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Institut de Ciències de l’Espai ICE-CSIC/IEEC
Campus UAB, Facultat de Ciències
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Preface

On the occasion of the 60th Birthday of Professor Emilio Elizalde, a conference
was organized on March 8-10, 2010, to discuss current progress in the main areas
of his research: cosmology, quantum vacuum fluctuations and zeta functions.1 The
conference was planed to take place at the Universitat Autònoma de Barcelona, in
Bellaterra, but due to an unexpected snow storm during the afternoon and evening of
Monday 8, the venue had to be rescheduled: it continued on Tuesday and Wednesday
at the Hotel 1898, in Barcelona’s Ramblas.

The following is a more detailed list of the topics dealt with at the symposium:
• Dark energy and dark matter
•Modified gravity
• Cosmological evolution
• Cosmology and string theory
• Quantum vacuum fluctuations
• Zeta functions in physics and mathematics
Since the workshop was a success from the point of view of the quality of the

speakers and the research works presented, and also by the quantity of participants,
it was decided that a volume of proceedings would be published. The subsequent
call for papers had a very positive response and we are please to present the result
in this volume.

The papers have been grouped into three main areas: Quantum field theory (QFT)
and the Casimir effect, Gravity and Cosmology, and Zeta functions in Physics and
Mathematics. Written by highly qualified specialists in the different specific fields,
they cover some major developments of Physics in the last three decades and a
wealth of applications. A number of closely related issues are also considered, such
as the nature of dark energy, modified gravity models ( f (R) and Gauss-Bonnet, for
example), Hořava-Lifshitz gravity, and a couple of non-standard approaches. The

1 We refer the reader to the recent volume

http://www.ieec.fcr.es/english/recerca/ftc/eli/book2010.pdf,

which gathers a selection of Elizalde’s papers. This material is also available as a book.
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cosmological applications of these theories play a crucial role and are at the very
heart of the book. In particular, the possibility to explain in a unified way the whole
history of the evolution of the Universe, from primordial inflation to accelerated
expansion, one of the landmark discoveries of the last century. Further, a nice and
rigorous description of the mathematical background underlying many of the physi-
cal theories considered above is provided. This includes the uses of zeta functions in
physics, as in the regularization problems in QFT already mentioned, specifically in
curved space-time, and in Casimir problems as, e.g., those involving pistons, which
are now very fashionable.

The prerequisites to read this book are some good background knowledge of
quantum physics, relativity, and basic functional analysis. Many of the articles give
a detailed description of their subject and they try to be as pedagogical as possible.

Acknowledgements. We want to thank all the institutions that made possible the
organization of the conference:

• Consejo Superior de Investigaciones Cientı́ficas (CSIC)
• Instituto de Ciencias del Espacio (ICE)
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• Universitat de Barcelona (UB)
• Universitat Autònoma de Barcelona (UAB)
• Universitat Politècnica de Catalunya (UPC)
• Ministerio de Ciencia y Tecnologı́a (MICINN)

It is also a very pleasant duty to thank Springer-Verlag’s editorial staff for all
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Marina Reizakis and Mrs. Federica Corradi Dell’Acqua.
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Emili Elizalde. Perspectives on his Life and

Work

` ´

Abstract The goal of this paper is to present a broad picture of Emili1 Elizalde’s
unfolding as a person and as a researcher in physics and in mathematics. In addition
to biographical information, we include his answers to a number of questions on his
experience as a researcher and his role as a leading figure in his fields of expertise.

1 Prelude

The “Facultat de Matemàtiques i Estadı́stica” (FME) of the “Universitat Politècnica
de Catalunya” (UPC) dedicated the academic year 2003-2004 to Henri Poincaré.
This started a practice that was followed by Albert Einstein (2004-2005), Carl F.
Gauss (2005-2006), Leonhard Euler (2006-2007), Bernhard Riemann (2007-2008)
and Emmy Noether (2008-2009). At the end of each of these years, the FME pub-
lished a volume with the lectures delivered by the invited speakers (see [10] for
more details).2 All these names were on top of the mathematics and the physics of
their times and thus it should not be a surprise, especially by those that know him,
that Emili Elizalde was one of the very few that were invited twice. The first time
was for the Einstein year and the second time for the Riemann year. The titles of the
lectures he delivered were, respectively, On the cosmological constant, the vacuum
energy, and divergent series and Riemann and Physics (see [1, 2]).

The close relation of these lectures with the topics of this symposium are obvious
in the case of the first lecture. In the case of the second lecture, they become manifest

Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya (UPC), Jordi Girona
1-3, 08034 Barcelona (Spain). e-mail: sebastia.xambo@upc.edu

1 The real scientific name is Emilio, but I shall use Emili instead, the Catalan version, as this is the
way old friends have been calling Elizalde since he was a freshman at the University of Barcelona.
His nickname in those years was ‘Eli’.
2 The year 2009-2010 was devoted to John von Neumann and the year 2010-2011 will be dedicated
to Paul Erdős, but there are no plans to publish the corresponding volumes of proceedings.

1
In Honor of Emilio Elizalde, Springer Proceedings in Physics 137,
DOI 10.1007/978-3-642-19760-4_1, © Springer-Verlag Berlin Heidelberg 2011
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2 S. Xambo-Descamps´

if we bear in mind that Riemann’s approach to geometry was a key ingredient in the
development of General Relativity and that the Riemann Hypothesis (on the zeros
of Riemann’s ζ function) is one of the deepest unsolved problems in mathematics.
The aim ot this lecture was to show that “the importance of the influence in Physics
of Riemann’s purely mathematical works exceeds by far that of his papers that were
directly devoted to physical issues”, and this was accomplished by stressing:

a) The influence of Riemann’s work on the zeta function to the regularization of
QFT’s in curved space-time (in particular, quantum vacuum fluctuations).

b) The uses of the Riemann tensor in general relativity and in very recent gener-
alizations of this celebrated theory, which aim at understanding the presently
observed acceleration of the universe expansion (the dark energy issue).

Q1. To which of the other four years (Poincaré, Gauss, Euler and Noether) would you
have liked to be invited and which would have been, for each of your choices, the subject
of your proposed lecture?

A1. I definitely would have liked to be invited to Euler’s year too. Part of my research on
zeta functions owes so much to Euler. I would have used the opportunity, in preparing my
talk, to learn a lot more about Euler’s contribution to the subject. To wit, the starting point
of several of my explicit derivations of new zeta functions—that are actually useful for the
analytic continuation of some divergent series in Quantum Field Theory—is to be found
in Riemann’s work and I am afraid I can have missed some of Euler’s original insight,
purely based on real calculus. The title of my talk could have been: The zeta function:
from Euler to Riemann, Selberg, and beyond.

A mathematician all physicists most admire is Emmy Noether. Her work has had, and
still has, a tremendous influence in the interface mathematics/theoretical physics. The
difficulties she encountered as a female mathematician also move me a lot. I have been
involved in some translations concerning her life and work, from German to Spanish and
Catalan and I would have been ready to talk on this historical perspective and on some
specific work I did in Group and Quantum Field Theory in my early years as a scientist
that uses her celebrated theorem. A possible title could have been: Emmy Noether and
her perennial influence to modern Physics. It goes without saying that my research has
been much influenced by Poincaré and Gauss too and I could have delivered some related
talks, but I understand I should not abuse. I really enjoyed to take part in the corresponding
sessions as a simple participant.

The idea of writing about Elizalde’s life and work took shape toward the end of
the Riemann year and it was triggered by the wake of a rather special event. On April
25, 2008, Sir Michael Atiyah was awarded an honorary degree by the UPC. For that
occasion, in addition to the usual laudatio [11], a poster exhibit on Atiyah’s life
and work was produced [12].3 The reception of that work by the visitors convinced
me that it might be useful to have other distinguished biographical studies of living
mathematicians and physicists and in that mood the name of Emili Elizalde, with
his rather high scientific impact, was a natural candidate. Since then, I have kept
the project in mind. An occasion in point was the celebration of the symposium
Cosmology, the Quantum Vacuum, and Zeta Functions to celebrate Elizalde’s 60th
Birthday. I prepared a set of slides [14], but I could not present them due to the snow

3 Later this was expanded into a long paper [13].



Emili Elizalde 3

storm (8 March 2010) that forced the authorities to close the Universitat Autònoma
de Barcelona (UAB) on the afternoon of the very first day of the workshop. This
text is essentially an elaboration of those slides.

2 A biographical sketch

Emili Elizalde was born on March 8, 1950. That was the year in which the comet
cloud hypothesis was formulated (Jan H. Oort).4 It was also the year in which Alan
Turing introduced the concept of what would thenceforth be called the Turing ma-
chine. The family name is also intriguing, but quite common in the Basque region
(specially in Navarra): Elizalde is a Basque town, in Gipuzkoa, and it is formed out
of eleiz ‘church’ and the suffix alde ‘by’ or ‘near’.

Balaguer, the town where Elizalde was born, and where he lived until he was
seventeen, is located about 25 km northeast of Lleida, the province capital.5 Today
it has a population approaching seventeen thousand, but in 1950 it had only a little
over six thousand. The river Segre, a tributary of the Ebre river, is one of its most
cherished features. Gaspar de Portolà i Rovira (1716-1784), explorer and founder of
San Diego and Monterrey, epitomizes the industrious nature that is attributed to the
people born in La Noguera.

The following table summarizes the main discoveries in the period 1951-1959
that have a significant relation to Elizalde’s future work:

1951 21cm H radiation, predicted by Van der Hulst.

Structure of our galaxy.

1955 Galaxy explosions. Birth of new stars.

1956 Antineutrinos.

1957 Sputnik. Jodrell Bank.

1958 Mössbauer effect.

1959 Pound–Rebka experiment

From primary school, age six to ten, the event that he remembers most vividly is
the launching of the Sputnik, in the fall of 1957. As he recalls now:

By age 10 I had long decided (had not the least doubt about it) that I would become an
astronaut. It was such a clear and strong feeling! Nothing on Earth could be compared to
the pleasure of flying through the skies towards other worlds. The Sputnik trips propelled
me towards the whole Universe. I myself was up there, flying on the Sputnik! This is maybe
the strongest, the more lively remembrance I keep of my whole childhood. Eventually I
would make a job of my most precious dream.

4 Oort’s contribution is actually an independent discovery of an idea postulated in 1932 by the
Estonian astronomer Ernst Öpik, so it would be better named as the Öpik–Oort hypothesis.
5 Balaguer itself is the capital of La Noguera county (‘comarca’ in Catalan).
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This impression was much reinforced at the end of next decade, when he was a
sophomore, by the landing on the Moon.

From age ten to age seventeen, Elizalde attended secondary school at the Instituto
Laboral de Balaguer. His quiet ways caused that at first he went largely unnoticed
by peers and teachers. But this changed suddenly at the end of his second year, as
he surprised everybody when he got the highest grade, in 1962, in a school problem
contest on mathematics.

Fig. 1 Emili Elizalde at age 12

Asked on his recollections on how he felt in that
period at the Instituto, he says:

Those seven years were very important in my life. This
does not mean at all that they were happy years. My
family had to go through rather hard times and I ac-
tually suffered from that. I had no money to buy say an
ice cream, or to go to the cinema on Sundays, as most of
my schoolmates actually did. Nevertheless, I was quite
happy at the school. I liked learning things, mathemat-
ics in particular. But when I was not reading my books,
on weekends, I did not know how to spend my free time.
It did not help that I was not a very friendly person and
so I remember many boring Sundays there.

Here are a few important discoveries produced during the secondary school years
of Elizalde:

1961 Quark eight-fold way.

1963 Quasars. Arecibo radio-telescope. X-rays sources.

Atiyah-Singer index theorem

1964 Cosmic micro-wave radiation.

1967 Pulsars.

It would be wrong to conclude, as it is plain from the answer to next question,
that Elizalde’s ties to Balaguer and to his peers were weak or inconsequential. The
answer also hints at an interesting literary bent of Elizalde’s character.

Q2. What kind of ties have you maintained with Balaguer all along? What impact have
they had on your career?

A2. My ties to Balaguer have been mainly related with the Instituto, which now is called
Institut de Batxillerat Ciutat de Balaguer. I have given several talks there and also at
the Town Hall Auditorium. Recently we celebrated the 50th Anniversary of the Institut. I
wrote some poems and a short story for the occasion, which you may find on my webpage.
Some of my former classmates are now ruling the Town, some are Member of Parliament,
in Barcelona and Madrid. Others are medical doctors or teachers in Balaguer itself. Some
are really skillful in agricultural research —they are also based there and yet they lead
some important company well known at European level. I am proud that our generation
—that grew up in the scorned Franco time— gave rise to such brazen good professionals
in so very different domains. Public education was extremely good then, I must say, and,

S. Xambo-Descamps´
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in a way, I do owe my whole scientific career (the possibility to pursue it later) to these
years at the Instituto.

In contrast, I do not think any of the ties I have kept with my hometown has had any
direct, significant impact in my professional life or career later. Maybe only at the psy-
chological level: more than once I have found myself recalling Balaguer’s river and its
porched streets when I have felt depressed. Also, its famous Saint Christ Sanctuary, which
I have always considered to be one of the most peaceful places one can be in anywhere,
only matched (but not surpassed) by some selected Tibetan or Japanese shrines. Anyhow,
I am extremely proud to be a Balaguerı́.

The undergraduate years at the university were also very intense. In 1967 he
began the five-year degree in Physics offered by the University of Barcelona. This
institution had also a five-year degree in Mathematics and Elizalde enrolled in it in
1969. He finished these degrees in 1972 and 1973, respectively. He was a systematic
and thorough student, in all subjects. His retrospective view is that his education in
physics and mathematics was very good. This is a quite remarkable assessment, as
those years were, from a political and social point of view, rather difficult, and more
so at the university, where the student unrest and the clashes with the police were
the rule rather than the exception. In all, he was especially strong in analysis and
differential geometry. With regard to physics, he ended with a good knowledge of
classical mechanics, thermodynamics, statistical physics and quantum mechanics.

1968 Electroweak theory. Solar neutrinos defect.

1969 Landing on the Moon.

1970 Black-body radiation.

1971 Black-body X-1 in the Swan constellation.

1972 QCD

1973 Universe, a quantum fluctuation of the vacuum?

At the end of his
undergraduate studies
of mathematics (1973),
Elizalde widened his
education in physics
with a master thesis on
the solar neutrino prob-
lem6 that earned him
the extraordinary dis-
tinction of his class.
His advisor was Pere Pascual (1934-2006), who at that time was Full Professor
of Quantum Mechanics at the Department of Theoretical Physics of the Universitat
de Barcelona.

6 That problem had been discovered in the late 1960s by John N. Bahcall (1934-2005) and Ray-
mond Davis (1914-2006) and its satisfactory solution three decades later was the result of a sus-
tained effort by many theoretical and experimental physicists. At the start, in the late 1960’s, the
experimental design of Davis to measure the flux of solar neutrinos reaching the Earth found a
value that was only one third of the theoretical quantity calculated by Bahcall. These observations
were confirmed later by several other experimental designs. The solution came from experimen-
tal work in the 1990s that was sensitive enough to find not only electron neutrinos, as in Davis
approach, but also muon and tau neutrinos. The 2002 Nobel Prize in Physics recognized these re-
searches by awarding Raymon Davis and Masatoshi Koshiba (Kamiokande experiments) a share
of the Prize.



6

Immediately after his master thesis, Elizalde began his doctoral program in
physics, advised by Joaquim Gomis and Pere Pascual.7 Another decisive event in
his life also happened around this time: Emili met Maria Carmen Torrent (Carme),
his future wife, at the Faculty of Physics of the University of Barcelona, where she
was working for her master thesis.

1976 Idea of cosmic strings.

1977 Inflationary universe.

Atiyah begins his work on gauge theories

Elizalde defended his the-
sis in 1976, with the title
Galilean equations and gyro-
magnetic ratio in the light-
cone system. It was qualified
summa cum laude and later ob-
tained the doctoral extraordinary distinction of his year. As a result of his research
for the master and doctoral thesis, Elizalde published his first five papers in the years
1976 and 1977. These were the initial steps of a scientist that soon would appear to
be a prolific mathematical physicist.

The year 1977 was very special for Emili Elizalde from another side: he mar-
ried Carme on the 23rd of April.8 Carme has pursued her own career in Physics
and at present she is a Professor of Applied Physics at the Technical University of
Catalonia (UPC). Her research is focused on semiconductor lasers.

Carme and Emili have two sons: Sergi (1979) and Aleix (1982) —see Fig. 5 at
the end. Sergi is a well-known mathematician. He won the Spanish Mathematical
Olympiad and also medals at mathematical international competions. He got PhD
degrees from UPC and MIT, with Marc Noy and Richard Stanley as respective ad-
visors. After a postdoctoral stay at MSRI, Berkeley, with Bernd Sturmfels, he is a
Professor at Dartmouth College with Peter Winkler. He married Helen, a lawyer, in
2008, and now they have a son, Guillem, born in 2009.

Aleix displayed early impressive dexterities, like mono-cycle riding. He studied
internal medicine and at present he is about to finish his internship specialty at the
Valle de Hebron Hospital in Barcelona. Recently he was in the news of the Spanish
Medical Gazzette for having displayed one of the best performances in the MIR
examinations. His girlfriend, Laia, is a pediatrist working in a different Hospital.

Sergi, Aleix and Laia are also professional pianists, with a degree from the fa-
mous Liceo Conservatory in Barcelona. As for many educated people of his gener-
ation, this touches a deep chord in Elizalde’s feelings:

They have made true my old dream of becoming a musician, which I could never fulfill,
first for lack of money and later for lack of time.

7 Officially, Elizalde was the first PhD student of Joaquim Gomis. Even if he also discussed his
progress with Pere Pascual, at that time it was not permitted to have co-advisors and as a result the
academic records do not reflect the role of the latter.
8 The choice of the date, St. George’s Day, is particularly significant in Catalonia. If it does not fall
on a Sunday, it is a working day, but a rather special one. Everybody goes to work, but the general
mood is that of a joyful and cherished festivity. Very early in the morning the streets everywhere
are invaded by swarms of improvised sellers of roses, by bookstore stands taken out of the shop,
and by the crowds that are eager to follow the ritual of buying roses and books for the loved ones.
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And then, displaying a concerned fatherly look, whispers:

It is doubtful that Sergi is coming back to Spain any soon. And Aleix and Laia have a very
hard life right now, with a lot of work on night shifts at their respective hospitals. We are
very proud of them since they do an important service to society, but this prevents them
from having a family life at all.

For Carme and Emili, however, not all were roses, especially during the first few
years after getting married. Franco’s dictatorship was over, but the uncertainty about
the future was overwhelming. The life in the universities was rather chaotic and

Fig. 2 Carme and Emili at Villa Hammer-
schmidt (Germany), on the occasion of the 1980
Humbolt fellows reception by the President of
the Federal Republic of Germany.

seemingly with few perspectives. As a
consequence, many gifted young grad-
uates with no financial backup tried to
secure a means of living outside the aca-
demic circles. In the case of Elizalde,
the detour was to take the 1974 competi-
tive examinations required to earn a post
as an upper level high school mathemat-
ics teacher (‘catedrático’). This is the
way he came to hold offices in the high
schools of Tàrrega (1975-7), a town not
far from Balaguer, and Bellvitge (1977-
8), in the Barcelona area.

The escape path, for a vocational re-
searcher as Elizalde, was provided by
a prestigious scholarship of the Juan
March Foundation and later by an even
more illustrious Alexander von Hum-
boldt fellowship. These grants allowed
him to take a leave of absence from the
high school (at that time this was still possible) and spend the academic year 1978-9
and part of next (in fact 16 months in a row) doing postdoctoral work with Rudolf
Haag in the II. Institut für Theoretische Physik of the Hamburg University. The fel-
lowship was for two years, but it was flexible and generous enough to allow the
splitting (and extension) of the second year in four three-months Summer visits.
These visits took place in 1981, 1985, 1987 and 1989, the latter in the Freie Univer-
sität Berlin.

Q3. What would you underline of your stay in Hamburg and the research facilities there?

A3. The Institut is in the middle of the Deutsches Elektronen Synchrotron installment
(DESY), an impressive research center only second to CERN in Europe and one of the
world’s leading centers for the investigation of the structure of matter. The theoretical
group consisted at the time of several of the most prominent QFT physicists alive, as
Harry Lehmann, Kurt Symanzik, Rudolf Haag, Hans Joos, T.T. Wu, who was visiting,
and several others, and a handful of younger people who did impressive careers later. The
Nobel laureate Sam Ting, Wu’s wife, Gustav Kramer, etc. and an extraordinary number
of particle physicists, engineers and technicians (over two thousand, I think) worked for
DESY.



8

Q4. How was your first encounter with Professor Haag?

A4. I remember very well my first encounter with him. He had told me on the telephone,
repeatedly, how to arrive to his office but I got lost in that impressive place, I entered
from one side, the Notkestrasse, and after forty minutes of near random walking I found
myself at the other exit, on the Luruper Chaussee, almost opposite to the first. I was too
shy in order to keep asking on each turn, but finally I had no other choice and so I was
able to reach room 501, on the 5th floor of Building 2a. On the door it was written plainly
“Rudolf Haag”. In spite of arriving one hour late, Prof. Haag was utmost kind and helpful
to me. During the months that followed I could discover that most of the geniuses there
were extremely normal people and, what impressed me even more, that many of them had
such a good sense of humor (what contradicted all I had previously heard about northern
Germany). This included also the prominent visitors (several of them Nobel laureates, as
C.N. Yang and later S. Weinberg) who passed by for short visits, to deliver talks on the
very famous Friday seminar. The coffee served there was excellent too.

1983 W+, W−, Z0.

1987 Supernova in the Magellanic cloud.

1990 The Hubble telescope. Internet

1991 WWW

1992 COBE findings on CMB

Fig. 3 Emilio Elizalde introducing Abdus Salam on
the occasion of having been awarded the “II Premi
Internacional Catalunya”.

That time in Germany, and the
position he subsequently took as
an assistant professor (‘adjunto in-
terino’) at the Department of Theo-
retical Physics of the University of
Barcelona, meant a full recovery of
Elizalde for research. This recovery
was consolidated in 1984, the year
that his position was made perma-
nent as an associate professor (‘pro-
fesor titular’). This happened after
being classified as number one, ex
aequo with Joaquim Gomis, in the
extraordinary state-wide massive ha-
bilitation process called on the pre-
ceding year. This also meant the end
of the four-year struggle sustained by
the ‘interinos’ in favor of ‘work con-
tracts’ and against the old promotion
system through competitive exami-
nations (‘oposiciones’).

If we needed an image to visu-
alize Elizalde’s academic welfare in
the 1980’s, there is one that is es-
pecially eloquent. In 1979, Abdus
Salam shared the Nobel Prize in Physics with Sheldon L. Glashow and Steven Wein-
berg “for their contributions to the theory of the unified weak and electromagnetic
interaction between elementary particles, including, inter alia, the prediction of the
weak neutral current” (Nobel Prize citation). Over a decade later, Salam was distin-
guished with the “II Premi Internacional Catalunya 1990” and the striking picture
is that Elizalde, aged 40, was the person appointed to introduce the distinguished
scientist.
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The next promotion occurred in 1992, when he won, again as number one, a re-
search position at the Spanish Higher Research Council (CSIC, “Consejo Superior
de Investigaciones Cientı́ficas”). The level of this position was between associate
professor and full professor and for several years he was allowed to combine the
new job, attached to the “Centre d’Estudis Avançats de Blanes” (CEAB), with col-
laborative research and teaching at the University of Barcelona. His celebrated book
Ten Physical Applications of Spectral Zeta Functions (LNP, Springer-Verlag, 1995)
was written during the first two years of his association with the CEAB.

The mission of CEAB, created in 1985 as a CSIC unit, was to foster interdisci-
plinary research groups. It was an ambitious initiative, together with many others,9

that was mainly driven by the desire to make up for the gloomy years that were lost
before the advent of democracy. The “Nuclear Astrophysics Group” was formed in
that atmosphere, as early as 1988. This group grew steadily in the next ten years into
the larger group of “Cosmos Sciences”. In the year 1996, it moved to Barcelona as
the starting unit of the newly founded “Institut d’Estudis Espacials de Catalunya”
(IEEC), a research structure created by the the Catalan Government (“Generalitat de
Catalunya”). Emili Elizalde played a prominent role in that move, and he is proud
of “having been one of the scientists involved in the creation of IEEC”.

Q5. In retrospect, how do you remember and assess the CEAB initiative?

A5. It was very advanced for Spain at that epoch. The CEAB was an attempt to make the
dreams of interdisciplinarity come true by putting together, in one of the most beautiful
spots of the Costa Brava, a collection of specialists in artificial intelligence, cosmologists,
biologists, and sea experts who put up the first Spanish base on the Antarctica. Artists were
absent, however, and, even more regretfully, the success of the attempt was rather limited.
Still, after the splitting of two big groups to create separate Institutes in Barcelona, the
CEAB has become a reference Center in the domain of marine ecology and environmental
sciences.

In the structure of the IEEC, the CSIC participated as one of the partners. In
order to provide administrative support to this relation, in 1999 the CSIC created
the Institute of Space Sciences (ICE, “Instituto de Ciencias del Espacio”). Elizalde,
who played again a key role in setting up this arrangement, was attached to ICE
from the very beginning. It is thus that he has been able to combine his adscription
to CSIC with his leading research role in the IEEC in the areas of “Theoretical
Cosmology” and “Fundamental Physics”.

The ICE-IEEC is the roof under which Elizalde has been working in the last
decade. In the year 2003, he was promoted to Senior Research Professor, the highest
possible level at the CSIC (again as number one, in the yearly national appointments
in his subject).

9 For example, the creation of CEAB coincided in time with the celebrated meeting “Culture
and Science: Determinism and Freedom”. Inspired by Salvador Dalı́, already seriously ill, and
organized by the Faculty of Physics of the University of Barcelona, it gathered in Figueres the
Nobel laureate Ilya Prigogine, the Fields medalist René Thom and other distinguished scientists of
very different fields (see [8]).
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At present the ICE is housed at the Autonomous University of Barcelona, where
it moved about ten years ago, but at the start it was housed at the Nexus-1 building
of UPC.

1993 GPS becomes operative

1994 Black hole of 3 billion solar masses in M-87

Top quark

1998 Acceleration of the Universe expansion

Neutrino mass

2002 Hubble estimate age of Universe (13-14 Giga years)

2003 WMAP: 4% matter, 23% dark matter, 73% dark energy

2004 First binary system of pulsars

3 Scientific achievements

Table 1 provides a rough quantitative summary of the Elizalde’s scientific produc-
tion to this day. Without counting the items of types T (Technical notes and other
articles) and B (Books), it gives an average of about ten papers per year, a fact that
lends a strong support to our earlier appraisal that he qualifies as a prolific mathe-
matical physicist.

Types Description Total

J Papers in international journals (SCI) 235

P Proceedings and Other journals 86

C Book chapters 14

B Books and Monographies 12

T Technical notes and other articles 22

R Reviews (ZBl and MR) 200

A Articles in newspapers and magazines 60

O Other original contributions 32

Table 1 Quantitative overview of
Elizalde’s publications. Of the 14 titles
of type B, 5 are in English and 7 in
Spanish. Type O includes 12 original
contributions to encyclopedia and
dictionary entries and translations of
books and articles (20 in all) from
English/German into Spanish/Catalan.

These findings are even more eloquent when we consider the following evidence
for its scientific impact. The overall number of accumulated citations is above 6,000,
and of these more than 4,500 appear in SCI. The book [3], of which Elizalde is
the single author, has accumulated more than 250 citations and the book [7], in
collaboration with four coauthors, more than 460. As far as the citations of papers,
there are more than twenty with 50 or more citations. Table 2 shows the number of
citations for the 10 best-cited papers.
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# Year #Co Area

350 2004 2 Cosmology

200 2005 3 Quantum vacuum

180 1996 2 Zeta functions

170 2005 4 f (R)-gravity

150 2006 4 Modified gravity

130 2008 5 f (R)-gravity

120 1997 3 Quantum vacuum

110 2006 4 Modified gravity

100 2003 3 Quantum vacuum

100 1998 2 Quantum vacuum

Table 2 Elizalde’s ten best-cited papers. The first column
contains a lower bound of the number of citations, in de-
creasing order. The second column indicates the publica-
tion year and the third the number of co-authors (besides
Elizalde) of the corresponding paper. The fourth column
gives a rough indication of the main area of the paper.
The most cited paper so far is Late-time cosmology in
(phantom) scalar-tensor theory: dark energy and the cos-
mic speed-up (with S. Nojiri and S. D. Odintsov), Physical
Review D70, 043539 [1-20] (2004).

Table 3 The second and third column refer to the number of pa-
pers published in indexed journals and in proceedings, respectively.
About one third of the papers appear in more than one area.

Areas #J #P

Cosmology 19 22

Gravity 89 25

Mathematics 57 24

QFT 165 72

Another general perspective is given by the Table 3, where we can see the dis-
tribution of the contributions according to four wide areas: Cosmology, Gravity,
Mathematics and QFT. We observe that QFT is the dominant area, as its weight is
roughly equal to the weight of the other three areas.

If we now look more closely to each of the four areas, by subdividing them into
subareas, we get the tables 4, 5, 6 and 7.

Cosmology

Subarea #J #P

Cosmological constant 11 13

Large scale 8 9

Table 4 Distribution of the Cosmology papers into
two subareas.

Table 5 Distribution of the Gravity papers into four
subareas. Here we may also include a J-paper in the
subarea of Classical gravity and two papers is the
Braneworlds subarea.

Gravity

Subarea #J #P

Quantum gravity (semiclassical) 34 15

Modified gravity 19 2

General relativity 17 6

String theories 17 1

Mathematics

Subarea #J #P

General 2 0

Lie theory 8 5

Neural networks 4 1

Statistics (information theory) 11 3

Chowla-Selberg formula 1 2

Heat kernel 3 1

Table 6 Distribution of the Mathematics papers into
six subareas.
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Table 7 Distribution of the QFT papers into
ten subareas.

Quantum Field Theory

Subarea #J #P

Multiplicative anomaly 22 6

Casimir effect 20 19

Curved space-time 35 11

Equations (Dirac, KG, Proca, ...) 13 4

QCD 27 5

QED, neutrinos, magnetic fields 7 2

Regularization and renormalization 26 10

Vacuum energy 3 5

Yang-Mills 3 5

Quantum mechanics 6 3

As we said earlier, the dominant area in Elizalde’s research has been QFT, which
is the reason why we have subdivided it into more subareas (ten) than the others (see
Table 7).

One of the characteristic features of Elizalde’s work is that it often is carried out
in collaboration with colleagues. Table 8 is like and X-ray image of this fact.

To round the picture of Elizalde’s collaborations, see Table 9.

Collaboration statistics

0 1 2 3 4 5

J 51 80 62 31 9 2 235

P 40 22 12 7 5 0 86

T 8 7 2 3 1 1 22

B 7 1 2 0 2 0 12

C 12 1 1 0 0 0 14

118 111 79 41 17 3 369

Table 8 Columns headed by a number k in 0..5 indicate the
number of papers with k co-authors. Thus k = 0 indicates
the number of works published with no co-authors (118 in
total). At the other end, there are 3 papers published with
5 co-authors: 2 in indexed journals and 1 as a technical
report.

Table 9 This table shows that Elizalde’s main
collaborator is Sergei Odintsov. The num-
ber of papers they have published jointly is
about the same as the number of those writ-
ten with the next four collaborators together
(August Romeo, Sergio Zerbini, Sin’ichi No-
jiri and Guido Cognola). The collaborations
with Bytsenko, Kirsten, Gaztañaga and Naf-
tulin have similar magnitudes, and Haro, Lese-
duarte, Shil’nov, Gomis, Hildebrandt and Soto
follow a little behind.

Collaborators

Name/s J P

Sergei Odintsov 82 21

August Romeo 29 6

Sergio Zerbini 22 4

Sin’ichi Nojiri 17 1

Guido Cognola 15 5

Andrei Bytsenko, Klaus Kirsten 10 1, 5

Enrique Gaztañaga 9 4

Sergei Naftulin 8 4

Jaume Haro 7 0

Leseduarte, Yuri Shil’nov 6 1, 6

Gomis, Hildebrandt, Soto 5 0, 2, 1
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To finish this overview, we include a list of the PhD thesis supervised by
Elizalde:10

1985, Joan Soto
Effective Action of QCD and the Confinement Problem.

1989, Enrique Gaztañaga
Statistical Models for the Description of the Large Scale Structure of the Universe.

1990, August Romeo
New Aspects of Zeta Function Regularization Procedures
with Incidence on QFT Vacuum Effects.

1994, Sergio Gómez
Models of Learning in Artificial Neural Networks and Applications.

1996, S. Leseduarte
Applications of the Zeta Regularization Procedure in Quantum Field Theory.

1998, Pablo Fosalba-Vela
Cosmological Perturbation Theory and the Spherical Collapse Model (co-advisor).

2001, Sergi R. Hildebrandt
Kerr-Schild and Generalized Metric Groups, with some Applications
to Regularized Black Holes (co-advisor).

2002, José Barriga
Mathematical Analysis of Microwave Density Fluctuations (co-advisor).

2008, Miguel Tierz
Random Matrix Models in Chern-Simons Theory.

Q6. You belong to the ‘publish-or-perish’ scientific generation, whose influence was par-
ticularly striking in Spain. How did you experience that move?

A6. The pressure to publish (or perish!) was particularly strong at our University, in my
generation. I remember how everything started. When I was an undergraduate, most of
the Professors (Catedráticos in Spanish) in the Departments of Physics and Mathematics
of Barcelona University had not published even a single paper in their lives. One of them,
a mathematician, having published two papers, was more respected there, at that time,
than Nobel Prize winners are at Harvard or MIT (I know of that through unforgettable
talks with John Bardeen, who had won two of them, and thus I can compare). It is easy to
imagine that the following step taken by the Spanish authorities, in order to close this gap,
was to make us publish at any price. And this we did like mad (impact was not a concept
then).

Q7. You were born the same year as the Turing machine and it seems that it has not
been until the last years that you have become also an explorer of the worlds that were
discovered after that breakthrough. How did this evolution occur?

A7. I already heard something about Alan Turing and the Turing machine when I was a
University student in Barcelona, in the late sixties and early seventies. However, complex-
ity theory and computer skills were not among my strongholds, and my real discovery of
Turing occurred much more recently, about ten years ago, when I began to connect all
these many different pieces of knowledge I had accumulated in my head for years and
years. But the publish-or-perish pressure is the reason why during a large period of my
scientific life I had no time to pause, recollect, relate, and try to explain in a unified way

10 In addition, there are four PhD thesis in progress: Diego Sáez Gómez: Fluid models for the
dark energy; Antonio Jesús López Revelles: Viable models for alternative gravities; Gloria Garcı́a
Cuadrado: Gravitational wave detection with orbiting satellites; and Roger Oliva: Observational
effects of rotating black holes with XMM-Newton. In the case of Sáez and López, Elizalde acts as
co-advisor.
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all these pieces of knowledge I was gathering. When I finally did, some time ago, I was
able for the first time to put Turing’s work in the very prominent place it has in the History
of Mathematics. In particular, in its key role to bypass (in a practical, down-to-earth way)
the terrible impact of Gödel’s incompleteness theorem, which removed in a blow the very
foundations of the construction by Hilbert of the entire building of Mathematics. And this
can be also connected (I do that now) with the great revolutions in last century Physics,
and so forth. I have never stopped to recommend Penrose’s The Emperor’s New Mind to
my students as one of the best books they could ever read, together with the The First
Three Minutes by Weinberg. Anyway, other than that, the Turing machine has not had
such a direct influence on my research, I must say.

Fig. 4 Lecture on the occasion of the
Honorary Professorship Award by the
TSPU (Russia, 2010).

Emili Elizalde’s has been a leading re-
searcher of about eighty projects, endowed
with an average of close to 300 K$ per year.
These resources have included over 65 re-
search grants or post-doc positions and have
allowed his group to hire six Full Professors
and one ICREA researcher.

He serves on the Editorial Board of five
international journals, does referee work for
forty journals and has been evaluator of sci-
entific projects for a dozen national agencies
of different European and American coun-
tries. He is a Fellow of the Institute of Physics
(UK) and member of several societies, in-
cluding the AMS and APS. Elizalde has par-
ticipated in countless international meetings
(conferences, schools and workshops), serving for over twenty occasions on the
organizing committee and being himself the organizer of six conferences. The par-
ticipation has been as a plenary speaker for over sixty times and as a chairman for
over fifty.

Emili Elizalde has received many distinguished awards in recognition to his con-
tributions to science. During the present year (2010), for example, he has been
awarded an Honorary Professorship and the Gold Medal of the Tomsk State Ped-
agogical University (Russia). He has also been appointed Secretary General of the
Alexander von Humboldt Association of Spain and, moreover, he has been invited,
‘as internationally recognized figure in the area’, to the key Conferences of the
Spanish Presidency of the EU Council: ERA Board, Science Against Powerty, and
Biotech for a Complex World.

4 Sources

Emili Elizalde maintains an audacious Web page [4] in which the visitors can access
a wealth of materials about many aspects of his professional and personal life. From
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the point of view of finding out about Elizalde’s scientific trajectory, one of the most
valuable pieces is the book [5], whose goal, as stated at the beginning, is to be

[...] a compendium of the more outstanding contributions of Prof. Emilio Elizalde and
several of his collaborators as they have appeared in international journals during the last
thirty years. A good number of original results can be here found on zeta function reg-
ularization, the extension of the Chowla-Selberg series formula, heat-kernel coefficients,
fluctuations of the quantum vacuum and the Casimir effect in different configurations, as
the bag model, its thermal properties, quantum gravity and black hole physics, large scale
structure of the universe, and alternative cosmological models that deal with the dark en-
ergy issue from a rigorous theoretical perspective, which seeks its roots in fundamental
theories and physical phenomena.

In addition to a large collection of pictures, and a short preface by Professors
V.V. Obukhov and S.D. Odintsov, it contains the much informative three-page intro-
duction “Some personal remembrances of my scientific life”. This piece, together
with the complete list of publications included at the end, should deserve, consider-
ing its polyhedral nature, extensive analysis from different viewpoints.

Table 10 summarizes the six parts in which the papers in [5] are grouped and the
years in which they were published.11

Q8. It seems to me that your book [5] is also a recognition of your former students and
other collaborators.

A8. Indeed, I am extremely proud of the fact that a good number of my former students
are now quite well known scientists, university professors, and qualified professionals in
different countries worldwide. A success accomplished, moreover, in a wide spectrum of
different fields: from heavy quark physics to informatics engineering, from observational
cosmology to sport physics, from financial mathematics to large-scale structure, from data
compression to Casimir effect applications.
As for my other collaborators, I am also proud not only for the work done jointly, but also
for their excellent independent accomplishments.

Quantum Field Theory 1984, 2002, 2003, 2004 (4)

Zeta Functions and Heat Kernels 1989-3, 1996, 1998-2, 1999, 2001 (8)

Vacuum Fluctuations, Casimir Effect 1991, 1994-2, 1997, 1998, 2001, 2006-2 (8)

Gravitation and Black Holes 1994, 2002, 2006, 2008 (4)

Statistics and Large Scale Structure 1992, 1998 (2)

Theoretical Cosmology 2003-2, 2004-2, 2005, 2006, 2007-2 (8)

Table 10 Summary of the Table of Contents of [5]. 1989-3 means that three papers are included
that were published in 1989. The numbers in parenthesis are the total number of papers in each
section (34 in all). This amounts to 18 papers belonging to the last decade and 15 to the preceding
one.

11 Four articles are revised versions of the published papers. The ten best-cited papers so far (cf.
Table 2) were published, ordered by decreasing number of citations, on the years 2004, 2005, 1996,
2005, 2006, 2008, 1997, 2006, 2003 and 1998, respectively. We note that this amounts to seven in
the last seven years and three in the preceding seven-year period.
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In the case of Zeta functions, we already mentioned the monograph [3], which
is “a commented guide that invites the reader to plunge into the thrilling world of
zeta functions and their applications in physics”. This quote is from the Preface, in
which we are also told that “the level is elementary”, that “everything is explained
in full detail, in particular the mathematical difficulties and tricky points”, and that
it is “to be considered as a basic introduction and exercise collection for other books
that have appeared recently” (say like [7], published in 1994). Several original ‘zeta-
function regularization techniques’ are presented, including ‘The zeta-function reg-
ularization theorem’ (Section 2.2). “Physical applications [...] include the proper
definition of the vacuum energy, the Casimir effect, spontaneous compactification
in quantum gravity, stability analysis of strings and membranes, etc., and embrace
also very recent experiments of solid state and condensed matter physics employing
liquid helium (those will be described in the following chapters)” (p. 28). One of
the highest points in the book is an important generalization (formula 4.32) of the
Chowla–Selberg formula [9]. Currently the monograph seems to be out of print and
it would be interesting to have a second edition, which by now it should be supple-
mented, perhaps as a second volume, by many other applications obtained since its
publication fifteen years ago. Meanwhile, readers interested in a quick overview of
the main issues involved in this domain could start with the excellent survey [6].

Q9. For some the vastness of the Universe is apprehended by degrees, from the small to
the very large scale. How did it happen in your case? Under what circumstances did you
begin research in Cosmology?

A9. In my school years, I did not realize that my understanding was only the very local
universe. The big jump was in 1986, when the first map of the universe was published,
including some three thousand galaxies and clusters (De Lapparent, Huchra). This was a
breakthrough: the presence of large voids, the clustering of points into large pictures, one
of which seemed to be a human being, another, kind of God’s finger, was something aston-
ishing and this put some of the best physicists in the world down to work to explain such
structures as coming naturally from fundamental theories (which in fact was only partially
accomplished). In my case this was the birth day of the celebrated Barcelona School on
Large Scale Structure whose creation I started this very same day, by putting my student
Enrique Gaztañaga to work on the analysis and explanation of the matter distribution in
this map. COBE, the CMB map, WMAP, and the PLANCK satellite followed, the thou-
sand points became many millions, and the expansion of our universe turned out to be
accelerating (the most important discovery in physics of the last decades). By the way,
Enrique is now a leading figure in cosmology at international level and two more of my
former students, namely Pablo Fosalba and Sergi R. Hildebrandt, are scientists belonging
to the core team of PLANCK.
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materials and for having led me to discover many aspects of a scientific milieu that
have turned out to be even richer than what I imagined in setting up to write these
notes. Thanks also to the coeditors of this volume, Sergei Odintsov and Diego Sáez-
Gómez, for many fruitful interactions and discussions, and to Jaume Puigbó and
Cristina España for having pointed out several corrections.
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ICREA Institució Catalana de Recerca i Estudis Avançats
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QFT and the Casimir Effect



Colliding Hadrons as Cosmic Membranes and

Possible Signatures of Lost Momentum

Irina Ya. Aref’eva

Abstract We argue that in the TeV-gravity scenario high energy hadrons colliding
on the 3-brane embedded in D = 4+ n-dimensional spacetime, with n dimensions
smaller than the hadron size, can be considered as cosmic membranes. In the 5-
dimensional case these cosmic membranes produce effects similar to cosmic strings
in the 4-dimensional world. We calculate the corrections to the eikonal approxi-
mation for the gravitational scattering of partons due to the presence of effective
hadron cosmic membranes. Cosmic membranes dominate the momentum lost in the
longitudinal direction for colliding particles that opens new channels for particle
decays.

1 Introduction

In recent years the study of transplanckian scattering1 within the TeV-gravity sce-
nario [1] has attracted significant theoretical and phenomenological interest. Within
the TeV-gravity scenario [1] transplanckian scattering could be observed at the LHC
and other future colliders [2, 3, 4, 5, 6, 7, 8], as well as in collisions of high-energy
cosmic neutrinos with atmospheric nucleons [9, 10].

Different physical pictures are expected for different ranges of impact parameters
b. For impact parameters b of the order of the Schwarzschild radius RS of a black
hole of mass

√
s, microscopic black hole formation and its subsequent evaporation

is expected [11, 12, 13, 14] 2, while for large impact parameters b� RS the eikonal
picture given by eikonalized single-graviton exchange is expected [19, 20, 21, 22].

Steklov Mathematical Institute, Russian Academy of Sciences,Gubkin str. 8, 119991, Moscow,
Russia

1 Scattering at center-of-mass (CM) energies exceeding the quantum gravity scale.
2 See also [15] and references therein; there are also proposals concerning the production of more
complicated objects such as wormholes, or time machines [16, 17, 18].

21
In Honor of Emilio Elizalde, Springer Proceedings in Physics 137,
DOI 10.1007/978-3-642-19760-4_2, © Springer-Verlag Berlin Heidelberg 2011
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Corrections in RS/b to the elastic eikonal scattering have been studied [23, 24, 25,
26].

To study high-energy scattering of the hadrons one usually deals with the par-
ton picture. In the case of a 3-brane embedded in D = 4+ n-dimensional space-
time for large impact parameters graviton exchanges dominate in parton amplitudes
[19, 21, 23, 22, 3]. In all D dimensions the graviton is supposed to be propagated
freely. Since D-dimensional gravity is strong it would be interesting to calculate the
modification of the graviton propagator due to a presence of matter. This is diffi-
cult problem, however it can be solved in 2+1 gravity, where we know analytically
the modification of the spacetime due to the presence of pointlike matter. We know
also the modification of the spacetime metric by a cosmic string in 4-dimensional
spacetime and by a cosmic membrane in 5-dimensional spacetime.

Due to Lorentz contraction we can treat colliding hadrons in the laboratory frame
as membranes with the transversal characteristic scale of order of the hadron and
a negligible thickness. These membranes are located on our 3-brane. Since 4+ n
gravity is strong enough we can expect that hadron membranes modify the 4+ n-
spacetime metric.

Only for the case of n = 1 we know explicitly the modified metric and we can
estimate explicitly an influence of this modification on the parton and other particle
scattering. It is known that the 5-dimensional ADD model with MPl,5 ∼ TeV is not
phenomenologically acceptable and we can deal with the RS2 model [27] or with the
DGP model [28]. In all these cases we treat a moving hadron as an infinite moving
membrane in the 5-dimensional world with location on the 3-brane (our world).
In other words, we deal with an effective 3-dimensional picture in the high-energy
scattering (compare with the usual effective 2-dimensional picture in 4-dimensional
spacetime, see [29, 30] and references therein).

In the framework of the picture described above, we can consider the influence of
the matter on graviton propagation. Due to the presence of the hadron membrane the
gravitational background is nontrivial and describes a flat spacetime with a conical
singularity located on the hadron membrane. This picture is a generalization of the
cosmological string picture in the 4-dimensional world to the 5-dimensional world.
The deficit angle is proportional to the product of the hadron matter density on
the membrane and the 5-dimensional gravitational coupling. This is a rather small
number 3, δh0 ∼ 1

M3
Pl,5

Mhadron
l2
hadron

∼ 10−9. Since the hadrons collide with Lorentz boost

factor, γ = 1/
√

1− v2, about γ ∼ 104, we have δh ∼ 10−5. For heavy ions composed
of A hadrons, this number is near δIon ∼ A1/3

Ionδh.
We can take into account corrections to the graviton propagation. A study of these

corrections and their physical consequences is the subject of the present letter. A
more detailed discussion of the topological defects in TeV-gravity including the RS2
and DGP models and will be presented in [33]. As to higher dimensional cases we
can just expect that numerical calculations could exhibit similar qualitative results.

3 One can compare this number with an estimate of the deficit angle δcs ∼ 10−6 for a cosmic
string in 4-dimensional spacetime with the Newtonian gravitational constant GN,4 and the density
ρ = m

l = 1033GeV 2, that corresponds to the Earth mass distributed on a length of about l = 9 km.
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The paper is organized as follows. In Section 2 we present our setup and ar-
gue why in the TeV-gravity scenario the high energy hadrons colliding on the 3-
brane embedded in 4+ n-dimensional spacetime with n dimensions smaller than
the hadrons size, can be considered as cosmic membranes in the 4+n-dimensional
world. We recall basic facts about eikonalization of graviton exchanges and the form
of the spacetime metric with a cosmic membrane. In Section 3 we present correc-
tions to the eikonal phase due to a conical singularity. We restrict ourself here to a
flat bulk for simplicity. The AdS case corresponding to the RS2 model can be inves-
tigated in a similar way. Others possible effects related with cosmic membranes and
their signatures are briefly discussed in the conclusion.

2 Setup

It is known that for large impact parameters b� RS (elastic small-angle scattering)
the transplanckian amplitude is dominated by eikonalized single-graviton exchange
[19],[20],[21],[22]. The eikonal amplitude has been used in [10] to compute the
differential cross section for neutrino-nucleon scattering and in [4] to compute the
close to beam jet-jet production at the LHC. For small impact parameters b� RS
the nonlinear effect are important and within the classical gravity one can expect the
black hole formation.

2.1 Hadron as a membrane in 5-dimensional world

The graviton exchange is supposed to take place in the 4+n-dimensional spacetime.
In the total transplanckian cross section there is a factor, describing dependence on
n and on the form of the background in the extra dimensional spacetime. In all
previous considerations [10, 4, 8] the graviton is supposed to propagate freely in
extra dimensions. It would be interesting to be able to calculate the modification
of the propagator due to the presence of the hadron matter. This can be done for
example in the 2+1 gravity, where we know analytically the modification of the
spacetime due to the present of pointlike matter.

In 2+ 1 dimensions, solutions to Einstein’s equation with point masses are flat
metrics except conical singularities at the location of the masses. In 3+ 1 dimen-
sions, there are solutions with singularities on the worldsheets of the strings. The
deficit angle of the conical singularity is proportional to the mass in the 2+ 1 case
and the mass per length μ in the 3+ 1 case [36]. In 4+ 1 dimensions, there is a
solution with singularity on the worldsheet of the membrane. One can imagine this
membrane as high velocity moving hadron, that in the rest frame is tried as a ball. If
we have extra dimensions, they are not available for the hadron and the hadron mem-
brane cannot stretch in these dimensions. Hence, we get the 2-dimensional hadron
membrane propagated on the 3-brane embedded in 4+ n-dimensional spacetime.
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We know explicit solutions to Einstein’s equations with the hadron membrane in
the 5-dimensional ADD and RS2 models. The first case is simpler and in spite of it
is not phenomenologically acceptable, we consider this case for simplicity 4.

y

zp2 h1 A. z

y

B.

Fig. 1 A. Ultra relativistic colliding hadron h1 as it seen by the parton p2. B. The graviton exchange
with modified propagator between partons.

2.2 Bulk with conical singularities

In the ADD model the metric in the bulk is flat,

ds2 =−dt2 +dx2
⊥+dρ2 +ρ2dΩ 2, ρ2 =

n

∑
1

y2
i + z2, x⊥ = (x1,x2) (1)

here x1,x2,yi,z are coordinates in the bulk and dΩ 2 is the metric on the unit sphere
Sn. However, the hadron membrane produces a nontrivial background. We know
this background explicitly for the case of n = 1. In this case the bulk metric remains
locally flat, dΩ 2 = dφ 2 and the hadron membrane produces only the conical sin-
gularity, i.e. the range of the angle is 0 < φ < α . The angle α defines the deficit
angle δ

α = 2π−δ , (2)

where
δ = 8πG5

mh

Sh
=

32
M3

Pl,5

mh

l2
h
. (3)

Here mh is the hadron mass and lh is the hadron size, Sh = πl2
h/4. The top of the

cone is located on the brane.
The gravitational effect of the hadron membrane in the RS2 model is convenient

to present in the Poincaré coordinates. Starting from the metric

ds2 = a2(y)ημνdxμdxν +dy2, (4)

4 One can assume an anisotropic compactification with essentially suppressed n− 1 dimensions
(in this case MPl,D ∼ TeV and MPl,5 ∼ 103 TeV), or just consider a toy model with MPl,5 toy ∼ 103

TeV.



Colliding Hadrons as Cosmic Membranes and Possible Signatures of Lost Momentum 25

where ημν is the 4-dimensional Minkowski metric and the warp factor a(z) has the
form [27]

a(y) = e−k|y|, (5)

1/k is the radius of 5-dimensional AdS spacetime, we get the metric in the Poincaré
coordinates after the following change of variable, y → w, w = r0ey/r0 ,

ds2 =
r2

0
w2 (ημνdxμdxν +dw2) (6)

[31]. According to the usual prescription to incorporate a membrane we cut a wedge.
This can be done by reducing the range of a suitable angular coordinate. For exam-
ple, for AdS5

R2
5

w2

[
dw2−dt2 +dz2 +dρ2 +ρ2dφ 2] , (7)

and the range of the angle is 0 < φ < 2π−δ where δ is given by (3).

2.3 Eikonalization of graviton exchanges

The parton-parton elastic forward scattering amplitude for a large center of mass
energy is given by the eikonal technique [34],[35]. In the transplanckian regime the
graviton exchanges [22, 4] dominate and define the amplitude

Aeik(q) = ABorn +A1−loop + . . .=−2is
∫

d2be−iq.b(eiχ(q)−1) , (8)

where the eikonal phase χ is given by the Fourier transform of the Born amplitude
in the transverse plane

χ(b) =
1
2s

∫ d2q

(2π)2 eiq.bABorn(s,q) . (9)

The 4+n-dimensional Born amplitude for the exchange of the graviton, which does
not get any transferred momenta in the direction transversal to the brane, is given by

ABorn(s,q) =
−s2

Mn+2
D

∫ dnl
q2 + l2 , |q|= q. (10)

The expression for the eikonal amplitude [10, 4] is

Aeik = 4πsb2
cFn(bcq), (11)

Fn(y) =−i
∫ ∞

0
dxxJ0(xy)

(
eix−n −1

)
, (12)
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Fig. 2 A. Collision of hardons with a large impact parameter in (x⊥,z) coordinates is presented as
an elastic scattering between partons due to a free graviton exchange. y-coordinate schematically
presents extra dimensions. B. The 2→ 2 small angle T-scattering amplitude is given by a sum of
crossed-ladder graviton exchanges.

where the integration variable is related with the impact parameter, x = b/bc and in
(12) we take into account that the eikonal phase has the power dependence on the
impact parameter

χ(b) =
(

bc

b

)n

, where bc ≡
[
(4π) n

2−1sΓ (n/2)
2Mn+2

D

]1/n

. (13)

Functions Fn, n > 1, when y� 1 oscillate around their asymptotic values given

by Fn,as(y) =
−in

1
n+1 y−

n+2
n+1√

n+1
exp

[
−i(n+1)

( y
n

) n
n+1

]
[4]. Within the TeV-gravity sce-

nario [1] the total transplanckian cross section is finite, grows with energy, and is
dominated by small-angle scattering between partonic constituents [10],[4].

The real and imaginary parts of the function F1 are shown in Fig. 3.A, and we
also see the oscillations of the real part of the function F1.

A B

Fig. 3 A. The real (red) and imaginary (blue) parts of the eikonal amplitude F1. B. Thick lines
represent the real and imaginary parts of the eikonal amplitude with doubling eikonal phase in the
toy model with the deficit angle equal to π .
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3 Eikonal in the conical spacetime

The goal of this section is to estimate the influence of the hadron membrane on the
forward scattering of the partons.

3.1 Graviton exchange with modified graviton propagator

The tree level 2 partons→ 2 partons S-matrix element corresponding to one graviton
exchange in the Cα ×M3 spacetime,

< p1, p2|S|p3, p4 >1graviton≡Sgraviton,α(p1, p2, p3, p4), (14)

is given by the linearization of gravity [22] and in s� t regime is

Sgraviton,α(p1, p2, p3, p4)≈−16πGγ(s)Sscalar,α , (15)

here≈means that we ignore the recoil of the matter field and take the prefactor γ(s)
the same as for the flat case, γ(s) = ((s−2m2)2−2m4)/2.

In the flat spacetime

Sgraviton,flat(p1, p2, p3, p4) = i(2π)4δ 4(p1 + p2− p3− p4)ABorn(s, t), t ≈−q2.
(16)

In what follows, Sscalar,α ≡ Sα is the Born amplitude for the scalar particles
scattering due to the scalar exchange in the Cα ×M3 spacetime. It can be written
(after the Euclidean rotation) in the Schwinger representation as

Sα =
∫

d4Xd4X ′ei(p1−p3)X+i(p2−p4)X ′
∫

dτe−m2τK(t,x⊥; t ′,x′⊥;τ)Kα(z,0;z′,0;τ),

here X = (t,x⊥,z) ≡ (xμ̌ ,z) and K(t,x⊥; t ′,x′⊥;τ) is the heat kernel on the 3-
dimensional plane and Kα(z,y;z′,y′;τ) is the heat kernel on the 2-dimensional cone
Cα . Kα has a representation [37, 38, 39]

Kα(z,y;z′,y′;τ) =
i

2α

∫
γ

dwctg
(πw
α

)
K(z(w),y(w);z′,y′;τ). (17)

Here (z(w),y(w)) = (r cos(θ +w),r sin(θ +w)), (r,θ ) are related with coordinates
(z,y) as (z,y) = (r cos(θ),r sin(θ)), K(z,y;z′,y′;τ) is the heat kernel on the 2-
dimensional plane

K(z,y;z′,y′;τ) =
1

4πτ
exp{− (z− z′)2 +(y− y′)2

4τ
}, (18)

and γ is a characteristic contour presented in Fig. 4, where Δθ = θ ′ − θ and θ ′ is
related with z′.
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− π απ
ε

γ

π − Δθ−π−Δθ

− π απ
ε

γ ’

Fig. 4 Contours γ and γ ′.

Under assumption that we are on the brane, θ = 0 and θ ′ = 0 (or θ ,θ ′ = π) we
have

(z(w),y(w))|on brane = (zcos(w),zsin(w)) , (z′,y′)|on brane = (z′,0) (19)

and
Kα(z,0;z′,0;τ) =

i
2α

∫
γ

dwctg
(πw
α

)
Kw(z,z′;τ) (20)

where

Kw(z,z′;τ)≡ 1
4πτ

exp{− z2 + z′2−2zz′ cosw
4τ

} (21)

We can define the Fourier transformation of the propagator associated with (21) as

D(r,v) =
∫ ∫

eir(z−z′)+iv(z+z′)e−m2τKw(z,z′;τ)dzdz′
dτ

4πτ
(22)

and find
D(r,v) =

2
sinw

1
r2

sin2 w
2
+ v2

cos2 w
2
+m2

. (23)

Finally, we get

Sα = i(2π)3δ 3 ((p1 + p2− p3− p4)μ̌
)
Mα ,

Mα =
i

2α

∫
γ

dwctg
(πw
α

) 2
sinw

1
Q2

sin2 w
2
+ P2

cos2 w
2
+q2

μ̌ +m2
, (24)

here and below qμ̌ = (q0,q1,q2), μ̌ = 0,1,2, q = (qμ̌ ,qz), q⊥ = (q1,q2),

Q =
1
2
(p1− p2− p3 + p4)z, P =

1
2
(p1 + p2− p3− p4)z, qμ̌ = (p1− p3)μ̌ . (25)
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Q and P are related as Q = qz−P. In the eikonal regime Q ≈ −P and this gives a
simplification of (24)

Mα ≈ i
2α

∫
γ

dwctg
(πw
α

)
Bw(q⊥,P), (26)

where
Bw(q⊥,P) =

2
sinw

1

q2
⊥+m2 + 4P2

sin2 w

. (27)

H

pp
i j

Hx

zy

A

...

B

Fig. 5 A.Collision of hadrons with a large impact parameter is presented as an elastic scattering
between partons due to a graviton exchange in the space (x⊥,z,y) with the conic point in the (z,y)
section. B. The 2 → 2 small angle T-scattering amplitude is given by a sum of crossed-ladder
graviton exchanges in the space with the hadron membrane.

Let now define the w-eikonal phase χ as the Fourier transform of (27)

Xw(b,P) =
1
2s

∫ d2q

(2π)2 eiq.bBw(q⊥,P) . (28)

The total eikonal phase is given by the integral over the contour γ

χα(b,P) =
i

2α

∫
γ

dwctg
(πw
α

)
Xw(b,P) (29)

Using the explicit expression for the eikonal phase for a massive particle we get

Xw(b,P) =
1

2τ
1

π sinw
K0

(
|b|

√
m2 +P2 4

sin2 w

)
. (30)

In the case of m≈ 0

Xw(b,P) =
1

2τ
1

π sinw
K0(2|b|| P

sinw
|). (31)

and for small w we have
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Xw(b,P)≈ 1
4τ

e−2|b|| P
sinw |√

π|b||Psinw| (32)

It is known that the propagator in the conic space can be present as a sum of two
terms [38, 39]

Kα(z,y;z′,y′;τ) = K(z,y;z′,y′;τ)+K′α(z,y;z′,y′;τ), (33)

where

K′α(z,y;z′,y′;s) =
i

2α

∫
γ ′

dwctg
(πw
α

)
K(z(w),y(w);z′,y′;s), (34)

with a modified contour γ ′ presented in Fig. 4.
Therefore, the eikonal matrix element can be written as

Seik,α(p1, p2, p3, p4) = i(2π)4δ 4(p1 + p2− p3− p4)Aeik,flat

+ i(2π)3δ 3 ((p1 + p2− p3− p4)μ̌
)
Meik,α , (35)

where
Meik,α =−2iτ

∫
d2b⊥eiq⊥b⊥eiχplane(b⊥)

[
eΔχα (b⊥,P)−1

]
, (36)

where χplane(b⊥) is given by (13) for n = 1 and

Δχα(b⊥,P) =
1
2s

∫ d2q⊥
(2π)2 e−iq⊥b⊥Bα(q2

⊥,P), (37)

where
Bα(q⊥,P) =

i
2α

∫
γ ′

dwctg
(πw
α

)
Bw(q⊥,P). (38)

Now if we take this correction perturbatively we get

Meik,α ≈−2is
∫

d2b⊥Δχα(b⊥,P)eiq⊥b⊥+iχplane(b⊥). (39)

We can analyze the correction for arbitrary angle α only numerically.

3.2 Correction to the eikonal amplitude for toy model α = π/N

It is known, that the propagator in the conic space with α = π/N can be present as
a finite sum of propagators

Kπ/N(z,z
′,τ) =

N

∑
n=0

Knπ/N(z,z
′,τ), (40)
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where

Knπ/N(z,z
′,τ)≡ 1

4πτ
exp{− z2 + z′2−2zz′′ cos( nπ

N )

4τ
}. (41)

We can calculate the contour integral in (24) explicitly to get

Sπ/N = i(2π)3δ 3 ((p1 + p2− p3− p4)μ̌
)⎡⎣∑ ′ 2

sin πn
N

1
Q2

sin2 πn
2N

+ P2

cos2 πn
2N

+q2
μ̌ +m2

+ δ (Q)
π√

P2 +q2
μ̌ +m2

+δ (P)
π

2
√

q2
μ +m2

⎤
⎦ . (42)

Here the prime in the sum means that we do not take into account n = 0 and n = N.
If we consider N = 1 we get just one new term as a correction to the usual Born

amplitude

Sπ = Sflat +ΔSπ , (43)

Sflat = δ 4(p1 + p2− p3− p4)
i(2π)4

2
√

q2
μ +m2

, (44)

ΔSπ = δ 3 ((p1 + p2− p3− p4)μ̌
)
δ ((p1− p3− p2 + p4)z)

i(2π)4

2
√

q2 +m2
. (45)

In the eikonal regime Q≈ P and both terms (44) and (45) give the same contribution
and we get a doubling of the eikonal phase.

4 Conclusion and Discussion

In this paper we have argued that in the TeV-gravity scenario high energy hadrons
colliding on the 3-brane embedded in D = 4+n-dimensional spacetime, with n di-
mensions smaller than the hadrons size, can be considered as cosmic membranes. In
the 5-dimensional case this consideration leads to the 3-dimensional effective model
of high energy collisions of hadrons. The cosmic membranes in the 5-dimensional
case are similar to cosmic strings in the 4-dimensional world.

It is well known that, the cosmic strings give rise to remarkable classical grav-
itational and quantum phenomena. In particular, the cosmic string acts as a grav-
itational lens [31]. This effect becomes manifest when two particles move along
opposite sides of the string. Also there is a self-force acting on a test charged parti-
cle around the cosmic string [40] and a freely moving charged particle radiates near
the cosmic string [41, 42]. This is an analogue of the radiation by the charged parti-
cle when it suffers the Aharonov-Bohm scattering [43] and this radiation occurs due
to the fall down of the Huygens principle in curved spacetime.
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There are also quantum effects. The presence of the cosmic string allows effects
such as particle-antiparticle pair production by a single photon and bremsstrahlung
radiation from charged particles [44, 45] which are not possible in empty Minkowski
space, due to conservation of linear momentum. The conical structure of the cosmic
string spacetime is the source of momentum non-conservation in the plane perpen-
dicular to the string, which permits pair production by a single photon. The gravita-
tional mechanism that permits pair production by a single photon around a cosmic
string has common topological features with the Aharonov-Bohm effect [43]. The
absence of global momentum conservation was already stressed for gravity in 2+1
dimensions by Henneaux [46] and Deser [48]. It is worth also to mention that the
string polarizes the vacuum around it, in a way similar to the Casimir effect between
two conducting planes forming a wedge [49, 50]. The study of quantum field the-
ories the spasetime with conic singularities requires a regularization [51]. Among
possible regularizations the zeta-function regularization is more convenient [52].

Our specifics is that not all process mentioned above can be realized for particles
attached to the 3-brane. In particular, to see the lens effect we have to deal with the
motion of particles in the 2-plane that is perpendicular to the hadron membrane. But
only gravitons can move in this plane in any direction. However one can estimate
the self-force effect.

The same concerns also the quantum effects. From one side, only the graviton can
propagate in the 2-plane perpendicular to the hadron membrane and feel the deficit
angle. From other side, the above mentioned quantum processes are available for
other particles if their have not to abandon the 3-brane to participate in the processes.

In this paper we have estimated corrections to the eikonal scattering amplitude
due to the hadron membrane.

Similar to the case of cosmic string [44], one can also estimate the decay of a light
ultra-relativistic particle on two heavy particles with mass M. For large longitudinal
momentum of the light particle, kz >> 2Mδ−1, the cross-section does not depend
on kz and is defied only by the coupling g of these 3 particles and heavy mass

σ1light→2heavy ≈ g2

M3 (46)

To realize the condition kz >> 2Mδ it is enough to take kz ∼ 1TeV and M of the
order of the few MeV ’s.

Other processes we are going to estimate in the separate work [33].
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Vacuum Energy and the Topology of the

Universe

Manuel Asorey, Inés Cavero-Peláez and José M. Muñoz-Castañeda

Abstract We analyze the dependence of the quantum vacuum energy on the space
topology. In particular we point out the existence of a renormalization ambiguity
in spaces with non-vanishing curvature. The ambiguity is related to the well known
ambiguity of the R2 term of the gravitational effective action. However, there are
two extra universal contributions which are genuine dependent on the topological
structure of the space and completely independent of the renormalization scheme.
The ambiguity does not appear in flat spaces where only the topological depen-
dent contributions are non-vanishing. We analyze the cosmological role of universal
contributions to the vacuum energy and its attractive nature in the case of conformal
scalar fields.

1 Introduction

The current cosmological model is consistent with a spatially flat Universe, al-
though, most of the relevant data are compatible with a very tiny curvature |Ωκ | ≤
10−4 [1][2]. However, the physical observations do not allow to establish a definite
answer to the longstanding dilemma on the finiteness or not of the physical space or
determine the characteristics of space-time topology (see [3] and references there in
for an updated review). Closed spaces leave their fingerprints in small contributions
to low multipoles of the Cosmic Microwave Background (CMB) and current obser-
vations show a strong suppression of low multipoles (quadrupole, octupole, etc.).
They also show an strange alignment of the quadrupole and octupole multipoles as-
sociated to the appearance of Southern hemisphere cool fingers. On the other hand,
it is remarkable the observed asymmetry between even and odd multipoles and the
fact that the Gaussianity of likelihood estimates starts to be manifest for l > 32.
All these data suggest a possible role of the finite size and space topology in the
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low modes behavior of the CMB [4]. A compact space will imply, depending on
its topology, the existence of several circles in the sky which will correspond to
the mirror images of the last scattering surface where the radiation decouple from
matter. The latest results do not allow to determine their existence which will be
an unequivocal proof of a non-trivial space topology. However, presumably the new
observational programs will be able to discriminate among the different space-time
topologies. In this note we analyze the quantum implications of a non-trivial space-
time topology.

2 Vacuum energy in cosmological backgrounds

Quantum fields contribute to the background space-time energy because of vacuum
fluctuations. For conformal invariant fields this energy depends on the topology of
the space. If the space has boundaries it also depends on the boundary conditions.

The cosmological implications of this energy are not very clear. First, the di-
vergent nature of the leading contributions raises some questions about the validity
of the renormalization philosophy in the presence of gravitational interactions. On
the other hand, finite Casimir corrections encode the quantum back-reaction to the
cosmological expansion of the Universe, but this is very tiny to be detected in the
present Universe, although it might have played a relevant role in the early Universe.
In this note we analyze the structure of such contributions in different cosmological
backgrounds. This problem has been considered by Emilio Elizalde for a long time
[5] [6] [7].

Although the background cosmological FRW metric evolves in time its variation
is so slow in comparison with the leading quantum fluctuations that one can use adi-
abatic approximations to estimate the vacuum energy induced by these fluctuations.
In this approximation the space-time metric can be considered as a homogeneous
isotropic static on a space-time of the form RI ×M .

There are three types of constant curvature spaces: hyperbolic (R < 0), elliptic
(R > 0) or Euclidean (R = 0). If we assume that the space is compact and has no
boundaries the number of candidates is reduced considerably. The hyperbolic case
presents an infinite number of possibilities and has been the most analyzed in the
literature [8][9][10]. We will restrict ourselves to the less analyzed cases of elliptic
and flat spaces.

Spaces with constant positive curvature and no boundaries are compact mani-
folds and belongs to one of the following six familes. If M is simply connected it
has to be isometric to the three-dimensional sphere S3, because of Poincaré theorem.
Multiple connected spaces belong to one of the following five families:

• Lens spaces S3/ZZq, with first homotopy group the cyclic group ZZq of order q.

• Dihedral spaces S3/D∗q, with first homotopy group D∗q of order 4q. order 24.

• Tetrahedral space S3/T ∗ with π1(S3/T ∗) = T ∗ of order 24.
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• Octahedral space S3/O∗ with π1(S3/O∗) = O∗ of order 48.
• Poincaré Dodecahedral space S3/Y ∗ with π1(S3/Y ∗) = Y ∗ of order 120.

The last space S3/Y ∗ has been recently considered as a possible candidate for the
global structure of the Universe [11] [12] [13] by considerantions based on the ob-
served anomalies of CMB.

For simplicity we shall restrict ourselves to the case of conformal scalar free
fields. The analysis of higher spin fields is very similar. The vacuum energy of free
conformal scalar field is given by the renormalized sum of the eigenvalues of the

operator 1
2

√
−Δ + 1

6 R, where R is the scalar curvature of M . R = 6
a for a three-

dimensional sphere M = S3 of radius a.
The eigenvalues of the operator −Δ + 1

6 R on M are of the form λk =
1
a2 (k+1)2

with k ∈ ZZ, with the following degeneracies dk [14][15]:

II dk(II) = (k+1)2

ZZ2q+1 dk(Z2q+1) = (k+1)
(

k+1−[(k+1)/(2q+1)](2q+1)+(1+(−1)k−[(k+1)/(2q+1)](2q+1))/2
)

ZZ2q d2l(Z2q) = (2l+1)(2[(2l+1)/(2q)]+1)

DD∗q d2l(D∗q)=(2l+1)([l/q]+1/2(1+(−1)l))

TT∗q d2l(T ∗) = (2l+1)([l/3]+2[l/2]+1−l); l �= 1,2,5

OO∗
q d2l(O∗) = (2l+1)([l/4]+[l/3]+[l/2]+1−l); l �= 1,2,3,5,7,11

YY∗q d2l(Y ∗)=(2l+1)([l/5]+[l/3]+[l/2]+1−l); l �=1,2,3,4,5,7,8,9,11,13,14,17,19,23,29

Table 1 Degeneracies of the eigenvalues of the Laplacian operator Δ for spherical factor spaces.

The zeta function regularization method provides the following values for the
vacuum energy Ec =

1
aCM [16][17][18]:

• Sphere S3

ES3 =
1

240
1
a

• Lens spaces S3/ZZq

EZq =−
q4 +10q2−14

720q
1
a

• Dihedral spaces S3/DD∗q

ED∗q =−
20q4 +8q2 +180q−7

1440q
1
a
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• Polyhedral spaces S3/TT∗, S3/OO∗, S3/YY∗

ET ∗ =−3761
8640

1
a

EO∗ =−11321
17280

1
a

EY ∗ =−43553
43200

1
a

��������Group
Order 24 48 120

Cyclic ZZq CS3/Z24
=−168761

8640
CS3/Z48

=−2665721
17280

CS3/Z120
=−103751993

43200

Dihedral DD∗q CS3/D∗6
=−11081

4320
CS3/D∗12

=−168761
8640

CS3/D∗30
=−6497993

21600

TT∗ OO∗ YY∗ CS3/T ∗ =−
3761
8640

CS3/O∗ =−
11321
17280

CS3/Y ∗ =−
43553
43200

Table 2 Casimir energies of confomal scalar fields on spaces of compact constant curvature with
group factors of order 24, 48 and 120. Notice that lens spaces tend to have larger negative energies
than dihedral or polyhedral spaces with the same volumes.

3

The nature of this attractive behaviour is stronger for spaces with the same vol-
ume in the cases of dihedral and lens spaces as the Table 2 points out.

3 Vacuum energy ambiguites

The values of vacuum energy shown in the previous section are not universal. In
general the vacuum energy has three components

E(g) = Eloc(g)+Eanom(g)+Etop(g).

which are in one-to-one correspondence with the three components of the effective
action

S(g) = Sloc(g)+Sanom(g)+Stop(g).

The first two components depend on the Riemann curvature tensor Rμνασ either
locally

Sloc(g) =
∫

d4x
√−g

{
α1C2 +α2E +α3 R

}
or non-locally [19]

sphere S , which is the only case with repulsive behaviour.
These energies generate attractive forces except for the case of the three-dimensional
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Figure 1 Casimir energies of confomal scalar fields on compact spaces of constant curvature.
The only positive value appears in pure spherical spaces S3. The dihedral factor S3/D∗q seem to
have higher repulsive energies than lens spaces S3/Zq. However, this is an artifact of the different
volumes weight of the respective spaces, Vol(S3/Z4q)= Vol(S3/D∗q). The volumes of the polyhedral
factors S3/T ∗q , S3/O∗q, S3/Y ∗ are identical to those of S3/Z24, S3/Z48 and S3/Z120, respectively.
However, they generate milder attractive energies.

Sanom(g ) =
b

8(4π)2

∫
d4x

∫
d4x′

√−g
(

E +
2
3

R
)
(x) −1

4 (x,x′)

√−g
[(

E +
2
3

R
)]

(x′)+
(

c− 2
3

b
)

1
12(4π)2

∫
d4x
√−gR2

in terms of the Green function of the operator

4 ≡ 2−2Rμν∇μ∇ν +
2
3

R − 1
3
(∇μR)∇μ ,

the Weyl tensor Cμνασ and the Euler density E.
However, the third component Stop(g) cannot be expressed in terms of local ten-

sor densities because only depends on global properties of the space M like the
length of minimal closed geodesic. This component is only present in multiple con-
nected spaces.
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The coefficients of the local part are ambiguous and depend on the renormaliza-
tion scheme. However the b coefficient of Sanom(g) and those of Stop(g) are universal
[20] and independent of the regularization method. The coefficient c of Sanom(g) is
ambiguous because corresponds to a local term which cannot be disentangled from
a similar term of Sloc(g) [21]. In particular, for a conformal scalar field b = 1/360,
and although most of the regularization methods yield c =−1/180, there are other
methods which give c = −1/180+ δ , with an arbitrary contribution δ which de-
pends on the parameters of the regulatization [21, 22].

However, not all the terms of the action are relevant for the calculation of the
Casimir energy in spherical factor manifolds. It can be shown that in the case of S3

the contribution of the non-local component of Sanom(g), Eu1
S3 = 1

480
1
a , is half of the

total contribution [23] in zeta function regularization. The other half comes from
the R2 term and the genuine topological contribution vanishes. However, as it has
been shown the R2 contribution is arbitrary and, therefore, the total Casimir energy
in such a background is also arbitrary [22].

For multiple connected spherical factor spaces the two universal contributions
have a very different behaviour due to its different origin. The contribution coming
from the non-local terms of Sanom(g) is

Eu1
M =

Vol(M )

480(2π2)

1
a
,

which is equal to the similar contribution of the sphere, up to the ratio of volumes

Vol(S3)

Vol(M )
= #π1(M ),

which is given by the order of the first homotopy group of the physical space M .
The contribution of Stop(g) to the vacuum energy is non vanishing and depends on
the topology of the spherical factor space. This contribution is given by

• Sphere S3

E top
S3 = 0

• Lens spaces S3/ZZq

E top
Zq

=−2q4 +20q2−25
1440q

1
a

• Dihedral spaces S3/DD∗q

E top
D∗q =−40q4 +16q2 +360q−11

2880q
1
a

• Polyhedral spaces S3/TT∗, S3/OO∗, S3/YY∗
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E top
T ∗ =−1505

3456
1
a

E top
O∗ =−4529

6912
1
a

E top
Y ∗ =−87109

86400
1
a
.

However, in all cases there is an extra contribution coming from the R2 term of the
action whose arbitrary contribution δ makes the calculation of the vacuum energy
completely ambiguous.

The same ambiguity appears in hyperbolic spaces with constant negative curva-
ture. However, for flat spaces the behaviour is different.

4 Flat compact spaces

In the case of flat spaces the extra ambiguous contribution is absent due to the van-
ishing of all curvature tensors. In this case the only non-vanishing contribution arises
from the Stop(g) terms of the effective action. There are six orientable compact flat
manifolds: Torus (T 3), Half-Turn Space (E2), Quarter-Turn Space (E3),Third-Turn
Space (E4), Sixth-Turn Space (E5) and Hantzsche-Wendt Space (E6). These spaces
correspond to different factors of the Euclidean space RI 3 by discrete subgroups of
the Euclidean group ISO(3)= T3◦ O(3). They are classified according to their rota-
tional part, ZZ1 for E2, ZZ2 for E3, ZZ4 for E4, ZZ3 for E4, ZZ6 for E5 and ZZ2⊗ZZ2 for
E6.

However, due to the fact that the group factors are not normal, the vacuum
energy density is not uniformly distributed, which implies the existence of space
anisotropies that should be observed in the dark energy component (see Fig. 3).

The corresponding vacuum energies for compact factors of a symmetric torus of
size a are given by [24] [25]
• Torus T 3

ET 3 =− 1
2π2a

∫ ∞

0
dt t(θ 3

3 (e
−t)−1) =−0.8375

a

• Twisted Sixth-Turn Torus E5

E5 =−0.99
1
a

• Hantzsche-Wendt Space E6

E6 =−0.32
1
a
,

and show the same trend as in positive curvature case. The corresponding Casimir
energies are negative which correspond to attractive forces [25][26]. This seems
to be the generic behaviour associated to the topological contributions to vacuum
energy.
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Figure 2 Casimir energies for the flat three-dimensional torus T 3, twisted sixth-turn torus E5 and
Hantzsche-Wendt Space E6.

5 Cosmological implications

If we consider the time evolution of the space-time structure, the conformal factor
a evolves in an accelerated manner, according to the current cosmological LCDM
model. This implies that the quantum vacuum energy of conformal scalar fields also
increases because in most of the cases the Casimir energy is negative (for higher
spins the topological Casimir energy is positive for some topologies). The gravita-
tional back-reaction to this increase of energy results in a tiny deceleration of the
cosmological expansion. However, this quantum contribution is very tiny in the cur-
rent Universe, although it could have played a relevant role in the early stages of
the Universe evolution. The form of the Casimir energy density is very similar to
the radiation component of the total energy density of the Universe. However, the
pressure components are very different.

Now, because of the ambiguity which appears in the renormalization of vacuum
energy it can always be chosen to be in a repulsive regime resulting into an extra
acceleration of space metric. However, the renormalization origin of this behaviour
is masking the real gravitational effect of quantum field fluctuations.

The decrease of energy can be compensated by particle creation [27]. Although
the Zeldovich-Starobinsky condition prevents pair creation for conformally invari-
ant theories [28], in the case of compact spaces if the size of the space is smaller than
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Figure 3 Casimir energies density of confomal scalars on sixth-turn flat space E5 restricted to the
fundamental domain.

the Hubble radius the phenomenon can occur [29]. The spectrum of the correspond-
ing radiation is given by the thermal Gibbons-Hawking spectrum with temperature
T = h̄H/2πkB, in terms of the Hubble constant and Bolthmann parameter. A real-
istic scenario compatible with current observations requires that the size of space is
slightly smaller than the Hubble radius, in order to fit close to the Hubble horizon
and still allow for pair particle creation.

As we have shown only in the case of flat compact topologies the quantum con-
tribution to vacuum energy is universal. In those topologies this vacuum energy is
anisotropic and correlated to the locations of CMB circles in the sky. Only in that
case the new cosmological observations will provide crucial clues to understand the
topological structure of the Universe.
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The Low Temperature Corrections to the

Casimir Force Between a Sphere and a Plane

Michael Bordag1 and Irina G. Pirozhenko2

Abstract We calculate the low temperature corrections to the free energy for a
sphere in front of a plane. First, the scalar field obeying Dirichet or Neumann bound-
ary conditions is considered. Second, the electromagnetic field is studied, the sphere
being perfectly conducting and being a dielectric ball with both, constant permittiv-
ity and permittivity of the plasma model.

1 Introduction

During the past decade significant attention was payed to the Casimir effect at finite
temperature. The interest was triggered by the desire to measure the temperature
dependent part of the force (see [KMM09], section 4.D, for a review) and by the
conceptual problems arising for T → 0 with some thermodynamic quantities (see
[KMM09], section 2.D). Recent interest came also from the interplay between tem-
perature and geometry investigated in [GW10, WG10] using world line methods.
For a scalar field with Dirichlet boundary conditions on the interacting surfaces, a
generic behavior∼ T 4 of the temperature dependent part of the force was found and
attributed to open geometry.

In our previous paper [BP09] we investigated the interaction between a ball and
a plane for both, the scalar and the electromagnetic fields. We used the exact func-
tional determinant method (also called scattering approach or ’TGTG’-formula) and
focused on the limit of small separation. We showed that the Proximity Force Ap-
proximation (PFA) is reproduced exactly for medium and high temperature. For low
temperature, the leading order of the free energy is the vacuum energy (for which
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the PFA is reproduced, of course) and the temperature dependent part is a small
addendum for which the PFA does not hold.

In the present paper we calculate the leading behavior of the temperature depen-
dent part ΔT F of the free energy and that of the force, ΔT f , for T → 0. Again,
we consider the scalar and the electromagnetic fields. For the latter we allow for
dispersion including fixed permittivity and permittivity following from the plasma
model (see (30) below). We use the functional determinant method and truncate the
orbital momentum sum at some finite lm. It turns out that the limit of lm → ∞ shows
a sensitive dependence on the separation a for a→ 0. Due to the space limitations
we will be quite brief concerning technical details. These will be given in a separate
paper.

We mention that the interplay of geometry and temperature in sphere-plane ge-
ometry was also studied in [CDMNLR10] and related papers using the scattering
approach. In a numerical analysis the ambient temperature was fixed, while the ra-
dius of the sphere and plasma frequency varied.

Throughout the paper we use units with h̄ = c = 1.

2 The free energy at finite temperature

In this section we collect the basic formulas for the free energy in functional deter-
minant representation at finite temperature. We follow closely the notations used in
[BP09]. At finite temperature, the free energy is given by

F =
T
2

∞

∑
n=−∞

Tr ln(1−M(ξn)) , (1)

where ξn = 2πnT are the Matsubara frequencies. The matrix M results from the
scattering on the sphere and will be described below together with the meaning of
the trace. The sum over the Matsubara frequencies can be transformed into integrals
using the well known Abel-Plana formula. The free energy separates into two pieces,

F = E0 +ΔT F , (2)

where

E0 =
1
2

∫ ∞

−∞
dξ
2π

Tr ln(1−M(ξ )) (3)

is the vacuum energy, i.e., the free energy at zero temperature, and

ΔT F =
1
2

∫ ∞

−∞
dξ
2π

nT (ξ ) iTr [ln(1−M(iξ ))− ln(1−M(−iξ ))] (4)

is the temperature dependent part of the free energy containing the Boltzmann factor
nT (ξ ) = 1/(exp(ξ/T )−1).
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For the scalar field, M(ξ ) in (1) is a matrix in the orbital momentum indices l
and l′ with matrix elements

Ml,l′(ξ ) = dl(ξR)
√

π
4ξL

l+l′

∑
l′′=|l−l′|

Kν ′′(2ξL)Hl′′
ll′ . (5)

Here, the function dl(x) results from the T-matrix for the scattering on the sphere.
For Dirichlet and Neumann boundary conditions on the sphere we note

dD
l (x) =

Iν(x)
Kν(x)

, dN
l (x) =

(Iν(x)/
√

x)′

(Kν(x)/
√

x)′
. (6)

In these formulas, R is the radius of the sphere, L is the separation between the plane
and the center of the sphere, Iν(x) and Kν(x) are the modified Bessel functions. We
introduced the notations ν = l + 1/2, ν ′ = l′+ 1/2 and ν ′′ = l′′+ 1/2, which will
be used throughout the paper.

The factors Hl′′
ll′ in (5) result from the translation formulas. Their explicit form is

Hl′′
ll′ =

√
(2l +1)(2l′+1)(2l′′+1)

(
l l′ l′′
0 0 0

)(
l l′ l′′
m −m 0

)
, (7)

where the parentheses denote the 3 j-symbols.
The above formulas are for Dirichlet boundary conditions on the plane. For Neu-

mann boundary conditions on the plane we have to reverse the sign in the logarithm
in (4) or, equivalently, to change the sign of M. The trace in (1),

Tr =
lm

∑
m=−lm

lm

∑
l=m

, (8)

is over the orbital momenta truncated at some lm. Of course, the final expression
appears for lm → ∞.

