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Abstract A generalised induced gravity brane-world model is proposed. The brane
action contains an arbitrary f (R) term, R being the scalar curvature of the brane
while the brane is 5-dimensional and is described by a Hilbert-Einstein action. It
can be shown that the effect of the f (R) term on the dynamics of a homogeneous
and isotropic brane is twofold: (i) an evolving induced gravity parameter and (ii) a
shift on the energy density of the brane. This new shift term, which is absent on the
Dvali, Gabadadze and Porrati (DGP) model, plays a crucial role to self-accelerate
the generalised normal DGP branch of our model. The stability of de Sitter solutions
is analysed under homogeneous perturbations. These results are compared with the
standard 4-dimensional one.

1 Introduction

Understanding the recent acceleration of the universe is one of the most challenging
task nowadays in physics. The first evidence for the acceleration of the universe was
provided by the analysis of the Hubble diagram of SNe Ia more than a decade ago
[1]. This amusing discovery, together with (i) measurements of the fluctuations in
the cosmic microwave background radiation (CMB) which implied that the universe
is (quasi) spatially flat and (ii) that the amount of matter which clusters gravitation-
ally is much less than the critical energy density, implied the existence of some stuff
usually dubbed the dark energy component that drives the late-time acceleration of
the universe. Afterwards, more precised measurements of the CMB anisotropy by
WMAP [2] and the power spectrum of galaxy clustering by the 2dFGRS and SDSS
surveys [3, 4] have confirmed this discovery.

A possible approach to describing the late-time acceleration of the universe is to
consider a modified theory of gravity, such that a weakening of this interaction on
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the appropriate scales induces the recent speed up of the universe (cf. [5, 6, 7, 8]).
In other words, the weakening of gravity on large scales would provide an effective
negative pressure that would induce the late-time acceleration of the universe.

A possible approach is the Dvali, Gabadadze and Porrati (DGP) scenario [9,
10, 11], which corresponds to a five-dimensional (5D) brane-world model. In this
model, our universe is a brane; i.e. a 4D hyper-surface, embedded in a Minkowski
space-time. Matter is trapped on the brane and only gravity experiences the full
bulk. The DGP model has two sets of solutions: the self-accelerating branch and
the normal one. The self-accelerating brane, as its name suggests, speeds up at late-
time without invoking any unknown dark energy component. On the other hand,
the normal branch requires a dark energy component to accommodate the current
observations [12, 13]. From a geometrical point of view, the two branches are em-
bedded in a completely different way in the bulk [10]. Despite the very nice features
of the self-accelerating DGP branch, it suffers from serious theoretical problems
like the ghost issue [14]. The main aim of this paper is to consider a mech anism
to self-accelerate the normal branch which is known to be free from the ghost issue
[14].

This mechanism will be based on a modified Hilbert-Einstein action on the brane
and the simplest gravitational option is to invoke an f (R) term. Extended theories of
gravity based on 4D f (R) scenarios have gathered a lot of attention in the last years
(cf. for example and reference cited there [5, 6, 7]). It has been shown that these 4D
models should follow more or less the expansion of a LCDM universe [15, 16, 17]
and could have distinctive signatures on the large scale structure of the universe
[18, 19]. On the other hand, several methods have been invoked to reconstruct the
shape of f (R) from observations [20, 21, 22], for example, by using the dependence
of the Hubble parameter with redshift which can be retrieved from astrophysical
observations or a cosmographyc approach. We will show that an f (R) term on the
brane action can induce naturally self-accel eration on the normal DGP branch.

2 Induced gravity with an f(R) contribution on the brane action

We start considering a brane, described by a 4D hyper-surface (h with metric g),
embedded in a 5D bulk space-time (B, metric g(5)), whose action is described by

S =
∫

B
d5X

√
−g(5)

{
1

2κ2
5

R[g(5)] + L5

}
+

∫
h

d4X
√−g

{
1
κ2

5
K + L4

}
, (1)

where κ2
5 is the 5D gravitational constant, R[g(5)] is the scalar curvature in the bulk

and K the extrinsic curvature of the brane in the higher dimensional bulk, corre-
sponding to the surface boundary term [23]. We will assume that the bulk contains
only a cosmological constant; i.e. L5 = −U . Consequently, the bulk space-time
geometry is described by an Einstein space-time
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GAB[g(5)] =−κ2
5Ug(5)AB . (2)

The 4D Lagrangian corresponds to

L4 = α f (R)+Lm, (3)

where R is the scalar curvature of the induced metric on the brane, g, and α is a
constant that measures the strength of the generalised induced gravity term f (R)
and has mass square units. Therefore, the function f (R) has mass square units. On
the other hand, Lm corresponds to the matter Lagrangian of the brane which in
particular may include a brane tension. The previous action, includes as a particular
case the DGP scenario [9, 10] when the bulk is flat, f (R) = R and α = 1/2κ2

4 where
κ2

4 is proportional to the 4D gravitational constant.
We will be mainly interested in the cosmology of a homogeneous and isotropic

brane, therefore, it is quite useful to follow the approach introduced by Shiromizu,
Maeda and Sasaki in1 [24]. Then, the projected Einstein equation on the brane reads,
where we have assumed a mirror symmetry across the brane,

