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Abstract We study finite-time future singularities in F (R,G)-gravity, where R and
G are the Ricci scalar and the Gauss-Bonnet invariant, respectively. In particular, we
reconstruct the F(G)-gravity and F (R,G)-gravity models realizing the finite-time
future singularities. We discuss a possible way to cure the finite-time future singular-
ities in F (R,G)-gravity by taking into account higher-order curvature corrections
or effects of viscous fluids.

1 Introduction

Among the possible alternatives in order to explain the Dark Energy Issue, are the
so called Modified Theories of Gravity[1, 2].

We would like to consider modified F (R,G)-gravity, where the action is de-
scribed by a function of the Ricci scalar R and the Gauss-Bonnet invariant G =
R2−4RμνRμν +RμνξσRμνξσ .

Many of modified gravity models bring the future universe evolution to finite-
time singularities. Some of these singularities are softer than other and not all physi-
cal quantities (scale factor, effective energy density and pressure) necessarly diverge
at this finite future time. Note that singular solutions correspond to accelerated uni-
verse, and often appear as the final evolution of unstable de Sitter space.

The presence of finite-time singularities may cause serious problems in the black
holes or stellar astrophysics[3]. Thus, it is of some interest to explore the F (R,G)-
gravity models realizing singularities and if any natural scenario to cure such singu-
larities exists.

We use units of kB = c = h̄ = 1 and denote the gravitational constant 8πGN by
κ2 ≡ 8π/MPl

2 with the Planck mass MPl = G−1/2
N = 1.2×1019GeV.
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2 The model

The action of F (R,G)-gravity is given by

S =
∫

d4x
√−g

[
F (R,G)

2κ2 +Lmatter

]
, (1)

where g is the determinant of the metric tensor gμν and Lmatter is the matter La-
grangian. The spatially-flat FRW space-time is described by the metric

ds2 =−dt2 +a2(t)dx2 , (2)

where a(t) is the scale factor of the universe.
From the action in (1), the FRW-equations of motion (EOM) are derived as

ρeff =
3
κ2 H2 , peff =− 1

κ2

(
2Ḣ +3H2) , (3)

where ρeff and peff are the effective energy density and pressure of the universe,
respectively, and these are defined as

ρeff =
1

F ′
R

{
ρ+

1
2κ2

[(
F ′

RR−F
)−6HḞ ′

R +GF ′
G−24H3Ḟ ′

G
]}

, (4)

peff =
1

F ′
R

{
p+

1
2κ2

[
−(

F ′
RR−F

)
+4HḞ ′

R +2F̈ ′
R−GF ′

G

+16H
(
Ḣ +H2)Ḟ ′

G +8H2F̈ ′
G

]}
. (5)

Here, H = ȧ(t)/a(t) is the Hubble parameter and the dot denotes the time derivative.
ρ and p are the energy density and pressure of matter, whereas F ′

R = ∂RF (R,G)
and F ′

G = ∂GF (R,G). For general relativity with F (R,G) = R, ρeff = ρ and peff =
p and therefore (4) and (5) are the Friedmann equations. Consequently, (4) and
(5) imply that the contribution of modified gravity can formally be included in the
effective energy density and pressure of the universe.

3 Finite-time future singularities

We consider the case in which the Hubble parameter is expressed as

H =
h

(t0− t)β
+H0 , (6)

where h, t0 and H0 are positive constants and t < t0 because it should be for ex-
panding universe. β is a positive constant or a negative non-integer number, so that,
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when t is close to t0, H or some derivative of H and therefore the curvature become
singular.

Such choice of Hubble parameter corresponds to accelerated universe, becouse
if (6) is a solution of the EOM (3), it is easy to see that the strong energy condition
(ρeff +3peff ≥ 0) is always violated when β > 0, or is violated for small value of t
when β < 0. It means that in any case the singularity could emerge as final evolution
of accelerated universe.

