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Abstract We analyze the dependence of the quantum vacuum energy on the space
topology. In particular we point out the existence of a renormalization ambiguity
in spaces with non-vanishing curvature. The ambiguity is related to the well known
ambiguity of the R2 term of the gravitational effective action. However, there are
two extra universal contributions which are genuine dependent on the topological
structure of the space and completely independent of the renormalization scheme.
The ambiguity does not appear in flat spaces where only the topological depen-
dent contributions are non-vanishing. We analyze the cosmological role of universal
contributions to the vacuum energy and its attractive nature in the case of conformal
scalar fields.

1 Introduction

The current cosmological model is consistent with a spatially flat Universe, al-
though, most of the relevant data are compatible with a very tiny curvature |Ωκ | ≤
10−4 [1][2]. However, the physical observations do not allow to establish a definite
answer to the longstanding dilemma on the finiteness or not of the physical space or
determine the characteristics of space-time topology (see [3] and references there in
for an updated review). Closed spaces leave their fingerprints in small contributions
to low multipoles of the Cosmic Microwave Background (CMB) and current obser-
vations show a strong suppression of low multipoles (quadrupole, octupole, etc.).
They also show an strange alignment of the quadrupole and octupole multipoles as-
sociated to the appearance of Southern hemisphere cool fingers. On the other hand,
it is remarkable the observed asymmetry between even and odd multipoles and the
fact that the Gaussianity of likelihood estimates starts to be manifest for l > 32.
All these data suggest a possible role of the finite size and space topology in the
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low modes behavior of the CMB [4]. A compact space will imply, depending on
its topology, the existence of several circles in the sky which will correspond to
the mirror images of the last scattering surface where the radiation decouple from
matter. The latest results do not allow to determine their existence which will be
an unequivocal proof of a non-trivial space topology. However, presumably the new
observational programs will be able to discriminate among the different space-time
topologies. In this note we analyze the quantum implications of a non-trivial space-
time topology.

2 Vacuum energy in cosmological backgrounds

Quantum fields contribute to the background space-time energy because of vacuum
fluctuations. For conformal invariant fields this energy depends on the topology of
the space. If the space has boundaries it also depends on the boundary conditions.

The cosmological implications of this energy are not very clear. First, the di-
vergent nature of the leading contributions raises some questions about the validity
of the renormalization philosophy in the presence of gravitational interactions. On
the other hand, finite Casimir corrections encode the quantum back-reaction to the
cosmological expansion of the Universe, but this is very tiny to be detected in the
present Universe, although it might have played a relevant role in the early Universe.
In this note we analyze the structure of such contributions in different cosmological
backgrounds. This problem has been considered by Emilio Elizalde for a long time
[5] [6] [7].

Although the background cosmological FRW metric evolves in time its variation
is so slow in comparison with the leading quantum fluctuations that one can use adi-
abatic approximations to estimate the vacuum energy induced by these fluctuations.
In this approximation the space-time metric can be considered as a homogeneous
isotropic static on a space-time of the form RI ×M .

There are three types of constant curvature spaces: hyperbolic (R < 0), elliptic
(R > 0) or Euclidean (R = 0). If we assume that the space is compact and has no
boundaries the number of candidates is reduced considerably. The hyperbolic case
presents an infinite number of possibilities and has been the most analyzed in the
literature [8][9][10]. We will restrict ourselves to the less analyzed cases of elliptic
and flat spaces.

Spaces with constant positive curvature and no boundaries are compact mani-
folds and belongs to one of the following six familes. If M is simply connected it
has to be isometric to the three-dimensional sphere S3, because of Poincaré theorem.
Multiple connected spaces belong to one of the following five families:

• Lens spaces S3/ZZq, with first homotopy group the cyclic group ZZq of order q.

• Dihedral spaces S3/D∗q, with first homotopy group D∗q of order 4q. order 24.

