules. Section 3 summarizes some background on ultrametric spaces and
presents the construction of a set of hereditarily monotonic recursive worlds. The
worlds thus constructed are then used (Section 4) to give a model of the type
and capability system. Finally, in Section 5 we show how to extend the model
to also prove soundness of the generalized frame and anti-frame rules.

2 A Calculus of Capabilities

Syntax and operational semantics. We consider a standard call-by-value,
higher-order language with general references, sum and product types, and poly-
morphic and recursive types. For concreteness, the following grammar gives the
syntax of values and expressions, keeping close to the notation of [8,14]:

v ::= x | () | inji v | (v1, v2) | fun f(x)=t | l
t ::= v | (v t) | case(v1, v2, v) | proji v | ref v | get v | set v

Here, the term fun f(x)=t stands for the recursive procedure f with body t, and
locations l range over a countably infinite set Loc. The operational semantics is
given by a relation (t |h) �−→ (t′ |h′) between configurations that consist of a
(closed) expression t and a heap h. We take a heap h to be a finite map from
locations to closed values, we use the notation h#h′ to indicate that two heaps
h, h′ have disjoint domains, and we write h · h′ for the union of two such heaps.
By Val we denote the set of closed values.

Types. Charguéraud and Pottier’s type system uses capabilities, value types,
and memory types, as summarized in Figure 1. A capability C describes a heap
property, much like the assertions of a Hoare-style program logic. For instance,
{σ : ref int} asserts that σ is a valid location that contains an integer value. More
complex assertions can be built by separating conjunctions C1 ∗C2 and universal

308 J. Schwinghammer, L. Birkedal, and K. Støvring

Variables ξ ::= α | β | γ | σ

Capabilities C ::= C ⊗ C | ∅ | C ∗ C | {σ : θ} | ∃σ.C | γ | μγ.C | ∀ξ.C

Value types τ ::= τ ⊗ C | 0 | 1 | int | τ + τ | τ × τ | χ→χ | [σ] | α | μα.τ | ∀ξ.τ

Memory types θ ::= θ ⊗ C | τ | θ + θ | θ × θ | ref θ | θ ∗ C | ∃σ.θ | β | μβ.θ | ∀ξ.θ

Computation types χ ::= χ ⊗ C | τ | χ ∗ C | ∃σ.χ

Value contexts Δ ::= Δ ⊗ C | ∅ | Δ, x:τ
Linear contexts Γ ::= Γ ⊗ C | ∅ | Γ, x:χ | Γ ∗ C

Fig. 1. Capabilities and types

and existential quantification over names σ. Value types τ classify values; they
include base types, singleton types [σ], and are closed under products, sums, and
universal quantification. (We do not consider existential types in this paper.)
Memory types (and the subset of computation types χ) describe the result of
computations. They extend the value types by a type of references, and also
include all types of the form ∃"σ.τ ∗ C which describe both the value and heap
that result from the evaluation of an expression. Arrow types (which are value
types) have the form χ1 → χ2 and thus, like the pre- and post-conditions of
a triple in Hoare logic, make explicit which part of the heap is accessed and
modified by a procedure call. We allow recursive capabilities, value types, and
memory types, resp., provided the recursive definition is formally contractive
[11], i.e., the recursion must go through a type constructor such as × or →.

Since Charguéraud and Pottier’s system tracks aliasing, so-called strong (i.e.,
non-type preserving) updates are permitted: a possible type for such an update
operation is ∀σ, σ′.([σ]× [σ′])∗{σ : ref τ} → 1∗{σ : ref [σ′]}. Here, the argument
to the procedure is a pair consisting of a location (named σ) and the value to
be stored (named σ′), and the location is assumed to be allocated in the initial
heap (and store a value of some type τ). The result of the procedure is unit, but
as a side-effect σ′ will be stored at the location σ.

Frame and anti-frame rules. Each of the syntactic categories is equipped
with an invariant extension operation, ·⊗C. Intuitively, this operation conjoins
C to the domain and codomain of every arrow type that occurs within its left
hand argument, which means that the capability C is preserved by all procedures
of this type. This intuition is made precise by regarding capabilities and types
modulo a structural equivalence which subsumes the “distribution axioms” for
⊗ that are used to express generic higher-order frame rules [5]. The two key
cases of the structural equivalence are the distribution axioms for arrow types,
(χ1 → χ2) ⊗ C = (χ1 ⊗ C ∗ C) → (χ2 ⊗ C ∗ C), and for successive extensions,
(χ⊗C1) ⊗C2 = χ⊗ (C1 ◦C2) where the derived operation C1 ◦C2 abbreviates
the conjunction (C1 ⊗ C2) ∗ C2.

There are two typing judgements, x1:τ1, . . . , xn:τn) v : τ for values, and
x1:χ1, . . . , xn:χn � t : χ for expressions. The latter is similar to a Hoare triple
where (the separating conjunction of) χ1, . . . , χn serves as a precondition and χ

A Step-Indexed Kripke Model of Hidden State via Recursive Properties 309

as a postcondition. This view provides some intuition for the following “shallow”
and “deep” frame rules, and for the (essentially dual) anti-frame rule:

[SF]
Γ � t : χ

Γ ∗ C � t : χ ∗ C
[DF]

Γ � t : χ
(Γ ⊗ C) ∗ C � t : (χ⊗ C) ∗ C

(1)

[AF]
Γ ⊗ C � t : (χ⊗ C) ∗ C

Γ � t : χ

As in separation logic, the frame rules can be used to add a capability C (which
might assert the existence of an integer reference, say) as an invariant to a
specification Γ � t : χ, which is useful for local reasoning. The difference between
the shallow variant [SF] and the deep variant [DF] is that the former adds C only
on the top-level, whereas the latter also extends all arrow types nested inside
Γ and χ, via · ⊗ C. While the frame rules can be used to reason about certain
forms of information hiding [5], the anti-frame rule expresses a hiding principle
more directly: the capability C can be removed from the specification if C is an
invariant that is established by t, expressed by · ∗ C, and that is guaranteed to
hold whenever control passes from t to the context and back, expressed by ·⊗C.

Pottier [14] illustrates the anti-frame rule by a number of applications. One of
these is a fixed-point combinator implemented by means of “Landin’s knot”, i.e.,
recursion through heap. Every time the combinator is called with a functional
f : (χ1 →χ2) → (χ1 →χ2), a new reference cell σ is allocated in order to set up
the recursion required for the resulting fixed point fix f . Subsequent calls to fix f
still rely on this cell, and in Charguéraud and Pottier’s system this is reflected in
the type (χ1 →χ2) ⊗ I of fix f , where the capability I = {σ : ref (χ1 →χ2) ⊗ I}
describes the cell σ after it has been initialized. However, the anti-frame rule
allows one to hide the existence of σ, and leads to a purely functional interface
of the fixed point combinator. In particular, after hiding I, fix f has the much
simpler type (χ1 →χ2), which means that we can reason about aliasing and type
safety of programs that use the fixed-point combinator without considering the
reference cells used internally by that combinator.

3 Hereditarily Monotonic Recursive Worlds

Intuitively, capabilities describe heaps. A key idea of the model that we present
next is that capabilities (as well as types and type contexts) are parameterized by
invariants – this will make it easy to interpret the invariant extension operation
⊗, as in [16,17]. That is, rather than interpreting a capability C directly as a
set of heaps, we interpret it as a function �C� : W → Pred(Heap) that maps
“invariants” from W to sets of heaps. Intuitively, invariant extension of C is
then interpreted by applying �C� to the given invariant. In contrast, a simple
interpretation of C as a set of heaps would not contain enough information to
determine the meaning of every invariant extension of C.

The question is now what the set W of invariants should be. As the frame and
anti-frame rules in (1) indicate, invariants are in fact arbitrary capabilities, soW

310 J. Schwinghammer, L. Birkedal, and K. Støvring

should be the set used to interpret capabilities. But, as we just saw, capabilities
should be interpreted as functions from W to Pred(Heap). Thus, we are led
to consider a Kripke model where the worlds are recursively defined : to a first
approximation, we need a solution to the equation

W = W → Pred(Heap) . (2)

In fact, we will also need to consider a preorder on W and ensure that the
interpretation of capabilities and types is monotonic. We will find a solution to
a suitable variant of (2) using ultrametric spaces.

Ultrametric spaces. We recall some basic definitions and results about ul-
trametric spaces; for a less condensed introduction to ultrametric spaces we re-
fer to [18]. A 1-bounded ultrametric space (X, d) is a metric space where the
distance function d : X × X → R takes values in the closed interval [0, 1]
and satisfies the “strong” triangle inequality d(x, y) ≤ max{d(x, z), d(z, y)}.
A metric space is complete if every Cauchy sequence has a limit. A function
f : X1 → X2 between metric spaces (X1, d1), (X2, d2) is non-expansive if
d2(f(x), f(y)) ≤ d1(x, y) for all x, y ∈ X1. It is contractive if there exists some
δ < 1 such that d2(f(x), f(y)) ≤ δ · d1(x, y) for all x, y ∈ X1. By the Banach
fixed point theorem, every contractive function f : X → X on a complete and
non-empty metric space (X, d) has a (unique) fixed point. By multiplication of
the distances of (X, d) with a non-negative factor δ < 1, one obtains a new
ultrametric space, δ · (X, d) = (X, d′) where d′(x, y) = δ · d(x, y).

The complete, 1-bounded, non-empty, ultrametric spaces and non-expansive
functions between them form a Cartesian closed category CBUltne. Products
are given by the set-theoretic product where the distance is the maximum of
the componentwise distances. The exponential (X1, d1) → (X2, d2) has the set
of non-expansive functions from (X1, d1) to (X2, d2) as underlying set, and the
distance function is given by dX1→X2(f, g) = sup{d2(f(x), g(x)) | x ∈ X1}.

The notation x n= y means that d(x, y) ≤ 2−n. Each relation n= is an equiva-
lence relation because of the ultrametric inequality; we refer to this relation as
“n-equality.” Since the distances are bounded by 1, x 0= y always holds, and the
n-equalities become finer as n increases. If x n= y holds for all n then x = y.

Uniform predicates, worlds and world extension. Let (A,() be a partially
ordered set. An upwards closed, uniform predicate on A is a subset p ⊆ N×A that
is downwards closed in the first and upwards closed in the second component:
if (k, a) ∈ p, j ≤ k and a (b, then (j, b) ∈ p. We write UPred(A) for the
set of all such predicates on A, and we define p[k] = {(j, a) | j < k}. Note
that p[k] ∈ UPred(A). We equip UPred(A) with the distance function d(p, q) =
inf{2−n | p[n] = q[n]}, which makes (UPred(A), d) an object of CBUltne.

In our model, we use UPred(A) with the following concrete instances for
the partial order (A,(): (1) heaps (Heap,(), where h (h′ iff h′ = h · h0 for
some h0#h, (2) values (Val ,(), where u (v iff u = v, and (3) stateful values
(Val ×Heap,(), where (u, h) ((v, h′) iff u = v and h (h′. We also use variants

A Step-Indexed Kripke Model of Hidden State via Recursive Properties 311

of the latter two instances where the set Val is replaced by the set of value
substitutions, Env , and by the set of closed expressions, Exp. On UPred(Heap),
ordered by subset inclusion, we have a complete Heyting BI algebra structure
[4]. Below we only need the separating conjunction and its unit I, given by

p1 ∗ p2 = {(k, h) | ∃h1, h2. h = h1·h2 ∧ (k, h1) ∈ p1 ∧ (k, h2) ∈ p2}

and I = N×Heap. Still, this observation on UPred(Heap) suggests that Pottier
and Charguéraud’s system could be extended to a full-blown program logic.

It is well-known that one can solve recursive domain equations in CBUltne by
an adaptation of the inverse-limit method from classical domain theory [3]. In
particular, with regard to the domain equation (2) above:

Theorem 1. There exists a unique (up to isomorphism) metric space (X, d) ∈
CBUltne and an isomorphism ι from 1

2 ·X→UPred(Heap) to X.

Using the pointwise lifting of separating conjunction to 1
2 ·X→UPred(Heap) we

define a composition operation on X . More precisely, ◦ : X × X → X is a
non-expansive operation that for all p, q, x ∈ X satisfies

ι−1(p ◦ q)(x) = ι−1(p)(q ◦ x) ∗ ι−1(q)(x) ,

and it can be defined by an easy application of Banach’s fixed point theorem as
in [16]. This operation reflects the syntactic abbreviation C1 ◦C2 = C1 ⊗C2 ∗C2
of conjoining C1 and C2 and additionally applying an invariant extension to C1;
the isomorphism ι−1 lets us view p, q and p ◦ q as UPred(Heap)-valued functions
on 1

2 ·X . One can show that this operation ◦ is associative and has a left and
right unit given by emp = ι(λw.I); thus (X, ◦, emp) is a monoid in CBUltne.

Then, using ◦ we define an extension operation ⊗ : Y (1/2·X) ×X → Y (1/2·X)

for any Y ∈ CBUltne by (f⊗x)(x′) = f(x◦x′). Not going into details here, let us
remark that ⊗ is the semantic counterpart to the syntactic invariant extension,
and thus plays a key role in the model. However, for Pottier’s anti-frame rule we
also need to ensure that specifications are not invalidated by invariant extension.
This requirement is stated via monotonicity, as we discuss next.

Relations on ultrametric spaces and hereditarily monotonic worlds
As a conseqence of the fact that ◦ defines a monoid structure on X there is an
induced preorder on X : x (y ⇔ ∃x0. y = x ◦ x0.

For modelling the anti-frame rule, we aim for a set of worlds similar to
X ∼= 1/2 · X → UPred(Heap) but where the function space consists of the
non-expansive functions that are additionally monotonic, with respect to the
order induced by ◦ on X and with respect to set inclusion on UPred(Heap):

(W,() ∼= 1
2 · (W,() →mon (UPred(Heap),⊆) . (3)

Because the definition of the order ((induced by ◦) already uses the isomor-
phism between left-hand and right-hand side, and because the right-hand side
depends on the order for the monotonic function space, the standard existence

312 J. Schwinghammer, L. Birkedal, and K. Støvring

theorems for solutions of recursive domain equations do not appear to apply
to (3). Previously we have constructed a solution to this equation explicitly as
inverse limit of a suitable chain of approximations [17]. We show in the following
that we can alternatively carve out from X a suitable subset of what we call
hereditarily monotonic functions. This subset needs to be defined recursively.

Let R be the collection of all non-empty and closed relations R ⊆ X . We set

R[n]
def= {y | ∃x ∈ X. x

n= y ∧ x ∈ R} .

for R ∈ R. Thus, R[n] is the set of all points within distance 2−n of R. Note
that R[n] ∈ R. In fact, ∅ �= R ⊆ R[n] holds by the reflexivity of n-equality, and
if (yk)k∈N is a sequence in R[n] with limit y in X then d(yk, y) ≤ 2−n must hold
for some k, i.e., yk

n= y. So there exists x ∈ X with x ∈ R and x n= yk, and hence
by transitivity x n= y which then gives limn yn ∈ R[n].

We make some further observations that follow from the properties of n-
equality on X . First, R ⊆ S implies R[n] ⊆ S[n] for any R,S ∈ R. Moreover,
using the fact that the n-equalities become increasingly finer it follows that
(R[m])[n] = R[min(m,n)] for all m,n ∈ N, so in particular each (·)[n] is a closure
operation on R. As a consequence, we have R ⊆ . . . ⊆ R[n] ⊆ . . . ⊆ R[1] ⊆ R[0].
By the 1-boundedness of X , R[0] = X for all R ∈ R. Finally, R = S if and only
if R[n] = S[n] for all n ∈ N.

Proposition 2. Let d : R × R → R be defined by d(R,S) = inf {2−n | R[n] =
S[n]}. Then (R, d) is a complete, 1-bounded, non-empty ultrametric space. The
limit of a Cauchy chain (Rn)n∈N with d(Rn, Rn+1) ≤ 2−n is given by

⋂
n(Rn)[n],

and in particular R =
⋂

nR[n] for any R ∈ R.

We will now define the set of hereditarily monotonic functions W as a recursive
predicate on the space X . Let the function Φ : P(X) → P(X) on subsets of X
be given by Φ(R) = {ι(p) | ∀x, x0 ∈ R. p(x) ⊆ p(x ◦ x0)}.

Lemma 3. Φ restricts to a contractive function on R: if R ∈ R then Φ(R) is
non-empty and closed, and R n= S implies Φ(R) n+1= Φ(S).

While the proof of this lemma is not particularly difficult, we include it here to
illustrate the kind of reasoning that is involved.

Proof. It is clear that Φ(R) �= ∅ since ι(p) ∈ Φ(R) for every constant function p
from 1

2 ·X to UPred(Heap). Limits of Cauchy chains in 1
2 ·X → UPred(Heap)

are given pointwise, hence (limn pn)(x) ⊆ (limn pn)(x ◦ x0) holds for all Cauchy
chains (pn)n∈N in Φ(R) and all x, x0 ∈ R. This proves Φ(R) ∈ R.

We now show that Φ is contractive. To this end, let n ≥ 0 and assume R n= S.
Let ι(p) ∈ Φ(R)[n+1]. We must show that ι(p) ∈ Φ(S)[n+1]. By definition of the
closure operation there exists ι(q) ∈ Φ(R) such that p and q are (n+1)-equal.
Set r(w) = q(w)[n+1]. Then r and p are also (n+1)-equal, hence it suffices to
show that ι(r) ∈ Φ(S). To establish the latter, let w0, w1 ∈ S be arbitrary. By
the assumption that R and S are n-equal there exist elements w′

0, w
′
1 ∈ R such

A Step-Indexed Kripke Model of Hidden State via Recursive Properties 313

that w′
0

n= w0 and w′
1

n= w1 in holds X , or equivalently, such that w′
0 and w0 as

well as w′
1 and w1 are (n+1)-equal in 1

2 ·X . By the non-expansiveness of ◦, this
implies that also w′

0 ◦ w′
1 and w0 ◦ w1 are (n+1)-equal in 1

2 ·X . Since

q(w0)
n+1= q(w′

0) ⊆ q(w′
0 ◦ w′

1)
n+1= q(w0 ◦ w1)

holds by the non-expansiveness of q and the assumption that ι(q) ∈ Φ(R), we
obtain the required inclusion r(w0) ⊆ r(w0 ◦ w1) by definition of r. ��
By Proposition 2 and the Banach theorem we can now define the hereditarily
monotonic functions W as the uniquely determined fixed point of Φ, for which

w ∈ W ⇔ ∃p. w = ι(p) ∧ ∀w,w0 ∈W. p(w) ⊆ p(w ◦ w0) .

Note that W thus constructed does not quite satisfy (3). We do not have an iso-
morphism between W and the non-expansive and monotonic functions from W
(viewed as an ultrametric space itself), but rather between W and all functions
from X that restrict to monotonic functions whenever applied to hereditarily
monotonic arguments. Keeping this in mind, we abuse notation and write

1
2 ·W →mon UPred(A)

def= {p : 1
2 ·X → UPred(A) | ∀w1, w2 ∈ W. p(w1) ⊆ p(w1 ◦ w2)} .

Then, for our particular application of interest, we also have to ensure that all the
operations restrict appropriately (cf. Section 4 below). Here, as a first step, we
show that the composition operation ◦ restricts to W . In turn, this means that
the ⊗ operator restricts accordingly: if w ∈W and p is in 1

2 ·W →mon UPred(A)
then so is p⊗ w.

Lemma 4. For all n ∈ N, if w1, w2 ∈ W then w1 ◦ w2 ∈ W[n]. In particular,
since W =

⋂
nW[n] it follows that w1, w2 ∈ W implies w1 ◦ w2 ∈ W .

Proof. The proof is by induction on n. The base case is immediate as W[0] = X .
Now suppose n > 0 and let w1, w2 ∈ W ; we must prove that w1 ◦ w2 ∈ W[n].
Let w′

1 be such that ι−1(w′
1)(w) = ι−1(w1)(w)[n]. Observe that w′

1 ∈ W , that
w′

1 and w1 are n-equal, and that w′
1 is such that n-equality of w,w′ in 1

2 · X
already implies ι−1(w′

1)(w) = ι−1(w′
1)(w′). Since w′

1 and w1 are n-equivalent,
the non-expansiveness of the composition operation implies w1 ◦ w2

n= w′
1 ◦ w2.

Thus it suffices to show that w′
1 ◦ w2 ∈ W = Φ(W). To see this, let w,w0 ∈ W

be arbitrary, and note that by induction hypothesis we have w2 ◦ w ∈ W[n−1].
This means that there exists w′ ∈ W such that w′ n= w2 ◦w holds in 1

2 ·X , hence

ι−1(w′
1 ◦ w2)(w) = ι−1(w′

1)(w2 ◦ w) ∗ ι−1(w2)(w) by definition of ◦
= ι−1(w′

1)(w
′) ∗ ι−1(w2)(w) by w′ n= w2 ◦w

⊆ ι−1(w′
1)(w

′ ◦ w0) ∗ ι−1(w2)(w ◦ w0) by hereditariness
= ι−1(w′

1)((w2 ◦w) ◦w0) ∗ ι−1(w2)(w ◦w0) by w′ n= w2 ◦w
= ι−1(w′

1 ◦ w2)(w ◦ w0) by definition of ◦.

Since w,w0 were chosen arbitrarily, this calculation establishes w′
1 ◦w2 ∈W . ��

314 J. Schwinghammer, L. Birkedal, and K. Støvring

4 Step-Indexed Possible World Semantics of Capabilities

We define semantic domains for the capabilities and types of the calculus de-
scribed in Section 2,

Cap = 1
2 ·W →mon UPred(Heap)

VT = 1
2 ·W →mon UPred(Val)

MT = 1
2 ·W →mon UPred(Val × Heap) ,

so that p ∈ Cap if and only if ι(p) ∈W . Next, we define operations on the seman-
tic domains that correspond to the syntactic type and capability constructors.
The most interesting of these is the one for arrow types. Given T1, T2 ∈ 1/2·X →
UPred(Val × Heap), T1 → T2 in 1

2 ·X → UPred(Val) is defined on x ∈ X as

{(k, fun f(y)=t) | ∀j < k. ∀w∈W. ∀r∈UPred(Heap).
∀v, h. (j, (v, h)) ∈ T1(x ◦ w) ∗ ι−1(x ◦ w)(emp) ∗ r ⇒

(j, (t[f :=fun f(y)=t, y:=v], h)) ∈ E(T2 ∗ r)(x ◦ w)} ,
(4)

where E(T) is the extension of a world-indexed, uniform predicate on Val ×Heap
to one on Exp × Heap. It is here where the index is linked to the operational
semantics: (k, (t, h)) ∈ E(T)(x) if and only if for all j ≤ k, t′, h′,

(t |h) �−→j (t′ |h′) ∧ (t′ |h′) irreducible
⇒ (k−j, (t′, h′)) ∈

⋃
w′∈W T (x ◦ w′) ∗ ι−1(x ◦ w′)(emp) .

Definition (4) realizes the key ideas of our model as follows. First, the univer-
sal quantification over w ∈ W and subsequent use of the world x ◦ w builds
in monotonicity, and intuitively means that T1 → T2 is parametric in (and
hence preserves) invariants that have been added by the procedure’s context. In
particular, (4) states that procedure application preserves this invariant, when
viewed as the predicate ι−1(x ◦ w)(emp). By also conjoining r as an invariant
we “bake in” the first-order frame property, which results in a subtyping axiom
T1 → T2 ≤ T1 ∗ C → T2 ∗ C in the type system. The existential quantification
over w′, in the definition of E , allows us to “absorb” a part of the local heap
description into the world. Finally, the quantification over indices j < k in (4)
achieves that (T1 → T2)(x) is uniform. There are three reasons why we require
that j be strictly less than k. Technically, the use of ι−1(x ◦w) in the definition
“undoes” the scaling by 1/2, and j < k is needed to ensure the non-expansiveness
of T1 → T2 as a function 1/2 ·X → UPred(Val). Moreover, it lets us prove the
typing rule for recursive functions by induction on k. Finally, it means that →
is a contractive type constructor, which justifies the formal contractiveness as-
sumption about arrow types that we made earlier. Intuitively, the use of j < k
for the arguments suffices since application consumes a step.

The function type constructor, as well as all the other type and capability con-
structors, restrict to Cap,VT and MT, respectively. With their help it becomes

A Step-Indexed Kripke Model of Hidden State via Recursive Properties 315

straightforward to define the interpretation �C�η and �τ�η of capabilities and
types, given an environment η which maps region names σ ∈ RegName to closed
values η(σ) ∈ Val , capability variables γ to semantic capabilities η(γ) ∈ Cap,
and type variables α and β to semantic types η(α) ∈ VT and η(β) ∈ MT. The
type equivalences can then be verified with respect to this interpretation. We
state this for the case of arrow types:

Lemma 5. Let T1, T2 non-expansive functions from 1
2 ·X to UPred(Val × Heap).

1. T1 → T2 is non-expansive, and (T1 → T2)(x) is uniform for all x ∈ X.
2. T1 → T2 ∈ VT.
3. The assignment of T1 → T2 to T1, T2 is contractive.
4. Let c ∈ Cap and w def= ι(c). Then (T1 → T2)⊗w = (T1 ⊗w ∗c) → (T2 ⊗w ∗c).

Recall that there are two kinds of typing judgments, one for typing of values
and the other for the typing of expressions. The semantics of a value judgement
simply establishes truth with respect to all worlds w, environments η, and k ∈ N:

|= (Δ) v : τ) def⇐⇒ ∀η. ∀w. ∀k. ∀ρ. (k, ρ) ∈ �Δ�η w ⇒ (k, ρ(v)) ∈ �τ�η w .

Here ρ(v) means the application of the substitution ρ to v. The judgement for
expressions mirrors the interpretation of the arrow case for value types, in that
there is also a quantification over heap predicates r ∈ UPred(Heap) and an
existential quantification over w′ ∈W through the use of E :

|= (Γ � t : χ) def⇐⇒ ∀η. ∀w. ∀k. ∀r∈UPred(Heap).

∀ρ, h. (k, (ρ, h)) ∈ �Γ �η w ∗ ι−1(w)(emp) ∗ r ⇒ (k, (ρ(t), h)) ∈ E(�χ�η ∗ r)(w).

Theorem 6 (Soundness). If Δ) v : τ then |= (Δ) v : τ), and if Γ � t : χ
then |= (Γ � t : χ).

To prove the theorem, we show that each typing rule preserves the truth of
judgements. Detailed proofs for the shallow and deep frame rules are included in
the appendix. Here, we consider the anti-frame rule. Its proof employs so-called
commutative pairs [14,17], a property expressed by the following lemma.

Lemma 7. For all worlds w0, w1 ∈ W , there exist w′
0, w

′
1 ∈ W such that

w′
0 = ι(ι−1(w0) ⊗ w′

1), w′
1 = ι(ι−1(w1) ⊗ w′

0), and w0 ◦ w′
1 = w1 ◦ w′

0 .

Lemma 8 (Soundness of the anti-frame rule). Suppose |= (Γ ⊗ C � t :
χ⊗ C ∗ C). Then |= (Γ � t : χ).

Proof. We prove |= (Γ � t : χ). Let w ∈W , η an environment, r ∈ UPred(Heap)
and

(k, (ρ, h)) ∈ �Γ �η (w) ∗ ι−1(w)(emp) ∗ r .
We must prove (k, (ρ(t), h)) ∈ E(�χ�η ∗ r)(w). By Lemma 7,

w1 = ι(ι−1(w) ⊗ w2), w2 = ι(�C�η ⊗ w1) and ι(�C�η) ◦ w1 = w ◦ w2 (5)

holds for some worlds w1, w2 in W .

316 J. Schwinghammer, L. Birkedal, and K. Støvring

First, we find a superset of the precondition �Γ �η (w) ∗ ι−1(w)(emp) ∗ r in the
assumption above, replacing the first two ∗-conjuncts as follows:

�Γ �η (w) ⊆ �Γ �η (w ◦ w2) by monotonicity of �Γ �η and w2 ∈ W

= �Γ �η (ι(�C�η) ◦ w1) since ι(�C�η) ◦ w1 = w ◦ w2

= �Γ ⊗ C�η (w1) by definition of ⊗.

ι−1(w)(emp) ⊆ ι−1(w)(emp ◦ w2) by monotonicity of ι−1(w) and w2 ∈W
= ι−1(w)(w2 ◦ emp) since emp is the unit
= (ι−1(w) ⊗ w2)(emp) by definition of ⊗
= ι−1(w1)(emp) since w1 = ι(ι−1(w) ⊗ w2).

Thus, by the monotonicity of separating conjunction, we have that

(k, (ρ, h)) ∈ �Γ �η (w)∗ι−1(w)(emp)∗r ⊆ �Γ ⊗ C�η (w1)∗ι−1(w1)(emp)∗r . (6)

By the assumed validity of the judgement Γ ⊗ C � t : χ⊗ C ∗ C, (6) entails

(k, (ρ(t), h)) ∈ E(�χ⊗ C ∗ C�η ∗ r)(w1) . (7)

We need to show that (k, (ρ(t), h)) ∈ E(�χ�η ∗ r)(w), so assume (ρ(t) |h) �−→j

(t′ |h′) for some j ≤ k such that (t′ |h′) is irreducible. From (7) we then obtain

(k−j, (t′, h′)) ∈
⋃

w′ �χ⊗ C ∗ C�η (w1 ◦ w′) ∗ ι−1(w1 ◦ w′)(emp) ∗ r . (8)

Now observe that we have

�χ⊗ C ∗ C�η (w1 ◦ w′) ∗ ι−1(w1 ◦ w′)(emp)
= �χ�η (ι(�C�η) ◦ w1 ◦ w′) ∗ �C�η (w1 ◦ w′) ∗ ι−1(w1 ◦ w′)(emp)
= �χ�η (ι(�C�η) ◦ w1 ◦ w′) ∗ ι−1(ι(�C�η) ◦ w1 ◦ w′)(emp)
= �χ�η (w ◦ w′′) ∗ ι−1(w ◦ w′′)(emp)

for w′′ def= w2 ◦w′, since w◦w2 = ι(�C�η)◦w1. Thus, (8) entails that (k−j, (t′, h′))
is in

⋃
w′′ �χ�η (w ◦ w′′) ∗ ι−1(w ◦ w′′)(emp) ∗ r, and we are done. ��

5 Generalized Frame and Anti-frame Rules

The frame and anti-frame rules allow for hiding of invariants. However, to hide
uses of local state, say for a function, it is, in general, not enough only to allow
hiding of global invariants that are preserved across arbitrary sequences of calls
and returns. For instance, consider the function f with local reference cell r:

let r = ref 0 in fun f(g)=(inc(r); g(); dec(r)) (9)

If we write int n for the singleton integer type containing n, we may wish to hide
the capability I = {σ : ref (int 0)} to capture the intuition that the cell r : [σ]

A Step-Indexed Kripke Model of Hidden State via Recursive Properties 317

stores 0 upon termination. However, there could well be re-entrant calls to f and
{σ : ref (int 0)} is not an invariant for those calls.

Thus Pottier [15] proposed two extensions to the anti-frame rule that allows for
hiding of families of invariants. The first idea is that each invariant in the family
is a local invariant that holds for one level of the recursive call of a function. This
extension allows us to hide “well-bracketed” [10] uses of local state. For instance,
the N-indexed family of invariants I n = {σ : ref (int n)} can be used for (9); see
the examples in [15]. The second idea is to allow each local invariant to evolve in
some monotonic fashion; this allows us to hide even more uses of local state. The
idea is related to the notion of evolving invariants for local state in recent work
on reasoning about contextual equivalence [1,10]. (Space limitations preclude us
from including examples; please see [15] for examples.)

In summary, we want to allow the hiding of a family of capabilities (I i)i∈κ

indexed over a preordered set (κ,≤). The preorder is used to capture that the
local invariants can evolve in a monotonic fashion, as expressed in the new def-
inition of the action of ⊗ on function types (note that I on the right-hand side
of ⊗ now has kind κ→cap):

(χ1 → χ2) ⊗ I = ∀i.
(
(χ1 ⊗ I) ∗ I i→ ∃j ≥ i. ((χ2 ⊗ I) ∗ I j)

)
Observe how this definition captures the intuitive idea: if the invariant I i holds
when the function is called then, upon return, we know that an invariant I j (for
j ∈ κ, j ≥ i) holds. Different recursive calls may use different local invariants
due to the quantification over i. The generalized frame and anti-frame rules are:

[GF]
Γ � t : χ

Γ ⊗ I ∗ I i � t : ∃j ≥ i. (χ⊗ I) ∗ I j
[GAF]

Γ ⊗ I � t : ∃i. (χ⊗ I) ∗ I i
Γ � t : χ

We now show how to extend our model of the type and capability calculus to
accomodate hiding of such more expressive families of invariants. Naturally, the
first step is to refine our notion of world, since the worlds are used to describe
hidden invariants.

Generalized worlds and generalized world extension. Suppose K is a
(small) collection of preordered sets. We write K∗ for the finite sequences over
K, ε for the empty sequence, and use juxtaposition to denote concatenation.
For convenience, we will sometimes identify a sequence α = κ1, . . . , κn over K
with the preorder κ1 × · · · × κn. As in Section 3, we define the worlds for the
Kripke model in two steps, starting from an equation without any monotonicity
requirements: CBUltne has all non-empty coproducts, and there is a unique
solution to the two equations

X ∼=
∑

α∈K∗
Xα , Xκ1,...,κn = (κ1 × · · ·×κn) → (1

2 ·X → UPred(Heap)) , (10)

with isomorphism ι :
∑

α∈K∗ Xα → X in CBUltne, where each κ ∈ K is equipped
with the discrete metric. Each Xα consists of the α-indexed families of (world-
dependent) predicates so that, in comparison to Section 3, X consists of all these
families rather than individual predicates.

318 J. Schwinghammer, L. Birkedal, and K. Støvring

The composition operation ◦ : X × X → X is now given by x1 ◦ x2 =
ι(〈α1α2, p〉) where 〈αi, pi〉 = ι−1(xi), and where p ∈ Xα1α2 is defined by

p(i1i2)(x) = p1(i1)(x2 ◦ x) ∗ p2(i2)(x) .

for i1 ∈ α1, i2 ∈ α2. That is, the combination of an α1-indexed family p1 and an
α2-indexed family p2 is a family p over α1α2, but there is no interaction between
the index components i1 and i2: they concern disjoint regions of the heap.

From here on we can proceed essentially as in Section 3: The composition
operation can be shown associative, with a left and right unit given by emp =
ι(〈ε, λ , .I〉). For f : 1

2 ·X → Y the extension operation (f ⊗ x)(x′) = f(x ◦ x′)
is also defined as before (but with respect to the solution (10) and the new
◦ operation). We then carve out from X the subset of hereditarily monotonic
functions W , which we again obtain as fixed point of a contractive function on
the closed and non-empty subsets of X . Let us write ∼ for the (recursive) partial
equivalence relation onX where ι(〈α1α2, p〉) ∼ ι(〈α2α1, q〉) holds if p(i1i2)(x1) =
q(i2i1)(x2) for all i1 ∈ α1, i2 ∈ α2 and x1 ∼ x2. Then w ∈W iff w ∼ w and

∃α, p. w = ι〈α, p〉 ∧ ∀i ∈ α. ∀w1, w2 ∈ W. p(i)(w1) ⊆ p(i)(w1 ◦ w2) .

Finally, the proof of Lemma 4 can be adapted to show that the operation ◦
restricts to the subset W .

Semantics of capabilities and types. The definition of function types changes
as follows: given x ∈ X , (k, fun f(y)=t) ∈ (T1 → T2)(x) if and only if

∀j < k. ∀w ∈ W where ι−1(x ◦ w) = 〈α, p〉. ∀r∈UPred(Heap). ∀i ∈ α. ∀v, h.
(j, (v, h)) ∈ T1(x ◦ w) ∗ p(i)(emp) ∗ r ⇒

(j, t[f :=fun f(y)=t, y:=v], h)) ∈ E(T2 ∗ r, x ◦ w, i) ,
where the extension to expressions now depends on i ∈ α: (k, t) ∈ E(T, x, i) if

∀j ≤ k, t′, h′. (t |h) �−→j (t′ |h′) ∧ (t′ |h′) irreducible
⇒ (k − j, (t′, h′)) ∈

⋃
w∈W, i1∈α, i2∈β, i1≥iT (x ◦ w) ∗ q(i1i2)(emp)

for 〈αβ, q〉 = ι−1(x ◦ w).
Next, one proves the analogue of Lemma 5 which shows the well-definedness

of T1 → T2 and (a semantic variant of) the distribution axiom for generalized
invariants: in particular, given p ∈ κ → Cap and setting w def= ι(〈κ, p〉),

(T1 → T2) ⊗ w = ∀i∈κ

(
(T1 ⊗ w) ∗ p i) → ∃j≥i((T2 ⊗ w) ∗ p j)

)
where ∀ and ∃ denote the pointwise intersection and union of world-indexed
uniform predicates.

Once similar properties are proved for the other type and capability construc-
tors (which do not change for the generalized invariants), we obtain:

Theorem 9 (Soundness). The generalized frame and anti-frame rules [GF]
and [GAF] are sound.

In particular, this theorem shows that all the reasoning about the use of local
state in the (non-trivial) examples considered by Pottier in [15] is sound.

A Step-Indexed Kripke Model of Hidden State via Recursive Properties 319

6 Conclusion and Future Work

We have developed the first soundness proof of the anti-frame rule in the ex-
pressive type and capability system of Charguéraud and Pottier by constructing
a Kripke model of the system. For our model, we have used a new approach
to the construction of worlds by definining them as a recursive subset of a re-
cursively defined metric space, thus avoiding a tedious explicit inverse-limit con-
struction. We have shown that this approach scales, by also extending the model
to show soundness of Pottier’s generalized frame and anti-frame rules. Future
work includes exploring some of the orthogonal extensions of the basic type and
capability system: group regions [8] and fates & predictions [12].

References

1. Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation indepen-
dence. In: POPL (2009)

2. Ahmed, A., Fluet, M., Morrisett, G.: L3: A linear language with locations. Fundam.
Inf. 77(4), 397–449 (2007)

3. America, P., Rutten, J.J.M.M.: Solving reflexive domain equations in a category
of complete metric spaces. J. Comput. Syst. Sci. 39(3), 343–375 (1989)

4. Biering, B., Birkedal, L., Torp-Smith, N.: BI-hyperdoctrines, higher-order
separation logic, and abstraction. ACM Trans. Program. Lang. Syst. 29(5) (2007)

5. Birkedal, L., Torp-Smith, N., Yang, H.: Semantics of separation-logic typing and
higher-order frame rules for Algol-like languages. LMCS 2(5:1) (2006)

6. Birkedal, L., Reus, B., Schwinghammer, J., Støvring, K., Thamsborg, J., Yang, H.:
Step-indexed Kripke models over recursive worlds. In: POPL (to appear, 2011)

7. Birkedal, L., Støvring, K., Thamsborg, J.: Realizability semantics of paramet-
ric polymorphism, general references, and recursive types. In: de Alfaro, L. (ed.)
FOSSACS 2009. LNCS, vol. 5504, pp. 456–470. Springer, Heidelberg (2009)

8. Charguéraud, A., Pottier, F.: Functional translation of a calculus of capabilities.
In: Proceedings of ICFP, pp. 213–224 (2008)

9. Crary, K., Walker, D., Morrisett, G.: Typed memory management in a calculus of
capabilities. In: Proceedings of POPL, pp. 262–275 (1999)

10. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control
effects on local relational reasoning. In: Proceedings of ICFP (2010)

11. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
12. Pilkiewicz, A., Pottier, F.: The essence of monotonic state (July 2010) (unpublished)
13. Pitts, A.M.: Relational properties of domains. Inf. Comput. 127(2), 66–90 (1996)
14. Pottier, F.: Hiding local state in direct style: a higher-order anti-frame rule. In:

Proceedings of LICS, pp. 331–340 (2008)
15. Pottier, F.: Generalizing the higher-order frame and anti-frame rules (July 2009)

(unpublished), http://gallium.inria.fr/~fpottier
16. Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested hoare triples and

frame rules for higher-order store. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS,
vol. 5771, pp. 440–454. Springer, Heidelberg (2009)

17. Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F., Reus, B.: A semantic
foundation for hidden state. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014,
pp. 2–17. Springer, Heidelberg (2010)

18. Smyth, M.B.: Topology. In: Handbook of Logic in Computer Science, vol. 1. Oxford
Univ. Press, Oxford (1992)

http://gallium.inria.fr/~fpottier

A Modified GoI Interpretation for a Linear Functional
Programming Language and Its Adequacy

Naohiko Hoshino

Research Institute for Mathematical Science, Kyoto university
����������	
���
������	
��
��

Abstract. Geometry of Interaction (GoI) introduced by Girard provides a
semantics for linear logic and its cut elimination. Several extensions of GoI to
programming languages have been proposed, but it is not discussed to what ex-
tent they capture behaviour of programs as far as the author knows. In this paper,
we study GoI interpretation of a linear functional programming language (LFP).
We observe that we can not extend the standard GoI interpretation to an ade-
quate interpretation of LFP, and we propose a new adequate GoI interpretation
of LFP by modifying the standard GoI interpretation. We derive the modified in-
terpretation from a realizability model of LFP. We also relate the interpretation
of recursion to cyclic computation (the trace operator in the category of sets and
partial maps) in the realizability model.

1 Introduction

Geometry of Interaction (GoI) introduced by Girard [11] models linear logic by bidirec-
tional computation which is executed by passing data along edges of a proof net. The
main purpose of the original GoI is to capture dynamics of cut-elimination of linear
logic (�-reduction of the linear lambda calculus). The original GoI interprets a proof as
a matrix of operator algebras, and the execution formula captures the cut-elimination
process. Since we can describe the computation of GoI by a set of local transition rules,
we can implement GoI by token machines [14,20,10]. These implementations are free
from the notion of substitution, and local transition rules specifies them and we have a
graphical presentation of local transition rules. As emphasised in [14], GoI interpreta-
tion provides a semantic tool to verify graph reductions.

GoI has some applications to studies of programming languages and lambda calculi
such as optimization of reductions [14], a compilation of call-by-name PCF into a low
level language [20], full completeness for ML-types in the polymorphic lambda calcu-
lus [2] and implicit complexity theory [4]. Among these studies, the following questions
are fundamental:

– Can we extend GoI to a semantics of programming languages?
– To what extent does GoI interpretation capture behaviour of programming lan-

guages? For example, is GoI adequate for the polymorphic linear functional pro-
gramming language ���� in [8]?

There are two approaches to the first question. In [12], Girard gave an algorithm to
compute fixed points of linear functions, from which we can calculate fixed points for

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 320–334, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

A Modified GoI Interpretation for a LFP Language and Its Adequacy 321

intuitionistic functions. The algorithm is similar to the computation of the least fixed
points in domain theory. On the other hand, in the GoI interpretation of the call-by-name
PCF [20], Mackie interpreted the fixed point operator by means of cyclic computation
(Section 2 in [20]). This approach corresponds exactly to the coding of recursion in
graph reduction, which is more eÆcient with respect to the use of memory, see [18].
However it is not discussed whether these interpretations are adequate or not.

Our aim in this paper is to give an adequate GoI interpretation of a linear functional
programming language LFP which is essentially equal to ����. As we will observe, the
standard GoI interpretation does not extend to an adequate interpretation of LFP. The
main problem is that the standard GoI interpretations of LFP programs are not strict: for
some LFP programs, their standard GoI interpretations do not evaluate their arguments.
Therefore, so as to give an adequate GoI interpretation of LFP, we need to modify the
standard GoI interpretation by imposing strictness on the interpretations of terms. In this
paper, we give a modification of the standard GoI interpretation by extracting realizers
from a realizability model of LFP.

Our main contributions are:

– We give a modified GoI interpretation of LFP in Mackie style: we interpret recur-
sion by cyclic computation.

– We prove adequacy of the modified GoI interpretation.

This paper is organized as follows. In Section 2, We describe a linear functional pro-
gramming language LFP. In Section 3, We recall the standard GoI interpretation and
define modified GoI interpretation. In Section 4, we illustrate how we extract the mod-
ified GoI interpretation from a categorical realizability model. We capture a fixed point
operator in the categorical model by means of the trace operator of the category of sets
and partial maps which is given by cyclic computation. In Section 5, We prove adequacy
of our modified GoI interpretation.

2 A Linear Functional Programming Language LFP and Its
Operational Semantics

We describe the syntax of a linear functional programming language LFP. This
language is essentially equal to ���� in [8]. LFP is also a fragment of PILLY in [9].

Type A :� X � A� A � !A � �X�A
Term M :� x � M M � �x�AM � ��� !x �� M �� M � !M � M A � �X�M � �x�AM

� � ��A
� � �; x : A � x : A

� � ��A
� � �� x : A;� � x : A

� � �;�� x : A � M : B
� � �;� � �x�AM : A� B

� � �;� � M : A� B � � �;�� � N : A
� � �;�#�� � M N : B

� � �� x : A;� � M : A
� � �;� � �x�AM : A

� � �;� � M : A
� � �;� �!M :!A

� � �� x : A;� � M : B � � �;�� � N :!A
� � �;�#�� � ��� !x �� N �� M : B

��X � �;� � M : A � � �;�
� � �;� � �X�M : �X�A

� � �;� � M : �X�A � � B
� � �;� � M B : A[B�X]

322 N. Hoshino

where � is a finite sequence of type variables, and � and � are finite sequences of pairs
of type variables and types. �#�� is a merge of � and �� [6]. We inductively define
a relation “�#�� is a merge of finite lists � and ��” by (i) � is a merge of the empty
sequence � and �, (ii) � is a merge of � and �, (iii) if ��� is a merge of � and ��, then
x : A���� is a merge of x : A�� and ��, (iv) if ��� is a merge of � and ��, then x : A����

is a merge of � and x : A���. We write ��� and ��� for the length of these sequences.
� � A means that A is a well formed type under �, and � � �;� means that every type
A in �;� satisfies � � A. We write Ty for the set of closed types, and we write Term(A)
for the set of closed terms for A � Ty. When we write Term(A), we assume that A is a
closed type without mentioning it.

Operational semantics for LFP is the standard call-by-name evaluation strategy. For
more about operational semantics of LFP, see [8].

V :� �x�AM � �X�M � !M
V � V

M � �x�AL L[N�x] � V
M N � V

M[�x�AM�x] � V
�x�AM � V

M �!L N[L�x] � V
��� !x �� M �� N � V

M � �X�N N[A�X] � V
M A � V

When M � V is derivable, we write M �. Otherwise, we write M �.
We informally define soundness and adequacy. We define adequacy by termination

at !-types. As noted in [8], if we add a type � of Boolean values then adequacy defined
for termination at !-types is equivalent to adequacy defined for termination at �. In
Section 3.3, we formally define these notions for the modified GoI interpretation.

Definition 1. An interpretation of LFP is a map [[�]] that assigns a mathematical object
to each term M. We suppose that there is a distinguished object � among the mathemat-
ical objects. We say that the interpretation is sound when M � V �	 [[M]] � [[V]] for
every closed term M. We say that the interpretation is adequate when the interpretation
is sound and [[M]] � �
	 M � for every closed type A and a term M in Term(!A).

3 GoI Interpretation of LFP

3.1 Graphical Presentation of Partial Maps

In this section, we give graphical presentation of partial maps, which correspond pre-
cisely to string diagrams in the category Int(Pfn) (see Section 4.3). Let � be the set of
natural numbers. We present a partial map f : �l1� � � � � ln�m
 ��� �l1� � � � � ln�m
 �� as
a diagram with labeled ports:

�
�

�
���� ���f

ln�1

ln�mln
l1

When the number of ports on the left hand side is n and the number of ports on the
right hand side is m as above, we write f � �(n�m). By the definition of �(n�m), we
have �(n � 1�m) � �(n�m � 1) and so on. This equation corresponds to a rearrange-
ment of labeled ports of a diagram. For labels li and l j, we write f (li� n) � (l j�m) or

(li� n)
f
�� (l j�m) when f (li� n) is defined and is equal to (l j�m). If we do not need to write

A Modified GoI Interpretation for a LFP Language and Its Adequacy 323

labels, especially when a diagram has at most one port, we do not write labels. As a
special partial map, we write �n�m � �(n�m) for the partial map whose value is always
undefined. When we can infer n and m from context, we omit them.

By combining diagrams, we can construct new partial maps. For example, h given
in the following presents a partial map from �l� l�
 � � to �l� l�
 � �. The value of h for
(l�� n) is calculated by the algorithm on the left hand side:

�
�

�
�l2 f

l1
l4
l3

�� ��l5 g l6

��
	
 �

	
 ���� �� �
�

�
�

l

g
f

l�
h :�

1� Input n to l3.
2� If we get an output m from l1 then input m to l5.
3� If we get an output m from l2 then input m to l4.
4� If we get an output m from l3 then h outputs m from l.
5� If we get an output m from l4 then input m to l2.
6� If we get an output m from l5 then input m to l1.
7� If we get an output m from l6 then h outputs m from l.

If there is an infinite loop or no output, then h(l�� n) is undefined. The value of h(l� n)
is calculated by the same algorithm. Similar argument appears in the composition of
strategies in game semantics called “parallel composition � hiding”.

3.2 The Standard GoI Interpretation

For LFP without recursion, we give the standard GoI interpretation, which is a restric-
tion of GoI interpretation of classical linear logic to intuitionistic linear logic. For the
GoI interpretation of classical linear logic, see [16].

�
�

�
�

�
l1

l0
l2

�(l0� n) � (l2� pn)
�(l1� n) � (l2� qn)
�(l2� pn) � (l0� n)
�(l2� qn) � (l1� n)

�� ��l0 l1d

d(l0� �0� n�) � (l1� n)
d(l0� �i � 1� n�) � undefined
d(l1� n) � (l0� �0� n�)

�� ��l0 l1Æ
Æ(l0� ��i� j�� n�) � (l1� �i� � j� n��)
Æ(l1� �i� � j� n��) � (l0� ��i� j�� n�)

�
�

�
�

�l0 l1

l2

�(l0� pn) � (l1� n)
�(l0� qn) � (l2� n)
�(l1� n) � (l0� pn)
�(l2� n) � (l0� qn)

�� ��w w � �

�
�

�
�

cl0 l2

l1

c(l0� �pi� n�) � (l1� �i� n�)
c(l0� �qi� n�) � (l2� �i� n�)
c(l1� �i� n�) � (l0� �pi� n�)
c(l2� �i� n�) � (l0� �qi� n�)

Fig. 1. Components for the standard GoI iterpretation

In the following, we fix two bijections: 	 : � ��� � and ����� : � ��� �. We
define maps p� q : �� � by 	Æinl and 	Æinr respectively. For the purpose of this paper,
Any infinite set is suÆcient, and the choice is a matter of taste. Generalisation of GoI
interpretation to Figure 1 is the list of components for the standard GoI interpretation.
We use maps p� q and ����� for tagging. They tell where a natural number came from.
An output pn at l2 of
 means that the input was a number n coming from l0, and an

324 N. Hoshino

� � �; x : A � x : A � � �� x : A; � � x : A � � �;� � �x�AM : A� B

�� ��w�

x �� ���� ��w

d

�

x �� �
�

�
�

�
�

�
�

�
�

x

M
�

� � �;�#�� � M N : B � � �;� �!M :!A � � �;�#�� � ��� !x �� N �� M : A

�
��

�
�
�

�
�

�
�

�
�

�
��

�
�
�

�
�

�
�

�

�#�� �

c

N

M �

�

�� ���� ��� Æ M
�
�

�
�

�
�

�
� �
�

�
�
�

�

�

�
�

c
N M

�#��

�

x

�

� � �;� � �X�M : �X�A � � �;� � M B : A[B�X]

�
�

�
�

M
�

� �
�

�
�

M
�

�

Fig. 2. The standard GoI interpretation of LFP without recursion

output qn at l2 means that the input was a number n coming from l1. A number �i� n�
means the i-th copy of n. By the definition, � is a right inverse of
, which corresponds
to the tensor cell of proof nets [13]. Components d� Æ�w and c correspond to dereliction
!A � A, comultiplication !A �!!A, weakening !A � I and contraction !A �!A�!A of
linear logic respectively. In fact, we have

�� �� �� �� �� ���x d x �� �� �� �� �� ��x Æ � x �� �� �
�

�
� �� ��

�� ��x c
x

x
��� �� �� �� �x �w

where we define dotted line box, which corresponds to ! of linear logic, as follows.

T f :� �
�

�
���� ���f (l� �i� n�)

T f
�� (l�� � j�m�)

�

	 (l� n)
f
�� (l��m) � i � j

In Figure 2, we define the standard GoI interpretation of LFP without recursion. We
interpret each term � � �;� � M : A by an element in �(��� � ���� 1). On the left hand
side of the interpretation of M, the i-th port counted from the bottom corresponds to the
i-th variable in � for 1 � i � ���, and the ��� � j-th port corresponds to the j-th variable
in � for 1 � j � ���. In the definition, �s are the appropriate permutations, and we write
diagrams as if ��� and ��� were 1. We can infer precise definitions from Figure 2.

We can inductively show soundness of the standard GoI interpretation. However, the
standard GoI interpretation identifies certain terms that ought to be distinguished: the
interpretation of ��� !x �� M �� !(�x�Ax) for a term M � Term(!A) is equal to the inter-
pretation of !(�x�Ax). Because of this equality, the standard GoI interpretation does not
extend to an adequate interpretation of the whole LFP. In fact, we have !(�x�Ax) � as
well as ��� !x �� �x�Ax �� !(�x�Ax) �. The reason of this undesirable equality is that the
interpretation of a term is not strict on its arguments. This means that the interpretation

A Modified GoI Interpretation for a LFP Language and Its Adequacy 325

of a term does not necessarily evaluate its free variables. If a term� � �� x : A;� � M : B
does not have free x, then the GoI interpretation [M] of M ignores x, i.e. the port on the
right hand side of [M] has no path to the port for x on the left hand side of [M].

3.3 Modified GoI Interpretation

As noted at the end of previous section, the standard GoI interpretation does not extend
to an adequate interpretation of LFP. In this section, in order to obtain adequacy, we
modify the standard GoI interpretation and extend it to the whole language. Idea of our
modification is to impose strictness on the interpretations of terms.

���
�

�
�
�
�

�
��� �� �

�� �

	
 ���� �� �
�

�
��� �� �

�
�
�

d̃ �
d

�

�

�	

	

�
�

�
��

�
�
� �
�

�
�

�� ��
�

�
�

w

�� ��w̃ �

�
� ������

���� �
�

�� ��
�� ���

�
�
�

�
�

�
� �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

c̃ �

c
�

�

�
�

�
�

Fig. 3. Basic components for the modified GoI interpretation of LFP

Figure 3 is a list of components for the modified GoI interpretation. d̃� w̃ and c̃ cor-
respond to d�w and c of the standard GoI interpretation. Note that w̃ � �(1� 1) whereas
w � �(1� 0). Informally, we “lift” elements x � �(0� 1) by concatenating
 and x.
Let 	 be one of d̃� w̃ and c̃. Then the concatenation of 	 and � is equal to �, and the
concatenation of 	 and a lifting of T x for x � �(0� 1) is equal to the following:

�

�

�

��� �� �� �� �� ���x d̃ x
	
�� �� �� ��

�

�

�

�

�
�

�
�

x w̃ �
�� �� �� ��
�

�

�

��� �� �
�

�
�

�

�

�

�

�

�

�

�

�� ��
�� ��� 	 � � x c̃
x

x
�

where �� ��
�

�

�

� �� �� �� ��x x
:� . So as to show the equalities, readers are not required to
compute the partial functions represented by the above diagrams. We can show the
above 4 equalities by means of graph rewriting using the equations noted in Section 3.2.

Figure 4 is the definition of the modified GoI interpretation of LFP. As for the stan-
dard GoI interpretation, we interpret a term � � �;� � M : A by a partial map in
�(��� � ���� 1), and cells named � in Figure 4 are the appropriate permutations. Note
that cyclic computation appears in the interpretation of �x�AM which starts from c in
front of M going back to Æ. We write the modified GoI interpretation of M by [[M]].
The interpretation [[M]] induces a map from �(0� 1)��;�� to �(0� 1), which are strict on
their arguments: the value of the map at (x� y) is � when each component of x is � or
surrounded by a thick line box, and at least one of x is �.

We formally define soundness and adequacy for the modified GoI interpretation.

326 N. Hoshino

� � �; x : A � x : A (��� � 1) � � �� x : A;� � x : A (��� � 1)

��
���

�
�
�

�
�

�
�	

	
	

�� ��
�� ��
w̃

w̃

�

�

��
���

�
�
�

�
�

�
��� ��

�� ��
�� ��
	
	
	

w̃

w̃

�

�

d̃

� � �; x : A � x : A � � x : A; � � x : A�� ��d̃

���;� � �x�AM : A� B ���;�#�� � M N : B ���;�#�� � ��� !x �� N �� M : A

�� �
�

�
�

�
�

�
�

�
�

x

M
� �

��
�

�
�

�
�

�
�

�
�

�
��

�
�
�

�
�

�
�

�

�#�� �

c̃

N

M �

�

�
�

�
�

�
�

�
� �
�

�
�
�

�

�

�
�

c̃
N M

�#��

�

x

�

� � �;� �!M :!A (��� � 1) � � �;� � 	x�AM : A (��� � 1)

��
�
�

�

�
�

�

�
�� ��

�� ��
�� ��

�� ��

�� ��
�� ���

�
�
� �
�

�
��

�
�
� �
�

�
��

�
�
� �
�

�
�

�

�

�

�
�� ��

����
�

�

�

�

�

��

��

��

Æ���
Æ

Æ

�M

���

�

	

�
� �

�	
�

��
�
�

�

�
�� ��

�� ��
�� �� �

�

�

��� ��

�
�

�
�
�� ��

�� ��

�� ��
�� ��

�� ��

�
�

�
� �
�

�
��

�
�
� �
�

�
��

�
�
� �
�

�
� �

�

�

�

M c
d

�

�

�

��

��

��

Æ

Æ��� ���
Æ

Æ

���

� � �;� �!M :!A � � �;� � 	x�AM : A

�� �� �� ��M �

��	
 �� �� �� �� �
�

�
�
�� ���� �� � M c
d

Æ

� � �;� � �X�M : �X�A � � �;� � M B : A[B�X]

�
�

�
�

M
�

� �
�

�
�

M
�

�

where �� is �
�

�
�

�
�

�
�

:��� �

Fig. 4. Modified GoI interpretation of LFP

A Modified GoI Interpretation for a LFP Language and Its Adequacy 327

Definition 2. We say that the modified GoI interpretation is sound when M�V implies
[[M]] � [[V]] for every closed term M. We say that the modified GoI interpretation is
adequate when the interpretation is sound and [[M]] � �
	 M � for every closed
type A and a term M in Term(!A).

Theorem 1. The modified GoI interpretation [[�]] is adequate.

Proof. We will prove this theorem in Section 5.

4 Deriving the Modification from a Realizability Interpretation

Before showing the adequacy of the modified GoI interpretation, we sketch how we de-
rived the modification. Our technique stems from a realizability interpretation. We con-
struct a realizability model of LFP from the �-cpo �(0� 1). We interpret each LFP term
as an equivalence class of a partial equivalence relation (per) on �(0� 1). We can derive
our modified GoI interpretation by inductively extracting elements from the equivalence
classes. For lack of space, we just outline the construction of the realizability model and
illustrate several extractions of the modified GoI interpretation.