For the electromagnetic field, the matrix M is in addition a matrix in the two
polarizations. These correspond to the TE and the TM modes in spherical geometry
and we can represent the corresponding matrix elements Mll′ as matrixes (2x2),

Ml,l′ =

√
π

4ξL

l+l′

∑
l′′=|l−l′|

Kν ′′(2ξL)Hl′′
ll′

(
Λ l′′

l,l′ Λ̃l,l′

Λ̃l,l′ Λ l′′
l,l′

)(
dTE

l (ξR) 0
0 −dTM

l (ξR)

)
(9)

with the factors

Λ l′′
ll′ =

1
2 [l

′′(l′′+1)− l(l +1)− l′(l′+1)]√
l(l +1)l′(l′+1)

, Λ̃ll′ =
2mξL√

l(l +1)l′(l′+1)
, (10)

which follow from the translation formulas for the vector field. The factors resulting
from the scattering T-matrices are
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dTE
l (x) =

Iν(x)
Kν(x)

, dTM
l (x) =

(Iν(x)
√

x)′

(Kν(x)
√

x)′
. (11)

When inserting these expressions into (1) or (4), the trace must be taken also over
the polarizations and the orbital momentum sum is restricted by l ≥max(1, |m|).

3 The low temperature expansion

Due to the Boltzmann factor in (4), the low temperature expansion emerges from
the expansion, for ξ → 0, of

M(ξ ) = M0 +M1 (Lξ )1 +M2 (Lξ )2 +M3 (Lξ )3 + . . . . (12)

The coefficients Mi = Mi(ρ) are dimensionless functions of the ratio

ρ =
R
L
. (13)

Inserting the expansion (12) into the trace of the logarithm and keeping only the first
two odd orders we get

Tr ln(1−M(ξ )) = N1(ρ)Lξ +N3(ρ)(Lξ )3 + . . . (14)

with

N1 = −Tr
[
(1−M0)

−1 M1

]
, (15)

N3 = −Tr
[
(1−M0)

−1 M3

]
−Tr

[
(1−M0)

−1 M1 (1−M0)
−1 M2

]
− 1

3
Tr

[(
(1−M0)

−1 M1

)3
]
,

which are functions of ρ like the Mi’s.
It must be mentioned that inserting (15) into (4) we interchange the orders of the

limits T → 0 and lm → ∞. Below we will see in which cases this is justified and in
which it is not. With the expansion (15), the low-T contributions to the free energy
(4) are

ΔT F =−π
6

N1(ρ)LT 2 +
π3

15
N3(ρ)L3T 4 + . . . . (16)

The corresponding contributions to the force are

ΔT f ≡− d
dL
ΔT F =

π
6

d(LN1(ρ))
dL

T 2− π
3

15
d(L3N3(ρ))

dL
T 4 + . . . . (17)

As it will turn out there is only one contribution ∼ T 2 to the force (Section 4.2,
below) and in all other examples considered in this paper the low-T expansion starts
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from T 4. This is in agreement with the findings of [WG10]. In order to compare the
results we expand (17) for small separation a = L−R,

ΔT f =
(
c2R3 + c3aR2)T 4 + . . . , (18)

where the coefficients c2 and c3 were introduced in the same way as in [WG10]

4 Results for hard boundary conditions on the sphere

In this section we consider hard boundary conditions on both, the plane and the
sphere. We start with the scalar field. Here we have Dirichlet (D) or Neumann (N)
boundary conditions and we denote the four combinations by (X,Y), where X stands
for the sphere and Y stands for the plane. For example, (D,N) denotes Dirichlet
boundary condition on the sphere and Neumann boundary conditions on the plane.
We remind that Neumann boundary conditions on the plane appear from reversing
the sign of M.

4.1 The case DD

In this case we have a non-zero
N1 = ρ , (19)

which is independent on the truncation lm. This is the only case where one of the
function N1 or N3 considered in this paper does not depend on the truncation.

The function N1, (19), delivers the T 2-contribution to the free energy which was
found in [BP09]. It does not contribute to the force since the dependence on L drops
out. The next-order contribution is N3. It is a rational function of ρ . The orders of the

Fig. 1 The functions N3(ρ) for the case (D,D) (left panel) and N1(ρ) for the case (D,N) (right
panel) for several values of the truncation lm. The limit of small separation corresponds to ρ = 1.
The dashed line corresponds to lm = 0, i.e., to the pure s-wave contribution. Already for lm ≥ 1
there is nearly no dependence on lm.
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polynomials in numerator and denominator grow with the order lm of the truncation.
This is a general feature and holds for all functions N1 and N3 considered below
except for those which vanish.

We display N3(ρ) as a function of ρ in Fig. 1 (left) for several lm. It is seen that
already for lm ≥ 1 the curves cease to change. In this way the free energy and the
force have a well defined limit for lm →∞. The coefficients c2 and c3 defined in (18)
are shown in Table 4.1 and it is seen that these fit well to those found in [WG10].

At large separation, i.e., for a small sphere, only the lower orbital momenta are
on work. The function N1 is given by (19), the function N3 by

N3 =
2
3
ρ+

1
3
ρ2− 1

6
ρ3 +O(ρ4) . (20)

In this way, the leading order temperature correction to the free energy and to the
force do not depend on separation, while the subleading, ∼ T 4, correction does.

lm 0 1 2 3 4 5 6 7 8
c2 -2.756 -3.748 -3.770 -3.772 -3.772 -3.772 -3.772 -3.772 -3.772
c3 -5.512 -2.910 -2.500 -2.429 -2.426 -2.427 -2.426 -2.425 -2.425

Table 1 The values of the coefficients c2 and c3 defined in (18) for the case (D,D) for several
values of the truncation lm. The corresponding values found in [WG10], (25), are c2 =−3.96 and
c3 =−2.7.

4.2 The case DN

In this case, as in the previous one, the dominating contribution is N1. However, now
it depends on the order lm of truncation. The first two orders are

N1(ρ)|lm=0
=
ρ(−2+ρ)

2+ρ
, N1(ρ)|lm=1

=
ρ(−16+8ρ−4ρ3 +ρ4)

16+8ρ+4ρ3 +ρ4 . (21)

In Fig. 1 (right panel), N1 is shown as function of ρ for several values of lm. It is
seen that there is a rapid convergence for large lm. The sign is reversed as compared
to the case (D,D) like for parallel plates.

Because of the more involved dependence on ρ as compared to (19), N1 con-
tributes to the force. Hence, for these boundary conditions, according to (17), we
have a contribution ∼ T 2 to the force.
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Fig. 2 The functions N3(ρ) for the cases (N,D) (left panel) and (N,N) (right panel) for several
values of the truncation lm. The limit of small separation corresponds to ρ = 1. The dashed line
corresponds to lm = 0, i.e., to the pure s-wave contribution. Already for lm ≥ 1 there is nearly no
dependence on lm.

4.3 The cases ND and NN

In these two cases, which have Neumann boundary conditions on the sphere, the
contribution of N1 is zero for all lm and the expansion starts with N3. These functions
share the common features discussed above. We displayed both cases in Fig. 2.

We mention that in [BP09] we considered only the contribution from lm = 0 and
missed the higher order terms.

The expansions for large separation is

N(ND)
3 = −1

6
ρ3 +

1
24
ρ6− 1

192
ρ9 +O(ρ11) ,

N(NN)
3 =

1
6
ρ3− 1

24
ρ6− 1

384
ρ9 +O(ρ11) . (22)

The first two terms are the same (up to the sign), higher orders are different.

4.4 The electromagnetic field with conductor boundary conditions

For the electromagnetic field, the matrix elements Mll′ are given by (9). We expand
them in powers of ξ as before and obtain an expansion in parallel to (12),

M(ξ ) =M0 +M1 (Lξ )1 +M2 (Lξ )2 +M3 (Lξ )3 + . . . . (23)

It turns out that the matrixes Mi are diagonal in the polarizations for i = 0 and i = 2
and anti-diagonal for i = 1. Therefore in (14), the first contribution, N1, vanishes
and from N3 only the term in (15) does not vanish. From this structure it follows
also that the contributions from the two polarizations do not mix in N3 and we can
consider these separately. Now the further calculations go in the same way as for
the scalar field and we have calculated the functions N3(ρ) for both polarizations.
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We displayed them in Fig. 3 While the TE mode gives a result similar to the scalar

Fig. 3 The functions N3(ρ) for the electromagnetic field with conductor boundary conditions for
the TE polarization (left panel) and for the TM polarization (right panel) for several values of the
truncation lm. The limit of small separation corresponds to ρ = 1. The dashed line corresponds to
lm = 1, i.e., to the pure p-wave contribution which is the lowest one in the electromagnetic case. In
the TE case, already for lm ≥ 1, there is nearly no dependence on lm. For the TM case, at ρ � 1,
there is no convergence for growing lm. We displayed until lm = 10.

case in the sense that the limit lm → ∞ is approached very fast, the picture for the
TM mode is different. Here we observe, for ρ close to unity, ρ � 1, contributions
growing with lm. This must be interpreted as a noncommutativity of the limits T → 0
and lm →∞. As a consequence, at small separation, we have to expect contributions
decreasing for T → 0 slower than T 4.

For large separation we find the following expansions,

NTE
3 =

1
3
ρ3 +

1
12
ρ6 +

1
192

ρ9 +O(ρ11) ,

NTM
3 =

2
3
ρ3− 1

3
ρ6− 1

12
ρ9 +O(ρ11) . (24)

According to (16), the leading order contribution to the free energy is

ΔT F =
π3

15
R3T 4− π

3

60
R6

L3 T 4 + . . . (25)

and we observe a T 4-contribution to the force (from the second term). The first term
coincides with the corresponding term in (6) in [CDNLR10] while the second is
beyond of what is displayed there.

5 Results for a dielectric ball in front of a conducting plane

For a dielectric ball the formulas of section 2 remain valid except for the functions
dTX

l (x), (11). These must be substituted by
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dTE
l (z) =

2
π

√
ε sl(x)s′l(nx)−√μ s′l(x)sl(nx)√
ε el(x)s′l(nx)−√μ e′l(x)sl(nx)

(26)

with the refraction index n =
√εμ and sl(x) =

√
πx/2 Iν(x) and el(x) =

√
2x/π

Kν(x) are the modified spherical Bessel functions. The function dTM
l (z) can be ob-

tained from (26) by interchanging ε and μ .
Inserting these formulas into (9) and calculating the entries in (23) we see that

the structure of the matrixes Mi remains the same. In this way we have a separation
into TE and TM modes as before. As a consequence, we have only T 4 contributions.

Now we calculate the function N3(ρ) for the case of a fixed ε and for an ε taken
from the plasma model.

5.1 Fixed permittivity ε

For fixed ε we consider two cases. First we put μ = 1. In this case it turns out that
N3(ρ) = 0 for the TE mode. This means that the corresponding low-T expansion
starts from a higher power in T which we do not consider here. For the TM mode
the function N3(ρ) is shown in Fig. 4 (left panel). It depends on the truncation. For
ε close to unity it stabilizes rapidly, for higher ε slower.

At large distances, ρ → 0, we found

NTM
3 =

2(ε−1)
3(ε+2)

ρ3− (ε−1)2

3(ε+2)2 ρ
6− (ε−1)3ρ9

12(ε+2)3 ρ
9 +O

(
ρ11) (27)

In dilute approximation, ε = 1+ δ , δ � 1, only the lowest orbital momenta con-
tribute until the order quadratic in δ ,

NTM
3 =

2
9
ρ3δ − 1

27
ρ3(2+ρ3)δ 2 +O(δ 3) , (28)

higher orders are more complicated to obtain.
As the second case we consider ε = 1. Here the contribution of the TM mode to

N3(ρ) is zero and we are left with the TE contribution. This function is very similar
to that in the first case, however, different in details. It is shown in Fig. 4 (right
panel). It stabilizes much faster when lifting the truncation as in the previous case.
For large separations it reads

NTE
3 =−2(μ−1)

3(μ+2)
ρ3 +

(μ−1)2

3(μ+2)2 ρ
6− (μ−1)3

24(μ+2)3 ρ
9 +O

(
ρ10) . (29)

The difference (up to the sign) starts with order ρ9. In dilute approximation we
found in the first two orders the same expression as in (28) with reversed sign.
Differences show up starting from the third order.
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Fig. 4 The functions NTM
3 (ρ) for the dielectric ball (left panel) with μ = 1, ε = 1.5 (lower curve),

ε = 2.3 and ε = 10, and NTE
3 (ρ) (right panel) and with ε = 1, μ = 1.8 (upper curve), μ = 2.3 and

μ = 10. The dashed line is for lm = 1.

5.2 Plasma model permittivity

The permittivity derived within the plasma model for metals is

ε = 1+
ω2

p

ξ 2 , (30)

where ωp is the plasma frequency and ε is taken for imaginary frequency ξ . In-
serting (30) into (26), the calculation runs as in the previous cases. The results are
shown in Fig. 5

Fig. 5 The functions N3(ρ) for the dielectric ball with dispersion (30) of the plasma model for
ωp = 1. For the TE mode (left panel) the convergence for lm → ∞ is rapid for all separations. For
the TM mode (right panel), there is no convergence for lm → ∞ at small separation, i.e., for ρ � 1.
The dashed curve corresponds to lm = 1.

For the TE mode, the curves cease to change already for lm = 2 within the preci-
sion of the plot. The analytic expressions are rational function of ρ and of hyperbolic
functions of ωp. For small ωp we observe

NTE
3 (ρ) =

ρ3ω2
p

45
+O(ω3

p) . (31)
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A different picture we observe for the TM mode. Here the truncation can be removed
for ρ < 1 only. At close separation, i.e., for ρ � 1, the contributions do not tend to
a finite limit for lm → ∞. Again, we have to interpret this a non-commutativity of
the limits t → 0 and lm → ∞. Hence we expect for small separation lower powers in
T . Also the behavior for ωp → 0 is nonanalytic in the sense, that N3(ρ)TM does not
vanish in this limit,

NTM
3 (ρ) =

ρ3(−4+3ρ2)

3(−4+ρ3)
+O(ωp) . (32)

At large distances, the leading correction to the free energy for the TM mode
does not depend on the plasma frequency,

NTM
3 =

2ρ3

3
+O(ρ5).

While for the TE mode the correction is sensitive to small plasma frequencies,

NT E
3 =

(
1
3
+

1
ω2

p
− coth(ωp)

ωp

)
ρ3 +O(ρ5) ,

but saturates at 1/3 when ωp → ∞.

6 Conclusions

In the forgoing sections we calculated the low temperature expansion of the free
energy for a sphere or a dielectric ball in front of a plane. For the temperature
dependent part ΔT F of the free energy we used the representation (4) involving
the Boltzmann factor. Further we used a truncation of the orbital momentum sum,
l ≤ lm, and interchanged the limits T → 0 and lm → ∞. After that, the low-T expan-
sion is obtained simply by expanding the matrices M into powers of ξ and taking
the lowest odd one. In this way, the low-T expansion takes the generic form

ΔT F = F2T 2 +F4T 4 + . . . . (33)

The coefficient F2 is present for the cases (D,D), section 4.1 (but independent on
the separation) and (D,N), section 4.2. It is zero in all other cases where F4 is the
leading order contribution.

For all examples considered in this paper, at finite separation, F2 and F4 have
a finite limit for lm → ∞. Hence the generic low-T behavior is given by (33). This
holds, for instance, at large separation. A different picture appears for small separa-
tion, ρ → 1. In some cases, the closer the separation, the worse the convergence for
lm → ∞. In these cases we do not have a result for T → 0. However, we can expect
lower powers of T to appear. This is a topic of future investigations.
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We delegate this to a separate e-print. Also, a number of questions, especially on
the non-convergence for lm → ∞, is left opened for future research.
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Casimir Effect for the Piecewise Uniform String

Iver Brevik

Abstract The Casimir energy for the transverse oscillations of a piecewise uniform
closed string is calculated. In its simplest version the string consists of two parts I
and II having in general different tension and mass density, but is always obeying the
condition that the velocity of sound is equal to the velocity of light. The model, first
introduced by Brevik and Nielsen in 1990, possesses attractive formal properties
implying that it becomes easily regularizable by several methods, the most powerful
one being the contour integration method. We also consider the case where the string
is divided into 2N pieces, of alternating type-I and type-II material. The free energy
at finite temperature, as well as the Hagedorn temperature, are found. Finally, we
make some remarks on the relationship between this kind of theory and the theory
of quantum star graphs, recently considered by Fulling et al..

1 Introduction

Standard theory of closed strings - whatever the string is situated in Minkowski
space or in superspace - assumes the string to be homogeneous, i.e. that the tension
T is the same everywhere. The composite string model, in which the string is taken
to consist of two or more separately different pieces, is a generalization of the usual
model. An important condition that we will impose, is that the composite string
is relativistic in the sense that the velocity vs of transverse sound is everywhere
assumed to be equal to the velocity of light,

vs =
√

T/ρ = c = 1. (1)

Here T , as well as the mass density ρ , refer to the string piece under considera-
tion. At each junction there are two boundary conditions, namely (i) the transverse
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displacement ψ = ψ(σ ,τ) is continuous, and (ii) the transverse force T∂ψ/∂σ is
continuous. Using the equation of motion(

∂ 2

∂σ2 −
∂ 2

∂τ2

)
ψ = 0 (2)

one can calculate the eigenvalue spectrum and the Casimir energy of the string.
The simplest string model of this type is when there are only two pieces, of

length LI and LII , such that the total length is L = LI +LII ; see Fig. 1. This model

L IL
II

Fig. 1 The two-piece string, with piece lengths LI and LII .

was introduced in 1990 [1]; cf. also the related paper [2]. The Casimir energy was
calculated for various length ratios of the pieces. It is convenient to introduce a
symbol s for the length ratio, and also a symbol x for the tension ratio,

s =
LII

LI
, x =

TI

TII
. (3)

With moreover the function F(x) defined as

F(x) =
4x

(1− x)2 , (4)

the dispersion relation becomes

F(x)sin2
(
ωL
2

)
+ sinωLI sinωLII = 0, (5)

and the Casimir energy, describing the deviation from homogeneity, can be written
formally as

E = EI+II−Euniform =
1
2∑ωn−Euniform. (6)
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Since Eq. (5) is invariant under the substitution x → 1/x, we can simply assume
x≤ 1 in the following.

From a physical point of view, there is well-founded hope that this simple string
model can help us to understand the issue of the energy of the vacuum state in two-
dimensional quantum field theories in general. The system is strikingly easy to reg-
ularize, this being due to the relativistic property of the model. The mentioned paper
[1] made use of a cutoff regularization method, whereby a function f = exp(−αω)
with α a small positive parameter was introduced. A second regularization method
- the one to be dealt with in this paper - is the complex contour integration method.
To our knowledge this method was first applied to the composite string model by
Brevik and Elizalde [3]. A separate chapter is devoted to this model in Elizalde’s
book on zeta functions [4]. The great advantage of this method is that the multiplic-
ities of the zeros of the dispersion function are automatically taken care of. There
exists also a third convenient regularization method implying the use of the Hurwitz
zeta function.

Instead of assuming only two pieces in the composite string, one can imagine
that the string is composed of 2N pieces, all of the same length, such that the type I
materials and the type II materials are alternating. Maintaining the same relativistic
property as before, one will find that also this kind of system is easily regularizable
and tractable analytically in general. There are by now several papers devoted to the
study of the composite string in its various facets; cf. [5, 6, 7, 8, 9, 10, 11, 12] (the
last of these references gives a review). As for possible applications of the model,
we may also mention the paper of Lu and Huang [13], discussing the Casimir energy
for a composite Green-Schwarz superstring.

In the following we review briefly the main properties of the composite string
model, at zero, and also at finite, temperature, making use of the contour regulariza-
tion method as mentioned. The convenience of the recursion formula in the 2N-case
is in our opinion worth attention. The quantum theory of the two-piece string for
the simplifying limiting case of very small tension ratio x between the two pieces
is highlighted, and the Hagedorn temperature is given for this kind of model. Fi-
nally, we comment upon the connection between the theory of the piecewise uni-
form string and the theory of quantum star graphs, recently developed by Fulling
and others.

2 The two-piece string

According to the argument principle one has for any meromorphic function g(ω):

1
2πi

∮
ω

d
dω

lng(ω)dω =∑ω0−∑ω∞, (7)

where ω0 are the zeros and ω∞ are the poles of g(ω) inside the integration contour.
As usual the contour is a semicircle of large radius R in the right half complex ω
plane, closed by a straight line from ω = iR to ω = −iR. A convenient choice for
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the dispersion function g(ω) is

g(ω) =
F(x)sin2[(s+1)ωLI/2]+ sin(ωLI)sin(sωLI)

F(x)+1
. (8)

The final result at zero temperature becomes [3]

E =
1

2π

∫ ∞

0
ln

∣∣∣∣∣∣
F(x)+ sinh(ξLI)sinh(sξLI)

sinh2[(s+1)ξLI/2]

F(x)+1

∣∣∣∣∣∣dξ , (9)

with ω = iξ . This expression holds for all values of s, not necessarily integers. Since
it is invariant under the interchange s→ 1/s, we can consider only the interval s≥ 1
without any loss of generality. If the tension ratio x→ 0, we find the simple formula

E =− π
24L

(
s+

1
s
−2

)
. (10)

At finite temperatures, where ξn = 2πnT with n = 0,1,2,3.. are the Matsubara fre-
quencies, we get the corresponding expression

E(T ) = T
∞

∑
n=0

′
ln

∣∣∣∣∣∣
F(x)+ sinh(ξnLI)sinh(sξnLI)

sinh2[(s+1)ξnLI/2]

F(x)+1

∣∣∣∣∣∣ , (11)

where the prime means that the case n = 0 is counted with half weight.
We may define two characteristic frequencies in the problem: (i) the thermal

frequency ωT = T = ξ1/(2π), and (ii) the geometric frequency ωgeom = 2π/LI . The
case of high temperatures corresponds to ωT

ωgeom
≥ 1, whereby we can approximate

E(T ) =
1
2

T ln
∣∣∣∣F(x)+4s/(s+1)2

F(x)+1

∣∣∣∣ . (12)

Thus, if ”our” universe (I) is small and the ”mirror” universe (II) is large (s→ ∞),
we have

E(T ) =−1
2

ln
∣∣1+F(x)−1∣∣ . (13)

In the case of low temperatures, ωT
ωgeom

� 1, a large number of Matsubara frequencies
becomes necessary.

3 The 2N-piece string

Assume now that the string of length L is divided into 2N pieces of equal length, of
alternating type I/type II material. The basic formalism for arbitrary integers N was
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set up in [5], although a full calculation was not worked out until [8, 9]. A key point
in [8] was the derivation of a new recursion formula for the matrix of the dispersion
function, applicable for general integers N.

In addition to the tension ratio x = TI/TII we define two new symbols,

pN =
ωL
N

, α =
1− x
1+ x

. (14)

The eigenfrequencies are determined from

Det [M2N(x,pN)−1] = 0, (15)

where the system determinant satisfies the following recursion relation

M2N(x, pN) =

[
(1+ x)2

4x

]N

ΛN(α , pN), (16)

with

Λ(α , p) =
(

a b
b∗ a∗

)
, (17)

a = e−ip−α2, b = α(e−ip−1). (18)

This property greatly facilitates the handling of the formalism. The way to proceed
now is to calculate the eigenvalues of the matrix Λ , and express the elements of
M2N as powers of these. One finds

λ±(iq) = coshq−α2± [(coshq−α2)2− (1−α2)2]1/2, (19)

where λ± are the eigenvalues of Λ for imaginary arguments iq of the dispersion
equation.

The contour integration method gives for the Casimir energy (T = 0):

EN(x) =
N

2πL

∫ ∞

0
ln
∣∣∣∣2(1−α2)N − [λN

+(iq)+λN− (iq)]
4sinh2(Nq/2)

∣∣∣∣dq. (20)

It is seen that EN(x)< 0, |EN(x)| increasing with increasing N. Division into a larger
number of pieces thus diminishes the Casimir energy.

If x→ 0,
EN(0) =− π6L

(N2−1). (21)

We could alternatively use zeta function regularization here. That would necessi-
tate, however, solution of the eigenvalue spectrum. Degeneracies would have to be
put in by hand. The latter method is therefore most convenient for low integers N.

A rather unexpected property of the system is that of scaling invariance. This is
seen by examining the behavior of the function fN(x) defined by
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fN(x) =
EN(x)
EN(0)

, 0 < fN(x)< 1. (22)

Numerically it turns out that the curve for fN(x) is practically the same, irrespective
of the value of N, as long as N ≥ 2. The simple analytic form

fN(x)→ f (x) = (1−√x)5/2 (23)

fits the numerical values accurately, in particular in the region 0 < x < 0.45. The
reason for this behavior is not known.

At finite temperature the expression for the Casimir energy becomes

ET
N (x) = T

∞

∑
n=0

′
ln
∣∣∣∣2(1−α2)N − [λN

+(iξnL/N)+λN− (iξnL/N)]

4sinh2(ξnL/2)

∣∣∣∣ , (24)

where λ±(iξnL/N) are given by Eq. (19) with q→ qn = ξnL/N. It is here useful to
note that

λ+(iqn)+λ−(iqn) = 2(coshqn−α2). (25)

There are several special cases of interest. First, if the string is uniform (x = 1), we
get ET

N (1) = 0. This is as expected, as the Casimir energy is a measure of the string’s
inhomogeneity. If N = 1, x arbitrary, we also get a vanishing result, ET

1 (x) = 0. In
particular, if x→ 0 we get the simple formula

EN(0) = 2T
∞

∑
n=0

′
ln
∣∣∣∣2N sinhN(ξnL/2N)

2sinh(ξnL/2)

∣∣∣∣ . (26)

4 Oscillations of the two-piece string in D-dimensional

spacetime. Quantization

We will now aim at sketching the essentials of the quantum theory of the composite
string, in the case when N = 1 (the two-piece string). To allow for a correspondence
to the superstring, we allow the number of flat spacetime dimensions D to be an
arbitrary integer. In accordance with usual practice, we put now L = LI +LII = π .
The theory will be based on two simplifying assumptions:

(i) The string tension ratio x→ 0. The dispersion relation (5) leads in this case to
two different branches of solutions, namely the first branch obeying

ωn(s) = (1+ s)n, (27)

and the second branch obeying

ωn(s−1) = (1+ s−1)n, (28)

with n =±1,±2,±3, ....
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(ii) The second assumption is that the length ratio s is an integer, s = 1,2,3, ....

Let now Xμ(σ ,τ) with μ = 0,1,2, ..(D− 1) be the coordinates on the world
sheet. For each branch

Xμ = xμ +
pμτ
πT̄ (s)

+θ(LI−σ)XμI +θ(σ −LI)X
μ
II , (29)

where θ(x) is the step function, xμ the center of mass position, and pμ the total mo-
mentum of the string. The mean tension in the actual limit is T̄ (s) = TIIs/(1+ s) (we
assume TII finite). The string’s translational energy is p0 = πT̄ (s). In the following
we consider the first branch only.

In region I we make the expansion

XμI =
i

2
√
πTI
∑
n�=0

1
n

[
αμn (s)ei(1+s)n(σ−τ) + α̃μn (s)e−i(1+s)n(σ+τ)

]
, (30)

where αμ−n = (αμn )∗, α̃μ−n = (α̃μn )∗. The action can be expressed as

S =−1
2

∫
dτdσT (σ)ηαβ∂αXμ∂βXμ , (31)

where T (σ) = TI +(TII −TI)θ(σ −LI). As the conjugate momentum is Pμ(σ) =
T (σ)Ẋμ , we obtain the Hamiltonian

H =
∫ π

0
[Pμ(σ)Ẋμ −L]dσ =

1
2

∫ π

0
T (σ)(Ẋ2 +X ′2)dσ . (32)

The fundamental condition is that H = 0 when applied to physical states.
The corresponding expansion of the first branch in region II is

XμII =
i

2
√
πTI
∑
n�=0

1
n
γμn (s)e−i(1+s)nτ cos[(1+ s)nσ ], (33)

with
γμn (s) = αμn (s)+ α̃μn (s), n �= 0. (34)

The condition x→ 0 means that there are only standing waves in region II.
We may now introduce light-cone coordinates σ− = τ −σ , σ+ = τ +σ . Some

calculation shows that the total Hamiltonian can be written as a sum of two parts,

H = HI +HII , (35)

where

HI =
1+ s

4

∞

∑
−∞

[α−n(s) ·αn(s)+ α̃−n(s) · α̃n(s)], (36)

HII =
s(1+ s)

8x

∞

∑
−∞
γ−n(s) · γn(s). (37)
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The mass M of the string determined by M2 =−pμ pμ ,

M2 = πTIIs
∞

∑
n=1

[
α−n(s) ·αn(s)+ α̃−n(s) · α̃n(s)+

s
2x
γ−n(s) · γn(s)

]
. (38)

Recall that this is the contribution from first branch only. The expression is valid for
even/odd values of s.

Consider now the quantization of the first branch modes. We impose the condi-
tions

TI [Ẋμ(σ ,τ),Xν(σ ′,τ)] =−iδ (σ −σ ′)ημν (39)

in region I, and

TII [Ẋμ(σ ,τ),Xν(σ ′,τ)] =−iδ (σ −σ ′)ημν (40)

in region II (the other commutators vanish). Then introducing creation and annihi-
lation operators via

αμn (s) =
√

naμn (s), αμ−n(s) =
√

naμn
†(s), (41)

γμn (s) =
√

4nxcμn (s), γ−n(s) =
√

4nxcμn
†(s), (42)

one arrives at the conventional commutation relations

[aμn (s),a
ν
m

†
(s)] = δnmημν , [cμn (s),c

ν
m

†
(s)] = δnmημν , (43)

for n,m≥ 1.
Now introduce t(s) as

t(s) = πT̄ (s), (44)

and put D = 26, the usual dimension for the bosonic string. The condition H =
HI +HII = 0 leads to

M2 = t(s)
24

∑
i=1

∞

∑
n=1
ωn(s)[ani

†(s)ani(s)+ ã†
ni(s)ãni(s)−2]

+2st(s)
24

∑
i=1

∞

∑
n=1
ωn(s)[cni

†(s)cni(s)−1], (45)

and the free energy becomes

F =− 1
24

(s+
1
s
−2)−2−40π−26t(s)−13

∫ ∞

0

dτ2

τ14
2

∫ 1/2

−1/2
dτ1

×
[
θ3

(
0
∣∣∣ iβ 2t(s)

8π2τ2

)
−1

]∣∣∣η [(1+ s)τ]
∣∣∣−48

η [s(1+ s)(τ− τ̄)]−24 (46)

Here τ = τ1 + iτ2 is the Teichmüller parameter,
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η(τ) = eπiτ/12
∞

∏
n=1

(
1− e2πinτ) (47)

is the Dedekind η-function, and

θ3(v|x) =
∞

∑
n=−∞

eixn2+2πivn (48)

is the Jacobi θ3- function. From this the thermodynamic quantities such as internal
energy U and entropy S can be calculated,

U =
∂ (βF)

∂β
, S = β 2 ∂F

∂β
. (49)

Finally, it is of interest to write down the Hagedorn temperature Tc = 1/βc, as the
free energy F → ∞ for T > Tc. We get

βc =
4
s

√
π(1+ s)

TII
(TII assumed finite). (50)

In the point mass limit the formalism simplifies somewhat. For dimensional reasons
we must in that case have

F ∝ 1/LI = (1+ s)/π ≈ s/π. (51)

Readers interested in a more detailed exposition of this theory may consult [10, 11,
14].

5 Final Remarks

The piecewise uniform string model is a natural generalization of the conventional
uniform string. The adaptability of the formalism to various regularization schemes,
in particular the contour integration method, should be emphasized. Of course, an
important factor here is the assumption about relativistic invariance, as illustrated al-
ready by Eq. (1). If this assumption were removed, the formalism would be difficult
to handle.

Another point worth noticing is the close connection between the relativistic in-
variance property and the theory of an electromagnetic field propagating in a so-
called isorefractive medium meaning that the refractive index is equal to one, or at
least a constant everywhere in the material system. Recent works in this direction
are, for instance, [15, 16]. Again, if the isorefractive (or relativistic) condition were
removed, the regularization procedure would be rather difficult to deal with, as the
contact term to be subtracted off would then depend on which of the media one
chooses for this purpose.
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As a proposal for future work, we mention that there may be a connection
between the phases of the piecewise uniform (super) string and the Bekenstein-
Hawking entropy associated with this string. The entropy, as known, can be derived
by counting black hole microstates, and it is natural to expect that the deviation from
spatial homogeneity infaced in the composite string model could influence that sort
of calculations.

Finally, we mention the interesting analogy that seems to exist between the com-
posite string model and the so-called quantum star graph model. Fulling et al. [17]
recently studied vacuum energy and Casimir forces in one-dimensional quantum
graphs (pistons), and found that the piston force could be attractive or repulsive
depending on the number of edges. It may be that the mathematical similarities
between these two kinds of theories reflect a deeper physical similarity also. This
remains to be explored.

Acknowledgements I thank Stephen A. Fulling for information about [17].
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N = 2 and N = 4 Supersymmetric Low-Energy

Effective Actions in Three Dimensions

Ioseph L. Buchbinder1, Nicolay G. Pletnev2, Igor B. Samsonov3

Abstract We study the general structure of superconformal effective actions for
N = 2 and N = 4 gauge superfields in the N = 2, d = 3 superspace. Such ac-
tions may appear as the low-energy effective actions in various N = 2 and N = 4
supergauge models such as three-dimensional supersymmetric electrodynamics, su-
persymmetric matter in the gauge superfield background as well as extended SYM
and Chern-Simons-matter theories. In particular, for the models of the N = 2 and
N = 4 matter in the Abelian gauge superfield background we give the explicit cal-
culations of the low-energy effective actions within the perturbation theory.

Dedicated to the 60 year Jubilee of Professor E. Elizalde.

1 Introduction

Three-dimensional supersymmetric models of matter and gauge superfields appear
as the worldvolume field theories of D2 and M2 branes in string theory. Recent in-
terest to such theories was inspired by the progress in constructing and studying the
N = 6 and N = 8 supersymmetric Chern-Simons-matter models which play the
role of worldvolume degrees of freedom of multiple M2 branes. Such theories are
usually referred to as the Bagger-Lambert-Gustavsson (BLG) model in the N = 8
supersymmetric case [2, 3, 4, 14, 15] and the Aharony-Bergman-Jafferis-Maldacena
(ABJM) model for the case of N = 6 supersymmetry [1].

One of the general problems for the ABJM and BLG theories is the study of
the effective actions which would describe the effective dynamics of multiple M2
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branes. The effective action may receive contributions both in the sector of gauge
and matter superfields. Here we consider the possible contributions in the gauge
superfield sector in the Abelian case which may be induced either by the gauge or
by matter superfields. As soon as the ABJM model is superconformal, the problem
is reduced to the classification of superconformal invariants constructed from the
gauge superfields in the N = 2, d = 3 superspace.

The are various superspace formulations of the ABJM and BLG theories. Among
them, we mark out the N = 2, d = 3 superspace [5] and N = 3, d = 3 harmonic
superspace [6] approaches because they are based on the off-shell superfields and
are best suited for quantization. In the present work we concentrate on the N = 2
superspace approach leaving the N = 3 superspace considerations for future re-
search.

In the present work we study the general structure of the effective actions for
N = 2 gauge superfield subject to the constraint of the superconformal invariance.
We show that the gauge invariance and the superconformal symmetry fix the leading
terms in the effective action uniquely, up to the coefficients while the higher-order
terms are encoded in a single function of the N = 2 quasi-primary superfields.
These considerations are very similar to the ones made in [9] for the N = 2, d = 4
supergauge theories.

Our analysis applies not only to the effective actions for the ABJM and BLG
theories, but also to other supergauge theories with N = 2 and N = 4 supersym-
metry such as the effective action for matter superfields on the gauge superfield
background and the extended supersymmetric electrodynamics. In particular, we
give explicit computations of the Euler-Heisenberg-type effective actions for case
of N = 2 chiral superfield and N = 4 hypermultiplet interacting with background
Abelian gauge superfield.

The present contribution is a review of the results of our recent work [10].

2 General structure of the effective action for N = 2 gauge

superfield

The N = 2, d = 3 gauge multiplet consists of one real scalar field φ , one complex
spinor λα , one vector field Aαβ and one real auxiliary field D. In the Abelian case
they appear in the component decomposition of the real gauge superfield V which
in the Wess-Zumino gauge reads

V = θαθ̄βAαβ + iθαθ̄αφ + iθ 2θ̄ α λ̄α − iθ̄ 2θαλα +θ 2θ̄ 2D . (1)

This gauge superfield serves as the prepotential for the three superfield strengths

G =
i
2

D̄αDαV , Wα =− i
4

D̄2DαV , W̄α =− i
4

D2D̄αV . (2)

The superfield G is real while Wα and W̄α are mutual conjugated.
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The superfield strengths (2) obey a number of identities which should be taken
into account in constructing the effective actions. First of all, the superfield strengths
Wα and W̄α are (anti)chiral,

D̄αWβ = 0 , DαW̄β = 0 , (3)

and are intertwined by
DαWα = D̄αW̄α . (4)

Next, they are expressed in terms of G as

Wα = D̄αG , W̄α = DαG , (5)

which is a linear superfield,

D2G = 0 , D̄2G = 0 . (6)

The gauge transformation for V has the standard form, δV = i
2 (Λ̄ −Λ). The

strength superfields G, Wα and W̄α are gauge invariant in the Abelian case.
In general, the effective Lagrangian depends on the gauge superfield V , its su-

perfield strengths G, Wα , W̄α and their derivatives. The only gauge invariant term
with explicit dependence on the gauge superfield V and which cannot be rewritten
in terms of the superfield strengths is the Chern-Simons term [27, 13, 17],

SCS =
k

2π

∫
d3xd4θV G =

k
2π

∫
d3x(

1
2
εmnpAm∂nAp + iλαλ̄α −2φD) , (7)

where k is the Chern-Simons level. All other terms in the effective Lagrangian de-
pend only on the superfield strengths and their derivatives.

Within the derivative expansion, the effective action can be represented as a series
over the the superfield strengths with various number of covariant derivatives acting
on them. We will restrict ourself to the long-wave approximation which means that
we omit all terms with space-time derivatives of superfields, but the covariant spinor
derivatives can appear in the effective Lagrangian. This is taken into account by the
following constraints on the superfield strengths

∂mG = 0 , ∂mWα = 0 , ∂mW̄α = 0 . (8)

Moreover, we assume that the superfield strengths obey the free Maxwell equations
of motion,

DαWα = 0 , D̄αW̄α = 0 . (9)

In this approximation there is very limited number of building blocks, i.e., the super-
field combinations which the effective action can depend on. First of all, it depends
on the superfield strength G as well as on Wα and W̄α which involve first covariant
spinor derivatives of G, (5). Next, there are the objects with two covariant spinor
derivatives of G,
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Nαβ ≡ D(αWβ ) , N̄αβ ≡−(Nαβ )∗ = D̄(αW̄β ) . (10)

One can show that N̄αβ coincides with Nαβ up to a sign, Nαβ = −N̄αβ . Finally, it
is clear that any further spinor derivatives of the superfield strengths vanish in the
long-wave approximation (8), e.g.,

D̄αDβWγ =−2i∂αβWγ = 0 , D2Wα =−4i∂αβW̄ β = 0 . (11)

We conclude that the general structure of the gauge invariant effective action is given
by

ΓN =2 =
∫

d3xd4θ [c0V G+Leff(G,Wα ,W̄α ,Nαβ )] , (12)

where c0 is an arbitrary coefficient and Leff is an effective Lagrangian being a real
scalar superfield. Further restrictions on the structure of the function Leff come from
the requirement of the superconformal invariance.

Let us consider the superconformal transformations of the gauge superfield V
and its superfield strength G,

δscV = ξV , δscG = (ρ+ξ )G , (13)

where ξ is a superform, ξ = ξm∂m + ξαDα − ξ̄ α D̄α . Here (ξm,ξα , ξ̄α) is the su-
perconformal Killing vector and ρ is a superfield constructed from the parameters
of the superconformal group [10],

ρ = a+ kαβ xαβ +2iθαηα +2iθ̄ α η̄α . (14)

By construction, there are the following important identities

D2ρ = D̄2ρ = Dα D̄αρ = 0 . (15)

Note also that it can be represented as the sum of chiral and antichiral parts,

ρ =
1
2
(σ + σ̄) , D̄ασ = 0 , Dασ̄ = 0 . (16)

Using the following properties

D(αξβ ) + D̄(α ξ̄ β ) = 0 , Dαξα − D̄α ξ̄α =−1
3
∂αβ ξαβ =−2ρ , (17)

one can easily check the superconformal invariance of the Chern-Simons action (7),

δscSCS =
k

2π

∫
d3xd4θ(ρ+ξ )V G = 0 . (18)

Hence, the superconformal invariance imposes only constraints on the function Leff
in (12).

In general, the effective Lagrangian contains the effective potential term F (G),



Title Suppressed Due to Excessive Length 71

Leff = F (G)+ L̃eff(G,Wα ,W̄α ,Nαβ ) , (19)

where F (G) is a holomorphic function of G only while L̃eff takes into account the
superfield strength with covariant spinor derivatives. The superconformal invariance
restricts the form of the effective potential F (G) uniquely, up to a constant. Indeed,
the general condition of superconformal invariance applied to the effective potential
reads

δscF (G) = (ρ+ξ )F (G)+σK (G)+ σ̄ ¯K (G) , (20)

where the function K (G) should be linear,

D2 ¯K (G) = D̄2K (G) = 0 ⇒ K (G) = α+βG , ¯K (G) = ᾱ+ β̄G , (21)

with α and β being some (complex) constants. Up to the terms vanishing under
integral over full N = 2 superspace, the general solution of (20) is given by

F (G) = c1G lnG , (22)

where c1 is some constant. This effective potential is responsible for a superconfor-
mal generalization of the Maxwell term in its component decomposition,

∫
d3xd4θ G lnG =

1
8

∫
d3x

1
φ

FmnFmn + . . . , (23)

where dots stand for other component terms. Note that the Lagrangian (22) being
considered in the N = 1, d = 4 superspace is responsible for the classical action of
the improved tensor multiplet model [8].

It is much more difficult to make general analysis of the admissible form of the
function L̃eff in (19) subject to the superconformal invariance of the corresponding
action. The problem is that the superfields Wα , W̄α and Nαβ are not quasi-primary,
e.g.,

δscWα = (
1
2
ρ+σ +ξ )Wα +ωαβW β +(D̄αρ)G , (24)

where ωαβ = D̄(α ξ̄β ) = −D(αξβ ) are the parameters of ‘local’ Lorentz transfor-
mations. Equation (24) shows that Wα transforms inhomogeneously because of the
last term in (24). This is a new feature of three-dimensional supergauge models as
compared to the N = 1, d = 4 ones in which the superfield strengths are chiral
quasi-primary, [8, 24, 25, 26]. Therefore the superfields Wα and W̄α are rather in-
convenient for constructing superconformal actions and we are forced to introduce
the following quasi-primary superfields

Ψ =
i
G

D̄αDα lnG , Ω 2 =
1
8
(

1
G

D̄αDα)2 lnG . (25)

Indeed, using (13) and the relations (17) one can readily check that both these su-
perfields are quasi-primary with zeroth scaling dimension,
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δscΨ = ξΨ , δscΩ 2 = ξΩ 2 . (26)

This allows us to construct a superconformal action with these superfields,

S1 =
∫

d3xd4θ GU (Ψ ,Ω 2) , δscS1 = 0 , (27)

where U (Ψ ,Ω 2) is an arbitrary function.
Neither the gauge invariance nor the superconformal symmetry impose any re-

strictions on possible form of the function U (Ψ ,Ω 2) in (27). However, for the
background gauge superfield under considerations (9,8) the form of this functions
can be further reduced. Indeed, for such a background there are the following equiv-
alent representations forΨ and Ω 2,

Ψ = −i
WαW̄α

G3 , (28)

Ω 2 =
1
8

Nαβ Nβα
G4 +

3
4

NαβWαW̄β
G5 +

3
4

W 2W̄ 2

G6 . (29)

Owing to the odd statistics of superfield strengths Wα and W̄α , the power expansion
of U (Ψ ,Ω 2) overΨ terminates at the second order,

U (Ψ ,Ω 2) = U0(Ω 2)+ΨU1(Ω 2)+Ψ 2U2(Ω 2) . (30)

Under the integral over N = 2 superspace the first two terms in the rhs of (30) can
be brought to the form of the last term,

∫
d3xd4θ G[U0(Ω 2)+ΨU1(Ω 2)] =

∫
d3xd4θ GΨ 2Ũ2(Ω 2) , (31)

where Ũ2 is some function. These considerations show that in the long-wave ap-
proximation the superconformal action (27) simplifies

S1 =
∫

d3xd4θ GΨ 2H (Ω 2) , (32)

such that it is described by a single function H (Ω 2) of one real variable. There are
no any more constraints on the form of this function.

Summing up all together, we conclude that the general form of the superconfor-
mal effective action in the long-wave approximation is given by

ΓN =2 = ΓCS +ΓMaxweel +Γhigher , (33)

where
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ΓCS = c0

∫
d3xd4θV G , (34)

ΓMaxwell = c1

∫
d3xd4θ G lnG , (35)

Γhigher =
∫

d3xd4θ GΨ 2H (Ω 2) . (36)

In components, this action contains the Chern-Simons term (7), the Maxwell F2

term (23) and all higher order terms F2n with n ≥ 2. The undefined coefficients
c0, c1 and the arbitrary function H will be found in the next section by explicit
quantum computations for the model of N = 2 chiral superfield on the Abelian
gauge superfield background.

3 Effective actions for N = 2 and N = 4 matter on gauge

superfield background

3.1 Effective action of chiral superfield in the background gauge
superfield

The classical action of the N = 2 chiral superfield Q interacting with the Abelian
gauge superfield V is given by

SN =2 =−
∫

d3xd4θ Q̄e2V Q , (37)

The effective action in the model (37) can be written schematically as

ΓN =2 =
i
4

Tr+ ln�++ c.c. , (38)

where �+ is the covariantly chiral box operator,

�+ = ∇m∇m +G2 +
i
2
(DαWα)+ iWα∇α . (39)

Here ∇m and ∇α are gauge covariant generalizations of ∂m and Dα . To calculate
the trace of the logarithm of this operator one has to specify the background gauge
superfield. Here we consider the superfield strength which is constant with respect
to the space-time coordinates (8) and obey the free Maxwell equations (9). In this
approxiamtion the methods of quantum computations in superspace are very well
elaborated in [21, 20, 22]. As a result, we get (see [10] for details)

ΓN =2 =
1

4π

∫
d3xd4θ G

[
V + lnG+

1
4

∫ ∞

0

ds√
iπs

eisG2 W 2W̄ 2

GB2

(
tanh(sB/2)

sB/2
−1

)]
,

(40)
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where B2 = 1
2 NβαNαβ . We stress that this effective action is obtained in the on-shell

approximation (9). However, there is the possibility to go off shell if one expresses
this action in terms on superconformal invariants (34,35,36) (see [9] for analogous
trick for the N = 2, d = 4 superconformal theories). This allows us to rewrite the
effective action in the form (33) with

ΓCS =
1

4π

∫
d3xd4θV G , (41)

ΓMaxwell =
1

4π

∫
d3xd4θ G lnG , (42)

Γhigher =
1

32π

∫
d3xd4θ G

Ψ 2

Ω 2

∫ ∞

0

dt eit
√

iπt

(
tanh(tΩ)

tΩ
−1

)
. (43)

HereΨ and Ω are quasi-primary N = 2 superfields (25).

3.2 Effective action of charged hypermultiplet in the background
gauge superfield

Let us consider the model of charged hypermultiplet interacting with the Abelian
N = 4 gauge superfield (V,Φ) 1

SN =4 =−
∫

d3xd4θ
(
Q̄+e2V Q++ Q̄−e−2V Q−

)−
(∫

d3xd2θ Q+ΦQ−+ c.c.
)
.

(44)
For the constant background, DαΦ = 0, the one-loop effective action is given
schematically by

ΓN =4 =
i
2

Tr+ ln(�++ Φ̄Φ)+ c.c. (45)

The result of evaluation of this expression reads

ΓN =4 =
1

2π

∫
d3xd4θ

[
−
√

G2 + Φ̄Φ+G ln(G+
√

G2 + Φ̄Φ)

+
1
8
Θ 2

Ξ 2

√
G2 + Φ̄Φ

∫ ∞

0

dt eit
√

iπt

(
tanh(tΞ)

tΞ
−1

)]
, (46)

where

Θ =
i
G

D̄αDα ln(G+
√

G2 + Φ̄Φ) ,

Ξ 2 =
1
8

1√
G2 + Φ̄Φ

D̄αDα
1
G

D̄βDβ ln(G+
√

G2 + Φ̄Φ) . (47)

1 The chiral superfield Φ is the N = 4 superpartner of the N = 2 gauge superfield V .
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are the N = 4 supersymmetric generalizations of the N = 2 quasi-primary super-
fields (25). The action (46) is superconformal as well.

It is interesting to note that the terms in the first line in (46) being written in
four-dimensional space-time are known as the action of the improved tensor multi-
plet [11, 23, 16] which has recently been studied in [19]. The corresponding three-
dimensional action was considered in the recent publication [18] as a dual represen-
tation of the Gaiotto-Witten model [12]. Here we derive this action as the leading
contribution in the charged hypermultiplet model.

4 Conclusions

In this work we studied the general structure of the effective action in supercon-
formal three-dimensional N = 2 supersymmetric gauge theories. We showed that
the gauge and superconformal invariance fixes the form of the leading terms in the
effective action uniquely, up the the coefficients while the higher order terms with
respect to the Maxwell field strength are described by one function of quasi-primary
N = 2 superfields.

The obtained form of the effective action can appear in various N = 2 super-
gauge models including N = 2 supersymmetric electrodynamics, SYM theory and
chiral matter on the Abelian gauge superfield background. For the latter model we
explicitly compute the low-energy effective action within the perturbation theory
and fix the freedom which remained after the symmetry analysis. This effective ac-
tion is also generalized to the case of N = 4 charged hypermultiplet interacting
with Abelian gauge superfield.

It wound be interesting to apply the obtained results to study the effective action
in the supergauge models with reacher supersymmetry. In particular, it may appear
as a part of the effective action in the ABJM and BLG theories describing the dy-
namics of multiple M2 branes. Another interesting direction of the further research
is the study of the effective action in the ABJM and BLG theories in the N = 3,
d = 3 harmonic superspace [6, 7].
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Colour Confinement, the

Goto-Imamura-Schwinger Term and

Renormalization Group∗

Masud Chaichian

Abstract In connection with the question of colour confinement the origin of the
Goto-Imamura-Schwinger term has been studied with the help of renormalization
group. An emphasis has been laid on the difference between theories with and with-
out a cut-off.

Foreword

It is a great honour for me to take part in the celebration of the dear colleague and
friend, Professor Emilio Elizalde, on the occasion of his sixtieth anniversary, and I
feel a sense of priviledge in dedicating this article to him. Emilio and myself share
a common interest in understanding several problems in theoretical physics, so that
I shall concentrate my attention to the exploration of the connection between the
colour confinement and the Goto-Imamura-Schwinger term in this article.

1 Introduction

Field theory is full of ghosts and bugs, and we have to bring divergences, anomalies
and ambiguities under control. Among others we shall concentrate on the origin of
the so-called Goto-Imamura-Schwinger (GIS) term [9, 20] in field theory, since it
bears a close connection with the question of colour confinement [13–15].
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In evaluating the equal-time commutator (ETC) between two local operators we
sometimes encounter a result in conflict with that obtained by a naive application of
the canonical commutation relations (CCRs). The deviation from the naive expec-
tation is referred to as the Goto-Imamura-Schwinger (GIS) term hereafter. Such a
term does not arise, however, when we evaluate the ETC between two fundamental
fields, and it indicates that the origin of the GIS term must be sought in the definition
of the singular product of field operators at the same space-time point.

In many examples it is possible to find a renormalization group (RG) equation
controlling the GIS term in question, but then the next question is raised of how to
formulate the initial or boundary condition for this equation. In the RG approach
we introduce running parameters such as the running coupling constant and they
tend to the bare or nonrenormalized ones in the high energy limit provided that we
introduce a cut-off in the unrenormalized version of the theory as we shall see in
Sec. 2. Then we can introduce boundary conditions in the high energy limit into the
cut-off theory by assuming the CCRs. In some cases it is possible to formulate the
boundary condition kinematically, namely, without reference to the dynamics of the
system but often it is necessary to refer to the dynamics of the system by evaluating
higher order corrections. In Sec. 3 we shall illustrate these statements in quantum
electrodynamics (QED). Then, we find that the origin of the GIS terms may be
attributed to one of the following causes: (1) operator-mixing under renormalization
[13, 15], (2) non-local character of the product of field operators at the same space-
time point and (3) divergences induced by lifting the cut-off. In Sec. 4 we shall
proceed to quantum chromodynamics (QCD) in connection with the question of
colour confinement.

2 Renormalization group

In introducing the RG approach [2, 8, 21] we shall employ the neutral scalar theory
for illustration. We assume the quartic interaction of the scalar field φ(x) with the
coupling constant g. The unrenormalized Green function is given by

G(n)
0 (x1, ...,xn) = 〈0|T

[
φ (0)(x1) · · ·φ (0)(xn)

]
|0〉 , (1)

where the subscript 0 and the superscript (0) denote unrenormalized quantities. The
Fourier transform of the renormalized n-point Green function is denoted by

G(n)(p1, ..., pn;g(μ),μ) , (2)

where μ denotes the renormalization point defined below and g(μ) the running
coupling constant defined at the renormalization point as seen from

(p2 +m2)G(2)(p2;g(μ),μ) = 1 , for p2 = μ2 , (3)
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G(4)
conn(p1, ..., p4;g(μ),μ)

= g(μ)
4

∏
i=1

G(2)(p2
i ;g(μ),μ) ·Γ (p1, · · · , p4;g(μ),μ) , (4)

Γ (p1, · · · , p4;g(μ),μ) = 1 , for pi · p j =
μ2

3
(4δi j−1) , (5)

where G(4)
conn denotes the 4-point Green function for connected Feynmann diagrams

alone. These are the normalization conditions for the Green functions and specify
the renormalization point in the Pauli metric.

The generator of the RG is given by

D = μ
∂
∂μ

+β (g)
∂
∂g

, (6)

and the RG equation for the n-point Green function is given by
[
D +nγφ (g)

]
G(n)(p1, ..., pn;g,μ) = 0 , (7)

where we write g for g(μ) and γφ denotes the anomalous dimension of the scalar
field φ . For the two-point Green function or the propagator we may assume the
Lehmann representation [11],

G(2)(p2;g,μ) =
∫

dκ2 ρ(κ2;g,μ)
p2 +κ2− iε

, (8)

and we have [
D +2γφ (g)

]
ρ(κ2;g,μ) = 0 . (9)

Then Eq. (3) in the limit μ → ∞ yields

lim
μ→∞(μ

2 +m2)G(2)(μ2;g,μ) =
∫

dκ2ρ(κ2;g(∞),∞) = 1 , (10)

in the cut-off theory where m denotes the mass of the quantum of the scalar field.
Lehmann’s theorem [11] on the ETC for the field operator normalized at μ read-

ily yields the relation

δ (x0− y0)
[
φ(x;g,μ), φ̇(y;g,μ)

]
= iδ 4(x− y)

∫
dκ2ρ(κ2;g,μ) , (11)

and Eq. (10) then implies that the field operators are identified with the unrenormal-
ized ones in the limit μ → ∞ since they satisfy the CCR. At the same time we can
show that g(μ) also tends to the bare coupling constant g0 in the same limit.

In order to define the running parameters we introduce

R(ρ) = exp(ρD) , (12)
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where ρ denotes the parameter of the RG, then R(ρ) obeys the composition law

R(ρ1)·R(ρ2) = R(ρ1 +ρ2) , (13)

and the RG is literally a group identified with GL(1,R).
The running parameters in the scalar theory are defined by

g(ρ) = R(ρ) ·g , (14)
μ(ρ) = R(ρ) ·μ = μ exp(ρ) , (15)

then we readily obtain

R(ρ) G(n)(p1, ..., pn;g,μ) = G(n)(p1, ..., pn;g(ρ),μ(ρ)) . (16)

We differentiate this equation with respect to ρ and combine it with Eq. (7) to obtain

∂
∂ρ

G(n)(p1, ..., pn;g(ρ),μ(ρ)) = R(ρ)DG(n)(p1, ..., pn;g,μ)

= −nR(ρ)γφ (ρ) G(n)(p1, ..., pn;g,μ) (17)

= −nγφ (g(ρ)) G(n)(p1, ..., pn;g(ρ),μ(ρ)) .

We have to introduce a boundary condition to this differential equation. In a cut-off
theory we may set

lim
μ→∞G(n)(p1, ..., pn;g(μ),μ) = G(n)

0 (p1, ..., pn;g0) , (18)

where g0 denotes the bare coupling constant.
By integrating Eq. (17) we find

G(n)(p1, ..., pn;g,μ) = exp
[

n
∫ ρ

0
dργφ (g(ρ))

]

· G(n)(p1, ..., pn;g(ρ),μ(ρ)) . (19)

In the limit ρ → ∞ and consequently μ(ρ)→ ∞ we have

G(n)(p1, ..., pn;g,μ) = exp
[

n
∫ ∞

0
dργφ (g(ρ))

]
·G(n)

0 (p1, ..., pn;g0) . (20)

In a cut-off theory all the vertex corrections to g(μ) for μ→∞ tend to vanish leaving
only the bare one, namely,

lim
μ→∞g(μ) = lim

ρ→∞g(ρ) = g0 . (21)

The fundamental field φ is multiplicatively renormalized as
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φ (0)(x) = Z1/2
φ φ(x) , (22)

where Zφ is the renormalization constant of the scalar field φ , and it is a function of
g. Comparison of Eqs. (20) and (22) yields

Z−1
φ = exp

[
2
∫ ∞

0
dργφ (g(ρ))

]
. (23)

The running renormalization constant is given by

Z−1
φ (ρ) = R(ρ)Z−1

φ (g)

= exp
[

2
∫ ∞

ρ
dρ ′γφ (g(ρ ′))

]
. (24)

When Zφ depends not only on g but also on μ , γφ (ρ) must be replaced by γφ (ρ,μ).
In a cut-off theory we have

lim
ρ→∞Z−1

φ (ρ) = 1 , (25)

but this is not true when the integral in the exponent of Eq. (23) does not converge
and as we shall see later this feature is a possible cause of the emergence of the GIS
terms.

Although the RG approach has been introduced for the scalar theory we can
easily extend it to gauge theories. In QED the generator of the RG is given by

D = μ
∂
∂μ

+β (e)
∂
∂e
−2αγV (e)

∂
∂α

, (26)

where α denotes the gauge parameter. The γV (e) denotes the anomalous dimension
of the electromagnetic field and is related to β (e) through the Ward identity

β (e) = eγV (e) . (27)

Furthermore in QCD the generator is given by

D = μ
∂
∂μ

+β (g)
∂
∂g
−2αγV (g,α)

∂
∂α

, (28)

where g denotes the gauge coupling constant and γV the anomalous dimension of the
colour gauge field. The running parameters in QCD satisfy the following equations:

dg
dρ

= β (g) , (29)

dα
dρ

= −2αγV (g,α) . (30)

Then we introduce their asymptotic values by
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g∞ = lim
ρ→∞g(ρ) , α∞ = lim

ρ→∞α(ρ) . (31)

This is possible since the RG is a group GL(1,R) but not U(1). Asymptotic freedom
[10, 19] of QCD implies

g∞ = 0 . (32)

By integrating Eq. (30) we immediately find a sum rule,

2
∫ ∞

0
dργV (ρ) = ln(

α
α∞

) (33)

and hence we also have [14, 15, 17]

Z−1
3 = exp

[
2
∫ ∞

0
dργV (ρ)

]
=
α
α∞

, (34)

where γV (ρ)≡ γV (g(ρ),α(ρ)).
In QCD it is known that α∞ can take three possible values [14, 15, 17]

α∞ = 0 , α0 , −∞ , (35)

where α0 is a constant which depends only on the number of quark flavors. These
three values are related to the integral of γV as

∫ ∞

0
dργV (ρ) =

⎧⎨
⎩
∞ , for α∞ = 0
finite , for α∞ = α0
−∞ , for α∞ =−∞

(36)

and Z−1
3 vanishes when α∞ =−∞.

3 Quantum electrodynamics

Quantum electrodynamics is a suitable ground to exercise the analysis of the GIS
terms. The Lagrangian density for QED is given by

L = Lem +Lmatter , (37)

where the unrenormalized version of the Lagrangian density for the electromagnetic
field is given by

Lem =−1
4

F(0)
μν ·F(0)

μν +∂μB(0) ·A(0)
μ +

α0

2
B(0) ·B(0) , (38)

where B denotes the Nakanishi-Lautrup auxiliary field [12] and the interactions are
included in the matter Lagrangian. The resulting field equations are given by
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∂μF(0)
μν +∂νB(0) = −J(0)ν , (39)

∂μA(0)
μ = α0B(0) , (40)

and the renormalized version of these equations can be expressed as

∂μFμν +∂νB = −Jν , (41)
∂μAμ = αB . (42)

The fundamental fields Aμ and B as well as the gauge parameter α are renormalized
multiplicatively,

A(0)
μ = Z1/2

3 Aμ , (43a)

B(0) = Z−1/2
3 B , (43b)

α0 = Z3α . (43c)

Apparently renormalization of the composite current operator Jν is not multiplica-
tive, but its execution requires operator mixing [13, 15] as illustrated by

J(0)ν = Z1/2
3

[
Jν +(1−Z−1

3 )∂νB
]
, (44a)

Jν = Z−1/2
3

[
J(0)ν +(1−Z3)∂νB(0)

]
. (44b)

Operator mixing is one of the sources of the GIS terms, and in order to illustrate this
statement we shall evaluate the ETC

δ (x0− y0) [A j(x), J0(y)] (45)

for j = 1,2,3. In the unrenormalized version we have

δ (x0− y0)
[
A(0)

j (x), J(0)0 (y)
]
= 0 . (46)

As has been mentioned before we can rely on the ETCs only between two funda-
mental fields, so that we shall express J in terms of A and B by using Eqs. (41) and
(43),

[A j(x), J4(y)] = −
[
A j(x), ∂μFμ4(y)+∂4B(y)

]
= −Z−1

3

[
A(0)

j (x), ∂kF(0)
k4 (y)

]
−
[
A(0)

j (x), ∂4B(0)(y)
]

= (−Z−1
3 +1)∂ jδ 3(x− y)

for x0 = y0. Thus we have

δ (x0− y0) [A j(x), J0(y)] = i(Z−1
3 −1)∂ jδ 4(x− y)

≡ is∂ jδ 4(x− y) , (47)
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where s is the coefficient of the GIS term. In this case it is clear that the origin of
the GIS term is the operator mixing. Then s satisfies the RG equation

[D +2γV (e)] (s+1) = [D +2γV (e)]Z−1
3 = 0 , (48)

where D is given by Eq. (26), and the running GIS coefficient s(ρ) satisfies the
differential equation

[
∂
∂ρ

+2γV (e(ρ))
]
(s(ρ)+1) = 0 . (49)

In a cut-off theory the GIS term is absent in the unrenormalized version as expressed
by Eq. (46), and the boundary condition for s(ρ) is given by

s(∞) = 0 . (50)

By combining the boundary condition (50) with Eq. (49) we find the solution

Z−1
3 (ρ) = 1+ s(ρ) = exp

[
2
∫ ∞

ρ
dρ ′γV (e(ρ ′))

]
. (51)

In the absence of the cut-off we do not know what kind of boundary condition we
should impose on s(ρ) so that we take this solution (51) for granted even in this
case.

In QED we assume that Z−1
3 = Z−1

3 (0) is divergent so that we have

1+ s(∞) = lim
ρ→∞exp

[
2
∫ ∞

ρ
dρ ′γV (e(ρ ′))

]
= ∞ , (52)

and the boundary condition (50) is no longer satisfied in the absence of the cut-off.
This is another source of the GIS terms, and the field operators do not necessarily
tend to the unrenormalized ones in the limit ρ → ∞ and hence μ → ∞ when the
cut-off is lifted.

Finally we shall turn our attention to the ETC between two components of the
current density. This is precisely the original problem in which the GIS term was
recognized [9, 20]. We shall make use of the field equations (41) to express the
current density as a linear combination of the fundamental fields, and then we can
make use of the commutativity of B with Fμν and B itself [12],

[
Jμ(x), Jν(y)

]
=

[
∂αFαμ(x)+∂μB(x), ∂βFβν(y)+∂νB(y)

]
=

[
∂αFαμ(x), ∂βFβν(y)

]
, (53)

and we introduce the GIS coefficient s by

δ (x0− y0)〈0| [Jj(x), J0(y)] |0〉= is∂ jδ 4(x− y) . (54)
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As a matter of fact, the ETC on the left-hand-side of Eq. (54) is known to be a c-
number before taking its vacuum expectation value in spinor electrodynamics [16].
Here we are aware of the fact that the GIS term can be expressed in terms of the
ETC between derivatives of field strengths. In order to evaluate the ETC by making
use of the CCRs it is necessary to express derivatives of field strengths in terms of
canonical variables by making use of canonical field equations. Therefore, we are
taking commutators between those operators that are non-local in time and then tak-
ing the local limit. The way in which this limit is taken is dictated in the evaluation
of the higher order corrections as we shall see below.

This is in a sharp contrast to the original naive way of evaluating the commutator
between two bilinear forms of the Dirac fields by making use of only the CCRs
without taking the possibility of non-locality into consideration. This gap generates
the GIS term.

By combining Eqs. (53) and (54) we find that the GIS coefficient s satisfies the
RG equation

[D +2γV (e)]s = 0 . (55)

In this case we cannot give the boundary condition for this equation since it requires
the information about the dynamics of the system such as the photon propagator.
The Lehmann representation of the electromagnetic field is given in the following
form:

〈0|T [
Aμ(x),Aν(y)

] |0〉= −i
(2π)4

∫
d4keik·(x−y)DFμν(k) , (56)

DFμν(k) =
(
δμν − kμkν

k2− iε

)∫
dM2 ρ(M2;e,μ)

k2 +M2− iε
+α

kμkν
(k2− iε)2 . (57)

Then inserting this expression into Eq. (53) we find

s =
∫

dM2ρ(M2;e,μ)M2 . (58)

This expression certainly satisfies Eq. (55) since we have

[D +2γV (e)]ρ(M2;e,μ) = 0 . (59)

It is clear that Z−1
3 also satisfies Eq. (55) since it is given by

Z−1
3 =

∫
dM2ρ(M2;e,μ) . (60)

We may conclude that the GIS terms are controlled by RG if not completely.
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4 Colour confinement in quantum chromodynamics

In QCD the GIS term plays an important role in connection with colour confinement
[13–15]. The field equation in QCD corresponding to Eq. (41) is given by

∂μFa
μν + Ja

ν = iδδAa
ν , (61)

where δ and δ denote two kinds of Becchi-Rouet-Stora (BRS) transformations [1],
respectively, and the superscript a represents the colour index. Since we are not
entering the subject of BRS transformations here we shall refer to other references
[13–15] for their definitions.

We are interested in ETC

∂μ〈0|T
[
iδδAa

μ(x), Ab
j(y)

]
|0〉

= δ (x0− y0)〈0|
[
iδδAa

0(x), Ab
j(y)

]
|0〉

= iδabC ∂ jδ 4(x− y) ,

or
δ (x0− y0)〈0|

[
∂kFa

k4(x)+ Ja
4 (x), Ab

j(y)
]
|0〉=−δabC ∂ jδ 4(x− y) . (62)

The constant C is gauge-dependent, and a sufficient condition for colour confine-
ment is the existence of a gauge in which the following equality holds:

C = 0 . (63)

In order to determine C we have to evaluate the ETC in Eq. (62), and for that purpose
we introduce the RG equation satisfied by C 3−5),

(D−2γFP)C = 0 , (64)

where D is given by Eq. (28) and γFP denotes the anomalous dimension of the
Faddeev-Popov ghost fields. Then the renormalization constant of the ghost fields
denoted by Z̃3 also satisfies the same RG equation,

(D−2γFP) Z̃3 = 0 . (65)

We are going to study the relationship between C and Z̃3 in this section. They satisfy
the same RG equation, but their normalizations are different.

The unrenormalized version of Eq. (61) reads as

iδδA(0)
ν (x) = ∂μA(0)

μν +g0∂μ(A
(0)
μ ×A(0)

ν )+ J(0)ν , (66)

where Aμν = ∂μAν − ∂νAμ denotes the linear part of Fμν and we have suppressed
the colour index. The cross product denotes the antisymmetric product in the colour
space defined in terms of the structure constants of the algebra su(3). When we
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insert the r.h.s. of Eq. (66) into the ETC (62) in the unrenormalized version, we
find that only the first term ∂μA(0)

μν gives a non-vanishing canonical commutator
and the rest would give only a vanishing result provided that the naive CCRs are
employed. However, this is true only in a cut-off theory or in a convergent theory
and in general we should not discard the possibility of a non-vanishing GIS term so
that the unrenormalized constant C0 would be given by

C0 = 1+ s . (67)

The first term is a result of the CCR and is equal to unity. Thus the renormalized C
is given by

C =C0Z̃3 = (1+ s)Z̃3 . (68)

Then a question is raised of how to evaluate the GIS coefficient s. For this purpose
we introduce a cut-off theory and we write a(ρ) for Z−1

3 (ρ), and we shall rewrite
Eq. (67) in the form

C(∞) = a(∞) (69)

based on the argument developed in Sec. 2. In a cut-off theory the GIS coefficient
s vanishes, but it does not vanish when the cut-off is lifted. The running parameters
C(ρ), a(ρ) and Z̃3(ρ) satisfy the following differential equations, respectively,

[
∂
∂ρ
−2γFP(ρ)

]
C(ρ) = 0 , (70)

[
∂
∂ρ

+2γV (ρ)
]

a(ρ) = 0 , (71)
[
∂
∂ρ
−2γFP(ρ)

]
Z̃3(ρ) = 0 . (72)

Among them the last two are renormalization constants, and they are immediately
given by

a(ρ) = Z−1
3 (ρ) = exp

[
2
∫ ∞

ρ
dρ ′γV (ρ

′)
]
,

Z̃−1
3 (ρ) = exp

[
2
∫ ∞

ρ
dρ ′γFP(ρ

′)
]
. (73)

We should be aware of the following relations:

Z−1
3 = Z−1

3 (0) , Z̃−1
3 = Z̃−1

3 (0) . (74)

Then C(ρ) should be determined by solving Eq. (70) under the boundary condition
(69) and we obtain

C(ρ) = lim
ρ ′→∞

exp
[

2
∫ ∞

ρ ′
dρ ′′γV (ρ

′′)−2
∫ ρ ′

ρ
dρ ′′γFP(ρ

′′)
]
, (75)
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and, in particular, we have

C = lim
ρ ′→∞

exp
[

2
∫ ∞

ρ ′
dρ ′′γV (ρ

′′)−2
∫ ρ ′

0
dρ ′′γFP(ρ

′′)
]
. (76)

¿From now on we lift the cut-off while keeping these formulas. With recourse to
Eqs. (34) and (36) we find that C vanishes when Z−1

3 vanishes as claimed before
[13–15]. Then we may express Eq. (76) as

C = lim
ρ→∞exp

[
2
∫ ∞

ρ
dρ ′γV (ρ

′)
]
· Z̃3 , (77)

and with reference to Eq. (68) we find

1+ s = lim
ρ→∞exp

[
2
∫ ∞

ρ
dρ ′γV (ρ

′)
]

=

⎧⎨
⎩
∞ , for α∞ = 0
1 , for α∞ = α0
0 , for α∞ =−∞

. (78)

Only in the case α∞ = α0 do we find the vanishing GIS coefficient s, and this is
precisely what happens when the integration of γV converges just as in the cut-off
theory. Now we shall summarize the relationship between C and Z̃3 as follows:

C =

⎧⎨
⎩
∞ , α∞ = 0
Z̃3 , α∞ = α0
0 α∞ =−∞

. (79)

As we have seen above we formulate the boundary condition for a given RG
equation by introducing a cut-off, but when the cut-off is lifted in the solution the
GIS term appears as a manifestation of the divergent character of the theory.

Further works along these lines have been persued in references [3–7, 18].
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Non-central extensions of (Super) Poincaré

algebra and (Susy) Electromagnetic

Backgrounds

Joaquim Gomis

Abstract We present the Maxwell and super Maxwell algebra and introduce a mas-
sive particle invariant under Maxwell symmetry. We also consider a κ-invariant
massless superparticle model providing a dynamical realization of the superMaxwell
algebra. This article is dedicated to Emili Elizalde, my first PhD student, for his 60
birthday.

1 Introduction

The Poincaré algebra and Poincaré group describe the symmetry of empty Min-
kowski space-time. Filling such a flat space-time with some background fields leads
to a modification of Poincaré symmetries. An example of such a modification is the
so-called Maxwell symmetries, which was obtained already in the seventies [1][2]
by considering Minkowski space with an added constant electromagnetic (EM)
background. The collection of arbitrary values of the constant EM field strengths
provides additional degrees of freedom in Minkowski space, supplementing the
Poincaré group with additional group parameters and the Poincaré algebra with new
generators.

The Maxwell algebra [2] is obtained by adding to the Poincaré generators
(Pμ , Mμν) the tensorial central charges Zμν (Zμν = −Zνμ ) which modify the com-
mutativity of the four-momenta Pμ 1

[Pμ , Pν ] = iZμν , (1)

where Mμν are the Lorentz algebra generators and

Departament ECM and ICCUB, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

1 The Bacry-Combe-Richard (BCR) algebra [1] is a subalgebra of the Maxwell algebra in which
Zμν takes fixed numerical values.
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[
Zμν ,Mρσ

]
= −iην [ρZ|μ |σ ] + iημ [ρZ|ν |σ ], (2)[

Pμ , Zρσ
]
= [Zμν , Zρσ ] = 0. (3)

The aim of this article is twofold: one is to present a Maxwell group-invariant
particle model on the extended space-time (xμ ,φμν), [3]-[6], with the translations
of φμν generated by Zμν . The interaction term described by a Maxwell-invariant
one-form introduces new tensor degrees of freedom fμν - momenta conjugate to
φμν . In the equations of motion they play the role of a background EM field which
is constant on-shell.

The second goal is to introduce the supersymmetric extension of the Maxwell
symmetries with new N=1 superMaxwell algebra and to investigate the corre-
sponding superMaxwell-invariant massless superparticle model [7]. Analogously
to the Maxwell case, one can introduce the generalized phase space with co-
ordinates (xμ ,θα ,φμν ,φα ,φ) and conjugate momenta (pμ ,ζα , fμν , λ̃α ,D). Since
(φμν ,φα ,φ) are cyclic coordinates the conjugate momenta ( fμν , λ̃α ,D) are con-
stant on-shell describing the constant Abelian SUSY N=1 gauge field background.

This paper is based on the works [3]-[8].

2 Particle model with Maxwell symmetry

To formulate a relativistic particle model, invariant under the Maxwell group,
it is convenient to consider the coset G/H=Maxwell/Lorentz, which locally is
parametrized as g = eiPμ xμ e

i
2 Zμνφμν [3]-[6]. The Maurer-Cartan (MC) form is

Ω =−ig−1dg = PμLμ +
1
2

ZμνLμνZ +
1
2

MμνLμνM , (4)

where
Lμ = dxμ , LμνZ = dφμν +

1
2
(xμdxν − xνdxμ), LμνM = 0. (5)

The particle action invariant under the Maxwell algebra (1) and (3) is described by
the following Lagrangian:

L =
ẋμ ẋμ

2e
− m2

2
e+

1
2

fμνLμν∗Z , (6)

where e is the einbein implementing the diffeomorphism invariance, fμν is a ten-
sorial variable canonically conjugate to the new coordinates φμν and Lμν∗Z is the
pullback of LμνZ . In the proper time gauge, one obtains from (6) the equations of
motion

mẍμ = fμν ẋν , ḟμν = 0, φ̇ μν =−1
2
(xμ ẋν − xν ẋμ). (7)

Note that for this case the equation of motion for fμν does not affect the dy-
namics of the coordinates. This equation tells us that θ̇ μν is proportional to the μν
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component of the angular momentum (or magnetic moment) of the particle. In other
words θμν is a non-local function of the components of the angular momenta of the
particle.

Integration of the equation of motion associated to θ gives fμν = f 0
μν = eF0

μν .
We see that this solution spontaneously breaks Lorentz symmetry. If we substitute
this solution in the equation of motion for the variable x, we find that it describes
the motion of a particle in a constant, fixed EM field with

Fμν = F0
μν = constant. (8)

The EM potential is described by the one-form A = 1
2 fμνLμνZ . In the closed

two-form field strength

F = dA =
1
2

fμνLμ ∧Lν +
1
2

d fμν ∧LμνZ (9)

the second term vanishes on-shell due to (7) and the field strength components are
constant fμν .

3 From Maxwell algebra to superMaxwell algebra

In a recent paper [7] we have proposed the supersymmetric extension, denoted by
G5 , of the Maxwell algebra in 4 dimensions. The starting point for the construction
of this algebra is the extension of the superPoincaré algebra in D=4 with Majorana
supercharges Qα as (α ,β = 1,2,3,4)

{Qα ,Qβ}= 2(Cγμ)αβPμ ,
[
Pμ , Pν

]
= iZμν . (10)

The complete form of the algebra is obtained using the restrictions imposed by the
Jacobi identities and the Eilenberg-Chevalley cohomology. The algebra is

[
Pμ ,Pν

]
= iZμν ,

[
Pμ ,Qα

]
=−iΣβ (γμ)β α ,

{Qα ,Qβ} = 2(Cγμ)αβPμ , {Qα ,Σβ}=
1
2
(Cγμν)αβZμν +(Cγ5)αβ B,

[B5,Qα ] = −i(Qγ5)α , [B5,Σα ] = i(Σγ5)α ,[
Pμ ,Mρσ

]
= −iημ [ρPσ ],

[
Zμν ,Mρσ

]
=−iην [ρZ|μ |σ ] + iημ [ρZ|ν |σ ],

[
Mρσ ,Qα

]
= − i

2
(Qγρσ )α ,

[
Mρσ ,Σα

]
=− i

2
(Σγρσ )α ,

[
Mμν ,Mρσ

]
= −iην[ρM|μ |σ ] + iημ [ρM|ν |σ ]. (11)

The bosonic generators (Pμ ,Mμν ,Zμν), linked to translations, Lorentz rotations
and additional tensorial coordinates, form the bosonic Maxwell subalgebra and the
fermionic generators Qα ,Σα , (α = 1,2,3,4) are two Majorana spinor charges. B
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is a central charge and B5 generates chiral transformations. We point out that D=4
Maxwell superalgebra can also be considered as an enlargement by generators Zμν
of the algebra with 8 supercharges introduced by Green [9].

There are three subalgebras obtained by consistently removing generators B
and/or B5 from (11) (see [7]).

1) The minimal supersymmetric extension G , with a bosonic sector consisting
only of the Maxwell algebra generators, is obtained if we remove B and B5.

2) Removing only generator B5, we get a central extension G̃ of G . The generator
B is required if we wish to introduce the scalar degree of freedom describing the off-
shell extension of D=4 U(1) field strength supermultiplet.

3) One can consider a subalgebra with only the generator B5 which acts on the
supercharges Qα , Σα as chiral generator. If B is present, B5 is also required for the
existence of the supersymmetric mass Casimir.

We add that all cases describe the supersymmetric extension of the Maxwell alge-
bra with minimal number of supercharges (eight real or four complex) and all these
supersymmetrizations describe N=1 Maxwell superalgebra. We note that four addi-
tional supercharges Σα are present due to the supersymmetrization of the constant
electromagnetic background.

4 Massless superparticle model with Maxwell supersymmetry

We construct a massless superparticle model using a non-linear realization of the
superMaxwell algebra G5. The supergroup element g̃ is parametrized as

g̃ = e
i
2 Zμνφμν eiPμ xμ eiΣαφα eiQαθα eiBφ (12)

using the supercoset G/H=G5/(M×B5). Here the chiral generator B5 is in the un-
broken subgroup because we construct a massless particle. The components of the
MC form Ω̃ =−ig̃−1dg̃ are

L̃μ = dxμ + i(θγμdθ), L̃α = dθα , L̃μνM = 0,

L̃μνZ = dφμν + i(θγμν)αdφα +
1
2
(xμdxν − xνdxμ)

+
i
2
(θγμνγρθ)(dxρ +

i
6
(θγρdθ)),

L̃αΣ = dφα +(γρθ)α(dxρ +
i
3
(θγρdθ)), L̃5 = 0,

L̃B = dφ + i(θγ5)αdφα +
i
2
(θγ5γρθ)(dxρ +

i
6
(θγρdθ))

(13)

The massless super particle action invariant under the superMaxwell group is
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L =
π2
μ

2e
+L I∗; L I =

1
2

fμν L̃μνZ + iλα L̃αΣ +DL̃B, (14)

where πμ = ẋμ + iθγμ θ̇ is the pullback of L̃μ to the world line and e describes
the einbein. Here the ( fμν ,λα ,D) are dynamical variables transforming as Lorentz
tensor, Majorana spinor and scalar, respectively. The interaction Lagrangian can be
written explicitly as

L I∗ =
1
2

fμν φ̇ μν + iλ̃α φ̇α +D φ̇ +πμ Aμ + θ̇ α Ãα , (15)

where
λ̃α = λα +D(θγ5)α +

1
2

fμν(θγμν)α (16)

and the U(1) SUSY gauge potentials are

Ãα = i(θγμ)α [−1
2

fμνxν + i(
2
3
λ̃ − 1

8
θγρσ f ρσ− 1

4
Dθγ5)γμθ ],

Aμ = −1
2

fμνxν + i(λ̃ − 1
4
θγρσ f ρσ− 1

2
Dθγ5)γμθ . (17)

The variation of L with respect to (φμν ,φα ,φ) gives

ḟμν = ˙̃λα = Ḋ = 0, (18)

i.e., the U(1) potentials (17) are functions of the superspace coordinates (xμ ,θα)
and the variables ( fμν , λ̃α ,D) which take constant values on-shell. The variation of
L with respect to ( fμν , λ̃α ,D) gives the equations for the variables (φμν ,φα ,φ)

(L̃μνZ )∗ = (L̃αΣ )
∗ = (L̃B)

∗ = 0. (19)

The variation of L with respect to e puts the momenta πμ on mass shell with van-
ishing mass

π2 = 0. (20)

Finally, the variation of L with respect to (xμ ,θα) gives, using (17)–(18), the su-
perparticle equations of motion in superspace,

d
dτ

(
πμ
e
) = πνFμν + θ̇ βFμβ , (21)

2i(θ̇ γμ)α (
πμ
e
) = πνFνα , (22)

where the superfield strengths are (Dα = ∂α + i(θ̄ γμ)α∂μ )

Fμν = (∂μAν −∂νAμ) = fμν ,

Fμα = (∂μ Ãα −DαAμ) = i(λγμ)α , (23)
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and the superspace constraints following from (17)

Fαβ = (Dα Ãβ +Dβ Ãα)−2i(Cγμ)αβAμ = 0 (24)

have been used in (22). Identifying the interaction term L I = A in (14) with the
EM one-form superpotential, the two-superform field strength F = dA is,

F = dA =
1
2

fμν Lμ Lν + iλα (γμL)α Lμ + · · · (25)

where the · · · terms are linear in the one forms LB,LαΣ ,L
μν
Z which vanish on shell.

The field strength components are the ones given in (23)- (24).
Our model describes the coupling to a particular choice of U(1) gauge superfield

strength Wα(x,θ)

Wα(θ) = iλ̃α − i
2

fμν(θ̄ γμν)α − iD(θ̄ γ5)α . (26)

which satisfies the standard superspace constraints for the SUSY gauge theories,

Fαβ = 0, Fμα =Wβ (γμ)β α ,
DαWβ =− i

2 (Cγ
μν)αβFμν , ∂μWβ (γμ)β α = 0. (27)

It is known (see e.g. [10]) that the coupling of the N=1 superparticle to the gauge
superfield strength Wα(x,θ) satisfying the constraints (27) leads to a κ-invariant
interaction. Actually our system is not only invariant under the global superMaxwell
symmetries but also invariant under τ reparametrization and the κ symmetries.

5 Conclusions

In this article we considered non-central extensions of the (super) Poincaré group
and their relation with (Susy) electromagnetic backgrounds. We have introduced a
massive particle invariant under Maxwell symmetries which on shell describes the
motion of a particle in a constant, fixed EM field.

We have also considered supersymmetric extensions of the Maxwell algebra and
proposed a κ invariant massless superparticle model (14) with the superMaxwell
symmetries. It couples minimally to a constant U(1) gauge superfield strength sat-
isfying the superspace constraints (see (27)).
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Multiple Scattering: Dispersion, Temperature

Dependence, and Annular Pistons

Kimball A. Milton1, Jef Wagner1, Prachi Parashar1, Inés Cavero-Peláez2,
Iver Brevik3, and Simen Å. Ellingsen3

Abstract We review various applications of the multiple scattering approach to the
calculation of Casimir forces between separate bodies, including dispersion, wedge
geometries, annular pistons, and temperature dependence. Exact results are obtained
in many cases.

1 Quantum vacuum energy

Quantum vacuum energies, or Casimir energies, are important at all energy scales,
from subnuclear to cosmological. Applications are starting to appear in nanotech-
nology. Furthermore it is most likely that the source of dark energy that makes up
some 70% of the energy budget of the universe is quantum vacuum fluctuations. In
particular, the 7-year WMAP data is completely consistent with the existence of a
cosmological constant [1],

w≡ p
ρ
=−1.10±0.14(68% CL), (1)

which is precisely what would be expected if dark energy arose from this source
[2]. Finally, zero-point fluctuations may be the most fundamental aspect of quantum
field theory.
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2 Multiple-scattering formulation

The multiple scattering formulation is easiest stated for a scalar field, which is rather
‘easily’ generalized to electromagnetism. For example, see [3]. Vacuum energy is
given by the famous trace-log formula,

E =
i
2

Tr lnG→ i
2

Tr lnGG−1
0 , (2)

where in terms of the background potential V ,

(−∂ 2 +V )G = 1, −∂ 2G0 = 1. (3)

Now we define the T -matrix,

T = S−1 =V (1+G0V )−1, (4)

and if the potential has two disjoint parts, V =V1 +V2, it is easy to derive the inter-
action between the two bodies (potentials):

E12 = − i
2

Tr ln(1−G0T1G0T2) (5a)

= − i
2

Tr ln(1−V1G1V2G2), (5b)

where Gi = (1+G0Vi)
−1G0, i = 1,2, and likewise Ti refers to Vi.

