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Abstract In the theory of General Relativity, gravity is described by a metric which
couples minimally to the fields representing matter. We consider here its “veiled”
versions where the metric is conformally related to the original one and hence is no
longer minimally coupled to the matter variables. We show on simple examples that
observational predictions are nonetheless exactly the same as in General Relativity,
with the interpretation of this “Weyl” rescaling “à la Dicke”, that is, as a spacetime
dependence of the inertial mass of the matter constituents.

1 Introduction

Many extensions of General Relativity which are under current investigation (for
example f (R) gravity, see e.g. [1], or quintessence models, see e.g. [2]) fall in the
class of scalar-tensor theories (see e.g. [3]) where gravity is represented by a scalar
field φ̃ together with a metric g̃ which minimally couples to the matter variables.
Now, as is well-known (see [4] where references to the earlier literature can also
be found), the “Jordan frame” variables φ̃ and g̃ can be traded for the “Einstein
frame” variables (φ∗,g∗) with g̃ = e2Ωg∗, the conformal factor Ω being chosen so
that the action for gravity becomes Einstein-Hilbert’s, the “price to pay” being that
the matter fields no longer minimally couple to the metric g∗.

Although there seems to be an agreement in the recent literature about the math-
ematical equivalence of these two “frames” (as long as Ω does not blow up) there
is still some debate about their “physical” equivalence, the present trend (see e.g.
[1] and references therein) being that calculations may be performed in the Ein-
stein frame but interpretation should be done in the Jordan frame (for the opposite
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view see e.g. [5], where a comprehensive review of the earlier literature can also be
found).

It should be clear however, see [6], that, just as one can formulate and interpret a
theory using any coordinate system (proper account being taken of inertial acceler-
ations if need be), one should be able to formulate and interpret (classical) gravity
using any conformally related metric, proper account being taken of non-minimal
coupling if need be. (For recent papers supporting this view, see e.g. [7, 8, 9].)

In this paper we shall try to make this equivalence “crystal clear” by showing
that some familiar predictions of General Relativity can equivalently be made in its
“veiled” versions where the metric is conformally related to the original one and
hence is no longer minimally coupled to the matter variables.

2 Conformal transformations and “veiled” General Relativity

In the theory of General Relativity:

– Events are represented by the points P of a 4-dimensional manifold M equipped
with a Riemannian metric g, with components gμν(xα) in the (arbitrary) coor-
dinate system xα labelling the points P.

– Matter is represented by a collection of tensorial fields on M , denoted ψ(a)(P).
– Gravity is encoded in the metric g which couples minimally to the fields ψ(a).

This means that the action for matter is obtained from the form it takes in flat
spacetime in Minkowskian coordinates by replacing ημν by gμν .

– Finally the action for gravity is postulated to be Einstein-Hilbert’s.

Hence the familiar total action:

S[gμν ,ψ(a)] =
1

16π

∫
d4x
√−gR+Sm[gμν ,ψ(a)] , (1)

where g is the determinant of the metric components gμν and R the scalar curvature.
Our conventions are: signature (−+++), R = gμνRμν , Rμν = Rσ μσν , Rμνρσ =
∂ρΓ μνσ + · · · . We use Planck units where c = h̄ = G = 1.

The field equations are obtained by extremising S with respect to the metric gμν
and the matter fields ψ(a), which yields the equally familiar Einstein equations,

Gμν = 8πTμν ,
δSm

δψ(a)
= 0 , (2)

where Gμν = Rμν − 1
2 gμνR is the Einstein tensor and where Tμν = − 2√−g

δSm
δgμν is

the total stress-energy tensor. As is well-known Tμν is constrained by the Bianchi
identity to be divergence-less,

DνT μν = 0 , (3)
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D being the covariant derivative associated with g. Recall that this conservation law
implies that the worldline of uncharged test particles are represented by geodesics
of the metric g.