4.1 Interpretation of the Untyped Linear Lambda Calculus

As a preparation, we give a syntax for diagrams representing partial maps. We add
the tensor to the untyped linear lambda calculus given in [22]. We need the tensor to
describe the monoidal product, which is a fundamental structure of linear categories, of
the realizability model that we are going to construct.

M :� x � kx � �x�M � !M � M M � ��� !x �� M �� M � M � M � ��� x � y �� M �� M

�; x � x �� x;� � x �;� � kx

�;� � M �;�� � N
�;�#�� � M N

�;�� x � M
�;� � �x�M

�;� � M
�;� �!M

�� x;� � M �;�� � N
�;�#�� � ��� !x �� N �� M

�;� � M �;�� � N
�;�#�� � M�N

�;�� x� y � M �;�� � N
�;�#�� � ��� x � y �� N �� M

where kx is a constant symbol, and x runs through �(0� 1). We assign each term to a
partial map. For kx�M � N and ��� x � y �� N �� M, assignments are as follows:

�;� � kx �;�#�� � M � N �;�#�� � ��� x � y �� N �� M

�� �� �� ��� w x �
�

�
�

�
�

�
��

�
�
�

�
�

�
�
�
�

�
�

�

� N
�

c M

�#��

 �
�

�
�

�
�

�
� �

�
�
�
�
�

�
�

�

�

�

�
c

� N �

M

y

x
�#��

�

�

For other terms, we can associate partial maps as in Figure 2. For example, the partial
map associated to �; x � �k�k x is equal to
 in Figure 3. We identify a term and its
associated partial map. There are expected equations.

Proposition 1. As partial maps, the following equations hold.

(�x�M) N � M[N�x]
��� !x �� !M �� P � P[M�x] (M is closed)
��� x � y �� M�N �� P � P[M�x�N�y] (M and N are closed)

328 N. Hoshino

4.2 Admissible Pers and Strict Morphisms

We regard �(0� 1) as an �-cpo by the inclusion order of graph relations of partial maps.
The empty map � is the least element in �(0� 1). We construct a realizability model
on the �-cpo �(0� 1). Like in [9], we consider admissible pers on �(0� 1) which is a
subclass of partial equivalence relations.

Definition 3. For a pointed �-cpo D, an admissible per R on D is a per on D such that
(���) � R, and R is closed under least upper bounds (lub) of �-chains, i.e. for any
ascending chain (x1� y1) � (x2� y2) � � � � in R, the lub (

�
i xi�

�
i yi) is also in R. We write

�R� for �x � (x� x) � R
. For x � �R�, we write [x]R for the equivalence class of x.

In the following, we simply write x for a closed term kx. For example, for x� y � �(0� 1),
x y means kx ky. We use italics for elements in �(0� 1) and sans serifs for syntactic
variables of the untyped linear lambda calculus.

Definition 4. We define a category Adm. Objects are admissible pers on �(0� 1). For
objects X and Y, we define �X�Y to be a partial equivalence relation on �(0� 1) such
that r �X�Y s if and only if �(x� x�) � X� (r x� s x�) � Y. A morphism f : X � Y is
an equivalence class of �X�Y. We call a representative r of f a realizer of f , and we
say that r realizes f . When f [�]X � [�]Y, we say a morphism f : X � Y is strict.
We define Adm� to be a subcategory of Adm consisting of Adm-objects and strict
Adm-morphisms. We use bold face for morphisms in Adm and Adm�.

Adm as well as Adm� is a model of intuitionistic linear logic called linear category: A
linear category is a symmetric monoidal closed category with a comonad called linear
exponential comonad [5,7]. An intuition of Adm is the category of �cpos and contin-
uous maps, and an intuition of Adm� is the category of pointed �cpos and strict con-
tinuous maps. We list the unit object, the linear implication and the linear exponential
comonad of Adm and Adm� respectively.

Adm I � �(�� �)

X � Y � �(x � y� x� � y�) � (x� x�) � X� (y� y�) � Y

X � Y � �(r� s) � �(x� x�) � X� (r x� s x�) � Y

!X � �(!x� !x�) � (x� x�) � X

Adm� İ � �(�� �)
 � �(�x�x� �x�x)

X�̇Y � �(x � y� x� � y�) � (x� x�) � X� (y� y�) � Y
��

(x � y� x� � y�)

������ (x� x� � �X�) � (y� y� � �Y �)�
(x � [�]X � y � [�]Y) � (x� � [�]X � y� � [�]Y)

�

X�̇Y � �(r� s) � �(x� x�) � X� (r x� s x�) � Y � r � � [�]Y

!̇X � �(�� �)
 � �(�k�k !x� �k�k !x�) � (x� x�) � X

It is not hard to show that both Adm and Adm� provide models of the polymorphic
linear lambda calculus whose linear exponential comonad ! is idempotent, i.e. !! is
isomorphic to !. Readers can consult [2,9]. In [9], Birkedal et al. showed that Adm�

on a certain domain provides a model of the polymorphic linear lambda calculus with
recursion, and they discussed relationship between Adm and Adm�. We can find a
similar relationship for Adm and Adm� on �(0� 1) (Lemma 1).

A Modified GoI Interpretation for a LFP Language and Its Adequacy 329

Extraction of realizers. We illustrate extraction of realizers of the dereliction ḋ : !̇X �

X and the weakening ẇ : !̇X � İ of Adm�. They are given by the following:

ḋ[�]!̇X � [�]X ḋ[�k�k !x]!̇X � [x]X ẇ[�]!̇X � [�]I ẇ[�k�k !x]!̇X � [�x�x]I �

ḋ and ẇ are realized by ḋ and ẇ in the following:

ḋ :� �x�x (�x����� !y �� x� �� y) ẇ :� �x�x (�x����� !y �� x� �� �z�z)

By uncurrying ḋ, we obtain x (�x����� !y �� x� �� y), whose corresponding diagram is
exactly d̃ in Figure 3. Similarly, we obtain w̃ in Figure 3 by uncurrying ẇ. Extraction of
Æ̃ and the modified GoI interpretation of !M are more complicated. Still, we can extract
realizers by elementary calculation. First, we give a realizer of these terms in a form
of untyped terms, then we write down the corresponding diagrams. In the end, by ad
hoc optimization, we obtain simpler realizers of these terms which are the modified GoI
interpretations of them.

It is not automatic to find ḋ and ẇ. However, if you write down a proof of Adm�

being a linear category, then you must have given an algorithm constructing realizers of
ḋ and ẇ (unless you did not use excluded middle in the proof). Then, you can extract
realizers ḋ and ẇ by the algorithm.

4.3 Interpretation of Recursion in Mackie Style

We give an interpretation of recursion in Adm� and illustrate extraction of a realizer
of �x�AM in Mackie style. At the level of realizers, we interpret recursion by means
of the trace operator in Int(Pfn) (See the following definitions). Before that, we briefly
recall several necessary notions: traced symmetric monoidal categories, compact closed
categories and Int-construction. For further details, see [19,17].

Definition 5. A symmetric monoidal category� is traced when� has an operator trA
X�Y :

�(X � A� Y � A) � �(X� Y) subject to

– trA
X��Y� ((k � idA) Æ f Æ (h � idA)) � k Æ trA

X�Y(f) Æ h
– trX

X�X(�X�X) � idX

– trA
Z�X�Z�Y (idZ � f) � idZ � trA

X�Y (f)
– trA

X�Y (trB
X�A�Y�A(f)) � trB

X�Y (trA
X�B�Y�B((idY � �A�B) Æ f Æ (idX � �B�A)))

Definition 6. A compact closed category � is a symmetric monoidal category with a
function � : ob(�) � ob(�) and morphisms �X : X� � X � I and �X : I � X � X�

satisfying (X � �X) Æ 	 Æ (�X � X) � idX and (�X � X�) Æ 	�1 Æ (X� � �X) � idX� where
	X�Y�Z : (X � Y) � Z � X � (Y � Z) is the coherence isomorphism.

Definition 7. Let � be a traced symmetric monoidal category �. We define a cate-
gory Int(�). Objects are pairs (X�� X�) of �-objects, and a morphism f : (X�� X�) �
(Y�� Y�) is a �-morphism f : X� � Y� � Y� � X�.

330 N. Hoshino

As is known, every compact closed category has a canonical structure of a traced sym-
metric monoidal category. On the other hand, for a traced symmetric monoidal category
�, Int(�) is a compact closed category whose monoidal product (X�� X�) � (Y�� Y�) is
(X� � Y�� X� � Y�).

The following theorem shown in [17,21] relates a trace operator on a linear category
to an interpretation of recursion.

Theorem 2. Let � be a linear category. If � is traced, and the linear exponential
comonad ! is idempotent, then � has an operator (�)� : �(!A�!X� X) � �(!A� X) that
satisfies f � f Æ (!A � (! f � Æ Æ)) Æ c for every f :!A�!X � X where c is the contraction
!A �!A�!A of �, and Æ is the comultiplication !X �!!X of �.

In this paper, we are interested in the traced symmetric monoidal category Pfn of sets
and partial maps and the compact closed category Int(Pfn). The monoidal product of
Pfn is the set theoretic coproduct (i.e. disjoint union), and the trace operator of Pfn is
given by cyclic computation, see [1]. Diagrams in this paper are exactly string diagrams
in Int(Pfn), and Int(Pfn)((���)�n� (���)�m) is equal to �(n�m) where (���)�n is the
n-fold monoidal product of (���). As noted in the above, Int(Pfn) is also a traced

monoidal category. Its trace operator tr(���)
(���)�(���) is depicted as

�� ���
�

�
�

�
�

�
�

f �� f . Ob-

serve that tr(���)
(���)�(���)(f) is calculated by cyclic computation.

Proposition 2. Adm is a traced symmetric monoidal category.

Proof. Let r be a realizer of f : X � A � Y � A. We define tr(r) � �(0� 1) by the
diagram (i) below. We show that tr(r) realizes a morphism from X to Y.

(i)

�
�

�� ���
�� �� �
�

�
�

�
�

�
�

�
�

�
�

r̂
 �

(ii) �

�
�
� �� �� �

�
�
�

�� ���1
0
1

x

 r̂ � where r̂ �

���� �� �
�

�
�

r �

Note that the trace operator tr(���)
(���)�(���) of Int(Pfn) appears in tr(r). For x � �(0� 1),

let fx � �(1� 2) be the diagram (ii) in the above. Then, n
tr(r) x
�� m if and only if either

(0� n)
fx
�� (0�m), or there exists k � 0 and i0� � � � � ik � ��1� 1
 such that (0� n)

fx
�� (i0� x0),

(�ip� xp)
fx
�� (ip�1� xp�1) for 0 � p � k � 1 and (�ik� xk)

fx
�� (0�m). This is equivalent to

the existence of n0� n2 � 0, n1 � 1 and i� j � �0� 1
 such that the following partial map
gx�n0�n1�n2 sends (i� n) to (j�m).

��� � � ��
�

�
��� �� �

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�n0

� � �
n1
� � �

n2
� � �gx�n0�n1�n2 � � fx fx fx fx fx fx

0 1

Since r is a realizer of f : X � A � Y � A, the partial map gx�n0�n1�n2 is equal to

�� ���� �� �� �� �� ��ax�0 ax�1 � � � ax�n0�n1�n2 bx�n0�n1�n2

A Modified GoI Interpretation for a LFP Language and Its Adequacy 331

for some ax�n � �Y � and bx�n � �A�. Note that we have ax�0 � ax�1 � � � �. Therefore,

n � tr(r) x �� m
	 �n0� n1� n2 � 0� �i� j � �0� 1
� gx�n0�n1�n2(i� n) � (j�m)

	 �k � 0� ax�k(n) � m

	 (

�
k	0 ax�k)(n) � m

By induction on a natural number n, we can show that if (x� x�) � X then (ax�n� ax��n) �
Y and (bx�n� bx��n) � A. Therefore, (tr(r) x� tr(r) x�) � (

�
n	0 ax�n�

�
n	0 ax��n) � Y, i.e.

tr(r) realizes a morphism from X to Y. Let s be another realizer of f , and we define
a�x�n and b�x�n in �(0� 1) similarly. Then, we can inductively show that (ax�n� a�x�n) � Y
and (bx�n� b�x�n) � A for each x � �X� and n � 0. Therefore, tr(r) and tr(s) realize the
same morphism. We define trA

X�Y (f) to be the morphism realized by tr(r). The axioms in
Definition 5 follow from the fact that Int(Pfn) is a compact closed category, which is
in particular a traced symmetric monoidal category.

Corollary 1. Adm has an operator (�)� : Adm(!A�!X� X) � Adm(!A� X) that satis-
fies f � f Æ (!A � (! f� Æ Æ)) Æ c for every f :!A�!X � X where c is the contraction
!A �!A�!A of Adm, and Æ is the comultiplication !X �!!X of Adm.

Proof. Since Adm is traced and the linear exponential comonad of Adm is idempotent,
the statement holds by Remark 5.1 in [17]. For the proof, see [17,21].

The following lemma relates Adm with Adm�. We omit the proof. Explicitly, LX in
the following Lemma is given by �(�� �)
 � �(�k�k x� �k�k y) � (x� y) � X
, and the unit
h : X � ULX of the adjunction is given by h[x]X � [�k�k x]LX . In fact, the linear
exponential comonad !̇ of Adm� is the induced linear exponential comonad L!U.

Lemma 1. The forgetful functor U : Adm� � Adm has a left adjoint functor L :
Adm � Adm� which is strong monoidal.

Proposition 3. Adm� has an operator (�)
 : Adm�(!̇A�̇!̇X� X) � Adm�(!̇A� X) that
satisfies f � f Æ (!̇A�̇(!̇ f
 Æ Æ̇)) Æ ċ for every f : !̇A�̇!̇X � X where ċ is the contraction
!̇A � !̇A�̇!̇A of Adm�, and Æ̇ is the comultiplication !̇X � !̇!̇X of Adm�.

Proof. Let g be the transpose of L(!UA�!UX)
�

�� L!UA�̇L!UX
f

�� X. We define

f
 : !̇A � X for f : !̇A�̇!̇X � X to be L!UA
L(g�)
�� LUX �� X. By diagram chasing, we

can check f � f Æ (!̇A�̇(!̇ f
 Æ Æ̇)) Æ ċ.

By Proposition 3, we can interpret recursion in Adm� by (�)
. As in the proof, � is
constructed from , and is constructed from the trace operator of Adm. Since the trace
of Adm is calculated by taking trace of a realizer of f in Int(Pfn), the trace operator of
Int(Pfn) (cyclic computation) appears in the interpretation of recursion.

Extraction of realizers. We calculate a realizer of f
 : !̇A � X for f : !̇A�̇!̇X � X. We
take a realizer r of f . Let g :!UA�!UX � UX be an Adm-morphism obtained by the

transpose of L(!UA�!UX)
�

�� L!UA�̇L!UX
f

�� X. We define h and M by:

h :� !UA�!UX �� !!UA�!!UX �� !(!UA�!UX)
!g �� !UX

332 N. Hoshino

M :� �x���� p � q �� x �� ��� !s �� p �� ��� !t �� q �� !(r ((�k�k !s) � (�k�k !t)))�

Then M realizes h. The diagram of M is (i), where r̂ is ���� �� �
�

�
�

r � .

(i)
�� �� �� ���� �� �� ��Æ Æ d

�
� �� �� �� ���� �� �� ��

�
�

�
�

�
�

�
�
�� �� �

�
�
�

Æ Æ d

 r̂

�

(ii)

�� �� �� ��Æ

�� �� �� ��Æ

�
� �

�
�
�
�� ���

�
�
� �

�
�
�

�
 r̂

Since the diagrams (i) and (ii) realize the same morphism, we can optimize (i) by (ii).
Then g� is realized by the following diagram (iii).

(iii)

	

�
�

�
��
�

�
�
�

�� �� �� ��
�� �� �� �� �� �� �

�
�
�
�� �� �

�
�
�

Æ

Æ

c

d

r̂

(iv)

	
�� ��

��

�
�� ��
�� ��

�� ��
�� ��

�
�

�
� �
�

�
�

�
�

�
�
�� �� �

�
�
�
�� ��

�
��

Æ

Æ
c

d
r̂

We write s for the diagram (iii). Then �k�k s realizes f �. By uncurrying the diagram of
�k�k s and arranging the uncurried diagram, we obtain a diagram (iv) in the above. By
replacing r̂ and
 in the dotted line box with the modified GoI interpretation of M, we
obtain the modified GoI interpretation of �x�AM in Figure 4 for ��� � 1.

5 Proof of Soundness and Adequacy

We show Theorem 1 by means of logical relations. Theorem 1 follows from Proposi-
tion 4 and Proposition 5 in this section.

For a closed type A, we define !(A) to be the set of relations R between �(0� 1) and
Term(A) such that

– �M � Term(A)� (��M) � R.
– If (xi�M) � R for an ascending chain �xi
i��, then (

�
i xi�M) � R.

– If (x�M) � R and M � V
	 N � V, then (x�N) � R.

For � : �� Ty and ��(X) � !(�(X))
X��, we define �A���� � !(A[�(�)��]) for � � A:

�X���� � �(X)
�A� B���� � �(x�M) � �(y�N) � �A����� (x y�M N) � �B����

�!A���� �
�(��M) � M � Term(!A[�(�)��])

��(�k�k !x�N) � N �!M � (x�M) � �A����

��X�A���� �
�

B�Ty�R��(B)�(x�M) � (x�N B) � �A��[B�X]��[R�X]

For � � �;� � M : A, since [[M]] � �(��� � ���� 1), we have a map from �(0� 1)��� �
�(0� 1)��� to �(0� 1). We write its value at (x� y) by [[M]](x� y).

A Modified GoI Interpretation for a LFP Language and Its Adequacy 333

Lemma 2. For � � �;� � M : A and P � Term(�) and Q � Term(�), we have
[[M]] ([[!P]]� [[Q]]) � [[M[P���Q��]]].

Proposition 4 (Soundness). If M � V then [[M]] � [[V]].

Proof. By induction on the derivation of M � V. In the induction step of �x�AM, we can
show that the modified GoI interpretation is equal to the least fixed point of a continuous
map on�(0� 1) by an argument similar to the proof of Proposition 2. Then, the induction
step of �x�AM follows from the induction hypothesis. Other cases follow from Lemma 2.

Proposition 5. For a term � � �;� � M : A, a map � : � � Ty, relations �(X) �

!(�(X)) for X � �, pairs (�0(x)� �1(x)) � �!B���� for (x : B) � � and pairs (Æ0(x)� Æ1(x)) �
�C���� for (x : C) � �, the following holds:

– If �1(x) �!��1(x) for every (x : B) in � then

�
[[M]] (�0(�)� Æ0(�)) �M[�(�)��� ��1(�)��� Æ1(�)��]

�
� �A�����

– If there exists x : B in � such that �1(x) � then [[M]] (�0(�)� Æ0(�)) � �.

Proof. By induction on M. In the induction step of �x�AM, we argue as in the proof of
Proposition 2. We can calculate the interpretation of �x�AM by the lub of an �-chain.
Then, the induction step of �x�AM follows from the closedness of �A���� under lubs. We
can directly show the other cases by the induction hypothesis.

Related works. The GoI interpretation in this paper is based on the traced symmetric
monoidal category Pfn. In [1], Abramsky, Haghverdi and Scott captured a categori-
cal background of GoI interpretation by GoI situation. In [15], Haghverdi introduced
unique decomposition category so as to capture the original GoI interpretation. The
standard GoI interpretation in this paper is based on a GoI situation on the unique de-
composition category Pfn.

We can describe our modified GoI interpretation by data of a GoI situation on the
traced symmetric monoidal category Pfn, and we used the unique decomposition struc-
ture of Pfn to show that Adm is traced. However, we do not know to which class of
unique decomposition categories we can generalise our argument. Since we used the
�-cpo structure on �(0� 1) � Pfn(���) in the definition of Adm and the proof of
Proposition 2, we might need to require some additional domain theoretic structures on
a unique decomposition category. We also want to explore relationship between trace
operators on linear categories and fixed point operators on cartesian closed categories
from our concrete example.

At this point, we do not know how our modified GoI interpretation and the category
Adm are related to the combinatory algebra called " in [23] and call-by-value game
semantics [3].

Acknowledgement. I thank Masahito Hasegawa and Sin-ya Katsumata for discussions
and advice. The author is supported by JSPS Research Fellowships for Young Scientists.

334 N. Hoshino

References

1. Abramsky, S., Haghverdi, E., Scott, P.J.: Geometry of interaction and linear combinatory
algebras. Math. Struct. in Comput. Sci. 12(5), 625–665 (2002)

2. Abramsky, S., Lenisa, M.: A Fully Complete PER Model for ML Polymorphic Types. In:
Clote, P., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 140–155. Springer,
Heidelberg (2000)

3. Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M. (ed.) CSL 1997. LNCS,
vol. 1414, pp. 1–17. Springer, Heidelberg (1998)

4. Baillot, P., Pedicini, M.: Elementary complexity and geometry of interaction. Fundam.
Inf. 45(1-2), 1–31 (2001)

5. Barber, A., Plotkin, G.: Dual intuitionistic linear logic, Technical Reprot ECS-LFCS-96-347,
LFCS, Universit of Edinburgh (1997)

6. Barber, A.G.: Linear Type Theories, Semantics and Action Calculi. PhD thesis, University
of Edinburgh (1997)

7. Bierman, G.M.: What is a categorical model of intuitionistic linear logic? In:
Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 78–93. Springer,
Heidelberg (1995)

8. Bierman, G.M., Pitts, A.M., Russo, C.V.: Operational properties of lily, a polymorphic linear
lambda calculus with recursion. Electr. Notes Theor. Comput. Sci. 41(3) (2000)

9. Birkedal, L., Møgelberg, R.E., Petersen, R.L.: Domain-theoretical models of parametric
polymorphism. Theor. Comput. Sci. 388(1-3), 152–172 (2007)

10. Danos, V., Regnier, L.: Reversible, irreversible and optimal lambda-machines. Electr. Notes
Theor. Comput. Sci. 3 (1996)

11. Girard, J.-Y.: Geometry of Interaction I: Interpretation of System F. In: Ferro, R., et al. (eds.)
Logic Colloquium 1988. North-Holland, Amsterdam (1989)

12. Girard, J.-Y.: Geometry of Interaction II: Deadlock-free Algorithms. In: Martin-Löf, P.,
Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 76–93. Springer, Heidelberg (1990)

13. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press, Cam-
bridge (1989)

14. Gonthier, G., Abadi, M., Lévy, J.-J.: The geometry of optimal lambda reduction. In: POPL,
pp. 15–26 (1992)

15. Haghverdi, E.: A Categorical Approach to Linear Logic, Geometry of Proofs and Full
Completeness. PhD thesis, University of Ottawa (2000)

16. Haghverdi, E., Scott, P.J.: A categorical model for the geometry of interaction. Theor. Com-
put. Sci. 350(2-3), 252–274 (2006)

17. Hasegawa, M.: On traced monoidal closed categories. Mathematical Structures in Computer
Science 19(2), 217–244 (2009)

18. Jones, S.P.: The Implementation of Functional Programming Languages. Prentice Hall,
Englewood Cli�s (1987)

19. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Mathematical Proceedings of
the Cambridge Philosophical Society 119(3), 447–468 (1996)

20. Mackie, I.: The geometry of interaction machine. In: POPL, pp. 198–208 (1995)
21. Melliès, P.-A.: Functorial Boxes in String Diagrams. In: Ésik, Z. (ed.) CSL 2006. LNCS,

vol. 4207, pp. 1–30. Springer, Heidelberg (2006)
22. Simpson, A.K.: Reduction in a Linear Lambda-Calculus with Applications to Operational

Semantics. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 219–234. Springer, Heidelberg
(2005)

23. van Oosten, J.: A combinatory algebra for sequential functionals of finite type. In: Cooper,
S.B., Truss, J.K. (eds.) Models and Computatbility. Cambridge University Press, Cambridge
(1999)

Estimation of the Length of Interactions
in Arena Game Semantics

Pierre Clairambault

University of Bath
p.clairambault@bath.ac.uk

Abstract. We estimate the maximal length of interactions between
strategies in HO/N game semantics, in the spirit of the work by Schwicht-
enberg and Beckmann for the length of reduction in simply typed λ-
calculus. Because of the operational content of game semantics, the
bounds presented here also apply to head linear reduction on λ-terms
and to the execution of programs by abstract machines (PAM/KAM),
including in presence of computational effects such as non-determinism
or ground type references. The proof proceeds by extracting from the
games model a combinatorial rewriting rule on trees of natural num-
bers, which can then be analysed independently of game semantics or
λ-calculus.

1 Introduction

Among the numerous notions of execution that one can consider on higher-order
programming languages (in particular on the λ-calculus) head linear reduction
[9] plays a particular role. Although it is not as widespread and specifically
studied as, say, β-reduction, it is nonetheless implicit to various approaches of
higher-order computation, such as geometry of interaction, game semantics, op-
timal reduction and ordinary operational semantics. It is also implicit to several
abstract machines, including the Krivine Abstract Machine (KAM) [17] and the
Pointer Abstract Machine (PAM) [9], in the sense that it is the reduction they
perform [9,5] and as such is a valuable abstraction of how programs are executed
in the implementation of higher order languages.

Despite being closer to the implementation of programming languages, head
linear reduction never drew a lot of attention from the community. Part of the
reason for that is that it is not a usual notion of reduction: defining it properly
on λ-terms requires both to extend the notion of redex and to restrict to lin-
ear substitution, leading to rather subtle and tricky definitions which lack the
canonicity of β-reduction1. Moreover, its associated observational equivalence is
the same as for the usual head β-reduction, which makes it non relevant as long
as one is interested in the equational theory of λ-calculus. However, head linear

1 However, there are syntaxes on which head linear reductions appear more canonical
that β-reduction, for instance proof nets [21].

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 335–349, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

336 P. Clairambault

reduction should appear in the foreground as soon as one is interested in quan-
titative aspects of computation, such as complexity. On the contrary, although
very precise bounds are known for the possible length of β-reduction chains in
simply typed λ-calculus [24,3], to the author’s knowledge, the situation for head
linear reduction remains essentially unexplored. Even if it is generally expected
that the bounds remain hyper-exponential2 (and this indeed what we will prove),
it does not seem to follow easily from the bounds known for β-reduction.

Rather than reasoning directly on head linear reduction, we will instead look
at it through game semantics [16]. Indeed, there is a close relationship between
head linear reduction and interaction in games model of programming languages
[8]. More precisely, given two β-normal and η-long λ-terms S and T , there is a
step-by-step correspondence between head linear reduction chains of ST and
game-theoretic interactions between the strategies �S� and �T �. Of course, game
semantics are not central to our analysis: as is often the case, our methods
and results could be adapted to a purely syntactical framework. However, games
have this considerable advantage of accommodating in a single framework purely
functional programming languages such as the λ-calculus or PCF and a num-
ber of computational features such as non-determinism [15], control operators
[19] and references [1]. This will allow us to do our study with an increased
generality: our complexity results will hold for a variety of settings, from simply
typed λ-calculus to richer languages possibly featuring the computational effects
mentioned above, as long as there is no fixed point operator.

Outline. In Section 2 we will recall some of the basic definitions of Hyland-Ong
game semantics, define the central notion of size of a strategy, and introduce our
main question as the problem of finding the maximal length of an interaction
between two strategies of fixed size. Our approach will be then to progressively
simplify this problem in order to reach its underlying combinatorial nature. In
Section 3 we first introduce the notion of visible pointer structures, i.e. plays
where the identity of moves has been forgotten. This allows a more elementary
(strategy-free) equivalent statement of our problem. Then we show how each
position in a visible pointer structure can be characterised by a tree of natural
numbers called an agent. We then show that the problem can be once again
reformulated as the maximal length of a reduction on these agents. In Section 4
we study the length of this reduction, giving in particular an upper bound. We
also give a corresponding lower bound, and finally we use our result to estimate
the maximal length of head linear reduction sequences on simply typed λ-terms.

Related works. Our results and part of our methods are similar to the works of
Schwichtenberger and Beckmann [24,3], but the reduction we study is in some
sense more challenging, because redexes are not destroyed as they are reduced.
Moreover, the game semantics setting allows for an extra generality. The present

2 Note however that in [10], De Bruijn gives an upper bound for his local β-reduction,
akin to head linear reduction. The bound is an iterate of the diagonal of an
Ackermann-like function!

Estimation of the Length of Interactions in Arena Game Semantics 337

work also has common points with work by Dal Lago and Laurent [18], in the
sense that it uses tools from game semantics to reason on the length of execution.
However the approach is very different : their estimate is very precise but uses an
information on terms difficult to compute (almost as hard as actually performing
execution). Here, we need little information on terms (gathering this information
is linear in the size of the term), but our bounds are, in most cases, very rough.

2 Arena Game Semantics

We recall briefly the now usual definitions of arena games, first introduced in [16].
More detailed accounts can be found in [22,13]. We are interested in games with
two participants: Opponent (O, the environment) and Player (P, the program).

2.1 Arenas and Plays

Valid plays are generated by directed graphs called arenas, which are semantic
versions of types. Formally, an arena is a structure A = (MA, λA, IA,)A) where:

– MA is a set of moves,
– λA : MA → {O,P} is a polarity function indicating whether a move is an

Opponent or Player move (O-move or P -move).
– IA ⊆ λ−1

A ({O}) is a set of initial moves.
–)A⊂ MA × MA is a relation called enabling, such that if m)A n, then
λA(m) �= λA(n).

In other words, an arena is just a directed bipartite graph. We now define plays
as justified sequences over A: these are sequences s of moves of A, each non-
initial move m in s being equipped with a pointer to an earlier move n in s,
satisfying n)A m. In other words, a justified sequence s over A is such that
each reversed pointer chain si0 ← si1 ← . . . ← sin is a path on A (viewed as a
graph). The role of pointers is to allow reopenings or backtracking in plays. When
writing justified sequences, we will often omit the justification information if this
does not cause any ambiguity. The symbol (will denote the prefix ordering on
justified sequences, and s1 (P s2 will mean that s1 is a P -ending prefix of s2. If
s is a justified sequence on A, |s| will denote its length.

Given a justified sequence s on A, it has two subsequences of particular inter-
est: the P-view and O-view. The view for P (resp. O) may be understood as the
subsequence of the play where P (resp. O) only sees his own duplications. Practi-
cally, the P-view �s	 of s is computed by forgetting everything under Opponent’s
pointers, in the following recursive way:

– �sm	 = �s	m if λA(m) = P ;
– �sm	 = m if m ∈ IA and m has no justification pointer;
– �s1ms2n	 = �s	mn if λA(n) = O and n points to m.

The O-view �s� of s is defined dually, without the special treatment of initial
moves3. The legal plays over A, denoted by LA, are the justified sequences s on A
satisfying the alternation condition, i.e. that if tmn (s, then λA(m) �= λA(n).
3 In the terminology of [13], it is the long O-view.

338 P. Clairambault

2.2 Classes of Strategies

In this subsection, we will present several classes of strategies on arena games
that are of interest to us in the present paper. A strategy σ on A is a set of
even-length legal plays on A, closed under even-length prefix. A strategy from
A to B is a strategy σ : A⇒ B, where A ⇒ B is the usual arrow arena defined
by MA⇒B = MA +MB, λA⇒B = [λA, λB] (where λA means λA with polarity
O/P reversed), IA⇒B = IB and)A⇒B=)A +)B +IB × IA.

Composition. We define composition of strategies by the usual parallel inter-
action plus hiding mechanism. If A, B and C are arenas, we define the set of
interactions I(A,B,C) as the set of justified sequences u over A, B and C such
that u�A,B ∈ LA⇒B , u�B,C ∈ LB⇒C and u�A,C ∈ LA⇒C . Then, if σ : A ⇒ B
and τ : B ⇒ C, we define parallel interaction as σ || τ = {u ∈ I(A,B,C) |
u�A,B ∈ σ∧u�B,C ∈ τ}, composition is then defined as σ; τ = {u�A,C | u ∈ σ||τ}.
Composition is associative and admits copycat strategies as identities.

P -visible strategies. A strategy σ is P -visible if each of its moves points to the
current P -view. Formally, for all sab ∈ σ, b points inside �sa	. P -visible strategies
are stable under composition, as is proved for instance in [13]. They correspond
loosely to functional programs with ground type references [1].

Innocent strategies. The class of innocent strategies is central in game semantics,
because of their correspondence with purely functional programs (or λ-terms)
and of their useful definability properties. A strategy σ is innocent if

sab ∈ σ ∧ t ∈ σ ∧ ta ∈ LA ∧ �sa	 = �ta	 ⇒ tab ∈ σ
Intuitively, an innocent strategy only takes its P -view into account to determine
its next move. Indeed, any innocent strategy is characterized by a set of P -
views. This observation is very important since P -views can be seen as abstract
representations of branches of η-expanded Böhm trees (a.k.a. Nakajima trees
[23]) : this is the key to the definability process on innocent strategies [16]. It is
quite technical to prove that innocent strategies are stable under composition,
proofs can be found for instance in [13,5]. Arenas and innocent strategies form a
cartesian closed category and are therefore a model of simply typed λ-calculus.

Bounded strategies. A strategy σ is bounded if it is P -visible and if the length
of its P -views is bounded: formally, there exists N ∈ N such that for all s ∈ σ,
|�s	| ≤ N . Bounded strategies are stable under composition, as is proved in [6] for
the innocent case and in [5] for the general case. This result corresponds loosely
to the strong normalisation result on simply-typed λ-calculus. Syntactically,
bounded strategies include the interpretation of all terms of a functional pro-
gramming language without a fixed point operator but with Algol-like ground
type references (for details about how reference cells get interpreted as strategies
see for instance [1], it is obvious that this interpretation yields a bounded strat-
egy) and arbitrary non determinism. This remark is important since it implies
that our results will hold for any program written with these constructs, as long
as they do not use recursion or a fixed point operator.

Estimation of the Length of Interactions in Arena Game Semantics 339

2.3 Size of Strategies and Interactions

Since in this paper we will be interested in the length of interactions, it is sensible
to make it precise first what we mean by the size of strategies. Let σ be a bounded
strategy, its size is defined as

|σ| =
maxs∈σ|�s	|

2

All our analysis on the size of interactions will be based on this notion of size
of strategies. Our starting point is the following finiteness result, proved in [6].
We say that an interaction u ∈ I(A,B,C) is passive if the only move by the
external Opponent on A,C is the initial move on C, so that the interaction stops
as soon as we need additional input from the external Opponent.

Proposition 1. Let σ : A ⇒ B and τ : B ⇒ C be bounded strategies and let
u ∈ σ||τ be a passive interaction, then u is finite.

Using this, we can actually deduce the existence of an uniform bound on the
length of such u ∈ σ||τ , which only depends on the respective size of σ and τ :

Lemma 1. For all n, p ∈ N there is a lesser N(n, p) ∈ N such that for all arenas
A,B and C, for all σ : A ⇒ B and τ : B ⇒ C such that |σ| ≤ p and |τ | ≤ n,
for all passive u ∈ σ||τ we have |u| ≤ N(n, p).

Proof. For arenas A,B and C consider the set TA,B,C of all passive interactions
u ∈ I(A,B,C) such that for all s (u�B,C, |�s	| ≤ 2n and for all s (uA,B,
|�s	| ≤ 2p. Then, consider the union T of all the TA,B,C, our goal here is to find
a bound on the length of all elements of T . Consider now the tree structure on
T given by the prefix ordering. To make this tree finitely branching, consider
the relation m ∼= n ⇔ depth(m) = depth(n) on moves, where depth(m) is the
number of pointers required to go from m to an initial move. The tree T/ ∼= is
now finitely branching, but is also well-founded by Proposition 1, therefore it is
finite by König’s lemma4. Let N(n, p) be its maximal depth, it is now obvious
that it satisfies the required properties.

We have proved the existence of the uniform bound N(n, p), but in a way that
provides no feasible means of estimating N(n, p). The goal of the rest of this
paper is to estimate this bound as precisely as possible. As a matter of fact,
we will be mainly interested in the “typed” variant Nd(n, p), defined as the
maximum length of all possible passive interactions between strategies σ : A ⇒ B
and τ : B ⇒ C of respective size p and n, where B has a finite depth d− 1.

3 Pointer Structures and Rewriting

We have seen that to prove Lemma 1, we must consider plays up to an equivalence
relation ∼= which assimilates all moves at the same depth. Indeed, general arenas
4 Or, more adequately, the fan theorem.

340 P. Clairambault

and plays contain information which is useless for us. Following [6], we will here
reason on pointer structures, which result of considering moves in plays up to
∼=. Pointer structures are also similar to the parity pointer functions of Harmer,
Hyland and Melliès [14] and to the interaction sequences of Coquand [7]. We
will delve here into their combinatorics and extract from them a small rewriting
system, whose study is sufficient to characterize their length.

3.1 Nd(n, p) as a Bound for Pointer Structures

Visible pointer structures. In [6], we introduced pointer structures by elementary
axioms, independent of the general notions of game semantics. Instead here, we
define pointer structures as usual alternating plays, but on the particular
“pure” arena Iω =

⊔
n∈N In, where I0 = ⊥ (⊥ is the singleton arena with just

one Opponent move) and In+1 = In ⇒ ⊥. As we are interested in the interaction
between P -visible strategies, we will only consider visible pointer structures,
where both players point in their corresponding view. Formally, s is visible if for
all s′p (P s, a points inside �s′	 and if for all s′o (O s, o points inside �s′�. The
depth of a visible pointer structure s is the smallest d such that s is a play on
Id. Let us denote by V the set of all visible pointer structures.

Atomic agents. After forgetting information on plays, let us forget information
on strategies. Instead of considering bounded strategies with all their intentional
behaviour, we will just keep the data of their size. Pointer structures will then
be considered as interactions between the corresponding numbers which will be
called atomic agents. If n is such a natural number, we define its trace as
follows, along with the dual notion of co-trace:

Tr(n) = {s ∈ V | ∀s′ (s, |�s′	| ≤ 2n}
coT r(p) = {s ∈ V | ∀s′ (s, |�s′�| ≤ 2p+ 1}

An interaction at depth d between n and p is a visible pointer structure s of
depth at most d such that s ∈ Tr(n) ∩ coT r(p). We write s ∈ n !d p. These
definitions allow to give the following strategy-free equivalent formulation of
Nd(n, p).

Lemma 2. Let n and p be natural numbers and d ≥ 2, then

Nd(n, p) = max{|s| | s ∈ n !d p}

Proof. Consider the maximal bounded strategies of respective size n and p, de-
fined as n = {s ∈ Id | ∀s′ (s, |�s′	| ≤ 2n and p = {s ∈ Id−1 | ∀s′ (s, |�s′	| ≤
2p. Then pointer structures in n !d p are the same as (passive) interactions in
p||n, thus max{|s| | s ∈ n !d p} ≤ Nd(n, p). Reciprocally, if σ : A ⇒ B has
size p and τ : B ⇒ C has size n and if u ∈ σ||τ is passive, then if u′ denotes
u where moves are considered up to ∼= we have u′ ∈ p||n thus u′ ∈ n !d p and
Nd(n, p) = max{|s| | s ∈ n !d p}.

Estimation of the Length of Interactions in Arena Game Semantics 341

3.2 Agents

To bound the length of a pointer structure s, our idea is to label each of its moves
si by an object t, expressing the size that the strategies have left. Let us consider
here an analogy between pointer structures and the execution of λ-terms by the
KAM5. Consider the following three KAM computation steps:

(λx.xS) ! T · π0 �3 T ! Sx �→T · π0

The interaction between two closed terms (with empty environment) leads, after
three steps of computation, to the interaction between two open terms T and
S (where x is free in S), with an environment. By analogy, if s0 is labelled by
the pair (n, p) of interacting “strategies”, each move si should correspond to an
interaction between objects (a, b), where a and b have a tree-like structure which
is reminiscent of those of closures6.

We will call a pointed visible pointer structure (pvps) a pair (s, i) where
s is a visible pointer structure and i ≤ |s|−1 is an arbitrary “starting” move. We
adapt the notions of size and depth for pvps, and introduce a notion of context.

Definition 1. Let (s, i) be a pointed visible pointer structure. The residual size
of s at i, written rsize(s, i), is defined as follows:

– If si is an Opponent move, it is maxsi∈�s≤j	 |�s≤j	| − |�s≤i	| + 1
– If si is a Player move, it is maxsi∈�s≤j� |�s≤j�| − |�s≤i�| + 1

where si ∈ �s≤j	 means that the computation of �s≤j	 reaches7 si. Dually, we
have the notion of residual co-size of s at i, written rcosize(s, i), defined as
follows:

– If si is an Opponent move, it is maxsi∈�s≤j� |�s≤j�| − |�s≤i�| + 1
– Otherwise, maxsi∈�s≤j	 |�s≤j	| − |�s≤i	| + 1

The residual depth of s at i is the maximal length of a pointer chain in s starting
from si.

Definition 2. Let s be a visible pointer structure. We define the context of
(s, i) as:

– If si is an O-move, the set {sn1 , . . . , snp} of O-moves appearing in �s<i	,
– If si is a P-move, the set {sn1 , . . . , snp} of P-moves appearing in �s<i�.

In other words it is the set of moves to which si+1 can point whilst abiding to the
visibility condition, except si. We also need the dual notion of co-context, which
contains the moves the other player can point to. The co-context of (s, i) is:

5 The syntax used here seems natural enough, but is for instance described in [5].
6 As in the example above, closures are pairs Mσ where M is an open term and σ is

an environment, i.e. a mapping which to each free variable of M associates a closure.
7 So starting from sj and following Opponent’s pointers eventually reaches si.

342 P. Clairambault

– If si is an O-move, the set {sn1 , . . . , snp} of P-moves appearing in �s<i�,
– If si is a P-move, the set {sn1 , . . . , snp} of O-moves appearing in �s<i	.

Definition 3. A general agent (just called agent for short) is a finite tree,
whose nodes and edges are both labelled by natural numbers. If a1, . . . , ap are
agents and d1, . . . , dp are natural numbers, we write:

n[{d1}a1, . . . , {dp}ap] =

n
d1

��
��

��
�� dp

��
��

��
��

a1 . . . ap

Definition 4 (Trace, co-trace, interaction). Let us generalize the notion
of trace to general agents. The two notions Tr and coT r are defined by mutual
recursion, as follows: let a = n[{d1}a1, . . . , {dp}ap] be an agent. We say that (s, i)
is a trace (resp. a co-trace) of a, denoted (s, i) ∈ Tr(a) (resp. (s, i) ∈ coT r(a))
if the following conditions are satisfied:

– rsize(s, i) ≤ 2n (resp. rcosize(s, i) ≤ 2n+ 1),
– If {sn1 , . . . , snp} is the context of (s, i) (resp. co-context), then for each k ∈

{1, . . . , p} we have (s, nk) ∈ coT r(ak).
– If {sn1 , . . . , snp} is the context of (s, i) (resp. co-context), then for each k ∈

{1, . . . , p} the residual depth of s at nk is less than dk.

Then, we define an interaction of two agents a and b at depth d as a pair
(s, i) ∈ Tr(a) ∩ coT r(b) where the residual depth of s at i is less than d, which
we write (s, i) ∈ a !d b.

Notice that we use the same notations Tr, coT r and ! both for natural numbers
and general agents. This should not generate any confusion, since the definitions
just above coincide with the previous ones in the special case of “atomic”, or
closed, agents: if n and p are natural numbers, then obviously s ∈ n !d p if and
only if (s, 0) ∈ n[] !d p[]. Note also that definitions are adapted here to this
particular setting where strategies are replaced by natural numbers, however
they could be generalized to the usual notion of strategies. An agent would be
then a tree of strategies, and a trace of this agent would be a possible interaction
between all these strategies. This would be a new approach to the problem of
revealed or uncovered game semantics [12,4], where strategies are not necessarily
cut-free.

3.3 Simulation of Visible Pointer Structures

We introduce now the main tool of this paper, a reduction on agents which
“simulates” visible pointer structures: if n[{d1}a1, . . . , {dp}ap] and b are agents
(n > 0), we define the non-deterministic reduction relation � on triples (a, d, b),
where d is a depth (a natural number) and a and b are agents, by the following
two cases:

(n[{d1}a1, . . . , {dp}ap], d, b) � (ai, di − 1, (n− 1)[{d1}a1, . . . , {dp}ap, {d}b])
(n[{d1}a1, . . . , {dp}ap], d, b) � (b, d− 1, (n− 1)[{d1}a1, . . . , {dp}ap, {d}b])

Estimation of the Length of Interactions in Arena Game Semantics 343

where i ∈ {1, . . . , p}, di > 0 in the first case and d > 0 in the second case. We
can now state the following central proposition.

Proposition 2 (Simulation). Let (s, i) ∈ a !d b, then if si+1 is defined, there
exists (a, d, b) � (a′, d′, b′) such that (s, i+ 1) ∈ a′ !d′ b′.

Proof. The proof proceeds by a close analysis of where in its P -view (resp. O-
view) si+1 can point. If it points to si, then the active strategy asks for its
argument which corresponds to the second reduction case. If it points to some
element sni of its context, the active strategy calls the i-th element of its context:
this is the first reduction case, putting the subtree ai in head position. The rest of
the proof consists in technical verifications, to check that the new triple (a′, d′, b′)
is such that (s, i+ 1) ∈ a′ !d′ b′.

The result above will be sufficient for our purpose. Let us mention in passing that
the connection between visible pointer structures and agents is in fact tighter: a
reduction chain starting from a triple (n[], d, p[]) can also be canonically mapped
to a pointed visible pointer structure in n !d p, and the two translations are
inverse of one another. The interested reader is directed to [5].

Before going on to the study of the rewriting rules introduced above, let us
give a last simplification. If a = n[{d1}t1, . . . , {dp}tq] and b are agents, then a ·d b
will denote the agent obtained by appending b as a new son of the root of a with
label d, i.e. n[{d1}t1, . . . , {dp}tq, {d}b]. Consider the following non-deterministic
rewriting rule on agents:

n[{d1}a1, . . . , {dp}ap] � ai ·di−1 (n− 1)[{d1}a1, . . . , {dp}ap]

Both rewriting rules on triples (a, d, b) are actually instances of this reduction, by
the isomorphism (a, d, b) �→ a ·d b. We let the obvious verification to the reader.
This is helpful, as all that remains to study is this reduction on agents illustrated
in Figure 1. To summarize, if N(a) denotes the length of the longest reduction
sequence starting from an agent a, we have the following property.

Proposition 3. Let n, p ≥ 0, d ≥ 2, then Nd(n, p) ≤ N(n[{d}p[]]) + 1.

Proof. Obvious from the simulation lemma, adding 1 for the initial move which
is not accounted for by the reduction on agents. In fact this is an equality, as
one can prove using the reverse simulation lemma mentioned above. See [5].

4 Length of Interactions

The goal of this section is to study the reduction on agents introduced above,
and to estimate its maximal length. We will first provide an upper bound for this
length, adapting a method used by Beckmann [3] to estimate the maximal length
of reductions on simply typed λ-calculus. We will then discuss the question of
lower bounds, and finally describe an application to head linear reduction.

344 P. Clairambault

n

dp

��
��

��
��

��
��

��

d1

��
��
��
��
��
��
��

ai

��
��

��
��

��
��

��
��

�
di−1

��������������

�� n − 1
dp

��
��

��
��

d1

����
����

a1 aq a1 aq

Fig. 1. Rewriting rule on agents

4.1 Upper Bound

We define on agents a predicate ρ
α , which introduction rules are compatible both

with syntax and reduction.

Definition 5. The predicate ρ
α (where ρ, α range over natural numbers) is de-

fined on agents in the following inductive way.

– Base. ρ
α 0[{d1}a1, . . . , {dp}ap]

– Red. Suppose a = n[{d1}a1, . . . , {dp}ap]. Then if for all a′ such that a � a′

we have ρ
α
a′ and if we also have ρ

α (n−1)[{d1}a1, . . . , {dp}ap], then ρ
α+1

a.

– Cut. If ρ
α
a, ρ

β
b and d ≤ ρ, then ρ

α+β
a ·d b.

By this inductive definition, each proposition ρ
α
a is witnessed by a tree using

Base, Red and Cut. Red-free trees look like syntax trees, are easy to build but
give few information on the reduction, whereas Cut-free trees look like reduction
trees, are difficult to build but give very accurate information on the length of
reduction. The idea of the proof is then to design an automatic way to turn a
Red-free tree to a Cut-free tree, via a cut elimination lemma. Let us now give
the statement and sketch the proof of the four important lemmas that underlie
our reasoning.

A context-agent a() is a finite tree whose edges are labelled by natural
numbers, and whose nodes are labelled either by natural numbers, or by the
variable x, with the constraint that all edges leading to x must be labelled by
the same number d; d is called the type of x in a(). If We denote by a(b) the
result of substituting of all occurrences of x in a() by b. We denote by a(∅) the
agent obtained by deleting in a all occurrences of x, along with the edges leading
to them.

Lemma 3 (Substitution lemma). If ρ
α
a(∅), ρ

β
b and d ≤ ρ+ 1 (where d is

the type of x in a), then ρ
α(β+1)

a(b)

Proof. We prove by induction on the tree witness for ρ
α
a(∅) that the above

property is true for all context-arena a′() such that a(∅) = a′(∅). The way to
handle each case is essentially forced by the induction hypothesis.

Estimation of the Length of Interactions in Arena Game Semantics 345

Lemma 4 (Cut elimination lemma). Suppose ρ+1
α

a. Then if α = 0, ρ
0
a.

Otherwise, ρ
2α−1

a.

Proof. By induction on the witness for ρ+1
α

a, using the substitution lemma
when the last rule is Cut with a type of ρ+ 1.

Lemma 5 (Recomposition lemma). Let a be an agent. Then
depth(a)

max(a)|a|
a,

where depth(a) is the maximal label of an edge in a, max(a) is the maximal label
of a node and |a| is the number of nodes.

Proof. By induction on a.

Lemma 6 (Bound lemma). Let a be an agent, then if 0
α
a, N(a) ≤ α.

Proof. The only used rules are Base, Red and Cut with ρ = 0. These Cut rules
do not add any possible reduction and are easy to eliminate, then the lemma is
easily proved by induction on a.

These lemmas are sufficient to give a first upper bound, by iterating the cut
elimination lemma starting from the witness tree for ρ

α
a generated by the

recomposition lemma. However when the type is small, some of the lemmas
above can be improved. For instance if 0

α
a(∅), 0

β
b and the type of x in a()

is 1, then 0
α+β

a(b), since once the reduction reaches b it will never enter a()
again. Using this we get a “base” cut-elimination lemma, stating that for all a,
whenever 1

α
a then we have actually 0

α
a instead of 0

2α−1

a. Using this, we prove
the following.

Theorem 1 (Upper bound). Let depth(a) denote the highest edge label in a,
max(a) means the highest node label and |a| means the number of nodes of a.
Then if depth(a) ≥ 1 and max(a) ≥ 1 we have:

N(a) ≤ 2max(a)|a|−1
depth(a)−1

For the particular case when a = n[{d}p[]] and if d ≥ 2 we have:

Nd(n, p) ≤ 2n(p+1)
d−2

Proof. Both proofs are rather direct. For the first part, by the recomposition

lemma we have
depth(a)

max(a)|a|
a. It suffices then to apply depth(a) − 1 times the

cut elimination lemma, then use the “base” cut-elimination lemma to eliminate
the remaining cuts. For the second part we reason likewise, but rely on the

substitution lemma instead of the recomposition lemma to get d−1
n(p+1)

n[{d}p[]],
which gives N(n[{d}p[]]) ≤ 2n(p+1)−1

d−2 . But we have Nd(n, p) ≤ N(n[{d}p[]]) + 1
by Proposition 3, which concludes the proof.

346 P. Clairambault

Note that whereas the bounds in [3] are asymptotic and give poor quantitative
information if instantiated on small types, our bound does provide valuable
information on interactions with small depth. For instance, if σ : A ⇒ B and
τ : B ⇒ C such that rsize(σ) = p, rsize(τ) = n and the depth of B is at most 2,
then no interaction between σ and τ can be longer than N3(n, p) ≤ 2n(p+1). As
we will see below, this can not be significantly improved. In fact, we conjecture
that for all n ≥ 1 and p ≥ 2, we have N3(n, p) = 2 pn−1

p−1 + 1 : this was found and
machine-checked for all n + p ≤ 17 thanks to an implementation of agents and
their reduction, unfortunately we could not prove its correctness, nor generalize
it to higher depths.

4.2 Lower Bound

As argued in the introduction, the upper bound above applies to several pro-
gramming languages executed by head linear reduction, possibly featuring non
determinism and/or ground type references, therefore the fact that we used
game semantics to prove it increases its generality. On the other hand, if we
try to give the closest possible lower bound for Nd(n, p) using the full power
of visible pointer structures, we would get a lower bound without meaning for
most languages concerned by the upper bound, since pointer structures have no
innocence or determinism requirements8. Therefore what makes more sense is
to describe a lower bound in the more restricted possible framework, i.e. simply
typed λ-calculus.

We won’t detail the construction much, as the method is standard and does
not bring a lot to our analysis. The idea is to define higher types for church
integers by A0 = ⊥ and An+1 = An → An. Then, denoting by np the church
integer for n of type Ap+2, we define Sn = 2n2n−1 . . . 20 : A2. We apply then
Sn to id⊥ to get a term whose head linear reduction chain has at least 21

n+1
steps. In game semantics, �2n� has size n + 3 and all other components have
size smaller than n + 2, the depth of the ambient arena being n+ 2. The func-
tion Nd(n, p) being monotonically increasing in all its parameters we have the
following inequalities for 3 ≤ d ≤ min(n − 1, p), both bounds making sense for
all programming languages containing the simply-typed λ-calculus and whose
terms can be interpreted as bounded strategies.

22
d−2 ≤ Nd(n, p) ≤ 2n(p+1)

d−2

Note that from this we can deduce bounds for N(n, p), when we have no infor-
mation on the depth of the ambient arena. Indeed, we always have d ≤ 2n and
d ≤ 2p + 1 because a pointer chain in a play is visible by both players. Thus,
N(n, p) = Nmin(2n,2p+1)(n, p).

8 Our experiments with pointer structures and agents confirmed indeed that the pos-
sibility to use non-innocent behaviour does allow significantly longer plays.

Estimation of the Length of Interactions in Arena Game Semantics 347

4.3 Application to Head Linear Reduction

Earlier works on game semantics [8] suggest that in every games model of a pro-
gramming language lies a hidden notion of linear reduction, head linear reduction
when modelling call-by-name evaluation: this is the foundation for our claim that
our game-theoretic result is really about the length of execution in programming
languages whose terms can be described as bounded strategies. Of course it re-
quires some work to interface execution in these programming languages to our
game-theoretic results, and part of this work has to be redone in each case. To
illustrate this, we now describe how to extract from our results a theorem about
the length of head linear reduction sequences in simply-typed λ-calculus. For
the formal definition of head linear reduction, the reader is directed to [9]. If S
is a λ-term then the spinal height of S is the quantity sh(S) defined by in-
duction as sh(x) = 1, sh(λx.S) = sh(S) and sh(ST) = max(sh(S), sh(T) + 1);
when S is a βη-normal form, sh(S) is nothing but the height of its Böhm tree.
The height of S is the subtly different quantity9 h(S) defined by h(x) = 1,
h(λx.M) = h(M) and h(MN) = max(h(M), h(N)) + 1. Finally, the level of a
type lv(A) is defined by lv(⊥) = 0 and lv(A→ B) = max(lv(A) +1, lv(B)) and
the degree g(S) of a term is the maximal level of the type of all subterms of S.

A game situation [5] is the data of λ-terms S : A1 → . . . → Ap → B and
T1 : A1, . . . Tp : Ap in η-long β-normal form, and we are interested in the term
ST1 . . . Tp. Our game-theoretic results apply immediately to game situations,
because of the connection between game-theoretic interaction and head linear
reduction [8]: if N(ST1 . . . Tp) denotes the length of the head linear reduction
chain of ST1 . . . Tp, then we have N(ST1 . . . Tp) ≤ Nd(n, p) where d is the depth
of the arena corresponding to A → B, n is the size of �S� and p is the maximal
size of all of the �Ti�. But since S and Ti are already in η-long β-normal form,
we have |�S�| = sh(S) and |�Ti�| = sh(Ti). Thus, we conclude that in the case
of a game situation we have:

N(ST1 . . . Tp) ≤ 2sh(S)(maxi(sh(Ti))+1)
maxilv(Ai)−1

Outside of game situations, it is less obvious to see how our results apply. The
more elegant approach would be probably to extend the connection between head
linear reduction and game semantics to revealed game semantics, which would
give the adequate theoretical foundations to associate an agent to any η-long
λ-term. Without these tools, we can nonetheless apply the following hack. Sup-
pose we have a λ-term S. The idea is to “delay” all redexes, replacing each redex
(λx.S)T of type A → B in S with yA,B(λx.S)T , where we add a new symbol
yA,B : (A→ B) → A→ B for each pair (A,B). We iterate this operation until we
reach a β-normal λ-term St, which satisfies sh(St) ≤ h(S). We then expand St to
its η-long form η(St), which satisfies sh(η(St)) ≤ sh(St)+g(St) ≤ h(S)+g(S)+1.

9 One can easily prove that on closed terms, it is always less than the more com-
mon notion of height defined as h(x) = 0, h(λx.S) = 1 + h(S) and h(ST) =
max(h(S), h(T)) + 1, for which our upper bound consequently also holds.

348 P. Clairambault

We consider now the term (λy1 . . . yp.η(St))ev1 . . . evp, where each yi binds one
of the new symbols yA,B, and evi : (A → B) → A → B is the (η-long form of)
the corresponding evaluation λ-term. We recognise here a game situation, whose
head linear reduction chain is necessarily longer than for S (we have only added
steps due to the delaying of redexes and η-expansion). Using the inequality above
for game situations, we conclude:

N(S) ≤ 2(h(S)+g(S)+1)(g(S)+1)
g(S)

Of course this bound can very likely be improved, since this approach (delaying
the cuts) artificially increases the depth of redexes. If head linear reduction out-
side of game situations could be formally connected to the reduction of general
agents (which would be expected), we believe the height of the tower would be
one less. In any case, the complexity of head linear reduction is considerably
less (one or two levels less on the tower of exponentials) than the complex-
ity of strong reduction [3], which suggests that the price of strong reduction
(w.r.t. head reduction) is largely higher than the price of linearity (w.r.t. usual
substitution).

5 Conclusion and Future Work

Applied to head linear reduction on simply typed λ-calculus, our results show
that the price of linearity is not as high as one might expect. The bounds remain
in E4, but are also significantly less than those for usual (strong) β-reduction.

A strength of our method is that it is not restricted to λ-calculus; the re-
sults should indeed immediately apply as well to similar notions of reduction
on other total programming languages. Beyond ground type references and non
determinism, there are also games model of call-by-value languages [2] gener-
ating pointer structures as well, thus this work should also provide bounds for
the corresponding call-by-value linear reduction (tail linear reduction?). All the
tools used here also can be extended to non-alternating plays [20], which sug-
gests that this work could be used to give bounds to the length of reductions in
some restricted concurrent languages.