3 Quantum vacuum energy—dispersion

Perhaps not surprisingly in retrospect, we find that the usual dispersive form of the
electromagnetic energy [4]

U =
1
2

∫
(dr)

∫ ∞

−∞
dω
2π

[
d(ωε)

dω
E2(r)+H2(r)

]
(6)

must be used, which, quantum mechanically, corresponds to the vacuum energy
form

E =− i
2

∫
(dr)

∫ dω
2π

[
2εtrΓ +ω

dε
dω

trΓ
]
, (7)

in terms of the Green’s dyadic Γ . This result follows directly from the trace-log
formula for the vacuum energy

E =
i
2

∫ dω
2π

Tr lnΓ , (8)
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and is equivalent to the variational statement [5]

δE =
i
2

∫ dω
2π

TrδεΓ . (9)

From the energy, precisely because the dispersive derivative terms are present,
we recover the Lifshitz formula for the energy per area between parallel dielectric
slabs, with permittivity ε1,2, separated by a medium of permittivity ε3 of thickness
a,

E

A
=

1
4π2

∫ ∞

0
dζ

∫ ∞

0
dk k

[
ln
(
1− rTEr′TEe−2κ3a)+ ln

(
1− rTMr′TMe−2κ3a)] , (10)

with κi =
√

k2
⊥+ζ 2εi, ζ = −iω being the imaginary frequency. The TE reflection

coefficients are given by

rTE =
κ3−κ1

κ3 +κ1
, r′TE =

κ3−κ2

κ3 +κ2
, (11)

while the TM coefficients are obtained from these by the substitution κa → κ̄a =
κa/εa. For further details of this calculation, see [6].

4 Noncontact gears

The program of calculating the quantum vacuum lateral force between corrugated
surfaces and gears has been under active development. The electromagnetic situa-
tion of currugated dielectric slabs is illustrated in Fig. 1. For details see [7].

Fig. 1 Parallel dielectric slabs
with sinusoidal corrugations.

In the conductor limit (εi → ∞) and for the case of sinusoidal corrugations de-
scribed by h1(y) = h1 sin[k0(y+ y0)] and h2(y) = h2 sin[k0y] the lateral force can be
evaluated to be in first order in h1/a and h2/a
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F(2)
ε→∞ = 2k0a sin(k0y0)

∣∣∣F(0)
Cas

∣∣∣ h1

a
h2

a
A(1,1)
ε→∞(k0a), (12)

where

A(1,1)
ε→∞(t0) =

15
π4

∫ ∞

−∞
dt

∫ ∞

0
s̄ds̄

s
sinhs

s+
sinhs+

[
1
2
+

(s2 + s2
+− t2

0 )
2

8s2s2
+

]
, (13)

where s2 = s̄2 + t2 and s2
+ = s̄2 +(t + t0)2. The first term in (13) corresponds to the

Dirichlet scalar case [8], which here corresponds to the E mode (referred to in [9] as
the TM mode). We note that A(1,1)

ε→∞(0) = 1. See Fig. 2 for the plot of A(1,1)
ε→∞(k0a) ver-

sus k0a. We observe that only in the proximity force approximation limit k0a = 0 is
the electromagnetic contribution twice that of the Dirichlet case, and in general the
electromagnetic case is less than twice that of the Dirichlet case. This result can be

Fig. 2 Plot of A(1,1)
ε→∞(k0a)

versus k0a. The dotted curve
represents 2 times the Dirich-
let case.

shown to coincide with the expression found in Emig et al. [9] apart from an overall
factor of 2, which presumably is a transcription error. The double integral represen-
tation in (13) is more useful for numerical evaluation than the single-integral form
given in [9] because of the oscillatory nature of the function sinx/x in the latter.
Generalization of these results are forthcoming.

5 Wedge as generalization of cylinder

In a series of papers, we have considered variations on the wedge geometry, such as
a wedge defined by perfectly reflecting walls, intersected with a concentric circular
cylinder, the arc being either a perfect reflector itself, or the boundary between two
dielectric-diamagnetic regions. Most interesting is the case when the wedge itself is
constructed as the interface between two such media. See Fig. 3. In order to have a
tractable situation, we have considered the diaphanous or isorefractive condition

ε1μ1 = ε2μ2, (14)
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that is, the speed of light is the same in the two media. (If that is not done for the
wedge, the differential equations are no longer separable.) See Refs [10, 11, 12] for
more detail.

Fig. 3 Wedge geometries.
(a) The perfectly conducting
wedge geometry. (b) The ge-
ometry of a wedge intercut by
a perfectly conducting cylin-
drical arc. (c) Wedge with
magnetodielectric arc. (d) Di-
aphanous wedge in a perfectly
conducting cylindrical shell.

α x

y

ε1,μ1

ε2,μ2

a

α

(a) (b)

α x

y

ε1,μ1

ε2,μ2

a

x

y

ε2,μ2

ε1,μ1

α

(c) (d)

Consider now case (d). Using multiple scattering, or the Kontorovich-Lebedev
transformation, we obtain the following implicit formula for the eigenvalues for
the order ν of the contributing cylindrical partial waves, D(ν ,ω) = 0, where (r =
reflection coefficient on wedge)

D(ν ,ω) = (1− e2πiν)2− r2(eiν(2π−α)− eiνα)2

= −4e2πiν [sin2(νπ)− r2 sin2(ν(π−α))], (15)

which are selected by the “argument principle,” which is just the Cauchy theorem
applied to the contour γ shown in Fig. 4.

Fig. 4 Contour of integration
γ for the argument principle.
Shown also are singularities
of the integrand along the real
and imaginary ν axes.
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Fig. 5 The function ẽ(p) plot-
ted as a function of opening
angle α .
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Fig. 6 Two semitransparent
plates in an annulus.

v1(θ)

v2(θ)

α

In this way, we find the energy per length given by Ẽ = 1
8πna2 ẽ(p), p = π/α as

shown in Fig. 5. Note that only for perfect reflectors does the energy diverge as the
opening angle approaches zero.

6 Annular piston—semitransparent plates

The wedge geometry may be generalized by considering two semitransparent plates
in a Dirichlet annulus, as shown in Fig. 6. We use multiple scattering in the angular
coordinates, and an eigenvalue condition in the radial coordinates; this problem is
equally well solvable with radial Green’s functions, but this approach may be more
generalizable. This section is based on [13].

The Green’s function G (r,r′) will satisfy the equation[−∇2−ω2 +V (r)
]
G (r,r′) = δ (r− r′), (16)

while G (0) has V (r) = 0. For the cylindrical geometry of an annulus, the boundary
conditions are G = 0 at ρ = a and ρ = b, where a and b are the inner and outer
radii, respectively. We take the potential to be V (r) = v(θ)/ρ2. The corresponding
Green’s function is

G (r,r′;ω) =
∫ ∞

−∞
dk
2π

eik(z−z′)∑
η

Rη(ρ;ω ,k)Rη(ρ ′;ω,k)gη(θ ,θ ′), (17)
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in terms of the separation constant η . The normalized radial eigenfunctions appear-
ing here are[

−ρ d
dρ
ρ

d
dρ
− (ω2− k2)ρ2

]
Rη(ρ;ω ,k) = η2Rη(ρ;ω,k), (18)

with the boundary conditions Rη(a;ω,k) = Rη(b;ω,k) = 0. The reduced Green’s
function satisfies [

− d2

dθ 2 +η2 + v(θ)
]

gη(θ ,θ ′) = δ (θ −θ ′), (19)

with periodic boundary conditions.
To obtain the radial functions, we need the solution of the modified Bessel dif-

ferential equation, of imaginary order, which is zero for ρ = a for all values of η
and κ . An obvious solution is

R̃η(ρ;κ) = Kiη(κa)Ĩiη(κρ)− Ĩiη(κa)Kiη(κρ) = R̃−η(ρ ,κ), (20)

where
Ĩν =

1
2
(Iν + I−ν). (21)

The eigenvalues are given by the zeros of D(η) = R̃η(b;κ). We don’t need the
explicit eigenfunctions here.

6.1 Reduced Green’s function

The free angular reduced Green’s function is given by

g(0)η (θ ,θ ′) =
1

2η

(
−sinhη |θ −θ ′|+ coshηπ

sinhηπ
coshη |θ −θ ′|

)
. (22)

For a single potential v(θ) = λδ (θ−α) for θ ,θ ′ ∈ [α,2π+α], the reduced Green’s
function is

gη(θ ,θ ′) =
1

2η

(
− sinhη |θ −θ ′|+ 2η coshηπ coshη |θ −θ ′|

2η sinhηπ+λ coshηπ

−λ coshη(2π+2α−θ −θ ′)− cosh2ηπ coshη |θ −θ ′|
[2η sinhηπ+λ coshηπ]2sinhηπ

)
. (23)
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6.2 Two semitransparent planes

Now we look at the interaction energy between two semitransparent planes, as il-
lustrated in Fig. 6. Since it is nontrivial to work out the Green’s function for two
potentials, it is easiest to use the multiple-scattering formalism (5b)

E =
1
2i

∫ ∞

−∞
dω
2π

Tr ln(1−G (1)V1G
(2)V2). (24)

The subscripts on the V s represent the potentials V1(r) = λ1δ (θ)/ρ2, and V2(r) =
λ2δ (θ −α)/ρ2. The Green’s functions with superscript (i) represent the interac-
tion with only a single potential Vi. From this we obtain a simplified form of the
interaction energy:

E =
1

4π

∫ ∞

0
κ dκ∑

η
ln
(

1− trg(1)η v1g(2)η v2

)
, (25)

where g(i)η are given in (23). Then

trg(1)η v1g(2)η v2 =
λ1λ2 cosh2η(π−α)

(2η sinhηπ+λ1 coshηπ)(2η sinhηπ+λ2 coshηπ)
. (26)

Using the argument principle to determine the angular eigenvalues, we get the
following expression for the energy for an annular Casimir piston,

E =
1

8π2i

∫ ∞

0
κdκ

∫
γ

dη
∂
∂η

ln
[
Kiη(κa)Ĩiη(κb)− Ĩiη(κa)Kiη(κb)

]

× ln
(

1− λ1λ2 cosh2η(π−α)/cosh2ηπ
(2η tanhηπ+λ1)(2η tanhηπ+λ2)

)
. (27)

The contour of integration for the argument principle is again given in Fig. 4.
This formula can actually be used to evaluate the energy of interaction between

the two planes of the piston, by distorting the η contour to lines making angles of
±π/4 with respect to the real axis. The results are shown in Fig. 7. In Fig. 7 we
define d = b+a

2 sin α2 , and the plateaus seen in the second figure may be understood
from the proximity force approximation,

EPFA

E‖
=

1
16

b2

a2

(
1+

a
b

)4
, (28)

in comparison to the interaction between infinite parallel plates.
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Fig. 7 Energy/length for an annular piston as function of angle (top), and compared to the en-
ergy/length for a rectangular piston (bottom).

7 Applications of multiple scattering

As an illustration of practical calculations using the multiple scattering machinery,
we illustrate in Fig. 8 a semi-infinite array of periodic potentials, such as a array of
dielectric slabs, for which the exact Casimir-Polder force with an atom to the left
may be calculated [14].

Fig. 8 A semi-infinite array
of periodic potentials. The
exact CP force between an
atom and this array may be
calculated. 0 d Λ 2Λ 3Λ 4Λ 5Λ 6Λ
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7.1 Casimir-Polder force

Consider an atom, of polarizability α(ω), a distance Z to the left of the array. The
Casimir-Polder energy is

E =−
∫ ∞

−∞
dζ

∫ d2k
(2π)2α(iζ )trg(Z,Z), (29)

where apart from an irrelevant constant the trace of the Green’s function is

trg(Z,Z)→ 1
2κ

[−ζ 2RTE +(ζ 2 +2k2)RTM]
e−2κ |Z|. (30)

Here the reflection coefficients are those for the entire array (a is the distance be-
tween the potential slabs),

R =
1

2R

[
e2κa +R2−T 2−

√
(e2κa−R2−T 2)2−4R2T 2

]
. (31)

If the potentials consist of dielectric slabs, with dielectric constant ε and thick-
ness d, the TE reflection and transmission coefficients for a single slab are (κ ′ =√
εζ 2 + k2)

RTE =
e2κ ′d−1(

1+κ ′/κ
1−κ ′/κ

)
e2κ ′d−

(
1−κ ′/κ
1+κ ′/κ

) , (32a)

T TE =
4(κ ′/κ)eκ ′d

(1+κ ′/κ)2e2κ ′d− (1−κ ′/κ)2 . (32b)

The TM reflection and transmission coefficients are obtained by replacing, except
in the exponents, κ ′ → κ ′/ε . (Multilayer potentials have been discussed extensively
in the past, see, for example, [15, 16, 17, 18].)

For example, in the static limit, where we disregard the frequency dependence of
the polarizability,

E =−α(0)
2π

1
Z4 F(a/Z,d/Z). (33)

This is compared with the single slab result in Fig. 9. It is interesting to consider the
Z → ∞ limit, which is shown in Fig. 10. When a/d → 0 we recover the bulk limit.
Such results apparently will have applications to experiment rather soon [19].

8 Exact temperature results

The scalar Casimir energy between two weak nonoverlapping potentials V1(r) and
V2(r) at temperature T is [20]
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Fig. 9 Casimir-Polder energy
between a semi-infinite array
of dielectric slabs with ε =
2, compared to the energy
(lower curve) if only one
slab were present. Here we
have assumed that the spacing
between the slabs and the
widths of the slabs are equal.

Fig. 10 Casimir-Polder en-
ergy for large distances from
the array, as a function of the
ratio a/d, where a is the dis-
tance between the dielectric
slabs in the array, and d is the
thickness of each slab. Here
ε = 2.

ET =− T
32π2

∫
(dr)(dr′)V1(r)V2(r

′)
coth2πT |r− r′|

|r− r′|2 . (34)

8.1 Exact proximity force approximation

From (34) we find that the energy between a semitransparent plane and an arbitrarily
curved nonintersecting semitransparent surface is for weak coupling

ET =−λ1λ2T
16π

∫
dS

∫
2πT z(S)

dx
cothx

x
, (35)

where the area integral is over the curved surface. Here z(S) is the distance between
the plates at a given point on the surface S. Equation (35) is precisely what one
means by the proximity force approximation:

EPFA =
∫

dSE‖(z(S)), (36)

as noted by Decca et al. [21]. See also [22].
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8.2 Interaction between semitransparent spheres

We can, for weak scalar coupling, compute the energy between two spheres of radius
a and b, whose centers are separated by a distance R:

ET = −λ1λ2

16π
ab
R

{
ln

1− (a−b)2/R2

1− (a+b)2/R2 + f (2πT (R+a+b))+ f (2πT (R−a−b))

− f (2πT (R−a+b))− f (2πT (R+a−b))
}
, (37)

where f (y) for y < π is given by the power series,

f (y) =
∞

∑
n=1

22nB2n

2n(2n−1)(2n)!
y2n, (38)

which is obtained from the differential equation

y
d2

dy2 f (y) = cothy− 1
y
, f (0) = f ′(0) = 0. (39)

Results for the energy obtained by solving this differential equation are shown in
Fig. 11. For further details see [20].

Fig. 11 Comparison between
the general and high temper-
ature forms of the energy, as
a function of RT . Energies
are shown for a = b = R/4.
The high temperature re-
sult is linear in T . Also
shown is the power series
expansion truncated at 200
terms. which diverges in this
case at RT = 1/3. Plotted is
e =−16πRE/(λ1λ2a2).

8.3 Mean distances between spheres

Encountered in the above calculation are mean powers of distances between spheres
as defined by ∫

dΩ dΩ ′|r− r′|p = (4π)2RpPp(â, b̂), (40)
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for spheres, of radii a and b, respectively, separated by a center-to-center distance R.
Here â = a/R and b̂ = b/R, and Pp(â, b̂) can in general be represented by the infinite
series

Pp(â, b̂) =
∞

∑
n=0

2
(2n+2)!

Γ (2n− p−1)
Γ (−p−1)

Qn(â, b̂). (41)

Here the homogeneous polynomials Qn are

Q0 = 1, (42a)
Q1 = 2(â2 + b̂2), (42b)
Q2 = 3â4 +10â2b̂2 +3b̂4, (42c)
Q3 = 4â6 +28â4b2 +28â2b̂4 +4b̂6. (42d)

Here in general,

Qn =
1
2

n

∑
m=0

(
2n+2
2m+1

)
â2(n−m)b̂2m. (43)

There is also a recursion relation,

Pp−1(â, b̂) =
R−p

1+ p
∂
∂R

R1+pPp(â, b̂), (44)

since Qn is homogeneous in R of degree −2n.
For integer p > −2, Pp is a polynomial of degree 2�p/2�, and we can immedi-

ately find

Pp(â, b̂) =
1

4âb̂
1

(p+2)(p+3)
[
(1+ â+ b̂)p+3

+(1− â− b̂)p+3− (1− â+ b̂)p+3− (1+ â− b̂)p+3] , (45)

Although this was derived for integer p it actually holds for all values of p.
For example, when p is a negative integer, we have the explicit forms, which are

obtained from (45) by taking the appropriate limit:

P−1 = 1, Newton’s theorem, (46a)

P−2 =
1

4âb̂

[
ln

1− (â+ b̂)2

1− (â− b̂)2
+ â ln

(1+ b̂)2− â2

(1− b̂)2− â2
+ b̂ ln

(1+ â)2− b̂2

(1− â)2− b̂2

]
, (46b)

P−3 = − 1
4âb̂

ln
1− (â+ b̂)2

1− (â− b̂)2
, (46c)

P−4 =
1

[1− (â+ b̂)2][1− (â− b̂)2]
. (46d)

and further expressions, which can be obtained by use of (44), may be readily veri-
fied.
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9 Conclusions

The multiple scattering formalism can be used to find numerical results effectively
in many situations, as we have seen in this outline. Weak coupling results are exact
and often given in closed form. The method can also be used to extract not only
interaction energies but self energies, as described in [23].
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Brane Cosmology with an f (R) contribution

Mariam Bouhmadi-López

Abstract A generalised induced gravity brane-world model is proposed. The brane
action contains an arbitrary f (R) term, R being the scalar curvature of the brane
while the brane is 5-dimensional and is described by a Hilbert-Einstein action. It
can be shown that the effect of the f (R) term on the dynamics of a homogeneous
and isotropic brane is twofold: (i) an evolving induced gravity parameter and (ii) a
shift on the energy density of the brane. This new shift term, which is absent on the
Dvali, Gabadadze and Porrati (DGP) model, plays a crucial role to self-accelerate
the generalised normal DGP branch of our model. The stability of de Sitter solutions
is analysed under homogeneous perturbations. These results are compared with the
standard 4-dimensional one.

1 Introduction

Understanding the recent acceleration of the universe is one of the most challenging
task nowadays in physics. The first evidence for the acceleration of the universe was
provided by the analysis of the Hubble diagram of SNe Ia more than a decade ago
[1]. This amusing discovery, together with (i) measurements of the fluctuations in
the cosmic microwave background radiation (CMB) which implied that the universe
is (quasi) spatially flat and (ii) that the amount of matter which clusters gravitation-
ally is much less than the critical energy density, implied the existence of some stuff
usually dubbed the dark energy component that drives the late-time acceleration of
the universe. Afterwards, more precised measurements of the CMB anisotropy by
WMAP [2] and the power spectrum of galaxy clustering by the 2dFGRS and SDSS
surveys [3, 4] have confirmed this discovery.

A possible approach to describing the late-time acceleration of the universe is to
consider a modified theory of gravity, such that a weakening of this interaction on
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the appropriate scales induces the recent speed up of the universe (cf. [5, 6, 7, 8]).
In other words, the weakening of gravity on large scales would provide an effective
negative pressure that would induce the late-time acceleration of the universe.

A possible approach is the Dvali, Gabadadze and Porrati (DGP) scenario [9,
10, 11], which corresponds to a five-dimensional (5D) brane-world model. In this
model, our universe is a brane; i.e. a 4D hyper-surface, embedded in a Minkowski
space-time. Matter is trapped on the brane and only gravity experiences the full
bulk. The DGP model has two sets of solutions: the self-accelerating branch and
the normal one. The self-accelerating brane, as its name suggests, speeds up at late-
time without invoking any unknown dark energy component. On the other hand,
the normal branch requires a dark energy component to accommodate the current
observations [12, 13]. From a geometrical point of view, the two branches are em-
bedded in a completely different way in the bulk [10]. Despite the very nice features
of the self-accelerating DGP branch, it suffers from serious theoretical problems
like the ghost issue [14]. The main aim of this paper is to consider a mech anism
to self-accelerate the normal branch which is known to be free from the ghost issue
[14].

This mechanism will be based on a modified Hilbert-Einstein action on the brane
and the simplest gravitational option is to invoke an f (R) term. Extended theories of
gravity based on 4D f (R) scenarios have gathered a lot of attention in the last years
(cf. for example and reference cited there [5, 6, 7]). It has been shown that these 4D
models should follow more or less the expansion of a LCDM universe [15, 16, 17]
and could have distinctive signatures on the large scale structure of the universe
[18, 19]. On the other hand, several methods have been invoked to reconstruct the
shape of f (R) from observations [20, 21, 22], for example, by using the dependence
of the Hubble parameter with redshift which can be retrieved from astrophysical
observations or a cosmographyc approach. We will show that an f (R) term on the
brane action can induce naturally self-accel eration on the normal DGP branch.

2 Induced gravity with an f(R) contribution on the brane action

We start considering a brane, described by a 4D hyper-surface (h with metric g),
embedded in a 5D bulk space-time (B, metric g(5)), whose action is described by

S =
∫

B
d5X

√
−g(5)

{
1

2κ2
5

R[g(5)] + L5

}
+

∫
h

d4X
√−g

{
1
κ2

5
K + L4

}
, (1)

where κ2
5 is the 5D gravitational constant, R[g(5)] is the scalar curvature in the bulk

and K the extrinsic curvature of the brane in the higher dimensional bulk, corre-
sponding to the surface boundary term [23]. We will assume that the bulk contains
only a cosmological constant; i.e. L5 = −U . Consequently, the bulk space-time
geometry is described by an Einstein space-time
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GAB[g(5)] =−κ2
5Ug(5)AB . (2)

The 4D Lagrangian corresponds to

L4 = α f (R)+Lm, (3)

where R is the scalar curvature of the induced metric on the brane, g, and α is a
constant that measures the strength of the generalised induced gravity term f (R)
and has mass square units. Therefore, the function f (R) has mass square units. On
the other hand, Lm corresponds to the matter Lagrangian of the brane which in
particular may include a brane tension. The previous action, includes as a particular
case the DGP scenario [9, 10] when the bulk is flat, f (R) = R and α = 1/2κ2

4 where
κ2

4 is proportional to the 4D gravitational constant.
We will be mainly interested in the cosmology of a homogeneous and isotropic

brane, therefore, it is quite useful to follow the approach introduced by Shiromizu,
Maeda and Sasaki in1 [24]. Then, the projected Einstein equation on the brane reads,
where we have assumed a mirror symmetry across the brane,

Gμν [g] =−1
2
κ2

5Ugμν +κ4
5Πμν −Eμν . (4)

Here, Πμν corresponds to the quadratic energy momentum tensor [24]

Πμν =−1
4
τμστνσ +

1
12
ττμν +

1
8

gμν(τρστρσ − 1
3
τ2) ,

(5)

and Eμν is the (trace-free) projected Weyl tensor on the brane.
The total energy momentum on the brane can be defined as

τμν ≡−2
δL4

δgμν
+gμνL4. (6)

It is useful to split the previous energy momentum tensor into two terms

τμν = τ
(m)
μν + τ( f )

μν . (7)

The first term τ(m)
μν corresponds to the energy momentum tensor of matter (which

include in particular the brane tension) on the brane. The second term

τ( f )
μν =−2α

{
d f
dR

Rμν − 1
2

f (R)gμν
[
gμαgνβ −gμνgαβ

]
∇α∇β

(
d f
dR

)}
. (8)

1 For a different approach to deduce the equations of evolution of a DGP brane with curvature
modifications on the brane action see the references[25, 26]. See as well [27] for a brane-world
model with an f (R) term.



120 Mariam Bouhmadi-López

corresponds to the energy momentum tensor due to the generalised induced gravity
term, f (R), on the brane. Now, if f is proportional to the scalar curvature of the
brane, then τ( f )

μν is proportional to the Einstein tensor of the brane; i.e. the standard
induced gravity brane-world scenario is recovered:

τ( f )
μν =−2αGμν . (9)

Using the 5D Codacci equation, the bulk Einstein equation, and the junction
condition at the brane, it turns out that the total energy momentum tensor of the
brane is conserved τμν [24], i.e.

∇ντμν = 0. (10)

On the other hand, because2

∇ντ( f )
μν = 0, (11)

we can conclude that the energy momentum tensor of matter on the brane is con-
served

∇ντ(m)
μν = 0. (12)

3 Dynamics of a homogeneous and isotropic brane

In what follows, we consider a homogeneous and isotropic brane. The matter sector
on the brane can be described by a perfect fluid with energy density ρ(m) and pres-
sure p(m), where ρ(m) is conserved as we have pointed above. On the other hand, an
effective energy density and an effective pressure associated to the energy momen-
tum tensor coming from the f (R) term on action can be defined as follows [29]

ρ( f ) = −2α
[

3
(

H2 +
k
a2

)
f ′ − 1

2
(R f ′ − f )+3HṘ f ′′

]
, (13)

p( f ) = 2α
{(

2Ḣ +3H2 +
k
a2

)
f ′ − 1

2
(R f ′ − f )

[
R̈ f ′′+(Ṙ)2 f ′′′+2HṘ f ′′

]}
,(14)

Notice that the definition of ρ( f ) and p( f ) is different from the standard 4D definition
in f (R) models [29]. On the other hand, the energy density is conserved on the
brane.

The modified Friedmann equation on the brane can be written as

2 We have proved this equation using the 4D Bianchi identity on the brane; i.e. ∇νGμν = 0, and the
relation between the non commutative character of two covariant derivatives and its relation to the
Riemann curvature tensor (again on the brane), see for example equation 3.2.12 of [28]. Therefore,
the conservation relation (11) can be proven in analogy to how it is done in the standard 4D f (R)
scenario.
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3H2 =
κ4

5
12
ρ2. (15)

While, the spatial component of Einstein equation can be expressed as

2Ḣ +3H2 =−κ
4
5

12
ρ(ρ+2p), (16)

where the energy density ρ and the pressure p are defined as

ρ = ρ(m) +ρ( f ), p = p(m) + p( f ). (17)

For simplicity, on equations (15) and (16) we have used the spatially flat chart
of the brane. We have also assumed no dark radiation on the brane; i.e. the bulk
corresponds to a 5D maximally symmetric space-time. Notice that even in more
general cases the dark radiation term will have no influence on the late-time dynam-
ics of the brane as this term is constrained to be already subdominant by the time of
nucleosynthesis [30].

4 de Sitter branes

A de Sitter space-time is the simplest cosmological solution that exhibits acceler-
ation and therefore it is worthwhile to prove the existence of this solution in our
model and study its stability. This would be a first step towards describing in a re-
alistic way the late-time acceleration of the universe in an f (R) brane-world model.
This approach will also enable us to look for self-accelerating solutions on the mod-
ified normal DGP branch. So, in this section, we first obtain the fixed points of the
model corresponding to a de Sitter space-time and then we study their stability under
homogeneous perturbations.

4.1 Background solutions

In our model, the Hubble parameter for de Sitter solutions can be expressed as3

2κ4
5α

2F2
0 H2

0 = 1+
1
3
κ4

5α
2F0(R0F0− f0)+ ε

√
1+

2
3
κ4

5αF0
[
α(R0F0− f0)

]
(18)

here ε = ±1, the subscript 0 stands for quantities evaluated at the de Sitter space-
time, R0 = 12H2

0 and F = d f/dR. We recover the DGP model for f (R) = R. In fact,

3 For a maximally symmetric brane in our model, the matter content of the brane behaves like a
cosmological constant. As such a term can always be reabsorbed in the f (R) term we will disregard
the matter content in our analysis of de Sitter branes.



122 Mariam Bouhmadi-López

Fig. 1 The figure shows the behaviour of the rescaled squared Hubble rate 2κ4
5α

2F2
0 H2

0 for the
two branches that generalise the DGP solution versus the rescaled energy density ρ(c) defined as
1
3κ

4
5α

2F0(R0F0− f0). The blue star corresponds to the normal DGP branch which is flat. The red
star corresponds to the self-accelerating DGP branch. On the other hand, the blue curve corre-
sponds to the generalised (by the inclusion of the f (R) term) self-accelerating branch, while the
red curve corresponds to the generalised (by the inclusion of the f (R) term) normal branch.

in that case, the de Sitter self-accelerating DGP branch is obtained for ε = 1 and
the normal DGP branch or the non-self-accelerating solution for ε =−1. When the
brane action contains curvature corrections to the Hilbert-Einstein action given by
the brane scalar curvature, the branch with ε =−1 is no longer flat and accelerates
(cf. Figs. 1, 2). Consequently, an f (R) term on the brane action induce in a natural
way self-acceleration on the normal branch. Most importantly, it is known that such
a branch is free from the ghost problem (see [14] and references therein). The reason
behind the self-acceleration of the generalised normal brane is the presence of the
effective energy density

ρ(c)0 = α(F0R0− f0) (19)

on the modified Friedmann equation on the brane. This can be easily shown by com-
paring the Friedmann equation (18) with that of modified gravity on brane world-
models [31].

4.2 Stability of the self-accelerating solutions

We next analyse the stability of de Sitter solutions under homogeneous perturbations
up to first order on δH = H(t)−H0. We will follow the method used in [32].

The perturbed Friedmann equation (15) implies an evolution equation for δH:

δ Ḧ +3H0δ Ḣ +m2
effδH = 0, (20)

where m2
eff is defined as

0
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Fig. 2 The figure corresponds to a zoom of the normal branch as it appears on the figure 4.1.

m2
eff = m2

(4) +m2
shift +m2

pert. (21)

where

m2
(4) =

1
3

(
F0

fRR
−2

f0

F0

)
, (22)

m2
back = − 2

α2κ4
5 F2

0

[
1−

√
1+

2
3
α2κ4

5 F0( f0−κ2
5UF0)

]
,

m2
pert =

F0

3 fRR

[
1−

√
1+

2
3
α2κ4

5 F0( f0−κ2
5UF0)

]−1

.

and fRR = d2 f/dR2. All this quantities are evaluated at the de Sitter background
solution. Any de Sitter solution is stable as long as m2

eff is positive.
The terms defined in (22) have the following physical meaning: (i) m2

(4) is the
analogous quantity to m2

eff in a 4D f(R) model [32], (ii) m2
back is a purely background

effect due to the shift on the Hubble parameter respect to the standard 4D case and
(iii) m2

pert is a purely perturbative extra-dimensional effect.
If we assume that we are close to the 4D regime; i.e. the Hubble rate of the

brane is close to its analogous quantity in a 4D f (R) model, then m2
back > 0 and

m2
pert < 0. Consequently, m2

back tends to make the perturbation heavier. However,
the perturbative effect encoded on m2

pert would make the perturbation lighter. It can
be shown that the extra-dimension has a benigner effect in the 4D f(R) model; i.e.
m2

eff > m2
(4), as long as4

F2
0 < 4 f0 fRR. (23)

4 We have assumed the natural condition F0 > 0; i.e. the effective gravitational constant of the
brane is positive. On the other hand, we have also assumed that we are slightly perturbing the
Hilbert-Einstein action of the brane, i.e. f0 ∼ R0. Therefore, f0 is positive because R0 = 12H2

0 .
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5 Conclusions

A mechanism to self-accelerate the normal DGP branch has been presented which
unlike the original self-accelerating DGP branch is known to be free of the ghost
problem. The mechanism is based in including curvature modifications on the brane
action. For simplicity, we choose those terms to correspond to an f (R) contribution,
which in addition is known to be the only higher order gravity theories that avoid
the so called Ostrogradski instability in 4D models [7]. Notice as well that by em-
bedding the DGP model in a higher dimensional space-time, the ghost issue present
in the original DGP model may be cured [33] while preserving the existence of a
self-accelerating solution [34]. See also [35, 36].

It is know that 4D f (R) models are not free from theoretical problems, so in
constructing an f (R) brane-world model, we should of course try to avoid these
theoretical troubles. We have just undertaken a first step towards constructing re-
alistic self-accelerating solutions in the normal DGP branch. There are still many
issues to be addressed, for example which f (R) should we pick up to be in agree-
ment with the cosmological observations and the solar system tests? We leave these
interesting issues for future works.
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f (R)-Gravity Matched With Large Scale

Structure and Cosmological Observations

Salvatore Capozziello

Abstract The so called f (R)-gravity could be, in principle, able to explain the ac-
celerated expansion of the Universe without adding unknown forms of dark en-
ergy/dark matter but, more simply, extending the General Relativity by generic func-
tions of the Ricci scalar. However, a part several phenomenological models, there
is no final f (R)-theory capable of fitting all the observations and addressing all the
issues related to the presence of dark energy and dark matter. Astrophysical obser-
vations are pointing out huge amounts of ”dark matter” and ”dark energy” needed to
explain the observed large scale structures and cosmic accelerating expansion. Up
to now, no experimental evidence has been found, at fundamental level, to explain
such mysterious components. The problem could be completely reversed consider-
ing dark matter and dark energy as ”shortcomings” of General Relativity.

1 Introduction

Although being the best fit to a wide range of data, the ΛCDM model is affected
by strong theoretical shortcomings that have motivated the search for alternative
models [1]. Dark Energy (DE) models mainly rely on the implicit assumption that
Einstein’s General Relativity (GR) is the correct theory of gravity. Nevertheless, its
validity on the larger astrophysical and cosmological scales has never been tested,
and it is therefore conceivable that both cosmic speed up and Dark Matter (DM)
represent signals of a breakdown of GR. Following this line of thinking, the choice
of a generic function f (R) as the gravitational Lagrangian, where R is the Ricci
scalar, can be derived by matching the data and by the ”economic” requirement that
no exotic ingredients have to be added. This is the underlying philosophy of what
are referred to as f (R) gravity [2]. It is worth noticing that Solar System experiments
show the validity of GR at these scales so that f (R) theories should not differ too

Dipartimento di Scienze Fisiche, Università di Napoli ”Federico II” and INFN Sez. di Napoli,
Compl. Univ. Monte S. Angelo, Ed.N, Via Cinthia, I-80126 Napoli, Italy.

127
In Honor of Emilio Elizalde, Springer Proceedings in Physics 137,
DOI 10.1007/978-3-642-19760-4_11, © Springer-Verlag Berlin Heidelberg 2011

S.D. Odintsov et al. (eds.), Cosmology, Quantum Vacuum and Zeta Functions:



128 Salvatore Capozziello

much from GR at this level [3]. In other words, the PPN limit of such models must
not violate the experimental constraints on Eddington parameters. A positive answer
to this request has been recently achieved for several f (R) theories [4], nevertheless
it has to be remarked that this debate is far to be definitively concluded. Although
higher order gravity theories have received much attention in cosmology, since they
are naturally able to give rise to the accelerating expansion (both in the late and in
the early universe [5]), it is possible to demonstrate that f (R) theories can also play
a major role at astrophysical scales [6, 7]. In fact, modifying the gravity action can
affect the gravitational potential in the low energy limit.

Provided that the modified potential reduces to the Newtonian one on the Solar
System scale, this implication could represent an intriguing opportunity rather than
a shortcoming for f (R) theories. In fact, a corrected gravitational potential could
offer the possibility to fit galaxy rotation curves without the need of Dark Matter. In
addition, one could work out a formal analogy between the corrections to the New-
tonian potential and the usually adopted Dark Matter models. In order to investigate
the consequences of f (R) theories on both cosmological and astrophysical scales,
let us first remind the basics of this approach and then discuss dark energy and dark
matter issues as curvature effects.

2 Dark energy as a curvature effect

From a mathematical viewpoint, f (R) theories generalize the Hilbert - Einstein La-
grangian as L =

√−g f (R) without assuming a priori the functional form of La-
grangian density in the Ricci scalar. The field equations are obtained by varying
with respect to the metric components to get [8] :

f ′(R)Rαβ −
1
2

f (R)gαβ = f ′(R);μν (gαμgβν −gαβgμν
)
+T M

αβ (1)

where the prime denotes derivative with respect to the argument and T M
αβ is the

standard matter stress - energy tensor. Defining the curvature stress - energy tensor
as

T curv
αβ =

1
f ′(R)

{
1
6

gαβ
[

f (R)−R f ′(R)
]
+ f ′(R);μν(gαμgβν −gαβgμν)

}
. (2)

Eqs.(1) may be recast in the Einstein - like form as :

Gαβ = Rαβ −
1
2

gαβR = T curv
αβ +T M

αβ/ f ′(R) (3)

where matter non - minimally couples to geometry through the term 1/ f ′(R). The
presence of term f ′(R);μν renders the equations of fourth order, while, for f (R) = R,
the curvature stress - energy tensor T curv

αβ identically vanishes and Eqs.(3) reduce
to the standard second - order Einstein field equations. As it is clear, from (3), the
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curvature stress - energy tensor formally plays the role of a further source term in
the field equations so that its effect is the same as that of an effective fluid of purely
geometrical origin.

However the metric variation is just one of the approaches towards f (R) gravity:
in fact, one can face the problem also considering the so called Palatini approach
(e.g. see [9, 10]) where the metric and connection fields are considered indepen-
dent. Apart from some differences in the interpretation, one can deal with a fluid
of geometric origin in this case as well. The scheme outlined above provides all
the ingredients we need to tackle with the dark side of the Universe. Depending
on the scales, such a curvature fluid can play the role of DM and DE. From the
cosmological point of view, in the standard framework of a spatially flat homoge-
nous and isotropic Universe, the cosmological dynamics is determined by its en-
ergy budget through the Friedmann equations. The cosmic acceleration is achieved
when the r.h.s. of the acceleration equation remains positive (in physical units with
8πG = c = 1) :

ä
a
=−1

6
(ρtot +3ptot) , (4)

where a is the scale factor, H = ȧ/a the Hubble parameter, the dot denotes derivative
with respect to cosmic time, and the subscript tot denotes the sum of the curvature
fluid and the matter contribution to the energy density and pressure. From the above
relation, the acceleration condition, for a dust dominated model, leads to :

ρcurv +ρM +3pcurv < 0→ wcurv <− ρtot

3ρcurv
(5)

so that a key role is played by the effective quantities :

ρcurv =
8

f ′(R)

{
1
2
[

f (R)−R f ′(R)
]−3HṘ f ′′(R)

}
, (6)

and

wcurv =−1+
R̈ f ′′(R)+ Ṙ

[
Ṙ f ′′′(R)−H f ′′(R)

]
[ f (R)−R f ′(R)]/2−3HṘ f ′′(R)

. (7)

As a first simple choice, one may neglect ordinary matter and assume a power - law
form f (R) = f0Rn, with n a real number, which represents a straightforward gener-
alization of the Einstein GR in the limit n = 1. One can find power - law solutions
for a(t) providing a satisfactory fit to the SNeIa data and a good agreement with
the estimated age of the Universe in the range 1.366 < n < 1.376 [5]. The data fit
turns out to be significant (see Fig. 1) improving the χ2 value and, it fixes the best
fit value at n = 3.46 when it is accounted only the baryon contributeΩb ≈ 0.04 (ac-
cording with BBN prescriptions). It has to be remarked that considering DM does
not modify the result of the fit, supporting the assumption of no need for DM in this
model. From the evolution of the Hubble parameter in term of redshift one can even
calculate the Age of Universe. The best fit value n = 3.46 provides tuniv ≈ 12.41
Gyr. It is worth noting that considering f (R) = f0 Rn gravity represents only the
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Fig. 1 The Hubble diagram of 20 radio galaxies together with the “gold” sample of SNeIa, in term
of the redshift as suggested in [11]. The best fit curve refers to the f (R) - gravity model without
Dark Matter.

simplest generalization of Einstein theory. In other words, it has to be considered
that Rn - gravity represents just a working hypothesis as there is no overconfidence
that such a model is the correct final gravity theory. In a sense, we want only to
suggest that several cosmological and astrophysical results can be well interpreted
in the realm of a power law extended gravity model. This approach gives no rigidity
about the value of the power n, although it would be preferable to determine a model
capable of working at different scales. Furthermore, we do not expect to be able to
reproduce the whole cosmological phenomenology by means of a simple power law
model, which has been demonstrated to be not sufficiently versatile.

For example, we can demonstrate that this model fails when it is analyzed with
respect to its capability of providing the correct evolutionary conditions for the per-
turbation spectra of matter overdensity [12]. This point is typically addressed as
one of the most important issues which suggest the need for Dark Matter. In fact,
if one wants to discard this component, it is crucial to match the observational re-
sults related to the Large Scale Structure of the Universe and the Cosmic Microwave
Background which show, respectively at late time and at early time, the signature
of the initial matter spectrum. As important remark, we note that the quantum spec-
trum of primordial perturbations, which provides the seeds of matter perturbations,
can be positively recovered in the framework of Rn - gravity. In fact, f (R) ∝ R2

can represent a viable model with respect to CMBR data and it is a good candidate
for cosmological Inflation. To develop the matter power spectrum suggested by this
model, we resort to the equation for the matter contrast obtained in [12] in the case
of fourth order gravity. This equation can be deduced considering the conformal
Newtonian gauge for the perturbed metric [12] :

ds2 = (1+2ψ)dt2 − a2(1+2φ)Σ 3
i=1(dxi) . (8)

In GR, it is φ = −ψ , since there is no anisotropic stress; in extended gravity, this
relation breaks, in general, and the i �= j components of field equations give new
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relations between φ and ψ . In particular, for f (R) gravity, due to nonvanishing fR;i; j
(with i �= j), the φ − ψ relation becomes scale dependent. Instead of the perturba-
tion equation for the matter contrast δ , we provide here its evolution in term of the
growth index f = d lnδ/d lna, that is the directly measured quantity at z∼ 0.15 :

f ′(a)− f (a)2

a
+

[
2
a
+

1
a

E ′(a)
]

f (a)− 1−2Q
2−3Q

· 3Ωm a−4

nE(a)2R̃n−1 = 0 , (9)

E(a) = H(a)/H0, R̃ is the dimensionless Ricci scalar, and

Q = −2 fRR c2 k2

fR a2 . (10)

For n = 1 the previous expression gives the ordinary growth index relation for the
Cosmological Standard Model. It is clear, from (9), that such a model suggests a
scale dependence of the growth index which is contained into the corrective term
Q so that, when Q→ 0, this dependence can be reasonably neglected. In the most
general case, one can resort to the limit aH < k < 10−3hMpc−1, where (9) is a
good approximation, and non-linear effects on the matter power spectrum can be
neglected.
Studying numerically (9), one obtains the growth index evolution in term of the
scale factor; for the sake of simplicity, we assume the initial condition f (als) = 1
at the last scattering surface as in the case of matter-like domination. The results are
summarized in Fig.(2), where we show, in parallel, the growth index evolution in
Rn - gravity and in the ΛCDM model.

Fig. 2 Scale factor evolution of the growth index f : (left) modified gravity, in the case Ωm =
Ωbar ∼ 0.04, for the SNeIa best fit model with n = 3.46, (right) the same evolution in the case
of a ΛCDM model. In the case of Rn - gravity it is shown also the dependence on the scale k. The
three cases k = 0.01, 0.001, 0.0002 have been checked. Only the latter case shows a very small
deviation from the leading behavior.

In the case of Ωm = Ωbar ∼ 0.04, one can observe a strong disagreement be-
tween the expected rate of the growth index and the behavior induced by power law
fourth order gravity models. These results seem to suggest that an extended gravity
model which considers a simple power law of Ricci scalar, although cosmologi-
cally relevant at late times, is not viable to describe the evolution of Universe at
all scales. In other words, such a scheme seems too simple to give account for the
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whole cosmological phenomenology. In fact, in [12] a gravity Lagrangian consid-
ering an exponential correction to the Ricci scalar f (R) = R + Aexp(−BR) (with
A, B two constants), gives more interesting results and displays a grow factor rate
which is in agreement with the observational results at least in the Dark Matter case.
To corroborate this point of view, one has to consider that when the choice of f (R)
is performed starting from observational data (pursuing an inverse approach) as in
[14], the reconstructed Lagrangian is a non - trivial polynomial in term of the Ricci
scalar. A result which directly suggests that the whole cosmological phenomenol-
ogy can be accounted only with a suitable non - trivial function of the Ricci scalar
rather than a simple power law function. As matter of fact, the results obtained with
respect to the study of the matter power spectra in the case of Rn - gravity do not
invalidate the whole approach, since they can be referred to the too simple form of
the model.

3 Dark matter as a curvature effect

The results obtained at cosmological scales motivates further analysis of f (R) the-
ories. In a sense, one is wondering whether the curvature fluid, which works as
DE, can also play the role of effective DM thus yielding the possibility of recov-
ering the observed astrophysical phenomenology by the only visible matter. It is
well known that, in the low energy limit, higher order gravity implies a modified
gravitational potential. Therefore, in our discussion, a fundamental role is played by
the new gravitational potential descending from the given fourth order gravity the-
ories we are referring to. By considering the case of a pointlike mass m and solving
the vacuum field equations for a Schwarzschild - like metric, one gets from a theory
f (R) = f0Rn, the modified gravitational potential [6] :

Φ(r) =−Gm
2r

[
1+

(
r
rc

)β]
(11)

where

β =
12n2−7n−1−√36n4 +12n3−83n2 +50n+1

6n2−4n+2
(12)

which corrects the ordinary Newtonian potential by a power - law term. In particular,
this correction sets in on scales larger than rc which value depends essentially on the
mass of the system. The corrected potential (11) reduces to the standard Φ ∝ 1/r
for n = 1 as it can be seen from the relation (12).

The result (11) deserves some comments. As discussed in detail in [6], we have
assumed the spherically symmetric metric and imposed it into the field equations (1)
considered in the weak field limit approximation. As a result, we obtain a corrected
Newtonian potential which accounts for the strong non-linearity of gravity related
to the higher-order theory. However, we have to notice that Birkhoff’s theorem does
not hold, in general, for f (R) gravity but other spherically symmetric solutions than
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the Schwarzschild one can be found in these extended theories of gravity [15]. The
generalization of (11) to extended systems is achieved by dividing the system in in-
finitesimal mass elements and summing up the potentials generated by each single
element. In the continuum limit, we replace the sum with an integral over the mass
density of system taking care of eventual symmetries of the mass distribution (see
[6] for details). Once the gravitational potential has been computed, one may evalu-
ate the rotation curve v2

c(r) and compare it with the data. For extended systems, one
has typically to resort to numerical techniques, but the main effect may be illustrated
by the rotation curve for the pointlike case, that is:

v2
c(r) =

Gm
2r

[
1+(1−β )

(
r
rc

)β]
. (13)

Compared with the Newtonian result v2
c = Gm/r, the corrected rotation curve is

modified by the addition of the second term in the r.h.s. of (13). For 0 < β < 1, the
corrected rotation curve is higher than the Newtonian one. Since measurements of
spiral galaxies rotation curves signals a circular velocity higher than those which are
predicted on the basis of the observed luminous mass and the Newtonian potential,
the above result suggests the possibility that our modified gravitational potential
may fill the gap between theory and observations without the need of additional
DM.

It is worth noting that the corrected rotation curve is asymptotically vanishing
as in the Newtonian case, while it is usually claimed that observed rotation curves
are flat (i.e., asymptotically constant). Actually, observations do not probe vc up to
infinity, but only show that the rotation curve is flat within the measurement uncer-
tainties up to the last measured point. This fact by no way excludes the possibility
that vc goes to zero at infinity. In order to observationally check the above result,
we have considered a sample of LSB galaxies with well measured HI + Hα rotation
curves extending far beyond the visible edge of the system. LSB galaxies are known
to be ideal candidates to test Dark Matter models since, because of their high gas
content, the rotation curves can be well measured and corrected for possible sys-
tematic errors by comparing 21 - cm HI line emission with optical Hα and [NII]
data. Moreover, they are supposed to be Dark Matter dominated so that fitting their
rotation curves without this elusive component is a strong evidence in favor of any
successful alternative theory of gravity.

Our sample contains 15 LSB galaxies with data on both the rotation curve, the
surface mass density of the gas component and R - band disk photometry extracted
from a larger sample selected by de Blok & Bosma [16]. We assume the stars are
distributed in an infinitely thin and circularly symmetric disk with surface density
Σ(r) =ϒ�I0exp(−r/rd) where the central surface luminosity I0 and the disk scale-
length rd are obtained from fitting to the stellar photometry. The gas surface density
has been obtained by interpolating the data over the range probed by HI measure-
ments and extrapolated outside this range. When fitting to the theoretical rotation
curve, there are three quantities to be determined, namely the stellar mass - to - light
(M/L) ratio, ϒ� and the theory parameters (β ,rc). It is worth stressing that, while
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fit results for different galaxies should give the same β , rc is related to one of the
integration constants of the field equations. As such, it is not a universal quantity
and its value must be set on a galaxy - by - galaxy basis. However, it is expected that
galaxies having similar properties in terms of mass distribution have similar val-
ues of rc so that the scatter in rc must reflect somewhat the scatter in the circular
velocities. In order to match the model with the data, we perform a likelihood anal-
ysis determining for each galaxy, using, as fitting parameters β , logrc (with rc in
kpc) and the gas mass fraction1 fg. As it is evident considering the results from the
different fits, the experimental data are successfully fitted by the model (see [6] for
details). In particular, for the best fit range of β (β = 0.80±0.08), one can conclude
that Rn gravity with 2.3 < n < 5.3 (best fit value n = 3.2 which well overlaps the
above mentioned range of n fitting SNeIa Hubble diagram) can be a good candidate
to solve the missing matter problem in LSB galaxies without any Dark Matter.

Fig. 3 Best fit theoretical rotation curve superimposed to the data for the LSB galaxy NGC 4455
(left) and NGC 5023 (right). To better show the effect of the correction to the Newtonian grav-
itational potential, we report the total rotation curve vc(r) (solid line), the Newtonian one (short
dashed) and the corrected term (long dashed).

1 This is related to the M/L ratio asϒ� = [(1− fg)Mg]/( fgLd) with Mg = 1.4MHI the gas (HI + He)
mass, Md =ϒ�Ld and Ld = 2πI0r2

d the disk total mass and luminosity.
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At this point, it is worth wondering whether a link may be found between Rn

gravity and the standard approach based on Dark Matter haloes since both theo-
ries fit equally well the same data. As a matter of fact, it is possible to define an
effective Dark Matter halo by imposing that its rotation curve equals the correc-
tion term to the Newtonian curve induced by Rn gravity. Mathematically, one can
split the total rotation curve derived from Rn gravity as v2

c(r) = v2
c,N(r)+ v2

c,corr(r)
where the second term is the correction. Considering, for simplicity a spherical halo
embedding a thin exponential disk, we may also write the total rotation curve as
v2

c(r) = v2
c,disk(r)+ v2

c,DM(r) with v2
c,disk(r) the Newtonian disk rotation curve and

v2
c,DM(r) = GMDM(r)/r the Dark Matter one, MDM(r) being its mass distribution.

Equating the two expressions, we get :

MDM(η) = Mvir

(
η
ηvir

)
2β−5η−βc (1−β )η β−5

2 I0(η)−Vd(η)

2β−5η−βc (1−β )η β−5
2 I0(ηvir)−Vd(ηvir)

. (14)

with η = r/rd , Σ0 =ϒ�i0, Vd(η) = I0(η/2)K0(η/2)× I1(η/2)K1(η/2)2 and :

I0(η ,β ) =
∫ ∞

0
F0(η ,η ′,β )k3−βη ′

β−1
2 e−η

′
dη ′ (15)

with F0 only depending on the geometry of the system and “vir” indicating virial
quantities. (14) defines the mass profile of an effective spherically symmetric Dark
Matter halo whose ordinary rotation curve provides the part of the corrected disk
rotation curve due to the addition of the curvature corrective term to the gravitational
potential. It is evident that, from an observational viewpoint, there is no way to
discriminate between this dark halo model and Rn gravity.

Having assumed spherical symmetry for the mass distribution, it is immediate to
compute the mass density for the effective dark halo as ρDM(r)=(1/4πr2)dMDM/dr.
The most interesting features of the density profile are its asymptotic behaviors that
may be quantified by the logarithmic slope αDM = d lnρDM/d lnr which can be
computed only numerically as function of η for fixed values of β (or n). As ex-
pected, αDM depends explicitly on β , while (rc,Σ0,rd) enter indirectly through ηvir.
The asymptotic values at the center and at infinity denoted as α0 and α∞ result par-
ticularly interesting. It turns out that α0 almost vanishes so that in the innermost
regions the density is approximately constant. Indeed, α0 = 0 is the value corre-
sponding to models having an inner core such as the cored isothermal sphere and
the Burkert model [17]. Moreover, it is well known that galactic rotation curves are
typically best fitted by cored dark halo models. On the other hand, the outer asymp-
totic slope is between−3 and−2, that are values typical of most dark halo models in
literature. In particular, for β = 0.80 one finds (α0,α∞) = (−0.002,−2.41), which
are quite similar to the value for the Burkert model (0,−3). It is worth noting that the
Burkert model has been empirically proposed to provide a good fit to the LSB and
dwarf galaxies rotation curves. The values of (α0,α∞) we find for the best fit effec-

2 Here Il and Kl , with l = 1,2 are the Bessel functions of first and second type.
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tive dark halo therefore suggest a possible theoretical motivation for the Burkert-like
models. Due to the construction, the properties of the effective Dark Matter halo are
closely related to the disk one. As such, we do expect some correlation between the
dark halo and the disk parameters. To this aim, exploiting the relation between the
virial mass and the disk parameters , one can obtain a relation for the Newtonian
virial velocity Vvir = GMvir/rvir :

Md ∝
( 3

4π δthΩmρcrit)
1−β

4 r
1+β

2
d ηβc

2β−6(1−β )G 5−β
4

V
5−β

2
vir

I0(Vvir,β )
. (16)

We have numerically checked that (16) may be well approximated as Md ∝ V a
vir

which has the same formal structure as the baryonic Tully - Fisher (BTF) relation
Mb ∝ V a

f lat with Mb the total (gas + stars) baryonic mass and Vf lat the circular ve-
locity on the flat part of the observed rotation curve. In order to test whether the
BTF can be explained thanks to the effective Dark Matter halo we are proposing,
we should look for a relation between Vvir and Vf lat . This is not analytically possible
since the estimate of Vf lat depends on the peculiarities of the observed rotation curve
such as how far it extends and the uncertainties on the outermost points. For given
values of the disk parameters, we therefore simulate theoretical rotation curves for
some values of rc and measure Vf lat finally choosing the fiducial value for rc that
gives a value of Vf lat as similar as possible to the measured one. Inserting the relation
thus found between Vf lat and Vvir into (16) and averaging over different simulations,
we finally get :

logMb = (2.88±0.04) logVf lat +(4.14±0.09) (17)

while a direct fit to the observed data gives [18] :

logMb = (2.98±0.29) logVf lat +(3.37±0.13) . (18)

The slope of the predicted and observed BTF are in good agreement thus leading
further support to our approach. The zeropoint is markedly different with the pre-
dicted one being significantly larger than the observed one. However, it is worth
stressing that both relations fit the data with similar scatter. A discrepancy in the
zeropoint can be due to our approximate treatment of the effective halo which does
not take into account the gas component. Neglecting this term, we should increase
the effective halo mass and hence Vvir which affects the relation with Vf lat leading to
a higher than observed zeropoint. Indeed, the larger is Mg/Md , the more the points
deviate from our predicted BTF thus confirming our hypothesis. Given this caveat,
we can conclude, with confidence, that Rn gravity offers a theoretical foundation
even for the empirically found BTF relation.

Although the results outlined along this paper are referred to a simple choice
of fourth order gravity models ( f (R) = f0Rn) they could represent an interesting
paradigm. In fact, even if such a model is not suitable to provide the correct form
of the matter power spectra, and this suggests that a more complicated Lagrangian
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is needed to reproduce the whole dark sector phenomenology at all scales, we have
shown that considering extensions of GR can allow to explain some important is-
sues of cosmological and astrophysical phenomenology. We have seen that extended
gravity models can reproduce SNeIa Hubble diagram without Dark Matter, giving
significant predictions even with regard to the age of Universe. In addition, the mod-
ification of the gravitational potential which arises as a natural effect in the frame-
work of higher order gravity can represent a fundamental tool to interpret the flat-
ness of rotation curves of LSB galaxies. Furthermore, if one considers the model
parameters settled by the fit over the observational data on LSB rotation curves, it
is possible to construct a phenomenological analogous of Dark Matter halo whose
shape is similar to the one of the Burkert model. Since the Burkert model has been
empirically introduced to give account of the Dark Matter distribution in the case
of LSB and dwarf galaxies, this result could represent an interesting achievement
since it gives a theoretical foundation to such a model. By investigating the relation
among dark halo and the disk parameters, we have deduced a relation between Md
and Vf lat which reproduces the baryonic Tully - Fisher. In fact, exploiting the rela-
tion between the virial mass and the disk parameters, one can obtain a relation for
the virial velocity which can be satisfactory approximated as Md ∝ V a

vir. Even such
a result seems very intriguing since it gives again a theoretical interpretation for a
phenomenological relation. As a matter of fact, although not definitive, these results
on f (R) can represent a viable approach for future investigations and in particular
support the quest for a unified view of the Dark Side of the Universe that could be
interpreted as gravitational effects indeed.
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An analysis of the phase space of

Hořava-Lifshitz cosmologies

Sante Carloni1, Emilio Elizalde2 and Pedro J Silva3

Abstract Using the dynamical system approach, properties of cosmological mod-
els based on the Hořava-Lifshitz gravity are systematically studied. A result of this
investigation is that in the detailed balance case one of the attractors in the theory
corresponds to the oscillatory behavior described by Brandenberger. Instead the cos-
mological models generated by Hořava-Lifshitz gravity without the detailed balance
assumption have indeed the potential to describe the transition between the Fried-
mann and the dark energy eras. The whole analysis leads to the plausible conclusion
that a cosmology compatible with the present observations of the universe can be
achieved only if the detailed balance condition is broken.

1 Introduction

Recently, Hořava made a proposal for an ultraviolet completion of general relativity
(GR) [1] which seems to be renormalizable (at least at the level of power counting)
by introducing irrelevant operators that explicitly break Lorentz invariance. Lorentz
invariance is expected to be recovered at low energies, as an accidental symmetry of
the theory.

Originally, this Hořava-Lifshitz (HL) theorywas formulated imposing the so-
called projectability condition and the detailed balance condition. The first con-
dition is related to the space-time dependence of the lapse function, N, which char-
acterizes a canonical 3+1 decomposition of the metric field g, while the second is
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a restriction on the form of the potential terms which may appear in the Lagrangian
that leads to simplifications since it reduces the final number of couplings.

Presently—as this article is being written—the consistency status of the theory
is not completely clear, nor its low energy limit [2, 3, 4, 5, 6, 7, 8, 9]. In the pro-
jectable version seems to be less problematic, since the above listed problems can in
principle be evaded by the non-local form of the Hamiltonian constraint [6]. Also,
imposing detailed balance leads to a cosmological constant with the wrong sign,
which is in contrast with cosmological observations [1, 10, 11]. If detail balance is
not imposed a richer phenomenology seems to appear, where cosmological appli-
cations may lead to new results in inflation, bouncing cosmology, dark matter, and
dark energy (see, for example, [10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]).

At this point it is important to investigate the key aspects of the theory, which
may help in clarifying the status of the different HL proposals as plausible can-
didates of a quantum theory of gravity. In the present work we present the main
results of [25] which investigate the cosmological phase space of the HL model.
To address this involved issue, we will use the dynamical system approach to cos-
mology as formulated by Collins and applied by Wainwright and Ellis [26]. Such
approach has the advantage of relying on dynamical system variables which are di-
rectly related to cosmological observables—like the matter density parameter—and
of being relatively easy to apply to very complicated cosmological models. During
the past years this method has been able to unfold some very interesting proper-
ties of Bianchi universes [26], as well as of scalar-tensor and higher-order gravity
cosmological models (for some detailed examples, see [27, 28, ?, 30]).

2 Hořava-Lifshitz gravity

In the HL theory, the dynamical variables are defined to be the laps N, the shift Ni
and the space metric gi j, Latin indices running from 0 to 3. The space-time metric
is defined using the ADM construction, as

ds2 =−N2dt2 +gi j(dxi +Nidt)(dx j +N jdt) , (1)

where Ni = gi jNj as usual. The action S is written in terms of geometric objects,
characteristics of the ADM slicing of space-time, like the 3d-covariant derivative
∇i, the spatial curvature tensor is Ri jkl , and the extrinsic curvature Ki j is defined as

Ki j =
1

2N
(−ġi j +∇iNj +∇ jNi) , (2)

where the dot stands for time derivative.
In terms of the above tensor fields, the HL action can be written as

S =
∫

dt dx3 N
√

g
(
Lkinetic−Lpotential +Lmatter

)
, (3)
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being the kinetic term universally given by

Lkinetic = α(Ki jKi j−λK2) , (4)

with α and λ playing the role of coupling constants. The potential term is, in prin-
ciple, a generic function of Ri jkl and ∇i. Here we will work with two different types
of potentials: the detailed balance potential [10]

Lpotential−detail = βCi jCi j + γε i jkRil∇ jRl
k +ζRi jRi j +ηR2 +δR+σ , (5)

where
√

gCi j = ε ikl∇k(R
j
l − 1/4Rg j

l ), and the potential defined in [12] (the SVW
case),

Lpotential−SVW = g8∇iR jk∇iR jk +g7R∇2R+g6Ri
jR

j
kRk

i +g5R(R jkR jk)+g4R3(6)

+g3R jkR jk +g2R2 +g1R+g0 ,

where the coupling constants are not all dimensionless. Finally, the matter term
corresponds to the coupling of the matter fields to gravity.

Apart the assumption λ �= 1/3 we will constraint as little as possible the different
ranges of values on each coupling constant to see how much information comes out
of the dynamical system approach. Then, we will add this information to the con-
straints arising from other considerations [33], to finally obtain the most promising
form of the potential.

If one considers a FLRW ansatz on the 4D metric, only a subset of the coupling
constants plays a role in the dynamics and, being N a function of time only by defini-
tion, all issues related to the projectability condition turn out to be irrelevant. Then,
we set N −→ N(t), Ni −→ 0, gi j −→ a(t)γi j where γi j is a maximally symmetric 3D
metric, of constant curvature R = 6k, with k = (−1,0,1).

The inclusion of matter content in the theory in its general form has not been
worked out yet [10, 4, 34, 35]. Here, we will add to the gravity field equations a
cosmological stress-energy tensor, such that in the low-energy limit we recover the
usual GR formulation. Since one of our goals is to investigate the relation between
HL and dark energy (cosmic acceleration), we will only consider here p = wρ with
w > 0, so that dark energy cannot be introduced by hand in the model.

3 Hořava-Lifshitz cosmology: detailed balance case

Let us write the relevant field equations on a FLRW ansatz. We found that in the
detailed balance case, the system can be written as follows

α(3λ −1)
[
Ḣ +H2]=−1

6
(1+3w)ρ+Aα(1−3λ )

k2

a4 +Aα(3λ −1)Λ 2 , (7)
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α(3λ −1)
[

3H2 +6AΛ
k
a2

]
= ρ+3Aα(3λ −1)

k2

a4 +3Aα(3λ −1)Λ 2 , (8)

ρ̇+3(w+1)Hρ = 0 , (9)

where we have chosen to leave the parameters α ,λ ,Λ explicit because of their cos-
mological relevance, and we have defined the variable A= −ζ

α(1−3λ )2 which is always
positive, since ζ ≤ 0 owing to the detailed balance constraint. Notice that, already
at this level, only a subset of all the initially defined couplings (α,λ ,Λ ,A), plays a
role in the cosmology.

In order to analyze the phase space of this cosmological model, let us define the
variables

Ω =
ρ

3αH2 , z =
AΛ 2

H2 , K = 2Λ
kA

a2H2 , C =
k2A

a4H2 , (10)

with the cosmic time N = ln[a(t)].
The cosmological equations (7)-(9) are then equivalent to the system [25]

z′ = z[3+C+K−3z−3w(C−K + z−1)] , (11)
C′ =C [C+K−3z−3w(C−K + z−1)−1] , (12)
K′ = K [1+C+K−3z−3w(C−K + z−1)] (13)

1+K− z−C+
Ω

1−3λ
= 0. (14)

This system presents three invariant submanifolds z = 0, K = 0, C = 0 which,
by definition, cannot be crossed by any orbit. This implies that no global attractor
can exist in this type of HL cosmology [25]. Also, the structure of (14) reveals that
the system is non-compact and asymptotic analysis would be required in order to
complete the study of the phase space. However here we will limit ourselves to the
finite analysis. We refer the reader to [25] for a complete asymptotic analysis.

The finite fixed points can be found setting z′,C′,K′ in (11)-(13) to be zero and
solving the corresponding algebraic equations. The results are shown in Table 1.
The solutions associated to the fixed point can be derived from the Raychaudhuri
equation

Ḣ =
1
2
[3z−C−K−3+3w(C−K + z−1)]H2 , (15)

and the results are shown in Table 1, too. As one can see there, we have a general
Friedmann solution which depends on the barotropic factor w of standard matter, a
pure radiation like solution, a Milne universe, and an exponential solution. Note that
the Friedmann solution is generated when the term related to the spatial curvature
k is dominant. Instead, when the effective Hořava radiation is dominant, the cor-
responding cosmology presents a “radiation-dominated like” solution, as expected
from the form of the corresponding terms in (7)-(9). Substitution into Eqs. (7)-(9)
reveals that this is actually a vacuum solution and that the exponential solution cor-
responds to a an oscillating evolution with period T = 2π 3λ−1

Λ

√
α
|ζ | . Such solution



An analysis of the phase space of Hořava-Lifshitz cosmologies 143

can be connected to the scenario proposed in [15]. The Milne solution, instead, is
not an actual solution of the system1.

The stability of the fixed points can be determined by evaluating the eigenval-
ues of the Jacobian matrix associated with the system (11)-(13), as prescribed by
the Hartman-Grobman Theorem [31]. The results can be found in Table 1. We can
observe that the thermodynamical properties of matter influence the stability of the
Friedmann point A and of the point B. This means that, if 0 < w < 1/3, the typ-
ical completely finite orbit implies an initial radiation-like behavior that evolves
towards a Friedmann or a Milne behavior (or both), to eventually approach an oscil-
lating state. Instead, if 1/3 < w < 1, A is a source so that the typical orbit will start
with a Friedmann evolution and evolve towards a radiation-like or a Milne evolution
before converging to an oscillatory behavior. In both these scenarios we do not find
any transition to a dark energy era.

Table 1 Finite fixed points of the system (11)-(13) and their associated solutions.

Point Coordinates Solution Energy density Stability
[Ω ,z,C,K]

A [3λ −1,0,0,0] a = a0(t− t0)
2

3(1+w) ρ = ρ0(t− t0)−2
{

saddle 0≤ w≤ 1/3
repeller 1/3≤ w≤ 1

B [0,0,1,0] a = a0(t− t0)
1
2 ρ = 0

{
repeller 0≤ w≤ 1/3
saddle 1/3≤ w≤ 1

C [0,0,0,−1] a = a0(t− t0) ρ = 0 saddle

D [0,1,0,0] a = a0eτ(t−t0) ρ = 0 attractor

τ = i
√
|ζ |
α

Λ
3λ−1

4 Hořava-Lifshitz cosmology: no detailed balance case (SVW

potential)

If we do not impose detailed balance, the cosmological equations in presence of
matter can be written as (we closely follow the notation of [12])

(
1− 3ξ

2

)(
Ḣ +H2

)
+ 1

2κ
2ρ(1+3w)− χ1

6 + χ3k2

6a4 + χ4k
3a6 = 0 , (16)

1 However this does not constitute a real problem because, as we will see, this point is always
unstable and there is no orbit which can reach it.
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(

1− 3ξ
2

)
H2− χ2k

6a2 −κ2ρ− χ1
6 − χ3k2

6a4 − χ4k
6a6 = 0 , (17)

ρ̇+3(w+1)Hρ = 0 , (18)

where

κ2 = 1
6α , (19)

χ1 =
g0α3

6 , (20)

χ2 =−6g1α2 > 0 , (21)
χ3 = 12α (3g2 +g3) , (22)

χ4 = 24(9g4 +3g5 +g6) , (23)

and we have defined ξ = 1−λ assuming also that ξ �= 2/3. Notice that taking ξ >
2/3 would imply that the energy density in the Friedmann equation has a negative
sign. In fact, this range of the parameter corresponds to spin zero modes of the
theory, which can be excluded at the cosmological level and are related to unwanted
ghost modes. Also the sign of the term χ1 determines the sign of an (effective)
cosmological constant in the model and χ2 can be always taken to be negative [12].
Comparing the system above with the one in (7)-(9) one can note that, as pointed
out in [12], there is not much difference between the two cases. For example, apart
from the values of the constants, (8) and (17) differ only by the term associated with
χ4. However, as we are going to show, the associated cosmological dynamics will
be non-trivially changed.

Let us define the variables

Ω =
κ2ρ
H2 , x =

k2χ3

6a4H2 , y =
kχ4

6a6H2 , z =
χ1

6H2 , K =
kχ2

6a2H2 ,

(24)
and the cosmic time N = ln[a(t)]. The cosmological equations (16)-(18) are then
equivalent to the system [25]

x′ =
2(1−3w)x2

2−3ξ

+
x

2−3ξ
[2K(3w+1)−6(w−1)y−6(w+1)z− (1−3w)(2−3ξ )] , (25)

y′ =−6(w−1)y2

2−3ξ

+
y

2−3ξ
[2K(3w+1)+2(1−3w)x−6(w+1)z+3(w−1)(2−3ξ )] , (26)

z′ =−6(w+1)z2

2−3ξ

+
z

2−3ξ
[2K(3w+1)+2(1−3w)x−6(w−1)y+3(w+1)(2−3ξ )] , (27)
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K′ =
2K2(3w+1)

2−3ξ

+
K

2−3ξ
[2(1−3w)x−6(w−1)y−6(w+1)z+(3w+1)(2−3ξ )], (28)

K + x+ y+ z+Ω +1− 3
2
ξ = 0 (29)

As expected, the new degrees of freedom, associated with additional terms
present in this case, result in an additional dimension for the phase space. The sys-
tem above possesses four invariant submanifolds, namely x = 0, y = 0, z = 0, K = 0.
This implies that, also in this case, no global attractor can exist. As before, the struc-
ture of (29) is such that the system is non-compact but we will limit ourselves only
to the finite analysis.

The finite fixed points are found by setting x′,y,z′,K′ = 0 in (25)-(28) and solving
the resulting system of algebraic equations. The results are shown in Table 2. Note
that the presence of a fixed point depends on the exact sign of the constant χi, as
well as on the value of ξ . For example, given the fact that the variable Ω is defined
positive, the fixed point A , can exist only if its coordinates are non negative, and
this happens for ξ < 2

3 only.
The solutions associated to the fixed point can be derived from the Raychaudhuri

equation

Ḣ =− H2

4−6ξ
[2K +2x+6y−6z−6w(x+ y+ z−1−K)−9(w+1)ξ +6] . (30)

The corresponding results are shown in Table (2). The new terms in the system (16)-
(18) induce a new fixed point characterized by a behavior t1/3 which corresponds
to the domination of a new cosmic component which goes like a−6. Substitution
into Eqs. (7)-(9) reveals that, in this case, only the Friedmann solution and the ex-
ponential solution yield identities. Specifically, the exponential solution represents
a de Sitter solution if χ1

2−3ξ > 0, otherwise it is associated with oscillations. In other
words, if one wants standard matter to interact with HL gravity in the standard way
(gravity makes matter to attract itself), then the de Sitter solution is only present if
χ1 > 0, i.e., if the cosmological constant has the right sign, as expected.

In the same way as in the previous case, the stability of the fixed points can be
determined by evaluating the eigenvalues of the Jacobian matrix associated with
the system (11), as prescribed by the Hartman-Grobman theorem [31]. The results
can be also found in Table 2. The stabilities of the fixed points in this model are
different from the corresponding ones in the previous case although, again, the only
stable finite fixed point continues to be the de Sitter one.

Unfortunately, due to the higher dimensionality of the phase space, the dynam-
ics of this model are not as easy to extract as the ones in the previous paragraph.
However in the general structure of the equations there is no feature which prevents
the existence of an orbit connecting the unstable Friedmann phase with the de Sit-
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ter attractor. This means that HL cosmologies without detailed balance can actually
admit a transition between Friedmann evolution and a dark energy era.

Table 2 Finite fixed points of the system (25)-(28), their associated solutions and stability.

Point Coordinates Solution Energy density Stability
[Ω ,x,y,z,K]

A
[ 1

2 (2−3ξ ),0,0,0,0
]

a = a0(t− t0)
2

3(1+w) ρ = ρ0(t− t0)−2 saddle

B
[
0, 1

2 (2−3ξ ),0,0,0
]

a = a0(t− t0)
1
2 ρ = 0 saddle

C
[
0,0,0,0, 1

2 (3ξ −2)
]

a = a0(t− t0) ρ = 0 saddle

D
[
0,0,0, 1

2 (2−3ξ ),0
]

a = a0eτ(t−t0) ρ = 0 attractor

E
[
0,0, 1

2 (2−3ξ ),0,0
]

a = a0(t− t0)
1
3 ρ = 0 repeller

τ =
√

α1
3(2−3ξ )

5 Discussion and conclusions

In this paper we have used dynamical system techniques to analyze the non vacuum
cosmology of Horâva-Lifshitz gravity both in the presence and in the absence of
detailed balance. Our analysis has allowed to both gain an understanding of the
qualitative behavior of the cosmology and to obtain interesting new constraints on
the parameters of the model.

In the first case the phase space exhibits four finite fixed points, three of which
represent physical solutions of the system. Although one of these points is associ-
ated to an unstable classical Friedmann solution that could be certainly useful to
model the nucleosynthesis and the structure formation periods, our analysis does
not reveal any useful fixed point which could model an inflationary or dark energy
phase. It has been proposed that, because of the changes in the value of the speed
of light contained in the theory, the absence of an explicit inflationary phase might
not be such a serious shortcoming of the theory [10], although at first glance it is
difficult in this setting to produce a dark energy era. A more conclusive analysis of
this issue, however, will require a complete numerical study, which is left to future
work. An interesting result of our investigation is that one of the attractors in the
theory corresponds to an oscillatory behavior. Such oscillations can be associated
with a bouncing universe, which can be connected to the analysis in [15].
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Maybe the most important result in this paper is related to the HL cosmology
without detailed balance. In this case, in fact, the additional freedom in the values
of the parameters allows the existence of cosmic histories which contain a Fried-
mann era and evolve towards a dark energy one. This follows because the phase
space contains a fixed point associated to the standard Friedmann solution which is
unstable and another one which can be associated to a de Sitter solution which is an
attractor. The last point can then model a dark energy era. However, the existence of
these fixed points is only a necessary condition: because of the presence of invariant
manifolds and the constraints on the parameters only a subset of the phase space
and the parameter space will realize this scenario.

On the other hand the fact that the fixed points all lie on invariant submanifolds
guarantee that such orbits can exist. Unfortunately the high dimension of the phase
space makes it quite hard to perform any qualitative analysis. Therefore only numer-
ical methods will allow the investigation of the details of these orbits. Notwithstand-
ing these problems, we feel that it is safe to conclude that a cosmology compatible
with the present observations can be obtained, in the HL framework, only if the de-
tailed balance is broken. Such result makes this type of HL gravity a very promising
phenomenological model for both the study of dark energy and quantum gravity.
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1. P. Hořava, “Quantum Gravity at a Lifshitz Point,” Phys. Rev. D 79, 084008 (2009)
[arXiv:0901.3775 [hep-th]].

2. N. Afshordi, “Cuscuton and low energy limit of Hořava-Lifshitz gravity,” arXiv:0907.5201
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Gravitational Waves Astronomy: a cornerstone

for gravitational theories

Christian Corda

Abstract Realizing a gravitational wave (GW) astronomy in next years is a great
challenge for the scientific community. By giving a significant amount of new in-
formation, GWs will be a cornerstone for a better understanding of gravitational
physics. In this paper we re-discuss that the GW astronomy will permit to solve a
captivating issue of gravitation. In fact, it will be the definitive test for Einstein’s
general relativity (GR), or, alternatively, a strong endorsement for extended theories
of gravity (ETG).

1 Introduction

The scientific community hopes in a first direct detection of GWs in next years [1].
The realization of a GW astronomy, by giving a significant amount of new infor-
mation, will be a cornerstone for a better understanding of gravitational physics. In
fact, the discovery of GW emission by the compact binary system PSR1913+16,
composed by two Neutron Stars [2], has been, for physicists working in this field,
the ultimate thrust allowing to reach the extremely sophisticated technology needed
for investigating in this field of research. In this paper we re-discuss that the GW as-
tronomy will permit to solve a captivating issue of gravitation. In fact, it will be the
definitive test for Einstein’s GR, or, alternatively, a strong endorsement for ETG [3].

Although Einstein’s GR [4] achieved great success (see for example the opinion
of Landau who says that GR is, together with quantum field theory, the best scientific
theory of all [5]) and withstood many experimental tests, it also displayed many
shortcomings and flaws which today make theoreticians question whether it is the
definitive theory of gravity, see [6]-[19] and references within. As distinct from
other field theories, like the electromagnetic theory, GR is very difficult to quantize.
This fact rules out the possibility of treating gravitation like other quantum theories,
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and precludes the unification of gravity with other interactions. At the present time,
it is not possible to realize a consistent quantum gravity theory which leads to the
unification of gravitation with the other forces. From an historical point of view,
Einstein believed that, in the path to unification of theories, quantum mechanics had
to be subjected to a more general deterministic theory, which he called generalized
theory of gravitation, but he did not obtain the final equations of such a theory (see
for example the biography of Einstein which has been written by Pais [20]). At
present, this point of view is partially retrieved by some theorists, starting from the
Nobel Laureate G. ’t Hooft [21].

One can define ETG those semi-classical theories where the Lagrangian is modi-
fied, in respect of the standard Einstein-Hilbert gravitational Lagrangian [5], adding
high-order terms in the curvature invariants (terms like R2, RαβRαβ , RαβγδRαβγδ ,
R�R, R�kR) or terms with scalar fields non-minimally coupled to geometry (terms
like φ 2R) [6]-[19]. In general, one has to emphasize that terms like those are present
in all the approaches to the problem of unification between gravity and other inter-
actions. Additionally, from a cosmological point of view, such modifications of
GR generate inflationary frameworks which are very important as they solve many
problems of the standard universe model (see [22] for a review).

In the general context of cosmological evidence, there are also other considera-
tions which suggest an extension of GR. As a matter of fact, the accelerated expan-
sion of the universe, which is observed today, implies that cosmological dynamics
is dominated by the so called Dark Energy, which gives a large negative pressure.
This is the standard picture, in which this new ingredient is considered as a source
on the right-hand side of the field equations. It should be some form of un-clustered,
non-zero vacuum energy which, together with the clustered Dark Matter, drives the
global dynamics. This is the so called “concordance model” (ΛCDM) which gives,
in agreement with the CMBR, LSS and SNeIa data, a good picture of the observed
Universe today, but presents several shortcomings such as the well known “coin-
cidence” and “cosmological constant” problems [23]. An alternative approach is
changing the left-hand side of the field equations, to see if the observed cosmic dy-
namics can be achieved by extending General Relativity [6]-[19]. In this different
context, it is not required to find candidates for Dark Energy and Dark Matter, that,
till now, have not been found; only the “observed” ingredients, which are curvature
and baryonic matter, have to be taken into account. Considering this point of view,
one can think that gravity is different at various scales and there is room for alterna-
tive theories [6]-[19]. In principle, the most popular Dark Energy and Dark Matter
models can be achieved considering f (R) theories of gravity, where R is the Ricci
curvature scalar, and/or scalar-sensor gravity (STG) [6]-[19]. In this picture, even
the sensitive detectors for gravitational waves (GWs), like bars and interferometers,
whose data analysis recently started [1], could, in principle, be important to confirm
or rule out the physical consistency of GR or of any other theory of gravitation. This
is because, in the context of ETG, some differences between GR and the others the-
ories can be pointed out starting from the linearized theory of gravity, see [3] and
[24]-[28].

Now, let us consider this issue in more detail.
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2 Using gravitational waves to discriminate

GWs are a consequence of Einstein’s GR [4], which presuppose GWs to be ripples
in the space-time curvature travelling at light speed [29, 30]. Only asymmetric astro-
physics sources can emit GWs. The most efficient are coalescing binaries systems,
while a single rotating pulsar can rely only on spherical asymmetries, usually very
small. Supernovae could have relevant asymmetries, being potential sources[1].

The most important cosmological source of GWs is, in principle, the so called
stochastic background of GWs which, together with the Cosmic Background Radi-
ation (CBR), would carry, if detected, a huge amount of information on the early
stages of the Universe evolution [25], [31]-[35]. The existence of a relic stochastic
background of GWs is a consequence of generals assumptions. Essentially it de-
rives from a mixing between basic principles of classical theories of gravity and of
quantum field theory [31]-[34]. The model derives from the inflationary scenario
for the early universe [22], which is tuned in a good way with the WMAP data on
the CBR (in particular exponential inflation and spectral index ≈ 1 [36]. The GWs
perturbations arise from the uncertainty principle and the spectrum of relic GWs
is generated from the adiabatically-amplified zero-point fluctuations [31]-[34]. The
analysis has been recently generalized to ETG in [25] and [35].

In 1957, F.A.E. Pirani, who was a member of the Bondi’s research group, pro-
posed the geodesic deviation equation as a tool for designing a practical GW detec-
tor [37]. Pirani showed that if a GW propagates in a spatial region where two test
masses are present, the effect is to drive the masses to have oscillations.

In 1959, Joseph Weber studied a detector that, in principle, might be able to
measure displacements smaller than the size of the nucleus [38]. He developed an
experiment using a large suspended bar of aluminium, with a high resonant Q at
a frequency of about 1 kHz. Then, in 1960, he tried to test the general relativistic
prediction of GWs from strong gravity collisions [39] and, in 1969, he claimed evi-
dence for observation of gravitational waves (based on coincident signals) from two
bars separated by 1000 km [40]. He also proposed the idea of doing an experiment
to detect gravitational waves using laser interferometers [40]. In fact, all the modern
detectors can be considered like being originated from early Weber’s ideas [1].

In recent papers [26, 27] it has been shown that GWs from ETG generate dif-
ferent oscillations of test masses, with respect to GWs from standard GR. Thus,
an accurate analysis of such a motion can be used in order to discriminate among
various theories.

In general, GWs manifest them-self by exerting tidal forces on the test-masses
which are the mirror and the beam-splitter in the case of an interferometer [1].

Working with G = 1, c = 1 and h̄ = 1 (natural units), the line element for a GW
arising from standard GR and propagating in the z direction is [3, 28, 41]

ds2 = dt2−dz2− (1+h+)dx2− (1−h+)dy2−2h×dxdy, (1)
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where h+(t − z) and h×(t − z) are the weak perturbations due to the + and the
× polarizations which are expressed in terms of synchronous coordinates in the
transverse-traceless (TT) gauge [3, 28, 41].

In the case of standard GR the motion of test masses, due to GWs and analysed
in the gauge of the local observer, is well known [41]. By putting the beam-splitter
in the origin of the coordinate system, the components of the separation vector are
the mirror’s coordinates. At first order in h+, the displacements of the mirror due
by the + polarization of a GW propagating in the z direction are given by [41]:

δxM(t) =
1
2

xM0h+(t) (2)

and
δyM(t) =−1

2
yM0h+(t), (3)

where xM0 and yM0 are the initial (unperturbed) coordinates of the mirror. The ×
polarization generates an analogous motion for test masses which are rotated of
45-degree with respect the z axis [41].

In all ETG a third massive polarization of GWs is present [3], [24]-[27], which
is usually labelled with Φ , and the line element for such a third polarization can be
always put in a conformally flat form in both of the cases of STG and f (R) theories
[24]-[27]:

ds2 = [1+Φ(t− vGz)](−dt2 +dz2 +dx2 +dy2). (4)

vG in (4) is the particle’s velocity (the group velocity in terms of a wave-packet [3],
[24]-[27]). In the case of STG the third mode can be massless. In that case vG = 1
and, at first order in Φ , the displacements of the mirror due to these massless scalar
GWs are given by [26]

δxM(t) =
1
2

xM0Φ(t) (5)

and
δyM(t) =

1
2

yM0Φ(t). (6)

In the case of massive scalar GWs and of f (R) theories it is [26, 27]

δxM(t) = 1
2 xM0Φ(t)

δyM(t) = 1
2 yM0Φ(t)

δ zM(t) =− 1
2 m2zM0ψ(t),

(7)

where [26, 27]
ψ̈(t)≡Φ(t). (8)

Note: the most general definition is ψ(t− vGz)+ a(t− vGz)+ b, but one assumes
only small variations of the positions of the test masses, thus a = b = 0 [26, 27].



