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Preface

The many facets of life are reflected by the multitude of dimensions of sys-
tems biology research at present. Current modeling and analysis approaches
to a systematic understanding of biological phenomena range from quantita-
tive to qualitative, from discrete to continuous, from deterministic to stochastic,
from concrete detailed biological case studies to abstract bio-inspired computing
paradigms. This special issue of the Transactions on Computational Systems Bi-
ology on Computational Models for Cell Processes also mirrors the rich variety
of the field.

The volume is based on the CompMod workshop that took place in Eind-
hoven, the Netherlands, on November 2, 2009. Previously held in Turku, Finland,
the workshop was organized for the second time, now as a satellite event of the
16th International Symposium on Formal Methods, part of FMweek, running
from November 2 to 6, 2009 in Eindhoven. The CompMod workshop aims to
foster a platform gathering researchers in formal methods and related fields in-
terested in the wealth of challenges and opportunities in systems biology. A
specific interest is expressed for papers discussing biological processes requiring
special tools and techniques not investigated so far in the context of formal meth-
ods, as well as extensions of formal methods formalisms introduced to improve
their applicability to biology. For this special issue there has been an additional
open call for paper submissions, with a separate peer-reviewing process.

The papers included illustrate the broad span of aspects of modeling and
analysis of biological systems: evolution of a cell population with selection based
on toxin resistance; a quantitative and tool-supported interpretation of flow ab-
straction in the Systems Biology Graphical Notation; an analytic approach to
dynamic simulation of deformable biological structures; a new stochastic simula-
tion algorithm reconsidering the delay-as-duration principle; a process algebraic
case study on ammonium transport in plant-fungus symbiosis; iterative variable
elimination for steady state equations using algebraic modules in the analysis
of metabolic networks. From different points of view and following various ap-
proaches the papers cover a wide range of topics in Systems Biology, addressing
the dynamics we begin to unravel and computational principles that we start to
identify.

This issue also includes two regular papers by Wallace and Wallace on the
heritability of complex diseases and by Paulevé et al. on the dynamics of gene
regulatory networks.

December 2010 Ralph-Johan Back
Ion Petre

Corrado Priami
Erik de Vink
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Evolutionary Dynamics of a Population of Cells
with a Toxin Suppressor Gene

Antti Häkkinen1, Fred G. Biddle2, Olli-Pekka Smolander1,
Olli Yli-Harja1, and Andre S. Ribeiro1,3

1 Computational Systems Biology Research Group,
Tampere University of Technology, Finland

2 Department of Medical Genetics, Institute of Maternal and Child Health,
Faculty of Medicine, University of Calgary, Canada

3 Center for Computational Physics, University of Coimbra,
P-3004-516 Coimbra, Portugal

Abstract. Environmental changes are known to trigger evolutionary
changes, e.g. by favoring higher mutation rates. We study the evolution-
ary dynamics of a delayed stochastic genetic circuit using a simulator de-
veloped for this aim. We model a cell population subject to selection and
environmental changes. Each cell contains a self-repressing gene whose
protein degrades a toxin. Allowing mutations, we study the adaptability
of this circuit and how the genotypic and phenotypic diversities of the
population evolve. Neutral mutations and equally beneficial evolution-
ary pathways are found to generate complex phenotypic distributions.
We find optimal mutation rates dependent on the amount of toxin and
show that shifting environmental conditions trigger transient increases
in diversity. The results support the hypothesis that evolvability is a
selectable trait.

1 Introduction

Organisms adapt to a wide range of unpredictable environmental changes. Geno-
typic and phenotypic diversity, which play a major role in the organisms’ poten-
tial to adapt to changes, are likely to be heritable and to be partially responsible
for organisms’ robustness [1]. Especially in prokaryotes, noise in gene expression
is a key source of phenotypic diversity [2,3]. Another source is the interaction
between organisms and the environment [4].

In unstable environments, organisms are likely to need higher mutation rates,
unlike in more stable conditions, as high mutation rates tend to cause the ac-
cumulation of deleterious mutations [5]. Selection can only act when there is
variability within a population [6]. Since variability depends on the mutation
rate, the ability to control this rate is a selectable trait. In support of this hy-
pothesis, bacterial mutation rates were found to increase in the initial stages of
colonization of a mouse gut [7], decreasing afterwards.

The ability to generate heritable phenotypic variation is a selectable trait [1].
One such case has been characterized in Bacillus subtilis, which has probabilis-
tic and transient cellular differentiation, dependent on the environment [8]. The

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XIII, LNBI 6575, pp. 1–12, 2011.
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2 A. Häkkinen et al.

probability of being in either state is stationary within a given external condi-
tion, and is determined by the noise in ComK expression level [8]. Reduction of
the noise decreases the number of competent cells, suggesting that noise-driven
genetic mechanisms can evolve [9].

Here, we study the evolutionary dynamics of a self-repressing gene responsible
for coping with a toxin, and whose dynamics is driven by a delayed stochastic
simulation algorithm, at the single molecule level. Each model cell has a gene
responsible for resistance to tetracycline that has been characterized in biolu-
minescent Escherichia coli K-12 [10]. Tetracycline resistance is regulated by the
tetA promoter and the TetR protein, which acts as a self-repressor. In the ab-
sence of tetracycline, the TetR protein binds to the promoter and represses own
expression that was induced when tetracycline was added [10]. The model envi-
ronment consists of the amount of exposure of each cell to the toxin tetracycline.

We address the following questions: Do genotypic and phenotypic diversity
depend on environmental conditions? How does the rate of change of the envi-
ronment affect these diversities? Are there optimal mutation rates for a given
environment?

2 Methods

We simulate, at the single cell level, cell populations that are subject to selec-
tion at the end of each generation. The dynamics of each cell is driven by the
delayed Stochastic Simulation Algorithm [11], based on the original SSA [12],
and implemented in SGNSim [13]. The model of gene expression [14] accounts
for stochastic fluctuations and, by using multiple-time delayed reactions, it ac-
counts for the fact that transcription and translation are multiple-step processes
and take non-negligible time to be completed once they are initiated. The model
was validated by matching measurements of the time series of gene expression
at the single molecule level [15,16]. Time delayed reactions are represented as:
A + C → A(τ1 ) + B(τ2 ) + D. When the reaction occurs, C is instantaneously
consumed, and D is instantaneously produced. Substance A is not consumed
but it is placed on a waitlist until it is released after τ1 s, while a new substance
B is produced τ2 s after the reaction occurs [11,13].

To model mutations and cell selection, we developed and implemented a wrap-
per program for SGNSim, named “CellSelector”. CellSelector allows running
multiple independent simulations of single gene models in parallel for a specified
time length, which corresponds to the cells lifetime. In our simulations, for each
set of conditions, we run 100 independent threads. The simulation of the dy-
namics of each cell is seeded with a unique seed to initialize the random number
generator, responsible for the generation of the stochasticity of the simulation
according to the SSA, thus guaranteing that the cells in each generation have
unique trajectories in the state space. The simulator program is available upon
request.

After the fixed lifetime of the cells of a generation is past, the final state of
the each cell is observed. Selection then occurs, based on these states. Namely,
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the cells are sorted by a fitness measure fit , and those belonging to the least
fit q-quantile are eliminated, while the others are used to produce two or more
duplicates for the subsequent cell generation. In our simulations we always elim-
inate 50% of the cells at the end of each generation, and make two duplicate
cells out of each of the remaining cells that will constitute the cell population of
the next generation.

The initial state of the daughter cells is set to be identical to the final state
of their mother cell (with a new random seed being generated for each daughter
cell). This implies that any mutations accumulated by the mother cell are present
in the daughter cells. Only the fitness measure is set to zero at the beginning of
each cell lifetime.

When toxin is present, it binds to protein p (even when the protein is bound
to the promoter), which therefore can no longer repress the gene, allowing tran-
scription to take place. Being a stochastic system, the higher the number of
toxins in the cell, the more likely it is that the promoter is free to transcribe.
At any given moment, we define “environmental conditions” as the number of
toxins that the cell is subject to.

The environmental conditions determine both how much time cells are subject
to the toxin and the amount of toxin. Toxin (“X”) is introduced in the cells
via reaction (1) at rate cpois (the value of this rate defines the environmental
condition at any given moment) and degrades via reaction (2) at rate dpois .

These reactions are only active when the cell is subject to toxin, and they
impose approximately constant amount of toxin over time during these periods.
Tuning cpois allows controlling such amount:

cpois−→ X (1)

X
dpois−→ ∅ (2)

A cell’s fitness is measured throughout its life. The toxin is assumed to be harm-
ful. Excess of protein is also assumed harmful, since in the case of the gene
studied here it leads to cell death due to loss of membrane potential [17]. Thus,
we assume that the goal of each cell and the selection process is to simultane-
ously decrease the amounts of toxin and protein. Finally, in order to inactive a
toxin X , a protein p needs to bind to it, forming the complex Xp. The number
of Xp complexes is a good indicator of the fitness of the cell.

Combining these conditions, fitness is stochastically measured by reaction
(3) (the symbol ∗ indicates that the reactant is not consumed in the reaction,
although it affects the propensity of the reaction [13]):

∗X +∗ p +∗ Xp
cfit−→ fit (3)

The propensity (Prop(4 )) [12] of reaction (3) is calculated at each step of the
stochastic simulation by equation (4):

Prop(4) = cfitr × ([X ] + 1)−1 × ([p] + 1)−1 × ([Xp] + 1) (4)
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Note, from reaction (3) and the formula used to compute its propensity (4), that
the more toxins X and proteins p exist in the cell, the less fitness units, fit , will
be produced. For that to be possible in the simulation, following the protocols of
SGNSim [13], we introduced in the left hand side of the reaction X and p, so as
to allow the propensity of the reaction to be inversely dependent on the amounts
of these two substances, since the speed of production of fit is determined by
the propensity (defined in (4)) [12].

Reaction (3) doesn’t affect the cells’ dynamics since no substance is consumed
and the product is not a substrate to any reaction. Its propensity [12] determines
how many fitness units are produced and is computed according to equation (4),
in agreement with the fitness conditions proposed. All cells have zero fitness
units in the beginning of their life.

To the best of our knowledge, this method of computing the fitness of a genetic
circuit at runtime by introducing a stochastic reaction in the system has not been
previously used. It is therefore important to note that the dynamics of the other
reactions in the system are not affected in any way, and that the value of fitness
has a stochastic component. According to the SSA, the number of times and the
moments when a reaction occurs is solely determined by its propensity at each
moment [12]. In our model, the dynamics of all other reactions (i.e., the number
and the moment of occurrence of the reactions) are not affected by the reaction
producing fitness units because it does not consume or produce any substances
associated to the other reactions, thereby not affecting their propensities at any
moment.

Further note that this is also true for reactions 13 and 14, since, as seen
later, they do not consume any substances affecting the propensities of the other
reactions in the system. In practical terms, our method is equivalent to, e.g.,
calculating fitness at runtime by having two parallel simulations ongoing simul-
taneously (one for the system, another for fitness calculation) with the latter
being informed of the state of the first at each step.

Additionally, it is noted that while the expression of the propensity of reaction
3 differs from common expressions of propensity of regular chemical reactions
(i.e. linear dependence on each substrate), this does not affect the dynamics or
functioning of the SSA or the simulator. SGNSim [13] uses the formula to obtain
a real value of propensity at each moment which, as in the other reactions,
determines the reaction’s stochastic rate of occurrence.

Gene expression is modeled by multiple time-delayed reactions, one for tran-
scription (5) by RNA polymerase (RNAp), with a stochastic rate constant kt,
and one for translation (6) by ribosomes (rib), with a stochastic rate constant
ktr, according to the model proposed in [14]. As mentioned, in these reactions,
the delays are represented explicitly. E.g. in reaction 5, the notation “RBS(2)”
denotes that the ribosome binding site is only produced and introduced in the
system 2s after the reaction occurs.

Decay reactions degrade p, (7 and 10) and RNA’s (represented by their ribo-
some binding site, RBS [16]) via reaction (8). Reactions (9) model the binding
and unbinding of the self-repressor protein to the gene promoter region (Pro).
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The binding of X to p when free or when bound to the promoter [10] is modeled
by reactions (11) and (12).

Pro + RNAp kt−→ Pro(2) + RNAp(40) + RBS(2) (5)

RBS + rib
ktr−→ RBS(2) + rib(20) + p(50) (6)

p
dp−→ ∅ (7)

RBS
dRBS−→ ∅ (8)

Pro + p
kunrep

�
krep

Pro.p (9)

Pro.p
dp−→ Pro (10)

X + p
kpdes−→ X.p (11)

X + Pro.p
kpdes−→ X.p + Pro (12)

We assume that the gene is subject to mutations, and that these affect the
rate of transcription as well as the strength of repression, since these rates are
those that most directly affect the rate of production of the protein. Thus, the
rates subject to changes due to mutations in the gene sequence (initiation and
elongation regions) are kt , krep , and kunrep . Affinity between promoter and pro-
tein determines krep and kunrep , while transcription initiation (kt ) is sequence
dependent [18].

We use virtual substances [13] to implement at runtime the effects of muta-
tions in a cell’s dynamics. The propensity of reactions (5) and (9) is computed
as follows. Let K be the original rate constant, nup be a virtual substance that
increases the reaction propensity if its quantity increases, and ndown a virtual
substance that decreases the propensity if its quantity increases. To do this, the
propensity of the reaction, P , is computed by (13):

P = K × (nup + 1) × 1
1 + ndown

(13)

The propensity can be varied at runtime by reactions (14) and (15). A pair of
reactions (14) and (15) is added for each rate constant subject to changes due
to mutations:

∅ kmut−→ M × nup (14)

∅ kmut−→ M × ndown (15)
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In reactions (14) to (15), tuning kmut allows varying the rate of occurrence of
mutations and by tuning M (number of molecules created in one reaction) one
can set the extent of the variation in the propensity caused by one mutation.
When any of the two reactions, (14) and (15) occur, nup or ndown vary, thus
changing the propensity of the reaction they affect (either transcription, repres-
sion or unrepression). If the change improves the cell fitness, this cell is likely to
be selected for duplication at the end of its lifetime.

It is noted that the rates subject to mutation, i.e. kt , krep , and kunrep , allow
varying both the mean expression as well as the noise strength of the protein
level. Also, due to the existence of the delay on the promoter release, identical
ratios between krep and kunrep will produce the same mean expression level, but
the RNA and the protein levels will have different noise strengths [19].

3 Results

Reactions (1-12), (14) and (15) are implemented in each cell. The unit of time
delays is second (s) and the unit of rate constants is s−1 . Since we model a
gene from E. coli [10] the parameters values are set accordingly, e.g, transla-
tion initiation (ktr = 0 .0005 ), RNA decay (dRBS = 0 .005 ), and protein decay
(dp = 0 .0004 ) [16]. The same applies to the time delays in transcription (5) and
translation (6). The values of the delays are set according to known kinetic pa-
rameters of transcription and translation in E. coli (for a detailed justification
and derivation of the values of these delays please refer to [16]).

Cell division (and selection) occurs at each 1800 s, which is the average divi-
sion time of E. coli. Additionally, we set kpdes to 0.01 which is within realistic
parameter values [20], and cfit to 1.

To impose an average toxin concentration in the cell of, e.g., 10 molecules
X , we set cpois = 0 .1 and dpois = 0 .01 . In a following simulation, cpois will be
varied to subject the cells to different environments at runtime.

The rates that are varying due to mutations are initially set to: kt = 0 .0025 ,
krep = 10−4 , and kunrep = 0 .1 . Real mutation rates in E. coli are ∼ 10−7 per
cell division, but vary significantly depending on the conditions to which cells
are subject [21]. We vary this rate (kmut) to study its effects. Unless stated
otherwise, we model 100 cells per generation for 100 generations (100G).

We first tested the effects of varying M , with kmut = 10−4 . Cells are subject
to toxin for periods of 10G with cpois = 0 .1 and dpois = 0 .001 , interrupted by
periods of 10G not subject to toxin. For M ≤ 2 , mutations effects are below the
noise level. Increases in the population’s fitness are only due to selection. For
2 < M < 10000 the average fitness increases for several generations and reach
a maximum value, equal for all values of M . It takes from 10G to 50G to reach
the maximum fitness.

Next we varied kmut from 10−7 to 1. We set M = 10 , so that mutations
cause phenotypic changes significantly above the noise level. For kmut < 10−6

and kmut > 0 .1 , fitness only improves due to selection. In the first case, the
number of mutations that can occur within 100G is not sufficient to allow the



Evolutionary Dynamics of a Population of Cells 7

cells to adapt to the change and, in the second case, due to a too high mutation
rate, the selection that occurs at each generation is not sufficient to prevent the
accumulation of harmful mutations.

Setting kmut to 10−4 and M to 10, we now analyze the phenotypic diver-
sity in a simple environment, namely, where no toxin is present in the first
100G and where, from G100 to G200, cells are subject to toxin (cpois = 0 .1 and
dpois = 10−3 ) and, finally, no toxin is present thereafter.

To quantify the diversity of the values of the rate constants subject to changes
due to mutations over the population, we compute the ratio between standard
deviation and mean value of these rates, i.e. the coefficient of variation, CV , in
each generation.

In Fig. 1 we plotted the CV of kt , krep and kunrep for 300G. All CV ’s were
comparatively high, i.e. the population had higher phenotypic and genotypic
diversities, after environmental changes and in the initial transient, from G1
to ∼G30, where cells are adapting to an environment without toxin (evolving
towards diminishing the number of proteins by decreasing kt and/or increasing
krep). The other moments are from G100 to G140 and from G200 to G230, the
adaptation periods to the environmental changes (toxin introduced at G100 and
removed at G200). Thus, changes in the environment trigger transient increases
in genotypic and phenotypic diversities in the populations of model cells.

From these results we conclude that, even assuming fixed mutation rates for
simplicity, environmental changes are likely to enhance the degree of variability
of a population. When the environmental conditions change, cells that were
optimally adapted are no longer as fit as before. Thus, recently mutated cells
have greater chances to be fitter in variable environments (in comparison to non
mutated ones) than in stable ones.

In the periods that the cells are fittest (from G30 to G100, from G140 to
G200, and after G230), the population maintains a considerable diversity. This
is due both to the continuous appearance of mutated cells (usually removed in
subsequent generations) and neutral mutations, e.g., causing equal increases in
krep and kunrep , which does not change the average time the gene is repressed.

Neutral mutations are one of the causes for the emergence of complex pheno-
typic distributions (e.g., bimodal) and one example is shown in Fig. 2. In this case
some cells have higher krep than the rest of the population but also higher kunrep

(not shown). Another way for genotypic and consequent phenotypic bifurcations
to appear is when distinct evolutionary pathways have identical fitness, e.g., in-
stead of increasing krep , decreasing the transcription rate kt also diminishes the
number of p’s in the cell).

Finally, we subject populations of initially identical cells to various environ-
ments and measure the average fitness over 100 generations. Toxin is introduced
at random moments for random time durations. The transition rate between
presence and absence of toxin is set to 1/(10 × T ) (where T is the cells life-
time). The environments differ in the amount of toxin present. We set cpois to
0.001, 0.1 and 1, while dpois is kept at 0.01. The results are shown in Fig. 3.
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Fig. 1. Coefficient of variation (CV ) of rates subject to mutation in 1 simulation of
300 cell generations. Toxin absent from G1 to G100 and from G200 to G300. Vertical
dashed lines represent the moments when the environmental conditions changed.

Fig. 2. Population genotypic distribution at G105 of the evolved values of the multi-
plicative factor of krep

There are optimal mutation rates (Fig. 3) whose values depend on the envi-
ronmental conditions, i.e., amounts of toxin. Because the model cells are initially
not well adapted to the presence of virtually no toxin, the higher the amount of
toxin introduced, the higher must be the mutation rate. That is, a determining
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Fig. 3. Average fitness in 100 G for various toxin dosages and mutation rates

factor of the value of optimal mutation rates is the necessary genotypic and phe-
notypic change to reach maximum fitness. Initially, less well-adapted cells require
higher mutation rates to rapidly create diversity from which fitter cells can be
selected from. This suggests that it is advantageous for cells to tune or evolve
mutation rates depending on the environmental conditions and shifting of these
conditions.

Two factors contribute to the existence of optimal mutation rates of this gene:
if mutation rates are too low, beneficial mutations do not occur fast enough to
improve the population’s fitness in reasonable time and, if mutation rates are
too high, selection is not sufficiently fast to prevent the accumulation of harmful
mutations.

4 Conclusions and Discussion

We implemented in model cells a stochastic model with delays of a self-repressing
gene responsible for Tetracycline resistance [10] in E. coli. We simulated pop-
ulations of cells over several generations, subjecting each cell to a stochastic
environment and providing them the ability to mutate the dynamical properties
of this genetic circuit. At the end of each generation, we selected the fittest cells.

We investigated the role and evolvability of both mean expression as well as
noise strength of this gene, as key variables in the ability of the cell to cope
with changing environmental conditions. We further studied the consequences
of subjecting the cells to fluctuating environmental conditions on the genotypic
and phenotypic diversity of the cell population over time.

Given an initially homogenous population we found that in stable environ-
ments, genotypic diversity is enhanced and then maintained at a given level
by neutral mutations that allow the cells to explore various equally beneficial,
distinct evolutionary pathways.

Environmental changes were found to be the main enhancer of genotypic diver-
sity, in agreement with observations [7]. When subject to changes in the amounts
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of toxins its subject to, the cell population not only evolves towards changing ap-
propriately the mean gene expression level, but also towards increasing genotypic
diversity in the moments following changes in the external conditions. In some
cases, cells evolved both mean expression level, as well as the noise strength,
which when increasing causes stronger phenotypic diversity.

We also allowed the evolution of the mutation rates themselves, and found
that there are optimal mutation rates whose rate depends on the amount of
toxin the cells were subject to. The higher the amount, the higher the mutation
rate, since the initial genotype of the cells was proper only for minute amounts
of toxin. Higher mutation rates allowed faster reaching of an optimal genotype,
at the cost of a higher rate of failure at the individual level, due to harmful
mutations.

We conclude that the optimal mutation rates in the model cells depend on
both the present level of adaptation of the cells, the necessary degree of change
to reach the optimal genotype, as well as the rate of change of environmental
conditions when these are unstable. We hypothesize that the ability to generate
heritable phenotypic variation [22] as well as the rate of mutation are likely to
be evolvable, selectable traits.

Finally, we note that we opted to subject the cells to approximately constant
amounts of toxin over long periods of time, and when environmental changes
occur, for those changes to be rather “abrupt” in comparison with the total
simulation time of the many cell generations. The more abrupt are the changes
in expected toxin levels, the more likely it is that a mutation occurring after that
change is beneficial in comparison with the previously optimally adapted cells.
In the future it will be of interest to test how the rate at which the change occurs
affects the results. We expect that the smoother is the environmental change the
slower is the selection for mutated cells. However, that will also allow the cell
population to maintain at all times, including during the change, a higher mean
level of fitness as the cells are more capable of adapting to the changes at the
same rhythm as these occur.

To the best of our knowledge, this work is the first view of how a delayed
stochastic model of a small genetic circuit may evolve when subject to environ-
mental changes, where the allowed mutations directly affect the kinetics of the
genetic circuit, and consequent response to the environment. This was feasible
because in the network modeled the protein interacts directly with the toxin.
This is not the common scenario, usually there are far more steps between gene
expression and interaction with the environment. There are several studies of
how perturbations in the environment may affect a population’s evolvability,
genotypic diversity, etc (see e.g. [23]). However, in general, the processes under
evolution are not explicitly modeled. Here we built on these works but, in our
model, it is explicitly accounted both the internal stochasticity of the gene’s
expression dynamics as well as the stochasticity of the environment, and also
the stochasticity of the interaction between each cell and its environment. In
the future, the use of these models may allow improving our understanding on
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how the stochasticity in gene expression at the molecular level constrains the
evolvability of gene networks.
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Abstract. For a long time biologists have used visual representations of bio-
chemical networks to gain a quick overview of important structural properties.
Recently SBGN, the Systems Biology Graphical Notation, has been developed to
standardise the way in which such graphical maps are drawn in order to facilitate
the exchange of information. Its qualitative Process Description (SBGN-PD) di-
agrams are based on an implicit Process Flow Abstraction (PFA) that can also be
used to construct quantitative representations, which facilitate automated analy-
ses of the system. Here we explicitly describe the PFA that underpins SBGN-PD
and define attributes for SBGN-PD glyphs that make it possible to capture the
quantitative details of a biochemical reaction network. Such quantitative details
can be used to automatically generate an executable model. To facilitate this, we
developed a textual representation for SBGN-PD called “SBGNtext” and imple-
mented SBGNtext2BioPEPA, a tool that demonstrates how Bio-PEPA models
can be generated automatically from SBGNtext. Bio-PEPA is a process algebra
that was designed for implementing quantitative models of concurrent biochem-
ical reaction systems. The scheme developed here is general and can be easily
adapted to other output formalisms. To illustrate the intended workflow, we model
the metabolic pathway of the cholesterol synthesis. We use this to compute the
statin dosage response of the flux through the cholesterol pathway for different
concentrations of the enzyme HMGCR that is inhibited by statin.

1 Introduction

Biologists are constantly searching for strategies that help them to understand the com-
plexity of life. Navigating the functional molecular interactions within cells has proven
to be an increasing challenge since molecular biological research is filling databases
with detailed knowledge about the molecular mechanics of life. A wide variety of
schemes has been developed to represent such knowledge, ranging from textual rep-
resentations that resemble chemical reactions (e.g. Dizzy [42]) or reaction rules (e.g.
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BioNetGen, Kappa [13,12,24]) through XML-based standards like SBML [25] to
graphical notations (e.g. [29,43,28,38,15,33]). Graphical maps of biochemical reaction
networks are proving to be powerful tools for facilitating an overview of the interactions
of particular molecules. Recently the Systems Biology Graphical Notation (SBGN) has
emerged as a standard for drawing such reaction diagrams [33,32]. The objective is to
provide molecular systems biologists with an easily understandable description of the
system by generating consistent maps across different editing tools (e.g. CellDesigner
[18], Cytoscape [11], Edinburgh Pathway Editor [46], JDesigner [44]). Like electronic
circuit diagrams, they aim to unambiguously describe the structure of a complex net-
work of interactions using graphical symbols.

To achieve this requires a collection of symbols and rules for their valid combina-
tion. The SBGN Process Description, SBGN-PD, is a visual language with a precise
grammar that builds on an underlying abstraction as the basis of its semantics (see p.40
[33]). We call this underlying abstraction for SBGN-PD the “Process Flow Abstraction”
(PFA). It describes biological pathways in terms of processes that transform elements
of the pathway from one form into another. The usefulness of an SBGN-PD description
critically depends on the faithfulness of the underlying PFA and a tight link between
the PFA and the glyphs used in diagrams. The graphical nature of SBGN-PD allows
only for qualitative descriptions of biological pathways. However, the underlying PFA
is more powerful and also forms the basis for quantitative descriptions that could be
used for analysis. Such descriptions, however, need to allow the inclusion of the corre-
sponding mathematical details like parameters and equations for computing the rate at
which reactions occur.

Here we aim to make explicit the PFA that already underlies SBGN-PD implicitly.
This serves a twofold purpose. First, a better and clearer understanding of the under-
lying abstraction will make it easier for biologists to construct SBGN-PD diagrams.
Second, the PFA is easily quantified and making this explicit can facilitate the quanti-
tative description of SBGN-PD diagrams. Such descriptions can then be used directly
for predicting quantitative properties of the system in simulations. Here we demonstrate
how this could work by mapping SBGN-PD to a quantitative analysis system. We use
the process algebra Bio-PEPA [10,3] as an example, but our mapping can be easily
applied to other formalisms as well.

This paper is an extension of previous work presented at the CompMod09 Workshop
[36]. Besides small improvements throughout the paper we provide more details on
the overall workflow that now includes a working prototype of the Edinburgh Pathway
Editor [46] and a fuller introduction to the Bio-PEPA background. Most importantly we
apply our toolchain to a completely new example with more entities than the MAPK
signalling pathway we used before. As example we now use the metabolic pathway that
produces cholesterol, which is modelled in collaboration with colleagues at the Division
of Pathway Medicine at the University of Edinburgh. We use our model to investigate
how statin inhibits cholesterol production under various circumstances – a question of
considerable medical interest [2,8,31].

The rest of the paper is structured as follows. First we provide an overview of the
implicit PFA with the help of an analogy to a system of water tanks, pipes and pumps
(Section 2). In Section 3 we explain how this system can be extended in order to capture
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PFA          : water tank
SBGN-PD: entity pool node
Bio-PEPA : species component

S PE

PFA          : pipes
SBGN-PD: consumption/production arcs
Bio-PEPA :         operators

PFA          : control electronics
SBGN-PD: modulating arcs
Bio-PEPA :      operator + kinetic laws

PFA          : pump
SBGN-PD: process
Bio-PEPA : action

S PE

Fig. 1. An overview of the process flow abstraction. The chemical reaction at the top is translated
into an analogy of water tanks, pipes and pumps that can be used to visualise the process flow
abstraction. The various elements are also mapped into SBGN-PD and Bio-PEPA terminology.

quantitative details of the PFA. We then show how SBGN-PD glyphs can be mapped to
a quantitative analysis framework, using the Bio-PEPA modelling environment [3] as
an example (Section 4). In Section 5 we discuss various internal mechanisms and data
structures needed for translation into any quantitative analysis framework. Section 6
demonstrates the intended workflow by using a model of the cholesterol pathway as
an example. We draw a SBGN-PD map of the cholesterol pathway in the Edinburgh
Pathway Editor [46] to visualise it and to add quantitative details. The Edinburgh Path-
way Editor model can be exported as SBGNtext, which is automatically translated into
a Bio-PEPA model by our new translation tool “SBGNtext2BioPEPA” [34,35]. This
model is then investigated in the Bio-PEPA Eclipse Plugin. We end by reviewing re-
lated work and providing some perspectives for further developments.

2 The Implicit Process Flow Abstraction of SBGN-PD

The PFA behind SBGN-PD is best introduced in terms of an analogy to a system of
many water tanks that are connected by pipes. Each pipe either leads to or comes from
a pump whose activity is regulated by dedicated electronics. In the analogy, the water
is moved between the various tanks by the pumps. In a biochemical reaction system,
this corresponds to the biomass that is transformed from one chemical species into
another by chemical reactions. SBGN-PD aims to also allow for descriptions at levels
above individual chemical reactions. Therefore the water tanks or chemical species are
termed “entities” and the pumps or chemical reactions are termed “processes”. For an
overview, see Figure 1. We now discuss the correlations between the various elements
in the analogy and in SBGN-PD in more detail. In this discussion we occasionally
allude to SBGNtext, which is a full textual representation of the semantics of SBGN-PD
(developed to facilitate automated translation of SBGN-PD into other formalisms; see
[34,35]). Here are the key elements of the PFA:

Water tanks = entity pool nodes (EPNs). Each water tank stands for a different
pool of entities, where the amount of water in a tank represents the biomass that
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Table 1. Categories of “water tanks” in the PFA correspond to types of entity pool nodes in
SBGN-PD. The complex and the multimers are shown with exemplary auxiliary units that specify
cardinality, potential chemical modifications and other information.

SBGN-PD glyph EPNType class type comment

Unspecified material EPN (unknown specifics)

SimpleChemical material EPN

Macromolecule material EPN

NucleicAcidFeaturematerial EPN

- material
EPN multimer
specified by cardinality

Complex container EPN, arbitrary nesting

Source conceptual external source
of molecules

Sink conceptual removal from the system

PerturbingAgent conceptual external influence
on a reaction

is bound in all entities of that particular type that exist in the system. Typical ex-
amples for such pools of identical entities are chemical species like metabolites or
proteins. SBGN-PD does not distinguish individual molecules within pools of en-
tities, as long as they are within the same compartment and identical in all other
important properties. An overview of all types of EPNs (i.e. categories of water
tanks) in SBGN-PD is given in Table 1. To unambiguously identify an entity pool
in SBGNtext and in the code produced for quantitative analysis, each entity pool
is given a unique EntityPoolNodeID. The PFA does not conceptually distinguish
between non-composed entities and entities that are complexes of other entities.
Despite potentially huge differences in complexity they are all “water tanks” and
further quantitative treatment does not treat them differently.

Pipes = consumption and production arcs. Pipes allow the transfer of water from
one tank to another. Similarly, to move biomass from one entity pool to another re-
quires the consumption and production of entities as symbolised by the correspond-
ing arcs in SBGN-PD (see Table 3). These arcs connect exactly one process and one
EPN. The thickness of the pipes could be taken to reflect stoichiometry, which is
the only explicit quantitative property that is an integral part of SBGN-PD. Produc-
tion arcs take on a special role in reversible processes by allowing for bidirectional
flow.

Pumps = processes. Pumps move water through the pipes from one tank to another.
Similarly, processes transform biomass bound in one entity to biomass bound in
another entity, i.e. processes transform one entity into another. The speed of the
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pump in the analogy corresponds to the frequency with which the reaction occurs
and determines the amount of water (or biomass) that is transported between tanks
(or that is converted from one entity to another, respectively). Processes can belong
to different types in SBGN-PD (Table 2) and are unambiguously identified by a
unique ProcessNodeID in SBGNtext. This allows arcs to clearly define which
process they belong to and, by finding all its arcs, each process can also identify all
EPNs it is connected to.

Reversible processes. SBGN-PD allows for processes to be reversible if they are
symmetrically modulated (p.28 [33]). Thus, there may be flows in two directions.
However the net flow at any given time will be unidirectional. The PFA does not
prescribe how to implement this. For simplicity, our analogy assumes pumps to
be unidirectional, like many real-world pumps. Thus bidirectional processes in our
analogy are represented as two pumps with corresponding sets of pipes and oppo-
site directions of flow. In a reversible process the products of the forward process
are consumed in the backward process, thus Consumption and Production arcs
can no longer be as clearly separated as in unidirectional processes. To resolve this,
SBGN-PD distinguishes the left-hand side from the right-hand side of a process
and uses only arcs that look like Production arcs to indicate the double role (p.32
[33]). In SBGN-PD reversible process nodes are easy to recognise visually by the
absence of Consumption arcs on both sides. To represent all such arcs either as
Consumption arcs or as Production arcs in SBGNtext would lose the informa-
tion of which arc is on which side of the process node. Thus we define two new
arc types that are only used for products and reactants in the context of reversible
processes: LeftHandSide and RightHandSide.LeftHandSide arcs indicate that
they are consumption arcs in the forward process (and production arcs in the back-
ward process), where as RightHandSide arcs are the corresponding opposite. To
support reversible processes the visual editor needs to identify reversible processes
and assign the corresponding arc types LeftHandSide and RightHandSide to the
arcs. In addition a forward and a backward kinetic law need to be stored to facilitate
breaking up a bidirectional process into two unidirectional processes.

Control electronics for pumps = modulating arcs and logic gates. In the analogy,
pumps need to be regulated, especially in complex settings. This is achieved by
control electronics. In SBGN-PD, the same is done by various types of modulation
arcs, logic arcs and logic gates [33]. They all contribute to determining the fre-
quency of the reaction. Since SBGN-PD does not quantify these interactions, most
of our extensions for quantifying SBGN-PD address this aspect. Each arc con-
nects a “water tank” with a given EntityPoolNodeID and a “pump” with a given
ProcessNodeID. Ordinary modulating arcs can be of type Modulation (most
generic influence on reaction), Stimulation (catalysis or positive allosteric reg-
ulation), Catalysis (special case of stimulation, where activation energy is low-
ered), Inhibition (competitive or allosteric) or NecessaryStimulation
(process is only possible if the stimulation is “active”, i.e. has surpassed some
threshold). The glyphs are shown in Table 3, where their mapping to Bio-PEPA is
discussed. One might misread SBGN-PD to suggest that Consumption /
Production arcs cannot modulate the frequency of a process. However, kinetic
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Table 2. Categories of “pumps” in the process flow abstraction correspond to types of processes
in SBGN-PD. The grey lines indicate that more than one EPN can participate in this process.

SBGN-PD glyph ProcessType meaning

Process normal known processes

Association special process that builds complexes

Dissociation special process that dissolves complexes

Omitted several known processes are abstracted

Uncertain existence of this process is not clear

Observable this process is easily observable

laws frequently depend on the concentration of reactants, implying that these arcs
can also contribute to the “control electronics” (e.g. report “level of water in tank”).
Another part of the “control electronics” are logical operators. These simplify mod-
elling, when a biological function can be approximated by a simple on/off logic that
can be represented by boolean operators. SBGN-PD supports this simplification by
providing the logical operators “AND”, “OR” and “NOT”. These take “logic arcs”
as input and output, which convert a molecule count into a digital signal and back.

Groups of water tanks = compartments, submaps and more. The PFA is complete
with all the elements presented above. However, to make SBGN-PD more useful
for modelling in a biological context, SBGN-PD has several features that make it
easier for biologists to recognise various subsets of entities that are related to each
other. For example, entities that belong to the same compartment can be grouped
together in the compartment glyph and functionally related entities can be placed
on the same submap. In the analogy, this corresponds to grouping related water
tanks together. SBGN-PD also supports sophisticated ways for highlighting the in-
ner similarities between entities based on a knowledge of their chemical structure
(e.g. modification of a residue, formation of a complex). Stretching the analogy,
this corresponds to a way of highlighting some similarities between different wa-
ter tanks. These groupings are only conceptual and have no effect on quantitative
analysis, as long as different “water tanks” remain separate.

3 Extensions for Quantitative Analysis

The process flow abstraction that is implicit in all SBGN process diagrams can be used
as a basis to quantify the systems they describe. Following the introduction to the PFA
above, we now discuss the attributes that need to be added to the various SBGN-PD
glyphs in order to allow for automatic translation of SBGN-PD diagrams into quantita-
tive models. These attributes are stored as strings in SBGNtext (our textual representa-
tion of SBGN-PD, see [35]) and are attached to the corresponding glyphs by a graphical
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SBGN-PD editor. They do not require a visual representation that compromises the vi-
sual ease-of-use that SBGN-PD aims for. A prototypic example of how the quantitative
information could be added in a visual editor is provided by the Edinburgh Pathway
Editor [46] and shown in Figure 2. Next we discuss the various attributes that are nec-
essary for the glyphs of SBGN-PD to support quantitative analysis. We do not discuss
SBGN-PD glyphs for auxiliary units, submaps, tags and equivalence arcs here, as they
do not require extensions for supporting quantitative analysis.

3.1 Quantitative Extensions of EntityPoolNodes

For quantitative analysis, each unique EPN requires an InitialMoleculeCount to
unambiguously define how many entities exist in this pool in the initial state. We fol-
lowed developments in the SBML standard in using counts of molecules instead of
concentrations, since SBGN-PD also allows for multiple compartments, making the
use of concentrations very cumbersome (see section 4.13.6, p.71f. in [25]). For entities
of type Perturbation, the InitialMoleculeCount is interpreted as the numerical
value associated with the perturbation, even though its technical meaning is not a count
of molecules. Entities of the type Source or Sink are both assumed to be effectively
unlimited, so InitialMoleculeCount does not have a meaning for these entities. Be-
yond a unique EntityPoolNodeID and InitialMoleculeCount, no other informa-
tion on entities is required for quantitative analysis.

3.2 Quantitative Extensions of Arcs

Arcs link entities and processes by storing their respective IDs and the ArcType. The
simplest arcs are of type Consumption or Production and do not require numerical
information beyond the stoichiometry that is already defined in SBGN-PD as a property
of arcs that can be displayed visually in standard SBGN-PD editors. Logic arcs will be
discussed below. All modulating arcs are part of the “control electronics” and affect the
frequency with which a process happens. They link to EPNs to inform the process about
the presence of enzymes, for example. Modulation is usually governed by parameters
or other important quantities for the given process (e.g. Michaelis-Menten constant).