• Tetrahedral space S3/T ∗ with π1(S3/T ∗) = T ∗ of order 24.
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• Octahedral space S3/O∗ with π1(S3/O∗) = O∗ of order 48.
• Poincaré Dodecahedral space S3/Y ∗ with π1(S3/Y ∗) = Y ∗ of order 120.

The last space S3/Y ∗ has been recently considered as a possible candidate for the
global structure of the Universe [11] [12] [13] by considerantions based on the ob-
served anomalies of CMB.

For simplicity we shall restrict ourselves to the case of conformal scalar free
fields. The analysis of higher spin fields is very similar. The vacuum energy of free
conformal scalar field is given by the renormalized sum of the eigenvalues of the

operator 1
2

√
−Δ + 1

6 R, where R is the scalar curvature of M . R = 6
a for a three-

dimensional sphere M = S3 of radius a.
The eigenvalues of the operator −Δ + 1

6 R on M are of the form λk =
1
a2 (k+1)2

with k ∈ ZZ, with the following degeneracies dk [14][15]:

II dk(II) = (k+1)2

ZZ2q+1 dk(Z2q+1) = (k+1)
(

k+1−[(k+1)/(2q+1)](2q+1)+(1+(−1)k−[(k+1)/(2q+1)](2q+1))/2
)

ZZ2q d2l(Z2q) = (2l+1)(2[(2l+1)/(2q)]+1)

DD∗q d2l(D∗q)=(2l+1)([l/q]+1/2(1+(−1)l))

TT∗q d2l(T ∗) = (2l+1)([l/3]+2[l/2]+1−l); l �= 1,2,5

OO∗
q d2l(O∗) = (2l+1)([l/4]+[l/3]+[l/2]+1−l); l �= 1,2,3,5,7,11

YY∗q d2l(Y ∗)=(2l+1)([l/5]+[l/3]+[l/2]+1−l); l �=1,2,3,4,5,7,8,9,11,13,14,17,19,23,29

Table 1 Degeneracies of the eigenvalues of the Laplacian operator Δ for spherical factor spaces.

The zeta function regularization method provides the following values for the
vacuum energy Ec =

1
aCM [16][17][18]:

• Sphere S3

ES3 =
1

240
1
a

• Lens spaces S3/ZZq

EZq =−
q4 +10q2−14

720q
1
a

• Dihedral spaces S3/DD∗q

ED∗q =−
20q4 +8q2 +180q−7

1440q
1
a
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• Polyhedral spaces S3/TT∗, S3/OO∗, S3/YY∗

ET ∗ =−3761
8640

1
a

EO∗ =−11321
17280

1
a

EY ∗ =−43553
43200

1
a

��������Group
Order 24 48 120

Cyclic ZZq CS3/Z24
=−168761

8640
CS3/Z48

=−2665721
17280

CS3/Z120
=−103751993

43200

Dihedral DD∗q CS3/D∗6
=−11081

4320
CS3/D∗12

=−168761
8640

CS3/D∗30
=−6497993

21600

TT∗ OO∗ YY∗ CS3/T ∗ =−
3761
8640

CS3/O∗ =−
11321
17280

CS3/Y ∗ =−
43553
43200

Table 2 Casimir energies of confomal scalar fields on spaces of compact constant curvature with
group factors of order 24, 48 and 120. Notice that lens spaces tend to have larger negative energies
than dihedral or polyhedral spaces with the same volumes.

3

The nature of this attractive behaviour is stronger for spaces with the same vol-
ume in the cases of dihedral and lens spaces as the Table 2 points out.

3 Vacuum energy ambiguites

The values of vacuum energy shown in the previous section are not universal. In
general the vacuum energy has three components

E(g) = Eloc(g)+Eanom(g)+Etop(g).

which are in one-to-one correspondence with the three components of the effective
action

S(g) = Sloc(g)+Sanom(g)+Stop(g).