Gravitational Waves Astronomy: a cornerstone for gravitational theories 153

Then, in the case of massive GWs a longitudinal component is present because of
the presence of a small mass m [26, 27]. As the interpretation of Φ is in terms of a
wave-packet, solution of the Klein-Gordon equation [26, 27]

�Φ = m2Φ , (9)

it is also

ψ(t− vGz) =− 1
ω2Φ(t− vGz). (10)

Thus, if advanced projects on the detection of GWs will improve their sensitivity
allowing to perform a GWs astronomy (this is due because signals from GWs are
quite weak) [1], one will only have to look which is the motion of the mirror in
respect to the beam splitter of an interferometer in the locally inertial coordinate
system in order to understand which is the correct theory of gravity. If such a motion
will be governed only by Eqs. (2) and (3) we will conclude that GR is the ultimate
theory of gravity. If the motion of the mirror is governed also by Eqs. (5) and
(6), in addition to the motion arising from Eqs. (2) and (3), we will conclude that
massless STG is the correct theory of gravitation. Finally, if the motion of the
mirror is governed also by Eqs. (7) in addition to the ordinary motion of Eqs. (2)
and (3), we will conclude that the correct theory of gravity will be massive STG
which is equivalent to f (R) theories. Even if such signals will be quite weak, a
consistent GWs astronomy will permit to understand which is the direction of the
propagating GW by using coincidences between various detectors and to compute
a hypothetical group velocity vG by using delay times, thus, all the quantities of the
above equations could be, in principle, determined.

3 Conclusion remarks

We re-discussed that the GW astronomy will permit to solve a captivating issue
of gravitation. If advanced projects on the detection of GWs will improve their
sensitivity allowing to perform a GWs astronomy, such a GWs astronomy will be
the definitive test for Einstein’s GR, or, alternatively, a strong endorsment for ETG.
In fact, a careful analysis of the motion of the mirror of the interferometer with
respect to the beam splitter will permit to discriminate among GR and ETG.
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Hamilton–Jacobi Method and Gravitation

R. Di Criscienzo, L. Vanzo and S. Zerbini

Abstract Studying the behaviour of a quantum field in a classical, curved, space-
time is an extraordinary task which nobody is able to take on at present time. In-
dependently by the fact that such problem is not likely to be solved soon, still we
possess the instruments to perform exact predictions in special, highly symmetric,
conditions. Aim of the present contribution is to show how it is possible to extract
quantitative information about a variety of physical phenomena in very general sit-
uations by virtue of the so-called Hamilton–Jacobi method. In particular, we shall
prove the agreement of such semi-classical method with exact results of quantum
field theoretic calculations.

1 Introduction

Suppose we are interested in studying the behaviour of a field Φ(x) (scalar, for
sake of simplicity) in a curved spacetime endowed with a (trapping) horizon (e.g.
in the vicinity of a black hole). Based on physical intuition, we expect that the in-
teraction from the quantum field and the classical background gives rise to different
phenomena, as: Hawking radiation through the horizon; decay of unstable particles
scattering off the gravitational field; vacuum particle creation in regions of strong
gravity; radiation from (possibly, naked) singularities, etc. The aformentioned top-
ics would pertain the investigation of a quantum theory of gravity, the lack of which
obliges us to work with standard techniques.

The field is governed by the Klein–Gordon equation,
(
�x− m2

h̄2

)
Φ(x) = 0 , (1)
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where the parameter m2 is interpreted as the field mass and for convenience we have
inserted h̄ explicitly. Field quantization can be performed in either canonical or path
integral ways:

Φ(x) =
∫

A
Dp ·Dx̃ ·DN× (Gauge-fixing conditions)× exp(i I[p, x̃,N]) (2)

where A represents appropriate boundary conditions and I[p,x,N] is the Hamilto-
nian formulation of the action. The fact that Φ(N,x) has to satisfy the equation of
motion (1) imposes constraints on the allowed boundary conditions, A .
Solution to (2) is largely unknown due to the difficulty of computing path integrals
in curved spacetimes. However, some information is accessible in the WKB regime
of approximation. In this case, one generally finds appropriate to look for a solution
in the form,

Φ(x) = D(x)e−
I(x)

h̄ +O(h̄) (3)

where the small parameter h̄ is used to govern the WKB expansion. Inserting (3)
into (1) and equating powers of h̄, we obtain to the lowest orders

h̄−2 : −∇aI∇aI +m2 = 0
h̄−1 : 2∇D ·∇I +D�I = 0

h̄0 : �D = 0
· · · : · · · (4)

Exact computation of the pre-factor D(x) is complicated even in very addomesti-
cated situations and therefore it is beyond our present goal.
Let us split I into a real and a purely imaginary part: I(x) := IR(x)− iS(x); then (4)
becomes:

−(∇IR)
2 +(∇S)2 +m2 = 0. (5)

If the imaginary part of I varies with x much more rapidly than the real part, that
is, if |∇S| � |∇IR|, it follows from (5) that S will be an approximate solution to the
(Lorentzian) Hamilton-Jacobi equation

gab∂Sa∂Sb +m2 = 0. (6)

Furthmore, the wave function (3) will then be predominantly of the form eiS. Of
course, going from the exact path integral form (2) to the approximate regime (3)
with I solution to (4), we loose specification of the boundary conditions A . It will
be evident later that this lost is only apparent.

The basic idea proposed some time ago by Parick & Wilzcek [1] is to interpret
the spacetime horizon – say, for example, of a black hole – as a sort of barrier and
to study the tunnelling of field quanta through it. Certainly, the horizon behavies in
quite a different way with respect to usual quantum mechanical potential barriers.
In ordinary quantum mechanics, the barrier is represented by the region between
the turning points of the classical trajectories. Here instead, the horizon is just a
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point on the classical characteristic curves. Evaluating the tunnelling in quantum
mechanics means computing the ratio between particle wavefunction on the two
sides of the barrier. In the black hole case, instead, the required ratio is generated by
a discontinuity in the wavefunction. Moreover, in the familiar context of tunneling
through a barrier, an imaginary part comes from a negative eigenvalue of the small
disturbance operator around the classical bounce, while the Euclidean action is real.
In the black hole case, instead, as we shall see later, it is the action itself that is
complex.

Given the whole sort of specifications above, we can conclude the reasoning and
invoke the well known result according to which, the creation probability per unit
time of quanta of mass m is given – to leading order in h̄ – by the WKB formula

Γ ∝ exp
(
−2

h̄
S
)

(7)

with S solution to (6). Remarkably, as it has been shown in [2, 3, 4, 5, 6], the pro-
cedure outlined so far reproduces the infamous Planckian spectrum of Hawking ra-
diation in the case of black hole spacetimes: Γ ∝ exp(−βωH), with ωH the energy
of tunnelling particles through the black hole horizon and β interpreted as the in-
verse temperature of the thermalized field quanta. The Hamilton–Jacobi method of
tunnelling has therefore proved an elegant way to interpret Hawking radiation as a
tunnelling process and to derive in relatively simple way the associated temperature
(T = β−1). As we shall try to show in the following, the method does not exhaust its
power in the computation of black hole Hawking temperature, generalizing indeed
to a wider class of spacetime horizons (e.g. cosmological horizons) and to other
kinds of semi-classical phenomena.

We use the conventions according to which the metric signature is (−,+,+,+);
first latin indices as a,b run over 0, . . . ,3, mid-latin indices as i, j only over 0,1.
From nown on, we implement natural units, so that c = h̄ = G = kB = 1.

2 The Kodama–Hayward formalism for spherically symmetric

spacetimes

In the following, we shall limit ourselves to focus only on spherically symmetric
spacetimes where no gravitational waves production is involved. The line element
can be locally written as [7]

ds2 = γi j(x)dxidx j +R2(x)dΩ 2 , (8)

where the two-dimensional metric γi j(x) is referred to as the normal metric, {xi}
are associated coordinates and R(xi) is the areal radius, considered as a scalar field
in the two-dimensional normal space. We recall that to have a truly dynamical so-
lution, i.e. to avoid Birkhoff’s theorem, the spacetime must be filled with matter
everywhere. Examples are the Vaidya solution, which contains a flux of radiation at
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infinity, and FRW solutions which contain a perfect fluid.
A dynamical trapping horizon, if it exists, is located at 0 = χ(x)|H , with χ(x) :=
γ i j(x)∂iR(x)∂ jR(x), provided that ∂iχ(x) = 0. The dynamical surface gravity asso-
ciated with the horizon is given by the normal space scalar κH = 1

2�γR(x)|H as
proved in [7].
In the spherical symmetric dynamical case, it is possible to introduce the so-called
Kodama vector field K, with (KaGab)

;b = 0, that can be taken as its defining prop-
erty, [8]. It follows that K is a natural generalization of the Killing vector of station-
ary spacetimes. Given the metric (8), the non-vanishing Kodama vector components
are Ki = ε i j∂ jR(x)/

√−γ (ε01 =+1). The Kodama vector gives a preferred flow of
time and in this sense it generalizes the flow of time given by the Killing vector in
the static case. As a consequence, we may introduce the invariant energy associated
with a particle of mass m by means of the scalar quantity on the normal space

ω =−K ·dS (9)

where S is the particle action which we assume to satisfy the reduced Hamilton–
Jacobi equation

γ i j∂iS∂ jS+m2 = 0 . (10)

Remarkably, the probability rate (7) does not depend by the choice of coordi-
nates, since the horizon location, the horizon surface gravity, the Kodama energy
are all invariantly defined in the space normal to the spheres of symmetry [9].

The basic idea can now be roughly described as follows: the reduced Hamilton–
Jacobi equation (10) supplemented by the Kodama energy formula (9) constrains
particle’s momenta, e.g. ∂+S = ∂+S(x±,m,ω); thus, the mass parameter m gives
two complementary energy scales so that, according to the physical phenomenon
involved, the two scales exchange the leading role in the analysis.
More in detail, suppose we are interested in the physics of the horizon: tunnelling
through the horizon – typically related to Hawking/Unruh effects – corresponds to
the existence of a simple pole in particle’s momenta. In this case, it turns out that the
mass parameter can be neglected so that, to all the extents, particles move along null
trajectories. On the other hand, if we are now interested in bulk effects, away from
any horizon, then the mass parameter plays a crucial role being possibly responsable
for a branch point singularity in tunnelling particle’s momenta.
Let us make an example in order to make clearer what we mean. As fully described
in [10], the FRW spacetime with spatial curvature k̂ = k

l2 (k = 0,±1 and l an oppor-
tune length scale) represents a dynamical, spherically symmetric spacetime exhibit-
ing a cosmological horizon in correspondence of what we shall call the Hubble ra-
dius, namely RH(t) := (H2 + k̂/a2)−1/2 and R(t,r) := a(t)r. The Kodama energy is
ω =

√
1− k̂r2(−∂t I + rH∂rI) ≡

√
1− k̂r2 ω̃ . The Hamilton–Jacobi equation reads

−(∂tS)2 + (1−k̂r2)
a2(t) (∂rS)2 +m2 = 0, so that the radial particle’s momentum is

∂rS =−aHω̃(ar)±a
√
ω2−m2(1− (ar/RH)2)

1− (ar/RH)2 . (11)
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Near the horizon, the mass coefficient vanishes so that we can set m = 0. Thus,
making a null-horizon radial expansion, the action for particles coming out of the
horizon towards the inner (untrapped) region is S = 2

∫
dr∂rI, with ∂rS exhibiting

a simple pole at the horizon. To deal with the simple pole in the integrand, we im-
plement Feynman’s iε–prescription, something which resambles the recovering of
the boundary conditions encoded in the path integral approach mentioned above.
Because of (7), Γ ∼ exp(−ωH/T ), ωH > 0 for physical particles and T =−κH/2π
(κH < 0 for trapping horizons of the inner type such as the Hubble radius, cf. [11] )
the dynamical temperature associated to FRW horizon.
To treat instead the decay of unstable composite particles inside the Hubble horizon
(i.e., in the untrapped region), we need to identify the energy of the particle before
the decay as the Kodama energy, ω; then we denote by m the effective mass pa-
rameter of one of the decay products, after the decay. With these understandings,
we find out that for the unstable particle sitting at rest at the origin of the comoving
coordinates, there is an imaginary part of the action as the decay product tunnels
into the region 0 < r < r0 to escape beyond r0, with r0 implicitly defined through
[a(t)r0]

2 = R2
0 :=

(
1− ω2

m2

)
R2

H . Assuming a two-particle decay, the rate is

Γ = Γ0 e−2π RH (m−ω) (12)

and Γ0 depending on the interaction coupling (e.g. Γ0 ∼ λ 2 for a λφ 3 interaction).
Equation (12) agrees with Volovik result for de Sitter space [12] and with asymptotic
quantum field theory calculation by Bros et al, [13].

3 Vacuum particle creation and emission from naked

singularities

A perfectly legitimate question we can ask ourselves is weather the method is ex-
tendable to the case of static black holes as well. With regard to this, we consider the
exterior region of a spherically symmetric, static, black hole spacetime and repeat
the same argument. Quite generally, we can write the line element as

ds2 =−e2ψ(r)C(r)dt2 +
dr2

C(r)
+ r2dΩ 2 . (13)

The analysis of the radial momentum is made easier by setting the Kodama energy
ω = 0: in the intention, this would correspond to particle creation from vacuum,

∫
dr∂rS = m

∫ r2

r1

dr
1√−C(r)

. (14)

The integration is taken over any interval (r1,r2) where C(r) > 0. Equation (14)
shows that, under very general conditions, in static black hole spacetimes there could
be a decay rate whenever a region where C(r) is positive exists. However, it is an
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easy task to show that the spacelike singularity of the Schwarzschild black hole does
not emit particles in the semi-classical regime: in the interior, the Kodama vector is
spacelike, thus no energy can be introduced there.
The situation is very different when a naked singularity is present. Considering a
neutral particle in the Reissner-Nordström solution with mass M and charge Q > 0
(for definiteness), the line element is

ds2 =− (r− r−)(r− r+)
r2 dt2 +

r2

(r− r−)(r− r+)
dr2 + r2dΩ 2 , (15)

with r± functions of (M,Q) denoting the inner and outer horizons. The function
C(r) = (r− r−)(r− r+)/r2 is negative in between the two horizons, where the Ko-
dama vector is spacelike, so there the action is real. On the other hand, it is positive
within the outer communication domain, r > r+, but also within the region con-
tained by the inner Cauchy horizon, that is 0 < r < r−. Thus, because of (14) and
assuming the particles come created in pairs, we obtain that, modulo the pre-factor
over which we have nothing to say, there is a creation probability per unit time and
unit volume (equation (16) not depending upon the creation event) of neutral parti-
cles of mass m by the strong gravitational field near the Reissner-Nordström naked
singularity (M,Q) which goes as

Γ ∼
(

M−Q
M+Q

)mM

e−2Qm. (16)

At a first look, the process of particle production in the region close to the singularity
raises the issue of the stability of the solution. However, this does not seem to be a
problem. In fact, radiation created by the bulk close to the singularity comes into the
singularity with infinite red-shift and approaches the future inner, classically unsta-
ble, horizon with infinite blue-shift. Thus, the contribution of the radiation coming
in the singularity to the back-reaction is negligible and the causal structure of the
singularity safe; while the blue-shifted radiation approaching the future sheet of the
inner horizon will contribute to its quantum instability (Cf. [14] for further investi-
gation).

A complementary and potentially interesting effect is the emission from the
naked singularity itself. We investigate this problem for the case of two-dimensional
dilaton gravity, and will come back to Reissner-Nordström solution afterward.

Consider the two-dimensional metric

ds2 = σ−1dx+dx− , σ := λ 2x+x−−a(x+− x+0 )θ(x
+− x+0 ) (17)

where λ is related to the cosmological constant by Λ = −4λ 2 and a represents the
wave amplitude. This metric arises as a solution of 2D dilaton gravity coupled to
a bosonic field with stress tensor T++ = 2aδ (x+− x+0 ), describing a shock wave.
σ = 0 is a naked singularity partly to the future of a flat space region (linear dilaton
vacuum). The heavy arrow in the figure represents the history of the shock wave
responsible for the existence of the timelike singularity.
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Fig. 1 The naked singularity
formed by the shock wave.

Flat space

naked
singularity

null
infinity

shock wave

x− +x

The goal is to compute the outgoing flux which is given by: 2T++−2T−−. In or-
der to do this, we notice that the Hamilton–Jacobi equation implies either ∂+S = 0
or ∂−S = 0, S being the action. To find the ingoing flux we integrate along x+ till
we encounter the naked singularity, using ∂−S = 0, so that S =

∫
dx+∂+I =

∫
dx+ ωσ .

The absorption probability is Γ (ω) = Γ0 exp[−2πω/(λ 2x−−a)]. The flux is com-
puted by integrating the probability over the coordinate frequency ω̃ = ω

2σ (that is,
the variable conjugate to the time coordinate), with the density of states measure
dω̃
2π : T++ = Γ0

(λ 2x−−a)2

2π3σ2 .
To find T−−, we integrate now along x− starting from the naked singularity, this time
using ∂+S = 0. A similar calculation gives T−− = Γ0

λ 4(x+)2

2π3σ2 .

T+− is given by the conformal anomaly, T = 4σT+− = R/24π (for one bosonic
degree of freedom). Matching to the anomaly gives Γ0 = π2/24∼ O(1).
Note that the stress tensor diverges approaching the singularity, indicating that its
resolution will not be possible within classical gravity but requires instead quantum
gravity [15].
Indeed, all these results agree with the one-loop calculation to be found in [16].

Returning now to the Reissner-Nordström solution, could it be that the naked
singularity emits particles? In the four-dimensional case one easily sees that the
action has no imaginary part along null trajectories either ending or beginning at the
singularity. Formally this is because the Kodama energy coincides with the Killing
energy in such a static manifold and there is no infinite red-shift from the singularity
to infinity. Even considering the metric as a genuinely two-dimensional, however, it
is possible to show that the action does not exhibit any imaginary part [10].
It is fair to say that the Reissner-Nordström naked singularity will not emit particles
in this approximation something which seems to be coherent with quantum field
theory results, [10, 17].
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4 Conclusions

We have shown that semi-classical tunnelling method can handle several quan-
tum effects: radiation from dynamical horizons (both cosmological and collapsing);
gravitational enhancement of particle decay otherwise forbidden by conservation
laws; radiation from two-dimensional naked singularities. Normally, great efforts
are needed to analyze quantum effects in gravity, while instead the tunneling picture
promptly gives strong indications of what’s going on. The obtained agreement be-
tween both the particle decay rates and the radiation from naked singularities in the
tunnelling picture and the (asymptotic of the) exact results – when they exist in par-
ticular conditions – gives confidence, in our opinion, of the validity of the method
even in more general situations.
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A characteristic signature of fourth order

gravity

Kishore N. Ananda1, Sante Carloni2, Peter K S Dunsby3

Abstract We present for the first time the complete matter power spectrum for Rn

gravity which has been derived from the fourth order scalar perturbation equations.
This leads to the discovery of a characteristic signature of fourth order gravity in the
matter power spectrum, the details of which have not seen before in other studies in
this area and therefore provides a crucial test for fourth order gravity on cosmolog-
ical scales.

1 Introduction

Ever since the Concordance model [1] was proposed as the best fit to all available
cosmological data sets, there have been many attempts to understand the nature of
Dark Energy. However, despite enormous effort over the past few years, this prob-
lem remains one of the greatest puzzles in contemporary physics. One of the the-
oretical proposals that has received a considerable amount of attention recently, is
that Dark Energy has a geometrical origin. This idea has been driven by the fact
that modifications to General Relativity appear in the low energy limit of many fun-
damental schemes [2, 3] and that these modifications lead naturally to cosmologies
which admit a Dark Energy like era [4] without the introduction of any additional
cosmological fields. Most of the work on this idea has focused on fourth order grav-
ity, in which the standard Hilbert-Einstein action is modified with terms that are at
most of order four in the metric tensor. The features of fo urth order gravity have
been analyzed with different techniques [5] and all these studies suggest that these
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cosmologies can give rise to a phase of accelerated expansion, which is considered
to be an important footprint of Dark Energy.

The work described above has largely focused on the dynamics of homogeneous
cosmologies which have the standard Robertson-Walker geometry and are therefore
also isotropic. Although these results have many of the desirable features that we
are looking for, such as a matter dominated epoch and late-time acceleration, there
are still some key issues that need to be addressed before one could claim to have
a cosmological description which is able to compete with the standard ΛCDM cos-
mology. The calculation and analysis of the evolution of linear perturbations and
their comparison with observations is clearly among the most important of these
open problems. Over the past year this problem has been studied by several authors
using the metric approach to perturbations, by either considering different ways of
parameterizing the non-Einstein modifications of gravity or by simplifying the un-
derlying fourth-order perturbation equations using a quasi-static approximation [6].

In what follows, we demonstrate that considerable progress can be made to this
problem by using the 1+3 covariant approach to cosmological perturbations [7].
Using a specific recasting of the field equations (based on the Ricci and Bianchi
identities), the development of equations describing cosmological perturbations in
theories of gravity characterized by an action which is a general analytic function of
the Ricci scalar f (R), becomes both transparent and straightforward, allowing for
the exact integration of the perturbation equations without making any approxima-
tions. In order to easily discuss the key features of the perturbation dynamics and
the associated power spectrum, we focus on Rn-gravity. This theory is characterized
by the action L =

√−g [χRn +LM] and is the simplest possible example of fourth
order gravity.

2 Perturbation dynamics and the power spectrum

Before we can discuss the evolution of density perturbations, a suitable background
cosmology must first be found. In [8, 9], the complete dynamics of homogeneous
and isotropic cosmologies were studied in detail using the dynamical system ap-
proach (see [10] and references therein). It was found that in Rn gravity, it is possi-
ble to have a transient matter-dominated decelerated expansion phase, followed by
a smooth transition to a Dark Energy like era which drives the cosmological accel-
eration. The first phase, characterized by the baratropic equation of state parameter
w, has an expansion history determined by a scale-factor a = t2n/3(1+w) where we
restrict ourselves to n > 0 for this background as negative values of n would rep-
resent a contracting model. This solution provides exactly the setting during which
structure formation can take place and is therefore an ideal background solution for
our study of density perturbations.

Scalar perturbations, which describe density perturbations may be extracted from
any first order tensor Tab orthogonal to ua by using a local decomposition [11], so
that repeated application of the operator ∇̃a ≡ hb

a∇b on Tab extracts the scalar part of
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the perturbation variables. In this way we can define the following scalar quantities

Δm =
S2

μm
∇̃2μm , Z = S2∇̃2Θ , C = S4∇̃2R̃ , R = S2∇̃2R , ℜ= S2∇̃2Ṙ . (1)

where Δm
a , Z respectively represent the fluctuations in the matter energy density μm

and expansionΘ , and R, ℜ determine the fluctuations in the Ricci scalar R and its
momentum Ṙ. This set of variables completely characterizes the evolution of density
perturbations. Then, using eigenfunctions of the spatial Laplace-Beltrami operator
defined in [7]: ∇̃2Q =− k2

S2 Q, where k = 2πS/λ is the wave number and Q̇ = 0, we
can expand every first order quantity in the above equations:

X(t,x) =∑X (k)(t) Q(k)(x) , (2)

where ∑ stands for both a summation over a discrete index or an integration over a
continuous one. In this way, it is straightforward, although lengthy, to derive a pair
of second order equations describing the kth mode for density perturbations in f (R)
gravity. They are:

Δ̈ (k)
m +

[(
2
3
−w

)
Θ − Ṙ f ′′

f ′

]
Δ̇ (k)

m −
[

w
k2

S2 −w(3pR +μR)− 2wṘΘ f ′′

f ′
−

(
3w2−1

)
μm

f ′

]
Δ (k)

m

=
1
2
(w+1)

[
−2

k2

S2
f ′′

f ′
−1+

(
f −2μm +2ṘΘ f ′′

) f ′′

f ′2
−2ṘΘ

f (3)

f ′

]
R(k)− (w+1)Θ f ′′

f ′
Ṙ(k) ,

f ′′R̈(k) +
(
Θ f ′′+2Ṙ f (3)

)
Ṙ(k)−

[
k2

S2 f ′′+2
K
S2 f ′′+

2
9
Θ 2 f ′′ − (w+1)

μm

2 f ′
f ′′ − 1

6
(μR +3pR) f ′′

− f ′

3
+

f
6 f ′

f ′′+ ṘΘ
f ′′2

f ′
− R̈ f (3)−Θ f (3)Ṙ− f (4)Ṙ2

]
R(k) =−

[
1
3
(3w−1)μm

+
w

1+w

(
f (3)Ṙ2 +(pR +μR) f ′+

7
3

ṘΘ f ′′+ R̈ f ′′
)]
Δ (k)

m − (w−1)Ṙ f ′′

w+1
Δ̇ (k)

m . (3)

where f ′ = ∂ f (R)/∂R, the quantities μR, pR are the energy density and pressure of
the curvature fluid defined in [12] and K = 0,+1,−1 is the usual spatial curvature
scalar. It is easy to see that for the f (R) = R case, these equations reduce to the
standard equations for the evolution of the scalar perturbations in General Relativity.

Already on super-Hubble scales, k/aH � 1, a number of important features are
found which allows one to differentiate (3) from their General Relativity counter-
parts [12]. Firstly, it is clear that the evolution of density perturbations is determined
by a fourth order differential equation rather than a second order one. This implies
that the evolution of the density fluctuations contains, in general, four modes rather
that two and can give rise to a more complex evolution than the one of General Rel-
ativity (GR). Secondly, the perturbations are found to depend on the scale for any
equation of state for standard matter (while in General Relativity the evolution of the
dust perturbations are scale-invariant). This means that even for dust, the evolution
of super-horizon and sub-horizon perturbations are different. Thirdly, it is found that
the growth of large density fluctuations can occur also in backgrounds in which the
expansion rate is increasing in time (see figure 1). This is in striking contrast with
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what one finds in General Relativity and would lead to a time-varying gravitational
potential, putting tight constraints on the Integrated Sachs-Wolfe effect for these
models.

Fig. 1 Plot against n of the real part of the long wavelength modes for Rn-gravity in the dust case
(blue, red green and yellow lines) together with the GR modes (red and purple line). Note that there
is at least one growing mode for any value of n. This means that even in cases where the expansion
rate is accelerating, i.e., n > 3

2(1+3) , large-scale density perturbations grow.

Let us now turn to the case of a general wave mode k. One of the most instruc-
tive way of understanding the details of the evolution of density perturbations for
a general k is to compute the matter power spectrum P(k), defined by the relation
[13] 〈Δm(k1)Δm(k2)〉= P(k1)δ (k1 +k2), where ki are two wavevectors character-
izing two Fourier components of the solutions of (3) and P(k1) = P(k1) because of
isotropy in the distribution of the perturbations. This quantity tells us how the fluc-
tuations of matter depend on the wavenumber at a specific time and carries informa-
tion about the amplitude of the perturbations (but not on their spatial structure). In
General Relativity, the power spectrum on large scales is constant, while on small
scales it is suppressed in comparison with the large scales (i.e., modes which en-
tered the horizon during the radiation era) [14]. In the case of pure dust in General
Relativity the power spectrum is scale invariant. Substituting the details of the back-
ground, the values of the parameter n, the barotropic factor w, the spatial curvature
index K and the wavenumber k into (3) one is able to obtain P(k) numerically.

The k-structure of equations (3) suggest that in fourth order gravity there exist at
least three different growth regimes of the perturbations. This is confirmed by our
results (see figure 2). In particular, in the case of dust we have three regimes for any
values of the remaining parameters: (i) on very large scales the spectrum it is like
what one finds for General Relativity, i.e., scale invariant; (ii) as k becomes bigger
the scale invariance is broken and oscillations in the spectrum appear; (iii) for even
larger k the spectrum becomes again scale invariant. However, on these scales the
spectrum can contain either an excess or deficit of power depending on the value of

0.5 1.0 1.5 2.0 2.5 3.0
n

-4

-2

2

4
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n. In particular for n ≈ 1+ small scales have more power than large scales, but, as
one moves towards larger values of n, the small scale modes are suppressed.

Fig. 2 Plot of the power spectrum at τ = 1 for Rn-gravity and n > 1. Note that the spectrum is
composed of three parts corresponding to three different evolution regimes for the perturbations.

3 Results and discussion

The features of the spectrum that we have presented above can be best interpreted
by comparing the system (3) which produced it with the equations for the evolution
of scalar perturbations for two interacting fluids in General Relativity [15]. Immedi-
ately one notices that they have the same structure, i.e., there are friction and source
terms due to the interaction and the gravitation of the two effective fluids. It is then
natural to ask ourselves if this analogy can be useful to better understand the physics
of these models. The answer is affirmative. First of all a more correct way to draw
this analogy would be to write the system of equations for Δm and fluctuations in the
energy density of the curvature fluid ΔR = S2∇̃2μR/μR and analyze their structure
rather than using the ones above. On very large and on very small scales, the co-
efficients of the (Δm,ΔR) system become independent of k, so that the evolution of
the perturbations does not change as a function of scale and the power spectrum is
consequently scale invariant. On intermediate scales the interaction between the two
fluids is maximized and the curvature fluid acts as a relativistic component whose
pressure is responsible for the oscillations and the dissipation of the small scale per-
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Fig. 3 Evolution the Power spectrum for Rn-gravity for n = 1.4. The spectrum has been normal-
ized in such a way that the curves coincide at large scales. Note how, as time passes, small scale
perturbations are dissipated and oscillation appear.

turbations in the same way in which the photons operate in a baryon-photon system.
This suggests the following interesting interpretation for the perturbation variables
R and ℜ. These quantities can be interpreted as representing the modes associated
with the contribution of the additional scalar degree of freedom typical of f (R)-
gravity. In this sense the spectrum can be explained physically as a consequence
of the interaction between these scalar modes and standard matter. The result is a
considerable loss of power for a relatively small variation of the parameter n. For
example, in the case n = 1.4 the difference in power between the two scale invariant
parts of the spectru m for n = 1.1 is of one order of magnitude while for n = 1.6 is
about ten orders of magnitude. It should be noted that existing analysis[16] of this
model require n = 3.5 in order for predictions to be consistent with measurements
of rotation curves of low surface brightness galaxies and SNe Ia. Given the huge
drop in power at small scales in the power spectrum for n = 3.5 one expects that this
model could be easily ruled out.

Further information on the dynamics of the matter perturbations can be obtained
examining the time evolution of the power spectrum. In figure 3 we give the power
spectrum for n = 1.4 at different times. One can see that, as the universe expands,
the small scale part of the spectrum is more and more suppressed and oscillations
start to form, suggesting that in this model small scale perturbations tend to be dis-
sipated in time. On the other hand on large scales they do not evolve, which might
appear in contrast with what mentioned above. However this is a byproduct of the
normalization: for clarity we have normalized the spectrum in such a way that every
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curve has the same power in long wavelength limit. A more in depth discussion of
the features presented above can be found in [17].

Probably the most important consequence of the form of the spectrum presented
above is the fact that the effect of these type of fourth order corrections is evident
only for a special range of scales, while the rest of the spectrum has the same k
dependence of GR (but different amplitude). This implies that we have a spectrum
that both satisfies the requirement for scale invariance and has distinct features that
one could in principle detect, by combining future Cosmic Microwave Background
(CMB) and large scale surveys (LSS) [18, 19].
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Horizons and singularity in Clifton’s spherical

solution of f (R) vacuum

Valerio Faraoni

Abstract Due to the failure of Birkhoff’s theorem, black holes in f (R) gravity the-
ories in which an effective time-varying cosmological “constant” is present are, in
general, dynamical. Clifton’s exact spherical solution of R1+δ gravity, which is dy-
namical and describes a central object embedded in a spatially flat universe, is stud-
ied. It is shown that apparent black hole horizons disappear and a naked singularity
emerges at late times.

1 Introduction

The study of Type Ia supernovae [43, 41, 44, 42, 45, 61, 30, 46, 3] revealed that
the universe is currently accelerating its expansion. This discovery has generated an
enormous amount of activity and theoretical models in order to find an explanation
of this phenomenon. The most common models are based on General Relativity
(GR) and invoke mysterious forms of dark energy (see [32] for a list of references).
However, dark energy, possibly even phantom energy, is too exotic and ad hoc and
attempts have been made to model the cosmic acceleration without dark energy.
f (R) theories of gravity reminiscent of the quadratic corrections to the Einstein-
Hilbert action introduced by renormalization have been re-introduced in the metric
[5, 10], Palatini [63], and metric-affine [51, 52, 53, 56, 57] formulations and have
received much attention in recent years (see [55, 16] for reviews and [58, 54, 6, 20,
7, 39, 48] for introductions). Emilio Elizalde has given many contributions to the
development of f (R) gravity and cosmology.

While many cosmological and other aspects of f (R) gravity (stability, weak-
field limit, ghost content) have been discussed in recent years, it is important to
understand spherical solutions (both vacuum and interior) in these theories [28, 1,
50, 49, 31, 2, 15, 37, 62].
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Metric f (R) gravity is described by the action

S =
1

2κ

∫
d4x
√−g f (R)+S(matter) , (1)

where f (R) is a non-linear function of its argument and S(matter) is the matter part of
the action. R denotes the Ricci scalar of the metric gab with determinant g, κ ≡ 8πG
where G is Newton’s constant, and we adopt the notations of [64].

The Jebsen-Birkhoff theorem of GR fails in these theories, adding to the vari-
ety of spherical solutions [23]. Of particular interest are black holes in generalized
gravity, which have been studied especially in relation to their thermodynamics ([24]
and references therein). Since f (R) theories are designed to produce an effective dy-
namical cosmological constant, physically relevant spherically symmetric and black
hole solutions are likely to describe central objects embedded in cosmological back-
grounds. This kind of solution is poorly understood even in GR, although a few
examples are available there [59, 21, 9, 8, 35, 36, 25, 47, 29, 40, 34, 26]. Even
less is known about f (R) black holes, which are certainly worth exploring. Here
we consider a specific solution of vacuum f (R) = R1+δ gravity discovered in [11].
Solar System experiments set the limits1 δ = (−1.1±1.2) ·10−5 on the parameter
δ [11, 4, 12, 13, 65], while local stability requires f ′′(R)≥ 0 [17, 18, 19, 38], hence
we restrict to the range 0 < δ < 10−5.

The solution of [11] is dynamical and describes a time-varying central object
embedded in a spatially flat universe in vacuum R1+δ gravity. This solution is made
possible by the fact that the fourth order field equations of metric f (R) gravity

f ′(R)Rab− f (R)
2

gab = ∇a∇b f ′(R)−gab� f ′(R) (2)

in vacuo can be rewritten as effective Einstein equations

Rab− 1
2

gabR =
1

f ′(R)

[
∇a∇b f ′ −gab� f ′+gab

( f −R f ′)
2

]
(3)

with geometric terms acting as effective matter on the right hand side. This time-
varying effective matter invalidates the Jebsen-Birkhoff theorem and can propel the
acceleration of the universe. An equivalent representation of metric f (R) gravity
as an ω = 0 Brans-Dicke theory with a special scalar field potential reveals ex-
plicitly the presence of a massive scalar degree of freedom f ′(R) responsible for
these effects [55]. Since analytical spherical and dynamical solutions of f (R) grav-
ity in asymptotically Friedmann-Lemaitre-Robertson-Walker (FLRW) backgrounds
are harder to find than in GR (where only a few are known anyway), Clifton’s solu-
tion is particularly valuable.

1 See also [14] for this specific form of the function f (R).
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2 Clifton’s solution and its horizons

In this section we describe the Clifton solution [11] and the work [22] locating the
horizons of this solution.

The spherically symmetric and time-dependent solution of vacuum R1+δ gravity
of [11] is given by

ds2 =−A2(r)dt2 +a2(t)B2(r)
[
dr2 + r2 (dθ 2 + sin2 θ dϕ2)] , (4)

and (using the isotropic radius and the notations of [11])

A2(r) =
(

1−C2/r
1+C2/r

)2/q

, (5)

B2(r) =
(

1+
C2

r

)4

A2(r)q+2δ−1 , (6)

a(t) = t
δ (1+2δ )

1−δ , (7)

q2 = 1−2δ +4δ 2 . (8)

Once δ is fixed, two classes of solutions exist, corresponding to the sign of C2qr.
The line element (4) reduces to the FLRW one if C2 → 0. In the limit δ → 0 in
which the theory reduces to GR, (4) reduces to the Schwarzschild metric in isotropic
coordinates provided that C2qr > 0, hence positive and negative values of r are
possible according to the sign of C2, but we assume r > 0,C2 > 0 and take the
positive root in the expression q = ±√1−2δ +4δ 2, so that q � 1− δ as δ → 0.
The solution (4)-(8) is conformal to the Fonarev solution [27] which is conformally
static [33], and therefore is also conformally static, similar to the Sultana-Dyer [59,
21, 9, 8] and certain generalized McVittie solutions [26] of GR.

In order to identify possible apparent horizons, it is convenient to cast the met-
ric (4) in the Nolan gauge. Using first the Schwarzschild-like radius

r̃ ≡ r
(

1+
C2

r

)2

, (9)

giving dr =
(

1− C2
2

r2

)−1
dr̃ and then the areal radius

ρ ≡ a(t)
√

B2(r) r̃(
1+ C2

r

)2 = a(t) r̃ A2(r)
q+2δ−1

2 , (10)

the line element (4) takes the form
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ds2 =−A2dt2 +a2A2δ−1
2 dr̃2 +ρ2dΩ 2 . (11)

Denoting the differentiation with respect to time with an overdot and using the iden-
tities

dr̃ =
dρ−A

q+2δ−1
2

2 ȧ r̃ dt

a
[

A
q+2δ−1

2
2 + 2(q+2δ−1)

q
C2
r̃ A

2δ−1−q
2

2

] ≡ dρ−A
q+2δ−1

2
2 ȧ r̃ dt

aA
q+2δ−1

2
2 C(r)

, (12)

one obtains

C(r) = 1+
2(q+2δ −1)

q
C2

r̃
A−q

2 = 1+
2(q+2δ −1)

q
C2a
ρ

A
2δ−1−q

2
2 , (13)

which turns the metric into the Painlevé-Gullstrand-like form

ds2 = −A2

[
1− A2(δ−1)

2
C2 ȧ2r̃2

]
dt2− 2A

−q+2δ−1
2

2
C2 ȧ r̃ dtdρ

+
dρ2

Aq
2C2 +ρ2dΩ 2 . (14)

Now we introduce a new time coordinate t̄ defined by

dt̄ =
1

F(t,ρ)
[dt +β (t,ρ)dρ] (15)

in order to eliminate the cross-term dtdρ . Here F(t,ρ) is an integrating factor which
guarantees that dt̄ is an exact differential and is determined by

∂
∂ρ

(
1
F

)
=
∂
∂ t

(
β
F

)
. (16)

The line element becomes

ds2 = −A2

[
1− A2(δ−1)

2
C2 ȧ2r̃2

]
F2dt̄2

+ 2F

⎧⎨
⎩A2β

[
1− A2(δ−1)

2
C2 ȧ2r̃2

]
− A

−q+2δ−1
2

2
C2 ȧr̃

⎫⎬
⎭dt̄dρ

+

⎧⎨
⎩−A2

[
1− A2(δ−1)

2
C2 ȧ2r̃2

]
β 2 +

2A
−q+2δ−1

2
2
C2 ȧr̃β +

1
Aq

2C2

⎫⎬
⎭dρ2

+ ρ2dΩ 2 . (17)
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The choice

β =
A
−q+2δ−3

2
2

C2
ȧ r̃

1− A2(δ−1)
2
C2 ȧ2r̃2

(18)

eliminates the dtdρ term and casts the metric in the Nolan gauge

ds2 = −A2DF2dt̄2 +
1

Aq
2C2

[
1+

A−q−1
2 H2ρ2

C2D

]
dρ2

+ ρ2dΩ 2 , (19)

where H ≡ ȧ/a is the Hubble parameter of the background universe and

D≡ 1− A2(δ−1)
2
C2 ȧ2r̃2 = 1− A−q−1

2
C2 H2ρ2 . (20)

Using the second of these equations, the line element (19) assumes the simple form

ds2 =−A2DF2dt̄2 +
dρ2

Aq
2C2D

+ρ2dΩ 2 . (21)

The apparent horizons, if they exist, are located at gρρ = 0, which yields Aq
2C2D = 0

and Aq
2

(
C2−H2R2A−q−1

2

)
= 0. Therefore, gρρ vanishes if A2 = 0 or H2R2 =

C2Aq+1
2 . A2 vanishes at r = C2, which describes the Schwarzschild horizon when

δ → 0 (the GR limit). This locus corresponds to a spacetime singularity because

the Ricci scalar R =
6(Ḣ+2H2)

A2(r)
diverges as r → C2 (it reduces to the usual FLRW

value 6
(
Ḣ +2H2

)
as C2 → 0). This singularity is strong according to Tipler’s clas-

sification [60] because the areal radius ρ = ar̃A
q+2δ−1

2
2 vanishes when r = C2 for

δ > 0, in contrast with the Schwarzschild metric corresponding to δ = 0 in which
ρ = r̃ = 4C2 at r =C2.

The second possibility H2ρ2 =C2Aq+1
2 yields

Hρ =±
[

1+
2(q+2δ −1)

q
C2a
ρ

A
2δ−1−q

2
2

]
A

q+1
2

2 , (22)

with the positive sign corresponding to an expanding universe. When δ → 0, this

equation reduces to Hρ =

[
1+ 2δC2a

ρ A
−(1− 3δ

2 )
2

]
A1−δ

2 .

To gain some insight, consider the following two limits. As C2 → 0 (the central
object disappears and the solution is FLRW space), r = r̃ and ρ become a comoving
and a proper radius, respectively, while (22) reduces to Hρ = 1 with solution ρc =
1/H, the radius of the cosmological horizon. In the limit δ → 0 in which the theory
reduces to GR, (22) reduces to A2 = 0 or r =C2 with H ≡ 0.
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Using (7) and (10), the left hand side of (22) is expressed as

HR =
δ (1+2δ )

1−δ t
2δ2+2δ−1

1−δ C2

x
(1− x)

q+2δ−1
q

(1+ x)
−q+2δ−1

q

, (23)

where x≡C2/r, while the right hand side of (22) is

(
1− x
1+ x

) q+1
q
[

1+
2(q+2δ −1)

q
x

(1− x)2

]
. (24)

Eq. (22) then becomes

1

t
1−2δ−2δ2

1−δ
=

(1−δ )
δ (1+2δ )C2

x(1+ x)
−2q+2δ−2

q

(1− x)
2(δ−1)

q

·
[

1+
2(q+2δ −1)

q
x

(1− x)2

]
(25)

(note that 1−2δ−2δ 2

1−δ is positive for 0 < δ <
√

3−1
2 � 0.366).

At late times t, the left hand side of (25) vanishes, x � 0, and there exists a
unique root of the equation locating the apparent horizons, which corresponds to a
cosmological horizon, consistently with the fact that r → ∞ as x = C2/r → 0. The
limit x→ 0 can also be obtained when the parameter C2→ 0 , in which case Hρ→ 1

ρ

t

Fig. 1 Radii of the apparent horizons of Clifton’s solution (vertical axis) versus time (horizontal
axis) for the parameter values C2 = 1 and δ = 0.13.
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and r� ρ �H−1 = 1−δ
δ (1+2δ ) t is the radius of the cosmological horizon of the FLRW

space without a central object. Hence, there is only a cosmological apparent horizon
and no black hole apparent horizons at late times: the central singularity at ρ = 0
becomes naked.

The radii ρ of the apparent horizons and the time t can be expressed in the para-
metric form

ρ(x) = t(x)
δ (1+2δ )

1−δ C2

x
(1− x)

q+2δ−1
q (1+ x)

q−2δ+1
q , (26)

t(x) =

⎧⎨
⎩ (1−δ )
δ (1+2δ )C2

x(1+ x)
2(−q+δ−1)

q

(1− x)
2(δ−1)

q

[
1+

2(q+2δ −1)x
q(1− x)2

]⎫⎬
⎭

1−δ
2δ2+2δ−1

,(27)

using x as a parameter. Fig. 1 reports ρ versus t for the parameter values C2 = 1
and δ = 0.13, showing that two inner horizons develop after the Big Bang covering
the central singularity ρ = 0, then they approach each other, merge, and disappear,
while a third, cosmological horizon keeps expanding. The ρ = 0 singularity be-
comes naked after this merging event.

3 Discussion and conclusions

Cosmologists may be detecting deviations from GR and therefore it is necessary
to understand spherical solutions of f (R) gravity, which has been proposed as a
simple alternative to the mysterious dark energy. Since the Jebsen-Birkhoff theorem
fails in these theories, spherical solutions do not have to be static. f (R) theories
are designed with a built-in dynamical cosmological constant to model the present
acceleration of the universe, hence analytical spherical solutions describing a central
object embedded in a FLRW background are the relevant ones. Unfortunately, such
solutions are poorly understood even in GR [59, 21, 9, 8, 35, 36, 25, 47, 29, 40,
34, 26]. It seems difficult to find generic solutions describing black holes embedded
in FLRW backgrounds. Finding numerically spherical interior solutions of f (R)
gravity is also an active area of research [28, 1, 50, 49, 31, 2, 15, 37, 62]. All these
issues deserve further attention in the future.
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Gravitational Zero Point Energy and the

Induced Cosmological Constant

Remo Garattini

Abstract We discuss how to extract information about the cosmological con-
stant from the Wheeler-DeWitt equation, considered as an eigenvalue of a Sturm-
Liouville problem in a generic spherically symmetric background. The equation
is approximated to one loop with the help of a variational approach with Gaus-
sian trial wave functionals. A canonical decomposition of modes is used to sepa-
rate transverse-traceless tensors (graviton) from ghosts and scalar. We show that no
ghosts appear in the final evaluation of the cosmological constant. A zeta function
regularization and a ultra violet cutoff are used to handle with divergences. A renor-
malization procedure is introduced to remove the infinities. We compare the result
with the one obtained in the context of noncommutative geometries

1 Introduction

One of the biggest challenges of our century is the explanation of why the observed
cosmological constant is so small when compared to the one estimated by Zero
Point Energy (ZPE) computations in Quantum Field Theory. Indeed there exists a
difference of 120 orders of magnitude between them. However, it appears that a
definitive answer is still lacking. One possible approach to this problem comes from
the Wheeler-DeWitt equation (WDW)[1], which is described by

HΨ =

[
(2κ)Gi jklπ i jπkl−

√
g

2κ
(3R−2Λ

)]
Ψ = 0, (1)

where κ = 8πG, Gi jkl is the super-metric and 3R is the scalar curvature in three
dimensions. The main reason to use such an equation is that its most general formu-
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lation intrinsically includes a cosmological term. Moreover, if we formally re-write
the WDW equation as1[2]

1
V

∫
D [gi j]Ψ ∗ [gi j]

∫
Σ d3xΛ̂ΣΨ [gi j]∫

D [gi j]Ψ ∗ [gi j]Ψ [gi j]
=

1
V

〈
Ψ
∣∣∫
Σ d3xΛ̂Σ

∣∣Ψ〉
〈Ψ |Ψ〉 =−Λ

κ
, (2)

where
V =

∫
Σ

d3x
√

g (3)

is the volume of the hypersurface Σ and

Λ̂Σ = (2κ)Gi jklπ i jπkl−√g3R/(2κ) , (4)

we recognize that the WDW equation can be represented by an expectation value.
In particular, (2) represents the Sturm-Liouville problem associated with the cos-
mological constant. In this form the ratio Λc/κ represents the expectation value of
Λ̂Σ without matter fields. The related boundary conditions are dictated by the choice
of the trial wave functionals which, in our case are of the Gaussian type. Different
types of wave functionals correspond to different boundary conditions. The choice
of a Gaussian wave functional is justified by the fact that we would like to explain
the cosmological constant (Λc/κ) as a ZPE effect. To fix ideas, we will work with
the following form of the metric

ds2 =−N2 (r)dt2 +
dr2

1− b(r)
r

+ r2 (dθ 2 + sin2 θdφ 2) , (5)

where b(r) is subject to the only condition b(rt) = rt . As a first step, we begin
to decompose the gravitational perturbation in such a way to obtain the graviton
contribution enclosed in (2).

2 Extracting the graviton contribution

We can gain more information if we consider gi j = ḡi j + hi j,where ḡi j is the back-
ground metric and hi j is a quantum fluctuation around the background. Thus (2)
can be expanded in terms of hi j. Since the kinetic part of Λ̂Σ is quadratic in the
momenta, we only need to expand the three-scalar curvature

∫
d3x
√

g3R up to the
quadratic order. However, to proceed with the computation, we also need an orthog-
onal decomposition on the tangent space of 3-metric deformations[4, 5]:

hi j =
1
3
(σ +2∇ ·ξ )gi j +(Lξ )i j +h⊥i j . (6)

The operator L maps ξi into symmetric tracefree tensors

1 See also Ref.[3] for an application of the method to a f (R) theory.
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(Lξ )i j = ∇iξ j +∇ jξi− 2
3

gi j (∇ ·ξ ) , (7)

h⊥i j is the traceless-transverse component of the perturbation (TT), namely gi jh⊥i j = 0,
∇ih⊥i j = 0 and h is the trace of hi j. It is immediate to recognize that the trace element
σ = h−2(∇ ·ξ ) is gauge invariant. If we perform the same decomposition also on
the momentum π i j, up to second order (2) becomes

1
V

〈
Ψ
∣∣∣∣∫Σ d3x

[
Λ̂⊥Σ + Λ̂ ξΣ + Λ̂

σ
Σ

](2)∣∣∣∣Ψ
〉

〈Ψ |Ψ〉 =−Λ
κ
. (8)

Concerning the measure appearing in (2), we have to note that the decomposi-
tion (6) induces the following transformation on the functional measure Dhi j →
Dh⊥i jDξiDσJ1, where the Jacobian related to the gauge vector variable ξi is

J1 =

[
det
(
�gi j +

1
3
∇i∇ j−Ri j

)] 1
2
. (9)

This is nothing but the famous Faddev-Popov determinant. It becomes more trans-
parent if ξa is further decomposed into a transverse part ξ T

a with ∇aξ T
a = 0 and a

longitudinal part ξ ‖a with ξ ‖a = ∇aψ , then J1 can be expressed by an upper triangular
matrix for certain backgrounds (e.g. Schwarzschild in three dimensions). It is im-
mediate to recognize that for an Einstein space in any dimension, cross terms vanish
and J1 can be expressed by a block diagonal matrix. Since detAB = detAdetB, the
functional measure Dhi j factorizes into

Dhi j =
(
det�T

V
) 1

2

(
det
[

2
3
�2 +∇iRi j∇ j

]) 1
2
Dh⊥i jDξ

T Dψ (10)

with
(
�i j

V

)T
=�gi j−Ri j acting on transverse vectors, which is the Faddeev-Popov

determinant. In writing the functional measure Dhi j, we have here ignored the ap-
pearance of a multiplicative anomaly[6]. Thus the inner product can be written as

∫
DρΨ ∗

[
h⊥i j

]
Ψ ∗
[
ξ T ]Ψ ∗ [σ ]Ψ [h⊥i j

]
Ψ
[
ξ T ]Ψ [σ ] , (11)

where

Dρ = Dh⊥i jDξ T Dσ
(
det�T

V
) 1

2

(
det
[

2
3
�2 +∇iRi j∇ j

]) 1
2
. (12)

Nevertheless, since there is no interaction between ghost fields and the other com-
ponents of the perturbation at this level of approximation, the Jacobian appearing in
the numerator and in the denominator simplify. The reason can be found in terms of
connected and disconnected terms. The disconnected terms appear in the Faddeev-
Popov determinant and these ones are not linked by the Gaussian integration. This
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means that disconnected terms in the numerator and the same ones appearing in the
denominator cancel out. Therefore, (8) factorizes into three pieces. The piece con-
taining Λ̂⊥Σ is the contribution of the transverse-traceless tensors (TT): essentially is
the graviton contribution representing true physical degrees of freedom. Regarding
the vector term Λ̂T

Σ , we observe that under the action of infinitesimal diffeomor-
phism generated by a vector field εi, the components of (6) transform as follows[4]

ξ j −→ ξ j + ε j, h−→ h+2∇ ·ξ , h⊥i j −→ h⊥i j . (13)

The Killing vectors satisfying the condition ∇iξ j +∇ jξi = 0, do not change hi j, and
thus should be excluded from the gauge group. All other diffeomorphisms act on
hi j nontrivially. We need to fix the residual gauge freedom on the vector ξi. The
simplest choice is ξi = 0. This new gauge fixing produces the same Faddeev-Popov
determinant connected to the Jacobian J1 and therefore will not contribute to the
final value. We are left with

1
V

〈
Ψ⊥
∣∣∣∫Σ d3x

[
Λ̂⊥Σ
](2)∣∣∣Ψ⊥〉〈

Ψ⊥|Ψ⊥〉 +
1
V

〈
Ψσ
∣∣∣∫Σ d3x

[
Λ̂σΣ
](2)∣∣∣Ψσ〉

〈Ψσ |Ψσ 〉 =−Λ
⊥

κ
− Λ

σ

κ
.

(14)
Note that in the expansion of

∫
Σ d3x

√
gR to second order, a coupling term between

the TT component and scalar one remains. However, the Gaussian integration does
not allow such a mixing which has to be introduced with an appropriate wave func-
tional. Extracting the TT tensor contribution from (2) approximated to second order
in perturbation of the spatial part of the metric into a background term ḡi j, and a
perturbation hi j, we get

Λ̂⊥Σ =
1

4V

∫
Σ

d3x
√

ḡGi jkl
[
(2κ)K−1⊥ (x,x)i jkl +

1
(2κ)

(�̃L
)a

j K⊥ (x,x)iakl

]
, (15)

where (
�̃Lh

⊥
)

i j
=
(
�Lh⊥

)
i j
−4Rk

ih
⊥
k j +

3Rh⊥i j (16)

is the modified Lichnerowicz operator and �Lis the Lichnerowicz operator defined
by

(�Lh)i j =�hi j−2Rik jlhkl +Rikhk
j +R jkhk

i �=−∇a∇a. (17)

Gi jkl represents the inverse DeWitt metric and all indices run from one to three.
Note that the term −4Rk

ih
⊥
k j+

3Rh⊥i j disappears in four dimensions. The propagator
K⊥ (x,x)iakl can be represented as

K⊥ (−→x ,−→y )iakl =∑
τ

h(τ)⊥ia (−→x )h(τ)⊥kl (−→y )

2λ (τ)
, (18)

where h(τ)⊥ia (−→x ) are the eigenfunctions of �̃L. τ denotes a complete set of indices
and λ (τ) are a set of variational parameters to be determined by the minimization
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of (15). The expectation value of Λ̂⊥Σ is easily obtained by inserting the form of the
propagator into (15) and minimizing with respect to the variational function λ (τ).
Thus the total one loop energy density for TT tensors becomes

Λ
8πG

=−1
2∑τ

[√
ω2

1 (τ)+
√
ω2

2 (τ)
]
. (19)

The above expression makes sense only for ω2
i (τ)> 0, where ωi are the eigenvalues

of �̃L. In the next section, we will explicitly evaluate (19) for a background of
spherically symmetric type.

3 One loop energy density

3.1 Conventional regularization and renormalization

The reference metric (5) can be cast into the following form

ds2 =−N2 (r (x))dt2 +dx2 + r2 (x)
(
dθ 2 + sin2 θdφ 2) , (20)

where
dx =± dr√

1− b(r)
r

(21)

and b(r) a generic shape function. Specific examples are

b(r) =
ΛdS

3
r3; b(r) =−ΛAdS

3
r3 and b(r) = 2MG. (22)

However, we would like to maintain the form of the line element (20) as general as
possible. With the help of Regge and Wheeler representation[7], the Lichnerowicz
operator

(�̃Lh⊥
)

i j can be reduced to

[
− d2

dx2 +
l (l +1)

r2 +m2
i (r)
]

fi (x) = ω2
i,l fi (x) i = 1,2 , (23)

where we have used reduced fields of the form fi (x) = Fi (x)/r and where we have
defined two r-dependent effective masses m2

1 (r) and m2
2 (r)⎧⎪⎪⎨

⎪⎪⎩
m2

1 (r) =
6
r2

(
1− b(r)

r

)
+ 3

2r2 b′ (r)− 3
2r3 b(r)

m2
2 (r) =

6
r2

(
1− b(r)

r

)
+ 1

2r2 b′ (r)+ 3
2r3 b(r)

(r ≡ r (x)) . (24)
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In order to use the W.K.B. method considered by ‘t Hooft in the brick wall
problem[8], from (23) we can extract two r-dependent radial wave numbers

k2
i
(
r, l,ωi,nl

)
= ω2

i,nl−
l (l +1)

r2 −m2
i (r) i = 1,2 . (25)

Then the counting of the number of modes with frequency less than ωi is given
approximately by

g̃(ωi) =
∫ lmax

0
νi (l,ωi)(2l +1)dl. (26)

νi (l,ωi) is the number of nodes in the mode with (l,ωi), such that (r ≡ r (x))

νi (l,ωi) =
1
π

∫ +∞

−∞
dx
√

k2
i (r, l,ωi). (27)

Here it is understood that the integration with respect to x and lmax is taken over
those values which satisfy k2

i (r, l,ωi)≥ 0. With the help of (26,27), (19) becomes

Λ
8πG

=− 1
π

2

∑
i=1

∫ +∞

0
ωi

dg̃(ωi)

dωi
dωi. (28)

This is the one loop graviton contribution to the induced cosmological constant. The
explicit evaluation of (28) gives

Λ
8πG

= ρ1 +ρ2 =− 1
4π2

2

∑
i=1

∫ +∞
√

m2
i (r)
ω2

i

√
ω2

i −m2
i (r)dωi, (29)

where we have included an additional 4π coming from the angular integration. The
use of the zeta function regularization method to compute the energy densities ρ1
and ρ2 leads to

ρi (ε) =
m4

i (r)
64π2

[
1
ε
+ ln

(
4μ2

m2
i (r)

√
e

)]
i = 1,2 , (30)

where we have introduced the additional mass parameter μ in order to restore
the correct dimension for the regularized quantities. Such an arbitrary mass scale
emerges unavoidably in any regularization scheme. The renormalization is per-
formed via the absorption of the divergent part into the re-definition of a bare classi-
cal quantity. Here we have two possible choices: the induced cosmological constant
Λ or the gravitational Newton constant G. In any case a certain degree of arbi-
trariness is present because of the scale parameter μ . However, it is instructive a
comparison of the result in (30) with the one which can be obtained by imposing a
UV cutoff. A direct calculation leads to (i = 1,2)

∫ +∞
√

m2
i (r)
ω2

i

√
ω2

i −m2
i (r)dωi
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=
xi=ωi/

√
m2

i (r)

m4
i (r)
4

[
x3

i

√
x2

i −1− xi

2

√
x2

i −1− 1
2

ln
(

xi +
√

x2
i −1

)]ωUV /
√

m2
i (r)

1

� m4
i (r)
4

⎡
⎣ ω4

UV

m4
i (r)

− ω2
UV

2m2
i (r)

− 1
2

ln

⎛
⎝ 2ωUV√

m2
i (r)

⎞
⎠
⎤
⎦ , (31)

where ωUV �
√

m2
i (r). Nevertheless, for some backgrounds in some ranges,

m2
0 (r) = m2

1 (r) =−m2
2 (r) . (32)

Thus, in these cases

Λ
8πG

= ρ1+ρ2 =− 1
4π2

[∫ +∞
√

m2
0(r)
ω2
√
ω2−m2

0 (r)dω+
∫ +∞

0
ω2
√
ω2 +m2

0 (r)dω
]

�− 1
4π2

[
ω4

UV
2

+
m4

0 (r)
8

ln
(

m2
0 (r)

√
e

4ω2
UV

)]
, (33)

where we have used ∫ +∞

0
ω2
√
ω2 +m2

0 (r)dω

=
x=ω/

√
m2

0(r)

m4
0 (r)
4

[
x3
√

x2 +1+
x
2

√
x2 +1− 1

2
ln
(

x+
√

x2 +1
)]ωUV /

√
m2

0(r)

0
.

(34)
The Schwarzschild Schwarzschild-de Sitter (SdS) and Schwarzschild-Anti de Sitter
(SAdS) backgrounds satisfy relation (32) in a region close to the throat. Indeed, by
expanding b(r) close to the throat, one gets (r ≡ r (x))

⎧⎪⎨
⎪⎩

m2
1 (r) =

6
r2 − 15rt

2r3 − 6b′(rt )
r2 + 15b′(rt )rt

2r3

m2
2 (r) =

6
r2 − 9rt

2r3 − 4b′(rt )
r2 + 9b′(rt )rt

2r3

(35)

and for example, for the Schwarzschild case where b(r) = rt = 2MG, we get
⎧⎨
⎩

m2
1 (r) =− 3rt

2r3

m2
2 (r) = + 3rt

2r3

. (36)

Note that (39) works when the effective masses satisfy relation (32), otherwise the
zeta function and the cutoff regularizations produce different results as shown by
(31). The divergence can be eliminated by separating the cosmological constant Λ ,
into a bare cosmological constant Λ0 and a divergent quantity Λ div, where
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Λ div =
Gm4

0 (r)
ε32π2 , (37)

or

Λ div
UV =− G

4π2

[
ω4

UV
2

+
m4

0 (r)
8

ln
(
μ2√e
4ω2

UV

)]
. (38)

In both cases, the remaining finite value for the cosmological constant reads

Λ0

8πG
= (ρ1 (μ)+ρ2 (μ)) = ρT T

e f f (μ ,r) =
m4

0 (r)
32π2 ln

(
4μ2

m2
0 (r)

√
e

)
. (39)

3.2 The example of non-commutative theories

Non Commutative theories provide a powerful method to naturally regularize diver-
gent integrals appearing in (29). Basically, the number of states is modified in the
following way[11]

dn =
d3xd3k

(2π)3 =⇒ dni =
d3xd3k

(2π)3 exp
(
−θ

4
k2

i

)
, (40)

with
k2

i = ω2
i,nl−m2

i (r) i = 1,2. (41)

This deformation corresponds to an effective cut off on the background geometry
(20). The UV cut off is triggered only by higher momenta modes � 1/

√
θ which

propagate over the background geometry. The virtue of this kind of deformation
is its exponential damping profile, which encodes an intrinsic nonlocal character
into fields fi(x). Plugging (27) into (26) and taking account of (40), the number of
modes with frequency less than ωi, i = 1,2 is given by

g̃(ωi) =
1
π

∫ +∞

−∞
dx
∫ lmax

0
(2l +1)

√
ω2

i,nl−
l (l +1)

r2 −m2
i (r)exp

(
−θ

4
k2

i

)
dl

(42)
and the induced cosmological constant becomes

Λ
8πG

=
1

6π2

[∫ +∞
√

m2
0(r)

√(
ω2−m2

0 (r)
)3e−

θ
4 (ω

2−m2
0(r))

+
∫ +∞

0

√(
ω2 +m2

0 (r)
)3e−

θ
4 (ω

2+m2
0(r))
]
, (43)

which integrated leads to
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Λ
8πG

=
1

12π2

(
4
θ

)2(
ycosh

( y
2

)
− y2 sinh

( y
2

))
K1

( y
2

)
+ y2 cosh

( y
2

)
K0

( y
2

)
,

(44)
where K0 (y) and K1 (y) are the modified Bessel function and

y =
m2

0 (r)θ
4

. (45)

The asymptotic properties of (44) show that the one loop contribution is everywhere
regular. Indeed, we find that when y→+∞,

Λ
8πG

� 1
6π2θ 2

√
π
y

[
3+
(
8y2 +6y+3

)
exp(−y)

]→ 0. (46)

Conversely, when y→ 0, we obtain

Λ
8πG

� 4
3π2θ 2

[
2−
(

7
8
+

3
4

ln
( y

4

)
+

3
4
γ
)

y2
]
→ 8

3π2θ 2 (47)

a finite value for Λ . Note that expression (44) can be used when the background
satisfies the relation (32). For the other cases, we find that the effective masses
contribute in the same way at one loop. Thus (43) becomes

Λ
8πG

=
1

6π2

[∫ +∞
√

m2
1(r)

√(
ω2−m2

1 (r)
)3e−

θ
4 (ω

2−m2
1(r))

+
∫ +∞
√

m2
2(r)

√(
ω2−m2

2 (r)
)3e−

θ
4 (ω

2−m2
2(r))
]
. (48)

For example, when
m2

1 (r) = m2
2 (r) , (49)

(48) reduces to

Λ
8πG

=
1

6π2

(
4
θ

)2(1
2

y(1− y)K1

( y
2

)
+

1
2

y2K0

( y
2

))
exp
( y

2

)
. (50)

The asymptotic expansion of (50) leads to

Λ
8πG

� 1
6π2

(
4
θ

)2 3
8

√
π
y
→ 0, (51)

when y→ ∞. On the other hand, when z→ 0, one gets

Λ
8πG

� 1
6π2

(
4
θ

)2 [
1− z

2
+

(
− 7

16
− 3

8
ln
( z

4

)
− 3

8
γ
)

z2
]
→ 8

3π2θ 2 , (52)
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i.e. a finite value of the cosmological term.

4 Summary and conclusions

In this contribution, the effect of a ZPE on the cosmological constant has been in-
vestigated using two specific geometries such as dS and AdS metrics. The compu-
tation has been done by means of a variational procedure with a Gaussian Wave
Functional which should be a good candidate for a ZPE calculation. We have found
that only the graviton is relevant[9]. Actually, the appearance of a ghost contribu-
tion is connected with perturbations of the shift vectors[4]. In this work we have
excluded such perturbations. As usual, in ZPE calculation we meet the problem of
divergences which are regularized with zeta function techniquesor by introducting a
UV cutoff. After regularization , we have adopted to remove divergences by absorb-
ing them into the induced cosmological constant Λ . Another possibility of keeping
under control divergences comes from a NCG induced minimal length. As a result
we get a modified counting of graviton modes. This let us obtain everywhere regu-
lar values for the cosmological constant, independently of the chosen background,
which nevertheless is of a spherically symmetric type. Although the result seems to
be promising, we have to note that the evaluation is at the Planck scale.
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Lensing effects in ringholes and the multiverse

Abstract Ringholes are space-time tunnelings connecting two asymptotically flat
regions by means of a throat with the topology of a torus. This report considers
the processes of semiclassical thermal emission from ringholes. It is shown that at
or near the throat the ringholes can be characterized as a mixture of two thermal
sources, one at positive temperature and the other at negative temperature which,
respectively, emit usual black body radiation and phantom-like radiation, leading to
two possible limiting situations, one similar to a wormhole in that it behaves just
like a diverging lens, and the other similar to a black hole in that it behaves only as
a converging lens.

1 On wormholes, rinholes and the multiverse

The so called ringholes [1] may now become a space-time construct pertaining to
general relativity with remarkable pedagogical and even observational interests. A
set of potentially observable effects from space-time tunnelings was first considered
in a couple of papers at the end of the twenty century [2,3]. More recently, Shatskiy
[4] has studied in greater detail the lensing effect produced by a wormhole in a beam
of light rays. He obtained that the image that could be obtained from a single lumi-
nous source would be that of a bright circle (See Fig. 1). In the light of this result
it was speculated [5] that, since wormholes may connect our universe with a paral-
lel universe, the circular signature which was induced by the lensing effect from a
wormholes might be uncovering the very existence of a parallel universe. However,
it is worth noticing that there are many astronomical objects, including black holes,
galaxies and negative-energy stars, which may leave a bright ring as a result from
the induced lensing. Owing to their optical properties, which simultaneously corre-
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Single-Ring Wormhole signature

• Einstein Rings

• Black Holes

Luminous
Source

EARTH

Astronomical Wormholes: Lensing Effect
A. Shatskiy (2008):

Fig. 1 Gravitational lensing effect induced by a wormhole into the light rays from a luminous
source. The figure shows the originally calculated ring which could be indistinguishable from the
rings induced by black holes, negative-energy stars or galaxies. When the continuous values of the
azimuthal and polar angles θ and φ of the throat sphere are also taken into account, then the inner
region of the circle is filled with the luminosity yield from the deflected rays as well, producing a
bright disc, such as it was pointed out by Shatskiy himself [10].

sponded to those of a divergent and a convergent lens [1], ringholes actually might
be expected to ultimately be some kind of mixture of black- and worm-holes, at least
from a thermodynamical point of view (Fig. 2). It is still unclear however whether
ringholes really exist in nature though the possible imprint that they would leave in
the universe appears as particularly distinctive in the form of two concentric bright
rings (see Fig. 3(b)) [6], a signature which might have been already identified in a
glowing double ring recently detected by the Hubble telescope [7] and may be point-
ing to a direct detection of some features of a universe other than ours own. If so,
this would be the first observational direct evidence of the existence of a real mul-
tiverse. Indeed a ringhole is nothing but a wormhole where the spherical symmetry
on the throat has been replaced for that of a torus [1] (See Fig. 2 for a pictorial rep-
resentation of a ringhole). That more complicated topology allows any light ray or
particle to follow an itinerary through the ringhole interior along which they may not
find any exotic or phantom matter but just ordinary matter, actually a safer way than
that which can be followed through wormholes where the traveler inexorably be-
comes involved with matter having exotic properties, potentially incompatible with
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the very concept of life [1]. I would like to emphasize now that there exists at least

THROAT

FLARING
INWARD

FLARING
OUTWARD

Z

X

Y

Fig. 2 Pictorial representation of the space-time of a ringhole connecting two asymptotically flat
regions belonging to the same universe, or to two different universes, as placed on a rectangular
coordinate system. It satisfies the topology of a torus and, therefore, it can be embedded in a surface
which partly flares outward, like a wormhole with spherical symmetry, and partly flares inward like
a compact object made up of ordinary energy, such as a black hole or a neutron star.

one highly nontrivial standpoint from whose perspective one might reach the rather
tentative conclusion that, whereas the laws of quantum mechanics may prohibit the
existence of isolated wormholes, they in any event are perfectly compatible with the
presence of ringholes, no matter whether they are isolated or not. This apparently
unexpected result came about from the consideration of the so called quantum inter-
est conjecture of Ford and Roman [8], which follows from the quantum inequalities
and according to which a positive energy pulse must always overcompensate any
negative energy pulse by an amount which is a monotonically increasing function
of the pulse separation. An isolated wormhole thermally radiating phantom energy
at a negative temperature [9] seems to violate such a conjecture. However, in prin-
ciple, at least one might always accommodate the relative proportion of phantom
to ordinary matter in a ringhole in such a way that, when thermally radiating, the
intensity of the positive-energy emitted pulses always overcompensated those con-
taining phantom energy. It is in this sense that ringholes are more likely to exist than
wormholes.

In fact, it is a result of the present paper that the very structure of ringholes makes
us to expect that the semiclassical thermal radiation processes spontaneously taking
place in them actually be a mixture from those thermal radiations being emitted
from black bodies simultaneously radiating at positive and negative temperatures, a
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process which, as I have said above, at least could always be made to satisfy the Ford
and Roman conjecture [8] by adjusting the geometrical and topological parameters
that define a ringhole (Fig. 3 (a)), and that we show in this paper to unavoidably
lead to a remanent final construct representable in the form of some sort of either
wormhole or black hole that would be unable to radiate any more, provided that no
accretion of dark or phantom energy took place.

After reviewing the geometry of ringholes and their occurrence in the universe
and multiverse, by using a heuristic procedure based on the Hayward formulation
[9], this report will deal with the semiclassical thermal properties of ringholes and
their connections with the allowed geometrical structure of these tunnels, always
respecting the quantum interest conjecture (or its complementary version) in terms
of a vacuum made up of positive (negative) internal energy, placed in a given multi-
verse where these toroidal tunnelings can connect two universes to each other.

2 The ringhole space-time

In this section we shall very briely review the characteristics of the space-time of a
ringhole, particularly emphasizing its properties as a double (diverging and converg-
ing) optical lens and the plausible imprint that ringholes may leave from luminous
objects placed behind them in our own universe or in other universe if we consider
a multiverse context. Figs. 2 and 3 (a) show the set of geometrical parameters [11],
we can finally obtain for the three-dimensional space-time metric that corresponds
to a torus [1]

ds2 =−C2r2dt2 +b2

⎡
⎣1+

C1a2 sin2ϕ2

r6
(

1− A2

r4

)
⎤
⎦dϕ2

2 +m2dϕ2
1 (1)

where
A = a2−b2, m = a−bcosϕ2, r =

√
a2 +b2−2abcosϕ2, (2)

with C1 and C2 arbitrary integration constants, and a and b are the radius of the
circumference generated by the circular axis of the torus and that of a torus section,
respectively, both radii being constant in metric (1), with a > b. Metric (1) is defined
for 0≤ t ≤ ∞, a−b≤ r ≤ a+b and the angles (see Fig. 2 (a)) 0≤ ϕ1, ϕ2 ≤ 2π .

In order to check the properties of a ringhole as an optical lens, we now write the
static spacetime metric of a single, traversable ringhole in the form [1,11]

ds2 =−dt2 +

(
n�
r�

)2

d�2 +m2
�dϕ2

1 +
(
�2 +b2

0
)

dϕ2
2 , (3)

where−∞< t <+∞, with−∞<�<+∞ the proper radial distance of each transver-
sal section of the torus, and
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m� = a− (
�2 +b2

0
)1/2

cosϕ2, n� =
(
�2 +b2

0
)1/2−acosϕ2, (4)

r� =
√

a2 + �2 +b2
0−2

(
�2 +b2

0

)1/2 acosϕ2, (5)

0
from +∞ to its minimum value b0 at the throat radius, and as � increases onward
to +∞, b increases monotonously to +∞ again. Now, for metric (3) to describe a
traversable ringhole we must embed it in a three-dimensional Euclidean space at
fixed time t [1]. We should consider a three-geometry that would respect the topol-
ogy of a torus and satisfy a ≥ b ≤ �, so it will suffice to confining attention to the
maximum- and minimum-circumference slices, that is ϕ2 = π,0, through it. In the
first case, r = m = n = a+b, and

ds2 =
dr2

1− b2
0

b2

+ r2dϕ2
1 .

We visualize then this slice as removed from space-time (3) and embedded in the
three-dimensional Euclidean space which is taken to be given in terms of cylindrical
coordinates such as

ds2 = dz2 +dr2 + r2dφ 2 =

[
1+

(
dz
dr

)2
]

dr2 + r2dφ 2, (6)

with dz/dr =
(
b2/b2

0−1
)−1/2 in order for metric (6) to be the same as the previous

one. This condition displays the way in which, provided we have fixed a ≥ b, the
function b ≡ b(�) shapes the ringhole spatial geometry. In case that we consider
the minimum-circumference slice, ϕ2 = 0, through the geometry of three-space at a
fixed time, then r = m = −n = a−b, and the previous metric is obtained again, so
that we always achieve the latter condition, no matter the choice of slice.

The requirement that ringholes be connectible to asymptotically flat space-time
entails at the throat that the embedding surface flares outward for 2π −ϕc

2 > ϕ2 >
ϕc

2, and flares inward for−ϕc
2 <ϕ2 <ϕc

2, with ϕc
2 = arccos(b/a), which respectively

satisfy the condition d2r/dz2 > 0 and d2r/dz2 < 0, at or near the throat. It follows
[1] that one had to expect lensing effects to occur at or near the ringhole throat, that
is to say, the mouths would act like a diverging lens for world lines along 2π−ϕc

2 >
ϕ2 > ϕc

2, and like a converging lens for world lines along −ϕc
2 < ϕ2 < ϕc

2. No
lensing actions would therefore take place at the angular horizons placed at ϕ2 = ϕc

2
and ϕ2 = 2π−ϕc

2.
In fact, in the case of ringholes, instead of producing just a single flaring outward

for light rays passing through the wormhole throat [11], this multiply connected
topology, in addition to that flaring outward (diverging) effect, also produces a flar-
ing inward (converging) effect [1] on the light rays that pass through its throat, in
such a way that an observer on Earth would interpret light passing through the ring-
hole throat from a single luminous source as coming from two bright, glowing con-
centric rings, which forms up the distinctive peculiar pattern from ringholes (See

in which b is the throat radius. As � increases from−∞ to 0, b decreases monotonously
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Fig. 3 (b) [6]). That pattern cannot be generated by any other possible disturbing
astronomical object other than the very implausible set of three luminous massive
objects (let us say galaxies) which must be so perfectly aligned along the sigh line
that its occurrence becomes extremely unlikely [7]. The angular radii of the two
concentric bright rings shown in Fig. 3(b) are given by the approximate expressions

ΘW ∼
√

4GMdLS

c2dLdS

(
1− ϕ

c
2

2π

)

ΘB ∼
√

4GMdLSϕc
2

c2πdLdS
,

where dLS is the distance between the luminous source and the ringhole’s mouth
closest to Earth (named lens), dS is the distance between the source and Earth, and
dL is the distance between the ringhole’s mouth closest to Earth (lens) and Earth. We
note that if a >> b, then ΘB >ΘW , and if b ∼ a, then ΘB <ΘW . the extreme case
for which we have a single ring with nearly double brightness (ΘB =ΘW ) would
take place when b = a/2.

3 Heuristic approach to thermal emission from ringholes

The ultimate physical reason why a wormhole radiates phantom energy at a neg-
ative temperature lies [9] on the feature that the surface embedding the wormhole
space-time flares outward at or near the throat, so that, unlike most gravitational
systems made out of ordinary matter, such as stars or black holes, wormhole throat
really always behaves like an optical diverging lens under any circumstances. That
is no longer the case with a ringhole where the optical properties that can be as-
cribed to its throat stem now from the feature that, depending on the value taken
on the angle, ϕ2, formed up by the radius of the torus section, b, with that of the
circumference generated by the circular axis of the torus, a, with a > b (see Fig. 2
(a)), the embedding surface flares either outward if 2π −ϕc

2 > ϕ2 > ϕc
2, or inward

when −ϕc
2 < ϕ2 < ϕc

2, with ϕc
2 = arccos(b/a).

Neither flaring nor lensing actions would therefore take place at the two existing
angular horizons at ϕ2 = ϕc

2 and ϕ2 = 2π−ϕc
2. It appears then most natural to ex-

pect that from the embedding surface sector defined by 2π−ϕc
2 >ϕ2 >ϕc

2 ringholes
would radiate phantom or exotic radiation at a negative temperature such as worm-
holes do [9], and from the embedding surface sector −ϕc

2 < ϕ2 < ϕc
2, separated

from the previous one by means of the above two angular horizons, the same ring-
hole simultaneously radiated ordinary positive-energy particles at a positive tem-
perature such as black holes do [12], both along thermally chaotic processes. We
can arrange the parameters in such a way that the positive-energy radiation always
overcompensated the negative-energy radiation in case that the vacuum surround-
ing the ringhole be characterized by a positive-energy fluid, like quintessential dark
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Fig. 3 Gravitational lens-
ing effect produced by a
ringhole from a single lumi-
nous source. (a) Parameters
defining the toroidal ringhole
throat in terms of which met-
ric (1) is defined. (b) Rays
passing near the outer and in-
ner surfaces respectively flare
outward and inward, leading
to a image from a single lu-
minous source placed behind
the ringhole which is made of
two concentric bright rings.
The relative mutual positions
of these rings would depend
on the distance between the
ringhole and the luminous
source. If that distance is
small enough then the larger
outer ring comes from the
flaring inward surface, and
conversely, if the distance
source-ringhole is increased
then the outer ring comes
from the outward surface, the
larger that distance the greater
the difference between the
radii of the two bright rings.
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energy [13], or vice versa, the negative-energy radiation always overcompensated
the positive-energy radiation when the surrounding vacuum would be a fluid with
negative internal energy, like phantom energy [14].

We would now estimate the expressions for these temperatures and their depen-
dence on the geometrical parameters defining the ringhole surface. The generalized
surface gravity for the case of a ringhole can be written as an extension to toroidal
symmetry from the surface gravity in the spherically symmetric case that corre-
sponds to a wormhole. It gets the form

κ =
b2

0
2b(a2 +b2−2abcosϕ2)

−2π
(
a2 +b2−2abcosϕ2

)1/2
(ε− pr) , (7)

with ε the energy density and pr the radial pressure which depends on the angle ϕ2,
too. In the interval 2π−ϕc

2 > ϕ2 > ϕc
2 the combination ε− pr becomes negative [1]

and hence κ is definite positive. In case that−ϕc
2 < ϕ2 < ϕc

2 then [1] ε− pr > 0 and
therefore the generalized surface gravity κ becomes definite negative.

Now, from the general expression for gravitational temperature TG (see for ex-
ample [9])
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Fig. 4 Limiting ringholes in which a2 = b2. We have then two possible final situations. (A) if
a = b, then the process of thermal emission of positive- and negative radiation tends to that limit-
ing geometry where all ordinary energy contributing the ringhole with a > b is exhausted, leaving
a geometry which is equivalent to that of a wormhole in that the surface embedding it flares out-
ward but not inward, and is therefore made out of exotic, phantomlike energy characterized by a
negative temperature; and (B) if a =−b then the process of thermal emission tends to that limiting
geometry where now all exotic energy contributing the ringhole with |a|> |b| is exhausted, leaving
a geometry which is now equivalent to that of a black hole, instead of a wormhole, in that the sur-
face embedding the ringhole spacetime metric (1) always flares inward, being therefore made out
of ordinary matter with positive internal energy, which is characterized by a positive temperature.
Whether or not the inherent violation of the quantum interest conjecture prevented the onset into a
new period of thermal emission starting with the limiting ringhole in case (A), or into the emission
process itself from the very beginning in case (B), is a matter to be further investigated.

TG =
− κ |b=b0

2π
, (8)

it follows then that, as it was to be expected for an absolute value of the radius a suf-
ficiently larger than that for radius b, (i) whereas the temperature on the embedding
surface that flares outward is always negative, that on the flaring inward embed-
ding surface is always positive and its absolute value is larger or smaller than that
for the negative temperature, depending on the nature of the surrounding vacuum,
and (ii) in spite of that, because the involved negative-temperature system and the
positive-temperature system can never come in contact in the present case (because
the temperature vanishes at the two angular horizons), and hence the former sys-
tem is not definite hotter or coulder than the latter one, at least at the first stages of a
large-a ringhole evaporation, the intensity and energy of the radiation pulses emitted
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at the positive temperature may well overcompensate those generated at a negative
temperature or vice versa, so satisfying the generalized quantum interest conjecture
(see next section, Fig. 5). It also follows that as the above overall thermal process

Fig. 5 The interplay between the angular horizons and the trapping horizons during the thermal
emission of ringholes.

of combined emission progresses, the ringhole may be converted into either some
sort of wormhole in that the surface embedding it would tend to only flare outward;
that precisely happening when a becomes exactly equal to b (see Fig. 4(A)) or some
sort of black hole in that the embedding surface tended to just flare inward, and this
takes place when a =−b (see Fig. 4(B)). These limiting geometric ringhole config-
urations either can only continue emitting phantom radiation at a negative temper-
ature as far as the restricted quantum interest conjecture is violated, such as it also
happens with spherically symmetric wormholes, or can emit ordinary radiation at a
positive temperature such as it happens with spherically symmetric black holes. It
is in this sense that ringholes with these limiting geometries are equivalent either
to a wormhole or to a black hole. There is still another aspect in which wormholes
or black holes and the above limiting ringhole configurations are again physically
though not geometrically equivalent. It is in that both types of tunneling (wormholes
and limiting ringholes with a = b) and both types of objects (black holes and limit-
ing ringholes with a = −b) would all leave the same gravitational signature on sky
when light coming to us from a luminous object is placed behind them, along the
line of sight, i.e. a single glowing ring of the kind already considered by Shatskiy
for single wormholes [4]. Unfortunately, such bright rings are not at all distinguish-
able from e.g. Einstein rings, or that is produced by stars with negative energy. It is
worth remarking, moreover, that the thermal emission process of ringholes can take
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Fig. 6 Thermal radiation from ringholes envisaged as the radiation from a receding mirror, anal-
ogously to how it happens in black holes [12]. Also in the present case the mode solutions for
the receding mirror are the same as the late-time asymptotic modes for a torus of a mixture phan-
tom/dark energy going to form the ringhole.

only place because one can always define a trapping horizon (see Fig. 5), similarly
to how we did for the case of wormholes [4]. Again, such as it was envisaged for
the case of black holes [15], also in the case of ringholes the thermal radiation can
be regarded to be the particle production originating from moving mirrors out of
a cosmic vacuum made up of a mixture of dark and phantom energies. Taking the
usual mirror trajectory, x =−t−Aexp(−2κt)+B, with A and B given constants, we
gain get the two limiting situations depicted in Fig. 4 (see Fig. 6). Thus, whereas the
limiting space-time 4(A) with a = b is obtained by only emitting phantom radiation
at T < 0, after a time

tW ∼ 5×103 πG2M3

h̄c4

(
1− ϕ

c
2

2π

)
,

the limiting space-time 4(B) with a = −b, can finally be reached by usual thermal
radiation at T > 0, after a time

tB ∼ 5×103 G2M3ϕc
2

h̄c4 .
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We finally note, moreover, that, whereas in a vacuum with positive energy the Ford-
Roman quantum interest conjecture [8] holds, if the vacuum is made out of phan-
tom energy, or any fluid having negative internal energy, then what could be called a
quantum altruism conjecture starts holding, implying that a pulse with positive en-
ergy must always be overcompensated by one with negative energy, the difference
between the two pulses being in this case proportional to the time elapsed from the
emission of the positive-energy pulse and the emission of the negative-energy pulse
(see Fig. 7). In fact, since the two subsystems respectively having positive and neg-

Fig. 7 Upper part: The
quantum interest conjecture.
Pulses of negative energy are
allowed by quantum theory
in a vacuum with positive
energy provided the three
conditions first introduced by
Ford and Roman are fulfilled
[8]. Lower part: The quantum
altruism conjecture. Pulses
with positive energy would be
permitted by quantum theory
in a vacuum with negative
internal energy under the
following three conditions.
1) The longer the positive
pulse lasts, the weaker it must
be. 2) A pulse with negative
energy must follow whose
magnitude exceeds that of the
initial positive-energy pulse.
3) The longer the time interval
between the two pulses, the
larger the positive-energy
pulse must be.
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ative temperature in a single ringhole can never be in contact, in spite that |T > 0| is
always smaller than |T < 0| by virtue of (7) and (8), it can be clearly deduced that,
on the one hand, if the universe in which we immerse the rihghole is dominated by
a positive internal energy fluid (i.e. ρ + p > 0), such as dark energy quintessence,
the whole ringhole system will be progressively enriched in its positive tempera-
ture component over that with negative temperature as time is going on, in such a
way that any emitted pulse with negative internal energy can always be overcom-
pensated by a pulse with positive internal energy, and conversely, if on the other
hand the universe is dominated by a negative internal energy fluid (i.e. ρ+ p < 0),
such as the phantom energy, then the whole ringhole system will be progressively
enriched in its negative-temperature component over that with positive temperature
as time is going on, and therefore any emitted pulse with positive internal energy
can always be overcompensated by a pulse with negative internal energy, in both
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cases the difference between the two pulses increasing as the time elapsed between
them becomes longer. The main conclusion of the present report ought to be that
ringholes, if they at all exist, could offer us a particularly useful way to eventu-
ally observe luminous phenomena taking place in other universes, so confirming the
very existence of parallel universes, and ultimately of the multiverse itself. Before
closing up this report, I would like to add a brief comment on the very debated issue
of the loss of quantum coherence, when applied to the case of the thermal emission
from ringholes. Since the thermal evaporation of ringholes would always lead to
final situations where some structures with nonzero energy are left, one can ensure
that the information that went to enter the ringhole throat manifesting in the form
of phantom and dark energy inhomogeneities, would always be preserved inside the
final structures, so avoiding the emergence of any information paradox in ringhole
thermal emission.
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Hamiltonian ADM Gravity in Non-Harmonic

Gauges with Well Defined Non-Euclidean

3-Spaces: How Much Darkness can be

Explained as a Relativistic Inertial Effect?