Let us now equip our manifold M with another metric ḡ, with components ḡμν
in the same coordinate system xα , which is conformally related to the original one:

gμν =Φ ḡμν , (4)

Φ(xα) being an arbitrary function of the coordinates, that we shall restrict to be
everywhere positive.1

Using the fact that
√−g = Φ2√−ḡ and that the Ricci tensors and scalar curva-

tures are related as

Rμν = R̄μν− D̄μνΦ
Φ

− ḡμν
2

�̄Φ
Φ

+
3
2
∂μΦ∂νΦ
Φ2 , R=

1
Φ

(
R̄−3

�̄Φ
Φ

+
3
2
(∂̄Φ)2

Φ2

)
,

(5)
(R̄μν , R̄ and D̄ being the Ricci tensor, the scalar curvature and the covariant deriva-
tive associated with the metric ḡ), it is easy to find the “veiled” version of Einstein’s
equations (2),

Φ Ḡμν−D̄μνΦ+ ḡμν�̄Φ+
3

2Φ

(
∂μΦ∂νΦ− 1

2
ḡμν(∂̄Φ)2

)
= 8πT̄μν ,

δSm

δψ(a)
= 0 ,

(6)
where Sm is now expressed in terms of ḡμν , Sm[gμν ,ψ(a)] = Sm[Φ ḡμν ,ψ(a)], and
where T̄μν = − 2√−ḡ

δSm
δ ḡμν so that T̄μν = Φ Tμν , with gαβ replaced by Φ ḡαβ in Tμν .

As for the Bianchi identity (3), it translates into

D̄ν T̄ μν =
∂̄ μΦ
2Φ

T̄ . (7)

The total stress-energy tensor is no longer conserved.
Equations (6), (7) can also be straightforwardly obtained from the Einstein-

Hilbert action (1). Indeed it reads, using (4) and up to a boundary term,

S[ḡμν ,Φ ,ψ(a)] =
1

16π

∫
d4x
√−ḡ

(
Φ R̄+

3
2
(∂̄Φ)2

Φ

)
+Sm[Φ ḡμν ,ψ(a)] . (8)

Extremisation with respect to ḡμν and ψ(a) yields (6). As for the extremisation with
respect to Φ it is redundant since it turns out to be equivalent to the trace of equa-
tion (6). This reflects the fact that, ḡμν remaining unconstrained, Φ is an arbitrary

1 (M ,g) or (M , ḡ) are often called, rather improperly, “frames”, when a more accurate wording
would be “representations” of space and time, see [6].



250 Nathalie Deruelle and Misao Sasaki

function and not a dynamical field.2

Let us now be more specific about the matter action Sm.
As an example (others are considered in the Appendix), take matter to be an elec-

tron characterized by its inertial mass m and charge q interacting with the electro-
magnetic field Aμ created by an infinitely massive proton, so that Sm is the Lorentz
action where ημν → gμν :3

Sm[gμν ,L] =−m
∫

L

√−gμνdxμdxν +q
∫

L
Aμdxμ , (9)

where L is a path determined by xμ = xμ(λ ). The equation of motion of the electron,
δSm
δL = 0, is the familiar Lorentz equation,

muνDνuμ = qFμν uν , (10)

where uμ = dxμ/dτ with gμνuμuν =−1 and Fμν = ∂μAν −∂νAμ .
Equivalently, Sm reads, in terms of the metric ḡμν ,

Sm[ḡμν ,Φ ,L] =−
∫

L
m̄
√−ḡμνdxμdxν +q

∫
L

Āμdxμ , (11)

where Āμ = Aμ and
m̄ =

√
Φm . (12)

As for the Lorentz equation (10), it becomes

m̄
[

ūν D̄ν ūμ +
1

2Φ
∂νΦ (ḡμν + ūμ ūν)

]
= qF̄μν ūν , (13)

2 One notes the resemblance of the action (8) and the field equations (6) with the Brans-Dicke
action and field equations [10] when their parameter ω is ω =−3/2, see e.g. [11]. The difference
(which makes ω = −3/2 Brans-Dicke theory different from General Relativity) is that, in Brans-
Dicke theory, matter is minimally coupled to the metric ḡ (not g),

Sω=−3/2
BD =

1
16π

∫
d4x
√−ḡ

(
Φ R̄+

3
2
(∂̄Φ)2

Φ

)
+Sm[ḡμν ,ψ(a)] .

In the spirit of [12], one could therefore introduce a “detuned” version of General Relativity based
on the action,

SdetunedGR =
1

16π

∫
d4x
√−ḡ

(
Φ R̄+

3
2
(∂̄Φ)2

Φ

)
+Sm[ΦF(Φ) ḡμν ,ψ(a)] ,

which reduces to “veiled” General Relativity if F(Φ) = 1 and to ω =−3/2 Brans-Dicke theory if
F(Φ) =Φ−1. We shall not pursue this idea any further here.