The finite-time future singularities can be classified in the following way[4]:

• Type I and Big Rip. It corresponds to β > 1 and β = 1. H and R (∼H2) diverge.
• Type II (sudden). It corresponds to −1 < β < 0. R (∼ Ḣ) diverges.
• Type III. It corresponds to 0 < β < 1. H and R (∼ Ḣ) diverge.
• Type IV. It corresponds to β <−1 but β is not any integer number. Some deriva-

tive of H and therefore the curvature becomes singular.

We note that in the present paper, we call singularities for β = 1 and those for β > 1
as the “Big Rip” singularities and the “Type I” singularities, respectively.

4 Reconstruction method

In order to study the finite-time singularities in F (R,G)-gravity, we use the recon-
struction method.

We assume that the contribute of ordinary matter and radiation in expanding
singular universe is too small with respect to the modified gravity, and we study the
pure gravitational action of F (R,G)-gravity, i.e., the action in (1) without Lmatter.
In this case, it follows from (4) and (5) that the EOM of F (R,G)-gravity are given
by[6]:

24H3Ḟ ′
G +6H2F ′

R +6HḞ ′
R +(F −RF ′

R−GF ′
G) = 0 , (7)

8H2F̈ ′
G +2F̈ ′

R +4HḞ ′
R +16HḞ ′

G(Ḣ +H2)

+F ′
R(4Ḣ +6H2)+F −RF ′

R−GF ′
G = 0 . (8)

In the case of pure gravity, these two equations are linearly dependents.
Moreover, we have

R = 6
(
2H2 + Ḣ

)
, G = 24H2 (H2 + Ḣ

)
. (9)

It is easy to see that, in the case of Type I, II and III singularities, G and R tend to
infinitive when t → t0 in Equation (6), and in the case of Type IV singularities tend
to zero.

By using proper functions Z(t), P(t) and Q(t) of a scalar field which is identified
with the cosmic time t, we can rewrite the action in (1) without Lmatter to

S =
1

2κ2

∫
d4x
√−g(Z(t)R+P(t)G+Q(t)) . (10)



264 Lorenzo Sebastiani

By the variation with respect to t, we obtain

Z′(t)R+P′(t)G+Q′(t) = 0 , (11)

from which in principle it is possible to find t = t(R,G). Here, the prime denotes
differentiation with respect to t. By substituting t = t(R,G) into (10), we find the
action in terms of F (R,G)

F (R,G) = Z(R,G)R+P(R,G)G+Q(R,G) . (12)

We describe the scale factor as

a(t) = a0 exp(g(t)) , (13)

where a0 is a constant and g(t) is a function of time. By using the (7), (8) and (13),
the matter conservation law ρ̇+3(ρ+ p) and then neglecting the contribution from
matter, we get the differential equation

Z′′(t)+4ġ2(t)P′′(t)− ġ(t)Z′(t)+(8ġg̈−4ġ3(t))P′(t)+2g̈(t)Z(t) = 0 , (14)

where the Hubble parameter is H(t) = ġ(t). By using (7), Q(t) becomes

Q(t) =−24ġ3(t)P′(t)−6ġ2(t)Z(t)−6ġ(t)Z′(t) . (15)

It means that in principle, by solving (14) on the singular solution (6), it is possible
to reconstruct F (R,G) producing finite-time future singularities.