Luca Lusanna

Abstract In special and general relativity the synchronization convention of dis-
tant clocks may be simulated with a mathematical definition of global non-inertial
frames (the only ones existing in general relativity due to the equivalence principle)
with well-defined instantaneous 3-spaces. For asymptotically Minkowskian Einstein
space-times this procedure can be used at the Hamiltonian level in the York canon-
ical basis, where it is possible for the first time to disentangle tidal gravitational
degrees of freedom from gauge inertial ones. The most important inertial effect
connected with clock synchronization is the York time 3K(τ,σ r), not existing in
Newton gravity. This fact opens the possibility to describe some aspects of darkness
as a relativistic inertial effect in Einstein gravity by means of a Post-Minkowskian
reformulation of the Celestial Reference System ICRS.

In classical and quantum physics predictability is possible only if the relevant partial
differential equations have a well-posed Cauchy problem, whose pre-requisite is
the existence of a well defined 3-space (i.e. a clock synchronization convention)
supporting the Cauchy data.

In Galilei space-time there is no problem: time and Euclidean 3-space are abso-
lute.

Instead there is no intrinsic notion of 3-space, simultaneity, 1-way velocity of
light (two distant clocks are involved) in the absolute Minkowski space-time: only
the light-cone is intrinsically given as the locus of incoming and outgoing radiation.
The light postulate says that the 2-way (only one clock is involved) velocity of light
c is isotropic and constant. Its codified value replaces the rods (i.e. the standard of
length) in modern metrology, where an atomic clock gives the standard of time.
Einstein’s 1/2 synchronization convention 1 selects the Euclidean 3-spaces xo =

Sezione INFN di Firenze, Polo Scientifico, Via Sansone 1, 50019 Sesto Fiorentino (FI), Italy;
Phone: 0039-055-4572334, FAX: 0039-055-4572364; e-mail: lusanna@fi.infn.it

1 An inertial observer A send a ray of light at xo
i towards the (in general accelerated) observer B;

the ray is reflected towards A at a point P of B world-line and then reabsorbed by A at xo
f ; by
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ct = const. of the inertial frames centered on inertial observers: only in this case
the 2-way and 1-way light velocities coincide. However, with realistic accelerated
observers the convention breaks down and till recently there was no definition of
global non-inertial 3-spaces due to the coordinate singularities present in the 1+3
point of view (only the world-line of a time-like observer is given) both with Fermi
coordinates (crossing of the 3-spaces) and rotating frames (the horizon problem of
the rotating disk).

In [1] the theory of global non-inertial frames is fully developed in the 3+1 point
of view: besides the observer world-line one gives an admissible 3+1 splitting of
Minkowski space-time, i.e. a nice foliation whose leaves are instantaneous 3-spaces.
Lorentz-scalar observer-dependent radar 4-coordinates σA = (τ;σ r) are used: τ is
an arbitrary increasing function of the observer proper time and σ r are curvilin-
ear 3-coordinates on the 3-spaces Στ with the observer as origin. Each 3-space
is asymptotically Euclidean with asymptotic inertial observers at spatial infinity.
The inverse transformation σA �→ xμ = zμ(τ,σ r) defines the embeddings of the 3-
spaces Στ into Minkowski space-time and the induced 4-metric is gAB[z(τ,σ r)] =
[zμA ημν zνB](τ,σ r), where zμA = ∂ zμ/∂ σA and 4ημν = ε (+−−−) is the flat met-
ric (ε = ±1 according to either the particle physics ε = 1 or the general relativity
ε = −1 convention). While the 4-vectors zμr (τ,σu) are tangent to Στ , so that the
unit normal lμ(τ,σu) is proportional to εμαβγ [zα1 zβ2 zγ3](τ,σ

u), we have zμτ (τ,σ r) =

[N lμ +Nr zμr ](τ,σ r) (N(τ,σ r) = ε [zμτ lμ ](τ,σ r) and Nr(τ,σ r) = −ε gτr(τ,σ r) are
the lapse and shift functions).

The foliation is nice and admissible if it satisfies the conditions:
1) N(τ,σ r) > 0 in every point of Στ (the 3-spaces never intersect, avoiding the
coordinate singularity of Fermi coordinates);
2) ε 4gττ(τ,σ r)> 0, so to avoid the coordinate singularity of the rotating disk, and
with the positive-definite 3-metric 3grs(τ,σu)=−ε 4grs(τ,σu) having three positive
eigenvalues (these are the Møller conditions [1]);
3) all the 3-spaces Στ must tend to the same space-like hyper-plane at spatial infinity
(so that there are always asymptotic inertial observers to be identified with the fixed
stars).

These conditions imply that global rigid rotations are forbidden in relativistic
theories. In [1] there is the expression of the admissible embedding corresponding
to a 3+1 splitting of Minkowski space-time with parallel space-like hyper-planes
(not equally spaced due to a linear acceleration) carrying differentially rotating 3-
coordinates without the coordinate singularity of the rotating disk. It is the first
consistent global non-inertial frame of this type.

As shown in [1, 2] every isolated system (particles, strings, fluids, fields) ad-
mitting a Lagrangian L (matter) can be reformulated as a parametrized Minkowski
theory, in which the new embedding-dependent Lagrangian is L (matter,gAB[z]).

convention P is synchronous with the mid-point between emission and absorption on A’s world-
line, i.e. xo

P = xo
i +

1
2 (x

o
f − xo

i ).
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This action is invariant under frame-preserving 4-diffeomorphisms, so that the em-
beddings are gauge variables and the ten components of gAB[z] are the special-
relativistic inertial potentials 2. A change of clock synchronization (of the shape of
Στ ) and/or of the 3-coordinates into the 3-spaces is a gauge transformation: physics
does not change, only the appearances of phenomena change.

In this formulation the description of matter has to be done with quantities which
know the instantaneous 3-spaces Στ . For instance a Klein-Gordon field φ̃(x) will
be replaced with φ(τ,σ r) = φ̃(z(τ,σ r)); the same for every other field. Instead for
a relativistic particle with world-line xμ(τ) we must make a choice of its energy
sign: then it will be described by 3-coordinates ηr(τ) defined by the intersection
of the world-line with Στ : xμ(τ) = zμ(τ,ηr(τ)). Differently from all the previous
approaches to relativistic mechanics, the dynamical configuration variables are the
3-coordinates ηr

i (τ) and not the world-lines xμi (τ) (to rebuild them in an arbitrary
frame we need the embedding defining that frame!).

The inertial rest-frame instant form of the isolated system [1, 2] is obtained by
restricting the embedding to the inertial rest-frame centered on the Fokker-Pryce
center of inertia: its Euclidean Wigner-covariant 3-spaces are orthogonal to the con-
served 4-momentum of the isolated system. Every isolated system can be described
as a decoupled non-local (and therefore un-observable) canonical non-covariant
Newton-Wigner external center of mass 3, with an associated external realization
of the Poincare’ algebra, carrying a pole-dipole structure: the invariant mass M and
the rest spin S̄ of the isolated system. By construction, they depend upon Wigner-
covariant relative variables describing the internal dynamics of the isolated system
4.

The world-lines xμi (τ) of the particles are derived (interaction-dependent) quan-
tities and in general they do not satisfy vanishing Poisson brackets: already at the
classical level a non-commutative structure emerges!

The definition of relativistic atomic physics (scalar positive-energy charged par-
ticles plus the electro-magnetic field in the radiation gauge with Grassmann-valued
electric charges to regularize self-energies) and of its Poincare’ generators becomes
possible [3, 4, 5] in this framework. The identification of the Darwin potential, to be

2 They generate the relativistic apparent forces in the non-inertial frame and in the non-relativistic
limit they reduce to the Newtonian inertial potentials. The extrinsic curvature 3Krs(τ,σu) =
[ 1

2N (Nr|s +Ns|r − ∂τ 3grs)](τ,σu), describing the shape of the instantaneous 3-spaces of the non-
inertial frame as embedded 3-manifolds of Minkowski space-time, is a functional of the indepen-
dent inertial potentials 4gAB.
3 It is convenient to replace it with its initial value, namely with the Jacobi data of the Hamilton-
Jacobi formulation.
4 Inside the Wigner 3-spaces there is an unfaithful internal realization of the Poincare’ algebra,
determined by the energy-momentum tensor, whose energy is the invariant mass and whose angular
momentum is the rest spin. The internal 3-momentum vanishes being the rest-frame condition. The
internal center of mass inside the Wigner 3-spaces is eliminated by the vanishing of the internal
(interaction-dependent) Lorentz boosts, avoiding a double counting of this collective variable.
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added to the Coulomb one, in this classical setting establishes a contact with the the-
ory of relativistic bound states, whose constituents must be synchronized (absence
of relative times).

Also a new formulation of relativistic quantum mechanics and entanglement was
given [6]. The use of the static Jacobi data for the external center of mass avoids
the causality problems connected with the instantaneous spreading of wave pack-
ets. Due to the need of clock synchronization for the definition of the instantaneous
3-spaces, the Hilbert space H = Hcom,HJ ⊗Hrel (Hcom,HJ is the Hilbert space of the
external center of mass in the Hamilton-Jacobi formulation, while Hrel is the Hilbert
space of the internal relative variables) is not unitarily equivalent to H1⊗H2⊗ ...,
where Hi are the Hilbert spaces of the individual particles. As a consequence, at the
relativistic level the zeroth postulate of non-relativistic quantum mechanics does not
hold: the Hilbert space of composite systems is not the tensor product of the Hilbert
spaces of the sub-systems. The non validity of the zeroth postulate and the non-
locality of Poincare’ generators imply a kinematical non-locality and a kinematical
spatial non-separability introduced by special relativity, which reduce the relevance
of quantum non-locality in the study of the foundational problems of quantum me-
chanics which have to be rephrased in terms of relative variables.

The replacement of clock synchronization with an admissible 3+1 splitting can
be used also in general relativity (GR), where also the space-time becomes dynam-
ical [7], being determined by Einstein equations modulo 4-coordinate transforma-
tions (the gauge group of GR). We will define global non-inertial frames (the only
ones existing in the large in GR due to the equivalence principle) with admissi-
ble 3+1 splittings and radar 4-coordinates in globally hyperbolic, asymptotically
Minkowskian space-times in the framework of ADM canonical gravity. With suit-
able boundary conditions, eliminating super-translations [8], the asymptotic sym-
metries reduce to the ADM Poincare’ group 5 and the non-Euclidean 3-spaces are
orthogonal to the conserved ADM 4-momentum at spatial infinity [9]: this is a non-
inertial rest frame of the 3-universe (see [1] for the non-inertial rest-frame instant
form in special relativity). There are asymptotic inertial observers with spatial axes
identified by means of the fixed stars of star catalogues.

As a consequence, the 3-universe (the isolated system ”gravitational field plus
matter”) can be described as a decoupled non-covariant non-observable external
pseudo-particle carrying a pole-dipole structure, whose mass and spin are identified
by the ADM weak energy and by the ADM angular momentum. Instead the ADM 3-
momentum vanishes, since this determines the rest-frame condition. The vanishing
of the ADM Lorentz boosts eliminate the internal center of mass of the 3-universe.

In absence of matter Christodoulou - Klainermann space-times [10] are compat-
ible with this description.

5 For G = 0 it reduces to the Poincare’ group of the matter in Minkowski non-inertial frames. In
this way, after a restriction to inertial frames we can recover all the results of the standard model of
elementary particles, which are connected with properties of the representations of the Poincare’
group in inertial frames of Minkowski space-time.
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Now the dynamical variable is not the embedding but the 4-metric, which
determines the dynamical chrono-geometrical structure of space-time by means
of the line element: it teaches to massless particles which are the allowed tra-
jectories in each point 6. Since tetrad gravity is more natural for the coupling
of gravity to the fermions, the 4-metric is decomposed in terms of cotetrads,
4gAB = E(α)

A
4η(α)(β ) E(β )

B
7, and the ADM action, now a functional of the 16 fields

E(α)
A (τ,σ r), is taken as the action for ADM tetrad gravity [9]. This leads to an in-

terpretation of gravity based on a congruence of time-like observers endowed with
orthonormal tetrads: in each point of space-time the time-like axis is the unit 4-
velocity of the observer, while the spatial axes are a (gauge) convention for ob-
server’s gyroscopes.

In canonical ADM tetrad gravity there are 16 fields, 16 conjugate momenta, 14
first-class constraints, generators of Hamiltonian gauge transformations, 14 gauge
variables, the GR inertial effects and 2+2 physical variables, the tidal effects (the
gravitational waves after linearization). As shown in [9, 12], in our family of space-
times the Dirac Hamiltonian turns out to be the weak ADM energy 8 plus constraints.
Therefore in this family of space-times there is not a frozen picture, like in the fam-
ily of spatially compact without boundary space-times considered in loop quantum
gravity, where the Dirac Hamiltonian is a combination of constraints.

In [9] a York canonical basis, adapted to ten first-class constraints, was iden-
tified: this allows for the first time to get the explicit identification of the inertial
and tidal variables. It implementes the York map of [13] and diagonalizes the York-
Lichnerowicz approach [14]. Its final form is (α(a)(τ,σ r) are angles, 3e(a)r(τ,σ r)
are cotriads on the 3-space, 1+n(τ,σ r) and n̄(a)(τ,σ r) are the lapse and shift func-
tions respectively)

ϕ(a) α(a) n n̄(a) θ r φ̃ Rā

πϕ(a) ≈ 0 π(α)
(a) ≈ 0 πn ≈ 0 πn̄(a) ≈ 0 π(θ)r πφ̃ =

c3

12πG
3K Πā

3e(a)r = R(a)(b)(α(c))3ē(b)r = R(a)(b)(α(c))Vrb(θ i) φ̃ 1/3 e∑
1,2
ā γāa Rā ,

6 In 2013 the ESA-ACES mission [11] on the synchronization of atomic clocks between Earth and
the Space Station will make the first precision measurement of the gravitational redshift created
by the geo-potential, i.e. of the 1/c2 modifications of the Minkowski light-cone. Every approach
to quantum gravity will have to reproduce these data. A varying light-cone is a non-perturbative
effect in every quantum field theory, string included, because to define the Fock space one needs the
Fourier decomposition of fields on a fixed background space-time with a fixed light-cone. On the
other hand in loop quantum gravity one has still to find a well defined coarse graining identifying
Minkowski space-time and perturbations around it.
7 (α) are flat indices; the cotetrads E(α)

A are the inverse of the tetrads EA
(α) connected to the world

tetrads by Eμ
(α)(x) = zμA(τ,σ

r)EA
(α)(z(τ,σ

r)).
8 It is a volume integral over 3-space of a coordinate-dependent energy density. It is weakly equal
to the strong ADM energy, which is a flux through a 2-surface at spatial infinity.
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4gττ = ε [(1+n)2−∑
a

n̄2
(a)],

4gτr =−ε n̄(a)
3ē(a)r,

4grs =−ε 3grs =−ε φ̃ 2/3∑
a

Vra(θ i)Vsa(θ i)e2 ∑1,2
ā γāa Rā ,

(1)

In this York canonical basis the inertial effects are described by the arbitrary
gauge variables α(a), ϕ(a), 1+n, n̄(a), θ i, 3K, while the tidal effects, i.e. the physical
degrees of freedom of the gravitational field, by the two canonical pairs Rā, Πā, ā =

1,2. The momenta π(θ)r and the 3-volume element φ̃ =
√

det 3grs have to be found
as solutions of the super-momentum and super-hamiltonian (i.e. the Lichnerowicz
equation) constraints, respectively.

The gauge variables α(a), ϕ(a) parametrize the extra O(3,1) gauge freedom of
the tetrads (the gauge freedom for each observer to choose three gyroscopes as spa-
tial axes and to choose the law for their transport along the world-line). We have
studied in detail the Schwinger time gauges where we impose the gauge fixings
ϕ(a)(τ,σ r)≈ 0, α(a)(τ,σ r)≈ 0 so that the tetrads become adapted to the 3+1 split-
ting (the time-like tetrad coincides with the unit normal to the 3-space).

The gauge angles θ i (i.e. the director cosines of the tangents to the three coordi-
nate lines in each point of Στ ) describe the freedom in the choice of the 3-coordinates
σ r on each 3-space: their fixation implies the determination of the shift gauge vari-
ables n̄(a), namely the appearances of gravito-magnetism in the chosen 3-coordinate
system.

One momentum is a gauge variable (a reflex of the Lorentz signature): the York
time, i.e. the trace 3K(τ,σ r) of the extrinsic curvature of the non-Euclidean 3-spaces
as 3-sub-manifolds of space-time. This inertial effect (absent in Newtonian grav-
ity with its absolute Euclidean 3-space) describes the GR remnant of the special-
relativistic gauge freedom in clock synchronization. Its fixation determines the lapse
function.

In the York canonical basis the Hamilton equations generated by the Dirac
Hamiltonian HD = ÊADM +(constraints) are divided in four groups: A) four con-
tracted Bianchi identities, namely the evolution equations for φ̃ and π(θ)i (they say
that given a solution of the constraints on a Cauchy surface, it remains a solution
also at later times); B) four evolution equation for the four basic gauge variables θ i

and 3K: these equations determine the lapse and the shift functions once four gauge
fixings for the basic gauge variables are added; C) four evolution equations for the
tidal variables Rā, Πā; D) the Hamilton equations for matter, when present.

Once a gauge is completely fixed, the Hamilton equations become deterministic.
Given a solution of the super-momentum and super-Hamiltonian constraints and the
Cauchy data for the tidal variables on an initial 3-space, we can find a solution of
Einstein’s equations in radar 4-coordinates adapted to a time-like observer. To it
there is associated a special 3+1 splitting of space-time with dynamically selected
instantaneous 3-spaces in accord with [7]. Then we can get pass to adapted world



ADM gravity in Non-Harmonic Gauges with Defined Non-Euclidean 3-spaces 211

4-coordinates (xμ = zμ(τ,σ r) = xμo + εμA σ
A) and we can describe the solution in

every 4-coordinate system by means of 4-diffeomorphisms.
In [15] we study the coupling of N charged scalar particles plus the electro-

magnetic field to ADM tetrad gravity in this class of asymptotically Minkowskian
space-times without super-translations. To regularize the self-energies both the elec-
tric charge and the sign of the energy of the particles are Grassmann-valued. The
introduction of the non-covariant radiation gauge allows to reformulate the theory
in terms of transverse electro-magnetic fields and to extract the generalization of the
Coulomb interaction among the particles in the Riemannian instantaneous 3-spaces
of global non-inertial frames.

From the Hamilton equations in the York canonical basis [15], followed by a
Post-Minkowskian linearization with the asymptotic flat Minkowski 4-metric at spa-
tial infinity as background, it has been possible to develop a theory of gravitational
waves with asymptotic background propagating in the non-Euclidean 3-spaces Στ
of a family of non-harmonic 3-orthogonal gauges 9 parametrized by the values of
the York time 3K(τ,σ r) (the left gauge freedom in the shape of Στ ).

The conceptual problem of the GR gauge freedom in the choice of the 4-
coordinates is solved at the experimental level inside the Solar system by the choice
of a convention for the description of matter: a) for satellites near the Earth (like the
GPS ones) one uses NASA 4-coordinates compatible with the terrestrial ITFR2003
and geocentric GCRS IAU2000 [16] frames; b) for planets in the Solar System one
uses the barycentric BCRS-IAU2000 [16] frame. These frames are compatible with
”quasi-inertial frames” in Minkowski space-time. These are metrological choices
like the choice of a certain atomic clock as standard of time.

In astronomy the positions of stars and galaxies are determined from the data
(luminosity, light spectrum, angles) on the sky as living in a 4-dimensional nearly-
Galilei space-time with the celestial ICRS [16] frame considered as a ”quasi-inertial
frame” (all galactic dynamics is Newtonian gravity), in accord with the standard
FRW ΛCDM cosmological model when the constant intrinsic 3-curvature of 3-
spaces is zero (as implied by the CMB data[17]). To reconcile all the data with
this 4-dimensional reconstruction one must postulate the existence of dark matter
and dark energy as the dominant components of the classical universe after the re-
combination 3-surface!

Our proposal is to define a Post-Minkowskian ICRS with non-Euclidean 3-spaces,
whose intrinsic 3-curvature (due essentially to gravitational waves) is small, in such
a way that the York time be (at least partially) fitted to the observational data imply-
ing the presence of dark matter. As shown in [15] the Post-Newtonian limit of the
Post-Minkowskian Hamilton equations of particles in this family of gauges repro-
duces Kepler equations plus a v/c term depending on the York time (the arbitrary
gauge function). Therefore there is the concrete possibility (under investigation) to
explain the rotation curves of galaxies [18] as a relativistic inertial effect inside Ein-
stein GR (choice of a York time compatible with observations [19]) without modi-

9 The 3-metric in Στ is diagonal like in astronomical frames GCRS and BCRS.
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fications: a) of Newton gravity like in MOND [20]; b) of GR like in f (R) theories
[21]; c) of particle physics with the introduction of WIMPS [22]. Then, the next step
will be to study the dependence on the York time of quantities like redshift, lumi-
nosity distance, gravitational lensing.... and to see which information on the York
time can be extracted from the data supporting dark energy.

In conclusion the reformulation of clock synchronization as the existence of well-
defined non-Euclidean 3-spaces with the gauge freedom of the York time plus the
proposed way out from the GR gauge problem using the observational metrological
conventions may help in reducing the dark side of the universe to a relativistic iner-
tial effect inside Einstein GR by means of a Post-Minkowskian definition of ICRS,
which will be also useful for the ESA-GAIA mission [23] (cartography of the Milky
Way) and for the possible anomalies inside the Solar System [24].

Finally the transition to cosmology should be done with approaches of the type
of backreaction [25].
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Dark energy and cosmic magnetic fields:

electromagnetic relics from inflation

Jose Beltrán Jiménez and Antonio L. Maroto

Abstract We consider an extended electromagnetic theory in which the scalar state
which is usually eliminated be means of the Lorenz condition is allowed to prop-
agate. On super-Hubble scales, such a state is given by the temporal component
of the electromagnetic potential and contributes as an effective cosmological con-
stant to the energy-momentum tensor. Its initial amplitude is set by quantum fluc-
tuations generated during inflation and it is shown that the predicted value for the
cosmological constant agrees with observations provided inflation took place at the
electroweak scale. We also consider more general theories including non-minimal
couplings to the space-time curvature in the presence of the temporal electromag-
netic background. We show that both in the minimal and non-minimal cases, the
modified Maxwell’s equations include new effective current terms which can gener-
ate magnetic fields from sub-galactic scales up to the present Hubble horizon. The
corresponding amplitudes could be enough to seed a galactic dynamo or even to ac-
count for observations just by collapse and differential rotation in the protogalactic
cloud.

1 Introduction

Despite the fact that a cosmological constant provides a simple and accurate descrip-
tion of cosmic acceleration, from a theoretical point of view it would be even more
satisfactory to have a fundamental explanation of the tiny value of such a constant.
In this sense, several modifications of the gravitational interaction on cosmological
scales have been proposed in the literature.

However, apart from gravity there is another long-range interaction in nature
which is nothing but electromagnetism. In this work we will consider the potential
role of modified electromagnetic theories in the dark energy problem [1, 2, 3]. This
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is a quite natural approach to the problem since the behaviour of electromagnetic
interaction on astrophysical and cosmological scales is still far from clear, the most
evident examples being the unknown origin of the μG magnetic fields observed in
galaxies and clusters [4] and, more remarkably, the very recent claim of detection of
extra galactic magnetic fields [5]. Thus, the interesting possibility of finding a link
between dark energy and the origin of cosmic magnetic field will be also explored.

2 Covariant quantization in flat space-time

Let us start by briefly reviewing the standard covariant quantization method in
Minkowski space-time [6] since this will be useful in the rest of the work. The
starting point is the modified electromagnetic action:

S =
∫

d4x
(
−1

4
FμνFμν +

ξ
2
(∂μAμ)2 +AμJμ

)
. (1)

Because of the presence of the gauge breaking ξ -term, this action is no longer in-
variant under arbitrary gauge transformations, but only under residual ones given
by: Aμ → Aμ +∂μθ , provided �θ = 0. The equations of motion obtained from this
action now read:

∂νFμν +ξ∂ μ(∂νAν) = Jμ . (2)

In order to recover ordinary Maxwell’s equation, the Lorenz condition ∂μAμ = 0
must be imposed so that the ξ term disappears. At the classical level this can be
achieved by means of appropriate boundary conditions on the field. Indeed, taking
the four-divergence of the above equation, we find:

�(∂νAν) = 0 (3)

where we have made use of current conservation. This means that the field ∂νAν

evolves as a free scalar field, so that if it vanishes for large |t|, it will vanish at all
times. At the quantum level, the Lorenz condition cannot be imposed as an oper-
ator identity, but only in the weak sense ∂νAν (+)|φ〉 = 0, where (+) denotes the
positive frequency part of the operator and |φ〉 is a physical state. This condition
is equivalent to imposing [a0(k) + a‖(k)]|φ〉 = 0, with a0 and a‖ the annihilation
operators corresponding to temporal and longitudinal electromagnetic states. Thus,
in the covariant formalism, the physical states contain the same number of tempo-
ral and longitudinal photons, so that their energy densities, having opposite signs,
cancel each other. Therefore, only the transverse photons contribute to the energy
density.
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3 Covariant quantization in an expanding universe

So far we have only considered Maxwell’s theory in flat space-time, however when
we move to a curved background, and in particular to an expanding universe, then
consistently imposing the Lorenz condition in the covariant formalism turns out to
be difficult to realize. Indeed, let us consider the curved space-time version of action
(1):

S =
∫

d4x
√

g
[
−1

4
FμνFμν +

ξ
2
(∇μAμ)2 +AμJμ

]
(4)

Now the modified Maxwell’s equations read:

∇νFμν +ξ∇μ(∇νAν) = Jμ (5)

and taking again the four divergence, we get:

�(∇νAν) = 0 (6)

We see that once again ∇νAν behaves as a scalar field which is decoupled from
the conserved electromagnetic currents, but it is non-conformally coupled to grav-
ity. This means that, unlike the flat space-time case, this field can be excited from
quantum vacuum fluctuations by the expanding background in a completely anal-
ogous way to the inflaton fluctuations during inflation. This poses the question of
the validity of the Lorenz condition at all times. Thus, for example, let us consider
quantization in an expanding background interpolating between two asymptotically
flat regions and prepare our system in an initial state |φ〉 belonging to the physical
Hilbert space, i.e. satisfying ∂νA

ν (+)
in |φ〉 = 0 in the initial flat region. Because of

the expansion of the universe, the positive frequency modes in the in region with
a given temporal or longitudinal polarization will become a linear superposition of
positive and negative frequency modes in the out region and with different polariza-
tions [2, 7]. Thus, the system will end up in a final state which no longer satisfies
the weak Lorenz condition i.e. in the out region ∂νA

ν (+)
out |φ〉 �= 0.

Although there are alternative quantization procedures which avoid this problem,
in this work we will explore the possibility of quantization in an expanding universe
without imposing the Lorenz condition.

4 Extended electromagnetism without the Lorenz condition

Let us then explore the possibility that the fundamental theory of electromagnetism
is given by the modified action (4) where we allow the ∇μAμ field to propagate.
Since we are not imposing the Lorenz condition, in principle, important viability
problems for the theory could arise, namely:
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• Modification of classical Maxwell’s equations
• Electric charge non-conservation
• New unobserved photon polarizations
• Negative norm (energy) states
• Conflicts with QED phenomenology

However, as we will show in the following, none of these problems is actually
present. Having removed one constraint, the theory contains one additional degree
of freedom. Thus, the general solution for the modified equations (5) can be written
as:

Aμ = A
(1)
μ +A

(2)
μ +A

(s)
μ +∂μθ (7)

where A
(i)
μ with i = 1,2 are the two transverse modes of the massless photon, A

(s)
μ

is the new scalar state, which is the mode that would have been eliminated if we had
imposed the Lorenz condition and, finally, ∂μθ is a purely residual gauge mode,
which can be eliminated by means of a residual gauge transformation in the asymp-
totically free regions, in a completely analogous way to the elimination of the A0
component in the Coulomb quantization. The fact that Maxwell’s electromagnetism
could contain an additional scalar mode decoupled from electromagnetic currents,
but with non-vanishing gravitational interactions, was already noticed in a different
context in [8].

In order to quantize the free theory, we perform the mode expansion of the field
with the corresponding creation and annihilation operators for the three physical
states:

Aμ =
∫

d3k ∑
λ=1,2,s

[
aλ (k)A

(λ )
μk +a

†
λ (k)A

(λ )
μk

]
(8)

where the modes are required to be orthonormal with respect to the appropriate
scalar product (see for instance [9]). Notice that the three modes can be chosen to
have positive normalization, and therefore:

[
aλ (k),a

†
λ ′(k

′)
]
= δλλ ′δ (3)(k− k′), λ ,λ ′ = 1,2,s (9)

We see that the sign of the commutators is positive for the three physical states, i.e.
the negative norm state can be eliminated in the free theory.

The evolution of the new mode is given by (6), so that on super-Hubble scales,
|∇μA (s)μ

k | = const. which, as shown in [1], implies that the field contributes as a
cosmological constant in (4). Indeed, the energy-momentum tensor derived from (4)
reads in that limit:

Tμν =
ξ
2

gμν(∇αAα)2 (10)

which is the energy-momentum tensor of a cosmological constant. Notice that,
as seen in (6), the new scalar mode is a massless free field and it is possible to
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calculate the corresponding power spectrum generated during inflation, P∇A(k) =
4πk3|∇μA (s)μ

k |2. In the super-Hubble limit, we get in a quasi-de Sitter inflationary
phase characterized by a slow-roll parameter ε:

P∇A(k) =
9H4

k0

16π2

(
k
k0

)−4ε
(11)

where Hk0 is the Hubble parameter when the k0 mode left the horizon [1]. Notice
that this result implies that ρA∼ (Hk0)

4 (see [10] and references therein for problems
with infrared divergences during inflation). The measured value of the cosmologi-
cal constant then requires Hk0 ∼ 10−3 eV, which corresponds to an inflationary scale
MI ∼ 1 TeV. Thus we see that the cosmological constant scale can be naturally ex-
plained in terms of physics at the electroweak scale. This is one of the most relevant
aspects of the present model in which, unlike existing dark energy theories based on
scalar fields, dark energy can be generated without including any potential term or
dimensional constant.

As shown above, the field amplitude remains frozen on super-Hubble scales, so
that no modification of Maxwell’s equation is generated on those scales. However
as the amplitude starts decaying once the mode enters the horizon in the radiation
or matter eras, the ξ term in (5) generates an effective current which can produce
magnetic fields on cosmological scales, as we will show below.

Notice that in Minkowski space-time, the theory (4) is completely equivalent to
standard QED. This is so because, although non-gauge invariant, the corresponding
effective action is equivalent to the standard BRS invariant effective action of QED
[2].

To summarize, none of the above mentioned consistency problems for the theory
in (4) arise, thus:

• Electric charge is conserved since only the gauge electromagnetic sector is mod-
ified, but not the sector of charged particles which preserves its gauge symmetry.

• The new state only couples gravitationally and evades laboratory detection.
• The new state has positive norm (energy).
• The effective action is completely equivalent to standard QED in the flat space-

time limit.
• Although ordinary Maxwell’s equations are modified on small scales, the only

effect of the new term is the generation of cosmic magnetic fields.

On the other hand, despite the fact that the background evolution in the present
case is the same as in ΛCDM, the evolution of metric perturbations could be dif-
ferent. We have calculated the evolution of metric, matter density and electromag-
netic perturbations [3]. The propagation speeds of scalar, vector and tensor pertur-
bations are found to be real and equal to the speed of light, so that the theory is
classically stable. On the other hand, it is possible to see that all the parametrized
post-Newtonian (PPN) parameters [11] agree with those of General Relativity, i.e.
the theory is compatible with all the local gravity constraints for any value of the
homogeneous background electromagnetic field [1, 12].
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Concerning the evolution of scalar perturbations, we find that the only relevant
deviations with respect toΛCDM appear on large scales k∼H0 and that they depend
on the primordial spectrum of electromagnetic fluctuations. However, the effects on
the CMB temperature and matter power spectra are compatible with observations
except for very large primordial fluctuations [3].

Fig. 1 Cosmological evolution of the temporal component from electroweak-scale inflation until
present

5 Cosmological evolution

Let us now consider the cosmological evolution of this new electromagnetic mode.
For that purpose, we will consider a homogeneous electromagnetic field with
Aμ = (A0(t),A(t)). The corresponding equations motion in a flat Robertson-Walker
background in cosmological time t read:

Ä0 + 3HȦ0 +3ḢA0 = 0
Ä + HȦ = 0 (12)

In the case in which the scale factor behaves as a simple power law with H = p/t,
the solutions for the above equations grow as: A0(t) ∝ t and A(t) ∝ t1−p. Thus we
see that the temporal component grows faster than the spatial one and therefore, at
late times, on cosmological scales we can ignore the spatial contribution and the
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new scalar state is essentially given by the electric potential. We can also compute
the contributions from the temporal and spatial components to the energy density,
thus we get:

ρA0 =
λ
2
(
Ȧ0 +3HA0

)2
= const. ρA =

1
2a2

(
Ȧ
)2 ∝ a−4 (13)

We see that also, as commented before, the temporal component behaves as a cos-
mological constant, whereas the contribution from the spatial part decays as radia-
tion and therefore does not affect the universe isotropy on large scales.

In Fig.1 we show the cosmological evolution of the electric potential A0. We
see that the field is constant during inflation, it grows linearly in time in the matter
and radiation eras and becomes also constant when the electromagnetic dark energy
starts dominating. Notice that the present value of A0 � 0.3MP is determined by the
initial value of the field generated during inflation from quantum fluctuations.

6 Generation of cosmic magnetic fields

It is interesting to note that the ξ -term can be seen, at the equations of motion level,
as a conserved current acting as a source of the usual Maxwell field. To see this, we
can write −ξ∇μ(∇νAν) ≡ Jμ∇·A which, according to (6), satisfies the conservation
equation ∇μJμ∇·A = 0 and we can express (5) as:

∇νFμν = JμT (14)

with JμT = Jμ+Jμ∇·A and ∇μJμT = 0. Physically, this means that, while the new scalar
mode can only be excited gravitationally, once it is produced it will generally behave
as a source of electromagnetic fields. Therefore, the modified theory is described by
ordinary Maxwell equations with an additional ”external” current. For an observer
with four-velocity uμ moving with the cosmic plasma, it is possible to decompose
the Faraday tensor in its electric and magnetic parts as: Fμν = 2E[μuν ] +

εμνρσ√
g Bρuσ ,

where Eμ = Fμνuν and Bμ = εμνρσ/(2√g)Fρσuν . Due to the infinite conductivity
of the plasma, Ohm’s law Jμ − uμuνJν = σFμνuν implies Eμ = 0. Therefore, in
that case the only contribution would come from the magnetic part. Thus, from
Maxwell’s equations, we get:

Fμν;νuμ =
εμνρσ√

g
Bρuσ ;νuμ = Jμ∇·Auμ (15)

that for comoving observers in a FLRW metric imply (see also [13]):

ω ·B = ρ0
g (16)
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where v= dx/dη is the conformal time fluid velocity,ω =∇×v is the fluid vorticity,
ρ0

g is the effective charge density today whose power spectrum can be obtained
from (11), and the B components scale as Bi ∝ 1/a as can be easily obtained from
εμνρσFρσ ;ν = 0 to the lowest order in v. Thus, the presence of the non-vanishing
cosmic effective charge density necessarily creates both magnetic field and vorticity.
Due to the presence of the effective current, we find that vorticity grows as |ω | ∝ a,
from radiation era until present.

Using (16), it is possible to translate the existing upper limits on vorticity coming
from CMB anisotropies [13] into lower limits on the amplitude of the magnetic
fields generated by this mechanism. Thus we find that for a nearly scale invariant
vorticity power spectrum, magnetic fields Bλ > 10−12 G are typically generated
with coherence lengths ranging from sub-galactic scales up to the present Hubble
radius. Those fields could act as seeds for a galactic dynamo or even account for
observations just by collapse and differential rotation of the protogalactic cloud [14]

7 Non-minimal couplings

Let us now generalize the previous results by considering the most general expres-
sion for the electromagnetic action in the presence of gravity [15], including all the
possible terms leading to linear second order differential equations:

S =
∫

d4x
√−g

[
−1

4
FμνFμν +

ξ
2
(∇μAμ)2 +σRμνAμAν +ωRAμAμ

]
. (17)

Notice that this expression does not contain any dimensional parameter or potential
term and σ and ω are arbitrary dimensionless constants. In order to fix them, we
will consider the weak-field limit of the theory. Thus, the space-time metric can be
written as a small perturbation around Minkowski space-time, gμν = ημν +hμν (in
this section we will ignore the universe expansion) and the electromagnetic poten-
tial reads Aμ = Āμ + aμ with Āμ = Ā0δ 0

μ and Ā0 � 0.3MP as shown before. The
corresponding Maxwell’s equations obtained from (17) read to first order:

∂νFμν +ξ∂ μ(∇νAν)(1) = Jμg . (18)

where Fμν = ∂μaν − ∂νaμ , (∇νAν)(1) denotes the contribution to first order and
the non-minimal terms give rise to an effective current given also to first order by:
Jμg = 2(σ Rμν

(1) +ω R(1)ημν)Āν . Imposing this effective current to be conserved, i.e.

∂μJμg = 0, we obtain σ =−2ω , i.e. the non-minimal coupling must involve the con-
served Einstein tensor Gμν = Rμν − 1

2 Rgμν . Notice also that conservation implies
that taking the divergence of (18) we get �(∇μAμ)(1) = 0, i.e. to first order it is
possible to impose the Lorenz condition at the classical level as in ordinary electro-
magnetism. Thus, for weak gravitational fields we recover ordinary Maxwell elec-
tromagnetism, the only difference is the appearance of a gravitationally-generated
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electromagnetic current, which is only present provided the background electromag-
netic potential is non-vanishing and in the presence of space-time curvature.

This theory is a particular case of the more general class of vector-tensor theories
[11]. For this particular case, the PPN parameters are in agreement with observations
provided: |σ |<∼ 10−5.

Concerning the stability of the theory, we have analyzed the behavior of the in-
homogeneous perturbations around the Minkowski background. The correspond-
ing propagation speeds for the scalar, vector and tensor perturbations are: c2

s = 1,
c2

v � 1+16πGσ2Ā2
0 and c2

t � 1+16πGσ Ā2
0, where we have expanded for |σ | � 1.

Notice that the scalar modes propagate at the speed of light irrespective of the value
of the parameter σ . However, the speed of photons cv would be larger than the
”speed of light” c = 1 which determines the null cones of the Minkowski geometry.
Although, in principle, this could give rise to inconsistencies with causality, this is
not the case since stable causality [16] is ensured in this model for small σ .

In order to study the presence of quantum instabilities (ghosts), we analyze the
positiveness of the energy density of the three types of perturbations considered
before. Thus, following [17, 12], we find that for scalar modes the energy density
vanishes identically if we impose the Lorenz condition, as in ordinary electromag-
netism. For vector and tensor modes, the energy densities are positive for small |σ |.

Also due to the smallness of the parameter σ , the cosmological evolution of
the homogeneous mode becomes modified in a negligible way by the presence of
the coupling to the Einstein tensor. This ensures that the inflationary generation
and evolution discussed in previous sections for the minimal theory is also a good
description in the non-minimal case.

8 Cosmic magnetic fields from non-minimal couplings

Let us now consider the possible effects of the new effective electromagnetic current
Jμg = 2σGμ0Ā0 in (18). Using Einstein equations to relate Gμν to the matter content,
we obtain:

Jμg = 16πGσT μ0Ā0 (19)

so that the effective electromagnetic current is essentially determined by the four-
momentum density. Moreover, if we assume T μν = (ρ + p)uμuν − pημν at first
order, we can see that the energy density of any perfect fluid has an associated
electric charge density given, for small velocities, by:

ρg = J0
g = 16πGσρĀ0 (20)

and the three-momentum density generates an electric current density given by

Jg = 16πGσ(ρ+ p)vĀ0 (21)
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This theory effectively realizes the old conjecture by Schuster, Einstein and
Blackett [18] of gravitational magnetism, i.e. neutral mass currents generating elec-
tromagnetic fields.

In the case of a particle of mass m at rest, (20) introduces a small contribu-
tion to the active electric charge (the source of the electromagnetic field), given by
Δq = 16πGσmĀ0 � 15σ(m/MP), but does not modify the passive electric charge
(that determining the coupling to the electromagnetic field). In fact, this would give
different active charges to electrons and protons due to their mass difference and,
in addition, would provide the neutron with a non-vanishing active electric charge.
However, the effect is very small in both cases Δq� 4σ10−18e where e = 0.303 is
the electron charge in Heaviside-Lorentz units. Present limits on the electron-proton
charge asymmetry and neutron charge are both of the order 10−21e [19], implying
|σ |<∼ 10−3 which is less stringent than the PPN limit discussed before.

On the other hand, for any compact object, even in the case it is neutral, the
effective electric current will generate an intrinsic magnetic moment given by:

m = β
√

G
2

L (22)

with L the corresponding angular momentum and β a constant parameter whose
value is:

β = 16π
√

Gσ Ā0 (23)

Notice that relation (22) resembles the Schuster-Blackett law, which is an empirical
relation between the magnetic moments and the angular momenta found in a wide
range of astrophysical objects from planets, to galaxies, including those related to
the presence of rotating neutron stars such as GRB or magnetars [20]. However, let
us mention that the observational evidence on this relation is still not conclusive.
From observations, the β parameter is found to be in the range 0.001 to 0.1.

Imposing the PPN limits on the σ parameter, we find β <∼ 10−4, which is just
below the observed range. Thus for a typical spiral galaxy, a direct calculation pro-
vides: B∼ σ10−4 G, i.e. according to the PPN limits, the field strength could reach
10−9 G without amplification.

9 Conclusions

In this work we have studied extended (minimal and non-minimal) electromagnetic
theories with an additional scalar state. The energy density of the new scalar mode
on cosmological scales is shown to behave as an effective cosmological constant,
whose value is determined by the amplitude of quantum fluctuations generated dur-
ing inflation. As a matter of fact, the measured value of the cosmological constant
is naturally explained provided inflation took place at the electroweak scale. The
model is free from classical or quantum instabilities and is consistent with all the
local gravity constraints. On the other hand, it is also compatible with observations



Dark energy and cosmic magnetic fields: electromagnetic relics from inflation 225

from CMB and large scale structure and contains the same number of free param-
eters as ΛCDM. Unlike dark energy models based on scalar fields, acceleration in
this model arises from the kinetic term of the new electromagnetic mode, without
the introduction of unnatural dimensional parameters or potential terms. The results
presented in this work show that, unlike previous proposals, the nature of dark en-
ergy can be established without resorting to new physics. On the other hand, the
modified Maxwell’s equations contain additional current terms which can generate
cosmic magnetic fields with large coherence lengths. Those fields could act as seed
for standard amplification mechanisms, thus establishing an interesting link between
dark energy and the origin of cosmic magnetic fields.
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On the Viability of a Non-Analytical

f (R)-Theory

Nakia Carlevaro1, Giovanni Montani2 and Massimiliano Lattanzi3

Abstract In this paper, we show how a power-law correction to the Einstein-Hilbert
action provides a viable modified theory of gravity, passing the Solar-System tests,
when the exponent is between the values 2 and 3. Then, we implement this paradigm
on a cosmological setting outlining how the main phases of the Universe thermal
history are properly reproduced.
As a result, we find two distinct constraints on the characteristic length scale of the
model, i.e., a lower bound from the Solar-System test and an upper one by guaran-
teeing the matter dominated Universe evolution.

1 Basic statements

From the very beginning, the possibility to riformulate General Relativity by using
a generic function of the Ricci scalar (see, for example, [1] for a recent review and
references therein) appeared as a natural issue offered by the fundamental principles
established by Einstein. However, it is important to remark that any modification of
the Einstein-Hilbert (EH) Lagrangian is reflected onto a deformed gravitational-
field dynamics at any length scale investigated or observed. Thus, the success of
such f (R) gravity in the solution of a specific problem has to match consistency
with observation in different length scales [2, 3, 4]. A viable self-consistent model
can be often obtained at the price to consider a generalized gravitational lagrangian
containing a large number of free parameters. Nevertheless, the wide spectrum of
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possible choices for f (R) can appear as a weakness point in view of the predictivity
of the theory, because a significant degree of degeneracy is expected in the m odel.

Here, we consider an opposite point of view, by studying the viability of a power-
law correction to the EH action having a single free parameter (a length scale) once
the power-law exponent is fixed. We investigate the implementation of the Solar-
System test to our model [5] and then we pursue a cosmological study of the re-
sulting modified Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) dynamics. As ex-
pected, this scenario gives us a rather stringent range of variation for the free length
scale where searching for new gravitational physics.

2 Non-analytical power-law f (R) model

In this paper, we consider the following modified gravitational action in the so-called
Jordan frame

S =− 1
2χ

∫
d4x
√−g f (R) , f (R) = R+qRn , (1)

where n is a non-integer dimensionless parameter and q < 0 has dimensions of
[L]2n−2 (in the equation above χ = 8πG, using c = 1 and G being the Newton con-
stant, moreover, the signature is set as [+,−,−,− ]). Such a form of f (R) gives the
following constraints for n: if R > 0, all n-values are allowed; if R < 0, the condition
n = �/(2m+ 1) must hold (where, here and in the following, m and � denote pos-
itive integer). It is straightforward to verify that S in (1) is non-analytical in R = 0
for non-integer, rational n, i.e., it does not admit Taylor expansion near R = 0.

Let us now define the characteristic length scale of our model as

Lq(n)≡ |q|1/(2n−2) , (2)

while variations of the total action Stot = S+SM (where SM denotes the matter term)
with respect to the metric give, after manipulations and modulo surface terms:

f ′Rμν − 1
2 gμν f −∇μ∇ν f ′+gμν� f ′ = χ Tμν , (3)

where Tμν is the Energy-Momentum Tensor (EMT). Here and in the following (...)′

indicates the derivative with respect to R, � ≡ gρσ∇ρ∇σ and ∇μ or (...); denotes
the covariant derivative (Greek indices run form 0 to 3).

We can gain further information on the value of n by analyzing the conditions
that allow for a consistent weak-field stationary limit. Having in mind to investigate
the weak field limit of our theory to obtain predictions at Solar-System scales, we
can decompose the corresponding metric as gμν = ημν +hμν , where hμν is a small
(for our case, static) perturbation of the Minkowskian metric ημν . In this limit, the
vacuum Einstein equations read

Rμν − 1
2ημνR−nq(Rn−1);μ;ν +nqημν�Rn−1 = 0 , R = 3nq�Rn−1 . (5)
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The structure of such field equations leads us to focus our attention on the re-
stricted region of the parameter space 2 < n < 3. This choice is enforced by the
fulfillment of the conditions by which all other terms are negligible with respect to
the linear and the lowest-order non-Einsteinian ones.

3 Viability of the theory: the Solar-System test

From the analysis of the weak-field limit in the Jordan frame, i.e., (5), we learn
the possibility to find a post-Newtonian solution by solving (5) up to the next-to-
leading order in h, i.e., up to O(hn−1), and neglecting the O(h2) contribution only
for the cases 2 < n < 3. These considerations motivate the choice we claimed above
concerning the restriction of the parameter n.

The most general spherically-symmetric line element in the weak-field limit is

ds2 = (1+Φ)dt2− (1−Ψ)dr2− r2dΩ 2 , (6)

whereΦ andΨ are the two generalized gravitational potentials and dΩ 2 is the solid-
angle element. Within this framework, the modified Einstein equations (5) rewrite

Rtt − 1
2 R−nq∇2Rn−1 = 0 ,

Rrr +
1
2 R−nq(Rn−1),r,r +nq∇2Rn−1 = 0 ,

Rθθ + 1
2 r2R−nqr(Rn−1),r +nqr2∇2Rn−1 = 0 ,

R+3nq∇2Rn−1 = 0 ,[
∇2 ≡ d2

dr2 +
2
r

d
dr

]
,

R = ∇2Φ+ 2
r2 (rΨ),r ,

Rtt =
1
2∇

2Φ ,

Rrr =− 1
2Φ,r,r− 1

rΨ,r ,

Rθθ =−Ψ − r
2Φ,r− r

2Ψ,r ,

Rφφ = sin2 θRθθ ,

where (...), denotes ordinary differentiation. The system above is solved by

R = Ar
2

n−2 ,

Φ = σ + δ
r +Φn

(
r

Lq

)2 n−1
n−2

,

Ψ = δ
r +Ψn

(
r

Lq

)2 n−1
n−2

,

A =
[
− 6nq(3n−4)(n−1)

(n−2)2

] 1
2−n

, (8a)

Φn ≡
[
− 6n(3n−4)(n−1)

(n−2)2

] 1
2−n (n−2)2

6(3n−4)(n−1) , (8b)

Ψn ≡
[
− 6n(3n−4)(n−1)

(n−2)2

] 1
2−n (n−2)

3(3n−4) , (8c)

where the integration constant δ has the dimensions of [L] and the dimensionless in-
tegration constant σ can be set equal to zero without loss of generality. The integra-
tion constant A has the dimensions of [L](2n−2)/(2−n), and Φn andΨn are dimension-
less, accordingly. Moreover, one can check that Φn andΨn are well-defined only in
the case n = (2m+1)/� while we get A > 0 since we assume q < 0. In agreement to
the geodesic motion as expanded in the weak field limit, the integration constant δ
results equal to δ =−rS, where rS = 2GM is the Schwarzschild radius of a central
object of mass M.
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The most suitable arena to evaluate the reliability and the validity range of the
weak-field solution (8) is the Solar System [2, 4]. To this end, we can specify (8b)-
(8c) for the typical length scales involved in the problem and we split Φ andΨ into
two terms, the Newtonian part and a modification, i.e.,

Φ ≡ΦN +ΦM ≡−rS
�/r+Φn(r/Lq)

2(n−1)/(n−2) , (9a)

Ψ ≡ΨN +ΨM ≡−rS
�/r+Ψn(r/Lq)

2(n−1)/(n−2) , (9b)

here, the integration constant δ of (8b)-(8c) is δ = −rS� ≡ 2GM� (M� being the
Solar mass). While the weak-field approximation of the Schwarzschild metric is
valid within the range rS� � r <∞ because it is asymptotically flat, the modification
terms have the peculiar feature to diverge for r → ∞. It is therefore necessary to
establish a validity range rMin � r � rMax, related to n and Lq, where this solution
is physically predictive [6].

Since we aim to provide a physical picture at least of the planetary region of the
Solar System, we are led to require thatΦM andΨM remain small perturbations with
respect to ΦN andΨN , so that it is easy to recognize the absence of a minimal radius
except for the condition r� rS�. The typical distance L∗� corresponds to the request

|ΦN(L∗�)| ∼ |ΦM(L∗�)| , |ΨN(L∗�)| ∼ |ΨM(L∗�)| . (10)

For rS� � r � L∗�, the system obeys thus Newtonian physics and experiences the
post-Newtonian term as a correction. Another maximum distance L∗∗� can be de-
fined, according to the request that the weak-field expansion (6) should hold, re-
gardless to the ratios ΦM/ΦN andΨM/ΨN . L∗∗� results to be defined by

|ΦN(L∗∗� )| � |ΦM(L∗∗� )| ∼ 1 , |ΨN(L∗∗� )| � |ΨM(L∗∗� )| ∼ 1 . (11)

We remark that L∗� and L∗∗� are defined as functions of n and Lq, i.e.,

L∗� ∼ |rS
�/Φn|

n−2
3n−4 L

2n−2
3n−4
q , L∗∗� ∼ Lq

/|Φn|
n−2
2n−2 , (12)

and it is important to underline that, for the validity of our scheme, the condition
L∗� � rS� must hold, i.e., Lq � rS�|Φn|(n−2)/(2n−2).

Neglecting the lower-order effects concerning the eccentricity of the planetary
orbit, we can deal with the simple model of a planet moving on circular orbit around
the Sun with an orbital period T given by T = 2π(r/a)1/2 (a = (dΦ/dr)/2 being
the centripetal acceleration). For our model, from (8b), we get

Tn =
2πr3/2

(GM�)1/2

[
1+2Φn

n−1
n−2

(
r

3n−4
n−2

)
/
(

rS
�L

2n−2
n−2

q

)]−1/2
. (13)

We now can compare the correction to the Keplerian period TK = 2πr3/2(GM�)−1/2,
with the experimental data of the period Texp and its uncertainty δTexp. We then
impose the correction to be smaller than the experimental uncertainty, i.e.,
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δTexp

Texp
� |TK−Tn|

TK
∼ |Φn| n−1

n−2

(
r

3n−4
n−2

P

)
/
(

rS
�L

2n−2
n−2

q

)
, (14)

where rP is the mean orbital distance of a given planet from the Sun.
Let us now specify our analysis for the example of the Earth [2]. In this case,

Texp � 365.2563 days and δTexp � 5.0 · 10−10 days (with rP � 4.8482× 10−6 pc).
This way, for the Earth, we can get a lower bound Lq > LMin

q⊕ for the characteristic
length scale of our model, as function of n, i.e.,

LMin
q⊕ (n) =

[
1.3689×1012 |Φn|

rS�

n−1
n−2

r
3n−4
n−2

P

] n−2
2n−2

, (15)

where Φn is defined in (8b) and LMin
q⊕ ∼ 4× 10−3 pc, for a typical value n � 2.66.

We remark that LMin
q⊕ , by virtue of (8b), is defined only for n = (2m+1)/�.

Our analysis clarifies how the predictions of the corresponding equations for the
weak-field limit appear viable in view of the constraints arising from the Solar-
System physics. Indeed, the lower bound for Lq does not represent a serious short-
coming of the model, as we are going to discuss in Sec.6, where a plot of LMin

q⊕ (n)
and of L∗�(Lq) and L∗∗� (Lq) will be also addressed.

4 Cosmological implementation of the non-analytical f (R) model

In order to study how our f(R) model affects the cosmological evolution, we start
from the modified gravitational action (1) and we assume the standard Robertson-
Walker (RW) line element in the synchronous reference system, i.e.,

ds2 = dt2−a(t)2[dr2/(1−Kr2)+ r2dΩ 2 ] , (16)

where a(t) is the scale factor and K the spatial curvature constant. Using such ex-
pression, the 00-component of (3) results, for symmetry using the Bianchi identity,
the only independent one and it writes as

f ′R00− 1
2 f +3(ȧ/a) f ′′ Ṙ = χ T00 . (17)

where the dot indicates the time derivative. We assume as matter source a perfect-
fluid EMT, i.e., Tμν = (p+ρ)uμuν − pgμν , in a comoving reference system (thus
T00 = ρ), where p is the thermostatic pressure, ρ the energy density and uμ denotes
the 4-velocity. The 0-component of the conservation law, i.e., T νμ;ν = 0 with ν = 0,
assuming the equation of state (EoS) p = wρ , gives the following expression for the
energy density: ρ = ρ0 [a/a0]

−3(1+w).
Using now f = R+qRn with q < 0, we are able to explicitly write (17):
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2 χ̃ a1−3w + 6n nqa5−2n ä(−K− ȧ2−aä)n−1 +

+a2 [−6K−6 ȧ2 +6n qa2(1−n) (−K− ȧ2−aä)n]+ (18)

+6n(n−1)nqȧa2(2−n) (−K− ȧ2−aä)n−2[−2 ȧ3−2K ȧ+aȧ ä +a2 ...a
]
= 0 ,

where χ̃ = χρ0a3(1+w)
0 . Let us now assume a power-law a = a0 [t/t0]

x for the scale
factor and, for the sake of simplicity, we set ā = a0t−x

0 (clearly, [ā] = [L1−x]). Here
and in the following, we use the subscript (...)0 to denote quantities measured today.
In this case, (18) can be recast in the form

−6ā2K t2x−6ā4x2 t4x−2 +qā4 t4x
(

C1 t−2−6ā−2K t−2x
)n

+ 2χ̃ ā1−3w tx(1−3w) =

= nqxā6−2n t6x
(

C1ā2 t−2−6K t−2x
)n (C2K t2 + xC3 t2x)

(K t2 +C4 t2x)2 , (19)

where C1 = 6x(1−2x), C2 = (x(2n−1)−1), C3 = xā2(x+2n−3)(2x−1),
C4 = xā2(2x−1).

4.1 Radiation-dominated Universe

Here, we assume the radiation-dominated Universe EoS w = 1/3 (ρ ∼ a−4). In the
following, we will discuss the three distinct regimes, in the asymptotic limit as t→ 0,
for x < 1, x > 1 and x = 1, separately.

In the case x < 1, all terms containing explicitly the curvature K of (19) results to
be negligible for t → 0 and asymptotic solutions are allowed if and only if x � n/2
which, in the case 2 < n < 3 we are considering, is always satisfied. The leading-
order term of (19) writes as

qā4Cn
1 [1− (C3/C2

4)nx2ā2 ] t4x−2n = 0 , (20)

and x = 1/2 and x = [2 + 3n− 2n2 ± (4 + 8n + n2 − 12n3 + 4n4)1/2]/2n are the
solutions. Such second expression results to be negative or imaginary for 2 < n < 3
and must be excluded. Thus, the only solution for x < 1, in the asymptotic limit for
t → 0, is the well-known radiation dominated behavior a ∼ t1/2. In the other two
cases, i.e., for x � 1, it is easy to recognize that no asymptotic solutions are allowed.
Therefore, the approach to the initial singularity is not characterized by power-law
inflation behavior when spatial curvature is non-vanishing.

Let us now assume a vanishing spatial curvature in (19). In can be show how, for
K = 0, the radiation-dominated solution with w = 1/3 and x = 1/2 is an exact solu-
tion (non-asymptotic and allowed for all n-values) giving ρ0 = 3/(4χt2

0 ), matching
the standard FLRW case. In the case x > 1, the leading-order terms of (19) read, for
t → 0 and K = 0,
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qā4Cn
1 [1− (C3/C2

4)nx2ā2 ] t4x−2n + 2χ̃ = 0 . (21)

Three distinct regimes have to be now separately discussed. For x > n/2, the
leading order of the equation above does not admit solutions since it writes simply
2χ̃ = 0 and, for x < n/2, the solutions of (21) are those obtained in the case for
x < 1. Instead, for x = n/2, and defining H0 = (n/2)/t0, one gets

ρ0 =
ρ̃0(n)q0

4χt2
0

, ρ̃0(n) = 3n

2 (1−n)(n−1)nn(n(4+(6−5n)n)−4)(n/2)2−2n, (22)

where we have introduced the dimensionless parameter q0 = H2n−2
0 q. We remark

that the constraint n = (2m+ 1)/� (which is in agreement with respect to the one
obtained from Solar-System test) must hold in order to have ρ0 > 0 since we have
assumed q < 0 and therefore q0 < 0. The function ρ̃0 results to increase as n goes
from 2 to 3 and, in particular, one can get 216 < ρ̃0 < 21 024. Finally, for x = 1 and
K = 0, (19) reads [1−n(2n−2)] t4−2n = 0, giving n = [1±√3]/2. As the previous
case, the regime x = 1 does not admit solutions in the region 2 < n < 3.

4.2 Matter-dominated Universe

Let us now study the matter-dominated Universe EoS w = 0 (ρ ∼ a−3). As previ-
ously done, we analyze the three distinct regimes for x < 1, x > 1 and x = 1, and,
in the limit for t → ∞, it is easy to recognize that there are no power-law solutions
in all these cases for K �= 0. Setting K = 0, the x � 1 regimes do not provide any
power-law form for cosmological dynamics either. On the other hand, for x < 1 and
assuming zero spatial curvature in (19), we get the following equation:

[−6x2ā4] t4x−2 +2χ̃ ā tx = ā4qCn
1 [−1+C3ā2nx2/C2

4 ] t4x−2n . (23)

Since 4x−2 > 4x−2n, the term on the right hand side can be neglected in the limit
of large t and the equation above admits three distinct situations: x < 2/3, x > 2/3
and x = 2/3. Both cases with x �= 2/3 do not admit solution. The case x = 2/3
admits instead an asymptotic solution for t → ∞. In fact, (23) reduces to 8ā3 = 6χ̃
and the FLWR matter-dominated power-law solution a = ā t2/3 is reached setting
ρ0 = 4/(3χt2

0 ).
In conclusion, we can infer that, for f (R) = R + qRn, the standard matter-

dominated FLRW behavior of the scale factor a ∼ t2/3 is the only asymptotic (as
t → ∞) power-law solution.

4.2.1 Range of t-values:

As shown above, the matter dominated solution a∼ t2/3 is obtained for K = 0 and
asimptotically as t → ∞. In order to neglect all the K-terms in our f (R) model, we
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start directly from the expression of the Ricci scalar [7]. Using a power-law scale
factor, we get the t-range (if x �= 1/2 and x < 1)

t � ∣∣ [x(2x−1)]/[K/ā2]
∣∣1/(2−2x)

. (24)

For the matter-dominated era and using standard cosmological parameters [8], one
can get the upper limit K/ā2 � 0.006 (H0)

2/3, to estimate the value of K/ā2. Thus,
setting x = 2/3, we get the bound t � 235/H0, independently of the form of f (R).

At the same time, if we set x = 2/3, the asymptotic solution ρ0 = 4/(3χt2
0 ) is

reached neglecting the right hand side (� 1) of (23), i.e, if t is constrained by the
lower limit: t � μ(n,q0)/H0, where (we remind that q0 = H2n−2

0 q)

μ(n,q0) =
∣∣ q0

[− (4/3)n +2(2n+1)3−n n(2n−7/3)
] ∣∣1/2(n−1)

. (25)

Let us now recall that the matter-dominated era began, assuming H−1
0 � 4.3×1017s,

at tEq � 5.1×10−6/H0. In this sense, we can safely assume μ(n,q0)� 5.1×10−8,
which implies an upper limit for |q0|, i.e., |q0|� |q0|Max, where

|q0|Max(n) =
[
5.1×10−8]2(1−n) ∣∣− (4/3)n +2(2n+1)3−n n(2n−7/3)

∣∣−1
. (26)

It is easy to check that the function |q0|Max(n) is decreasing as n goes from 2 to 3,
in particular, one gets: 10−16 � |q0|Max � 10−31.

5 The inflationary paradigm

After discussing the power-law evolution of the Universe proper of the radiation-
and matter-dominated eras, we now analyze the inflationary behavior characterizing
the very early dynamics (for an interesting approach to the inflationary scenario
within the modified gravity scheme, see [9, 10]). In this respect, we hypothesize
an exponential behavior for the scale factor of the Universe a = a0 es(t−t0) = ā est ,
where s > 0 and ā = a0e−st0 . In the following, we concentrate the attention on the
solution for vanishing spatial curvature K = 0 and, in this case, (18) rewrites as

ā4 e4st[q(−12)n s2n(1−n/2)−6s2]+2χ̃(ā est)1−3w = 0 . (27)

Let us now assume w = −1 (i.e., ρ = ρI = const.) during inflation. Using the defi-
nition q0 = H2n−2

0 q, the equation above reduces to
[
(−1)n12n q0(1−n/2)

]
s2n

0 −6s2
0 +κ = 0 , (28)

where κ = 2χρIH−2
0 and s0 is a dimensionless parameter defined as s0 = s/H0. Since

H0 denotes the Hubble parameter measured today and estimating HI =
√
χρI/3

(i.e., accordingly to its Friedmannian value) during inflation [7], one can obtain
κ ∼ H2

I /H2
0 ∼ 10100. For such values, it is easy to realize that considering the case
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n = 2�/(2m+ 1), the equation above does not admit real solution, thus we now
discuss, consistently with the previous analyses, only n = (2m+1)/(2�+1).

In order to integrate (28), we focus on a particular value of the power-law f (R)
exponent, e.g, n = 29/13 ∼ 2.23. Using (15), for this value of n one can safely
consider LMin

q⊕ ∼ 1.44×10−5 pc and, having in mind that Lq = |q0|1/(2n−2)/H0 with
H0 � 4.2×109 pc, we get |q0|> |q0|Min ∼ 2.56×10−36.

Let us now fix the parameter q0 to a reasonable value like q∗0 ∼ −103|q0|Min

(such assumption will be physically motivated in the next Section). In this case, the
solution of (28) is s0 ∼ 2.45×1029. This analysis demonstrates that an exponential
early expansion of the Universe is still associated to a vacuum constant energy, even
for the modified Friedmann dynamics. However, we see that the rate of expansion
is significantly lower than the Friedmann-like one of about a factor in s0 of 1020.
Although our estimation relies on the Friedmannian relation between HI and ρI (the
latter is taken of the order of the Grand Unification energy-scale), nevertheless the
values of s0 remains many order of magnitude below the standard value ∼ 1050

even if we change HI for several order of magnitude. Despite this difference, it is
still possible to arrange the cosmological parameter in order to have a satisfactory
inflationary scenario, as far as we require a longer duration of the de Sitter phase.

6 Physical remarks

As already discussed in Sec.2, the parameter q has dimension [L]2n−2. We have
therefore defined a characteristic length scale of the model as Lq(n) = |q|1/(2n−2).
Assuming f (R) corrections to be smaller than the experimental uncertainty of the
orbital period of the Earth around the Sun, the lower bound (15) for Lq(n) was
found. In order to identify the allowed scales for our model and in view of the upper
constraint on the parameter q0 = H2n−2

0 q derived in the cosmological framework,
we can now define the upper limit for Lq(n) as

LMax
q (n) = [|q0|Max]1/(2n−2)/H0 , (29)

which, considering (26), yields to the constraints 65.59 pc < LMax
q < 78.37 pc, for

2 < n < 3. Assuming H0 � 4.2×109 pc, the two bounds for the characteristic length
scales here discussed, i.e, (15) and (29), are plotted in Fig.1(A). At the same time
two other typical lengths have been outlined in (12) for the Solar System. L∗� rep-
resents the minimum distance to have post-Newtonian and Newtonian terms of the
same order. While L∗∗� was defined according to the request that the weak-field ex-
pansion holds. Setting now n = 23/9� 2.55, one can show from (15) and (29) that
the allowed scales are 0.0013 pc � Lq � 71.72 pc. In this range, L∗� and L∗∗� can be
plotted as in Fig.1(B).

Summarizing, our analysis states a precise range of validity for the power-law
f (R) model we consider. Indeed, for a generic value of n (i.e., not close to 2 or 3)
the fundamental length of the model is constrained to range from the super Solar-
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Fig. 1 Panel A: LMin
q⊕ of (15) and LMax

q of (29). The gray zone represents the allowed characteristic-length scales of
the model. We stress that LMin

q� is defined only if n = (2m+1)/�, as represented by the dotted line. Panel B: L∗� and L∗∗�
of (12). The gray zone represents here the allowed distances for the model.

System scale up to a sub-galactic one. Therefore, in agreement to (9a), we have to
search significant modification for the Newton law in gravitational system lying in
this interval of length scales, like for instance, stellar clusters.

References

1. T.P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010).
2. A.F. Zakharov, A.A. Nucita, F. De Paolis and G. Ingrosso, Phys. Rev. D 74, 107101 (2006).
3. C.M. Will, Living Rev. Rel. 9, 3 (2006).
4. T. Chiba, T.L. Smith and A.L. Erickcek, Phys. Rev. D 75, 124014 (2007).

V. Faraoni and N. Lanahan-Tremblay, Phys. Rev. D 77, 108501 (2008).
H.J. Schmidt, Phys. Rev. D 78, 023512 (2008).
S. Nojiri and S.D. Odintsov, Phys. Lett. B 657, 238 (2007).
S.G. Turyshev, Annu. Rev. Nucl. Part. Sci. 58, 207 (2008).
C.M. Will, Theory and Experiment in Gravitational Physics, Cambridge Uni. Press (1993).

5. O.M. Lecian and G. Montani, Class. Quant. Grav. 26, 045014 (2009).
6. M.T. Jaekel and S. Reynaud, in Gravitational waves and experimental gravity - Proc. of

XLIIemes Rencontres de Moriond 2007, Eds. J. Dumarchez, J. Tran Thanh Van, The Gioi,
Hanoi (2007), pg. 271.

7. E.W. Kolb and M.S. Turner, The Early Universe, Westview Press (1990).
8. E. Komatsu et al., arXiv:1001.4538.
9. S. Nojiri and S.D. Odintsov, Phys. Rev. D 78, 046006 (2008).

10. E. Elizalde, S. Nojiri, S.D. Odintsov, D. Sáez-Gómez and V. Faraoni, Phys. Rev. D 77, 106005
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Towards the unification of late-time acceleration

and inflation by k-essence model

Shin’ichi Nojiri

Abstract Based on the formulation of the reconstruction for the k-essence model,
which was recently proposed in [1], we explicitly construct cosmological model to
unifying the late-time acceleration and the inflation in the early universe.

1 Introduction

By several observations of the universe, it is widely believed that the expansion of
the present universe is accelerating [2, 3, 4]. In order to explain the acceleration,
many kinds of models have been proposed. In this report, we focus on so-called k-
essence model [5] in these models. The k-essence model is derived from k-inflation
model [6] and we may regard the tachyon dark energy model [7], ghost condensation
model [8], and scalar field quintessence model [9] with variations of the k-essence
model.

In this report, based on the formulation of the reconstruction [1] for the k-essence
model, we explicitly construct cosmological model to unifying the late-time accel-
eration and the inflation in the early universe (For consideration of unifying the
inflation with the late-time acceleration in modified gravity, see [10].). In [1], the
k-essence models which reproduce the arbitrary FRW cosmology, that is, the arbi-
trary time-development of the scale factor or the Hubble rate, has been explicitly
constructed. For general reconstruction, see [13, 14]. In [1], two cases have been
considered: One is the case that the action only contains the kinetic term and an-
other is more general case including potential etc. In the former case, it was found
that the exact ΛCDM model cannot be constructed although there is a model in-
finitely closing toΛCDM model. In the model, however, the solution corresponding
to ΛCDM model is unfortunately not stable. In the latter case, it has been found
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that there appear infinite number of redundant functions of the scalar fields, which
are not directly related with the time development of the scale factor. By adjusting
one of them, however, we can always obtain the model where the solution we need
could be stable.

2 Formulation of reconstruction

In this section, we review on the formulation of the reconstruction proposed in [1]
and give the k-essence models which reproduce the arbitrary FRW cosmology, that
is, the arbitrary time-development of the scale factor or the Hubble rate. We now
consider a rather general model, whose action is given by

S =
∫

d4x
√−g

(
R

2κ2 −K (φ ,X)+Lmatter

)
, X ≡ ∂ μφ∂μφ . (1)

Here φ is a scalar field.
Now the Einstein equation has the following form:

1
κ2

(
Rμν − 1

2
gμνR

)
=−K (φ ,X)gμν +2KX (φ ,X)∂μφ∂νφ +Tμν . (2)

Here KX (φ ,X) ≡ ∂K (φ ,X)/∂X and Tμν is the energy-momentum tensor of the
matter. On the other hand, the variation of φ gives

0 =−Kφ (φ ,X)+2∇μ
(
K (φ ,X)∂μφ

)
. (3)

Here Kφ (φ ,X) ≡ ∂K (φ ,X)/∂φ and we have assumed that the scalar field φ does
not directly couple with the matter.

In this section, we assume the FRW universe whose spacial part is flat: ds2 =
−dt2 + a(t)2∑i=1,2,3(dxi)2, and the scalar field φ only depends on time. Then the
FRW equations are given by

3
κ2 H2 = 2X

∂K (φ ,X)

∂X
−K (φ ,X)+ρmatter ,

− 1
κ2

(
2Ḣ +3H2)= K (φ ,X)+ pmatter(t) . (4)

We included the matters with constant EoS parameters wi. Then the energy density
of the matters is given by ∑iρ0ia−3(1+wi) with constants ρ0i and the pressure is
given by ∑i wiρ0ia−3(1+wi). Since the redefinition of φ can be absorbed into the
redefinition of K (φ ,X), we may identify the scalar field φ with the time coordinate
t, φ = t. Then we can rewrite the equations in (4) in the following form

K (t,−1) =− 1
κ2

(
2Ḣ +3H2)−∑

i
wiρ0ia−3(1+wi) ,
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∂K (φ ,X)

∂X

∣∣∣∣
X=−1

=
1
κ2 Ḣ +

1
2∑i

(1+wi)ρ0ia−3(1+wi) . (5)

By using the appropriate function g(φ), if we choose

K(φ ,X) =
∞

∑
n=0

(X +1)n K(n)(φ) ,

K(0)(φ) ≡ − 1
κ2

(
2g′′(φ)+3g′(φ)2)−∑

i
wiρ0ia

−3(1+wi)
0 e−3(1+wi)g(φ)

K(1)(φ) =
1
κ2 g′′(φ)+

1
2∑i

(1+wi)ρ0ia
−3(1+wi)
0 e−3(1+wi)g(φ) , (6)

we find the following solution for the FRW equations (4),

H = g′(t)
(

a = a0eg(t)
)
. (7)

Here K(n)(φ) with n = 2,3, · · · can be arbitrary functions. The case that K(n)(φ)’s
with n = 2,3, · · · vanish was studied in [11, 12] and the instability was investigated.

It is often convenient to use redshift z instead of cosmological time t since the
redshift has direct relation with observations. The redshift is defined by a(t) =
a(t0)/(1+ z) = eN−N0 . Here t0 is the cosmological time of the present universe, N0
could be an arbitrary constant, and N is called as e-folding and directly related with
the redshift z. We now consider the reconstruction by using N instead of the cosmo-
logical time t and identify the scalar field φ with N Then since d/dt = Hd/dN, in
terms of N, the equations in (5) have the following expressions

K
(
t,−H2)=− 1

κ2

(
2H

dH
dN

+3H2
)
−∑

i
wiρ0ia−3(1+wi) ,

H2 ∂K (φ ,X)

∂X

∣∣∣∣
X=−H2

=
1
κ2 H

dH
dN

+
1
2∑i

(1+wi)ρ0ia−3(1+wi) . (8)

By using the appropriate function f (φ), if we choose

K(φ ,X) =
∞

∑
n=0

(
X

f (φ)2 +1
)n

K̃(n)(φ) ,

K̃(0)(φ) ≡ − 1
κ2

(
2 f (φ) f ′(φ)+3 f (φ)2)−∑

i
wiρ0ia

−3(1+wi)
0 e−3(1+wi)(N−N0)

K̃(1)(φ) =
1
κ2 f (φ) f ′(φ)+

1
2∑i

(1+wi)ρ0ia
−3(1+wi)
0 e−3(1+wi)(N−N0) , (9)

we find the following solution for the FRW equations (4),

H = f (N) , φ = N . (10)
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Note that if we define a new field ϕ by ϕ =
∫ dφ

f (φ) , which can be solved as φ as a
function of ϕ as φ(ϕ) and we find ϕ = t up to an additive constant corresponding
to the constant of the integration. We can also identify the expansion in (9) with that
in (6): ∑∞n=0

(
X

f (φ)2 +1
)n

K̃(n)(φ) = ∑∞n=0
(
X̃ +1

)n K(n)(ϕ). Here X̃ ≡ ∂ μϕ∂μϕ ,

K(n)(ϕ) ≡ K̃(n) (φ (ϕ)). Then even for the expansion in (9), we can use the argu-
ments about the stability and the existence of the Schwarzschild solution, which
will be given in the following sections.

3 Stability of solution

We now investigate the stability of the solution (7) or (10). First we consider the
case without matter. From (4), we can derive the following equation which does not
contain the variable g′′,

3
1− y2

1+X
X =− Ḣ

H2 +
κ2

H2

∞

∑
n=2

((n−1)X−n−1)X(X +1)n−2K(n)(φ) , (11)

where y = g′
H . Using (11), we can rewrite dy/dN = (1/H)dy/dt in the form which

does not contain g:

dy
dN

= 3X
1− y2

1+X

(
φ̇
X
+ y

)

− κ
2

H2

∞

∑
n=2

[
(φ̇ + yX)((n−1)X−n−1)+ φ̇n(X +1)

]
(X +1)n−2K(n)(φ) . (12)

When we consider the perturbation from a solution φ = t by putting φ = t +δφ in
(12), we obtain

dδ φ̇
dN

=

[
−3− g′′

g′2
− d

dN

{
κ2

6g′2
(8K(2)− 2

κ2 g′′)
}]
δ φ̇ . (13)

If the quantity inside [ ] is negative, the fluctuation δ φ̇ becomes exponentially
smaller with time and therefore the solution becomes stable. Note that the stability
is determined only in terms of K(2) and does not depend on other K(n) (n �= 2). Then
if we choose K(2) properly, the solution corresponding to arbitrary development of
the universe becomes stable.

We now investigate the stability when we include the matter. Then the equation
corresponding to (11) has the following form:

3
1− y2

1+X
X =− Ḣ

H2 +
κ2

H2

∞

∑
n=2

(
(n−1)X−n−1

)
X(X +1)n−2K(n)(φ) (14)
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+
κ2

H2
X−1

2(X +1)
ρmatter− κ2

2H2 pmatter− κ
2

H2
X

X +1∑i
ρ0ia

−3(1+wi)
0 e−3(1+wi)g(φ) .

Then we find

dy
dN

= 3X
1− y2

1+X

(
φ̇
X
+ y

)

− κ
2

H2

∞

∑
n=2

[
(φ̇ + yX)((n−1)X−n−1)+ φ̇n(X +1)

]
(X +1)n−2K(n)(φ)

+
κ2

2H2X

(
−X−1

X +1
(
φ̇ + yX

)− φ̇)ρmatter +
κ2

2H2 ypmatter

+
κ2

2H2∑
i

((
φ̇ + yX

) 2
X +1

− φ̇(1+wi)

)
ρ0ia

−3(1+wi)
0 e−3(1+wi)g(φ) . (15)

When we include the matter, the situation becomes a little bit complicated since not
only H but the scale factor a appears in the equation. Then we need equation to
describe the time development of a. By defining δλ for convenience as

δλ ≡ 3∑
i
(1+wi)ρ0ia(t)−3(1+wi)

κ2

6g′2

(
δa
a
−g′δφ

)
. (16)

we obtain the following equations,

d
dN

(
δ φ̇
δλ

)∣∣∣∣
φ=t,H=g′(t)

=

(
A B
C D

)(
δ φ̇
δλ

)
(17)

A≡−3+
g′′

g′2
+
κ2

2g′2∑i
(1+wi)ρ0ia(t)−3(1+wi)

− d
dN

ln

{
8K(2)− 2

κ2 g′′ −∑
i
(1+wi)ρ0ia(t)−3(1+wi)

}
,

B≡ 3− 24K(2)

8K(2)− 2
κ2 g′′ −∑i(1+wi)ρ0ia(t)−3(1+wi)

,

C ≡ 3∑
i
(1+wi)ρ0ia(t)−3(1+wi)

(
κ2

6g′2

)2

×
{

8K(2)− 6g′2

κ2 −
2
κ2 g′′ −∑

i
(1+wi)ρ0ia(t)−3(1+wi)

}
,

D≡ d
dN

ln

{
κ2

2g′2∑i
(1+wi)ρ0ia(t)−3(1+wi)

}
− κ2

2g′2∑i
(1+wi)ρ0ia(t)−3(1+wi) .

Generally, 2×2 matrix must have negative trace and positive determinant in or-
der that two eigenvalues could be negative since the two eigenvalues are given by
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1
2{trM±

√
(trM)2−4(detM)}. So we just need to calculate the determinant and the

trace of the matrix for investigating the stability of the fixed point φ = t, H = g′(t).
Since the expressions in (17) are very complicated, we consider the case that the
solution is given by the behavior mimicing ΛCDM solution in the Einstein gravity
and the matter contents are given in the present universe. Then we find

a(t)∼ Asinh
2
3 [αt] , g′(t)∼ 2

3
α coth[αt] , (18)

κ2

α2∑
i
(1+wi)ρ0ia(t)−3(1+wi) ∼ 2

3
1

sinh2[αt]
, (19)

κ2

α2∑
i

wi(1+wi)ρ0ia(t)−3(1+wi) ∼ 4
9
×1.86×10−4 1

sinh
8
3 [αt]

, (20)

where A ≡ (ρm0/ρΛ )
1
3 and α ≡ κ√3ρΛ/2. Note that in (18) and (19), we neglect

the contribution from radiation, and in (20), there only appears the contribution from
radiation. Therefore the expressions in (18) - (20) could be valid at least when t ≥
109 years. By using (18) - (20), we find the following expressions of the determinant
and trace of the matrix in (17):

tr
(

A B
C D

)
∼−6+

3
2

1
cosh2[αt]

−
8 κ

2

α3 K(2)′ − 4
3

cosh[αt]
sinh3[αt]

2
3 coth[αt]

(
8 κ

2

α2 K(2) + 2
3

1
sinh2[αt]

) , (21)

det
(

A B
C D

)
∼

{
8
κ2

α2 K(2) +
2
3

1
sinh2[αt]

}−1

×
[(
−27

sinh[αt]
cosh3[αt]

+36tanh[αt]
)
κ2

α3 K(2)′

+

(
72−36

1
cosh2[αt]

−18
1

cosh4[αt]
−12×1.86×10−4 1

sinh
8
3 [αt]

)
κ2

α2 K(2)

−6×1.86×10−4 1

cosh2[αt]sinh
8
3 [αt]

− 3
2

1
cosh4[αt]sinh2[αt]

+3
1

sinh2[αt]cosh2[αt]
+4×1.86×10−4 1

sinh
8
3 [αt]

]
. (22)

Note that 1 < cosh[αt]≤ 2 and 0 < sinh[αt]≤ 1.7 in evolution of the universe, For
example, if we consider the case that K(2) is constant, then the trace of the matrix
is always negative and the determinant is positive when K(2) ≥ 0 since 72 κ

2

α2 K(2)

and 3/(sinh2[αt]cosh2[αt]) are dominant terms in (22). Therefore even if K(2) is
constant, the fixed point solution mimickingΛCDM solution in the Einstein gravity
becomes stable as long as K(2) ≥ 0.
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4 Schwarzschild solution

(A)dS solution for the action (1).
We now assume φ is a constant: φ = φ0, or the change of the value of φ is very

small. Then the Einstein equation (2) and the equation (3) given by the variation of
φ reduce to

1
κ2

(
Rμν − 1

2
gμνR

)
=−K (φ0,0)gμν +Tμν , (23)

0 = Kφ (φ0,0) . (24)

WhenTμν 0
(A)dS space-time. On the other hand, if K (φ ,0) vanishes, the Schwarzschild solu-
tion, which is asymptotically the Minkowski space-time, is a solution. The equation
(24) requires that Kφ (φ ,0) has an extremum in general or K (φ ,0) can be a constant
independent of the value of φ . Especially if K (φ ,0) vanishes identically, (23) gives
the Schwarzschild solution.

∑n=0 (1+X)n Kn(φ).Then if K (φ ,0)=
0, that is, if K (φ ,0) vanishes independent of the value of φ , we find

∑
n=0

Kn(φ) = 0 . (25)

Especially we may choose

K3(φ) =−K0(φ)−K1(φ)−K2(φ) . (26)

Then if the condition (25) or (26) is satisfied, the Schwalzschild space-time is
always a solution independent of the value of φ as long as φ is a constant. Then
any point source of matter makes the Schwarzschild space-time which generates the
Newton potential. Then the correction to the Newton law could not appear. Note
that the value of the scalar field φ changes by the evolution of the universe but as
long as the condition (25) or (26) is satisfied, in a local region where φ is almost
constant, the correction to the Newton law could be negligible.

5 Construction of a model unifying late-time acceleration and

inflation

In this section, by using the formulation of the reconstruction, we try to construct a
model describing the late-time acceleration and the inflation in the early universe.

In the Einstein gravity, we have the following FRW equation

We now consider the condition that there could be the Schwarzschild or Schwarzschild-

= 0, if K (φ ,0) does not vanish, a solution of (23) is given by Schwarzschild-

We now write K (φ ,X) as in (6), K (φ ,X)=
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3
κ2 H2 = ρtotal , − 1

κ2

(
2Ḣ +3H2)= ptotal . (27)

Here ρtotal and ptotal are total energy density and the total pressure. Then we may
define total equation of state parameter wtotal by

wtotal =
ptotal

ρtotal
=−1− 2Ḣ

3H2 =−1− 2
3H

dH
dN

. (28)

As matters, we include the radiation and dust, which may corresponds to the
baryon and dark matter. Then as in the energy density of matter behaves as in (9),

ρ = ρradiationa−4
0 e−4(N−N0) +ρdusta−3

0 e−3(N−N0) . (29)

We may consider the following Hubble rate

H2 = H2
0
(
N2

I +N2)−γ + κ2

3

(
ρradiationa−4

0 e−4(N−N0) +ρdusta−3
0 e−3(N−N0)

)
. (30)

Here H0, NI , and γ are parameters assumed to be positive. Then by using (8), we
find

K(0)(φ) =
H2

0
κ2

{
2γφ

(
N2

I +φ
2)−γ−1

+3
(
N2

I +φ 2)−γ} ,

K(1)(φ) = −H2
0
κ2 γφ

(
N2

I +φ
2)−γ−1

. (31)

Note that in the expression of K(0)(φ) and K(1)(φ), the parameters describing the
matters like ρradiation and ρdust are not included.