To make the practical encoding of a model easier, we define process pa-
rameters that conceptually belong to a particular modulating entity as a list of
QuantitativeProperties in the arc pointing to that entity. This is equivalent to see-
ing the set of parameters of a reaction as something that is specific to the interaction
between a particular modulator and the process it modulates. Other approaches are also
possible, but lead to less elegant implementations. Storing parameters in equations re-
quires frequent and possibly error-prone changes (e.g. many different Michaelis-Menten
equations). One could also argue that the catalytic features are a property of the enzyme
and thus make parameters part of EPNs; however this would mean that all the reac-
tions catalysed by the same enzyme would have the same parameters or would require
cumbersome naming conventions to manage different affinities for different substrates.

To refer to parameters we specify the ManualEquationArcIDof an arc and then the
name of the parameter that is stored in the list of QuantitativeProperties of that
arc. This scheme reduces clutter by limiting the scope of the relevant namespace (only
few arcs per process exist, so ManualEquationArcIDs only need to be unique within
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A 

B 

Fig. 2. An example of how attributes attached to SBGN-PD glyphs and stored as strings can be
used to add quantitative information to a visual representation of a biochemical reaction network.
These screenshots from the Edinburgh Pathway Editor (Version 3.0.0-alpha13) [46] show a se-
lected glyph with its attributes that are automatically displayed in the properties window. (A)
EntityPoolNode “Entity Count” is mapped to InitialMoleculeCount. (B) ProcessNode with
attributes for entering the propensity functions for the forward and backward reactions. “Export
Name” facilitates the production of readable Bio-PEPA models.

that immediate neighbourhood). Thus parameter names can be brief, since they only
need to be unique within the arc. The ManualEquationArcID is specified by the user
in the visual SBGN-PD editor and differs from ArcID, a globally unique identifier that
is automatically generated by the graphical editor. The ManualEquationArcID allows
for user-defined generic names that are easy to remember, such as “Km” and “vm” for
Michaelis-Menten reactions. It should be easily accessible within the graphical editor,
just as the parameters that are stored within an arc.

Logical operators and logic arcs. To facilitate the use of logical operators in quantitative
analyses one needs to convert the integer molecule counts of the involved EPNs to
binary signals amenable to boolean logic. Thus SBGNtext supports “incoming logic
arcs” that connect a “source entity” or “source logical result” with a “destination logic
operator” and apply an “input threshold” to decide whether the source is above the
threshold (“On”) or below the threshold (“Off”). To this end, a graphical editor needs
to support the “input threshold” as a numerical attribute that the user can enter; all other
information recorded in incoming logic arcs is already part of an SBGN diagram. Once
all signals are boolean, they can be processed by one or several logical operators, until
the result of this operation is given in the form of either 0 (“Off”) or 1 (“On”). This
result then needs to be converted back to an integer or float value that can be further
processed to compute process frequencies. Thus a graphical editor needs to support
corresponding attributes for defining a low and a high output level.
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3.3 Quantitative Extensions of ProcessNodes

For quantitative analyses, a ProcessNode must have a unique name and a kinetic law
that represents the propensity, which is proportional to the probability that this process
occurs next in a stochastic model, based on the current global state of the model. In a
deterministic model this equation gives a rate law that is expressed in terms of abso-
lute molecule numbers, not concentrations. Since the ProcessType is not required for
quantitative analyses, it does not matter whether a process is an ordinary Process,
an Uncertain process or an Observable process, for example. For all these Pro-
cessNodes, graphical editors need to support attributes for the manual specification of
a ProcessNodeID, and a PropensityFunction. These attributes are then stored in
SBGNtext. If support for bidirectional processes is desired, then graphical editors need
to facilitate entering a propensity function for the backward process as well. Propensity
functions compute the propensity of a unidirectional process to be the next event in the
model and can be used directly by simulation algorithms and ODE solvers [20].

A PropensityFunction can be given directly (see current prototype of Edinburgh
Pathway Editor [46]; Figure 2), but the full definition of SBGNtext specifies propen-
sities by referring to aliases. This can simplify the specification of models and hence
reduce errors. For instantiation, a translator needs to replace all aliases by their true
identity. We use the following syntax for a parameter alias that is substituted by the
actual numeric value (or a globally defined parameter) from the corresponding arc:

<par: ManualEquationArcID.QuantitativePropertyName>

While translating to Bio-PEPA this would be simply substituted with a corresponding
parameter name. The parameter is then defined elsewhere in the Bio-PEPA model to
have the numerical value stored in the corresponding property of the arc. To allow the
numerical analysis tool to access an EPN count at runtime we replace the following
entity alias by the EntityPoolNodeID that the corresponding arc links to:

<ent: ManualEquationArcID>

This is shorter than the EntityPoolNodeID and allows the reuse of propensity func-
tions if kinetic laws are identical and the manual IDs follow the same pattern. It is
desirable that there is no need to specify the EntityPoolNodeID since it is fairly long
and generated automatically to reflect various properties that make it unique. It would
be cumbersome to refer to in the equation and it would require a mechanism to access
the automatically generated EntityPoolNodeID before a SBGNtext file is generated.
Also any changes to an entity that would affect its EntityPoolNodeIDwould then also
require a change in all corresponding propensity functions, a potentially error-prone
process. The same substitution mechanism can be used to provide access to proper-
ties of compartments (see [35]). In addition to these aliases, functions use the typical
standard arithmetic rules and operators that are directly passed through to the next level.

4 Mapping SBGN-PD Elements to Bio-PEPA

In this section we explain how to use the semantics of SBGN-PD to map a SBGN-PD
model to a formalism for quantitative analysis. We are using Bio-PEPA as an example,
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but our approach is general and can be applied to many other formalisms that support
the modelling of chemical reactions.

4.1 The Bio-PEPA Language

Bio-PEPA is a stochastic process algebra which models biochemical pathways as inter-
actions of distinct entities representing reactions of chemical species [10,3]. A process
algebra model captures the behaviour of a system as the actions and interactions be-
tween a number of entities, where the latter are often termed “processes”, “agents” or
“components”. In PEPA [23] and Bio-PEPA [10] these are built up from simple se-
quential components. Different process algebras support different modelling styles for
biochemical systems [5]. Stochastic process algebras, such as PEPA [23] or the stochas-
tic π-calculus [41], associate a random variable with each action to represent the mean
of its exponentially distributed waiting time. In the stochastic π-calculus, interactions
are strictly binary whereas in Bio-PEPA the more general multiway synchronisation is
supported. Bio-PEPA is based on the following underlying principles (see [10] for more
details):

– modelling follows the “reagent-centric” style, which means that different species
components denote different types of reagents;

– only irreversible reactions are considered: reversible reactions can be seen as the
union of a pair of forward and backward reactions;

– the reactants of the reaction can only decrease their concentration, the products can
only increase it, whereas enzymes and inhibitors do not change;

– a single species in different states (e.g. phosphorylated, free, bound ligand, in dif-
ferent compartments, ...) is regarded as different species and represented by distinct
sequential components;

– compartments are static and do not play an active role in reactions, but they can
be used to constrain reaction occurrences to a particular location and propensity
functions can depend on their size. Here for the sake of simplicity, we assume all
species are located in the same compartment.

The syntax of Bio-PEPA is defined as [10] :

S ::= (α, κ) op S | S + S | C P ::= P ��
L

P | S (x)

where S is a sequential species component that represents a chemical species (termed
“process” in some other process algebras and “EntityPoolNode” in SBGN-PD), C is a
name referring to a species component defined as C ≡ S , P is a model component that
describes the setL of possible interactions between species components (these “interac-
tions” or “actions” correspond to “processes” in SBGN-PD and can represent chemical
reactions). An initial count of molecules or a concentration of S is given by x ∈ R+0 . In
the prefix term “(α, κ) op S ”, κ is the stoichiometry coefficient and the operator op indi-
cates the role of the species in the reaction α. Specifically, op = ↓ denotes a reactant,
↑ a product, ⊕ an activator, � an inhibitor and 	 a generic modifier, which indicates
more generic roles than ⊕ or �. The operator “+” expresses a choice between possible
actions. Finally, the process P ��L Q denotes the synchronisation between components:
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the set L determines those activities on which the operands are forced to synchronise.
When L is the set of common actions, we use the shorthand notation P ��∗ Q. A Bio-
PEPA model P is defined as a 6-tuple 〈V,N ,K ,FR,Comp, P〉, where:V is the set of
compartments,N is the set of quantities describing each species, K is the set of all pa-
rameters referenced elsewhere, FR is the set of functional rates that define all required
kinetic laws, Comp is the set of definitions of species components S that highlight the
reactions a species can take part in and P is the system model component.

A variety of analysis techniques can be applied to a single Bio-PEPA model, facilitat-
ing the easy validation of analysis results when the analyses address the same issues [4]
and enhancing insight when the analyses are complementary [9,1]. Currently supported
analysis techniques include stochastic simulation at the molecular level, ordinary dif-
ferential equations, probabilistic and statistical model-checking and numerical analysis
of continuous time Markov chains [10,3,17]. Additional analysis techniques are facili-
tated by compositional reasoning, which allows the automated extension of elementary
proofs of qualitative features to complex models. Examples for such qualitative analy-
ses include deadlock and livelock detection and model-checking of a model against a
logical formula.

4.2 SBGN-PD Mapping

Here we map the core elements of SBGN-PD to Bio-PEPA (see [34] for an implemen-
tation).

Entity Pool Nodes. Due to the rich encoding of information in the EntityPoolNode-
ID, Bio-PEPA can treat each distinct EntityPoolNodeID as a distinct species com-
ponent. This removes the need to explicitly consider any other aspects such as entity
type, modifications, complex structures and compartments, as all such information is
implicitly passed on to Bio-PEPA by using the EntityPoolNodeID as the name for
the corresponding species component. The definition of the set N of a Bio-PEPA sys-
tem requires the attribute InitialMoleculeCount for each EPN (see Section 3).

Processes. All SBGN-PD ProcessTypes are represented as reactions in Bio-PEPA.
Compiling the corresponding set FR relies on the attribute PropensityFunction and
a substitution mechanism that makes it easy to define these functions manually. To help
humans understand references to processes in the sets FR and Comp requires recog-
nisable names for SBGN-PD ProcessNodeIDs that map directly to their identifiers in
Bio-PEPA. Thus graphical editors need to support manual ProcessNodeIDs.

Reversible processes. The translator supports reversible SBGN-PD processes by di-
viding them into two unidirectional processes for Bio-PEPA. The translator reuses the
manually assigned ProcessNodeID and augments it by “ F” for forward reactions
and “ B” for backward reactions. These two unidirectional processes are then treated
independently. When compiling the species components in Bio-PEPA, every time a
LeftHandSide arc is found, the translator assumes that the corresponding forward
and backward processes have been defined and will augment the process name appro-
priately, while adding the corresponding Bio-PEPA operator for reactant and product.
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Table 3. “Water pipes and control electronics”: Mapping arcs between entities and processes in
SBGN-PD to operators in Bio-PEPA species components. “Symbols” are the formal syntax of
Bio-PEPA, while “code” gives the concrete syntax used in the Bio-PEPA Eclipse Plug-in [3].

SBGN-PD glyph ArcType Bio-PEPA symbol Bio-PEPA code

Consumption ↓ <<

Production ↑ >>

LeftHandSide ↓ and ↑ << and >>

RightHandSide ↑ and ↓ >> and <<

Modulation 	 (.)

Stimulation ⊕ (+)

Catalysis ⊕ (+)

Inhibition � (-)

NecessaryStimulation 	 (.)

RightHandSide arcs are handled in the same way. Thus the production arc glyph in
SBGN-PD has three distinct meanings as shown in Table 3.

Arcs. The arcs in SBGN-PD define which entities participate in which processes. Thus
arcs play a pivotal role in defining the species components in Bio-PEPA. Since arcs can
store kinetic parameters, they are also important for defining parameters in Bio-PEPA.
As kinetic law definitions in Bio-PEPA frequently refer to such parameters, we use
the ArcID that is automatically generated by the graphical editor to substitute the local
manual arc references in propensity functions by globally unique parameters names
(see Section 3). The type of an arc indicates both the role of the connected entity in the
process (consumed reactant, product or rate modifier) and the chemical nature of the
reaction (catalysis, stimulation, inhibition, necessary stimulation or the most generic
modification). Thus the type of an arc can be mapped directly to the operator “op”
described in the Bio-PEPA syntax shown in Table 3. All mappings are straightforward
except NecessaryStimulation (previously called Trigger), which we mapped to
the generic modifier 	 to indicate that this interaction inhibits below and stimulates
above a given threshold.

Logical operators. Logical operators require the conversion of integer molecule counts
of the relevant EPNs to binary signals and after some boolean logic processing back to
low and high integer values. As evident from the implementation scheme above, the use
of all quantitative properties culminates in the correct formulation of the corresponding
propensity functions that determine the probability that the corresponding process will
be the next to occur. Thus an implementation of logical operators requires that their
results be included in the corresponding propensity functions. The current scheme of
implementing propensity functions relies heavily on substituting the various compo-
nents into the final equation, so that Bio-PEPA will ultimately only see one formula per
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propensity function. In this context the implementation of logical operators requires the
insertion of a formula in the propensity function that computes the result of the boolean
operations from their integer input. An arbitrarily complex logic operator network can
be constructed from the following basic building blocks:

– Convert from integers or double floats to boolean values. This is best done by a
specially defined mathematical function that takes an integer or float signal and
compares it to a specified threshold, returning either 0 (signal ≤ threshold) or 1
(signal > threshold). The definition of such a function is not complicated and can
be implemented with the help of the Heaviside step function that is available in the
Bio-PEPA Eclipse Plug-in.

– Map boolean operators: AND → multiply all boolean inputs to get output. NOT
→ use the arithmetic expression output = (1 − input). OR→ sum all inputs (0/1)
and test if it is greater than 1 using the threshold function.

5 Converter Implementation and Internal Representation

We chose Java as implementation language for the converter described above, due to
the good portability of the resulting binaries and for interoperability with the Bio-PEPA
Eclipse Plug-in [3]. We defined a grammar for SBGNtext in the Extended Backus-
Naur-Form (EBNF) as supported by ANTLR [39], which automatically compiles the
Java sources for the parser that stores all important parsing results in a number of co-
herently organised internal TreeMaps. To generate a Bio-PEPA model three main loops
over these TreeMaps are necessary: over all entities, over all processes and over all
parameters. To illustrate the translation we refer to “code” examples from Figure 3.

The loop over all entities (e.g. “m LSS Ent”) compiles the species components as
well as the model component required by Bio-PEPA. The latter is a list of all partici-
pating EntityPoolNodeIDs combined by the cooperation operator “< ∗ >” or ��∗ that
automatically synchronises on all common actions (“∗”). This simplification depends
on all processes in SBGN-PD having unique names and fixed lists of reactants with
no mutually exclusive alternatives in them. The first condition can be enforced by the
tools that produce the code, the second is ensured by the reaction-style of describing
processes in SBGN-PD. For example, SBGN-PD does not allow for a single reaction
called “bind”, which states that A binds with either B or C to produce D. In Bio-PEPA
these alternative reactions could be given the same name and careful construction of
the model equation could then ensure that only one of B or C participates in any one
occurrence of the reaction. To describe the same model in SBGN-PD requires two reac-
tions with different names (A+B→D; A+C→D;). This is then translated into the correct
Bio-PEPA model using only “< ∗ >”. Hence individual actions synchronised by the
cooperation operator do not need to be tracked in this system.

For each species component a loop over all arcs finds the arcs that are connected
to it (e.g. “st33”) and that store all relevant ProcessNodeIDs (e.g. “LSS Proc”). The
same loop determines the respective role of the component (as reflected by the choice
of the Bio-PEPA operator in Table 3; e.g. “(+)”). To compile this we loop over all
arcs to find the arcs that connect to a particular entity. Since the arc also contains the
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... // header
EntityPoolNode m_LSS_Ent {
 EPNName = "LSS" ;
 EPNType =  Macromolecule  ; 
 EPNState = {  } ;
 InitialMoleculeCount =  10000 ; 
}  ...  // more EPNs
ProcessNode LSS_Proc {
 ProcessType = Process;
 PropensityFunction = 
   "<par: enz.kcat>*<ent: enz>*<ent: subs> 
 / (<par: enz.Km_CountCell> +  <ent: subs>)" ;
}  ...  // more ProcessNodes 
Arc st33 {
 ManualEquationArcID = enz ;
 ArcType = Stimulation ;
 Entity = m_LSS_Ent ;
 Process = LSS_Proc ;
 Stoichiometry = 1 ;
 QuantitativeProperties = {
  ( Km_CountCell =   0.015 * omega  ) 
  ( kcat =  1000.0  ) 
 } ;
}  ...  // more Arcs 
... // ending

st33_Km_CountCell = 0.015 * omega;
st33_kcat = 1000.0;
...  // more parameters

kineticLawOf  LSS_Proc :   
 st33_kcat * m_LSS_Ent  
 *  m_23oxydosqualene_Ent
 / ( st33_Km_CountCell *  
     m_23oxydosqualene_Ent ) 
;  ...  // more kinetic laws

m_LSS_Ent = 
 ( LSS_Proc   , 1 ) (+) m_LSS_Ent  
;  ...  // more species components 

// model component with initial counts per cell
m_LSS_Ent [10000] <*> 
m_23oxydosqualene_Ent[0] <*> ...
    // more species components [initial count]

SBGNtext

Bio-PEPA

SBGN
Process

Description

2,3-oxydosqualene

LSS

lanosterol

Fig. 3. Transformation of biochemical reaction systems in the automated workflow from
SBGN-PD to Bio-PEPA. Using an extract of the cholesterol pathway model discussed below,
this example shows how parts from one representation are transformed into parts of another. The
code excerpts focus on the enzyme (“LSS Proc”) and the reaction it catalyses (“LSS Proc”). Pa-
rameters such as kinetic constants and initial amounts of species must be scaled from the start in
the Edinburgh Pathway Editor to represent discrete molecule counts.

process ID and no further information about a process is required here, there is no
need to loop over all processes as well. By combining the information stored in the
TreeMaps of entities and arcs, it is possible to compile the relevant information for Bio-
PEPA species components. The fact that multiple arcs can connect the same entity to
multiple reactions and the same reaction to multiple entities facilitates the preservation
of SBGNs capacity to model reactions with many entities during the translation process.

The loop over all processes (e.g. “LSS Proc”) compiles the kinetic laws by substi-
tuting aliases (e.g. “<ent: enz>” or “<par: enz.kcat>” ) for EPNs (“m LSS Ent”)
and parameters (“st33 kcat”) in the propensity functions specified in the graphical
editor. Each function is handled separately by a dedicated function parser that queries
the TreeMaps generated when parsing the SBGNtext file.1

1 Our prototypic implementation of the workflow presented here passes propensity functions
entered in the Edinburgh Pathway Editor without modification to Bio-PEPA. A version of
SBGNtext2BioPEPA that substitutes parameters in functions is available from [34].
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The loop over all quantitative properties of the model defines the parameters in
Bio-PEPA (e.g. “st33 kcat”). It is possible to avoid this step by inserting the direct
numerical values into the equations processed in the second loop. However, this sub-
stantially reduces the readability of equations in the Bio-PEPA model and makes it
difficult for third party tools to assist in the automated generation of parameter com-
binations. Thus we defined a scheme that automatically generates parameter names to
maximise the readability of equations (combine ArcID “st33” and name of the quanti-
tative property “kcat”).

To facilitate walking through the various collections specified above, the TreeMaps
are organised in four sets, one set for entities, one for processes, one for arcs and one for
quantitative properties. Each of these sets is characterised by a common key to all maps
within the set. This facilitates the retrieval of related parse products for the same key
from a different map. Since all this information is accessible from Java code, it is easily
conceivable to use the sources produced in this work for reading SBGNtext files in a
wide variety of contexts. The system is easy to deploy, since it involves few files and the
highly portable ANTLR runtime library. Our converter is called SBGNtext2BioPEPA
and sources are available [34].

6 Example: Competitive Inhibition in the Cholesterol Pathway

6.1 A Model of the Cholesterol Synthesis Pathway

Here we illustrate our translation workflow by using the cholesterol synthesis pathway
as an example. We first draw an SBGN-PD map of this pathway (Figure 4) in the Ed-
inburgh Pathway Editor (EPE) [46] based on the biochemical reactions listed in KEGG
[27]. Then we add the necessary quantitative extensions as attributes to the correspond-
ing glyphs in EPE (for screenshot see Figure 2), before we export the model from
EPE to SBGNtext. SBGNtext is automatically translated to Bio-PEPA with the help
of SBGNtext2BioPEPA [34]. Finally the model is simulated in the Bio-PEPA Eclipse
Plugin Version 0.1.7 [3] using the Gibson-Bruck stochastic simulation method [19]
and the Adaptive Dormant Prince ODE solver. Fluxes are computed from the exported
time courses as described below. Since our model is focussed on the flux of de novo
cholesterol production, we choose to ignore the complex processes that degrade or store
cholesterol.

Scaling of the System. Since Bio-PEPA and SBML [25] describe systems in terms of
explicit molecule counts and not concentrations, we introduce a scaling factor Ω which
is used to represent the size of the system. The factorΩ effectively converts a concentra-
tion [mM] into a molecular count by multiplying it with Avogadro’s number and a vol-
ume. As a volume we cannot use the typical volume of a cell, since cholesterol synthesis
is confined to the endoplasmatic reticulum, which comprises only a fraction of the cell.
At this stage we do not have information about the volume of a cell dedicated to choles-
terol synthesis. However, rough estimates show that many typical enzymes that are not
produced in particularly high copy numbers exist in about 104 copies / cell. Thus we
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acetyl-CoA

HMGCS1

HMG-CoA

HMGCR

mevalonate

MVK

mevalonate-5P

PMVK

mevalonate-5PP

MVD

isopentyl-PP

EUPPS

farnesyl-PP

FDFT1

squalene

CYP51A1

4,4-dimethyl-cholestra-8,14,24-trienol

SQLE

2,3-oxydosqualene

LSS

lanosterol

GGPS FDPS

TM7SF2

14-demethyl-lanosterol

NSDHL

3-keto-4-methyl-zymosterol

HSD17B7

4-methyl-zymosterol

zymosterol

desmosterol

7-dehydro-desmosterol

SC4MOL

4-methyl-zymosterol-carboxalate

cholestra-7,24-dien-3beta-ol

cholesterol

DHCR24

cholestra-8,en-3beta-ol

EBP

lathosterol

SC5DL

7-dehydro-cholesterol

DHCR7

statin

Fig. 4. A SBGN-PD representation of the cholesterol pathway as taken from KEGG [27], drawn
in the Edinburgh Pathway Editor [46]. Metabolites are marked as yellow to highlight the mostly
linear structure of the pathway. Enzymes are coloured in cyan and the inhibitory statin in red. A
constant flow of acetyl-CoA is assumed to enter the system.

choose Ω such that a 10 mM enzyme concentration translates into 10000 copies / cell
(Ω = 1000), giving our model a realistic scale. Explicitly representing Ω increases the
flexibility of the model by allowing quick changes to the size of the system2.

2 Since parameters cannot be defined explicitly in the current EPE prototype, we model Ω as
a “dummy-species”, that does not take part in reactions, but has a constant value, which can
be referred to in propensity functions for the purpose of scaling KM. Since the initial “Entity
Count” needs to be an integer of the right size we enter 10000 directly (= 10 · Ω).
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Table 4. Kinetic parameters for Michaelis-Menten reactions as used in our model. Values for the
reaction rate parameters were taken from BRENDA [7] where possible. In order to have units
uniformly in terms of molecule counts, KM needs to be multiplied with the system size Ω that is
also used to specify the enzyme count (see as in Eq.1). Values marked with “*” are hypothetical.
Reactions not listed here are assumed to follow mass action kinetics with rate constants of 1000
(reactants: 4-methyl-zymosterol, cholestra-7,24-dien-3β-ol, 7-dehydro-desmosterol) or {0.05, 50}
× 10 Ω (product: acetyl-CoA).

Enzyme Enzyme count Turnover kcat [1/h] KM [mM]

HMGCS1 10 Ω * 1000 * 0.01

HMGCR {3, 10, 30} Ω * 500 * 0.07

MVK 10 Ω * 1000 * 0.024

PMVK 10 Ω * 36720 0.025

MVD 10 Ω * 17640 0.0074

EUPPS 10 Ω * 1000 * 0.01 *

GGPS 10 Ω * 1000 * 0.01 *

FDPS 10 Ω * 1000 * 0.01 *

FDFT1 10 Ω * 1908 0.0023

SQLE 1000 Ω * 65.88 0.0077

LSS 10 Ω * 1000 * 0.015

CYPY1A1 10 Ω * 1000 * 0.005

TM7SF2 10 Ω * 1000 * 0.0333

SC4MOL 10 Ω * 1000 * 0.01 *

NSDHL 10 Ω * 1000 * 0.007

HSD17B7 1000 Ω * 177.48 0.236

DHCR24 - zymosterol 10 Ω * 1000 * 0.037

DHCR24 - desmosterol 10 Ω * 1000 * 0.01 *

EBP - cholestra-8,en3β-ol 10 Ω * 5122.8 0.01 *

EBP - zymosterol 10 Ω * 1522.8 0.05

SC5DL 10 Ω * 1000 * 0.032

DHCR7 10 Ω * 1000 * 0.277

Reaction Kinetics. Our typical kinetic law (propensity function for stochastic simula-
tions; rate law for ODE) for standard Michaelis Menten kinetics as entered in EPE is

kcat · EnzymeName Ent · m S ubstrateName Ent
(KM · Ω) + m S ubstrateName Ent

(1)

This function is used to model all reactions that involve one enzyme and one metabo-
lite. To do this we retrieved kinetic parameter values from BRENDA [7]. If no kinetic
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parameter was found for an enzyme, we assumed a turnover of kcat=1000 [1 / h] and
a Michaelis-Menten constant of KM=0.01 [mM], which is of the same order of mag-
nitude as the mean of corresponding values of other enzymes that have been observed
in experiments. Table 4 reports all relevant parameters used in our model. The reaction
catalysed by HMGCR has been described as a rate limiting step of the cholesterol path-
way [30,37]. To capture this notion in our model we increase the enzyme copy numbers
for SQLE and HSD17B7, two slow reactions for which both kcat and KM are known.

For reactions without an enzyme in Figure 4 we assumed mass action kinetics. We
chose rates so that they would not be limiting in this system and would not force the
accumulation of large amounts of reactants (see Table 4).

The first mass action reaction is special since it determines the flux of acetyl-CoA
into the system. In the absence of degradation reactions for intermediate metabolites
and the endproduct cholesterol, the influx determines the rate of cholesterol production
– unless intermediate metabolites accumulate (see below). We chose to model two sce-
narios: a low-flux scenario that represents situations where acetyl-CoA in the cell is di-
rected away from cholesterol synthesis and a high-flux scenario that reflects conditions
of more abundant acetyl-CoA. In the low and high flux scenarios 500 = 0.05 · 10 Ω and
500000 = 50 · 10 Ω molecules of acetyl-CoA are introduced into the system, respec-
tively (10 Ω was chosen to be of the same order of magnitude as the typical number of
copies per enzyme).

In order to model competitive inhibition by statin we use the following kinetic law:

kcat · EnzymeName Ent · m S ubstrateName Ent
m S ubstrateName Ent + (KM · Ω) · (1 + m InhibitorName Ent/(Ω · KI))

(2)

where HMGCR is the enzyme, HMG-CoA the metabolite, statin the inhibitor and
KI = 0.000044 [mM] the inhibition constant average of 11 values for human cells found
in BRENDA; values for other reactions are given in Table 4 . From the nature of this
function it follows that any number of inhibitor molecules can be rendered ineffective,
if countered by a sufficiently large number of metabolites (see results below).

Measurement of Cholesterol Flux. Due to the linear structure of the pathway, its uni-
directional flow and the lack of degradation of intermediate products, a steady flow
of acetyl-CoA leads to a steady production of cholesterol. If the rate of an intermedi-
ate reaction is too low, the production of cholesterol is slowed down temporarily until
the substrate of the reaction has accumulated enough to compensate for the reduction.
A simulation in the high flux environment without statin and for HMGCR = 30000
showed that all intermediates equilibrate after less than 5 minutes and then fluctuate
around fairly low molecule counts (most around zero, all below 500). To facilitate mea-
surements of cholesterol production flux F, we omitted cholesterol degrading reactions.
Instead we compute F, the flux of newly synthesised molecules of cholesterol / hour as

F =
CT2 −CT1

T2 − T1
(3)

where C represents accumulated counts of synthesised cholesterol molecules in the
system at the corresponding points T1 and T2 and time is measured in hours.



Cholesterol Pathway: SBGN to Bio-PEPA 31

0 

1x105 

2x105 

3x105 

4x105 

5x105 

6x105  

ch
ol

es
te

ro
l f

lu
x 

[m
ol

ec
ul

es
 / 

ho
ur

] HMGCR = 3000 
HMGCR = 10000 
HMGCR = 30000 

0.0 

100.0 

200.0 

300.0 

400.0 

500.0 

1 10 100 1000   104     105      106       107 

ch
ol

es
te

ro
l f

lu
x 

[m
ol

ec
ul

es
 / 

ho
ur

] 

statin molecules in the system 

HMGCR = 3000 
HMGCR = 10000 
HMGCR = 30000 

A

B

Fig. 5. Response of cholesterol flux to different amounts of statin molecules in the system. (A)
Assuming a high influx of acetyl-CoA as computed by the Adaptive Dormant Prince ODE solver
predicts mean expected values. This approximation works well for large molecule counts. (B)
Assuming a low influx of acetyl-CoA as computed by the Gibson-Bruck stochastic simulator
shows the variability associated with low copy numbers of molecules. Values were computed
by the the Bio-PEPA Plugin 0.1.7 and report the average of five runs with error bars denoting
standard deviations. We deliberately avoided averaging over many more repeats to highlight the
stochastic nature of the system.
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Fig. 6. The stochastic variability of the flux of cholesterol for a wide range of enzyme copy
numbers with a corresponding number of inhibitory statin molecules as given below. The higher
flux for 1 and 3 HMGCR molecules is caused by rounding off fractions computed by equation
(4) to get molecule counts. Error bars denote standard deviations observed in 50 stochastic runs,
measuring flux in the last hour of 2h simulations, as computed by the Gibson-Bruck stochas-
tic simulator. The number of statin molecules used in the simulations shown here for a given
HMGCR count were computed by rounding the result of equation (4). This resulted in the fol-
lowing HMGCR→ statin pairs: 1→ 0; 3→ 1; 10 → 6; 30→ 18; 100 → 62; 300→ 188; 1000
→ 628; 3000→ 1885; 1 × 104 → 6285; 3 × 104 → 18857; 1 × 105 → 62857; 3 × 105 → 188571;
1 × 106 → 628571.

Visual inspection of all time courses with only 1 statin molecule present indicates
that the cholesterol increase follows a straight line almost immediately from the start.
This is confirmed by comparisons between the fluxes measured over the first and last
quarter of the first hour simulated in ODEs which differ by less than 5%, a difference
that is exceeded by the stochastic noise in the low-flux system. For stochastic simu-
lations, measuring flux over a whole hour integrates more events leading to less vari-
ance than measuring shorter intervals. Thus we report as F the number of cholesterol
molecules synthesised in the first hour after starting the simulation with all metabo-
lites at zero. Since this number varies in stochastic simulations, we report the mean and
standard deviation of five simulations in this case. As discussed below, the structure of
this system is such that eventually cholesterol production will always reach a level that
is equivalent to the influx of acetyl-CoA, even though this may be unrealistic in a cell
because HMG-CoA is degraded in some other way or produced at lower rates. Thus it
is desirable to measure flux as early as possible in this system; hence we limited most
of our measurements to the first hour.
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Fig. 7. Statin loses its inhibitory power if enough HMG-CoA accumulates over time in the ab-
sence of other degradation routes. The error bars denote the standard deviation of five different
stochastic runs, as computed by the Gibson-Bruck stochastic simulator.

6.2 Simulation Results and Biological Interpretation

Statins (or HMG-CoA reductase inhibitors) are drugs widely-used to lower cholesterol
levels [8,31,2]. They act by inhibiting the production of mevalonate that is catalysed
by HMGCR, a step widely believed to be rate limiting for cholesterol production [21].
Much previous work has investigated this step in isolation [21,30,37], but little is known
about the quantitative dynamics of the whole pathway. Here we analyse a model that
provides the opportunity to quantitatively investigate the dynamics of the whole path-
way. We have chosen values for unknown parameters that reflect the intuition of many
biologists that HMGCR is rate limiting. This provides an optimal starting point for
exploring the potential of statin to inhibit cholesterol production.

More specifically we are interested in evaluating how the function of statin is affected
by natural diversity in the rate at which HMGCR catalyses the reaction that is blocked
competitively by statin [30,37]. Such diversity in rate can come from variation in the
numbers of enzymes per cell (e.g. different transcription, translation and degradation
rates) or from variation in the turnover of the enzyme as caused by point mutations
affecting its catalytic centre. We simulated the model in two settings, one with a high
flux of acetyl-CoA using ODEs and one with a low flux of acetyl-CoA using stochastic
simulations, reflecting conditions when the cell directs acetyl-CoA elsewhere. For each
set we chose effective numbers of HMGCR = 3000, 10000 and 30000 copies per cell
to capture natural diversity. We then measured for each of these six sets (3x ODE, 3x
stochastic simulations) the flux of cholesterol at 14 different statin molecule counts in
the system, spanning over seven orders of magnitude.
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The ODE analysis in Figure 5A shows that cells with higher effective concentrations
of HMGCR require larger doses of statin to shut down cholesterol synthesis. Repeat-
ing the same for a low flux of acetyl-CoA using stochastic simulations confirms this
and indicates that the flux of acetyl-CoA into this pathway does not affect the relative
power of statins to shut down cholesterol production (although it does affect the abso-
lute amount produced; see y-axes in Figure 5 for comparison). Changes appear to be
linear in that 10x more HMGCR requires 10x more statin to block and a 1000x higher
flux requires 1000x more statin to reduce it to the level of the low flux we observed.
The slight increase in flux with some of the numbers of statin molecules in Figure 5B
is not significant (see error bars).

To investigate the effects of statin on the variability of flux at very low copy numbers
of HMGCR we calculated the analytically expected number of statin molecules that
blocks 50% of the flux of acetyl-CoA to cholesterol under a regime that leads to a local
equilibrium of 500 molecules of HMG-CoA (this is similar to our low-flux regime).
The expected number of inhibitor molecules I that achieves this effect is given by

I = KIΩ
kcatES − S T F − T FKMΩ

T FKMΩ
(4)

where E counts the enzyme HMGCR, S counts the substrate HMG-CoA (assumed to
be 500), kcat = 500 [1/h], KM=0.07 [mM], Ω=1000, T is the target flux to cholesterol
assumed to be 500 [1/h], F = 50% is the fraction to which the flux should be reduced
by statin and KI = 0.000044 [mM] is the inhibition constant of statin. Figure 6 shows
that the stochastic variability of the flux of cholesterol does not depend on the enzyme
copy number although it is not possible to adjust the flux precisely for very few enzymes
since the number of statin molecules has to be an integer (rounding off caused the higher
flux in Figure 6).

Our model also allows us to investigate acquired tolerance towards statin as caused
by the structure of the pathway. Figure 7 shows a comparison of the low flux environ-
ment with HMGCR = 10000, as observed over 1 h, 10 h and 100 h (each measured
flux averages only over the last hour before the end of the observation interval, where
the observations start in equilibrium at 0 h with the addition of statin and end after the
specified time). Assuming that HMG-CoA is not degraded by alternative pathways and
all reactions are irreversible, a more than 10x higher statin concentration is needed to
block cholesterol production over 10 h than when only 1 h needs to be blocked.

Shutting down cholesterol production by competitive inhibition in our model leads to
a continuous buildup of HMG-CoA since this metabolite is continuously produced and
is not otherwise degraded. Because inhibition depends on an excess of statin in com-
parison to the metabolite HMG-CoA (see equation 2), given enough time the buildup
of HMG-CoA will overpower any number of inhibitor molecules, making the pathway
tolerant to the number of inhibiting molecules applied. This is demonstrated by the need
for higher statin molecule numbers to shut down cholesterol production over longer pe-
riods of time (see Figure 7). In real cells an unbounded increase of any metabolite is
not possible and might even be actively avoided by cells, thus acquired statin tolerance
is limited in a natural setting. Nevertheless these findings indicate that the flexibility of
pathways in circumventing obstacles needs to be considered in addition to variability in
HMGCR levels and acetyl-CoA flux when calculating the right dose of statins.
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7 Related Work

There are various languages associated with tools that map visual diagrams to quanti-
tative modelling environments (e.g. SPiM [40], BlenX [14], Kappa [12], Snoopy [22],
EPN-PEPA [45], JDesigner [44]). However the corresponding graphical notations are
not as rich as SBGN-PD and are thus not easily applied to the wide range of scenarios
that SBGN-PD was designed for. Since SBGN-PD is emerging as a new standard, it is
clearly desirable to translate from SBGN-PD to a quantitative environment.

Since the first draft of SBGN-PD has been published in August 2008, a number
of tools have been developed to support it, including the Edinburgh Pathway Editor
[46], Arcadia for visualisation [47] , TinkerCell that is linked to the Systems Biol-
ogy Workbench [6], and PathwayLab [26]. The graphical editor CellDesigner [18] sup-
ports a subset of SBGN-PD and can translate it into SBML which is supported by
many quantitative analysis tools. However the process of adding quantitative infor-
mation involves cumbersome manual interventions. This motivated work for SBML-
squeezer [16], a CellDesigner plug-in that supports the automatic construction of
generalised mass action kinetics equations. While the automated suggestions for the
kinetic laws from SBMLsqueezer might be of interest for some problems, the gener-
ated reactions contain many parameters that are extraordinarily difficult to estimate.
Thus it is preferable to also allow the user to enter arbitrary kinetic laws that may
have to be hand-crafted, but whose equations are simpler and require fewer parame-
ter estimates. In SBGNtext2BioPEPA this is combined with mechanisms to reuse the
code for such kinetic laws, greatly reducing practical difficulties and the potential for
errors.

8 Conclusion and Perspectives

Since biologists are much more comfortable with drawing visual diagrams than writing
code, support for translating SBGN-PD into quantitative analysis frameworks can play
a key role in facilitating quantitative modelling. Our experiences with modelling the
cholesterol pathway have highlighted the value of quick access to details of the model
from an SBGN-PD compliant editor like Edinburgh Pathway Editor. The tool-chain de-
scribed here efficiently transforms a graphical SBGN-PD model into SBGNtext, which
is then compiled into a Bio-PEPA model that is ready for simulation. The simulation
results presented here show that this system can indeed be used for analysing non-trivial
questions.

The workflow presented here critically depends on the process flow abstraction that
implicitly underlies SBGN-PD. We have explicitly described this process flow abstrac-
tion and used it to design a mechanism for translating SBGN-PD into a computa-
tional model that can be used for quantitative analysis. In order to do this we build
on SBGNtext, a textual representation of SBGN-PD that we created [34,35] and that
focusses on the key functional SBGN-PD content, avoiding the clutter that comes from
storing graphical details. We have developed our translator SBGNtext2BioPEPA in Java
to facilitate its integration with the Bio-PEPA Eclipse Plugin and the Systems Biol-
ogy Software Infrastructure (SBSI) that is currently under development at the Centre
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for Systems Biology at Edinburgh (http://csbe.bio.ed.ac.uk/).SBGNtext2BioPEPA con-
tains a parser for SBGNtext based on a formal ANTLR EBNF grammar and is freely
available [34]. Building on the process flow abstraction and the internal representation
of entities, processes, arcs and parameters in our code facilitates implementing transla-
tions of SBGNtext to other modelling languages.
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Abstract. We present a new impulse-based method, called the Teth-
ered Particle System (TPS), for the dynamic simulation of deformable
biological structures. The TPS is unusual in that it may capture a grad-
ual process of deformation using only instantaneous impulses that oc-
cur in response to particle collisions. This paper describes the method
and its application to synaptic vesicle clusters and deformable biological
membranes. Unlike many alternative methods, which require solutions
to systems of equations or inequalities, the calculations in a TPS simula-
tion are all analytic. The TPS also alleviates the need to choose regular
time intervals appropriate for biological entities that may differ in size by
orders of magnitude. The method is promising for simulations of small-
scale self-assembling deformable biological structures exhibiting random
motion.