In general, if Z(t) �= 0, F (R,G) can be written in the following form:

F (R,G) = Rg(R,G)+ f (R,G) , (16)

where g(R,G) �= 0 and f (R,G) are generic functions of R and G. From (7) and (8),
we obtain

ρeff = − 1
2κ2g(R,G)

[
24H3Ḟ ′

G +6H2
(

R
dg(R,G)

dR
+

d f (R,G)

dR

)
+6HḞ ′

R

+(F −RF ′
R−GF ′

G)

]
, (17)

peff =
1

2κ2g(R,G)

[
8H2F̈ ′

G +2F̈ ′
R +4HḞ ′

R +16HḞ ′
G(Ḣ +H2)

+

(
R

dg(R,G)

dR
+

d f (R,G)

dR

)
(4Ḣ +6H2)+F −RF ′

R−GF ′
G

]
, (18)

where ρeff and peff are given by the expressions in (3).
The modification of gravity could be included into the Equation of State (EoS)

of an inhomogeneus dark fluid with energy density ρe f f and pressure pe f f
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pe f f = ωρe f f +G (H, Ḣ...) , (19)

where ω is the constant EoS parameter of matter and G (H, Ḣ...) is a viscosity term
given by

G (H, Ḣ...) =
1

2κ2g(R,G)

{
(1+ω)(F −RF ′

R−GF ′
G)

+

(
R

dg(R,G)

dR
+

d f (R,G)

dR

)[
6H2(1+ω)+4Ḣ

]
+HḞ ′

R(4+6ω)+8HḞ ′
G
[
2Ḣ +H2(2+3ω)

]
+2F̈ ′

R +8H2F̈ ′
G

}
.(20)

The use of this equation requires that g(R,G) �= 0 on the solution.
By combining the two equations in (3), we obtain

G (H, Ḣ...) =− 1
κ2

[
2Ḣ +3(1+ω)H2] , (21)

where (19) has been used.

5 Singularities in F (R,G)-gravity

Big Rip singularity in F(G)-gravity

As a simple example of reconstruction method, we examine the Big Rip singularity
in Gauss-Bonnet F(G)-gravity, where F (R,G) = R+F(G) and F(G) is a function
of Gauss-Bonnet invariant only. In this case, by putting Z(t) = 1, the action of (10)
can be written in terms of two proper functions P(t) and Q(t) and the variation with
respect to t yields

P′(t)G+Q′(t) = 0 , (22)

from which we can find t = t(G) and the action in terms of R and F(G)

F(G) = P(G)G+Q(G) . (23)

Equations (14) and (15) read

2
d
dt

(
ġ2(t)

dP(t)
dt

)
−2ġ3(t)

dP(t)
dt

+ g̈(t) = 0 , (24)

Q(t) =−24ġ3(t)
dP(t)

dt
−6ġ2(t) . (25)

For the Big Rip singularity, β = 1 in (6). If we assume H0 = 0 (the constant
is negligible in the asyptotic singular limit t → t0), ġ(t) = h/(t0− t) and the most
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general solution of (24) is given by

P(t) =
1

4h(h−1)
(2t0− t)t + c1

(t0− t)3−h

3−h
+ c2 , (26)

where c1 and c2 are generic constants. From (25), we get

Q(t) =− 6h2

(t0− t)2 −
24h3

[
(t0−t)

2h(h−1) − c1(t0− t)2−h
]

(t0− t)3 . (27)

Furthermore, from (22) we obtain t in terms of G and, by solving (23), we find the
most general form of F(G) which realizes the Big Rip singularity

F(G) =

√
6h3(1+h)
h(1−h)

√
G+ c1G

1+h
4 + c2G . (28)

This is an exact solution of the EOM in the case of Big Rip. The term c2G is a
topological invariant. In general, if for large values of G, F(G) ∼ αG1/2, where
α(�= 0) is a constant, the Big Rip singularity could appear for any value of h �= 1.
Note that c2G(1+h)/4 is an invariant with respect to the Big Rip solution.

Other types of singularities and more general F (R,G)-gravity case

In a similar way, it is possible to reconstruct F(G)-gravity models in wich the other
types of singularities could appear, when β �= 1 in (6) and the scale factor, when
H0 = 0, behaves as

a(t) = exp

[
h(t0− t)1−β

β −1

]
. (29)

We give some results.
The asymptotic solution (in the limit t → t0) of F(G) when β > 1 is expressed as

F(G) =−12

√
G
24

. (30)

Hence, if for large values of G, F(G) ∼ −α√G with α > 0, a Type I singularity
could appear.