We now investigate the cosmology described by the Hubble rate in (30). If H0 is
large enough, in the early universe, where we assume N → 0, the first term in (30)
could dominate H2 ∼ H2

0
(
N2

I +N2
)−γ . Then by using (28), we find

wtotal ∼−1+
2γN

3
(
N2

I +N2
) . (32)

Then N → 0, we find wtotal →−1, which corresponding to the effective cosmolog-
ical constant with w = −1. Therefore the inflation in the early universe could be
generated. When N becomes larger, the first term could become smaller and the
second term in (30) corresponding to the radiation could dominate. Maybe more
exactly, the second and third terms could be generated by the reheating after the
inflation, after that there could be complicated process for the matters like pair anni-
hilation (creation), baryogenesis (or leptogenesis). In this present report, we do not
discuss about the detailed process. After the radiation, the third term in (30) corre-
sponding to the dust could dominate as in the usual scenario. The contributions from
the radiation and matter decrease exponentially as a function of N, the first term in
in (30) dominate in the late universe again. Then wtotal is given by (32) again. For
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large N, corresponding to the late universe, we find wtotal →−1, again and there-
fore the expansion of the universe accelerates again. Note that, however, different
from the case of the small cosmological constant, H is not a constant but decreasing
function of N as H ∼ H0N−γ . Then the smallness of the scale of the acceleration in
the present universe might be naturally explained.

We now discuss more quantitively. Since H→H0N−γI when N→ 0, if we assume
NI ∼O(1), the scale of H0 corresponds to the weak scale. In the action (1) with (31),
the dimensional parameter appears only in the combination of

M4 =
H2

0
κ2 = M2

PlanckH2
0 . (33)

Here MPlanck ∼ 1019 GeV is the Planck scale. Then if the scale of the inflation is
the Planck scale, H0 ∼ MPlanck, M is also the Planck scale, M ∼ MPlanck. If H0
is a GUT scale, H0 ∼ 1016 GeV, the scale of M is 1017∼18 GeV. We should note
that M is only one parameter with the dimension of mass in the action. We now
consider how very small scale corresponding to the late acceleration can appear
from only one dimensional parameter. In the present universe, if we denote the
present value of H by Hpresent ∼ 10−33 eV, under the assumption NI ∼ O(1), we
find C ≡ Plank scale

H0
∼ 1061 ∼ e140. Then when we assume H0 ∼MPlanck, we have

H0
Hpresent

∼ C. If we naively assume N ∼ lnC � NI , we find γ ∼ 28. Then we find
that the very small scale corresponding to the late acceleration can appear from only
one dimensional parameter M. Then the fine tuning problem might be relaxed. If
the equation of state parameter wdarkenergy of the dark energy could be given by (32)
with N � NI as wdarkenergy ∼ wtotal, we obtain wdarkenergy ∼−0.87, which is little bit
greater than the value obtained from the observation −0.14 < 1+w < 0.12[3].

6 Summary

In this report, we explicitly construct cosmological model of k-essence to unify-
ing the late-time acceleration and the inflation in the early universe (Note that such
reconstruction scheme for k-essence models may be extended also for presence of
Lagrange multiplier [15].). The construction is based on the formulation of the re-
construction for the k-essence model, which was recently proposed in [1]. The ac-
tion (1) can be expanded as a power series of 1+X = 1+∂ μφ∂μφ as in (6). For the
cosmological evolution of the Hubble rate H, only the first two terms in the series
are relevant. The third term is relevant for the stability. The fourth or higher terms
are relevant for the existence of the Schwarzschild solution, which may reproduce
the Newton law if the scalar field is not directly coupled with the matter.

In the constructed model (31), only one dimensional parameter, whose scale
could be equal to or a little bit smaller than the Planck scale but the small scale
of the present Hubble scale can be produced. We have not discussed about the re-
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heating and structure formation in the universe etc., which will be discussed in the
forthcoming paper.
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Conformal Equivalence in Classical Gravity:

the Example of “Veiled” General Relativity

Nathalie Deruelle1 and Misao Sasaki2,3

Abstract In the theory of General Relativity, gravity is described by a metric which
couples minimally to the fields representing matter. We consider here its “veiled”
versions where the metric is conformally related to the original one and hence is no
longer minimally coupled to the matter variables. We show on simple examples that
observational predictions are nonetheless exactly the same as in General Relativity,
with the interpretation of this “Weyl” rescaling “à la Dicke”, that is, as a spacetime
dependence of the inertial mass of the matter constituents.

1 Introduction

Many extensions of General Relativity which are under current investigation (for
example f (R) gravity, see e.g. [1], or quintessence models, see e.g. [2]) fall in the
class of scalar-tensor theories (see e.g. [3]) where gravity is represented by a scalar
field φ̃ together with a metric g̃ which minimally couples to the matter variables.
Now, as is well-known (see [4] where references to the earlier literature can also
be found), the “Jordan frame” variables φ̃ and g̃ can be traded for the “Einstein
frame” variables (φ∗,g∗) with g̃ = e2Ωg∗, the conformal factor Ω being chosen so
that the action for gravity becomes Einstein-Hilbert’s, the “price to pay” being that
the matter fields no longer minimally couple to the metric g∗.

Although there seems to be an agreement in the recent literature about the math-
ematical equivalence of these two “frames” (as long as Ω does not blow up) there
is still some debate about their “physical” equivalence, the present trend (see e.g.
[1] and references therein) being that calculations may be performed in the Ein-
stein frame but interpretation should be done in the Jordan frame (for the opposite

1 APC, UMR 7164 du CNRS, Université Paris 7, 75205 Paris Cedex13, France
2 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
3 Korea Institute for Advanced Study 207-43 Cheongnyangni 2-dong, Dongdaemun-gu, Seoul 130-
722, Republic of Korea
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view see e.g. [5], where a comprehensive review of the earlier literature can also be
found).

It should be clear however, see [6], that, just as one can formulate and interpret a
theory using any coordinate system (proper account being taken of inertial acceler-
ations if need be), one should be able to formulate and interpret (classical) gravity
using any conformally related metric, proper account being taken of non-minimal
coupling if need be. (For recent papers supporting this view, see e.g. [7, 8, 9].)

In this paper we shall try to make this equivalence “crystal clear” by showing
that some familiar predictions of General Relativity can equivalently be made in its
“veiled” versions where the metric is conformally related to the original one and
hence is no longer minimally coupled to the matter variables.

2 Conformal transformations and “veiled” General Relativity

In the theory of General Relativity:

– Events are represented by the points P of a 4-dimensional manifold M equipped
with a Riemannian metric g, with components gμν(xα) in the (arbitrary) coor-
dinate system xα labelling the points P.

– Matter is represented by a collection of tensorial fields on M , denoted ψ(a)(P).
– Gravity is encoded in the metric g which couples minimally to the fields ψ(a).

This means that the action for matter is obtained from the form it takes in flat
spacetime in Minkowskian coordinates by replacing ημν by gμν .

– Finally the action for gravity is postulated to be Einstein-Hilbert’s.

Hence the familiar total action:

S[gμν ,ψ(a)] =
1

16π

∫
d4x
√−gR+Sm[gμν ,ψ(a)] , (1)

where g is the determinant of the metric components gμν and R the scalar curvature.
Our conventions are: signature (−+++), R = gμνRμν , Rμν = Rσ μσν , Rμνρσ =
∂ρΓ μνσ + · · · . We use Planck units where c = h̄ = G = 1.

The field equations are obtained by extremising S with respect to the metric gμν
and the matter fields ψ(a), which yields the equally familiar Einstein equations,

Gμν = 8πTμν ,
δSm

δψ(a)
= 0 , (2)

where Gμν = Rμν − 1
2 gμνR is the Einstein tensor and where Tμν = − 2√−g

δSm
δgμν is

the total stress-energy tensor. As is well-known Tμν is constrained by the Bianchi
identity to be divergence-less,

DνT μν = 0 , (3)
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D being the covariant derivative associated with g. Recall that this conservation law
implies that the worldline of uncharged test particles are represented by geodesics
of the metric g.

Let us now equip our manifold M with another metric ḡ, with components ḡμν
in the same coordinate system xα , which is conformally related to the original one:

gμν =Φ ḡμν , (4)

Φ(xα) being an arbitrary function of the coordinates, that we shall restrict to be
everywhere positive.1

Using the fact that
√−g = Φ2√−ḡ and that the Ricci tensors and scalar curva-

tures are related as

Rμν = R̄μν− D̄μνΦ
Φ

− ḡμν
2

�̄Φ
Φ

+
3
2
∂μΦ∂νΦ
Φ2 , R=

1
Φ

(
R̄−3

�̄Φ
Φ

+
3
2
(∂̄Φ)2

Φ2

)
,

(5)
(R̄μν , R̄ and D̄ being the Ricci tensor, the scalar curvature and the covariant deriva-
tive associated with the metric ḡ), it is easy to find the “veiled” version of Einstein’s
equations (2),

Φ Ḡμν−D̄μνΦ+ ḡμν�̄Φ+
3

2Φ

(
∂μΦ∂νΦ− 1

2
ḡμν(∂̄Φ)2

)
= 8πT̄μν ,

δSm

δψ(a)
= 0 ,

(6)
where Sm is now expressed in terms of ḡμν , Sm[gμν ,ψ(a)] = Sm[Φ ḡμν ,ψ(a)], and
where T̄μν = − 2√−ḡ

δSm
δ ḡμν so that T̄μν = Φ Tμν , with gαβ replaced by Φ ḡαβ in Tμν .

As for the Bianchi identity (3), it translates into

D̄ν T̄ μν =
∂̄ μΦ
2Φ

T̄ . (7)

The total stress-energy tensor is no longer conserved.
Equations (6), (7) can also be straightforwardly obtained from the Einstein-

Hilbert action (1). Indeed it reads, using (4) and up to a boundary term,

S[ḡμν ,Φ ,ψ(a)] =
1

16π

∫
d4x
√−ḡ

(
Φ R̄+

3
2
(∂̄Φ)2

Φ

)
+Sm[Φ ḡμν ,ψ(a)] . (8)

Extremisation with respect to ḡμν and ψ(a) yields (6). As for the extremisation with
respect to Φ it is redundant since it turns out to be equivalent to the trace of equa-
tion (6). This reflects the fact that, ḡμν remaining unconstrained, Φ is an arbitrary

1 (M ,g) or (M , ḡ) are often called, rather improperly, “frames”, when a more accurate wording
would be “representations” of space and time, see [6].
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function and not a dynamical field.2

Let us now be more specific about the matter action Sm.
As an example (others are considered in the Appendix), take matter to be an elec-

tron characterized by its inertial mass m and charge q interacting with the electro-
magnetic field Aμ created by an infinitely massive proton, so that Sm is the Lorentz
action where ημν → gμν :3

Sm[gμν ,L] =−m
∫

L

√−gμνdxμdxν +q
∫

L
Aμdxμ , (9)

where L is a path determined by xμ = xμ(λ ). The equation of motion of the electron,
δSm
δL = 0, is the familiar Lorentz equation,

muνDνuμ = qFμν uν , (10)

where uμ = dxμ/dτ with gμνuμuν =−1 and Fμν = ∂μAν −∂νAμ .
Equivalently, Sm reads, in terms of the metric ḡμν ,

Sm[ḡμν ,Φ ,L] =−
∫

L
m̄
√−ḡμνdxμdxν +q

∫
L

Āμdxμ , (11)

where Āμ = Aμ and
m̄ =

√
Φm . (12)

As for the Lorentz equation (10), it becomes

m̄
[

ūν D̄ν ūμ +
1

2Φ
∂νΦ (ḡμν + ūμ ūν)

]
= qF̄μν ūν , (13)

2 One notes the resemblance of the action (8) and the field equations (6) with the Brans-Dicke
action and field equations [10] when their parameter ω is ω =−3/2, see e.g. [11]. The difference
(which makes ω = −3/2 Brans-Dicke theory different from General Relativity) is that, in Brans-
Dicke theory, matter is minimally coupled to the metric ḡ (not g),

Sω=−3/2
BD =

1
16π

∫
d4x
√−ḡ

(
Φ R̄+

3
2
(∂̄Φ)2

Φ

)
+Sm[ḡμν ,ψ(a)] .

In the spirit of [12], one could therefore introduce a “detuned” version of General Relativity based
on the action,

SdetunedGR =
1

16π

∫
d4x
√−ḡ

(
Φ R̄+

3
2
(∂̄Φ)2

Φ

)
+Sm[ΦF(Φ) ḡμν ,ψ(a)] ,

which reduces to “veiled” General Relativity if F(Φ) = 1 and to ω =−3/2 Brans-Dicke theory if
F(Φ) =Φ−1. We shall not pursue this idea any further here.

3 In Planck units m and q are two dimensionless numbers which are determined in a local inertial
frame where gravity is “effaced”[13] and where the laws of Special Relativity hold.
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with ūμ = dxμ/dτ̄ and ḡμν ūμ ūν =−1.
In locally Minkowskian coordinates Xμ in the neighbourhood of some point P

where ḡμν ≈ ημν and if Φ is approximately constant, this equation takes the form,

m̄
dUμ

dτM
≈ qFμνUν , (14)

with Uμ = dXμ/dτM and ημνUμUν = −1. This equation is the same as the one
governing the motion of the electron in Special Relativity apart from the fact that its
mass is rescaled by the factor

√
Φ(P), see [6].4

As an illustration of the consequences of the rescaling of the mass in veiled Gen-
eral Relativity, consider for example a transition between the levels n and n′ of, say,
the hydrogen atom. Its frequency is given by Bohr’s formula,

ν̄(P) =
(

1
n′2
− 1

n2

)
m̄(P)q4

2
with m̄(P) =

√
Φ(P)m . (15)

It depends on P, that is, on when and where it is measured. Hence the frequency
ν̄(P)≡ ν̄ of the transition measured at point P (“there and then”) and the frequency
ν̄(P0)≡ ν̄0 of the same transition measured at P0 (“here and now”) are related by:5

ν̄ =

√
Φ(P)
Φ(P0)

ν̄0 . (16)

3 Conformal equivalence in cosmology

Let us show here on a few examples that the standard cosmological models of Gen-
eral Relativity or its conformally related sister theories all lead to the same physical
predictions and hence are observationally indistinguishable.

The field equations to solve are the veiled Einstein equations (6)-(7) for ḡμν
and Φ .

We look for simplicity for spatially flat Robertson-Walker metrics,

ds̄2 = ā2(t)(−dt2 +dr2) , (17)

4 This space-time dependence of the (inertial) mass can be interpreted as a local rescaling of the
unit of mass, see [6]. It can also be interpreted as the result of the “interaction” of the “scalar
field” Φ with matter. It must be remembered however that this “interaction” is an artefact of the
introduction of the metric ḡ, and that the “scalar force” which appears in (13) or (7) can be globally
effaced by returning to the original metric g, just like an inertial force can be effaced by going to
an inertial frame.
5 This difference between the two numbers ν̄ and ν̄0 can be interpreted as simply due to the fact
that they are expressed using a different unit of time at P and P0, see [6].
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where the scale factor ā and the scalar field Φ depend on t only. By construction
equations (6)-(7) are undetermined and we shall choose here, to make our point
more strikingly, Φ to be the dynamical field describing gravity by imposing

ā(t) = 1 . (18)

Therefore the metric ḡ is flat.6

Matter is represented by the stress-energy tensor of a perfect fluid (see Ap-
pendix): T̄μν = (ρ̄ + p̄)ūμ ūν + p̄ ḡμν that we choose to be at rest with respect to
the Minkowskian coordinate grid (t,r):7 ūμ = (1,0) ; as for the (veiled) density and
pressure ρ̄ and p̄ they depend on t.

The equations of motion (6)-(7) forΦ then reduce to, a prime denoting derivation
with respect to t,

3
4Φ
Φ ′2 = 8πρ̄ , ρ̄ ′ =

Φ ′

2Φ
(ρ̄−3p̄) , (19)

which can be solved once an equation of state is given. For p̄ = wρ̄ for example,

Φ =

(
t
t0

)4/(1+3w)

, ρ̄ =
3

2π(1+3w)t2
0

(
t
t0

)2(1−3w)/(1+3w)

. (20)

Let us now turn to the relation between the luminosity distance D and redshift z
that the model predicts.

As usual, we focus on a given atomic transition line in the spectrum of a distant
galaxy at point P = (t,r). The observer is at point P0 = (t0,0), and the atomic line
emitted by this galaxy is observed at frequency ν0. As given in (16), if ν̄ is the
frequency of this transition measured at point P, the frequency of the same transition
measured at point P0 will be ν̄0 =

√
Φ(P0)/Φ(P) ν̄ . Therefore the observed redshift

is given by

1+ z =
ν̄0

ν0
=

√
Φ(t0)
Φ(t)

ν̄
ν0

. (21)

The luminosity distance is given, by definition, as

D =

√
L

4π�
, (22)

where L is the absolute luminosity of the galaxy and � is the apparent luminosity
per unit area observed at point P0. Since the mass of the electron in veiled General
Relativity varies according to m̄ =

√
Φm, it is crucial here to recall that the absolute

6 This does not mean that t and r represent time and position in an inertial frame since the word-
lines of free particles are not straight lines. They rather solve, see (13): ūν D̄ν ūμ = − 1

2Φ (∂̄
μΦ +

ūμ ūν∂νΦ), whose solution is, C being three constants: V̄ ≡ ū/ū0 =C/
√

C2 +Φ(t) �= const..
7 This is the familiar “Weyl postulate”.
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luminosity is not equal to the luminosity measured at the point of emission P (where
the frequency of the transition is ν̄) but is defined as if the galaxy were at the point
of reception P0 (where the frequency of the transition is ν̄0) so that we have 8

L = N
ν̄0

Δ t
= Nν̄2

0 , (23)

where N is the number of photons emitted by this transition during a period Δ t =
1/ν̄0. The apparent luminosity is given by

�= N
ν2

0
S

= N
ν2

0
4πr2 , (24)

where S = 4πr2 is the surface area of a sphere of radius r since the metric ḡ is flat.
Inserting (23) and (24) into (22), we find, using (21),

D =
ν̄0

ν0
r =

√
Φ(t0)
Φ(t)

ν̄
ν0

r . (25)

In order finally to relate ν̄ to ν0 and r to T we must study the propagation of light
from P to P0. Light follows the null cones of (M , ḡμν = ημν) so that r is the time
light takes to propagate from P to P0, and the frequency ν̄ measured at P is the same
as the frequency ν0 observed at P0:

(ν̄ = ν0 , r = t0− t) =⇒ z =

√
Φ(t0)
Φ(t)

−1 , D =

√
Φ(t0)
Φ(t)

(t0− t) .

(26)
Let us, for cosmetics, trade an integration on t by an integration on z:

t0− t =
∫ t0

t
dt =−

∫ z

0

dz
dz/dt

=
∫ z

0

2Φ3/2

Φ ′
dz . (27)

This leads us to the relationship between the luminosity-distance and redshift that
our cosmological model in veiled General Relativity predicts:

D = (1+ z)
∫ z

0

dz
H

, (28)

where H ≡Φ ′/(2Φ3/2) must be expressed in terms of z =
√
Φ(t0)
Φ(t) −1 after integra-

tion of the equations of motion (19) for Φ .

Now, in General Relativity, that is, in the “unveiled frame”, ds2 = a2 ds̄2 with
a=

√
Φ , where matter is minimally coupled to the metric gμν = a2ημν , H is nothing

but the “Hubble parameter”:

8 This (crucial) coupling of the inertial masses to the scalar fieldΦ is forgotten in some papers, see
e.g. [14], which hence (wrongly) conclude to the inequivalence of the Jordan and Einstein frames.
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H ≡ Φ ′

2Φ3/2 =
a′

a2 =
1
a

da
dτ

, (29)

with dτ ≡ adt. Moreover the equations of motion (19) for Φ are identical to the
standard Friedmann-Lemaı̂tre equations,

3H2 = 8πρ , ρ̇+3H(ρ+ p) = 0 , (30)

with ρ ≡ ρ̄/Φ2 and p≡ p̄/Φ2 (see Appendix). Finally, the text-book derivation of
the relation luminosity-distance versus redshift yields (28). Therefore the predicted
relationship between the observables z and D is the same, whether we represent
gravity by a curved Robertson-Walker metric gμν = a2ημν minimally coupled to
matter as in General relativity, or by a flat metric ḡμν = ημν together with a scalar
field Φ coupled to matter, in its “veiled” version.

The physical interpretation of (28) is however different. Indeed, in the particular
version of veiled General Relativity that we considered here:

– The evolution of the universe is not interpreted by cosmic expansion. Since we
chose Φ = a2 there is in fact no cosmic expansion at all: ḡμν = ημν ; but we
defined on this flat manifold a scalar fieldΦ which evolves in time and describes
the interaction of gravity and matter.

– There is no redshifting of photons, since the frequency of an atomic transition
measured at P is equal to the frequency of that same transition as observed at
P0 (ν̄ = ν0).

– However the interaction ofΦ with matter implies that the mass m̄ of the electron
varies in time (m̄ =

√
Φm = am). Therefore the frequency of an atomic transi-

tion as measured in a lab there and then at P is not the same as the frequency
measured here and now at P0: ν̄ =

√
Φ(P)/Φ(P0) ν̄0 = (a/a0)ν̄0. This redshift-

ing due to a varying mass is exactly the same as the one due to a cosmological
redshift in General Relativity.

Pursuing the above interpretation, the temperature of the cosmic microwave
background can be considered constant, since photons are not redshifted, and cho-
sen to be the present temperature T0 = 2.725K, throughout the whole history of the
universe (that is, during the whole time-evolution of the gravitational field Φ). The
universe was in thermal equilibrium when the electron mass was smaller by a factor
of more than 103 compared to the mass today, that is when the ground state binding
energy of the hydrogen was less than 0.0136eV. The “Big-Bang” is flat space at
time t = 0 when the masses of the matter constituents are zero.

In conclusion, the above considerations show that the physical interpretation of
the equations can be very different in General Relativity or its veiled versions, but
the resulting relations between observables are completely independent of the con-
formal representation (or “frame”) one chooses.
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4 Conformal equivalence in local gravity

We shall see here that the tests of General Relativity in the Solar System (gravi-
tational redshift, bending of light, perihelion advance, Shapiro effect...) can just as
well be constructed using veiled General Relativity.

solution of the vacuum Einstein equations written in Droste coordinates xμ =
(t,r,θ ,φ),

ds2 ≡ gμνdxμdxν =−(1−2M/r)dt2 +
dr2

1−2M/r
+ r2(dθ 2 + sin2 θdφ 2) , (31)

where M is the (active) gravitational mass of the Sun. The propagation of light and
the motion of planets in the Solar System are represented by (null) geodesics of this
Schwarzschild spacetime. Proper time as measured in, say, Planck units, by a clock
travelling in the Solar System is represented by the length of its timelike worldline
xμ(λ ), that is, by the number τ =

∫√−gμνdxμdxν .

Let us now introduce the following “veiled” Schwarzschild line element ds2 =
Φ ds̄2 with Φ = 1−2M/r so that

ds̄2 ≡ ḡμνdxμdxν =−dt2 +
dr2

(1−2M/r)2 +
r2

1−2M/r
(dθ 2 + sin2 θdφ 2) , (32)

which solves the “veiled” vacuum Einstein equations (6) (we shall restrict our at-
tention to the region outside the horizon, r > 2M).9

Light follows the null geodesics of ḡμν which are the same as those of gμν .
Therefore the prediction for the bending of light is the same as in General Relativity.

Test particles do not follow geodesics of ḡμν and their equation of motion is
given by (13) (with q = 0). However this equation is just a rewriting of the geodesic
equation in the metric gμν . Therefore the trajectories r = r(φ) in the equatorial
plane θ = π/2 are the same in both General Relativity and its veiled version. The
prediction for, say, the perihelion advance of Mercury is hence the same.

Consider now an atom at rest at r and an observer at rest at r0. Since t is proper
time, the frequency ν0 of an atomic transition, as observed at r0, will be the same as
the frequency ν̄ measured at r: ν̄ = ν0. However, in close analogy with the cosmo-
logical case, since the mass of the electron undergoing this transition depends on r
as (12), m̄ =

√
Φ(r)m, ν̄ is related to the frequency ν̄0 of the transition as measured

at r0 by (16): ν̄ = ν̄0
√
Φ(r)/Φ(r0). Hence the gravitational redshift is predicted to

be

9 One may wonder if the line elements ds̄2 = ds2/Φ , ds2 being the Schwarzschild solution, are the
only solutions of the “veiled” vacuum Einstein equations (which, beware, are not Ḡμν = 0 !). The
answer is yes since, by construction, these equations are undetermined andΦ can be chosen at will
to solve them. One then chooses Φ = 1 and invokes the uniqueness of the Schwarzschild solution.

For definiteness let us describe the gravitational field of theSun by the Schwarzschild
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z≡ ν̄0

ν0
−1 =

√
Φ(r0)

Φ(r)
−1 =

√
1−2M/r0

1−2M/r
−1 , (33)

which is exactly the same as the prediction of General Relativity.
Finally let us consider predictions for the tests of General Relativity relying

on time measurements (such as the Shapiro effect, GPS,...). In veiled General
Relativity, the proper time interval dτ̄ =

√−ḡμν dxμdxν between two adjacent
events xμ = (t,r,θ ,φ) and xμ + dxμ differs from that of General Relativity dτ:
dτ̄ = dτ/

√
Φ . However, if we recall that time measurements are based on atomic

clocks, that is, time intervals are counted in units of a frequency of an atomic tran-
sition, we readily find that the observed number of ‘ticks’ will be the same,

Nticks = ν̄ dτ̄ =
√
Φ ν

dτ√
Φ

= ν dτ , (34)

where ν̄ and ν are the frequencies of an atomic transition defined in veiled and
unveiled General Relativity, respectively. Thus predictions for all the time mea-
surements in veiled General Relativity again exactly agree with those in General
Relativity.

5 Conclusion

In 1912 Nordström proposed a theory where gravity was represented by a scalar
field Φ on Minkowski spacetime with metric ḡμν = ημν . Of course, matter was
non-minimally coupled to that field, so that its interaction to gravity be described
(see e.g. [16]). In 1914 Einstein and Fokker introduced a conformally flat metric
gμν =Φημν which turned Nordström’s equation of motion of test particles into the
geodesic equation of the metric g. Hence matter was minimally coupled to g. As
for the Klein-Gordon field equation for Φ it became an equation relating the scalar
curvature of g to the trace of the stress-energy tensor of matter. It was clear (at least
to Einstein and Fokker !) that the two versions of the theory were strictly equivalent,
Nordström’s formulation being the “veiled” one. And if Nordström’s theory was
soon abandoned it was not because it had been formulated first in flat spacetime but
because its predictions (deduced either from its “veiled” or “unveiled” formulations)
were in contradiction with observations.

In this paper we did nothing more than what Einstein and Fokker did in 1914
but applied the idea to General Relativity itself, in order to show, in a hopefully
clear way, that, even if the description of phenomena could be different in Gen-
eral Relativity and in its conformally related sister theories, the predictions for the
relationships between (classical) observables were strictly the same.

It should then become obvious that the same conclusion holds too when dealing
with extensions of General Relativity such as f (R) theories, coupled quintessence
or, more generally, scalar-tensor theories (even if the scalar field Φ is then truly
dynamical): the Jordan frame, where matter is minimally coupled to the metric,
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and the Einstein frame, where the action for gravity is Hilbert’s, are equivalent,
mathematically and physically, at least when dealing with classical phenomena and
the motion of objects which are weakly gravitationally bound. Preferring to interpret
the phenomena in the Jordan frame is somewhat similar to preferring to work in
an inertial frame in Special Relativity: this allows to forget about the spacetime
dependence of the inertial mass of the matter constituents just like one can forget
about inertial forces in an inertial frame.

This analogy between inertial forces and non-minimal couplings points to quan-
tum phenomena where the equivalence between the Jordan and Einstein frames may
not hold.

Another point which deserves further investigation is the equivalence of confor-
mally related frames when it comes to the motion of compact bodies whose grav-
itational binding energy is significant. It is known for example that a small black
hole follows a geodesic in General Relativity [17]. In scalar tensor theories weakly
gravitating bodies follow geodesics of the Jordan frame metric (to which matter is
minimally coupled) but small black holes follow geodesics of the Einstein metric,
see [18] and e.g. [19]. How this result, which is interpreted as a violation of the
Strong Equivalence Principle, can be obtained using the Jordan frame exclusively
remains to be elucidated. (see [20] for a recent study on the motion of small bodies
in covariant classical field theories).
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Appendix

We considered in the main text the example of matter being an electron in the field
of an infinitely massive proton.

As a second example, consider matter to be a massive scalar field ψ with action,

S[ξ ]m =−1
2

∫
d4x
√−g

[
(∂ψ)2 +

(
m2 +

ξ
6

R
)
ψ2

]
. (35)

When ξ = 0 and ξ = 1, its extremisation with respect to ψ yields the familiar Klein-
Gordon equations which read, respectively,

�ψ−m2ψ = 0 , �ψ−
(

m2 +
R
6

)
ψ = 0 . (36)
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As for the veiled versions of (35), they are, respectively,

S[0]m =−1
2

∫
d4x
√−ḡΦ

[
(∂̄ψ)2 + m̄2ψ2] ,

S[1]m =−1
2

∫
d4x
√−ḡ

[
(∂̄ ψ̄)2 +

(
m̄2 +

R̄
6

)
ψ̄2

]
(37)

where gμν = Φ ḡμν , m̄ =
√
Φm, and where ψ̄ =

√
Φψ in S[1]m . The extremisations

of S[0]m with respect to ψ and of S[1]m with respect to ψ̄ yield, respectively,

�̄ψ− m̄2ψ =−∂̄ψ · ∂̄Φ
Φ

, �̄ψ̄−
(

m̄2 +
R̄
6

)
ψ̄ = 0 (38)

which are nothing but a rewriting of equations (36). In locally Minkowskian coor-
dinates Xμ in the neighbourhood of some point P where ḡμν → ημν and where Φ
is approximately constant they reduce to their Special Relativistic forms, where the
mass of the field has to be rescaled: m→ m̄ = m

√
Φ(P).10

In the case ξ = 0 the coupling of ψ to Φ can be globally effaced, by returning
to the metric g. In the case ξ = 1 the Klein-Gordon equation is, as is well-known,
conformally invariant.

In the conformal invariant case, one might be confused by the fact that the sta-
bility of the field ψ depends on the sign of (m2 +R/6), while one can easily change
its sign by a conformal transformation. This seemingly paradoxical situation is re-
solved by investigating more carefully the relation between the field in two different
conformal frames.

As an example, let us consider the case when gμν = ημν/(Hη)2 is the (ex-
panding part of) de Sitter metric (with −∞ < η < 0), and m2 < 0 but m2 +R/6 =
m2+2H2 > 0, so that the field ψ is stable. Now consider the conformal transforma-
tion to the frame ḡμν = ημν . Then we have m̄2 = m2/(Hη)2 < 0. Thus the field is
badly unstable because the mass-squared is not only negative but diverges at η = 0.
However if we recall that ψ̄ = (−Hη)−1ψ , this instability is solely due to the ill
behaviour of the conformal factor as η →−0.

Now let us consider a converse case when gμν = ημν and m2 < 0, so that the
field ψ is unstable: ψ ∝ e|m|η diverges exponentially. Turn now to the expanding de
Sitter frame ḡμν = ημν/(Hη)2, with−∞< η < 0. Then the effective mass-squared
m̄2 + R̄/6 = m2/(Hη)2 + 2H2 will eventually become positive as η →−0, hence
the field must be stable in the expanding de Sitter frame. This seeming paradox can
be resolved by noting the fact that ψ̄ = (−Hη)ψ ∝ Hηe|m|η . Thus time is bounded
from above at η = 0, and hence there is literally ‘no time’ for the instability to de-
velop.11

10 Note that the same rescaling of mass occurs in a conformal transformation of the Dirac equation,
see e.g. [15].
11 We thank Andrei Linde for raising this issue.
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As a last example consider matter to be a perfect fluid. Its stress-energy tensor
and equations of motion, deduced from their special relativistic expressions by the
replacement ημν → gμν are

Tμν = (ρ+ p)uμuν + pgμν , D jT μν = 0 (39)

where ρ and p are the energy density and pressure of the fluid measured in a local
inertial frame and where ui is its 4-velocity normalised as gμνuiu j =−1. Now, since
Tμν ≡− 2√−g

δSm
δgμν (where we need not specify Sm), we have

T̄μν ≡− 2√−ḡ
δSm

δ ḡμν
=ΦTμν , (40)

so that the “veiled” version of (39) is, cf (7),

T̄μν = (ρ̄+ p̄)ūμ ūν + p̄ ḡμν , D̄ν T̄ μν =
∂̄ μΦ
2Φ

T̄ , (41)

where ḡμν ūiū j =−1, and with ρ̄ =Φ2ρ and p̄ =Φ2 p.12
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Finite-Time Singularities in Modified

F (R,G)-Gravity and Singularity Avoidance

Lorenzo Sebastiani

Abstract We study finite-time future singularities in F (R,G)-gravity, where R and
G are the Ricci scalar and the Gauss-Bonnet invariant, respectively. In particular, we
reconstruct the F(G)-gravity and F (R,G)-gravity models realizing the finite-time
future singularities. We discuss a possible way to cure the finite-time future singular-
ities in F (R,G)-gravity by taking into account higher-order curvature corrections
or effects of viscous fluids.

1 Introduction

Among the possible alternatives in order to explain the Dark Energy Issue, are the
so called Modified Theories of Gravity[1, 2].

We would like to consider modified F (R,G)-gravity, where the action is de-
scribed by a function of the Ricci scalar R and the Gauss-Bonnet invariant G =
R2−4RμνRμν +RμνξσRμνξσ .

Many of modified gravity models bring the future universe evolution to finite-
time singularities. Some of these singularities are softer than other and not all physi-
cal quantities (scale factor, effective energy density and pressure) necessarly diverge
at this finite future time. Note that singular solutions correspond to accelerated uni-
verse, and often appear as the final evolution of unstable de Sitter space.

The presence of finite-time singularities may cause serious problems in the black
holes or stellar astrophysics[3]. Thus, it is of some interest to explore the F (R,G)-
gravity models realizing singularities and if any natural scenario to cure such singu-
larities exists.

We use units of kB = c = h̄ = 1 and denote the gravitational constant 8πGN by
κ2 ≡ 8π/MPl

2 with the Planck mass MPl = G−1/2
N = 1.2×1019GeV.
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2 The model

The action of F (R,G)-gravity is given by

S =
∫

d4x
√−g

[
F (R,G)

2κ2 +Lmatter

]
, (1)

where g is the determinant of the metric tensor gμν and Lmatter is the matter La-
grangian. The spatially-flat FRW space-time is described by the metric

ds2 =−dt2 +a2(t)dx2 , (2)

where a(t) is the scale factor of the universe.
From the action in (1), the FRW-equations of motion (EOM) are derived as

ρeff =
3
κ2 H2 , peff =− 1

κ2

(
2Ḣ +3H2) , (3)

where ρeff and peff are the effective energy density and pressure of the universe,
respectively, and these are defined as

ρeff =
1

F ′
R

{
ρ+

1
2κ2

[(
F ′

RR−F
)−6HḞ ′

R +GF ′
G−24H3Ḟ ′

G
]}

, (4)

peff =
1

F ′
R

{
p+

1
2κ2

[
−(

F ′
RR−F

)
+4HḞ ′

R +2F̈ ′
R−GF ′

G

+16H
(
Ḣ +H2)Ḟ ′

G +8H2F̈ ′
G

]}
. (5)

Here, H = ȧ(t)/a(t) is the Hubble parameter and the dot denotes the time derivative.
ρ and p are the energy density and pressure of matter, whereas F ′

R = ∂RF (R,G)
and F ′

G = ∂GF (R,G). For general relativity with F (R,G) = R, ρeff = ρ and peff =
p and therefore (4) and (5) are the Friedmann equations. Consequently, (4) and
(5) imply that the contribution of modified gravity can formally be included in the
effective energy density and pressure of the universe.

3 Finite-time future singularities

We consider the case in which the Hubble parameter is expressed as

H =
h

(t0− t)β
+H0 , (6)

where h, t0 and H0 are positive constants and t < t0 because it should be for ex-
panding universe. β is a positive constant or a negative non-integer number, so that,



Finite-Time Singularities in Modified F (R,G)-Gravity and Singularity Avoidance 263

when t is close to t0, H or some derivative of H and therefore the curvature become
singular.

Such choice of Hubble parameter corresponds to accelerated universe, becouse
if (6) is a solution of the EOM (3), it is easy to see that the strong energy condition
(ρeff +3peff ≥ 0) is always violated when β > 0, or is violated for small value of t
when β < 0. It means that in any case the singularity could emerge as final evolution
of accelerated universe.

The finite-time future singularities can be classified in the following way[4]:

• Type I and Big Rip. It corresponds to β > 1 and β = 1. H and R (∼H2) diverge.
• Type II (sudden). It corresponds to −1 < β < 0. R (∼ Ḣ) diverges.
• Type III. It corresponds to 0 < β < 1. H and R (∼ Ḣ) diverge.
• Type IV. It corresponds to β <−1 but β is not any integer number. Some deriva-

tive of H and therefore the curvature becomes singular.

We note that in the present paper, we call singularities for β = 1 and those for β > 1
as the “Big Rip” singularities and the “Type I” singularities, respectively.

4 Reconstruction method

In order to study the finite-time singularities in F (R,G)-gravity, we use the recon-
struction method.

We assume that the contribute of ordinary matter and radiation in expanding
singular universe is too small with respect to the modified gravity, and we study the
pure gravitational action of F (R,G)-gravity, i.e., the action in (1) without Lmatter.
In this case, it follows from (4) and (5) that the EOM of F (R,G)-gravity are given
by[6]:

24H3Ḟ ′
G +6H2F ′

R +6HḞ ′
R +(F −RF ′

R−GF ′
G) = 0 , (7)

8H2F̈ ′
G +2F̈ ′

R +4HḞ ′
R +16HḞ ′

G(Ḣ +H2)

+F ′
R(4Ḣ +6H2)+F −RF ′

R−GF ′
G = 0 . (8)

In the case of pure gravity, these two equations are linearly dependents.
Moreover, we have

R = 6
(
2H2 + Ḣ

)
, G = 24H2 (H2 + Ḣ

)
. (9)

It is easy to see that, in the case of Type I, II and III singularities, G and R tend to
infinitive when t → t0 in Equation (6), and in the case of Type IV singularities tend
to zero.

By using proper functions Z(t), P(t) and Q(t) of a scalar field which is identified
with the cosmic time t, we can rewrite the action in (1) without Lmatter to

S =
1

2κ2

∫
d4x
√−g(Z(t)R+P(t)G+Q(t)) . (10)
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By the variation with respect to t, we obtain

Z′(t)R+P′(t)G+Q′(t) = 0 , (11)

from which in principle it is possible to find t = t(R,G). Here, the prime denotes
differentiation with respect to t. By substituting t = t(R,G) into (10), we find the
action in terms of F (R,G)

F (R,G) = Z(R,G)R+P(R,G)G+Q(R,G) . (12)

We describe the scale factor as

a(t) = a0 exp(g(t)) , (13)

where a0 is a constant and g(t) is a function of time. By using the (7), (8) and (13),
the matter conservation law ρ̇+3(ρ+ p) and then neglecting the contribution from
matter, we get the differential equation

Z′′(t)+4ġ2(t)P′′(t)− ġ(t)Z′(t)+(8ġg̈−4ġ3(t))P′(t)+2g̈(t)Z(t) = 0 , (14)

where the Hubble parameter is H(t) = ġ(t). By using (7), Q(t) becomes

Q(t) =−24ġ3(t)P′(t)−6ġ2(t)Z(t)−6ġ(t)Z′(t) . (15)

It means that in principle, by solving (14) on the singular solution (6), it is possible
to reconstruct F (R,G) producing finite-time future singularities.

In general, if Z(t) �= 0, F (R,G) can be written in the following form:

F (R,G) = Rg(R,G)+ f (R,G) , (16)

where g(R,G) �= 0 and f (R,G) are generic functions of R and G. From (7) and (8),
we obtain

ρeff = − 1
2κ2g(R,G)

[
24H3Ḟ ′

G +6H2
(

R
dg(R,G)

dR
+

d f (R,G)

dR

)
+6HḞ ′

R

+(F −RF ′
R−GF ′

G)

]
, (17)

peff =
1

2κ2g(R,G)

[
8H2F̈ ′

G +2F̈ ′
R +4HḞ ′

R +16HḞ ′
G(Ḣ +H2)

+

(
R

dg(R,G)

dR
+

d f (R,G)

dR

)
(4Ḣ +6H2)+F −RF ′

R−GF ′
G

]
, (18)

where ρeff and peff are given by the expressions in (3).
The modification of gravity could be included into the Equation of State (EoS)

of an inhomogeneus dark fluid with energy density ρe f f and pressure pe f f
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pe f f = ωρe f f +G (H, Ḣ...) , (19)

where ω is the constant EoS parameter of matter and G (H, Ḣ...) is a viscosity term
given by

G (H, Ḣ...) =
1

2κ2g(R,G)

{
(1+ω)(F −RF ′

R−GF ′
G)

+

(
R

dg(R,G)

dR
+

d f (R,G)

dR

)[
6H2(1+ω)+4Ḣ

]
+HḞ ′

R(4+6ω)+8HḞ ′
G
[
2Ḣ +H2(2+3ω)

]
+2F̈ ′

R +8H2F̈ ′
G

}
.(20)

The use of this equation requires that g(R,G) �= 0 on the solution.
By combining the two equations in (3), we obtain

G (H, Ḣ...) =− 1
κ2

[
2Ḣ +3(1+ω)H2] , (21)

where (19) has been used.

5 Singularities in F (R,G)-gravity

Big Rip singularity in F(G)-gravity

As a simple example of reconstruction method, we examine the Big Rip singularity
in Gauss-Bonnet F(G)-gravity, where F (R,G) = R+F(G) and F(G) is a function
of Gauss-Bonnet invariant only. In this case, by putting Z(t) = 1, the action of (10)
can be written in terms of two proper functions P(t) and Q(t) and the variation with
respect to t yields

P′(t)G+Q′(t) = 0 , (22)

from which we can find t = t(G) and the action in terms of R and F(G)

F(G) = P(G)G+Q(G) . (23)

Equations (14) and (15) read

2
d
dt

(
ġ2(t)

dP(t)
dt

)
−2ġ3(t)

dP(t)
dt

+ g̈(t) = 0 , (24)

Q(t) =−24ġ3(t)
dP(t)

dt
−6ġ2(t) . (25)

For the Big Rip singularity, β = 1 in (6). If we assume H0 = 0 (the constant
is negligible in the asyptotic singular limit t → t0), ġ(t) = h/(t0− t) and the most
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general solution of (24) is given by

P(t) =
1

4h(h−1)
(2t0− t)t + c1

(t0− t)3−h

3−h
+ c2 , (26)

where c1 and c2 are generic constants. From (25), we get

Q(t) =− 6h2

(t0− t)2 −
24h3

[
(t0−t)

2h(h−1) − c1(t0− t)2−h
]

(t0− t)3 . (27)

Furthermore, from (22) we obtain t in terms of G and, by solving (23), we find the
most general form of F(G) which realizes the Big Rip singularity

F(G) =

√
6h3(1+h)
h(1−h)

√
G+ c1G

1+h
4 + c2G . (28)

This is an exact solution of the EOM in the case of Big Rip. The term c2G is a
topological invariant. In general, if for large values of G, F(G) ∼ αG1/2, where
α(�= 0) is a constant, the Big Rip singularity could appear for any value of h �= 1.
Note that c2G(1+h)/4 is an invariant with respect to the Big Rip solution.

Other types of singularities and more general F (R,G)-gravity case

In a similar way, it is possible to reconstruct F(G)-gravity models in wich the other
types of singularities could appear, when β �= 1 in (6) and the scale factor, when
H0 = 0, behaves as

a(t) = exp

[
h(t0− t)1−β

β −1

]
. (29)

We give some results.
The asymptotic solution (in the limit t → t0) of F(G) when β > 1 is expressed as

F(G) =−12

√
G
24

. (30)

Hence, if for large values of G, F(G) ∼ −α√G with α > 0, a Type I singularity
could appear.

When β < 1, the asymptotic solution of F(G) becomes

F(G)∼ α |G|γ , γ =
2β

3β +1
, (31)

where α is a constant. If for large values of G, F(G) has this form with 0 < γ < 1/2,
we find 0 < β < 1 and a Type III singularity could emerge. If for G→−∞, F(G)
has the form in (31) with−∞< γ < 0, we find−1/3 < β < 0 and a Type II (sudden)
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singularity could appear. Moreover, if for G→ 0−, F(G) has the form in (31) with
1 < γ < ∞, we obtain −1 < β <−1/3 and a Type II singularity could occur. If for
G→ 0−, F(G) has the form in (31) with 2/3 < γ < 1, we obtain −∞< β <−1 and
a Type IV singularity could appear. We also require that γ �= 2n/(3n− 1), where n
is a natural number.

As a consequence, a large class of realistic models of F(G)-gravity, which re-
produce the current acceleration and the early-time inflation, could generate future
time-singularities, as for example[7]:

F1(G) =
a1Gn +b1

a2Gn +b2
, F2(G) =

a1Gn+N +b1

a2Gn +b2
, F3(G) = a3Gn(1+b3Gm) . (32)

All this models contain power functions of G and for some choices of parameters
could produce singularities.

With reconstruction method it is possible to derive also more general F (R,G)-
models producing finite-time singularities. For example, in the model F (R,G) =
R− αG/R, where α is a positive constant, could appear the Type I singularity,
whereas in the model F (R) = R+αRγ , where α and γ are constants, could ap-
pear Types II, III or IV singularities (for a review, see [5]).

6 Curing the finite-time future singularities

We discuss a possible way to cure the finite-time future singularities in F(G)-gravity
and F (R,G)-gravity. In the case of large curvature, the quantum effects become
important and lead to higher-order curvature corrections. It is therefore interesting
to resolve the finite-time future singularities with some power function of G or R.

We consider the description of modified gravity as inhomogeneous fluid. If some
singularities occur, (21) behaves as

G (H, Ḣ...)�−3(1+ω)h2

κ2 (t0− t)−2β +
2βh
κ2 (t0− t)−β−1 . (33)

One way to prevent a singularity appearing could be that the function G (H, Ḣ...)
becomes inconsistent with the behavior of (33) in the singular limit (t → t0).

Let us consider a simple example in order to cure Big Rip singularity in F(G)-
gravity. Suppose that for large values of G,

R+F(G→ ∞)−→ R+ γGm , m �= 1 , (34)

with γ �= 0. For H = h/(t0− t), namely the Big Rip case, we have

G (H, Ḣ...)� α
(t0− t)4m . (35)
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Hence, if m > 1/2, G (H, Ḣ...) tends to infinity faster than (33) and we avoid this
kind of singularity.

As general results, we find that the term γGm with m > 1/2 and m �= 1 cure the
singularities occurring when G→±∞ (Type I, II and III). Moreover, the term γGm

with m≤ 0 cure the singularities occurring when G→ 0− (Type II, IV).
In f (R)-gravity (namely, R plus a function of R), by using the term γRm, the

same consequences are found. The term γRm with m > 1 cures the Type I, II and III
singularities. The term γRm with m < 2 cures the Type IV singularity.

Within the framework of F (R,G)-gravity, we can use the terms such as Gm/Rn

to cure the singularities. For example, we can avoid the Type I singularities if the
asymptotic behavior of the model is given by γGmRn, with m,n > 0.

7 Effects of viscous fluid in singular universe

As the last point, we explore the role of perfect/viscous fluids within singular modi-
fied gravity, investigating how the singularities may change or disappear, due to the
contribution of quintessence or phantom fluids.

We consider the class of modified gravity F (R,G) = R+ f (R,G), where f (R,G)
is a function of the Ricci scalar R and the Gauss-Bonnet invariant G, and we suppose
the presence in the universe of cosmic viscous fluid, whose EoS is given by

p = ωρ−3Hζ , (36)

where p and ρ are the pressure and energy density of fluid, respectively, and ω
is the EoS parameter. ζ is the bulk viscosity and in general it could depend on ρ ,
but we will consider the simplest case of constant viscosity only (for more general
cases, see [8]). On thermodynamical grounds, in order to have the positive sign of
the entropy change in an irreversible process, ζ has to be a positive quantity.

The FRW-equations of motion are:

ρG +ρ =
3

8πGN
H2 , pG + p =− 1

8πGN

(
2Ḣ +3H2) . (37)

The modified gravity is formally included into the modified energy density ρG and
the modified pressure pG, which correspond to (17)-(18) for g(R,G) = 1.

The fluid energy conservation law is a consequence of the EOM (37):

ρ̇+3Hρ(1+ω) = 9H2ζ . (38)

The presence of fluid could influence the behaviour of singular f (R,G)-models
(i.e. models that in absence of fluids produce some singularities). We will check the
solutions of the fluid energy density when H is singular.
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Non viscous case

In the non-viscous case ζ = 0 (perfect fluid), the solution of (38) assumes the clas-
sical form:

ρ = ρ0a(t)−3(1+ω) , (39)

where ρ0 is a positive constant and a(t) is the scale factor of the universe. By com-
bining (39) with (29), it is easy to see that for β > 1 (Type I singularity), ρ grows up
and diverges exponentially if ω < −1. In the presence of phantom fluid, the EOM
(37) become inconsistent with respect to the singular form of Hubble parameter in
(6), and the Type I singularity is not realized in f (R,G)-gravity.

When 0 < β < 1, the fluid energy density ρ is avoidable on the Type III sin-
gular solution, whereas for Type II and IV singular models (β < 0), the presence
of quintessence or phantom fluids makes the singularities worse. In particular, in
the case of β < −1, the dynamical behaviour of (37) could become inconsistent,
because ρ behaves as (t0− t) and it is larger than the time-dependent part of H2

(∼ (t0− t)−β ) when t → t0.

Constant viscosity

Suppose to have the bulk viscosity equal to a constant, ζ = ζ0, and the Hubble
parameter in the general form of (6). The asymptotic solutions of (38) in the singular
limit t → t0 are:

ρ � 3hζ0

(1+ω)(t0− t)β
, β > 1 , (40)

ρ � 9ζ0h2

(2β −1)(t0− t)2β−1 , 1 > β > 0 , (41)

ρ � 9hH0ζ0

(β −1)(t0− t)β−1 +
3H0ζ0

1+ω
, 0 > β ,H0 �= 0 . (42)

In the first and second cases (β > 0), it is possible to see that ρ diverges more slowly
than H2, so that viscous fluid does not influence the asymptotically behaviour of
Types I and III singular models in (37), due to the constant viscosity.

In the third case, we consider fluids that tend to a non-negligible energy density
when β < 0. It automatically leads to H0 �= 0 in (6) and ρ behaves as in (42). Large
bulk viscosity ζ0 becomes relevant in the EOM. Moreover, if ω <−1, the effective
energy density (namely, ρG + ρ) could be negative and avoid the Type II and IV
singularities for expanding universe (where H0 > 0).
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8 Conclusion

gravity. We can reconstruct the F(G)-gravity and F (R,G)-gravity models in which
the singularities could appear. Note that all types of future-time singularities could
appear in F (R,G)-modified gravity. In addition, we have discussed a possible way
to resolve the finite-time future singularities in F(G)-gravity and F (R,G)-gravity
under quantum effects of higher-order curvature corrections or the presence of per-
fect/viscous fluid in the universe.
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Asymptotic Darkness in the Hořava-Lifshitz

Gravity

Pedro J. Silva 1,2

Abstract In this talk, We review the fundamental problem encountered to quantize
General Relativity, in terms of quantum field theory. We describe the renormaliza-
tion of Newton constant as an irrelevant coupling, the idea of Asymptotic Safety and
its inviability due to the ultraviolet behavior of the theory, also known as ”Asymp-
totic Darkness”. Then, We introduce the Hořava-Lifshitz models of gravity, and
argue how this new framework could bypass the above reasoning, due to the ex-
plicit breaking of Lorentz invariance that seems to implied the non-existence of BH
horizons.

1 Introduction

General relativity (GR) describes successfully the gravitation of mater and energy
in a wide range of scales from milliliters to cosmological distances. Since gravity
affects all types of known particles, is the most universal interaction we have. Un-
fortunately, it has proven to be difficult to reconcile GR with theories of particle
physics, that are naturally described in terms of quantum field theories (QFT). Basi-
cally all attempts to understand GR from a QFT perspective have failed, as we write
this article.

There are many programs that try to quantize gravity, some have a long run, other
failed soon, but at some point all these attempts have to face the fact that GR simply
does not fulfil the minimal requirements to describe its ultraviolet-completion in
terms of a standard QFT.

A standard QFT should be a local, Lorentz-invariant theory that follows the prin-
ciples of quantum mechanics. These theories, are well defined as longs as they are
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in the UV regime, Gaussian theories that admit at most, perturbations by relevant
operators. Any other situation, will take us outside the well understood grounds
of QFT and therefore will require additional structures to define somehow another
consistent scenarios.

That GR is not a the standard QFT is a well known fact, that nonetheless has
not receive sufficient attention. The gravitational interaction is written in terms of
Newton constant GN and the metric g,

S =
1

16πGN

∫
d4x
√−gR , (1)

Then, in four dimensions GN has scaling dimension (with energy units) of -2. Based
on standard arguments of renormalization group flow, applied to an expansion of the
metric around flat space gμν = ημν +8πGNhμν , is possible to show that we are in
the presence of an irrelevant coupling. Therefore, it makes no sense to assign a finite
value to the Newton coupling constant in the infrared regime (IR), to them try to
extend such interaction to the ultraviolet regime (UV). In other words, perturvative
quantization is not possible.

The above result, does not fully eliminates the existence of a QFT completion of
GR. Provided we renounce to perturbative renormalizablility, we still could achieve
this target. In other words, we still could have a quantum field theory that has a UV
attractive fixed point, but now our UV theory will be non-free i.e. a non-Gaussian in-
teracting theory. This UV-description would correspond to a conformal field theory
(CFT) that among other things, has a entropy that scales with the energy as

S∼ E3/4 (2)

Nevertheless, even if this would be the case of GR, we confront another serious
problems related to the UV/IR mixing in GR that is normally described as ”Asymp-
totic Darkness”. To illustrate this idea, consider a physical process at very high
center-of-mass energies. As soon as the energy is localized in a region smaller than
its Schwarzschild radius, a Black Hole (BH) is produced. In fact, more generally,
the collapse of any other sufficiently massive and small configuration to a black hole
is inevitable due to the hoop theorem. Therefore, the spectrum of a quantum com-
pletion of GR should be dominated by BHs. If we increase the energy, instead of
probing smaller distances, we increase the size of the resulting BHs. This striking
connection between UV/IR physics predicts a spectrum dominated by dark objects
in the UV.

A key observation on the nature of BHs, is that for this objects, the entropy only
grows with the area. Therefore the dominant contribution to the entropy in the UV
regime is given by BH states, and since the entropy is proportional to the area and
not the volume, is simply not possible to have a UV description in terms of a four-
dimensional CFT. In terms of the energy, for asymptotically flat space we have

S∼ E2 (3)
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Therefore, based on the above scaling of the entropy in GR, we are ready to exclude
the possibility that GR can be understood as the IR flow of a standard QFT.

We can only concluded then, that in order to quantize gravity some (if not all) of
the basic axioms used in the above discussion has to be given up. Recalled that we
have used up to now: locality, lorentz invariance, quantum mechanics and of course,
our believe that GR is relevant theory of gravity in the IR regime.

2 Other avenues

That we have to abandon some of the above listed axioms should come as no sur-
prise. The actual implementation of this change, is on the other hand, a much more
adventurous enterprize.

An interesting possibility is that GR is nothing more than an effective field the-
ory, that due to coarse graining effects has forgotten about its relation to the original
UV degrees of freedom. This approach would put GR at the same level of thermody-
namics or hydrodynamics. In this case the metric is a sort of composite operator that
emerges only at low energies and therefore is not usefull to investigate about its UV
constituents. In the same form that Pions are not useful to describe quark physics in
QCD. In fact, is tempting to see the universality of the GR coupling to mater as a
natural consequence of a sort of ”thermodynamic limit”. More explicitly, there are
many results in the literature that support this point of view, like the calculation of
Jacobson, where the field equations of GR can be recover from a ”thermodynamics
of space-time”, based on generalizations of the more canonical BH thermodynam-
ics. That a hydrodynamic approach in the AdS/CFT correspondence has success-
fully been used to describe GR perturbations around BH solutions. That in some
mini-super-space models in AdS, the corresponding GR field equations have been
reproduced by the thermodynamical limit of the dual CFT configurations, etc. A
more extremist point of view has been consider by E. Verlinde, where n ot only
gravity but our whole universe should be though as a thermodynamical limit of un-
known underlying UV theory. Here, we will leave these ideas untouched, to focuss
on other possibilities, since we believe that somehow, they just postpone the ques-
tion of what are the relevant UV degrees of freedom completing GR.

Once we agree that the metric is the relevant field that describes gravitational
interactions, we have no other option than abandon some of the axioms that char-
acterize a QFT i.e. we have to give up locality and/or quantum mechanics and/or
Lorentz invariance. In fact, one of the most promising theories to quantize gravity,
string theory, is built-in with non-local interactions. within this framework, a good
example of how string theory bypasses our previous conclusion is nicely seen in
the case of the AdS/CFT duality. Here closed string theory in five dimensional AdS
is holographically equivalent to a four dimensional CFT in flat space. since closed
strings contain gravity among its fields, we are defining quantum gravity via dual-
ity to a CFT. In this case, is easy to see that the entropy of a AdS Bh matches the
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entropy of the dual CFT since in five dimensional AdS the BH entropy scales as
S∼ E3/4 matching the four dimensional CFT scaling.

Inthe above case, the holographic nature of the duality is ultimately what saves
the day, and allows a UV description of our gravitational theory. Unfortunately,
the above scenario gives only partial answers to the general question of quantizing
GR, since we are tied to negative cosmological constant with important technical
problems that have produce only limited results base on highly symmetric scenarios.

Instead of passing through a catalog of results and short comings of string theory,
let us focus on a different possibility, corresponding to abandon Lorentz invariance
once for all. In condensed mater field theory, it is not strange to find examples,
realized in nature, where a system is described in the UV by a non relativistic field
theory that nevertheless runs to the IR into a relativistic field theory. In these cases,
Lorentz invariance is obtained only as an accidental symmetry and has no intrinsic
axiomatic character. The above phenomena was studied by Lifshitz in connection to
solid state physics, and has lately been implemented in a gravitational framework by
Hořava. These class of gravitational theories that explicitly break Lorentz invariance
are named Hořava-Lifshitz theories of Gravity (HL) and although its theoretical
consistency is not clear as we write this talk, these theories open up the possibility of
circumvent old problems with these new twist. Doe to space limitations, here we will
concentrate only on the main characteristics of these theories that have implications
to Asymptotic Darkness and Black Hole thermodynamics.

3 Hořava-Lifshitz gravity

Recently, Hořava made a proposal for an ultraviolet completion of GR normally
referred to as the Hořava-Lifshitz (HL) theory [1]. The salient characteristic of the
HL proposal is that it seems to be renormalizable, at least at the level of power
counting. This ultraviolet behavior is obtained by introducing irrelevant operators
that explicitly break Lorentz invariance but ameliorate the ultraviolet divergences.
On the other hand, Lorentz invariance is expected to be recovered at low energies,
as an accidental symmetry of the theory.

Originally, the HL proposal came with the possibility of imposing or not the
so-called projectability condition and the detailed balance condition. The first con-
dition is related to the space-time dependence of the lapse function, N, which char-
acterizes a canonical 3+1 decomposition of the metric field g, while the second is
a restriction on the form of the potential terms which may appear in the Lagrangian
that leads to simplifications since it reduces the final number of couplings. Notice
therefore that we have, in principle, four different incarnations of this proposal.

Since its publication, the HL theory has been the object of an exhaustive research
regarding its different properties and implications to space-time physics. In partic-
ular, a lot of attention has been paid to its internal consistency, to how to define the
infrared limit, its compatibility with GR, and the potential application of the results
obtained to cosmology.
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Presently—as this talk is prepared—the consistency status of the theory is not
completely clear, nor its low energy limit and, hence, how GR is recovered at the dif-
ferent regimes. In fact, for the non-projectable version, although the low energy limit
has been found [2], there seem to remain important problems, regarding strongly
coupled features that may preclude any type of perturbation approach [3, 4] that
on the other hand, may be eliminated by the inclusion of a whole family of new
operators that where overseen in the original proposal [5]. Also, imposing detailed
balance leads to a cosmological constant with the wrong sign, from what we should
expect to be at odds with cosmological observations [1, 9]. In comparison, the pro-
jectable version seems to be less problematic, since the above listed problems can in
principle be evaded by the non-local form of the Hamiltonian constraint [8]. Also, if
detail balance is not imposed a richer phenomenology seems to appear, where cos-
mological applications may lead to new results in inflation, bouncing cosmology,
dark matter, and dark energy (see, for example, [9]-[20]).

At this point it is important to investigate the key aspects of the theory, which may
help in clarifying the status of the different HL proposals as plausible candidates of
a quantum theory of gravity. In particular is evident from our previous discussion
that BH in HL theory are a key ingredient that need to be carefully analyzed.

3.1 The model

In the HL theory, the gravitational dynamical variables are defined to be the laps
N, the shift Ni and the space metric gi j, Latin indices running from 1 to 3. The
space-time metric is defined using the ADM construction, as

ds2 =−N2dt2 +gi j(dxi +Ni)(dx j +N j) , (4)

where Ni = gi jNj as usual. The action S is written in terms of geometric objects,
characteristics of the ADM slicing of space-time, like the 3d-covariant derivative
∇i, the spatial curvature tensor Ri jkl , and the extrinsic curvature Ki j. In terms of the
above tensor fields, the HL action can be written as

S =

∫
dt dx3 N

√
g
(
Lkinetic−Lpotential +Lmatter

)
, (5)

being the kinetic term universally given by

Lkinetic = α(Ki jKi j−λK2) , (6)

with α and λ playing the role of coupling constants. Originally, the potential term
was a generic function of Ri jkl and ∇i. Then, with the work of ?? it was realized that
this generic function should also depend on ai = ∇i ln(N).

The action generically brakes covariance down to the subgroup of 3-dimensional
diffeomorphisms invariance and reparametrization of time i.e. x→ x̃(t,x) and t →
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t̃(t). Assigning dimension -1 to space and dimension -3 to time, it can be seen that
it is enough to restrict the potential to be made out of operators up to dimension 6,
to get a power counting renormalizable theory.

In general the potential can be written in a implicit form as

Lpotential =
∑
βn On(ai,∇ j,Ri jkl) (7)

where, On is a general operator of maximum dimension 6 and βn are the correspond-
ing coupling constants. Here, we just show some of the possible couplings to have
an idea of the structure of the potential,

Lpotential = β8∇iR jk∇iR jk +β7R∇2R+β6Ri
jR

j
kRk

i +β5R(R jkR jk) (8)

+β4R3 +β3R jkR jk +β2R2 +β1R+β0 +βaiai + ... ,

So we have a candidate theory of quantum gravity that seems to be well define in
perturbation theory since it is power counting renormalizabe. But, what is the status
of the Asymptotic Darkness in this theory? Are the BHs as universal as in GR, do
we have a well define notion of horizon, and Bh thermodynamics?

All the above questions are fundamental to understand the validity of HL ap-
proach to gravity, and ultimately the answers will reshape our understanding of this
framework. In the next section we shortly give an overview of our current knowl-
edge of this deep and fundamental questions, that presently, as we write this talk are
not even fully explored. Therefore our presentation should be taken as a first step to
study these subjects

3.2 BH and asymptotic darkness in HL

It is clear that we can look for spherically symmetric solutions that asymptotically
have conserved charges like mass and angular momentum. Also, it has been shown
in [22], that in the case we set cosmological constant to zero, HL theories are
reducible to Einstein-Aether theory, in the case where the aether vector is hyper-
surface orthogonal. Therefore we known that in some form, BH should be present
in the theory. In fact, spherically symmetric solutions of different kinds that depend
on the particular incarnation of the HL theory chosen have been found already in
the literature (see for example [23, 24, 25]).

In the simplest cases (like in [23]) with asymptotic flat metric adopts the form

ds2 =− f (r)dt2 +
1

f (r)
dr2 + r2(dθ 2 + sin2 θdφ 2)

f (r) = 1+wr2−
√

r(w2r3 +4wM) (9)

where w depends on different couplings of the HL theory and M corresponds to
the mass of the BH. These solutions contain BHs that in general have two different
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horizons if wM2 > 0.5 and only one in if wM2 = 0.5. There is a singularity in
the center of the space at r = 0. This solutions approach Schwarzschild BH for
r >> (M/w)1/3.

Many articles have been written studying the thermodynamics properties of these
BH and its related cousins (see for some of them [26]), but in the majority of these
studies, it has been assumed that although the gravity sector breaks Lorentz invari-
ance, the mater sector does not i.e. it has been used minimal coupling to investigate
the phenomenology of this metrics, in particular Hawking radiation, horizon prop-
erties, and particle probing.

Nevertheless, in general we should allow for symmetry breaking of lorentz in-
variance in the mater sector, that will produce very different outcomes regarding the
structure of these named BH. Just to name some consequences, the notion of where
the horizon is located, may be particle dependent. This issue can be studied using the
appropriate generalization of geodesic equations as in [27]-[30] . This also implies
that the notion of Hawking temperature is particle-dependent, if particles have dis-
persive geodesics. On the top of the above, even the notion of BH thermodynamics
becomes ill defined since the analogue of Hawking radiation depends on dispersion,
and ceases to be thermal [31], [32].

Also, the actual formation of BH due to the physical process could be not possi-
ble. Simple BH in HL-gravity show repulsive forces near the inner singularity and
therefore the density of mater is bounded from above. This behavior is related to
bouncing solutions in the collapse of mater due to gravity. Nevertheless, to have a
clear picture of the above more studies have to be undertaken.

From the above partial results, the emerging picture that seems to be appearing
is that BHs are not well define objects in HL-gravity, where horizons are probe
dependent and therefore information can scape to infinity. It looks like these BHs are
more similar to a low-pass filters, that are black only at low energy but transparent
a higher energies.

If this is the case, in this framework defined by all of the HL-gravities, there is
no room for Asymptotic Darkness and therefore the main obstruction to understand
the UV completion of GR as a QFT disappears. Of course, our QFT of gravity will
be a non-relativistic theory of a Lifshitz type.
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the “Universitat Autònoma de Barcelona” PR-404-01-2/08, FPU grant AP2007-00420, CSIC un-
der the program Bolsas de trabajo.

References
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ity,” arXiv:0906.3046 [hep-th].

5. D. Blas, O. Pujolas and S. Sibiryakov, “A healthy extension of Horava gravity,”
0909.3525[hep-th].

6. A. Kobakhidze, “On the infrared limit of Hořava’s gravity with the global Hamiltonian con-
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16. Y. S. Piao, “Primordial perturbation in Hořava-Lifshitz cosmology,” arXiv:0904.4117 [hep-

th].
17. M. i. Park, “A Test of Horava Gravity: The Dark Energy,” arXiv:0906.4275 [hep-th];

M. i. Park, “The Black Hole and Cosmological Solutions in IR modified Horava Gravity,”
arXiv:0905.4480 [hep-th].

18. C. Appignani, R. Casadio and S. Shankaranarayanan, “The Cosmological Constant and
Horava-Lifshitz Gravity,” arXiv:0907.3121 [hep-th].

19. Y. F. Cai and E. N. Saridakis, “Non-singular cosmology in a model of non-relativistic gravity,”
arXiv:0906.1789 [hep-th].

20. S. Carloni, E. Elizalde and P. J. Silva, “An analysis of the phase space of Horava-Lifshitz
cosmologies,” Class. Quant. Grav. 27 (2010) 045004 [arXiv:0909.2219 [hep-th]].

21. D. Orlando and S. Reffert, “On the Perturbative Expansion around a Lifshitz Point,”
arXiv:0908.4429 [hep-th].

22. T. Jacobson, “Extended Horava gravity and Einstein-aether theory,” arXiv:1001.4823 [hep-th].
23. A. Kehagias and K. Sfetsos, “The black hole and FRW geometries of non-relativistic gravity,”

Phys. Lett. B 678 (2009) 123 0905.0477[hep-th].
24. M. I. Park, “The Black Hole and Cosmological Solutions in IR modified Horava Gravity,”

0905.4480[hep-th].
25. E. Kiritsis, “Spherically symmetric solutions in modified Horava-Lifshitz gravity,” Phys. Rev.

D 81 (2010) 044009 [arXiv:0911.3164 [hep-th]].
26. R. G. Cai, L. M. Cao and N. Ohta, “Topological Black Holes in Horava-Lifshitz Gravity,”

0904.3670[hep-th]; Y. S. Myung and Y. W. Kim, “Thermodynamics of Hořava-Lifshitz black
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black hole,” 0905.2055[gr-qc];
A. Ghodsi and E. Hatefi, “Extremal rotating solutions in Horava Gravity,” 0906.1237[hep-th];
H. W. Lee, Y. W. Kim and Y. S. Myung, “Extremal black holes in the Hořava-Lifshitz gravity,”
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Testing Modified Gravity with Gravitational

Wave Astronomy

Carlos F. Sopuerta1 and Nicolás Yunes2

Abstract The emergent area of gravitational wave astronomy promises to provide
revolutionary discoveries in the areas of astrophysics, cosmology, and fundamental
physics. One of the most exciting possibilities is to use gravitational-wave observa-
tions to test alternative theories of gravity. In this contribution we describe how to
use observations of extreme-mass-ratio inspirals by the future Laser Interferometer
Space Antenna to test a particular class of theories: Chern-Simons modified gravity.

1 Introduction

Gravity, as we see it from our four-dimensional spacetime perspective, appears as
the weakest of all physical interactions known to date. Despite this fact, it is the force
that governs the large-scale structure of the universe. In the context of Einstein’s
theory of relativity, gravity also determines the spacetime geometry and hence the
relations between the events that take place on it.

As is well known, Newtonian mechanics together with Newton’s law of grav-
itation are sufficient to describe a wide range of phenomena governed by gravity,
from the motion of objects near the surface of our planet Earth to the motion in the
Solar system, and even at much larger scales. Relativistic effects show up when we
make very precise observations of astronomical systems, and also of systems that
involve either strong gravitational fields or fast motions. However, due to the weak-
ness of gravity, these effects are difficult to measure with present technology and, as
a consequence, only certain regimes of relativistic gravity have been tested so far.
These tests confirm, to their level of precision, the validity of general relativity (GR)
(see [1] for a review). These experimental tests include observations of the motion of
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different objects in the solar system and observations of millisecond binary pulsars.
In the first case, a dimensionless measure of the Newtonian gravitational potential
yields1

ΦNewtonian
c2 =

GM�
c2 1AU

∼ 10−8 . (1)

In the second case 2, the same dimensionless measure yields

ΦNewtonian
c2 ∼ GM�

c2 rperiastron
Hulse−Taylor

∼ 10−6 . (2)

We can compare these numbers with an estimation for the case of binary black holes
(BHs) near the merger phase

ΦNewtonian
c2 ∼ GMBH

c2 (a few rHorizon)
∼ 10−1−1 . (3)

This indicates that despite the accurate measurements achieved up to now, both from
the solar system and from pulsars, there is still a long way to go until we can have
observations of situations with truly strong gravitational fields. This means that there
are sectors of the gravitational theory that we have not yet tested. In other words,
we know that General Relativity correctly describes Nature in certain regimes, but
do not know whether this is also the case when gravitational fields are extreme, in
the sense of (3), where alternative theories of gravity might be relevant.

To access the gravitational regime not yet tested one can try to resort to electro-
magnetic observations (see [4] for a review) as new observatories in the high-energy
end of the spectrum have good potential for such a goal. Another possibility is to re-
sort to a different messenger, namely GWs, or a combination of electromagnetic and
GW observations through multi-messenger astronomy in the future. Gravitational
Wave Astronomy (GWA) is an emergent area that promises to bring revolutionary
discoveries to the areas of astrophysics, cosmology, and fundamental physics. There
are a number of ground laser interferometric detectors (LIGO [5], VIRGO [6], etc.)
that will detect GWs, in the high frequency range ( f ∼ 10− 103 Hz) during the
next decade. There are also ongoing developments for future detectors in space, like
the Laser Interferometer Space Antenna (LISA) [7] or DECIGO [8]. In particular,
LISA will operate in the low frequency band ( f ∼ 10−4−1 Hz), a band not acces-
sible from the ground due to seismic noise, and probably the richest band in terms
of interesting astrophysical and cosmological sources.

Apart from these detectors, there is work in progress to use networks of mil-
lisecond pulsars to detect GWs in the ultra-low frequency range ( f ∼ 10−9− 10−8

Hz). Millisecond pulsars have already being used to test alternative theories of grav-

1 Here, G denotes the gravitational Newton constant, c the speed of light, M� the mass of the Sun,
and r different distance measures.
2 We here choose data from the well-known Hulse and Taylor binary pulsar (PRS B1913+16) [2],
the one that provided the first strong evidence for the existence of gravitational waves (GWs) [3].
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ity, like scalar-tensor theories (see, e.g. [9]). These pulsars are remarkable stable
rotators, and as such, they require only simple models to describe their spin-down
and times-of-arrival (TOAs) with a precision of < 1 μs over many years of observa-
tions. GWs are not included in the analysis, so their existence will induce differences
between the measured and theoretical TOAs, the so-called timing residuals. To de-
termine the exact origin of the timing residuals, that is, effects different from GWs
(calibration effects, errors in planetary ephemeris, irregularities in the pulsar spin-
down, etc.) it is necessary to correlate the timing residuals of multiple pulsars. It has
been estimated that with a timely progress in technology, a successful detection of
GWs should happen within a decade [10] (or alternatively the experiments will rule
out current predictions for GW sources in this frequency band).

GWs are a double-edge tool: On the one hand, their detection is quite a difficult
problem that requires very advanced technology. On the other hand, they are an ideal
tool to test strong gravity (in the sense of 3), since GWs carry almost uncorrupted
information from their sources. In the next sections we discuss the following points:
(i) The basics of the planned LISA mission; (ii) The main properties of EMRIs and
their GW emission; (iii) How to use EMRIs to test alternative theories of gravity
with a focus on Dynamical Chern-Simons Modified Gravity (DCSMG). This dis-
cussion is based on work described in [11].

2 LISA: The laser interferometer space antenna

LISA [7] is a joint NASA-ESA mission designed to detect and analyze the gravi-
tational radiation coming from astrophysical and cosmological sources in the low-
frequency band (corresponding to oscillation periods in the range 10 s - 10 hours).
LISA consists of three identical spacecrafts flying in a triangular constellation, with
equal arms of 5 ·106 km each. As GWs from distant sources reach LISA, they warp
space-time (locally generating curvature), stretching and compressing the triangle.
Thus, by precisely monitoring the separation between the spacecrafts, we can mea-
sure the GWs, and their shape and timing teach us about the nature and evolution of
the systems that emitted them.

The LISA constelation is in orbit around the Sun, at a plane inclined by 60 de-
grees to the ecliptic. The triangle appears to rotate once around its center in the
course of a year’s revolution around the Sun (see Fig. 1). The center of the LISA
triangle traces an Earth-like orbit in the ecliptic plane, trailing Earth by 20 degrees.
The free-fall orbits of the three spacecraft around the Sun maintain this triangular
formation, with the triangles appearing to rotate about its center once per year.

The sensitivity of LISA as a GW observatory is described by the strength of its
response to impinging GWs as a function of frequency. At low frequencies it is lim-
ited by acceleration noise; at mid frequencies by laser shot noise and optical-path
measurement errors; and at high frequencies by the fact that the GW wavelength
becomes shorter than the LISA arm length, reducing the efficiency of the interfero-
metric measurement (see Fig. 2).
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Whereas ground-based detectors will make the first detections in the high-
frequency band and also inaugurate the field of GWA, space-based detectors like
LISA, operating in the low-frequency band, will enable us to explore this new field
in detail. In this band, there are several important sources of GWs (see Fig. 2),
such as massive BH mergers, i.e., mergers of BHs that grow in galactic centers
and become a binary after their host galaxies collide. Another LISA source of
GWs are millions of galactic binaries, which form a GW foreground (except for
the more bright ones, which can be separately identified as foreground). Yet an-
other important source is the capture and inspiral of stellar-mass compact objects
(white dwarfs, or neutron stars, or stellar BHs) by massive BHs at galactic cen-
ters. This source, commonly referred to as Extreme-Mass-Ratio Inspirals (EMRIs),
is the one we will focus on in this contribution as a high-precission tool for fun-
damental physics tests. Apart from these three sources, there are also prospects
of detecting eventual stochastic GW backgrounds from the early universe (infla-
tion,superstrings,topological defects, etc.).

3 Extreme-mass-ratio inspirals: EMRIs

EMRIs are composed of a stellar-mass compact object (SCO) spiraling into a mas-
sive BH (MBH) located in a galactic center. Since the masses of interest for the SCO
are around m� = 1−102 M�, and for the MBH are in the range M• = 105−107 M�,
the mass-ratio for these systems is μ = m�/M• ∼ 10−7−10−3. During the inspiral
phase, an EMRI losses energy and angular momentum via the emission of GWs,
producing a shrinking of the orbit, which means that the period decreases and, as a
consequence, the GW frequency increases.

There are several astrophysical mechanisms that have the potential to produce
EMRIs (see [13] for a review on EMRI astrophysics and other aspects). The most
studied mechanism is based on the properties of the SCO’s dynamics in stellar cups

Fig. 1 Figure reproduced from [12] with permission. It illustrates the configuration of the motion
of the LISA constellation.
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around MBHs at galactic centers. There is a small but non-negligible probability that
one of these objects may fall into a bounded trajectory with respect to the MBH, due
to gravitational interactions with other bodies. If so, GW emission would then force
the system to decay and plunge into the MBH in a period significantly smaller than
the Hubble time scale. Initially, the orbit can be quite eccentric, with eccentricities
in the range 1− e∼ 10−6−10−3, but by the time they enter into the LISA band the
eccentricity is expected to be substantially reduced (due to GW emission), although
it will probably still be significant (in the range e ∼ 0.5− 0.9). A remarkable fact
about EMRIs is that during the last year before plunge they emit on the order of
105 or more GW cycles, carrying a lot of information about the MBH strong field
region.

Moreover, it has been estimated that LISA will be able to detect GW signals of
around 10− 103 EMRIs per year up to distances of z � 1 [14, 15]. These signals
will be hidden in the LISA instrumental noise and in the GW foreground produced
mainly by compact binaries in the LISA band. Thus, in order to extract the EMRI
signals we need a very accurate theoretical description of the gravitational wave-
forms. The main difficulty in producing these is in the description of the gravita-
tional effects of the SCO on its own trajectory. These effects produce deviations
in the SCO’s motion away from a geodesic around the MBH. One can think of

Fig. 2 This figure shows the LISA sensitivity response function in terms of the frequency. It allows
shows the main sources of GW for LISA: (i) Massive BH mergers, entering the band from the upper
left corner (inspiral phase) and evolving in frequency until they merger and the final BH rings
down. (ii) Galactic binaries. They are almost monochromatic sources and there many of them,
forming a foreground from which only a fraction can be individually distinguished. (iii) EMRIs.
The capture and subsequent inspiral of a stellar-mass object into a Massive BH (see Sect. 3).
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such a deviation as induced by the action of a local force, the so-called self-force.
Analogously, one can think of the SCO as moving on a geodesic of the spacetime
generated both by the MBH and the SCO itself. There is an entire research pro-
gram devoted to the computation of the self-force carried out by a community that
annually gathers at the CAPRA Ranch Meetings on Radiation Reaction. In the last
few years, there has been tremendous progress in this direction, among other things
leading to the first computations of the gravitational self-force for generic orbits
around a non-spinning MBH. Details on the self-force research program and recent
advances can be found in the reviews [16, 17] and references therein.

LISA observations of EMRIs have the potential to make revolutionary discover-
ies in Astrophysics, Cosmology, and Fundamental Physics. With regard to the first,
Astrophysics, we expect the following discoveries: to better understand the dynam-
ics in galactic centers (mass segregation, resonant relaxation, massive perturbers,
etc); to obtain information about the mass spectrum of stellar BHs in galactic nu-
clei in order to understand the formation of stellar BHs and their relation to their
progenitors; to obtain information on the distribution of the MBH spins for masses
up to a few million solar masses, which has implications for galaxy formation mod-
els; perhaps to detect the inspiral of an Intermediate-Mass BH (IMBHs) into a MBH,
which will give direct evidence for the existence of IMBHs; etc. Regarding Cosmol-
ogy, it has been proposed [18] that precise measurements of the Hubble parameter
are possible by correlating LISA EMRI observations (which act as standard “sirens”
and provide precise measurements of luminosity distances up to z∼ 1) with galaxy
redshift surveys, which would provide statistical redshift information of the EMRI
events (which cannot be inferred from the GW observations). Applying this idea to
a simplified cosmological model, it has been estimated that using 20 or more EMRI
events to z∼ 0.5, one could measure the Hubble constant to better than one percent
precision.

Finally, and of most relevance for this contribution, EMRIs have also a great
potential for Fundamental Physics, based on the fact that EMRI GW are long and
carry a detailed map of the MBH spacetime, i.e., of the MBH multipole moments. It
has been estimated that LISA can measure the main parameters of an EMRI system
with high precision [19]:

Δ(lnM•) , Δ
(

ln
m�

M•

)
, Δ

(
S•
M2•

)
∼ 10−4 , ΔΩ ∼ 10−3 , (4)

where S• denotes the MBH spin andΩ the solid angle (related to sky localization of
the source). It is also expected (see [20, 21]) that LISA will be able to measure 3−5
MBH multipole moments with good accuracy. Therefore, EMRI LISA observations
provide a unique opportunity to test the no-hair theorem and also to perform tests
of alternative theories of gravity, which is the main subject of the remainder of this
contribution.
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4 Testing theories of gravity with EMRIs: EMRIs in DCSMG

There are many modifications of General Relativity available in the literature, and
hence in principle it seems difficult to justify a particular choice. However, not all
theories are created equal. In particular, not all theories available are consistent in
all regimes; in many of them the status of BH solutions is unclear, in the sense that
either the solutions are not known or, if they are known, it is unclear that they are
unique or that they represent the final state of gravitational collapse. On the other
hand, in order to gain some insight on the effects modifications of gravity may have
on GW observations it is good to explore several different particular theories. In this
sense, one can also propose certain criteria for a theory to be a reasonable candidate
to test GR with LISA [22].

An example of such a theory is DCSMG (see [23] for a recent review). This mod-
ification to General Relativity was introduced by Jackiw and Pi [24] and it consists
of the addition of a new term to the Einstein-Hilbert Lagrangian that generalizes
the standard 3-D Chern-Simons term. This new term is a parity violating interaction
that is motivated by several quantum gravity approaches, like string theory and loop
quantum gravity. This modification is also motivated from an effective field theory
standpoint, through the inclusion of high-curvature terms to the action (see [25] for
an application of this approach to inflationary cosmology).

In this 4D theory, the action is given by:

S = SEH +SCS +Sφ +Smatter , (5)

where SEH is the Einstein-Hilbert action

SEH = κ
∫

d4x
√−g R , κ =

1
16πG

, (6)

which is modified by the addition of a term containing the Pontryagin density
( ∗RR = Rαβγδ

∗Rαβγδ = 1
2ε
αβμνRαβγδRγδ μν )

SCS =
α
4

∫
d4x

√−g φ ∗RR . (7)

Here, the Pontryagin density, a topological invariant in 4D, is multiplied by a scalar
field, φ , to produce a modification of the GR field equations, which is proportional
to the coupling constant α . In addition we have the action term of the scalar field:

Sφ =−β
∫

d4x
√−g

[
1
2

gμν
(
∇μφ

)
(∇νφ)+V (φ)

]
, (8)

where β is another coupling constant. In the original version of the theory, the scalar
field φ was forced to be a fixed function, devoid of dynamics and a contribution to
the action. This leads to an additional constraint, the vanishing of the Pontryagin
density, which is too restrictive. In particular, it disallows spinning BH solutions
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for scalar fields whose gradient is time-like [26] and forbids perturbations of non-
spinning BHs [27]. Finally, Smatter is the action of any additional matter fields.

We now summarize the main results on the study of EMRIs in DCSMG [11].
The first point is that spinning MBHs are no longer described by the Kerr metric
(although non-spinnning ones are described by the Schwarzschild metric). Using
the small-coupling and slow-rotation approximations, the exterior, stationary and
axisymmetric gravitational field of a rotating BH in dynamical DCSMG modified
gravity, in Boyer-Lindquist type coordinates, is given by [28]:

ds2 = ds2
Kerr +

5ξa
4r4

[
1+

12M
7r

+
27M2

10r2

]
sin2 θdtdϕ , (9)

where ds2
Kerr is the line element for the Kerr metric, M and a are the MBH mass

and spin parameter, and ξ = α2/(κβ ) [see (7) and (8)]. The multipolar structure
of the modified metric remains completely determined by only two moments (no-
hair or two-hair theorem): the mass monopole and the current dipole. The relation,
however, between these two moments and higher-order ones is modified from the
GR expectation at multipole �≥ 4. On the other hand, the solution for the DCSMG
scalar field φ is:

φ =
5
8
α
β

a
M

cos(θ)
r2

(
1+

2M
r

+
18M2

5r2

)
, (10)

which is axisymmetric and fully determined by the MBH geometry [28]. Hence, the
no-hair theorem still holds in this theory.

Regarding the equations of motion for the SCO, it has been shown [11] that
point-particles follow geodesics in this theory, as in GR. Moreover, it turns out that
the metric given in (9) has the same symmetries as the Kerr metric (stationary and
axisymmetric), including the existence of a 2-rank Killing tensor. As a consequence,
the geodesics equations are also fully integrable, and the difference with respect to
Kerr can be encoded in a single function [11]. One can see that the innermost-stable
circular orbit (ISCO) location is DCSMG shifted by [28]:

RISCO = 6M∓ 4
√

6a
3

− 7a2

18M︸ ︷︷ ︸
GR Piece

± 77
√

6a
5184

α2

βκM4︸ ︷︷ ︸
CS Modification

(11)

where the upper (lower) signs correspond to co- and counter-rotating geodesics.
Notice that the DCSMG correction acts against the spin effects. One can also check
that the three fundamental frequencies of motion [29] change with respect to the GR
values.