3 In Planck units m and q are two dimensionless numbers which are determined in a local inertial
frame where gravity is “effaced”[13] and where the laws of Special Relativity hold.
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with ūμ = dxμ/dτ̄ and ḡμν ūμ ūν =−1.
In locally Minkowskian coordinates Xμ in the neighbourhood of some point P

where ḡμν ≈ ημν and if Φ is approximately constant, this equation takes the form,

m̄
dUμ

dτM
≈ qFμνUν , (14)

with Uμ = dXμ/dτM and ημνUμUν = −1. This equation is the same as the one
governing the motion of the electron in Special Relativity apart from the fact that its
mass is rescaled by the factor

√
Φ(P), see [6].4

As an illustration of the consequences of the rescaling of the mass in veiled Gen-
eral Relativity, consider for example a transition between the levels n and n′ of, say,
the hydrogen atom. Its frequency is given by Bohr’s formula,

ν̄(P) =
(

1
n′2
− 1

n2

)
m̄(P)q4

2
with m̄(P) =

√
Φ(P)m . (15)

It depends on P, that is, on when and where it is measured. Hence the frequency
ν̄(P)≡ ν̄ of the transition measured at point P (“there and then”) and the frequency
ν̄(P0)≡ ν̄0 of the same transition measured at P0 (“here and now”) are related by:5

ν̄ =

√
Φ(P)
Φ(P0)

ν̄0 . (16)

3 Conformal equivalence in cosmology

Let us show here on a few examples that the standard cosmological models of Gen-
eral Relativity or its conformally related sister theories all lead to the same physical
predictions and hence are observationally indistinguishable.

The field equations to solve are the veiled Einstein equations (6)-(7) for ḡμν
and Φ .

We look for simplicity for spatially flat Robertson-Walker metrics,

ds̄2 = ā2(t)(−dt2 +dr2) , (17)

4 This space-time dependence of the (inertial) mass can be interpreted as a local rescaling of the
unit of mass, see [6]. It can also be interpreted as the result of the “interaction” of the “scalar
field” Φ with matter. It must be remembered however that this “interaction” is an artefact of the
introduction of the metric ḡ, and that the “scalar force” which appears in (13) or (7) can be globally
effaced by returning to the original metric g, just like an inertial force can be effaced by going to
an inertial frame.
5 This difference between the two numbers ν̄ and ν̄0 can be interpreted as simply due to the fact
that they are expressed using a different unit of time at P and P0, see [6].
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where the scale factor ā and the scalar field Φ depend on t only. By construction
equations (6)-(7) are undetermined and we shall choose here, to make our point
more strikingly, Φ to be the dynamical field describing gravity by imposing

ā(t) = 1 . (18)

Therefore the metric ḡ is flat.6

Matter is represented by the stress-energy tensor of a perfect fluid (see Ap-
pendix): T̄μν = (ρ̄ + p̄)ūμ ūν + p̄ ḡμν that we choose to be at rest with respect to
the Minkowskian coordinate grid (t,r):7 ūμ = (1,0) ; as for the (veiled) density and
pressure ρ̄ and p̄ they depend on t.

The equations of motion (6)-(7) forΦ then reduce to, a prime denoting derivation
with respect to t,

3
4Φ
Φ ′2 = 8πρ̄ , ρ̄ ′ =

Φ ′

2Φ
(ρ̄−3p̄) , (19)

which can be solved once an equation of state is given. For p̄ = wρ̄ for example,

Φ =

(
t
t0

)4/(1+3w)

, ρ̄ =
3

2π(1+3w)t2
0

(
t
t0

)2(1−3w)/(1+3w)

. (20)

Let us now turn to the relation between the luminosity distance D and redshift z
that the model predicts.