When β < 1, the asymptotic solution of F(G) becomes

F(G)∼ α |G|γ , γ =
2β

3β +1
, (31)

where α is a constant. If for large values of G, F(G) has this form with 0 < γ < 1/2,
we find 0 < β < 1 and a Type III singularity could emerge. If for G→−∞, F(G)
has the form in (31) with−∞< γ < 0, we find−1/3 < β < 0 and a Type II (sudden)
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singularity could appear. Moreover, if for G→ 0−, F(G) has the form in (31) with
1 < γ < ∞, we obtain −1 < β <−1/3 and a Type II singularity could occur. If for
G→ 0−, F(G) has the form in (31) with 2/3 < γ < 1, we obtain −∞< β <−1 and
a Type IV singularity could appear. We also require that γ �= 2n/(3n− 1), where n
is a natural number.

As a consequence, a large class of realistic models of F(G)-gravity, which re-
produce the current acceleration and the early-time inflation, could generate future
time-singularities, as for example[7]:

F1(G) =
a1Gn +b1

a2Gn +b2
, F2(G) =

a1Gn+N +b1

a2Gn +b2
, F3(G) = a3Gn(1+b3Gm) . (32)

All this models contain power functions of G and for some choices of parameters
could produce singularities.

With reconstruction method it is possible to derive also more general F (R,G)-
models producing finite-time singularities. For example, in the model F (R,G) =
R− αG/R, where α is a positive constant, could appear the Type I singularity,
whereas in the model F (R) = R+αRγ , where α and γ are constants, could ap-
pear Types II, III or IV singularities (for a review, see [5]).

6 Curing the finite-time future singularities

We discuss a possible way to cure the finite-time future singularities in F(G)-gravity
and F (R,G)-gravity. In the case of large curvature, the quantum effects become
important and lead to higher-order curvature corrections. It is therefore interesting
to resolve the finite-time future singularities with some power function of G or R.

We consider the description of modified gravity as inhomogeneous fluid. If some
singularities occur, (21) behaves as

G (H, Ḣ...)�−3(1+ω)h2

κ2 (t0− t)−2β +
2βh
κ2 (t0− t)−β−1 . (33)

One way to prevent a singularity appearing could be that the function G (H, Ḣ...)
becomes inconsistent with the behavior of (33) in the singular limit (t → t0).

Let us consider a simple example in order to cure Big Rip singularity in F(G)-
gravity. Suppose that for large values of G,

R+F(G→ ∞)−→ R+ γGm , m �= 1 , (34)

with γ �= 0. For H = h/(t0− t), namely the Big Rip case, we have

G (H, Ḣ...)� α
(t0− t)4m . (35)
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Hence, if m > 1/2, G (H, Ḣ...) tends to infinity faster than (33) and we avoid this
kind of singularity.

As general results, we find that the term γGm with m > 1/2 and m �= 1 cure the
singularities occurring when G→±∞ (Type I, II and III). Moreover, the term γGm

with m≤ 0 cure the singularities occurring when G→ 0− (Type II, IV).
In f (R)-gravity (namely, R plus a function of R), by using the term γRm, the

same consequences are found. The term γRm with m > 1 cures the Type I, II and III
singularities. The term γRm with m < 2 cures the Type IV singularity.

Within the framework of F (R,G)-gravity, we can use the terms such as Gm/Rn

to cure the singularities. For example, we can avoid the Type I singularities if the
asymptotic behavior of the model is given by γGmRn, with m,n > 0.

7 Effects of viscous fluid in singular universe

As the last point, we explore the role of perfect/viscous fluids within singular modi-
fied gravity, investigating how the singularities may change or disappear, due to the
contribution of quintessence or phantom fluids.