The first two components depend on the Riemann curvature tensor Rμνασ either
locally

Sloc(g) =
∫

d4x
√−g

{
α1C2 +α2E +α3 R

}
or non-locally [19]

sphere S , which is the only case with repulsive behaviour.
These energies generate attractive forces except for the case of the three-dimensional



Vacuum Energy and the Topology of the Universe 39

q
0 2 4 6 8 10

E
o

-10

-8

-6

-4

-2

0

T* O* Y*
I

D

Z

D*
q

q

Figure 1 Casimir energies of confomal scalar fields on compact spaces of constant curvature.
The only positive value appears in pure spherical spaces S3. The dihedral factor S3/D∗q seem to
have higher repulsive energies than lens spaces S3/Zq. However, this is an artifact of the different
volumes weight of the respective spaces, Vol(S3/Z4q)= Vol(S3/D∗q). The volumes of the polyhedral
factors S3/T ∗q , S3/O∗q, S3/Y ∗ are identical to those of S3/Z24, S3/Z48 and S3/Z120, respectively.
However, they generate milder attractive energies.

Sanom(g ) =
b

8(4π)2

∫
d4x

∫
d4x′

√−g
(

E +
2
3

R
)
(x) −1

4 (x,x′)

√−g
[(

E +
2
3

R
)]

(x′)+
(

c− 2
3

b
)

1
12(4π)2

∫
d4x
√−gR2

in terms of the Green function of the operator

4 ≡ 2−2Rμν∇μ∇ν +
2
3

R − 1
3
(∇μR)∇μ ,

the Weyl tensor Cμνασ and the Euler density E.
However, the third component Stop(g) cannot be expressed in terms of local ten-

sor densities because only depends on global properties of the space M like the
length of minimal closed geodesic. This component is only present in multiple con-
nected spaces.
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The coefficients of the local part are ambiguous and depend on the renormaliza-
tion scheme. However the b coefficient of Sanom(g) and those of Stop(g) are universal
[20] and independent of the regularization method. The coefficient c of Sanom(g) is
ambiguous because corresponds to a local term which cannot be disentangled from
a similar term of Sloc(g) [21]. In particular, for a conformal scalar field b = 1/360,
and although most of the regularization methods yield c =−1/180, there are other
methods which give c = −1/180+ δ , with an arbitrary contribution δ which de-
pends on the parameters of the regulatization [21, 22].

However, not all the terms of the action are relevant for the calculation of the
Casimir energy in spherical factor manifolds. It can be shown that in the case of S3

the contribution of the non-local component of Sanom(g), Eu1
S3 = 1

480
1
a , is half of the

total contribution [23] in zeta function regularization. The other half comes from
the R2 term and the genuine topological contribution vanishes. However, as it has
been shown the R2 contribution is arbitrary and, therefore, the total Casimir energy
in such a background is also arbitrary [22].

For multiple connected spherical factor spaces the two universal contributions
have a very different behaviour due to its different origin. The contribution coming
from the non-local terms of Sanom(g) is

Eu1
M =

Vol(M )

480(2π2)

1
a
,

which is equal to the similar contribution of the sphere, up to the ratio of volumes

Vol(S3)

Vol(M )
= #π1(M ),

which is given by the order of the first homotopy group of the physical space M .
The contribution of Stop(g) to the vacuum energy is non vanishing and depends on
the topology of the spherical factor space. This contribution is given by

• Sphere S3

E top
S3 = 0

• Lens spaces S3/ZZq

E top
Zq

=−2q4 +20q2−25
1440q

1
a

• Dihedral spaces S3/DD∗q

E top
D∗q =−40q4 +16q2 +360q−11

2880q
1
a

• Polyhedral spaces S3/TT∗, S3/OO∗, S3/YY∗
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E top
T ∗ =−1505

3456
1
a

E top
O∗ =−4529

6912
1
a

E top
Y ∗ =−87109

86400
1
a
.

However, in all cases there is an extra contribution coming from the R2 term of the
action whose arbitrary contribution δ makes the calculation of the vacuum energy
completely ambiguous.