We also believe agents are worth studying further. Their combinatorial nature
and their connection to execution of programs may prove interesting for the study
of higher order systems with restricted complexity, such as light linear logics [11].
For instance, proofs typable in light systems may correspond to agents with some
restricted behaviours, which would make them a valuable tool for the study of
programming languages with implicit complexity.

Acknowledgements. This work was partially supported by the French ANR
project CHOCO. The author also would like to thank Fabien Renaud for in-
teresting discussions on related subjects.

Estimation of the Length of Interactions in Arena Game Semantics 349

References

1. Abramsky, S., McCusker, G.: Linearity, Sharing and State: a Fully Abstract Game
Semantics for Idealized Algol with active expressions (1997)

2. Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M., Thomas, W.
(eds.) CSL 1997. LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998)

3. Beckmann, A.: Exact bounds for lengths of reductions in typed λ-calculus. Journal
of Symbolic Logic 66(3), 1277–1285 (2001)

4. Blum, W.: Thesis fascicle: Local computation of β-reduction. PhD thesis, Univer-
sity of Oxford (2008)

5. Clairambault, P.: Logique et Interaction: une Étude Sémantique de la Totalité.
PhD thesis, Université Paris Diderot (2010)

6. Clairambault, P., Harmer, R.: Totality in arena games. Annals of Pure and Applied
Logic (2009)

7. Coquand, T.: A semantics of evidence for classical arithmetic. Journal of Symbolic
Logic 60(1), 325–337 (1995)

8. Danos, V., Herbelin, H., Regnier, L.: Game semantics and abstract machines. In:
11th IEEE Symposium on Logic in Computer Science, pp. 394–405 (1996)

9. Danos, V., Regnier, L.: How abstract machines implement head linear reduction
(2003) (unpublished)

10. de Bruijn, N.G.: Generalizing Automath by means of a lambda-typed lambda cal-
culus. Mathematical Logic and Theoretical Computer Science 106, 71–92 (1987)

11. Girard, J.-Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)
12. Greenland, W.: Game semantics for region analysis. PhD thesis, University of Ox-

ford (2004)
13. Harmer, R.: Innocent game semantics. Lecture notes (2004-2007)
14. Harmer, R., Hyland, M., Melliès, P.-A.: Categorical combinatorics for innocent

strategies. In: IEEE Symposium on Logic in Computer Science, pp. 379–388 (2007)
15. Harmer, R., McCusker, G.: A fully abstract game semantics for finite nondeter-

minism. In: IEEE Symposium on Logic in Computer Science, pp. 422–430 (1999)
16. Hyland, M., Luke Ong, C.-H.: On full abstraction for PCF: I, II and III. Information

and Computation 163(2), 285–408 (2000)
17. Krivine, J.-L.: Un interpréteur du λ-calcul (1985) (unpublished)
18. Dal Lago, U., Laurent, O.: Quantitative game semantics for linear logic. In:

Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 230–245. Springer,
Heidelberg (2008)

19. Laird, J.: Full abstraction for functional languages with control. In: IEEE
Symposium on Logic in Computer Science, pp. 58–67 (1997)

20. Laird, J.: A game semantics of the asynchronous π-calculus. In: Jayaraman, K., de
Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 51–65. Springer, Heidelberg
(2005)

21. Mascari, G., Pedicini, M.: Head linear reduction and pure proof net extraction.
Theoretical Computer Science 135(1), 111–137 (1994)

22. McCusker, G.: Games and Full Abstraction for FPC. Information and Computa-
tion 160(1-2), 1–61 (2000)

23. Nakajima, R.: Infinite normal forms for the λ-calculus. In: λ-Calculus and
Computer Science Theory, pp. 62–82 (1975)

24. Schwichtenberg, H.: Complexity of normalization in the pure typed lambda-
calculus. Studies in Logic and the Foundations of Mathematics 110, 453–457 (1982)

Synchronous Game Semantics via
Round Abstraction

Dan R. Ghica
 and Mohamed N. Menaa

University of Birmingham, U.K.

Abstract. A synchronous game semantics—one in which several moves
may occur simultaneously—is derived from a conventional (sequential)
game semantics using a round abstraction algorithm. We choose the pro-
gramming language Syntactic Control of Interference and McCusker’s
fully abstract relational model as a convenient starting point and de-
rive a synchronous game model first by refining the relational semantics
into a trace semantics, then applying a round abstraction to it. We show
that the resulting model is sound but not fully abstract. This work is
practically motivated by applications to hardware synthesis via game
semantics.

1 Introduction

Concurrent computation can be broadly divided into two distinct classes, syn-
chronous or asynchronous, depending on the nature of the communication be-
tween processes. The key distinction between the two is that in the former,
we must consider the case when two events occur simultaneously whereas in
the latter, it is impossible to ascertain that. Asynchronous communication is
used when bounds on the time necessary for interaction cannot be guaranteed
(e.g. distributed systems) or when time is intentionally abstracted (e.g. concur-
rent high-level programming languages), whereas synchronous communication is
commonly used when time is an essential facet of the system (e.g. safety-critical
systems or digital circuits).

One context in which the relation between synchrony and asynchrony has
not been studied yet is that of game semantics [1,12]. This would certainly be
interesting for foundational reasons, but it is also interesting for practical rea-
sons. Recent work of the first author [5] showed how game semantics can provide
a semantics-directed approach to the compilation of higher-order programming
languages into digital circuits. Compiling into asynchronous circuits comes nat-
urally, as game models of concurrency are asynchronous [10]. Compilation to
synchronous circuits, however, presents substantial technical challenges which
must be addressed separately.

The canonical encodings expressed in loc. cit. are unsuitable for practical
purposes if what is desired is not just a correct encoding, but a correct low-
latency encoding. In the context of synchronous languages, the concept of time
� Supported by EPSRC Advanced Research Fellowship EP/D070880/1.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 350–364, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Synchronous Game Semantics via Round Abstraction 351

is important as “steps” of synchronised events can be counted. For practical
reasons, we are interested in encodings in which the delay, expressed as number
of steps, is reduced.

In a seminal paper, Alur and Henzinger describe a general method for re-
ducing latency based on a specification languages called Reactive Modules [2].
This class of techniques, called round abstraction, allows an arbitrary number of
computational steps to be viewed as a single macro-step called a round. This is
an “abstraction” in the sense of abstract interpretation [4] because timing infor-
mation about the sequencing of events inside each round is lost. However, if we
are to interpret round-abstracted processes as having computational significance
they correspond to synchronous processes in which all events in a round are si-
multaneous. Thus, round abstraction gives us a way to construct synchronous
processes by abstracting the behaviour of asynchronous processes.

The original formulation of round abstraction is monolithic and applies to
whole systems, not addressing the issue of whether round-abstracted systems
interact correctly. This problem was addressed by the authors in a recent paper
by providing necessary criteria for the total correctness of round abstraction
relative to composition [6].

Correctness of composition is an essential requirement in the formulation of
game-semantic models, as is the case for any denotational models. The use of
round abstraction in relating asynchronous and synchronous game models should
also have the added benefit of allowing the reuse and adaptation of the many
existing game models in the synchronous setting, an adaptation which should
preserve soundness but not definability. In this paper, we focus on Syntactic
Control of Interference (SCI) [17], an affine version of Idealized Algol [18]. Since
it has a finite model for any term, while remaining remarkably expressive, SCI
plays a special role in our main intended application to hardware compilation.

Contribution. In this paper, we derive a sound synchronous game semantics
for the prototypical programming language Syntactic Control of Interference
(SCI) [17] using the round abstraction methodology [2] enriched with total-
correctness criteria [6]. This work will provide an initial platform for the game-
semantic analysis of synchrony and will have applications to the correct and
efficient compilation of higher-level programming languages into hardware via
game semantics.

2 Basic Syntactic Control of Interference

2.1 Syntax

The programming language Syntactic Control of Interference (SCI) was intro-
duced by Reynolds in order to simplify reasoning about imperative programs by
restricting the way procedures interact with their arguments [17]. However, inter-
est in SCI went beyond its original stated reason as it raised several challenging
technical issues regarding its type system and semantic model [15]. SCI was first

352 D.R. Ghica and M.N. Menaa

given a fully abstract model using “object-based semantics” [16], although that
was only proved later [13].

The semantic properties of SCI make it an interesting programming language
for particular applications. On the one hand, SCI is an expressive higher-order
imperative (“Algol-like”) programming language and its syntactic restrictions
rarely impinge on implementing useful algorithms. On the other hand, any term
of SCI (with finite data types) can be given a finite-state model [9]. This makes
it possible to automatically verify SCI programs using conventional finite-state
model checking techniques [7], and also makes it possible to compile SCI pro-
grams directly into electronic circuits [5,10].

The types of SCI are given by the grammar A ::= nat | com | var | A � A.
The typing judgements for terms have form x1 : A1, . . . , xn : An) M : A, where
xi are distinct identifiers, Ai and A are types and M a term. We use Γ,Δ, . . . to
range over contexts, i.e. the (unordered) list of identifier type assignments above.
Well-typed terms are defined by the following rules:

x : A � x : A

Γ, x : A � M : B

Γ � λx : A.M : A � B

Δ � M : A � B Γ � N : A
Γ, Δ � MN : B

Γ � M : A Γ � N : B
Γ � 〈M, N〉 : A × B

Γ � M : B
Γ, x : A � M : B

SCI also uses the following constants:

n : nat natural number constants
skip : com no-op

� : nat × nat � nat arithmetic and arithmetic-logic operators
; : com ×A � A sequential composition, A ∈ {com, nat, var}

|| : com � com � com parallel command composition
:= : var × nat � com assignment

! : var � nat dereferencing
while : nat × com � com iteration

if : nat ×A×A � A selection, A ∈ {com, nat, var}
newvar : (var � A) � A local variable, A ∈ {com, nat}.

Note that the typing rules disallow sharing of identifiers between a function and
its argument but allow sharing of identifiers in product formation. This means
that programs using nested function application (· · · f(· · · f(· · ·) · · ·) · · ·) and in
particular general recursion do not type. Sequential operators such as arithmetic,
composition, assignment, etc. can share arguments and conventional imperative
programs, including iterative ones, type correctly. Non-sequential operators (||)
have a type which prevents sharing of identifiers, hence race conditions, through
the type system; note that this also makes it impossible to implement shared-
memory concurrency.

Synchronous Game Semantics via Round Abstraction 353

As a final note on expressiveness, SCI can be generalised to a richer type
system called Syntactic Control of Concurrency (SCC), which allows shared-
memory concurrency [9], and it was recently shown that almost any recursion-
free Concurrent Idealized Algol programs [8], barring pathological examples, can
be automatically “serialised” into SCI via SCC [11].

2.2 Relational Semantics

The operational semantics of SCI is the standard one for an Algol-like language,
i.e. call-by-name beta reduction with local-state variable manipulation. We will
not present it here, but we will present the (fully-abstract) relational semantic
model of McCusker [13,14].

A monoid A is a set UA closed under an associative binary operation ·A with
identity eA. The free monoid over set S, written S∗, is the monoid of finite strings
of elements of S. Given a monoid A, we write αA for its underlying alphabet : the
minimal set whose closure under ·A is UA. For a free monoid, this corresponds
to the set of free generators.

The model is given in category MonRel, which is the dual category of MonP ,
the Kleisli category induced by the powerset monad on the category of monoids
and monoid homomorphisms. This category can be described concretely as fol-
lows. Objects are monoids and maps A→ B are relations R between the under-
lying sets UA and UB satisfying

homomorphism: eAReB and if aiRbi, i = 1, 2, then a1a2Rb1b2;
identity reflection: if aR eB then a = eA;
decomposition: if aR b1b2 then there exist a1, a2 ∈ A such that aiR bi for

i = 1, 2 and a = a1a2.

The definitions of identity and composition are standard. The category has fi-
nite products in the case of free monoids, given by A∗ × B∗ = (A + B)∗, the
free monoid over the disjoint union of sets A and B. The category also has an
(affine) monoidal structure with the object tensor defined as set product and on
morphisms as R⊗ S : A⊗C → B ⊗D, if aR b and c S d then (a, c)R⊗ S (b, d).
The monoid has an associated exponential construction A � B∗ given only for
free monoids as (UA×B)∗.

A type is interpreted as the free monoid over the set of events at that type:

�nat� = N∗, �com� = 1∗, �var� = �com�ω × �nat� = {wn, n | n ∈ N}∗,
�A � B� = �A� � �B� = ((αA)∗ × αB)∗, �A × B� = �A� × �B� = (αA + αB)∗.

For expressions, the only observable event is that of producing a value of that
type. For commands, the only event is termination so the set of observable events
is the singleton set. For variables, we can either observe reading a certain value
or writing a certain value. Note that we can always assume �A� and �B� are free
monoids so that the definition of × and � make sense; this is clear from the
base types. For readability, we refer to the alphabet of �var� as Var and to the
generators of �com�ω as wn, for some n ∈ N.

354 D.R. Ghica and M.N. Menaa

A term Γ) M : A is interpreted by a map �M� : �A1� ⊗ · · · ⊗ �An� → A.
Concretely, this is actually the same as a subset of (αA1)∗ × · · · × (αAn)∗ ×αA.

The lambda-calculus terms are interpreted in a canonical way using the
monoidal and exponential structures. Constants are interpreted using special
morphisms:

�n : nat� = {n} ⊆ N
�skip : com� = {∗} ⊆ 1

�� : nat × nat → nat� = {(inl(m) · inr(n), p) | m,n, p ∈ N,m� n = p}
⊆ (N + N)∗ × N

�; : com × com → com� = {(inl(∗) · inr(∗), ∗)} ⊆ (1 + 1)∗ × 1

�|| : com → com � com� = {(∗, (∗, ∗))} ⊆ 1∗ × 1∗ × 1
�:= : var × nat → com� = {(n · wn, ∗) | n ∈ N} ⊆ (N + Var)∗ × 1

�! : var → nat� = {(n, n) | n ∈ N} ⊆ Var × N
�while : nat × com → com� = {(0 · ∗ · 0 · ∗ · · · 0 · ∗ · n, ∗) | n �= 0} ⊆ (N + 1)∗ × 1

�if : nat × com × com → com� = {(0 · inl(∗), ∗), (n · inr(∗), ∗) | 0 �= n ∈ N}
⊆ (N + (1 + 1))∗ × 1

�newvar : (var � com) → com� = {((v, ∗), ∗) | w0·v ∈ gv(Var)} ⊆ (Var×1)∗ × 1.

In the definition of local variable, we take the set gv(Var) ⊆ Var∗ to consist
of “good variable” traces, i.e. those traces in which reads and writes follow the
causal behaviour of variables. For example, it is legal for a trace in gv(Var) to
have subsequences such as w7 · 7 or 6 · 6 but it is not legal to find subsequences
such as w9 · 5 or 2 · 3.

McCusker proves this model to be fully abstract, i.e. equality in the deno-
tational semantics is equivalent to contextual equivalence in the operational
semantics [14].

Note that the SCI language of loc. cit. has no parallel composition prim-
itive, but it can be defined as || : com � com � com

def
= λc.λd.c; d. This is

perhaps somewhat strange, and therefore, deserves a brief explanation. The eta-
expansion of sequential composition changes the type from com × com � com
to com � com � com. The type of this term enforces non-interference between
the two arguments, which means that they are not allowed to assign to the
same variables. Consequently, the order of execution of the two arguments be-
comes irrelevant. Therefore, a compiler writer is perfectly entitled to implement
a “sequential” composition operator with non-interfering arguments as a par-
allel composition operator, since the two are observationally equivalent. More
precisely, λc.λd.c; d ∼=com�com�com λc.λd.d; c.

3 Polarised Trace Semantics

McCusker notes that “in this model, the observed behaviour in each variable is
recorded separately; that is, there is no record of how interactions with the vari-
ous variables are interleaved [. . .] The models based on game semantics refine the

Synchronous Game Semantics via Round Abstraction 355

present model by breaking each event into two, a start and a finish, and record-
ing the interleaving between actions, thereby overcoming this limitation.” [14] In
this section, we will do precisely that. This additional refinement of the model
is required mainly in order to reintroduce the input-output (or, in the game-
semantic lingo Opponent-Proponent) polarity on traces. Distinguishing between
inputs and outputs is essential for our round abstraction to work correctly.

3.1 A Trace Model of Processes

We briefly introduce the trace model of concurrency of [6], which is a slight gen-
eralisation of the game models for concurrency [9,8]. A more extensive definition
of the model is given in loc. cit.

Definition 1 (Signature). A signature A is a label set together with a labelling
function and a causality relation. Formally, it is a triple 〈LA, πA,)A〉 where LA

is a set of port labels, πA : LA → {i, o} maps each label to an input/output
polarity,)A is the transitive reduction of a partial order on LA called causality,
such that if a) b then πA(a) �= πA(b).

Definition 2 (Locally synchronous trace). A trace s over a signature A is
a triple 〈Es,�s, λs〉 where Es is a finite set of events, �s is a total pre-order on
Es and λs : Es → A is a function mapping events to labels in A.

The total pre-order signifies temporal precedence; for an element e ∈ E, if λ(e) =
a ∈ LA we say that e is an occurrence of a. It is convenient to define

Definition 3 (Simultaneity). Given a trace 〈E,�, λ〉 over a signature A, we
say that two events are simultaneous, written e1 ≈ e2 iff e1 � e2 and e2 � e1.

We will focus on a particular kind of traces which satisfy the following principle:

Definition 4 (Singularity). Events of a trace 〈E,�, λ〉 over signature A are
singular iff for any two events e1, e2 ∈ E, if e1 ≈ e2 and λe1 = λe2 then e1 = e2.

The set of traces over signature A satisfying singularity is written Θ(A). An
asynchronous trace is a trace where no two events are simultaneous:

Definition 5 (Asynchronous trace). A trace 〈E,�, λ〉 over signature A is
asynchronous if � is a total order.

Another, more technical condition, which also reflects the low-level nature of the
systems we model is serial causation.

Definition 6 (Serial causation). In a trace 〈E,�, λ〉 over signature A we say
that event e′ ∈ E is the cause of e ∈ E, written e′ � e, iff λe′) λe and for any
e′′ such that e′ � e′′ � e, λe′ �) λe.

We define the concatenation of two traces at the level of rounds, i.e. all events
of the second trace come after the events of the first trace.

356 D.R. Ghica and M.N. Menaa

Definition 7 (Concatenation). The concatenation of two traces
s = 〈E,�s, λs〉, t = 〈F,�t, λt〉, denoted by s · t, is the trace defined by the
triple 〈E + F,�s + �t + (E × F), λs + λt〉.
A process σ over signature A is a prefix-closed, under concatenation, set of locally
synchronous traces over A. An asynchronous process has to satisfy some further
saturation conditions:

Definition 8 (Asynchronous process). A process σ is asynchronous iff when-
ever s ∈ σ and s′ � s then s′ ∈ σ, where � is the least reflexive and transitive
relation such that

1. (a) If πe = i then s′ = s0 · e · s1 · s2 and s = s0 · s1 · e · s2, or
(b) If πe = o then s′ = s0 · s1 · e · s2 and s = s0 · e · s1 · s2

2. There exists a permutation φ : Es / Es′ so that for any events such that
e1 �s e2 we have λsei = (λs′ ◦ φ)(e) and φe1 �s′ φe2.

In this paper, we will work with asynchronous processes that are well-behaved
in the following sense.

Definition 9 (Serial reactivation). An asynchronous process σ : A → B
satisfies serial reactivation if for any trace s in σ which records two consecutive
initial events, the first event must cause a B-event before the second occurs,

if e, e′,∈ Es and λs(e), λs(e′) ∈ IB and e �s e
′ then

(∃e′′ ∈ Es)(λs(e′′) ∈ LB and e �s e
′′ �s e

′ and e�s e
′′)

Lemma 1 (Compositionality of serial reactivation). If processes σ : A →
B and τ : B → C satisfy serial reactivation then so does their composition σ; τ .

We define signature A→ B = 〈LA +LB, πA +πB,)A +)B + IB × IA〉. Let s � A
be the trace obtained from s by deleting all events with labels not belonging to
LA. Composition of processes is defined similarly to game semantic composition,
by synchronisation followed by hiding.

Definition 10 (Composition). Let σ : A → B and τ : B → C be two pro-
cesses. Their interaction is σ	τ = {t ∈ Θ(A + B + C) | t � A + B ∈ σ ∧ t �
B + C ∈ τ}. Their composition is σ; τ : A → C =

{
t � A+ C | t ∈ σ	τ}.

Theorem 1 ([6]). Processes form a Closed Symmetric Monoidal Category Proc.
Asynchronous processes form a Closed Symmetric Monoidal Category AsyProc.

3.2 A Polarised Trace Model of SCI

The relational model of SCI is a full subcategory of MonRel, which we will call
MonRelb. We define a map G from MonRelb to the category of asynchronous
processes AsyProc. For each object (free monoid) A∗ in MonRelb, G(A∗) is a
signature in AsyProc. We first give direct interpretations to the base types.

Each observable event b at base type is split into two: a question bq and an
answer ba, according to the following: ∗q = r, ∗a = d, nq = q, na = n,wq

n =
wn, w

a
n = ok. Polarity and causality are recovered as follows.

Synchronous Game Semantics via Round Abstraction 357

– G(�com�) = 〈{r, d}, {(r, i), (d, o)}, {(r, d)}〉
– G(�exp�) = 〈{q, n}, {(q, i), (n, o)}, {(q, n)}〉, n ∈ N
– G(�var�) = 〈{wn,ok,q,n},{(wn,i),(ok,o),(q,i),(n,o)},{(wn,ok),(q,n)}〉, n ∈ N

For function types we set G(A � B) to be G(A) ⇒ G(B). We also set both
G(A×B) and G(A⊗B) to be G(A) ⊗G(B).

For morphisms f : A → B in MonRelb, we first define a function �−	 that
maps each element in f to a set of traces. We will call the images produced
by �−	 trace interpretations. In the sequel, we use letters a, b, . . . to range over

{∗, n, wn | n ∈ N}. Let XA, YA ∈ αA and
→
XA ∈ (αA)∗.

Our definition of interleaving of sequences is standard. ε
 ε = {ε}, ε
 s =
s
ε = {s} and x·s
y ·t = x·(s
y ·t)∪y ·(x·s
t). We write

�
S = s1
s2
. . .
sk,

si ∈ S. For sets of traces S, T , we have S
 T = {s
 t | s ∈ S and t ∈ T }.
We will also make use of the following two auxiliary functions: given a relation

element (X,Y)

ρ((X,Y)) = ρ(Y), ρ(b) = b

λ((X,Y)) = {X} + λ(Y), λ(b) = ∅

These are required in order to deconstruct the observables in the relational model
to build their corresponding traces. Intuitively, ρ will be used to extract the
observable event that corresponds to the initial question, whereas λ will collect
a set of observables whose interpretations will be interleaved.

We know that each morphism corresponding to a term is a subset of a set of
shape A∗

1 × · · ·×A∗
n ×B. Let us first assume that B records a single observable,

i.e. an element of αB. Note that B may be of function type. Every element of

this subset has shape (
→
XA1 , . . . ,

→
XAn , YB), and is mapped to a set of traces as

follows:

�(
→
XA1 , . . . ,

→
XAn , YB)	 = ρ(YB)q ·

(
n�

i=0

�
→
XAi	

)

(�

�λ(YB)	
)
· ρ(YB)a

On sequences, the translation map is applied element-wise:

�
→
X	 = �X1 · · ·Xm	 = �X1	 · · · �Xm	.

Observables at ground types are interpreted as a sequence of question and answer

�a	 = aq · aa

Now we consider the case of elements of shape (
→
XA1 , . . . ,

→
XAn ,

→
Y B), where B

can record a sequence of observables. In MonRel, these sequences are built
using the monoid operation. This is clear from the homomorphism property of
MonRel in Sec. 2.2: if a relation has elements (X,Y), (X ′, Y ′) then it also has
element (X ·X ′, Y · Y ′). As traces, this is interpreted as follows

�(X ·X ′, Y · Y ′)	 = �(X,Y)	 · �(X ′, Y ′)	

358 D.R. Ghica and M.N. Menaa

Note that, by the decomposition property, if a relation contains an element whose
right projection is a sequence, then the relation must also contain elements whose
right projections are members of the sequence. Finally, we show how tensored
morphisms are mapped

if x ∈ f : A→ B and y ∈ g : C → D then �x	
 �y	 ⊆ �f ⊗ g	

The �−	 function is lifted to sets of traces by applying it pointwise and taking the
union �R	 =

⋃
p∈R�p	. This translation maps the special morphisms in MonRel

representing SCI constants to trace models very similarly to their conventional
game semantic interpretations, e.g. [8].

We can now use the above function to define a map from relations to asyn-
chronous processes. For each morphism (relation) f in MonRel, G(f) is the
function �−	 followed by prefix-closing the resulting set. Note that the resulting
sets are also saturated by construction under certain event permutation, as re-
quired by the asynchronous model. This is because events are interleaved, save
for those that are scheduled (i.e. given as a sequence) or causally related. In fact,
interleaving was chosen as a default order for non-scheduled events because it is
a simple way to ensure saturation.

Theorem 2. G : MonRelb → AsyProc is a faithful functor.

Note. The polarised traces model we obtain from refining McCusker’s relational
model is not fully abstract as we do not characterise what traces are definable
in the syntax. There are other ways of obtaining such models of SCI if full
abstraction is not required. Such models were used in previous GoS work, either
by defining them directly [5] or by deriving them from the fully abstract SCC
model by setting all concurrency bounds to the unit value [10]. The fully abstract
model of SCI with passive types [19] could also be used as a starting point. Since
we are not aiming for full abstraction the choice between these models is based on
a compromise between simplicity of presentation and loss of precision. In that
sense, we found McCusker’s relational model the most suitable: it is elegant,
technically concise and its loss of precision when expressed as polarised traces
raises no problems for us.

4 Round Abstraction

This section briefly describes the framework of round abstraction from [6] and
introduces several technical definitions which are required in the sequel. This
section is interesting only insofar as it details the construction of the synchronous
polarised trace semantics which will be presented in the next section and may be
skipped without loss of continuity. The reader who is interested in the technical
details, along with examples to illustrates the (sometimes complex) technical
definitions is advised to refer to the original paper.

Round abstraction was introduced by Alur and Henzinger as part of their
specification language Reactive Modules [2]. It is a technique that introduces a

Synchronous Game Semantics via Round Abstraction 359

multiform notion of computational step, allowing arbitrarily many events to be
viewed as a discrete round. In a synchronous setting, it makes sense to think
of the events of the same round as simultaneous, and of round abstraction as a
latency-reducing optimisation. We briefly review the key concepts of [6].

Definition 11 (Round abstraction on traces). Let s = 〈Es,�s, λs〉, t =
〈Et,�t, λt〉 be traces. We say that t is a round abstraction of s, written s
− t, if
and only if 〈Es, λs〉 and 〈Et, λt〉 are φ-isomorphic and φ is monotonic relative
to temporal ordering, i.e. for any e, e′ ∈ Es, if e �s e

′ then φ(e) �t φ(e′).

Round abstraction is lifted point-wise to processes in two steps. A partial round
abstraction of a process is a process that only contains round-abstracted traces of
the original process. A total round abstraction of a process is a process which is a
partial round abstraction and all traces in the original process can be recovered.
The partial round abstraction is guaranteed not to have junk traces while the
total round abstraction is guaranteed not to lose any traces. In loc. cit. we
show using simple examples that neither partial nor total round abstraction
are preserved by process composition and we set up sufficient conditions on
round abstractions so that total round abstraction is preserved. The condition
on processes is called compatibility and on round abstraction is called receptivity.

Definition 12 (Compatibility). Two processes σ1 : A1 → B, σ2 : B → A2 are
said to be compatible, written σ1 0 σ2, if and only if for all v ∈ Θ(A1, B,A2)
if v � Ai, B ∈ σi and there is a permutation p ∈ Π(v) such that p � B,Aj ∈ σj

then v � B,Aj ∈ σj , for i, j ∈ {1, 2}, i �= j.

We now introduce a weaker version of compatibility: instead of requiring asyn-
chronous processes not to deadlock in composition, we instead say that if they
do deadlock then their respective round abstractions deadlock in a similar way.

Definition 13 (Post-compatibility). Round abstractions σ′1 : A1 → B, σ′2 :
B → A2 of asynchronous processes σ1, σ2 respectively, are said to be post-
compatible, written σ′1 �� σ′2, iff σ1 �0 σ2 (that is, there exist v ∈ Θ(A1, B,A2)
and a permutation p ∈ Π(v) such that v � Ai, B ∈ σi and p � B,Aj ∈ σj and
v � B,Aj �∈ σj) implies for all traces v′ ∈ σ′i, p

′ ∈ σ′j if v � Ai, B
− v′ and
p � B,Aj

− p′ then v′ � B �= p′ � B, for i, j ∈ {1, 2}, i �= j.

Theorem 3 (Soundness). For any two post-compatible round abstractions
σ′ : A → B and τ ′ : B → C, with original asynchronous processes σ, τ respec-
tively, if σ
− σ′ and τ
− τ ′ then σ; τ
− σ′; τ ′.

We now define a particular round abstraction, which fits our framework, and
which is applicable to the polarised trace model of SCI. First, we must state
the general definition for receptivity, which uses the concepts of total round
abstraction and trace fusion.

Definition 14 (Total round abstraction). Let σ : A → B be an asyn-
chronous process and σ′ : A → B be a process. We say that σ′ is a total round
abstraction of σ, written σ
∼ σ′ if and only if σ
− σ′ and for any s ∈ σ there
exist s0 ∈ σ, w ∈ Θ(A,B) and s′ ∈ σ′ such that s0 � s and s0 · w
− s′.

360 D.R. Ghica and M.N. Menaa

Definition 15 (Trace fusion). The fusion of two traces s = 〈E,�s, λs〉, t =
〈F,�t, λt〉, denoted by s∗ t, is the trace defined by the triple 〈E+F,�′, λs +λt〉,
where �′ = �s + �t + E × F + first(t) × last(s).

Trace fusion differs from concatenation in that the last round of the first trace
and the first round of the second trace are fused into a single round.

Definition 16 ([6]). Let σ : A be an asynchronous process. Process σ′ is a
receptive round abstraction of σ, written σ
≈ σ′, if and only if σ
∼ σ′ and for
any distinct inputs i, i1, i2 and output o

1. if s0·i1·i2·s1 ∈ σ then there exist traces s′0•i1·i2•s′1 and s′0•i1∗i2•s′1 in σ′,
2. if s0·o·i·s1 ∈ σ then there exist traces s′0•o·i•s′1 and s′0•o∗i•s′1 in σ′,
3. if t0·r0∗i1·i2∗r1·t1 ∈ σ′ and t′ = t0·r0∗i1∗i2∗r1·t1 is well formed then t′ ∈ σ′,
4. if t0·r0∗o·i∗r1·t1 ∈ σ′ and t′ = t0·r0∗o∗i∗r1·t1 is well formed then t′ ∈ σ′.

Each instance of • stands for concatenation · or fusion ∗ and sk

− s′k, k ∈ {0, 1}.

We can now define the particular round abstraction we shall use. This definition
will take into account the fact that certain sets of labels correspond to types
which are not allowed to interfere, courtesy of the type system.

Definition 17 (Noninterference). We say that a pair of monoids A,B in
MonRel are not interfering with respect to a type C, written A �$C B, whenever
C = A�B or A occurs in X and B occurs in Y and C = X � Y , � ∈ {�,⊗}.

Definition 18 (Partially Receptive Round Abstraction). A process σ′ :
G(A) is a partially receptive round abstraction of asynchronous process σ : G(A),
if and only if

1. if s0 · a · b · s1 ∈ σ such that λ(a) ∈ G(X) and λ(b) ∈ G(Y), and X ��$A Y
then for all s′ ∈ σ′ such that s
− s′ we have a �≈s′ b.

2. in all other cases, σ′ behaves like a receptive round abstraction of σ.

This round abstraction interacts well with process composition.

Lemma 2. For a pair of relations f : A→ B and g : B → C in MonRelb, any
of their partially receptive round abstractions G(f) and G(g) are post-compatible.

Lemma 3 (Correctness). If σ′, τ ′ are respective partially receptive round ab-
stractions of σ : G(A) → G(B) and τ : G(B) → G(C) then σ′; τ ′ is a partially
receptive round abstraction of σ; τ .

Lemma 4 (Injectivity). Let σ′, τ ′ be partially receptive round abstractions of
σ : G(A), τ : G(A), respectively. If σ′ = τ ′ then σ = τ .

5 Synchronous Game Semantics

We can now concretely present a synchronous interpretation of basic SCI by
applying a particular round abstraction to the trace model obtained via the
mapping G. Let us first define an efficient partially receptive round abstraction,
which reduces the latency of the resulting traces.

Synchronous Game Semantics via Round Abstraction 361

Definition 19 (SCI round abstraction). A process σ′ : G(A) is a SCI round
abstraction of asynchronous process σ : G(A) if and only if σ′ is a partially
receptive round abstraction of σ, and for all traces s = s0 · a · b · s1 in σ, for all
s′ ∈ σ′ such that s
− s′ we have that if a and b are distinct outputs then a ≈s′ b
and if a is an input and b is an output then a ≈s′ b. In both cases, s′ must be
well formed.

Note that well-formedness implies the traces respect singularity, i.e., making a
and b simultaneous is forbidden if it results in a trace with two occurrences of the
same label. It also follows from the above definition that SCI round abstraction
is a function as the result is unique.

In the sequel, we will write �–�r for the relational semantics, �–�t for the trace
semantics induced by G and finally, �–�s for the synchronous semantics resulting
from the application of SCI round abstraction.

The types of SCI are interpreted as the signatures resulting from mapping the
corresponding monoids in MonRelb via G. See Sec. 3.2 for details.

Terms x1 : A1, . . . , xn : An)M : A will be interpreted as a map⊗
1≤i≤n

�Ai�s
�x1:A1,...,xn:An�M :A�s−−−−−−−−−−−−−−−−→ �A�s

For the constants of SCI, we obtain the following interpretations where simul-
taneous events are written in angled brackets, • stands for either concatenation
or fusion, and pc for prefix-closure as defined in [6].

�n : nat�s = pc({〈q, n〉})
�skip : com�s = pc({〈r, d〉})

�� : nat1 × nat2 → nat3�s = pc({〈q3, q1〉 • n1 · q2 • 〈m2, p3〉
| m,n, p ∈ N,m� n = p})

�; : com1 × com2 → com3�s = pc({〈r3, r1〉 • d1 · r2 • 〈d2, d3〉})
�! : var1 → nat2�s = pc({〈q2, q1〉 • 〈n1, n2〉 | n ∈ N})

�:= : var × nat1 → com2�s = pc({〈r2, q1〉 • n1 · wn • 〈ok, d2〉 | n ∈ N})
�if : nat × com1 × com2 → com3�s = pc({〈r3, q〉 • 0 · r1 • 〈d1, d〉})

∪ pc({〈r3, q〉 • n · r2 • 〈d2, d〉 | n �= 0})
�while : nat × com1 → com2�s = pc({〈r2, q〉 • 0 · r1 • d1 · (q • 0 · r1 • d1)∗

· q • n · r1 • 〈d1, d2〉 | n �= 0})

For parallel composition, the corresponding trace interpretation is given by

�par�t = {r3.(r1.d1
 r2.d2).d3}

Through SCI round abstraction, we obtain the interpretation depicted by the
automaton in Fig. 1, where each transition is labelled by simultaneous events.

Next, we discuss the case of the variable allocation primitive. Each element in
�var�r consists of sequences of read and write actions. Through G, each element

362 D.R. Ghica and M.N. Menaa

0 4
r3,r1,r2

3
r3,r2

5

r3,r1

8

r3
,r
2,
d2
,r
1

7r3,r1,d1,r2

r3,r1,r2,d1,d2,d3

d2,r1

d2
,r1
,d1
,d3

d1

d2

d1,d2,d3

d1,r2

d1,r2,d2,d3

d2,d3

d1,d3

Fig. 1. A synchronous semantics for parallel composition

is mapped to a trace consisting of the corresponding sequence of read and write
actions. Since �var�r is defined as the product of two monoids, one to read and
one to write, the actions of these cannot be simultaneous. Good variable traces,
representing proper stateful behaviour, have the property that each read action
matches the previous write action. Their round abstractions consist of sequences
where requests and acknowledgements are simultaneous, e.g.· · · 〈wn, ok〉 · 〈q, n〉 ·
〈q, n〉 · · · , which we call synchronous good variable traces Vars. The variable
allocation primitive is hence given by

�newvars : (var � com1) → com2� = pc({〈r2, r1〉•s•〈d1, d2〉 | 〈w0, ok〉·s ∈ Vars})

The interpretation of the imperative fragment of the language is defined in the
usual way, e.g. for sequential composition

�M ;N�s = �M�s ⊗ �N�s; �;�s

The lambda calculus fragment is interpreted as follows

�x : G(A)) x : G(A)�s = idG(A)

�Γ, x : G(A)) x : G(A)�s = proj : �Γ �s ⊗ �G(A)�s → �G(A)�s

�Γ) λxG(A).M : A � B�s = Λ�M� : �Γ �s → (�G(A)�s ⇒ �G(B)�s)
�Γ,Δ) MN : G(B)�s = (�M�s ⊗ �N�s); eval : �Γ �s ⊗ �Δ�s → �G(B)�s

Theorem 4 (Equational Soundness). If Γ) M,N : A are terms satisfying
�M�s = �N�s then M and N are contextually equivalent.

Proof. The soundness of the relational model entails if �M�r = �N�r thenM and
N are contextually equivalent. By Thm. 2, we have if �M�t = �N�t then �M�r =
�N�r. Moreover, we have, by Lem. 4, that partially receptive round abstraction,

Synchronous Game Semantics via Round Abstraction 363

of which SCI round abstraction is an instance, is injective; and by Prop. 3, that
it is compositional, if �M�s = �N�s then �M�t = �N�t. Putting all of the above
together, if �M�s = �N�s then M and N are contextually equivalent.

5.1 Discussion

Producing a synchronous game semantics proved to be a surprisingly subtle task
which contradicted our initial intuitions. For example, in the definition of sequen-
tial composition �; : com1×com2 → com3�s = pc({〈r3, r1〉•d1·r2•〈d2, d3〉}), a one
time step delay is introduced between the Opponent playing d1, corresponding
to the termination of the first argument, and the Proponent playing r2, initiating
execution of the second argument. This is contrary to our initial expectations
that the two moves should be simultaneous, because it would result in a lower
latency strategy that consists of traces which do not violate singularity. How-
ever, it can be easily seen that such an aggressively round abstracted sequential
composition would deadlock in a context such as x := 1;x := 2 because it would
result in simultaneous write requests on the variable x.

Other strategies corresponding to sequential constants have similar such seem-
ingly extraneous “wait” states, for the same reason. Also, other more aggressive
naive optimisations can easily end up violating the various requirements for
round abstraction to work correctly. Another example would be allowing the
synchronous model of the memory cell to handle reads and writes simultane-
ously. This is of course possible from an implementation point of view but, as we
explain in [6], would end up treating statements such as x := !x+1 in a way that
is not consistent with the original sequential meaning. Nevertheless, note that
the strategy for parallel composition can be aggressively round-abstracted and it
does not have to introduce wait steps because the arguments are non-interfering.
Our indirect methodology is to be contrasted with the approach taken in lan-
guages such as Esterel, which posits a set of computational primitives but at the
expense of well know semantic difficulties [3].

Finally, it is important to note that failure of full abstraction is the upshot
of the success of round abstraction. In the synchronous model, �skip; skip�s =
pc{r ·d} �= pc{〈r, d〉} = �skip�s, because of the delay that sequential composition
must introduce. On the other hand, �skip || skip�s = pc{〈r, d〉} = �skip�s.

6 Conclusion

We have seen how a sound synchronous game semantics for SCI can be derived
using round abstraction. We first introduced a trace interpretation of McCusker’s
fully abstract relational model by way of a faithful functor into AsyProc. Then,
we defined a specific round abstraction, termed partially-receptive, that satisfies
the correctness criteria outlined in [6] when applied to SCI. The salient feature of
the new round abstraction that leads to the correctness and soundness results is
that it forbids events corresponding to interfering types from being simultaneous.

GoS will benefit directly from applying these results in the construction of
correct compilers to synchronous circuits.

364 D.R. Ghica and M.N. Menaa

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Com-
put. 163(2), 409–470 (2000)

2. Alur, R., Henzinger, T.A.: Reactive Modules. Formal Methods in System
Design 15(1), 7–48 (1999)

3. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics and implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

5. Ghica, D.R.: Geometry of Synthesis: a structured approach to VLSI design. In:
POPL, pp. 363–375 (2007)

6. Ghica, D.R., Menaa, M.N.: On the compositionality of round abstraction. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 417–431.
Springer, Heidelberg (2010)

7. Ghica, D.R., Murawski, A.S.: Compositional model extraction for higher-order
concurrent programs. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp.
303–317. Springer, Heidelberg (2006)

8. Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concurrency. Ann.
Pure Appl. Logic 151(2-3), 89–114 (2008)

9. Ghica, D.R., Murawski, A.S., Ong, C.-H.L.: Syntactic control of concurrency.
Theor. Comput. Sci. 350(2-3), 234–251 (2006)

10. Ghica, D.R., Smith, A.: Geometry of Synthesis II: From games to delay-insensitive
circuits. In: MFPS XXVI (2010)

11. Ghica, D.R., Smith, A.: Geometry of Synthesis III: Resource management through
type inference. In: POPL (2011)(forthcoming)

12. Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I, II, and III. Inf.
Comput. 163(2), 285–408 (2000)

13. McCusker, G.: A Fully Abstract Relational Model of Syntactic Control of Interfer-
ence. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp.
247–261. Springer, Heidelberg (2002)

14. McCusker, G.: A graph model for imperative computation. Logical Methods in
Computer Science 6(1) (2010), doi:10.2168/LMCS-6(1:2)2010

15. O’Hearn, P.W., Power, J., Takeyama, M., Tennent, R.D.: Syntactic control of
interference revisited. Theor. Comput. Sci. 228(1-2), 211–252 (1999)

16. Reddy, U.S.: Global state considered unnecessary: An introduction to object-based
semantics. Lisp and Symbolic Computation 9(1), 7–76 (1996)

17. Reynolds, J.C.: Syntactic control of interference. In: POPL, pp. 39–46 (1978)
18. Reynolds, J.C.: The essence of Algol. In: Proceedings of the 1981 International

Symposium on Algorithmic Languages, pp. 345–372. North-Holland, Amsterdam
(1981)

19. Wall, M.: Games for Syntactic Control of Interference. PhD thesis, University of
Sussex (2004)

Freshness and Name-Restriction in Sets of
Traces with Names

Murdoch J. Gabbay and Vincenzo Ciancia

Abstract. We use nominal sets (sets with names and binding) to define
a framework for trace semantics with dynamic allocation of resources.

Using novel constructions in nominal sets, including the technical de-
vices of positive nominal sets and maximal planes, we define notions of
capture-avoiding composition and name-restriction on sets of traces with
names.

We conclude with an extended version of Kleene algebras which sum-
marises in axiomatic form the relevant properties of the constructions.

1 Introduction

Imagine a process evolving; every so often it may communicate with the outside
world. In particular it may generate a new resource (allocate some memory; or
perhaps create a cryptographic secret; or perhaps create a new channel name)
and communicate that new resource.

Represent resources as atoms (set-theorists can think of urelemente; process-
calculists can think of names). Then a model of the behaviour of our process is a
trace (finite list of actions) that may contain atoms, and a model of the process
is the set of all its possible traces. This is the trace semantics of computation [9],
widely-used both in theory and application (e.g. the SPIN model-checker [17]).

Thus, a model of behaviour for processes with dynamic allocation, is sets of
traces with atoms. But how then to represent dynamic allocation within this
framework? After all, if a program outputs ab there is nothing in the string itself
to tell us whether a, b, both a and b, or neither a nor b, has been ‘created fresh’.

We propose to represent binding using a notion similar to that of nominal
abstract syntax [15]; if e.g. ab is a possible trace of the process then the a in that
trace is considered α-convertible when for all but finitely many a′, a′b is also in
the set of possible traces of the process (note there is no binding primitive on
the trace itself).

We will develop a model of binding based purely on sets of traces, such that:

– There is an operation νa that takes a behaviour (set of traces) X and creates
another behaviour (also a set of traces) νa.X in which a is α-renameable.

– Union of sets of traces is exactly union of sets.
– There is a notion of capture-avoiding composition ◦ such that (νa.X)◦νb.Y =
νa.νb.(X ◦ Y) if we choose a fresh for Y and b fresh for X .
Thus (νa.ab) ◦ νb.b = νa.νb′.abb′. Note that ab ∈ νa.ab and b ∈ νb.b but abb
is not in their composition, because of capture-avoidance.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 365–380, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

366 M.J. Gabbay and V. Ciancia

Finally we introduce axioms that regulate the behaviour of ν, by suggesting a
notion of ‘nominal’ Kleene algebra [20].

We believe the constructions in this paper would be more generally applica-
ble, so long as the semantics can be represented as sets and sensible notions of
composition can be defined in some pointwise manner on their elements (in this
paper it is sets of lists and list concatenation; see Definition 5.7).

Technical overview. The meat of this paper is some concrete calculations on
nominal sets. The key technical facts are Theorems 3.14 and 3.16 and Proposi-
tion 4.6. The key definitions are Definitions 3.7, 4.5, and 5.7. The main theorem
is Theorem 6.4.

Nominal sets were developed to represent syntax with binding; see [15] or a
recent survey [13]. In this paper we use nominal sets to interpret sets of traces
with atoms. The notions of names and free/bound names we use are exactly
those from [15]; namely atoms and supporting set/freshness.

To the reader familiar with nominal sets, name-restriction νa.X will be no
surprise; Proposition 4.6 characterises it as a variation of atoms-abstraction [a]x
from [15] (see [13, Definition 3.8 and Lemma 3.13]). Readers familiar with pre-
sheaves will recognise this as a sets-based presentation of δ from e.g. [8] or [21];
see [16,7] for further discussion.

The difference, which is significant, is that X and νa.X are of the same type
(both are sets of traces); our name-restriction is not a monad in the sense of
[22], though it does a similar job. More on this in the Conclusions.

Given that behaviour is modelled as ‘just sets’ and not wrapped up in an
explicit abstraction, the challenge is that in composition X ◦Y , bound atoms in
Y should somehow be detected and renamed to avoid capture with free atoms
in X (see Remark 5.8), and vice-versa.

We use maximal positive planes as a foundational data structure for a notion
of capture-avoiding language composition. Planes (Definition 3.3) are from [12]
and were used to model capture-avoiding substitution. Positive planes are new
(Definition 3.7), as is the connection with ν (Proposition 4.6). Arguably, planes
and positive planes are as interesting as their application in this paper and we
expect them to be useful in the future.

We conclude with an axiomatisation in the style of Kleene algebras and a
proof of soundness (Section 6).

2 Nominal Preliminaries

More on these constructions in [15] or in a recent survey [13].

Definition 2.1. Fix a countably infinite set A of atoms. We use a permutative
convention that a, b, c, . . . range over distinct atoms.

A permutation π is a bijection on atoms such that nontriv(π) = {a | π(a) �=
a} is finite. We write id for the identity permutation such that id(a) = a for
all a. We write π′ ◦ π for composition, so that (π′ ◦ π)(a) = π′(π(a)). We write

Freshness and Name-Restriction in Sets of Traces with Names 367

π-1 for inverse, so that π-1 ◦ π = id = π ◦ π-1. Write (a b) for the swapping
permutation that maps a to b and b to a and all other c to themselves.
π will range over permutations.

Definition 2.2. If A ⊆ A define fix(A) = {π | ∀a ∈ A.π(a) = a}. A,B,C will
range over finite sets of atoms.

Definition 2.3. A set with a permutation action is a pair X = (|X|, ·) of
an underlying set and a group action of permutations which we write π·x (so
id·x = x and π′·(π·x) = (π′ ◦ π)·x).

Say finite A ⊆ A supports x ∈ |X| when π·x = x for all π ∈ fix(A). Say
x ∈ |X| has finite support when it is supported by some finite A.

A nominal set is a set with a permutation action whose every element has
finite support. X will range over nominal sets and x will range over elements
x ∈ |X| (that is, finitely-supported elements).

Proposition 2.4. If A′, A ⊆ A are finite and support x then so does A′ ∩A.

Definition 2.5. Define supp(x) =
⋂
{A ⊆ A | A finite and support x}. Call

supp(x) the support of x.
Write a#x when a �∈ supp(x) and call a fresh for x.

We know supp(x) is well-defined in Definition 2.5 because by assumption at the
end of Definition 2.3, x has some finite supporting set.

Theorem 2.6. supp(x) supports x.

Corollary 2.7. 1. If π(a) = a for all a ∈ supp(x) then π·x = x.
2. If π(a) = π′(a) for every a ∈ supp(x) then π·x = π′·x.
3. a#x if and only if ∃b.b#x ∧ (b a)·x = x.

Proposition 2.8. supp(π·x) = π·supp(x).

Definition 2.9. Give X ⊆ |X| a pointwise permutation action given by π·X =
{π·x | x ∈ X}.

Define pow (X) to have elements X ⊆ |X| with the pointwise permutation
action and finite support.

It is not hard to use Proposition 2.8 to verify that pow(X) is a nominal set.

3 The Planes of a Set

From now until Section 6 we fix a nominal set X.
x, y, u, v will range over elements of |X| (i.e. x, y, u, z∈|X|) andX , Y , Z, U , and

V will range over finitely-supported subsets of |X| (i.e. X,Y, Z, U, V∈|pow(X)|).

368 M.J. Gabbay and V. Ciancia

3.1 Basic Theory of Planes

A subset X ⊆ |X| can be represented as a not-necessarily-disjoint union of orbits
under certain subgroups of the permutation action. A canonical representation
can be created using planes (Definition 3.3). A plane is an α-equivalence class
of an element under simultaneous renaming of one or more of its atoms (cf.
Lemma 3.2). For more on planes see [12, Subsection 3.3].

Definition 3.1. Define the plane x

�

A
by x

�

A
= {π·x | π ∈ fix(A)}.

We may omit brackets, writing e.g. x

�

a
for x

�

{a} and x

�

a,b
for x

�

{a,b}.

Lemma 3.2. If π ∈ fix (A) then (π·x)

�

A
= x

�
A
.

Lemma 3.2 expresses α-convertibility for (x,A) as a choice of representative for
the plane x

�

A
, allowing us to rename supp(x)\A. A plausible (if long) notation

for x

�

A
is ν(supp(x)\A).{x} where ν is atoms-restriction (cf. Definition 4.5).

Definition 3.3. Suppose A ⊆ A is finite. Write u

�

A
∝ Z when u

�

A
⊆ Z and

for every u′ and A′, u

�
A

⊆ u′
�

A′ ⊆ Z implies u′

�

A′ = u

�

A
.

We call the plane u
�

A
maximal in Z.

Example 3.4. 1. a

�

∅
∝ A (this is the only maximal plane in A).

2. a

�

{a}∝{a}∪(A×A), (a, a)

�

∅
∝{a}∪(A×A), and (a, b)

�

∅
∝ {a}∪(A×A) (there

are three maximal planes).
3. a

�
{b} ∝ A\{b} (this is the only maximal plane in A \ {b}).

4. In Definition 3.3, quantification over A′ is necessary. For example: a

�

{a} �∝
A \ {b}, but for no A′ � {a} is a

�

A′ ⊆ A \ {b} (the only choice for A′ is ∅).

Remark 3.5. For a fixed Z and u there may be two distinct subsets A ⊆
supp(Z) and B ⊆ supp(Z) such that u

�

A
∝ Z and u

�

B
∝ Z (thus; A and B

are minimal but not least). For example, if Z = {(x, y) | x = a ∨ y = b} and
u = (a, b) then u

�

{a} ∝ Z and u

�

{b} ∝ Z but u

�

∅
�∝ Z.

Proposition 3.6. Z =
⋃
{u

�

A
| u

�

A
∝ Z}.

Proof. Planes in Z are ordered by subset inclusion. For each x ∈ Z, take some
greatest element above x

�

supp(x). Their union is Z.

3.2 Positive Planes

For the definition see Definition 3.7 and Example 3.8.
Planes do not have to be disjoint. This may be a surprise at first, since planes

are orbits of an element under a permutation group and we are used to results
stating that orbits are either equal or disjoint—but the groups could be differ-
ent for different planes. For example, (a, b)

�

{a} and (a, b)

�

{b} are both positive
planes, but (a, b)

�

{a} ∩ (a, b)

�

{b} is non-empty because it contains (a, b).

Freshness and Name-Restriction in Sets of Traces with Names 369

Theorem 3.16 expresses that a union of positive planes behaves as a coproduct
in one respect: if a plane is included in a union of positive planes, then it is
included in one of the planes that made up that union.

Thus, the interest of positive planes is that they need not be disjoint, but
when we take their union it behaves in some ways like a coproduct. This fails if
planes are not positive; see Corollary 3.18 and Example 3.19. The importance
of this will become more apparent in the next section.

Definition 3.7. Recall the definition of x

�

A
from Definition 3.1 and the def-

inition of x

�

A
∝ X from Definition 3.3.

Call x

�

A
positive when A ⊆ supp(x).

Call X positive when every x

�

A
∝ X is positive.

Example 3.8. {a} = a

�

{a} is positive. A \ {a} = b

�

{a} is not.

Lemma 3.9. If z

�

C
∩ x

�

A
�= ∅ and A ⊆ C then z

�

C
⊆ x

�

A
.

Proof. Suppose z′ ∈ z

�

C
∩ x

�
A
. Then z′ = πz ·z = πx·x for some πz ∈ fix(C)

and πx ∈ fix(A). Now A ⊆ C so fix(C) ⊆ fix (A). By Lemma 3.2 (twice) z

�

C
=

z′

�

C
= x

�

C
⊆ x

�

A
.

Proposition 3.10. Suppose u

�

A
and u′

�

A′ are positive. Suppose u ∈ u′

�

A′ .
Then u

�

A
⊆ u′

�
A′ if and only if A′ ⊆ A.

Proof. Suppose u

�

A
⊆ u′

�

A′ and a ∈ A′ \ A. By assumption A′ ⊆ supp(u′)
so by Proposition 2.8, a ∈ supp(v) for every v ∈ u′

�

A′ . Also by assumption
A ⊆ supp(u) and so by Proposition 2.8, a �∈ supp((a′ a)·u) for fresh a′ (so a′ �∈
A′ ∪ supp(u)). Now (a′ a) ∈ fix(A) so (a′ a)·u ∈ u

�

A
, contradicting u

�

A
⊆ u′

�

A′ .
Conversely, if A′ ⊆ A then we use Lemma 3.9.

Corollary 3.11. Suppose x

�

A
⊆ X and x

�

A
and X are positive. Then there is

A′ ⊆ A with x

�

A
⊆ x

�

A′ ∝ X.

Proof. Planes are ordered by subset inclusion, so there exist some x′ and A′ such
that x

�

A
⊆ x′

�

A′ ∝ X . By assumption x′

�

A′ is positive. By Proposition 3.10
A′ ⊆ A. We use Lemma 3.2 to conclude that x′

�

A′ = x

�

A′ .

Lemma 3.12. If x

�

A
is positive then supp(x

�

A
) = A.

Proof. The left-to-right subset inclusion is from Lemma 3.2. Conversely suppose
a ∈ A and choose b fresh (so b �∈ A ∪ supp(x)). By positivity, a ∈ supp(x).
Using Proposition 2.8 it follows that (b a)·x �∈ x

�

A
, so (b a)·(x

�

A
) �= x

�

A
. Thus

a ∈ supp(x

�

A
).

Lemma 3.13. If u

�

A
∝ Z and Z is positive then A ⊆ supp(Z).

Proof. Suppose u

�

A
⊆Z and a∈A\supp(Z). From Theorem 2.6 (b a)·(u

�

A
)⊆Z

for every b �∈supp(Z); by group arguments u

�

A\{a}⊆Z. Also ((b a)·u)

�

(b a)·A∝Z
for every b �∈supp(Z). Since u

�

A
is positive, so is u

�

A\{a}. By Lemma 3.12 and
Proposition 3.10 u

�

A
�u

�

A\{a}, contradicting maximality of u

�

A
.

370 M.J. Gabbay and V. Ciancia

Theorem 3.14. If Z is positive then supp(Z) =
⋃
{A | u

�

A
∝ Z}.

Proof. The right-to-left inclusion is by Lemma 3.13. The left-to-right inclusion
then follows from Proposition 3.6 and Lemma 3.12 using [13, Theorem 2.29].1

Remark 3.15. Theorem 3.14 fails if we remove the condition of maximality.
For instance, supp(A) = ∅ and a

�

{a} is non-maximal in A for every a, but
supp(a

�

{a}) = {a} and
⋃
{supp(a

�

{a} | a ∈ A} = A �= ∅.

Theorem 3.16. Suppose I is some indexing set and for each i ∈ I, Ai is a
finite set of atoms and xi is some element. Suppose xi

�

Ai
is positive for every

i ∈ I and
⋃
Ai is finite. Then z

�

C
⊆

⋃
xi

�

Ai
implies z

�

C
⊆ xi

�

Ai
for some i.

Proof. We will show that Ai ⊆ C for some i ∈ I with z ∈ xi

�

Ai
; the result follows

by Proposition 3.10. Suppose otherwise, so that ∀i. z∈xi

�

Ai
⇒Ai �⊆C. Choose

some π mapping (
⋃
Ai)\C to fresh atoms. For each i there are two possibilities:

if Ai ⊆ C then z �∈ xi

�

Ai
and by Lemma 3.2 π·z �∈ xi

�

Ai
; if Ai �⊆ C then using

Proposition 2.8 again π·z �∈ xi
�

Ai
. Yet by construction π ∈ fix(C) so π·z ∈ z

�

C
,

contradicting our assumption that z

�

C
⊆

⋃
xi

�

Ai
.

Remark 3.17. Theorem 3.16 ensures that every maximal plane of a union of
positive planes is one of the planes of that union.2 We use this for example in
Theorem 5.11 and Lemma 5.13.

Corollary 3.18. Suppose xi

�

Ai
is positive for every i ∈ I, and

⋃
Ai is finite.

Then z
�

C
∝

⋃
xi

�

Ai
if and only if z

�

C
= xi

�

Ai
for some i.

Proof. By Theorem 3.16 z

�

C
⊆ xi

�

Ai
for some i. We use maximality of z

�

C
.

Example 3.19. U = (A×A) \ {(a, b)} is not positive. U ∪ {(a, b)} = A × A;
then (a, b)

�

∅
is maximal in A × A but is not a subset of U or {(a, b)}. Thus,

it is not possible to retrieve from a union of not-necessarily-positive planes a
subcollection of planes that make up that union. Extending this paper to the
‘negative’ case is future work.

Corollary 3.20. X is positive if and only if X =
⋃
xi

�

Ai
for some set of posi-

tive xi

�

Ai
such that

⋃
Ai is finite.