As usual, we focus on a given atomic transition line in the spectrum of a distant
galaxy at point P = (t,r). The observer is at point P0 = (t0,0), and the atomic line
emitted by this galaxy is observed at frequency ν0. As given in (16), if ν̄ is the
frequency of this transition measured at point P, the frequency of the same transition
measured at point P0 will be ν̄0 =

√
Φ(P0)/Φ(P) ν̄ . Therefore the observed redshift

is given by

1+ z =
ν̄0

ν0
=

√
Φ(t0)
Φ(t)

ν̄
ν0

. (21)

The luminosity distance is given, by definition, as

D =

√
L

4π�
, (22)

where L is the absolute luminosity of the galaxy and � is the apparent luminosity
per unit area observed at point P0. Since the mass of the electron in veiled General
Relativity varies according to m̄ =

√
Φm, it is crucial here to recall that the absolute

6 This does not mean that t and r represent time and position in an inertial frame since the word-
lines of free particles are not straight lines. They rather solve, see (13): ūν D̄ν ūμ = − 1

2Φ (∂̄
μΦ +

ūμ ūν∂νΦ), whose solution is, C being three constants: V̄ ≡ ū/ū0 =C/
√

C2 +Φ(t) �= const..
7 This is the familiar “Weyl postulate”.
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luminosity is not equal to the luminosity measured at the point of emission P (where
the frequency of the transition is ν̄) but is defined as if the galaxy were at the point
of reception P0 (where the frequency of the transition is ν̄0) so that we have 8

L = N
ν̄0

Δ t
= Nν̄2

0 , (23)

where N is the number of photons emitted by this transition during a period Δ t =
1/ν̄0. The apparent luminosity is given by

�= N
ν2

0
S

= N
ν2

0
4πr2 , (24)

where S = 4πr2 is the surface area of a sphere of radius r since the metric ḡ is flat.
Inserting (23) and (24) into (22), we find, using (21),

D =
ν̄0

ν0
r =

√
Φ(t0)
Φ(t)

ν̄
ν0

r . (25)

In order finally to relate ν̄ to ν0 and r to T we must study the propagation of light
from P to P0. Light follows the null cones of (M , ḡμν = ημν) so that r is the time
light takes to propagate from P to P0, and the frequency ν̄ measured at P is the same
as the frequency ν0 observed at P0:

(ν̄ = ν0 , r = t0− t) =⇒ z =

√
Φ(t0)
Φ(t)

−1 , D =

√
Φ(t0)
Φ(t)

(t0− t) .

(26)
Let us, for cosmetics, trade an integration on t by an integration on z:

t0− t =
∫ t0

t
dt =−

∫ z

0

dz
dz/dt

=
∫ z

0

2Φ3/2

Φ ′
dz . (27)

This leads us to the relationship between the luminosity-distance and redshift that
our cosmological model in veiled General Relativity predicts:

D = (1+ z)
∫ z

0

dz
H

, (28)

where H ≡Φ ′/(2Φ3/2) must be expressed in terms of z =
√
Φ(t0)
Φ(t) −1 after integra-

tion of the equations of motion (19) for Φ .

Now, in General Relativity, that is, in the “unveiled frame”, ds2 = a2 ds̄2 with
a=

√
Φ , where matter is minimally coupled to the metric gμν = a2ημν , H is nothing

but the “Hubble parameter”:

8 This (crucial) coupling of the inertial masses to the scalar fieldΦ is forgotten in some papers, see
e.g. [14], which hence (wrongly) conclude to the inequivalence of the Jordan and Einstein frames.
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H ≡ Φ ′

2Φ3/2 =
a′

a2 =
1
a

da
dτ

, (29)

with dτ ≡ adt. Moreover the equations of motion (19) for Φ are identical to the
standard Friedmann-Lemaı̂tre equations,

3H2 = 8πρ , ρ̇+3H(ρ+ p) = 0 , (30)

with ρ ≡ ρ̄/Φ2 and p≡ p̄/Φ2 (see Appendix). Finally, the text-book derivation of
the relation luminosity-distance versus redshift yields (28). Therefore the predicted
relationship between the observables z and D is the same, whether we represent
gravity by a curved Robertson-Walker metric gμν = a2ημν minimally coupled to
matter as in General relativity, or by a flat metric ḡμν = ημν together with a scalar
field Φ coupled to matter, in its “veiled” version.

The physical interpretation of (28) is however different. Indeed, in the particular
version of veiled General Relativity that we considered here:

– The evolution of the universe is not interpreted by cosmic expansion. Since we
chose Φ = a2 there is in fact no cosmic expansion at all: ḡμν = ημν ; but we
defined on this flat manifold a scalar fieldΦ which evolves in time and describes
the interaction of gravity and matter.