1 Introduction

Simulation is becoming an increasingly common tool among biologists and med-
ical researchers, complementing traditional experimental techniques. As Kitano
explains in [11], experimental data is first used to form a hypothesis, and that
hypothesis may be investigated with a simulation. Predictions made by the sim-
ulation can then be tested using in vitro and in vivo studies, and the new exper-
imental data may lead to new hypotheses. This iterative process can be applied
to basic research on biological systems, as well the development of drugs and
other treatments.

Modeling and simulation methods that capture the dynamics of deformable
biological structures are frequently targeted at surgical planning and training
[3], as well as the analysis of prosthetics [8]. Models of smaller-scale deformable
biological structures are rarer, but examples include the simulated deformation
of 8-μm red blood cells [19], and that of membrane-sculpting proteins on the
10-nm scale [12].

The most common methods for simulating the dynamics of deformable struc-
tures are mass-spring-damper systems and the finite element method [7]. Our
method, the Tethered Particle System (TPS), differs in that it uses only impulses
to alter motion. Impulse-based methods have previously been used to simulate
rigid bodies, but are generally neglected or considered unsuitable for objects that
deform. It is counterintuitive to model deformable structures with impulses, as
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impulses are instantaneous whereas the deformation of an object is a continu-
ous process that may require a significant length of time. Nevertheless, if one
represents a deformable structure as a network of a large number of particles,
then numerous collisions and impulses between those particles may produce the
effect of a gradual deformation of the overall structure.

We demonstrate that impulse-based methods provide a relatively simple way
to allow deformable biological structures to assemble themselves from rigid par-
ticles representing proteins and other biological entities. Also, with an impulse-
based simulation, it is easy to incorporate the random motion exhibited by these
small biological objects. The TPS proved useful for the simulation of deformable
vesicle clusters in a presynaptic nerve terminal, which form from interactions
between randomly-moving synaptic vesicles and synapsin protein.

Section 2 provides an overview of existing dynamic simulation methods for
both rigid bodies and deformable structures. Section 3 describes the TPS method
in detail, and Section 4 presents TPS models of synaptic vesicle clusters and
various deformable membranes. Strengths and weaknesses of the new method
are discussed in Section 5.

2 Dynamic Simulation Methods

We use the phrase “dynamic simulation” to indicate the simulation of motion
using laws of classical dynamics. Here we describe several pre-existing dynamic
simulation methods, some intended for rigid bodies and others designed for de-
formable structures.

2.1 Dynamic Simulation of Rigid Bodies

This section reviews methods for the dynamic simulation of rigid bodies. In these
methods, object deformation may be represented by a loss of kinetic energy, for
example, or an overlapping of objects. If an object’s changing shape is modeled,
however, then we classify it as a deformable structure instead of a rigid body.

“Impulse-based” methods are perhaps the most obvious approach to the dy-
namic simulation of rigid bodies. An impulse-based method involves two tasks:
collision detection (the task of calculating the time at which any two objects
come into contact) and collision response (the task of computing the new tra-
jectories of two colliding objects). In response to a collision, the trajectory of an
object changes instantaneously in simulated time. The instantaneous change in
the momentum of the object is referred to as an “impulse” [13].

Because impulse-based methods assume instantaneous contacts, the approach
seems inappropriate for the modeling of stable contacts. If a ball is rolling across
a table, for example, it remains in contact with the table for a length of time.
In his 1996 Ph.D. thesis, Brian Mirtich demonstrated that stable contacts could
be modeled as sequences of independent collisions [14]. Consider an impulse-
based simulation of an object bouncing along a horizontal surface. Provided each
bounce was sufficiently short in height and duration, the model could accurately
represent a ball rolling across a table.
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Another well-known drawback to impulse-based methods is possibility of si-
multaneous or nearly-simultaneous collisions. Consider a situation in which a
small object is directly between two much larger approaching objects. After the
first large object hits it, the small object may end up travelling back and forth
between the larger objects in a long sequence of nearly-simultaneous collisions.
This might require considerable computational effort. If kinetic energy is lost in
each collision, then it is possible for the sequence of collisions to become infinite,
slowing the simulation to a halt.

One advantage to impulse-based simulation is the simplicity of the method.
If one is to implement an algorithm to detect collisions between pairs of objects,
which is necessary in perhaps all of the competing methods, it is a simple matter
to apply the law of conservation of momentum to give the two objects new
trajectories. The constraint-based method of [1], by contrast, may compute new
trajectories for more than two objects simultaneously. This is done by minimizing
a linear function constrained by a system of linear inequalities. Depending on
the model, this problem may be NP-hard, may have no solutions, or may have
multiple different solutions.

Both impulse-based methods and the constraint-based method of [1] prevent
the penetration of objects. “Penalty methods” differ in that they allow approach-
ing objects to overlap slightly upon colliding. Typically, a spring is temporarily
inserted between colliding objects; the more the objects overlap, the stronger
the restoring force of the compressed spring [15].

2.2 Dynamic Simulation of Deformable Structures

We now review methods for the dynamic simulation of deformable structures,
as opposed to rigid bodies. Note that phrase “dynamic simulation” excludes a
wide range of methods for modeling deformable structures. An algorithm that
fits a spline to a cross-sectional image of a human lung, for example, certainly
models a deformable structure. But unless the motion of the lung is predicted
from laws of physics, we would not consider it a dynamic simulation.

One way to model a deformable structure is with a set of point masses. Each
mass is connected to its neighbors with a spring and possibly a damper. A
spring applies a force that, depending on its present length, attracts or repels
the masses on either end. A damper applies a force that decreases the relative
speed of the masses on either end. These “mass-spring-damper” systems can
be used to simulate the dynamics of deformable structures by predicting the
acceleration of each mass, at regular time intervals, according to spring, damper,
and external forces [16]. The mass-spring-damper method is essentially a penalty
method like those described in Section 2.1 for rigid bodies. The difference is that
the springs in Section 2.1 are inserted temporarily between detached colliding
objects, whereas in this case the springs tend to be permanent and the point
masses do not necessarily represent distinct objects.

Some mass-spring-damper models use spherical particles instead of point
masses. This technique is used in [5] to simplify the detection of collisions
between deformable objects. Each object is composed of several overlapping
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spherical particles. Instead of detecting collisions between the possibly-concave
surfaces of these objects, only collisions between particles are considered. A sim-
ilar approach is taken in [9], which incorporates friction, viscous forces, and the
fracture of deformable objects.

Mass-spring-damper methods are used extensively in computer graphics. They
are considered computationally efficient, but not particularly accurate. Incom-
pressible deformable objects and nearly-rigid thin membranes are difficult to
model, and appropriate spring parameters may be difficult to determine. Stiff
objects, modeled using springs with large restoring forces, threaten the stability
of mass-spring-damper simulations. Techniques have been developed to address
the stiffness problem. The simplest solution is to decrease the time step, though
this increases computational costs.

A popular alternative to mass-spring-damper systems is the “finite element
method” (FEM) [7]. FEM actually refers to a more general mathematical tech-
nique, but we will refer to it as a dynamic simulation method for deformable
structures. In an FEM model, a deformable object is represented as a set of
adjacent polyhedra. Each polyhedron, or “element”, has a set of vertices, or
“nodes”. Although recorded attributes are associated with each node, material
properties can be obtained at every point in each element by interpolating the
attributes of each node. Positions of each node may change at each time step.
FEM simulations are considered to be more accurate, but also more computa-
tionally intensive, than those based on mass-spring-damper models. The FEM
is most efficient with metals and materials that exhibit relatively little deforma-
tion. Highly deformable materials, like soft biological tissues, require frequent
re-calculation of large mass and stiffness matrices that depend on the positions
of the nodes.

Impulse-based methods, like those used for rigid bodies, tend to be either
neglected or avoided for the dynamic simulation of deformable structures. A
literature search revealed an “impulse response deformation model” [18], which
does simulate the dynamics of deformable structures, but is not an impulse-
based method despite its name. In this case the term “impulse” refers to an
initial perturbation in an object’s shape. Convolution integrals are used to track
the object’s shape after the perturbation.

The possibility of applying impulse-based methods to deformable objects is
acknowledged in [10], but quickly dismissed with the assertion that “impulse-
based methods assume short contacts only, and therefore they are not suitable
for soft objects”. The argument is intuitive: impulses are instantaneous changes
in momentum, whereas the deformation of an object is a gradual process that
takes place over time. In [14], Mirtich states that the strongest restriction of
impulse-based methods is that models are comprised of only rigid bodies.

The pre-existing method that most closely fits the phrase “impulse-based
dynamic simulation of deformable structures” was developed recently to simulate
inextensible cloth [2], as well as volume-conserving deformable objects [6]. In
both cases, impulses are applied simultaneously to all particles in a structure at
regular intervals. Because the purpose of these impulses is to constrain either
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the distances or volumes between the particles, the method can be classified as
constraint-based as well as impulse-based. The simulations of [2] and [6] differ
from impulse-based rigid body simulations in that, in the latter, impulses occur
in response to collisions and not at regular intervals.

3 Tethered Particle System Method

A TPS model tracks the positions and velocities of numerous particles, each with
a fixed mass, that interact with one another via collisions. The TPS method is
unusual in that it is an impulse-based method, meaning that any change in a
particle’s velocity is instantaneous, yet the method is designed for representing
structures that deform over a length of time. The key idea is that a deformable
structure may be represented by a group of particles; even though each individual
particle changes velocity in a sequence of instantaneous impulses, the configu-
ration of the particles in the group changes in a seemingly gradual process over
time. This section provides a detailed description of the TPS method, including
key equations.

3.1 Blocking and Tethering Collisions

In order for a group of particles to exhibit any structure at all, the distances
between certain pairs of particles in the group must be regulated or restricted.
In a TPS model, the distance between a pair of particles is constrained by two
types of collisions: “blocking collisions” and “tethering collisions”.

What we refer to as a “blocking collision” is what one normally associates
with the word “collision”. As illustrated in Figure 1a, a blocking collision occurs
when two approaching particles reach an inner limiting distance. This “blocking
distance” is represented by Δublocking.

Note that although we will frequently depict a particle as a circle or sphere of
some radius, neither the shape nor the size of a particle is explicitly defined in
a TPS model. The particles in Figure 1 could have been drawn as larger circles,
for instance, perhaps overlapping with one another at the time of collision.

The particles in Figure 1a are shown rebounding at a similar angle to that
at which they had been approaching. This indicates that the collision is elastic,
meaning that no kinetic energy is lost. When real-world objects collide, they
deform and absorb kinetic energy. Although individual particles in a TPS have
no shape and do not explicitly deform, we may wish to account for energy loss in
particle collisions. The loss of kinetic energy in the inelastic collision of Figure 1b
causes the particles to rebound at a smaller angle.

Energy loss due to collisions is generally modeled with a parameter called the
“coefficient of restitution”, which expresses the ratio of the post-collision relative
speed of two particles to the pre-collision relative speed [1]. In a TPS model, dif-
ferent coefficients are used for different types of collisions. In a blocking collision,
the coefficient of restitution is referred to as the “rebounding coefficient”, and
is represented by crebound. We will assume 0 ≤ crebound ≤ 1, with crebound = 0
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(a) (b)

Fig. 1. Illustrations of blocking collisions, in which pairs of approaching particles reach
the blocking distance Δublocking and rebound. In (a) the collision is elastic, whereas
(b) depicts an inelastic collision.

indicating maximum energy loss, and crebound = 1 indicating a perfectly elastic
collision.

Any two specific particles may be tethered together at the start of a simu-
lation. Also, when a blocking collision occurs between two particles, they may
become tethered. If two particles are tethered and moving away from one an-
other, and if they reach the “tethering distance” Δutethering , then one of two
things may happen. The particles may become untethered, in which case they
continue moving away from one another. Otherwise the particles remain teth-
ered, undergo a tethering collision, and retract inwards. The phrase “tethering
collision” is unintuitive because one normally expects a collision to occur only
between approaching objects. We use the word “collision” for separating parti-
cles as well so that we can apply the phrases “collision detection” and “collision
response” to either type of particle-particle interaction.

A tethering collision may be envisioned as a situation in which a cord has com-
pletely unravelled, and therefore delivers an inward impulse to the particles at-
tached to it on either end. Such a cord is illustrated in Figure 2a. Initially, the
cord is slack (solid line). As the particles move apart, the cord unravels and even-
tually becomes taut (dotted lines). At that point, the particles change direction
and move inwards. Unlike a spring in a mass-spring-damper model, a cord in a
TPS model has no effect on either particle before reaching its maximum length.

Figure 2a is meant to portray an elastic tethering collision, as the particles
end up approaching one another at the same relative angle at which that had
been separating. Figure 2b, by contrast, illustrates an inelastic tethering collision
in which energy is lost. The particles end up approaching at a smaller angle. To
address energy loss in tethering collisions, we introduce another type of coeffi-
cient of restitution. We refer to it as the “retraction coefficient”, and represent
it with cretract satisfying 0 ≤ cretract ≤ 1.
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(a) (b)

Fig. 2. Illustrations of tethering collisions, in which pairs of separating tethered parti-
cles reach the tethering distance Δutethering and retract. In (a) the tethering collision
is elastic, whereas (b) depicts an inelastic collision.

3.2 Basic Simulation Procedure

Suppose we have two particles, A and B. Their masses are mA and mB respec-
tively, their current positions are uA and uB, and their velocities are vA and
vB. The distance Δu between the particles can be expressed as a function of the
time Δt.

Δu =
√∑(

((uB + vB·Δt) − (uA + vA·Δt))2
)

(1)

The basic procedure in a TPS simulation is to repeatedly solve (1) for Δt for all
pairs of relatively close particles. Solving (1) with Δu = Δublocking yields the
time remaining before a blocking collision, whereas Δu = Δutethering gives the
time of a tethering collision. Time is advanced by the smallest calculated value
of Δt, the time remaining before the next collision. When that collision occurs,
the new velocities of the two particles involved are calculated from (2), and the
process repeats.

vA
′ = vA + Δp

mA

vB
′ = vB − Δp

mB

(2)

The vector Δp above is the impulse, the change in momentum of particle A as a
result of the collision. To obtain its value, it is useful to calculate the following
vectors. Note that vû is the relative velocity of the particles projected onto the
axis between them.

û = ûB − ûA√∑
(ûB − ûA)2

vAB = vB − vA

vû =
∑

(vAB·û)·û
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If the particles rebound or retract, then Δp can be calculated from (3) below
with crestitute being either crebound or cretract.

Δp =
(

1
mA

+ 1
mB

)−1
·(1 + crestitute) ·vû (3)

The actual computations performed are complicated by the possibility of revo-
lution, simultaneous and nearly-simultaneous collisions, and random impulses.
These concepts are described in Sections 3.3, 3.4, and 3.6. The TPS remains sim-
pler than most deformable structure simulation methods in that all unknown
variables can be calculated analytically from explicit formulas. There are no
systems of equations or inequalities that need to be solved simultaneously or
iteratively.

3.3 Revolution

Note that it is the tethering collisions that distinguish the TPS from more tra-
ditional particle collision algorithms. They place potentially-useful outer limits
on the distances between certain pairs of particles, but introduce a performance
problem that must be addressed. The problem is illustrated in Figure 3. Particle
A remains stationary because it has an infinite mass, whereas particle B is in
motion with a finite mass. The two particles remain tethered, and undergo a
sequence of elastic tethering collisions. Immediately after each collision, particle
B approaches A at a relatively small angle θ.

Note that at any stage in a TPS simulation, time is advanced by an irregular
interval to that of the next collision. The greater the frequency with which
collisions occur, the slower the simulation progresses. The problem with the
above scenario is that, if θ is small, the tethering collisions become extremely

Fig. 3. A scenario in which particle B revolves around A in a sequence of tethering
collisions
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frequent and the simulation may become impractically slow. Worse, if θ = 0, then
time cannot be advanced at all without violating the constraint of Δutethering

on the distance between A and B. The problem still exists if the mass of A is
finite, and is exacerbated by small values of cretract.

To address the problem, we place a lower limit θrevolve on the angle at which
particles can approach after a tethering collision. In a collision where this restric-
tion takes effect, we say that the particles “revolve” instead of “retract”. We also
introduce a “revolution coefficient” crevolve that expresses the ratio of the new
relative velocity to the old one after one complete revolution of the particles,
allowing energy to be lost. We require 0 ≤ crevolve ≤ 1.

Calculations pertaining to revolution require us to obtain vŵ, the component
of the relative velocity perpendicular to the axis between them.

vŵ = vAB − vû

If the condition in (4) is satisfied, then the retraction impulse calculated from
(3) is sufficient.√∑(

(cretract·vû)2
)

> tan (θrevolve) ·
√∑

(vŵ
2) (4)

If (4) is not satisfied, we abandon (3) and use the more general equation in (5).

Δp =
(

1
mA

+ 1
mB

)−1
·(vAB − vAB

′) (5)

Here vAB
′, the post-collision relative velocity, is obtained as follows.

vrevolve = vŵ − tan (θrevolve) ·
√∑

(vŵ
2)·û

ûrevolve = vrevolve√∑
(vrevolve)

2

vAB
′ = crevolve

θreolve
π ·

√∑
(vAB

2)·ûrevolve

If θrevolve = π
n , then it takes n collisions for the two particles to achieve a

complete revolution, and the relative speed decreases by a factor of crevolve
1
n

after each collision.

3.4 Loading and Restitution

It is widely known that simultaneous and nearly-simultaneous collisions threaten
the efficiency of impulse-based methods, potentially slowing simulations to a halt.
We now describe this problem followed by our solution.

Consider the scenario in Figure 4. Assume particles A, B, and C are all of the
same mass, and that collisions are elastic. At time tAB, moving particle A collides
with stationary particle B, transferring all of its momentum. Then at time tBC ,
particle B collides with stationary C and transfers all of its momentum.

An efficiency problem arises if the mass of particle B is reduced to a fraction
of that of A and C, as illustrated in Figure 5. At time tAB0 , particle A transfers
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Fig. 4. A scenario in which 2 collisions occur between three particles of equal mass

Fig. 5. The same scenario as in Figure 4, but the center particle is now less massive.
Numerous nearly-simultaneous collisions result.

only some of its momentum to B. Particle B reaches C and rebounds at tBC0 ,
then meets A again at time tAB1 . Because only a small amount of momentum
is transferred in each collision, particle B must rebound back and forth in a
sequence of nearly-simultaneous collisions. If the mass of B is one thousandth
that of A and C, roughly 70 elastic collisions occur before enough momentum
has been transferred to separate all three particles.

The processing of 70 collisions is in itself a significant computational cost for
such a simple scenario, but there are many situations in which the simulation will
halt completely. When a simulation was performed with the Figure 5 scenario
and a rebounding coefficient of 0.9, the momentum transferred on each collision
eventually rounded to zero and the simulation stalled.

We propose a novel approximation that addresses the threat of simultaneous
and nearly-simultaneous collisions. The idea is to separate each collision into a
loading phase and a restitution phase, and to allow restitution to take place at a
later time. When particles collide (the loading phase), they form loaded groups. A
“loaded group” acts as a single body with the combined mass of all the particles
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in the group. A restitution delay time Δtrestitute is introduced, after which the
loaded particles separate (the restitution phase). Loaded particles may remain
together longer than Δtrestitute if necessary to ensure that the order in which
particles separate is opposite that in which they loaded. Figure 6 illustrates the
approximation.

Fig. 6. A scenario demonstrating an approximation that addresses the problem of
simultaneous and nearly-simultaneous collisions. Particles form loaded groups for du-
rations of Δtrestitute, during which time they act as single bodies.

At time tAB in Figure 6, particles A and B collide, form a loaded group,
and proceed with matching velocities. Suppose that this loaded group did not
encounter any other particle. In that case, at time tAB + Δtrestitute, particles A
and B would separate or “restitute”. But that does not happen, as at time tBC

while A and B are still loaded, they encounter particle C. The impulse delivered
to C depends not on the mass of B, but rather on the mass of A and B added
together. It is the temporary accumulation of mass that tends to increase the
momentum transferred per collision, and thus reduces the number of collisions.

It is necessary that particles in a loaded group restitute in the opposite order
from that in which they loaded. After all three particles form a loaded group
at tBC , particles A and B may no longer separate at time tAB + Δtrestitute.
The loaded group remains intact until tBC + Δtrestitute instead, at which point
particle B separates from C. The result of the B-C restitution is calculated with
the masses of A and B still combined. After the B-C restitution is complete, but
also at the simulated time tBC + Δtrestitute, particles A and B finally separate.

Calculations pertaining to loading and restitution are relatively simple. Sup-
pose particle A, in a loaded group with mass MA, collides with particle B, in a
loaded group with mass MB. After loading, which takes place immediately, the
new velocity of every particle in both groups is vload.

vload =
(
1 + MB

MA

)−1
·vA +

(
1 + MA

MB

)−1
·vB
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At a later time, when the two loaded groups separate in the restitution phase
of the collision, an impulse ΔpAB is applied between the groups. It value is
obtained by taking the impulse calculated from either (3) or (5), and subtracting
the impulse that was effectively applied when the velocities where changed to
vload.

ΔpAB = Δp −
(

1
MA

+ 1
MB

)−1
·vAB

The proposed approximation can dramatically reduce the number of collisions
in a simulation, even if Δtrestitute is very small. For the scenario involving three
particles in a line, with the outside two particles being a thousand times more
massive than the middle particle, the approximation reduced 70 elastic collisions
to only four. If Δtrestitute = 0, loading and restitution occur back-to-back and
the approximation is effectively canceled.

3.5 External Impulses

The impulses described in Sections 3.1 through 3.4 above arise from interactions
between at least two particles. The novelty of the TPS method lies in the fact that
these impulses alone are capable of predicting processes of deformation. However,
if the particles in a TPS model are influenced by no other factor whatsoever,
then one is limited to simulating objects moving deterministically in a gravity-
free vacuum. In order to capture Brownian motion, drag forces, and other effects
influencing the motion of biological objects, it is necessary to introduce external
impulses into a TPS model. An “external impulse” is an instantaneous change
in momentum that may be applied to a single particle any point in time during
a simulation.

Different methods and models may be used to calculate the timing, the di-
rections, and the magnitudes of external impulses. A realistic TPS model of a
biological system may combine external impulses of many different types. We
recommend that modelers at least incorporate a type of external impulse we
refer to as a “random impulse”: a momentum change of randomized magnitude
and randomized direction applied to a particle each time a randomized time
interval expires. From a practical perspective, random impulses prevent the ki-
netic energy in a TPS model from converging to zero due to the energy losses
associated with particle collisions. From a physical perspective, random impulses
may represent Brownian motion, variability in electric potential fields or fluid
pressure, or interactions with otherwise unrepresented biological entities.

An external force can be represented by a sequence of external impulses. To
incorporate a gravitational acceleration of g, for example, one may apply down-
ward impulses of magnitude mA·g·Δtg to each particle of mass mA at regular
time intervals of Δtg. One can also use external impulses to model the drag force
exerted on a particle by the surrounding fluid. Suppose that a particle of radius
rA and velocity vA is immersed in a fluid with a dynamic viscosity of μfluid and
a velocity of vfluid. One could approxiate the drag force on the particle using
Stoke’s law, and apply external impulses of 6·π·μfluid·rA·(vfluid − vA) ·Δtd at
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time intervals of Δtd. In small-scale biological models, it would in many instances
be reasonable to assume vfluid to be zero.

When an external impulse Δp is applied to particle of mass mA and velocity
vA, the new velocity vA

′ is calculated as follows.

vA
′ = vA + Δp

mA

For the sake of simplicity, we recommend that each external impulse be associ-
ated with a single particle, and that Δp be calculated without accounting for
surrounding particles that may be temporarily in the same loaded group (see
Section 3.4). Once Δp is calculated, then if the particle happens to be in a
loaded group of mass MA, the velocity of every particle in the group is changed
from vload to vload

′.
vload

′ = vload + Δp
MA

3.6 Particle Species

In a TPS model, it is useful to define several distinct species of particles. Certain
properties are chosen for each species individually, and certain properties are
associated with each combination of two species.

Associated with each species is the mass m of every particle of that species.
We also include several parameters pertaining to the random impulses described
in Section 3.5. For each species that we wish to exhibit random motion, we select
an average time interval τRI between random impulses. The actual intervals are
sampled from an exponential distribution during the simulation. We obtain the
magnitude of each impulse from a gamma distribution, which requires a shape
parameter kRI and an average momentum value μRI .

There are five parameters associated with each pair of species: the block-
ing distance Δublocking , the tethering distance Δutethering, and the coefficients
crebound, cretract, and crevolve. Suppose there are three species A and B and C,
for example. There are then six combinations of two species: A-A, B-B, C-C,
A-B, B-C, and C-A. Thus we would have a total of 30 parameters. In practice,
the selection of most of these parameters turns out to be trivial, for we will likely
want most pairs of species to remain untethered. If two A particles cannot be-
come tethered, then the A-A tethering distance is ∞ and the coefficients cretract

and crevolve are irrelevant. Also, instead of choosing blocking distances for each
pair of species, we can choose radii for each individual species and add them
together to obtain the blocking distances.

4 Tethered Particle System Models

Here we present TPS models of two types of deformable biological structures:
vesicle clusters and membranes.
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4.1 Vesicle Clusters

An action potential, a signal that propagates along the axon of a nerve cell,
will ultimately arrive at a presynaptic nerve terminal. Inside this compartment
are tens or hundreds of neurotransmitter-containing sacs called synaptic vesicles
[17]. These vesicles bind with a certain type of protein, called synapsin, to form
clusters. Vesicles can also become docked at the active zone on the membrane
of the compartment. When an action potential arrives, these docked vesicles
may release neurotransmitters and trigger an action potential in an adjacent
neuron. Our focus in this section is on simulations that capture the dynamics
of vesicle clusters as deformable structures, the formation of these clusters, and
the manner in which they congregate at the active zone.

Consider a TPS model consisting of particles of three different species: V ,
S, and D. Each V particle represents a vesicle. Synapsins, being dimers, are
represented by pairs of tethered S particles. A D particle is a docking site,
a mobile location in the active zone of the membrane on which a vesicle may
become docked. Such a model was used in the simulation of Figure 7, which shows
two vesicles (large spheres) surrounded by synapsins (dimers) and docking sites
(small spheres). The vesicles are both tethered to opposite ends of a synapsin.

Fig. 7. A snapshot of a simulation showing two vesicles (V particles), three synapsins
(pairs of S particles) and seven docking sites (D particles)

The tethering of particles is governed by the following rules.

– A V particle and another V particle may never be tethered (vesicles do not
bind to one another directly).

– An S particle and another S particle may be tethered at the start of a
simulation; if they are not tethered at the beginning, they will never become
tethered, and if they are initially tethered, they will never detach (an S
particle and its tethered counterpart represent one synapsin).

– An S particle and a V particle will become tethered if they collide, if the S
particle is not already tethered to a vesicle (at most two vesicles may bind to
a two-particle synapsin), and if the V particle is not already tethered to the
S particle’s counterpart (we do not allow both ends of a synapsin to bind to
the same vesicle).
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– A D particle and another D particle may never be tethered.
– A D particle and a V particle will become tethered if they collide, if the D

particle is not already tethered to another V particle, and if the V particle
is not already tethered to another D particle (vesicles and docking sites pair
up).

– A D particle and an S particle may never be tethered.

Table 1 lists the blocking and tethering distances we selected for V , S, and D
particles. As indicated in the table, approaching docking site and vesicle particles
collide and rebound at 25 nm. If tethered and separating, they retract at 30 nm.
The distances are chosen to reflect the sizes of actual structures. The diameter
of a vesicle is roughly 40 nm, for example, the value used for the vesicle-vesicle
blocking distance. Note that a blocking distance of zero indicates that blocking
collisions never occur between those species, whereas a tethering distance of ∞
indicates that tethering collisions never occur.

Table 1. Blocking and tethering distances for particles representing vesicles, synapsins,
and docking sites

Particle Species Blocking Distance Tethering Distance
Pair Δublocking (nm) Δutethering (nm)
V -V 40 ∞
S-S 2.5 7.5
S-V 22.5 25
D-D 10 ∞
D-V 25 30
D-S 0 ∞

The masses of V and S particles are chosen to be roughly proportional to
their volumes, whereas each D particle is assigned a relatively high mass for its
size to account for resistance in the membrane. The rebounding, retraction, and
revolution coefficients are selected such that a considerable amount of kinetic
energy is lost when vesicles, synapsins, and docking sites collide. Random im-
pulses are applied to all three of these types of particles to maintain a certain
level of kinetic energy in the entire system.

In order to model the formation, disruption, and motion of vesicle clusters, it
is necessary to constrain the V , S, and D particles to a region representing the
presynaptic nerve terminal compartment. The simplest way to achieve this is to
model the nerve cell membrane as a rigid sphere. This is done by adding two
particles to the model, one with species M and one with species Z. Both of these
particles are given infinite mass, which ensures that they remain stationary. The
particle of species M , representing the membrane, is tethered to all V (vesicle),
S (synapsin), and D (docking site) particles.

For the sake of convenience, we introduce the parameter rM to approximate
the radius of the compartment, rV to approximate that of a vesicle, and rS
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Fig. 8. A diagram illustrating the relationships between five particle species

to approximate the radius of half of a synapsin. As illustrated in Figure 8, an
M -V (membrane-vesicle) tethering distance of rM − rV keeps vesicles in the
compartment, and an M -S (membrane-synapsin) tethering distance of rM − rS

does the same for synapsins. Because vesicles and synapsins move freely within
the compartment, the M -V and M -S blocking distances are both zero.

The D particles, representing docking sites, must be constrained to the spher-
ical surface representing the cell membrane. The M -D blocking and tethering
distances are therefore both chosen to be near rM , with Δutethering slightly
greater than Δublocking . Another constraint on the docking sites is that they
must all be located in that region of the membrane known as the active zone.
Hence, all D particles are tethered to the Z particle shown in Figure 8. With the
exception of this tethering, the Z particle has no influence on any other particle.

Figure 9 shows four snapshots of a simulation of a presynaptic terminal of a
nerve cell. Vesicles and smaller synapsins move inside the semi-transparent M
particle, while docking sites move slowly along the bottom of the membrane.
The Z particle that constrains the docking sites is invisible.

Initially, the location of each vesicle and synapsin is randomized within the
spherical compartment. None of the vesicles are initially tethered to synapsin.
After the simulation begins, the tethering of colliding V and S particles leads
to the formation of vesicle clusters. These clusters, which begin to take shape
in Figures 9b, and 9c, grow fewer in number but larger in size as the simulation
progresses. The tethering of V and D particles constrains some of these clusters
to the membrane. In Figure 9d, all of the vesicles have gathered in a single
cluster at the active zone. Synaptic vesicles are typically observed in similar
membrane-bound clusters in real presynaptic nerve terminals.
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(a) t = 0 (b) t = 100

(c) t = 200 (d) t = 600

Fig. 9. Snapshots of a simulation of a presynaptic nerve terminal with a rigid spherical
membrane. With a randomized initial distribution, vesicles form clusters that eventu-
ally congregate at the active zone at the bottom of the membrane.

Experimental results presented in [4] suggest that synapsin helps to maintain
a number of vesicles in the vicinity of the active zone, which in turn increases
the chance that a sequence of action potentials will be transmitted from one
neuron to the next. Dr. James J. Cheetham, a biologist at Carleton University,
uses TPS models like the one in Figure 9 to investigate this theory. By per-
forming numerous simulations with different numbers of vesicles and synapsins,
the availablility of vesicles at the active zone can be quantified as a function of
synapsin concentration. The research involves an iterative process in which the
TPS model is repeatedly improved, and successive sets of simulation results are
compared with experimental data. One improvement made to date is the inclu-
sion of action potentials, which cause certain tethered vesicles and synapsins to
separate from one another over a period of time. New vesicle-synapsin bonds
form after each action potential subsides.
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4.2 Deformable Membranes

Although the rigid spherical membrane of Section 4.1 is likely adequate for a
number of investigations involving vesicle clusters, the representation of de-
formable membranes may help capture the dynamics of a presynaptic nerve
terminal on a larger scale. Deformable membranes may also prove useful for
models of entire nerve cells, networks of nerve cells, tissues, blood vessels, and
possibly even large organs.

A simple way to represent a membrane with a TPS is illustrated in Figure 10.
Particles are positioned on a surface, and each particle is tethered the nearest
neighboring particles. To avoid excessively-sharp folds and other anomalous fea-
tures, a membrane should have at least two layers; that is, there should be two
or more parallel surfaces of particles, and corresponding particles on adjacent
surfaces should be tethered together.

Fig. 10. An illustration of how deformable membranes may be represented. Dots are
particles, and lines indicate pairs of tethered particles.

Particles on a membrane surface need not be coplanar, and need not be ar-
ranged in the triangular grid pattern shown in Figure 10. One alternative is
demonstrated in Figure 11a, which shows an initially spherical membrane de-
forming in response to an impact with an initially downward-moving particle.
The particles in the membrane were arranged in two concentric icosahedral grids,
each constructed by iteratively interpolating the edges of a 20-sided regular poly-
hedron. In Figure 11b, this deformable icosahedral structure is used as a nerve
cell membrane enclosing a presynaptic compartment. The membrane is coerced
into a pear-like shape through the selection of initial particle velocities.

Several challenges can be identified by observing the results of the Figure 11b
simulation. First, the edges of the underlying 20-sided polyhedron tend to pro-
trude from the membrane as it deforms. A more random distribution of par-
ticles would reduce this effect. Another challenge pertains to resolution. The
nerve cell membrane in the figure is too thick, but reducing its width would
require greater numbers of particles and computations. Because intracellular
fluids are essentially incompressible, maintaining the interior volume of a closed
deformable membrane in a TPS model is yet another challenge. It might be pos-
sible to correct a changing interior volume at regular time intervals using external
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(a) (b)

Fig. 11. On the left, an initially-spherical deformable membrane suffers an impact.
On the right, a presynaptic nerve terminal is simulated with the same deformable
membrane. The front half of the membrane is not shown in either snapshot, and the
outer membrane layer is not shown on the right.

impulses, though the calculation of those impulses would require the use of a
fluid dynamics algorithm in conjunction with the TPS.

Figure 12 shows an effort to simulate a square biological membrane or soft
tissue clamped along two opposing edges. The membrane has two layers of par-
ticles, and each particle on the inside is tethered to the four adjacent particles in
the same layer and one particle in the opposite layer. All particles along the two
clamped edges are assigned a mass of ∞ and an initially-zero velocity, rendering
them immobile.

Gravity is incorporated in the Figure 12 model via downward external im-
pulses applied to each mobile particle at regular time intervals. As a result
of these impulses, the initially flat membrane in Figure 12a is starting to sag
in Figure 12b. In Figure 12c the membrane exhibits a wave-like pattern as it
responds to internal tethering collisions triggered by the initial fall. Small non-
deterministic ripples appear in the membrane as a consequence of two sources
of randomness; the order in which particles receive gravitational impulses is
randomized, as is the order in which simultaneous collisions are resolved. The
gravity-induced waves have mostly subsided after 48 time units, as shown in
Figure 12e. Shortly after, a falling particle impacts the membrane and produces
the small ridge in Figure 12f.

The simulation of Figure 12 reveals a case for which the TPS method should
not be used: a structure composed of numerous tethered particles subject to
sustained opposing external forces. The opposing forces in the Figure 12 model
include the downward force of gravity and the upward reaction force acting on
the membrane along the stationary edges. While a macroscopic soft tissue will
lengthen as the applied force increases, a TPS deformable membrane will reach
its maximum length and stop stretching. If, for whatever reason, the force of
gravity were to increase by an order of magnitude, the membrane in Figure 12
would sag faster but no further. The Figure 12 simulation is also computationally
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(a) t = 0 (b) t = 12 (c) t = 24

(d) t = 36 (e) t = 48 (f) t = 60

Fig. 12. A square membrane clamped along two edges responds first to gravity, then to
an impact with a projectile. Note that the projectile is moving upwards in Figures 12a,
12b, and 12c, then downwards in 12d and 12e. In 12f, it is moving up after colliding
with the membrane.

inefficient. After the membrane has sagged, many pairs of particles remain near
or at their tethering distances. These stable contacts cause collisions to occur at
an extremely high rate, slowing the simulation to a crawl.

5 Conclusion

The TPS method described and demonstrated in this paper provides convinc-
ing evidence that impulse-based methods can be used to simulate the dynamics
of deformable structures. The new method is very similar to that of [14], yet
contradicts the assertion that such impulse-based methods require models to
be comprised of only rigid bodies. The TPS requires only analytic calculations,
alleviates the need for regular time intervals, and is particularly promising for
simulations of small-scale self-assembling deformable biological structures. Ex-
ternal impulses may be added to a TPS model to produce random motion, to
apply drag forces, or to account for other factors influencing the dynamics of
biological objects. We have demonstrated the application of the TPS to vesicle
clusters and membranes.

As mentioned in Section 4.2, the method as currently defined does not appear
to be useful for models of complex macroscopic structures subject to sustained
and opposing external forces. The simulation of a clamped membrane subject to
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gravity, shown in Section 4.2’s Figure 12, is a good example of an application
requiring either an alternative method, or perhaps some future enhanced version
of the TPS. In the case of small-scale self-assembling biological structures subject
to random motion, like the vesicle clusters of Figure 9, stable contacts are far
less likely to pose a problem.

A detailed comparison of the TPS with alternative dynamic simulation meth-
ods remains important future work. Here we speculate that the FEM would be
difficult to apply to small-scale self-assembling biological structures, as rapid de-
formation and re-structuring would require frequent re-calculation of mass and
stiffness matrices. Mass-spring-damper systems suffer from the threat of insta-
bility, though it is possible to address this problem with constraints as done in
the method of [2] and [6]. Recall from Section 2.2 that, although it is described
as “impulse-based”, the [2]/[6] method requires new trajectories to be computed
for each node in a deformable structure at regular time intervals. The TPS sim-
ulates deformation with impulses applied not at regular intervals, but rather in
response to collisions. The [2]/[6] method seems to be the more computationally
efficient, as the number of collisions in a TPS simulation can be extremely high.
The TPS is appealing in that all calculations are analytic; there is no need for
the iterative algorithm of [2]/[6] that repeatedly re-calculates trajectories until
all constraints are satisfied within an arbitrary tolerance level.

Impulse-based methods like the TPS are compelling in large part because they
alleviate the need to choose regular time intervals. In the case of a biological
system, the selection of an appropriate time interval would be complicated by
the fact that interacting biological entities may differ in size and momentum by
many orders of magnitude. A suitable interval for one entity may be too large
or too small for another.
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Abstract. Delays in biological systems may be used to model events
for which the underlying dynamics cannot be precisely observed. Math-
ematical modeling of biological systems with delays is usually based on
Delay Differential Equations (DDEs), a kind of differential equations in
which the derivative of the unknown function at a certain time is given
in terms of the values of the function at previous times. In the literature,
delay stochastic simulation algorithms have been proposed. These algo-
rithms follow a “delay as duration” approach, which is not suitable for
biological systems in which species involved in a delayed interaction can
be involved at the same time in other interactions. We show on a DDE
model of tumor growth that the delay as duration approach for stochastic
simulation is not precise, and we propose a simulation algorithm based
on a “purely delayed” interpretation of delays which provides better re-
sults on the considered model. Moreover, we give a formal definition
of a stochastic simulation algorithm which combines both the delay as
duration approach and the purely delayed approach.

1 Introduction

Biological systems can often be modeled at different abstraction levels. A simple
event in a model that describes the system at a certain level of detail may
correspond to a rather complex network of events in a lower level description.
The choice of the abstraction level of a model usually depends on the knowledge
of the system and on the efficiency of the analysis tools to be applied to the
model.

Delays may appear in models of biological systems at any abstraction level,
and are associated with events whose underlying dynamics either cannot be
precisely observed or is too complex to be handled efficiently by analysis tools.
Roughly, a delay may represent the time necessary for the underlying network
of events to produce some result observable in the higher level model.

Mathematical modeling of biological systems with delays is mainly based on
delay differential equations (DDEs), a kind of differential equations in which the
derivative of the unknown function at a certain time is given in terms of the
values of the function at previous times. In particular, this framework is very
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general and allows both simple (constant) and complex (variable or distributed)
forms of delays to be modeled.