The next important question to address is how GW emission and propagation
is affected in DCSMG. First of all, it has been shown [11] that observers far away
from the sources can only observe the same polarizations as in GR, although there
is an additional mode, a breathing mode, that has an impact in the strong-field dy-
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namics but decays too fast with distance to be observable in the GW emission. The
DCSMG EMRI analysis of [11] was carried out in the so-called semi-relativistic ap-
proximation [30], where the motion is assumed geodesic and GWs are assumed to
propagate in a flat spacetime. Neglecting radiation reaction effects, the dephasing
between DCSMG and GR GWs is only due to modifications in the MBH geometry.
This dephasing will not prevent in principle detection of GWs from EMRIs with
LISA (from short periods of data ∼ 3 weeks, where radiation reaction effects can
be neglected), but instead it will bias the estimation of parameters, leading to an
uncontrolled systematic error.

The study of radiation reaction effects in DCSMG [11] was carried out using the
short-wave approximation (see, e.g. [31]). It was found that to leading order the GW
emission formulae are unchanged with respect to GR. That is, we can introduce an
effective GW energy-momentum tensor that has exactly the same form as in GR (the
Isaacson tensor [32]). There are subdominant contributions to the radiation reaction
mechanism due to the presence of the DCSMG scalar field φ .

By comparing waveforms computed in GR with waveforms computed in DC-
SMG (assuming the same orbital parameters: eccentricity, pericenter, and inclina-
tion), a a rough estimate [11] of the accuracy to which DCSMG gravity could be
constrained via a LISA observation was given. This estimate can be expressed as:

ξ 1/4 � 105 km
(
δ

10−6

)1/4( M•
MMW

)
, (12)

where δ is the accuracy to which ξ can be measured, which depends on the inte-
gration time, the signal-to-noise ratio, the type of orbit considered and how much
radiation-reaction affects the orbit. Moreover, MMW is the mass of the presumable
BH at Sgr A* in our Milky Way galaxy, with a canonical value of ∼ 4.5 · 106M� .
Notice that IMRIs (with total masses in the range 103− 104M�) are favored over
EMRIs. This result is to be compared with the binary pulsar constrained ξ 1/4 �
104 km [28]. These results imply that it may be possible to place strong constraints
(up to two orders of magnitude more stringent than binary pulsar ones) with IMRI
GW observations. Moreover, a GW test can constrain the dynamical behavior of the
theory in the neighbourhood of BHs, which is simply not possible with neutron star
observations.

At present, there is work in progress that focuses on the inclusion of radiation re-
action effects and the use of better statistical tools to estimate the ability of LISA to
constraint DCSMG. A key point in this regard is that, to leading order, the GW emis-
sion in DCSMG is unchanged with respect to GR, which can be used to simplify
the analysis, allowing for GR-like expressions for the rate of change of constants of
motion due to the GW emission.
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Gravitons in Flatland

Eric A. Bergshoeffa, Olaf Hohmb and Paul K. Townsendc

Abstract We review some features of three-dimensional (3D) massive gravity theo-
ries. In particular, we stress the role of the Schouten tensor, explore an analogy with
Lovelock gravity and discuss renormalizabilty.

Edwin Abbot’s 1884 novella Flatland [1] was the first of many explorations of a
hypothetical world in which there are only two space dimensions (although Charles
Hinton’s A Plane World, also published in 1884, may deserve equal credit1). In the
context of special relativity, Flatland may be considered to be a three-dimensional
(3D) Minkowski spacetime. Of course, the term “Flatland” might be considered in-
appropriate in the context of General Relativity, but the 3D Einstein equations imply
that the spacetime curvature is entirely determined by the matter content, so space-
time is still locally flat outside sources [2, 3, 4]; this means that 3D GR does not ad-
mit gravitational waves, and there are consequently no massless gravitons. However,
it is possible to add higher-order terms (in a derivative expansion) to the Einstein-
Hilbert (EH) action such that when the action is expanded about the Minkowski
vacuum (in powers of the metric perturbation) the quadratic approximation to it is
a Minkowski space field theory propagating massive gravitons. This contribution
reviews the current status of these 3D “massive gravity” theories, focusing on the
small fluctuations about Minkowski space: i.e. on gravitons in Flatland.
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We start from the 3D Fierz-Pauli (FP) equations for a totally symmetric rank-s
tensor ϕ(s), which is also traceless for s≥ 2. These equations consist of the dynam-
ical equation (

�−m2)ϕ(s) = 0 (1)

together with the subsidiary condition

∂νϕ(s)
νμ2···μs = 0 . (2)

They are equivalent to the single equation

[H− sm] [H+ sm]ϕ(s) = 0 , (3)

where m is a mass parameter and H is the spin-s unit-mass “helicity operator” :

Hμ1...μs
ν1...νs = sε(μ1

τ(ν1δν2
μ2 · · ·δνs)

μs)
∂τ . (4)

It is evident from (3) that two spin-s modes are propagated, of helicities ±s. The
generalized equation

[H− sm+] [H+ sm−]ϕ(s) = 0 (5)

also propagates two modes of helicities s and −s but with, respectively, masses m+

and m− (both of which may assumed to be positive). Since parity flips the sign
of helicity, it follows that parity is violated whenever m+ �= m−. In particular, we
may take m− → ∞ for fixed m+ = μ , in which case the second-order equation (5)
degenerates to the first-order “self-dual” equation [5, 6, 7]

[H− sμ]ϕ(s) = 0 . (6)

Note that this still implies the subsidiary condition (2).
For any of the above massive spin-s field equations, there is a systematic pro-

cedure for finding an equivalent set of equations for a spin-s gauge theory [8]. We
first relax the tracelessness condition on ϕ (in the case that s≥ 2) and then solve the
subsidiary condition by writing

ϕ(s)
μ1···μs =−

1
s!
εμ1

τ1ν1 · · ·εμs
τsνs∂τ1 · · ·∂τshν1···νs ≡ Gμ1···μs (7)

for a rank-s gauge potential h, with rank-s field-strength G invariant under the gauge
transformation2

hμ1···μs → hμ1···μs +∂(μ1ξμ2···μs) (8)

for arbitrary rank-(s−1) symmetric tensor parameter ξ . The subsidiary condition is
then replaced by the Bianchi-type identity

∂νGνμ1···μs−1 ≡ 0 , (9)

2 For spin s≥ 3 fields in 4D it is usual to assume a weaker gauge invariance in which the parameter
is traceless, in which case the field strength is always second-order in derivatives.
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but the tracelessness condition on ϕ , which we initially relaxed, must now be re-
imposed as a condition on G.

Applied to the “self-dual” equation (6) for s = 1, this procedure yields the field
equations of “topologically massive electrodynamics”, as has been known for some
time [9]. The application to the same self-dual equation for s = 2 was presented in
[10]; in this case we have the equations

[H−2μ]G = 0 , ημνGμν = 0 , (10)

for symmetric tensor field strength G expressed in terms of a symmetric tensor po-
tential, which we now write as hμν , and view as a metric perturbation: h = g−η .
Then G has the interpretation as the linearized Einstein tensor:

Gμν = G(lin)
μν ≡ R(lin)

μν −
1
2
ημνR(lin) , (11)

where R(lin)
μν is the linearized Ricci tensor and R(lin) its Minkowski trace. The equa-

tions (10) can now be shown to be equivalent to the linearized version of the one
equation

Gμν +
1
μ

Cμν = 0 , (12)

where Cμν is the Cotton tensor (the 3D analog of the Weyl tensor):

√
−detg Cμν ≡ εμτρDτSρν , Sμν ≡ Rμν − 1

4
gμνR , (13)

where D is the usual covariant derivative constructed from the Levi-Civita connec-
tion. The tensor Sμν is the 3D Schouten tensor, about which we shall have more to
say later. Equation (12) can be derived from the Lagrangian density

L =−
√
−detgR+

1
μ

LLCS , (14)

where LLCS is the Lorentz Chern-Simons (LCS) term. This is the action of ‘topolog-
ically massive gravity” (TMG) [11]. Note the unconventional sign of the Einstein-
Hilbert (EH) term; it is needed for positive energy of the one massive spin 2 mode
that is propagated in the Minkowski vacuum. Whether the energy of an asymptot-
ically Minkowski solution of the non-linear theory is necessarily positive is still a
matter of debate.

Applying the same procedure to the second-order FP equations (3) for spin 2, we
arrive at the Lagrangian density for “new massive gravity” (NMG) [12], which we
may write in the form3

3 The sign of the EH term depends on the metric signature convention; as we use here the “mostly
plus” convention, the sign is opposite to that of [12] where the “mostly minus” convention was
used.
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L =
√
−detg

[
−R+

1
m2 K

]
, K ≡ GμνSμν . (15)

Note the occurrence, once again, of the Schouten tensor. This derivation of NMG
may be run in reverse to prove that it propagates two massive spin-2 modes in a
Minkowski vacuum, with helicities ±2, but this fact does not guarantee that neither
mode is a ghost (negative kinetic energy). This is not an issue for TMG because one
may always adjust the overall sign of the action to ensure that the one propagating
mode is physical, but this may not be sufficient when there are two propagating
modes. In fact, if the same method is applied to the Proca equations then one arrives
at an equivalent set of “extended Proca” equations [13], but the “extended Proca”
action propagates one of the two spin-1 modes as a ghost, and the same phenomenon
occurs for spin 3 [8]. So the absence of ghosts in NMG is far from obvious. Never-
theless, there is an alternative form of the action involving an auxiliary tensor field
that allows a simple proof of the equivalence of the linearized action to the standard
FP action, which is known to be ghost-free. This was reviewed in [14]. The absence
of ghosts in linearized NMG may also be verified directly by a canonical analysis
[15].

The scalar K = GμνSμν has the “conformal covariance” property [12]

gμν
δ
δgμν

∫
d3x

√
|g|K ∝ K . (16)

This implies that the quadratic approximation to K is invariant under linearized Weyl
transformations, as stressed in [15]. In fact, the scalar GμνSμν has this property in
any dimension. To see this, one should first appreciate that the definition of the
Schouten tensor is dimension dependent; for spacetime dimension D > 2,

Sμν =
1

D−2

[
Rμν − 1

2(D−1)
Rgμν

]
. (17)

This tensor first arose in the decomposition of the Riemann tensor into the traceless
Weyl conformal tensor W and a remainder:

Rμνρσ =Wμνρσ +(g◦S)μνρσ , (18)

where ◦ indicates the Kulkarni-Nomizu product of two second-rank tensors (for
symmetric tensors this product has the symmetries of the Riemann tensor). The
Schouten tensor also has the interpretation as a (dependent) gauge potential for con-
formal boosts4 and this explains why, in 3D, the Cotton tensor may be expressed in
terms of it. Next, we note the identity5

4 This gauge potential is set equal to the Schouten tensor on imposing a constraint on conformal
curvatures [16] in close analogy to the way that the affine connection becomes a function of the
metric and its derivatives when the torsion is constrained to vanish.
5 An equivalent identity has been noted independently in [17].
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RμνρσRμνρσ −4RμνRμν +R2 ≡W μνρσWμνρσ −4(D−3)GμνSμν , (19)

which is valid for any D ≥ 3, although both sides vanish identically for D = 3. For
D = 4 the left hand side is the integrand of the Gauss-Bonnet invariant, and hence
is a total derivative. This shows that the 4D scalar GμνSμν equals the square of the
Weyl tensor, up to a total derivative. For D > 4 the left hand side is the Lovelock
term [18]; it is not a total derivative but it has the feature that it does not contribute to
the quadratic action in an expansion about Minkowski space6. Thus, even for D > 4
it remains true that the quadratic approximation to GμνSμν equals the square of the
linearized Weyl tensor, up to a total derivative, and hence that it is invariant under
linearized Weyl transformations.

Let us now turn to the generalized, parity-violating, FP equations (5). Applying
the same procedure reviewed above for the other cases, we arrive at the Lagrangian
density of “general massive gravity” (GMG) [12]

L =
√
−detg

[
−R+

1
m2 GμνSμν

]
+

1
μ

LLCS (20)

where
m2 = m+m− , μ =

m+m−
m−−m+

. (21)

Again, the derivation does not guarantee the absence of ghosts. However, the canon-
ical analysis that shows NMG to be ghost free can be easily generalized to GMG
[10], as we now review. One begins by making a time-space split and imposing a
convenient gauge condition

∂ihiμ = 0; μ = (0, i) i = 1,2 . (22)

The 3-metric perturbation h can now be expressed in terms of three independent
functions as follows:

hμν =
(

n m ∂̂iφ2

m ∂̂ jφ2 ∂̂i∂̂ jφ1

)
, ∂̂i ≡ ε i j∂ j . (23)

Substitution into the linearized GMG action yields an action involving (n,φ1,φ2)
that is fourth order in derivatives but only second-order in time derivatives. Intro-
ducing new independent functions (N,Φ1,Φ2) by the space non-local field redefi-
nitions7

n+�φ1−2m2 (φ1−φ2) =
1
∇2 N , φa =

1
∇2Φa (a = 1,2), (24)

we then arrive at an equivalent action with Lagrangian density

6 A number of other similarities between NMG and Lovelock gravity have been noted in [19, 20,
21].
7 Space non-local field redefinitions are allowed since they cannot change the canonical structure,
which depends on the time derivatives.
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L =
1
2
Φa

[
δab�−M2

ab
]
Φb +2m2N2 , (25)

where the 2×2 matrix M2
ab is real symmetric with eigenvalues (m2

+,m
2−). This con-

firms that there are two propagating modes with masses m±. Crucially, both modes
have positive energy, so GMG is ghost-free.

It is remarkable that the final result (25) is Lorentz invariant, despite the fact that
we arrived at it via manipulations that explicitly violate Lorentz invariance, but the
Lorentz transformations that leave invariant (25) are not the same as the Lorentz
transformations that leave invariant the linearized GMG action. This is simply a
reflection of the fact that a free field theory has an infinite-dimensional invariance
group. In the present case, this infinite dimensional group has at least two, mutually
space non-local and probably non-commuting, Lorentz subgroups. The introduction
of interactions that preserve one of these Lorentz subgroups will break the other one.
Precisely because we view linearized NMG as the quadratic approximation to NMG,
it is the manifest Lorentz transformations of this action, in its original form, that are
relevant to the determination of the spin of propagated modes. For this reason, one
cannot read off the spins from the Lagrangian (25); however we already know that
the two modes have spin 2 from the equivalence of the field equations to those of
the generalized FP equations.

A feature of curvature-squared terms is that they contribute to the quadratic ki-
netic terms in an expansion about Minkowski space, and hence to the propagator as
well as to the vertices of Feynmann diagrams. Specifically, they introduce 1/p4 type
terms in the propagator, where p is the 3-momentum, and this makes the generic
curvature squared gravity theory power-counting renormalizable in 4D [22]. Unfor-
tunately, this comes at the cost of unitarity. There is one exceptional case in which
unitarity is not violated, although renormalizability is lost. This is the model ob-
tained by adding to the EH term the square of the scalar curvature (R2); this is
equivalent, for an appropriate choice of signs, to a scalar field coupled to gravity
(see [23] for a review). There is another exceptional case in which renormalizabil-
ity is lost (without a gain in unitarity). This is the model obtained by addition of the
square of the Weyl curvature tensor (W 2), but without an R2 term. Exceptional cases
can arise because the metric perturbation hμν is not an irreducible representation of
the Lorentz group but includes the scalar trace h. There is a term in the propagator
that projects onto the pure spin 2 part of hμν and a term that projects onto the trace,
irrespective of whether h propagates any physical spin-0 mode. Both terms in the
propagator go like 1/p2 in the context of the EH term alone. Addition of the square
of the Weyl conformal curvature tensor (W 2) causes the spin 2 projector part of the
propagator to go like 1/p4 whereas addition of the square of the curvature scalar
(R2) causes the scalar projector part of the propagator to go like 1/p4, and both are
needed for power-counting renormalizability. Thus, omitting either the R2 term or
the W 2 term implies a loss of renormalizability.

The situation in 3D, where the generic curvature-squared gravity theory is power-
counting super-renormalizable, is potentially better since at least the K = GμνSμν
term may be included without violating unitarity, as we have just seen. However,
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the linearized Weyl invariance of K implies that the 1/p2 behaviour of the scalar
projection term in the propagator is not affected by the curvature-squared term of
NMG, so that NMG is not power-counting renormalizable [15]. Here it should be
said that it has been claimed that NMG is super-renormalizable [24], but we have not
understood the argument8. In any case, it is certainly true that NMG is exceptional
within the class of curvature-squared theories in 3D in much the same way that the
‘R+W 2’ theory is exceptional in 4D. This can be seen more explicitly using the
results of [25] for the propagator of the general 3D gravity model with curvature
squared terms. Consider the Lagrangian density

L =
√
|g|

[
σR+

a
m2 K +

b
m2 R2

]
(26)

for constants (σ ,a,b); the choice (σ ,a,b) = (−1,1,0) yields NMG. If we expand
about the Minkowski vacuum we find that

L =
1
2

hμνOμν ,ρσ hρσ + . . . (27)

where O is a fourth-order linear differential tensor operator and the dots indicate
interaction terms. The operator O may be expressed in terms of two orthogonal
projection operators, for spin 2 and spin 0 [26]; in momentum space, these are

P(2)
μν ,ρσ =

1
2
(
θμρθνσ +θμσθνρ −θμνθρσ

)
, P(0,s)

μν ,ρσ =
1
2
θμνθρσ , (28)

where
θμν = ημν − pμ pν

p2 . (29)

Specifically, one finds that

Oμν ,ρσ =

[
−1

2
σ p2 +

ap4

2m2

]
P(2)
μν ,ρσ +

[
1
2
σ p2 +

bp4

2m2

]
P(0,s)
μν ,ρσ . (30)

This operator is not invertible, but we may invert within each of the subspaces de-
fined by the two projectors. The result is the propagator

2m2

{
P(2)
μν ,ρσ

p2 (ap2−m2σ)
+

P(0,s)
μν ,ρσ

p2 (bp2 +m2σ)

}
. (31)

As long as ab �= 0 this behaves like 1/p4 as p2 → ∞, but the spin 2 part goes like
1/p2 when a = 0 and the spin 0 part goes like 1/p2 when b = 0.

Returning to 4D, there is one curvature-squared model that is potentially renor-
malizable, and that is conformal gravity. The action for conformal gravity is just the
integral of W 2, without the EH term. The propagator is now purely 1/p4 because

8 In particular, it appears that the means used to arrive at this conclusion are not specific to 3D and
could be used to obtain the same result in 4D.
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the trace of the metric perturbation is a gauge degree of freedom. It is often said
that this model has ghosts since any perturbation away from conformality leads to
ghosts, but consistency requires that the conformal invariance be preserved, even
by quantum corrections. The one-loop conformal anomalies cancel for some con-
formal supergravity models (see [27] for a review) so these may be viable theories,
although they have not yet found any compelling application.

The action for 3D conformal gravity is just the LCS term [28]. In other words,
one omits the EH term from TMG, but this propagates no modes. One may also
omit the EH term from NMG, in which case one gets a model that propagates a
single massless mode [15], of no definite spin because spin is not defined for mass-
less particles. If a LCS term is added (equivalently, if the EH term is omitted from
the GMG action) then one gets a 4th order “New Topologically Massive Gravity”
(NTMG) model that propagates a single massive spin-2 mode [10, 29]. In any of
these models without an EH term, the trace of the metric perturbation is a gauge
degree of freedom in the quadratic approximation, so the propagator is either pure
1/p4 or behaves this way in the short distance limit. This fact was claimed in [15] to
imply renormalizabilty. However, the trace of the metric perturbation is not a gauge
degree of freedom of the interacting theory. Its equation of motion is K = 0, which
is identically satisfied in the linearized limit (since K has no term linear in fields) but
not otherwise. The usual power-counting arguments apply to a perturbation theory
in which all non-gauge degrees of freedom are represented in the propagator, but
this condition is not satisfied here. It remains to be seen what effect this has.

If massive gravity theories are not power-counting renormalizable then they are
still no worse than general relativity in 4D. In the latter case, we know that su-
persymmetry can soften the ultra-violet divergences, and there are some hints that
the maximally supersymmetric N = 8 supergravity may be finite (see e.g. [30]).
In view of this, it is of interest to consider the massive 3D supergravity theories.
The representation theory for massive particle supermultiplets in 3D is formally the
same as that for massless supermultiplets in 4D so N = 8 is maximal for mas-
sive 3D supergravity too, although the total number of supersymmetry charges is 16
rather than 32. So far only the N = 1 theory has been constructed in detail [10, 31]
although the N = 2 massive 3D supergravity has been constructed as a linear the-
ory in Minkowski space [10] and the N = 8 theory can be constructed in the same
approximation [32]. Assuming that there is an N = 8 massive 3D supergravity, rep-
resentation theory implies that it must preserve parity since the state of helicity +2
is in the same supermultiplet as the state of helicity −2. In other words, we expect
NMG to have an N = 8 supersymmretric extension but not TMG. The representa-
tion theory would allow N = 7 as maximal for super-TMG but the details suggest
that N = 6 is actually maximal for a parity violating massive 3D gravity. Thus,
N = 8 new massive supergravity is the most promising candidate for a 3D massive
gravity theory with ‘improved’ ultraviolet behaviour, but it remains to be seen how
significant any improvement will be.

Acknowledgements PKT thanks the conference organizers for the invitation to deliver this talk
on the occasion of Emilio Elizalde’s 60th birthday. The authors are grateful to Roel Andringa,



Gravitons in Flatland 299

Mees de Roo, Jan Rosseel and Ergin Sezgin for discussions in the course of collaborations on
supersymmetric extensions of massive 3D gravity models. The work of OH is supported by the
DFG – The German Science Foundation and in part by funds provided by the U.S. Department of
Energy (DoE) under the cooperative research agreement DE-FG02-05ER41360. PKT thanks the
EPSRC for financial support.

References

1. E.A. Abbott, Flatland, available at www.gutenberg.org/etext/201
2. A. Staruszkiewicz, “Gravitation Theory In Three-Dimensional Space,” Acta Phys. Polon. 24

(1963) 735.
3. S. Deser, R. Jackiw and G. ’t Hooft, “Three-Dimensional Einstein Gravity: Dynamics Of Flat

Space,” Annals Phys. 152 (1984) 220.
4. S. Giddings, J. Abbott and K. Kuchar, “Einstein’s Theory In A Three-Dimensional Space-

Time,” Gen. Rel. Grav. 16 (1984) 751.
5. P. K. Townsend, K. Pilch and P. van Nieuwenhuizen, “Selfduality In Odd Dimensions”, Phys.

Lett. 136B (1984) 38 [Addendum-ibid. 137B (1984) 443].
6. C. Aragone and A. Khoudeir, “Selfdual massive gravity”, Phys. Lett. B 173 (1986) 141.
7. I. V. Tyutin and M. A. Vasiliev, “Lagrangian formulation of irreducible massive fields of arbi-

trary spin in (2+1) dimensions”, Theor. Math. Phys. 113 (1997) 1244 [arXiv:hep-th/9704132].
8. E. A. Bergshoeff, O. Hohm and P. K. Townsend, “On Higher Derivatives in 3D Gravity and

Higher Spin Gauge Theories,” Annals Phys. 325 (2010) 1118 [arXiv:0911.3061 [hep-th]].
9. R. Jackiw and V. P. Nair, “Relativistic wave equations for anyons”, Phys. Rev. D 43 (1991)

1933.
10. R. Andringa, E. A. Bergshoeff, M. de Roo, O. Hohm, E. Sezgin and P. K. Townsend, “Massive

3D Supergravity,” Class. Quant. Grav. 27 (2010) 025010 [arXiv:0907.4658 [hep-th]].
11. S. Deser, R. Jackiw and S. Templeton, “Topologically massive gauge theories”, Annals Phys.

140 (1982) 372.
12. E. A. Bergshoeff, O. Hohm and P. K. Townsend, “Massive Gravity in Three Dimensions,”

Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766 [hep-th]]. “More on Massive 3D Grav-
ity,” Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259 [hep-th]].

13. S. Deser and R. Jackiw, “Higher derivative Chern-Simons extensions”, Phys. Lett. B 451

(1999) 73 [arXiv:hep-th/9901125].
14. E. Bergshoeff, O. Hohm and P. Townsend, “On massive gravitons in 2+1 dimensions,” J. Phys.

Conf. Ser. 229 (2010) 012005 [arXiv:0912.2944 [hep-th]].
15. S. Deser, “Ghost-free, finite, fourth order D=3 (alas) gravity”, Phys. Rev. Lett. 103, 101302

(2009) [arXiv:0904.4473 [hep-th]].
16. M. Kaku, P. K. Townsend and P. van Nieuwenhuizen, “Gauge Theory Of The Conformal And

Superconformal Group,” Phys. Lett. B 69 (1977) 304.
17. J. Oliva and S. Ray, “A Classification of Six Derivative Lagrangians of Gravity and Static

Spherically Symmetric Solutions,” Class. Quant. Grav. 27:225002 (2010) [arXiv:1004.0737
[gr-qc]].

18. D. Lovelock, “The Einstein tensor and its generalizations,” J. Math. Phys. 12 (1971) 498.
19. A. Sinha, “On the new massive gravity and AdS/CFT,” JHEP 1006 (2010) 061

[arXiv:1003.0683 [hep-th]].
20. J. Oliva and S. Ray, “A new cubic theory of gravity in five dimensions: Black hole, Birkhoff’s

theorem and C-function,” arXiv:1003.4773 [gr-qc].
21. R. C. Myers and B. Robinson, “Black Holes in Quasi-topological Gravity,” JHEP 1008:067

(2010) [arXiv:1003.5357 [gr-qc]].
22. K. S. Stelle, “Renormalization Of Higher Derivative Quantum Gravity,” Phys. Rev. D 16

(1977) 953; “Classical Gravity With Higher Derivatives,” Gen. Rel. Grav. 9 (1978) 353.

http://www.gutenberg.org/etext/201


300 Eric A. Bergshoeff, Olaf Hohm and Paul K. Townsend

23. H. J. Schmidt, “Fourth order gravity: Equations, history, and applications to cosmology,”
eConf C0602061 (2006) 12 [Int. J. Geom. Meth. Mod. Phys. 4 (2007) 209] [arXiv:gr-
qc/0602017].

24. I. Oda, “Renormalizability of Massive Gravity in Three Dimensions,” JHEP 0905 (2009) 064
[arXiv:0904.2833 [hep-th]].

25. H. Nishino and S. Rajpoot, “(Curvature)**2-terms for supergravity in three dimension,” Phys.
Lett. B 639 (2006) 110 [arXiv:hep-th/0607241].

26. P. Van Nieuwenhuizen, “On Ghost-Free Tensor Lagrangians And Linearized Gravitation,”
Nucl. Phys. B 60 (1973) 478.

27. E. S. Fradkin and A. A. Tseytlin, “Conformal Supergravity,” Phys. Rept. 119 (1985) 233.
28. P. van Nieuwenhuizen, “D = 3 Conformal Supergravity And Chern-Simons Terms,” Phys. Rev.

D 32 (1985) 872.
29. D. Dalmazi and E. L. Mendonça, “A new spin-2 self-dual model in D = 2+ 1”, JHEP 0909

(2009) 011 [arXiv:0907.5009 [hep-th]].
30. L. J. Dixon, “Ultraviolet Behavior of N=8 Supergravity,” arXiv:1005.2703 [hep-th].
31. E. A. Bergshoeff, O. Hohm, J. Rosseel, E. Sezgin and P. K. Townsend, “More on Massive 3D

Supergravity,” arXiv:1005.3952 [hep-th].
32. E. A. Bergshoeff, O. Hohm, J. Rosseel and P. K. Townsend, “On Maximal Massive 3D Super-

gravity,” arXiv:1007.4075 [hep-th].



Very Special Relativity and Noncommutative

Space-Time

M. M. Sheikh-Jabbari1 and A. Tureanu2

Abstract The Very Special Relativity (VSR) introduced by Cohen and Glashow
[16] has a robust mathematical realization on noncommutative space-time, in par-
ticular on noncommutative Moyal plane, with light-like noncommutativity [35]. The
realization is essentially connected to the twisted Poincaré algebra and its role as
symmetry of noncommutative space-time and the corresponding quantum field the-
ories [11, 12]. In our setting the VSR invariant theories are specified with a single
deformation parameter, the noncommutativity scale ΛNC. Preliminary analysis with
the available data leads to ΛNC ≥ 1−10 TeV.

1 Introduction

General arguments based on quantum mechanics and gravitational theory in the pro-
cess of measurement [19, 20], as well as on open string theory in the presence of an
antisymmetric background field [3, 33], indicate that the concept of space-time as a
continuous manifold indeed breaks down at very short distances into a quantum ob-
ject and a possible description of physics at such scales is in terms of noncommuting
coordinate operators. The ultimate question whether space-time is a quantum object
and what should replace the well-established relativistic invariance is one of the
fundamental issues in high energy physics. Although currently we do not have any
observation or experiment signaling departure from Lorentz symmetry, with the ad-
vance of technologies we will be able to trace such deviations with ever increasing
precision. With the prospect of upcoming experiments various possible deviations
from Lorentz invariance at high energies have been studied, both theoretically and
phenomenologically (for an incomplete list, see, e.g., [17, 18, 26, 28, 29, 37]).
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The Cohen-Glashow Very Special Relativity (VSR) [16] is defined as symmetry
under certain subgroups of Poincaré group, containing space-time translations and
a proper subgroup of Lorentz group SO(3,1) with the property that when supple-
mented with parity, CP or time-reversal T it enlarges to the full Lorentz group. In
other words, a theory with VSR symmetry is not strictly Lorentz invariant and also
not parity or time-reversal invariant. Thus, the Lorentz violation and CP violation
are linked together. The problem open in [16] is whether Lorentz and nearly CP
invariant theories, like the Standard Model, could emerge as effective theories from
a more fundamental scheme, perhaps operative at the Planck scale.

The Lorentz symmetry has a rich representation spectrum, which turned out to
be essential in building physical models based on Lorentz invariant quantum field
theories: the states of the Fock spaces of quantum field theories are particle state,
labeled by their mass and spin and obeying the spin-statistics relation. The VSR
subgroups of the Lorentz group turn out to have a trivial spectrum, admitting only
one-dimensional representations. Being proper subgroups, the representations of the
VSR subgroups of Lorentz are automatically representations of the Lorentz group,
but the reciprocal is not true. As a result, if we construct a VSR invariant quantum
field theory based on the one-dimensional representations of the VSR subgroups,
when requiring also P, T or CP invariance, although the theory becomes invariant
under the whole Lorentz group, the fact about the one-dimensional representations
of VSR does not change and hence the effective theory would be doomed by its
very poor representation content. This is what we call “representation problem” in
the VSR invariant theories. VSR invariant theories can in principle be constructed
by adding Lorentz violating terms (the terms which reduce the symmetry of the La-
grangian to VSR) as perturbations to ordinary Lorentz invariant Lagrangians, such
that the theories have the usual matter content allowed by Lorentz invariance. How-
ever, such a realization of VSR may not be thought of as a “fundamental” or “mas-
ter” theory which leads to Lorentz invariant theories at low energies; this approach
does not provide a firm theoretical setting for building the VSR invariant theories.

An alternative way for resolving the “representation problem” [35] could be
achieved noting that one can include in the picture of symmetries not only the com-
mutation relations defining an algebra, but also the action of the generators of the
symmetry on the tensor product of their representation spaces (the so-called co-
product). In more mathematical terms, the reasoning in terms of Lie groups/algebras
can be extended to considering (deformed) Hopf algebras, in particular the twisted
Poincaré algebra, which provides the symmetry of noncommutative space-time
with canonical commutation relations [11, 12]. The twists [21] are deformations
which leave the commutation relations and structure constants of the algebra un-
touched, but affect other properties of the Hopf algebra, i.e. the co-algebra structure
[6, 15, 31]. Since the commutation relations of generators are not deformed, it fol-
lows automatically that the Casimir operators are the same and the representation
content of a twisted Hopf algebra is identical to the one of the undeformed algebra.
On the other hand, the deformation of the co-algebra structure reduces the symme-
try of the scheme. This latter feature enables us to use the concept of twist to reduce
the Lorentz symmetry to its VSR subgroups.
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2 The Cohen-Glashow Very Special Relativity

Energy-momentum conservation, and hence invariance under rigid space-time trans-
lations, should be preserved in VSR invariant theories. The minimal version of the
VSR algebra contains, besides the generators of translations Pμ , the subgroup T (2)
of the Lorentz group, which is generated by

T1 = Kx + Jy and T2 = Ky− Jx, (1)

where Ji and Ki i = x,y,z are respectively generators of rotations and boosts. It is
then immediate to check that [T1,T2] = 0 and hence T (2) is an Abelian subalgebra
of Lorentz algebra so(1,3). Moreover, upon action of parity P,

T1 −→ T P
1 =−Kx + Jy , T2 −→ T P

2 =−Ky− Jx , (2)

and similarly under T . It is straightforward to see that the algebra obtained from
T1, T2,T P

1 and T P
2 closes on the whole Lorentz group and therefore, T1,T2,Pμ form

(the smallest possible) VSR algebra.
The group T (2) can be identified with the translation group on a two dimen-

sional plane. The other larger versions of VSR are obtained by adding one or two
Lorentz generators to T (2), which have geometric realizations on the two dimen-
sional plane: (i) E(2), the 3-parametric group of two dimensional Euclidean motion,
generated by T1, T2 and Jz; (ii) HOM(2), the group of orientation-preserving simi-
larity transformations, or homotheties, generated by T1, T2 and Kz; (iii) SIM(2), the
group isomorphic to the four-parametric similitude group, generated by T1, T2, Jz
and Kz.

All the above-mentioned groups share the property of T (2) that, by adding the
parity or time-reversal conjugates of the generators, they enhance to the full Lorentz
algebra. The special feature of T (2) VSR is that, besides having an invariant vector
nμ = (1,0,0,1), it has as well an invariant two form [16], and this will provide its
connection to the Moyal plane. E(2) VSR [16], although it has an invariant vector
nμ = (1,0,0,1), it does not have any invariant two form. The HOM(2) and SIM(2)
do not admit any invariant vector or tensors. We wish to emphasize that VSR sub-
groups only admit one dimensional representations. While all the representations of
VSR are also representations of the Lorentz group, the converse is not true.

One way to realize T (2) or E(2) VSR is to make use of the fact that they admit
invariant vector or tensor and use the idea of inverse spontaneous Lorentz symmetry
breaking and give VEVs to a vector or a tensor in such a way that in low energies the
VEV goes away, or become negligible and we recover the full Lorentz symmetry.
This was indeed the idea put forward by Cohen and Glashow and some other authors
[16, 17, 18, 26, 37]. However, this may spoil the desirable features of Lorentz in-
variant theories and in principle is a phenomenological approach which introduces
many parameters in the theory. HOM(2) and SIM(2) do not admit invariant ten-
sors and their formulation should be done in some other ways. The SIM(2) case



304 M. M. Sheikh-Jabbari and A. Tureanu

as the largest VSR has been studied more (see e.g. [4, 5, 22, 23]). An interesting
connection between VSR and Finslerian geometry has also been proposed [24, 25].

3 Noncommutative spaces and twisted Poincaré symmetry

The Poincaré algebra is the isometry of the Minkowski space. There are 3+ 1 di-
mensional space-times whose “isometry” group is either of the VSR subgroups.
Noncommutative spaces which are defined through the commutation relations

[xμ ,xν ] = iθμν(x) (3)

among their coordinates, where θμν is in general a function of coordinates (Jacobi
identity being satisfied), provide a setup to address this issue.

The commutation relations (3) usually spoil the Lorentz invariance and, if θ has
space-time dependence, also the translational invariance. Nonetheless, depending on
θ , specific subgroups of the Poincaré group under which the commutation relation
(3) is preserved still provide a symmetry (or “isometry”) of the noncommutative
space-time.

Due to the lack of translational invariance in the cases when θ depends on coor-
dinates, it is clear that a connection between VSR and noncommutative space-time
could in principle be found only for the coordinate-independent noncommutativity
parameter.

Depending on the structure of the r.h.s. of (3), there exist three types of noncom-
mutative deformations of the space-time which can be realized through twists of the
Poincaré algebra [11, 12, 30]:

• Constant θμν : the Heisenberg-type commutation relations, defining the Moyal
space:

[xμ ,xν ] = iθμν , (4)

where θμν is a constant antisymmetric matrix. This is the most studied case and
various aspects of QFTs on the Moyal space have been analyzed.

• Linear θμν , with the Lie-algebra type commutators:

[xμ ,xν ] = iCμνρ xρ . (5)

This case describes an (associative but) noncommutative space if Cμνρ are struc-
ture constants of an associative Lie algebra.

• Quadratic noncommutativity, with the quantum group type of commutation rela-
tions:

[xμ ,xν ] =
1
q

Rμνρσxρxσ . (6)

All the above-mentioned cases of noncommutative space-time have originally
been studied in [8] with respect to the formulation of NC QFTs on those spaces.
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The essential element for our discussion is that for specific choices of θ the com-
mutation relations can be obtained from the associative star-products coming from
introducing twisted co-product for the Poincaré algebra [11, 12] (see also [30, 40]).
The advantage of using the twisted Poincaré language for constructing physical the-
ories is that, in spite of the lack of full Lorentz symmetry, the fields carry repre-
sentations of the full Lorentz group [13, 14] and the spin-statistics theorem is still
valid.

One would be tempted to say that the construction of a NC quantum field theory
through the Weyl-Moyal correspondence is equivalent to the procedure of redefining
the multiplication of functions, so that it is consistent with the twisted coproduct of
the Poincaré generators [11].

However, the definition of noncommutative fields and the action of the twisted
Poincaré transformations on them is not a trivial one. Ordinary relativistic fields
are defined by the method of induced representations. In the commutative setting,
Minkowski space is realized as the quotient of the Poincaré group by the Lorentz
group, and a classical field is a section of a vector bundle induced by some represen-
tation of the Lorentz group. This construction does not generalize to the noncommu-
tative case, because the universal enveloping algebra of the Lorentz Lie algebra is
not a Hopf subalgebra of the twisted Poincaré algebra. As a result, Minkowski space
R1,3, which in the commutative setting is realized as the quotient of the Poincaré
group G by the Lorentz group L, G/L, has no noncommutative analogue.

One proposal for bypassing this predicament is to consider V a Poincaré-module,
with trivial action of the momentum generators [13]. Another proposal – which
we shall adopt in this paper – is to maintain V as a Lorentz module, but to forbid
the transformations which cannot go through [14]. In this way, we induce only the
Lorentz transformations corresponding to the stability group of θ , but the fields will
carry representations of the full Lorentz group; consequently, the particle spectrum
of the noncommutative quantum field theory with twisted Poincaré symmetry will
have the richness of the relativistic quantum field theory. We emphasize that the fact
that only certain Lorentz transformations are allowed on the noncommutative fields
is a strong indication of the Lorentz symmetry violation.

4 Noncommutative space-times invariant under VSR subgroups

Among the three cases of NC space-time discussed in the previous section only the
constant θμν case preserves the space-time translational invariance in all directions.
In the cases of linear and quadratic noncommutativity, translational invariance along
some or all of the space-time directions is lost. Therefore, the Moyal case is the one
relevant to the VSR theory.
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4.1 T (2) symmetry implies light-like noncommutativity

Motivated by the above arguments, we set about finding a configuration of the anti-
symmetric matrix θμν . Since T (2) is the only VSR which admits an invariant two
tensor [16], we focus on this case. If we denote the elements of the T (2) subgroup
by

Λ1 = eiαT1 and Λ2 = eiβT2 , (7)

the invariance condition for the tensor θμν is written as:

Λ μ
i αΛ

ν
i β θ

αβ = θμν , i = 1,2, (8)

and infinitesimally:

T μ
i αθ

αν +T ν
i β θ

μβ = 0, i = 1,2. (9)

The matrix realizations of the generators T1 and T2 are (see, e.g., [7]):

T1 =

⎛
⎜⎜⎝

0 −i 0 0
−i 0 0 i
0 0 0 0
0 −i 0 0

⎞
⎟⎟⎠ and T2 =

⎛
⎜⎜⎝

0 0 −i 0
0 0 0 0
−i 0 0 i
0 0 −i 0

⎞
⎟⎟⎠ . (10)

Plugging these values into (9) we find the solution

θ 0i =−θ 3i, i = 1,2, (11)

all the other components of the antisymmetric matrix θμν being zero. To obtain the
above result we did not assume any special form for the x-dependence of θμν . With
the above condition on θμν , we see that θμνθμν = 0, that is
Regardless of its space-time dependence, a light-like θμν is invariant under T (2).

One may use the light-cone frame coordinates

x± = (t± x3)/2, xi , i = 1,2. (12)

In the above coordinate system the only non-zero components of the light-like non-
commutativity (11) is θ−i = θ 0i = −θ 3i (and θ+− = θ+i = θ i j = 0). In the light-
cone coordinates (or light-cone gauge) one can take x+ to be the light-cone time and
x− the light-cone space direction. In this frame, (light-cone) time commutes with the
space coordinates, which leads to the possibility of a consistent quantization for this
type of field theories.
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4.2 E(2) and SIM(2) invariant NC spaces

A constant θ−i breaks rotational invariance in the (x1,x2)-plane and hence larger
VSR subgroups are not possible in the Moyal NC space case. The E(2) invari-
ant case can be realized in the linear, Lie-algebra type noncommutative spaces and
SIM(2) can be realized by quadratic noncommutativity.

The E(2) case
E(2) is made up of T1,T2,Jz. x± are invariant under Jz. δi j and εi j are the (only)

two invariant tensors under Jz while xi transform as vector under Jz. Therefore,
θ−i = �εi jx j and θ−i = �xi lead to E(2) invariant spaces, namely

[x−,xi] = i�ε i jx j, (13)
or

[x−,xi] = i�xi. (14)

With the above choices, it is evident that the translational symmetry along x± is
preserved while along xi it is lost.

There is a twisted Poincaré algebra which provides the symmetry for the case of
(13) while the other case cannot be generated by a twist [36]. In the above, � and λ
are deformation parameters of dimension length.

The SIM(2) case
Since Kz acts on x± as scaling (scaling x− by, say, κ and x+ by κ−1) while

keeping xi intact, it is readily seen that it is impossible to find θ−i linear in the
coordinates which is invariant under HOM(2). It is, however, possible to realize
SIM(2) (and hence HOM(2), too) with quadratic θ−i. To have both the Kz and Jz
invariant noncommutative structures, from the above discussions we deduce that we
should take θ−i which is linear in both x− and xi, therefore the two possibilities are

[x−,xi] = i
ξ −1
ξ +1

ε i j{x−,x j}, ξ real (15)

or
[x−,xi] = i tanχ {x−,xi} ,

preserving translational symmetry only along x+ (where ξ and χ are dimension-
less deformation parameters). For neither of the above cases there is any twisted
Poincaré of the form discussed in [30] to provide these commutators [36]. The case
(15b) in the above mentioned cylindrical coordinates x−,ρ ,φ takes the familiar form
of a quantum (Manin) plane [32] with x− and ρ being the coordinates on the Manin
plane.

As mentioned above, the Cohen-Glashow VSR requires translational invariance,
which is only realized in the constant θμν case, therefore we continue with the dis-
cussion of QFTs on the light-like Moyal plane, as the VSR-invariant theories. Fur-
ther analysis of the linear and quadratic noncommutativity cases will be discussed
in a future work [36].
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5 NC QFT on light-like Moyal plane as VSR invariant Theory

A Moyal plane with light-like noncommutativity is invariant under the T (2) VSR. A
prescription for writing VSR invariant QFT for any given ordinary Lorentz invariant
QFT was given in [35]: For any given QFT on commutative Minkowski space its
VSR invariant counterpart is a noncommutative QFT, NCQFT, which is obtained by
replacing the usual product of functions (fields) with the nonlocal Moyal ∗-product
(for a review on NC QFTs, see [38])

(φ ∗ψ)(x) = φ(x) e
i
2 θ
μν←−∂μ−→∂ν ψ(x) , (16)

where θμν is the constant light-like noncommutativity matrix given as in (11). With-
out loss of generality one may use the freedom in choosing the direction of the axes
in the (x1,x2)-plane such that θ ′ = 0 and our VSR invariant theory is specified with
a single deformation parameter θ .

Due to twisted Poincaré symmetry, the fields carry representations of the full
Lorentz group, but the theory is only invariant under transformations of the stability
group of θμν , T (2) [13, 14]. Consequently, the NC QFT constructed on this space
possess also the same symmetry [2], as well as twisted Poincaré symmetry [11, 12].

6 Outlook and conclusions

We have presented a framework for constructing VSR invariant quantum field the-
ories. In analogy with the Poincaré algebra which has the geometric interpretation
of the isometry group of the Minkowski space, our realization of the VSR sub-
groups, among other things, provides a geometric interpretation for these groups, as
the isometry groups of specific “noncommutative” space-times, with light-like non-
commutativity. In particular, demanding invariance under space-time translations
restricts us to light-like noncommutative Moyal plane which is specified by a single
deformation (noncommutativity) parameter. This case realizes the T (2) invariant
Cohen-Glashow VSR. Our realization of VSR theory naturally resolves the “repre-
sentation problem” that, in spite of the lack of full Lorentz symmetry, one can still
label fields by the Lorentz representations in a consistent manner. Essentially, due
to the locality in light-cone time, light-like noncommutative field theories can be
quantized [36]. Perturbative unitarity was proven to be satisfied [1], unlike the case
of space-time noncommutative QFTs [27] and we can rely on the basic notions of
fermions and bosons, spin-statistics relation and CPT theorem [10, 34, 39]. How-
ever, as shown in [34] for NC QED, C, P and T symmetries are not individually
preserved and these symmetries, along with the full Poincaré symmetry may be re-
covered only in the θμν → 0 limit (or at energies much below the noncommutativity
scale).

Through the parameter θ of the NC QFT realization of T (2) VSR which has di-
mension length-square we define the noncommutativity scale ΛNC = 1/

√
θ . To find
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bounds on ΛNC we need to compare results based on the NC models to the existing
observations and data. These data can range from atomic spectroscopy and Lamb-
shift (see, e.g., [9]) to particle physics bounds on the electric-dipole moments of
elementary particles. The preliminary analysis leads toΛ ≥ 1−10 TeV. A thorough
analysis of obtaining bounds on ΛNC will be performed in a future work [36].
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PART III
Zeta Functions in Physics and Mathematics



Pistons Modelled by Potentials

Guglielmo Fucci, Klaus Kirsten and Pedro Morales

Abstract In this article we consider a piston modelled by a potential in the presence
of extra dimensions. We analyze the functional determinant and the Casimir effect
for this configuration. In order to compute the determinant and Casimir force we
employ the zeta function scheme. Essentially, the computation reduces to the anal-
ysis of the zeta function associated with a scalar field living on an interval [0,L] in
a background potential. Although, as a model for a piston, it seems reasonable to
assume a potential having compact support within [0,L], we provide a formalism
that can be applied to any sufficiently smooth potential.

1 Introduction

In recent years piston configurations have received a surging interest in the Casimir
effect community. The main reason for this fact is that pistons allow for an unam-
biguous prediction of forces which turn out to be divergence free [2]. The piston
is usually represented by an infinitely thin movable plate at which the field has to
satisfy some ideal boundary conditions. Different boundary conditions and various
shapes of cross-sections have been analyzed and, as expected, the force heavily de-
pends on the different possible choices, see, e.g., [6, 7, 9, 12, 14, 15]. It is the aim
of this article to represent pistons of finite thickness by compactly supported poten-
tials. Physical properties of the pistons are encoded in the spectrum of the ordinary
differential operator

P :=− d2

dx2 +V (x), (1)
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where x ∈ I = [0,L] and V (x) models the piston. The points x = 0 and x = L repre-
sent the positions of the fixed plates with suitable boundary conditions chosen. The
piston at position a is represented by the potential V (x) which has a support strongly
concentrated around a.

It is this problem to which an analysis in the space I×N reduces after separa-
tion of variables, where N describes the cross section of the piston and additional
dimensions, represented by a smooth Riemannian manifold possibly with boundary.

Although ultimately, in the context of pistons, our interest is in potentials with
compact support within I, the formalism is developed for general potential V (x). We
will use the zeta function scheme to evaluate various quantities of interest; for intro-
ductions to spectral zeta functions and its applications in physics see [4, 5, 8]. The
relevant zeta function is represented as a contour integral where the boundary value
of the unique solution to a given initial value problem enters. This representation
is briefly described in Section 2 and subsequently used to evaluate the functional
determinant, the Casimir energy and force. In order to analyze these quantities, the
analytic continuation of the zeta function needs to be constructed. This will entail
the knowledge of a certain asymptotic behavior of solutions to initial value prob-
lems, which is obtained in Section 3 using standard WKB techniques [1, 13]. The
representation obtained can be used to find the functional determinant, Section 4,
and the Casimir energy and force, Section 5. In Section 6 we restrict to compactly
supported potentials and describe the resulting simplifications. In the Conclusions
we summarize the most important findings and outline possible further applications
of our approach.

2 Contour representation of the piston zeta function

Let M = [0,L]×N , where N represents the cross section of the piston and the
additional Kaluza-Klein dimensions. For simplicity we assume Dirichlet plates at
x = 0 and x = L and we assume a sufficiently smooth potential V (x) depending only
on x ∈ [0,L]. With y ∈ N , the relevant energy eigenvalues for a scalar field are
determined by the second order differential operator

L =− ∂
2

∂x2 −ΔN +V (x), (2)

together with Dirichlet boundary conditions at x = 0 and x = L and unspecified
boundary conditions at the boundary of N . Using separation of variables we write
eigenfunctions in the form

φ(x,y) = X(x)ϕ(y),

where the ϕ(y) are assumed as eigenfunctions of the Laplacian on N ,

−ΔN ϕ�(y) = η2
� ϕ�(y). (3)
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This implies that the eigenvalues λ of L are given as

λ = ν2 +η2
� ,

where ν2 is determined by(
− ∂

2

∂x2 +V (x)
)

Xν(x) = ν2Xν(x), Xν(0) = Xν(L) = 0. (4)

Formally, the zeta function of L can therefore be written as

ζ (s) =∑
�,ν
(ν2 +η2

� )
−s for ℜs >

D
2
, (5)

with D = dim(M), the dimension of M. Note that without specifying N the spec-
trum η� is not known, and also ν2 will not be known unless V (x) is one of the very
few potentials allowing for a closed solution of eq. (4).

Despite this lack of knowledge an analytical continuation of ζ (s) in eq. (5) can
be constructed and properties of ζ (s) on M can be given in terms of the zeta function
of N defined by

ζN (s) =∑
�

η−2s
� for ℜs >

D−1
2

.

The strategy for the analysis of ζ (s) in eq. (5) is to rewrite the series as a contour
integral using the argument principle or Cauchy’s residue theorem [3]. Instead of
considering the eigenvalue problem in eq. (4) we consider the initial value problem
[10, 11] (

− ∂
2

∂x2 +V (x)
)

uμ(x) = μ2uμ(x), uμ(0) = 0, u′μ(0) = 1,

where μ ∈ IC. The eigenvalues ν2 of the original problem are recovered as solutions
to the secular equation

uμ(L) = 0; (6)

note, that uμ(L) is an analytic function of μ . Eq. (5), for ℜs > D/2, can then be
rewritten as

ζ (s) =
1

2πi∑�
∫
γ

dμ(μ2 +η2
� )
−s d

dμ
lnuμ(L),

where γ encloses all solutions to eq. (6), which are assumed to be on the positive real
axis; the changes necessary when zero modes or finitely many negative eigenvalues
are present are given in [11].

Let us next consider the contributions from each � by analyzing
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ζ�(s) =
1

2πi

∫
γ

dμ(μ2 +η2
� )
−s d

dμ
lnuμ(L).

Deforming the contour, as usual, to the imaginary axis we find

ζ�(s) =
sinπs
π

∞∫
η�

dk (k2−η2
� )
−s d

dk
lnuik(L), (7)

valid for 1/2 < ℜs < 1. In order to construct a representation of ζ�(s) that is valid
in a region ℜs < 1/2, as is needed for the functional determinant and the Casimir
energy, we add and subtract the large-k asymptotics of uik(L).

3 Asymptotic behavior of boundary values for differential

equations

The next mathematical task therefore is to determine the large-k asymptotics of the
unique solution to the initial value problem(

− d2

dx2 +V (x)+ k2
)

uik(x) = 0, uik(0) = 0, u′ik(0) = 1. (8)

We note that the differential equation in (8) has exponentially growing and expo-
nentially decaying terms [1, 13]. Although, ultimately, for (7) we will only need the
exponentially growing part, we first have to consider linear combinations of the two
in order to be able to impose the initial conditions in eq. (8).

It is convenient and standard to introduce

S(x,k) = ∂x lnψk(x),

where ψk(x) satisfies (
− d2

dx2 +V (x)+ k2
)
ψk(x) = 0. (9)

The differential equation satisfied by S(x,k) turns out to be

S′(x,k) = k2 +V (x)−S2(x,k), (10)

where the prime indicates differentiation with respect to x. As k → ∞, the function
S(x,k) can be seen to have the asymptotic form

S(x,k) =
∞

∑
i=−1

k−iSi(x),
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where the asymptotic orders Si(x) are given by

S−1(x) = ±1, S0(x) = 0, S1(x) =±V (x)
2

, (11)

Si+1(x) = ∓1
2

(
S′i(x)+

i

∑
j=0

S j(x)Si− j(x)

)
.

It is clear that an arbitrary number of asymptotic orders can be easily evaluated
using an algebraic computer program. The two different signs in (11) produce the
indicated exponentially growing and decaying solutions ψk(x) of (9). We denote
solutions of (10) corresponding to these two signs by S+(x,k) and S−(x,k). The
associated solutions of (9) then have the form

ψ±k (x) = A± exp

⎧⎨
⎩

x∫
0

dt S±(t,k)

⎫⎬
⎭ .

The large-k behavior for uik(x) is obtained by considering the linear combination

uik(x) = A+ exp

⎧⎨
⎩

x∫
0

dt S+(t,k)

⎫⎬
⎭+A− exp

⎧⎨
⎩

x∫
0

dt S−(t,k)

⎫⎬
⎭ ,

together with the initial conditions in (8) still to be imposed. These initial conditions
imply

A+ =−A−, A+ =
1

S+(0,k)−S−(0,k)
;

note, that without including the S−(x,k) part the initial conditions could not be sat-
isfied.

We are now in the position to write out the large-k behavior for uik(L). Let E(k)
denote exponentially damped terms as k→ ∞. First, we see that, as k→ ∞,

uik(L) =
1

S+(0,k)−S−(0,k)
exp

⎧⎨
⎩

L∫
0

dt S+(t,k)

⎫⎬
⎭+E(k),

and therefore

lnuik(L) = − ln
(
S+(0,k)−S−(0,k)

)
+

L∫
0

dt S+(t,k)+E(k)

= − ln(2k)+ k+
∞

∑
j=0

d jk− j +E(k),

where the d j’s are easily determined from eq. (11). For instance, the first six are
given explicitly by
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d0 = 0, d1 =
1
2

L∫
0

dt V (t), d2 =−1
4
[V (L)−V (0)],

d3 =
1
8
[V ′(L)−V ′(0)]− 1

8

L∫
0

dt V 2(t),

d4 = − 1
16

[V ′′(L)−V ′′(0)]+
1
8
[V 2(L)−V 2(0)],

d5 =
1
32

[V (3)(L)−V (3)(0)]− 5
32

[V (L)V ′(L)−V (0)V ′(0)]+
1
16

L∫
0

dt V 3(t)

− 1
32

L∫
0

dt V (t)V ′′(t). (12)

In what follows, the potential is always assumed to be as smooth as necessary for
the asymptotic orders given by these formulas, and higher ones if needed, to be well
defined.

Subtracting and adding the asymptotic behavior up to the order k−N , the zeta
function naturally splits into two parts,

ζ�(s) = ζ
( f )
� (s)+ζ (as)

� (s),

where

ζ ( f )
� (s) =

sinπs
π

∞∫
η�

dk (k2−η2
� )
−s d

dk

{
lnuik(L)− k+ ln(2k)−

N

∑
j=0

d jk− j

}
, (13)

ζ (as)
� (s) =

sinπs
π

∞∫
η�

dk (k2−η2
� )
−s d

dk

{
k− ln(2k)+

N

∑
j=0

d jk− j

}
. (14)

The k-integrals in ζ (as)
� (s) are easily done, yielding

ζ (as)
� (s) =

1
2Γ (s)

⎧⎨
⎩Γ

(
s− 1

2

)
√
π

η1−2s
� −Γ (s)η−2s

� −
N

∑
j=1

jd j

Γ
(

s+ j
2

)
Γ
(

1+ j
2

)η− j−2s
�

⎫⎬
⎭ .

After summing over �, the representation obtained is then valid for 1 >ℜs > (D−
N−2)/2 and it reads

ζ ( f )(s) =
sinπs
π ∑

�

∞∫
η�

dk (k2−η2
� )
−s d

dk

{
lnuik(L)− k+ ln(2k)−

N

∑
j=0

d j

k j

}
, (15)
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ζ (as)(s) =
1

2Γ (s)

{
Γ
(
s− 1

2

)
√
π

ζN
(

s− 1
2

)
−Γ (s)ζN (s)

−
N

∑
j=1

jd j

Γ
(

s+ j
2

)
Γ
(

1+ j
2

)ζN
(

s+
j
2

)⎫⎬
⎭ . (16)

In particular, choosing N = D− 1, respectively N = D, the representation can be
used to compute the determinant, respectively the Casimir energy. This will be done
in the next sections.

4 Functional determinants

In this section we will evaluate the functional determinant, or, equivalently, ζ ′(0),
using the representation of ζ (s) given by eqs. (15) and (16). The contribution from
ζ ( f )(s) is trivially obtained and it reads

ζ ( f )′(0) =−∑
�

[
lnuiη�(L)−η�+ ln(2η�)−

D−1

∑
j=1

d jη− j
�

]
,

as the sum over � converges by construction. For the evaluation of the contribution
from ζ (as)(s), let us note that in the general situation considered, namely N can be
a manifold of any dimension with or without boundary, for j = 1, ...,(D−1)/2, we
have the following Laurent expansion

ζN
(

j
2
+ ε

)
=

1
ε

Res ζN ( j/2)+FP ζN ( j/2)+O(ε). (17)

Using standard properties of Γ -functions, this immediately gives

ζ (as)′(0) = −FP ζN
(
−1

2

)
+Res ζN

(
−1

2

)
(−2+ ln4)− 1

2
ζ ′N (0)

−
D−1

∑
j=1

d j

(
FP ζN

(
j
2

)
+Res ζN

(
j
2

)(
γ+ψ

(
j
2

)))
.

Adding up these two pieces gives the answer for the functional determinant on M in
terms of the spectral zeta function on N . Once the ’base’ manifold N is specified,
more explicit results can be given.
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5 Casimir energy

For the Casimir energy we set N = D and use again the Laurent series (17) for
ζN ( j/2+ ε). In this case, we find

ζ ( f )(−1/2) = − 1
π ∑�

∞∫
η�

dk (k2−η2
� )

1/2 d
dk

{
lnuik(L)− k+ ln(2k)−

D

∑
j=1

d j

k j

}
,

ζ (as)(−1/2+ ε) =
1
ε

{
1

4π
ζN (−1)− 1

2
Res ζN (−1/2)+

d1ζN (0)
2π

+
D

∑
j=2

d j

2
√
π

Γ
(

j−1
2

)
Γ
(

j
2

) Res ζN
(

j−1
2

)⎫⎬
⎭

+
1

4π
(
ζ ′N (−1)+ζN (−1)(−1+ ln4)

)− 1
2

FP ζN (−1/2)

+
d1

2π
(
ζ ′N (0)+ζN (0)(−2+ ln4)

)

+
D

∑
j=2

d j

2
√
π

Γ
(

j−1
2

)
Γ
(

j
2

) (
FP ζN

(
j−1

2

)
+Res ζN

(
j−1

2

)[
H(k−3)/2−2+ ln4

])
,

with the harmonic numbers

Hn =
n

∑
i=1

1
i
.

Multiplying by 1/2 and adding up the two pieces, the Casimir energy follows.
Again, when N is specified more explicit results can be given. In general, the
Casimir energy is divergent, but as seen below, the resulting forces on pistons are
finite.

6 Compactly supported potentials

In order to reasonably talk about the force on a piston modeled by a potential we
now assume the potential V (x) to have compact support within the interval [0,L];
namely, we assume that it does not vanish for x ∈ [a− ε,a+ ε]⊂ [0,L]. This can be
considered a model for a piston of thickness 2ε . In this case the asymptotic behavior
of uik(L) will be independent of a as the integrals over V (x) and its powers and
derivatives are independent of a (as long as the support is within the interval [0,L]).
This can be seen explicitly in (12). It is here that sufficiently smooth potentials
become a necessary assumption in order for these formulas, and the corresponding
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ones for higher orders, to be well defined. These formulas also simplify further
because V (0) = V (L) = 0. The corresponding result can be used to write down the
Casimir energy. Because of the independence of the asymptotic behavior of uik(L)
from a, in these circumstances we immediately obtain

FCas =−1
2
∂
∂a
ζ
(
−1

2

)
=

1
2π ∑�

∞∫
η�

dk (k2−η2
� )

1/2 ∂
∂a
∂
∂k

lnuik(L).

The force, in particular its sign, is encoded in boundary values of an initial value
problem to an ordinary differential equation.

Results for the determinant are also easily written down from Section 4 with the
simpler d j’s used.

7 Conclusions and outlook

In this article we have provided a formalism that allows for the evaluation of func-
tional determinants and Casimir energies and forces for the configuration of a gen-
eralized piston. Results are as explicit as they can be without specifying the cross
section and the additional Kaluza-Klein dimensions that might be present.

With these results available, one can obtain very explicit answers for a given cross
section of the piston and specified Kaluza-Klein dimensions. Furthermore one can
use the potential to mimic material properties of the piston. For all cases, with very
few exceptions for particular potentials, a numerical determination of the boundary
value uik(L) will be necessary.

Along the same lines different boundary conditions at x = 0 and x = L can be
considered.

Work along these lines is currently in progress.
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Local ζ -functions, stress-energy tensor, field

fluctuations, and all that, in curved static

spacetime

Valter Moretti

Abstract This is a quick review on some technology concerning the local zeta func-
tion applied to Quantum Field Theory in curved static (thermal) spacetime to regu-
larize the stress energy tensor and the field fluctuations. Dedicated to Prof. Emilio
Elizalde on the occasion of his 60th birthday.

1 Quasifree QFT in curved static manifolds, Euclidean approach

ζ -function technique.

1.1 The ζ -function determinant. Suppose we are given a n× n positive-definite
Hermitian matrix A with eigenvalues 0 < λ1 ≤ λ2 ≤ ·· · ≤ λn. One can define the
complex-valued function

ζ (s|A) =
n

∑
j=1
λ−s

j , (1)

where s∈ IC. (Notice that λ−s
j is well-defined since λ j > 0.) By direct inspection one

proves that:

detA = e−
dζ (s|A)

ds |s=0 . (2)

This trivial result can be generalized to provide a useful definition of the determi-
nant of an operator working in an infinite-dimensional Hilbert space. To this end,
focus on a non-negative self-adjoint operator A whose spectrum is discrete and each
eigenspace has a finite dimension, and consider the series with s ∈ IC (the prime on
the sum henceforth means that any possible null eigenvalues is omitted)
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ζ (s|A) :=∑
j

′λ−s . (3)

Looking at (2), the idea [Ha77] is to define, once again.

detA = e−
dζ (s|A)

ds |s=0 ,

where now the function ζ on the right-hand side is, in the general case, the ana-
lytic continuation of the function defined by the series (3) in its convergence do-
main, since the series may diverge at s = 0 – and this is the standard situation in
the infinite-dimensional case! – provided that the analytic extension really reaches
a neignorhood of the point s = 0. The interesting fact is that this procedure truly
works in physically relevant cases, related to QFT in curved spacetime, producing
meaningful results as we go to discuss in the following section.

1.2 Thermal QFT in static spacetimes. A smooth globally hyperbolic spacetime
(M,g) is said to be static if it admits a (local) time-like Killing vector field ∂t normal
to a smooth spacelike Cauchy surface Σ . Consequently, there are (local) coordinate
frames (x0,x1,x2,x3)≡ (t,x) where g0i = 0 (i= 1,2,3) and ∂tgμν = 0 and x are local
coordinates on Σ . Though the results we are going to present may be generalize to
higher spin fields, we henceforth stick to the case of a real scalar field φ propagating
in M and satisfying an equation of motion of the form

Pφ = 0 , (4)

where P :=−∇μ∇μ +V , V being a smooth scalar field like

V (x) := ξR+m2 +V ′(x) . (5)

We also assume that V ′ satisfies ∂tV ′ = 0 so that the space of solutions of (4) is
invariant under t-displacements. Furthermore ξ ∈ IR, is a constant, R is the scalar
curvature and m2 the squared mass of the particles associated to the field. The do-
main of P is the space of real-valued C∞ functions compactly supported Cauchy data
on Σ . In the quasifree case, a straightforward way to define a QFT consistes of the
assignment of a suitable Green function of the operator P [FR87], in particular the
Feynman propagator GF(x,x′) or, equivalently, the Wightman functions W±(x,x′).
Then the GNS theorem (e.g. see [KW91]) allows one to construct a corresponding
Fock realization of the theory. In a globally hyperbolic static spacetime it is pos-
sible to chose t-invariant Green functions. In that case, in static coordinates, one
performs the Wick rotation obtaining the Euclidean formulation of the same QFT.
This means that (locally) one can pass from the Lorentzian manifold (M,g) to a
Riemannian manifold (ME ,g(E)) by the analytic continuation t → iτ where t,τ ∈ IR.
This defines a (local) Killing vector ∂τ in the Riemannian manifold ME and a corre-
sponding (local) “static” coordinate frame (τ,x) therein. As is well-known [FR87],
when the orbits of the Euclidean time τ are closed with period β , T = 1/β has to be
interpreted as the temperature of the quantum state because the Wightman two-point
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function of the associated quasifree state satisfy the KMS condition at the inverse
temperature β . In this approach, the Feynman propagator GF(t−t ′,x,x′) determines
– and (generally speaking [FR87]) it is completely determined by – a proper Green
function (in the spectral theory sense) Sβ (τ−τ ′,x,x′) of a corresponding self-adjoint
extension A of the operator

A′ :=−∇(E)
a ∇(E)a +V (x) : C∞0 (ME)→ L2(ME ,dμg(E) ) . (6)

Sβ (τ − τ ′,x,x′) is periodic with period β in the τ − τ ′ entry and it is said the
Schwinger function. As a matter of fact, Sβ turns out to be the integral kernel of
A−1 when A > 0.

The partition function of the quantum state associated to Sβ is the functional in-
tegral evaluated over the field configurations periodic with period β in the Euclidean
time

Zβ =
∫

Dφ e−SE [φ ] , (7)

the Euclidean action SE being (dμg(E) :=
√

g(E)d4x)

SE [φ ] =
1
2

∫
M

dμg(E) (x)φ(x)(Aφ)(x) . (8)

Thus, extending the analogous result for finite dimensional Gaussian integral, one
has

Zβ =
{

det
(

A
μ2

)}−1/2

, (9)

where μ is a mass scale which is necessary for dimensional reasons. To give a
sensitive interpretation of that determinant, the idea [Ha77] is to try to exploit (2).
If ME is a D-dimensional Riemannian compact manifold and A′ is bounded below
by some constant b ≥ 0, A′ admits the Friedrichs self-adjoint extension A which is
also bounded below by the same bound of A′, moreover the spectrum of A is discrete
and each eigenspace has a finite dimension. Then, as we said, one can consider the
series

ζ (s|A/μ2) :=∑
j

′
(
λ j

μ2

)−s

. (10)

Remarkably [Ha77, BCEMZ03], in the given hypotheses, the series above converges
for Re s > D/2 and it is possible to continue the right-hand side above into a mero-
morphic function of s which is regular at s = 0. Following (2) and taking the pres-
ence of μ into account, we define:

Zβ := e
1
2

d
ds |s=0ζ (s|A/μ2) , (11)
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where the function ζ on the right-hand side is the analytic continuation of that de-
fined in (10). It is possible the define the ζ function in terms of the heat kernel of
the operator A, K(t,x,y|A) [BCEMZ03]. This is the smooth integral kernel of the
(Hilbert-Schmidt, trace-class) operators e−tA, t > 0. One has, for Re s > D/2,

ζ (s|A/μ2) =
∫

M
dμg(E) (x)

∫ +∞

0
dt
μ2sts−1

Γ (s)
[K(t,x,x|A)−P0(x,x|A)] , (12)

P(x,y|A) is the integral kernel of the projector on the null-eigenvalues eigenspace
of A.
When ME is not compact, the spectrum of A may included a continuous-spectrum
part, however, it is still possible to generalize the definitions and the results above
considering suitable integrals on the spectrum of A, provided A is strictly positive
(e.g, see [Wa79]).
Another very useful tool is the local ζ function that can be defined in two differen,t
however equivalent, ways [Wa79, Mo98, BCEMZ03]:

ζ (s,x|A/μ2) =
∫ +∞

0
dt
μ2sts−1

Γ (s)
[K(t,x,x|A)−P0(x,x|A)] , (13)

and, φ j being the smooth eigenvector of the eigenvalue λ j,

ζ (s,x|A/μ2) =∑
j

′
(
λ j

μ2

)−s

φ j(x)φ ∗j (x) . (14)

Both the integral and the series converges for Re s > D/2 and the local zeta func-
tion enjoys the same analyticity properties of the integrated ζ function. For future
convenience it is also useful to define, in the sense of the analytic continuation,

ζ (s,x,y|A/μ2) =
∫ +∞

0
dt
μ2sts−1

Γ (s)
[K(t,x,y|A)−P0(x,y|A)] (15)

(see [Mo98, Mo99] for the properties of this off-diagonal ζ -function). In the frame-
work of the ζ -function regularization framework, the effective Lagrangian is defined
as

L (x|A)μ2 :=
1
2

d
ds
|s=0ζ (s,x|A/μ2) , (16)

and thus, in a thermal theory, Zβ = e−Sβ where Sβ =
∫

dμgLβμ2 . A result which
generalizes to any dimension an earlier results by Wald [Wa79] is the follow-
ing [Mo98]. The above-defined effective Lagrangian can be computed by a point-
splitting procedure: For D even

L (y|A)μ2 = lim
x→y

{
−
∫ +∞

0

dt
2t

K(t,x,y|A)− aD/2(x,y)

2(4π)D/2 ln
μ2σ(x,y)

2
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+
D/2−1

∑
j=0

(
D
2
− j−1)!

a j(x,y|A)
2(4π)D/2

(
2

σ(x,y)

)D/2− j
}
−2γ

aD/2(y,y)

2(4π)D/2 ,(17)

for D odd (notice that μ disappears)

L (y|A)μ2 = lim
x→y

{
−
∫ +∞

0

dt
2t

K(t,x,y|A)−
√

2
σ(x,y)

a(D−1)/2(x,y)

2(4π)D/2

+
(D−3)/2

∑
j=0

(D−2 j−2)!!
2(D+1)/2− j

a j(x,y|A)
2(4π)D/2

(
2

σ(x,y)

)D/2− j
}

. (18)

Above, σ(x,y) is one half the square of the geodesical distance of x from y and the
coefficients a j are the well-known off-diagonal coefficients of the small-t expansion
of the heat-kernel. These coefficients, in spite of their non symmetric definition,
turns out to by invariant when interchanging x and y [Mo99, Mo00].

2 Stress-energy tensor and field fluctuations

2.1 Generalizations of the local ζ function technique. Physically relevant quanti-
ties are the (quantum) field fluctuation and the averaged (quantum) stress tensor,
respectively:

< φ 2(x)> =
δ

δJ(x)
|J≡0 ln

∫
Dφ e

−SE+
∫

dμ
g(E)

φ2J
, (19)

< Tab(x)> =
2√

g(E)(x)

δ
δg(E)ab(x)

ln
∫

Dφ e−SE [g(E)] . (20)

A standard method to compute them is the so-called point-splitting procedure
[BD82, Fu91, Wa94, Mo00, Mo03]. It is however possible to extend the ζ -function
technique [Mo97, IM98, Mo98, Mo99, Mo00] to define suitable ζ functions regular-
izing those quantities directly, similarly to what done for the effective Lagrangian.
Consider the stress tensor. The idea relies upon the following chain of formal iden-
tities [Mo97]√

g(E)(x)< Tab(x)> “ = ”2
δ

δg(E)ab(x)
lnZβ “ = ”

δ
δg(E)ab(x)

d
ds
|s=0ζ (s|A/μ2)

“ = ”
δ

δg(E)ab(x)
d
ds
|s=0∑

j

′
(
λ j

μ2

)−s

“ = ”
d
ds
|s=0μ−2s∑

j

′ δλ−s
j

δg(E)ab(x)
. (21)

Following this route, one define the ζ -regularized (or renormalized) stress tensor as

< Tab(x|A)>μ2 :=
1
2

d
ds
|s=0Zab(s,x|A/μ2) , (22)
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where, in the sense of the analytic continuation of the left-hand side

Zab(s,x|A/μ2) := 2∑
j

′μ−2s δλ
−s
j

δgab(x)
. (23)

The difficult problem is now twofold: how to compute the functional derivative in
the right-hand side of (23) and whether or not the series in the right-hand side of
(23) defines an analytic function of s in a neighborhood of s = 0. We have the result
[Mo97, Mo99]:

Theorem 1. If ME is compact, A≥ 0 and μ2 > 0, then Zab(s,x|A/μ2) is well-defined
and is a C∞ function of x which is also meromorphic in s ∈ IC. In particular, it is an-
alytic in a neighborhood of s = 0.

The result above has been checked even in several noncompact manifolds (contain-
ing singularities) [Mo97, BCEMZ03]. In that case, the summation in the right-hand
side of (23) has to be replaced by a suitable spectral integration. The series in the
right-hand side of (23) can be explicitly computed as [Mo97, Mo99]:

s∑
j

′
{

2
μ2

(
λ j

μ2

)−s−1

Tab[φ j,φ ∗j ](x)+gab(x)
(
λ j

μ2

)−s
}

,

Tab[φ j,φ ∗j ](x) being the classical stress tensor evaluated on the modes of A (see
[Mo97, Mo99, BCEMZ03] for details). The series converges for Re s > 3D/2+2.
It is similarly possible to define a ζ -function regularizing the field fluctuation [IM98,
Mo98]:

< φ 2(x|A)>μ2 :=
d
ds
|s=0Φ(s,x|A/μ2) ,

where

Φ(s,x|A/μ2) :=
s
μ2 ζ (s+1,x|A/μ2) . (24)

The properties of these functions have been studied in [IM98, Mo98] and several
applications on concrete cases are considered (e.g. cosmic-string spacetime and ho-
mogeneous spacetimes). In particular, in [Mo98], the problem of the change of the
parameter m2 in the field fluctuations has been studied.

2.2 Physically meaningfulness of the procedures. We are now interested in the phys-
ical meaningfulness of the presented regularization techniques. The following gen-
eral results strongly suggest that it is the case [Mo97, Mo99, Mo03].

Theorem 2. If ME is compact, A≥ 0 and μ2 > 0, and the averaged quantities above
are those defined above in terms of local ζ -function regularization, then
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(a) < Tab(x|A)>μ2 defines a C∞ symmetric tensorial field.
(b) Similarly to the classical result,

∇b < Tbc(x|A)>μ2=−1
2
< φ 2(x|A)>μ2 ∇cV ′(x) . (25)

(c) Concerning the trace of the stress tensor, it is naturally decomposed in the
classical and the known quantum anomalous part

gab(x)< Tab(x|A)>μ2 =

(
ξD−ξ
4ξD−1

Δ −m2−V ′(x)
)
< φ 2(x|A)>μ2

+ δD
aD/2(x,x|A)
(4π)D/2 −P0(x,x|A) , (26)

where δD = 0 if D is odd and δD = 1 if D is even, ξD = (D−2)/[4(D−1)].
(d) for any α > 0

< Tab(x|A)>αμ2=< Tab(x|A)>μ2 +tab(x) lnα , (27)

where, the form of tab(x) which depends on the geometry only and is in agreement
with Wald’s axioms [Wa94], has been given in [Mo99, Mo03].

(e) In the case ∂0 = ∂τ is a global Killing vector, the manifold admits periodicity
β along the lines tangent to ∂0 and M remains smooth (near any fixed points of
the Killing orbits) fixing arbitrarily β in a neighborhood and, finally, Σ is a global
surface everywhere normal to ∂0, then

∂
∂β

lnZ(β )μ2 =
∫
Σ

dx
√

g(x)< T 0
0 (x,β |A)>μ2 . (28)

Another general achievement regards the possibility to recover the Lorentzian the-
ory from the Euclidean one [Mo99]:

Theorem 3. Let ME be compact, A ≥ 0, μ2 > 0. Also assume that ME is static
with global Killing time ∂τ and (orthogonal) global spatial section Σ and finally,
∂τV ′ ≡ 0. Then

(a) ∂τ < φ 2(x|A)>μ2≡ 0;
(b) ∂τL (x|A)μ2 ≡ 0;
(c) ∂τ < Tab(x|A)>μ2≡ 0;
(d) < T0i(x|A)>μ2≡ 0 for i = 1,2,3, ...,D−1

where the averaged quantities above are those defined above in terms of local ζ -
function regularization and coordinates τ ≡ x0,x ∈ Σ are employed.

These properties allow one to continue the Euclidean considered quantities into
imaginary values of the coordinate τ �→ it obtaining real functions of the Lorentzian
time t.
Some of the properties above (regarding Thm.1, Thm. 2, Thm.3) have been found
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to be valid in some noncompact manifolds too (Rindler spacetime, cosmic string
spacetime, Einstein’s open spacetime, HN spaces, Gödel spacetime, BTZ spacetime)
[Mo97, IM98, Ca98, Ra98, Ra98b, Ra99, Ra05, BMVZ98, RF02, SS04, AMR05].
In particular, the presented theory has been successfully exploited to compute the
quantum back reaction on the three-dimensional BTZ metric [BMVZ98] in the case
of the singular ground state containing a naked singularity. A semiclassical imple-
mentation of the cosmic censorship conjecture has been found in that case.

2.3. Interplay of zeta-function approach and point-splitting technique. The proce-
dure of the point-splitting to renormalize the field fluctuation as well as the stress
tensor [BD82, Wa94, Mo00, Mo03], when the two-point functions are referred to
quasifree Hadamard-states, can be summarized as

< φ 2(y)>ps = lim
x→y
{G(x,y)−H(x,y)} , (29)

< Tab(y)>ps = lim
x→y

Dab(x,y){G(x,y)−H(x,y)}+gab(y)Q(y) , (30)

where G(x,y) is the symmtric part the two-point Wightman function of the consid-
ered quantum state or, in Euclidean approach, the corresponding Schwinger func-
tion. H(x,y) is the Hadamard parametrix which depends on the local geometry
only and takes the short-distance singularity into account. H(x,y) is represented
in terms of a truncated series of functions of σ(x,y). The operator Dab(x,y) is a
bi-tensorial operator obtained by “splitting” the argument of the classical expres-
sion of the stress tensor (see [Mo99, Mo03]). Finally Q(y) is a scalar obtained by
imposing several physical conditions (essentially, the appearance of the conformal
anomaly, the conservation of the stress tensor and the triviality of the Minkowskian
limit) [Wa94] in the left-hand side of (30) (see [BD82, Fu91, Wa94, Mo99] for
details). More recently, in the framework of Lorentzian generally locally covariant
algebraic quantum field theory in curved spacetime, it has established [Mo03] that
Q can be omitted, redefining the classical stress-energy tensor, and thus Dab(x,y),
into a way that it does not affect the classical expression of Tμν when computed on
solutions of the equations of motion, improving the point-splitting procedure. See
[Hac10] where that point-splitting procedure is discussed and applied especially to
cosmology. In geodesically convex neighborhoods:

Hμ(x,y) =
∑L

j=0 u j(x,y)σ(x,y) j

(4π)D/2(σ(x,y)/2)D/2−1 +δD

[
M

∑
j=0

v j(x,y)σ(x,y) j ln
(
μ2σ(x,y)

2

)]

+ δD

N

∑
j=0

w j(x,y)σ(x,y) j . (31)

L,M,N are fixed integers (see [Mo99, Mo03] for details), δD = 0 if D is odd and
δD = 1 otherwise. The coefficients u j and v j are smooth functions of (x,y) which are
completely determined by the local geometry. The coefficients w j are determined
once one has fixed w0, and they are omitted [Mo03] when dropping Q. Dealing
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with Euclidean approaches, it is possible to explicitly compute u j and v j in terms of
heat-kernel coefficients [Mo98, Mo99]. One has the following result [Mo98, Mo99].

Theorem 4. If ME is compact, A ≥ 0 and μ2 > 0, and the averaged quantities
in the left-hand side below are those defined above in terms of local ζ -function
regularization, then

< φ 2(y|A)>μ2 = lim
x→y

{
G(x,y)−Hμ ′(x,y)

}
, (32)

< Tab(y|A)>μ2 = lim
x→y

Dab(x,y)
{

G(x,y)−Hμ ′(x,y)
}
+gab(y)Q(y) , (33)

where G(x,y) = ζ (1,x,y|A/μ2) given in (15), Hμ ′ is completely determined by (31)
with the requirement

w0(x,y) :=−aD/2−1(x,y|A)
(4π)D/2 [2γ+ lnμ ′2] , (34)

and the term Q is found to be

Q(y) =
1
D

(
−P0(y,y|A)+δD

aD/2(y,y|A)
(4π)D/2

)
. (35)

If Dab is defined in order to drop Q in the right-hand side of (33), Hμ2 is determined
by fixing w0(x,y) = 0. The scales μ and μ ′ satisfies μ = cμ ′ for some constant c> 0.
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Ergodic Solenoidal Geometry

Vicente Muñoz1 and Ricardo Pérez Marco2

Abstract We present a survey of recent results in the geometry of ergodic solenoids.
We discuss the ideas behind the theory and its perspectives. Dedicated to Emilio
Elizalde in his 60th anniversary.

1 Introduction.

Geometry is at the origin of numerous applications of Mathematics to other fields,
and to Mathematics itself. Classical Differential Geometry is nowadays a fundamen-
tal tool in Theoretical Physics. Needless to say that it is one of the most successful
modern interaction and has marked the development of both fields. The objects of
classical Differential Geometry are manifolds. One can envision many other ge-
ometric theories whose fundamental objects can be very different from classical
manifolds. This idea is already present in Riemann’s fundamental Memoir on the
Foundations of Geometry.

We present in this article recent results on Ergodic Solenoidal Geometry. We
expose an informal presentation of the theory and we refer to our recent articles
[2][3][4][5][6][7] for precise definitions, theorems in full generality, and complete
proofs.

Ergodic Solenoidal Geometry is a generalization of Differential Geometry where
the central objects that extend manifolds are uniquely ergodic solenoids. Roughly
speaking a solenoid is an abstract foliated space by finite dimensional leafs with
transverse structure embedding into a finite dimensional space. Thus, contrary to
other theories whose objects are foliated spaces, here we request some sort of finite
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dimensional transverse structure. This hypothesis is natural considering that our aim
is to generalize finite dimensional Differential Geometry and not, for example, Ba-
nachian Differential Geometry. Example of solenoids are manifold with a foliation,
but we have many more, as the dyadic solenoid T̂ = lim←−{T→ T; x �→ 2x} , where
T= R/Z.

Fig. 1 The dyadic solenoid

The objects corresponding to compact and connected manifolds (we shall restrict
to these from now on) are compact connected solenoids, but we need to restrict
furthermore the structure in order to be able to generalize basic properties. Note
that a compact manifold is a solenoid with trivial atomic transverse structure and a
unique leaf. We consider solenoids that are topologically minimal, that is, all leaves
are dense. We also consider solenoids possessing daval measures (the name comes
from ”measures that decompose as volume along leaves”). These are probability
measures that locally disintegrate along the leaves as a product of a measure on a
local transversal and a riemannian measure on the local leafs. It is easy to see that
the existence of daval measure is equivalent to the existence of transverse measure
in the sense of the theory of foliations. We recall that such a transverse measure is a
collection of measures supported in each local transversal that are transported into
each other by holonomy maps. Transverse measures are considered up to equiva-
lence by multiplication by a positive scalar. Obviously any riemannian metric de-
fines a daval measure on a manifold, the transverse measures being trivial atomic
masses. But, in general, as is well known from foliation theory, transverse measures
do not need to exist.

Thus, for the moment, our generalized objects are compact minimal solenoids
admitting a transverse measure. A transverse measure is ergodic if for any local
transversal, any Borel set that is invariant by the holonomy pseudogroup has zero
or full measure. This is obviously the case for the trivial atomic measure associ-
ated to connected manifolds, since the holonomy is transitive on the points of the
transversal. Thus we realize that it is natural to request to the transverse measure to
be ergodic. And this is not enough to have a proper generalization. For manifolds
the transverse measure is unique by the precedent argument. Thus we require unique
ergodicity of the transverse measure: The transverse measure is unique (up to mul-



Ergodic Solenoidal Geometry 335

tiplication by a positive scalar as usual). It turns out that unique ergodicity implies
topological minimality. Also unique ergodicity is determined by the geometry, but
ergodicity is not.

We then arrive to the basic object of our geometry.

The objects in Ergodic Solenoidal Geometry that generalize compact con-

nected manifolds in classical Differential Geometry are compact uniquely er-

godic solenoids.

It is important to understand why we do not require just ergodicity. We could do
this, but then only the underlying topological space is not sufficient to fully deter-
mine the object, more precisely its measurable transverse structure as happens for
classical manifolds. Indeed the correct intuition is that the same solenoid endowed
with distinct transverse ergodic measures should be considered as two objects of
the geometry. By classical ergodic theory, ergodic measures generate all transversal
measures. Note that two distinct ergodic measures are mutually singular.

In the following we explain how uniquely ergodic solenoids arise naturally from
classical differential topology when we desire to represent geometrically real ho-
mology classes by a geometric class of currents on a manifold à la Ruelle-Sullivan,
or à la Schwarzman, both being equivalent by Birkhoff ergodic theorem ([3]). Some
important problems in geometry are about representing geometrically homology
classes, as the famous Hodge conjecture. Indeed solenoidal geometry allows to put
in a new context the Hodge conjeture, and allows to isolate de geometric aspects
from the algebraic ones. We formulate a natural solenoidal Hodge conjecture in this
context (see [4] and section 2). We present then homological and cohomological the-
ories for solenoids (section 3), and how Hodge theory extends to ergodic solenoidal
geometry (section 4).