– There is no redshifting of photons, since the frequency of an atomic transition
measured at P is equal to the frequency of that same transition as observed at
P0 (ν̄ = ν0).

– However the interaction ofΦ with matter implies that the mass m̄ of the electron
varies in time (m̄ =

√
Φm = am). Therefore the frequency of an atomic transi-

tion as measured in a lab there and then at P is not the same as the frequency
measured here and now at P0: ν̄ =

√
Φ(P)/Φ(P0) ν̄0 = (a/a0)ν̄0. This redshift-

ing due to a varying mass is exactly the same as the one due to a cosmological
redshift in General Relativity.

Pursuing the above interpretation, the temperature of the cosmic microwave
background can be considered constant, since photons are not redshifted, and cho-
sen to be the present temperature T0 = 2.725K, throughout the whole history of the
universe (that is, during the whole time-evolution of the gravitational field Φ). The
universe was in thermal equilibrium when the electron mass was smaller by a factor
of more than 103 compared to the mass today, that is when the ground state binding
energy of the hydrogen was less than 0.0136eV. The “Big-Bang” is flat space at
time t = 0 when the masses of the matter constituents are zero.

In conclusion, the above considerations show that the physical interpretation of
the equations can be very different in General Relativity or its veiled versions, but
the resulting relations between observables are completely independent of the con-
formal representation (or “frame”) one chooses.
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4 Conformal equivalence in local gravity

We shall see here that the tests of General Relativity in the Solar System (gravi-
tational redshift, bending of light, perihelion advance, Shapiro effect...) can just as
well be constructed using veiled General Relativity.

solution of the vacuum Einstein equations written in Droste coordinates xμ =
(t,r,θ ,φ),

ds2 ≡ gμνdxμdxν =−(1−2M/r)dt2 +
dr2

1−2M/r
+ r2(dθ 2 + sin2 θdφ 2) , (31)

where M is the (active) gravitational mass of the Sun. The propagation of light and
the motion of planets in the Solar System are represented by (null) geodesics of this
Schwarzschild spacetime. Proper time as measured in, say, Planck units, by a clock
travelling in the Solar System is represented by the length of its timelike worldline
xμ(λ ), that is, by the number τ =

∫√−gμνdxμdxν .

Let us now introduce the following “veiled” Schwarzschild line element ds2 =
Φ ds̄2 with Φ = 1−2M/r so that

ds̄2 ≡ ḡμνdxμdxν =−dt2 +
dr2

(1−2M/r)2 +
r2

1−2M/r
(dθ 2 + sin2 θdφ 2) , (32)

which solves the “veiled” vacuum Einstein equations (6) (we shall restrict our at-
tention to the region outside the horizon, r > 2M).9

Light follows the null geodesics of ḡμν which are the same as those of gμν .
Therefore the prediction for the bending of light is the same as in General Relativity.

Test particles do not follow geodesics of ḡμν and their equation of motion is
given by (13) (with q = 0). However this equation is just a rewriting of the geodesic
equation in the metric gμν . Therefore the trajectories r = r(φ) in the equatorial
plane θ = π/2 are the same in both General Relativity and its veiled version. The
prediction for, say, the perihelion advance of Mercury is hence the same.

Consider now an atom at rest at r and an observer at rest at r0. Since t is proper
time, the frequency ν0 of an atomic transition, as observed at r0, will be the same as
the frequency ν̄ measured at r: ν̄ = ν0. However, in close analogy with the cosmo-
logical case, since the mass of the electron undergoing this transition depends on r
as (12), m̄ =

√
Φ(r)m, ν̄ is related to the frequency ν̄0 of the transition as measured

at r0 by (16): ν̄ = ν̄0
√
Φ(r)/Φ(r0). Hence the gravitational redshift is predicted to

be

9 One may wonder if the line elements ds̄2 = ds2/Φ , ds2 being the Schwarzschild solution, are the
only solutions of the “veiled” vacuum Einstein equations (which, beware, are not Ḡμν = 0 !). The
answer is yes since, by construction, these equations are undetermined andΦ can be chosen at will
to solve them. One then chooses Φ = 1 and invokes the uniqueness of the Schwarzschild solution.