As examples of DDE models of biological systems we mention [3,15,10,14,7].
In [3,15] an epidemiological model is defined that computes the theoretical num-
ber of people infected with a contagious illness in a closed population over time;
in the model a delay is used to model the length of the infectious period. In [10] a
simple predator-prey model with harvesting and time delays is presented; in the
model a constant delay is used based on the assumption that the change rate of
predators depends on the number of prey and predators at some previous time.
Finally, models of tumor growth [14] and of HIV cellular infection [7] have been
presented and analyzed by using DDEs.

Models based on DDEs, similarly to their simplest versions based on ordinary
differential equations (ODEs), may be studied either analytically (by finding the
solution of the equations, equilibria and bifurcation points) or via approximated
numerical solutions. However, for complex real models analytical solutions are
often difficult or impossible to be computed, whereas their approximated numer-
ical solution is more feasible.

Models based on differential equations, although very useful when dealing with
biological systems involving a huge number of components, are not suitable to
model systems in which the quantity of some species is small. This is caused by
the fact that differential equations represent discrete quantities with continuous
variables, and when quantities are close to zero this becomes a too imprecise
approximation. In these cases a more precise description of systems behavior can
be obtained with stochastic models, where quantities are discrete and stochastic
occurrence of events is taken into account.

The most common analysis technique for stochastic models is stochastic sim-
ulation that, in the case of models of biological systems without delays, often
exploits Gillespie’s Stochastic Simulation Algorithm (SSA) of chemical reactions
[9], or one of its approximated variants [8,6]. In recent years, the interest for
stochastic delayed processes increased [13]. In [2] a Delay Stochastic Simulation
Algorithm (DSSA) has been proposed, this algorithm gives an interpretation as
durations to delays. The delay associated with a chemical reaction whose reac-
tants are consumed (i.e. are not also products) is interpreted as the duration of
the reaction itself. Such an interpretation implies that the products of a chem-
ical reaction with a delay are added to the state of the simulation not at the
same time of reactants removal, but after a quantity of time corresponding to
the delay. Hence, reactants cannot be involved in other reactions during the time
modeled by the delay.

We argue that the interpretation of delay as duration is not always suitable for
biological systems. We propose a simple variant of the DSSA in which reactants
removal and products insertion are performed together after the delay. This
corresponds to a different interpretation of delays, that is the delay is seen as
the time needed for preparing an event which happens at the end of the delay.
An example of a biological behavior which can be suitably modeled by this
interpretation is mitosis. Cell mitosis is characterized by a pre–mitotic phase and
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by a mitotic phase (cell division). The pre–mitotic phase prepares the division
of the cell, when a cell undergoes the mitotic process, the pre–mitotic phase can
be seen as a delay before the real cell division. During the pre–mitotic phase the
cell can continue to interact with the environment, for example it can die. The
DSSA in [2] cannot model this interactions because the reactants (in this case
the cell itself) are removed at the beginning of reaction and the products are
added at its end (that is after the delay).

In this paper we start by recalling the definition of DDEs and a DDE model
of tumor growth [14]. Then, we give a stochastic model of the considered tumor
growth example and simulate it by using the DSSA introduced in [2] and based
on an interpretation of delays as durations. Subsequently, we propose a new
“purely delayed” interpretation of delays and, consequently, a new variant of
the DSSA that we apply to the considered tumor growth example. Although
this new DSSA permits to have more precise results than the DSSA in [2] and it
has a very easy implementation, there exist some scenarios in which this version
of the algorithm does not work properly. Hence, we define a more precise version
of it which requires a much more complex implementation. Before drawing our
conclusions, we give a formal definition of a stochastic simulation algorithm
which combines both the delay as duration approach and the purely delayed
approach in its most precise definition.

2 Delay Differential Equations (DDEs)

The mathematical modeling of biological systems is often based on Ordinary
Differential Equations (ODEs) describing the dynamics of the considered systems
in terms of variation of the quantities of the involved species over time.

Whenever phenomena presenting a delayed effect are described by differential
equations, we move from ODEs to Delay Differential Equations (DDEs). In
DDEs the derivatives at current time depend on some past states of the system.
The general form of a DDE for X(t) ∈ Rn is

dX

dt
= fx(t, X(t), {X(t′) : t′ ≤ t}),

The simplest form of DDE considers constant delays, namely consists of equa-
tions of the form

dX

dt
= fx(t, X(t), X(t − σ1), . . . , X(t − σn))

with σ1 > . . . > σn ≥ 0 and σi ∈ R. This form of DDE allows models to de-
scribe events having a fixed duration. They have been used to describe biological
systems in which events have a non-negligible duration [3,15,10] or in which a
sequence of simple events is abstracted as a single complex event associated with
a duration [14,7].

In what follows we recall an example of DDE model of a biological system
that we shall use to compare delay stochastic simulation approaches.



64 R. Barbuti et al.

2.1 A DDE Model of Tumor Growth

Villasana and Radunskaya proposed in [14] a DDE model of tumor growth that
includes the immune system response and a phase-specific drug able to alter the
natural course of action of the cell cycle of the tumor cells.

The cell cycle is a series of sequential events leading to cell replication via cell
division. It consists of four phases: G1, S, G2 and M. The first three phases (G1,
S, G2) are called interphase. In these phases, the main event which happens is
the replication of DNA. In the last phase (M), called mitosis, the cell segregates
the duplicated sets of chromosomes between daughter cells and then divides.
The duration of the cell cycle depends on the type of cell (e.g a human normal
cell takes approximately 24 hours to perform a cycle).

The model in [14] considers three populations of cells: the immune system,
the population of tumor cells during cell cycle interphase, and the population
of tumor cells during mitosis. A delay is used to model the duration of the
interphase, hence the model includes a delayed event that is the passage of a
tumor cell from the population of those in the interphase to the population of
those in the mitotic phase. In the model the effect of a phase-specific drug, able
to arrest tumor cells during the mitosis, is studied. Such a drug has a negative
influence also on the survival of cells of the immune system.

In this paper we study a simplified version of the model (presented in subsec-
tion 4.1.2 of [14]), where the effects of the immune response and of the drug are
not taken into account. The simplified model, which considers only tumor cells
(both in pre-mitotic and mitotic phases), consists of the following DDEs:

dTI

dt
= 2a4TM − d2TI − a1TI(t − σ) TI(t) = φ0(t) for t ∈ [−σ, 0]

dTM

dt
= a1TI(t − σ) − d3TM − a4TM TM (t) = φ1(t) for t ∈ [−σ, 0]

Function TI(t) denotes the population of tumor cells during interphase at time
t, and function TM (t) denotes the tumor population during mitosis at time t.
The terms d2TI and d3TM represent cell deaths, or apoptosis. The constants
a1 and a4 represent the phase change rates from interphase to mitosis (a1) and
back (a4). In the following we shall denote with d the rate at which mitotic cells
disappear, namely d = d3 + a4.

We assume that cells reside in the interphase at least σ units of time; then
the number of cells that enter mitosis at time t depends on the number of cells
that entered the interphase at least σ units of time before. This is modeled by
the terms TI(t − σ) in the DDEs. Note that each cell leaving the mitotic phase
produces two new cells in the TI population (term 2a4TM ). In the model the
growth of the tumor cell population is obtained only through mitosis, and is
given by the constants a1, a4, and σ which regulate the pace of cell division.
The delay σ requires the values of TI and TM to be given also in the interval
[−σ, 0]: such values are assumed to be constant in the considered interval, and
hence equal to the values of TI and TM at time 0.
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Fig. 1. The regions which describe the different behaviors of the DDE model by varying
parameters a1 and d (picture taken from [14])

The analytic study of the DDEs constituting the model gives (0, 0) as unique
equilibrium. In Figure 1 (taken from [14]) some results are shown of the study
of the model by varying a1, d and σ and by setting the parameters a4 and d2 to
0.5 and 0.3, respectively. Figure 1 shows five regions.

When σ = 0, the region in which the tumor grows is R-I, while in the other
regions the tumor decays.

When the delay is present (σ > 0), the growth region is essentially unaltered,
but the decay is split into regions in which the tumor has different behaviors: in
regions R-II ∪ R-IV the tumor still decays, but in regions R-III ∪ R-V, when the
value of σ is sufficiently large, the equilibrium becomes unstable. This is shown
in Figures 2 and 3.

Figure 2 describes the behavior of the model, obtained by numerical solutions,
inside the regions R-I, R-II, R-III, and R-IV, when σ = 1. Actually, we considered
the point (0.6, 0.6) in R-I, the point (0.4, 1.0) in R-II, the point (1.0, 1.8) in R-III,
the point (0.8, 0.8) in R-IV and an initial state consisting in 105 tumor cells in the
interphase and 105 tumor cells in mitosis. We shall use always these parameters
in the rest of the paper. In the figure, we can observe that, while the tumor grows
in region R-I, it decays in all the other regions.

Figure 3 describes the behavior of the model when σ = 10. In regions R-I and
R-IV the tumor has the same behavior as before. In region R-II it decays after
some oscillations, while in region R-III it expresses an instability around the equi-
librium. However, remark that values of TM and TI under 0 are not realistic, and,
as we will see in the following, they cannot be obtained by stochastic simulations.
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Fig. 2. Results of the numerical solution of the DDE model with σ = 1 for the regions
described in Figure 1. On the x-axis time is given in days and on the y-axis is given
the number of cells.
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σ = 10 for the regions described in Figure 1. On the x-axis time is given in days and
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3 Delay Stochastic Simulation

In this section we present algorithms for the stochastic simulation of biological
systems with delays. Firstly, we introduce a well–known formulation of one of these
algorithms, and we analyze the results of the simulations of the stochastic model
equivalent to the one presented in the previous section. Secondly, we propose a
variant of this algorithm and we compare the results of the simulations done by
using this algorithm with those of the simulation done by using the original one.

All the simulations and the algorithms that we are going to present in this sec-
tion have been implemented in the software tool DelaySim. This tool, available
at http://www.di.unipi.it/msvbio, has been written in Java.

3.1 The Delay as Duration Approach (DDA)

In [2] Barrio et al. introduced a Delay Stochastic Simulation Algorithm (DSSA)
by adding delays to Gillespie’s Stochastic Simulation Algorithm (SSA) [9]. The
algorithm has been used to explain more carefully than with DDE models the
observed sustained oscillations in the expression levels of some proteins.

In order to recall the definition of the algorithm in [2] we consider a well–
stirred system of molecules of N chemical species {S1, . . . , SN} interacting
through M chemical reaction channels R = R1, . . . , RM . We assume the vol-
ume and the temperature of the system to be constant. We denote the number
of molecules of species Si in the system at time t with Xi(t), and we want to
study the evolution of the state vector X(t) = (X1(t), . . . , XN(t)), by assuming
that the system was initially in some state X(t0) = x0.

A reaction channel Rj is characterized mathematically by three quantities.
The first is its state–change vector νj = (ν1j , . . . , νNj), where νij is defined to
be the change in the Si molecular population caused by one Rj reaction; let
us denote each state–change vector νj as a the composition of the state–change
vector for reactants, νr

j , and the state–change vector for products, νp
j , noting

that νj = νr
j + νp

j . For instance, given two species A and B, a reaction of the
form A −→ B is described by the vector of reactants (−1, 0), by the vector of
products (0, 1) and by the state–change vector (−1, 1); differently, a reaction of
the form A −→ A+B is described by the vector of reactants (−1, 0), by the vector
of products (1, 1), and by the state–change vector (0, 1).

The second characterizing quantity for a reaction channel Rj is its propensity
function aj(x); this is defined, accordingly to [9], so that, given X(t) = x, aj(x)dt
is the probability of reaction Rj to occur in state x in the time interval [t, t+dt].
As stated in [9], the propensity function can be defined as follows

aj(x) = k ·
N∏

i=1

(
Xi(t)
|νr

i,j |

)

where k ∈ R denotes the kinetic function of reaction Rj and |νr
i,j | denotes the

absolute value of the i-th coordinate of vector νr
j . This probabilistic definition

finds its justification in physical theory.
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Algorithm DSSA with “delays as duration approach”

1. Initialize the time t = t0 and the system state x = x0.
2. Evaluate all the aj(x) and their sum a0(x) =

∑M
j=1 aj(x);

3. Given two random numbers r1, r2 uniformly distributed in the interval
[0; 1], generate values for τ and j in accordance to

τ =
1

a0(x)
ln(

1
r1

)
j−1∑
i=1

ai(x) < r2 · a0(x) ≤
j∑

i=1

ai(x)

(A) If delayed reaction Rk
a is scheduled at time t + τk and τk < τ

(A1) If Rk ∈ Rnc then update x = x + νk and t = t + τk;
(A2) If Rk ∈ Rc then update x = x + νp

k and t = t + τk;
(B) else:

(B1) If Rj ∈ Rnd then update x = x + νj and t = t + τ ;
(B2) If Rj ∈ Rnc, schedule Rj at time t + σj + τ and set time to

t + τ ;
(B3) If Rj ∈ Rc, schedule Rj at time t+σj +τ , update x = x+νr

k

and set time to t + τ ;
4. go to step 2.

a This is the reaction with minimum τk, hence the first to complete.

Fig. 4. The DSSA with “delays as duration approach” proposed in [2]

The other characterizing quantity is a constant delay defined by a real num-
ber σ ≥ 0. Following Barrio et al., we classify reactions with delays into two
categories: non-consuming reactions, where the reactants are also products (e.g.
A −→ A + B), and consuming reactions, where some of the reactants are con-
sumed (e.g. A −→ B). Throughout the paper, we denote the set of non-consuming
reactions with delay by Rnc, the set of consuming reactions with delay by Rc,
and the reactions without delays by Rnd; notice that R = Rnc ∪Rc ∪Rnd and
Rnc, Rc and Rnd are pair–wise disjoint.

By adding delays to the SSA, Barrio et al. provide a method to model the firing
of a reaction with delay based on the previously given classification. Formally,
given a system in state X(t) = x, let us denote with τ the stochastic time
quantity computed as in the SSA representing the putative time for next reaction
to fire. Let us assume to choose to fire a non-consuming reaction with delay (a
reaction from set Rnc); then the reaction is scheduled at time t+σ+τ , where σ is
the delay of the reaction. Furthermore, the clock is increased to the value t+τ and
the state does not change. On the contrary, if a consuming reaction with delay
(a reaction from set Rc) is chosen to fire, then its reactants are immediately
removed from the state x, the insertion of the products is scheduled at time
t+σ+τ , and, finally, the clock is increased to the value t+τ . Reactions from set
Rnd (non–delayed reactions) are dealt with exactly as in the SSA. The DSSA
by Barrio et al. is given in Figure 4.
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We discuss now on the scheduling of the reactions with delay. When a non-
consuming reaction is chosen, the algorithm does not change state, but simply
schedules the firing of the reaction at time t + σj + τ (step (B2)). The reaction
will complete its firing (reactants and products will be removed and inserted,
respectively) when performing steps (A) and (A1).

Differently, as regards consuming reactions, the removal of the reactants is
done at time instant t (step (B3)) preceding the time instant of insertion of
the products (steps (A) and (A2)), namely the time at which the insertion is
scheduled, t + σj + τ . Notice that the removed reactants cannot have other
interactions during the time interval [t, t + σj + τ).

As the reactants cannot have other interactions in the time quantity passing
between the removal of the reactants and the insertion of the products, then
this quantity can be seen as a duration needed for the reactants to exclusively
complete the reaction. Since the approach of Barrio at al. gives this interpretation
of delays we shall call it “delays as duration approach” (DDA).

As regards the handling of the scheduled events (step (A) of the algorithm), if
in the time interval [t; t+ τ) there are scheduled reactions, then τ is rejected and
the scheduled reaction is handled. At this step the algorithm implicitly assumes
Rk to be the scheduled action with the minimum τk. Among all the others which
could be chosen the choice of the one with the minimum τk is quite intuitive since
this will be the first to complete. Since generating random numbers is a costly
operation, other authors defined variants of the DSSA that avoid rejecting τ
in the handling of scheduled reactions [5,1]. However, the interpretation of the
delays used to define these variants is the same as that of Barrio et al..

This interpretation of delays may not be precise for all biological systems.
In particular, it may be not precise if in the biological system the reactants can
have other interactions during the time window modeled by the delay. The tumor
growth system we have recalled in Section 2.1 is an example of these systems.
In fact, while tumor cells are involved in the phase change from interphase to
mitosis (the delayed event) they can also die.

We applied the DSSA by Barrio at al. (we refer to the simulations done by
applying this DSSA as DDA simulations) to a chemical reaction model cor-
responding to the DDE model of tumor growth recalled in Section 2.1. The
reactions of the model are the following:

TI
a1−→ TM with delay σ TM

a4−→ 2TI TI
d2−→ TM

d3−→ .

We have run 100 simulations for each considered parameter setting. The results
of simulations with the same parameters as those considered in Figures 2 and 3
are shown in Figures 5 and 6, respectively. Actually, in the figures we show the
result of one randomly chosen simulation run for each parameter setting.

Qualitatively, results obtained with DDA simulations are the same as those
obtained with numerical simulation of the DDEs: we have exponential tumor
growth in region R-I, tumor decay in the other regions and oscillations arise
when the delay is increased. However, from the quantitative point of view we
have that in the DDA simulations the growth in region R-I and the decay in the
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Fig. 5. DDA simulation of the stochastic model with σ = 1 for the regions described
in Figure 1. On the x-axis time is given in days and on the y-axis is given the number
of cells.

other regions are always slower than in the corresponding numerical simulation
of the DDEs. In fact, with σ = 1 by the numerical simulation of the DDEs
we have that in region R-I after 100 days both the quantities of tumor cells in
interphase and in mitotic phase are around 300000, while in the result of DDA
simulations they are around 130000. In the same conditions, but with σ = 10,
in the numerical simulation of the DDEs we have about 47000 tumor cells in
mitosis and 57000 tumor cells in interphase, while in the DDA simulations we
have about 5000 and 5500 cells, respectively. As regards the other regions, in
Table 1 the average tumor eradication times obtained with DDA simulations are
compared with those obtained with numerical simulation of the DDEs (in this
case with “eradication” we mean that the number of tumor cells of both kinds
is under the value 1). Again, we have that in DDA simulations the dynamics is
slower than in the numerical simulation of the DDEs. For instance, with σ = 10,
in region R-IV the time needed for eradication in the DDEs is about 41% of
the time needed in the DDA (440 against 1072), in region R-II the percentage
is smaller, 26% (59 against 224), and, in region R-III, it reaches 9% (12 against
126). For the same regions with σ = 1 these differences are smaller but not
negligible.

3.2 A Purely Delayed Approach (PDA)

In this section we propose a variant of the DSSA based on a different inter-
pretation of delays, namely a Stochastic Simulation Algorithm which follows a
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Fig. 6. DDA simulation of the stochastic model with σ = 10 for the regions described
in Figure 1. On the x-axis time is given in days and on the y-axis is given the number
of cells.

“purely delayed approach” (PDA). With this interpretation we try to overcome
the fact that in the DDA the reactants cannot have other interactions. Further-
more, differently from Barrio et al., we use the same interpretation of delays to
define the method for firing both non-consuming and consuming reactions. This
interpretation of delays was firstly implicitly adopted by Bratsun et al. in [4], to
model a very simple example of protein degradation.

The approach we propose consists in firing a reaction completely when its
associated scheduled events is handled, namely removing its reactants and in-
serting its products after the delay. The fact that we simply schedule delayed
reactions without immediately removing their reactants motivates the terminol-
ogy of “purely delayed”. Notice that non-consuming reactions are handled in the
same way by DDA and PDA.

In this interpretation of delays it may happen that, when handling a sched-
uled reaction (again assuming to pick the one with the minimum τk as in the
DDA since this is the first to complete), the reactants may not be present in the
current state. In fact, they could have been destroyed or transformed by other
interactions happened after the scheduling. In this case, the scheduled reaction
has to be ignored. To formalize this, we know that a reaction Rj can be applied
only if its reactants are all present in the current state of the simulation. Alge-
braically this corresponds to the fact that νr

j ≺ x where νr
j is the state–change

vector of the reactants of reaction Rj , the system is described by x and ≺ is the
ordering relation defined as ∀i = 1, . . . , N. − νr

ij ≤ Xi(t). In order to verify that
a scheduled reaction can effectively fire, it will be sufficient to check whether
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Algorithm DSSA with “purely delayed approach”

1. Initialize the time t = t0 and the system state x = x0.
2. Evaluate all the aj(x) and their sum a0(x) =

∑M
j=1 aj(x);

3. Given two random numbers r1, r2 uniformly distributed in the interval
[0, 1], generate values for τ and j in accordance to

τ =
1

a0(t)
ln(

1
r1

)
j−1∑
i=1

ai(X(t)) < r2 · a0(t) ≤
j∑

i=1

ai(X(t))

(a) If delayed reaction Rk
a is scheduled at time t + τk and τk < τ

and νr
k ≺ x, then update x = x + νk and t = t + τk;

(b) else, schedule Rj at time t + σj + τ , set time to t + τ ;
4. go to step 2.

a This is the reaction with minimum τk, hence the first to complete.

Fig. 7. The DSSA with “purely delayed approach”

Table 1. Average eradication times given in days for DDE model, DDA and PDA
stochastic models. For the stochastic models the entries represent the sample of 100
simulations.

DDEs DDA Simulation PDA Simulation
R-II with σ = 1.0 50 64 51
R-II with σ = 10.0 59 224 67
R-III with σ = 1.0 15 29 17
R-III with σ = 10.0 12 126 20
R-IV with σ = 1.0 238 302 214
R-IV with σ = 10.0 440 1072 248

this condition holds. The formal definition of the DSSA with PDA is given in
Figure 7.

As for the DDA, we have run 100 simulations of the stochastic model of
tumor growth for each considered parameter setting. The results of simulations
(we refer to these simulations as PDA simulations) with the same parameters as
those considered in Figures 2 and 3 are shown in Figures 8 and 9, respectively.
Actually, in the figures we show the result of one randomly chosen simulation
run for each parameter setting.

Qualitatively, results obtained with PDA simulations are the same as those
obtained with numerical simulation of the DDEs (and with DDA simulations).
From the quantitative point of view we have that in the PDA simulations the
growth in region R-I with σ = 1 is almost equal to the corresponding numerical
simulation of the DDEs (about 300000 tumor cells in both mitosis and interphase
after 100 days, we recall that the DDA had reached values around 130000). On
the contrary, with σ = 10, the difference between DDEs and PDA is higher: we
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have about 22000 tumor cells in interphase against 57000 for the DDEs and 5500
for the DDA, and 16000 tumor cells in mitosis against 47000 for the DDEs and
5000 for the DDA.

As regards the other regions, in Table 1 the average tumor eradication times
obtained with PDA simulations are compared with those obtained with numeri-
cal simulation of the DDEs (again, in this case with “eradication” we mean that
the number of tumor cells of both kinds is under the value 1). In PDA simula-
tions the dynamics is generally slower than in the numerical simulation of the
DDEs but it is faster than the DDA one. With σ = 10, in region R-IV the time
needed for eradication in the PDA is smaller than the one in the DDEs (248
days against 440, DDA is 1072). In region R-II the values are: 67 days for the
PDA and 59 days for the DDEs, DDA is 224. In region R-III values are: 20 days
for the PDA, 12 days for the DDEs, and 126 days for DDA.

It is important to remark that differences between delay stochastic simulation
results and numerical solutions of DDEs are also influenced by the initial condi-
tions. The numerical solution of the DDEs assumes the initial population to be
constant and greater than zero in the time interval [−σ, 0]. This allows delayed
event to be enabled in the time interval [0, σ]. Both variants of the DSSA start
to schedule delayed events from time 0, hence delayed reactions can fire only
after the time σ. This results, when σ is great enough, in a behavior that is, in
general, delayed with respect to that given by the DDEs.
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Fig. 8. PDA simulation of the stochastic model with σ = 1 for the regions described
in Figure 1. On the x-axis time is given in days and on the y-axis is given the number
of cells.
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Fig. 9. PDA simulation of the stochastic model with σ = 10 for the regions described
in Figure 1. On the x-axis time is given in days and on the y-axis is given the number
of cells.

Now, even if for this particular model this PDA definition is enough to justify
the introduction of simulation techniques different from the DDA one,we must
make some considerations about the PDA algorithm we proposed. In particular,
there are some scenarios in which the algorithm does not work properly. We will
go through these scenarios via some examples. For instance, consider a system
described by the following initial state and chemical reaction:

X(t0) = (1, 0) A
k,σ−−→ B

where the initial state contains one single molecule A and the only reaction is the
one transforming a molecule A in a molecule B with a kinetic constant k and a
delay σ > 0. When applying the PDA algorithm to simulate this system it is easy
to observe that the algorithm may over-schedule the firing of the reaction. This
could happen because the reaction has a delay and, dependently on the value σ
and on the random numbers generated by the algorithm, between time t0 and the
first firing of the scheduled reactions, the PDA may schedule an arbitrary amount
of times the reaction. However, after applying the first scheduled reaction at time
t+ϕ, the system state becomes the vector X(t0 +ϕ) = (0, 1) and, consequently,
all the other scheduled reactions are not applicable anymore. This situation is not
incorrect in fact, as expected, just one molecule A is transformed in a molecule
B, but it is computationally unpleasant since it schedules a lot of reactions that
will be never performed.
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Also, it is possible to define, on top of this scenario, a new model such that the
behavior of the PDA becomes incorrect. Imagine, for instance, to have the same
scenario enriched with a reaction which produces, by an external unbounded
source, molecules of type A. As there is no way of tracking the time since a
molecule is in the system, then there is no way of preventing to apply a scheduled
rule to a molecule A which is not in the current state of the system by, at least,
σ time units. In this enriched scenario it may be the case that molecules A just
appearing in the state by the firing of the new reaction, may be used to perform
over-scheduled reactions and this is, obviously, incorrect.

Consequently, even if the PDA is, for some biological systems, a better candi-
date than the DDA algorithm by Barrio et al., it needs to be properly tuned to
avoid to simulate incorrect behaviors of the modeled system. The next section
will be devoted to the definition of a variant of the PDA in order to face these
issues. The more precise variant of the PDA will also be extended to obtain an
algorithm that integrates the two approaches.

3.3 The PDA with Markings

In order to get a correct version of the PDA we consider a solution based
on a marking of molecules. This variant of the PDA, in the following named
“marked Purely Delay Approach” (mPDA), is based on the idea of assigning,
to each molecule of the system, a marking which permits the identification of
the molecules involved in any scheduled reaction. On one side, this will fix the
liabilities of the PDA approach but, as it is intuitive, it will be computationally
much more expensive than the PDA.

In order to define the mPDA, we still assume the framework we used to
introduce the PDA where the state vector X(t) describes the time evolution of
a set of molecules belonging to n chemical species and R denotes a set of of
chemical reaction channels.

In what follows we describe the mPDA, whose definition will be given in
Figure 10.

Marking the molecules. The marking of molecules is based on the use of
natural numbers as identifiers. In order to get a clear marking policy we classify
the molecules of the system. Firstly, the molecules are classified in species, hence
a system is described by a set of species S = {Σ1, . . . , Σn} which defines the type
of molecules we are considering. Furthermore, any Σi denotes a set of molecules
such that

Σi = {Si,1
N1

, . . . , Si,ni

Nni
}

where Si,j
N is a single molecule belonging to species Σi ∈ S, with a unique

identifier j ∈ N and concurrently performing the reactions in N ⊂ ℘({z|Rz ∈
R}), a set of identifiers of the reactions which are present in the current model.
Notice that, for any molecule of the model, we carry much more information
than the one we had in the PDA. In particular, for any molecule we can exactly
know which reactions it is concurrently performing and, in this context, this
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Algorithm DSSA with “marked purely delayed approach”

1. Initialize the time t = t0, build the initial marking w.r.t definition (2)
by using the input initial state x0.

2. Evaluate all the aj(x) w.r.t. definition (3), define a0(x) =
∑M

j=1 aj(x);
3. Given two random numbers r1, r2 uniformly distributed in the interval

[0, 1], generate values for τ and j in accordance to

τ =
1

a0(t)
ln(

1
r1

)
j−1∑
i=1

ai(x) < r2 · a0(t) ≤
j∑

i=1

ai(x)

(a) If delayed reaction Rk
a is scheduled at time t + τk and τk < τ ,

then:
– update the event list w.r.t. definition (7);
– update the marking w.r.t definitions (6), (8), (9) and (10);
– set time to t = t + τk.

(b) else:
– choose, w.r.t. definition (4), the set of reactants E that will

be modified by reaction Rj ;
– update the marking w.r.t. definition (5);
– schedule the triple (j, t + σj + τ, E);
– set time to t + τ .

4. go to step 2.

a This is the reaction with minimum τk, hence the first to complete.

Fig. 10. The DSSA with “marked purely delayed approach”

means that there is an instance of reaction consuming that molecule which is
currently scheduled in the event list. As these sets change during the simulation
of a system, we may denote by S(t) and Σi(t) the set of species and the set of
molecules of species Σi at time t, respectively.

The marking of molecules requires to discuss the use of vector X(t) which, as
in the PDA, will be used to observe the state changes due to the reactions firing.
The construction of the state vector X(t) is slightly changed, with respect to
the PDA, by the introduction of this marking notation. In particular, we define
X(t) as

X(t) = (|Σ1(t)|, . . . , |Σn(t)|) (1)

where |Σi(t)| denotes the cardinality of the set Σi(t). Notice that |Σi(t)| rep-
resents the number of molecules of species Σi at time t, exactly as the element
Xi(t) of X(t) in the definition of the PDA.

As regards X(t0), given an initial input state x0 for the mPDA, a proper
initial marking for the system to simulate has to be computed. Let us as-
sume x0 = (X1(t0), . . . , Xn(t0)), the set of species can be defined as S(t0) =
{Σ1(t0), . . . , Σn(t0)} where

∀i = 1, . . . , n. Σi(t0) = {Si,1
∅ , . . . , S

i,Xi(t0)
∅ }. (2)
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This construction creates n sets of species types Σi(t0) and, for each of them,
it creates Xi(t0) molecules, each one with a different identifier, which are per-
forming no reactions (at time t0 the event list is empty, hence their set subscript
is the empty set). This guarantees that the molecules are correctly marked and,
hence, distinguishable.

In general, at any step of computation, the mPDA algorithm may modify
some of the sets Σi(t) ∈ S(t). The discussion about how the mPDA modifies
the sets in S(t), accordingly to the time–evolution of the simulated system, is
presented in the forthcoming subsections.

Evaluating the propensity functions. The firing of a reaction is the result of
a probabilistic choice based on the propensity function of the reaction, evaluated
in the current state of the simulation. In order to explain how the mPDA works,
we recall the assumption which is at the basis of the definition of this PDA
algorithm. The molecules can perform multiple reactions in parallel, but each
molecule can be involved in each reaction at most once at a time. The first
reaction to finish interrupts the others running in parallel and involving the same
molecule. In order to avoid over-scheduling phenomena it is to be ensured that
propensity function of a reaction depends only on the occurrences of reactants
that are not yet involved in the same reaction.

Let us assume that we have to evaluate the propensity function of a reaction
Rz : M

k,σ−−→ P ∈ R such that Rz transforms a multiset of molecules M in a
multiset of molecules P with a kinetic constant k ∈ R. More precisely, let us
assume M to be a multiset of the form {(1, n1), . . . , (w, nw)}, namely reaction
Rz transforms, for any j = 1, . . . , w, a number of nj molecules of species Σj .
Notice that this corresponds to a set representation of the state–change vector
for reactants.

As we want to take into consideration only the molecules in the current state of
the simulation which are not already involved in any scheduled firing of reaction
Rz, then we have to filter those that are candidate for being used, if any. Let us
denote by [Σi(t), z] the set of identifiers of molecules belonging to species Σi(t)
which have to be considered in the evaluation of the propensity function of Rz ,
namely the set

[Σi(t), z] = {j | Si,j
N ∈ Σi(t) ∧ z �∈ N}.

Notice that this set is obtained by considering all the molecules in the current
system, and by filtering them on the basis of the marking information that the
mPDA stores in S(t). In the PDA this set could not have been defined.

Given X(t) = x, the propensity function az(x) must consider only those
molecules required by M which are not already performing reaction Rz, hence
it can be defined as follows:

az(x) = k ·
∏

(i,ni)∈M

(
|[Σi(t), z]|

ni

)
(3)

where |[Σi(t), z]| denotes the cardinality of the set [Σi(t), z]. This definition of
the function az(x) is such that mPDA propensity functions compute, in general,
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strictly smaller values than the PDA ones. Again, the PDA cannot distinguish
the molecules which are performing a reaction from those which are not.

Scheduling a reaction to fire. Whenever the propensity functions have been
evaluated, for any Rz ∈ R, accordingly to the definition (3), the index of the
reaction to fire can be chosen with the same policy used in the PDA. How-
ever, having a marking of molecules, the mPDA has a further level of choice to
determine to which molecules the reaction will be applied.

To clarify this, as an example consider a system with two distinct molecules of
the same type and both available for being consumed by a reaction. Whenever
the mPDA decides to fire that reaction, it has to choose to which of the two
molecules the reaction will be applied. This further choice is required by the
mPDA because it stores individual information about the molecules and, hence,
there exist two different destination markings that the system may reach. Notice
that, as the PDA abstracted these informations, it did not perform this further
choice.

In order to define this further probabilistic choice, assume the mPDA has
chosen to schedule the firing of the reaction Rz : {(1, n1), . . . , (w, nw)} k,σ−−→ P
introduced in the previous section. The mPDA stores in the event list the same
information of the PDA, namely the index of the reaction, z, and the time in
which it will fire, some t + τ + σ if t is the current time, τ is the putative time
for next reaction as computed in the PDA and σ is the delay of the reaction.
Together with this information, the mPDA stores in each element of the event
list a set of labels E representing the identifiers of the molecules which will be
consumed by the reaction, when handled. The set E contains pairs of natural
numbers and is such that if (i, j) ∈ E then the molecule Si,j

N ∈ Σi(t) is involved in
the reaction. The set E is built by considering the molecules which can effectively
perform reaction Rz . Formally, for all (i, ni) ∈ M , we choose ni molecules from
the set [Σi, z]. Each molecule is chosen with probability |[Σi(t), z]|−1, hence the
probability of choosing a set E, with a system at time t, denoted by P (E, t), is
defined as

P (E, t) =
∏

(i,ni)∈M

(
|[Σi(t), z]|

ni

)−1

(4)

The mPDA updates the system clock to a value t + τ , stores the triple (z, t +
τ +σ, E) in the event list and changes the marking of the molecules belonging to
the set E. The marking is updated to store the information that the molecules
in E are performing reaction Rz. This will guarantee that, when evaluating the
propensity function for reaction Rz in the next time, the molecules in E will not
be counted again, as expected. The updated set S(t + τ), built by modification
of the set S(t) satisfies the following proposition

∀i = 1, . . . , n.Σi(t + τ) = {Si,j
N ∈ Σi(t) | (i, j) �∈ E} ∪
{Si,j

N∪{z} ∈ Σi(t) |Si,j
N ∈ Σi(t) ∧ (i, j) ∈ E}. (5)
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Intuitively, any molecule in Σi(t) that has not been assigned to the firing of
reaction Rz is simply copied in Σi(t + τ). Differently, all the molecules assigned
to this firing of Rz, are copied in Σi(t + τ) with the index z added to their set
of concurrently running reactions.

Handling a scheduled reaction. When the mPDA decides, with the system
at time t, to handle a scheduled reaction Rz it finds, as information in the event
list, a triple (z, t′, E) where z is the identifier of the reaction to fire, t′ is the time
to which the clock must be set and E is the set of identifiers of the molecules
which will be consumed by the reaction. It is guaranteed, by construction, that
the molecules denoted by the set E are still present in the current state of the
simulation. Hence, differently from the PDA, the condition νr

z ≺ x has not to be
checked at this time.

The scheduled reaction is applied, as expected, by using the same policy of the
PDA, namely the reactants are removed and the products are inserted. However,
the mPDA must perform some additional operations to keep the marking of the
molecules correct.

First of all, let us assume the set E = {(s1, l1), . . . , (sm, lm)}, then all the
molecules denoted by these labels in S(t) must not be present anymore in the set
S(t′), built by the mPDA to represent the markings after the application of reac-
tion Rk. In particular, for any j = 1, . . . , m, the molecule S

sj ,lj
N must be removed

from the proper set in S(t′). To define this, we start by defining the following sets

∀i = 1, . . . , n. Σi(t′) = Σi(t) \ {Si,j
N ∈ Σi(t) | (i, j) ∈ E} (6)

Notice that this corresponds to remove exactly the number of reactants required
by the application of the reaction Rz . Consequently, given the state vector
X(t) = x defined accordingly to (1), this new marking corresponds to a new
state x − νr

z .
As regards the interruption of the concurrently running reactions which were

assuming to use the reactants just consumed by reaction Rz, the mPDA performs
two operations. Firstly, the mPDA interrupts these reactions by removing them
from the event list and, secondly, it unlocks all the involved partners molecules,
so that they may start again, in the future, the interrupted reactions.

The interruption of the scheduled reactions is trivial. Let us denote with E(t)
the event list of the system at time t, all the reactions to be interrupted are
those which contain, at least, one reactant which is consumed by reaction Rz .
We denote by B(t) the set of reactions to be interrupted at time t, namely the
set

B(t) = {(w̃, t̃, Ẽ) ∈ E(t) | Ẽ ∩ E �= ∅}.
Consequently, the mPDA modifies the event list E(t) creating a new event list
E(t′) such that

E(t′) = E(t) \ B(t). (7)

Unlocking the partners of the interrupted reactions is less easy. First of all, when
considering a generic molecule Si,j

N ∈ Σi(t′), where Σi(t′) is a set of molecules
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satisfying (6), it may be the case that it is coupled to some of the events which
have been interrupted in E(t′), and these events belong to the set B(t). Also, it
may be the case that the molecule is performing other reactions which have not
been interrupted. In general, even if w ∈ {w|(w, t, E) ∈ B(t)}, this does not imply
that all the scheduled events referring to reaction Rw have to be interrupted.
Clearly, this depends on the one-to-many correspondence between a reaction
and all the related scheduled events. Hence, in order to filter the reactions which
have been really interrupted for a molecule Si,j

N ∈ Σi(t′), we define the set

D(t, i, j) = {w | (w, t̃, Ẽ ∪ {(i, j)}) ∈ B(t)}.

The construction of the set D(t, i, j) is straightforward. All the reactions which
have to be interrupted, with respect to molecule Si,j

N , are only those relative
to events effectively interrupted and such that the molecule was assumed to
be consumed by that instance of reaction. This constraint filters any possible
collision between the indexes of the reactions relative to the interrupted events
and those which are performed with partners whose are not affected by the
application of the scheduled reaction Rz.

After this considerations, we can formally define how the interruption of some
events affects the marking of the molecules by defining these new sets

∀i = 1, . . . , n. Σ′
i(t

′) = {Si,j
N ′ | Si,j

N ∈ Σi(t′) ∧ N ′ = N\D(t, i, j)}. (8)

Notice that, as this definition does not modify the number of molecules present
in the markings, then this marking, with respect to definition (1), still represents
the vector state x− νr

z .
Finally, we discuss how the insertion of the products affects the marking

of the molecules in the system, with respect to the sets just created. Let us
assume that the scheduled reaction Rz creates a multiset of products P =
{(1, n1), . . . , (p, np)}, namely Rz produces, for any j = 1, . . . , p, a number nj

of new molecules of species Σj .
The creation of new objects to add to the sets Σ′

i(t
′) requires to assign them

new fresh identifiers respecting the uniqueness of the markings. As the marking
is based on the use of natural numbers, the mPDA has an infinite set of numbers
from which to choose the new identifiers. Let us denote, for a species Σi, the
maximum among all the used identifiers appearing in Σ′

i(t
′) as follows

μi = max{j | Si,j
N ∈ Σ′

i(t
′)}.