The same ambiguity appears in hyperbolic spaces with constant negative curva-
ture. However, for flat spaces the behaviour is different.

4 Flat compact spaces

In the case of flat spaces the extra ambiguous contribution is absent due to the van-
ishing of all curvature tensors. In this case the only non-vanishing contribution arises
from the Stop(g) terms of the effective action. There are six orientable compact flat
manifolds: Torus (T 3), Half-Turn Space (E2), Quarter-Turn Space (E3),Third-Turn
Space (E4), Sixth-Turn Space (E5) and Hantzsche-Wendt Space (E6). These spaces
correspond to different factors of the Euclidean space RI 3 by discrete subgroups of
the Euclidean group ISO(3)= T3◦ O(3). They are classified according to their rota-
tional part, ZZ1 for E2, ZZ2 for E3, ZZ4 for E4, ZZ3 for E4, ZZ6 for E5 and ZZ2⊗ZZ2 for
E6.

However, due to the fact that the group factors are not normal, the vacuum
energy density is not uniformly distributed, which implies the existence of space
anisotropies that should be observed in the dark energy component (see Fig. 3).

The corresponding vacuum energies for compact factors of a symmetric torus of
size a are given by [24] [25]
• Torus T 3

ET 3 =− 1
2π2a

∫ ∞

0
dt t(θ 3

3 (e
−t)−1) =−0.8375

a

• Twisted Sixth-Turn Torus E5

E5 =−0.99
1
a

• Hantzsche-Wendt Space E6

E6 =−0.32
1
a
,

and show the same trend as in positive curvature case. The corresponding Casimir
energies are negative which correspond to attractive forces [25][26]. This seems
to be the generic behaviour associated to the topological contributions to vacuum
energy.
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Figure 2 Casimir energies for the flat three-dimensional torus T 3, twisted sixth-turn torus E5 and
Hantzsche-Wendt Space E6.

5 Cosmological implications

If we consider the time evolution of the space-time structure, the conformal factor
a evolves in an accelerated manner, according to the current cosmological LCDM
model. This implies that the quantum vacuum energy of conformal scalar fields also
increases because in most of the cases the Casimir energy is negative (for higher
spins the topological Casimir energy is positive for some topologies). The gravita-
tional back-reaction to this increase of energy results in a tiny deceleration of the
cosmological expansion. However, this quantum contribution is very tiny in the cur-
rent Universe, although it could have played a relevant role in the early stages of
the Universe evolution. The form of the Casimir energy density is very similar to
the radiation component of the total energy density of the Universe. However, the
pressure components are very different.

Now, because of the ambiguity which appears in the renormalization of vacuum
energy it can always be chosen to be in a repulsive regime resulting into an extra
acceleration of space metric. However, the renormalization origin of this behaviour
is masking the real gravitational effect of quantum field fluctuations.

The decrease of energy can be compensated by particle creation [27]. Although
the Zeldovich-Starobinsky condition prevents pair creation for conformally invari-
ant theories [28], in the case of compact spaces if the size of the space is smaller than
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Figure 3 Casimir energies density of confomal scalars on sixth-turn flat space E5 restricted to the
fundamental domain.

the Hubble radius the phenomenon can occur [29]. The spectrum of the correspond-
ing radiation is given by the thermal Gibbons-Hawking spectrum with temperature
T = h̄H/2πkB, in terms of the Hubble constant and Bolthmann parameter. A real-
istic scenario compatible with current observations requires that the size of space is
slightly smaller than the Hubble radius, in order to fit close to the Hubble horizon
and still allow for pair particle creation.

As we have shown only in the case of flat compact topologies the quantum con-
tribution to vacuum energy is universal. In those topologies this vacuum energy is
anisotropic and correlated to the locations of CMB circles in the sky. Only in that
case the new cosmological observations will provide crucial clues to understand the
topological structure of the Universe.
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