For definiteness let us describe the gravitational field of theSun by the Schwarzschild
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z≡ ν̄0

ν0
−1 =

√
Φ(r0)

Φ(r)
−1 =

√
1−2M/r0

1−2M/r
−1 , (33)

which is exactly the same as the prediction of General Relativity.
Finally let us consider predictions for the tests of General Relativity relying

on time measurements (such as the Shapiro effect, GPS,...). In veiled General
Relativity, the proper time interval dτ̄ =

√−ḡμν dxμdxν between two adjacent
events xμ = (t,r,θ ,φ) and xμ + dxμ differs from that of General Relativity dτ:
dτ̄ = dτ/

√
Φ . However, if we recall that time measurements are based on atomic

clocks, that is, time intervals are counted in units of a frequency of an atomic tran-
sition, we readily find that the observed number of ‘ticks’ will be the same,

Nticks = ν̄ dτ̄ =
√
Φ ν

dτ√
Φ

= ν dτ , (34)

where ν̄ and ν are the frequencies of an atomic transition defined in veiled and
unveiled General Relativity, respectively. Thus predictions for all the time mea-
surements in veiled General Relativity again exactly agree with those in General
Relativity.

5 Conclusion

In 1912 Nordström proposed a theory where gravity was represented by a scalar
field Φ on Minkowski spacetime with metric ḡμν = ημν . Of course, matter was
non-minimally coupled to that field, so that its interaction to gravity be described
(see e.g. [16]). In 1914 Einstein and Fokker introduced a conformally flat metric
gμν =Φημν which turned Nordström’s equation of motion of test particles into the
geodesic equation of the metric g. Hence matter was minimally coupled to g. As
for the Klein-Gordon field equation for Φ it became an equation relating the scalar
curvature of g to the trace of the stress-energy tensor of matter. It was clear (at least
to Einstein and Fokker !) that the two versions of the theory were strictly equivalent,
Nordström’s formulation being the “veiled” one. And if Nordström’s theory was
soon abandoned it was not because it had been formulated first in flat spacetime but
because its predictions (deduced either from its “veiled” or “unveiled” formulations)
were in contradiction with observations.

In this paper we did nothing more than what Einstein and Fokker did in 1914
but applied the idea to General Relativity itself, in order to show, in a hopefully
clear way, that, even if the description of phenomena could be different in Gen-
eral Relativity and in its conformally related sister theories, the predictions for the
relationships between (classical) observables were strictly the same.

It should then become obvious that the same conclusion holds too when dealing
with extensions of General Relativity such as f (R) theories, coupled quintessence
or, more generally, scalar-tensor theories (even if the scalar field Φ is then truly
dynamical): the Jordan frame, where matter is minimally coupled to the metric,
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and the Einstein frame, where the action for gravity is Hilbert’s, are equivalent,
mathematically and physically, at least when dealing with classical phenomena and
the motion of objects which are weakly gravitationally bound. Preferring to interpret
the phenomena in the Jordan frame is somewhat similar to preferring to work in
an inertial frame in Special Relativity: this allows to forget about the spacetime
dependence of the inertial mass of the matter constituents just like one can forget
about inertial forces in an inertial frame.

This analogy between inertial forces and non-minimal couplings points to quan-
tum phenomena where the equivalence between the Jordan and Einstein frames may
not hold.

Another point which deserves further investigation is the equivalence of confor-
mally related frames when it comes to the motion of compact bodies whose grav-
itational binding energy is significant. It is known for example that a small black
hole follows a geodesic in General Relativity [17]. In scalar tensor theories weakly
gravitating bodies follow geodesics of the Jordan frame metric (to which matter is
minimally coupled) but small black holes follow geodesics of the Einstein metric,
see [18] and e.g. [19]. How this result, which is interpreted as a violation of the
Strong Equivalence Principle, can be obtained using the Jordan frame exclusively
remains to be elucidated. (see [20] for a recent study on the motion of small bodies
in covariant classical field theories).
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Appendix

We considered in the main text the example of matter being an electron in the field
of an infinitely massive proton.