Hence, for the set Σ′
i(t

′), the creation of ni non colliding identifiers can be
obtained by choosing the ni successors of the number μi. By these consideration
we can define the following sets

∀i = 1, . . . , n. Σ′′
i (t′) = Σ′

i(t
′) ∪ {Si,μi+1

∅ , . . . , Si,μi+ni

∅ | (i, ni) ∈ P}. (9)

Finally, the complete marking computed by the mPDA after the application of
a scheduling rule is defined as

S(t′) = {Σ′′
1 (t′), . . . , Σ′′

n(t′)}. (10)
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This new marking is obtained by modifying the one representing, accordingly to
definition (1), the state vector x− νR

z . As this marking is built by inserting, for
each species, exactly the number of product molecules of reaction Rz, then this
new marking corresponds to the state vector x − νr

z + νp
z = x + νz which is, as

expected, the resulting state of the correct application of reaction Rz.

3.4 A DSSA Combining the mPDA and the DDA

In this section we define a stochastic simulation algorithm which combines the
delay as duration approach and the purely delayed approach in its most precise
definition. This will allow biological phenomena that cannot be suitably dealt
with by only one of the two approaches, to be studied.

The framework in which we define this DSSA, in the following denoted as
Full DSSA, is a simple modification of the one in which we defined the mPDA.
This requires to redefine the DSSA with DDA in a framework were markings
are present. As regards the notation, we introduce two disjoint sets of possible
reactions R = RD ∪ RP where RD and RP are the sets of reactions that are
treated with a DDA approach and a mPDA approach, respectively.

In what follows we describe the Full DSSA, whose definition will be given in
Figure 11.

Marking the molecules. Marking the molecules is necessary to use the mPDA
inside the Full DSSA. Clearly, the marking defined by the mPDA in Section 3.3,
together with definitions (1) and (2), is still valid in the Full DSSA.

Evaluating the propensity functions. We introduced two disjoints sets of
reactions, RD and RP , in order to separate reactions whose delays have to be
considered as durations from those whose delays are pure. However, it is easy to
notice that, for any reaction in Rz ∈ R, its propensity function can be correctly
defined as in (3). This can be done because the different interpretations of the
delays do not require different definitions of the propensity functions, but simply
different semantics of the firings of reactions.

Despite this similarity, it is worth making a simple consideration about re-
actions in RD. Those reactions are such that, whenever started, they remove
the reactants from the state of the simulation and, when the firing terminates,
they add to the state their products. Hence, if a reaction of set RD is performed
by a molecule Si,j

N ∈ Σi(t), then all the reactions concurrently running in N
have to be interrupted and, the involved partners, have to be unlocked. By this
consideration it is easy to notice that ∀i ∈ N.Ri ∈ RP and, hence, it holds that
∀t > t0. ∀z ∈ RD. [Σi(t), z] = Σi(t). Summarizing, evaluating the propensity
function of a reaction from set RD does not require to define the set [Σi(t), z],
an operation whose cost is at most linear in the size of Σi(t), and, consequently,
it is computationally less expensive than the evaluation of a propensity function
of a reaction in RP .

Scheduling a reaction to fire. Reactions in RP are scheduled accordingly to
the definitions (4) and (5) whereas, the reactions in the set RD are scheduled
with a different policy.
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Algorithm Full DSSA

1. Initialize the time t = t0, build the initial marking w.r.t definition (2)
by using the input initial state x0.

2. Evaluate all the aj(x) w.r.t. definition (3), define a0(x) =
∑M

j=1 aj(x);
3. Given two random numbers r1, r2 uniformly distributed in the interval

[0, 1], generate values for τ and j in accordance to

τ =
1

a0(t)
ln(

1
r1

)
j−1∑
i=1

ai(x) < r2 · a0(t) ≤
j∑

i=1

ai(x)

(a) If delayed reaction Rk
a is scheduled at time t + τk and τk < τ ,

then:
– if Rk ∈ RD update the marking w.r.t definitions (9) and (10);
– if Rk ∈ RP update the event list w.r.t. definition (7), update

the marking w.r.t definitions (6), (8), (9) and (10);
– set time to t = t + τk.

(b) else:
– choose, w.r.t. definition (4), the set of reactants E that will

be modified by reaction Rj ;
– if Rj ∈ RD update the event list w.r.t. definition (7), update

the marking w.r.t. definitions (6) and (8), schedule the pair
(j, t + σj + τ );

– if Rj ∈ RP update the marking w.r.t. definition (5) and
schedule the triple (j, t + σj + τ, E);

– set time to t + τ .
4. go to step 2.

a This is the reaction with minimum τk, hence the first to complete.

Fig. 11. The Full DSSA with both “delay as duration approach” and “marked purely
delayed approach”

Assume that the Full DSSA wants to schedule a reaction Rw ∈ RD at time
t+τ +σw. Firstly, the Full DSSA must choose the reactants to which the reaction
is applied. As this choice is independent with respect to the interpretation of the
delays, the set E to which the reaction will be applied can be chosen accordingly
to definition (4), as in the mPDA.

Now, as the state must be modified by the removal of the reactants, the
Full DSSA changes the marking accordingly to definition (6) which corresponds
exactly to this operation. Furthermore, as the Full DSSA has, for all molecules
in the set E, to interrupt all the reactions that they are concurrently performing,
it modifies the event list accordingly to definition (7). Finally, the Full DSSA
further modifies the marking accordingly to definition (8) in order to unlock the
partners involved in the interrupted reactions.

The scheduling of the reaction is then performed by adding, to the event list
E(t), a pair (w, t + τ + σw). Consequently, the event list in the case of the Full
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DSSA contains some triples referring to scheduled reactions belonging to set RP ,
and some pairs referring to scheduled reactions belonging to set RD.

We remark that, in the mPDA, definitions (6), (7) and (8) were introduced
when handling a scheduled reaction. The fact that for a reaction in RD the Full
DSSA uses these definitions at the time of scheduling the reaction is due to the
different interpretations of delays.

Handling a scheduled reaction. Scheduled reactions belonging to set RP
are handled, accordingly to the mPDA, as explained in Section 3.3.

Differently, handling a reaction with a DDA approach is trivial because the
major computational effort has been done when it was scheduled. Assume that
the Full DSSA wants to handle a scheduled reaction described by the pair (w, t′)
where Rw ∈ RD. In order to insert the product molecules of Rw by modifying
the current marking the Full DSSA modifies S(t) by applying definitions (9) and
(10).

4 Discussion

In the previous sections we showed two different approaches to the firing of
delayed reactions. The two approaches can be conveniently used for dealing
with two different classes of delayed reactions. The delay as duration approach
suitably deals with reactions in which reactants cannot participate, whenever
scheduled, in other reactions. On the other hand, the purely delayed approach
can be conveniently used in cases in which reactants can be involved in other
reactions during the delay time.

In the example we have shown, cells in the interphase, which wait for entering
the mitotic phase, can be involved in another reaction, namely their death. Thus
in this example the purely delayed approach seems to be more appropriate for
capturing the behavior of this real system.

However, the algorithm we have defined, implemented and applied to the
considered cell–growth model is rather naive, and may be incorrect in several
scenarios. Consequently, we have defined a more precise algorithm, the mPDA,
based on the purely delayed approach, which exploits a technique of marking of
the molecules. The marking technique makes the mPDA computationally costly.
As future work, we plan to study simplified versions of the mPDA to be proved
correct by means of abstract interpretation techniques.

Furthermore, as there are biological systems in which, due to the heterogeneity
of reactions, both the approaches should be used, we combined, in a new frame-
work, both the duration as delay approach and the purely delayed approach with
markings.

In the future, we plan to define formal languages for the definition of models
with delays. These languages should be such that the time evolution of the
described models is in accordance with the algorithms we proposed. As far as
we know, similar notions of delay have been presented in the framework of Petri
nets with time information. In particular, in Timed nets [12] a notion of delay
similar to a duration appears; differently, in Time nets [11] the notion of delay
corresponds to our purely delayed approach.
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Abstract. The Stochastic Calculus of Wrapped Compartments (SCWC)
is a recently proposed variant of the Stochastic Calculus of Looping Se-
quences (SCLS), a language for the representation and simulation of bio-
logical systems. In this work we apply SCWC to model a newly discovered
ammonium transporter. This transporter is believed to play a fundamen-
tal role for plant mineral acquisition, which takes place in the arbuscular
mycorrhiza, the most wide-spread plant-fungus symbiosis on earth. Inves-
tigating this kind of symbiosis is considered one of the most promising
ways to develop methods to nurture plants in more natural manners,
avoiding the complex chemical productions used nowadays to produce
artificial fertilizers. In our experiments the passage of NH3 / NH+

4 from
the fungus to the plant has been dissected in known and hypothetical
mechanisms; with the model so far we have been able to simulate the
behavior of the system under different conditions. Our simulations con-
firmed some of the latest experimental results about the LjAMT2;2 trans-
porter. Moreover, by comparing the behaviour of LjAMT2;2 with the
behaviour of another ammonium transporter which exists in plants, viz.
LjAMT1;1, our simulations support an hypothesis about why LjAMT2;2
is so selectively expressed in arbusculated cells.

1 Introduction

Given the central role of agriculture in worldwide economy, several ways to op-
timize the use of costly artificial fertilizers are now being actively pursued. One
approach is to find methods to nurture plants in more “natural” manners, avoid-
ing the complex chemical production processes used today. In the last decade
the Arbuscular Mycorrhiza (AM), the most widespread symbiosis between plants
and fungi, got into the focus of research because of its potential as a natural plant
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fertilizer. Briefly, fungi help plants to acquire nutrients as phosphorus (P) and
nitrogen (N) from the soil whereas the plant supplies the fungus with energy in
form of carbohydrates [34]. The exchange of these nutrients is supposed to occur
mainly at the eponymous arbuscules, a specialized fungal structure formed inside
the cells of the plant root. The arbuscules are characterized by a juxtaposition of
a fungal and a plant cell membrane where a very active interchange of nutrients
is facilitated by several membrane transporters. These transporters are surface
proteins that facilitate membrane crossing of molecules which, because of their
inherent chemical nature, are not freely diffusible.

Since almost all cells in the majority of multicellular organisms share the same
genome, modern theories point out that morphological and functional differences
between them are mainly driven by different genes expression [2]. Thanks to the
latest experimental novelties [41,32] a precise analysis of which genes are ex-
pressed in a single tissue is attainable; therefore it is possible to identify genes
that are pivotal in specific compartments and then study their biological func-
tion. Following this route a new membrane transporter has been discovered by
expression analysis and further characterized [20]. This transporter is situated
on the plant cell membrane which is directly opposite to the fungal membrane,
located in the arbuscules. Various experimental evidence points out that this
transporter binds to an NH+

4 moiety outside the plant cell, deprotonates it, and
mediates inner transfer of NH3, which is then used as a nitrogen source, leaving
an H+ ion outside. The AM symbiosis is far from being unraveled: the majority
of fungal transporters and many of the chemical gradients and energetic drives
of the symbiotic interchanges are unknown. Therefore, a valuable task would be
to model in silico these conditions and run simulations against the experimen-
tal evidence available so far about this transporter. Conceivably, this approach
will provide biologists with working hypotheses and conceptual frameworks for
future biological validation.

In computer science, several modelling languages for the representation and
simulation of biological systems behaviour have been proposed. Automata-based
models [4,30] have the advantage of allowing the direct use of many verification
tools such as model checkers. Rewrite systems [13,37,9,1] usually allow describing
biological systems with a notation that can be easily understood by biologists.
Compositionality allows studying the behaviour of a system componentwise.
Both automata-like models and rewrite systems present, in general, problems
from the point of view of compositionality, which, instead, is in general ensured
by process calculi, included those commonly used to describe biological sys-
tems [38,36,10]. The Stochastic Calculus of Looping Sequences (SCLS) [7] (see
also [9,8,31]) combines the simplicity of notation of rewrite systems with the ad-
vantage of a form of compositionality. It also allows a rather simple and accurate
description of biological membranes and their interactions with the environment.

The Stochastic Calculus of Wrapped Compartments (SCWC) [12] is a variant
of SCLS. It has been designed with the aim of strongly simplifying the devel-
opment of efficient automatic tools for the analysis of biological systems, while
keeping the same expressiveness. The main simplification consists in the removal
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of the sequencing operator, thus lightening the formal treatment of the patterns
to be matched in a term (whose complexity in SCLS is strongly affected by the
variables matching in the sequences).

In this work we apply SCWC to model the mentioned transporter. This
transporter is differently expressed in arbuscular cells and is believed to play a
fundamental role in the nutrients uptake which takes place in the context of
plants-fungi symbiosis at the root level. This symbiosis is one of the main fo-
cuses of the BioBITs project, due to its relevant role in agriculture.

On these premises, the aim of this work is to model the interchange between
the fungus-plant interface and the plant cells (using the NH3/NH+

4 turnover
as a reference system) and to support an hypothesis about why LjAMT2;2 is
so selectively expressed in arbusculated cells (by comparing its behaviour with
the behaviour of the LjAMT1;1 transporter, which exists in plants but is not
expressed in arbusculated cells). This could disclose which is the driving power
of the net nitrogen flux inside plant cells (still unknown at the chemical level).
Furthermore, this information may also be exploited to model other, and so far
poorly characterized, transporters.

Outline. Section 2 introduces the syntax and the semantics of the SCWC
and shows some modelling guidelines. Section 3 presents the SCWC representa-
tions of the ammonium transporter and our experimental results, discussed in
Section 4. Section 5 concludes by outlining some further work.

2 The Stochastic Calculus of Wrapped Compartments

In this section we briefly describe the Stochastic Calculus of Wrapped Com-
partments (SCWC) [12]. Like most modeling languages based on term rewriting
(notably [7]) an SCWC (biological) model consists of a term, representing the
system and a set of rewrite rules which models the transformations which deter-
mine its evolution.

Terms and Structural Congruence. A term of the SCWC calculus is in-
tended to represent a biological system. A term is a sequence of simple terms.
Simple terms, ranged over by t, u, v, w, are built by means of the compartment
constructor, (−�−), from a set A of atomic elements (atoms for short), ranged
over by a, b, c, d. The syntax of simple terms is given at the top of Figure 1. We
write t to denote a (possibly empty) sequence of simple terms t1 · · · tn. Similarly,
with a we denote a (possibly empty) sequence of atoms. The set of simple terms
will be denoted by T . The set of terms (sequences of simple terms) and the set of
sequences of atoms will be denoted by T and A, respectively. Note that A ⊆ T .

A term t = t1 · · · tn should be understood as the multiset containing the
simple terms t1, . . . , tn. Therefore, we introduce a relation of structural congru-
ence, following a standard approach in process algebra. The SCWC structural
congruence is the least equivalence relation on terms satisfying the rules given
at the bottom of Figure 1. From now on we will always consider terms modulo
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Simple terms syntax

t ::= a
∣∣ (a � t)

Structural congruence

t u w v ≡ t w u v if a ≡ b and t ≡ u then (a � t) ≡ (b �u)

Fig. 1. CWC term syntax and structural congruence rules

Fig. 2. (i) represents (a b c � •); (ii) represents (a b c � (d e � •)); (iii) represents
(a b c � (d e � •) f g)

structural congruence.1 Then a simple term is either an atom or a compartment
(a � t) consisting of a wrap (represented by the multiset of atoms a) and a con-
tent (represented by the term t). We write the empty multiset as • and denote
the union of two multisets u and v as u v. Let’s extend the notion of a subset
(denoted as usual as ⊆) between terms interpreted as multisets.

An example of term is a b (c d � e f) representing a multiset consisting of
two atoms a and b (for instance two molecules) and a compartment (c d � e f)
which, in turn, consists of a wrap (a membrane) with two atoms c and d (for
instance, two proteins) on its surface, and containing the atoms e (for instance,
a molecule) and f (for instance a DNA strand). See Figure 2 for some graphical
representations.

Rewrite Rules, Variables, Open Terms and Patterns. A rewrite rule is
defined as a pair of terms (possibly containing variables), which represent the
patterns defining the system transformations, together with a rate representing
the speed of the modelled reaction. Rules are applicable to all subterms, iden-
tified by the notion of reduction context introduced below, which match the
left-hand side of the rule via a proper instantiation of its variables. The system

1 In the implementation of the derived tools it will be useful to consider a normalized
representation of these terms suitable for efficient manipulation. In the description
of the calculus given here however we will ignore implementation issues.
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transformation is obtained by replacing the reduced subterm by the correspond-
ing instance of the right-hand side of the rule.

In order to formally define the rewriting semantics, we introduce the notion
of open term (a term containing variables) and pattern (an open term that may
be used as left part of a rewrite rule). In order to respect the syntax of terms,
we distinguish between “wrap variables” which may occur only in compartment
wraps (and can be replaced only by multisets of atoms) and “term variables”
which may only occur in compartment contents or at top level (and can be
replaced by arbitrary terms). Therefore, we assume a set of term variables, VT ,
ranged over by X, Y, Z, and a set of wrap variables, VA, ranged over by x, y, z.
These two sets are disjoint. We denote by V the set of all variables VT ∪VA, and
with ρ any variable in V .

(i) Open terms are terms which may contain occurrences of wrap variables in
compartment wraps and term variables in compartment contents or at top
level. They can be seen as multisets of simple open terms. More formally,
open terms, ranged over by O and simple open terms, ranged over by o, are
defined in the following way:

O ::= o
o ::= a

∣∣ X
∣∣ (a x � o)

(ii) An open term is linear if each variable occurs at most once in it.
(iii) Simple patterns, ranged over by S, are the linear open terms defined in the

following way:
S ::= t

∣∣ (a x �S X)

where t is an element of T , a is an element of A, x is a variable in VA, S
is a possibly empty multiset of simple patterns and X is a variable in VT .
We denote with S the set of simple patterns.

(iv) Patterns, ranged over by P , are the linear open terms defined in the follow-
ing way:

P ::= S S X

where S S is a nonempty multiset of simple patterns and X is an element
of VT . We denote with P the set of patterns.

An instantiation is a partial function σ : V → T . An instantiation must preserve
the type of variables, thus for X ∈ VT and x ∈ VA we have σ(X) ∈ T and
σ(x) ∈ A, respectively. Given O ∈ O, with Oσ we denote the term obtained
by replacing each occurrence of each variable ρ ∈ V appearing in O with the
corresponding term σ(ρ).

Let Σ denote the set of all the possible instantiations and Var(O) denote the
set of variables appearing in O ∈ O. A rewrite rule is a pair (P, O), denoted with
P �−→O, where P ∈ P and O ∈ O are such that Var(O) ⊆ Var(P ). A rewrite
rule P �−→O then states that a subterm Pσ, obtained by instantiating variables
in P by some instantiation function σ, can be transformed into the subterm Oσ.

We extend the notion of structural congruence to open terms in the natural way.
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Contexts. The definition of reduction for SCWC systems is completed by re-
sorting to the notion of reduction contexts. To this aim, as usual, the syntax of
terms is enriched with a new element � representing a hole. Reduction context
(ranged over by C) are defined by:

C ::= �
∣∣ (a �C) t

where a ∈ A and t ∈ T . We denote with C the infinite set of contexts.
By definition, every context contains a single hole �. Let us assume C, C′ ∈ C.

With C[t] we denote the term obtained by replacing � with t in C; with C[C′]
we denote context composition, whose result is the context obtained by replacing
� with C′ in C. For example, given C = (a b ��) i l, C′ = (c d ��) g h and
t = e f , we get C[C′[t]] = (a b � (c d � e f) g h) i l. Note that context holes
take the place either of the whole term or of the whole content of a compartment.
This allows to make contexts unambiguous in the following sense: For any term
t if the term u occurs in t within a compartment content or at top level, then
there are, modulo ≡, a unique context C and a unique term t′ such that t = C[t′]
and u ⊆ t′.
A transformation of term C[t] determined by the application of a rewrite rule
(P, O) can then be described in the following way:

P �−→ O σ ∈ Σ t = Pσ u = Oσ C ∈ C
C[t] �−→ C[u]

Stochastic Reduction Semantics. The operational semantics of SCWC is
defined by incorporating a collision-based stochastic framework along the lines
of the one presented by Gillespie in [15], which is, de facto, the standard way
to model quantitative aspects of biological systems. The idea of Gillespie’s algo-
rithm is that a rate constant is associated with each considered chemical reaction.
Such a constant is obtained by multiplying the kinetic constant of the reaction by
the number of possible combinations of reactants that may occur in the system.
The resulting rate is then used as the parameter of an exponential distribution
modelling the time spent between two occurrences of the considered chemical
reaction. Following the law of mass action, it is necessary to count the number
of reactants that are present in a system in order to compute the exact rate of
a reaction. The same approach has been applied, for instance, to the stochastic
π-calculus [35,36].

The use of exponential distributions to represent the (stochastic) time spent
between two occurrences of chemical reactions allows describing the system as
a Continuous Time Markov Chain (CTMC), and consequently allows verifying
properties of the described system analytically and by means of stochastic model
checkers.

We then associated to the rewriting rules of SCWC the kinetic constant k of
the modeled chemical reaction. A stochastic rewrite rule is then a triple (P, O, k),
denoted with P

k�−→O, where (P, O) is a rewrite rule and k ∈ IR≥0.
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The number of reactants in a reaction represented by a rewrite rule is eval-
uated considering the number of distinct occurrences, in the same context , of
subterms to which the rule can be applied producing the same term . For instance
in evaluating the application rate of the stochastic rewrite rule R = a b

k�−→ c to
the term t = a a b b we must consider the number of the possible combinations
of reactants of the form a b in t. Since each occurrence of a can react with each
occurrence of b, this number is 4. So the application rate of R is k · 4.

The evaluation of the application rate of a reduction rule containing variables
is more complicated since there can be many different ways in which variables can
be instantiated to match the subterm to be reduced, and this must be considered
to correctly evaluate the application rate. Given two terms t, u and a reduction
rule R, we can compute the number of possible applications of the rule R to
the term t resulting in the term u. We denote this number by O(R, t, u). We
refer to [12] for more details and explanation.2 In particular, the function O is
analogous to the one defined for SCLS in [7].

A SCWC system over a set A of atoms is represented by a set FA (F for
short when A is understood) of stochastic rewrite rules over A. Given an SCWC
system, the reduction semantics of SCWC is the least labelled transition relation
satisfying the following rule:

R = P
k�−→ O ∈ R σ ∈ Σ t = Pσ u = Oσ C ∈ C

C[t]
k·O(R,t,u)�−→ C[u]

The rate of the reduction is then obtained as the product of the rewrite rate
constant and the number of occurrences of the rule within the starting term (thus
counting the exact number of reactants to which the rule can be applied and
which produce the same result). The rate associated with each transition in the
stochastic reduction semantics is the parameter of an exponential distribution
that characterizes the stochastic behaviour of the activity corresponding to the
applied rewrite rule. The stochastic semantics is essentially a CTMC. A standard
simulation procedure that corresponds to Gillespie’s simulation algorithm [15]
can be followed. A prototype implementation of SCWC, based on Gillespie’s
algorithm, is available [3].

In the following we will write:

(i) S S
k⇒ O as short for S S X

k�−→ O X , where the variable X does not
occur in Var(S S) ∪ Var(O).

(ii) a a
k→ b as short for the rewrite rule (a a x �Y ) Z

k�−→ (b x �Y ) Z, where
the variables x, Y, Z are distinct.

2 The semantics of the calculus described in [12] is slightly more general. In particular,
rules are defined with rate functions (instead of constant rates), which model the
speed of a reaction in a parametric way. For the application investigated in this
paper it is enough to use constant kinetics, therefore we presented here a simplified
semantics.
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Table 1. Guidelines for the abstraction of biomolecular events into SCWC

Biomolecular Event Examples of SCWC Rewrite Rules

State change a ⇒ b

Complexation a b ⇒ c

Decomplexation c ⇒ a b

Catalysis c S S ⇒ c O where S S ⇒ O is the catalyzed event

State change on membrane a → b

Complexation a b → c

on membrane a (b x �X) ⇒ (c x �X)
(b x �a X) ⇒ (c x �X)

Decomplexation c → a b

on membrane (c x �X) ⇒ a (b x �X)
(c x �X) ⇒ (b x � a X)

Catalysis on membrane c a a → c b where a a → b is the catalyzed event

Membrane crossing a (x �X) ⇒ (x � a X)
(x �a X) ⇒ a (x �X)

Catalyzed a (b x �X) ⇒ (b x � a X)
membrane crossing (b x � a X) ⇒ a (b x �X)

Membrane joining a (x �X) ⇒ (a x �X)
(x �a X) ⇒ (a x �X)

Catalyzed a (b x �X) ⇒ (a b x �X)
membrane joining (b x �a X) ⇒ (a b x �X)

(x �a b X) ⇒ (a x � b X)

Membrane fusion (a x �X) (b y �Y ) ⇒ (a x b y �X Y )
Vesicle dynamics (x �X (a y �Y )) ⇒ Y (a y x �X)

Modelling Guidelines. In this section we will give some explanations and
general hints about how SCWC could be used to represent the behaviour of
various biological systems.

In rewrite systems, such as SCWC, entities are usually represented by terms
of the rewrite system, and events by rewrite rules. First of all, we should select
the biomolecular entities of interest. Since we want to describe cells, we con-
sider molecular populations and membranes. Molecular populations are groups
of molecules that are in the same compartment of the cells and inside them.
As we have said before, molecules can be of many types: we classify them as
proteins, chemical moieties and other molecules.

Membranes are considered as elementary objects: we do not describe them at
the level of the phospholipids they are made of. The only interesting property
of a membrane are that it may have a content (hence, create a compartment)
and that in its phospholipid bilayer various proteins are embedded, which act
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for example as transporters and receptors. Since membranes are represented as
multisets of the embedded structures, we are modelling a fluid mosaic in which
the membranes become similar to a two-dimensional liquid where molecules can
diffuse more or less freely [43].

Now, we select the biomolecular events of interest. The simplest kind of event
is the change of state of an elementary object. Then, there are interactions
between molecules: in particular complexation, decomplexation and catalysis.
Interactions could take place between simple molecules, depicted as single sym-
bols, or between membranes and molecules: for example a molecule may cross or
join a membrane. Finally, there are also interactions between membranes: in this
case there may be many kinds of interactions (fusion, vesicle dynamics, etc. . . ).

Table 1 lists the guidelines (taken from [12]) for the abstraction into SCWC
rules of the biomolecular events we will use in our application.3 Entities are
associated with SCWC terms: elementary objects (genes, domains, etc...) are
modelled as multisets of atoms, molecular populations as SCWC terms, and
membranes as atom multisets. Biomolecular events are associated with SCWC
rewrite rules.

3 Modelling the Ammonium Transporter with SCWC

The scheme in Figure 3 (taken from [20]) illustrates nitrogen, phosphorus and
carbohydrate exchanges at the mycorrhizal interface according to previous works
and the results of [20]. (a1-2) NH3/NH+

4 is released in the arbuscules from
arginine which is transported from the extra- to the intraradical fungal struc-
tures [18]. NH3/NH+

4 is released by so far unknown mechanisms (transporter,
diffusion (a1) or vesicle-mediated (a2)) into the periarbuscular space (PAS)
where, due to the acidic environment, its ratio shifts towards NH+

4 (> 99.99%).
(b) The acidity of the interfacial apoplast is established by plant and fungal
H+-ATPases [23,6] thus providing the energy for H+-dependent transport pro-
cesses. (c) The NH+

4 ion is deprotonated prior to its transport across the plant
membrane via the LjAMT2;2 protein and released in its uncharged NH3 form
into the plant cytoplasm. The NH3/NH+

4 acquired by the plant is either trans-
ported into adjacent cells or immediately incorporated into amino acids (AA).
(d) Phosphate is released by so far unknown transporters into the interfacial
apoplast. (e) The uptake of phosphate on the plant side then is mediated by
mycorrhiza-specific Pi-transporters [27,20].4 (f) AM fungi might control the net
Pi-release by their own Pi-transporters which may reacquire phosphate from
the periarbuscular space [6]. (g) Plant derived carbon is released into the PAS
probably as sucrose and then cleaved into hexoses by sucrose synthases [24] or
invertases [40]. AM fungi then acquire hexoses [42,44] and transport them over
their membrane by so far unknown hexose transporters. It is likely that these
transporters are proton co-transporter as the GpMST1 described for the glom-
eromycotan fungus Geosiphon pyriformis [33]. Exchange of nutrients between

3 Kinetics are omitted from the table for simplicity.
4 Where Pi stands for inorganic phosphate.
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Fig. 3. Nitrogen, phosphorus and carbohydrate exchanges at the mycorrhizal
interface

arbusculated cells and non-colonized cortical cells can occur by apoplastic (h)
or symplastic (i) ways.

In this paper we focus our investigation on the sectors labelled with (c), (a1)
and (a2). Namely, we will present SCWC models for the equilibrium between
NH+

4 and NH3 and the uptake by the LjAMT2;2 transporter (c), and the
exchange of NH+

4 from the fungus to the interspatial level (a1-2). We will
also analyze LjAMT2;2 role in the AM symbiosis by comparing it with another
known ammonium transporter, LjAMT1;1. The choice of SCWC is motivated by
the fact that membranes, membrane elements (like LjAMT2;2) and the involved
reactions can be represented in it in a quite natural way.

The simulations illustrated in this section are done with the SCWC prototype
simulator [3]. In the following we will use a more compact notation to represent
multisets of the same atom, namely, we will write a×n to denote the multiset of n
atomic elements a. Moreover, to simplify the counting mechanism, we might use
different names for the same molecule when it belongs to different compartments.
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Fig. 4. Extracellular equilibrium between NH3 and NH+
4

For instance, occurrences of the molecule NH3 inside the plant cell are referred
to as NH3 inside.

3.1 NH3/NH+
4 Equilibrium

We decided to start modelling a simplified pH equilibrium, at the interspatial
level (right part of section (c) in Figure 3), without considering H2O, H+ and
OH−; therefore we tuned the reaction rates in order to reach the correct percent-
ages of NH3 over total NH3/NH+

4 in the different compartments. Like these
all the rates and initial terms used in this work are obtained by manual adjust-
ments made looking at the simulations results and trying to keep simulations
times acceptable - we plan to refine these rates and numbers in future work to
reflect biological data when they become available. Following [20], we consider
an extracellular pH of 4.5 [21]. In such conditions, the percentage of molecules
of NH3 over the sum NH3 + NH+

4 should be around 0.002. The reaction we
considered is the following:

NH3
k1�
k2

NH+
4

with k1 = 0.018 × 10−3 and k2 = 0.562 × 10−9. One can translate this reaction
with the SCWC rules.

NH3
k1⇒ NH+

4 (R1)

NH+
4

k2⇒ NH3 (R2)

In Figure 4 we show the results of this first simulation given the initial term
t = NH3 × 138238 NH+

4 × 138238.
This equilibrium is different at the intracellular level (pH around 7 and 8) [17],

so we use two new rules to model the transformations of NH3 and NH+
4 inside

the cell, namely:
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NH3 inside k1⇒ NH+
4 inside (R3)

NH+
4 inside

k′
2⇒ NH3 inside (R4)

where k′
2 = 0.562 × 10−6.

3.2 LjAMT2;2 Uptake

We can now present the SCWC model of the uptake of the LjAMT2;2 transporter
(left part of section (c) in Figure 3). We add a compartment modelling an
arbusculated plant cell. Since we are only interested in the work done by the
LjAMT2;2 transporter, we consider a membrane containing this single element.
The work of the transporter is modelled by the rule:

NH+
4 (LjAMT 2 x �X) kt⇒ H+ (LjAMT 2 x �X NH3 inside) (R5)

where kt = 0.1 × 10−5.
We can investigate the uptake rate of the transporter at different initial con-

centrations of NH3 and NH+
4 . Figure 5 and Figure 6 show the results for the

initial terms:

t = NH3 × 776 NH+
4 × 276400 (LjAMT 2 � •)

u = NH3 × 276400 NH+
4 × 776 (LjAMT 2 � •)

where the graphs above represent the whole simulations, while the ones below
are a magnification of their initial segment.

We can also investigate the uptake rate of the transporter at different extra-
cellular pH. Namely, we consider an extracellular pH equal to the intracellular
one (pH around 7 and 8), obtained by imposing R1 and R2 equal to R3 and
R4, respectively, i.e. k2 = k′

2. Figure 7 shows the results for the initial term
v = NH3 × 138238 NH+

4 × 138238 (LjAMT 2 � •).
Since now we modeled the transporter supposing that no active form of energy

is required to do the actual work - which means that the NH+
4 gradient between

the cell and the extracellular ambient is sufficient to determine a net uptake.
The predicted tridimensional structure of LjAMT2;2 suggests that it does not
use ATP 5 as an energy source [20], nevertheless trying to model an “energy
consumption” scenario is interesting to make some comparisons. Since this is
only a proof of concept there is no need to specify here in which form this
energy is going to be provided. Furthermore, as long as we are only interested in
comparing the initial rates of uptake, we can avoid defining rules that regenerate
energy in the cell. Therefore, rule R5 modelling the transporter role can be
modified as follows:

NH+
4 (LjAMT 2 x �ENERGY X)

k′
t⇒ (R5’)

H+ (LjAMT 2 x �NH3 inside X)

5 ATP is the “molecular unit of currency” of intracellular energy transfer [28] and is
used by many transporters that work against chemical gradients.
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Fig. 5. At high NH+
4 concentration

which consumes an element of energy within the cell. We also make this re-
action slower, since it is now catalysed by the concentration of the ENERGY
element, actually, we set k′

t = 0.1 × 10−10. Given the initial term w = NH3 ×
138238 NH+

4 × 138238 (LjAMT 2 �ENERGY × 100000) we obtain the simula-
tion result in Figure 8. Note that the uptake work of the transporter terminates
when the ENERGY inside the cell is completely exhausted.

3.3 NH+
4 Diffusing from the Fungus

We now model the diffusion of NH+
4 from the fungus to the extracellular level

(sections (a1), and (a2) of Figure 3). In section (a1) of the figure, the passage of
NH+

4 to the interfacial periarbuscular space happens by diffusion. We can model
this phenomenon by adding a new compartment, representing the fungus, from
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Fig. 6. At low NH+
4 concentration

which NH+
4 flows towards the fungus-plant interface. This could be modelled

through the rule:

(FungMembr x �NH+
4 X)

kf⇒ NH+
4 (FungMembr x �X) (R6)

By varying the value of the rate kf one might model different externalization
speeds and thus test different hypotheses about the underlying mechanism. In
Figure 9 we give the simulation result, with three different magnification levels,
going from the whole simulation to the initial parts, obtained from the initial
term tf = (FungMembr � NH+

4 ×2764677) (LjAMT 2 � •) with kf = 1. In the
initial part, one can see how fast, in this case, NH+

4 diffuses into the extracellular
space. In Figure 10 we give the simulation result obtained from the same initial
term tf with a slower diffusion rate, namely kf = 0.01 × 10−3.

Additionally, we would like to remark, without going into the simulation de-
tails, how we can model in a rather natural way the portion (a2) of Figure 3
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Fig. 7. At extracellular pH=7

in SCWC. Namely, we need some rules to produce vesicles containing NH+
4

molecules within the fungal cell. Once the vesicle is formed, another rule drives its
exocytosis towards the interfacial space, and thus the diffusion of the previously
encapsulated NH+

4 molecules. The necessary rules are given in the following:

(FungMembr x � X) kc⇒ (FungMembr x � X (V esicle � •)) (R7)

(FungMembr x � NH+
4 Y (V esicle y �X)) ka⇒ (R8)

(FungMembr x � Y (V esicle y �NH+
4 X))

(FungMembr x � Y (V esicle y �X)) ke⇒ X (FungMembr x y �Y ) (R9)

Where rule R7 models the creation of a vesicle, rule R8 model the encapsulation
of an NH+

4 molecule within the vesicle and rule R9 models the exocytosis of the
vesicle content.
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Fig. 8. LjAMT2;2 with active energy

3.4 Emplicit pH Representation

To be able to further investigate the delicate equilibria that are established in the
AM symbiosis we needed a model that deals with H+ and OH− and therefore
could offer more precise analysis opportunities on the system - to correctly model
chemical reactions at different pHs it is important to find a set of rules that is
capable of reaching and keeping the right ratio between H+ and OH−, even
when used with other rules that comprises these ions, adding or removing them.

To avoid the need of huge quantities of water molecules only hydrogen ions
and hydroxide are considered and not the process of water dissociation (as long
as water is 55.5 M while, for example, at pH 4.5 hydrogen is 3.2 × 10−5 M and
hydroxyl is 3.2× 10−10 M and we have to use natural numbers to represent the
quantities of molecules in the simulations it would be cumbersome to consider
water).

Thus the rules simply have to “create” and “destroy” the ions: H+ has to be
destroyed considering its quantity and generated considering OH− quantity and
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Fig. 9. Diffusing NH+
4 from the fungus, kf = 1

the same should be done for OH−;6 different pH will be obtained changing the
rates of these rules.

The rules are easy to define: H+ k1⇒ • and OH− k2⇒ • for the rules that destroy
ions and H+ k3⇒ H+ OH− and OH− k4⇒ OH− H+ to create them, the stochastic
simulation correctly applies them with an application rate that depends on the
defined ks and the given ion numbers in the term to which they are applied. In
this way two couples of rules are capable of maintaining a proper ratio between
H+ and OH−: to obtain different pH it is enough to tune their rates in order to
reflect the desiderate ratio.

We defined the correct rates for different pHs, for example pH 4.5, which
is necessary to model the periarbuscular space and is characterized by a ratio
between H+ and OH− of 105.

3.5 NH3/NH+
4 Equilibrium and LjAMT2;2

After the definition of proper rules for pH, we had to drive the exchange between
ammonium cations and ammonia, with rules that should be capable of reaching
and keeping the right ratio for these molecules at a given pH. Due to the explicit
pH model the rules were changed with respect to the previous ones:

NH3 H+ k1⇒ NH+
4 (R1’)

6 In such a way we abstract the reaction H2O � OH− + H+ without considering
explicitly the amount of water molecules.
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Fig. 10. Diffusing NH+
4 from the fungus, kf = 0.01 ∗ 10−3

Fig. 11. pH 7 and 4.5 with correct ratios reached

NH+
4

k2⇒ NH3 H+ (R2’)

Rule (R1’) represents ammonia which becomes protonated binding a free hy-
drogen ion, while rule (R2’) is the converse reaction. We did not consider other
reactions involving water, such as NH3 H2O

k3⇒ NH+
4 OH−, for the previously

explained reasons.
Several simulation were needed to tune the right rates, which were defined

for pH 7, pH 4.5 and pH 8.6 - more extreme pHs are unlikely in our biological
domain and they are difficult to model due to the ratios that have to be reached
(1.7 × 109 between H+ and OH− at pH 2.6), which force to run simulations
with huge molecule numbers.
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Fig. 12. LjAMT2;2 uptake (internalized NH3), comparison between different extracel-
lular pHs

Having defined all these rules the next step was to add LjAMT2;2 and try
to confirm some of the results obtained with the first model, for example the
pH dependent uptake rate. Figure 12 shows a plot that represents the internal-
ized NH3 versus time with different periarbuscular pHs. The three simulations,
started with “steady state” quantities of H+ and OH− and of NH3 and NH+

4
outside the cell (according to the chosen pH), while the cell started with no am-
monia; they still have only a cell with a single transporter on the membrane - to
be able to compare the internalization rate with sufficient numbers we changed
the rate for the transport rule, namely kt = 0.1 × 10−2.

3.6 Comparison with LjAMT1;1

To further investigate the role of LjAMT2;2 in the context of AM and its pe-
culiar mechanism of transport, which does not depend on the H+ gradient and
seems otherwise to have a role in its maintenance (by expelling the H+ gotten
from the NH+

4 molecule), we compared it with another ammonium transporter
which exists in plants but is not so selectively expressed in arbusculated cells:
LjAMT1;1 [39]; this is a transporter for NH+

4 that does not expel H+ in the
periarbuscular space, therefore it internalizes directly an NH+

4 molecule.
It is interesting to try to understand if LjAMT2;2 has a role which is synergic

with other transporters in the AM symbiosis which relies on the H+ gradient,
such as those for the phosphates on the plant side or for the carbohydrates
in the fungi and if other ammonia transporters, like LjAMT1;1, would instead
“compete” with other transporters consuming hydrogen.