Proof. If X is positive the result follows taking xi

�

Ai
∝ X and using Theo-

rem 3.14. Conversely suppose X =
⋃
xi

�

Ai
for some set of positive xi

�

Ai
and

suppose
⋃
Ai is finite. We use Corollary 3.18.

1 Positivity is sufficent but not necessary. It suffices to restrict to u

�

A
such that

¬(supp(u) � A). This excludes an artefact of representing planes as pairs (u, A)
since if supp(u) � A and supp(u) � B then u

�

A
= u

�

B
= u

�

supp(u)
. Since we

concentrate on positive planes, where this cannot happen, we can ignore this.
2 Contrast with A \ {a} =

⋃{b� {b} | b ∈ A \ {a}} = b

�

{a} �⊆ b

�

{b}. Theorem 3.16 is

inapplicable because
⋃{supp(b

�

{b}) | b ∈ A \ {a}} is not finite.

Freshness and Name-Restriction in Sets of Traces with Names 371

4 ν-Restriction on Nominal Sets

We are now ready to define a notion of name-restriction on (positive) sets (Def-
inition 4.5). By Theorem 3.16 the planes of νa.U are ‘the planes of U , with a
taken out of the support of each’. Proposition 4.6 relates that to a notion of
‘U , with a taken out of the support of U ’ which resembles the nominal atoms-
abstraction from [15] (see [13, Definition 3.8 and Lemma 3.13] for a proof). The
rest of this section proves some useful equalities involving name-restriction.

Definition 4.1. Suppose X is a set. Define X �

A and X �A by:

X

�

A = {π·x | x ∈ X, π ∈ fix(A)}
X

�A = {π·x | x ∈ X, π ∈ fix(supp(X) \A)}

Write X �a for X �{a}. That is: X �a = {π·x | x∈X, π∈fix(supp(X)\{a})}.

Example 4.2. (A\{a}) �a = A. For comparison, (A\{a})

�

∅
= {A\{x}|x∈A}.

Lemma 4.3. If B ∩ supp(X) = B′ ∩ supp(X) then X

�

B = X

�

B′ .

Lemma 4.4. 1. Suppose supp(u) ∩B ⊆ supp(u) ∩A. Then u

�

A

�B = u

�

A\B
.

2. Suppose X is positive. Then X

�B =
⋃
{u

�

A

�B | u

�

A
∝ X}.

Proof. The first part is by routine arguments using part 2 of Corollary 2.7.
For the second part, using Proposition 3.6 we can calculate that

X

�B =
⋃

{u

�

A

�

supp(X)\B | u

�

A
∝ X}.

By assumption each u

�

A
∝ X is positive. By Lemma 3.12 supp(u

�

A
) = A.

By Lemma 4.3 u

�

A

�

supp(X)\B = u

�

A

�

A\B and by definition this is equal to
u

�

A

�B.

Definition 4.5. Define νa.U =
⋃
{u

�

A\{a} | u

�

A
∝ U}.

Proposition 4.6. If U is positive then νa.U = U

�a.
Proof. By Proposition 3.6 and Lemma 4.4.

Lemma 4.7. If U is positive then so is νa.U .

Proof. Suppose U is positive. For every u

�

A
∝ U , by Theorem 3.14A ⊆ supp(U).

The result follows by construction and by Corollary 3.20.

Lemma 4.8. Suppose u

�

A
and u′

�

A′ are positive. Suppose u

�

A
⊆ u′

�

A′ .
Then u

�

A\{a} ⊆ u′

�

A′\{a}.

372 M.J. Gabbay and V. Ciancia

Proof. Suppose u

�

A
⊆ u′

�

A′ . So there exists some π ∈ fix(A′) such that u = π·u′.
Also, by Proposition 3.10 A′ ⊆ A.

Consider some τ ·u ∈ u

�

A\{a} where τ ∈ fix(A \ {a}). Then τ ·u = (τ ◦ π)·u′,
and τ ◦ π ∈ fix(A′ \ {a}).

Remark 4.9. We illustrate why positivity is necessary in Lemma 4.8. Note
that {a} = a

�

{a} ⊆ b

�

{c} = A\{c} but A = a

�

∅
�⊆ b

�

{c}. However, b

�

{c} is not
positive because {c} �⊆ supp(b) = {b}.

Lemma 4.10. Suppose U is positive. Then:

1. If u

�

A′ ∝ νa.U then a �∈ A′ and either u
�

A′ ∝ U or u

�

A′∪{a} ∝ U .
2. If u

�

A
∝ U then u

�

A\{a} ⊆ νa.U .

Proof. For part 1, suppose u

�

A′ ∝ νa.U . By Lemma 4.7 νa.U is positive. By
Corollary 3.18 u

�

A′ = u

�

A\{a} for some u

�

A
∝ U .

For part 2, if u

�

A
∝ U then direct from Definition 4.5 u

�

A\{a} ⊆ νa.U .

Proposition 4.11. For positive U , supp(νa.U) = supp(U) \ {a}.

Proof. From Theorem 3.14 and part 1 of Lemma 4.10.

Remark 4.12. Proposition 4.11 is not what it seems. To the reader familiar
with nominal techniques it may look just like e.g. [15, Corollary 5.2] which is the
corresponding result for [a]x.

But consider U = (A×A) \ {(a, b)}. This has three maximal planes: (c, c)

�

∅
,

(c, b)
�

a
, and (a, c)

�

b
, and is not positive. Also supp(U) = {a, b}, yet supp(νa.U) =

∅ �= {b}. The reason for this ‘discrepancy’ is the observation made in the In-
troduction that νa.U and U have the same type, whereas [a]U and U do not.
Proposition 4.11 is different, and uses planes.

Corollary 4.13. Suppose U is positive. Then νa.U = U if and only if a#U .

Proof. Suppose νa.U = U . By Proposition 4.11 a#U . Conversely if a#U then by
Theorem 3.14 a �∈ A for every x

�

A
∝ U and νa.U = U follows by construction.

Lemma 4.14. X

�A �B = X

�A∪B.

Proof. By routine properties of permutations, and Theorem 2.6.

Corollary 4.15. Suppose U is positive. Then νa.νb.U = νb.νa.U .

Proof. From Proposition 4.6 and Lemma 4.14.

Proposition 4.16. π·(X �A) = (π·X) �π·A.
As a corollary, if b#X then (b a)·(X �a) = ((b a)·X) �b and νa.X = νb.(b a)·X.

Proof. The first part is by calculations on permutations, or by equivariance [13,
Corollary 4.6]. The corollary follows using Proposition 4.11 and Theorem 2.6.

Freshness and Name-Restriction in Sets of Traces with Names 373

5 Nominal Languages

Definition 5.1. Write A∗ for the set of finite (possibly empty) strings of atoms.
k, l, m will range over elements of A∗. We write kl for the concatenation of k

and l. We write [] for the empty string.
A∗ is a nominal set with permutation action π·k = π(k1) . . . π(kn) where ki is

the ith element of k. Also, supp(k) = {k1, . . . , kn} (the atoms in k).
A nominal language is a positive subset of A∗. K, L will range over lan-
guages.

An innocuous extension of Definition 5.1 is to use (A ∪Σ)∗ for some Σ.

Definition 5.2. The union of two languages K ∪ L is their sets union.

Proposition 5.3. Suppose Xi is positive for every i ∈ I. Suppose
⋃

supp(Xi)
is finite. Then

⋃
Xi is positive. As a corollary, if K and L are languages then

so is K ∪ L.

Proof. From Theorem 3.14 and Corollary 3.20.

Theorem 5.4. (νa.K) ∪ (νa.L) = νa.(K ∪ L).

Proof. Supposem
�

C
∝ (νa.K)∪(νa.L). Using Corollary 3.18 eitherm

�

C
∝ νa.K

or m

�

C
∝ νa.L; suppose without loss of generality m

�

C
∝ νa.K. By part 1 of

Lemma 4.10 m

�

C
= k

�

A\{a} for k

�

A
∝ K. Then m

�

C
⊆ νa.(K ∪ L) by part 2 of

Lemma 4.10. The reverse inclusion follows by similar reasoning.

Definition 5.5. Write u

�

A
∝S Z when u

�

A
∝Z and supp(u)∩S ⊆ A.

We may omit brackets, writing e.g. u

�

A
∝a Z for u

�

A
∝{a} Z.

Remark 5.6. ac

�

a
∝b {ax | x∈A\{a}} and ab

�

a
�∝b {ax | x∈A\{a}}. An anal-

ogy with λ-terms: λc.ac avoids name-clash with b whereas λb.ab does not. Think
of u

�

A
in Definition 5.5 as νb1. . . . νbn.{u} where {b1, . . . , bn} = supp(u) \ A.

‘Avoiding clash with S’ means choosing a representative u such that bi �∈ S for
1 ≤ i ≤ n. In Definition 5.7, the superscript supp(L) and supp(K) ∪ supp(k) are
generalised capture-avoidance conditions. More on this in Remark 5.8.

Definition 5.7. Define composition of languages K ◦ L by:

K ◦ L =
⋃

{kl

�

A∪B
| k

�

A
∝supp(L) K, l

�

B
∝supp(K) ∪ supp(k) L}

Recall that here, kl denotes list concatenation. In words: K ◦ L is a capture-
avoiding composition of the maximal planes of K and L. For example, if K = {a}
and L = A then we can take k = a, A = {a}, l = b and B = ∅ to calculate that
K ◦ L = {ax | x∈A\{a}} = ab

�

a
.

374 M.J. Gabbay and V. Ciancia

Remark 5.8. The ‘definition’ {kl

�

A∪B
| k

�

A
∝ K, l

�

B
∝ L} would put the

string aba in (νb.ab) ◦ νb.b. This is undesired behaviour because νb.b should
avoid clash with the name a free in νb.ab. Similarly the ‘ordinary’ notion of
composition {kl | k ∈ K, l ∈ L} does not avoid capture and delivers incorrect
results.

Remark 5.9. The mention of supp(k) in l

�

B
∝supp(K) ∪ supp(k) L tells l to avoid

name-clash with atoms used in k; if we wrote l

�

B
∝supp(K) L then composition

would deallocate fresh names in k before executing l. Thus, Definition 5.7 does
not put abb in (νb.ab) ◦ (νb.b), because of the mention of supp(k).

Lemma 5.10. K ◦ L is positive.

Proof. By assumption K and L are positive. Suppose k

�

A
∝ K and l

�

B
∝ L. By

assumption A ⊆ supp(k) and B ⊆ supp(l) and it is a fact that therefore A∪B ⊆
supp(k) ∪ supp(l) = supp(kl). Furthermore by Theorem 3.14 A ⊆ supp(K) and
B ⊆ supp(L). The result follows by Corollary 3.20.

Theorem 5.11. 1. If a#L then (νa.K) ◦ L = νa.(K ◦ L).
2. If b#K then K ◦ νb.L = νb.(K ◦ L).

Proof (Sketch proof). We consider only the first part. Supposem

�

C
∝ νa.(K◦L).

By definition and using part 1 of Lemma 4.10 and Corollary 3.18 there exist
k

�

A
∝supp(L) K and l

�

B
∝supp(K) ∪ supp(k) L such that m

�

C
= kl

�

(A∪B)\{a}.
By part 1 of Lemma 4.10 k

�

A\{a}∝
supp(L)\{a}νa.K. By Theorem 3.14 a �∈ B so

(A∪B)\{a}=(A\{a})∪B. It follows by definition that kl

�

(A∪B)\{a} ⊆ (νa.K)◦L.
The reverse inclusion follows by similar reasoning.

Lemma 5.12. Suppose K and L are languages. Suppose supp(K)∪supp(L) ⊆ C.
Then K ◦ L = {kl

�

A∪B
| k

�

A
∝C K, l

�

B
∝C ∪ supp(k) L}.

Proof. By Proposition 2.8 and Lemma 3.2.

Lemma 5.13. (K ◦ L) ◦ M = K ◦ (L ◦ M).

Proof (Sketch proof). Set C = supp(K) ∪ supp(L) ∪ supp(M). It is a fact that
supp(K ◦ L) ⊆ C and supp(L ◦ K) ⊆ C.3

By Corollary 3.18 and Lemma 5.12 if n

�

D
∝ (K◦L)◦M then n

�

D
= n′m

�

D′∪C

for some n′

�

D′ ∝C K◦L and some m

�

C
∝C ∪ supp(n′) M . Similarly, n′

�

D′ = kl

�

A∪B

for some k

�

A
∝C K and l

�

B
∝C ∪ supp(k) L.

By renaming k and l appropriately we may assume that n′ = kl. It is a fact
that supp(n′) = supp(k) ∪ supp(l). It follows that

(K◦L)◦M =
⋃

{klm

�

A∪B∪C
| k

�

A
∝C K, l

�

B
∝C ∪ supp(k) L, m

�

C
∝C ∪ supp(k) ∪ supp(l) M}.

The result follows.
3 We can deduce this by direct calculations or by construction and using Theorem 3.14.

Freshness and Name-Restriction in Sets of Traces with Names 375

Theorem 5.14. If
⋃

supp(Li) is finite then K◦
⋃

Li =
⋃

(K ◦Li) and (
⋃

Li) ◦
K =

⋃
(Li ◦ K).

Proof. We consider only the first part; the proof of the second part is similar.
Set G = supp(K) ∪

⋃
supp(Li). We prove two subset inclusions.

– Proof of the left-to-right subset inclusion. Choose some k
�

A
∝G K. Suppose

n

�

D
∝G ∪ supp(k)

⋃
Li. From Theorem 3.16 n

�

D
∝G ∪ supp(k) Li for some i. By

Lemma 5.12 kn

�

A∪D
⊆

⋃
(K ◦ Li).

– Proof of the right-to-left subset inclusion. Suppose n

�

D
∝G

⋃
(K ◦ Li). By

Lemma 5.12 we may take n = kl and D = A ∪ B for some k

�

A
∝G K

and some i and l

�

B
∝G ∪ supp(k) Li. Using Corollary 3.11 we can deduce that

l

�

B
⊆ l

�

B′ ∝G ∪ supp(k)
⋃

Li for some B′ ⊆ B. Since A ∪ B′ ⊆ A ∪ B we can
conclude that n

�

D
⊆ kl

�

A∪B′ ⊆ K ◦
⋃

Li.

Definition 5.15. Define O = ∅ (the empty set). Define I = {[]} (recall from
Definition 5.1 that [] is the empty string).

Definition 5.16. Define K0 = I and Ki+1 = Ki ◦ K. Define K∗ =
⋃

i Ki.

Lemma 5.17. O ◦ K = O = K ◦ O and I ◦ K = K = K ◦ I.

Theorem 5.18. O and I are languages. Also, the set of languages is closed
under K ∪ L, νa.L, K ◦ L, and K∗.

Proof. That O and I are languages is easy to verify. The case of K ∪ L is
from Proposition 5.3; that of νa.L is from Lemma 4.7; that of K ◦ L is from
Lemma 5.10.

supp(Ki) ⊆ supp(K) can be verified by calculations or by equivariance [13,
Theorem 4.7]. The case of K∗ follows using Lemma 5.10 and Proposition 5.3.

6 Nominal Kleene Algebra

We can use a nominal algebra style axiomatisation [14] to synthesise what we
have proved so far as an extension of Kleene algebras (Definition 6.2 and Theo-
rem 6.4). ‘Nominal Kleene algebra’ should be read tongue-in-cheek; we have no
completeness proof like [20]. This is future work.

Definition 6.1. Call x ∈ |X| equivariant when supp(x) = ∅, thus ∀π.π·x = x.
Call a function f ∈ |X| → |Y| equivariant when π·f(x) = f(π·x) for all

x ∈ |X| and all permutations π.

Definition 6.2. A nominal Kleene algebra is a tuple X = (|X|,+, ·, ∗, 0, 1, ν)
of:

– A nominal carrier set |X|.

376 M.J. Gabbay and V. Ciancia

X + (Y + Z) = (X + Y) + Z X + Y = Y + X
X + 0 = X X + X = X

X(Y Z) = (XY)Z
1X = X X1 = X

X(Y + Z) = XY + XZ (X + Y)Z = XZ + Y Z
0X = 0 X0 = 0

1 + X(X∗) ≤ X∗ 1 + X∗X ≤ X∗

XY ≤ Y ⇒ X∗Y ≤ Y Y X ≤ Y ⇒ Y (X∗) ≤ Y

a#X ⇒ νa.X = X νa.νb.X = νb.νa.X
νa.X + νa.Y = νa.(X + Y) a#Y ⇒ (νa.X)Y = νa.(XY)

b#X ⇒ νa.X = νb.(b a)·X b#X ⇒ X(νb.Y) = νb.(XY)

Fig. 1. Axioms of nominal Kleene algebra

– Equivariant functions + and · from ||X|| × ||X|| to ||X||. We usually omit ·,
writing e.g. XY for X · Y .

– An equivariant function ∗ from ||X|| to ||X||.
– Equivariant elements 0 ∈ ||X|| and 1 ∈ ||X||.
– An equivariant function ν from A× ||X|| to ||X||.

such that for all X,Y, Z ∈ ||X|| and all a, b ∈ A the conditions in Figure 1 hold.
The upper axioms are the standard axioms of a Kleene algebra [20]. Here (as

standard) we write r ≤ s as shorthand for r + s = s. Note that these axioms
are not purely equational (so Kleene algebra is not, depending on terminology,
actually algebraic), and the class of Kleene algebras forms a quasi-variety. This
will not matter to us in this paper.

The axioms on the lower lines describe behaviour of name-restriction.

Remark 6.3. Note that νa.0 = 0 and νa.1 = 1 follow from the axiom a#X ⇒
νa.X = X , because it is a fact that a#0 and a#1.

Theorem 6.4. Languages form a nominal Kleene algebra if we interpret + as
∪, · as ◦, ν as ν, and 0 and 1 as O and I respectively.

Proof. We consider each axiom in turn:

– It is a fact that K ∪ (L ∪ M) = (K ∪ L) ∪M, and K ∪ L = L ∪K. It is also
a fact that K ∪ O = K and K ∪ K = K.

– K ◦ (L ◦ M) = (K ◦ L) ◦ M by Lemma 5.13.
– K ◦ (L ∪M) = (K ◦ L) ∪ (K ◦ M) and (L ∪ M) ◦ K = (L ◦ K) ∪ (L ◦ K) are

by Theorem 5.14.
– O ◦ K = O = K ◦ O and I ◦ K = K = K ◦ I by Lemma 5.17.
– The four axioms for K∗ follow using Theorem 5.14. To use some jargon, our

denotation is ∗-continuous [19].
– If a#K then νa.K = K is by Corollary 4.13.
– (νa.K) ∪ (νa.K) = νa.(K ∪ L) is by Theorem 5.4.
– (νa.K) ◦ (νa.L) = νa.(K ◦ L) is by Theorem 5.11.
– νa.νb.K = νb.νa.K is by Corollary 4.15.
– b#K ⇒ νa.K = νb.(b a)·K is by Proposition 4.16.

Freshness and Name-Restriction in Sets of Traces with Names 377

7 L ◦ A Is Equal to L ⊗ A

Nominal sets have an atoms tensor product X ⊗ A ([27] or [13, Definition 9.27])
given by X ⊗A = {(x, a) | x ∈ X, a ∈ A, a#x}. This has an obvious generalisa-
tion: X⊗Y = {(x, y) | x ∈ X, y ∈ Y, supp(x) ∩ supp(y) = ∅}. We can view ◦ as
another (less obvious) generalisation of ⊗, as follows:

Proposition 7.1. If supp(K) = ∅ then K ◦ A = K ⊗ A and A ◦ K = A ⊗ K,
where we treat K as a nominal set with underlying set itself.

Thus, composition of languages generalises ⊗. - ⊗ A is left-adjoint to atoms-
abstraction [A]- [13, Theorem 9.30]. By Proposition 7.1, so is - ◦ A. It remains
to investigate the futher properties of - ◦ A.

8 Conclusions

Name-generation has long been a motivation for nominal techniques.
Odersky in [24] and Pitts and Stark [25] studied name-generation, and this

was in the background thinking of the first author’s and Pitts’s development
of Fraenkel-Mostowski/nominal sets. FreshML included a name-generating con-
struct [29] which was a precursor of Fernández and the first author augmenting
nominal terms and nominal rewriting explicitly with name generation Na.t [5];
Pitts added a similar construct νa.t to system T [26]. The axioms for αa in
Figure 1 are of the same family.

A very abstract semantic study of name-generation is the abstractive functions
considered in [11]. This influenced [12], where much machinery used in this paper
was introduced. Abramski et al. give a concrete games semantics to the nu-
calculus in nominal sets [1]: ideas here and in [12] also appear there, including
Definition 3.1 (see e.g. Definition 2.7 of [30]).

There exist denotations for dynamic allocation using atoms-abstraction [A]-,
typically written δ in presheaf presentations. Examples are coalgebraic semantics
for the π-calculus using δ (see e.g. [6, Subsection 2.2] or [2, Subsection 5.2]),
the name-generation monad of FreshML [28, F〈〈name〉〉τ , page 38]. We can also
include the X�Y construct of nominal games from [1], which is in the same
spirit and used in similar ways. In these examples name-generation exists at its
own distinct level; in programming terms this corresponds to carrying around
an explicit context of known ‘fresh’ names.
νa (Definition 4.5) is different because it places binding on a level with union

∪ and composition ◦: a language L is just a set of traces, not under a monad
and not a set of α-equivalence classes of sets of traces. Thus we must work
harder because freshness must be ‘decrypted’, but this buys us an appealingly
simple model. A language really is just a set—as in the classical case of regular
languages, without names and binding. That explicit context of known ‘fresh’
names is not explicitly necessary in the mathematical models we build.

One can raise the question of decidability of equality and inclusion between
(subclasses of) languages, and automata. To consider such questions we need to
match the developments of this paper with an automata-theoretic counterpart.

378 M.J. Gabbay and V. Ciancia

One well-studied notion of finite automaton with names and allocation is
history-dependent (HD-)automata [23]. The correspondence to coalgebras over
presheaves/nominal sets is considered in [3]. Investigation of the languages of
HD-automata and the link with finite-memory automata [18] has shown that
HD-automata are still essentially finite-memory machines [4]. However, the finite-
support property of nominal sets corresponds to an idea of ‘finitely but unbound-
edly many’. In FreshML, a type system in [10] first tried to restrict generation
of fresh names and later in [28] the programming language appeared without
such restrictions but the denotation used a monad to keep track of generated
fresh names. Similarly, we would expect acceptors for languages from Section 5
to either impose bounds on support (if they are to be finite), or to be in the
style of e.g. pushdown automata.

Most recently, fresh register automata have also been proposed, explicitly as
an automaton model of names and fresh name generation [31]. It remains to
investigate these in connection with this work.

We note in Remark 5.9 a ‘deallocating’ variant of composition K ◦ L. There
is a rich design space here to be studied in future work.

Nominal sets have further structure. We can model when a process omits a
name (e.g. ‘junk’ in the π-calculus; a channel name that is not emitted yet occurs
in the syntax of the term) using a freshness constraint: X#a = {x ∈ X | a#X}.

Note that ν is not the N-quantifier introduced by the first author with Pitts
in [15]. For instance, X ⊆ νa.X is a fact, whereas φ(x) ⇒ Nx.φ(x) is in general
false. It is possible to define a version of Nacting on languages, given by na.X =
{x ∈ X | Nb.(b a)·x ∈ X}. We do not believe that n and ν are interdefinable and
investigating them is future work.

Our models do not include negation; this is also future work.

Acknowledgements. The authors are grateful to Emilio Tuosto and three
anonymous referees. The second author was supported by the VICI grant
639.073.501 of the Netherlands Organization for Scientific Research (NWO).

References

1. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.-H.L., Stark, I.D.B.: Nom-
inal games and full abstraction for the nu-calculus. In: Proceedings of the 19th
IEEE Symposium on Logic in Computer Science (LICS 2004), pp. 150–159. IEEE
Computer Society Press, Los Alamitos (2004)

2. Bonsangue, M., Kurz, A.: Pi-calculus in logical form. In: Proceedings of the 22nd
Annual IEEE Symposium on Logic in Computer Science (LICS 2007), pp. 303–312.
IEEE Computer Society Press, Los Alamitos (2007)

3. Ciancia, V., Montanari, U.: Symmetries, local names and dynamic (de)-allocation
of names, Information and Computation (2010) (in press)

4. Ciancia, V., Tuosto, E.: A novel class of automata for languages on infinite alpha-
bets, Tech. Report CS-09-003, University of Leicester, UK (2009)

Freshness and Name-Restriction in Sets of Traces with Names 379

5. Fernández, M., Gabbay, Murdoch J.: Nominal rewriting with name generation:
abstraction vs. locality. In: Proceedings of the 7th ACM SIGPLAN International
Symposium on Principles and Practice of Declarative Programming (PPDP 2005),
pp. 47–58. ACM Press, New York (July 2005)

6. Fiore, M., Moggi, E., Sangiorgi, D.: A fully-abstract model for the π-calculus (ex-
tended abstract). In: Proceedings of the 11th IEEE Symposium on Logic in Com-
puter Science (LICS 1996), pp. 43–54. IEEE Computer Society Press, Los Alamitos
(1996)

7. Fiore, M., Staton, S.: Comparing operational models of name-passing process cal-
culi. Information and Computation 204(4), 524–560 (2006)

8. Fiore, M., Turi, D.: Semantics of name and value passing. In: Proceedings of the
16th IEEE Symposium on Logic in Computer Science (LICS 2001), pp. 93–104.
IEEE Computer Society Press, Los Alamitos (2001)

9. Francez, N., Hoare, C.A.R., Lehmann, D.J., de Roever, W.P.: Semantics of non-
determinism, concurrency, and communication. Journal of Computer and System
Sciences 19(3), 290–308 (1979)

10. Gabbay, Murdoch J.: A Theory of Inductive Definitions with alpha-Equivalence,
Ph.D. thesis, University of Cambridge, UK (March 2001)

11. Gabbay, Murdoch J.: A General Mathematics of Names. Information and Compu-
tation 205(7), 982–1011 (2007)

12. Gabbay, Murdoch J.: A study of substitution, using nominal techniques and
Fraenkel-Mostowski sets. Theoretical Computer Science 410(12-13), 1159–1189
(2009)

13. Gabbay, Murdoch J.: Foundations of nominal techniques: logic and semantics of
variables in abstract syntax. Bulletin of Symbolic Logic (2010) (in press)

14. Gabbay, Murdoch J., Mathijssen, A.: Nominal universal algebra: equational logic
with names and binding. Journal of Logic and Computation 19(6), 1455–1508
(2009)

15. Gabbay, Murdoch J., Pitts, A.M.: A New Approach to Abstract Syntax with Vari-
able Binding. Formal Aspects of Computing 13(3-5), 341–363 (2001)

16. Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras
(pre)sheaves and named sets. Higher-Order and Symbolic Computation 19(2-3),
283–304 (2006)

17. Holzmann, G.J.: The spin model checker: Primer and reference manual. Addison-
Wesley Professional, Reading (September 2003)

18. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Sci-
ence 134(2), 329–363 (1994)

19. Kozen, D.: On induction vs. ∗-continuity. In: Kozen, D. (ed.) Logic of Programs
1981. LNCS, vol. 131, pp. 167–176. Springer, Heidelberg (1982)

20. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366–390 (1994)

21. Miculan, M., Scagnetto, I.: A framework for typed HOAS and semantics. In: Prin-
ciples and Practice of Declarative Programming, 5th International ACM SIGPLAN
Symposium (PPDP 2003), pp. 184–194. ACM, New York (2003)

22. Moggi, E.: Notions of computation and monads. Information and Computa-
tion 93(1), 55–92 (1991)

23. Montanari, U., Pistore, M.: π-Calculus, Structured Coalgebras and Minimal HD-
Automata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, p. 569.
Springer, Heidelberg (2000)

380 M.J. Gabbay and V. Ciancia

24. Odersky, M.: A functional theory of local names. In: Proceedings of the 21st Annual
ACM Symposium on Principles of Programming Languages (POPL 1994), pp. 48–
59. ACM Press, New York (1994)

25. Pitts, A.M., Stark, I.D.B.: Observable properties of higher order functions that
dynamically create local names, or: What’s new? In: Borzyszkowski, A.M.,
Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 122–141. Springer,
Heidelberg (1993)

26. Pitts, A.M.: Nominal system T. In: Proceedings of the 37th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL 2010),
pp. 159–170. ACM Press, New York (January 2010)

27. Pitts, A.M., Gabbay, Murdoch J.: A Metalanguage for Programming with Bound
Names Modulo Renaming. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000.
LNCS, vol. 1837, pp. 230–255. Springer, Heidelberg (2000)

28. Shinwell, M.R., Pitts, A.M.: On a monadic semantics for freshness. Theoretical
Computer Science 342(1), 28–55 (2005)

29. Shinwell, M.R., Pitts, A.M., Gabbay, Murdoch J.: FreshML: Programming with
Binders Made Simple. In: Proceedings of the 8th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2003), vol. 38, pp. 263–274. ACM
Press, New York (August 2003)

30. Tzevelekos, N.: Nominal game semantics. Ph.D. thesis, Oxford (2008)
31. Tzevelekos, N.: Fresh-register automata. In: Proceedings of the 38th ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL 2011). ACM Press, New York (January 2011)

Polymorphic Abstract Syntax via
Grothendieck Construction

Makoto Hamana

Department of Computer Science, Gunma University, Japan
hamana@cs.gunma-u.ac.jp

Abstract. Abstract syntax with variable binding is known to be characterised as
an initial algebra in a presheaf category. This paper extends it to the case of poly-
morphic typed abstract syntax with binding. We consider two variations, second-
order and higher-order polymorphic syntax. The central idea is to apply Fiore’s
initial algebra characterisation of typed abstract syntax with binding repeatedly,
i.e. first to the type structure and secondly to the term structure of polymorphic
system. In this process, we use the Grothendieck construction to combine differ-
ently staged categories of polymorphic contexts.

1 Introduction

It is well-known that first-order abstract syntax is modelled as an initial algebra
[GTW76] in the framework of ordinary universal algebra. Because this algebraic char-
acterisation cleanly captures various important aspects of syntax, such as structural re-
cursion and induction principles, in terms of algebraic notions, it has been extended to
more enriched abstract syntax: abstract syntax with variable binding [Hof99, FPT99],
simply-typed abstract syntax with variable binding [Fio02, MS03, TP08], and
dependently-sorted abstract syntax [Fio08]. These are uniformly modelled in the frame-
work of categorical universal algebra in presheaf categories.

The solid algebraic basis of enriched abstract syntax has produced fruitful appli-
cations. The untyped case [FPT99] was applied to characterisations of second-order
abstract syntax with metavariables [Ham04, Fio08], higher-order rewriting [Ham05],
explicit substitutions [GUH06], and the Fusion calculus [Mic08]. The simply-typed
case [Fio02, MS03] was applied to normalisation by evaluation [Fio02], pre-logical
predicates [Kat04], simply-typed higher-order rewriting [Ham07], cyclic sharing tree
structures [Ham10], and second-order equational logic [FH10].

However, an important extension of abstract syntax remains untouched, namely poly-
morphic typed abstract syntax.

This paper provides the initial algebra characterisation of polymorphic typed ab-
stract syntax with variable binding in a presheaf category. We consider two variations,
second-order and higher-order polymorphic syntax. The central idea is to repeatedly ap-
ply Fiore’s initial algebra characterisation of typed abstract syntax with binding [Fio02]
twice, i.e. first to the type structure and secondly to the term structure of polymorphic
system. In this process, we use the Grothendieck construction to combine differently
staged categories of polymorphic contexts, which is a key to defining the category of
discourse in our formulation.

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 381–395, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

382 M. Hamana

This characterisation will be a basis of further fruitful research. It is applicable to
modern functional programming language such as ML and Haskell. Moreover, it can
be a basis of more interesting systems, polymorphic equational logic (along the line
of Fiore’s programme on synthesis of equational logic [Fio09]), polymorphic higher-
order rewriting systems as an extension of untyped [Ham05] and simply-typed [Ham07]
higher-order rewriting systems based on algebraic semantics.

Organisation. This paper is organised as follows. We first review the previous
algebraic models of abstract syntax with binding in Section 2. We then characterise
polymorphic syntax by examining the syntax of system F in Section 3. We further
characterise higher-order polymorphic syntax by examining the syntax of system Fω
in Section 4. Finally, in Section 5, we discuss how substitutions on polymorphic syntax
can be modelled.

2 Background

2.1 Algebras in SetF for Abstract Syntax with Binding

Firstly, we review algebras in a presheaf category SetF for modelling untyped abstract
syntax with binding by Fiore, Plotkin and Turi [FPT99]. Hofmann [Hof99] also used
the same approach to model higher-order abstract syntax. This is the basis of typed
abstract syntax in next subsection and polymorphic syntax in §3.

The aim is to model syntax involving variable binding. A typical example is the
syntax for untyped λ-terms:

x1, . . . , xn � xi

x1, . . . , xn � t x1, . . . , xn � s
x1, . . . , xn � t@s

x1, . . . , xn, xn+1 � t
x1, . . . , xn � λ(xn+1.t)

This is seen as abstract syntax generated by three constructors, i.e. the variable former,
the application @, and the abstraction λ. The point is that the variable former is a unary
and @ is a binary function symbol, but λ is not merely a unary function symbol. It also
makes the variable xn+1 bound and decreases the context, which is seen as taking the
“internal-level abstraction” (xn+1.t) as the argument of the constructor λ.

In order to model this phenomenon of variable binding generally (not only for
λ-terms), Fiore et al. took the presheaf category SetF to be the universe of discourse,
where F is the category which has finite cardinals n = {1, . . . , n} (n is possibly 0) as
objects, and all functions between them as arrows m → n. This is the category of ob-
ject variables by the method of de Bruijn index/levels (i.e. natural numbers) and their
renamings.

Fiore et al. showed that abstract syntax with variable binding is precisely charac-
terised as the initial algebra of suitable endofunctor modelling a signature (e.g. for
λ-terms). More precisely, we need the functor δ : SetF → SetF for context extension
(δA)(n) = A(n + 1) for A ∈ SetF, n ∈ F, and the presheaf V ∈ SetF of variables defined
by V(n) = F(1, n) � {1, . . . , n}. Using these, for example, we can define the endofunctor
Σλ on SetF for abstract syntax of λ-terms by

Σλ(A) = V + A × A + δA

Polymorphic Abstract Syntax via Grothendieck Construction 383

where each summand corresponds to the arity of variable former, @ and λ symbols.
Then we use ordinary notion of functor-algebras in SetF. Generally, an endofunctor Σ
on SetF defined using +,×, δ is called signature functor, and a Σ-algebra is a pair (A, α)
consisting of a presheaf A and a map α : ΣA → A, called an algebra structure. A
homomorphism of Σ-algebras is a map φ : (A, α) → (B, β) such that φ ◦ α = β ◦ Σφ.

The initial Σλ-algebra (Λ, in) exists and can be constructed by the method in [SP82].
It can be expressed as the presheaf Λ(n) = {t | x1, . . . , xn � t}/=α of all terms, where
the algebra structure in : ΣλΛ → Λ consists of constructors of λ-terms, i.e. the variable
former, @, and λ.

This process is generic with respect to arbitrary signature functor Σ, hence an initial
Σ-algebra in SetF models abstract syntax with variable binding.

2.2 Algebras in (SetF↓U)U for Typed Abstract Syntax with Binding

Algebras in SetF lack the treatment of type restrictions on syntax. A typical example of
typed abstract syntax with binding is the syntax for simply-typed λ-terms:

x : τ ∈ Γ
Γ � x : τ

Γ � t : σ⇒τ Γ � s : σ
Γ � t@s : τ

Γ, x : σ � t : τ
Γ � λ(x : σ.t) : σ⇒τ

To model this syntax, we need to model typed contexts Γ = {x1 : τ1, · · · , n : τn}.
For this, instead of the category F, Fiore [Fio02], and Miculan and Scagnetto [MS03]

took the comma category1 F↓U for the index category. Now U is the set containing all
type names used in syntax. It is similar to a universe used in Martin-Löf type theory
(i.e. the set U of all codes of small sets (= types)), hence we call U type universe
hereafter. In the case of simply typed λ-calculus, we take U to be the set of all simple
types generated by base types. The presheaf category (SetF↓U)U is now our working
category.

The intention of the use of (SetF↓U)U is that the inner index F↓U models contexts, and
the outer index U models the target types of judgments. The category F↓U has objects
Γ : n → U, which are seen as contexts {1 : τ1, · · · , n : τn}, and arrows ρ : Γ → Γ′,
which are functions ρ : n → n′ such that Γ = Γ′ ◦ ρ, i.e. renaming between Γ and Γ′.
The coproduct is Γ, Γ′ defined by [Γ, Γ′] : n + n′ → U.

All constructions used in the case of SetF are smoothly extended to the case of
(SetF↓U)U , which makes modelling typed syntax possible. The context extension δτ :
SetF↓U → SetF↓U by a variable of type τ is defined by (δτA)(Γ) = A(Γ, τ). The presheaf
V ∈ (SetF↓U)U of variables is defined by the Yoneda embedding Vτ = F↓U(〈τ〉,−),
where 〈τ〉 : 1 → U maps 1 �→ τ ∈ U. Hence Vτ(Γ) � {x | x : τ ∈ Γ}, i.e. the set of
variables of a certain type τ taken from a context Γ.

For example, the signature functor Σ�λ : (SetF↓U)U → (SetF↓U)U for abstract syntax of
simply-typed λ-terms can be defined by

(Σ�λA)τ = Vτ +
∐
τ′∈U

(Aτ′⇒τ × Aτ′) +
∐

τ1,τ2∈U
(τ ≡ τ1⇒τ2) × (δτ1 Aτ2)

1 In the rigorous notation of comma category, (F↓U) should be written as (JF ↓ U), where
JF : F→ Set is the inclusion functor.

384 M. Hamana

Here the binary operator ’≡’ on types gives a set defined by (τ ≡ τ′) � 1 (the one
point set) if τ = τ′, (τ ≡ τ′) � 0 (the empty set) if τ � τ′. This style using ’≡’ to
define a signature functor can be found in [MA09]. Throughout this paper, we use this
’≡’ operator. The initial Σ�λ-algebra (Λ→, in) in (SetF↓U)U exists and can be constructed
[SP82] as the presheaf of all simply-typed λ-terms

(Λ→)τ(Γ) = {t | Γ � t : τ}/ =α

with algebra structure giving constructors of simply-typed λ terms.
This process is again generic with respect to arbitrary signature functor Σ, hence

an initial Σ-algebra in (SetF↓U)U models arbitrary typed abstract syntax with variable
binding.

Remark. These works do not intend to directly give semantics of λ-calculi. The initial
algebrasΛ and Λ→ are not models of untyped and typed λ-calculi respectively, because
they do not validate the β-axioms. They are the initial models of abstract syntax of λ-
calculi. Similarly, we do not intend to give models of polymorphic λ-calculi, system F
and Fω in this paper. We give algebraic models of abstract syntax of types and terms.

Convention on α-equivalence. In this paper, hereafter we use the method of de Bruijn
levels [dB72] for representing bound and free variables in a term (and a type, a judg-
ment, etc.). However, keeping de Bruijn level notation strictly (as in [Ham04, Ham05,
Ham07]) is sometimes clumsy and hides the essence. Hence, in this paper, at the level
of text, we use the usual named notation for terms to avoid clutter. We assume that
these actually denote (or are automatically normalised to) de Bruijn level normal forms.
For example, when we write λx.λy.yx, it actually means λ1.λ2.21. Another example is
α1, . . . , αn � ∀αn+1. τ to mean 1, . . . , n � ∀(n + 1. τ). Hence we will drop the explicit
quotienting “/ =α” by the α-equivalence in defining a term set hereafter. De Bruijn
level notation is different from more well-known de Bruijn index notation, and levels
are the reverse numbering of variables. See [FPT99] for illustrations of de Bruijn level
notation.

3 Second-Order Polymorphic Abstract Syntax

We extend the treatment reviewed in the previous section to the case of second-order
polymorphic abstract syntax with variable binding. The leading example of such a syn-
tax is the abstract syntax for Girard and Reynolds’ system F. Hence we review its
definition.

3.1 System F

Types
τ ::= α | b | τ1⇒τ2 | ∀α.τ

where α ranges over type variables, and b ranges over base types.

Polymorphic Abstract Syntax via Grothendieck Construction 385

Well-formed types 1 ≤ i ≤ n
α1, . . . , αn � αi α1, . . . , αn � b

α1, . . . , αn � σ α1, . . . , αn � τ
α1, . . . , αn � σ⇒τ

α1, . . . , αn, αn+1 � τ
α1, . . . , αn � ∀αn+1. τ

Well-typed terms

x : τ ∈ Γ
Ξ | Γ � x : τ

Ξ | Γ, x : σ � t : τ
Ξ | Γ � λx : σ. t : σ⇒τ

Ξ | Γ � t : σ⇒τ Ξ | Γ � s : σ
Ξ | Γ � t s : τ

Notes
Ξ, α | Γ � t : τ

Ξ | Γ � Λα. t : ∀α. τ
Ξ | Γ � t : ∀α. τ Ξ � σ
Ξ | Γ � tσ : τ[α := σ]

• Ξ | Γ � t : τ is well-formed if Ξ � τi for each xi : τi ∈ Γ, and Ξ � τ.
• Ξ = α1, . . . , αn is a type context, i.e., a sequence of type variables.
• Γ = x1 : τ1, . . . , xk : τk is a term context.

We use the formulation that a type context and a term context are explicitly separated
in a judgment as Ξ | Γ, where any type variable α appearing in Γ is taken from Ξ. The
substitution operation [− := −] on terms and types is the standard capture-avoiding
substitution.

3.2 Modelling Syntax of F

First we concentrate on modelling syntax for system F. We generalise it to arbitrary
polymorphic abstract syntax later.

The basic idea we take is to use algebras in (SetF↓U)U as in §2.2. Now the type uni-
verse U is not merely a set of all types, since types involve type variables and quantifi-
cation. This means that U must be given by abstract syntax with variable binding. This
point of view was also taken in [AHS96].

We use a two-stage approach to model system F terms. Firstly, we construct the
universe T of all system F types as a presheaf T ∈ SetF by an initial algebra in SetF.
Then we move to another presheaf category Set

∫
G (explained later) defined using T, and

construct an initial algebra for all well-typed terms in it. We proceed by the following
three steps.

(I) Polymorphic types. We follow the method reviewed in §2.1. Let B ∈ SetF be the
constant functor to the set of all base types, andV the presheaf of type variables defined
by V(n) = F(1, n) � {1, . . . , n}. We define the signature functor Fty : SetF → SetF for
system F types by

Fty(A) = V + B + A × A + δA.

Each summand corresponds to the arity of type variable, base type, arrow type, and
universal type. An initial Fty-algebra exists and can be constructed. We define T ∈ SetF

by the initial Fty-algebra (T, in) described as the presheaf of all well-formed types:

T(n) = {τ | α1, . . . , αn � τ}.

386 M. Hamana

The arrow part T(ρ) is a renaming action on types using ρ defined by structural recursion
[FPT99], i.e., T(ρ)(τ) renames each type variable in a type τ by ρ. The algebra structure
in : Fty(T) → T consists of constructors of system F types

tvar : V→ T base : B → T arrow : T × T→ T forall : δT→ T.

(II) Contexts. In order to model terms, next we need to choose a presheaf category on
some index category using T. We basically follow the style to use (SetF↓U)U � Set(F↓U)×U

for modelling terms as in §2.2. So we need to choose a suitable type universe U. Now
let’s try to choose the disjoint union: U =

∐
n∈N T(n). But this is imprecise, because

in this attempt Set(F↓
∐

n∈N T(n))×
∐

n∈N T(n), the index n in the left sum on the index category
does not synchronize with the index n in the right sum (since each n is locally bound by
each sum). These must be equal because

n | Γ � t : τ is well-formed ⇔ for every τi in Γ, n � τi and n � τ.

Another attempt to use Set
∐

n∈N(F↓T(n)×T(n)) is again insufficient because this does not
model renaming between two terms in different type contexts n and n′.

The right way to combine all of these T(n) for the index category is the Grothendieck
construction. Before going to it, we need to state the following.

Definition 1. (Categories of context-with-types) Let n ∈ N. We use a comma cate-
gory F↓ (T(n)), where T(n) is a set. We also regard T(n) as a discrete category. Then we
take the product: Category F↓ (T(n)) × T(n)

• objects (Γ, τ) where Γ ∈ F↓ (T(n)), τ ∈ T(n)
• arrows π : (Γ, τ) → (Δ, τ) given by a renaming π : Γ→ Δ in F↓ (T(n)).

We use the Grothendieck construction to glue all categories of context-with-types to-
gether. We recall the construction [Gro70].

Definition 2. (Grothendieck) Given a functor F : Cop → Cat, the Grothendieck con-
struction of F is a category

∫
F with objects (I, A) where I ∈ C and A ∈ F (I), and

arrows (u, γ) : (I, A) → (J, B) where u : J → I in Cop and γ : F (u)(A) → B in F (J).

We now define a functor G : Fop → Cat by

G(x) = F↓ (T(x)) × T(x)

G(f) = F↓ (T(f)) × T(f) for f : x → y in F

The Grothendieck construction
∫

G has

• objects (n | Γ � τ), where n ∈ F, Γ ∈ F↓ (T(n)), τ ∈ T(n),
• arrows (ρ, π) : (m | Γ � τ) → (n | Δ � σ),

where ρ : m → n in F such that T(ρ)(τ) = σ, and
π : (F↓Tρ) (Γ) → Δ in F↓ (T(n)).

Polymorphic Abstract Syntax via Grothendieck Construction 387

We now explain why objects and arrows are described as above and their syntactic
meaning. If we follow the above definition strictly, an object of

∫
G should be (n, (Γ, τ)),

where n ∈ F and (Γ, τ) ∈ F↓ (T(n)) × T(n). We merely use another notation (n | Γ � τ)
for this triple.

Meaning of arrows. For arrows, the above description is obtained by expanding the
definition. An arrow (ρ, π) : (m | Γ � τ) → (n | Δ � σ) consists of a renaming ρ : m →
n between type contexts, and a renaming π : (F↓Tρ) (Γ) → Δ between term contexts.

Moreover, an arrow (ρ, π) in
∫

G can be understood as renaming type and term vari-
ables between two judgments having different contexts and result types. To discuss it,
we first define the indexed set T of all well-typed terms by

T(Ξ | Γ � τ) = {t | (Ξ | Γ � t : τ) is derivable}.

Let ρ�t denote renaming each type variable in a term t by ρ, and π�t denotes renaming
each term variable in a term t by π. Then, we have an admissible rule for well-typedness
of renamed term:

m | Γ � t : τ

n | Δ � π�ρ�(t) : T(ρ)(τ)
by applying (ρ, π) in

∫
G

This process defines the arrow part of T being a presheaf in Set
∫

G

T(ρ, π) : T(m | Γ � τ) → T(n | Δ � σ); t �→ π�ρ�(t)

where T(ρ)(τ) = σ. When ρ is the identity idn : n → n, then T(idn, π) : T(n | Γ � τ) →
T(n | Γ′ � τ) is the usual renaming on Γ.

Hence, the Grothendieck construction provides the category of context-with-types
and renamings in a mathematically uniform way.

(III) Terms. Now our working category is Set
∫

G. As we have seen, system F terms
form a presheaf T in Set

∫
G. The presheaf V ∈ Set

∫
G of variables is defined by

V(n | Γ � τ) = (F↓T(n))(〈τ〉, Γ) � {x | x : τ ∈ Γ}
V(ρ, π) = π ◦ −.

We define the signature functor F : Set
∫

G → Set
∫

G for system F terms by

F(A)(n | Γ � τ) = V(n | Γ � τ)
+
∐

τ1,τ2∈T(n)
(τ ≡ τ1⇒τ2) × A(n | Γ, τ1 � τ2)

+
∐
σ∈T(n)

A(n | Γ � σ⇒τ) × A(n | Γ � σ)

+
∐

τ′∈T(n+1)
(τ ≡ ∀(α.τ′)) × A(n + 1 | wk(Γ) � τ′)

+
∐
σ∈T(n)
τ′∈T(n+1)

(τ ≡ τ′[α := σ]) × A(n | Γ � ∀(α.τ′)).

388 M. Hamana

Each summand corresponds to the arity of variable, abstraction, application, type ab-
straction, and type application. The weakening wk : F ↓ T(n) → F ↓ T(n + 1) maps a
context under n to the same context but under a weakened n+1. The use of “≡” operator
is inessential to define the signature functor. It is merely a shortcut way of describing
the definition by case analyse, see §3.3 for the general case.

Theorem 3. T forms an initial F-algebra.

Proof. An initial F-algebra is constructed by the colimit of the ω-chain 0 → F0 →
F20 → · · · [SP82]. These construction steps correspond to derivations of terms by term
forming rules, hence their union T is the colimit. The algebra structure in : FT → T
of the initial algebra is obtained by one-step inference of the term forming rules, i.e.,
given by the following operations

varτ : V(n | Γ � τ) → T(n | Γ � τ) ; x �→ x
absσ,τ : T(n | Γ, σ � τ) → T(n | Γ � σ⇒τ) ; t �→ λx.t
appσ,τ : T(n | Γ � σ⇒τ)

× T(n | Γ � σ)) → T(n | Γ � τ) ; s, t �→ s t
tabsτ′ : T(n + 1 | wk(Γ) � τ′) → T(n | Γ � ∀(α.τ′)) ; t �→ Λα.t
tappσ,τ′ : T(n | Γ � ∀(α.τ′)) → T(n | Γ � τ′[α := σ]) ; t �→ tσ

where n ∈ N, σ, τ ∈ T(n), τ′ ∈ T(n + 1), and α is actually a de Bruijn level n + 1. ��

3.3 General Signature

Not only for system F, we seek a general framework for polymorphic abstract syntax.
Generalising the case of system F, we arrive at the following definition.

Definition 4. A polymorphic signature Σ = (Σty,Σtm) consists of the following data.

• Σty for types is a binding signature [Acz78, FPT99], i.e. a set of type formers with
an arity function a : Σty → N∗ (NB. ’*’ denotes the Kleene closure). A type for-
mer of arity 〈n1, . . . , nl〉, denoted by o : 〈n1, . . . , nl〉, has l arguments and binds ni

variables in the i-th argument (1 ≤ i ≤ l).

• Let T ∈ SetF be the free Σty-algebra overV, represented by term syntax in de Bruijn
levels [FPT99, Ham04].

• Σtm for terms is a set of function symbols with arities. This is denoted by

f : 〈k1〉(�σ1)τ1, . . . , 〈kl〉(�σl)τl → τ

where n ∈ N, ki ∈ N, �σi ∈ T(n + ki)∗, τi ∈ T(n + ki), τ ∈ T(n), has l arguments, and
binds ki type variables and |�σi| variables in the i-th argument (1 ≤ i ≤ l). In case of
ki = 0 or |�σi| = 0, each part is omitted. Here, | − | denotes the length of a sequence.

Example 5. The polymorphic signature ΣF = (Σty
F ,Σ

tm
F) for system F can be given as

follows: Σty
F = {b : 〈0〉,⇒: 〈0, 0〉,∀ : 〈1〉}, and Σtm

F is

absσ,τ : (σ)τ → σ⇒τ appσ,τ : σ⇒τ, σ→ τ
tabsτ′ : 〈1〉τ′ → ∀(α.τ′) tappσ,τ′ : ∀(α.τ′) → τ′[α := σ]

Polymorphic Abstract Syntax via Grothendieck Construction 389

generated by all n ∈ N, σ, τ ∈ T(n), τ′ ∈ T(n + 1), and α should be regarded as a de
Bruijn level n + 1.

Example 6. If we want to add the let-binding construct, Σtm has the function symbol
let : σ, (σ)τ→ τ, where σ, τ ∈ T(n).

To a polymorphic signature Σ, we associate the signature functor Σ : Set
∫

G → Set
∫

G

given by

ΣA(n | Γ � τ) =
∐

f :〈k1〉(�σ1)τ1,...,〈kl〉(�σl)τl→τ∈Σtm

∏
1≤i≤l

A(n + ki | Γ, �σi � τi).

3.4 General Syntax Rules

Using a polymorphic signature Σ, we can construct polymorphic terms syntactically and
generally. The following construction rules are extracted from the semantic structure we
have obtained so far.

Well-formed types
1 ≤ i ≤ n

α1, . . . , αn � αi

Ξ, �α1 � τ1 . . . Ξ, �αl � τl

Ξ � o(�α1.τ1, . . . , �αl.τlτ)

where o : 〈n1, . . . , nl〉 ∈ Σty, |�αi| = ni.
Well-typed terms

x : τ ∈ Γ
Ξ | Γ � x : τ

Ξ, �α1 | Γ, �x1 : �σ1 � t1 : τ1 · · · Ξ, �αl | Γ, �xl : �σl � tl : τl

Ξ | Γ � f (�x1.t1, . . . , �xl.tl) : τ

where f : 〈k1〉(�σ1)τ1, . . . , 〈kl〉(�σl)τl → τ ∈ Σtm, |�αi| = ki.

We define TV(Ξ | Γ � τ) � {t | (Ξ | Γ � t : τ) is derivable}, which we call polymor-
phic abstract syntax.

Theorem 7. Given a polymorphic signature Σ, TV forms a free Σ-algebra over V.

Proof. Similarly to Thm. 3. Notice that a free Σ-algebra over V is an initial V + Σ-
algebra. ��

4 Higher-Order Polymorphic Abstract Syntax

We extend the previous algebraic characterisation to the case of higher-order polymor-
phic abstract syntax with variable binding. The leading example of such a syntax is the
abstract syntax for Girard’s system Fω. Hence we review its definition.

390 M. Hamana

4.1 System Fω

Kinds and types κ ::= ∗ | κ1⇒κ2
τ ::= α | b | τ1⇒τ2 | ∀α : κ.τ | λα : κ.τ | τ1τ2

Well-kinded types

α : κ ∈ Ξ
Ξ � α : κ Ξ � b : κ

Ξ, α : κ′ � τ : κ
Ξ � λα : κ′. τ : κ′⇒κ

Ξ � σ : ∗ Ξ � τ : ∗
Ξ � σ⇒τ : ∗

Ξ, α : κ � τ : ∗
Ξ � ∀α : κ. τ : ∗

Ξ � σ : κ′⇒κ Ξ � τ : κ′

Ξ � στ : κ

Well-typed terms

x : τ ∈ Γ
Ξ | Γ � x : τ

Ξ | Γ, x : σ � t : τ
Ξ | Γ � λx : τ. t : σ⇒τ

Ξ | Γ � t : σ⇒τ Ξ | Γ � s : σ
Ξ | Γ � t s : τ

Notes
Ξ, α : κ | Γ � t : τ

Ξ | Γ � Λα : κ. t : ∀α : κ. τ
Ξ | Γ � t : ∀α : κ. τ Ξ � σ : κ
Ξ | Γ � tσ : τ[α := σ]

• Ξ | Γ � t : τ is well-formed if Ξ � τi : κi for each xi : τi ∈ Γ and Ξ � τ : ∗.
• Ξ = α1 : κ1, . . . , αn : κn is a sequence of (type variable,kind)-pairs.

4.2 Modelling Syntax of Fω

First we concentrate on modelling abstract syntax for system Fω terms. We generalise
it to arbitrary higher-order polymorphic abstract syntax later.

The basic idea we take is again to follow the style using algebras in (SetF↓U)U . In the
case of system F, U was given by untyped abstract syntax with variable binding since
types contain universal quantification. In system Fω, a type has a kind. This means that
U must be given by typed (= used for kinding) abstract syntax with variable binding.

We use again a two-stage approach to model system Fω terms, but the working cate-
gories are different from the previous case. LetK be the set of all kinds (and considered
as a discrete category). Firstly, we construct the universe T of all system Fω types as a
presheaf T ∈ (SetF↓K)K by an initial algebra in the category (SetF↓K)K . Then we move
to another presheaf category Set

∫
H (explained later) defined using T, and construct an

initial algebra for all well-typed Fω terms in it.

(I) Kinded types. Let Bκ ∈ SetF↓K be the constant functor to the set all base types of
kind κ,V ∈ (SetF↓K)K the presheaf of kinded type variables defined byVκ = F↓K (κ,−).
We define the signature functor Fty

ω : (SetF↓K)K → (SetF↓K)K for system Fω types by

Fty
ω (A)κ = Vκ + Bκ + (κ ≡ ∗)× (A∗×A∗ + δκA∗)

+
∐

κ1,κ2∈K
((κ ≡ κ1⇒κ2) × δκ1 Aκ2) +

∐
κ′∈K

(Aκ′⇒κ × Aκ′).

Each summand corresponds to the arity of type variable, base type, (arrow type and
universal type), type-level λ, and type-level application.

Polymorphic Abstract Syntax via Grothendieck Construction 391

An initial Fty
ω -algebra exists as in §2.2. We define T ∈ (SetF↓K)K by an initial Fty

ω -
algebra (T, in) described as the presheaf of all well-kinded types2

Tκ(α1 : κ1, . . . , αn : κn) = {τ | α1 : κ1, . . . , αn : κn � τ : κ},

with algebra structure consisting of constructors

tvarκ : Vκ → Tκ baseκ : Bκ → Tκ tyabsκ1,κ2: δκ1Tκ2→ Tκ1⇒κ2
arrow : T∗ × T∗ → T∗ forallκ : δκT∗ → T∗ tyappκ′,κ: Tκ′⇒κ × Tκ′ → Tκ.

These six arrows of SetF↓K correspond to the six rules of Well-kinded types of Fω.

(II) Contexts. Let Ξ ∈ F↓K . We now take F↓ (TκΞ) to be the category of contexts. As
we have seen, Tκ(Ξ) is the set of all types of kind κ under Ξ = α1 : κ1, . . . , αl : κl. An
object Γ ∈ F↓ (TκΞ) is a map such that

F � n � a variable xi
Γ� τi ∈ Tκ(Ξ) i.e. Ξ � τi : κ.

Hence, Γ expresses a context x1 : τ1, . . . , xn : τn, and all types τi are of kind κ. The set
Tκ(Ξ) is also regarded as a discrete category.

(III) Terms. Again, we use the Grothendieck construction to glue all categories of
context-with-types together. We define a functor H : (F↓K × K)op → Cat by

H(Ξ, κ) = F↓ (TκΞ) × Tκ(Ξ)

H(ρ, idκ) = F↓ (Tκρ) × Tκ(ρ) for ρ : Ξ→ Ξ′ in F↓K .

The Grothendieck construction
∫

H has

• objects (Ξ | Γ � τ : κ), where Ξ ∈ F↓K , κ ∈ K , Γ ∈ F↓ (TκΞ), τ ∈ Tκ(Ξ),
• arrows (ρ, π) : (Θ | Γ � τ : κ) → (Ξ | Δ � σ : κ),

where ρ : Θ→ Ξ in F↓K such that Tκ(ρ)(τ) = σ, and
π : (F↓Tκρ)(Γ) → Δ in F↓ (TκΞ).

Now our working category is Set
∫

H. We define Tω ∈ Set
∫

H of all well-typed terms by

Tω(Ξ | Γ � τ : ∗) = {t | (Ξ | Γ � t : τ) is derivable}
Tω(Ξ | Γ � τ : κ) = ∅ if κ � ∗

The second clause is due to that there are no terms of higher-kinded types in Fω. The
arrow part is defined similarly to the case of system F.