2 Geometric realization of the real homology.

We describe in this section our original motivation for introducing uniquely ergodic
solenoids.

We consider a smooth compact connected oriented manifold M of dimension
n≥ 1. Any closed oriented submanifold N ⊂M of dimension 0≤ k≤ n determines a
homology class in Hk(M,Z). This homology class in Hk(M,R), as dual of De Rham
cohomology, is explicitly given by integration of the restriction to N of differential
k-forms on M. Also, any immersion f : N →M defines an integer homology class
in a similar way by integration of pull-backs of k-forms. Unfortunately, because
of topological reasons dating back to Thom [11] [12], not all integer homology
classes in Hk(M,Z) can be realized in such a way. Geometrically, we can realize
any class in Hk(M,Z) by topological k-chains. The real homology Hk(M,R) classes
are only realized by formal combinations with real coefficients of k-cells. This is not
satisfactory for various reasons. In particular, for diverse purposes it is important to
have an explicit realization, as geometric as possible, of real homology classes.
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The first contribution in this direction came in 1957 from the work of S. Schwartz-
man [9]. Schwartzman showed how, by a limiting procedure, one-dimensional
curves embedded in M can define a real homology class in H1(M,R). More pre-
cisely, he proved that this happens for almost all curves solutions to a differential
equation admitting an invariant ergodic probability measure. Schwartzman’s idea is
very natural. It consists on integrating 1-forms over large pieces of the parametrized
curve and normalizing this integral by the length of the parametrization. Under suit-
able conditions, the limit exists and defines an element of the dual of H1(M,R), i.e.
an element of H1(M,R). This procedure is equivalent to the more geometric one of
closing large pieces of the curve by relatively short closing paths. The closed curve
obtained defines an integer homology class. The normalization by the length of the
parameter range provides a class in Hk(M,R). Under suitable hypothesis, there ex-
ists a unique limit in real homology when the pieces exhaust the parametrized curve,
and this limit is independent of the closing procedure. In the article [3], we study the
different aspects of the Schwartzman procedure, that we extend to higher dimension.

Later in 1975, D. Ruelle and D. Sullivan [8] defined, for arbitrary dimension
0 ≤ k ≤ n, geometric currents by using oriented k-laminations embedded in M and
endowed with a transversal measure. They applied their results to stable and unsta-
ble laminations of Axiom A diffeomorphisms. In a later article Sullivan [10] ex-
tended further these results and their applications. The point of view of Ruelle and
Sullivan is also based on duality. The observation is that k-forms can be integrated
on each leaf of the lamination and then all over the lamination using the transversal
measure. This makes sense locally in each flow-box, and then it can be extended
globally by using a partition of unity. The result only depends on the cohomology
class of the k-form. In [2] we review and extend Ruelle-Sullivan theory.

It is natural to ask whether it is possible to realize every real homology class
using a topologically minimal Ruelle-Sullivan current. In order to achieve this goal
we must enlarge the class of Ruelle-Sullivan currents by considering immersions of
abstract oriented solenoids. For these oriented solenoids we can consider k-forms
that we can integrate provided that we are given a transversal measure invariant by
the holonomy group. We define an immersion of a solenoid S into M to be a regular
map f : S→M that is an immersion in each leaf. If the solenoid S is endowed with
a transversal measure μ , then any smooth k-form in M can be pulled back to S by
f and integrated. The resulting numerical value only depends on the cohomology
class of the k-form. Therefore we have defined a closed current that we denote by
( f ,Sμ) and that we call a generalized current. This gives a homology class [ f ,Sμ ] ∈
Hk(M,R). The main result from [4] is the following:

Theorem 1. (Realization Theorem) Every real homology class in Hk(M,R) can be
realized by a generalized current ( f ,Sμ) where Sμ is an oriented, minimal, uniquely
ergodic solenoid.

This result strengthens De Rham’s realization theorem of homology classes by
abstract currents, i.e. forms with coefficients distributions. It is a geometric De
Rham’s Theorem where the abstract currents are replaced by generalized currents
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that are geometric objects. Moreover, we prove in [6] that such geometric currents
are dense in the space of currents.

We can ask why we do need to enlarge the class of Ruelle-Sullivan currents.
The result does not hold for minimal Ruelle-Sullivan currents due to the observa-
tion that homology classes with non-zero self-intersection cannot be represented
by Ruelle-Sullivan currents with no compact leaves ([5]). Therefore it is not possi-
ble to represent a real homology class in Hk(M,R) with non-zero self-intersection
by a minimal Ruelle-Sullivan current that is not a submanifold. Note that this ob-
struction only exists when n− k is even. This may be the historical reason behind
the lack of results on the representation of an arbitrary homology class by minimal
Ruelle-Sullivan currents.

The space of solenoids is large, and we would like to realize the real homol-
ogy classes by a minimal class of solenoids enjoying good properties. We are
first naturally led to topological minimality. As we prove in [2], the spaces of k-
solenoids is inductive and therefore there are always minimal k-solenoids. However,
the transversal structure and the holonomy group of minimal solenoids can have a
rich structure. In particular, such a solenoid may have many distinct transversal mea-
sures, each one yielding a different generalized current for the same immersion f .
Also when we push Schwartzman ideas beyond 1-homology for some nice classes
of solenoids, we see that in general, even when the immersion is an embedding, the
generalized current does not necessarily coincide with the Schwartzman homology
class of the immersion of each leaf (actually not even this Schwartzman class needs
to be well defined). Indeed the classical literature lacks of information about the
precise relation between Ruelle-Sullivan and Schwartzman currents, in particular in
higher dimension. One would naturally expect that there is some relation between
the generalized currents and the Schwartzman current (if defined) of the leaves of
the lamination. We study this problem in [3].

The main result in [3] is that there is such relation for the class of minimal,
ergodic solenoids with a trapping region. A solenoid with a trapping region has
holonomy group generated by a single map. Then the bridge between generalized
currents and Schwartzman currents of the leaves is provided by Birkhoff’s ergodic
theorem. The main result of [3] is the following:

Theorem 2. Let Sμ be a minimal solenoid endowed with an ergodic transversal
measure μ and possessing a trapping region W. Let f : Sμ →M be an immersion of
Sμ into M such that f (W ) is contained in a ball of M. Then for μ-almost all leaves
l ⊂ Sμ , the Schwartzman homology class of f (l)⊂M is well defined and coincides
with the homology class [ f ,Sμ ].

If moreover S is uniquely ergodic, then this happens for all leaves.

The solenoids constructed for the proof of the Realization Theorem in [4] do
satisfy the hypothesis of this theorem and the transversal measure is unique, that is,
the solenoids are uniquely ergodic.
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Solenoidal Hodge Conjecture.

The Hodge Conjecture is an statement about the geometric realization of an in-
tegral class of pure type (p, p) in a complex (projective) manifold. If we drop the
condition of the class being integral, then theorem 1 suggests a natural conjecture
for real homology classes of pure type as follows.

For a compact Kähler manifold M of complex dimension n, a complex immersed
solenoid f : Sμ →M (that is, a solenoid where the images f (l) of the leaves l ⊂ Sμ
are complex immersed submanifolds), of dimension k = 2(n− p), defines a class
in Hn−p,n−p(M) = H p,p(M)∗ ⊂ Hk(M,R). It is natural to formulate the following
conjecture (see [4]):

Conjecture 1. (Solenoidal Hodge Conjecture) Let M be a compact Kähler mani-
fold. Then any class in H p,p(M) is represented by a complex immersed solenoid of
dimension k = 2(n− p).

Note that the standard Hodge Conjecture is stated for projective complex man-
ifolds, since it fails for Kähler manifolds [14]. The counterexamples of [14] are
non-algebraic complex tori. It is easy to see that conjecture 1 holds for complex tori
(using non-minimal complex solenoids).

3 Differential geometry of solenoids.

We describe in this section how theories and tools of differential topology do extend
to Ergodic Solenoidal Geometry. The following discussion is based on [7].

3.1 De Rham cohomology

Let S be a solenoid. The space of p-forms Ω p(S) consist of p-forms on leaves with
function coefficients that are smooth on leaves and partial derivatives of all orders
continuous transversally. Using the differential d in the leaf-wise directions, we
obtain the De Rham differential complex (Ω ∗(S),d). The De Rham cohomology
groups of the solenoid are defined as the quotients

H p
DR(S) :=

ker(d :Ω p(S)→Ω p+1(S))
im(d :Ω p−1(S)→Ω p(S))

. (1)

We can also consider the spaces Ω p
m(S) differential forms with function coefficients

that are smooth on leaves and measurable transversally. Then define in the same
way the De Rham measurable cohomology groups H p

DRm(S) using the complex
(Ω ∗(S),d). Note the natural map H p

DR(S)→ H p
DRm(S).
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Proposition 1. Let Rc and Rm be respectively the sheaf of functions which are lo-
cally constant on leaves and transversally continuous, resp. measurable. Then we
have isomorphisms

H p
DR(S)∼= H p(S,Rc) ,

and
H p

DRm(S)∼= H p(S,Rm) .

Remark 1. The spacesΩ p(S) are topological vector spaces. Therefore the De Rham
cohomology (1) inherits a natural topology. In general, these spaces are infinite di-
mensional (even for compact solenoids). In some references, it is customary to take
the closure of the spaces imd in definition (1), obtaining the reduced De Rham co-
homology groups

H̄ p
DR(S) =

kerd|Ω p

imd|Ω p1
.

This is equivalent to quotienting H p
DR(S) by {0}, obtaining thus Hausdorff vector

spaces.

We shall list some basic properties of the De Rham cohomology:

1. Functoriality. Let S1, S2 be two solenoids. A smooth map f : S1 → S2 is a map
sending leaves to leaves and transversally continuous. f defines a map on De
Rham cohomologies, f ∗ : H p

DR(S2)→ H p
DR(S1), by f ∗[ω] = [ f ∗ω]. This applies

in particular to an immersion of a solenoid into a smooth manifold f : S→M, or
to the inclusion of a leaf i : l → S.

2. Mayer-Vietoris sequence. Let U,V be two open subsets of a solenoid S. There is
a short exact sequence of complexes: Ω •(U ∪V )→Ω •(U)⊕Ω •(V )→Ω •(U ∩
V ).

3. Homotopy. A homotopy between two maps f0, f1 : S1 → S2 is a map F : S1×
[0,1]→ S2 (where S1× [0,1] is given the solenoid structure with leaves l× [0,1],
for l ⊂ S1 a leaf of S1) such that F(x,0) = f0(x) and F(x,1) = f1(x). We say that
the maps f0, f1 are homotopic, written f0 ∼ f1. In this case f ∗0 = f ∗1 : H p

DR(S2)→
H p

DR(S1).
4. Homotopy type. We say that two solenoids S1, S2 are of the same homotopy type

if there are maps f : S1 → S2, g : S2 → S1, such that f ◦ g ∼ IdS2 , g ◦ f ∼ IdS1 .
Then the cohomology groups of S1 and S2 are isomorphic.

3.2 Fundamental classes

Let S be an oriented compact k-solenoid (i.e., the dimension of the leaves is k). The
De Rham cohomology groups do not depend on any measure of S. If μ = (μT ) is a
transversal measure, then the integral

∫
Sμ descends to cohomology giving a map

∫
Sμ

: Hk
DR(S)→ R . (2)
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We define the solenoidal homology as

Hp(S,Rc) := H p(S,Rc)
∗ = H p

DR(S)
∗.

Then the map (2) defines a homology class [Sμ ] ∈Hk(S,Rc)
∗ = Hk(S,Rc). We shall

call this element the fundamental class of Sμ .
Any map f : S1 → S2 defines a map f ∗ : H p

DR(S2)→ H p
DR(S1) and hence, by

dualizing, a map f∗ : Hp(S1,Rc)→ Hp(S2,Rc). Applying this to an immersion f :
Sμ →M of an oriented, measured, compact solenoid into a smooth manifold, then
we have the equality

f∗[Sμ ] = [ f ,Sμ ] ,

with the generalized Ruelle-Sullivan class defined in the previous section.
Note that if S has a dense leaf (in particular when S it is minimal, i.e. all leaves

are dense), then H0(S,Rc) = R. On the other hand, the dimension of the top degree
homology counts the number of mutually singular tranverse measures on S.

Theorem 3. Let S be a compact, oriented k-solenoid. Then Hk(S,Rc) is isomorphic
to the real vector space generated by all transversal measures.

This result supports the intuition that the natural objects of Ergodic Solenoidal
Geometry are uniquely ergodic solenoids with only one transversal measure.

Remark 2. There is no Poincaré duality for H∗
DR(S) in general. Moreover these

spaces may be infinite dimensional (even for uniquely ergodic solenoids): if S is
a two-torus foliated by irrational lines, then H1

DR(S) can be infinite-dimensional.

3.3 Singular cohomology

We consider the space Map(In,S) of continuous maps T : In→ S mapping into a leaf,
and endow it with the uniform convergence topology. The degenerate maps (see [1])
form a closed subspace, therefore the quotient, Map′(In,S), has a natural quotient
topology. The space of singular chains Cn(S) is the free abelian group generated by
Map′(In,S). There is a natural boundary map d : Cn(S)→Cn−1(S).

Let G be any topological abelian group. Define the cochains

Cn(S,G) = Homcont(Cn(S),G)

as the continuous homomorphisms. That is, ϕ :Cn(S)→G such that if Tk : In→ S are
maps which converge to To : In → S in the uniform topology, then ϕ(Tk)→ ϕ(To).
Define the differential δ : Cn(S)→Cn+1(S) by δϕ(T ) = ϕ(dT ). The solenoid sin-
gular cohomology of S with coefficients in G is defined as:

Hn(S,G) :=
ker(δ : Cn(S,G)→Cn+1(S,G))

im(δ : Cn−1(S,G)→Cn(S,G))
.
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We have some basic properties:

1. Functoriality. Let f : S1 → S2 be a solenoid map. Then there is a map f∗ :
Cn(S1)→Cn(S2), f∗(T ) = f ◦T , and a map f ∗ : Cn(S2,G)→Cn(S1,G), f ∗(ϕ) =
ϕ ◦ f . Clearly f ∗δ = δ f ∗, so the map descends to cohomology: f ∗ : Hn(S2,G)→
Hn(S1,G).

2. Homotopy. Suppose that f ,g : S1 → S2 are two homotopic solenoid maps. The
usual construction yields a chain homotopy H between f ∗ and g∗ (one only
have to check that this map sends continuous cochains into continuous cochains).
Therefore f ∗ = g∗ : Hn(S2,G)→ Hn(S1,G).

3. Homotopy type. If S1, S2 are of the same homotopy type, then Hn(S2,G) ∼=
Hn(S1,G).

4. If U = Dk ×K(U) is a flow-box, then U is of the same homotopy type than
{∗}×K(U). Therefore Hn(U) = 0 for n > 0, and H0(U) = Mapcont(K(U),G).
In particular, this implies that

Rc →C0(−,R) δ→C1(−,R) δ→ . . .

is a resolution. Therefore there is an isomorphism Hn(S,R)∼= Hn(S,Rc).
5. Mayer-Vietoris sequence. For two open sets U,V with S = U ∪V , define

Cn(S;U,V ) as the subcomplex generated by those singular chains completely
contained in either U or V . Define accordingly Cn(S;U,V ). It is not difficult to
see that the restriction Cn(S,G)→Cn(S,G;U,V ) is chain homotopy equivalence.
Therefore the exact sequence 0 → Cn(S,G;U,V ) → Cn(U,G)⊕Cn(V,G) →
Cn(U ∩V,G)→ 0 gives rise to a long exact sequence:

. . .→H p(U∪V,G)→H p(U,G)⊕H p(V,G)→H p(U∩V,G)→H p+1(U∪V,G)→ . . .

3.4 De Rham L2-cohomology

Now consider a k-solenoid S with a transversal measure μ . There is a notion of
cohomology which takes into account the transversal measure structure. For this,
we work with forms which are L2-transversal relative to μ .

Definition 1. A function f is L2(μ)-transversally smooth if in any (good) flow-box
U =Dk×K(U) all partial derivatives on the first variable exist and are in L2(μK(U)),
i.e. if we write f as f (x,y) then for all r ≥ 0,

∫
K(U)

|| f (−,y)||2Cr dμK(U)(y)< ∞ .

We consider the space of forms

Ω p
L2(μ)(S)
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which are L2(μ)-transversally smooth, i.e. locally these are forms α =∑ fI(x,y)dxI ,
where fI are L2(μ)-transversally smooth functions. There is a well-defined differen-
tial along leaves d :Ω p

L2(μ)(S)→Ω
p+1
L2(μ)(S)which defines the complex(Ω ∗L2(μ)(S),d).

We define the De Rham L2-cohomology vector space as the quotients

H p
DR(Sμ) :=

ker(d :Ω p
L2(μ)(S)→Ω p+1

L2(μ)(S))

im(d :Ω p−1
L2(μ)(S)→Ω p

L2(μ)(S))
. (3)

We also introduce the reduced De Rham L2-cohomology:

H̄ p
DR(Sμ) :=

kerd
imd

. (4)

Note that there are natural maps

H p
DR(S)→ H p

DR(Sμ)→ H p
DRm(S) ,

since C∞,0-functions are L2(μ)-transversally smooth. The integration map
∫

Sμ is
well-defined for forms in Ω k

L2(μ), since a L2(μ)-transversally smooth k-form is au-

tomatically L1(μ)-transversal (all measures are finite measures on compact transver-
sals). So we have

∫
Sμ : Hk

DR(Sμ)→ R.
Let Rμ be the sheaf of measurable functions which are locally constant on leaves

and L2(μ)-transversally. A standard Poincaré lemma shows that there is a resolution
of sheaves

Rμ →Ω 0
L2(μ)→Ω 1

L2(μ)→ . . .→Ω k
L2(μ) .

So we get a natural isomorphism

H p
DR(Sμ)∼= H p(S,Rμ) .

We review basic properties of the De Rham L2-cohomology:

1. There is not cup product, and therefore the H∗
DR(Sμ) are just vector spaces (not

rings).
2. Functoriality. If f : S1 → S2 is a solenoidal map, then we require that μ2 = f∗μ1.

This means that for any local transversal T1 of S1, f (T1) is a local transversal of S2
and the transported measure f∗μ1 is a constant multiple of μ2 on the transversal.
Note that this is automatic when the solenoids are uniquely ergodic. Then for
any form ω which is L2(μ2)-transversally smooth we have that f ∗ω is L2(μ1)-
transversally smooth.

3. Mayer-Vietoris. It holds exactly as in subsection 3.1.
4. Poincaré duality. We shall see that it holds for the reduced L2-cohomology for

ergodic solenoids (see [7]).
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3.5 Bundles over solenoids

Let S be a k-solenoid. A vector bundle of rank n over S consists of a (k+n)-solenoid
E and a projection map π : E→ S satisfying the following condition: there is an open
covering Uα for S, and solenoid isomorphisms ψα : Eα = π−1(Uα)

∼=→Uα ×R
n =

Dk×K(Uα)×R
n, such that π = pr1 ◦ψα , where pr1 : Uα ×R

n →Uα denotes the
projection, and the transition functions

ψα ◦ψ−1
β : (Uβ ∩Uα)×R

n → (Uβ ∩Uα)×R
n

are of the form (x,y,v) �→ (x,y,gαβ (x,y)(v)), where gαβ is a C∞,0-smooth function
from Uα ∩Uβ to GL(n).

Some points are easy to check:

1. The usual constructions of vector bundles remain valid here: direct sums, tensor
products, symmetric and anti-symmetric products. Also there are notions of sub-
bundle and of quotient bundle.

2. A section of a bundle π : E → S is a map s : S → E such that π ◦ s = Id. We
denote the space of sections as Γ (E).

3. If Sμ is a measured solenoid, and E → S is a vector bundle, then we have the
notion of sections which are L2(μ)-transversally smooth. Locally, in a chart Eα =
Dk×K(U)×R

n→Uα =Dk×K(U), the section is written s(x,y) = (x,y,v(x,y)).
We require that v is C∞ on x and L2(μ) on y. This does not depend on the chosen
trivialization.

4. If f : S1 → S2 is a solenoid map, and π : E → S2 is a vector bundle, then the pull-
back f ∗E = {(p,v) ∈ S1×E | f (p) = π(v)} is naturally a vector bundle over
S1.

5. The tangent bundle T S of S is an example of vector bundle. We have bundles of
(p,q)-tensors T S⊗p⊗ (T S∗)⊗q on any solenoid S. In particular, we have bundles
of p-forms (anti-symmetric contravariant tensors)

∧p T ∗S. Its sections are the
p-forms Ω p(S).

6. A metric on a bundle E is a section of Sym2(E∗) which is positive definite at
every point. A metric on S is a metric on the tangent bundle. An orientation of
a bundle E is a continuous choice of orientation for each of the fibers of E. An
orientation of S is an orientation of its tangent bundle.

We define Ω p(E) = Γ (
∧p T ∗S⊗E). A connection on a vector bundle E → S is

a map
∇ : Γ (E)→Ω 1(E),

such that ∇( f · s) = f∇s+ d f ∧ s. Consider a local trivialization in a flow-box Uα
with coordinates (x,y). Then ∇|Uα = d + aα , where aα ∈ Ω 1(Uα ,EndE). Under a
change of trivialization gαβ , for two trivializing open subsets Uα ,Uβ , we have the
usual formula aβ = g−1

αβaαgαβ +g−1
αβdgαβ .

A partition of unity argument proves that there are always connections on a vector
bundle E → S. The space of connections is an affine space over Ω 1(EndE).
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Given a connection ∇ on E, there is a unique map d∇ : Ω p(E)→ Ω p+1(E),
p≥ 0, such that d∇s = ∇s for s ∈ Γ (E), and d∇(α ∧β ) = dα ∧β +(−1)pα ∧d∇β ,
for α ∈ Ω p(S), β ∈ Ω q(E). It is easy to see that F̂∇ : Γ (E)→ Ω 2(E), given by
F̂∇(s) = d∇d∇s, has a tensorial character (i.e., it is linear on functions). Therefore
there is a F∇ ∈ Ω 2(EndE), called curvature of ∇, such that F̂∇(s) = F∇ · s. Locally
on a trivialization Uα , we have the formula F∇ = daα +aα ∧aα .

Given connections on vector bundles, there are induced connections on associ-
ated bundles (dual bundle, tensor product, direct sum, symmetric product, pull-back
under a solenoid map, etc.). This follows in a straightforward way from the standard
theory. In particular, if l ↪→ S is a leaf of a solenoid S, then we can perform the pull-
back of the bundle and connection to the leaf, which consists on restricting them to
l. This gives a bundle and connection of a complete k-dimensional manifold. Also,
if f : S→M is an immersion of a solenoid in a smooth n-manifold, and E →M is
a bundle with connection, then the pull-back construction produces a bundle with
connection on S.

Consider a vector bundle E→ S endowed with a metric. We say that a connection
∇ is compatible with the metric if it satisfies

d〈s, t〉= 〈∇s, t〉+ 〈s,∇t〉 .

In the particular case of the tangent bundle T S of a Riemannian solenoid S, we have
the Levi-Civita connection ∇LC, which is the unique connection compatible with
the metric and with torsion T∇(X ,Y ) = ∇XY −∇Y X = 0. This is the Levi-Civita
connection on each leaf, and the transversal continuity follows easily.

3.6 Chern classes

We can also define a complex vector bundle over a solenoid, by using C
n as fiber,

and taking the transition functions with values in GL(n,C). An hermitian metric
on a complex vector bundle is a positive definite hermitian form in each fiber with
smoothness of type C∞,0 on any local trivialization.

Let E → S be a complex vector bundle over a solenoid of rank n. Put a hermitian
structure on E, and consider any hermitian connection ∇ on E. Then the curvature
F∇ is a 2-form with values in EndE, i.e. F∇ ∈Ω 2(EndE). The Bianchi identity says

d∇F∇ = 0 .

This holds leaf-wise, so it holds on the solenoid.
Consider the elementary functions: Tri : Mr×r → C, given by Tri(A) = Tr(

∧i A).
Then the Chern classes are

ci(E) =
[
Tri

(√−1
2π

F∇
)]
∈ H2i

DR(S) .
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These classes are well defined (since the forms inside are closed, which again fol-
lows by working on leaves) and do not depend on the connection (different connec-
tions give forms differing by exact forms), see [13, Chapter III].

We have some facts:

1. If M is a manifold, we recover the usual Chern classes.
2. If f : S1 → S2 is a solenoid map, then f ∗ci(E) = ci( f ∗E). In particular,

• If f : S→M is an immersion of a solenoid in a manifold and E|S = f ∗E, then
ci(E|S) = f ∗ci(E).

• If j : l → S is the inclusion of a leaf, then ci(E|l) = j∗ci(E).

Question. Are the Chern classes defined as elements in H2i(S,Z)?
(for line bundles it is true).

4 Hodge Theory of solenoids

4.1 Sobolev norms

Let Sμ be a compact Riemannian k-solenoid which is oriented and endowed with a
transversal measure. We denote the associated (finite) daval measure also by μ . Now
consider a vector bundle E → S and endow it with a metric. The space of sections
of class C∞,0 is denoted Γ (S,E). The space of L2(μ)-transversally smooth sections
(sections of class C∞ along leaves and L2 in the transversal directions) is denoted by
ΓL2(μ)(S,E).

Now let us introduce suitable completions of these spaces of sections. Fix a con-
nection ∇ for E and the Levi-Civita connection for T S. There is an L2-norm on
sections of E, given by

(s, t)E =
∫

S
〈s, t〉dμ .

We can complete the spaces of sections to obtain spaces of L2-sections L2(S,E). We
consider also Sobolev norms W l,2 as follows. Take s a section of E. Then we set

||s||2
W l,2
μ

=
∫

S

l

∑
i=0
|∇is|2 dμ .

Completing with respect to this norm gives a Hilbert space consisting of sections
with regularity W l,2 on leaves and L2(μ)-transversally, denoted W l,2

μ (S,E). These
spaces do not depend on the choice of metrics and connections.

For future use, we also introduce the norms Cr
μ , which give spaces of sections

with Cr-regularity on leaves and L2(μ)-transversally. Take s a section of E. Assume
it has support in a flow box U = Dk×K(U), and assume that E has been trivialized
by an orthonormal frame. Then
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||s||2Cr
μ
=

∫
K(U)

||s(·,y)||2Cr dμK(U)(y) .

These norms are patched (via partitions of unity, in a non-canonical way) to get a
norm on the spaces of sections on the whole solenoid. The topology defined by this
norm is independent of the partition of unity. The spaces of sections are denoted
Cr
μ(S,E). Note that

⋂
r≥0 Cr

μ(S,E) = ΓL2(μ)(S,E).

We can define the norm W l,2
μ by using Fourier transforms. For this we have to

restrict to a flow-box U = Dk×K(U). We Fourier-transform the section s(x,y) in
the leaf-wise directions, to get ŝ(ξ ,y), and then take the integral

∫
K(U)

(∫
(1+ |ξ |2)l |ŝ(ξ ,y)|2dξ

)
dμK(U)(y).

Proposition 2 (Sobolev). W s,2
μ (S,E)⊂Cp

μ(S,E), for s > [k/2]+ p+1.

This is similar to Proposition 1.1 in Chapter IV of [13]. The proof carries over to
the solenoid situation verbatim. As a consequence,

⋂
r≥0

W r,2
μ (S,E) = ΓL2(μ)(S,E) .

4.2 Pseudodifferential operators

Let E,F be two vector bundles over S of ranks n,m respectively. A differential
operator L of order l is an operator

L : Γ (S,E)→ Γ (S,F)

which locally on a flow-box U = Dk×K(U) is of the form

L(s) = ∑
|α |≤l

Aα(x,y)Dαs ,

where Aα are(n×m)-matrices of functions (with regularityC∞,0) and α=(α1, . . . ,αk)

is a multi-index, with |α |=∑αi, Dα = d|α |
dα1 x1...d

αk xk
. Note that a differential operator

gives rise to differential operators on each leaf. Moreover, L extends to

L : W p,2
μ (S,E)→W p−l,2

μ (S,F) .

The usual properties, like the existence of adjoints, extend to this setting.
The symbol of a differential operator on a solenoid is defined in the same fashion

as for the case of manifolds, and coincides with the symbol of the differential oper-
ator on the leaves. We recall that the symbol σl(L) ∈ Hom(π∗E,π∗F), π : T S→ S,
has the form
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σl(L)(x,y,v) = ∑
|α|=l

Aα(x,y)v
α1
1 . . .vαk

k .

The properties of the symbol map, such as the rule of the symbol of the composition
of differential operators, or the symbol of the adjoint, hold here. This is just the fact
that they can be done leaf-wise, and the continuous transversality is easy to check.

Differential operators can be generalized to pseudodifferential operators as in
the case of manifolds. A pseudodifferential operator of order l on a flow-box U =
Dk×K(U) is an operator

L(p) : Γc(U,E)→ Γ (U,F)

which sends a (compactly supported) section s(x,y) to

L(p)s(x,y) =
∫

p(x,ξ ,y)ŝ(ξ ,y)ei〈x,ξ 〉dξ ,

where ŝ(ξ ,y) is the (leaf-wise) Fourier transform, and p(x,ξ ,y) is a function defined
in Dk×R

k×K(U), smooth on x and ξ , continuous on y, and satisfying:

• |Dβx Dαξ p(x,ξ ,y)| ≤Cαβ l(1+ |ξ |)l−|α |, for constants Cαβ l ,

• the limit σl(p)(x,ξ ,y) = limλ→∞
p(x,λξ ,y)
λ l exists,

• p(x,ξ ,y)−σl(p)(x,ξ ,y) should be of order ≤ l−1 for |ξ | ≥ 1.

A pseudodifferential operator of order l on S is an operator L :Γ (S,E)→Γ (S,F)
which is locally of the form L(pU ) for some pU as above. The symbol of L is σl(L)=
σl(pU ) for a local representative L|U = L(pU ). This symbol is well-defined and
independent of choices, which is a delicate point but it is analogous to the case of
manifolds (see [13]). The usual properties of the symbol map (composition, adjoint)
hold here.

A pseudodifferential operator of order l is an operator of order l, i.e., it extends
as a continuous map to

L : W p,2
μ (S,E)→W p−l,2

μ (S,E) .

This is done as in Theorem 3.4 of [13, Ch. IV], by noting that ||L(p)s(·,y)||W p−l,2 ≤
C||s(·,y)||W p,2 , where C is a constant depending on Cαβ l .

The key of the theory is the fact that we can construct a pseudodifferential oper-
ator given a symbol σl(L).

Proposition 3. Let S be a compact solenoid. Then there is an exact sequence 0→
OPl−1(E,F)→ PDiffl(E,F)→ Symbl(E,F)→ 0, where OPl−1(E,F) is the space
of operators of order l− 1, PDiffl(E,F) the space of pseudodifferential operators
of order l, and Symbl(E,F) the space of symbols of order l.
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4.3 Elliptic operator theory for solenoids

We say that a pseudodifferential operator L : E→F of order l is elliptic if the symbol
σl(L) satisfies that σl(L)(x,v) : Ex → Fx is an isomorphism for each x ∈ S, v ∈ TxS,
v �= 0.

Theorem 4. Let L be an elliptic pseudodifferential operator of order l. Then there
exists a pseudo-inverse, a pseudodifferential operator L̃ of order−l such that L◦ L̃=
Id +K1 and L̃◦L = Id +K2, where K1,K2 are operators of order −1.

This is done as in Theorem 4.4 [13, Ch. IV]. The basic idea is to construct a
pseudo-inverse by using Proposition 3. Note that K1,K2 are not ussually compact
operators (this is due to the failure of the Rellich lemma in our situation), so we will
not have finite-dimensionality of the kernel and cokernel of elliptic operators.

Corollary 1. Let L be an elliptic pseudodifferential operator of order l, and let
KLs = ker(L : W s,2

μ (S,E)→W s−l,2
μ (S,F)). Then KLs ⊂ ΓL2(μ)(S,E), and it is in-

dependent of s.

An operator L : Γ (E)→ Γ (E) is called self-adjoint if L∗ = L. If L is an elliptic
self-adjoint operator, then there is a pseudo-inverse G which is self-adjoint (just take
the pseudo-inverse L̃ provided by Theorem 4 and let G = (L̃+ L̃∗)/2). Then we have
that L◦G = G◦L, because

〈(L◦G−G◦L)s,s〉= 〈Gs,Ls〉−〈Ls,Gs〉= 0 .

In particular, K1 = K2 in Theorem 4.
For self-adjoint operators, we have the following result

Theorem 5. Let L be an elliptic self-adjoint operator of order l. Then

W s,2
μ (S,E) = kerL⊕ imL .

and an analogous result for ΓL2(μ)(S,E).

A complex of differential operators is a sequence

Γ (E0)
L0−→ Γ (E1)

L1−→ . . .
Lm−1−→ Γ (Em) ,

where Ei are vector bundles, and Li are differential operators such that Li ◦Li−1 = 0.
The complex is called elliptic if the sequence of symbols

π∗E0
σ(L0)−→ π∗E1

σ(L1)−→ . . .
σ(Lm−1)−→ π∗Em ,

is exact for each v �= 0. We define the cohomology of the complex as

Hq(S,E) =
ker(Lq : Γ (Eq)→ Γ (Eq+1))

im(Lq−1 : Γ (Eq−1)→ Γ (Eq))
,
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and the L2-cohomology by

Hq(Sμ ,E) =
ker(Lq : ΓL2(μ)(Eq)→ ΓL2(μ)(Eq+1))

im(Lq−1 : ΓL2(μ)(Eq−1)→ ΓL2(μ)(Eq))
.

The reduced L2-cohomology is

H̄q(Sμ ,E) =
kerLq

imLq−1
.

This is the group Hq(Sμ ,E) quotiented by the closure of {0}, making it a Hausdorff
space.

We construct the Laplacian operators of the elliptic complex as follows:

Δ j = L∗jL j +L j−1L∗j−1 : ΓL2(μ)(E j)→ ΓL2(μ)(E j) .

These are self-adjoint elliptic operators. There is an associated operator G given by
Theorem 5. Denote

H j(E) = kerΔ j .

And note that Δ js = 0 if and only if L js = 0 and L∗j s = 0. We remove the subindex
j from now on.

Theorem 6. We have the following:

1. imΔ = imL⊕ imL∗, and it is an orthogonal decomposition.
2. ΓL2(μ)(S,E j) = H j(E)⊕ imL⊕ imL∗.
3. There is a canonical isomorphism H j(E)∼= H̄ j(Sμ ,E).

4.4 Harmonic theory

The Riemannian metric and the orientation give rise to a natural volume form along
leaves vol ∈Ω k(S). The usual Hodge-∗ operator (see [13]) can be defined for forms
on S, actually, it is the ∗ operator on leaves. This operator ∗ : Ω p(S)→ Ω k−p(S) is
defined by

α ∧∗β = (α,β )vol ,

for α,β ∈Ω p(S), where (·, ·) is the point-wise metric induced on forms. Note that ∗
extends to ∗ :Ω p

L2
μ
(S)→Ω k−p

L2
μ

(S), since it is leaf-wise isometric. Note that vol= ∗1.

Lemma 1. d∗ =±∗d∗. �

The Laplacian is defined as Δ = dd∗+ d∗d. Note that if Δs = 0 then (s,Δs) =
(s,dd∗s)+(s,d∗ds) = (d∗s,d∗s)+(ds,ds) = ||d∗s||2+ ||ds||2. So d∗s = 0 and ds =
0. We define the space of harmonic forms:
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K j(Sμ) = HΔ (∧ jT ∗S) .

Then the theory of elliptic operators says the following

Theorem 7. We have

• The space of harmonic sections K j(Sμ)⊂Ω j
L2(μ)(S).

• There is a natural isomorphism H̄ j
DR(Sμ)∼= K j(Sμ).

Corollary 2. Poincaré duality:

∗ : K p(Sμ)→K k−p(Sμ)

is an isomorphism.
If S is ergodic, then H0(Sμ)∼= Hk(Sμ)∼= R (with the isomorphism given by inte-

gration
∫

Sμ . Therefore

∫
Sμ

: H̄ p
DR(Sμ)⊗ H̄k−p

DR (Sμ)→ R

is a perfect pairing.

In general, the spaces K p(Sμ) are not finite dimensional. For instance, take a
solenoid which is a fibration, i.e., S is a compact (n+k)-manifold such that there is a
submersion π : S→ B onto an n-dimensional manifold, and the transversal measure
is induced by a measure μ on B. Then we have a fiber bundle H

p → B such that
H

p
y = H p(Fy), Fy = π−1(y). Then K p(Sμ)∼= ΓL2(μ)(H

p).
Nonetheless, we propose the following conjecture, as it is natural from the stand-

point of Ergodic Solemoidal Geometry:

Conjecture 2. If Sμ is a uniquely ergodic solenoid then the spaces K p(Sμ) are of
finite dimension.

Acknowledgements As a student, the second author first learned Riemannian geometry from
Emilio Elizalde notes in the class ”Métodos Matemáticos” at the University of Barcelona. Thus
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matici Halvetici 236 (1954), 17–86.
13. Wells, R. Cobordisms groups of immersions. Topology 5 (1966), 281–294.
14. Zucker, S. The Hodge conjecture for cubic fourfolds. Compositio Math. 34 (1977), 199–

209.



Zeta-regularization and exact WKB method for

a general 1D Schrödinger equation

André Voros

Abstract We summarize our presentation, based on published material.

We have found an exact analytical solution scheme for the stationary Schrödinger
equation of 1D quantum mechanics,

(−d2/dq2 +[V (q)+λ ])ψ(q) = 0, q ∈ R

valid for polynomial potentials V (q) of degree N, initially homogeneous (qN) [1],
then arbitrary [2] (general Sturm–Liouville problem). As surveyed in [3]: basically,
we reduce the unknowns to (N + 2) infinite complex sequences called “(mutually)
conjugate spectra”; then, by an exact WKB analysis in the complex domain, we find
each of these sequences to obey an exact quantization formula, of Bohr–Sommerfeld
type but implicit, as it invokes the two neighboring conjugate spectra.

- For the eigenvalue problem restricted to the half-line [0,+∞): those unknown
sequences are the discrete eigenvalue spectrum itself (with either Dirichlet or Neu-
mann condition at q = 0) plus its conjugates under a finite cyclic group of complex-
analytic dilations. (Solutions for other boundary conditions easily follow.)

- For any fixed-q̃ value ψ(q̃) (or derivative ψ ′(q̃)): the unknowns are again all
those “spectra” but now for a definite q̃-parametric polynomial Vq̃(q).

In either case, the domains of the exact quantization formulae must consist
of semiclassically compliant sequences (i.e., already asymptotically correct). In
the end, the Schrödinger solutions get specified as fixed points of certain explicit
(countable-dimensional) complex mappings.

Now, in numerical tests for even homogeneous potentials V (q) = qN (up to de-
gree N = 400) [1] and for moderate inhomogeneous perturbations of q4 and q6,
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those mappings appear to be contractive and reconstructing the exact Schrödinger
solutions as the unique limits reached under forward iterations.

In particular, the homogeneous case reduces in each sector (Dirichlet, resp. Neu-
mann) to a single fixed-point equation for a real mapping, and this case is now
proved globally contractive [4] (bounds are not yet totally explicit).

As for inhomogeneous potentials, contractivity has yet to be proved. In the quar-
tic problem V (q) = q4+vq2, a numerical instability even arises for large v > 0; still,
we now analytically control the singular-perturbation regime v → +∞, and in fact
for all V (q) = qN + vqM (N > M > N/2 −1) [5].

Besides leading to solutions in the form of fixed-point conditions, our approach
features the use of zeta-regularized spectral determinants [6, 7] and their very gen-
eral (Wronskian) functional identities [8]. The latter in turn imply a mysterious
equivalence between our treatment for (Schrödinger) Ordinary Differential Equa-
tions (ODE), and the Bethe Ansatz for integrable models (IM) in 2D Statistical
Mechanics and Conformal Quantum Field Theories [9, 10, 11]. At present this
“ODE/IM correspondence” is confined to homogeneous potentials V (q) = qN (but
with non-integer N, plus a centrifugal term L2/q2, allowed as well). It is still desir-
able: a) to find a common framework unifying both sides (ODE and IM); and b) to
extend that correspondence to general inhomogeneous V (q) on the ODE side.

We are grateful to the Organizers for their invitation and partial support.
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Generalized Zeta Function Regularization and

the Multiplicative Anomaly

Guido Cognola1 and Sergio Zerbini2

1 Introduction

It is well known that (Euclidean) Partition function is a very important object in
Relativistic Quantum Field Theory: the full propagator and all other n-point cor-
relation functions can be computed by it. The formalism can be extended also in
curved space-time [1]. The relativistic nature of quantum fields, namely the fact that
an infinite number of degrees of freedom is involved, plays a crucial role. As a re-
sult, ultraviolet divergences are present, and regularization and renormalization are
necessary.

In the one-loop approximation or in the external field approximation, one may
describe quantum (scalar) field by means of path (Euclidean) integral and expressing
the Euclidean partition function in terms of functional determinants associated with
differential operators. Namely, the partition function is proportional to

Z1 = (detL)−1/2 , (1)

with L an elliptic self-adjoint non negative differential, the fluctuation operator.
Then, the computation of Euclidean one-loop partition function reduces to the com-
putations of functional determinants. The functional determinants are divergent, ul-
traviolet divergences are present and may be regularized by making use of suitable
regularization.

As a simplest and illustrative example, let us consider λφ 4 self-interacting scalar
field. Let us split the quantum field as φ = Φ0 +η , where Φ0 is a classical back-
ground field. Thus the one-loop fluctuation operator is

1 Dipartimento di Fisica, Università di Trento and Istituto Nazionale di Fisica Nucleare - Gruppo
Collegato di Trento, Via Sommarive 14, 38100 Povo, Italia e-mail: cognola@science.unitn.it
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L =−Δ +m2 +
λ
2
Φ2

0 . (2)

We recall that in gauge theory, A is singular due to the gauge invariance and a gauge
fixing+ ghost contributions are necessary. The one-loop quantum partition function
Z[A], S0 being the classical action

Z[L]� e−S0

∫
d[η ]e−

1
2
∫

d4xηLη (3)

reduces to a Gaussian functional integral, and as well known, it can be computable
in terms of the real eigenvalues λn of the fluctuation operator, namely Lφn = λnφn.
Since φ = ∑n cnφn, the formal functional measure d[φ ] may be defined as (μ arbi-
trary renormalization parameter)

d[φ ] =∏
n

dcn√μ . (4)

As a consequence, the one-loop quantum ”prefactor” is

Z1[L] =∏
n

1√μ
∫ ∞

−∞
dcne−

1
2λnc2

n =
[
det(μ−2L)

]−1/2
(5)

and the one-loop Euclidean Effective Action reads

ΓE =:− logZ = S0 +
1
2

log(detμ−2L) . (6)

What about the evalutation of the above functional determinants? Recall the well
known Schwinger argument: one starts from the formal relation

logdetL = TrlogL . (7)

Thus
δ logdetL = Tr(L−1δL) (8)

and consequentely one arrives at the formal expression

(logdetL) =−
(∫ ∞

0
dt t−1Tre−tL

)
. (9)

With regard to this expression, for large t, there are no problems, since L is assumed
to be non negative, but for small t, the Heat Kernel expansion in regular smooth and
without bondary case and D = 4, reads (see for example [2])

Tre−tL �
∞

∑
r=0

Artr−2 . (10)
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It follows that the Schwinger representation of functional determinants is divergent
a t = 0, and one needs for a regularization. One of the simplest and most useful is the
dimensional regularization [3], which in our formulation consists in the replacement

t−1 → tε−1

Γ (1+ ε)
. (11)

As a result, the related regularized functional determinant with ε sufficiently large
is

logdetL(ε) =−
∫ ∞

0
dt

tε−1

Γ (1+ ε)
Tre−tL =−ζ (ε,L)

ε
, (12)

where the generalized zeta function associated with L, defined for Res > 2

ζ (s,L) =
1
Γ (s)

∫ ∞

0
dt ts−1Tre−tL , (13)

has been introduced. In order to be able to handle the cutoff, one makes use of
the celebrated Seeley Theorem: If L is elliptic and differential operator, defined on
a smooth and compact manifold, the analytic continuation of ζ (s,L) in the whole
complex space s is regular at s = 0. Making use of this dimensional regularization,
and making a Taylor expansion at ε = 0, one arrives at

logdetL(ε) =−1
ε
ζ (0,L)−ζ ′(0,L)+O(ε) . (14)

Thus, one obtains a justification of the zeta-function regularized functional determi-
nant [4, 5, 6], namely

logdetL =−ζ ′(0,L) . (15)

In four dimension, the computable Seeley-de Witt coefficient A2 = ζ (0,L) controls
the ultraviolet divergence, while ζ ′(0,A) gives the finite contribution, and this, in
general, is difficult to evalute (see for example [2] and references therein).

2 Multiplicative anomaly in the regular case

In some cases, if, for example, one is dealing with a vector valued fields (charged
scalar field), the L becomes a matrix valued differential operator. In the evaluation
of the determinant, one first computes the algebraic one. As a consequenge, one is
dealing with products of operators. A crucial point arises: the zeta-function regular-
ized determinants do not satisfy the relation det(AB) = detAdetB, or equivalently

lndet(AB) = lndetA+ lndetB . (16)

In fact, in general, there exists the so-called multiplicative anomaly, which may be
defined as:
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a(A,B) = lndet(AB)− lndet(A)− lndet(B) . (17)

Here it is left understodd that the determinants of the two elliptic operators, A and
B are regularized by means of the zeta-function regularization. This multiplicative
anomaly has been discovered by Wodzicki (see for example [7, 8, 9] and references
therein).

In the simple but important case in which A and B are two commuting invertible
self-adjoint elliptic operators of second order, the multiplicative anomaly can be
evaluated by the Wodzicki formula (a discussion can be found in [10] and references
therein).

a(A,B) =
1
8

res
[
(ln(AB−1))2] , (18)

where the non-commutative residue, denoted by res, related to a classical pseudo-
differential operator Q of order zero may defined by the logarithmic term in t of the
following generalized heat-kernel expansion

Tr(Qe−tH) =∑
j

c jt( j−D)/2− res Q
2

ln t +O(t ln t) , (19)

where H is an elliptic non negative operator of second order, irrelevant for the eval-
uation of resQ.

However, from a pratical point of view, the non-commutative residue can also be
evaluated by means of the local formula found by Wodzicki, namely

resQ = (2π)−D
∫

MD

dx
∫
|k|=1

Q−D(x,k)dk . (20)

Here the homogeneity component of order −D of the complete symbol appears.
Recall that a classical pseudo-differential operator Q of order zero has a complete
symbol eikxQe−ikx, admitting the following asymptotics expansion, valid for large
|k|

Q(x,k)�
∞

∑
j=0

Q− j(x,k) . (21)

j
λ− jQ− j(x,k).

2.1 Non interacting charged boson field

Let us consider a physical example: a free charged boson field at finite temperature
β = 1/T and chemical potential μ . The related grand canonical partition function
is standard and reads

Zβ ,μ =
∫
φ(τ)=φ(τ+β )

Dφie−
1
2
∫ β

0 dτ
∫

d3xφiAi jφ j , (22)

In this expansion, the related coefficients satisfy the homogeneity property Q (x,λk)=



Generalized Zeta Function Regularization and the Multiplicative Anomaly 359

where
Ai j =

(
Lτ +L3−μ2)δi j +2μεi j

√
Lτ , L3 =−Δ3 +m2 , (23)

Δ3 being the Laplace operator on R3, continuous spectrum k2) and Lτ = −∂ 2
τ , dis-

crete spectrum over the Matsubara frequencies ω2
n = 4π2

β 2 . Thus, the grand canonical
partition function may be written as (see, for example, [11] and references therein)

lnZβ ,μ =− lndet‖Aik‖ . (24)

Now the algebraic determinant, denoted by |A|, can be evaluated and gives

|Aik|= (K+K−) , (25)

with
K± = L3 +(

√
Lτ ± iμ)2 . (26)

However, it is easy to show that another factorization exists [11], i.e.

|Aik|= (L+L−) , (27)

where
L± = Lτ +(

√
L3±μ)2 . (28)

Now a simple calculation gives

|Aik|= L+L− = K+K− , (29)

and in both cases one is dealing with the product of two pseudo-differential op-
erators (ΨDOs), the couple L+ and L− being also formally self-adjoint. Thus, the
partition function may be written as

lnZβ ,μ =− lndetK+− lndetK−+a(K+,K−) , (30)

or as
lnZβ ,μ =− lndetL+− lndetL−+a(L+,L−) . (31)

The evaluation of the multiplicative anomalies which appear in the above expres-
sions can be done making use of the Wodzicki formula and a complete agreement
is found between the two expressions of the partition function. Thus, if one neglects
the multiplicative anomaly, one arrives at a mathematical inconsistency [11].

3 Multiplicative anomaly in the singular case

However there exist cases in which the the analytic continuation of the zeta function
is not regular at z = 0. Recall that the usual Seeley Theorem, is based on standard
heat kernel expansion (here D = 4, and boundaryless case)
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Tre−tL �
∞

∑
j=0

A j t j−2 . (32)

As a consequence the standard meromorphic continuation admits only simple poles

ζ (s|L) = 1
Γ (s)

[
∞

∑
j=0

A j(L)
s+ j−2

+ J(s)

]
, (33)

the function J(s) being analytic. It follows that ζ (s|L) is regular at s = 0 and
ζ (0|L) = A2(L), and ζ ′(0|L) is well-defined and gives the regularized expression
for det lnL.

If we have a non standard Heat-Kernel expansion

Tre−tL �
∞

∑
j=0

A j t j−2 +
∞

∑
j=0

Pj ln t t j−2 (34)

namely, additional ln t terms are present, one has a generalization of Seeley result:

ζ (s|L) = 1
Γ (s)

[
∞

∑
j=0

A j(L)
s+ j−2

−
∞

∑
j=0

Pj(L)
(s+ j−2)2 + J(s)

]
. (35)

As a consequence, double poles are present and, in general, ζ (s|L) may have a sim-
ple pole at s = 0. This may happen with pseudodifferential operators or differential
operators defined on non compact manifolds.

Within this new contest, two issues have to be discussed. The first one is: how
lndetL may be defined and the second one: how the Multiplicative Anomaly may
be computed in these singular cases?

With regard to the first issue, the starting point is to observe that the functional
determinat of self-adjoint operator L is formally a “divergent infinite product”

∏
n
λn , (36)

where λn are the eingenvalues of L. The divergenge is present because L is a self-
adjoint unbouned operator. To deals with it, Mathematicians introduce a canonical
regularization by considering the analytic continuation of associated zeta function
ζ (s|L) = ∑nλ−s and then by definition

∞

∏
k=1
λk ≡ e

−
(

Res( ζ (s)
s2 )

)
s=0 , (37)

where Res is the usual Cauchy residue.
In the regular case, one Taylor expands ζ (s) at s = 0 and one obtains

∞

∏
k=1
λk ≡ e−ζ

′(0) , (38)
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in agreement with Ray-Singer-Hawking prescription. However, if one has a simple
pole, namely ζ (s|L) = ω(s)

s , then

∞

∏
k=1
λk ≡ e−

ω′′(0)
2 , (39)

In agreement with [12, 13]. This prescription is quite general and is valid for generic
singular behaviour of ζ at s = 0.

What about the second issue? To our knowledge, Wodzicki approach and asso-
ciated formula are valid only in the regular case. With regard to this issue, we note
that, in general, one may proceed defining the regularized functional determinant of
the operator L as regularization of a divergent product, namely

lndetL =−Res
(
ζ (s|L)

s2

)
s=0

. (40)

3.1 A multiplicative anomaly formula for shift operators

Consider elliptic differential self-adjoint operators: H = H0+V1 and HV = H+V =
H0 +V2 with V = V2−V1 constant shifts. The main idea is to express all quantities
as a function of ζ (s|H). Now, the spectral theorem gives

ζ (s|HV ) =
1
Γ (s)

∞

∑
n=0

(−V )n

n!
Γ (s+n)ζ (s+n|H) . (41)

ζ (s|H HV ) =
1
Γ (s)

∞

∑
n=0

(−V )n

n!
Γ (s+n)ζ (2s+n|H) . (42)

Note that here only the meromorphic continuation of ζ (H|s) appears.
Recalling that the Multiplicative Anomaly may be defined as

A = lndet(H(H +V ))− lndet(H +V )− lndetH , (43)

one has
A = A0 +AV , (44)

with

A0 =−Res
(
ζ (2s|H)−2ζ (s|H)

s2

)
s=0

, (45)

AV =−Res

(
1

s2Γ (s)

∞

∑
n=1

(−V )n

n!
Γ (s+n) [ζ (2s+n|H)−ζ (s+n|H)]

)
s=0

, (46)

A direct computation shows that the first term does not give any contribution to
the Cauchy residue, and in the second term, only a finite number of terms survive,
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the ones corresponding to the poles for Res > 0, and these are, say n0. Thus, one
has

A =−Res

(
1

s2Γ (s)

n0

∑
n=1

(−V )n

n!
Γ (s+n) [ζ (2s+n|H)−ζ (s+n|H)]

)
|s=0 . (47)

This is a new result and gives a general expression for the Multiplicative Anomaly
in the case considered. It should be noted that the above expression involves only
the meromorphic continuation of ζ (s|H), and we remind that this follows from the
Heat-Kernel expansion of heat trace Tre−tH .

Example: If one has poles of third order,

ζ (s|H) =
1
Γ (s)

∞

∑
j=0

[
A j

s+ j−2
− Pj

(s+ j−2)2 +
Cj

(s+ j−2)3 + J(s)
]
. (48)

In this case ζ (s|H) has a pole of s̊econd order at s = 0, and we get

A =
V 2

4

(
[A0 +(1− γ)P0]+

1
24

[10−2π2−24γ+12γ2−G]C0

)
, (49)

γ = −ψ(1) being the Euler-Mascheroni constant and G is a computable constant.
In the standard regular case, all Pj and Cj are vanishing and one gets the Wodzicki
formula result [7].

A =
1
4

V 2A0 =
1

96π

∫
d4x(V1−V2)

2 . (50)

Let us conclude this Section with a simple example: a vector valued massive
scalar field φ defined in R×H3/Γ , ultrastatic space-time with a non compact hy-
perbolic manifold with finite volume [14].

I =
∫ [
−1

2
φΔφ +

m2φ 2

2

]√
g d4x (51)

The Heat-Kernel expansion reads

Tre−tL ∼
∞

∑
j=0

[A j(L)+Pj(L) ln t] t j−2 (52)

A0 =
Vol

16π2 , P0(L) = 0 , P1(L) =− Vol
16π2

π R
6vF

, (53)

P2(L) =
Vol

16π2
π Rδ 2

6vF
. (54)

with vF finite volume of fundamental domain of hyperbolic non compact manifold
and δ 2 = m2 + R

6 . Note that P0 = 0, thus the Multiplicative Anomaly is equal to the
regular case.
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4 Concluding remarks

The Multiplicative Anomaly is present in dealing with functional determinants of
products of differential operators. In the regular case, it is a local functional of the
fields and can be computed. In the singular case, where the zeta functions are not an-
alytic at s = 0, we have shown that it is still a local functional and we have provided
a formula fot its evaluation.

Within one-loop physics, apparently no new physics seems to be associated with
Multiplicative Anomaly, also in the presence of generalized zeta-function regular-
ization. However its inclusion is necessary for mathematical consistency: charged
scalar field at finite temperature is an example.

Furthermore, dealing with spinor fields, one has the Euclidean massive Dirac
operator.

K = pμγμ + iM = A+ iM , A+ = A = pμγμ . (55)

Problem: How to evaluate lndetA ? In D = 4, with L = A2 being the spinorial
Laplace operator in curved space, one has [15]

lndetK =
1
2

lndet(L+M2)+ i
π
2
ζ (0|L+M2)+ c1M2A1(L)+ c2M4A0(L) . (56)

where A0 and A1 are the associated Seeley-de Witt coefficients. Two remarks: first
the last term contains A1(L) ≡ R, Ricci scalar, this is Sakarov induced gravity idea
[8]. Second, this last term may be interpreted as multiplicative anomaly contribution
[15]. With regard to this last issue, recently , I. Shapiro and other have reported a
non trivial non-local M. A . in Quantum ED in curved space-time [16].
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PART IV
Non-standard Approaches



Iso-Minkowskian Geometry For Interior

Dynamical Problems

Ruggero Maria Santilli

Abstract By recalling that the exact validity of special relativity in vacuum has
been experimentally established beyond doubt, we indicate mathematical, physical,
chemical experimental and industrial evidence according to which physical media
alter the Minkowskian spacetime; we outline the novel iso-Minkowskian geome-
try specifically built for interior dynamical problems; and we point out its univer-
sality for all possible spacetimes characterized by a symmetric metric in (3+1)-
dimensions.

1 Apparent lack of exact validity of the Minkowskian and

Riemannian geometries for interior problems

Research conducted by numerous scholars during the past fifty years (see general re-
view [1] and specialized treatments [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) has
identified mathematical, physical, chemical, experimental and industrial evidence
according to which the Minkowskian geometry, special relativity and the Lorentz-
Poincaré (LP) symmetry are not exactly valid for interior dynamical problems (e.g.,
extended-deformable particles and electromagnetic waves propagating within phys-
ical media). Needless to say, the exact validity of the Minkowskian geometry, special
relativity and the LP symmetry for exterior dynamical problems (point particles and
electromagnetic waves propagating in vacuum) and their approximate validity for
interior problems remain beyond scientific doubt.

The reasons for said insufficiency are numerous indeed, and include: the impos-
sibility of introducing inertial reference frames within physical media (such as air or
water) due to known resistive forces, with consequential inability of formulating the
very principle of relativity, let alone testing it experimentally; physical media solely
admit the privileged frame at rest with themselves in direct conflict with relativity

Institute for Basic Research, P. O. Box 1577, Palm Harbor, FL 34682, USA.
e-mail: ibr@verizon.net, http://www.santilli-foundation.org

367
In Honor of Emilio Elizalde, Springer Proceedings in Physics 137,
DOI 10.1007/978-3-642-19760-4_34, © Springer-Verlag Berlin Heidelberg 2011

S.D. Odintsov et al. (eds.), Cosmology, Quantum Vacuum and Zeta Functions:

mailto:ibr@verizon.net
http://www.santilli-foundation.org


368 Ruggero Maria Santilli

Fig. 1 A view of one of the
first experimental deviations
of the Minkowskian geom-
etry within physical media
identified in the 1970s by H.
Arp [39] (see Sect. 3), the
galaxy NGC 4319 (top) and
the quasar Mark 205 (bottom)
that result as being physi-
cally connected according to
gamma spectroscopy, yet have
largely different cosmologi-
cal redshifts (z = 0.0056 and
z = 0.07, respectively), whose
quantitative representation
requires different geometric
features for the different in-
terior physical media of the
galaxy and the quasar

axioms; massive particles, such as electrons, can travel in water faster than the local
speed of light, thus forcing the assumption in water of the speed of light in vacuum
as the maximal causal speed, in which case the sum of two local speeds of light does
not yield the local speed of light in disagreement with the relativistic sum of speeds.

During the 20th century, all these insufficiency have been generally dismissed
via the reduction of light to photons traveling in empty space while experiencing
scattering, absorption and remission by the atoms of the medium. However, such
a reduction is afflicted by major insufficiencies. As an illustration, for the case of
light propagating in water, we have: the impossibility of a numerical representation
of the large angle of refraction (since photons must scatter in all directions at the im-
pact with the water surface); the impossibility of a numerical representation of the
large reduction of the speed of light by about 1/3 (since scattering, absorption and
re-emission of photons can at best account for a small reduction of speed); the im-
possibility of reducing to photons electromagnetic waves with a large wavelength,
e.g., of one meter, that experience the same phenomenology as that of light; the im-
possibility of the very existence of light within opaque media with consequential
obliteration of the entire conceptual, mathematical and physical framework of spe-
cial relativity; and numerous other insufficiencies [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15].

It should be indicated that Einstein introduced the reduction to photons solely for
light with such a frequency to admit quantized black-body effects, which reduction
is still entirely valid to this day and permits a quantitative representation of the small
percentage of the light beam in water lost to dispersion. Definitely, Einstein did not
voice the reduction of light to photons to claim the validity of his theory within
physical media. The latter claim has been proffered by Einstein’s followers without
any serious scrutiny and despite rather visible inconsistencies. In fact, the reduction
to photons of the entire beam of light in water against Einstein’s teaching implies
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that an extremely big number of photons must traverse an extremely big number
of nuclei without any deflection, as an evident necessary condition to maintain the
propagation of a light beam in water along a visible straight line.

It is today known that the sole scientific, that is, quantitative-numerical, repre-
sentation of all experimental; evidence for all frequencies is given by a return to the
Maxwell conception of light (as well as photons as wave packets) as being trans-
verse electromagnetic waves propagating in the universal substratum known as the
ether with historical expression for the speed within transparent physical media

C(x,v,ω,δ ,τ, . . .) =
c

n(x,v,ω,δ ,τ, . . .)
, (1)

where c is the speed of light in vacuum and n is the familiar index of refraction
with an unrestricted dependence on all needed local variables, such as coordinates
x, speed v, frequency ω , density δ , temperature τ , etc.

Evidently, the lack of exact character of the Minkowskian geometry necessar-
ily implies the lack of exact character of the (pseudo-) Riemannian geometry for
interior gravitational problems. Independently from physical and geometrical evi-
dence, a most forceful argument is topological. The topology of exterior problems
is notoriously local-differential, thus solely capable of representing a finite set of
isolated points. By contrast, the correct topology for interior problems, especially
interior gravitational problem with very high densities, must be of nonlocal-integral
character due to the evident mutual penetration of extended and hyperdense charge
distributions. Consequently, the Riemannian geometry cannot possibly be exactly
valid for interior gravitational problems of stars, quasars and black holes beginning
with its topological foundations.

Almost needless to say, the indicated limitations of the Riemannian geometry
have no impact on its historical value because geometries can at best provide an
approximation of out rather complex physical reality, while the approximate valid-
ity of the Riemannian geometry for interior gravitational problems remains beyond
scientific doubt.

2 The universal iso-Minkowskian geometry

The return to the Maxwellian conception of light as electromagnetic wave with local
speed (1) brings into focus the so-called Lorentz problem, referred to the construc-
tion of the symmetry leaving invariant a locally varying speed of light. As well
known to historians, Lorentz first attempted the achievement of the universal sym-
metry of local speed C = c/n(x,v,ω,δ ,τ, . . .), but encountered major technical dif-
ficulties that forced him to consider the simpler case of constant speed c by setting
up in this way the foundation of special relativity.

The author has dedicated most of his research life to the Lorentz problem be-
ginning with his Ph. D. studies in the mid 1960s. The first outcome of these stud-
ies is that Lorentz’s inability to achieve the invariance of local speed (1) was due
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to insufficiency of the basic theory, Lie’s theory. Independently from topological
and other insufficiencies, Lie’s theory is known as being linear, local-differential
and Hamiltonian. By contrast, serious studies of interior problems ate large, includ-
ing Lorentz problem, require a treatment which is nonlinear, nonlocal-integral and
non-Hamiltonian, the latter characteristics being referred to the variational nonself-
adjointness of interior problems [2] and the consequential impossibility of their rep-
resentation via the sole knowledge of a Hamiltonian.

Hence, the solution of the Lorentz problem left no other alternative than that of
working out a structural generalization of Lie’s theory of nonlinear, nonlocal and
non-Hamiltonian character. Along these lines, the author proposed in 1967 [16] a
Lie-admissible generalization of Lie’s theory subsequently specialized for the de-
scription of systems than, besides being nonlinear, nonlocal and non-Hamiltonian,
are also irreversible over time (see memoir [17] of 1978, general presentation [18]
of 2006 and review [4, 5]).

The Lie-admissible irreversible treatment of interior problems is excessively
complex for the limited length of this note. Consequently, we have to restrict our-
selves to a study of the subclass of nonlinear, nonlocal and non-Hamiltonian inte-
rior problems that are reversible over time. For the case of light propagating within
a transparent medium such as water, the above subclass essentially requires ignor-
ing in first approximation the percentage of the light beam lost to dispersion, under
which light propagation is indeed reversible over time.

The latter class of systems can be quantitatively treated via the subclass of Lie-
admissible theories known as isotopies (i.e., axiom-preserving lifting) of Lie’s the-
ory [2, 3, 4, 5, 6, 7], today known as the Lie-Santilli isotheory, [8, 9, 10, 11, 12, 13,
14, 15] which are based based on the lifting of the trivial unit of Lie’s theory into the
most general possible, integral-differential, positive-definite unit known as Santilli
isounit

I = Diag.(1,1,1, . . .)→ Î(x,v,ω,δ ,τ, . . .) = 1/T > 0 , (2)

with the joint lifting of the Lie algebras into the Lie-Santilli algebras
[
Ji,Jj

]
= JiJj− JjJi =Ck

i jJk →
[
Ji ,̂Jj

]
= JiT Jj− JjT Ji = Ĉk

i jJk , (3)

A(w) = eiJwA(0)e−iwJ → A(w) = eiJTwA(0)e−iwT J , (4)

with the Lie’s parameters w and generators J remaining unchanged under isotopies.
To understand the complexity of the Lorentz problem, and the decades of “out of

the mainstream” research required for its solution, let us recall that he invariance of
the constant speed c is known as being canonical at the classical level and unitary
at the operator lever, thus enjoying a majestic axiomatic and physical consistency,
including: the same numerical predictions under the same conditions at different
time; preservation over time of Hermiticity-observability; verification of causality
and conservation laws; etc.

as well as of Lie’s transformation groups into the Lie-Santilli transformation isogroups
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By contrast, the invariance of the locally varying speed of light (1) soon emerged
as being noncanonical at the classical level and nonunitary at the operator level
and, thus verifying the so-called Theorems of Catastrophic Mathematical and
Physical Inconsistencies of Noncanonical and Nonunitary Theories (see original
works [18, 19, 20, 21, 22, 23] and review [5]a, including: the prediction of different
numerical values under the same conditions at different times (inconsistency that,
alone, prevents any possible invariance of C = c/n); loss over time of Hermiticity
and, therefore, of observability (an occurrence known as the Lopez Lemma [20]);
violation of causality and conservation laws; and other inconsistencies.

The resolution of these inconsistency problems required decades of solitary stud-
ies and was solely achieved in 1996 in mathematical memoir [24] with t the correct
formulation of the covering Lie-Santilli isotheory via a new mathematics, today
known as isomathematics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] consisting
of the isotopies of the entire mathematics used in Lie’s theory, including the lifting
of numbers, functional analysis, differential calculus, etc. into such a form admitting
Î(x,v,ω,δ ,τ, . . .), rather than I, as the correct left and right unit at all levels. Readers
with a vast knowledge of Lie’s theory, but not experts in the covering Lie-Santilli
isotheory, should be alerted that, in the event only one of the isotopies is not used,
e.g., the isotheory is treated with the conventional differential calculus, the inconsis-
tency theorems are activated resulting in the absence of mathematical and physical
maturity.

Following these decades in the prior construction of the isotopies of Lie’s theory,
the author constructed the srep-by-step isotopies of all aspects of special relativity,
including th isotopies of: the rotational symmetry [25, 26]; the SU(2)-spin symme-
try [27, 28]; the Lorentz symmetry at the classical [29] and operator [30] levels;
the Poincaré symmetry [31]; the spinorial covering of the Poincaré symmetry [32];
including the isotopies of the axioms and physical laws of special relativity, first
formulated in monographs [23] of 1991, and then studies in various works (see
monographs [3, 4, 5, 6, 7] and vast literature quoited therein).

The main lines of spacetime isotopies are now elementary. The most fundamental
geometric point of this paper is that the alteration of any characteristics of light can-
not occur without a modification of the Minkowskian spacetime. Consequently, the
alteration of the speed of light requires a corresponding lifting of the Minkowskian
metric from its historical form with constant c, η = Diag.(1,1,1,−c2), to a gen-
eralized metric characterizing the local speed c2/n2 whose most general possible
symmetric realization can be expressed with the lifting [29]

η = Diag.
(
1,1,1,−→ c2)

η̂ = T (x,v,ω,δ ,τ, . . .)
η = Diag.

(
1/n2

1,1/n2
2,1/n2

3,−c2/n2
4
)
,

nμ = nμ(x,v,ω,δ ,τ, . . .)> 0 , (5)

(μ = 1,2,3,4), the corresponding lifting of the spacetime invariant
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x2 =
(
xμημνxν

)× I

=
(
x2

1 + x2
2 + x2

3− t2c2)× I ∈R → x̂2̂

=
[
xμ

(
T ρμ ηρν

)
xν
]× Î

=

(
x2

1

n2
1
+

x2
2

n2
2
+

x2
3

n2
3
− t2 c2

n2
4

)
× Î ∈ R̂ , (6)

and of the lifting of the basic unit

I = Diag.(1,1,1,1)→ Î = Diag.
(
n2

1,n
2
2,n

2
3,n

2
4
)
, (7)

where: n4 = n acquires the meaning of the time characteristic function of the
medium considered; the nk, k = 1,2,3, are the space characteristic functions; R
(R̂) is the field of real numbers (real isonumbers); and the multiplication by Î is
necessary for x̂2̂ being an isonumber. Note that the characteristic functions nμ are
far from being the usual “free parameters” since they represent measurable char-
acteristics of the medium, such as size, density, index of refraction, inhomogeneity
and anisotropy normalized to the value nμ = 1, μ = 1,2,3,4 for the vacuum (see
[3, 4, 5, 6, 7] for details).

Since the generators are not altered in the transition from the Lie to the Lie-
Santilli covering theory, the isotopies of all possible spacetime (as well as internal)
symmetries are done via the use of now elementary rules (2)–(7) that lead San-
tilli [29] in 1983 to the first formulation of the universal symmetry of invariance (6)
that we can write here for the simple case in (3,4)-dimension (see monograph [4]b
for the general case)

x′1 = x1, x′2 = x2, (8a)

x′3 = γ̂
(

x3− β̂ n4

n3
x4
)
, x′4 = γ̂

(
x4− β̂ n3

n4
x3
)
, (8b)

γ̂ =
1√

1− β̂ 2
, β̂ = β

n4

n3
=

v3

c
n4

n3
. (8c)

The corresponding isotopies of the Poincaré symmetry [24, 25, 26, 27, 28, 29, 30,
31, 32] are today known as the Lorentz-Poincaré-Santilli (LPS) isosymmetry.

On primitive grounds, the geometry underlying the isotopies of the Minkowskian
spacetime is given by a novel geometry first formulated in [29] of 1983, then stud-
ied in various works, finalized in paper [33] of 1998, and today known as the
Minkowski-Santilli isogeometry, or isogeometry for short, essentially consists in the
reconstruction of the entire formulation of the Minkowskian geometry with respect
to isounit (7). The proof of the following property is instructive for the non-initiated
reader:

Lemma 1 ([29, 34, 35]). The Minkowski-Santilli isogeometry is “directly univer-
sal” for symmetric (3 + 1)-dimensional spacetimes, in the sense of admitting as
particular cases all possible spacetime geometries, thus including the Minkowskian,
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Fig. 2 Views taken by the au-
thor in Palm Harbor, Florida,
of the horizon when the Sun
is at the Zenith (left), at Sun-
set (top right) and Sunrise
(bottom right), illustrating the
predominant blue color when
the Sun is at the Zenith and
the predominant red color
at both Sunset and Sunrise.
As reviewed in Sect. 3, these
colors constitute visible evi-
dence of deviations from the
Minkowskian geometry in
our atmosphere in full agree-
ment with Arp’s discovery
indicated in Fig. 1

Riemannian, Finslerian and other geometries (“universality”) directly in th isomet-
ric, thus without transforming the coordinates of the observer (“direct universal-
ity”).

Some of the features of the isogeometry should not appear unusual due to the
novelty of the underlying isomathematics. For instance, the Minkowski-Santilli
isogeometry admits the entire machinery of the Riemannian geometry (such as
Christoffel’s symbols, covariant derivative, etc.), trivially, due to the explicit de-
pendence of the isometric η̂μν = T ρμ ηρν in the local coordinates. Yet, the novel
isogeometry has null curvature, trivially, as a central condition for being a correct
isotopy of the Minkowski geometry. This occurrence too should not be surprising
because, in the final analysis, the center of a massive body (with spherical symme-
try) has null gravitational force.

As an illustrative example, one can identically reformulate any Riemannian met-
ric, such as the Schwartzschild metric, in terms of the characteristic quantities 1/n2

μ
(see [4]b for details). In this case, the geometry does indeed require curvature when
the metric is referred to the trivial unit I. However, the same geometry show no
curvature when formulated with respect to the isounit Î, trivially, because the latter
has the inverse value n2

μ , resulting in an invariant flatness under lifting (6). Note
that the elimination of curvature is necessary, to our best understanding, to achieve
the universal invariance of all Riemannian line elements, as well as to bypass the
activation of the inconsistency theorems caused by the conventional covariance
[18, 19, 20, 21, 22, 23]. At any rate,the lack of experimental detection of gravi-
tational waves pointed out by C. Corda [36] appears to confirm all these lines.

In closing, mathematical inclined readers should be aware that all the above re-
sults are permitted by a structural generalization of the conventional, 20th century,
local-differential topology into its isotopic covering initiated by the mathematicians
Gr. T. Tsagas and D. S. Sourlas [37], completed by R. M. Falcon Ganfornina and J.
Nunez Valdes [14, 38] and today known as the Tsagas-Sourlas-Ganformina-Nunez
(TSGN) isotopology.
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3 Experimental verifications

The novel isomathematics, related geometries and physical formulations for non-
relativistic and relativistic, classical and operator formulations for interior dynami-
cal problems (reversible over time) have nowadays experimental verifications in all
quantitative sciences, including classical physics, particle physics, nuclear physics,
superconductivity, chemistry, biology, astrophysics and cosmology (see [2, 5]a for
details). Evidently, we cannot possibly review in this short note all these verifica-
tions. Hence, we limit ourselves to the review of the verifications of direct geometric
nature, those based on deviations from the Minkowskian geometry within physical
media in the absence of gravitation.

Remember that Doppler’s law is an ultimate manifestation of the Minkowskian
geometry uniquely derivable from the LP symmetry. By contrast, the covering isoge-
ometry and related LPS isosymmetry uniquely predict the following generalized law
for the frequency of electromagnetic waves propagating within a physical medium,
known as Doppler-Santilli isoshift law

ω ′ =
1− β̂ cos(α)√

1− β̂ 2
ω , (9)

The above covering law predicts that the isoshift is not generally null for null speeds
(due to the indicated dependence of the characteristic quantities on the speed v) and
we write for null angle of aberration

Limω ′v→0 ≈ Limv→0

(
1− v3

c
n4

n3
+ · · ·

)
ω = 1−K(r,v,ω.δ , . . .), K > 0 (10)

This novel event was predicted in [3]b of 1991, is today known as Santilli isored-
shift and is referred to a shift toward the red for light propagating within transparent
physical media without any relative motion between the source, the medium and the
observer. We merely have inevitable interactions between light and the medium un-
der which light loses energy E = hω with consequential reduction of the frequency
ω due to the impossibility of atoms in the medium of losing energy since they are
generally in their stable ground state.

The first experimental evidence known to this author on the existence of the
isoredshift (although not interpreted as such) has been the discovery by H. Arp [39]
of quasars that, according to gamma spectroscopic evidence, are physically con-
nected to an associated galaxy, yet their respective cosmological redshifts are dra-
matically different (see Fig. 1).

Such a difference clearly indicates a departure from the Minkowskian geometry
of the vacuum because, under its validity, said large difference in cosmological red-
shifts would require that the quasar has at least 100 times the speed of the galaxy,
under which conditions the quasar and its associated galaxy would have separated
completely billions of years ago. Numerous hypotheses were formulated in order to
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Fig. 3 The first scan con-
firming Santilli isoredshift
obtained at the Isoredshift
Testing Station of the Institute
for Basic Research in Florida
on June 27, 2009 (see [41] for
details)

resolve this “anomaly,” while maintaining the validity of special relativity, without
achieving to date a resolution accepted by the scientific community at large.

Santilli’s proposal [3]b of the isotopies of special relativity was based on Arp’s
discovery that was recommended for further study. In 1992, R. Mignani [40] pro-
vided a direct experimental verification of Santilli’s isorelativity and the isoshift law
by showing that they apply for all known pairs of quasars and associated galaxies.

The isotopies of special relativity [3]b additionally identified the colors of our
atmosphere as confirmatory experimental evidence and suggested the conduction of
experiments. As established by the conventional quantum scattering theory as well
as by evidence in air and water, red light is absorbed by physical media, resulting in
the predominance of blue light that originates the color of the sky with the Sun at
the Zenith (or the color of water at a sufficient depth).

The predominance of red for the Sun at Sunset and Sunrise was interpreted
throughout the 20th century via the abrupt and unexplained assumption of the op-
posite, namely, that blue light is absorbed by the medium with the increase of the
trajectory resulting in the predominant red. Santilli [3]b pointed out that this inter-
pretation is in violation of the quantum scattering theory as well as physical evi-
dence, thus leaving as the sole plausible interpretation the isoredshift of light which
is indeed proportional to the trajectory within [physical media.]

Additionally, Santilli pointed out that the predominance of red at Sunset and Sun-
rise occurs for direct sunlight, thus excluding possible interpretation via scattering
(that refer to the diffused light); the scattering of photons cannot possibly provide
a quantitative representation of the large change of wavelength from blue to red (of
about 300 nm); and the presence of the isoredshift is rendered necessary by the fact
that the predominance of red is essentially the same at Sunset, where we move away
from the Sun, as well as Sunrise, where we move toward the Sun, thus establishing
the isoredshift as dominant over the expected small contributions from the Doppler’s
law, of course, under a sufficiently long interior trajectory. In view of all the above,
Santilli concluded [3]b, suggesting the conduction of experiments on Earth, such as
the measurement of a Fraunhofer line of the Sun while moving from the Zenith to
the equator, and various other experiments.

Despite the passing of decades, the propagation of the information and the author
solicitations for conducting the proposed experiments to various physical and astro-
physical laboratories, the above experimental verifications (including Arp’s discov-
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ery) remained vastly ignored by most physicists and astrophysicists to their evident
peril. Consequently, in 2009, Santilli [41] conducted the measurement of the isored-
shift in a 20 m long tube containing air at about 140 bars with the resulting mea-
surement of about 0.5 nm isoshift of a blue laser light (see Fig. 3). Reference [40]
proved the capability of such an isoredshift to provide a numerical representation of
Arp’s discovery, the color of our atmosphere, and other interior events.

Reference [41] also pointed out that, while being valid in locally empty spaces,
the Minkowskian geometry is nowhere exactly valid in the universe at large, be-
cause at cosmological distances the universe is a medium with high energy density,
since it is everywhere filled up with light or stars (see also [35] for cosmologi-
cal imp[lications). Consequently, the intergalactic or galactic isoredshift can con-
sequently imply the possible absence of universe expansion, big bang, dark matter
and dark energy. Reference [41] concluded with the need to conduct experiments on
Earth, a number of them already under way, as the sole grounds for serious science
along the teaching of Galileo Galilei.

Acknowledgements The author has no words to thank the organizers and participants of the 2010
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comments.
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Nuclear Fusion Drives Cosmic Expansion

Leong Ying

Abstract From a Twin Universe perspective, it is proposed that stellar nuclear fusion
can account for the negative-energy pressure (Dark Energy) that drives our present-
day accelerated cosmic expansion. In the mirror twinned universe all processes are
duplicated but with reverse negative polarity. Both the Positive and Negative Uni-
verses exist on the opposing sides of a topological two-dimensional membrane and
therefore shares the same experience of a stretching membrane.

Introduction

Using thermodynamic conservation principles the cosmos existing as a pair of iden-
tical anti-parallel universes has been proposed [1]. Parameterization of negative
quantities can be formulated in terms of Santilli’s isodual theory of antimatter [2].
Sakharov [3] proposed the breaking of charge-parity (CP) symmetry led to the bary-
onic imbalance that created a surplus of matter in our present-day universe. Petit [4]
expanded on this cosmological model whereby a twin universe with reverse arrow
of time (T) populated mainly by antimatter would maintain global un-violated CPT-
symmetry between the combined universes. The new proposed model postulates
that a twin universe exists in an identical state of duality, whereby all contents and
processes of each universe have equal magnitude but opposite polarity, including
energy-mass that in the anti-parallel universe will have negative quantities produc-
ing the necessary gravitational repulsion to drive the cosmic expansion. Since both
universes reside on the topological surfaces of a shared membrane, the effective
stretching of this common cosmic membrane will be observed as expansion in our
side of the universe.

The Wilkinson Microwave Anisotropy Probe [5] has determined the Hubble’s
constant (H) at 71km.s-1.Mpc-1. Hubble’s Law [6] is considered the first obser-

Princeton Gamma-Tech Instruments 303C College Road East, Princeton, NJ 07030, e-mail:
leong.ying@pgt.com

379
In Honor of Emilio Elizalde, Springer Proceedings in Physics 137,
DOI 10.1007/978-3-642-19760-4_35, © Springer-Verlag Berlin Heidelberg 2011

S.D. Odintsov et al. (eds.), Cosmology, Quantum Vacuum and Zeta Functions:

mailto:leong.ying@pgt.com


380 Leong Ying

vational basis for an expanding universe and supporting evidence of the Big Bang
model. Dark Energy is the unknown constituent that propels the present accelerating
state of our cosmos, and the equally mysterious Dark Matter conjured up to explain
the high-rotational velocities of galaxies. The rest of this article proposes that normal
nuclear fusion in stars can account for these unknown cosmic mechanisms without
the need for such dark fluids.

Stellar nuclear fusion

Stellar nucleosynthesis is the process of nuclear reactions taking place in stars to
build heavier elements. The net mass of fused nuclei is smaller than the sum of the
components, with the loss mass released as electromagnetic energy according to
Einstein’s famous mass-energy equivalence relationship:

E = mc2 . (1)

Newton’s law of universal gravity states that the force between two point masses
(m1,m2) a distance r apart is given by the following equation:

F = G
m1m2

r2 . (2)

If we assume that the masses are of equal magnitude m = m1 = m2, and the area
mass density condensing on the two-demensional membrane ρm = m/πr2, then the
gravitational force of acceleration produced by one point mass on the other is given
by:

a = πGρm . (3)

Energy production in stars

The observable universe is composed of 70% hydrogen, and the proton-proton (p-p)
chain reaction is the predominant thermonuclear fusion process that converts hydro-
gen nuclei into helium in stars with masses up to that of the Sun.

41H→4 He+2e++2νe . (4)

Along with the formation of a pair of positrons and neutrinos, 26.7MeV of energy
is released, equivalent to a mass of 4.8x10−29kg. For more massive stars, another
reaction process is also important that of the carbon-nitrogen-oxygen (CNO) cycle.
In the main CNO-I reaction the carbon can be considered a catalyst in converting
hydrogen into helium with the carbon being reformed at the completion of the fol-
lowing cycle:
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12C→13 N→13 C→14 N→15 O→15 N→12 C (5)

As with the p-p cycle, the total released of energy is 26.7MeV due to the mass
difference between the fusion of the hydrogen parents to form the helium daughter.

Stretched universal membrane

If we assume that the cosmos is uniformly distributed with point-like stars, the
vast empty interstellar space would produce minimal gravitation contraction on the
membrane upon which our positive universe resides. If we further assume that an
identical negative universe resides on the opposite side of the same membrane, and
all quantities and processes are duplicated but in opposite polarity. The stars in the
positive universe would undergo the standard nuclear fusion processes that release
large amount of electromagnetic waves into the empty space. Consider the same
processes on the reverse side of the membrane, whereby the equivalent release of
energy condenses out as point masses with negative energy and hence repulsive
gravity.

For simplicity of computation, we will assume that the release of solar energy
from the various chain reactions condense out as two equal point masses that occupy
the volume of the fused helium nuclei 2x10−15m. With a gravitational constant
value of G = 6.67428x10−11m3.kg−1s−2, the gravitation repulsive acceleration is
approximately 1.6x10−9m.s−2. This repulsive force of gravity moves at the speed of
light (c = 299,792,458ms−1), so the stretched membrane will expand at a rate of:

Ur =
πGρm

c
(6)

r
−18s−1.

Multiplying this quantum scale of repulsive expansion over an astronomical dis-
tance of a Mega-parsec (Mpc = 3.0857x1022m) gives a cosmological expansion
rate of 160km.s−1Mpc−1. Even with this simple model the computed value for the
rate of expansion is in reasonable agreement with the present-day measured Hubble
constant. Alternatively by interpreting with this simple model, the current Hubble
constant of ∼ 70kms−1Mpc−1 would equate to an average fusion energy release of
11.7MeV.

Summary

The Twin Universe model predicts that the complete cosmos exists as a ten-
dimensional entity with two identical but anti-parallel four-dimensional space-time
(energy-entropy) universes residing on the opposing surfaces of a two-dimensional

Inputting the model values, the estimated cosmic expansion rateU ∼ 5x10
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common membrane. Quantities and processes on both sides of the universes are du-
plicated but of reverse polarity. In the Positive Universe the fusion reactions within
stars release vast quantities of energy into the expanse of space as electromagnetic
waves. In the reverse Negative Universe the same fusion energy condenses as point
masses with negative quantity (repulsive gravity) that stretches out the common
membrane producing the observable accelerating expansion of the entire cosmos.

Table 1 Cosmic processes on both sides of the twin universes

Positive Universe Negative Universe

Fusion generates energy waves Fusion generates matter particles

Attractive gravity Repulsive gravity

Measured Hubble’s constant H ∼
71km.s−1.Mpc−1

Computed Universal expansion rate Ur ∼
160km.s−1.Mpc−1

The model further predicts that Dark Matter and Dark Energy constitute half of
the missing observable energy-mass in the cosmos. Present experimental measure-
ments estimate the percentage of Dark Matter at 23% and Dark Energy at 73%.
However, there are proponents that claim both are the same component of Dark
Fluid [7], and hence if the differing effects are producing a double-counting of the
same unobserved material, then the actual percentage may indeed be 50%.
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