Modelling what would happen if in the arbusculated cell LjAMT1;1 will be
the principal ammonia transporter, instead of LjAMT2;2, requires only to change
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(a) Periarbuscular H+ (b) Periarbuscular OH−

Fig. 13. Comparison between LjAMT1;1 and LjAMT2;2

the transporter rule with respect to the simulation with the periarbuscular pH
at 4.5 (which is the normal one) shown in the previous section:

NH+
4 (LjAMT 1 x �X) kt⇒ (LjAMT 1 x �X NH+

4 inside) (R7’)

Note that the rate is the same for both rules.
Figure 13 represents the periarbuscular quantities of H+ and OH− for two

simulations which had all the same rules except for the transporter one and
started from the terms:

NH+
4 × 107 NH3 × 200 OH− × 100 H+ × 107 (LjAMT 2 � •)

NH+
4 × 107 NH3 × 200 OH− × 100 H+ × 107 (LjAMT 1 � •)

4 Discussion

We dissected the route for the passage of NH3 / NH+
4 from the fungus to the

plant in known and hypothetical mechanisms which were transformed in rules.
Further, also the properties of the different compartments and their influence
on the transported molecules were included, thus giving a first model for the
simulation of the nutrients transfer. With the model so far we can simulate the
behaviour of the system when varying parameters as the different compartments
pH, the initial substrate concentrations, the transport/diffusion speeds and the
energy supply.

We can start comparing the two simulations with the plant cell with the
LjAMT2;2 transporter placed in different extracellular situations: low NH+

4
concentration (Figure 6) or high NH+

4 concentration (Figure 5). As a natural
consequence of the greater concentration, the ammonium uptake is faster when
the simulation starts with more NH+

4 , as long as the LjAMT2;2 can readily
import it. The real situation should be similar to this simulation, assuming that
the level of extracellular NH+

4 / NH3 is stable, meaning an active symbiosis.
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The simulation which represents an extracellular pH around 7 (Figure 7)
shows a decreased internalisation speed with respect to the simulation in Fig-
ure 5, as could be inferred from the concentrations of NH4 inside and NH3 inside
in the plots on the right (focusing on the initial activity): this supports exper-
imental data about the pH-dependent activity of the transporter and suggests
that the extracellular pH is fundamental to achieve a sufficient ammonium up-
take for the plants. It is noticeable how the initial uptake rate in this case is
higher, despite the neutral pH, than the rate obtained considering an “energy
quantum” used by the transporter (which has the same starting term), as could
be seen in the right panels of Figure 8 and Figure 7. These results could enforce
the biological hypothesis that, instead of ATP, a NH+

4 concentration gradient
(possibly created by the fungus) is used as energy source by the LjAMT2;2
protein.

The simulations which also consider the fungal counterpart are interesting
because they provide an initial investigation of this rather poorly characterized
side of the symbiosis and confirm that plants can efficiently gain ammonium if
NH+

4 is released from the fungi. This evidence supports the latest biological
hypothesis about how fungi supply nitrogen to plants [18,11], and could lead to
further models which could suggest which is the needed rate for NH+

4 transport
from fungi to the interfacial apoplast; thus driving biologists toward one (or
some) of the nowadays considered hypotheses (active transport of NH+

4 , vesicle
formation, etc.).

The explicit representation of pH, while still yielding results comparable with
the first simulations, like the pH-dependency of the uptake rate which is clearly
represented in Figure 12, offers a scenario where it is possible to analyze more
deeply LjAMT2;2 characteristics and the delicate interactions between different
transporters.

In the LjAMT2;2 and 1;1 comparison simulations the periarbuscolar pH is
mantained at around 4.5 by the previously discussed rules, but by examining
H+ and OH− one could note that LjAMT2;2 determines an increment of hy-
drogen which is higher than the one determined by LjAMT1;1, while hydroxide
shows oscillations around a mean value for both simulations. This result could
suggest that LjAMT2;2 indeed has a role in maintaining the H+ gradient which
is pivotal for other nutrient exchanges that take place in the symbiosis and that
its overexpression in the arbusculated cells has a functional meaning.

5 Conclusions and Future Work

This paper reports on the use of SCWC to simulate and understand biological
behaviour which is still unclear to biologists, and it also constitues a first attempt
to predict biological behaviour and give some directions to biologists for future
experiments.

SCWC has been particularly suitable to model the symbiosis (where sub-
stances flow through different cells) thanks to its feature of modelling compart-
ments, and their membranes, in a simple and natural way. Our simulations have
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confirmed some of the latest experimental results about the LjAMT2;2 trans-
porter [20] and also support some of the hypotheses about the energy source
for the transport and the meaning of LjAMT2;2 overexpression in arbusculated
cells. These are the first steps towards a complete simulation of the symbiosis
and open some interesting paths that could be followed to better understand the
nutrient exchange.

As demonstrated by heterologous complementation experiments in yeast,
mycorrhiza-specific plant transporters [22,20] show different uptake efficiencies
under varying pH conditions. Looking on this and the results from the simula-
tions with different pH conditions in the periarbuscular space new experiments
for a determination of the uptake kinetics (Km-values) under a range of pH seems
mandatory. Another conclusion from the model is that, for accurate simulation,
exact in vivo concentration measurements have to be carried out even though
at the moment this is a difficult task due to technical limitations.

As shown by various studies, many transporters on the plant side show a
strong transcriptionally regulation and the majority of them are thought to be
localized at the plant-fungus interface [19]. Consequently a quantification of these
proteins in the membrane will be a prerequisite for an accurate future model.

It is known that some of these transporters (e.g. PT4 phosphate transporters)
obtain energy from proton gradients established by proton pumps (Figure 3)
whereas others as the LjAMT2;2 and aquaporines [16] use unknown energy sup-
plies or are simply facilitators of diffusion events along gradients. Thus they
conserve the membranes electrochemical potential for the before mentioned pro-
ton dependent transport processes. To make the story even more complex some
of these transporters, which are known to be regulated in the AM symbiosis (e.g.
aquaporines), show overlaps in the selectivity of their substrates [25,26,45,33].
Consequently the integration of the involved transporters will be a necessary and
challenging task in a future model. It is quite probable that also transporters for
other macronutrients (potassium and sulfate) which might be localized in the
periarbuscular membrane influence the electrochemical gradients for the known
transport processes.

With the ongoing sequencing work [29] on the arbuscular model fungus Glo-
mus intraradices transporters on the fungal side of the symbiotic compartment
are likely to be identified and characterized soon. Data from such future ex-
periments could be integrated in the model and help to answer the question
whether transporter mediated diffusion or vesicle based excretion events lead to
the release of ammonium into the periarbuscular space [11].

Further questions about the plant nutrient uptake and competitive fungal
reimport process [11,6] might be answered. Based on the transport properties
of orthologous transporters from different fungal and/or plant species, theories
could be developed which explain different mycorrhiza responsiveness of host
plants; meaning why certain plant-AM fungus combinations have rather a dis-
advantageous than a beneficial effect for the plant.

In future research on AM and membrane transport processes in general values
from measurements of concentrations or kinetics will be included in the model
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and will show how the whole system is influenced by these values. Vice versa
simulations could be the base for new hypotheses and experiments. As a future
extension of the modelling technique, we plan to follow the direction taken in
[14,5] for SCLS and to define a type systems to guarantee that an SCWC term
satisfies certain biological properties (enforced by a set of typing rules), and also
investigate how type systems could enrich the study of quantitative systems.

Acknowledgements. We thank the anonymous CompMod 2009 referees for in-
sightful comments and suggestions on an earlier version this paper.
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Abstract. We propose an approach to study static properties of
metabolic networks with genetic regulation. We base our results on dif-
ferential inequalities which are constraints on the values of the partial
derivatives of the reaction rate functions. The approach uses an iterative
elimination method for the steady state equations involving algebraic
modules that satisfy the Gale-Nikaido global univalence property. The
same method allows to find conditions for unique steady state. In the
case of metabolic pathways, partial elimination of variables can produce
several alternative models, allowing to compare steady state changes of
metabolites with and without genetic regulation.

Keywords: systems biology, metabolic control, genetic regulation, qual-
itative constraints, univalence property.

1 Introduction

The purpose of this paper is to illustrate a new methodology to analyze bio-
logical systems which lack numerical information and whose interactions can
be structured according to function or timescales. We derive the conditions un-
der which various static properties of these systems are satisfied and look for
their biological interpretation. Our reasonings use information on the topology
of the reaction network and on the way products regulate fluxes (inhibition or
activation).

This work is motivated by the difficulty to build large quantitative models for
physiological processes. Although complex biochemical models contain hundreds
of reactions and chemical species, these models are relatively small compared to
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models in combustion which contain thousands of reactions (see1 for instance).
The main reason that renders the study of biochemical networks difficult is not
(as one may think) the number of variables, but the lack of information on
kinetic parameters and, in many cases, the absence of complete knowledge of
the mechanisms. It is thus important to develop symbolic tools for the study of
biochemical networks, that do not use numerical information. As an example,
given a model of genetically regulated metabolism we would like to know if
the effect of a gene knock-out or of a change of the nutritional conditions will
be an increase or a decrease in the value of a flux or of a concentration of a
metabolite. Also, in order to understand the role of the genetic regulations to
the stability and performance of metabolism, we would like to compare control
coefficients of models with and without genetic regulations. Finally, we would
like to find conditions for uniqueness of the steady state. All these motivations
can be summarized by a single general question: how to constrain the sign of
changes of steady states of perturbed biochemical models, mainly described by
their topology and with no kinetic information?

Let us give more insight on methodological aspects. We derive differential
models from the topology of the reaction network. Numeric or kinetic informa-
tion is not required; this is supplied by a set of qualitative inequalities among
derivatives of rate functions: roughly, we describe how reactions rates depend on
each product of the system - increasing, decreasing, or independent. In order to
analyze changes of steady states under genetic perturbation, we extend to a ge-
netic framework the control coefficients introduced in metabolic control analysis
[Fel97].

The main methodological problem we face is the computation of signs of
control coefficients. To that matter, we introduce a formal method to relate
fluxes and metabolites to inputs, based on the study of steady-state equations.
Our method employs a powerful condition for uniqueness of steady states - the
Gale-Nikaido theorem. We decompose the system into an increasing hierarchy
of systems all having steady-states that match with the steady-states of the full
system on the variables that are considered. In other words, steady-states of the
full system are computed “step-by-step”, allowing first the comparisons between
the different steps and, second, the identification of those variables which may
be implied in non-uniqueness. We use implicit function theorem to compute the
hierarchy of control coefficients.

Our method may be considered as an improvement of two different fields.
First, extensive studies have been performed on unique steady-state criteria
based on the topology of the network [Tho81, CTF06]. Our method includes
some of them, and provides new ones. Second, the field of predictions of reaction
networks have been largely explored by flux balance analysis (FBA) [LGP06].
However, the results of such methodologies, depend on the judicious choice of
the combination of fluxes to optimize. Furthermore, FBA predictions concern
fluxes, not metabolites. The reduction methods and our extensions of metabolic

1 http://kinetics.nist.gov/realfuels/
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control allow us to extend the range of prediction, since we can discuss the effect
of perturbations also on metabolites.

2 Formalism

2.1 Constraint Based Modeling

We consider chemical kinetic models defined as follows:

dX
dt

= Φ(X,p) Φ(X,p) =
r∑
i

νiRi(X,p),

where X denotes the concentration vector of products Xi; p ∈ Rq stands for
a set of parameters of the system; Φ : Rn × Δ → Rn where Δ is a compact
subset of Rq, is a differentiable vector field; νi is the stoichiometric vector of the
elementary reaction i; Ri(X,p) is the rate of elementary reaction i.

Our main assumption about the model will be that The signs of the par-
tial derivatives ∂Ri

∂Xj
are constant and known. This assumption is true for a

very general class of systems, Michaelis-Menten, also power-law approximations
for enzyme-catalyzed reactions, such as Generalized Mass Action and S-systems
[SV87, KKS+06]. Although non-monotonic rates can be obtained by competitive
regulatory mechanisms one could reasonably expect that more complex mecha-
nisms can be decomposed into simple steps for which the constant sign condition
is fulfilled. Alternatively, one may suppose that the constant sign condition is
fulfilled in arcwise connected open domains of the phase space. For our study of
static properties, namely steady state shifts, it will be enough to consider that
both the initial and the final steady states are inside such a domain [RLS+06].

2.2 Steady States, Sequences of Box Equilibration

A steady state is a solution of the system:

S : Φ(X,p) = 0 (1)

A partial steady state is a solution of Φ1(X1,X2,p) = 0 where Φ = (Φ1,Φ2),
X = (X1,X2) is an arbitrary splitting of the species in the model.

Our aim is to eliminate some or all variables in order to obtain properties
of the system at steady state. We introduce a concept of box equilibration to
perform the substitution method for non-linear systems of equations.

Box of a system of equations. We call box of the system (1) a subset X(i)

of the set of variables X, such that X = (X(i),X(e)) is a partition of the set
of variables. The variables X(i), X(e) are called internal and external variables,
respectively. A complete freedom is allowed to decide which variables are internal
and which are external. This choice may of course be guided by biological reasons,
but also by computational reasons. In this framework, internal variables are
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those which are going to be removed from the systems. The elimination process
described above ensures redistribution of regulatory effects of internal variables
over the remaining part of the system. At first sight, the freedom given in the
choice of internal variables is misleading since it may have no dynamical reason.
However, this freedom shall be eventually considered as a strength since it allows
us to focus on the steady states effects of any set variable of the system over
other variable, abstracting from timescale and dynamical simulation viewpoints.
As illustrated in the paper, this will allow us to understand better the effect of
genetic regulation over the metabolic network, which was impossible with usual
reduction methods based on dynamics since they prioritize long timescales (here
genetic) to short timescales.

To each partition of the variables, let us consider the corresponding partition
of the vector field components Φ = (Φ(i),Φ(e)).

We call box equilibration the elimination of internal variables from the equa-
tions defined by the internal part of the vector field: Φ(i)(X(i),X(e), p) = 0.

Sequence of box equilibration. After a box equilibration the internal vari-
ables can be expressed as functions of the external variables. A sequence of box
equilibration is the finite iteration of the following operations:

1. Define X1 = X and Φ1(X1,p) = Φ(X,p). We define D1(p) = Rn
+ as the

maximal domain which contains solutions for the equation Φ1(X1,p) = 0.
2. At k-th iteration, divide the variables and the vector field components into

internal and external parts Xk = (X(i)
k ,X(e)

k ), Φk = (Φ(i)
k ,Φ(e)

k ).
3. If the external part is not empty then:

– Let Dk+1(p) be the largest set of points X(e)
k such that the equation

Φ(i)
k (X(i)

k ,X(e)
k ,p) = 0 has at least one solution X(i)

k , when X(e)
k is con-

sidered as a fixed parameter, and such that (X(i)
k ,X(e)

k ) ∈ Dk(p). If
Dk+1(p) is empty then stop: there is no solution. Thus, solving the equa-
tion allows expressing the internal variables as functions of the external
variables X(i)

k = Mk(X(e)
k ,p). Notice that the solution might not be

unique, that is Mk is not necessarily univalent. We restrict our discus-
sion to the case when the number of solutions is finite and bounded, such
as for polynomial systems.

– define Xk+1 = X(e)
k , and Φk+1 = Φ(e)

k (Mk(X(e)
n ,p),X(e)

n ,p).
4. If the external part is empty then solve Φ(i)

k (X(i)
k ,p) = 0 and stop. Conven-

tionally, in this case Dk+1(p) is considered non-empty iff the equation has a
solution.

5. go to step 2.

A sequence of box equilibration is complete if all components are equilibrated
i.e.

X = X(i)
1 ⊕ X(i)

2 ⊕ . . . ⊕ X(i)
Nb

.

After a complete sequence of box equilibration one should be able to express
steady state species concentrations as functions of the external parameters: X =
M(p), where M results from a composition of the functions {Mk}k=1,Nb

:
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X(i)
k (p) = Mk(X(i)

k+1(p), . . . ,X(i)
Nb

(p)).

A well known example of (incomplete) sequence of box equilibration is a slow/fast
reduction of a system: fast variables are reduced in order to obtain equivalent
steady states for slow variables.

The sequence of equilibration is justified when the existence and uniqueness of
solutions to the full system Φ = 0 are not straightforward. In the sequel, we will
introduce conditions for existence and uniqueness. For computational (or biolog-
ical significance) reasons, checking these conditions will be performed on subsets
of variables and not on the full system itself. Hence, the concept of sequence
of equilibration provides a flexibility in checking uniqueness conditions: we first
equilibrate a set of internal variables satisfying uniqueness, perform reduction,
then exhibit a new set of variables to be tested for uniqueness... At the end of
the process, the set of variables that may be responsible for non-uniqueness of
the steady state are eventually identified with this process. Additionally, per-
forming reduction “step-by-step” allows us to derive biological interpretations of
the conditions that would not be possible if the reduction would be performed
in one step.

Existence and uniqueness of solutions. Box equilibration solves systems of
equations by substitution. The existence and uniqueness of solutions relatively
to box equilibration are straightforward.

Proposition 2.1. – A solution of the system (1) exists for a value of the
parameter p if there is a complete sequence of box equilibration with non-
empty domains Dk+1(p).

– The function M is univalent (to one p corresponds a single value of M) if
all the domains Dk+1(p) are non-empty and each one of the function Mk

is univalent on its maximal domain Dk+1(p) for a complete sequence of box
equilibration.

This property is useful to prove the existence and uniqueness of solutions of
systems of non-linear equations. It is enough to choose a complete sequence of
box equilibration and to show that at each step the functions Mk are univalent
on non-empty domains Dk+1(p).

It is difficult to give a ”only if” version of the property. Indeed, even if we find
a box such that the equations Φ(i)

k (X(i)
k ,X(e)

k ,p) = 0 have multiple solutions in
X(i)

k it is not excluded that some of these solutions are incompatible with the
rest of the equations: after all the box equilibration we may still have an unique
solution.

2.3 Checking Box Equilibration: Existence of Partial Steady States

Let us state a sufficient condition for existence of steady states.

Theorem 2.1. Let Φ(X) = G(X)−Λ(X) be a smooth vector field on Rn
+ (Rn

+
represents all the vectors of Rn having non-negative coordinates) such that :
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1. G is bounded,
2. For all X = (X1, . . . , Xn) such that Xi = 0 and Xj �= 0 for all j �= i, G

satisfies Gi(X) > 0,
3. Λ = (Λ1(X1), . . . , Λn(Xn)) : Rn

+ → Rn
+, and Λi are differentiable and satisfy

Λi(0) = 0 and lim‖X‖→+∞ Λi(X) = +∞, for all 1 ≤ i ≤ n.

Then the equation Φ(X) = 0 has at least one solution in Rn
+.

The proof of the Theorem 2.1 is based on the following standard mathematical
lemma which is a consequence of the Poincaré-Hopf formula (see Additional
material in the Appendix).

Lemma 2.1. Let D be a smooth ball in Rn and let S be the boundary of D. Let
Φ be a differentiable vector field defined on a neighborhood of D. If Φ points
inward D at any point of S then Φ admits a zero in the interior of D.

Biological interpretation. This theorem is very general but it can be consid-
ered quite easily in a biological setting: G may be considered as the result of
production and consumption of products by biochemical reactions with a satu-
ration effect, whereas Λ represents the (unbounded) product degradation. More
precisely, the hypotheses of Theorem 2.1 are fulfilled by rather general networks
of biochemical reactions, by assuming the following rules:

– For each variable Xi, degradation terms Dg(Xi) are increasing function of
Xi with no saturation effect.

– In the absence of substrates all fluxes vanish.
– All fluxes except degradation saturate at high concentrations of metabolites,

implying that production terms Φ are bounded.
– There exists a recovery effect on each metabolic variable. By recovery effect

we mean that if a variable is zero, then at least one reaction that produces
the variable is active.

The following consequence of Theorem 2.1 is very useful to exhibit complete
sequences of box equilibration.

Corollary 2.1. Let X = (X1,X2), Φ = (Φ1, Φ2) be any partition of the vari-
ables. We suppose that Φ1(X1,X2) satisfies the hypotheses of Theorem 2.1, as a
function of X1. Then, given X2, the system of equations Φ1(X1,X2) = 0, where
X2 is considered as a constant parameter vector, admits a solution in X1 with
non negative entries.

2.4 Checking Box Equilibration: Uniqueness of Partial Steady State

In order to identify boxes of equilibration, we introduce an algebraic sufficient
condition on signs of derivatives for uniqueness. We use the following result which
is a direct consequence of Gale-Nikaido-Inada theorem [Par83]. This theorem can
be seen as a generalization to higher dimensions of the monotonicity of functions
on R. Let us recall that a principal minor of a matrix M = (mi,j)i,j∈{1,...,n} is
defined as ΔI = detMI , where I ⊂ {1, . . . , n} and MI = (mi,j)i,j∈I .
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Theorem 2.2 (Gale-Nikaido). If X → Φ(X) is a differentiable mapping from
Rn

+ to Rn, of Jacobian J , such that all the principal minors of −J are positive,
then this mapping is globally univalent. In particular the system Φ = 0 has a
unique solution if a solution exists.

Recovering Thomas condition for uniqueness of steady states. Let us
detail why this result can be seen as a generalization of the well known Thomas
condition for uniqueness of the steady state. The interaction graph is the signed,
oriented graph on the variables derived from the Jacobian J of the model: j
is connected to i (j → i ) iff Jij �= 0. The sign of the connecting arc is the
sign of Jij . Many known topological conditions for uniqueness of steady state
actually follow from the cycle decomposition of the determinant of −J , that is,
Δ(−J) =

∑
L∈L(−1)|L|lp(L), where L is the set of all cycle partitions and |L| is

the number of cycles in the partition L, lp(L) is the product of elements Jij for
all the arcs in L. As a particular case, assume that there are no positive cycles
in the interaction graph (Thomas sufficient condition for uniqueness of steady
state [Tho81]). Consider a principal minor J and the corresponding subgraph
G. Let L be a partition of G into |L| disjoint cycles l1 . . . l|L|. Each cycle lk is
also a cycle of the full interaction graph, implying that the product of signs
in each cycle lk is negative. Therefore, the sign lp(L) of arcs in the partition L
equals (−1)|L|. Summing up these relation yields Δ(−J) =

∑
L∈L(−1)|L|lp(L) =∑

L∈L(−1)2|L| = |L| > 0. From Theorem 2.2 we get the uniqueness of the steady
state.

Limitations of Thomas conditions. Nevertheless, Thomas condition is too
restrictive for most of the applications, especially to metabolism. Indeed, a re-
versible reaction can be represented as a set of two reactions of opposite stoi-
chiometry: Xi → Xj and Xj → Xi of rates R(Xi, Xj), R′(Xj , Xi), respectively.
Since Xi, Xj are substrates of R, R′, we have ∂R

∂Xi
> 0 and ∂R′

∂Xj
> 0 and it follows

that i → j → i is a positive loop in the interaction graph; Thomas condition
does not apply.

Let us go further in this example. We notice that contribution of reactions
R, R′ to the decomposition of Δ(−J) is zero, because the contribution to any
cycle partition containing i → j → i is exactly canceled by the contribution
to the cycle partition containing i → i and j → j. Actually, checking formally
the Gale-Nikaido condition allows us to avoid the limitations of the Thomas
condition.

A reversible reaction corresponds to a non-essential loop in the interaction
graph, i.e. a loop not contributing to multi-stationarity. In this paper we check
uniqueness of steady state by direct application of the Gale-Nikaido condition.
Non-essential loops have vanishing contribution to principal minors of the Jaco-
bian and are thus automatically eliminated by this procedure.

3 Constraint Based Model for Fatty Acids Metabolism

We apply our formalism to a minimal mixed metabolic and genetic model of
regulated fatty acids metabolism in liver. To set ideas, all the variables of the
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model pertain to an ”abstract” hepatocyte, capable of the two different function-
ing modes. We thus voluntarily reduced the set of elements in the model. These
belongs to three different classes of molecules. Their corresponding symbols are
given in Table 1.

– Parameter: The system is driven by the glucose concentration, represent-
ing food. Different nutritional states such as normal feeding or fasting are
modeled by different values of this parameter.

– Metabolic variables: Acetyl-CoA is the first brick for building fatty acids;
Saturated and monounsaturated fatty acids (denoted by S/MU-FA) are pro-
duced either by the organisms from Acetyl-CoA or brought by the diet;
Exogenous polyunsaturated fatty acids (PUFA) are entering the metabolism
only as part of the diet.

– Energetic variable: a variable ATP expresses the energy that the cell has
at its disposal.

– Genetic variables: we introduce abstract enzymes for each set of enzymes
that are involved in a metabolic pathway and main transcription factors
known to regulate these enzymes, namely, the active form of the nuclear
receptor PPAR and the active form of the nuclear receptor LXR, representing
in a very simplified way the regulation path LXRα-SREBP-1.

In different species such as poultry, rodents and humans, hepatocyte (liver) cells
have the specificity to ensure both lipogenesis and β-oxidation. We thus ab-
stracted the main fluxes and regulations implied in this biological process.

– Metabolic fluxes. Glycolysis produces Acetyl-CoA from glucose. Krebs
cycle produces energy for cellular needs from Acetyl-CoA. Ketone bodies
exit allows the cell to transfer the energy stored in Acetyl-CoA to the out-
side, allowing survival during fasting. Lipogenesis transforms Acetyl-CoA
into S/MU-FA via citrate. Then an outtake flux allows S/MU-FA to exit
liver and go to storing tissues (adipocytes); this flux is reversible since the
intake flux is fed partially from diet, partially from lipolysed adipocytes. Ad-
ditionally, the intake/outtake flux of PUFA allows PUFA to enter or exit
the cell, including a synthetic pathway consisting of desaturation and elon-
gation of essential fatty acids. When fatty acids enter the cell, a β−oxidation
burns all fatty acids in order to produce energy and to recover Acetyl-CoA.
Finally, ATP consumption expresses the energy (ATP) the cell consumes
for living. Degradation of metabolites can not be neglected on the genetic
timescale.

– Genetic regulations. Fluxes are regulated by their sets of enzymes, which
are themselves regulated by transcription factors PPARα and LXRα. More
precisely, LXR and SREBP-1 triggers S/MU-FA synthesis enzymes produc-
tion and PPAR triggers the production of S/MU-FA oxydation enzymes,
PUFA oxydation enzymes and ketone exit enzymes.

– Activity regulations. It has been established that fatty acids can up-
regulate or down-regulate the expression of different genes controlling their
metabolism. The regulatory effect is mainly due to PUFA (see details in
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Table 1. (Left) The full model for fatty acid metabolism. Dashed arrows stand for
genetic actions from the origin on to target. Plain arrows stand for metabolic fluxes.
Dash-dot arrows stand for energetic regulations implying T. In this model, notice that
a metabolite F2 (that is, polyunsaturated fatty acids PUFA) regulate the genetic reg-
ulators L (LXRα-SREBP-1 pathway) and PP (PPAR-α).
(Right) Differential equations for the full model. The flux of each metabolic variable is
obtained as a mass balance of primitive fluxes.

Type Name Concentration d product
dt

symbol

Metabolic parameter Glucose G
Metabolic variable Acetyl Co-A A ΦA

Saturated and monounsaturated fatty acids (S/MU-FA) F1 ΦF1
Poly-unsaturated fatty acids (PUFA) F2 ΦF2

Energetic variable Energy ATP T ΦT
Genetic variable Active form of PPAR PP Ψ1

Active form of the regulation path LXR-SREBP L Ψ2
Enzymes of S/MU-FA synthesis E1 Ψ3
Enzymes of S/MU-FA oxidation E2 Ψ4
Enzymes of PUFA oxidation E3 Ψ5
Enzymes of Ketone body exit E4 Ψ6

TA

1E

3E

PP

E 2L

1F

4E

Fin1

DegF1

Oxi1

Syn

Kout

DegA Krebs

Oxi2

Fin2

DegF2

F2

DegT

Gly

G

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dA
dt

= Gly(G, T) + n1Ox1(F1, T, E2) + n2Ox2(F2, T, E3)
−Krb(A, T) − Ko(A, E4) − n1Sy(A, T, E1) − δAA

dF1
dt

= Sy(A, T, E1) − Ox1(F1, T, E2) + In1(F1, T) − δF1
F1

dF2
dt

= −Ox2(F2, T, E3) + In2(F2, T) − δF2
F2

dT
dt

= αGGly(G, T) + αKKrb(A, T) + αO1Ox1(F1, T, E2)
+αO2Ox2(F2, T, E3) − αSSy(A, T, E1) − DgT(T)

dPP
dt

= Ψ̃1(F2) − δPPPP
dL
dt

= Ψ̃2(F2) − δLL
dE1
dt

= Ψ̃3(L) − δE1
E1

dE2
dt

= Ψ̃4(PP) − δE2
E2

dE3
dt

= Ψ̃5(PP) − δE3
E3

dE4
dt

= Ψ̃6(PP) − δE4
E4

[CF03, PLM03, DF04, Jum04]). Although the precise mechanisms have not
been proved yet, some well established facts are used for modeling: PUFA
increases PPAR activity and inhibits LXR activity.

– Energetic regulations on fat intake. Fat intake is needed to produce
energy by oxidation. A drop in energy (ATP) stimulates fat intake.

Our full model for fatty acid metabolism and its regulations is depicted in
Table 1. It was built from these interactions by using the following rules.

– The production ΦA, ΦF1 , ΦF2 , ΦT of each metabolic variable is obtained as
the sum of primitive fluxes that produce or consume the metabolite.

– Primitive fluxes are treated as single reactions with simple stoichiometry.
Thus, the fluxes Gly, Krb, Ox1, Ox2, Sy are considered to have the stoi-
chiometry’s G → A+αGT , A → αKT , F1 → n1A+αO1T , F2 → n1A+αO2T ,
n1A + αST → F1 respectively.

– Degradation reactions of metabolites are supposed to be linear: DgV(V) =
δVV where V denotes any variable A, F1, F2.
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Table 2. Constrained signs on the full model for regulated fatty acid metabolism in
liver.

∂ flux
∂ var. Gly Krb Ko Sy Ox1 Ox2 In1 In2 DgT Ψ̃1 Ψ̃2 Ψ̃3 Ψ̃4 Ψ̃5 Ψ̃6

A 0 + + + 0 0 0 0 0 0 0 0 0 0 0
F1 0 0 0 0 + 0 − 0 0 0 0 0 0 0 0
F2 0 0 0 0 0 + 0 − 0 + − 0 0 0 0
T − − 0 + − − − − + 0 0 0 0 0 0
PP 0 0 0 0 0 0 0 0 0 0 0 0 + + +
L 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0
E1 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0
E2 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0
E3 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0
E4 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0
G + 0 0 0 0 0 0 0 0 0 0 0 0 0 0

– The functions Ψi expressing variations of the genetic variables (PP, L, E1,
E2, E3, E4) were not detailed because mechanisms are still unknown. Instead,
each function Ψi has been decomposed into a non-negative production term
Ψ̃i and a linear degradation term.

The information already given about regulations allows to partially fill the ta-
ble of partial derivatives of the fluxes. To identify the remaining signs, we use
the following assumptions: a)Substrate effect, an increase of substrate increases
the associated flux; b) Transport effects, intake/outtake fluxes In1 and In2 are
conventionally directed to the inside, they decrease when the internal concen-
trations of fatty acids increase; c) Product negative feed-back, fluxes producing
ATP are negatively controlled by ATP. The resulting table of derivation is given
in Table 2.

4 Results

We apply the results detailed in the first section to derive several information
about fatty acid metabolism.

4.1 Two Models of Response of the Metabolism

Genetically non-regulated model. A genetically regulated system is multi-
scale. During fast response genetic variables can be considered to be constant
and equal to their initial values. We call genetically non-regulated model the
reduced model obtained from the full model by considering Ei(t) = Ei(0), i =
1, . . . , 4, PP(t) = PP(0), L(t) = L(0). Fast response is obtained at partial steady
state of the remaining four variables {A, F1, F2, T}. By construction, the genet-
ically non-regulated model can be used to describe the rapid response of the
metabolic variables on timescales smaller than the relaxation time of the genetic
variables. In particular, the steady state of this model are the quasi-stationary
states of the full model.

The genetically regulated model. Slow adiabatic response involves all vari-
ables, including genetic ones. Nonetheless, the static response of the system can
be obtained by arbitrarily choosing the order of partial equilibration. In order
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to study the impact of genetic regulation on energetic homeostasis, we consider
a second reduced model involving the same four variables. In the full model the
box formed by the species {E1, E2, E3, E4, PP, L} is acyclic and satisfies the con-
ditions of Corollary 2.1, thus partial steady state exists and is unique. We call
genetically regulated model the reduction of the full model to the set {A, F1,
F2, T} (obtained by elimination of the genetic variables). The chain rule formula
allows to calculate the signs of flux derivatives obtained after reduction. The ge-
netically regulated model and the full model do not simulate the same dynamics,
but their steady states are identical over the set of variables {A, F1, F2, T}.

The genetically regulated model and the genetically non-regulated model have
the same structure in terms of variables, parameters and fluxes. However, per-
forming reductions affects the dependencies of genetically regulated fluxes Ko,
Sy, Ox1, Ox2, In1, In2 on other variables. The value of these fluxes after elim-
ination is denoted by subscripts gr (standing for genetically regulated) or gnr
(for non genetically regulated), for instance Kogr or Kognr. The models are de-
tailed in Table 3 together with the corresponding sign table. As shown in the
table, the only difference is in the regulation: some fluxes do not depend on F2 in
the genetically non-regulated model, since the regulations of F2 are different in
the genetically non-regulated and genetically regulated models, leading to two
different functions Fgnr

2 and Fgr
2 .

Notice that the two models models do not simulate the same dynamics and
that their steady states match, on the metabolic variables, with the value of
quasi-stationary and steady states of the full model, respectively. Comparing
the steady states of these two models will allow a characterization of the effect
of genetic regulations on the full model.

Control coefficients and elasticities. We call control coefficients the deriva-
tives of fluxes with respect to F2 and T. We also call elasticity the derivative of
the logarithm of the rate of metabolic variables with respect to the logarithm of
the substrate concentration: they quantify how rates and fluxes of a metabolite
depend on this metabolite [CB95]. Corresponding symbols are given in Table 3.
These quantities are defined such that they are all positive.

4.2 Condition for Unique Steady State

We can now turn to the application of our theoretical results about existence
and uniqueness of equilibria. First, let us notice that hypotheses of Theorem 2.1
apply to the full model and to the reduced models. All these models admit at
least a steady state.

Bistability of genetically regulated metabolism is used by some organisms to
adapt to a change in food (see the operon lactose in E.coli). There are two func-
tioning antagonist modes of the fatty acid metabolism in liver: lipogenesis that
produce reserves, fatty acid oxidation that burns reserves and produces energy.
The choice of the functioning mode depends on nutrition conditions: a lack of food
(i.e. a sustained low level of glucose) stimulates lipolysis and oxidation; normal
feed (normal glucose level) induces lipogenesis. This motivates the first biological
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Table 3. The genetically non-regulated and genetically regulated models given as dif-
ferential equations and graph. The differential equations simulate the correct dynamics
only for the genetically non-regulated model, and only on the rapid part of the tra-
jectory before reaching quasi-stationarity. For genetically regulated model they only
provide the same steady state as the full model, a condition which is sufficient for the
study of static properties. The table of signs contains symbols corresponding to control
coefficients and elasticities. Notations gnr and gr denote the value of fluxes for the
different models (non-genetically or genetically regulated). All the symbols stand for
positive values. These quantities inform on the strength of fluxes variations one with
respect to the other and how rates and fluxes of a metabolite depend on this metabo-
lite. They will be used in the sequel to express conditions on the system to satisfying
specific behaviors.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dA
dt

= −δAA + Gly(G, T) + n1Ox1gr,gnr(F1, F2, T) + n2Ox2gr,gnr(F2, T) − Krb(A, T)−
Kogr,gnr(A, F2) − n1Sygr,gnr(A, F2, T)

dF1
dt

= Sygr,gnr(A, F2, T) − Ox1gr,gnr(F1, F2, T) + In1(F1, T) − δF1
F1

dF2
dt

= −Ox2gr,gnr(F2, T) + In2(F2 , T) − δF2
F2

dT
dt

= αKKrb(A, T) + αO1Ox1gr,gnr(F1, F2, T) + αO2Ox2gr,gnr(F2, T) − αSSygr,gnr(A, F2, T)
+αGGly(G, T) − DgT(T)

∂Φ
∂X

Gly Krb Ko Sy Ox1 Ox2 In1 In2 DgT

A 0 χKrb
A + χ

Sy
A 0 0 0 0 0

F1 0 0 0 0 χOx1
F1

0 − 0 0

F2
gnr
gr

0 0
0

RKo
F2

0

−R
Sy
F2

0
ROx1

F2
ROx2

F2
0 − 0

T −R
Gly
T −RKrb

T 0 R
Sy
T −ROx1

T −ROx2
T −RIn1

T −RIn2
T +

G + 0 0 0 0 0 0 0 0

TA

DegF1
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G

a) genetically non-regulated model.
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b) genetically regulated model.

question we wish to answer: in higher organisms, does the whole of regulations
produce bistability or a unique steady state of fatty acid metabolism, or is the
change from lipogenesis to lipolysis merely steady state shift?

In order to answer this question, we will use the Gale-Nikaido Theorem 2.2 to
exhibit a complete sequence of univalent equilibration: the first box is {A, F1, F2}
and the second box {T}. This will allow us to exhibit an algebraic condition for
unique steady state. The biological relevance of this condition will be discussed
at the end of the section.



122 O. Radulescu et al.

To this matter, we introduce new elasticities, all positive:
χtot

F1
= −∂ΦF1

∂F1
, χtot

F2
= −∂ΦF2

∂F2
, χtot

A = −∂ΦA
∂A .

We can also show that the following ratios are all positive and strictly less
than 1:

ρOx1
F1

=
χOx1

F1
χtot

F1
, ρSy

A = n1χSy
A

χtot
A

, ρOx2
F2

=
ROx2

F2
χtot

F2

Let us define the following combinations of control coefficients and elasticities.

A = XρOx1
F1 , X = n1(αO1 − αSρSy

A + n1αKρKrebs
A ),

B = B1R
Sy
F2

/χtot
F2 + B2R

Ko
F2 /χtot

F2 + B3R
O1
F2 /χtot

F2 + B4ρ
Ox2
F2 ,

B1 = X − n1(αO1 − αS)(1 − ρSy
A ρOx1

F1 ), B2 = αO1(1 − ρSy
A ρOx1

F1 ) − X/n1,

B3 = X(1 − ρOx1
F1 ), B4 = n1αO2(1 − ρSy

A ρOx1
F1 ) + n2/n1X − n2αO1(1 − (ρSy

A )2ρOx1
F1 ),

C = [X/n1 + (n1αG − αO1)(1 − ρSy
A ρOx1

F1 )RGly
T + [αO1 + n1αK + XROxi1

T (2)

[n2/n1X + n2αSρSy
A (1 − ρOx1

F1 ) + (n1αO2 − n2αO1)(1 − ρSy
A ρOx1

F1 )]ROxi2
T +

−(αS + X/n1)ρOx1
F1 + ρSy

A ]RKrebs
T + [n1(αS − αO1) + X](1 − ρOx1

F1 )RSyn
T ,

D = [X/n1 − αO1(1 − ρSy
A )]RKrebs

T + n2αSρSy
A (1 − ρOx1

F1 )ROxi2
T

+n1(αO1 − αS)(1 − ρSy
A )ρOx1

F1 RS
T .

As detailed in the proof of Theorem 4.1 above, theses combinations result from
box equilibration – Section 2.2 – together with the Gale-Nikaido uniqueness
condition – Theorem 2.2 – and the implicit function theorem. All together, we
obtain combinations of coefficients that compose the steady-state uniqueness
conditions for the models we are considering. The biological interpretation of
these coefficients is discussed at the end of the present section.