The presheaf V ∈ Set
∫

H of term variables is defined by

V(Ξ | Γ � τ : κ) = (F↓ (TκΞ))(〈τ〉, Γ) � {x | x : τ ∈ Γ}
V(ρ, π) = π ◦ −.

2 Usually, system Fω types are identified modulo type-level β-conversion. Since we only focus
on abstract syntax in this paper, we do not treat this process here. This will be uniformly treated
within general polymorphic equational logic (cf. the discussion in §5).

392 M. Hamana

We define the signature functor Fω : Set
∫

H → Set
∫

H for system Fω terms by

Fω(A)(Ξ | Γ � τ : ∗) = V(Ξ | Γ � τ : ∗)
+

∐
τ1,τ2∈T∗(Ξ)

(τ ≡ τ1⇒τ2) × A(Ξ | Γ, τ1 � τ2 : ∗)

+
∐

σ∈T∗(Ξ)
(A(Ξ | Γ � σ⇒τ : ∗) × A(Ξ | Γ � σ : ∗))

+
∐

τ′∈T∗(Ξ, α:κ)
(τ ≡ ∀(α : κ.τ′)) × A(Ξ, α : κ | wkα:κ(Γ) � τ′ : ∗)

+
∐

σ∈T∗(Ξ)
τ′∈T∗(Ξ, α:κ)

(τ ≡ τ′[α := σ]) × A(Ξ | Γ � ∀(α : κ.τ′) : ∗).

The weakening wkα:κ : F ↓ T(Ξ) → F ↓ T(Ξ, α : κ) maps a term context under a type
context Ξ to the same term context but under a weakened one (Ξ, α : κ).

Theorem 8. Tω forms an initial Fω-algebra.

4.3 General Signature

Generalising the case of system Fω, we arrive at the following definition.

Definition 9. A higher-order polymorphic signature Σ = (K ,Σty,Σtm) consists of the
following data.

• K is the set of all kinds.

• Σty for types is a second-order signature [FH10], i.e. a set of type formers with an
arity function a : Σty → (K∗ × K)∗ × K . A type former with arity, denoted by

o : (�σ1)τ1, . . . , (�σl)τl → τ

has l arguments, and binds |�σi| variables of types �σi in the i-th argument.

• Let T ∈ (SetF↓K)K be the free Σty-algebra over V, represented by term syntax. This
is the presheaf of all types.

• Σtm for terms is a set of function symbols with arities. This is denoted by

f : 〈Θ1〉(�σ1)τ1 : κ1, . . . , 〈Θl〉(�σl)τl : κl → τ : κ

where Ξ,Θi ∈ F↓K , �σi ∈ Tκi (Ξ,Θi)∗, τi ∈ Tκi (Ξ,Θi), τ ∈ Tκ(Ξ), has l arguments,
and binds |Θi| type variables (of kind κi) and |�σi| variables (of types �σi that have the
same kind κi) in the i-th argument (1 ≤ i ≤ l).

Example 10. The higher-order polymorphic signature ΣFω = (K ,Σty
Fω
,Σtm

Fω
) for system

Fω is as follows: K = {∗} ∪ {κ1⇒κ1 | κ1, κ2 ∈ K}, Σty
Fω

is

b : ∗ ⇒: ∗, ∗ → ∗ ∀κ : (κ)∗ → ∗ λκ,κ′ : (κ′)κ→ κ′⇒κ @κ,κ′ : κ′⇒κ, κ′ → κ

generated by all κ, κ′ ∈ K , and Σtm
Fω

is

absσ,τ : (σ)τ : ∗ → σ⇒τ : ∗ appσ,τ : σ⇒τ : ∗, σ : ∗ → τ : ∗
tabsτ′,κ : 〈κ〉τ′ : ∗ → ∀κ(α.τ′) : ∗ tappσ,τ′ : ∀κ(α.τ′) : ∗ → τ′[α := σ] : ∗

generated by all κ ∈ K , Ξ ∈ F↓K , κ′ ∈ K , σ, τ ∈ Tκ′ (Ξ), τ′ ∈ Tκ′(Ξ, α).

Polymorphic Abstract Syntax via Grothendieck Construction 393

Example 11. The higher-order polymorphic signature for system F is given by ΣF =

({∗},Σty
Fω
− {λ∗,∗,@∗,∗}),Σtm

Fω
).

To a higher-order polymorphic signature Σ, we associate the signature functor Σ :
Set
∫

H → Set
∫

H given by

ΣA(Ξ | Γ � τ : κ) =
∐

f :〈Θ1〉(�σ1)τ1:κ1,...→τ:κ∈Σtm

∏
1≤i≤l

A(Ξ,Θi | Γ, �σi � τi : κi).

4.4 General Syntax Rules

If Ξ � τi : κ for all xi : τi ∈ Γ, and Ξ � τ : κ, then a term judgment Ξ | Γ � t : τ : κ is
well-formed.

Well-kinded types

1 ≤ i ≤ n
α1 : κ1, . . . , αn : κn � αi : κi

Ξ, �α1 : �κ′1 � τ1 : κ1 · · · Ξ, �αl : �κ′l � τl : κl
Ξ � o(�α1.τ1, . . . , �αl.τlτ) : κ

where o : (�κ′1)κ1, . . . , (�κ
′
l)κl → κ ∈ Σty.

Well-typed terms x : τ ∈ Γ
Ξ | Γ � x : τ : κ

Ξ,Θ1 | Γ, �x1 : �τ1 � t1 : τ1 : κ1 · · · Ξ,Θl | Γ, �xl : �τl � tl : τl : κl
Ξ | Γ � f (�x1.t1, . . . , �xl.tl) : τ : κ

where f : 〈Θ1〉(�σ1)τ1 : κ1, . . . , 〈Θl〉(�σl)τl : κl → τ : κ ∈ Σtm.

We define TV(Ξ | Γ � τ : κ) � {t | (Ξ | Γ � t : τ : κ) is derivable}, which we call
higher-order polymorphic abstract syntax.

Theorem 12. Given a higher-order polymorphic signature Σ, TV forms a free
Σ-algebra over V.

5 On Substitutions and Future Work

In this paper, we have focused on abstract syntax. In this final section, we briefly con-
sider the equational axioms of system F and Fω, and how we can express them in our
framework. These remarks pertain to future work on seeking a general equational logic
on polymorphic terms.

System F has the axioms:

(β) Ξ | Γ � (λx : σ. t) s = t[x := s] : τ
(type app.) Ξ | Γ � (Λα.t)σ = t[α := σ] : τ[α := σ]

394 M. Hamana

The terms of the left-hand sides of equations are just elements of the presheaf T of
terms. In the right-hand sides and in types, various substitutions are used. We can model
these as follows.

Substitution on types: τ[α := σ]. The category SetF has so-called a substitution
monoidal structure [FPT99] (SetF, •,V), where the monoidal product is given by a co-

end (A • B)(n) =
∫ m∈F

A(m) × B(n)m. The presheaf T of system F types is a monoid in
(SetF, •,V), and its multiplication μT : T • T→ T models the substitution operation on
types.

Substitution on terms: t[x := s]. Since both terms t and s are under the same type
context Ξ, it suffices to consider the substitution monoidal structure in (SetF↓(T(n)))T(n)

for each n = |Ξ| ∈ N. This case is covered by the substitution structure explored in

[MS03, FH10], i.e. (A • B)τ(Γ) =
∫ Δ∈F↓(T(n))

Aτ(Δ) ×
∏

1≤i≤|Δ| BΔ(i)(Γ). The presheaf
T(n | − � −) ∈ (SetF↓(T(n)))T(n) of system F terms in a fixed type context n is a monoid
in it, and its multiplication μT models the substitution operation on terms.

Substitution of a type for a type variable in a term: t[α := σ]. It can be directly
modelled by a map tsubσ,n : T(n + 1 | Γ � τ) → T(n | Γ′ � τ[n + 1 := σ]) defined by
structural recursion on term that replaces each n + 1 in a term with σ ∈ T(n) using
μT, where n + 1 is the de Bruijn level of the type variable α. The context Γ′ is the one
obtained by replacing all n + 1 with σ in Γ.

Substitution on kinded types: τ[α := σ]. System Fω has additionally the axiom

(type β) Ξ | Γ � (λα : κ. τ)σ = τ[α := σ] : κ′

The substitution in the right-hand side of the equation is modelled using the substitution
monoidal structure in (SetF↓K)K again following [MS03, FH10]. The presheaf T of Fω
types is a monoid in ((SetF↓K)K , •,V), and its multiplication μT : T • T→ Tmodels the
substitution operation on kinded types.

On the use of metavariables. When formalising an axiom, e.g. (β), there are actually
two different views:

(1) (β) expresses infinitary many axioms generated by all concrete terms s, t.
(2) (β) should be regarded as a single axiom, where each letter “s” and “t” is the symbol

of a metavariable denoting a concrete term.

Throughout this paper, we have taken the view (1). The view (2) was explored in
[Ham04, Ham05, Fio08, FH10]. The presentation of axioms using metavariables is cer-
tainly more economical than (1), but technically more involved. This paper focuses
on polymorphism in abstract syntax, so, for clarity, we did not go into the issue on
metavariables. This should be explored in a future work.

Acknowledgments. I am grateful to Marcelo Fiore for important comments, especially
related to the presheaf of variables. I also thank to the anonymous referees for useful
comments that have improved the presentation of this paper. This work is supported by
the JSPS Grant-in-Aid for Scientific Research (22700004).

Polymorphic Abstract Syntax via Grothendieck Construction 395

References

[Acz78] Aczel, P.: A general Church-Rosser theorem. Technical report, University of
Manchester (1978)

[AHS96] Altenkirch, T., Hofmann, M., Streicher, T.: Reduction-free normalisation for a
polymorphic system. In: Proc. of LICS 1996, pp. 98–106 (1996)

[dB72] de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae 34, 381–391 (1972)

[FH10] Fiore, M., Hur, C.-K.: Second-order equational logic. In: Dawar, A., Veith, H.
(eds.) CSL 2010. LNCS, vol. 6247, pp. 320–335. Springer, Heidelberg (2010)

[Fio02] Fiore, M.: Semantic analysis of normalisation by evaluation for typed lambda
calculus. In: Proc. of PPDP 2002, pp. 26–37. ACM Press, New York (2002)

[Fio08] Fiore, M.: Second-order and dependently-sorted abstract syntax. In: Proc. of LICS
2008, pp. 57–68 (2008)

[Fio09] Fiore, M.: Algebraic meta-theories and synthesis of equational logics (2009),
Research Programme

[FPT99] Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: Proc. of
LICS 1999, pp. 193–202 (1999)

[Gro70] Grothendieck, A.: Catégories fibrées et descente (exposé VI). In: Grothendieck,
A. (ed.) Revêtement Etales et Groupe Fondamental (SGA1). Lecture Notes in
Mathematics, vol. 224, pp. 145–194. Springer, Heidelberg (1970)

[GTW76] Goguen, J., Thatcher, J., Wagner, E.: An initial algebra approach to the specifica-
tion, correctness and implementation of abstract data types. Technical Report RC
6487, IBM T. J. Watson Research Center (1976)

[GUH06] Ghani, N., Uustalu, T., Hamana, M.: Explicit substitutions and higher-order
syntax. Higher-Order and Symbolic Computation 19(2/3), 263–282 (2006)

[Ham04] Hamana, M.: Free Σ-monoids: A higher-order syntax with metavariables. In: Chin,
W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 348–363. Springer, Heidelberg
(2004)

[Ham05] Hamana, M.: Universal algebra for termination of higher-order rewriting. In:
Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 135–149. Springer, Heidelberg
(2005)

[Ham07] Hamana, M.: Higher-order semantic labelling for inductive datatype systems. In:
Proc. of PPDP 2007, pp. 97–108. ACM Press, New York (2007)

[Ham10] Hamana, M.: Initial algebra semantics for cyclic sharing tree structures. Logical
Methods in Computer Science 6(3) (2010)

[Hof99] Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: Proc. of
LICS 1999, pp. 204–213 (1999)

[Kat04] Katsumata, S.: A generalisation of pre-logical predicates to simply typed formal
systems. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 831–845. Springer, Heidelberg (2004)

[MA09] Morris, P., Altenkirch, T.: Indexed containers. In: LICS 2009, pp. 277–285 (2009)
[Mic08] Miculan, M.: A categorical model of the Fusion calculus. In: Proc. of MFPS

XXIV. ENTCS, vol. 218, pp. 275–293. Elsevier, Amsterdam (2008)
[MS03] Miculan, M., Scagnetto, I.: A framework for typed HOAS and semantics. In: Proc.

of PPDP 2003, pp. 184–194. ACM Press, New York (2003)
[SP82] Smyth, M.B., Plotkin, G.D.: The category-theoretic solution of recursive domain

equations. SIAM J. Comput 11(4), 763–783 (1982)
[TP08] Tanaka, M., Power, J.: Category theoretic semantics for typed binding signatures

with recursion. Fundam. Inform. 84(2), 221–240 (2008)

Asymptotic Information Leakage
under One-Try Attacks�

Michele Boreale1, Francesca Pampaloni2, and Michela Paolini2

1 Università di Firenze, Italy
2
���, Lucca, Italy

Abstract. We study the asymptotic behaviour of (a) information leakage and (b)
adversary’s error probability in information hiding systems modelled as noisy
channels. Specifically, we assume the attacker can make a single guess after
observing n independent executions of the system, throughout which the secret
information is kept fixed. We show that the asymptotic behaviour of quantities (a)
and (b) can be determined in a simple way from the channel matrix. Moreover,
simple and tight bounds on them as functions of n show that the convergence is
exponential. We also discuss feasible methods to evaluate the rate of convergence.
Our results cover both the Bayesian case, where a prior probability distribution
on the secrets is assumed known to the attacker, and the maximum-likelihood
case, where the attacker does not know such distribution. In the Bayesian case,
we identify the distributions that maximize the leakage. We consider both the
min-entropy setting studied by Smith and the additive form recently proposed
by Braun et al., and show the two forms do agree asymptotically. Next, we ex-
tend these results to a more sophisticated eavesdropping scenario, where the at-
tacker can perform a (noisy) observation at each state of the computation and the
systems are modelled as hidden Markov models.

Keywords: security, quantitative information leakage, information theory, Bayes
risk, hidden Markov models.

1 Introduction

In recent years there has been much interest in formal models to reason about quantita-
tive information leakage in computing systems [9,7,3,14,1,21,22]. A general situation
is that of a program, protocol or device carrying out computations that depend proba-
bilistically on a secret piece of information, such as a password, the identity of a user or
a private key. We collectively designate these as information hiding systems, following
a terminology established in [7]. During the computation, some observable informa-
tion related to the secret may be disclosed. This might happen either by design, e.g. if
the output of the system is directly related to the secret (think of a password checker
denying access), or for reasons depending on the implementation. In the latter case, the

� Work partially supported by the �� funded project A�����. Corresponding author: Michele
Boreale, Università di Firenze, Dipartimento di Sistemi e Informatica, Viale Morgagni 65,
I-50134 Firenze, Italy. E-mail: ���������	
��

�
�
�

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 396–410, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

boreale@dsi.unifi.it

Asymptotic Information Leakage under One-Try Attacks 397

observable information may take the form of physical quantities, such as the execu-
tion time or the power consumption of the device (think of timing and power attacks
on smart cards [12,13]). The observable information released by the system can be ex-
ploited by an eavesdropper to reconstruct the secret, or at least to limit the search space.
This is all the more true when the eavesdropper is given the ability of observing several
executions of the system, thus allowing her�him to mount some kind of statistical attack.

A simple but somehow crucial remark due to Chatzikokolakis et al. [7] is that, for
the purpose of quantifying the amount of secret information that is leaked, it is useful
to view an information hiding system as a channel in the sense of Information The-
ory: the inputs represent the secret information, the outputs represent the observable
information and the two sets are related by a conditional probability matrix. This re-
mark suggests a natural formalization of leakage in terms of Shannon entropy based
metrics, like mutual information and capacity. In fact, by a result due to Massey [18],
these quantities are strongly related to the resistance of the system against brute-force
attacks. Specifically, Shannon entropy is related to the average number of questions of
the form "is the secret equal to x?" an attacker has to ask an oracle in order to identify
the secret with certainty. In a recent paper, Smith [21] objects that, even if the number of
such questions is very high, the attacker might still have a significant chance of correct
guess in just one or very few attempts. Smith demonstrates that min-entropy quantities,
based on error probability (a.k.a. Bayes risk), are more adequate to express leakage in
this one-try scenario. Whatever the considered attack scenario, brute-force or one-try,
the analytic computation of leakage is in general diÆcult or impossible. Henceforth, a
major challenge is being able to give simple and tight bounds on leakage in general,
or exact expressions that exploit specific properties of a system (e.g. symmetries in the
channel matrix) in some special cases.

In the present paper, we tackle these issues in a scenario of one-try attacks and system
re-execution. More precisely, we assume the attacker makes his guess after observing
several, say n, independent executions of the system, throughout which the secret in-
formation is kept fixed. In real-world situations, re-execution may happen either forced
by the attacker (think of an adversary querying several times a smart card), or by de-
sign (think of routing paths established repeatedly between a sender and a receiver
in anonymity protocols like Crowds [20]). Since the computation is probabilistic, in
general the larger the number n of observed executions, the more information will be
gained by the attacker. Therefore, it is important to asses the resistance of a system in
this scenario.

Our goal is to describe the asymptotic behaviour of the adversary’s error probability
and of information leakage as n goes to �. We show that the asymptotic values of these
quantities can be determined in a simple way from the channel matrix. Moreover, we
provide simple and tight bounds on error probability and on leakage as functions of
n, showing that the convergence is exponential. We also discuss feasible methods for
evaluating the rate of convergence. Our results cover both the Bayesian case (��� rule),
where a prior probability distribution on the secrets is assumed known to the attacker,
and the maximum-likelihood case (�� rule), where the attacker does not know such
distribution. In the Bayesian case, we identify the distributions that maximize leakage.

398 M. Boreale, F. Pampaloni, and M. Paolini

We consider both the min-entropy leakage studied by Smith [21] and the additive form
recently proposed by Braun et al. [6], and show the two forms do agree asymptotically.

We next consider a more sophisticated scenario, where computations of the system
may take several steps to terminate, or even not terminate at all. In any case, to each
state of the computation there corresponds one (in general, noisy) observation on the
part of the attacker. Hence, to each computation there corresponds a sequential trace of
observations. The attacker may collect multiple such traces, corresponding to multiple
independent executions of the system. Like in the simpler scenario, the secret is kept
fixed throughout these executions. This set up is well suited to describe situations where
the attacker collects information from di�erent sources at di�erent times, like in a coali-
tion of di�erent local eavesdroppers. An instance of this situation in the context of an
anonymous routing application will be examined. We formalize this scenario in terms
of discrete-time Hidden Markov Models [19] and then show that the results established
for the simpler scenario carry over to the new one.

Throughout the paper, we illustrate our results with a few examples: the modular
exponentiation algorithm used in public-key cryptography, the Crowds anonymity pro-
tocol, and onion routing protocols [11] in a network with a fixed topology. Additional
examples are provided in [4].

Related work. The last few years have seen a flourishing of research on quantitative
models of information leakage. In the context of language-based security, Clark et al.
[9] first motivated the use of mutual information to quantify information leakage in a
setting of imperative programs. Boreale [3] extended this study to the setting of pro-
cess calculi, and introduced a notion of rate of leakage. In both cases, the considered
systems do not exhibit probabilistic behaviour. Closely related to ours is the work by
Chatzikokolakis, Palamidessi and their collaborators. [7] examines information leak-
age mainly from the point of view of Shannon entropy and capacity, but also contains
results on asymptotic error probability, showing that, independently from the input dis-
tribution, the �� rule approximates the ��� rule. [8] studies error probability mainly
relative to one observation (n � 1), but also o�ers a lower-bound in the case of repeated
observations [8, Proposition 7.4]. This lower-bound is generalized by our results. Com-
positional methods based on process algebras are discussed in [5]; there, the average ��
error probability is characterized in terms of ��� error probability under a uniform dis-
tribution of inputs. [6] introduces the notion of additive leakage and compares it to the
min-entropy based leakage considered by Smith [21], but again in the case of a single
observation.

A model of "unknown-message" attacks is considered by Backes and Köpf in [1].
This model is basically equivalent to the information hiding systems considered in
[7,8,6] and in the present paper. Backes e Köpf too consider a scenario of repeated
independent observations, but from the point of view of Shannon entropy, rather than
of error probability. They rely on the information-theoretic method of types to deter-
mine the asymptotic behaviour of the considered quantities, as we do in the present
paper. An application of their setting to the modular exponentiation algorithm is the
subject of [15], where the e�ect of bucketing on security of ��� is examined (see
Section 5). This study has recently been extended to the case of one-try attacks by
Köpf and Smith in [16]. Earlier, Köpf and Basin had considered a scenario of adaptive

Asymptotic Information Leakage under One-Try Attacks 399

chosen-message attacks [14]. They o�er an algorithm to compute conditional Shannon
entropy in this setting, but not a study of its asymptotic behaviour, which seems very
diÆcult to characterize.

In the context of side-channel cryptanalysis, Standaert et al. propose a framework to
reason on side-channel correlation attacks [22]. Both a Shannon entropy based metric
and a security metric are considered. This model does not directly compare to ours,
since, as we will discuss in Section 5, correlation attacks are inherently known-message
– that is, they presuppose the explicit or implicit knowledge of the plaintext on the part
of the attacker.

Structure of the paper. The rest of the paper is organized as follows. Section 2 estab-
lishes some notations and terminology. Section 3 introduces the model and the quan-
tities that are the object of our study. Section 4 discusses the main results about error
probability and leakage. Section 5 illustrates these results with a few examples. Section
6 presents the extension to hidden Markov models. Section 7 contains some concluding
remarks. Proofs not reported in this short version for lack of space can be found in the
full version [4].

2 Notations and Preliminary Notions

Let � be a finite nonempty set. A probability distribution on a � is a function p : � �

[0� 1] such that
�

a�� p(a) � 1. For any A � � we let p(A) denote
�

a�A p(a). Given

n � 0, we let pn : �n � [0� 1] be the n-th extension of p, defined as pn((a1� � � � � an))
�
�

�n
i�1 p(ai); this is in turn a probability distribution on �n. For n � 0, we set p0(�) �

1, where � denotes here the empty string. Given two distributions p and q on �, the
Kullback-Leibler (KL) divergence of p and q is defined as (all the log’s are taken with
base 2)

D(p��q)
�
�
�
a��

p(a) � log
p(a)
q(a)

with the proviso that 0 � log 0
q(a) � 0 and that p(a) � log p(a)

0 � �� if p(a) � 0. It can
be shown that D(p��q) � 0, with equality if and only if p � q (Gibbs inequality). KL-
divergence can be thought of as a sort of distance between p and q, although strictly
speaking it is not – it is not symmetric, nor satisfies the triangle inequality.

Pr(�) will generally denote a probability measure. Given a random variable X taking
values in �, we write X � p if X is distributed according to p, that is for each a 	 �,
Pr(X � a) � p(a).

3 Probability of Error, Leakage, Indistinguishability

An information hiding system is a quadruple
 � (���� p(�)� p(���)), composed by a
finite set of states � �
s1� ���� sm� representing the secret information, a finite set of ob-
servables � �
o1� ���� ol�, an a priori probability distribution on �, p, and a conditional
probability matrix, p(���) 	 [0� 1]���, where each row sums up to 1. The entry of row s
and column o of this matrix will be written as p(o�s), and represents the probability of
observing o given that s is the (secret) input of the system. For each s, the s-th row of

400 M. Boreale, F. Pampaloni, and M. Paolini

the matrix is identified with the probability distribution o �� p(o�s) on �, denoted by
ps. The probability distribution p on � and the conditional probability matrix p(o�s) to-

gether induce a probability distribution r on��� defined as r(s� o)
�
� p(s)�p(o�s), hence

a pair of random variables (S �O) � r, with S taking values in � and O taking values in
�. Note that S � p and, for each s and o s.t. p(s) � 0, Pr(O � o�S � s) � p(o�s).

Let us now discuss the attack scenario. Given any n � 0, we assume the adversary is a
passive eavesdropper that gets to know the observations corresponding to n independent
executions of the system, on � (o1� ���� on) 	 �n, throughout which the secret state s
is kept fixed. Formally, the adversary knows a random vector of observations On �

(O1� ����On) such that, for each i � 1� ���� n, Oi is distributed like O and the individual
Oi are conditionally independent given S , that is, the following equality holds true for
each on 	 �n and s 	 � s.t. p(s) � 0

Pr
�
On � (o1� � � � � on) � S � s

�
� �n

i�1 p(oi�s) �

We will often abbreviate the right-hand side of the above equation as p(on�s). For any
n, the attacker strategy is modeled by a function g : �n � �, called guessing function:
this represents the single guess the attacker is allowed to make about the secret state s,
after observing on.

Definition 1 (error probability). Let g : �n � � be a guessing function. The probabil-

ity of error after n observations (relative to g) is given by P(g)
e (n)

�
� 1�Psucc(n)� where

P(g)
succ(n)

�
� Pr(g(On) � S).

It is well-known (see e.g. [10]) that the optimal strategy for the adversary, that is the one
that minimizes the error probability, is the Maximum A Posteriori (���) rule, defined
below.

Definition 2 (Maximum A Posteriori rule, ���). A function g : �n � � satisfies the
Maximum A Posteriori (���) criterion if for each on and s , g(on) � s implies p(on�s)
p(s) � p(on�s�)p(s�) for each s�.

In the above definition, for n � 0 one has on � �, and it is convenient to stipulate
that p(��s) � 1: that is, with no observations at all, g selects some s maximizing the
prior distribution. With this choice, P(g)

e (0) denotes 1�maxs p(s). It worthwhile to note
that, once n and p(s) are fixed, the ��� guessing function is not in general unique. It is
readily checked, though, that Pe(n) does not depend on the specific ��� function g that
is chosen. Hence, throughout the paper we assume w.l.o.g. a fixed guessing function
g for each given n and probability distribution p(s). We shall omit the superscript (g),
except where this might cause confusion.

Another widely used criterion is Maximum Likelihood (��), which given on selects
a state s maximizing the likelihood p(on�s) among all the states. �� coincides with ���

if the uniform distribution on the states is assumed. �� is practically important because
it requires no knowledge of the prior distribution, which is often unknown in security
applications. Our main results will also apply to the �� rule (see Remark 2 in the next
section).

We now come to information leakage: this is a measure of the information leaked
by the system, obtained by comparing the prior and the posterior (to the observations)

Asymptotic Information Leakage under One-Try Attacks 401

success probabilities. Indeed, two flavours of this concept naturally arise, depending on
how the comparison between the two probabilities is expressed. If one uses subtraction,
one gets the additive form of [6], while if one uses the ratio between them, one gets a
multiplicative form. In the latter case, one could equivalently consider the di�erence of
the log’s, obtaining the min-entropy based definition considered by Smith [21].

Definition 3 (Additive and Multiplicative Leakage [6,21]). The additive and multi-
plicative leakage after n observations are defined respectively as L�(n)

�
� Psucc(n) �

maxs p(s) and L�(n)
�
�

Psucc(n)
maxs p(s) .

In an information hiding system, it may happen that two secret states induce the same
distribution on the observables. A common example is that of a degenerate channel
matrix modelling a deterministic function � � � with ��� � ���. An important role
in determining the fundamental security parameters of the system will be played by an
indistinguishability equivalence relation over states, which is defined in the following.
Recall that, for each s 	 �, we let ps denote the probability distribution p(��s) on �.

Definition 4 (Indistinguishability). Given s� s� 	 �, we let s � s� i� ps � ps� .

Concretely, two states are indistinguishable i� the corresponding rows in the condi-
tional probability matrix are the same. This intuitively says that there is no way for the
adversary to tell them apart, no matter how many observations he performs. We stress
that this definition does not depend on the prior distribution on states, nor on the number
n of observations.

4 Bounds and Asymptotic Behaviour

Let �� � be
C1� ����CK�, the set of equivalence classes of �. For each i � 1� ���� K, let

s�i
�
� argmaxs�Ci

p(s) and p�i
�
� p(s�i) � (1)

We assume wlog that p�i � 0 for each i � 1� ���� K (otherwise all the states in class Ci

can be just discarded from the system).

Main results. We shall prove the following bounds and asymptotic behaviour for Pe(n).

Theorem 1. Pe(n) converges exponentially fast to 1 �
�K

i�1 p�i . More precisely, there is
� � 0 s.t.

1 �
�K

i�1 p�i � Pe(n) � 1 � (
�K

i�1 p�i) � r(n)

where r(n) � 1 � (n � 1)	�	 � 2
n� . Here, the lower-bound holds true for any n, while the

upper-bound holds true for any n � n0
�
� �
1 �maxi� j log(

p�

i

p�

j
). Moreover, � only depends

on the rows ps�i
(i � 1� ���� K) of the conditional probability matrix p(���).

Note that in the practically important case of the uniform distribution on states, we have
n0 � 0, that is the upper-bound as well holds true for any n. The theorem has a simple
interpretation in terms of the attacker’s strategy: after infinitely many observations, he
can determine the indistinguishability class of the secret, say Ci, and then guess the most

402 M. Boreale, F. Pampaloni, and M. Paolini

likely state in that class, s�i . In order to discuss this result, we recall some terminology
and a couple of preliminary results from the information-theoretic method of types [10,
Ch.11]. Given n � 0, a sequence on 	 �n and a symbol o 	 �, let us denote by n(o� on)
the number of occurrences of o inside on. The type (or empirical distribution) of on is

the probability distribution ton on � defined as: ton (o)
�
�

n(o�on)
n . Let q any probability

distribution on�. A neighborhood of q is a subset of n-sequences of�n whose empirical
distribution is close to q. Formally, for each n � 1 and � � 0

U (n)
q (�)

�
�
on 	 �n �D(ton ��q) � �� �

The essence of the method of types is that (i) there is only a polynomial number of
types in n, and that (ii) the probability under q of the set of n-sequences of a given type
decreases exponentially with n, at a rate determined by the KL-divergence between q
and that type. These considerations are made precise and exploited in the proof of the
following lemma, which can be found in [10, Ch.11]. The lemma basically says that
the probability that a sequence falls in a neighborhood of q of radius � approaches 1
exponentially fast with n.

Lemma 1. Let q be a probability distribution on�. Then qn(U (n)
q (�)) � 1�(n�1)	�	�2
n�.

For any s 	 �, we let A(n)
s

�
� g
1(s) � �n be the acceptance region for state s. We note

that it is not restrictive to assume that g maps each on in one of the K representative
elements s�1� ���� s�K that maximize the prior: indeed, if this were not the case, it would be
immediate to build out of g a new ��� function that fulfills this requirement. Thus, from
now on we will assume w.l.o.g. that A(n)

s � � for s � s�1� ���� s�K . For the sake of notation,
from now on we will denote U (n)

ps�i
as U (n)

i and A(n)
s�i

as A(n)
i , for i � 1� ���� K. The sets U (n)

i

and A(n)
i are related by the following lemma.

Lemma 2. There is � � 0, not depending on the prior probability on states, such that
for each n � n0 as defined in Theorem 1 and for each i � 1� ���� K, it holds that U (n)

i (�) �
A(n)

i .

We now come to the proof of the main theorem above.

Proof. (of Theorem 1). We focus equivalently on the probability of success, Psucc(n).
Under the assumptions on g explained above, we compute as follows

Psucc(n) �
�

s�� Pr(g(On) � S �S � s)p(s) �
�

s�� pn
s(A(n)

s)p(s)

�
�K

i�1 pn
s�i

(A(n)
i)

����������
�1

p�i �
�K

i�1 p�i

which implies the lower-bound in the statement. Choose now � as given by Lemma 2.
Let n � n0. Note that for n � 0 the upper-bound holds trivially, as Pe(0) � 1�maxs p(s),
so assume n � 1. For each i � 1� ���� K we have

pn
s�i

(A(n)
i) � pn

s�i
(U (n)

i (�)) � 1 � (n � 1)	�	 � 2
n�

where the first inequality comes from Lemma 2 and second one from Lemma 1. In the
end, from Psucc(n) �

�K
i�1 pn

s�i
(A(n)

i)p�i , we obtain that for n � n0

Psucc(n) � (
K�

i�1

p�i) � (1 � (n � 1)	�	 � 2
n�)

which implies the upper-bound in the statement.

Asymptotic Information Leakage under One-Try Attacks 403

Remark 1. In the expression for r(n), the term (n�1)	�	 is a rather crude upper bound on
the number of types of n-sequences. It is possible to replace this term with the expres-
sion

	
n�	�	
1
	�	
1

, which is less easy to manipulate analytically, but gives the exact number

of types, hence a more accurate upper bound on Pe(n).

The following results show that, asymptotically, the security of the systems is tightly
connected to the number of its indistinguishability classes – and in the case of uniform
prior distribution only depends on this number.

Corollary 1. If the a priori distribution on � is uniform, then Pe(n) converges expo-
nentially fast to 1 � K

	�	
.

Remark 2 (on the �� rule). [5] shows that the probability of error under the �� rule,
averaged on all distributions, coincides with the probability of error under the ��� rule
and the uniform distribution. From Corollary 1 we therefore deduce that the average ��

error converges exponentially fast to the value 1 � K
	�	

as n � �.

We discuss now some consequences of the above results on information leakage. Recall
that for i � 1� ���� K, we call s�i a representative of the indistinguishability class Ci that
maximizes the prior distribution p(s) in the class Ci, and let p�i � p(s�i). Assume w.l.o.g.
that p�1 � maxs p(s). In what follows, we denote by pmax the distribution on � defined
by: pmax(s) � 1

K if s 	
s�1� ���� s�K� and pmax(s) � 0 otherwise.

Corollary 2. 1. L�(n) converges exponentially fast to
�K

i�2 p�i . This value is maxi-
mized by the prior distribution pmax, which yields the limit value 1 � 1

K .

2. L�(n) converges exponentially fast to
�K

i�1 p�

i

p�

1
. This value is maximized by the prior

distribution pmax, which yields the limit value K.

Remark 3. A consequence of Corollary 2(2) is that, in the case of uniform distribution
on states, the multiplicative leakage coincides with the number of equivalence classes
K. This generalizes a result of [21] for deterministic systems.

In [6] additive and multiplicative leakages are compared in the case of a single obser-
vation (n � 1). It turns out that, when comparing two systems, the two forms of leakage
are in agreement, in the sense that they individuate the same maximum-leaking system
w.r.t. a fixed prior distribution on inputs. However, [6] also shows that the two forms
disagree as to the distribution on inputs that maximizes leakage w.r.t. a fixed system.
This is shown to be the uniform distribution in the case of multiplicative leakage, and
a function that uniformly distributes the probability on the set of "corner points" in the
case of additive leakage (see [6] for details). Here, we have shown that, despite this
di�erence, additive and multiplicative leakage do agree on the maximizing distribution
asymptotically.

Rate of convergence. The quantity � in the statement of Theorem 1 determines how
fast the error probability approaches its limit value. Let us call achievable any � � 0 for
which the upper bound in Theorem 1 holds true for any n � n0. The following result
gives suÆcient and practical conditions for achievability. Let us stress that the achiev-
able rates given by this proposition do not depend on the prior distribution, but only on

404 M. Boreale, F. Pampaloni, and M. Paolini

the relation �, and specifically on the minimum norm 1 distance between equivalence
classes: the larger this distance, the higher the achievable rates. This result is essentially
a re-elaboration on [10, Lemma 11.6.1].

Proposition 1. Let Æ
�
� minsi�s j ��psi � ps j ��1. Then any rate � satisfying 0 � � � Æ2

16 ln 2 is
achievable. Moreover, if p�1 � p�2 � � � � � p�K, the second inequality can be weakened to

� � Æ2

8 ln 2 .

The above result prompts the following question. Suppose one somehow ignores the
rows of p(���) that are close together with each other, and only consider rows that are far
from each other: is it then possible to achieve a higher rate of convergence �? The an-
swer is expected to be yes, although ignoring some rows might lead to a possibly higher
asymptotic error probability. In other word, it should be possible to trade o� accuracy
in guessing with rate of convergence. This is the content of the next proposition.

Proposition 2. Let � � �0 �
s�1� ���� s�K�. Then there is � � 0 only depending on the

rows ps, s 	 �0, of p(���), such that for each n � n0
�
� �
1 maxs�i �s

�

j��0 log(
p�

i

p�

j
), it holds

true that
Pe(n) � 1 � (

�
s�j��0

p�j) � r(n) with r(n) � 1 � (n � 1)	�	 � 2
n�
�

These concepts are demonstrated in the following example.

An example. Let � �
s1� s2� s3� s4� and � �
o1� o2� o3�. The prior probability distri-
bution on � is defined by: p(s1) � p(s3) � 1

2 � 10
9 and p(s2) � p(s4) � 10
9. The
conditional probability matrix is defined in the table on the right.

o1 o2 o3

s1
1
2 0 1

2

s2
1
2 0 1

2

s3 0 1
2

1
2

s4 0 1
2 � 10�5 1

2 � 10�5

Note that s1 � s2. Applying Theorem 1, we find that, for
n suÆciently large, 1 � E � Pe(n) � 1 � E � r(n), where
E � 1�10
9 and r(n) � 1�(n�1)3�2
n� . Applying Proposition
1, we find that any rate � � 3�6067�10
11 is achievable. Thus
the convergence to the value 1 � E � 10
9 is very slow. One
wonders if there is some value 1 � E� that is only slightly
higher than 1 � E, but that can be reached much faster. This
is indeed the case. Observe that the rows s3 and s4 are very
close with each other in norm-1 distance: ��ps3 � ps4 ��1 � 2 � 10
5. We can discard
s4, which has a very small probability, and apply Proposition 2 with �0 �
s1� s3� to
get Pe(n) � 1 � E� � r�(n), where E� � 1

2 � 10
9 � 1
2 � 10
9 � 1 � 2 � 10
9 and

r�(n) � 1 � (n � 1)3 � 2
n�� . The rate �� can be computed by applying the second part of
Proposition 1, as p(s1) � p(s3). By doing so, we get that any �� � 0�18034 is achievable.
This implies that the value 1 � E� is approached much faster as n grows. For instance,
already after n � 350 observations we get that (1 � E�)�Pe(n) � 0�99.

5 Examples

Timing leaks and blinding in modular exponentiation. In the ’90’s, P. Kocher showed
that ��� and other public-key crypto-systems are subject to side-channel attacks exploit-
ing information leaked by implementations of the modular exponentiation algorithm,

Asymptotic Information Leakage under One-Try Attacks 405

such as execution time [12] and�or power consumption [13]. Many of these attacks are
based on the assumption that the attacker can observe repeated independent execution
of the system, throughout which the exponent – the secret key – is kept fixed. Here, we
concentrate on timing attacks. Blinding [12] was early proposed as a countermeasure
to thwart such attacks. The essence of blinding is that exponentiation is performed on
a random message unknown to the attacker, rather than on the original message (to be
decrypted or digitally signed) known to the attacker. This appears to be suÆcient to
thwart Kocher’s attack, which is of chosen-ciphertext type.

Köpf and Dürmuth [15] have recently quantified the degree of protection provided
by blinding when it is enhanced by bucketing, a technique by which the algorithm’s
execution times are adjusted so as to always fall in one of few predefined values. Köpf
and Smith have extended this result to the case of one-try attacks and min-entropy [16].
Below, we refine Köpf and Smith’s analysis, under a reasonable assumption on the func-
tioning of the algorithm that will be described shortly. We consider an implementation
of the modular exponentiation algorithm with blinding, but no bucketing. To such an im-
plementation, there corresponds an information hiding system where: � � � �
0� 1�N

is the set of private keys, i.e. the possible exponents of the algorithm, over which we
assume a uniform distribution1; � �
t1� t2� ���� is the set of possible execution times;
p(t�k) is the probability that, depending on the deciphered message, the execution of the
algorithm takes times t given that the private key is k. To be more specific about the
last point, we assume an underlying set of messages�, with a known prior distribution
pM(m), and a function time : ��� � � that yields the duration of the execution of the
algorithm when its argument is a given pair (m� k). Then the entries of the probability
matrix p(t�k) can be defined thus

p(t�k)
�
�
�

m��:time(m�k)�t pM(m) �

Now, modular exponentiation functions in such a way that at the i-th iteration (0 �

i � N), either a squaring or both a squaring and a multiply are performed, depending on
whether the i-th bit of the exponent is 0 or 1. Given this functioning, it seems reasonable
to assume that, for each m, the execution time only depends on the number of ’1’ digits
in k. In other words, we assume that whenever k and k� have the same Hamming weight,
time(m� k) � time(m� k�), for any m. From this assumption and the definition of p(t�k), it
follows that whenever k and k� have the same Hamming weight then p(��k) � p(��k�). So,
in the system there are at most as many �-classes as Hamming weights, that is N � 1.
The results in Section 4 then allow us to conclude that for any n

Pe(n) � 1 � N�1
2N �

For any practical size of the key, say N � 1024, this value is � 1. Accordingly, additive
and multiplicative leakage satisfy, asymptotically,

L� � N
2N and L� � N � 1 �

For any practical size of the key, say N � 1024, these upper bounds yield negligible
values: L� � 0 and L� � 1025. In the latter case, taking the log we obtain that no more
than log(1025) � 10�001 bits of min-entropy are leaked, out of 1024. In conclusion,

1 In the case of 	�
, a negligible fraction of the exponents is ruled out by virtue of number
theoretic requirements, so the resulting distribution is not exactly uniform on �. This fact does
not substantially a�ect the significance of our analysis.

406 M. Boreale, F. Pampaloni, and M. Paolini

under the further assumption on the behaviour of modular exponentiation we made
above, blinding alone appears to provide satisfactory guarantees of security against
one-try attacks.

Protocol re-execution in Crowds. The Crowds protocol [20] is designed for protecting
the identity of the senders of messages in a network where some of the nodes may be
corrupted, that is, under the control of an attacker. Omitting a few details, the function-
ing of the protocol can be described quite simply: the sender first forwards the message
to a node of the network chosen at random; at any time, any node holding the message
can decide whether to (a) forward in turn the message to another node chosen at ran-
dom, or (b) submit it to the final destination. The choice between (a) and (b) is made
randomly, with alternative (a) being assigned probability p f (forwarding probability)
and alternative (b) probability 1 � p f . The rationale here is that, even if a corrupted
node C receives the message from a node N (in the Crowds terminology, C detects
N), C, hence the attacker, cannot decide whether N is the original sender or just a for-
warder. In fact, given that N is detected, the probability of N being the true sender is
only slightly higher than that of any other node being the true sender. So the attacker is
left with a good deal of uncertainty as to the sender’s identity. Reiter and Rubin have
showed that, depending on p f , on the fraction of corrupted nodes in the network and on
a few other conditions, Crowds o�ers very good guarantees of anonymity (see [20]).

Chatzikokolakis et al. have recently analyzed Crowds from the point of view of in-
formation hiding systems and one-try attacks [7,8]. In their modelling, � �
s1� ���� sm�

is the set of possible senders (honest nodes), while � �
d1� ���� dm� is the set of observ-
ables. Here each di has the meaning that node si has been detected by some corrupted
node. The conditional probability matrix is given by

p(d j�si)
�
� Pr

�
s jis detected � siis the true sender and some honest node has been detected

�

(see [20] for details of the actual computation of these quantities). An example of such
a system with m � 20 users, borrowed from [8], is given in the table below.

d1 d2 � � � d20

s1 0.468 0.028 � � � 0.028

s2 0.028 0.468 � � � 0.028
�
�
�

�
�
�

s20 0.028 0.028 � � � 0.468

The interesting case for us is that of re-execution, in
which the protocol is executed several times, either forced
by the attacker himself (e.g. by having corrupted nodes
suppress messages) or by some external factor, and the
sender is kept fixed through the various executions. This
implies the attacker collects a sequence of observations
on � (o1� ���� on) 	 �n, for some n. The repeated executions
are assumed to be independent, hence we are precisely in
the setting considered in this paper. This case is also considered in [8], which gives
lower bounds for the error probability holding for any n. Our results in Section 4 gener-
alize those in [8] by providing both lower- and upper- bounds converging exponentially
fast to the asymptotic error probability. As an example, for the system in the table above,
we have Pe(n) � 0, independently of the prior distribution on the senders. An achiev-
able convergence rate, estimated with the method of Proposition 1, is � � 0�13965. This
implies that already after observing n � 1000 re-executions the probability of error is,
using the refined bound given in Remark 1, � 0�01.

Asymptotic Information Leakage under One-Try Attacks 407

It is worth to stress that protocol re-execution is normally prevented in Crowds for
the very reason that it decreases anonymity, although it may be necessary in some cases.
See the discussion on static vs. dynamic paths in [20].

6 Sequential Observations and Hidden Markov Models

We consider in this section an attack scenario where to each state of the computation
there corresponds one observation on the part of the attacker. Hence, to each computa-
tion of the system there corresponds a sequential trace of observations. Discrete-time
Hidden Markov Models [19] provide a convenient setting to formally model such sys-
tems, which we may designate as sequential information hiding system.

Definitions. Let � and � be finite sets of states and observations, respectively. A
(discrete-time, homogeneous) Hidden Markov Model (���) with states in � and ob-
servations in � is a a pair of random processes

�
(S i)i
1 � (Oi)i
1

�
, such that, for each

t � 1

– S t and Ot are random variables taking values in � and �, respectively; and,
– the following equalities hold true (whenever the involved conditional probabilities

are defined):
Pr(S t�1 � st�1�S t � st�Ot � ot� ����S 1 � s1�O1 � o1) � Pr(S t�1 � st�1�S t � st)(2)

Pr(Ot � ot �S t � st� S t�1 � st�1�Ot�1 � ot�1� ����S 1 � s1�O1 � o1) � Pr(Ot � ot �S t � st) (3)

Moreover, the value of the above probabilities does not depend on the index t, but
only on st� st�1 and ot.

Equation (2) says that the state at time t � 1 only depends on the state at time t, that
is (S i)i
1 forms a Markov chain. Equation (3) says that the observation at time t only
depends on the state at time t. A consequence of this equation is that the state at time
t � 1 is independent from the observation at time t, given the state at time t, that is

Pr(Ot � ot� S t�1 � st�1�S t � st) � Pr(Ot � ot�S t � st) � Pr(S t�1 � st�1�S t � st) � (4)

Assume now � �
s1� ���� sm� and � �
o1� ���� ol�. A finite-state ��� on � and � is
completely specified by, hence can be identified with, a triple (�� F�G) such that:

– � 	 �
1�m is a row-vector representing the prior distribution on �, that is �(i) �

p(S 1 � si) for each 1 � i � m;
– F 	 �m�m is a matrix such that F(i� j) is the probability of transition from si to s j,

for 1 � i� j � m;
– G 	 �m�l is a matrix such that G(i� j) is the probability of observing o j at state si,

for 1 � i � m and 1 � j � l.

In our scenario, a Bayesian attacker targets the first state of the computation, that is
the value of S 1. We are interested in analyzing the attacker’s probability of error after
observing n traces of length t, corresponding to n conditionally independent executions
of the system up to and including time t, as both n and t go to ��. This we define
in the following. Let 	 range over the set of observation traces, that is ��. For any
	 � o1 � � �ot (t � 0) and s 	 S , define

p(� s)
�
� Pr(O1 � o1�O2 � o2� ����Ot � ot � S 1 � s)

408 M. Boreale, F. Pampaloni, and M. Paolini

with the proviso that p(� � s)
�
� 1 . We note that for any fixed t � 0 and s 	 �, p(�s)

defines a probability distribution as 	 ranges over �t, the set of traces of length t, or
t-traces. In other words, for any fixed t, we have an information hiding system in the
sense of Section 3, with � as a set of states, �t as a set of observables, a conditional
probability matrix p(�s) (s 	 �� 	 	 �t) and � as a prior distribution on states. Call

 (t) this system. We have the following error probabilities of interest (t � 0):

P(t)
e (n)

�

� probability of error after n observations (of t-traces) in � (t) (5)

P(t)
e

�

� lim
n��

P(t)
e (n) (6)

Pe
�

� lim
t��

P(t)
e � (7)

We will show in the next paragraph that the above two limits exist and are easy to
compute. Correspondingly, we have the information leakage quantities of interest (here
Psucc � 1 � Pe): L(t)

�
(n)

�
� P(t)

succ(n) �maxs �(s) L(t)
�

�
� P(t)

succ �maxs �(s) L�
�
� Psucc �

maxs �(s). Multiplicative leakages are defined similarly.

Results. That the limit (6) exists is an immediate consequence of Theorem 1 applied
to
 (t). Indeed, let us denote by �(t) the indistinguishability relation on states for
 (t),
that is, explicitly s �(t) s� i� for each 	 	 �t : p(�s) � p(�s�) �. Let C(t)

1 � ����C(t)
Kt

be

the equivalence classes of �(t) and let p�(t)
i

�
� maxs�C(t)

i
�(s). Then we have by Theorem

1 that P(t)
e � 1 �

�Kt

i�1 p�(t)
i . Note that, for any fixed t, Corollary 2 carries over to
 (t).

We now consider the case t � �. We introduce the following fundamental relation.

Definition 5 (Indistinguishability for ���). The indistinguishability relation on a

��� is defined as �
�
�

t
0 �(t). Equivalently, s � s� i� for every 	 	 ��,

p(�s) � p(�s�).

It is immediate to check that � is an equivalence relation. Let C1� ����CK be its equiva-

lence classes and let p�i
�
� maxs�Ci �(s), for i � 1� ���� K.

Proposition 3. The limit (7) is given by Pe � 1 �
�K

i�1 p�i .

The actual computation of Pe, and of the corresponding information leakage quantities,
is therefore reduced to the computation of �. Below, we show that this computation
can indeed be performed quite eÆciently. We do so by using some elementary linear
algebra. Let us introduce some additional notation. We define the transition matrices

Mok 	 �
m�m, for any ok 	 �, as follows: Mok (i� j)

�
� Pr(S t�1 � s j�Ot � ok �S t � si) �

F(i� j) �G(i� k), where the last equality is justified by equation (4). For any 	 � o1 � � � ot,
we let M� denote Mo1 � � � � � Mot . Finally, we let ei 	 �

1�m denote the row vector

with 1 in the i-th position and 0 elsewhere and let e
�
�
�m

i�1 ei denote the everywhere 1
vector. We say a row vector v is orthogonal to a set of column vectors U, written v�U,
if vu � 0 for each u 	 U.

Theorem 2. Let B be a basis of the (finite-dimensional) sub-space of �m�1 spanned by�
����
M�eT �. For si� s j 	 �, si � s j i� (ei � e j) � B.

Asymptotic Information Leakage under One-Try Attacks 409

A basis B of span
� �

�
M�eT �
�

can be expressed as B �
M�eT �	 	 � � for a suit-
able finite, prefix-closed � � ��. More precisely, B can be computed by a procedure
that starts with the set B :�
eT � and iteratively updates B by joining in the vectors
Mo��eT � Mo � (M�eT), with M�eT 	 B and o 	 �, that are linearly independent from
the vectors already present in B, until no other vector can be joined in. This procedure
must terminate in a number of steps � m. The set of strings � can be computed along-
side with B. In the full version of the paper we also discuss a method to compute the
rate of convergence to Pe.

s

r

c2

c1 c3

� � � � c1 c2 � � � � c3 � �

An example: hiding routing information. We outline a sim-
ple anonymity protocol in the vein of onion routing [11].
The protocol aims at protecting the identity of the sender
and of the receiver of a transaction in a network where
some of the nodes are compromised by local eavesdrop-
pers. The routing paths are established randomly. The local
eavesdroppers have limited observation capabilities and,
perhaps because of encryption, can only tell whether, at
any discrete time step, the compromised node is holding a
message in the target transaction, or not. Assume the topol-
ogy of the network is specified by a nonempty graph � � (V� E). For each node v 	 V ,
we let N(v) denote the set of neighbours of v, that is the set of nodes u for which an arc

v� u� in E exists; N(v) is always assumed nonempty. Let C � V represent a subset of

corrupted nodes. We let �
�
� V � V be the set of states of the system and �

�
� C �
��

be the set of observables. State (s� r) 	 � means the message is hold by s and that r
is the final receiver. Observation c 	 C means that the message is presently hold by
the node c, while � means no observation other than the elapse of a discrete time unit.
What the attacker can observe are therefore traces 	 like in the picture above. The exact
definition of the transition and observation matrices F and G of the ���, as well as the
outcome of several experiments conducted with this simple model, are reported in the
full version of the paper [4].

7 Conclusion and Further Work

We have characterized the asymptotic behaviour of error probability, and information
leakage in terms of indistinguishability in a scenario of one-try attacks after repeated
independent, noisy observations. We have first examined the case in which each execu-
tion gives rise to a single observation, then extended our results to the case where each
state traversed during an execution induces one observation.

In the future, we would like to systematically characterize achievable rates of con-
vergence given an error probability threshold, thus generalizing Proposition 1. It would
also be natural to generalize the present one-try scenario to the case of k-tries attack, for
k � 2. Experiments and simulations with realistic anonymity protocols may be useful
to asses at a practical level the theoretical results of our study. For example, we believe
that ���’s are relevant to security in peer-to-peer overlays. We would also like to clarify
the relationship of our model with the notion of probabilistic opacity [2], and with the
huge amount of work existing on covert channels (see e.g. [17] and references therein).

410 M. Boreale, F. Pampaloni, and M. Paolini

References
1. Backes, M., Köpf, B.: Formally Bounding the Side-Channel Leakage in Unknown-Message

Attacks. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 517–532.
Springer, Heidelberg (2008)

2. Bérard, B., Mullins, J., Sassolas, M.: Quantifying Opacity. In: Proc. of QEST 2010, pp. 263–
272. IEEE Society, Los Alamitos (2010)

3. Boreale, M.: Quantifying information leakage in process calculi. Information and Computa-
tion 207(6), 699–725 (2009)

4. Boreale, M., Pampaloni, F., Paolini, M.: Asymptotic information leakage under one-try attacks,
Full version of the present paper ������������	
��

�
�
������������	��������

5. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Compositional Methods for Information-
Hiding. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 443–457. Springer,
Heidelberg (2008)

6. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative Notions of Leakage for One-try
Attacks. In: Proc. of MFPS 2009. Electr. Notes Theor. Comput. Sci, vol. 249, pp. 75–91 (2009)

7. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy
channels. Information and Computation 206(2-4), 378–401 (2008)

8. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the Bayes risk in information-
hiding protocols. Journal of Computer Security 16(5), 531–571 (2008)

9. Clark, D., Hunt, S., Malacaria, P.: Quantitative Analysis of the Leakage of Confidential Data.
Electr. Notes Theor. Comput. Sci. 59(3) (2001)

10. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2�e. John Wiley & Sons,
Chichester (2006)

11. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Anonymous Connections and Onion Routing.
IEEE Journal on Selected Areas in Communication, Special Issue on Copyright and Privacy
Protection (1998)

12. Kocher, P.C.: Timing Attacks on Implementations of DiÆe-Hellman, RSA, DSS, and Other
Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer,
Heidelberg (1996)

13. Kocher, P.C., Ja�e, J., Jun, B.: Di�erential Power Analysis. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

14. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel attacks. In:
ACM Conference on Computer and Communications Security 2007, pp. 286–296 (2007)

15. Köpf, B., Dürmuth, M.: A Provably Secure and EÆcient Countermeasure against Timing
Attacks. In: CSF 2009, pp. 324–335 (2009)

16. Köpf, B., Smith, G.: Vulnerability Bounds and Leakage Resilience of Blinded Cryptography
under Timing Attacks. In: CSF 2010, pp. 44–56 (2010)

17. Mantel, H., Sudbrock, H.: Information-Theoretic Modeling and Analysis of Interrupt-
Related Covert Channels. In: Degano, P., Guttman, J., Martinelli, F. (eds.) FAST 2008.
LNCS, vol. 5491, pp. 67–81. Springer, Heidelberg (2009)

18. Massey, J.L.: Guessing and Entropy. In: Proc. 1994 IEEE Symposium on Information Theory
(ISIT 1994), vol. 204 (1994)

19. Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in speech
recognition. Proc. of the IEEE 77(2), 257–286 (1989)

20. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for Web Transactions. ACM Trans. Inf. Syst.
Secur. 1(1), 66–92 (1998)

21. Smith, G.: On the Foundations of Quantitative Information Flow. In: de Alfaro, L. (ed.)
FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

22. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of
Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

http://rap.dsi.unifi.it/~boreale/Asympt.pdf

A Trace-Based View on Operating Guidelines

Christian Stahl1 and Walter Vogler2

1 Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands

c.stahl@tue.nl
2 Institut für Informatik, Universität Augsburg, Germany

vogler@informatik.uni-augsburg.de

Abstract. Operating guidelines have been introduced to characterize
all controllers for a given service S. A controller of S is a service that
interacts with S without deadlocking. An operating guideline of S can be
used to decide whether S refines another service. It is a special-purpose
structure to describe the behavior of service S from the perspective of
its controllers rather than from the perspective of S.

This paper provides a more conceptual understanding of operating
guidelines from the perspective of a traditional concurrency semantics:
a trace-based semantics. As benefits, we get an easier characterization of
service refinement, and prove that this is a fully abstract precongruence.

1 Introduction

Service-oriented computing (SOC) [14] is a computing paradigm that has found
growing acceptance in industry. A service-oriented system is a distributed system
that is aggregated from building blocks, called services. A service encapsulates a
certain functionality and offers it to other services over a well-defined interface.
The distributed nature of service-oriented systems requires services to interact
with each other via asynchronous message passing.

Service orientation supports the shift from monolithic systems to systems in
which multiple organizations are involved, and it allows faster changes than in
monolithic systems. The latter requires a notion of service replaceability. Replac-
ing one service with another one has to preserve correctness of the overall system
(compositionality). Because organizations usually do not know the services in-
volved in the system, replacement must be independent of a service context; that
is, for every context a service correctly interacts with, the replacement must cor-
rectly interact with as well. We refer to such a context as a controller.

A minimal requirement for the correctness of a system is the absence of dead-
locks — that is, of unsuccessful termination. The replacement (or refinement)
relation in the context of deadlock freedom has been formalized by the accor-
dance preorder in [15]. The current decision procedure uses that, for finite-state
services with bounded buffers, the set of controllers has a finite representation,
the operating guideline [8] of the service; technically, it is an automaton anno-
tated with Boolean formulae. Deciding accordance of two services is reduced to

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 411–425, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

412 C. Stahl and W. Vogler

checking that one of the corresponding operating guidelines simulates the other
and that the corresponding formulae of related states imply each other.

This characterization of accordance differs from existing refinement relations,
because the special-purpose operating guideline describes the service behavior
from the perspective of a controller and has an unusual nature. This makes oper-
ating guidelines more difficult to understand. In addition, it raises the question
how the semantics of an operating guideline and hence the accordance preorder
are related to existing refinement notions in literature. Another open question
is whether accordance is a precongruence w.r.t. composition.