As a second example, consider matter to be a massive scalar field ψ with action,

S[ξ ]m =−1
2

∫
d4x
√−g

[
(∂ψ)2 +

(
m2 +

ξ
6

R
)
ψ2

]
. (35)

When ξ = 0 and ξ = 1, its extremisation with respect to ψ yields the familiar Klein-
Gordon equations which read, respectively,

�ψ−m2ψ = 0 , �ψ−
(

m2 +
R
6

)
ψ = 0 . (36)
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As for the veiled versions of (35), they are, respectively,

S[0]m =−1
2

∫
d4x
√−ḡΦ

[
(∂̄ψ)2 + m̄2ψ2] ,

S[1]m =−1
2

∫
d4x
√−ḡ

[
(∂̄ ψ̄)2 +

(
m̄2 +

R̄
6

)
ψ̄2

]
(37)

where gμν = Φ ḡμν , m̄ =
√
Φm, and where ψ̄ =

√
Φψ in S[1]m . The extremisations

of S[0]m with respect to ψ and of S[1]m with respect to ψ̄ yield, respectively,

�̄ψ− m̄2ψ =−∂̄ψ · ∂̄Φ
Φ

, �̄ψ̄−
(

m̄2 +
R̄
6

)
ψ̄ = 0 (38)

which are nothing but a rewriting of equations (36). In locally Minkowskian coor-
dinates Xμ in the neighbourhood of some point P where ḡμν → ημν and where Φ
is approximately constant they reduce to their Special Relativistic forms, where the
mass of the field has to be rescaled: m→ m̄ = m

√
Φ(P).10

In the case ξ = 0 the coupling of ψ to Φ can be globally effaced, by returning
to the metric g. In the case ξ = 1 the Klein-Gordon equation is, as is well-known,
conformally invariant.

In the conformal invariant case, one might be confused by the fact that the sta-
bility of the field ψ depends on the sign of (m2 +R/6), while one can easily change
its sign by a conformal transformation. This seemingly paradoxical situation is re-
solved by investigating more carefully the relation between the field in two different
conformal frames.

As an example, let us consider the case when gμν = ημν/(Hη)2 is the (ex-
panding part of) de Sitter metric (with −∞ < η < 0), and m2 < 0 but m2 +R/6 =
m2+2H2 > 0, so that the field ψ is stable. Now consider the conformal transforma-
tion to the frame ḡμν = ημν . Then we have m̄2 = m2/(Hη)2 < 0. Thus the field is
badly unstable because the mass-squared is not only negative but diverges at η = 0.
However if we recall that ψ̄ = (−Hη)−1ψ , this instability is solely due to the ill
behaviour of the conformal factor as η →−0.

Now let us consider a converse case when gμν = ημν and m2 < 0, so that the
field ψ is unstable: ψ ∝ e|m|η diverges exponentially. Turn now to the expanding de
Sitter frame ḡμν = ημν/(Hη)2, with−∞< η < 0. Then the effective mass-squared
m̄2 + R̄/6 = m2/(Hη)2 + 2H2 will eventually become positive as η →−0, hence
the field must be stable in the expanding de Sitter frame. This seeming paradox can
be resolved by noting the fact that ψ̄ = (−Hη)ψ ∝ Hηe|m|η . Thus time is bounded
from above at η = 0, and hence there is literally ‘no time’ for the instability to de-
velop.11

10 Note that the same rescaling of mass occurs in a conformal transformation of the Dirac equation,
see e.g. [15].
11 We thank Andrei Linde for raising this issue.
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As a last example consider matter to be a perfect fluid. Its stress-energy tensor
and equations of motion, deduced from their special relativistic expressions by the
replacement ημν → gμν are

Tμν = (ρ+ p)uμuν + pgμν , D jT μν = 0 (39)

where ρ and p are the energy density and pressure of the fluid measured in a local
inertial frame and where ui is its 4-velocity normalised as gμνuiu j =−1. Now, since
Tμν ≡− 2√−g

δSm
δgμν (where we need not specify Sm), we have

T̄μν ≡− 2√−ḡ
δSm

δ ḡμν
=ΦTμν , (40)

so that the “veiled” version of (39) is, cf (7),

T̄μν = (ρ̄+ p̄)ūμ ūν + p̄ ḡμν , D̄ν T̄ μν =
∂̄ μΦ
2Φ

T̄ , (41)

where ḡμν ūiū j =−1, and with ρ̄ =Φ2ρ and p̄ =Φ2 p.12
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