Theorem 4.1. Assume that the following strong lipolytic response condition (3)
and fatty acid proportion condition (4) are fulfilled at fixed genetic variables and
at genetic partial steady state, for every G ∈ [0, Gmax]. Suppose additionally that
that the stoichiometry condition (5) is satisfied:

A(RIn1
T − ROx1

T ) + C > D, (3)
|B(RIn2

T − ROx2
T )| <<< A|RIn1

T − ROx1
T | (4)

αS < αO1 < n1αG, n2αO1 < n1αO2. (5)

Then the model of fatty acid metabolism has a unique steady state, with or with-
out genetic regulation. The quantities A, C, D are positive.

Proof. Let us first prove that for all (G, T) ∈ [0, Gmax]×R+, the box {A, F1, F2}
can be eliminated from equilibria equations in the genetically non-regulated
model and the genetically regulated model. Corollary 2.1 implies that the sys-
tem of equations ΦA(G, A, F1, F2, T) = ΦF1(A, F1, F2, T) = ΦF2(F2, T) = 0 has
a solution for every fixed (G, T). To prove the uniqueness of the solution to the
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system, we apply Theorem 2.2 to the mapping (A, F1, F2) → (ΦA, ΦF1 , ΦF2); let
J (1) is the Jacobian of this mapping:

J(1) =

⎛
⎜⎝

−χtot
A n1χOx1

F1
n2ROx2

F2
+ n1ROx1

F2
+ n1RSy

F2
− RKo

F2
χSy

A −χtot
F1

−ROx1
F2

− RSy
F2

0 0 −χtot
F2

⎞
⎟⎠ .

We ensure that all the principal minors of −J (1) are all positive: χtot
A > 0,

χtot
A χtot

F1
−n1χ

Sy
A χOx1

F1
= χtot

A χtot
F1

(1−ρSy
A ρOx1

F1
) > 0, χtot

F2
χtot

A χtot
F1

(1−ρSy
A ρOx1

F1
) > 0,

as a consequence of the sign table. This is valid both at fixed genetic variables
and at partial steady state of genetic variables.

Alternatively this can be seen from the topology of the reaction network. The
only cycle of the box {A, F1, F2} comes from the pair of opposed fluxes Sy, Ox1;
or, these are hanging equations.

Since Theorem 2.2 applies, there exist functions A(1)(G, T), F1
(1)(G, T) and

F2
(1)(G, T) that are the unique solutions of the system ΦA(G, A, F1, F2, T) =

ΦF1(A, F1, F2, T) = ΦF2(F2, T) = 0 for each (G, T). These functions are differ-
entiable on R2

+ by the implicit function theorem.

We then introduce ΦT
(1)(G, T) = ΦT(G, A(1)(G, T), F1

(1)(G, T), F2
(1)(G, T), T).

The biological hypotheses imply that Theorem 2.1 applies and unicity in equa-
tions for A, F1, F2 implies that the function ΦT

(1)(G, T ) has a root in T for every
G. We deduce that a sufficient condition for unicity is given by the Gale-Nikaido
theorem applied on the model reduced to the variable G; more precisely, the
function ΦT

(1) is differentiable on R2
+. From the definition of the function ΦT

(1)

it follows ∂ΦT
(1)

∂T = ∂ΦT
∂T +(αKχKrb

A −αSχSy
A )∂A(1)

∂T +αO1χ
Ox1
F1

∂F1
(1)

∂T +(αO1R
Ox1
F2

+

αO2R
Ox2
F2

+ αSRSy
F2

)∂F2
(1)

∂T .
We show by formal manipulation by using Mathematica version 5.2 software

(in the derivation we neglect terms involving F2, because of (4)) that the strong
lipolytic conditions implies ∂ΦT

(1)

∂T < 0. In other words, ΦT
(1) is monotonic so

that ΦT
(1)(G, T) has a unique zero for every G. Let T = T(2)(G) be the solution

of this equation.

Biological interpretation. We now turn to the interpretation of the algebraic
conditions. Although the systems of conditions has been reduced to a very ab-
stract and condensed shape, exhibiting numerical coefficients to prove that the
conditions are satisfied is not always possible. In order to do that we need either
a (at least partially) parametrized model from the very beginning, or a series of
experiments to estimate the control coefficients. As an alternative, let us express
the algebraic conditions introduced in Theorem 4.1 as biological conditions over
the relative strengths of fluxes and their dependencies on the products of the
system.

– The stoichiometry condition (5) can be checked from biochemical data, by
considering the average numbers of Acetyl-coA and ATP molecules produced
or consumed by the different fluxes.
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– The strong lipolytic condition (3) means that the energy variation has a
sufficiently strong effect on the arrival of fatty acids inside the cell. Lee et
al. [La04] studied for wild-type and PPAR-/- mutant murine liver, the fatty
acids profiles in triglycerides (TG), which are the predominant (> 50%)
hepatic fatty acids and also in phospholipids (PL) which go into cellular
membranes. Let us recall that TG and PL are storage forms of fatty acids
and that PL contribute much less than TG to the total fatty acid mass.
These authors [La04] show that for wild type hepatocytes after 72h of fasting
fatty acids profiles do not change significantly in PL, but there is a strong
increase of TG and of their fatty acids constituents. This suggests that the
strong lipolytic condition is satisfied. To certify that the condition is always
satisfied, we would nevertheless need experiments for every T constrained
states as well.

– The fatty acid proportion condition (4) means that polyunsaturated fatty
acids are minority among all FA, which is stated for instance in [La04].

It follows from this discussion that the conditions of uniqueness are reasonable
for the biological viewpoint, which suggests that fatty acid metabolism and their
regulation correspond to a model with a unique steady state instead of a bistable
one.

4.3 Predictions of the Model and Some Validations

(a) Role of genetic regulations in energy homeostasis. Let T = T(2)(G)
be the unique solution of the equation ΦT

(1)(G, T) = 0. The derivative dT(2)

dG is
the appropriate quantity to investigate the role of genetic regulation in energy
homeostasis. It quantifies the energy buffering effect: the lower is this derivative,
hence the lower is the variation of T for a fixed variation of G, the stronger
is the energy buffering. We use formal studies of signs to compare the values
of dT(2)

dG at quasistationarity (steady state of genetically non-regulated model)
and at stationarity (steady state of the full model). In order to formulate the
next result let us denote by Beq, Bqs the values at stationarity and at quasi-
stationarity of the combination of control coefficients B defined in (2).

Proposition 4.1. Assume that the strong lipolytic condition (3) and the stoi-
chiometry condition (5) are satisfied. Assume that

(
RIn2

T − ROx2
T

)
eq,qs

> 0 and

Beq > Bqs. Then
(

dT(2)

dG

)
qs

>
(

dT(2)

dG

)
eq

> 0.

The proof of this property is a sign study performed with Mathematica (see
Additional material in the Appendix). Notice that this proposition is strongly re-
lated to the steady state condition introduced in Theorem 4.1 since both assume
the strong lipolytic and stoichiometry conditions. As discussed in the previous
section, both hypothesis are biologically reasonable.



Genetically Regulated Metabolic Networks 125

Comment on the conditions

– By using derivative computations, we obtain that dF2
(2)

dG have the same sign as
ROx2

T −RIn2
T . Then, the condition

(
RIn2

T − ROx2
T

)
eq,qs

> 0 means that PUFAs
increase during fasting and decrease during feeding, which is confirmed by
experiments of Lee et al. [La04] on wild-type and PPAR-/- mutant murine
liver. This suggests that this hypothesis is biologically reasonable.

– Additionally, the condition Beq > Bqs is equivalent to

B1

(
ROx1

F2

)
eq

+ B2

(
RKo

F2

)
eq

+ B3

(
RSy

F2

)
eq

+ B4
∂Ox2
∂E3

∂E3
∂F2

> 0,

with B1 > 0, B4
∂Ox2
∂E3

∂E3
∂F2

> 0. This means that even if B2, B3 are negative
the oxidation control term is strong enough to win. At fasting, this is a
plausible supposition. We consequently deduce the following:

Biological prediction. Genetic regulation reinforces the energy buffering effect:
variations of ATP for a fixed variation of nutriments are less important when
genetic regulations exist.

(b) Effect of genetic perturbation Let us consider now the effect of PPAR
knock-out on the model. Without PPAR, there is no longer a genetic control
on oxidation, therefore we expect to have less energy buffering on fasting. Less
obvious is what happens to the concentration of PUFA. Let F2

(2)(G) be the value
of PUFA concentration as a function of G. Also, let BWT,eq, BPPAR−/−,eq be
the values at steady state in wild type and mutants of the coefficient B defined
in (2).

Proposition 4.2. Assume that the strong lipolytic condition (3) and the stoi-
chiometry condition (5) are satisfied. Assume also that

(
RIn2

T − ROx2
T

)
eq,qs

> 0
and BWT,eq > BPPAR−/−,eq then(

dT(2)
dG

)
eq,P P AR−/−

>
(

dT(2)
dG

)
eq,W T

, and

∣∣∣∣ dF2
(2)

dG

∣∣∣∣
eq,P PAR−/−

>

∣∣∣∣ dF2
(2)

dG

∣∣∣∣
eq,W T

.

As before, this can be checked by symbolic manipulations (see Appendix). Bio-
logically, the condition BWT,eq > BPPAR−/−,eq is equivalent to B1

(
ROx1

F2

)
WT,eq

+

B2

(
RKo

F2

)
WT,eq

+ B4
∂Ox2
∂E3

(
∂E3
∂F2

)
WT,eq

> 0, with B1 > 0, B4
∂Ox2
∂E3

(
∂E3
∂F2

)
WT,eq

> 0.

This means that even if B2 is negative the oxidation genetic control term is large
enough to compensate. It follows:

Biological prediction [PPAR -/- mutants] (a) PPAR knock-out reduces
energy buffering. (b) The increase ofPUFA concentration under fasting is stronger
in PPAR knocked-out cells compared to the same increase in wild type cells.

Experiments on transgenic mice showed that after a 72h-fast, fatty acids con-
centration increases at a higher extent in PPAR knocked-out cells with respect
to wild type cells [BLC+04, BGG+09]. This is coherent with the observations by
Lee et al.[La04] that for the same length of fasting time the hepatic accumulation
of triacylglycerol is 2.8 fold higher in PPAR knocked-out than in wild-type mice.
Hence, the global behavior of fatty acids is consistent with our predictions.
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(c) Dynamical predictions. This model also allows to deduce results on
the behavior of several metabolites. For instance, we have dT(2)

dG > 0, meaning

that ATP decreases at fasting (which is not a surprise). Moreover,
∣∣∣dF2

(2)

dG

∣∣∣
qs

>∣∣∣dF2
(2)

dG

∣∣∣
eq

, meaning that the curves representing PUFA concentration during fast-

ing must show an overshoot if the input of glucose is a discontinuous step-like
decrease: in this case, the model predicts that the increase in PUFA concentra-
tion is greater immediately at quasi-stationarity than later at stationarity.

5 Discussion

We have proposed a methodology to build small complexity abstractions that
integrate various qualitative aspects of regulated metabolism. As main feature,
such abstractions are integrative (main processes together with their various reg-
ulation), low complexity abstraction, not dependant on specific numerical values,
and allow to distinguish between quick metabolic and slow genetic response.

Our model copes with the main experimental findings on the behavior of
regulated fatty acid metabolism in hepatocytes. Under fasting, the model shifts
from a synthesis dominated regime to an oxidation/lipolysis dominated regime.
This shift stabilizes energy, replacing food supply by reserve consumption. At
short times, the shift is performed by metabolic control of synthesis, lipolysis and
oxidation. At longer times, the regulatory effect of an increase of intracellular
PUFA on the nuclear receptors PPAR and LXR reinforces this control. Refeeding
shifts the system in the opposite direction. The catabolic part of this model has
been, after exploding some lumped details, successfully used for quantitative
predictions on the behavior of fatty acids pools and of the genetic regulation in
murine models [BGG+09].

In this paper we have detailed how, using only sign constraints on partial
derivatives of elementary fluxes, it is possible to check the possibility of observed
properties of the system and to predict others.

Additionally, we have illustrated how this approach allows to reduce complex
models into simpler models that have exactly the same steady states in terms
of the remaining variables. In the process of reduction we compute symbolically
the control coefficients of the reduced model from the derivatives of the elemen-
tary fluxes in the full model. The resulting expressions can be used for direct
biological predictions as we did in this case study. Finally, full sequences of box
equilibrations can provide conditions for uniqueness of the steady state.

Although the full procedure is not yet automatic, it could be done so in the
future. An important algorithmic aim is to develop effective algorithms to test
the Gale-Nikaido condition from determinant signs or from topological derived
conditions. As suggested in Section 2.4, an important step in such algorithms
would be to identify and eliminate from the model the non-essential loops which
have vanishing contribution to multi-stationarity. Such a method, combining
topological criteria and model reduction will be presented elsewhere.
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Another problem to solve is the increasing complexity of the expressions of
the control coefficients resulting from the reduction. A solution to keep this
complexity within fixed bounds has been proposed in [RGZL08] in connection
with numerical solutions of quasi-stationarity equations, but similar methods
could be applied to symbolic calculations. The idea is to take into account the
orders of magnitude of various quantities (say, control coefficients) and to use
consistent asymptotic calculations allowing to identify the dominant terms in
the solutions of partial steady state equations.
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A Appendix: Additional Detailed Proofs

A.1 Proof of Theorem 2.1

Proof of Lemma 2.1 By the Poincaré-Hopf formula a sufficient condition for
having a zero in the interior of D is to have a non-zero index for the vector
field on S. Since Φ points inward D on S, we can construct a smooth change
of variables which conjugates Φ on a neighborhood of D to a vector field Φ′

defined on a neighborhood of the unit n−ball Bn, such that on a neighborhood
of the unit n−sphere Sn, Φ′ coincides with the radial vector field X �→ −X. For
this vector field Φ′, we can compute its index, which is 1 or −1 according to the
parity of n. The Lemma is proved since the index is a differential invariant.

Proof of Theorem 2.1. From Lemma 2.1, it is enough to find a smooth ball in
the positive orthant on the boundary of which the vector field Φ points inwards.

For R > 0, let us consider the intersection domain of the closed n-ball of
radius R with the positive orthant: Δ = {X ∈ Rn

+ , ‖X‖ ≤ R }. This domain
is a topological ball; let us denote Σ its boundary. If X ∈ Σ and none of its
components is 0, then for R large enough, Φ(X) points inward Δ, because G is
bounded and Λi(X) tend to infinity with X, hence Φi(X) < 0, for all 1 ≤ i ≤ n.
On the other hand, if only one of the components of X is 0, then by hypothesis
(2), Φ(X) points inward Δ. Since the set of points where the property of pointing
inwards is open, we can find a smooth ball D contained in Δ and sufficiently
close to it, such that on the boundary of D, the Φ points inward D.

A.2 Computational Details for Theorem 4.1

The derivatives ∂A(1)

∂T , ∂F1
(1)

∂T , ∂F2
(1)

∂T are obtained as

∂

∂T

⎛
⎝A(1)

F1
(1)

F2
(1)

⎞
⎠ = −(J(1))

−1 ∂

∂T

⎛
⎝ ΦA

ΦF1

ΦF2

⎞
⎠ .
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They thus can be expressed by means of fluxes and of control coefficients in
the following way:

− det(J(1))
χtot

F1

∂A(1)

∂T
= χtot

F2 {RGly
T − RKrb

T + n2[ρOx2
F2 RIn2

T + (1 − ρOx2
F2 )ROx2

T ] +

+n1[(1 − ρOx1
F1 )(ROx1

T + RSy
T )ρOx1

F1 RIn1
T ]} + (RIn2

T − ROx2
T )[−RKo

F2

+n1(ROx1
F2 + RSy

F2
)(1 − ρOx1

F1 )]

−det(J(1))
χtot

A

∂F1
(1)

∂T
= χtot

F2 {ρSy
A (RGly

T − RKrb
T + n2R

Ox2
T ) + n1[RIn1

T − (1 − ρSy
A )(ROx1

T

+RSy
T )]} + (ROx2

T − RIn2
T )[n1(ROx1

F2 + RSy
F2

) − n2R
Ox2
F2 + ρSy

A RKo
F2 ]

∂F2
(1)

∂T
= (χtot

F2 )−1(ROx2
T − RIn2

T ) (6)

where − det(J (1)) = χtot
F2

χtot
A χtot

F1
(1 − ρSy

A ρOx1
F1

). We deduce ∂ΦT
(1)

∂T
= [A(ROx1

T −
RIn1

T )+B(ROx2
T −RIn2

T )+C−D]/[n1(1−ρSy
A ρOx1

F1 )] where A, B, C, D are combinations
of control parameters defined in Eq. (2).

We also prove that if the stoichiometry condition (5) is fulfilled, then X >
0, A > 0, B1 > 0, B4 > 0, C > 0, D > 0 with a lengthy but straightforward
formal manipulation of (6). We have gathered control coefficients into as large
as possible positive combinations. As an illustration of how the stoichiometry
condition was used let us consider the sign of D. From αO1 > αS , X/n1−αO1(1−
ρSy
A ) = (αO1 − αS)ρSy

A + n1αKρKrebs
A > 0, ρSy

A < 1 and ρOx1
F1

< 1 it follows that
D > 0.

A.3 Proof of Propositions 4.1 and 4.2

Lemma A.1. Let F(2)
2 (G) = F(1)

2 (G, T(2)(G)). If the strong lipolytic condition
is satisfied, then the sign of dF2

(2)

dG is equal to the sign of ROx2
T − RIn2

T .

Proof. The chain rule gives

dF2
(2)

dG
=

∂F2
(1)

∂G
+

∂F2
(1)

∂T
dT(2)

dG
.

Since ∂
∂G

⎛
⎝A(1)

F1
(1)

F2
(1)

⎞
⎠ = −(J(2))

−1

⎛
⎝RGly

G

0
0

⎞
⎠ = R

Gly
G

χtot
A χtot

F1
(1−ρ

Sy
A ρOx1

F1
)

⎛
⎝χtot

F1

χSy
A

0

⎞
⎠ we have

∂F2
(1)

∂G = 0. It follows from Eq. (6) – computations related to the proof of Theorem

4.1 – that the sign of ∂F2
(1)

∂T is the same as the sign of ROx2
T −RIn2

T . Moreover, if
the strong lipolytic condition and the stoichiometry condition are satisfied, then
dT(2)

dG > 0.

Proof of Proposition 4.1. The differences between stationarity and quasi-
stationarity occur at two levels:
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1. At quasi-stationarity F2 does not regulate the genetic variables:(
RSy

F2

)
qs

=
(
ROx1

F2

)
qs

=
(
RKo

F2

)
qs

= 0. (7)

2. At quasi-stationarity the control of F2 on its oxidation is only a metabolic
substrate effect. Genetic control is added at stationarity. We have ROx2

F2
=

∂Ox2
∂F2

+ ∂E3
∂F2

∂Ox2
∂E3

with ∂Ox2
∂E3

> 0, and χtot
F2

= ROx2
F2

− ∂In2
∂F2

, ρOx2
F2

= (1−
∂In2
∂F2

ROx2
F2

)−1,

with ∂In2
∂F2

< 0. Furthermore,
(

∂E3
∂F2

)
eq

> 0 and
(

∂E3
∂F2

)
qs

= 0. Hence:

(
ROx2

F2

)
eq

>
(
ROx2

F2

)
qs

,
(
χtot

F2

)
eq

>
(
χtot

F2

)
qs

,
(
ρOx2
F2

)
eq

>
(
ρOx2
F2

)
qs

. (8)

We easily compute the following

∂ΦT
(1)

∂G
=

R
Gly
G

{n1αKχKrb
A +χtot

A [n1αG(1−ρOx1
F1

ρ
Sy
A )+αO1ρOx1

F1
ρ
Sy
A −αSρ

Sy
A ]}

n1χtot
A (1−ρ

Sy
A ρOx1

F1
)

We deduce that ∂ΦT
(1)

∂G is the same at stationarity and at quasi-stationarity. From
Theorem 4.1, it follows :

∂ΦT
(1)

∂T = R− B

n1(1−ρSy
A ρOx1

F1
)
(RIn2

T − ROx2
T ), (9)

where R is a term not changing from quasi-stationarity to stationarity and the
expression of B is given in (2).

It remains to notice that dT(2)

dG = −
(

∂ΦT
(1)

∂G

)
/
(

∂ΦT
(2)

∂T

)
and Bqs < Beq to

conclude
(

dT(2)

dG

)
qs

>
(

dT(2)

dG

)
eq

. From dF(2)
2

dG = − dT(2)

dG (RIn2
T − ROx2

T )/χtot
F2

it also

follows that
∣∣∣dF2

(2)

dG

∣∣∣
qs

>
∣∣∣dF2

(2)

dG

∣∣∣
eq

.

Proof of Proposition 4.2. We follows closely the proof of Prop. 4.1. The
differences between PPAR − /− and WT cells occur at two levels:(

ROx1
F2

)
PPAR−/−

=
(
RKo

F2

)
PPAR−/−

= 0 (10)(
ROx2

F2

)
WT,eq

>
(
ROx2

F2

)
PPAR−/−,eq

,
(
χtot

F2

)
WT,eq

>
(
χtot

F2

)
PPAR−/−,eq

,(
ρOx2
F2

)
WT,eq

>
(
ρOx2
F2

)
PPAR−/−,eq

(11)

If BWT,eq > BPPAR−/−,eq, it follows (along the same lines as the proof of Prop.
4.1) that(

dT(2)

dG

)
PPAR−/−,eq

>
(

dT(2)

dG

)
WT,eq

. From dF
(2)
2

dG
= − dT(2)

dG
(RIn2

T − ROx2
T )/χtot

F2 and

Eq.(11) it follows that
∣∣∣ dF2

(2)

dG

∣∣∣
eq,PPAR−/−

>
∣∣∣ dF2

(2)

dG

∣∣∣
eq,WT

.
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Abstract. We extend a cognitive paradigm for gene expression based
on the asymptotic limit theorems of information theory to the epige-
netic epidemiology of complex developmental disorders in humans. In
particular, we recognize the fundamental role culture plays in human bi-
ology, a heritage mechanism parallel to, and interacting with, the more
familiar genetic and epigenetic systems. We do this via a model through
which culture acts as another tunable epigenetic catalyst that both di-
rects developmental trajectories, and becomes convoluted with individ-
ual ontology, via a mutually-interacting crosstalk mediated by a social
interaction that is itself culturally driven. In sum, embedding culture is
an essential component of the regulation of human development and its
dysfunctions. The cultural and epigenetic systems of heritage may thus
provide the ‘missing’ heritability of complex diseases that is currently
the subject of much scientific discourse.

1 Introduction

1.1 Mental Disorders and Culture

We begin with a discussion of human mental disorders, that, while increas-
ingly recognized as quintessentially developmental, remain deeply mysterious.
Our classic scientific task will be to infer the general from the particular, ex-
tending our focus on the central role of culture in human mental dysfunction to
a vastly larger spectrum of developmental pathologies, with the hope of shed-
ding some light on the missing heritability conundrum [66]. This task, it seems,
requires cutting-edge mathematical methods for even a basic formal analysis.

The understanding of mental disorders is in considerable disarray. Official
classifications of mental illness such as the Diagnostic and Statistical Manual of
Mental Disorders - Fourth Edition [34], the standard descriptive nosology in the
US, have even been characterized as ‘prescientific’ by P. Gilbert [42] and oth-
ers. Johnson-Laird et al. [60] claim that current knowledge about psychological
� Corresponding author.
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illnesses is comparable to the medical understanding of epidemics in the early
19th century. Physicians realized then that cholera, for example, was a specific
disease, which killed about a third of the people whom it infected. What they
disagreed about was the cause, the pathology, and the communication of the dis-
ease. Similarly, according to [60], most medical professionals these days realize
that psychological illnesses occur (cf. [34]), but they disagree about their cause
and pathology. Notwithstanding [34], Johnson-Laird et al. doubt whether any
satisfactory a priori definition of psychological illness can exist because it is a
matter for theory to elucidate.

Atmanspacher [4], however, argues that formal theory of high level cognitive
process is itself in a disarray similar to that of physics 400 years ago, in that the
basic entities, and the relations between them, have yet to be delineated.

More generally, simple arguments from genetic determinism regarding mental
and other developmental disorders fail, in part because of a draconian popula-
tion bottleneck that, early in our species’ history, resulted in an overall genetic
diversity less than that observed within and between contemporary chimpanzee
subgroups. Manolio et al. [66], in a major review article, express this as ‘finding
the missing heritability of complex diseases’. They observe, for example, that
at least 40 loci have been associated with human height, a classic complex trait
with an estimated heritability of about 80 %, yet they explain only about 5 %
of phenotype variance despite studies of tens of thousands of people. This re-
sult, they find, is typical across a broad range of supposedly heritable diseases,
and call for extending beyond current genome-wide assoication approaches to
illuminate the genetics of complex diseases and enhance its potential to enable
effective disease prevention or treatment.

Arguments from psychosocial stress fare better (e.g., [14, 31, 35]), particularly
for depression, but are affected by the apparently complex and contingent devel-
opmental paths determining the onset of schizophrenia, dementias, psychoses,
and so forth, some of which may be triggered in utero by exposure to infection,
low birthweight, or other functional teratogens.

P. Gilbert [42] suggests an extended evolutionary perspective, in which evolved
mechanisms like the ‘flight-or-fight’ response are inappropriately excited or sup-
pressed, resulting in such conditions as anxiety or post traumatic stress disor-
ders. Nesse [75] suggests that depression may represent the dysfunction of an
evolutionary adaptation which down-regulates foraging activity in the face of
unattainable goals.

Kleinman and Good, however, ([63], p. 492) outline something of the cross
cultural subtleties affecting the study of depression that seem to argue against
any simple evolutionary or genetic interpretation. They state that, when culture
is treated as a constant, as is common when studies are conducted in our own
society, it is relatively easy to view depression as a biological disorder, triggered
by social stressors in the presence of ineffective support, and reflected in a set of
symptoms or complaints that map back onto the biological substrate of the dis-
order. However, they continue, when culture is treated as a significant variable,
for example, when the researcher seriously confronts the world of meaning and
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experience of members of non-Western societies, many of our assumptions about
the nature of emotions and illness are cast in sharp relief. Dramatic differences
are found across cultures in the social organization, personal experience, and
consequences of such emotions as sadness, grief, and anger, of behaviors such as
withdrawal or aggression, and of psychological characteristics such as passivity
and helplessness or the resort to altered states of consciousness. They are or-
ganized differently as psychological realities, communicated in a wide range of
idioms, related to quite varied local contexts of power relations, and are inter-
preted, evaluated, and responded to as fundamentally different meaningful reali-
ties. Depressive illness and dysphoria are thus not only interpreted differently in
non-Western societies and across cultures; they are constituted as fundamentally
different forms of social reality.

Since publication of that landmark study, a number of comprehensive over-
views have been published that support its conclusions [8, 59, 67]. As Marsella
[64] writes, it is now clear that cultural variations exist in the areas of meaning,
perceived causes, onset patterns, epidemiology, symptom expression, course, and
outcome, variations having important implications for understanding clinical
activities including conceptualization, assessment, and therapy.

Kleinman and Cohen [64] argue forcefully that several myths have become
central to Western psychiatry. The first is that the forms of mental illness every-
where display similar degrees of prevalence. The second is an excessive adherence
to a principle known as the pathogenic/pathoplastic dichotomy, which holds that
biology is responsible for the underlying structure of a malaise, whereas cultural
beliefs shape the specific ways in which a person experiences it. The third myth
maintains that various unusual culture-specific disorders whose biological bases
are uncertain occur only in exotic places outside the West. In an effort to base
psychiatry in ‘hard’ science and thus raise its status to that of other medical
disciplines, psychiatrists have narrowly focused on the biological underpinnings
of mental disorders while discounting the importance of such ‘soft’ variables as
culture and socioeconomic status.

Heine [49] describes an explicit cultural psychology that views the person as
containing a set of biological potentials interacting with particular situational
contexts that constrain and afford the expression of various constellations of
traits and patterns of behavior. He says that, unlike much of personality psy-
chology, cultural psychology focuses on the constraints and affordances inherent
to the cultural environment that give shape to those biological potentials. Hu-
man nature, from this perspective, is seen as emerging from participation in
cultural worlds, and of adapting oneself to the imperatives of cultural directives,
meaning that our nature is ultimately that of a cultural being.

Heine describes how cultural psychology does not view culture as a superfi-
cial wrapping of the self, or as a framework within which selves interact, but as
something that is intrinsic to the self, so that without culture there is no self,
only a biological entity deprived of its potential. Individual selves, from Heine’s
perspective, are inextricably grounded in a configuration of consensual under-
standings and behavioral customs particular to a given cultural and historical
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context, so that understanding the self requires an understanding of the culture
that sustains it. Heine argues, then, that the process of becoming a self is con-
tingent on individuals interacting with, and seizing meanings from, the cultural
environment.

Heine warns that the extreme nature of American individualism means that
a psychology based on late 20th century American research not only stands the
risk of developing models that are particular to that culture, but of developing an
understanding of the self that is peculiar in the context of the world’s cultures.

Indeed, as Norenzayan and Heine [77] point out, for the better part of a
century, a considerable controversy has raged within anthropology regarding the
degree to which psychological and other human universals do, in fact, actually
exist independent of the particularities of culture.

Many others have made similar points over the years (e.g., [1, 51, 68, 69, 76,
96]).

As Durham [33] and Richerson and Boyd [82] explore at some length, humans
are endowed with two distinct but interacting heritage systems: genes and cul-
ture. Durham [33], for example, writes that genes and culture constitute two
distinct but interacting systems of information inheritance within human pop-
ulations and information of both kinds has influence, actual or potential, over
behaviors, which creates a real and unambiguous symmetry between genes and
phenotypes on the one hand, and culture and phenotypes on the other. Genes
and culture, in his view, are best represented as two parallel lines or tracks of
hereditary influence on phenotypes.

Both genes and culture can be envisioned as generalized languages in that
they have recognizable ‘grammar’ and ‘syntax’, in the sense of [78, 95, 100, 101].

More recent work has identified epigenetic heritage mechanisms involving such
processes as environmentally-induced gene methylation, that can have strong
influence across several generations (e.g., [54-6, 101]), and are the subject of
intense current research, a matter to which we will return below.

There are, it seems, two powerful heritage mechanisms in addition to the
genetic where one may perhaps find the ‘missing heritability of complex diseases’
that Manolio et al. [66] seek.

Here we will expand recent explorations of a cognitive paradigm for gene
expression [100, 101] that incorporates the effects of surrounding epigenetic reg-
ulatory machinery as a kind of catalyst to include the effects of the embed-
ding information source of human culture on human ontology. The essential
feature is that a cognitive process, including gene expression, can instantiate
a dual information source that can interact with the generalized language of
culture in which, for example, social interplay and the interpretation of so-
cioeconomic and environmental stressors, involve complicated matters of sym-
bolism and its grammar and syntax. These information sources interact by a
crosstalk that, over the life course, determines human ontology and its manifold
dysfunctions.
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2 A Cognitive Paradigm for Gene Expression

As described in [100, 101], a cognitive paradigm for gene expression is under
active study, a model in which contextual factors determine the behavior of
what Cohen characterizes as a ‘reactive system’, not at all a deterministic – or
even simple stochastic – mechanical process (e.g., [23, 24, 100, 101]). The various
formal approaches are, however, all in the spirit of Maturana and Varela [70, 71]
who understood the central role that cognitive process must play across a vast
array of biological phenomena.

O’Nuallain [78] puts gene expression directly in the realm of complex linguis-
tic behavior, for which context imposes meaning. He claims that the analogy
between gene expression and language production is useful both as a fruitful re-
search paradigm and also, given the relative lack of success of natural language
processing (nlp) by computer, as a cautionary tale for molecular biology. A rela-
tively simple model of cognitive process as an information source permits use of
Dretske’s [32] insight that any cognitive phenomenon must be constrained by the
limit theorems of information theory, in the same sense that sums of stochas-
tic variables are constrained by the Central Limit Theorem. This perspective
permits a new formal approach to gene expression and its dysfunctions, in par-
ticular suggesting new and powerful statistical tools for data analysis that could
contribute to exploring both ontology and its pathologies. Here we extend the
mathematical foundations of that work to examine the topological structures
of development and developmental disorder, in the context of an embedding
information source representing the compelling varieties of human culture.

This approach is consistent with the broad context of epigenetics and epige-
netic epidemiology. Jablonka and Lamb [54, 55], for example, argue that infor-
mation can be transmitted from one generation to the next in ways other than
through the base sequence of DNA. It can be transmitted through cultural and
behavioral means in higher animals, and by epigenetic means in cell lineages. All
of these transmission systems allow the inheritance of environmentally induced
variation. Such Epigenetic Inheritance Systems are the memory systems that
enable somatic cells of different phenotypes but identical genotypes to trans-
mit their phenotypes to their descendants, even when the stimuli that originally
induced these phenotypes are no longer present.

After some years of active research and debate, this epigenetic perspective has
received much empirical confirmation (e.g., [6, 56, 57, 91]).

Foley et al. [39] argue that epimutation is estimated to be 100 times more
frequent than genetic mutation and may occur randomly or in response to the
environment. Periods of rapid cell division and epigenetic remodeling are likely
to be most sensitive to stochastic or environmentally mediated epimutation.
Disruption of epigenetic profile is a feature of most cancers and is speculated to
play a role in the etiology of other complex diseases including asthma allergy,
obesity, type 2 diabetes, coronary heart disease, autism spectrum disorders and
bipolar disorders and schizophrenia.

Important work by Scherrer and Jost [86, 87] that is similar to the approach
of this paper explicitly invokes information theory in their extension of the
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definition of the gene to include the local epigenetic machinery, a construct they
term the ‘genon’. Their central point is that coding information is not simply
contained in the coded sequence, but is, in their terms, provided by the genon
that accompanies it on the expression pathway and controls in which peptide it
will end up. In their view the information that counts is not about the identity of
a nucleotide or an amino acid derived from it, but about the relative frequency
of the transcription and generation of a particular type of coding sequence that
then contributes to the determination of the types and numbers of functional
products derived from the DNA coding region under consideration.

The proper formal tools for understanding phenomena that ‘provide’ infor-
mation – that are information sources – are the Rate Distortion Theorem and
its zero error limit, the Shannon-McMillan Theorem.

3 Models of Development

The currently popular spinglass model of development (e.g., [20, 21]) assumes
that N transcriptional regulators, are represented by their expression patterns

S(t) = [S1(t), ..., SN (t)] (1)

at some time t during a developmental or cell-biological process and in one cell
or domain of an embryo. The transcriptional regulators influence each other’s ex-
pression through cross-regulatory and autoregulatory interactions described by a
matrix w = (wij). For nonzero elements, if wij > 0 the interaction is activating,
if wij < 0 it is repressing. w represents, in this model, the regulatory genotype
of the system, while the expression state S(t) is the phenotype. These regula-
tory interactions change the expression of the network S(t) as time progresses
according to a difference equation

Si(t + Δt) = σ[
N∑

j=1

wijSj(t)], (2)

where Δt is a constant and σ a sigmodial function whose value lies in the interval
(−1, 1). In the spinglass limit σ is the sign function, taking only the values ±1.

The regulatory networks of interest here are those whose expression state
begins from a prespecified initial state S(0) at time t = 0 and converge to a
prespecified stable equilibrium state S∞. Such networks are termed viable and
must necessarily be a very small fraction of the total possible number of networks,
since most do not begin and end on the specified states. This ‘simple’ observation
is not at all simple in our reformulation, although other results become far more
accessible, as we can then invoke the asymptotic limit theorems of information
theory.

The spinglass approach to development is formally similar to spinglass neural
network models of learning by selection, e.g., as proposed by Toulouse et al. [90]
nearly a generation ago. Much subsequent work, summarized by Dehaene and
Naccache [27], suggests that such models are simply not sufficient to the task
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of understanding high level cognitive function, and these have been largely sup-
planted by complicated ‘global workspace’ concepts whose mathematical char-
acterization is highly nontrivial [4].

Wallace and Wallace [100, 101] shift the perspective on development by in-
voking a cognitive paradigm for gene expression, following the example of the
Atlan/Cohen model of immune cognition.

Atlan and Cohen [3], in the context of a study of the immune system, argue
that the essence of cognition is the comparison of a perceived signal with an inter-
nal (learned or inherited) picture of the world, and then, upon that comparison,
the choice of a single response from a larger repertoire of possible responses.

Such choice inherently involves information and information transmission
since it always generates a reduction in uncertainty, as explained by Ash ([2], p.
21).

More formally, a pattern of incoming input – like the S(t) above – is mixed
in a systematic algorithmic manner with a pattern of internal ongoing activity –
like the (wij) above – to create a path of combined signals x = (a0, a1, ..., an, ...)
– analogous to the sequence of S(t + Δt) above, with, say, n = t/Δt. Each ak

thus represents some functional composition of internal and external signals.
For a cognitive process, this path is supposed to be fed into a ‘highly nonlinear

decision oscillator’, h, a sudden threshold machine whose canonical model could
well be taken as the famous integrate-and-fire neuron (e.g., [53], Prop. 8.12).
h(x), otherwise seen as a ‘black box’, thus generates an output that is an element
of one of two disjoint sets B0 and B1 of possible system responses. Let us define
the sets Bk as

B0 ≡ {b0, ..., bk},

B1 ≡ {bk+1, ..., bm}.
(3)

Assume a graded response, supposing that if h(x) ∈ B0, the pattern is not
recognized, and if h(x) ∈ B1, the pattern has been recognized, and some action
bj, k + 1 ≤ j ≤ m takes place.

Rather than focusing on the properties of h, we shift the perspective: The prin-
cipal objects of formal interest become paths x triggering pattern recognition-
and-response. That is, given a fixed initial state a0, examine all possible
subsequent paths x beginning with a0 and leading to the event h(x) ∈ B1.
Thus h(a0, ..., aj) ∈ B0 for all 0 < j < m, but h(a0, ..., am) ∈ B1.

Several points are central to the shift in perspective we are making:

(1). It is important to understand that the fundamental core of the argument
does not regard the exact internal details of the inferred (but perhaps not easily
observed) function h(x), but rather has been shifted to the ‘grammar’ and ‘syn-
tax’ of the strings x = a0, a1, ... leading to action of that function, and which
are more likely to be observable. We are concerned, then, with rules of operation
rather than structural blueprints or de-facto circuit wirings, as interesting and
important as these may be in other contexts.
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(2). For each positive integer n, let N(n) be the number of high probability
grammatical and syntactical paths of length n that begin with some particular
a0 and lead to the condition h(x) ∈ B1. Call such paths ‘meaningful’, assuming,
not unreasonably, that N(n) will be considerably less than the number of all
possible paths of length n leading from a0 to the condition h(x) ∈ B1.

(3). While the combining algorithm, the form of the ‘nonlinear oscillator’ h,
and the details of grammar and syntax are all unspecified in this model, the crit-
ical assumption that permits inference of the necessary conditions constrained
by the asymptotic limit theorems of information theory is that the finite limit

H ≡ lim
n→∞

log[N(n)]
n

(4)

both exists and is independent of the path x.
Define such a pattern recognition-and-response cognitive process as ergodic.

Not all cognitive processes are likely to be ergodic in this sense, implying that H ,
if it indeed exists at all, is path dependent, although extension to nearly ergodic
processes seems possible [98].

Invoking the spirit of the Shannon-McMillan Theorem, as choice involves
an inherent reduction in uncertainty, it is then possible to define an adiabati-
cally, piecewise stationary, ergodic (APSE) information source X associated with
stochastic variates Xj having joint and conditional probabilities P (a0, ..., an) and
P (an|a0, ..., an−1) such that appropriate conditional and joint Shannon uncer-
tainties satisfy the classic relations

H [X] = lim
n→∞

log[N(n)]
n

= lim
n→∞

H(Xn|X0, ..., Xn−1) (5)

= lim
n→∞

H(X0, ..., Xn)
n + 1

.

This information source is defined as dual to the underlying ergodic cognitive
process.

Adiabatic means that the source has been parametrized according to some
scheme, and that, over a certain range, along a particular piece, as the param-
eters vary, the source remains as close to stationary and ergodic as needed for
information theory’s central theorems to apply. Stationary means that the sys-
tem’s probabilities do not change in time, and ergodic, roughly, that the cross
sectional means approximate long-time averages. Between pieces it is necessary
to invoke various kinds of phase transition formalisms, as described more fully
in [95, 100].