This paper answers these questions. First, we show that the behavior of a
service can be characterized by four trace sets — somewhat similar to standard or
completed traces, and to catastrophic traces in the spirit of divergence traces [2].
This semantics naturally gives rise to a refinement relation, which we prove
to coincide with (a slight modification of) accordance. Like in [8,15], we use
Petri nets to model finite state services; however, as a further improvement, we
consider a more general notion of finite state service than in [8,15,9].

Second, our modified accordance relation is more uniform than the original
accordance relation. In particular, the semantics of a composition can be deter-
mined from the semantics of the components, which proves that this relation
is a precongruence w.r.t. composition. The latter can also be phrased as a full
abstractness result. We further sketch how accordance can be decided in practice.

Third, we show explicitly how (automaton representations of) the new seman-
tics can be translated back and forth into operating guidelines. This allows us
to take a different view on operating guidelines.

Section 2 gives some background, Sect. 3 introduces an accordance relation
for infinite state services and characterizes its semantics using traces. In Sect. 4,
we present our results concerning accordance for finite state services. Section 5
compares operating guidelines and our trace-based semantics. We close with a
discussion of related work and a conclusion.

2 Preliminaries

As a basic model, we use place/transition Petri nets extended with final markings
and transition labels. For sets A and B, A1B denotes the disjoint union; writing
A 1B expresses the implicit assumption that A and B are disjoint.

Definition 1 (net). A net N = (P, T, F,mN , Ω) consists of a finite set P of
places, a finite set T of transitions such that P and T are disjoint, a flow relation
F ⊆ (P × T) ∪ (T × P), an initial marking mN , where a marking is a mapping
m : P → IN, and a set Ω of final markings.

A labeled net is a net N together with an alphabet Σ of actions and a labeling
function l : T → Σ 1 {τ}, where τ represents an invisible, internal action.

Introducing N implicitly introduces its components P, T, F,mN , Ω; the same
applies to N ′, N1, etc. and their components P ′, T ′, . . ., and P1, T1, . . ., resp. —
and it also applies to other structures later on. We use the standard graphical

A Trace-Based View on Operating Guidelines 413

representation, writing transition labels �= τ into the respective boxes. The preset
of x ∈ P ∪T is •x = {y | (y, x) ∈ F} and the postset is x• = {y | (x, y) ∈ F}. We
interpret pre- and postsets as multisets when used in operations with multisets.

For a word w ∈ Σ∗
1 and Σ2 ⊆ Σ1, w|Σ2 denotes the projection of w to the

subalphabet Σ2. With v (w we denote that v is a prefix of word w, and cont(L)
= {w ∈ Σ∗ | ∃v ∈ L : v (w} is the set of all continuations of language L ⊆ Σ∗.

A marking is a multiset over P ; for example, [p1, 2p2] denotes a marking m
with m(p1) = 1,m(p2) = 2, andm(p) = 0 for p ∈ P \{p1, p2}. We define + and −
for the sum and the difference of two markings and =, <,>,≤,≥ for comparison
of markings in the standard way. A marking is changed by firing a transition.
A transition t is enabled at a marking m, denoted by m t−→ , if m ≥ •t. Then, t
can fire, reaching a marking m′ (denoted by m t−→ m′), where m′ = m− •t+ t•.

The behavior of N can be extended to sequences: m1
t1−−→ m2

t2−−→ . . .mk is
a run of N if mi

ti−→ mi+1, for all 0 < i < k. A marking m′ is reachable from

a marking m if there exists a (possibly empty) run m1
t1−−→ . . .

tk−1−−−→ mk with
m = m1 and m′ = mk; for w = t1 . . . tk1 we also write m1

w−→ mk. Marking
m′ is reachable if mN = m. In the case of labeled nets, we lift runs to traces: If
m1

w−→ mk and v is obtained from w by replacing each transition by its label
and removing all τ labels, we write m1

v=⇒ mk and call v a trace whenever
m1 = mN . A marking m is stable if it does not enable a τ -labeled transition.
The reachability graph RG(N) of N has the reachable markings as its nodes and
a t-labeled edge from m to m′ whenever m t−→ m′. In the case of a labeled net,
each edge label t is replaced by l(t).

Finally, we introduce two properties of nets. A net N is b-bounded for b ∈ IN
if m(p) ≤ b for every reachable marking m and p ∈ P ; N is bounded if it is
b-bounded for some b ∈ IN. A reachable marking m /∈ Ω of N is a deadlock if no
transition t ∈ T of N is enabled at m.

2.1 Open Nets

Like in [8,15], we model services as open nets [16,8], thereby restricting ourselves
(like in [8,15]) to the communication protocol of a service. An open net extends a
net by an interface. An interface consists of two disjoint sets of input and output
places corresponding to asynchronous input and output channels. In the initial
marking and the final markings, interface places are not marked. An input place
has an empty preset, whereas an output place has an empty postset.

Definition 2 (open net). An open net N is a tuple (P, T, F,mN , I, O,Ω) with

– (P 1 I 1O, T, F,mN , Ω) is a net;
– for all p ∈ I 1O: mN (p) = 0 and for all m ∈ Ω: m(p) = 0;
– the set I of input places satisfies •p = ∅ for all p ∈ I; and
– the set O of output places satisfies p• = ∅ for all p ∈ O.

Two open nets are interface equivalent if they have the same sets of input and
output places. If I = O = ∅, then N is a closed net. The net that results from
removing the interface places and their adjacent arcs from N is inner(N).

414 C. Stahl and W. Vogler

p0

p1

t2t1

ab

(a) N1

p2

a

p3

t3

(b) N2

p0

p1

t2
t1

b

p2

a

p3

t3

(c) N1 ⊕ N2

p0

p1

t2t1
ab

bi ao
ab

(d) env(N1)

p2

p3

t3a
ai

a

(e) env(N2)

p0

p1

t2
t1bi

p2

p3

t3b b
aiaao

(f) env(N1) ⇑ env(N2)

Fig. 1. Two open nets, their environments, and their composition

Graphically, we represent an open net like a net with a dashed frame around
it. The interface places are depicted on the frame.

For the composition of open nets, we assume that the sets of transitions are
pairwise disjoint and that no internal place of an open net is a place of any other
open net. The interfaces intentionally overlap. We require that all communication
is bilateral and directed ; that is, every shared place p has only one open net that
sends into p and one open net that receives from p. We refer to open nets that
fulfill these properties as composable. We compose two composable open nets N1
and N2 by merging those interface places they have in common and turn these
places into internal places.

Definition 3 (open net composition). Open nets N1 and N2 are compos-
able if (P1 1 T1 1 I1 1 O1) ∩ (P2 1 T2 1 I2 1 O2) = (I1 ∩ O2) 1 (I2 ∩ O1).
The composition of two composable open nets N1 and N2 is the open net
N1 ⊕N2 = (P, T, F,mN , I, O,Ω), where

– P = P1 1 P2 1 (I1 ∩O2) 1 (I2 ∩O1); T = T1 1 T2; F = F1 1 F2;
– mN = mN1 +mN2 , extending mNi with mNi(p) = 0 ∀ p ∈ P3−i, i = 1, 2;
– I = (I1 1 I2) \ (O1 1O2); O = (O1 1O2) \ (I1 1 I2); and
– Ω = {m1 +m2 | m1 ∈ Ω1 ∧m2 ∈ Ω2}.

Example 1. Figure 1 shows two composable open nets N1 and N2 and their
composition N1 ⊕N2. The composition is still an open net.

2.2 Environments

To give an open net N a trace-based semantics, we consider its environment
env(N) similarly as in [16]. The net env(N) can be constructed from N by
adding to each interface place p ∈ I (p ∈ O) a p-labeled transition p in env(N)
and renaming place p by pi (po). This way, the asynchronous interface of N
is translated into a buffered synchronous interface described by the transition
labels of env(N).

A Trace-Based View on Operating Guidelines 415

Definition 4 (open net environment). The environment of an open net N
is the labeled net env(N) = (P 1P I 1PO, T 1 I 1O,F ′,mN , Ω, I 1O, l′), where

– P I = {pi | p ∈ I}; PO = {po | p ∈ O};
– F ′ = ((P ∪ T) × (T ∪ P)) ∩ F

∪ {(pi, t) | p ∈ I, t ∈ T, (p, t) ∈ F} ∪ {(t, po) | p ∈ O, t ∈ T, (t, p) ∈ F}
∪ {(po, p) | p ∈ O} ∪ {(p, pi) | p ∈ I}; and

– l′(t) =

{
τ, t ∈ T
t, t ∈ I ∪O.

The language of N is defined by L(N) = {w ∈ (I 1O)∗ | menv(N)
w==⇒}.

To compose environments of composable open nets, we define a parallel compo-
sition ⇑, where, for each action a that the components have in common, each
a-labeled transition of one component is synchronized with each a-labeled tran-
sition of the other; afterward a is hidden. Because a itself is the only a-labeled
transition, the definition can be simplified compared to a more general setting,
for instance in [16].

Definition 5 (parallel composition). Let env(N1) = (P1, T1, F1,mN1 , Ω1,
Σ1, l1) and env(N2) = (P2, T2, F2,mN2 , Ω2, Σ2, l2) be the environments of com-
posable open nets N1 and N2. The parallel composition of env(N1) and env(N2)
is defined by the labeled net env(N1) ⇑ env(N2) = (P, T, F,mN , Ω,Σ, l), where

– P = P1 1 P2; T = T1 ∪ T2;
– F = F1 1 F2; mN = mN1 +mN2 ;
– Ω = {m1 +m2 | m1 ∈ Ω1 ∧m2 ∈ Ω2}; Σ = (Σ1 ∪Σ2) \ (Σ1 ∩Σ2); and

– l(t) =

⎧⎪⎨⎪⎩
l1(t), t ∈ (T1 \ T2)
l2(t), t ∈ (T2 \ T1)
τ, otherwise.

Example 2. Figure 1 depicts environment env(N1) and env(N2) of open nets N1
and N2 and their parallel composition env(N1) ⇑ env(N2). L(N1) = b∗ + b∗ab∗

and L(N2) = a∗.

To describe the behavior of compositions, we define parallel compositions of
words and languages; operator ‖ synchronizes common actions, operator ⇑ also
hides them. Observe that, in env(N1) ⇑ env(N2), just common transitions are
merged; operator ‖ is needed to relate the respective transition sequences.

Definition 6. Given alphabets Σ1, Σ2, Σ = (Σ1 ∪ Σ2) \ (Σ1 ∩ Σ2), words
w1 ∈ Σ∗

1 and w2 ∈ Σ∗
2 , and languages L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗
2 , we define

– w1‖w2 = {w ∈ (Σ1 ∪Σ2)∗ | w|Σ1 = w1 ∧ w|Σ2 = w2};
– w1 ⇑ w2 = {w|Σ | w ∈ w1‖w2};
– L1‖L2 =

⋃
{w1‖w2 | w1 ∈ L1 ∧ w2 ∈ L2}; and

– L1 ⇑ L2 =
⋃
{w1 ⇑ w2 | w1 ∈ L1 ∧ w2 ∈ L2}.

416 C. Stahl and W. Vogler

3 Trace Semantics for Deadlock Freedom

This section considers the intuitive idea that the communication of a user with a
service is successful if it only stops in case of successful termination; that is, the
composition is in a final state. Such a user can also be seen as a controller of the
service. When refining an open net Spec, understood as a service specification,
to an implementing open net Impl , we require that every satisfied user of Spec
should also be satisfied with Impl . Our aim is to characterize this refinement
relation without considering users or controllers explicitly, and to show that the
relation is a precongruence for ⊕; that is, it supports compositional reasoning.

Definition 7 (controller, accordance). An open net C is a controller of an
open net N if the composition N ⊕ C is a closed net without deadlocks.

Let Spec and Impl be interface equivalent open nets. Open net Impl accords
with open net Spec, denoted by Impl (acc Spec, if every controller C of Spec is
also a controller of Impl .

Accordance has been defined in [15] for finite state services; that is, the com-
position of N and a controller must be a bounded net. The unbounded case is
interesting in its own right, and it is simpler in theory and prepares the approach
for the bounded case.

3.1 Stop-Dead Semantics

Our new semantics of an open net N considers two sets of traces for its envi-
ronment env(N). A stop-trace records a run of env(N) that ends in a marking
m enabling transitions of I only; it is a dead-trace if in addition m is not a final
marking.

Definition 8 (stop-dead (sd) semantics). Let N be an open net. Marking
m of env(N) is a stop except for inputs if ∀t : m t−→ implies t ∈ I. Define

– stop(N) = {w | menv(N)
w==⇒ m and m is a stop except for inputs} and

– dead(N) = {w | menv(N)
w==⇒ m /∈ Ω and m is a stop except for inputs}.

With this semantics, we can characterize when a closed net has a deadlock.

Proposition 9. A closed net N has a deadlock iff dead(N) = {ε}.
We study now how the sd-semantics of two open nets can be combined to
obtain the sd-semantics of their composition. For the rest of this section, we
fix two composable open nets N1 = (P1, T1, F1,mN1 , I1, O1, Ω1) and N2 =
(P2, T2, F2,mN2 , I2, O2, Ω2), and we define E = env(N1) ⇑ env(N2). Note that
env(N1⊕N2) and E have the same places except for the p ∈ (I1∩O2)∪(I2 ∩O1)
in env(N1 ⊕N2) and the corresponding pi, po in E.

Theorem 10 (sd-semantics for open net composition). For composable
open nets N1 and N2, we have

1. L(N1 ⊕N2) = L(N1) ⇑ L(N2);
2. stop(N1 ⊕N2) = stop(N1) ⇑ stop(N2); and
3. dead(N1 ⊕N2) = (dead (N1) ⇑ stop(N2)) ∪ (stop(N1) ⇑ dead(N2)).

A Trace-Based View on Operating Guidelines 417

3.2 Coincidence with Accordance

We define a refinement relation between open nets based on their sd-semantics.
From Theorem 10, it is preserved under ⊕; that is, it is a precongruence.

Definition 11 (sd-refinement). For any two interface equivalent open nets
Spec and Impl , Impl sd-refines Spec, denoted by Impl (sd Spec, iff dead(Impl) ⊆
dead(Spec) ∧ stop(Impl) ⊆ stop(Spec).

Theorem 12 (precongruence). Relation (sd is a precongruence for ⊕.

Next, we prove that the notion of accordance coincides with sd-refinement, and
get a precongruence result as an easy corollary.

Theorem 13 (accordance and sd-refinement coincide). For interface
equivalent open nets Spec and Impl, we have Impl (acc Spec ⇔ Impl (sd Spec.

Corollary 14. Accordance is a precongruence for composition operator ⊕.

4 Trace Semantics for Deadlock Freedom and
Boundedness

In this section, we restrict ourselves to finite state services — more precisely,
a composition with a controller must be b-bounded for some b ∈ IN \ {0}. The
motivation for this restriction is that we model the control flow of service com-
positions and assume a (finite) capacity of the message channels. To ensure
boundedness in the composition, controllers must not send a message if there
are already b messages in the respective message channel, but they must also
avoid bound violations on interior places. Technically, parameter b enforces that
the composition has a finite number of reachable states. Pragmatically, it could
either represent a reasonable buffer size in the middleware — for example, the
result of a static analysis of the communication behavior of a service — or be
chosen sufficiently large.

Definition 15 (b-controllability). Let b ∈ IN \ {0}. An open net C b-controls
an open net N if the composition N⊕C is closed, deadlock-free, and b-bounded.

Different from [8], we also prescribe bound b for the interior of services and
controllers. Instead, only boundedness with possibly varying bounds is required
in [8]. That this requirement is weaker is of little relevance1, but it can create
problems, because interface places turn into interior places of a composition.
More importantly, boundedness is required in [8] for the inner of services and
controllers on their own — that is, with unlimited input tokens in particular. We
are more general, because we allow services (and users) that have an unbounded

1 In principle, one can determine the state space of such a bounded open net and
transform it into an automaton (such automata are studied in [8], for example) and,
thus, into an open net which has even a 1-bounded inner.

418 C. Stahl and W. Vogler

inner; we only require that they are b-bounded in suitable contexts. Thus, we
are more optimistic in the sense of [3], because we assume that the controller
will steer the service away from bound violations.

We lift accordance for open nets to b-accordance by comparing b-controllers
only. In [15], 1-accordance has been defined for controllers as defined in [8].

Definition 16 (b-accordance). For interface equivalent open nets Spec and
Impl , Impl b-accords with Spec, denoted by Impl (b

acc Spec, if ∀C : C b-controls
Spec implies C b-controls Impl .

In the remainder of this section, we extend the sd-semantics of open nets taking
into account the bound. With the new semantics, we define a refinement relation
between open nets and prove that it coincides with b-accordance.

4.1 Bounded Stop-Dead Semantics

The idea is to specify a set bdb(N) containing all traces of env(N) that lead to
a marking violating bound b. We refer to such a trace v as a bound-violator. As
we want to forbid such a trace, a continuation w of v is automatically forbidden
as well; thus, it is irrelevant whether w is a bound-violator or can be performed
at all. Technically, this abstraction from continuations is achieved by including
all continuations of bound-violators in bdb(N). For the same reason, bdb(N)
is contained in all other components of our semantics. This is similar to the
treatment of divergence traces in failures semantics [2] and also of U(N) in [16,
Def. 3.3.2] — for a setting with synchronous communication in both cases.

Definition 17 (bounded stop-dead (bsd-) semantics). Let b ∈ IN \ {0}.
For an open net N = (P, T, F,mN , I, O,Ω) with environment env(N), we call a
trace v a boundb-violator of N if menv(N)

v=⇒ m ∧ ∃p ∈ P ∪ I ∪O : m(p) > b.

– bdb(N) = {w ∈ (I ∪O)∗ | ∃v (w : v is a boundb-violator},
– Lb(N) = L(N) ∪ bdb(N),
– stopb(N) = stop(N) ∪ bdb(N), and
– dead b(N) = dead(N) ∪ bdb(N).

Just as stop(N1) is needed to determine dead(N1 ⊕N2), Lb(N1) will be needed
to determine bdb(N1 ⊕N2).

We characterize the bsd-semantics of the composition of two open nets based
on their bsd-semantics, enforcing continuation closure of bdb(N1⊕N2) explicitly.

Theorem 18 (bsd-semantics for open net composition). For composable
open nets N1 and N2 we have

1. bdb(N1 ⊕N2) = cont((bdb(N1) ⇑ Lb(N2)) ∪ (Lb(N1) ⇑ bdb(N2)))
2. Lb(N1 ⊕N2) = (Lb(N1) ⇑ Lb(N2)) ∪ bdb(N1 ⊕N2)
3. stopb(N1 ⊕N2) = (stopb(N1) ⇑ stopb(N2)) ∪ bdb(N1 ⊕N2)
4. dead b(N1 ⊕N2)

= (stopb(N1) ⇑ dead b(N2))∪(dead b(N1) ⇑ stopb(N2))∪bdb(N1 ⊕N2)

A Trace-Based View on Operating Guidelines 419

4.2 Coincidence with b-Accordance and Nonredundancy

Analogously to sd-refinement, we define bsd-refinement and conclude from The-
orem 18(1) to (4) that it is preserved under the composition operator ⊕.

Definition 19 (bsd-refinement). For interface equivalent open nets Spec and
Impl and a bound b ∈ IN \ {0}, Impl bsdb-refines Spec, denoted by Impl (bsd,b

Spec, if Lb(Impl) ⊆ Lb(Spec) ∧ dead b(Impl) ⊆ dead b(Spec) ∧ stopb(Impl) ⊆
stopb(Spec) ∧ bdb(Impl) ⊆ bdb(Spec).

Theorem 20 (precongruence). For each b ∈ IN \ {0}, bsdb-refinement is a
precongruence for composition operator ⊕.

Each refinement relation b-accordance (see Definition 16) coincides with bsdb-
refinement, which implies a novel precongruence result as a corollary. The main
point for the latter result is that we have a more uniform approach compared
to [8], where in Definition 15 the interface places of N and C play a special
role in N ⊕ C although they are ordinary places of this closed net. In fact,
b-accordance, as introduced in [15], is no precongruence for our composition
operator ⊕. Corollary 22 could also be proved directly by a standard argument,
as presented in a very general setting in [13].

Theorem 21 ((acc,b and (bsd,b coincide). For interface equivalent open nets
Spec and Impl and a bound b ∈ IN \ {0} holds Impl (acc,b Spec ⇔ Impl (bsd,b

Spec.

Corollary 22. For each b ∈ IN \ {0}, b-accordance is a precongruence for ⊕.

As the bsd-semantics consists of four overlapping components, the question arises
whether each of them is really needed. In particular, one might suspect that the
set Lb can be obtained from the other three sets by taking prefixes. To answer
this question, one can construct examples showing that none of the components
can be deduced from the others.

4.3 Full Abstractness

We can present the results of Sect. 4.2 also as a full abstractness result [11];
that is, b-accordance is the coarsest precongruence for open nets w.r.t. a suitable
basic relation (b and composition operator ⊕. It is somewhat unusual that this
basic relation is only defined for closed nets: Impl (b Spec says that Impl must
represent a ‘good’ communication if Spec does.

Definition 23 (basic relation). For closed open nets Spec and Impl and a
bound b ∈ IN \ {0}, define the basic relation Impl (b Spec iff whenever Spec
cannot deadlock and does not violate bound b so does Impl .

Relation (c
b is the coarsest precongruence for ⊕ such that for all closed Impl

and Spec: Impl (c
b Spec implies Impl (b Spec.

Theorem 24 ((acc,b is fully abstract). For interface equivalent open nets
Spec and Impl and a bound b ∈ IN \ {0} holds Impl (acc,b Spec ⇔ Impl (c

b Spec.

420 C. Stahl and W. Vogler

4.4 Deciding bsd-Refinement

To decide bsd-refinement between two open nets, four language inclusions must
be checked. We discuss a decision procedure for bsd-refinement, also to prepare
the comparison to the standard approach for deciding b-accordance (see [15]),
which is based on operating guidelines [8].

For deciding the four language inclusions, we build one automaton with four
types of final states. To do this, we construct the reachability graph of the labeled
net env(N) under consideration, but stop the construction whenever we reach
a marking m that violates the bound b. As any bounded net has only finitely
many reachable markings, this guarantees finiteness of our construction. Each
such marking m gets a loop for each visible label from I ∪ O. The initial state
of the automaton is the initial marking menv(N).

This way, the automaton has bdb(N) as language if we designate each m that
violates b as final state. If we additionally take those markings m as final states
that are stops except for inputs and not in the set Ω of final markings, then the
language is dead b(N). If we add all markings m as final states that are stops
except for inputs, then the language is stopb(N). Finally, letting all states be
final, the language is Lb(N).

If we label the final states added in the four stages with 0, 1, 2, 3, then, for
each state, we need two additional bits for encoding the four languages. We use

– 0 to describe the language bdb(N);
– 0 and 1 to describe the language dead b(N);
– 0, 1, and 2 to describe the language stopb(N); and
– 0, 1, 2, and 3 to describe the language Lb(N).

For checking language inclusion, one makes at least the automaton for the larger
language deterministic (by constructing the powerset automaton) and constructs
the (unique minimal) simulation [12] between the two automata. Practically, this
powerset construction often leads to smaller automata. In our case, it suffices
to apply this construction once — although we have four languages. A similar
construction is used when building a lexer, for instance. Here, we refer to a
version of the powerset construction that also removes τ -transitions — that is,
ε-transitions according to automata theory.

Each set of states, as state of the powerset automaton, is a node and is labeled
with the minimum label of its states. As a further simplification, one can identify
all nodes with label 0 into one node U . This identification is integrated into the
powerset construction. We refer to the resulting automaton as BSDb(N).

To decide bsd-refinement of two open nets Spec and Impl , we calculate the
minimal simulation � of BSDb(Impl) by BSDb(Spec) and check the labels of
related states as stated next; one could also consider the minimal simulation of
the modified reachability graph of Impl , as described previously, by BSDb(Spec).

Theorem 25 (deciding bsd-refinement). For interface equivalent open nets
Spec and Impl and a bound b ∈ IN \ {0}, we have Impl (bsd,b Spec iff the
minimal simulation of BSDb(Impl) by BSDb(Spec) exists and relates a node of
BSDb(Impl) with label i only to nodes of BSDb(Spec) with label j ≤ i.

A Trace-Based View on Operating Guidelines 421

5 Comparing bsd-Semantics and Operating Guidelines

We compare the bsd-semantics of Definition 17 with the notion of an operat-
ing guideline [8] for open nets N . An operating guideline OGb(N) of a service
N describes how a user should successfully communicate with N ; technically, it
characterizes the possibly infinite set of b-controllers of N in a finite manner. Be-
cause a b-controller of N provides suitable inputs for N and accepts its outputs,
OGb(N) is similar to BSDb(N) but with inputs and outputs interchanged.

The operating guidelines of two open nets Spec and Impl can be used to decide
that Impl b-accords with Spec [15]. Thus, OGb(N) and BSDb(N) should have
the same semantic content. As their details are rather different, we clarify their
relation by showing how to translate OGb(N) and BSDb(N) into each other.
These translations do not make use of the states contained in the nodes, but
the correctness proof for the translations does; for example, the node labels are
defined on the basis of theses states.

Operating guidelines have been defined only for services N with b-bounded
interface for which inner(N) is bounded. As these two bounds are not necessarily
the same, we restrict the translation to services N where inner(N) is b-bounded.

5.1 Deriving an Operating Guideline from the bsd-Semantics

Both OGb(N) and BSDb(N) are finite automata that can be distinguished by
their graph structure and annotations.

Graph structure. There are two differences in the graph structure of OGb(N)
and BSDb(N). First, a b-controller may be able to accept inputs that N will
never send. As a consequence, OGb(N) contains an additional node, the empty
node (which does not contain any state). For each output x ∈ O of N and
each node without an outgoing x-labeled edge in BSDb(N), there is a respective
edge leading to the empty node, and this node has loops for all possible visible
actions from I ∪O. Because BSDb(N) represents the behavior of N rather than
the behavior of its b-controllers, the empty node does not exist in BSDb(N). To
ease the presentation, we ignore the empty node in the following.

Second, node U , which identifies all nodes with label 0 in BSDb(N), is not
present in OGb(N). Because OGb(N) characterizes all b-controllers, possible
bound violations will not happen and, hence, do not need to be stored. It is easy
to omit U from BSDb(N), as it is identified by label 0. Vice versa, it is also
possible to add U to OGb(N) by adding, for each input a ∈ I of N to each node
of OGb(N) without an outgoing a-labeled edge, such an edge leading to U . In
addition, node U has like the empty node loops for all visible actions. Note that
the empty node and node U are characterized in their respective automaton by
having a loop for a respective output action, leading to behavior that certainly
violates any bound b.

Annotations. Instead of the remaining node labels 1, 2, 3 in BSDb(N), each
node Q of OGb(N) is annotated with a Boolean formula φ(Q). The propositional

422 C. Stahl and W. Vogler

atoms of φ are I ∪ O ∪ {final}. A b-controller cannot know which state q of a
node Q net env(N) might be in, but it has to avoid a deadlock and a bound
violation in any case; the formula φ(Q) describes how to do this. Nonstable states
have an internal transition and, thus, are not deadlocks; all internal transitions
remain in the same node. As a consequence, φ(Q) is a conjunction indexed by all
stable states q ∈ Q. Every conjunct is a disjunction of the following propositional
atoms: final if q is a final state, a ∈ I if Q a−→ , and x ∈ ON if q x−→ . Hence, the
formulae are in conjunctive normal form (CNF) without negation.

To construct φ(Q) from BSDb(N) (up to equivalence), we need a procedure
to which we refer to as 1,2-DFS. This procedure is something like a depth-first
search through the automaton starting from node Q. It considers only x-labeled
edges with x ∈ ON and backtracks if (and only if) there is no further such edge or
when encountering a 1,2-node (i. e., a node labeled 1 or 2); that is, visited states
are not marked as visited in this procedure. When a 1,2-node is encountered,
the path in the stack is called a maximal path constructed during 1,2-DFS. One
can see that 1,2-DFS never encounters node U , because edges leading to U are
input edges of N . Also note that 1,2-DFS cannot run into a cycle; if Q x−→ Q′,
then Q′ consists of all q′ such that ∃q ∈ Q : q x−→ q′; in each case, the markings
q and q′ coincide except that q′(xo) = q(xo) − 1.

As the formula φ(Q) depends on the stable states q ∈ Q, we first deduce
whether node Q contains any stable state.

Lemma 26. A node Q of BSDb(N) contains a stable state iff 1,2-DFS starting
from Q encounters a 1,2-node.

So far, we considered nodes Q that contain a stable state. If node Q does not
contain a stable state, then φ(Q) is the empty conjunction which is equal to
true. In this case, node Q has label 3.

Lemma 27. Q does not contain a stable state iff φ(Q) is the empty conjunction
iff φ(Q) is true. If these three statements hold, then Q has label 3.

For nodes without a stable state, we know by Lemmata 26 and 27 how to trans-
late label and formula into each other, and we can assume for the following
that φ(Q) has a conjunct. Q can have label 1, 2, or 3; the next two lemmata
characterize the nodes with label 1 and 2, respectively.

By definition of formula φ(Q), all conjuncts have those inputs a ofN as literals
such that there is an a-labeled edge leaving Q. We factor out the disjunction of
these inputs from φ(Q), and it remains to construct the remaining disjunct which
is a CNF C. If this remaining CNF C has a conjunct false, then C is equivalent
to false and we can reconstruct φ(Q) from the edges leaving Q. In this case, Q
is labeled 1.

Lemma 28. The remaining CNF C of some node Q has a conjunct false iff Q
is labeled 1.

We are left with considering nodes that are not labeled 1 and whose remaining
CNF C is not equivalent to false. For such nodes, we determine whether there
is some conjunct containing a literal final .

A Trace-Based View on Operating Guidelines 423

Lemma 29. Assuming that node Q is not labeled 1, the remaining CNF C of
Q has a conjunct containing final iff Q is labeled 2. Then the respective conjunct
equals the literal final .

Finally, we determine the remaining conjuncts for which it suffices to find at least
the minimal ones regarding each conjunct as the set of its literals. These are sets
of edge labels of the maximal paths being constructed during the 1,2-DFS.

Lemma 30. Let C be the remaining CNF of a node Q. The sets of edge labels
of the maximal paths being constructed during 1,2-DFS are conjuncts of C. Each
conjunct of C that is not false or equal to final contains the set of edge labels of
some maximal path constructed during 1,2-DFS.

5.2 Deriving bsd-Semantics from Operating Guidelines

The previous results also show how to derive BSDb(N) from OGb(N); we collect
the respective observations. First, we add the 0-labeled node U , as previously
described, and we remove the empty node. For the other nodes, we run through
our preceding considerations for constructing φ.

If φ(Q) is true, then there is no stable state q ∈ Q and the label of Q is,
therefore, 3 (see Lemma 27).

Otherwise, if φ(Q) is equivalent to the disjunction of those inputs a of N such
that there is an a-labeled edge leaving Q, then the remaining CNF is false and
the label of Q is 1 (see Lemma 28).

Otherwise, the remaining CNF C is not equal to false and we have to check
whether final is a conjunct of C. By Lemma 29, this is the case if and only if
the label of Q is 2. (To check semantically whether final is a conjunct without
relying on the precise form of φ of C, we assign true to all outputs of N and
false to all inputs and to final .) Then φ(Q) evaluates to false if and only if final
is a conjunct. To all remaining nodes we assign label 3.

5.3 Accordance Check with Operating Guidelines

For open nets Spec and Impl , with operating guidelines OGb(Spec) and
OGb(Impl), we have that Impl (acc,b Spec if and only if there exists a minimal
simulation � of OGb(Spec) by OGb(Impl) and, for each pair of nodes (Q,Q′) ∈ �,
φ(Q) implies φ(Q′) is a tautology [15].

Interestingly, this check shows that the simulation relation is the other way
around compared to the bsd-setting. Checking b-accordance involves repeated
checks of implications between the annotations, whereas in the bsd-setting (see
Theorem 25), we simply compare numbers 0, 1, 2, 3 in constant time.

6 Conclusions

We presented a novel semantics for open nets assuming the absence of deadlocks
as a minimal correctness criterion. The semantics consists of four sets of traces.

424 C. Stahl and W. Vogler

The set bdb(N) collects catastrophic traces due to bound violation; these traces
modify all components just as divergence traces in failures semantics [2]. The
sets stopb(N) and dead b(N) are successful and unsuccessful completed traces;
because we are in an asynchronous setting, they can be continued with inputs;
that is, they are quiescent as in I/O automata [10]. The fourth component, Lb,
is just the language of the net N , comprising all traces.

We proved that our semantics can be translated back and forth into operating
guidelines, and we derived the bsd-refinement relation from it, which coincides
with (a slight modification of the) accordance relation. In addition, we proved
bsd-refinement to be a fully abstract precongruence.

The bsd-semantics is related to the recently proposed notion of a reduced op-
erating guideline [9]. The idea is to distinguish three disjoint subsets of nodes in
an operating guideline such that the Boolean formulae can be derived from this
information. The argumentation that leads to this representation has similarities
to our arguments for translating OGb(N) into BSDb(N). However, in [9] respon-
siveness is considered: in addition to deadlock freedom, a b-controller in [9] also
has to guarantee that in each state of the composition either a final state can be
reached or a message is exchanged.

Different precongruences for asynchronously communicating processes have
been studied. The introduced bsd-refinement is closely related to previous work
of Vogler [16], closest to P-deadlock refinement. As a difference, in the setting of
Vogler [16], the interface is not separated into input and output places, interface
places may be unbounded (like in the sd-semantics), and the notion of a deadlock
ignores τ -loops: a marking m is a deadlock if m w==⇒ implies w = ε. This leads
to a much more complicated characterization.

Testing equivalence for asynchronous CCS is considered in [1], but it is an
asymmetric notion focusing on the controller (i. e., the test) and not on the
service; in contrast, the defining condition in Definitions 7 and 15 is symmetric
in C and N . Avoidance of deadlocks is not so essential, and in fact τ -loops are
not helpful or even a catastrophe; a process may receive the messages it has sent.

Stuck-free conformance [6] is a precongruence that excludes deadlocks. In
contrast to bsd-refinement, it is based on a variation of failures semantics rather
than traces. In [6], it has been proved that stable failures refinement [2] does
not imply stuck-free conformance. In contrast, it has already been argued in a
shared-variable setting in [4], that refusal sets are not needed when working with
asynchronous communication.

In the area of SOC, the subcontract preorder [7] is an asymmetric notion
also focusing on the tests. It is based on synchronous communication and only
requires that the controller never gets stuck. In [7], it has been proved that
the subcontract preorder coincides with must-testing [5] — that is, with stable
failures refinement (for finitely branching processes without divergences).

Our goal was to provide a trace-based view on operating guidelines. In on-
going work, we investigate how the bsd-semantics of a service S can be used
to check whether a service is a controller of S. In addition, we want to gain a
better understanding which transformations bsd-refine a service, because these

A Trace-Based View on Operating Guidelines 425

transformations allow us to construct replaceable services. We will further study
how our semantics needs to be adjusted if we consider responsiveness [9] rather
than deadlock freedom. Here, we are particularly interested in the relation of the
resulting semantics and the notion of a reduced operating guideline [9].

References

1. Boreale, M., De Nicola, R., Pugliese, R.: Trace and testing equivalence on asyn-
chronous processes. Inf. Comput. 172(2), 139–164 (2002)

2. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

3. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC / SIGSOFT FSE
2001, pp. 109–120 (2001)

4. de Boer, F.S., Kok, J.N., Palamidessi, C., Rutten, J.J.M.M.: The failure of failures
in a paradigm for asynchronous communication. In: Groote, J.F., Baeten, J.C.M.
(eds.) CONCUR 1991. LNCS, vol. 527, pp. 111–126. Springer, Heidelberg (1991)

5. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

6. Fournet, C., Hoare, T., Rajamani, S.K., Rehof, J.: Stuck-Free Conformance. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 242–254. Springer,
Heidelberg (2004)

7. Laneve, C., Padovani, L.: The must preorder revisited. In: Caires, L., Li, L. (eds.)
CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg (2007)

8. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

9. Lohmann, N., Wolf, K.: Compact representations and efficient algorithms for op-
erating guidelines. Fundam. Inform. (2010) (accepted for publication in January
2010)

10. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
11. Milner, R.: Fully abstract models of typed lambda-calculi. Theor. Comput. Sci. 4(1),

1–22 (1977)
12. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Englewood Cliffs

(1989)
13. Mooij, A.J., Voorhoeve, M.: Proof techniques for adapter generation. In: Bruni, R.,

Wolf, K. (eds.) WS-FM 2008. LNCS, vol. 5387, pp. 207–223. Springer, Heidelberg
(2009)

14. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson, London
(2007)

15. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with
operating guidelines. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on
Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 172–191.
Springer, Heidelberg (2009)

16. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets.
LNCS, vol. 625. Springer, Heidelberg (1992)

HTML Validation of Context-Free Languages

Anders Møller
 and Mathias Schwarz

Aarhus University, Denmark
{amoeller,schwarz}@cs.au.dk

Abstract. We present an algorithm that generalizes HTML validation
of individual documents to work on context-free sets of documents. To-
gether with a program analysis that soundly approximates the output
of Java Servlets and JSP web applications as context-free languages, we
obtain a method for statically checking that such web applications never
produce invalid HTML at runtime. Experiments with our prototype im-
plementation demonstrate that the approach is useful: On 6 open source
web applications consisting of a total of 104 pages, our tool finds 64 er-
rors in less than a second per page, with 0 false positives. It produces
detailed error messages that help the programmer locate the sources of
the errors. After manually correcting the errors reported by the tool, the
soundness of the analysis ensures that no more validity errors exist in
the applications.

1 Introduction

An HTML document is valid if it syntactically conforms to a DTD for one of the
versions of HTML. Since the HTML specifications only prescribe the meaning
of valid documents, invalid HTML documents are often rendered differently,
depending on which browser is used [1]. For this reason, careful HTML document
authors validate their documents, for example using the validation tool provided
by W3C1. An increasing number of HTML documents are, however, produced
dynamically by programs running on web servers. It is well known that errors
caught early in development are cheaper to fix. Our goal is to develop a program
analysis that can check statically, that is, at the time programs are written, that
they will never produce invalid HTML when running. We want this analysis to
be sound, in the sense that whenever it claims that the given program has this
property that is in fact the case, precise meaning that it does not overwhelm the
user with spurious warnings about potential invalidity problems, and efficient
such that it can analyze non-trivial applications with modest time and space
resources. Furthermore, all warning messages being produced must be useful
toward guiding the programmer to the source of the potential errors.

The task can be divided into two challenges: 1) Web applications typically
generate HTML either by printing page fragments as strings to an output stream
� Supported by The Danish Research Council for Technology and Production,

grant no. 274-07-0488.
1 http://validator.w3.org

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 426–440, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://validator.w3.org

HTML Validation of Context-Free Languages 427

(as in e.g. Java Servlets) or with template systems (as e.g. JSP, PHP, or ASP).
In any case, the analysis front-end must extract a formal description of the set
of possible outputs of the application, for example in the form of a context-
free grammar. 2) The analysis back-end must analyze this formal description of
the output to check that all strings that it represents are valid HTML. Several
existing techniques follow this pattern, although considering XHTML instead of
HTML [8, 6]. In practice, however, many web applications output HTML data,
not XHTML data, and the existing techniques – with the exception of the work
by Nishiyama and Minamide [11], which we discuss in Section 2 – do not work
for HTML.

The key differences between HTML and XHTML are that the former allows
certain tags to be omitted, for example the start tags <html> and <tbody> and
the end tags </html> and </p>, and that it uses tag inclusions and exclusions, for
example to forbid deep nesting of a elements. This extra flexibility of HTML is
precisely what makes it popular, compared to its XML variant XHTML. On the
other hand, this flexibility means that the process of checking well-formedness,
i.e. that a document defines a proper tree structure, cannot be separated from the
process of checking validity, i.e. that the tree structure satisfies the requirements
of the DTD.

In this paper, we present an algorithm that, given as input a context-free
grammar G and an SGML DTD D (one of the DTDs that exist for the different
versions of HTML2), checks whether every string in the language of G is valid
according to D, written L(G) ⊆ L(D). The key idea in our approach is a gen-
eralization of a core algorithm for SGML parsing [4,14] to work on context-free
sets of documents rather than individual documents.

1.1 Outline of the Paper

The paper is organized as follows. We first give an overview of related approaches
in Section 2. In Section 3 we then present a formal model of SGML/HTML
validation that captures the essence of the features that distinguish it from
XML/XHTML validation. Based on this model, in Section 4 we present our gen-
eralization for validating context-free sets of documents. We have implemented
the algorithm together with an analysis front-end for Java Servlets and JSP,
which constitute a widely used platform for server-based web application devel-
opment. (Due to the limited space we focus on the back-end in this paper.) In
Section 5, we report on experiments on a range of open source web applications.
Our results show that the algorithm is fast and able to pinpoint programming
errors. After manually correcting the errors based on the messages generated by
the tool, the analysis is able to prove that the output will always be valid HTML
when the applications are executed.

2 The HTML 5 language currently under development will likely evoke renewed in-
terest in HTML. Although it technically does not use SGML, its syntax closely
resembles that of the earlier versions.

428 A. Møller and M. Schwarz

<%@ page import="java.util.*, org.example" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html><head><meta name="description" content="Joke Collection">
<title>Jokes</title>
<%! List<Joke> js = Jokes.get();%>
<body><table>

<tr><th>Question<th>Punch line</tr>
<% if (js.size() > 0) {

request.setParameter("Jokes", js); %>
<c:forEach items="${Jokes}" var="joke">
<tr><td><c:out value="${joke.question}"/>
<td><c:out value="${joke.punchline}"/></tr>

</c:forEach>
<% } else {

out.print("<td>No more jokes</tr>");
} %>

</table></body>
</html>

Fig. 1. A JSP page that uses the JSTL tag library and embedded Java code. The
example takes advantage of SGML features such as tag omission and inclusions.

1.2 Example

Figure 1 shows an example of a JSP program that outputs a dynamically gen-
erated table from a list of data using a combination of many of the JSP and
SGML features that appear in typical applications. The meta element is not
part of the content model of head, but it is allowed by an SGML inclusion rule.
The body element contains a table where both the start and the end tag of the
tbody element are omitted, and a parser needs to insert those to validate a gen-
erated document. Similarly, all td and th end tags are omitted. The contents
of the table are generated by a combination of tags from JSP Standard Tag Li-
brary, embedded Java code that prints to the output stream, and ordinary JSP
template code.

The static analysis that we present is able to soundly check that the output
from such code is always valid according to e.g. the HTML 4.01 Transitional
specification.

2 Related Work

Previous work on reasoning about programs that dynamically generate semi-
structured data has focused on XML [9], not SGML, despite the fact that the
SGML language HTML remains widely used. (Since XML languages are essen-
tially the subclass of SGML languages that do not use the tag omission and
exception features, our algorithm also works for XML.) Most closely related
to our approach is the work by Minamide et al. [7, 8, 11] and Kirkegaard and
Møller [6].

HTML Validation of Context-Free Languages 429

In [7] context-free grammars are derived from PHP programs. From such a
grammar, sample documents are derived and processed by an ordinary HTML
or XHTML validator. Unless the nesting depth of the elements in the generated
documents is bounded, this approach is unsound as it may miss errors. Later, an
alternative grammar analysis was suggested for soundly validating dynamically
generated XML data [8]. That algorithm relies on the theory of balanced gram-
mars over an alphabet of tag names, which does not easily generalize to handle
the tag omission and inclusion/exclusion features that exist in HTML. The ap-
proach in [6] is comparable to [8], however considering the more fine-grained
alphabet of individual Unicode characters instead of entire tag names and using
XML graphs for representing sets of XML documents.

Yet another grammar analysis algorithm is presented by Nishiyama and Mi-
namide [11]. They define a subclass of SGML DTDs that includes HTML and
shows a translation into regular hedge grammars, such that the validation prob-
lem reduces to checking inclusion of a context-free language in a regular language.
That approach has some limitations, however: 1) it does not support start tag
omission, although that feature of SGML is used in HTML (e.g. tbody and
head); 2) the exclusion feature is handled by a transformation of the DTD that
may lead to an exponential blow-up prohibiting practical use; and 3) the inclu-
sion feature is not supported. The alternative approach we suggest overcomes
all these limitations.

The abstract parsing algorithm by Doh et al. [3] and the grammar-based anal-
ysis by Thiemann [12] are also based on the idea of generalizing existing parsing
algorithms. The approach in [3] relies on abstract interpretation with a domain of
LR(k) parse stacks constructed from an LR(k) grammar for XHTML, and [12] is
based on Earley’s parsing algorithm. By instead using SGML parsing as a start-
ing point, we avoid the abstraction and we handle the special features of HTML:
Given a context-free grammar describing the output of a program, our algorithm
for checking that all derivable strings are valid HTML is both sound and complete.

3 Parsing HTML Documents

Although HTML is based on the SGML standard [4] it uses only a small subset
of the features of the full standard. SGML languages are formally described us-
ing the DTD language (not to confuse with the DTD language for XML). Such
a description provides a formal description for the parser on how a document is
parsed from its textual form into a tree structure. Specifically, in SGML both start
and end tags may be omitted if 1) allowed by the DTD, and 2) the omission does
not result in ambiguities in the parsing of the document. The DTD description
provides the content models, that is, the allowed children of each element, as de-
terministic regular expressions over sequences of elements. Furthermore special
exceptions, called inclusions and exclusions, are possible for allowing additional
element children or disallowing nesting of certain elements. An inclusion rule per-
mits elements anywhere in the descendant tree even if not allowed by the content
model expressions. Conversely, an exclusion rule prohibits elements, overriding
the content model expressions and inclusions.

430 A. Møller and M. Schwarz

Consider a small example DTD:

<!ELEMENT inventory - - (item*) +(note)>
<!ELEMENT item - O (#PCDATA)>
<!ELEMENT note - O (#PCDATA)>

In each element declaration, O means “optional” and - means “required”, for the
start tag and the end tag, respectively. This DTD declares an element inventory
where the start and end tags are both required. (Following the usual SGML ter-
minology, an element generally consists of a start tag and its matching end tag,
although certain tags may be omitted in the textual representation of the doc-
uments.) The content model of inventory allows a sequence of item elements
as children in the document tree. In addition, note is included such that note
elements may be descendants of inventory elements even though they are not
allowed directly in the content models of the descendants. The second line de-
clares an element item that requires a start tag but allows omission of the end
tag. The content model of item allows only text (PCDATA) and no child ele-
ments in the document tree. Finally, the element note is also declared with end
tag omission and PCDATA content. An example of a valid document for this
DTD is the following:

<inventory><item>gadget<item>widget</inventory>

The parser inserts the omitted end tags for item to obtain the following docu-
ment, which is valid according to the DTD content models for inventory and
item:

<inventory><item>gadget</item><item>widget</item></inventory>

Because of the inclusion of note elements in the declaration of inventory, the
following document is also parsed as a valid instance:

<inventory><item>gadget<note>new</note><item>widget</inventory>

SGML is similar to XML but it has looser requirements on the syntax of the
input documents. For the features used by HTML, the only relevant differences
are that XML does not support tag omissions nor content model exceptions.

We consider only DTDs that are acyclic:

Definition 1. An SGML DTD is acyclic if it satisfies the following requirement:
For elements that allow end tag omissions there must be a bound on the possible
depth of the direct nesting of those elements. That is, if we create a directed
graph where the nodes correspond to the declared elements whose end tags may
be omitted and there is an edge from a node A to a node B if the content model
of A contains B, then there must be no cycles in this graph.

This requirement also exists in Nishiyama and Minamide’s approach [11], and
it is fulfilled by all versions of the HTML DTD. Contrary to their approach we
do not impose any further restrictions and our algorithm thus works for all the
HTML DTDs without any limitations or rewritings.

HTML Validation of Context-Free Languages 431

3.1 A Model of HTML Parsing

As our algorithm is a generalization of the traditional SGML parsing algorithm
we first present a formal description of the essence of that algorithm. We base
our description on the work by Warmer and van Egmond [14]. The algorithm
provides the basis for explaining our main contribution in the next section.

We abstract away from SGML features such as text (i.e. PCDATA), com-
ments, and attributes. These features are straightforward to add subsequently.
Furthermore, a lexing phase allows us to consider strings over the alphabet of
start and end tags, written <a> and , respectively, for every element a
declared in the DTD. (This lexing phase is far from trivial; our implementa-
tion is based on the technique used in [6], and we omit the details here due
to the limited space.) More formally, we consider strings over the alphabet
Σ = {<a> | a ∈ E}∪{ | a ∈ E} where E is the set of declared element names
in the DTD. We assume that root ∈ E is a pseudo-element representing the root
node of the document, with a content model that accepts a single element of
any kind (or, one specific, such as html for HTML). The sets of included and
excluded elements of an element a ∈ E are denoted Ia and Ea, respectively.

For simplicity, we represent all content models together as one finite-state
automaton [5] defined as follows:

Definition 2. A content model automaton for a DTD D is a tuple (Q,E,
[qa]a∈E , F, δ) where Q is a set of states, its alphabet is E as defined above, [qa]a∈E

is a family of initial states (one for each declared element), F ⊆ Q is a set of
accept states and δ : Q×Σ ↪→ Q is a partial transition function (with ⊥ repre-
senting undefined).

Following the requirement from the SGML standard that content models must be
unambiguous, this content model automaton can be assumed to be deterministic
by construction. Also, we assume that all states in the automaton can reach some
accept state. Each state in the automaton uniquely corresponds to a position in
a content model expression in D.

SGML documents are parsed in a single left-to-right scan with a look-ahead
of 1. The state of the parser is represented by a context stack. The set of possible
contexts is H = E × Q × P(E) × P(E). (P(E) denotes the powerset of E.)
We refer to the context cn = (a, q, ι, η) at the top of a stack c1 · · · cn ∈ H∗

as the current context, and a, q, ι, and η are then the current element, the
current state, the current inclusions, and the current exclusions, respectively.
An element b is permitted in the current context (a, q, ι, η) if δ(q, b) �= ⊥. We
refer to a tag a just below another tag b in the context stack as b’s parent. We
say that OmitStart(a, q) holds if the start tag of a elements may be omitted
according to D when the current state is q, and, similarly, OmitEnd(a, q) holds if
the end tag of a elements may be omitted in state q. (The precise rules defining
OmitStart and OmitEnd fromD are quite complicated; we refer to [4,14] for the
details.) The current inclusions and exclusions reflect the sets of included and
excluded elements, respectively. These two sets can in principle be determined

432 A. Møller and M. Schwarz

1. function ParseD(p ∈ H∗, x ∈ Σ∗) :
2. if |x| = 0 then
3. // reached end of input
4. return p
5. else if |p| = 0 then
6. // empty stack error
7. return ©
8. let p1 · · · pn−1 · (an, sn, ιn, ηn) = p
9. let x1 · · ·xm = x

10. if x1 = <a> ∧ a /∈ ηn for some a ∈ E then
11. // reading a non-excluded start tag
12. if δ(sn, a) �= ⊥ then
13. // the start tag is permitted by the content model, push onto stack and proceed
14. return ParseD

(
p1 · · · pn−1 · (an, δ(sn, a), ιn, ηn) · (a, qa, ιn ∪ Ia, ηn ∪ Ea), x2 · · ·xm

)
15. else if a ∈ ιn then
16. // the start tag is permitted by inclusion, push onto stack and proceed
17. return ParseD

(
p1 · · · pn · (a, qa, ∅, ηn ∪ Ea), x2 · · ·xm

)
18. else if x1 = ∧ a = an ∧ sn ∈ F for some a ∈ E then
19. // reading an end tag that is permitted, pop from stack and proceed
20. return ParseD

(
p1 · · · pn−1, x2 · · ·xm

)
21. else if OmitEnd(an, sn) then
22. // insert omitted end tag, then retry
23. return ParseD(p, </an> · x)
24. else if ∃a′ ∈ E : OmitStart(a′, sn) then
25. // insert omitted start tag, then retry
26. return ParseD(p, <a′> · x)
27. else
28. // parse error
29. return �

Fig. 2. The ParseD function for checking validity of a given document

from the element names appearing in the context stack, but we maintain them
in each context for reasons that will become clear in Section 4.

Informally, when encountering a start tag <a> that is permitted in the current
context, its content automaton state is modified accordingly, and a new context
is pushed onto the stack. When an end tag is encountered, the current
context is popped off the stack if it matches the element name a.

An end tag may be omitted only if it is followed by either the end tag of
another open element or a start tag that is not allowed at this place. A start tag
may be omitted only if omission does not cause an ambiguity during parsing.
These conditions, which define OmitEnd and OmitStart, can be determined
from the current state and either the next tag in the input or the current element
on the stack, respectively, without considering the rest of the parse stack and
input. Moreover, OmitStart has the property that no more than |E| omitted
start tags can be inserted before the next tag from the input is consumed.

Our formalization of SGML parsing is expressed as the function ParseD :
H∗ ×Σ∗ →

(
H∗ ∪ {	,©}

)
shown in Figure 2. The result © arises if an end tag

is encountered while the stack is empty, and 	 represents other kinds of parse
errors. In this algorithm, OmitEnd and OmitStart allow us to abstract away
from the precise rules for tag omission, to keep the presentation simple. The
algorithm captures an essential property of SGML parsing: a substring x ∈ Σ∗

of a document is parsed relative to a parse stack p ∈ H∗ as defined above, and it

HTML Validation of Context-Free Languages 433

outputs a new parse stack or one of the error indicators © and 	. We distinguish
between the two kinds of errors for reasons that become clear in Section 4.

With this, we can define validity of a document relative to the DTD D:
Definition 3. A string x ∈ Σ∗ is a valid document if

ParseD

(
(root, qroot, ∅, ∅), x

)
= (root, q, ∅, ∅)

for some q ∈ F .
The ParseD function has some interesting properties that we shall need in
Section 4:

Observation 4. Notice that the ParseD function either returns directly or via
a tail call to itself. Let (p1, x1), (p2, x2), . . . be the sequence of parameters to
ParseD that appear if executing ParseD(p1, x1) for some p1 ∈ H∗, x1 ∈ Σ∗.
Now, because the DTD is acyclic, for all i = 1, 2, . . . we have |xi+|E|| < |xi|,
that is, after at most |E| recursive calls, one more input symbol is consumed.
Moreover, in each step in the recursion sequence, the decisions made depend
only on the current context and the next input symbol.

4 Parsing Context-Free Sets of Documents

We now show that the parsing algorithm described in the previous section can
be generalized to work for sets of documents, or more precisely, context-free
languages over the alphabet Σ. The resulting algorithm determines whether or
not all strings in a given language are valid according to a given DTD. The
languages are represented as context-free grammars that are constructed by the
analysis front-end from the programs being analyzed.

The definitions of context-free grammars and their languages are standard:

Definition 5. A context-free grammar (CFG) is a tuple G = (N,Σ, P, S) where
N is the set of nonterminal symbols, Σ is the alphabet (of start and end tag
symbols, as in Section 3.1), P is the set of productions of the form A→ r where
A ∈ N , r ∈ (Σ ∪ N)∗, and S is the start nonterminal. The language of G is
L(G) = {x ∈ Σ∗ | S ⇒∗ x} where ⇒∗ is the reflexive transitive closure of the
derivation relation ⇒ defined by u1Au2 ⇒ u1ru2 whenever u1, u2 ∈ (Σ ∪ N)∗

and A→ r ∈ P .

Definition 6. A CFG G is valid if x is valid for every x ∈ L(G).

To simplify the presentation we will assume that G is in Chomsky normal form,
so that all productions are of the form A → s or A → A′A′′ where s ∈ Σ and
A,A′, A′′ ∈ N , and that there are no useless nonterminals. It is well-known how
to transform an arbitrary CFG to this form [5]. We can disregard the empty string
since that is never valid for any DTD, and the empty language is trivially valid.

The idea behind the generalization of the parse algorithm is to find out for
every occurrence of an alphabet symbol s in the given CFG which context stacks
may appear when encountering s during parsing of a string. The context stacks
may of course be unbounded in general. However, because of Observation 4 we
only need to keep track of a bounded size top (i.e. a postfix) of each context stack,
and hence a bounded number of context stacks, at every point in the grammar.

434 A. Møller and M. Schwarz

4.1 Generating Constraints

To make the idea more concrete, we define a family of context functions, one for
each nonterminal A ∈ N . Each is a partial function that takes as input a context
stack and returns a set of context stacks:

CA : H∗ ↪→ P(H∗)

Informally, the domain of CA consists of the context stacks that appear during
parsing when entering a substring derived from A, and the co-domain similarly
consists of the context stacks that appear immediately after the substring has
been parsed. Formally, assume x ∈ L(G) such that S ⇒∗ u1Au2 ⇒∗ u1yu2 = x,
that is, the nonterminal A is used in the derivation of x, and y is the substring
derived from A. The domain dom(CA) then contains the context stack p that
arises after parsing of u1, that is, p = ParseD

(
(root, qroot, ∅, ∅), u1

)
∈ dom(CA).

Similarly, CA(p) contains the context stack that arises after parsing of u1y, that
is, ParseD

(
(root, qroot, ∅, ∅), u1y

)
= ParseD(p, y) ∈ CA(p) if p /∈ {	,©}. As

explained in detail below, we truncate the context stacks and only store the top
of the stacks in these sets. To obtain an efficient algorithm, we truncate as much
as possible and exploit the fact that ParseD returns © if a too short context
stack is given.

The context functions are defined from the DTD as a solution to the set of
constraints defined by the following three rules:

§1 Following Definition 3, parsing starts with the initial context stack at the
start nonterminal S and must end in a valid final stack:

CS(root, qroot, ∅, ∅) ⊆ {(root, q, ∅, ∅) | q ∈ F}

§2 For every production of the form A → s in P where s ∈ Σ, the context
function for A respects the ParseD function, which must not return 	 or ©:

∀p ∈ dom(CA) : p′ /∈ {	,©} ∧ p′ ∈ CA(p) where p′ = ParseD(p, s)

§3 For every production of the form A→ A′A′′ in P , the entry context stacks of
A are also entry context stacks for A′, the exit context stacks for A′ are also
entry context stacks for A′′, and the exit context stacks for A′′ are also exit
context stacks for A. However, we allow the context stacks to be truncated
when propagated from one nonterminal to the next:

∀p ∈ dom(CA) : ∃p1, p2 : p = p1 · p2 ∧ p2 ∈ dom(CA′) ∧
∀p′2 ∈ CA′(p2) : ∃t1, t2 : p1 · p′2 = t1 · t2 ∧ t2 ∈ dom(CA′′) ∧

∀t′2 ∈ CA′′(t2) ⇒ t1 · t′2 ∈ CA(p)

Note that rule §3 permits the context stacks to be truncated; on the other hand,
rule §2 ensures that the stacks are not truncated too much since that would lead
to the error value ©.

Theorem 7. There exists a solution to the constraints defined by the rules above
for a grammar G if and only if G is valid.

Proof. See the technical report [10].

HTML Validation of Context-Free Languages 435

4.2 Solving Constraints

It is relatively simple to construct an algorithm that searches for a solution
to the collection of constraints generated from a CFG by the rules defined in
Section 4.1. Figure 3 shows the pseudo-code for such an algorithm, ParseCFGD.
We write w defsA for w ∈ P , A ∈ N if A appears on the left-hand side of
w, and w usesA if A appears on the right-hand side of w. The solution being
constructed is represented by the family of context functions, denoted [CA]A∈N .