Gμν [g] =−1
2
κ2

5Ugμν +κ4
5Πμν −Eμν . (4)

Here, Πμν corresponds to the quadratic energy momentum tensor [24]

Πμν =−1
4
τμστνσ +

1
12
ττμν +

1
8

gμν(τρστρσ − 1
3
τ2) ,

(5)

and Eμν is the (trace-free) projected Weyl tensor on the brane.
The total energy momentum on the brane can be defined as

τμν ≡−2
δL4

δgμν
+gμνL4. (6)

It is useful to split the previous energy momentum tensor into two terms

τμν = τ
(m)
μν + τ( f )

μν . (7)

The first term τ(m)
μν corresponds to the energy momentum tensor of matter (which

include in particular the brane tension) on the brane. The second term

τ( f )
μν =−2α

{
d f
dR

Rμν − 1
2

f (R)gμν
[
gμαgνβ −gμνgαβ

]
∇α∇β

(
d f
dR

)}
. (8)

1 For a different approach to deduce the equations of evolution of a DGP brane with curvature
modifications on the brane action see the references[25, 26]. See as well [27] for a brane-world
model with an f (R) term.
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corresponds to the energy momentum tensor due to the generalised induced gravity
term, f (R), on the brane. Now, if f is proportional to the scalar curvature of the
brane, then τ( f )

μν is proportional to the Einstein tensor of the brane; i.e. the standard
induced gravity brane-world scenario is recovered:

τ( f )
μν =−2αGμν . (9)

Using the 5D Codacci equation, the bulk Einstein equation, and the junction
condition at the brane, it turns out that the total energy momentum tensor of the
brane is conserved τμν [24], i.e.

∇ντμν = 0. (10)

On the other hand, because2

∇ντ( f )
μν = 0, (11)

we can conclude that the energy momentum tensor of matter on the brane is con-
served

∇ντ(m)
μν = 0. (12)

3 Dynamics of a homogeneous and isotropic brane

In what follows, we consider a homogeneous and isotropic brane. The matter sector
on the brane can be described by a perfect fluid with energy density ρ(m) and pres-
sure p(m), where ρ(m) is conserved as we have pointed above. On the other hand, an
effective energy density and an effective pressure associated to the energy momen-
tum tensor coming from the f (R) term on action can be defined as follows [29]

ρ( f ) = −2α
[

3
(

H2 +
k
a2

)
f ′ − 1

2
(R f ′ − f )+3HṘ f ′′

]
, (13)

p( f ) = 2α
{(

2Ḣ +3H2 +
k
a2

)
f ′ − 1

2
(R f ′ − f )

[
R̈ f ′′+(Ṙ)2 f ′′′+2HṘ f ′′

]}
,(14)

Notice that the definition of ρ( f ) and p( f ) is different from the standard 4D definition
in f (R) models [29]. On the other hand, the energy density is conserved on the
brane.

The modified Friedmann equation on the brane can be written as

2 We have proved this equation using the 4D Bianchi identity on the brane; i.e. ∇νGμν = 0, and the
relation between the non commutative character of two covariant derivatives and its relation to the
Riemann curvature tensor (again on the brane), see for example equation 3.2.12 of [28]. Therefore,
the conservation relation (11) can be proven in analogy to how it is done in the standard 4D f (R)
scenario.
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3H2 =
κ4

5
12
ρ2. (15)

While, the spatial component of Einstein equation can be expressed as

2Ḣ +3H2 =−κ
4
5

12
ρ(ρ+2p), (16)

where the energy density ρ and the pressure p are defined as

ρ = ρ(m) +ρ( f ), p = p(m) + p( f ). (17)

For simplicity, on equations (15) and (16) we have used the spatially flat chart
of the brane. We have also assumed no dark radiation on the brane; i.e. the bulk
corresponds to a 5D maximally symmetric space-time. Notice that even in more
general cases the dark radiation term will have no influence on the late-time dynam-
ics of the brane as this term is constrained to be already subdominant by the time of
nucleosynthesis [30].

4 de Sitter branes

A de Sitter space-time is the simplest cosmological solution that exhibits acceler-
ation and therefore it is worthwhile to prove the existence of this solution in our
model and study its stability. This would be a first step towards describing in a re-
alistic way the late-time acceleration of the universe in an f (R) brane-world model.
This approach will also enable us to look for self-accelerating solutions on the mod-
ified normal DGP branch. So, in this section, we first obtain the fixed points of the
model corresponding to a de Sitter space-time and then we study their stability under
homogeneous perturbations.