We consider the class of modified gravity F (R,G) = R+ f (R,G), where f (R,G)
is a function of the Ricci scalar R and the Gauss-Bonnet invariant G, and we suppose
the presence in the universe of cosmic viscous fluid, whose EoS is given by

p = ωρ−3Hζ , (36)

where p and ρ are the pressure and energy density of fluid, respectively, and ω
is the EoS parameter. ζ is the bulk viscosity and in general it could depend on ρ ,
but we will consider the simplest case of constant viscosity only (for more general
cases, see [8]). On thermodynamical grounds, in order to have the positive sign of
the entropy change in an irreversible process, ζ has to be a positive quantity.

The FRW-equations of motion are:

ρG +ρ =
3

8πGN
H2 , pG + p =− 1

8πGN

(
2Ḣ +3H2) . (37)

The modified gravity is formally included into the modified energy density ρG and
the modified pressure pG, which correspond to (17)-(18) for g(R,G) = 1.

The fluid energy conservation law is a consequence of the EOM (37):

ρ̇+3Hρ(1+ω) = 9H2ζ . (38)

The presence of fluid could influence the behaviour of singular f (R,G)-models
(i.e. models that in absence of fluids produce some singularities). We will check the
solutions of the fluid energy density when H is singular.
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Non viscous case

In the non-viscous case ζ = 0 (perfect fluid), the solution of (38) assumes the clas-
sical form:

ρ = ρ0a(t)−3(1+ω) , (39)

where ρ0 is a positive constant and a(t) is the scale factor of the universe. By com-
bining (39) with (29), it is easy to see that for β > 1 (Type I singularity), ρ grows up
and diverges exponentially if ω < −1. In the presence of phantom fluid, the EOM
(37) become inconsistent with respect to the singular form of Hubble parameter in
(6), and the Type I singularity is not realized in f (R,G)-gravity.

When 0 < β < 1, the fluid energy density ρ is avoidable on the Type III sin-
gular solution, whereas for Type II and IV singular models (β < 0), the presence
of quintessence or phantom fluids makes the singularities worse. In particular, in
the case of β < −1, the dynamical behaviour of (37) could become inconsistent,
because ρ behaves as (t0− t) and it is larger than the time-dependent part of H2

(∼ (t0− t)−β ) when t → t0.

Constant viscosity

Suppose to have the bulk viscosity equal to a constant, ζ = ζ0, and the Hubble
parameter in the general form of (6). The asymptotic solutions of (38) in the singular
limit t → t0 are:

ρ � 3hζ0

(1+ω)(t0− t)β
, β > 1 , (40)

ρ � 9ζ0h2

(2β −1)(t0− t)2β−1 , 1 > β > 0 , (41)

ρ � 9hH0ζ0

(β −1)(t0− t)β−1 +
3H0ζ0

1+ω
, 0 > β ,H0 �= 0 . (42)

In the first and second cases (β > 0), it is possible to see that ρ diverges more slowly
than H2, so that viscous fluid does not influence the asymptotically behaviour of
Types I and III singular models in (37), due to the constant viscosity.

In the third case, we consider fluids that tend to a non-negligible energy density
when β < 0. It automatically leads to H0 �= 0 in (6) and ρ behaves as in (42). Large
bulk viscosity ζ0 becomes relevant in the EOM. Moreover, if ω <−1, the effective
energy density (namely, ρG + ρ) could be negative and avoid the Type II and IV
singularities for expanding universe (where H0 > 0).
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8 Conclusion

gravity. We can reconstruct the F(G)-gravity and F (R,G)-gravity models in which
the singularities could appear. Note that all types of future-time singularities could
appear in F (R,G)-modified gravity. In addition, we have discussed a possible way
to resolve the finite-time future singularities in F(G)-gravity and F (R,G)-gravity
under quantum effects of higher-order curvature corrections or the presence of per-
fect/viscous fluid in the universe.
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