The idea in the algorithm is to search for a solution by truncating the context
stacks as much as possible, iteratively trying longer context stacks, until the
special error value © no longer appears. The algorithm initializes [CA]A∈N on
line 6 and iteratively on lines 9–58 extends these functions to build a solution.
The worklist W (a queue, without duplicates) consists of productions that need
to be processed because the domains of the context functions of their left-hand-
side nonterminals have changed. The function Δ maintains for each nonterminal
a set of context stacks that are known to lead to ©.

Each production in the worklist of the form A → s is parsed according to rule
§2 on lines 14– 26, relative to each context stack p in dom(CA). If this results
in ©, the corresponding context stack is added to Δ(A), and all productions
that use A are added to the worklist to make sure that the information that the
context stack was too short is propagated back to those productions. If a parse
error 	 occurs (line 20), the algorithm terminates with a failure. If the parsing
is successful (line 23), the resulting context stack p′ is added to CA.

For a production of two nonterminals, A → A′A′′, we proceed according to
rule §3. For each context stack p in dom(CA) on line 29 we pick the smallest
possible postfix p2 of p that is not in Δ(A′) and propagate this to CA′ . If no such
postfix exists, we know that p is too short, so we update Δ(A) and W as before.
Otherwise, we repeat the process (line 37) to propagate the resulting context
stack through A′′ and further to CA (line 46).

Finally, on line 57 we check that rule §1 is satisfied.

Theorem 8. The ParseCFGD algorithm always terminates, and it terminates
successfully if and only if a solution exists to the constraints from Section 4.1
for the given CFG.
(We leave a proof of this theorem as future work.)

Corollary 9. Combining Theorem 7 and Theorem 8, we see that ParseCFGD

always terminates, and it terminates successfully if and only if the given CFG is
valid.

4.3 Example

As an example of a normalized grammar, consider Gul = (N,Σ, P, S) where
N = {A1, A2, A3, A4, A5, A6}, Σ = {, , , }, S = A1, and P
consists of the following productions:

436 A. Møller and M. Schwarz

1. function ParseCFGD(N, Σ,P, S) :
2. declare W ⊆ P, [CA]A∈N : H∗ ↪→ P(H∗), Δ : N → P(H∗)
3. // initialize worklist and context functions
4. W := [w ∈ P | w defs S]
5. for all A ∈ N , p ∈ H∗ do

6. CA(p) :=

{
∅ if A = S ∧ p = (root, qroot,∅,∅)

⊥ otherwise
7. Δ(A) := ∅
8. // iterate until fixpoint
9. while W �= ∅ do

10. remove the next production A → r from W
11. for all p ∈ dom(CA) do
12. if A → r is of the form A → s where s ∈ Σ then
13. // rule §2
14. let p′ = ParseD(p, s)
15. if p′ = © then
16. // record that entry context stack p is too short for A
17. Δ(A) := Δ(A) ∪ {p}
18. CA(p) := ⊥
19. for all w ∈ P where w usesA add w to W
20. else if p′ = � then
21. // fail right away
22. fail
23. else if p′ /∈ CA(p) then
24. // add new final context stack p′ for A
25. CA(p) := CA(p) ∪ {p′}
26. for all w ∈ P where w usesA add w to W
27. else if A → r is of the form A → A′A′′ where A′, A′′ ∈ N then
28. // rule §3
29. let p2 be the smallest string such that p = p1 · p2 and p2 �∈ Δ(A′)
30. if no such p2 exists then
31. // record that entry context stack p is too short for A
32. Δ(A) := Δ(A) ∪ {p}
33. CA(p) := ⊥
34. for all w ∈ P where w usesA add w to W
35. else if p2 ∈ dom(CA′) then
36. for all p′2 ∈ CA′(p2) do
37. let t2 be the smallest string such that p1 · p′2 = t1 · t2 and t2 �∈ Δ(A′′)
38. if no such t2 exists then
39. // record that entry context stack p is too short for A
40. Δ(A) := Δ(A) ∪ {p}
41. CA(p) := ⊥
42. for all w ∈ P where w usesA add w to W
43. else if t2 ∈ dom(CA′′) then
44. if {t1 · t′2 | t′2 ∈ CA′′(t2)} �⊆ CA(p) then
45. // add new final context stacks for A
46. CA(p) := CA(p) ∪ {t1 · t′2 | t′2 ∈ CA′′(t2)}
47. for all w ∈ P where w usesA add w to W
48. else
49. // add new entry context stack t2 for A′′
50. CA′′ (t2) := ∅
51. for all w ∈ P where w defsA′′ add w to W
52. else
53. // add new entry context stack p2 for A′
54. CA′(p2) := ∅
55. for all w ∈ P where w defsA′ add w to W
56. // rule §1
57. if CS(root, qroot , ∅, ∅) �⊆ {(root, q, ∅, ∅) | q ∈ F} then
58. fail
59. return [CA]A∈N

Fig. 3. The ParseCFGD algorithm for solving the parse constraints for a given CFG

HTML Validation of Context-Free Languages 437

A1 → A5 A2 A2 → A6 A3
A3 → A4 →
A5 → A6 →
A6 → A4 A1

The language generated byGul consists of documents that have a ul root element
containing a single li element that in turn contains zero or one ul element. The
grammar can thus generate deeply nested ul and li elements, and truncation of
context stacks is therefore crucial for the ParseCFGD algorithm to terminate.
Notice that all end tags are omitted in the documents.

We wish to ensure that the strings generated from Gul are valid relative to
the following DTD, which mimics a very small fraction of the HTML DTD for
unordered lists:

<!ELEMENT ul - - (li*)>
<!ELEMENT li - O (ul*)>

For this combination of a CFG and a DTD, the ParseCFGD algorithm produces
the following solution to the constraints:

C
A1 (root, qroot, ∅, ∅) �→ {(root, q, ∅, ∅)}

(li, qli, ∅, ∅) �→ {(li, qli, ∅, ∅)}
A2 (ul, qul, ∅, ∅) �→ {ε}
A3 (ul, qul, ∅, ∅) · (li, qli, ∅, ∅) �→ {ε}
A4 (ul, qul, ∅, ∅) �→ {(ul, qul, ∅, ∅) · (li, qli, ∅, ∅)}
A5 (li, qli, ∅, ∅) �→ {(li, qli, ∅, ∅) · (ul, qul, ∅, ∅)}

(root, qroot, ∅, ∅) �→ {(root, q, ∅, ∅) · (ul, qul, ∅, ∅)}
A6 (ul, qul, ∅, ∅) �→ {(ul, qul, ∅, ∅) · (li, qli, ∅, ∅)}

Although the context stacks may grow arbitrarily when parsing individual doc-
uments with ParseD, the truncation trick ensures that ParseCFGD terminates
and succeeds in capturing the relevant top-most parts of the context stacks.

5 Experimental Results

We have implemented the algorithm from Section 4.2 in Java, together with an
analysis front-end for constructing CFGs that soundly approximate the output
of web applications written with Java Servlets and JSP. The front-end follows
the structure described in [6], extended with specialized support for JSP, and
builds on Soot [13] and the Java String Analyzer [2]. (We omit a more detailed
explanation of this front-end, due to the limited space.)

The purpose of the prototype implementation is to obtain preliminary answers
to the following research questions:

438 A. Møller and M. Schwarz

– What is the typical analysis time for a Servlet/JSP page, and how is the
analysis time affected by the absence or presence of validity errors?

– What is the precision of the analysis in terms of false positives?
– Are the warnings produced by the tool useful to locate the sources of the

errors?

We have run the analysis on six open source programs found on the web. The
programs range from simple one man projects, such as the JSP Chat application
(JSP Chat3), the official J2EE tutorial Servlet and JSP examples (J2EE Book-
store 1 and 24) to the widely used blogging framework Pebble5, which included
dozens of pages and features. We have also included the largest example from a
book on JSTL (JSTL Book ex.6) and an application named JPivot7. The tests
have been performed on a 2.4 GHz Core i5 laptop with 4GB RAM running OS
X. As DTD, we use HTML 4.01 Transitional.

Figure 4 summarizes the results. For each program, it shows the number of
JSP pages, the time it takes to run the whole analysis on all pages (excluding
the time used by Soot), the time spent in the CFG parser algorithm, the number
of warnings from the analyzer, and the number of false positives determined by
manual inspection of the analyzed source code.

The tool currently has two limitations, which we expect to remedy with a
modest additional implementation effort. First, validation of attributes is cur-
rently not supported. Second, the implementation can track a validity error to
the place in the generated Java code where the invalid element is generated, but
not all the way back to the JSP source in the case of JSP pages.

In some cases when an unknown value is inserted into the output without
escaping special XML characters (for example, by using the out tag from JSTL),
the front-end is unable to reason about the language of that value. This may
for instance happen when the value is read from disk or input at runtime. The
analysis will in such cases issue an additional warning, which is not included
in the count in Figure 4, and treat the unknown value as a special alphabet
symbol and continue analyzing the grammar. In practice, there are typically a
few such symbols per page. While they may be indications of cross site scripting
vulnerabilities, there may also be invariants in the program ensuring that there
is no problem at runtime.

The typical analysis time for a single JSP page is around 200-600 ms. As can
be seen from the table, only a small fraction of the time is spent on parsing the
CFG. The worklist algorithm typically requires between 1 and 100 iterations for
each JSP page, which means that each nonterminal is visited between 1 and 10
times.

Validity errors were found in all the applications. The following is an example
of a warning generated by the tool on the JSP Chat application:
3 http://www.web-tech-india.com/software/jsp_chat.php
4 http://download.oracle.com/javaee/5/tutorial/doc/bnaey.html
5 http://pebble.sourceforge.net/
6 http://www.manning.com/bayern/
7 http://jpivot.sourceforge.net/

http://www.web-tech-india.com/software/jsp_chat.php
http://download.oracle.com/javaee/5/tutorial/doc/bnaey.html
http://pebble.sourceforge.net/
http://www.manning.com/bayern/
http://jpivot.sourceforge.net/

HTML Validation of Context-Free Languages 439

Program Pages Time CFG Parser time Warnings False positives
Pebble3 61 24.0 s 369 ms 32 0
J2EE Bookstore 14 5 6.7 s 93 ms 5 0
J2EE Bookstore 24 7 9.0 s <1 ms 7 0
JPivot5 3 2.8 s 8 ms 2 0
JSP Chat6 14 6.8 s 100 ms 12 0
JSTL Book ex.7 14 4.9 s 24 ms 6 0

Fig. 4. Analysis times and results for various open source web applications written in
Java Servlets and JSP

ERROR: Invalid string printed in
dk.brics.servletvalidator.jsp.generated.editInfo_jsp on line 94:

Start tag INPUT not allowed in TBODY
Parse context is [root HTML BODY DIV CENTER FORM TABLE TBODY]

This warning indicates that the programmer forgot both a tr start tag and a td
start tag in which the input element would be allowed, causing the input tag
to appear directly inside the tbody element. This may very well lead to browsers
rendering the page differently.

The reason that all JSP pages of the J2EE Bookstore applications are invalid
it that there is an unmatched </center> tag and a nonstandard <comment> tag
in a header used by all pages. After removing these two tags, only one page of
this application is (correctly) rejected by the analysis. While Pebble seems to be
programmed with the goal of only outputting valid HTML, the general problem
in this web application is that the table, ul, and tr elements require non-empty
contents, which is not always respected by Pebble. Furthermore, several more
serious errors, such as forgotten td tags, exist in the application. The JSP Chat
application is written in JSP but makes heavy use of embedded Java code. The
tool is able to analyze it precisely enough to find several errors that are mostly
due to unobvious (but feasible) flow in the program.

Based on the warnings generated by the tool, we managed to manually correct
all the errors within a few hours without any prior knowledge of the applica-
tions. After running the analysis again, no more warnings were produced. This
second round of analysis took essentially the same time as before the errors were
corrected. Since the analysis is sound, we can trust that the applications after
the corrections cannot output invalid HTML.

6 Conclusion

We have presented an algorithm for validating context-free sets of documents
relative to an HTML DTD. The key idea – to generalize a parsing algorithm
for SGML to work on grammars instead of concrete documents – has lead to
an approach that smoothly handles the intricate features of HTML, in partic-
ular tag omissions and exceptions. Preliminary experiments with our prototype
implementation indicate that the approach is sufficiently efficient and precise to

440 A. Møller and M. Schwarz

function as a practically useful tool during development of web applications. In
future work, we plan to improve the tool to accommodate for attributes and to
trace error messages all the way back to the JSP source (which is tricky because
of the JSP tag file mechanism) and to perform a more extensive evaluation.

References

1. Chen, S., Hong, D., Shen, V.Y.: An experimental study on validation problems with
existing HTML webpages. In: Proc. International Conference on Internet Comput-
ing, ICOMP 2005 (June 2005)

2. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

3. Doh, K.-G., Kim, H., Schmidt, D.A.: Abstract parsing: Static analysis of dynami-
cally generated string output using LR-parsing technology. In: Palsberg, J., Su, Z.
(eds.) SAS 2009. LNCS, vol. 5673, pp. 256–272. Springer, Heidelberg (2009)

4. Goldfarb, C.F.: The SGML Handbook. Oxford University Press, Oxford (1991)
5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, Reading (1979)
6. Kirkegaard, C., Møller, A.: Static analysis for java servlets and JSP. In: Yi, K.

(ed.) SAS 2006. LNCS, vol. 4134, pp. 336–352. Springer, Heidelberg (2006)
7. Minamide, Y.: Static approximation of dynamically generated Web pages. In: Proc.

14th International Conference on World Wide Web, WWW 2005, pp. 432–441.
ACM, New York (May 2005)

8. Minamide, Y., Tozawa, A.: XML validation for context-free grammars. In:
Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 357–373. Springer, Heidel-
berg (2006)

9. Møller, A., Schwartzbach, M.I.: The design space of type checkers for XML trans-
formation languages. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363,
pp. 17–36. Springer, Heidelberg (2005)

10. Møller, A., Schwarz, M.: HTML validation of context-free languages. Technical
report, Department of Computer Science, Aarhus University (2011),
http://cs.au.dk/~amoeller/papers/htmlcfg/

11. Nishiyama, T., Minamide, Y.: A translation from the HTML DTD into a
regular hedge grammar. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS,
vol. 5148, pp. 122–131. Springer, Heidelberg (2008)

12. Thiemann, P.: Grammar-based analysis of string expressions. In: Proc. ACM
SIGPLAN International Workshop on Types in Languages Design and Implemen-
tation, TLDI 2005 (2005)

13. Vallee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot
– a Java optimization framework. In: Proc. IBM Centre for Advanced Studies
Conference, CASCON 1999. IBM (November 1999)

14. Warmer, J., van Egmond, S.: The implementation of the Amsterdam SGML parser.
Electronic Publishing 2(2), 65–90 (1988)

http://cs.au.dk/~amoeller/papers/htmlcfg/

On the Power of Cliques in the Parameterized
Verification of Ad Hoc Networks

Giorgio Delzanno1, Arnaud Sangnier2, and Gianluigi Zavattaro3

1 University of Genova, Italy
2 LIAFA, University Paris 7, CNRS, France

3 University of Bologna, INRIA Focus Team, Italy

Abstract. We study decision problems for parameterized verification of
protocols for ad hoc networks. The problem we consider is control state
reachability for networks of arbitrary size. We restrict our analysis to
topologies that approximate the notion of bounded diameter often used
in ad hoc networks for optimizing broadcast communication. We show
that restricting to graphs with bounded diameter is not sufficient to
make control state reachability decidable, but the problem turns out to
be decidable when considering an additionally restricted class of graphs
that still includes cliques. Although decidable, the problem is already
Ackermann-hard over clique graphs.

1 Introduction

Ad hoc networks consist of wireless hosts that, in the absence of a fixed infras-
tructure, communicate sending broadcast messages. In this context protocols are
typically supposed to work independently from the communication topology and
from the size (number of nodes) of the network. As suggested in [3], the control
state reachability problem (or coverability problem) seems a particularly adequate
formalization of parameterized verification problems for ad hoc networks. A net-
work is represented in [3] as a graph in which nodes are individual processes
and edges represent communication links. Each node executes an instance of
the same protocol. A protocol is described by a finite state communicating au-
tomaton. The control state reachability problem consists in checking whether
there exists an initial configuration that can evolve into a configuration in which
at least one node is in a given error state. Since the size and the topology of
the initial configuration is not fixed a priori, the state-space to be explored is
in general infinite. As proved in [3], control state reachability is undecidable if
no restrictions are considered for the possible initial configurations. As in other
communication models [12,20], finding interesting classes of network topologies
for which verification is, at least theoretically, possible is an important research
problem.

Moving along this line, in this paper we consider networks in which the un-
derlying topology is in between the class of cliques and the strictly larger class of
bounded diameter graphs. Cliques represent the best possible topology for mini-
mizing the number of hops needed for diffusing data. Furthermore, control state

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 441–455, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

442 G. Delzanno, A. Sangnier, and G. Zavattaro

reachability in clique graphs reduces to coverability in a Broadcast Protocol (with
unstructured configurations), a problem proved to be decidable in [7].

Our first result is negative. Indeed, we prove that control state reachability
is undecidable for networks in which configurations have diameter bounded by
a value k such that k > 1 (notice that connected graphs with diameter 1 cor-
responds to cliques). We investigate then further restrictions having in mind
the constraint that they must allow at least cliques of arbitrary order. By using
an original well-quasi ordering result, we prove that coverability becomes de-
cidable when considering a class of graphs in which the corresponding maximal
cliques are connected by paths of bounded length. Furthermore, by exploiting a
recent result of Schnoebelen [18] and a reduction to coverability in reset nets, we
show that the resulting decision procedure is Ackermann-hard. Interestingly, this
complexity result already holds in the subclass of clique topologies. Finally, we
introduce a unicast mechanism inspired by rendezvous communication in other
concurrency models. Having the two mechanisms in the same model allows us
to compare them, with complexity measures, with respect to the coverability
problem. Specifically, coverability for unicast communication is easier than for
selective broadcast. Indeed, it turns out to be in EXPspace for unrestricted
graphs. To the best of our knowledge, this discrimination result is novel com-
pared to the existing literature on concurrency models with selective broadcast
and unicast communication.

Related Work. Model checking has been applied to verify protocols for ad hoc
networks with a fixed number of nodes in [8,19]. A possibly non-terminating pro-
cedure for the verification of routing protocols in ad hoc networks of arbitrary
size is described in [17]. In [3] we have introduced and studied the (repeated)
control state reachability problem described in the introduction for the ad hoc
network model of [19]. Specifically, we have shown that the problem is unde-
cidable when the topology is unrestricted and that it becomes decidable when
the initial network has a topology taken from the class of graphs with bounded
paths (the maximal length of a path is bounded by a constant). However this
class does not include cliques of arbitrary order. In contrast, we extend here the
decidability result to a larger class of graphs, and we investigate the problem
for graphs with bounded diameter. Graphs with bounded paths have also been
considered in verification problems with point-to-point (unicast in the ad hoc
setting) communication in [12,16,20].

Due to lack of space, omitted proofs can be found in [4].

2 Preliminaries on Graphs

In this section we assume that Q is a finite set of elements. A Q-labeled undirected
graph (shortly Q-graph or graph) is a tuple G = (V,E, L), where V is a finite set
of vertices (sometimes called nodes), and E ⊆ V × V is a finite set of edges, and
L : V → Q is a labeling function. We consider here undirected graphs, i.e., such
that 〈u, v〉 ∈ E iff 〈v, u〉 ∈ E. We denote by GQ the set of Q-graphs. For an edge
〈u, v〉 ∈ E, u and v are called its endpoints and we say that u and v are adjacent

On the Power of Cliques in the Parameterized Verification 443

vertices. For a node u we call vicinity the set of its adjacent nodes (neighbors).
Given a vertex v ∈ V , the degree of v is the size of the set {u ∈ V | 〈v, u〉 ∈ E}.
The degree of a graph is the maximum degree of its vertices. We will sometimes
denote L(G) the set L(V) (which is a subset of Q). A path π in a graph is a finite
sequence v1, v2, . . . , vm of vertices such that for 1 ≤ i ≤ m − 1, 〈vi, vi+1〉 ∈ E
and the integer m− 1 (i.e. its number of edges) is called the length of the path
π, denoted by |π|. A path π = v1, . . . , vm is simple if for all 1 ≤ i, j ≤ m with
i �= j, vi �= vj , in other words each vertex of the graph occurs at most once in
π. A cycle is a path π = v1, . . . , vm such that v1 = vm. A graph G = 〈V,E, L〉
is connected if for all u, v ∈ V with u �= v, there exists a path from u to v in
G. A clique in an undirected graph G = 〈V,E, L〉 is a subset C ⊆ V of vertices,
such that for every u, v ∈ C with u �= v, 〈u, v〉 ∈ E. A clique C is said to be
maximal if there exists no vertex u ∈ V \C such that C ∪ {u} is a clique. If the
entire set of nodes V is a clique, we say that G is a clique. A bipartite Q-graph
is a tuple 〈V1, V2, E, L〉 such that 〈V1 ∪ V2, E, L〉 is a Q-graph, V1 ∩ V2 = ∅ and
E ⊆ (V1 × V2) ∪ (V2 × V1).

The diameter of a graph G = 〈V,E, L〉 is the length of the longest shortest
simple path between any two vertices of G. Hence, the diameter of a clique is
always one. We also need to define some graph orderings. Given two graphs
G = 〈V,E, L〉 and G′ = 〈V ′, E′, L′〉, G is in the subgraph relation with G′,
written G �s G

′, whenever there exists an injection f : V → V ′ such that, for
every v, v′ ∈ V , if 〈v, v′〉 ∈ E, then 〈f(v), f(v′)〉 ∈ E′ and for every v ∈ V ,
L(v) = L′(f(v)). Furthermore, G is in the induced subgraph relation with G′,
written G �i G

′, whenever there exists an injection f : V → V ′ such that,
for every v, v′ ∈ V , 〈v, v′〉 ∈ E if and only if 〈f(v), f(v′)〉 ∈ E′ and for every
v ∈ V , L(v) = L′(f(v)). As an example, a path with three nodes is a subgraph,
but not an induced subgraph, of a ring of the same order. Finally, we recall the
notion of well-quasi-ordering (wqo for short). A quasi order (A,≤) is a wqo if for
every infinite sequence of elements a1, a2, . . . , ai, . . . in A, there exist two indices
i < j s.t. ai ≤ aj . Examples of wqo’s are the sub-multiset relation, and both the
subgraph and the induced subgraph relation over graphs with simple paths of
bounded length [5].

3 Ad Hoc Networks

In our model of ad hoc networks a configuration is simply a graph and we assume
that each node of the graph is a process that runs a common predefined protocol.
A protocol is defined by a communicating automaton with a finite set Q of
control states. Communication is achieved via selective broadcast. The effect of
a broadcast is in fact local to the vicinity of the sender. The initial configuration
is any graph in which all the nodes are in an initial control state. Remark that
even if Q is finite, there are infinitely many possible initial configurations. We
next formalize the above intuition.

Individual Behavior. The protocol run by each node is defined via a process
P = 〈Q,Σ,R,Q0〉, where Q is a finite set of control states, Σ is a finite alphabet,

444 G. Delzanno, A. Sangnier, and G. Zavattaro

R ⊆ Q× ({τ}∪{!!a, ??a | a ∈ Σ})×Q is the transition relation, and Q0 ⊆ Q is a
set of initial control states. The label τ represents the capability of performing an
internal action, and the label !!a (??a) represents the capability of broadcasting
(receiving) a message a ∈ Σ.

Network Semantics. An AHN associated to P is defined via a transition system
AP = 〈C,⇒, C0〉, where C = GQ (undirected graphs with labels in Q) is the set of
configurations, C0 = GQ0 (undirected graphs with labels in Q0) is the subset of
initial configurations, and ⇒⊆ C × C is the transition relation defined next. For
u ∈ V , we first define the set Ra(u) = {q ∈ Q | 〈L(u), ??a, q〉 ∈ R} that contains
states that can be reached from the state L(u) upon reception of message a.
For G = 〈V,E, L〉 and G′ = 〈V ′, E′, L′〉, G ⇒ G′ holds iff G and G′ have the
same underlying structure, i.e., V = V ′ and E = E′, and one of the following
conditions on L and L′ holds:

– ∃v ∈ V s.t. (L(v), τ, L′(v)) ∈ R, and L(u) = L′(u) for all u in V \ {v};
– ∃v ∈ V s.t. (L(v), !!a, L′(v)) ∈ R and for every u ∈ V \ {v}

• if 〈v, u〉 ∈ E and Ra(u) �= ∅ (reception of a in u is enabled), then
L′(u) ∈ Ra(u).

• L(u) = L′(u), otherwise.

An execution is a sequence G0G1 . . . such that G0 ∈ GQ0 and Gi ⇒ Gi+1 for
i ≥ 0. We use ⇒∗ to denote the reflexive and transitive closure of ⇒.

Observe that a broadcast message a sent by v is delivered only to the subset
of neighbors interested in it. Such a neighbor u updates its state with a new
state taken from R(u). All the other nodes (including neighbors not interested
in a) simply ignore the message. Also notice that the topology is static, i.e., the
set of nodes and edges remain unchanged during a run.

Finally, for a set of Q-graphs T ⊆ GQ, the AHN AT
P restricted to T is defined

by the transition system 〈C ∩ T ,⇒T , C0 ∩ T 〉 where the relation ⇒T is the
restriction of ⇒ to (C ∩ T) × (C ∩ T).

Decision Problem

Given a process P = 〈Q,Σ,R,Q0〉 with an associated AHN AP = 〈C,⇒, C0〉,
we define the control state reachability (cover) as follows:

Given a control state q ∈ Q, does there exist G ∈ C0 and G′ ∈ C such
that q ∈ L(G′) and G⇒∗ G′?

Control state reachability is strictly related to parameterized verification of
safety properties. The input control state q can be seen as an error state for
the execution of the protocol in some node of the network. If the answer to
cover is yes, then there exists a sufficient number of processes, all executing
the same protocol, and an initial topology from which we can generate a con-
figuration in which the error is exposed. Under this perspective, cover can be
viewed as instance of a parameterized verification problem.

On the Power of Cliques in the Parameterized Verification 445

L0

firstZ1 Z1 Z1 Z1 Z1 Z1. . .

firstZ2 Z2 Z2 Z2 Z2 Z2. . .

Fig. 1. Butterfly-shaped induced subgraph needed to simulate a Minsky machine

4 Configurations with Bounded Diameter

As mentioned in the introduction, cover is undecidable for configurations with
unrestricted topology [3]. The problem becomes decidable when configurations
are restricted to graphs with k-bounded paths (BP k) for any k ≥ 0. k-bounded
path graphs are graphs in which there exist no simple path with length strictly
greater than k. The class BP k is infinite for any k > 0. As an example, with
k = 2 it includes star-shaped graphs of any order.

Unfortunately, restricting protocol analysis to configurations in BP k seems to
have a limited application in a communication model with selective broadcast.
Indeed, we first observe that BP k does not include the class K consisting of
clique graphs of any order. Cliques however are appealing for at least two rea-
sons. First, they represent the best possible scenario for optimizing broadcast
communication (one broadcast to reach all nodes). Second, when restricting con-
figurations only to graphs in the class K, cover can be reduced to coverability
in a Broadcast Protocol, i.e., in a model in which configurations are multisets of
processes defined by communicating automata [6]. Coverability is decidable in
Broadcast Protocols in [7]. For these reasons, in this paper we investige cover in
restricted classes of graphs that at least include the class K. The first class we
consider is that of graphs with bounded diameter. Fixed k > 0, a graph G has
a k-bounded diameter if and only if its diameter is smaller than or equal to k.
Observe that for every k > 0, clique graphs belong to the class of graphs with
a diameter bounded by k. Furthermore, given k > 0 the class BP k is included
in the class of graphs with a diameter bounded by k. Graphs with k-bounded
diameter coincide with the so called k-clusters used in partitioning algorithm for
ad hoc networks [9]. Thus, this class is of particular relevance for the analysis
of selective broadcast communication. Intuitively, the diameter corresponds to
the minimal number of broadcasts (hops) needed to send a message to all nodes
connected by a path with the sender.

The cover problem restricted to configurations with k-bounded diameter
turns out to be undecidable for k > 1. Indeed, we show next that AHNs working
over this class of configurations can be used to simulate the behavior of a de-
terministic Minsky machine. A deterministic Minsky machine manipulates two

446 G. Delzanno, A. Sangnier, and G. Zavattaro

integer variables c1 and c2, which are called counters, and it is composed of a
finite set of instructions. Instructions are of the form (1) L : ci := ci +1; goto L′

or (2) L : if ci = 0 then goto L′ else ci := ci − 1; goto L′′ where i ∈ {1, 2}
and L,L′, L′′ are labels preceding each instruction. There is also a special halting
label LF . The halting problem consists in deciding whether or not the execution
that starts from L0, with both counters set to 0, reaches LF . The halting prob-
lem for deterministic two counter machines is undecidable [14]. The encoding is
built in two steps.

We first need to run a protocol that terminates successfully only when the
projection of the configuration on an appropriate set of control state is a sort of
butterfly (see Figure 1) consisting of two lists (to represent the counters) and in
which all nodes in the lists are connected to a monitor node (to represent the
program counter).

To reach such a configuration, we use a process P = 〈Q,Σ,R,Q0〉 with
{L0, f irstZ1, Z1, f irstZ2, Z2, error} ⊆ Q such that if G0 is an initial config-
uration in AP = 〈C,⇒, C0〉 and if G0 ⇒∗ G for a configuration G = 〈V,E, L〉
verifying L0 ∈ L(V), then the graph θ = 〈V ′, E′, L′〉 represented in Figure 1 is
an induced subgraph of G. Furthermore, all vertices v ∈ V \ V ′ adjacent to a
vertex of θ in G are labeled with error. We also have that all the nodes labeled
with L0 in G are connected as in θ (when abstracting away the nodes in state
error). In these graphs θ of Figure 1, the number of nodes is guessed nondeter-
ministically and represents the maximum value reached by the counters during
the simulation. Thus, the number of Z1 and Z2 can be different. However, there
is at least one node labeled Z1 and one labeled Z2. The diameter of θ is equal
to 2 no matters how many nodes there are labelled with Z1 or Z2. The protocol
for the first step is described in detail in [4].

Once the configuration is in the desired form, the second step consists in
the simulation of the instructions of the encoded Minsky machine. The protocol
for this step is shown in Figure 2 (as far as the simulation of the counters is
concerned) and 3 (for the simulation of the instructions). More precisely, we
build a process P ′ obtained by completing the process P with the processes
shown on the Figures 2 and 3.

The simulation works as follows: first if the Minsky machine is at the line
labelled with L and m is the value of the first counter (the same reasoning holds
for the second counter) then in the corresponding configuration of the AHN
there is one node labelled with L which is neighbor of m − 1 nodes labelled by
NZ1 and if m > 0 this node has also a neighbor labelled by firstNZi, if m = 0
then this same neighbor is labelled by firstZi. To simulate an increment of the
form L1 : ci := ci + 1; goto L2, the node of the AHN labelled with L1 sends
an inci and the unique node labelled by nextZi receives it, acknowledges it by
sending an ackinci and updates its unique neighbor labelled by Zi to nextZi.
The decrement works in the same manner except that if the value of the counter
ci is equal to 0 the node labelled with a label of the Minsky machine receives a
zeroi otherwise it receives a deci. We have then that in P ′ there is an execution
from an initial configuration which reaches a configuration where at least one

On the Power of Cliques in the Parameterized Verification 447

firstZi
??inci

firstNZi
!!ackinci

??ackdeci

??deci

!!zeroi

Zi nextZi
??ackinci ??inci

NZ1
!!ackinci

??ackdeci

??deci

!!ackdeci

Fig. 2. Simulation of the instructions for counter ci

L1
!!inci

L2
??ackinci

L3
!!deci

L4
??ackdeci

L5

??zeroi

Fig. 3. Encoding (L1 : ci := ci + 1; goto L2) and (L3 : if ci = 0 then goto L5

else ci := ci − 1; goto L4)

node is labelled by LF if and only if the corresponding Minsky machine halts.
This allows us to deduce:

Theorem 1. For k > 1, cover restricted to configurations with k-bounded di-
ameter is undecidable.

Note that if we restrict our attention to graphs with a diameter bounded by 1,
the above encoding does not work anymore. The class of graphs with diameter
1 corresponds to the set of clique graphs and, as said above, cover turns out
to be decidable when restricting to clique topologies.

Bounded diameter and bounded degree. From a non trivial result on
bounded diameter graphs [11], we obtain an interesting decidable subclass. In-
deed, in [11] the authors show that, given two integers k, d > 0, the number of
graphs whose diameter is smaller than k and whose degree (max number of neigh-
bors) is smaller than d is finite. The Moore boundM(k, d) = (k(k−1)d−2)/(k−2)
is an upper bound for the size of the largest undirected graph in such a class.
The following property then holds.

448 G. Delzanno, A. Sangnier, and G. Zavattaro

G KG

Fig. 4. A graph G and its associated clique graph KG

Theorem 2. For fixed k, d > 0 and given a process P = 〈Q,Σ,R,Q0〉, cover
restricted to configurations with k-bounded diameter and d-bounded degree is in
Pspace in the size of P .

Proof. From [11], it follows that the number of possible configurations is finite.
Thus, cover is decidable. Since k and d are two fixed constants, the constant
N = M(k, d) gives us an upper bound on the number of nodes of the largest
graph to be considered. Notice that we only need polynomial space in the size of
P to store a graph with size smaller or equal than N . To solve the cover prob-
lem, we define a non deterministic algorithm that first guesses the initial graph
G0 and then explore all possible successor configurations in search for an error
state. Since the topology never changes, in the worst case we have to consider
all possible relabelings of the initial graph. Thus, the size of the state space is
bounded by |Q|N and it is still polynomial in the size of P .

5 Maximal Clique Graphs with Bounded Paths

In this section we prove decidability for cover restricted to the class of graphs
we call BPCn (n-Bounded Path maximal Cliques graphs). BPCn contains both
n-bounded path graphs and any clique graph, while being strictly contained in
the class of graphs with k-bounded diameter. The class is defined on top of the
notion of maximal clique graphs associated to a configuration.

Definition 1. Given a connected undirected graph G = 〈V,E, L〉 and • �∈ L(V),
the maximal clique graph KG is the bipartite graph 〈X,W,E′, L′〉 in which

– X = V ;
– W ⊆ 2V is the set of maximal cliques of G;
– For v ∈ V,w ∈ W , 〈v, w〉 ∈ E′ iff v ∈ w;
– L′(v) = L(v) for v ∈ V , and L′(w) = • for w ∈W .

Note that for each connected graph G there exists a unique maximal clique
graph KG. An example of construction is given by Figure 4. One can also easily
prove that if G is a clique graph then in KG there is no path of length strictly
greater than 3. Furthermore, from the maximality of the cliques in W if two
nodes v1, v2 ∈ V are connected both to w1 and w2 ∈ W , then w1 and w2 are
distinct cliques. We use the notation v1 ∼w v2 to denote that v1, v2 belong to
the same clique w.

On the Power of Cliques in the Parameterized Verification 449

Definition 2. For n ≥ 1, the class BPCn consists of the set of configurations
whose associate maximal clique graph has n-bounded paths (i.e. the length of the
simple paths of KG is at most n).

Let us now study the properties of this class of graphs. We first introduce the
following ordering on BPCn graphs.

Definition 3. Assume G1 = 〈V1, E1, L1〉 with KG1 = 〈X1,W1, E
′
1, L

′
1〉, and

G2 = 〈V2, E2, L2〉 with KG2 = 〈X2,W2, E
′
2, L

′
2〉 with G1 and G2 both connected

graphs. Then, G1 (G2 iff there exist two injections f : X1 → X2 and g : W1 →
W2, such that

i. for every v ∈ X1, and C ∈W1, v ∈ C iff f(v) ∈ g(C);
ii. for every v1, v2 ∈ X1, and C ∈ W2, if f(v1) ∼C f(v2), then there exists

C′ ∈W1 s.t. f(v1) ∼g(C′) f(v2);
iii. for every v ∈ X1, L′

1(v) = L′
2(f(v));

iv. for every C ∈ W1, L′
1(C) = L′

2(g(C)).

The first condition ensures that (dis)connected nodes remain (dis)connected in-
side the image of g. Indeed, from i it follows that, for every v1, v2 ∈ X1, and
C ∈ W1, v1 ∼C v2 iff f(v1) ∼g(C) f(v2). The second condition ensures that
disconnected nodes remain disconnected outside the image of g.

By condition i in the definition of (, we have that G1 (G2 (via f and g)
implies that KG1 is in the induced subgraph relation with KG2 (via f ∪ g).
Furthermore, we also have the following property:

Lemma 1. G1 (G2 iff G1 �i G2 (G1 is an induced subgraph of G2).

We are now interested in the property of being wqo for the above defined graph
orderings. Lemma 1 shows that the ordering (, defined on the maximal clique
graph, is equivalent to the induced subgraph ordering on the original graphs.
It is well known that the induced subgraph relation is not a wqo for generic
graphs (e.g. consider the infinite sequence of rings of increasing size). There are
however interesting classes of graphs for which the induced subgraph ordering is
wqo. For instance, induced subgraphs is a wqo for the class of graphs for which
the length of simple paths is bounded by a constant (bounded path graphs). This
result is known as Ding’s Theorem [5]. Now observe that given n ≥ 1 the class
BPCn we are interested in contains cliques of arbitrary order and it also strictly
contains the class of n/2-bounded path graphs. Interestingly, Ding’s result can
be extended to the BPCn class for every n ≥ 1.

Lemma 2. For any n ≥ 1, (BPCn,() is a well-quasi ordering.

The proof, given in [4], follows Ding’s induction method and exploits a decom-
position property of bounded path graphs due to Robertson and Seymour.

Given a subset S ⊆ BPCn, we now define its upward closure S ↑= {G′ ∈
BPCn | G ∈ S and G (G′}, i.e., S ↑ is the set of configurations generated by
those in S via (. A set S ⊆ BPCn is an upward closed set w.r.t. to (BPCn,()
if S ↑= S. Since (BPCn,() is a wqo, we obtain that every set of configurations

450 G. Delzanno, A. Sangnier, and G. Zavattaro

that is upward closed w.r.t. (BPCn,() has a finite basis, i.e., it can be finitely
represented by a finite number of graphs. We can exploit this property to define
a decision procedure for the coverability problem. For this purpose, we apply the
methodology proposed in [1]. The first property we need is that the transition
relation induced by our model is compatible with (.

Lemma 3. Fixed n ≥ 1, for every G1, G2, G
′
1 ∈ BPCn such that G1 ⇒BPCn G2

and G1 (G′
1, there exists G′

2 ∈ BPCn such that G′
1 ⇒BPCn G

′
2 and G2 (G′

2.

For a fixed n ≥ 1, monotonicity ensures that if S is an upward closed set of
configurations, then the set of predecessors of S according to ⇒, defined as
pre(S) = {G | G ⇒BPCn G′ and G′ ∈ S}, is still upward closed. Furthermore,
we can effectively compute a finite representation of S ∪ pre(S).

Lemma 4. Given a finite basis B of an upward closed set S ⊆ BPCn, there
exists an algorithm to compute a finite basis B′ of S ∪ pre(S) s.t. S ∪ pre(S) =
B′ ↑.

This allows us to state the main theorem of this section.

Theorem 3. Given n ≥ 1, cover restricted to BPCn configurations is
decidable.

Proof. It follows from Lemmas 2, 3, and 4 and from the general properties of
well structured transition systems [1,2,10]. ��

6 Ackermann-Hardness of cover in BPCn

In the previous section we have proved that, despite cover is undecidable for
AHNs, it becomes decidable when imposing the configurations to be in BPCn

and this for every n ≥ 1. We prove here, that even if decidable, this problem is
not primitive recursive. The proof is by reduction from the coverability problem
for reset nets, which is known to be an Ackermann-hard problem [18].

A reset net RN is a tuple 〈P, T,m0〉 such that P is a finite set of places, T
is a finite set of transitions, and m0 is a marking, i.e. a mapping from P to N
that defines the initial number of tokens in each place of the net. A transition
t ∈ T is defined by a mapping •t (preset) from P to N, a mapping •t (postset),
and by a set of reset arcs t↓⊆ P . A configuration is a marking m. Transition t
is enabled at marking m iff •t(p) ≤ m(p) for each p ∈ P . Firing t at m leads
to a new marking m′ defined as m′(p) = m(p) −• t(p) + t•(p) if p �∈ t ↓, and
m′(p) = 0 otherwise. We assume that if p ∈ t↓ then t•(p) = 0. A marking m is
reachable from m0 if it is possible to produce it after firing finitely many times
transitions in T . Given a reset net 〈P, T,m0〉 and a marking m, the coverability
problem consists in checking for the existence of a reachable marking m′ such
that m′(p) ≥ m(p) for every p ∈ P . In [18] it is proved that the coverability
problem for reset nets is Ackermann-hard.

We start by showing a linear reduction of the coverability problem for reset
nets to cover for the class of AHNs with clique topologies, denoted withK. Note

On the Power of Cliques in the Parameterized Verification 451

q0master slave
!!start ??start

Fig. 5. The initialization phase

master

!!ps

??ack

Error
??ack

master′

!!ok

slave

??ps??ok

!!ack

qps

??ok

Fig. 6. Generating the initial marking with only one token in ps

that K corresponds to BPCn with 2 ≤ n < 4. Then, we show how to generalize
the presented reduction to AHNs with topologies in BPCn, with n ≥ 4.

Let RN = 〈P, T,m0〉 be a reset net, and let m be a marking. We construct a
process P = 〈Q,Σ,R,Q0〉 with a control state q ∈ Q such that m is coverable
in RN iff the control state q is reachable in AK

P . We assume, without loss of
generality, that both m0 and m contain only one token, i.e. there exist two
places ps and pe such that m0(ps) = 1 (resp. m(pe) = 1) and m0(p) = 0 (resp.
m(p) = 0) for every p �= ps (resp. p �= pe).

We now describe the corresponding process definition P = 〈Q,Σ,R,Q0〉.
We define Q0 = {q0}, i.e. all the processes are initially in the state q0. At the
beginning the processes perform a simple protocol (depicted in Fig. 5) that elects
one node as the master, and the other nodes become slaves.

The master will control the simulation of the reset net, while the slaves will
be used to represent tokens in the net markings. Namely, when a slave process
is in the state qp ∈ Q, it represents one token in the place p ∈ P . For instance,
in order to represent the initial marking it is necessary for the master to move
one slave in the state qps . This is achieved by the protocol in Fig. 6.

Note that the protocol can deadlock in two possible cases: either when there
is no slave node, or two of them reply with the ack message before the master
closes the protocol with the ok message. If the master completes the protocol by
entering in the state master′, exactly one slave moved to the state qps .

At this stage, the simulation of the net transitions starts. The master in
state master′ nondeterministically selects one of the possible transitions t, with
•t = {p1, . . . , pn}, t ↓= {p′1, . . . , p′m}, and t• = {p′′1 , . . . , p′′l }, and it starts its

452 G. Delzanno, A. Sangnier, and G. Zavattaro

q0

!!start

??ready

master

!!go

blocked

??ready

??start

??start

??ready

!!ready

slave

??go

Fig. 7. The initialization phase for BPCn with n ≥ 4

simulation by performing the following protocol. It first tries to consume the
tokens in the preset •t by performing in sequence protocols similar to the one in
Fig. 6: in this case, it moves processes from the states qpi to slave to simulate
the consumption of tokens in the places pi. After, the reset actions are performed
simply by emitting the messages resetp′i, whose effect is to move all nodes in
the states qp′

i
to the slave state. Finally, by performing in sequence the same

protocol of Fig. 6, it simulates the production of tokens in the places p′′i .

Lemma 5. Given a marking m containing only one token in pe, we have that
m can be covered in RN iff AK

P satisfies cover for the state qpe .

Proof. The if part follows from the fact that every ad hoc network in AK
P cor-

rectly reproduces computations of the reset net (it simply introduces deadlocks
that are not relevant as far as the coverability problem is concerned). The only-
if part is a consequence of the fact that every finite computation of the reset
net can be simulated by at least one ad hoc network in AK

P having a sufficient
number of nodes. ��

It is easy to see that the above construction does not work for topologies different
from the clique. For instance, in the topologies in BPCn with n ≥ 4, there are
nodes belonging to two distinct maximal cliques. If such nodes are connected to
two distinct masters, they could generate interferences among them. In order to
cope with this problem, we build another process P ′ obtained by replacing the
trivial initialization protocol of Fig. 5 with the most sophisticated one depicted
in Fig. 7.

After the execution of this initialization protocol, we have the guarantee that
slave processes do not generate interferences between two distinct master nodes.
In fact, at the end of the protocol we have the guarantee that every slave node
is connected to exactly one master, and all of its other neighbors are blocked.

On the Power of Cliques in the Parameterized Verification 453

Lemma 6. Given a marking m containing only one token in pe and n ≥ 4, we
have that m can be covered in RN iff ABPCn

P′ satisfies cover for the state qpe .

We can conclude with the main result of this section.

Theorem 4. For every n ≥ 2, cover restricted to BPCn configurations is non-
primitive recursive.

Proof. The result follows from the Ackermann-hardness of reset nets [18], and
from Lemma 5 and Lemma 6. It is sufficient to note that K coincides with BPCn

with 2 ≤ n < 4, and to observe that P is obtained in linear time from the reset
net RN .

7 Broadcast vs. Unicast Communication

Although broadcast communication is specifically devised for networks in which
nodes have no complete knowledge of the surrounding topology, unicast (point-
to-point) communication is often provided, e.g., to exchange information after
the acquisition of the information on the vicinity of a node. We investigate here
the relationship between the coverability problem for unicast and broadcast com-
munication. Specifically, we show that the two problems can be kept separated
(i.e. the problem is more difficult for broadcast) in all the classes of graphs
studied in [3] and in the present paper.

For this analysis we first introduce two primitives !a and ?a for unicast com-
munication. As in CCS [13], when a process sends a message a (action !a) it
synchronizes with only one process that is in a state in which it is ready to re-
ceive a (action ?a). The receiving process is nondeterministically chosen among
those ready to receive a. For unicast communication the definition of a pro-
cess P = 〈Q,Σ,R,Q0〉 is modified in the component R that is now a subset of
Q × ({τ} ∪ {!a, ?a} | a ∈ Σ) × Q. The operational semantics is obtained via a
transition relation ⇒ defined as follows: given two configurations G = 〈V,E, L〉
and G′ = 〈V ′, E′, L′〉, we have G ⇒ G′ iff G and G′ have the same underlying
structure, i.e., V = V ′ and E = E′, and, in addition to the conditions for τ of
Section 3, the following condition on L and L′ defines a case in which a transition
may take place:

– there exists v �= w ∈ V such that (L(v), !a, L′(v)) and (L(w), ?a, L′(w)) are
both in R, and L(u) = L′(u) for all u in V \ {v, w}.

For the sake of clarity, in the rest of the section we name AHNb the model
with broadcast (and no unicast) and AHNu the model with unicast (and no
broadcast).

The coverability problem for AHNu can be reduced to the corresponding
problem for AHNb. Indeed, unicast communication can be simulated via broad-
cast messages via a protocol like the one in Figure 6. The encoding introduces

454 G. Delzanno, A. Sangnier, and G. Zavattaro

deadlocks that are not relevant as far as the cover problem is concerned. The
following theorem then holds.

Theorem 5. The control state reachability problem for AHNu is in EXPspace.

Proof. We first show that we can restrict our attention to clique graphs only.
Indeed, given a state q, if there exist G0 and G1 with n nodes s.t. G0 ⇒∗

G G1
and q is a label in G1, then there exist two cliques K0 and K1 with order n s.t.
K0 ⇒∗

G K1 and q is a label in K1. This property follows from the observation
that for any graph G with n′ ≤ n nodes, there exists a clique graph with n nodes
such that G �s Kn.

Now let K0 be the clique such that G0 �s K0. Since G0 ⇒∗
G G1, by exploiting

the monotonicity of unicast communication w.r.t. subgraph ordering, we have
that there exists K1 s.t. K0 ⇒∗

G K1 and q is a label in K1. We observe that
control state reachability in the class of clique graphs can be reduced to cover-
ability in a Petri net in which each place corresponds to a state in Q. The initial
marking is produced by firing transitions that produce a nondeterministically
chosen number of tokens in the places in Q0. For each unicast communication
step involving a pair of nodes in state q and q′, we add a transition with q and
q′ in the preset, and the corresponding target states in the postset.

It follows then from classical results on Petri nets [15] that we can use an
EXPspace decision procedure for deciding cover for AHNu.

From this property and from the undecidability result for coverability in AHNb

(for unrestricted topologies), we observe that there cannot be any recursive en-
coding of coverability in AHNb into the corresponding problem in AHNu. Fur-
thermore, in the case of cliques with bounded paths, from Theorem 4, we have
that there is no primitive recursive encoding of coverability in AHNb. This way
we separate the difficulty of the coverability problem in the two types of com-
munication schemes.

8 Conclusions

In this paper we have extended the decidability result for verification of ad hoc
networks with bounded path topology presented in [3] to a larger and more
interesting class of graphs. The new class consists of topologies in which the cor-
responding maximal cliques are connected by paths of bounded length. This class
of graphs is contained in the class of graphs with bounded diameter, for which
control state reachability turns out to be undecidable. Furthermore, it contains
the class of clique graphs for which control state reachability is proved to be
Ackermann-hard. In the paper we have also compared the expressive power of
broadcast and unicast communication with respect to the control state reachabil-
ity problem. As a future work, we plan to study decidability issues in presence
of communication and node failure and to consider extensions of the ad hoc
network model with features like timing information and structured messages.

On the Power of Cliques in the Parameterized Verification 455

References

1. Abdulla, P.A., Čerāns, C., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: LICS 1996, pp. 313–321. IEEE Computer Society,
Los Alamitos (1996)

2. Abdulla, P.A., Čerāns, C., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inf. Comput. 160(1-2), 109–127 (2000)

3. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized Verification of Ad Hoc
Networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269,
pp. 313–327. Springer, Heidelberg (2010)

4. Delzanno, G., Sangnier, A., Zavattaro, G.: On the Power of Cliques in the Pa-
rameterized Verification of Ad Hoc Networks. Technical Report DISI-TR-11-01,
DISI-University of Genova (2011)

5. Ding,G.:Subgraphsandwellquasiordering.J.ofGraphTheory16(5),489–502 (1992)
6. Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic infinite-

state systems. In:LICS1998,pp. 70–80. IEEEComputerSociety,LosAlamitos (1998)
7. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:

LICS 1999, pp. 352–359. IEEE Computer Society, Los Alamitos (1999)
8. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC

protocol for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007)

9. Fernandess, Y., Malkhi, D.: K-clustering in wireless ad hoc networks. In: POMC
2002, pp. 31–37. ACM, New York (2002)

10. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
ret. Comp. Sci. 256(1-2), 63–92 (2001)

11. Hoffman, A., Singleton, R.: On Moore graphs with diameter 2 and 3. IBM J. Res.
Develop. 4, 497–504 (1960)

12. Meyer, R.: On boundedness in depth in the pi-calculus. In: Ausiello, G., Karhumäki,
J., Mauri, G., Ong, L. (eds.) IFIP TCS 2008. IFIP, vol. 273, pp. 477–489. Springer,
Heidelberg (2008)

13. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

14. Minsky, M.: Computation: finite and infinite machines. Prentice-Hall, Englewood
Cliffs (1967)

15. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theoret. Comp. Sci. 6, 223–231 (1978)

16. Rosa-Velardo, F.: Depth boundedness in multiset rewriting systems with name
binding. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 161–175.
Springer, Heidelberg (2010)

17. Saksena, M., Wibling, O., Jonsson, B.: Graph Grammar Modeling and Verification
of Ad Hoc Routing Protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 18–32. Springer, Heidelberg (2008)

18. Schnoebelen, P.: Revisiting Ackermann-Hardness for Lossy Counter Machines and
Reset Petri Nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 616–628. Springer, Heidelberg (2010)

19. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: Query-Based Model Checking of
Ad Hoc Network Protocols. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 603–619. Springer, Heidelberg (2009)

20. Wies, T., Zufferey, D., Henzinger, T.A.: Forward analysis of depth-bounded pro-
cesses. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 94–108. Springer,
Heidelberg (2010)

The Reduced Product of Abstract Domains and the
Combination of Decision Procedures

Patrick Cousot 2,3, Radhia Cousot 3,1, and Laurent Mauborgne 3,4

1 Centre National de la Recherche Scientifique, Paris
2 Courant Institute of Mathematical Sciences, New York University

3 École Normale Supérieure & Inria, Paris
4 Instituto Madrileño de Estudios Avanzados, Madrid

Abstract. The algebraic/model theoretic design of static analyzers uses abstract
domains based on representations of properties and pre-calculated property trans-
formers. It is very efficient. The logical/proof theoretic approach uses SMT solvers
and computation on-the-fly of property transformers. It is very expressive. We pro-
pose a combination of the two approaches to reach the sweet spot best adapted to
a specific application domain in the precision/cost spectrum. The proposed com-
bination uses an iterated reduction to combine abstractions. The key observation
is that the Nelson-Oppen procedure which decides satisfiability in a combination
of logical theories by exchanging equalities and disequalities computes a reduced
product (after the state is enhanced with some new “observations” corresponding
to alien terms). By abandoning restrictions ensuring completeness (such as dis-
jointness, convexity, stably-infiniteness or shininess, etc) we can even broaden the
application scope of logical abstractions for static analysis (which is incomplete
anyway). We also introduce a semantics based on multiple interpretations to deal
with the soundness of that combinations on a formal basis.

1 Introduction

Recent progress in SMT solvers and theorem provers as used in program verification
[2] has been recently exploited for static analysis by abstract interpretation [3, 4] using
logical abstract domains [21, 10]. This approach hardly scales up and is based on a
mathematical program semantics quite different from the implementation (such as in-
tegers instead of modular arithmetics). Static analyzers such as Astrée [1] which are
based on algebraic abstractions of the machine semantics do not have such efficiency
and soundness limitations. However their expressivity is limited by that of their abstract
domains. It is therefore interesting to combine algebraic and logical abstract interpre-
tations to get the best of both worlds i.e. scalability, expressivity, natural interface with
the end-user using logical formulæ, and soundness with respect to the machine seman-
tics. The proposed combination is based on the understanding of the Nelson-Oppen
procedure [15] as an iterated observation reduced product.

After some syntax, we recall multi-interpreted semantics [5], a necessary mean to
describe the soundness and relative precision of the logical abstract domains defined
in sect. 2.8. Next section, we introduce observational semantics, which is a new con-
struction generalizing static analysis practices and necessary to describe the first step of

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 456–472, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Abstract Domains and Decision Procedures 457

the Nelson-Oppen procedure in the abstract interpretation framework. Sect. 4 recalls the
notion of reduced product and introduces the iterated reduced product, with new incom-
pleteness results on that approach. Then sect. 5 is focused on the Nelson-Oppen proce-
dure and the links with abstract interpretation. Finally, sect. 6 develops new methods to
combine classical abstract interpretation and theorem provers.

2 Syntax and Semantics of Programs

In this section, we recall the notions introduced in [5] necessary to deal with classical
abstract domains and logical abstract domains in a common semantic framework.

2.1 Syntax

We define a signature as a tuple Σ = 〈�, �, �〉 such that the sets x ∈ � of variables,
f ∈ � =

⋃
n�0 �

n of function symbols (c ∈ �0 are constants), and p ∈ � �
⋃

n�0 �
n of

predicate symbols are mutually disjoints. The terms t ∈ �(Σ) ::= x | c | f(t1, . . . , tn).
Conjunctive clauses ϕ, ψ, . . . ∈ �(Σ) ::= a | ϕ ∧ ϕ are quantifier-free formulæ in simple
conjunctive normal form. First-order logic formulæ Ψ,Φ, . . . ∈ �(Σ) ::= a | ¬Ψ |
Ψ ∧ Ψ | ∃ x : Ψ may be quantified. Finally programs of the programming language
on a given signature Σ are built out of basic expressions e ∈ �(Σ) � �(Σ) ∪�(Σ) and
imperative commands C ∈ 	(Σ) including assignments and tests C ::= x := e | ϕ. Tests
appear in conditionals and loops whose syntax, as well as that of programs, is irrelevant.

2.2 Interpretations

An interpretation I for a signature Σ is a pair 〈IV, Iγ〉 such that IV is a non-empty set
of values and Iγ interprets constants, functions (into IV) and predicates (into Boolean
values B � {false, true}). Let I(Σ) be the class of all such interpretations. In a given
interpretation I ∈ I(Σ), an environment η ∈ RΣI � �→ IV is a function from variables
to values. An interpretation I and an environment η ∈ RΣI satisfy a formula Ψ , written
I |=η Ψ , in the following way:

I |=η a � �a�Iη I |=η Ψ ∧ Ψ ′ � (I |=η Ψ) ∧ (I |=η Ψ ′)

I |=η ¬Ψ � ¬(I |=η Ψ) I |=η ∃ x : Ψ � ∃ v ∈ IV : I |=η[x←v] Ψ
1

where the value �a�Iη ∈ B of an atomic formula a ∈ �(Σ) in environment η ∈ RΣI is

�ff�Iη � false �p(t1, . . . , tn)�Iη � Iγ(p)(�t1�Iη, . . . , �tn�Iη), n � 1
�¬a�Iη � ¬�a�Iη, where ¬true = false, ¬false = true

and the value �t�Iη ∈ IV of the term t ∈ �(Σ) in environment η ∈ RΣI is

�x�Iη � η(x) �c�Iη � Iγ(c) �f(t1, . . . , tn)�Iη � Iγ(f)(�t1�Iη, . . . , �tn�Iη) .

In addition, in first-order logics with equality the interpretation of equality is always
I |=η t1 = t2 � �t1�Iη =I �t2�Iη where =I is the unique reflexive, symmetric, and
transitive relation on IV encoded by its characteristic function.

1 η[x← v] is the assignment of v to x in η where and η[x← v](y) � η(y) when x � y.

458 P. Cousot, R. Cousot, and L. Mauborgne

2.3 Multi-interpreted Program Semantics

A multi-interpreted semantics [5] assigns meanings to a program P in the context of
a set of interpretations I ⊆ I(Σ) for the program signature Σ. For example, integers
can have a mathematical interpretation or a modular interpretation on machines. Then
a program property in PΣI provides for each interpretation in I , a set of environments
for variables � satisfying that property in that interpretation.

RΣI �
{
〈I, η〉

∣∣∣∣ I ∈ I ∧ η ∈ RΣI
}

multi-interpreted environments

PΣI � ℘(RΣI) multi-interpreted properties.