4.1 Background solutions

In our model, the Hubble parameter for de Sitter solutions can be expressed as3

2κ4
5α

2F2
0 H2

0 = 1+
1
3
κ4

5α
2F0(R0F0− f0)+ ε

√
1+

2
3
κ4

5αF0
[
α(R0F0− f0)

]
(18)

here ε = ±1, the subscript 0 stands for quantities evaluated at the de Sitter space-
time, R0 = 12H2

0 and F = d f/dR. We recover the DGP model for f (R) = R. In fact,

3 For a maximally symmetric brane in our model, the matter content of the brane behaves like a
cosmological constant. As such a term can always be reabsorbed in the f (R) term we will disregard
the matter content in our analysis of de Sitter branes.
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Fig. 1 The figure shows the behaviour of the rescaled squared Hubble rate 2κ4
5α

2F2
0 H2

0 for the
two branches that generalise the DGP solution versus the rescaled energy density ρ(c) defined as
1
3κ

4
5α

2F0(R0F0− f0). The blue star corresponds to the normal DGP branch which is flat. The red
star corresponds to the self-accelerating DGP branch. On the other hand, the blue curve corre-
sponds to the generalised (by the inclusion of the f (R) term) self-accelerating branch, while the
red curve corresponds to the generalised (by the inclusion of the f (R) term) normal branch.

in that case, the de Sitter self-accelerating DGP branch is obtained for ε = 1 and
the normal DGP branch or the non-self-accelerating solution for ε =−1. When the
brane action contains curvature corrections to the Hilbert-Einstein action given by
the brane scalar curvature, the branch with ε =−1 is no longer flat and accelerates
(cf. Figs. 1, 2). Consequently, an f (R) term on the brane action induce in a natural
way self-acceleration on the normal branch. Most importantly, it is known that such
a branch is free from the ghost problem (see [14] and references therein). The reason
behind the self-acceleration of the generalised normal brane is the presence of the
effective energy density

ρ(c)0 = α(F0R0− f0) (19)

on the modified Friedmann equation on the brane. This can be easily shown by com-
paring the Friedmann equation (18) with that of modified gravity on brane world-
models [31].

4.2 Stability of the self-accelerating solutions

We next analyse the stability of de Sitter solutions under homogeneous perturbations
up to first order on δH = H(t)−H0. We will follow the method used in [32].

The perturbed Friedmann equation (15) implies an evolution equation for δH:

δ Ḧ +3H0δ Ḣ +m2
effδH = 0, (20)

where m2
eff is defined as

0

1

2

3

4
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2κ
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2 F
2 0
H
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(1/ 3)κ4

5α
2F0(R0F0 − f0)



Brane Cosmology with an f (R) contribution 123

Fig. 2 The figure corresponds to a zoom of the normal branch as it appears on the figure 4.1.

m2
eff = m2

(4) +m2
shift +m2

pert. (21)

where

m2
(4) =

1
3

(
F0

fRR
−2

f0

F0

)
, (22)

m2
back = − 2

α2κ4
5 F2

0

[
1−

√
1+

2
3
α2κ4

5 F0( f0−κ2
5UF0)

]
,

m2
pert =

F0

3 fRR

[
1−

√
1+

2
3
α2κ4

5 F0( f0−κ2
5UF0)

]−1

.

and fRR = d2 f/dR2. All this quantities are evaluated at the de Sitter background
solution. Any de Sitter solution is stable as long as m2

eff is positive.
The terms defined in (22) have the following physical meaning: (i) m2

(4) is the
analogous quantity to m2

eff in a 4D f(R) model [32], (ii) m2
back is a purely background

effect due to the shift on the Hubble parameter respect to the standard 4D case and
(iii) m2

pert is a purely perturbative extra-dimensional effect.
If we assume that we are close to the 4D regime; i.e. the Hubble rate of the

brane is close to its analogous quantity in a 4D f (R) model, then m2
back > 0 and

m2
pert < 0. Consequently, m2

back tends to make the perturbation heavier. However,
the perturbative effect encoded on m2

pert would make the perturbation lighter. It can
be shown that the extra-dimension has a benigner effect in the 4D f(R) model; i.e.
m2

eff > m2
(4), as long as4

F2
0 < 4 f0 fRR. (23)

4 We have assumed the natural condition F0 > 0; i.e. the effective gravitational constant of the
brane is positive. On the other hand, we have also assumed that we are slightly perturbing the
Hilbert-Einstein action of the brane, i.e. f0 ∼ R0. Therefore, f0 is positive because R0 = 12H2

0 .
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5 Conclusions

A mechanism to self-accelerate the normal DGP branch has been presented which
unlike the original self-accelerating DGP branch is known to be free of the ghost
problem. The mechanism is based in including curvature modifications on the brane
action. For simplicity, we choose those terms to correspond to an f (R) contribution,
which in addition is known to be the only higher order gravity theories that avoid
the so called Ostrogradski instability in 4D models [7]. Notice as well that by em-
bedding the DGP model in a higher dimensional space-time, the ghost issue present
in the original DGP model may be cured [33] while preserving the existence of a
self-accelerating solution [34]. See also [35, 36].

It is know that 4D f (R) models are not free from theoretical problems, so in
constructing an f (R) brane-world model, we should of course try to avoid these
theoretical troubles. We have just undertaken a first step towards constructing re-
alistic self-accelerating solutions in the normal DGP branch. There are still many
issues to be addressed, for example which f (R) should we pick up to be in agree-
ment with the cosmological observations and the solar system tests? We leave these
interesting issues for future works.
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