The multi-interpreted concrete semantics CΣI �P� ∈ PΣI of a program P in the context
of multi-interpretations I is assumed to be defined in least fixpoint form CΣI �P� �
lfp⊆ FΣI �P� where the concrete transformer FΣI �P� ∈ PΣI

�→ PΣI is assumed to be in-
creasing2. Since 〈PΣI , ⊆, ∅, R

Σ
I , ∪, ∩〉 is a complete lattice, lfp⊆ FΣI �P� does exist by

Tarski’s fixpoint theorem. The transformer FΣI �P� is defined by structural induction on
the program P in terms of the complete lattice operations and the following local trans-
formers for the

assignment postcondition fI �x := e�P �
{
〈I, η[x← �e�Iη]〉

∣∣∣ I ∈ I ∧ 〈I, η〉 ∈ P
}

assignment precondition bI �x := e�P �
{
〈I, η〉

∣∣∣ I ∈ I ∧ 〈I, η[x← �e�Iη]〉 ∈ P
}

and tests pI �ϕ�P �
{
〈I, η〉 ∈ P

∣∣∣ I ∈ I ∧ �ϕ�Iη = true
}
.

To recover the usual concrete semantics, let � ∈ I(Σ) be the program standard in-
terpretation e.g. as defined explicitly by a standard or implicitly by a compiler, linker,
loader, operating system and network of machines. Then the standard concrete seman-
tics is I = {�}. The reason why we consider multi-interpretations is that it is the natural
setting for the logical abstract domains which are valid up to a theory (Sect. 2.7), which
can have many different interpretations.

2.4 Algebraic Abstract Domains

We let 〈AΣI , �, �, �, . . . , f, p, . . .〉 be an abstract domain abstracting multi-interpreted
properties in PΣI for signature Σ and multi-interpretations I with partial ordering �.
Pre-orders are assumed to be quotiented by the preorder equivalence so AΣI is a poset
but may-be not a complete lattice nor a cpo. The meaning of the abstract properties is
defined by an increasing concretization function γΣI ∈ AΣI

�→PΣI . In case of existence of

a best abstraction, we use a Galois connection 〈PΣI , ⊆〉 −−−−→←−−−−
αΣI

γΣI
〈AΣI , �〉 [4].

The soundness of abstract domains 〈AΣI , �〉, is defined, for all P,Q ∈ AΣI , as

(P � Q) ⇒ (γΣI (P) ⊆ γΣI (Q)) implication γΣI (�) =
{
〈I, η〉

∣∣∣∣ I ∈ I ∧ η ∈ RΣI
}

supremum

γΣI (P � Q) ⊇ (γΣI (P) ∪ γΣI (Q)) join ...

2 f is increasing (or monotone) if x ! y implies f (x) � f (y), written f ∈ 〈P, !〉 �→〈Q, �〉.

Abstract Domains and Decision Procedures 459

The concrete least fixpoint semantics CΣI �P� of a program P in Sect. 2.3 may have no
correspondent in the abstract e.g. because the abstract domain 〈AΣI , �〉 is not a cpo so
that the abstract transformer has no least fixpoint, even maybe no fixpoint. In that case,

we can define the abstract semantics CΣI�P� ∈ ℘(AΣI) as the set of abstract inductive

invariants for an abstract transformer F
Σ

I�P� ∈ AΣI→AΣI of P.

CΣI�P� �
{

P ∈ AΣI

∣∣∣∣∣ F
Σ

I�P�(P) � P
}

postfixpoint semantics.

In practice, only one abstract postfixpoint needs to be computed (while the abstract
semantics defines all possible ones). Such an abstract postfixpoint can be computed e.g.
by elimination or iteratively from the infimum using widenings and narrowings [3].

In the concrete semantics the least fixpoint is, by Tarski’s theorem, an equivalent
representation of the set of concrete postfixpoints.

2.5 Soundness and Completeness of Abstract Semantics

The abstract semantics C�P� ∈ A is sound with respect to a concrete semantics C�P� of
a program P for concretization γ whenever ∀P ∈ A : (∃C ∈ C�P� : C � P) ⇒ (C�P� ⊆
γ(P)). It is complete whenever ∀P ∈ A : (C�P� ⊆ γ(P)) ⇒ (∃C ∈ C�P� : C � P). When
the concrete semantics is defined in fixpoint form C�P� � lfp⊆ F�P� and the abstract
semantics in postfixpoints, the soundness of the abstract semantics follows from the
soundness conditions of the abstraction in Sect. 2.4 and the soundness of the abstract
transformer ∀P ∈ A : F�P� ◦ γ(P) ⊆ γ ◦ F�P�(P) [3, 4]. If the concrete semantics is
also defined in postfixpoint form, then the soundness condition becomes

∀P ∈ A : (∃C ∈ C�P� : C � P) ⇒ (∃C ∈ C�P� : C ⊆ γ(P)) .

Moreover, the composition of sound abstractions is necessarily sound.
The soundness of F�P� can usually be proved by induction on the syntactical struc-

ture of the program P using local soundness conditions.

γ(f̄�x := t�P) ⊇ fI �x := t�γ(P) assignment postcondition

γ(b̄�x := t�P) ⊇ bI �x := t�γ(P) assignment precondition

γ(p̄�ϕ�P) ⊇ pI �ϕ�γ(P) test.

2.6 Abstractions between Multi-interpretations

The natural ordering to express abstraction (or precision) on multi-interpreted seman-
tics is the subset ordering, which gives a complete lattice structure to the set of multi-
interpreted properties: a property P2 is more abstract than P1 when P1 ⊂ P2, meaning
that P2 allows more behaviors for some interpretations, and maybe that it allows new
interpretations. Following that ordering 〈PΣI , ⊆〉, we can express systematic abstractions
of the multi-interpreted semantics.

If we can only compute properties on the standard interpretation � then we can
approximate a multi-interpreted program saying that we know the possible behaviors
when the interpretation is � and we know nothing (so all properties are possible) for

460 P. Cousot, R. Cousot, and L. Mauborgne

the other interpretations of the program. On the other hand, if we analyze a program that
can only have one possible interpretation with a multi-interpreted property, then we are
doing an abstraction in the sense that we add more behaviors and forget the actual
property that should be associated with the program by the standard semantics. So, in
general, we have two sets of interpretations, one is I , the context of interpretations for
the program and the other one is I �, the set of interpretations used in the analysis. The
correspondance between the two is a Galois connection.

Lemma 1. 〈PΣI , ⊆〉 −−−−−−→←−−−−−−
αΣI→I�

γΣI�→I
〈PΣI� , ⊆〉 with γΣI�→I (P�) �

{
〈I, η〉 ∈ RΣI

∣∣∣∣ I ∈ I � ⇒ 〈I, η〉 ∈ P�
}

and

αΣI→I� (P) � P ∩ RΣI � . ��

Note that if the intersection of I � and I is empty then the abstraction is trivially ∅ for
all properties, and if I ⊆ I � then the abstraction is the identity.

Observe that fI ��x := e� and fI �x := e� have exactly the same definition. However,
the corresponding fixpoint semantics do differ when I � � I and I � I � since 〈PΣI � ,
⊆〉 � 〈PΣI , ⊆〉. We have soundness.

Lemma 2. fI �x := e� ◦ γΣI �→I (P�) = γΣI �→I ◦ fI ��x := e�(P�), and similarly for the
other transformers. ��

2.7 Theories and Models

The set xΨ of free variables of a formula Ψ ∈ �(Σ) is defined inductively as the set
of variables in the formula which are not in the scope of an existential quantifier. A
sentence of �(Σ) is a formula with no free variable,
(Σ) �

{
Ψ ∈ �(Σ)

∣∣∣ xΨ = ∅ }. A
theory T ∈ ℘(
(Σ)) is a set of sentences (called the theorems of the theory). The set of
predicate and function symbols that appear in at least one sentence of a theoryT should
be contained in the signature
(T) ⊆̇ Σ of theory T .

The idea of theories is to restrict the possible meanings of functions and predicates
in order to reason under these hypotheses. The meanings which are allowed are the
meanings which make the sentences of the theory true.

An interpretation I ∈ I(Σ) is said to be a model of Ψ ∈ �(Σ) when ∃ η : I |=η Ψ (i.e.
I makes Ψ true). An interpretation is a model of a theory T if and only if it is a model
of all the theorems of the theory (i.e. makes true all theorems of the theory). The class
of all models of a theory T is

M(T) � {I ∈ I(�(T)) | ∀Ψ ∈ T : ∃ η : I |=η Ψ } = {I ∈ I(�(T)) | ∀Ψ ∈ T : ∀ η : I |=η Ψ }

since if Ψ is a sentence and if there is an I and an η such that I |=η Ψ , then for all η′,
I |=η′ Ψ .

Quite often, the set of sentences of a theory is not defined by extension, but using a
(generally finite or enumerable) set of axioms which generates the set of theorems of
the theory by implication. A theory is said to be deductive if and only if it is closed by
deduction, that is all the theorems that are true on all models of the theory are in the
theory.

This notion of models gives a natural way of approximating sets of interpretations
by a theory: a set of interpretations I can be approximated by any theory T such that

Abstract Domains and Decision Procedures 461

I ⊆ M(T). Notice, though, that because the lattice of sentences of a theory is not
complete, there is no best abstraction in general3.

2.8 Logical Abstract Domains

Given a theory T over Σ, a logical abstract domain is an abstract domain 〈AΣT , �, �, �,
. . . , f, p, . . .〉 such that AΣT ⊆ �(Σ), � � ⇒, � � tt, � � ∨, etc, and the concretization

is γΣT (Ψ) �
{
〈I, η〉

∣∣∣∣ I ∈ M(T) and I |=η Ψ
}
. Note that a logical abstract domain is a

special case of algebraic abstract domain over a multi-interpretation.
Remark that there might be no finite formula in the language �(Σ) of the theory T

to encode a best abstraction in which case there is no Galois connection. In any case
soundness can be formalized by a concretization function as in Sect. 2.4. Moreover, in
presence of infinite ascending chains of finite first-order formulæ (e.g. (x = 0) ⇒ (x =
0 ∨ x = 1) ⇒ . . . ⇒

∨n
i=1 x = i ⇒ . . .) and descending chains of finite formulæ (e.g.

(x � −1) ⇐ (x � −1 ∧ x � −2) ⇐ . . . ⇐
∧n

i=1 x � −i ⇐ . . .) with no finite first-order
formula to express their limits, the fixpoint may not exist. Hence the fixpoint semantics
in the style of Sect. 2.3 is not well-defined in the abstract. However, following Sect. 2.4,
we can define the abstract semantics as the set of abstract inductive invariants for an
increasing abstract transformer of program P.

3 Observational Semantics

Besides values of program variables, the concrete semantics may also observe values of
auxiliary variables or values of functions over program variables. Whereas such cases
can be described in the general setting above (e.g. by inclusion of the auxiliary variables
as program variables), it is more convenient to explicitly define the observables of the
program semantics.

3.1 Observable Properties of Multi-interpreted Programs

The signature Σ = 〈�, �, �〉 of multiple interpretations I ∈ ℘(I(Σ)) is decomposed
into a program signature ΣP = 〈�P, �, �〉 over program variables x ∈ �P ⊆ � and an
observable signature ΣO = 〈�O, �, �〉 over observable identifiers x ∈ �O ⊆ �. So we
now have

program variables observable variables

η ∈ RΣPI � �P→ IV ζ ∈ RΣOI � �O→ IV program environments

R
ΣP
I �
{
〈I, η〉

∣∣∣∣ I ∈ I ∧ η ∈ RΣPI

}
R
ΣO
I �

{
〈I, ζ〉

∣∣∣∣ I ∈ I ∧ ζ ∈ RΣOI

} multi-interpreted
environments

P
ΣP
I � ℘(RΣPI) P

ΣO
I � ℘(RΣOI)

multi-interpreted
properties

3 If � interprets programs over the natural numbers there is no enumerable first-order theory
characterizing this interpretation (by Gödel first incompleteness theorem), so the poset has no
best abstraction of {�}.

462 P. Cousot, R. Cousot, and L. Mauborgne

We name observables by identifiers (which, in particular, can be variable identifiers).
Observables are functions from values of program variables to values v ∈ IV (for inter-
pretation I ∈ I(Σ)).

ωI ∈ OΣPI � RΣPI → IV observables (for I ∈ I)

ΩI ∈ �O→OΣPI observable naming.

Whereas a concrete program semantics is relative to PΣPI , the observational semantics

is relative to PΣOI and both can be specified in fixpoint or in postfixpoint form.

Example 1 (Memory model). In the memory model of [14], a 32 bits unsigned/positive
integer variable x can be encoded by its constituent bytes 〈x3, x2, x1, x0〉 so that, for
little endianness, η(x) = ΩI(x3)η × 224 + ΩI(x2)η × 216 + ΩI(x1)η × 28 + ΩI(x0)η. ��

Given a program property P ∈ PΣPI , the corresponding observable property is

αΩI (P) �
{
〈I, λ x .ΩI(x)η〉 ∈ RΣOI

∣∣∣∣∣ 〈I, η〉 ∈ P
}
.

The value of the observable named x is therefore ΩI(x)η where the values of program
variables are given by η. Conversely, given an observable property Q ∈ PΣOI , the corre-
sponding program property is

γΩI (Q) �
{
〈I, η〉 ∈ RΣPI

∣∣∣∣∣ 〈I, λ x .ΩI(x)η〉 ∈ Q
}
.

We have a Galois connection between the program and observable properties.

Theorem 1. 〈PΣPI , ⊆〉 −−−−→←−−−−
αΩI

γΩI
〈PΣOI , ⊆〉 . ��

3.2 Soundness of the Abstraction of Observable Properties

The observational abstraction will be of observable properties in PΣOI so with con-

cretization γΣOI ∈ AΣOI → PΣOI where AΣOI is the abstract domain. The classical direct
abstraction of program properties in PΣPI will be the particular case where �O = �P and
λx .ΩI(x) is the identity. The program properties corresponding to observable ΩI are
given by γΩ,PI ∈ AΣOI �→ PΣPI such that

γΩ,PI � γ
Ω
I ◦ γΣOI = λP .

{
〈I, η〉 ∈ RΣPI

∣∣∣∣∣ 〈I, λ x .ΩI(x)η〉 ∈ γΣOI (P)
}
.

Under the observational semantics, soundness conditions remain unchanged, but they
must be proved with respect to γΩ,PI , not γΣOI . So the soundness conditions on transform-
ers become slightly different. For example the soundness condition on the assignment
abstract postcondition f̄�x := e� becomes:

Lemma 3. γΩ,PI (f̄ �x := e�P) ⊇ fI �x := e�(γΩ,PI (P)) and similarly for the other
transformers.

3.3 Observational Extension

It can sometimes be useful to extend an abstract property P for observablesΩwith a new
observable ω named x. For example, this was useful for intervals in [6]. We will write
extend(x,ω)

(
P
)

for the extension of P with observable ω for observable identifier x.

Abstract Domains and Decision Procedures 463

Example 2. Let A�O be the abstract domain mapping observable identifiers x ∈ �O to an
interval of values [3]. Assume that intervals of program variables are observable, that is
�P ⊆ �O and let x ∈ �P be a program variables for which we want to observe the square
x2 so ωI � �x2�I . Let x2 � �O be a fresh name for this observable. This extension of
observable properties with a new observable extend(x2,�x2�) ∈ A�O → A�O∪{x2} can be
defined as

extend(x2,�x2�)

(
P
)
� λ x ∈ �O ∪ {x2} . (x � x2 ? P(x) : P(x) ⊗ P(x))

(where ⊗ is the product of intervals) is sound. ��

The extension operation is assumed to be defined so that its semantics satisfies the
following soundness condition

γ
λ I . λ y . y = x ?ωI : ΩI(y), P
I

(
extend(x,ω)

(
P
))
⊇ γΩ,PI

(
P
)
.

The introduction of auxiliary variables to name alien terms in logical abstract domains
is an observational extension of the domains.

Lemma 4. For the logical abstract domain A � �(Σ) with γΣOI (Ψ) �{
〈I, η〉

∣∣∣∣ I ∈I ∧ I |=η Ψ
}
,

extend(x,�e�) (Ψ [x ← e]) � ∃ x : (x = e ∧ Ψ) is sound. ��

This extension operation can also be used for vectors of fresh variables and vectors of
observables in the natural way.

4 Iterated Reduction and Reduced Product

A reduction makes a property more precise in the abstract without changing its con-
crete meaning. By iterating this reduction, one can improve the precision of a static
analysis without altering its soundness. A case of iterated reduction was proposed by
[8] following [4].

Definition 1 (Reduction). Let 〈A, �〉 be a poset which is an abstract domain with
concretization γ ∈ A �→C where 〈C, ⊆〉 is the concrete domain. A reduction is ρ ∈ A→A
which is reductive that is ∀P ∈ A : ρ(P) � P and sound in that ∀P ∈ A : γ(ρ(P)) = γ(P).
The iterates of the reduction are ρ0 � λ P . P, ρλ+1 = ρ(ρλ) for successor ordinals and
ρλ =

�
β<λ ρ

β for limit ordinals. The iterates are well-defined when the greatest lower
bounds

�
(glb) do exist in the poset 〈A, �〉. ��

Theorem 2 (Iterated reduction). Given a sound reduction ρ, for all ordinals λ, ρλ is a
sound reduction. If the iterates of ρ from P are well-defined then their limit ρ∗(P) exists.
We have ∀β < λ : ρ∗(P) � ρλ(P) � ρβ(P) � P. If γ is the upper adjoint of a Galois
connection then ρ∗ is a sound reduction. If ρ is increasing then ρ∗ = λ P . gfp�

P
ρ is the

greatest fixpoint (gfp) of ρ less than or equal to P. ��

The reduced product is defined as follows [4].

464 P. Cousot, R. Cousot, and L. Mauborgne

Definition 2 (Reduced product). Let 〈Ai, �i〉, i ∈ Δ, Δ finite, be abstract domains
with increasing concretization γi ∈ Ai→PΣOI . Their Cartesian product is 〈A, �〉 where

A �
�

i∈Δ Ai, (P � Q) �
∧

i∈Δ(Pi �i Qi) and γ ∈
�

i∈Δ Ai→PΣOI is γ(P) �
⋂

i∈Δ γi(Pi).
In particular the product 〈Ai×A j,�i j〉 is such that 〈x, y〉 �i j 〈x′, y′〉 � (x �i x′)∧(y � j y′)
and γi j(〈x, y〉) � γi(x) ∩ γ j(y).

Their reduced product is 〈
(�

i∈Δ Ai
)
/≡, �〉 where (P ≡ Q) � (γ(P) = γ(Q)) and γ

as well as � are naturally extended to the equivalence classes [P]/≡, P ∈ A, of ≡. ��

The simple cartesian product can be a representation for the reduced product, but if
we just apply abstract transformers componentwise, then we obtain the same result as
running analyses with each abstract domain independently. We can obtain much more
precise results if we try to compute precise abstract values for each abstract domain,
while staying in the same class of the reduced product. Computing such values is natu-
rally a reduction.

Implementations of the most precise reduction (if it exists) can hardly be modular
since in general adding a new abstract domain to increase precision implies that the
reduced product must be completely redesigned. On the contrary, the pairwise iterated
product reduction below, is more modular, in that the introduction of a new abstract
domain only requires defining the reduction with the other existing abstract domains.

Definition 3 (Iterated pairwise reduction). For i, j ∈ Δ, i � j, let ρi j ∈ 〈Ai × A j,
�i j〉 �→ 〈Ai×A j, �i j〉 be pairwise reductions (so that ∀〈x, y〉 ∈ Ai×A j : ρi j(〈x, y〉) �i j 〈x,
y〉, preferably lower closure operators i.e. reductive, increasing and idempotent). Define
the pairwise reductions ρi j ∈ 〈A, �〉 �→ 〈A, �〉 of the Cartesian product as

ρi j(P) � let 〈P′
i , P′j〉 � ρi j(〈Pi, P j〉) in P[i ← P′i][j ← P′j]

where P[i ← x]i = x and P[i ← x] j = P j when i � j. Define the iterated pairwise
reductions ρ

n
, ρ

∗ ∈ 〈A, �〉 �→ 〈A, �〉, n � 0 of the Cartesian product as in Def. 1 for

ρ � ©
i, j ∈ Δ,
i� j

ρi j (1)

where
n
©
i=1

fi � fπ1
◦ . . . ◦ fπn is the function composition for some arbitrary permutation

π of [1, n]. ��

The pairwise reductions ρi j and the iterated ones ρ
n
, n � 0 as well as their closure ρ

�
,

if any, are sound over-approximations of the reduced product in that

Theorem 3. Under the hypotheses of Def. 1 and assuming the limit of the iterated
reductions is well defined, the reductions are such that ∀P ∈ A : ∀λ : ρ

�
(P) �

ρ
λ
(P) � ρi j(P) � P, i, j ∈ Δ, i � j and sound since ρ

λ
(P), ρi j(P), P ∈ [P]/≡ and if γ

preserves lower bounds then ρ
�

(P) ∈ [P]/≡. ��

The following theorem proves that the iterated reduction may not be as precise as the
reduced product, a fact underestimated in the literature. It is nevertheless easier to im-
plement.

Theorem 4. In general ρ
�

(P) may not be a minimal element of the reduced product

class [P]/≡ (in which case ∃Q ∈ [P]/≡ : Q � ρ �(P)). ��

Abstract Domains and Decision Procedures 465

Sufficient conditions exist for the iterated pairwise reduction to be a total reduction to
the reduced product.

Theorem 5. If the 〈Ai, �i, �i〉, i ∈ Δare complete lattices, theρi j, i, j ∈ Δ, i � j, are lower

closure operators, and∀P,Q :
(
γ (P) ⊆ γ (Q)

)
⇒
(
∃ n � 0 :

(�̇
i, j ∈ Δ,
i� j

ρi j

)n
(P) � Q

)
then

∀P : ρ
�

(P) is the minimum of the class P/≡. ��

4.1 Observational Reduced Product

The observational reduced product of abstract domains 〈Ai, �i〉, i ∈ Δ consists in in-
troducing observables to increase the precision of the Cartesian product. We will write
Ω�

i∈Δ Ai for the observational Cartesian product with observables named by Ω. It can
be seen as the application of the extension operator of Sect. 3 followed by a Carte-
sian product

�
i∈Δ Ai. This operation is not very fruitful, as the shared observables will

not bring much information. But used in conjunction with an iterated reduction, it can
give very precise results since information about the observables can bring additional
reductions.

Definition 4 (Observational reduced product). For all i ∈ Δ, let 〈iAΣOI ,
i�〉, 〈iAΣO′I ,

i�′〉 be abstract domains, Ω′ be the new observables, and iextendΩ′ ∈ iAΣOI → iAΣO′I be

sound extensions in the sense that iγΩ
′ ,P
I
(
iextendΩ′

(
P
))
⊇ iγΩ,PI

(
P
)

.

The observational cartesian product is Ω
′�

i∈Δ
iAΣOI �

�
i∈Δ

iextendΩ′
(

iAΣOI
)

and the

observational reduced product is 〈
(
Ω�

i∈Δ Ai

)
/≡, �〉. ��

5 The Nelson-Oppen Combination Procedure

The Nelson-Oppen procedure which decides satisfiability in a combination of logical
theories by exchanging equalities and disequalities is shown to consist in computing a
reduced product after the state is enhanced with some new “observations” correspond-
ing to alien terms.

5.1 Formula Purification

Formula purification in the Nelson-Oppen theory combination procedure. Given
disjoint deductive theories Ti in �(Σi), Σi ⊆̇ Σ with equality and decision procedures
sati for satisfiability of quantifier-free conjunctive formulæ ϕi ∈ �(Σi), i = 1, ..., n,
the Nelson-Oppen combination procedure [15] decides the satisfiability of a quantifier-
free conjunctive formula ϕ ∈ �(

⋃n
i=1 Σi) in theory T =

⋃n
i=1 Ti such that M(T) =⋂n

i=1M(Ti).

The first “purification” phase [18, Sect. 2] of the Nelson-Oppen combination pro-
cedure consists in repeating the replacement of (all occurrences of) an alien subterm
t ∈ �(Σi) \ � of a subformula ψ[t] � �(Σi) (including equality or inequality predicates
ψ[t] = (t = t′) or (t′ = t)) of ϕ by a fresh variable x ∈ � and introducing the equation

466 P. Cousot, R. Cousot, and L. Mauborgne

x = t (i.e. ϕ[ψ[t]] is replaced by ϕ[ψ[x]] ∧ x = t and the replacement is recursively ap-
plied to ϕ[ψ[x]] and x = t). Upon termination, the quantifier-free conjunctive formula ϕ
is transformed into a formula ϕ′ of the form

ϕ′ = ∃ x1, . . . , xn :
n∧

i=1

ϕi where ϕi = ϕ
′
i ∧
∧
xi∈xi

xi = txi ,

x �
⋃n

i=1 xi is the set of auxiliary variables xi ∈ xi introduced by the purification, each
txi ∈ �(Σi) is an alien subterm of ϕ renamed as xi ∈ � and each ϕ′i (hence each ϕi) is a
quantifier-free conjunctive formula in �(Σi

O). We have ϕ ⇔
∧n

i=1 ϕ
′
i [xi ← txi]xi∈xi

so ϕ
and ϕ′ are equisatisfiable.

Example 3 (Formula purification). Assume f ∈ �1 and g ∈ �2. ϕ = (g(x) = f (g(g(x))))
→ (∃ y : y = f (g(y)) ∧ y = g(x)) → (∃ y : ∃ z : y = f (z) ∧ y = g(x) ∧ z = g(y)) →
(∃ y : ∃ z : ϕ1 ∧ ϕ2) = ϕ′ where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)). ��
In case of non-disjoint theories Ti, i = 1, ..., n, purification is still possible, by consider-
ing the worst case (so as to purify any subterm of theories Ti or T j occurring in a term
of theories Ti or T j). The reason the Nelson-Oppen purification requires disjointness of
theory signatures is that otherwise they can share more than equalities and cardinality,
a sufficient reason for the procedure to be incomplete. Nevertheless, the purification
procedure remains sound for non-disjoint theories, which can be exploited for static
analysis, as shown below.

The Nelson-Oppen purification as an observational cartesian product. Let the ob-
servable identifiers be the free variables of ϕ ∈ �(Σ), �P = xϕ plus the fresh auxiliary
variables x introduced by the purification �O = �P ∪ x. Let ΣP and ΣO be the corre-
sponding signatures of Σ. Given an interpretation I ∈ I , with values IV, the observable
naming ΩϕI ∈ �O→RΣPI → IV is such that

Ω
ϕ
I (x)η � η(x) when x ∈ �P,

� �tx�η when x ∈ x .

From a model-theoretic point of view, the purification of ϕ ∈ A into 〈ϕ1, . . . , ϕn〉
can be considered as an abstraction of the program properties in PΣOI abstracted by

ϕ to observable properties in RΣOI themselves abstracted to the observational cartesian

product Ω
ϕ�

i∈Δ
iAΣOI where the component abstract domains are 〈iAΣOI , �i〉 � 〈�(Σi

O),

⇒〉 with concretizations iγΣOI ∈ �(Σi
O) → iP

ΣO
I and iγΣOI (ϕ) �

{
〈I, η〉 ∈ RΣOI

∣∣∣∣ I ∈
M(Ti) ∧ I |=η ϕ

}
, i = 1, . . . , n. This follows from the fact that the concretization is the

same.

Theorem 6. γPI (ϕ′) = γΩ
ϕ,P
I
(
Ωϕ�n

i=1 ϕ
′
i

)
. ��

After purification, the components of the observational cartesian product are not yet the
most precise ones.

5.2 Formula Reduction

Formula reduction in the Nelson-Oppen theory combination procedure. After pu-
rification, the Nelson-Oppen combination procedure [15] includes a reduction phase

Abstract Domains and Decision Procedures 467

where all variable equalities x = y and inequalities x � y deducible from one com-
ponent ϕi in its theory Ti are propagated to all components ϕ j.The decision procedure
for Ti is used to determine all possible disjunctions of conjunctions of (in)equalities
that are implied by ϕi. These are determined by exhaustively trying all possibilities in
the nondeterministic version of the procedure or by an incremental construction in the
deterministic version, which is more efficient for convex theories [18]. The reduction is
iterated until no new disjunction of (in)equalities is found.

The Nelson-Oppen reduction as an iterated fixpoint reduction of the product. Let
E(S) be the set of all equivalence relations on S . Define the pairwise reduction
ρi j(ϕi, ϕ j) � 〈ϕi ∧ Ei j ∧ E ji, ϕ j ∧ E ji ∧ Ei j〉 where

eq(E) �
∨
≡∈E

⎛⎜⎜⎜⎜⎜⎜⎝
∧
x≡y

x = y ∧
∧
x�y

x � y

⎞⎟⎟⎟⎟⎟⎟⎠ and Ei j �
∧{

eq(E)
∣∣∣∣ E ⊆ E(xϕi ∩ xϕ j) ∧ ϕi ⇒ eq(E)

}
.

The Nelson-Oppen reduction of ϕ purified into Ω
ϕ�n

i=1 ϕ
′
i consists in computing the

iterated pairwise reduction ρ
∗ (Ωϕ�n

i=1 ϕ
′
i

)
.

Example 4. Let ϕ1 � (x = a∨ x = b)∧y = a∧ z = b and ϕ2 � f(x) � f(y)∧f(x) � f(z)
so that ϕ � ϕ1∧ϕ2 is purified. We have E12 � (x = y)∨(x = z) and E21 � (x � y)∧(x � z)
so that ρ

∗ (ϕ) = ff. ��

Example 5. A classical example showing that the Nelson-Oppen reduction may not be
as precise as the reduced product is given by [18, p. 11] where ϕ1 � f(x) � f(y) in the
theory of Booleans admitting models of cardinality at most 2 and ϕ2 � g(x) � g(z) ∧
g(y) � g(z) in a disjoint theory admitting models of any cardinality so that ϕ = ϕ1 ∧ ϕ2

is purified. The reduction yields ϕ∧ x � y∧ x � z∧y∧ z and not ff since the cardinality
information is not propagated whereas it would be propagated by the reduced product
which is defined at the interpretation level. Therefore the pairwise reduction ought to
be refined to include cardinality information, as proposed by [20]. ��

Formula reduction and the reduced product. A formula over a set of theories is
equivalent to its purification, so that to find an invariant or to check that a formula is
invariant, we could first purify it and then proceed with the computation of the trans-
former of the program. This would lead to the same result as simply using one mixed
formula if the reduction is total at each step of the computation. Such a process would
be unnecessarily expensive if decision procedures could handle arbitrary formulæ. But
this is not the case actually: most of the time, they cannot deal with quantifiers, and
assignments introduce existential quantifiers which have to be approximated. Such ap-
proximations have to be redesigned for each set of formulæ. Using a reduced product of
formulæ on base theories allows reusing the approximations on each theory (as in [12],
even if the authors didn’t recognize the reduced product). In that way, a reduced product
of logical abstract domains will provide a modular approach to invariant proofs.

5.3 Formula Satisfiability

After purification and reduction, the Nelson-Oppen combination procedure [15] in-
cludes a decision phase to decide satisfiability of the formula by testing the satisfiability

468 P. Cousot, R. Cousot, and L. Mauborgne

of its purified components. This phase can also be performed during the program static
analysis since an unsatisfiability result means unreachability encoded by ff. The satis-
fiability decision can also be used as an approximation to check for a postfixpoint and
that the specification is satisfied.

For briefness, we have concentrated in this paper on the Nelson-Oppen combination
procedure [15] but Shostak combination procedure [17] can be handled in exactly the
same way. The idea of iterated reduction also applies to theorem proving [13].

6 Reduced Product of Logical and Algebraic Abstract Domains

6.1 Combining Logical and Algebraic Abstract Domains

Static analyzers such as Astrée [1] and Clousot [7] are based on an iterated pairwise
reduction of a product of abstract domains over-approximating their reduced prod-
uct. Since logical abstract domains as combined by the Nelson-Oppen combination
procedure are indeed an iterated pairwise reduction of a product of abstract domains
over-approximating their reduced product, as shown in Sect. 5.2, the design of abstract
interpreters based on an approximation of the reduced product can use both logical and
algebraic abstract domains.

An advantage of using a product of abstract domains with iterated reductions is that
the reduction mechanism can be implemented once for all while the addition of a new
abstract domain to improve precision essentially requires the addition of a reduction
with the other existing abstract domains when necessary.

Notice that the Nelson-Oppen procedure and its followers aim at so-called ”sound-
ness” and refutation completeness (for the reduction to ff). In the theorem prover com-
munity, ”soundness” here means that if the procedure answers no, then the formula is
not satisfiable. In program analysis we have a slightly different notion, where soundness
means that whatever the answer, it is correct, and that would mean that if the procedure
here answers yes, then the formula is satisfiable. This notion of soundness, when the
only answers are yes it is satisfiable or no it is not, is equivalent to the old ”soundness”
plus completeness. This is obtained by restricting the applicability of the procedure e.g.
to stably-infinite theories [18] or other similar hypotheses on interpretations [20] to en-
sure that models of the various theories all have the same cardinalities, and additionaly
by requiring that the theories are disjoint to avoid having to reduce on other properties
than [dis]equality. In absence of such applicability restrictions, one can retain unsat-
isfiability if one component formula is unsatisfiability and abandon satisfiability if all
component formula are satisfiable in favor of “unknown”, which yields reductions that
are sound although potentially not optimal.

So the classical restrictions on the Nelson-Oppen procedure unnecessarily restrict
its applicability to static analysis. Lifting them yields reductions that may not be op-
timal but preserves the soundness of the analyses which have to be imprecise anyway
by undecidability. Hence, abandoning refutation completeness hypotheses, broaden the
applicability of SMT solvers to static analysis. Many SMT solvers already contain lots
of sound, but incomplete, heuristics hence no longer insist on refutational completeness.

Example 6. As a simple example, consider the combination of the logical domain of
Presburger arithmetics (where the multiplication is inexpressible) and the domain of

Abstract Domains and Decision Procedures 469

sign analysis (which is complete for multiplication). The abstraction of a first-order
formula to a formula of Presburger arithmetics is by abstraction to a subsignature elim-
inating all terms of the signature not in the subsignature:

αΣ (x) � x
αΣ (f(t1, . . . , tn)) � ?, f � Σ ∨ ∃ i ∈ [1, n] : αΣ(ti) = ?

� f(t1, . . . , tn), otherwise
αΣ(ff) � ff

αΣ (p(t1, . . . , tn)) � tt, p � Σ ∨ ∃ i ∈ [1, n] : αΣ (ti) = ?, in positive position
� ff, p � Σ ∨ ∃ i ∈ [1, n] : αΣ(ti) = ?, in negative position
� p(t1, . . . , tn), otherwise

αΣ(¬Ψ) � ¬αΣ (Ψ) αΣ(Ψ ∧ Ψ ′) � αΣ (Ψ) ∧ αΣ (Ψ ′)) αΣ(∃ x : Ψ) � ∃ x : αΣ(Ψ) .

The abstract transformers for Presburger arithmetics become simply fP�x := e�P �
αΣP (∃ x′ : P[x← x′] ∧ x = e[x← x′]), pP�ϕ�P � αΣP(P ∧ ϕ), etc, where ΣP is the
signature of Presburger arithmetics.

The reduction of the Presburger arithmetics logical abstract domain by the sign alge-
braic abstract domain is given by the concretization function for signs.

Ei j(η) �
∧

x∈dom(η)

γ(x, η(x)) where γ(x, pos0) � (x � 0), γ(x, pos) � (x > 0), etc.

Assume the precondition 〈P(x), x : �〉 holds, then after the assignment x := x × x, the
post condition 〈∃ x′ : P(x′)∧ x = x′ × x′, x : pos0〉 holds, which must be abstracted by
αΣP to the Presburger arithmetics logical abstract domain that is 〈∃ x′ : P(x′), x : pos0〉.
The reduction reduces the postcondition to 〈∃ x′ : P(x′) ∧ x ≥ 0, x : pos0〉.

Symmetrically, the sign abstract domain may benefit from equality information. For
example, if the sign of x is unknown then it would remain unknown after the code y :=
x; x := x * y whereas knowing that x = y is enough to conclude that x is positive.

Of course the same result could be achieved by encoding by hand the Presburger
arithmetics transformer for the assignment to cope with this case and other similar ones.
Here the same result is achieved by the reduction without specific programming effort
for each possible particular case. ��

6.2 Program Purification

Whereas the reduced product proceeds componentwise, logical abstract domains often
combine all these components into the single formula of their conjunction which is then
globally propagated by property transformers before being purified again into compo-
nents by the Nelson-Oppen procedure. These successive abstractions by purification
and concretization by conjunction can be avoided when implementing the logical ab-
stract domain as an iterated reduction of the product of the component and program pu-
rification, as defined below. The observational semantics is then naturally implemented
by a program transformation.

Given disjoint signatures 〈�i, �i〉, i = 1, ..., n, the purification of a program P over
�(�,

⋃n
i=1 �i,

⋃n
i=1 �i) consists in purifying the terms t in its assignments x := e and the

470 P. Cousot, R. Cousot, and L. Mauborgne

clauses in simple conjunctive normal form ϕ appearing in conditional or iteration tests.
A term t ∈ �(�,

⋃n
i=1 �i) not reduced to a variable is said “to have type i” when it is of

the form c ∈ �0
i or f(t1, . . . , tn) with f ∈ �n

i . As a side note, one may observe that this
could very well be equivalent to using the variable and term types in a typed language.

The purification of an assignment x := e[t] where term e has type i and the alien
subterm t has type j, j � i consists in replacing this assignment by x = t; x := e[x] where
x ∈ � is a fresh variable, e[x] is obtained from e[t] by replacing all occurrences of the
alien subterm t by the fresh variable x in e, and in recursively applying the replacement
to x = t and x := e[x] until no alien subterm is left.

An atomic formula a ∈ �(�,
⋃n

i=1 �i,
⋃n

i=1 �i) not reduced to false is said to have
type i when it is of the form p(t1, . . . , tn) with p ∈ �n

i or t1 = t2 and t1 has type i or
x = t2 and t2 has type i. Then we can purify an assignment x := a[t] exactly in the same
way as with terms. Finaly the purification of a clause in a test consists in replacing
each atomic subformula a of the clause by a fresh variable and introducing assignments
x := a before the test and in recursively purifying the assignments x := a.

Example 7. Assume that f ∈ �1 and g ∈ �2. The purification is
if (g(w) = f (g(g(w)))) then . . .

→ x := (g(w) = f (g(g(w)))); if x then . . .

→ y := g(w); x := (y = f (g(y))); if x then . . .
g(w) has type 2 and f (g(g(w))) has
type 1�

→ y := g(w); z := g(y); x := (y = f (z)); if x then . . .

(y = f (g(y))) has type 1 and g(y) has type 2 .� ��
After purification all program terms and clauses are pure in that no term of a theory has
a subterm in a different theory or a clause containing terms of different theories. So all
term assignments x := e (or atomic formulæ x := a) have t ∈ �(Σi

O) for some i ∈ [1, n]
and all clauses in tests are Boolean expressions written using only variables, ¬ and ∧.

We let the observable identifiers �O = �P ∪ x be the program variables �P plus the
fresh auxiliary variables x ∈ x introduced by the purification with assignments x := ex.
Given an interpretation I, with values IV, the observable naming ΩI ∈ �O �→ (�P �→
IV) �→ IV is

ΩI(x)η � η(x) when x ∈ �P
� �ex�η when x ∈ x .

This program transformation provides a simple implementation of the observational
product of Def. 4. Moreover, the logical abstract domains no longer need to perform
purification.

Theorem 7. A static analysis of the transformed program with a (reduced/iteratively
reduced) product of logical abstract domains only involves purified formulæ hence
can be performed componentwise (with reduction) without changing the observational
semantics. ��
Purification can also be performed for non-disjoint theories, but this requires using as
many variables as the number of theories that contain the expression e in their language,
so that we can use existentials and remain precise by asserting the equality between
thoses variables.

Abstract Domains and Decision Procedures 471

7 Related Work

SMT solvers have been used in abstract interpretation, e.g. to implement specific log-
ical abstract domains such as uninterpreted functions [11] or to automatically design
transformers in presence of a best abstraction [16].

Contrary to the logical abstract interpretation framework developed by [12, 21, 10]
we do not assume that the behavior of the program is described by formulæ in the
same theory as the theory of the logical abstract domain, which offers no soundness
guarantee, but instead we give the semantics of the logical abstract domains with re-
spect to a set of possible semantics which includes the possibility of a sound combi-
nation of a mathematical semantics and a machine semantics, which is hard to achieve
in SMT solvers without breaking down their performances (e.g. by encoding modu-
lar arithmetics in integer arithmetics or encoding floats either bitwise or with reals and
roundings). So, our approach allows the description of the abstraction mechanism, com-
parisons of logical abstract domains, and to provide proofs of soundness on a formal
basis.

Specific combinations of theories have been proposed for static analysis such as
linear arithmetic and uninterpreted functions [12], universally quantified formulæ over
theories such as linear arithmetic and uninterpreted functions [10] or the combination
of a shape analysis with a numerical analysis [9]4. The framework that we propose to
combine algebraic and logical abstract domains can be used to design static analyzers
incrementally, with minimal efforts to include new abstractions to improve precision
either globally for the whole program analysis or locally, e.g. to prove loop invariants
provided by the end user.

8 Conclusion

We have proposed a new design method of static analyzers based on the reduced prod-
uct or its approximation by the iterated reduction of the product to combine algebraic
and logical abstract domains. This is for invariance inference but is also applicable to
invariant verification. The key points were to consider an observational semantics with
multiple interpretations and the understanding of the Nelson-Oppen theory combination
procedure [15] and its followers, as well as consequence finding in structured theories
[13], as an iterated reduction of the product of theories so that algebraic and logical
abstract domains can be symmetrically combined in a product either reduced or with it-
erated reduction. The interest of the (reduced) product in logical abstract interpretation
is that the analysis for each theory can be separated, even when they are not disjoint,
thus allowing for an effective use of dedicated SMT solvers for each of the components.

Finally, having shown the similarity and complementarity of analysis by abstract in-
terpretation and program proofs by theorem provers and SMT solvers, we hope that our
framework will allow reuse and cooperations between developments in both
communities.

Acknowledgments. We thank D. Jovanović and A. Podelski for help and comments.

4 These approaches can be formalized as observational reduced products.

472 P. Cousot, R. Cousot, and L. Mauborgne

References

[1] Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static analysis and verification of aerospace software by abstract interpretation. In: In-
fotech@Aerospace, pp. 2010–3385 (2010)

[2] Bradley, A.R., Manna, Z.: The Calculus of Computation, Decision procedures with Appli-
cations to Verification. Springer, Heidelberg (2007)

[3] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: 4th POPL, pp. 238–252 (1977)

[4] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th POPL,
pp. 269–282 (1979)

[5] Cousot, P., Cousot, R., Mauborgne, L.: Logical Abstract Domains and Interpretations. In:
Nanz, S. (ed.) The Future of Engineering. Springer, Heidelberg (2010)

[6] Elder, M., Gopan, D., Reps, T.: View-Augmented Abstractions. In: 2nd NSAD, ENTCS
(2010)

[7] Ferrara, P., Logozzo, F., Fähndrich, M.: Safer unsafe code in.NET. In: OOPSLA, pp. 329–
346 (2008)

[8] Granger, P.: Improving the results of static analyses of programs by local decreasing itera-
tions. In: Shyamasundar, R.K. (ed.) FSTTCS 1992. LNCS, vol. 652, pp. 68–79. Springer,
Heidelberg (1992)

[9] Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking partition sizes.
In: 36th POPL, pp. 239–251 (2009)

[10] Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified logical
domains. In: 35th POPL, pp. 235–246 (2008)

[11] Gulwani, S., Necula, G.C.: Path-sensitive analysis for linear arithmetic and uninterpreted
functions. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 328–343. Springer,
Heidelberg (2004)

[12] Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: PLDI, pp. 376–386 (2006)
[13] McIlraith, S.A., Amir, E.: Theorem proving with structured theories. In: IJCAI, pp. 624–

634 (2001)
[14] Miné, A.: Field-sensitive value analysis of embedded C programs with union types and

pointer arithmetics. In: LCTES, pp. 54–63 (2006)
[15] Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures.

TOPLAS 1(2), 245–257 (1979)
[16] Reps, T.W., Sagiv, S., Yorsh, G.: Symbolic implementation of the best transformer. In: Stef-

fen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266. Springer, Heidelberg
(2004)

[17] Shankar, N., Rueß, H.: Combining shostak theories. In: Tison, S. (ed.) RTA 2002. LNCS,
vol. 2378, pp. 1–18. Springer, Heidelberg (2002)

[18] Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson–Oppen combination pro-
cedure. In: Frontiers of Combining Systems, pp. 103–120. Kluwer Academic Publishers,
Dordrecht (1996)

[19] Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiabil-
ity procedures. Theor. Comput. Sci. 290(1), 291–353 (2003)

[20] Tinelli, P., Zarba, C.G.: Combining non-stably infinite theories. Electr. Notes Theor. Com-
put. Sci. 86(1) (2003)

[21] Tiwari, A., Gulwani, S.: Logical interpretation: Static program analysis using theorem prov-
ing. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 147–166. Springer,
Heidelberg (2007)

Author Index

Abel, Andreas 57
Aristizábal, Andrés 138
Atkey, Robert 72
Axelsen, Holger Bock 42

Bernadet, Alexis 88
Bernardy, Jean-Philippe 108
Bertrand, Nathalie 245
Birkedal, Lars 305
Boker, Udi 184
Bonchi, Filippo 138
Bonnet, Remi 153
Boreale, Michele 396

Caucal, Didier 214
Ciancia, Vincenzo 365
Clairambault, Pierre 335
Cousot, Patrick 456
Cousot, Radhia 456

Dax, Christian 168
Delzanno, Giorgio 441
Dinh, Trong Hieu 214

Finkel, Alain 153

Gabbay, Murdoch J. 365
Ghani, Neil 72
Ghica, Dan R. 350
Glück, Robert 42

Haddad, Serge 153
Halamish, Shulamit 199
Hamana, Makoto 381
Hoshino, Naohiko 320

Jacobs, Bart 12
Jaubert, Rémi 229
Jéron, Thierry 245
Johann, Patricia 72

Klaedtke, Felix 168
Kobayashi, Naoki 260
Krichen, Moez 245
Kupferman, Orna 184, 199

Lasson, Marc 108
Lengrand, Stéphane 88
Levy, Paul Blain 27

Mauborgne, Laurent 456
Menaa, Mohamed N. 350
Mio, Matteo 290
Møller, Anders 426

Palamidessi, Catuscia 138
Pampaloni, Francesca 396
Panangaden, Prakash 1
Paolini, Michela 396
Piérard, Adrien 123
Pino, Luis 138

Rabinovich, Alexander 275
Reynier, Pierre-Alain 229
Rosa-Velardo, Fernando 153

Sangnier, Arnaud 441
Schwarz, Mathias 426
Schwinghammer, Jan 305
Stahl, Christian 411
Stainer, Amélie 245
Støvring, Kristian 305
Sumii, Eijiro 123

Valencia, Frank 138
Velner, Yaron 275
Vogler, Walter 411

Zavattaro, Gianluigi 441

	Title
	Preface
	Organization
	Table of Contents
	The Search for Structure in Quantum Computation
	Introduction
	Strange Features of Quantum Mechanics
	Categorical Quantum Mechanics and Graphical Calculi
	Measurement-Based Computing
	Topological Quantum Computing
	References

	Coalgebra and Computability
	Coalgebraic Walks, in Quantum and Turing Computation
	Introduction
	Three Monads for Computation Types
	Walk the Walk
	Non-deterministic Walks
	Probabilistic Walks
	Quantum Walks

	A Coalgebraic/Monadic Description of Quantum Walks
	Reversibility of Computations
	Summary, So Far
	Turing Machines as Coalgebras
	Conclusions
	References

	Similarity Quotients as Final Coalgebras
	Introduction
	Mathematical Preliminaries
	Relators
	Relators and Simulation
	Relators Preserving Binary Composition
	Further Examples of Relators

	Theory of Simulation and Final Coalgebras
	QF-Coalgebras
	Extensional Coalgebras
	Relating F-Coalgebras and QF-Coalgebras

	Beyond Similarity
	Multiple Relations
	Constraints
	Generalized Theory of Simulation and Final Coalgebras (Sketch)

	References

	What Do Reversible Programs Compute?
	Introduction
	Reversible Triple-Format Turing Machines
	Semantics for Turing Machines
	Foundations of Reversible Computing
	Inversion
	Reversibilization
	Reversible Updates

	Robustness
	Exact Computational Expressiveness of the RTMs
	Universality
	r-Turing Completeness
	Related Work
	Conclusion
	References

	Type Theory
	Irrelevance in Type Theory with a Heterogeneous Equality Judgement
	Introduction and Related Work
	Irrelevant Intensional Type Theory
	Algorithmic Equality
	A Universal Kripke Model for IITT
	An Induction Measure
	A Heterogeneously Typed Kripke Logical Relation
	Validity in the Model

	Meta-theoretic Consequences of the Model Construction
	Extensions
	Conclusions
	References

	When Is a Type Refinement an Inductive Type?
	Introduction
	Inductive Types and F-Algebras
	A Framework for Refinement
	Truth and Comprehension
	Indexed Coproducts and Indexed Products
	Liftings

	From Liftings to Refinements
	Some Specific Refinements

	Starting with Already Indexed Types
	Partial Refinement
	Conclusions, Applications, Related and Future Work
	References

	Complexity of Strongly Normalising λ-Terms via Non-idempotent Intersection Types
	Introduction
	Syntax and Typing
	Lambda Calculus with Klop's Extension
	Intersection Types and Contexts
	Typing System and Its Basic Properties

	Soundness and Completeness of the Typing System w.r.t. Strong Normalisation
	Soundness
	Completeness
	Corollaries

	Optimal and Principal Typing
	Optimal Typing
	Principal-Optimal Typing Trees

	Complexity
	Complexity Result for Church-Klop's I
	Complexity Result for Pure -Calculus

	Conclusion
	References

	Realizability and Parametricity in Pure Type Systems
	Introduction
	The First Level
	The Second Level
	Structure of P2
	Strong Normalization
	Parametricity
	Realizability

	The Third Level
	Extensions
	Inductive Definitions
	Program Extraction and Computational Irrelevance

	Related Work and Conclusion
	References

	Process Calculi
	Sound Bisimulations for Higher-Order Distributed Process Calculus
	Introduction
	Background
	Our Contribution
	Overview of the Paper

	Higher-Order -Calculus with Passivation
	Syntax
	Labelled Transitions System

	Environmental Bisimulations of HOP
	Examples
	Discussion and Future Work
	References

	Deriving Labels and Bisimilarity for Concurrent Constraint Programming�
	Background
	Constraint Systems
	Syntax
	Reduction Semantics
	Observational Equivalence

	Saturated Bisimilarity for ccp
	Saturated Barbed Bisimilarity
	Correspondence with Observational Equivalence

	Labeled Semantics
	Strong and Weak Bisimilarity
	Conclusions, Related and Future Work
	References

	Ordinal Theory for Expressiveness of Well Structured Transition Systems
	Introduction
	Preliminaries and WSTS
	A Method for Comparing WSTS
	A New Tool: Order Reflections
	Expressiveness of WSTS and Order Reflections
	Self-witnessing WSTS Classes
	How to Prove the Non-existence of Reflections?

	Vector Addition Systems and Lossy Channel Systems
	Vector Addition Systems and Petri Nets
	Lossy Channel Systems

	Petri Nets Extensions with Data
	Conclusion and Perspectives
	References

	Automata Theory
	Alternation Elimination for Automata over Nested Words
	Introduction
	Preliminaries
	Alternation-Elimination Scheme
	Reduction to Complementation
	Inherited Properties

	Instances for Automata over Nested Words
	Automata over Nested Words
	Complementing Existential co-Büchi Automata
	Alternation Elimination for Parity Automata

	Applications and Concluding Remarks
	References

	Co-B$\"{u}$ching Them All
	Introduction
	Preliminaries
	Translating to NCW
	From NSW to NCW
	From NRW and NMW to NCW

	Translating to DCW
	Applications
	Discussion
	References

	Minimizing Deterministic Lattice Automata
	Introduction
	Preliminaries
	Lattices and Lattice Automata
	Minimizing LDFAs

	Minimizing General LDFA
	Minimizing an LDFA over a Fully Ordered Lattice
	References

	Regularity and Context-Freeness over Word Rewriting Systems
	Introduction
	Derivation Decomposition
	Notations
	Preservation Properties
	Decomposition

	Applications
	Prefix, Suffix and Bifix Systems
	Left-to-Right Derivation
	Tagged and Tag-Adding Systems

	Conclusion
	References

	Quantitative Robustness Analysis of Flat Timed Automata
	Introduction
	Definitions
	Timed Automata, Zones
	Parametric Objects
	Symbolic Computations Using (Parametric) Zones

	The Enlarged Reachability Set Reach(A)
	Parametric Computation of Reach(A())
	Representing Constraints as a Graph
	Accelerating Computations of Greatest Fixpoints
	Parametric Forward Analysis with Acceleration
	Quantitative Safety

	Conclusion
	References

	A Game Approach to Determinize Timed Automata
	Introduction
	Preliminaries
	Timed Automata
	Existing Approaches to the Determinization of TAs

	A Game Approach
	Definition of the Game
	Properties of the Strategies
	Choosing a Good Losing Strategy

	Extension to -Transitions and Invariants
	Comparison with Existing Methods
	Comparison with KT-fmsd09
	Comparison with BBBB-icalp09
	Comparison of the Extension with -Transition and Invariants

	Conclusion
	References

	A Practical Linear Time Algorithm for Trivial Automata Model Checking of Higher-Order Recursion Schemes
	Introduction
	Preliminaries
	The New Model Checking Algorithm
	Main Idea
	Expansion Relations
	Type Generation Rules
	Model Checking Algorithm

	Correctness of the Algorithm
	Experiments
	Related Work
	Conclusion
	References

	Church Synthesis Problem for Noisy Input
	Introduction
	Definitions
	Games with Errors
	Games with Detected Errors
	Games with Undetected Errors

	Regular Games with Detected Errors
	Regular Games with Undetected Errors
	Mean-Payoff Games with Errors
	Multidimensional Mean-Payoff Games
	Conclusion and Further Work
	References

	Probabilistic Modal μ-Calculus with Independent Product
	Introduction
	Background Definitions and Notation
	The Logic pL
	Stochastic Tree Games
	Game Semantics of pL
	Inductive Characterization of the Objective of GX.F
	Proof of Theorem 1
	References

	Semantics
	A Step-Indexed Kripke Model of Hidden State via Recursive Properties on Recursively Defined Metric Spaces
	Introduction
	A Calculus of Capabilities
	Hereditarily Monotonic Recursive Worlds
	Step-Indexed Possible World Semantics of Capabilities
	Generalized Frame and Anti-frame Rules
	Conclusion and Future Work
	References

	A Modified GoI Interpretation for a Linear Functional Programming Language and Its Adequacy
	Introduction
	A Linear Functional Programming Language LFP and Its Operational Semantics
	GoI Interpretation of LFP
	Graphical Presentation of Partial Maps
	The Standard GoI Interpretation
	Modified GoI Interpretation

	Deriving the Modification from a Realizability Interpretation
	Interpretation of the Untyped Linear Lambda Calculus
	Admissible Pers and Strict Morphisms
	Interpretation of Recursion in Mackie Style

	Proof of Soundness and Adequacy
	References

	Estimation of the Length of Interactions in Arena Game Semantics
	Introduction
	Arena Game Semantics
	Arenas and Plays
	Classes of Strategies
	Size of Strategies and Interactions

	Pointer Structures and Rewriting
	Nd(n,p) as a Bound for Pointer Structures
	Agents
	Simulation of Visible Pointer Structures

	Length of Interactions
	Upper Bound
	Lower Bound
	Application to Head Linear Reduction

	Conclusion and Future Work
	References

	Synchronous Game Semantics via Round Abstraction
	Introduction
	Basic Syntactic Control of Interference
	Syntax
	Relational Semantics

	Polarised Trace Semantics
	A Trace Model of Processes
	A Polarised Trace Model of SCI

	Round Abstraction
	Synchronous Game Semantics
	Discussion

	Conclusion
	References

	Binding
	Freshness and Name-Restriction in Sets of Traces with Names
	Introduction
	Nominal Preliminaries
	The Planes of a Set
	Basic Theory of Planes
	Positive Planes

	-Restriction on Nominal Sets
	Nominal Languages
	Nominal Kleene Algebra
	LA Is Equal to LA
	Conclusions
	References

	Polymorphic Abstract Syntax via Grothendieck Construction
	Introduction
	Background
	Algebras in SetF for Abstract Syntax with Binding
	Algebras in (SetF "3223379 U)U for Typed Abstract Syntax with Binding

	Second-Order Polymorphic Abstract Syntax
	System F
	Modelling Syntax of F
	General Signature
	General Syntax Rules

	Higher-Order Polymorphic Abstract Syntax
	System F"121
	Modelling Syntax of F"121
	General Signature
	General Syntax Rules

	On Substitutions and Future Work
	References

	Security
	Asymptotic Information Leakage under One-Try Attacks
	Introduction
	Notations and Preliminary Notions
	Probability of Error, Leakage, Indistinguishability
	Bounds and Asymptotic Behaviour
	Examples
	Sequential Observations and Hidden Markov Models
	Conclusion and Further Work
	References

	A Trace-Based View on Operating Guidelines
	Introduction
	Preliminaries
	Open Nets
	Environments

	Trace Semantics for Deadlock Freedom
	Stop-Dead Semantics
	Coincidence with Accordance

	Trace Semantics for Deadlock Freedom and Boundedness
	Bounded Stop-Dead Semantics
	Coincidence with b-Accordance and Nonredundancy
	Full Abstractness
	Deciding bsd-Refinement

	Comparing bsd-Semantics and Operating Guidelines
	Deriving an Operating Guideline from the bsd-Semantics
	Deriving bsd-Semantics from Operating Guidelines
	Accordance Check with Operating Guidelines

	Conclusions
	References

	Program Analysis
	HTML Validation of Context-Free Languages
	Introduction
	Outline of the Paper
	Example

	Related Work
	Parsing HTML Documents
	A Model of HTML Parsing

	Parsing Context-Free Sets of Documents
	Generating Constraints
	Solving Constraints
	Example

	Experimental Results
	Conclusion
	References

	On the Power of Cliques in the Parameterized Verification of Ad Hoc Networks
	Introduction
	Preliminaries on Graphs
	Ad Hoc Networks
	Configurations with Bounded Diameter
	Maximal Clique Graphs with Bounded Paths
	Ackermann-Hardness of cover in BPCn
	Broadcast vs. Unicast Communication
	Conclusions
	References

	The Reduced Product of Abstract Domains and the Combination of Decision Procedures
	Introduction
	Syntax and Semantics of Programs
	Syntax
	Interpretations
	Multi-interpreted Program Scmantics
	Algebraic Abstract Domains
	Soundness and Completeness of Abstract Semantics
	Abstractions between Multi-interpretations
	Theories and Models
	Logical Abstract Domains

	Observational Semantics
	Observable Properties of Multi-interpreted Programs
	Soundness of the Abstraction of Observation Properties
	Observational Extension

	Iterated Reduction and Reduced Product
	Observational Reduced Product

	The Nelson-Oppen Combination Procedure
	Formula Purification
	Formula Reduction
	Formula Satisfiability

	Reduced Product of Logical and Algebraic Abstract Domains
	Combining Logical and Algebraic Abstract Domains
	Program Purification

	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