In the developmental vernacular of [20, 21]., we now examine paths in phe-
notype space that begin at some S0 and converge n = t/Δt → ∞ to some
other S∞. Suppose the system is conceived at S0, and h represents (for ex-
ample) reproduction when phenotype S∞ is reached. Thus h(x) can have two
values, i.e., B0 not able to reproduce, and B1, mature enough to reproduce. Then
x = (S0,SΔt, ...,SnΔt, ...) until h(x) = B1.
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Structure is now subsumed within the sequential grammar and syntax of the
dual information source rather than within the cross sectional internals of (wij)-
space, a simplifying shift in perspective.

This transformation carries considerable computational burdens, as well as,
and perhaps in consequence of, providing deep mathematical insight.

First, the fact that viable networks comprise a tiny fraction of all those possi-
ble emerges easily from the spinglass formulation simply because of the ‘mechan-
ical’ limit that the number of paths from S0 to S∞ will always be far smaller
than the total number of possible paths, most of which simply do not end on
the target configuration.

From the information source perspective, which inherently subsumes a far
larger set of dynamical structures than possible in a spinglass model – not simply
those of symbolic dynamics – the result is what Khinchin [62] characterizes as the
‘E-property’ of a stationary, ergodic information source. This property allows,
in the limit of infinitely long output, the classification of output strings into two
sets:

(1). a very large collection of gibberish which does not conform to underlying
(sequential) rules of grammar and syntax, in a large sense, and which has near-
zero probability, and

(2). a relatively small ‘meaningful’ set, in conformity with underlying struc-
tural rules, having very high probability.

The essential content of the Shannon-McMillan Theorem is that, if N(n) is the
number of meaningful strings of length n, then the uncertainty of an information
source X can be defined as

H [X ] = lim
n→∞

log[N(n)]/n,

that can be expressed in terms of joint and conditional probabilities. Proving
these results for general stationary, ergodic information sources requires consid-
erable mathematical machinery (e.g., [25, 29, 62]).

Second, according to [2], information source uncertainty has an important
heuristic interpretation in that we may regard a portion of text in a particular
language as being produced by an information source. A large uncertainty means,
by the Shannon-McMillan Theorem, a large number of ‘meaningful’ sequences.
Thus given two languages with uncertainties H1 and H2 respectively, if H1 > H2,
then in the absence of noise it is easier to communicate in the first language;
more can be said in the same amount of time. On the other hand, it will be
easier to reconstruct a scrambled portion of text in the second language, since
fewer of the possible sequences of length n are meaningful.

Third, information source uncertainty is homologous with free energy den-
sity in a physical system, a matter having implications across a broad class of
dynamical behaviors.
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The free energy density of a physical system having volume V and partition
function Z(K) derived from the system’s Hamiltonian – the energy function –
at inverse temperature K is (e.g., [65])

F [K] = lim
V →∞

− 1
K

log[Z(K, V )]
V

= lim
V →∞

log[Ẑ(K, V )]
V

, (6)

where Ẑ = Z−1/K .
The partition function for a physical system is the normalizing sum in an

equation having the form

P [Ei] =
exp[−Ei/kT ]∑
j exp[−Ej/kT ]

(7)

where Ei is the energy of state i, k a constant, and T the system temperature.
Feynman [38], following the classic approach by Bennett [10], who examined

idealized machines using information to do work, concludes that the information
contained in a message is most simply measured by the free energy needed to erase
it.

Thus, according to this argument, source uncertainty is homologous to free
energy density as defined above, i.e., from the similarity with the relation H =
limn→∞ log[N(n)]/n.

Ash’s perspective then has an important corollary: If, for a biological system,
H1 > H2, source 1 will require more metabolic free energy than source 2.

4 Tunable Epigenetic Catalysis

Following [101], incorporating the influence of embedding contexts – generalized
epigenetic effects – is most elegantly done by invoking the Joint Asymptotic
Equipartition Theorem (JAEPT) [25]. For example, given an embedding epige-
netic information source, say Y , that affects development, then the dual cognitive
source uncertainty H [X ] is replaced by a joint uncertainty H(X, Y ). The objects
of interest then become the jointly typical dual sequences zn = (xn, yn), where x
is associated with cognitive gene expression and y with the embedding epigenetic
regulatory context. Restricting consideration of x and y to those sequences that
are in fact jointly typical allows use of the information transmitted from Y to
X as the splitting criterion.

One important inference is that, from the information theory ‘chain rule’ [25],
H(X, Y ) = H(X) + H(Y |X) ≤ H(X) + H(Y ), while there are approximately
exp[nH(X)] typical X sequences, and exp[nH(Y )] typical Y sequences, and
hence exp[n(H(x) + H(Y ))] independent joint sequences, there are only

exp[nH(X, Y )] ≤ exp[n(H(X) + H(Y ))]

jointly typical sequences. Equality occurs only for stochastically independent
processes.
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Interpreting the homology between information and free energy rather broadly
– making something of a an intuitive leap – the embedding context can be said to
lower an analog to the activation energy of a particular developmental channel,
at the expense of raising the total free energy needed, since the system must
now support two information sources instead of one, i.e., that regulated, and
that providing the regulation.

Thus the effect of epigenetic regulation is to change the probability of devel-
opmental pathways, while requiring more total energy for development. Hence
the epigenetic information source Y acts as a tunable catalyst, a kind of second
order cognitive enzyme, to enable and direct developmental pathways. This re-
sult permits hierarchical models similar to those of higher order cognitive neural
function that incorporate contexts in a natural way (e.g., [98, 100]). The cost of
this ability to channel is the metabolic necessity of supporting two information
sources, X and Y , rather than just X itself.

This elaboration allows a spectrum of possible ‘final’ phenotypes, what S.
Gilbert [43] calls developmental or phenotype plasticity. Thus gene expression is
seen as, in part, responding to environmental or other, internal, developmental
signals.

Including the effects of embedding culture in human ontology is, according to
this formalism, straightforward: Consider culture as another embedding infor-
mation source, Z, having source uncertainty H(Z). Then the information chain
rule becomes

H(X, Y, Z) ≤ H(X) + H(Y ) + H(Z) (8)

and

exp[nH(X, Y, Z)] ≤ exp[n(H(X) + H(Y ) + H(Z))], (9)

where, again, equality occurs only under stochastic independence.
A cultural regulatory apparatus, however, has very considerable free energy

requirements, to grossly understate the matter.
In this model, following explicitly the direction indicated by Boyd, Kleinman,

and their colleagues, culture is seen as an essential component of the catalytic
epigenetic machinery that regulates human ontology, including development of
the human mind. This is not to say that the development in other animals, par-
ticularly those that are highly social, does not undergo analogous regulation by
larger scale structures of interaction. For human populations, however, social re-
lations are themselves very highly regulated through an often strictly formalized
cultural grammar and syntax.

5 The Groupoid Free Energy

A formal equivalence class algebra can now be constructed by choosing differ-
ent origin and end points S0,S∞ and defining equivalence of two states by the
existence of a high probability meaningful path connecting them with the same
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origin and end. Disjoint partition by equivalence class, analogous to orbit equiva-
lence classes for dynamical systems, defines the vertices of the proposed network
of cognitive dual languages, much enlarged beyond the spinglass example. We
thus envision a network of metanetworks. Each vertex then represents a different
equivalence class of information sources dual to a cognitive process. This is an
abstract set of metanetwork ‘languages’ dual to the cognitive processes of gene
expression and development.

This structure generates a groupoid, in the sense of Weinstein [104]. States
aj , ak in a set A are related by the groupoid morphism if and only if there
exists a high probability grammatical path connecting them to the same base
and end points, and tuning across the various possible ways in which that can
happen – the different cognitive languages – parameterizes the set of equivalence
relations and creates the (very large) groupoid. See the mathematical appendix
for a summary of standard material on groupoids.

There is a hierarchy in groupoid structures. First, there is structure within
the system having the same base and end points, as in [20, 21]. Second, there
is a complicated groupoid structure defined by sets of dual information sources
surrounding the variation of base and end points. We do not need to know what
that structure is in any detail, but can show that its existence has profound
implications.

First we examine the simple case, the set of dual information sources associ-
ated with a fixed pair of beginning and end states.

Taking the serial grammar/syntax model above, we find that not all high
probability meaningful paths from S0 to S∞ are the same. They are structured
by the uncertainty of the associated dual information source, and that has a
homological relation with free energy density.

Let us index possible dual information sources connecting base and end points
by some set A = ∪α. Argument by abduction from statistical physics is direct:
Given metabolic energy density available at a rate M , and an allowed (fixed)
characteristic development time τ , let K = 1/κMτ for some appropriate scaling
constant κ, so that Mτ is total developmental free energy. Then we take the
probability of a particular Hα as determined by a standard expression (e.g.,
[65]),

P [Hβ ] =
exp[−HβK]∑
α exp[−HαK]

, (10)

where the sum may, in fact, be a complicated abstract integral.
This is just a version of the fundamental probability relation from statistical

mechanics, as above. The sum in the denominator, the partition function in
statistical physics, is a crucial normalizing factor that allows the definition of of
P [Hβ ] as a probability.

A basic requirement, then, is that the sum/integral always converges. K is the
inverse product of a scaling factor, a metabolic energy density rate term, and a
characteristic (presumed fixed) development time τ . The developmental energy
might be raised to some power, e.g., K = 1/(κ(Mτ)b), suggesting the possibility
of allometric scaling.
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Some dual information sources will be ‘richer’/smarter than others, but, con-
versely, will require more metabolic energy for their completion.

While we might simply impose an equivalence class structure based on equal
levels of energy/source uncertainty, producing a groupoid, we can do more by
now allowing both source and end points to vary, as well as by imposing energy-
level equivalence. This produces a far more highly structured groupoid that we
now investigate.

Equivalence classes define groupoids, by standard mechanisms [15, 47, 104].
The basic equivalence classes – here involving both information source uncer-
tainty level and the variation of S0 and S∞, will define transitive groupoids, and
higher order systems can be constructed by the union of transitive groupoids,
having larger alphabets that allow more complicated statements in the sense of
Ash above.

Again, given an appropriately scaled, dimensionless, fixed, inverse available
metabolic energy density rate and development time, so that K = 1/κMτ ,
we propose that the metabolic-energy-constrained probability of an information
source representing equivalence class Di, HDi , will be given by the classic relation

P [HGα ] =
exp[−HGαK]∑
β exp[−HGβ

K]
,

where, now, we have shifted perspective, and the sum/integral is over all possi-
ble elements of the largest available symmetry groupoid representing the equiva-
lence class structure. By the arguments of Ash above, compound sources, formed
by the union of underlying transitive groupoids, being more complex, gener-
ally having richer alphabets, as it were, will all have higher free-energy-density-
equivalents than those of the base (transitive) groupoids.

Let ZG ≡
∑

α exp[−HGαK]. We now define the Groupoid free energy of the
system, FG, at inverse normalized metabolic energy density K, as

FG[K] ≡ − 1
K

log[ZG[K]], (11)

again following the standard arguments from statistical physics [38, 65].

5.1 Spontaneous Symmetry Breaking

The groupoid free energy permits introduction of an important idea from statis-
tical physics.

We have expressed the probability of an information source in terms of its
relation to a fixed, scaled, available (inverse) metabolic free energy density, seen
as a kind of equivalent (inverse) system temperature. This gives a statistical
thermodynamic path leading to definition of a ‘higher’ free energy construct –
FG[K] – to which we now apply Landau’s fundamental heuristic phase transition
argument [65, 79, 89]. See, in particular, Pettini [79] for details.

Landau’s insight was that second order phase transitions were usually in the
context of a significant symmetry change in the physical states of a system, with
one phase being far more symmetric than the other. A symmetry is lost in the
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transition, a phenomenon called spontaneous symmetry breaking, and symmetry
changes are inherently punctuated. The greatest possible set of symmetries in
a physical system is that of the Hamiltonian describing its energy states. Usu-
ally states accessible at lower temperatures will lack the symmetries available
at higher temperatures, so that the lower temperature phase is less symmetric:
The randomization of higher temperatures – in this case limited by available
metabolic free energy densities – ensures that higher symmetry/energy states
– mixed transitive groupoid structures – will then be accessible to the system.
Absent high metabolic free energy rates and densities, however, only the sim-
plest transitive groupoid structures can be manifest. A full treatment from this
perspective seems to require invocation of groupoid representations, no small
matter (e.g., [12, 16]).

Something like Pettini’s [79] Morse-Theory-based topological hypothesis can
now be invoked, i.e., that changes in underlying groupoid structure are a neces-
sary (but not sufficient) consequence of phase changes in FG[K]. Necessity, but
not sufficiency, is important, as it, in theory, allows mixed groupoid symmetries.

Using this formulation, the mechanisms of epigenetic catalysis are accom-
plished by allowing the set B1 above to span a distribution of possible ‘final’
states S∞. Then the groupoid arguments merely expand to permit traverse of
both initial states and possible final sets, recognizing that there can now be a
possible overlap in the latter, and the epigenetic effects are realized through
the joint uncertainties H(XGα , Z), so that the epigenetic information source Z
serves to direct as well the possible final states of XGα . Again, Scherrer and Jost
[86-7] use information theory arguments to suggest something similar.

5.2 The Groupoid Atlas

The groupoid free energy inherently defines a groupoid atlas in the sense of [7].
Following closely [45, 46], the set of groupoids Gα comprise a groupoid atlas A
as follows.

A family of local groupoids (GA) is defined with respective object sets (XA)α,
and a coordinate system ΦA of A equipped with a reflexive relation ≤. These
satisfy the following conditions:

(1). If α ≤ β in ΦA then (XA)α ∩ (XA)β is a union of components of (GA),
that is, if x ∈ (XA)α ∩ (XA)β and g ∈ (GA)α acts as G : x → y, then y ∈
(XA)α ∩ (XA)β .

(2). If α ≤ β in ΦA, then there is a groupoid morphism defined between the
restrictions of the local groupoids to intersections

(GA)α|(XA)α ∩ (XA)β → (GA)β |(XA)α ∩ (XA)β ,

and which is the identity morphism on objects.
Thus each of the Gα with its associated dual information source HGα consti-

tutes a component of an atlas that incorporates the dynamics of an interactive
system by means of the intrinsic groupoid actions.

These are matters currently under very active study (e.g., [28]).
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6 ‘Phase Change’ and the Developmental Holonomy
Groupoid in Phenotype Space

There is a more direct way to look at phase transitions in cognitive, and here
culturally-driven, gene expression, adapting the topological perspectives of ho-
motopy and holonomy directly within phenotype space.

We begin with ideas of directed homotopy.
In conventional topology one constructs equivalence classes of loops that can

be continuously transformed into one another on a surface. The prospect of
interest is to attempt to collapse such a family of loops to a point while remaining
within the surface. If this cannot be done, there is a hole. Here we are concerned,
as in figure 1, with sets of one-way developmental trajectories, beginning with an
initial phenotype Si, and converging on some final phenotype, here characteristic
(highly dynamic) phenotypes labeled, respectively, Sn and So. One might view
them as, respectively, ‘normal’ and ‘other’, and the developmental pathways as
representing convergence on the two different configurations. The filled triangle
represents the effect of a composite external epigenetic catalyst – including the
effects of culture and culturally-structured social interaction – acting at a critical
developmental period represented by the initial phenotype Si.

We assume phenotype space to be directly measurable and to have a simple
‘natural’ metric defining the difference between developmental paths.

Developmental paths continuously transformable into each other without
crossing the filled triangle define equivalence classes characteristic of different
information sources dual to cognitive gene expression, as above.

Given a metric on phenotype space, and given equivalence classes of devel-
opmental trajectories having more than one path each, we can pair one-way
developmental trajectories to make loop structures. In figure 1 the solid and

Fig. 1. Developmental homotopy equivalence classes in phenotype space. The set on
one-way paths from Si to Sn represents an equivalence class of developmental trajecto-
ries converging on a particular phenotype, here representing a highly dynamic normal
structure. In the presence of a noxious external epigenetic catalyst, developmental
trajectories can converge on a pathological structure, represented by the dynamic phe-
notype So.
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dotted lines above and below the filled triangle can be pasted together to make
loops characteristic of the different developmental equivalence classes. Although
figure 1 is represented as topologically flat, there is no inherent reason for the
phenotype manifold itself to be flat. The existence of a metric in phenotype space
permits determining the degree of curvature, using standard methods. Figure 2
shows a loop in phenotype space. Using the metric definition it is possible to
parallel transport a tangent vector starting at point s around the loop, and to
measure the angle between the initial and final vectors, as indicated. A central
result from elementary metric geometry is that the angle α will be given by the
integral of the curvature tensor of the metric over the interior of the loop (e.g.,
[40], Section 9.6).

Fig. 2. Parallel transport of a tangent vector Vi → Vf around a loop on a manifold.
Only for a geometrically flat object will the angle between the initial and final vectors
be zero. By a fundamental theorem the path integral around the loop by parallel
displacement is the surface integral of the curvature over the loop.

The holonomy group is defined as follows (e.g., [50]):
If s is a point on a manifold M having a metric, then the holonomy group of

M is the group of all linear transformations of the tangent space Ms obtained
by parallel translation along closed curves starting at s.

For figure 1 the phenotype holonomy groupoid is the disjoint union of the
different holonomy groups corresponding to the different branches separated by
‘developmental shadows’ induced by epigenetic information sources acting as
developmental catalysts.

The relation between the phenotype groupoid as defined here and the phase
transitions in FG[K] as defined above is an open question, and is a central focus
of ongoing work.

7 Holonomy on the Manifold of Dual Information Sources

7.1 Basic Structure

Glazebrook and Wallace [45] examined holonomy groupoid phase transition
arguments for networks of interacting information sources dual to cognitive
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phenomena. A more elementary form of this arises directly through extend-
ing holonomy groupoid arguments to a manifold of different information sources
dual to cognitive phenomena as follows.

Different cognitive phenomena will have different dual information sources,
and we are interested in the local properties of the system near a particular
reference state. We impose a topology on the system, so that, near a particular
‘language’ A, dual to an underlying cognitive process, there is an open set U of
closely similar languages Â, such that A, Â ⊂ U . It may be necessary to coarse-
grain the system’s responses to define these information sources. The problem
is to proceed in such a way as to preserve the underlying essential topology,
while eliminating ‘high frequency noise’. The formal tools for this can be found
elsewhere, e.g., in Chapter 8 of [17].

Since the information sources dual to the cognitive processes are similar, for
all pairs of languages A, Â in U , it is possible to:

(1). Create an embedding alphabet which includes all symbols allowed to both
of them.

(2). Define an information-theoretic distortion measure in that extended, joint
alphabet between any high probability (grammatical and syntactical) paths in
A and Â, which we write as d(Ax, Âx) [25]. More detail on distortion measures
is given in the section below on the Rate Distortion Theorem. Note that these
languages do not interact, in this approximation.

(3). Define a metric on U , for example,

M(A, Â) = | lim
∫

A,Â
d(Ax, Âx)∫

A,A
d(Ax, Ax̂)

− 1|, (12)

integrating over the sets of high probability paths. Note that the integration in
the denominator is over different paths within A itself, while in the numerator
it is between different paths in A and Â. Other metric constructions on U seem
possible, leading to similar results, just as different definitions of distortion lead
to the same end in the Rate Distortion Theorem.

Structures weaker than a conventional metric would be of more general utility,
but the mathematical complications are formidable.

Note that these conditions can be used to define equivalence classes of lan-
guages dual to cognitive processes, where previously we defined equivalence
classes of states that could be linked by high probability, grammatical and
syntactical paths connecting two phenotypes. This led to the characterization
of different information sources. Here we construct an entity, formally a topo-
logical manifold, that is an equivalence class of information sources. This is,
provided M is a conventional metric, a classic differentiable manifold. The
set of such equivalence classes generates the dynamical groupoid, and questions
arise regarding mechanisms, internal or external, which can break that groupoid
symmetry.
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Since H and M are both scalars, a ‘covariant’ derivative can be defined di-
rectly as

dH/dM = lim
Â→A

H(A) − H(Â)
M(A, Â)

, (13)

where H(A) is the source uncertainty of language A.
The essential point of a ‘covariant’ derivative is that it is independent of

coordinate systems, a condition this definition fulfills. As shown above, this leads
directly to ideas of a derivative along a tangent vector and to ideas of parallel
transport leading to deep topological concepts such as holonomy. Introduction of
a coordinate system in the definition of M quickly leads to the usual Christoffel
symbols and the familiar geodesic equations (e.g., [98], Section 8.3).

Suppose the system to be set in some reference configuration A0.
To obtain the unperturbed dynamics of that state, impose a Legendre trans-

form using this derivative, defining another scalar

S ≡ H −MdH/dM. (14)

The simplest possible generalized Onsager relation – here seen as an empirical,
fitted, equation like a regression model – is

dM/dt = LdS/dM, (15)

where t is the time and dS/dM represents an analog to the thermodynamic force
in a chemical system. This is seen as acting on the reference state A0.

Again, explicit parameterization of M – that is, imposing a coordinate system
– introduces standard, and quite considerable, notational complications [17].
Defining a metric for different cognitive dual languages parameterized by K
leads to Riemannian, or even Finsler, geometries, including the usual geodesics
[45, 46, 98].

The dynamics, as we have presented them so far, have been noiseless. The
simplest generalized Onsager relation in the presence of noise might be rewritten
as

dM/dt = LdS/dM + σW (t),

where σ is a constant and W (t) represents white noise. Again, S is seen as a
function of the parameter M. This leads directly to a family of classic stochastic
differential equations of the form

dMt = L(t,M)dt + σ(t,M)dBt, (16)

where L and σ are appropriately regular functions of t and M, and dBt represents
the noise structure, characterized by its quadratic variation. In the sense of
Emery [37], this leads into complicated realms of stochastic differential geometry
and related topics.

The natural generalization is to a system of developmental processes that
influence each other via mutual information crosstalk, as described by [101].
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7.2 ‘Coevolutionary’ Development

Here we examine multiple interacting information sources representing simul-
taneous gene expression processes. This is, in a broad sense, a ‘coevolutionary’
phenomenon in that the development of one process may affect that of others.

Most generally we require that different cognitive developmental subprocesses
of gene expression characterized by information sources Hm interact through
chemical or other signals and assume that different processes become each other’s
principal environments.

We write

Hm = Hm(K1...Ks, ...Hj ...), (17)

where the Ks represent other relevant parameters and j �= m.
The dynamics of such a system is driven by a recursive network of stochastic

differential equations, similar to those used to study many other highly parallel
dynamic structures (e.g., [107]).

Letting the Kj and Hm all be represented as parameters Qj, (with the caveat
that Hm not depend on itself), one can define, according to the generalized
Onsager development of [100, 101],

Sm = Hm −
∑

i

Qi∂Hm/∂Qi

to obtain a complicated recursive system of phenomenological ‘Onsager relations’
stochastic differential equations,

dQj
t =

∑
i

[Lj,i(t, ...∂Sm/∂Qi...)dt + σj,i(t, ...∂Sm/∂Qi...)dBi
t], (18)

where, again for notational simplicity only, we have expressed both the Hj and
the external K’s in terms of the same symbols Qj .

m ranges over the Hm and we could allow different kinds of ‘noise’ dBi
t, having

particular forms of quadratic variation that may, in fact, represent a projection
of environmental factors under something like a rate distortion manifold [46].

It is important to realize that, for this formulation, one does not necessarily
have the equivalent of ‘Onsager’s fourth law’ of thermodynamics, i.e., the symme-
try relation Li,j = Lj,i. This is because such a symmetry, at base, is a statement
of local time reversal invariance (e.g., [26], pp. 35-41). But information sources
are notoriously one-way in time, for example someone speaking or writing in
English is much more likely to utter the five-character string “ the ” than its
reverse. More generally, information sources are characterized by their ‘order’,
the number of sequential steps over which serial correlations can be observed.
Rich information sources, representing complicated cognitive phenomena, can
be of very high order indeed. This suggests a ‘weaker’ structure for empirical
Onsager relations observed for cognitive processes than would be expected for
relatively simple physical phenomena.
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As usual, for a system of equations like (18), there will be multiple quasi-
stable points, representing a class of generalized resilience modes accessible via
holonomy punctuation.

There are, indeed, many possible patterns:

(1). Setting equation (18) equal to zero and solving for stationary points gives
attractor states since the noise terms preclude unstable equilibria.

(2). This system may, however, converge to limit cycle or ‘strange attractors’
that are very highly dynamic.

(3). What is converged to in both cases is not a simple state or limit cycle of
states. Rather it is an equivalence class, or set of them, of generalized language
information sources coupled by mutual interaction through crosstalk. Thus ‘sta-
bility’ in this extended model represents particular patterns of ongoing dynamics
rather than some identifiable ‘state’, although such dynamics may be indexed
by a ‘stable’ set of phenotypes.

Here we become enmeshed in a system of highly recursive phenomenologi-
cal stochastic differential equations, but at a deeper level than the standard
stochastic chemical reaction model (e.g., [107]), and in a dynamic rather than
static manner: the objects of this system are equivalence classes of information
sources and their crosstalk, rather than simple final states of a chemical system.

We have defined a groupoid for the system based on a particular set of equiv-
alence classes of information sources dual to cognitive processes. That groupoid
parsimoniously characterizes the available dynamical manifolds, and breaking
of the groupoid symmetry by epigenetic crosstalk creates more complex objects
of considerable interest. This leads to the possibility, indeed, the necessity of
epigenetic Deus ex Machina mechanisms – analogous to programming, stochas-
tic resonance, etc. – to force transitions between the different possible modes
within and across dynamic manifolds. In one model the external ‘programmer’
creates the manifold structure, and the system hunts within that structure for
the ‘solution’ to the problem according to equivalence classes of paths on the
manifold. Noise, as with random mutation in evolutionary algorithms, precludes
simple unstable equilibria, but not other possible structures.

Equivalence classes of states gave dual information sources. Equivalence
classes of information sources give different characteristic dynamical manifolds.
Equivalence classes of one-way developmental paths produce different directed
homotopy topologies characterizing those dynamical manifolds. This introduces
the possibility of having different quasi-stable modes within individual mani-
folds, and leads to ideas of holonomy and the holonomy groupoid of the set of
quasi-stable developmental modes.

8 Toward Empirical Tests of Theory: The Rate Distortion
Models

We have introduced a spectrum of abstract models of development and its
pathologies founded on a cognitive paradigm for gene expression that is itself
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based on application of the asymptotic limit theorems of information theory. Fol-
lowing the classic pattern of parametric statistics arising via the Central Limit
Theorem, we would like to see tools emerge that would allow both the analysis
of empirical or observational data and the robust testing of theory. The simplest
first step for such a program seems to lie in the the direction of the general-
ized Onsager relations that characterize system dynamics. Here we present a
restriction of the theory that may prove useful for empirical comparisons.

8.1 The Rate Distortion Theorem

The interaction between cognitive structures can be restated from a highly sim-
plified perspective via the Rate Distortion theorem. Suppose a sequence of sig-
nals is generated by an information source dual to a cognitive process, Y having
output yn = y1, y2, .... This is ‘digitized’ in terms of the observed behavior of
the system with which it communicates, say a sequence of observed behaviors
bn = b1, b2, .... Often the bi will happen in a characteristic ‘real time’ τ . Assume
each bn is then deterministically retranslated back into a reproduction of the
original biological signal,

bn → ŷn = ŷ1, ŷ2, ....

Define a distortion measure d(y, ŷ) that compares the original to the retranslated
path. Many such measures are possible. The Hamming distortion, for example,
is

d(y, ŷ) = 1, y �= ŷ

d(y, ŷ) = 0, y = ŷ

For continuous variates the squared error distortion is

d(y, ŷ) = (y − ŷ)2.

The distortion between paths yn and ŷn is defined as

d(yn, ŷn) ≡ 1
n

n∑
j=1

d(yj , ŷj).

A remarkable fact of the Rate Distortion Theorem is that the basic result is
independent of the exact distortion measure chosen [25, 29].

Suppose that with each path yn and bn-path retranslation into the y-language,
denoted ŷn, there are associated individual, joint, and conditional probability
distributions

p(yn), p(ŷn), p(yn, ŷn), p(yn|ŷn).

The average distortion is defined as

D ≡
∑
yn

p(yn)d(yn, ŷn). (19)
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It is possible, using the distributions given above, to define the information
transmitted from the Y to the Ŷ process using the Shannon source uncertainty
of the strings:

I(Y, Ŷ ) ≡ H(Y ) − H(Y |Ŷ ) = H(Y ) + H(Ŷ ) − H(Y, Ŷ ), (20)

where H(..., ...) is the joint and H(...|...) the conditional uncertainty [2, 25].
If there is no uncertainty in Y given the retranslation Ŷ , then no information

is lost, and the systems are in perfect synchrony.
In general, of course, this will not be true.
The rate distortion function R(D) for a source Y with a distortion measure

d(y, ŷ) is defined as

R(D) = min
p(y,ŷ);

∑
(y,ŷ) p(y)p(y|ŷ)d(y,ŷ)≤D

I(Y, Ŷ ). (21)

The minimization is over all conditional distributions p(y|ŷ) for which the joint
distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies the average distortion constraint (i.e.,
average distortion ≤ D).

The Rate Distortion Theorem states that R(D) is the minimum necessary
rate of information transmission which ensures the communication between the
modules does not exceed average distortion D. Thus R(D) defines a minimum
necessary channel capacity. Cover and Thomas [25] or Dembo and Zeitouni [29]
provide details. The rate distortion function has been calculated for a number
of systems.

There is an absolutely central fact characterizing the rate distortion func-
tion: Cover and Thomas ([25], Lemma 13.4.1) show that R(D) is necessarily a
decreasing convex function of D for any reasonable definition of distortion.

That is, R(D) is always a reverse J-shaped curve. This will prove crucial for
the overall argument. Indeed, convexity is an exceedingly powerful mathematical
condition, and permits deep inference (e.g., [83]). Ellis ([36], Ch. VI) applies
convexity theory to conventional statistical mechanics.

For a Gaussian channel having noise with zero mean and variance σ2 [25],

R(D) = 1/2 log[σ2/D], 0 ≤ D ≤ σ2,

R(D) = 0, D > σ2.
(22)

Recall, now, the relation between information source uncertainty and channel
capacity (e.g., [2]):

H [X] ≤ C, (23)

where H is the uncertainty of the source X and C the channel capacity, defined
according to the relation [2]

C ≡ max
P (X)

I(X |Y ), (24)
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where P (X) is chosen so as to maximize the rate of information transmission
along a channel Y .

Finally, recall the analogous definition of the rate distortion function from
equation (21), again an extremum over a probability distribution.

8.2 Rate Distortion Dynamics

R(D) defines the minimum channel capacity necessary for the system to have
average distortion less than or equal D, placing a limit on information source
uncertainty. Thus, we suggest distortion measures can drive information system
dynamics. That is, the rate distortion function also has a homological relation
to free energy density, similar to the relation between free energy density and
information source uncertainty.

We are led to propose, as a heuristic, that the dynamics of cognitive modules
interacting in a characteristic ‘real time’ τ will be constrained by the system as
described in terms of a parameterized rate distortion function. To do this, take
R as parameterized, not only by the distortion D, but by some vector of variates
Q = (Q1, ..., Qk), for which the first component is the average distortion. The
assumed dynamics are, as in [100, 101], then driven by gradients in the rate
distortion disorder defined as

SR ≡ R(Q) −
k∑

i=1

Qi∂R/∂Qi. (25)

This leads to the deterministic and stochastic systems of equations analogous to
the Onsager relations of nonequilibrium thermodynamics:

dQj/dt =
∑

i

Lj,i∂SR/∂Qi (26)

and

dQj
t = Lj(Q1, ..., Qk, t)dt +

∑
i

σj,i(Q1, ..., Qk, t)dBi
t, (27)

where the dBi
t represent added, often highly structured, stochastic ‘noise’ whose

properties are characterized by the quadratic variation (e.g., [81]).
Even for this simplified structure, it is not clear under what circumstances

‘Onsager reciprocal relations’ are possible. Since average distortion is a scalar,
however, some systems may indeed display the kind of time reversal invariance
required for those symmetries.

A central focus of this paper, however, is to generalize these equations in the
face of richer structures, for example interactions between cognitive modules
that may not be time-reversible, the existence of characteristic time constants
within nested processes, and the influence of an embedding source of free energy.

For a simple Gaussian channel with noise having zero mean and variance σ2,

SR(D) = R(D) − DdR(D)/dD = 1/2 log(σ2/D) + 1/2. (28)
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The simplest possible Onsager relation becomes

dD/dt = −μdSR/dD =
μ

2D
, (29)

where −dSR/dD represents the force of an entropic wind, a kind of internal
dissipation inevitably driving the real-time, system of interacting (cognitive)
information sources toward greater distortion.

This has the solution

D =
√

μt, (30)

so that the average distortion increases monotonically with time, for this model.
A central observation is that similar results must necessarily apply to any of

the reverse-J-shaped relations that inevitably characterize R(D), since the rate
distortion function is necessarily a convex decreasing function of the average
distortion D, whatever distortion measure is chosen. Again, see [25], (Lemma
13.4.1) for details.

The explicit implication is that a system of cognitive modules interacting in
real time will inevitably be subject to a relentless entropic force, requiring a con-
stant free energy expenditure for maintenance of some fixed average distortion in
the communication between them: The distortion in the communication between
two interacting modules will, without free energy input, have time dependence

D = f(t), (31)

with f(t) monotonic increasing in t.
This necessarily leads to the punctuated failure of the system.
Note that equation (30) is similar to classical Brownian motion as treated by

Einstein: Let p(x, t)dx be the probability a particle located at the origin at time
zero and undergoing Brownian motion is found at locations x → x + dx at time
t. Then, p satisfies the diffusion equation

∂p(x, t)/∂t = μ∂2p(x, t)/∂x2.

Einstein’s solution is that

p(x, t) =
1√

4πμt
exp[−x2/4μt].

It is easy to show that the standard deviation of the particle position increases
in proportion to

√
μt, just as above.

Some comment is appropriate. Following, e.g., [19], a process B = Bt, t ∈ R+
is called a Brownian motion in R+ iff:

(1). for 0 ≤ s < t < ∞, Bt−Bs is a normally distributed random variate with
mean zero and variance |t − s|.

(2). for 0 ≤ t0 < t1 < ... < tk < ∞,

{Bt0 ; Btj − Btj−1 , j = 1, ..., k}
is a set of independent random variates.
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An information source, of course, generates a highly correlated sequence that
grossly violates these simple assumptions. What we have shown is that the distor-
tion in the communication between interacting cognitive modules, under appro-
priate empirical Onsager relations, can behave as if it were undergoing Brownian
motion.

This is a simple, but far from trivial, result.
Prandolini and Moody [80] have, in fact, observed something much like this

in the time base error of recorded signals. Wow and flutter are the instanta-
neous speed error between recording and reproduction epochs. The time base
error (TBE) in the reproduced signal is a function of the wow and flutter. They
show, empirically, that the nonperiodic TBE is a fractional Brownian motion.
The implication is that the nonperiodic flutter is fractional Gaussian, and thus
what they call a ‘blind’ TBE system is impractical for the design of a TBE
compensation system.

Normalized fractional Brownian motion on (0, t), t ∈ R+ is a continuous time
Gaussian process starting at zero, with mean zero, and having the covariance
function [11]

E[BH(t)BH(s)] = (1/2)[|t|2H + |s|2H − |t − s|2H ].

If H = 1/2 the process is a regular Brownian motion. Otherwise, for H > 1/2,
the increments are positively correlated, and for H < 1/2, negatively correlated.

We will explore this kind of relation in more detail below.

8.3 Rate Distortion Coevolutionary Dynamics

A simplified version of equation (18) can be constructed using the rate distortion
functions for mutual crosstalk between a set of interacting cognitive modules,
using the homology of the rate distortion function itself with free energy, as
driven by the inherent convexity of the Rate Distortion Function R(D). That
convexity is, in fact, why we invoke the Rate Distortion Function.

Given different cognitive processes 1...s, the quantities of special interest thus
become the mutual rate distortion functions Ri,j characterizing communication
(and the distortion Di,j) between them, while the essential parameters remain
the characteristic time constants of each process, τj , j = 1...s, and an overall,
embedding, available free energy density, F .

Taking the Qα to run over all the relevant parameters and mutual rate dis-
tortion functions (including distortion measures Di,j), equation (14) becomes

Si,j
R ≡ Ri,j −

∑
k

Qk∂Ri,j/∂Qk. (32)

Equation (18) accordingly becomes

dQα
t =

∑
β=(i,j)

[Lβ(t, ...∂Sβ
R/∂Qα...)dt + σβ(t, ...∂Sβ

R/∂Qα...)dBβ
t ], (33)
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and this generalizes the treatment in terms of crosstalk, its distortion, the inher-
ent time constants of the different cognitive modules, and the overall available
free energy density.

This is a very complicated structure indeed, but its general dynamical be-
haviors will obviously be analogous to those described just above. For example,
setting equation (33) to zero gives the ‘coevolutionary stable states’ of a system
of interacting cognitive modules. Again, limit cycles and strange attractors seem
possible as well. And again, what is converged to is a dynamic behavior pattern,
not some fixed ‘state’. And again, such a system will display highly punctuated
dynamics almost exactly akin to resilience domain shifts in ecosystems [48, 52].
Indeed, the formalism seems directly applicable to ecosystem studies.

And again, because these are highly self-dynamic cognitive phenomena and
not simple crystals or other physical objects, it may not often be possible to
invoke time reversal invariance to give Onsager-like reciprocal symmetries.

8.4 Some Examples

The Gaussian channel. First, assume a fixed embedding communication free
energy density of F , representing the richness of incoming information from the
interacting cognitive modules. The simplest generalization of equation (29), for
a Gaussian channel, becomes

dD/dt = μ/2D − αF, α > 0, (34)

characterizing the distortion dynamics.
This has the equilibrium solution

Dequlib =
μ

2αF
. (35)

In contrast to equation (29), where, in the absence of some free energy/
information input, the distortion grows as the square root of the elapsed time,
here there is a finite, equilibrium, average distortion, that is inversely propor-
tional to the available environmental or informational free energy, that the in-
teracting systems can use to direct their actions.

The obvious generalization is

Dequilib =
1

g(F )
, (36)

where g(F ) is monotonic increasing in F .
Introducing a characteristic response time variable τ , so that

dD/dt =
μ

2D
− g(F )h(τ), (37)

where h(τ) is also monotonic increasing, leads to

Dequilib =
μ

2g(F )h(τ)
. (38)
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Thus, for this particular phenomenological Onsager model, at a fixed rate of
available information free energy, increasing allowable response time decreases
average distortion in the interaction between the cognitive subsystems.

This is, in fact, a classic result across a broad spectrum of engineering
applications.

If we now allow feedback, so that the system actively seeks information in pro-
portion to the distortion between intent and impact, then the empirical Onsager
relation for a Gaussian channel becomes

dD/dt =
μ

2D
− g(F )h(τ)D, (39)

and

Dequilib =
√

μ

2g(F )h(τ)
, (40)

significantly smaller than (38).
This is, in fact, precisely the classic result for Brownian motion in a harmonic

central field (e.g., [103], eq. 54), restated in terms of average distortion.
A mixed strategy,

dD/dt =
μ

2D
− g(F )h(τ)[1 + αD], (41)

leading to the quadratic

2Dg(F )h(τ)(1 + αD) − μ = 0, (42)

has a single equilibrium solution

Dequilib =
−g(F )h(τ) +

√
g(F )2h(τ)2 + 2g(F )h(τ)αμ

2g(F )h(τ)α
, (43)

since D must be greater than zero and real.
Stochastic generalizations – the diffusion of distortion as it were – involving

probabilistic fuzz about deterministic equilibria or dynamic paths, seem direct.

The ‘Natural’ channel. According to [84], operational rate-distortion func-
tions of most natural images, when compressed with state-of-the-art wavelet
coders, exhibit power-law behavior, rather than the logarithmic function of a
Gaussian channel, so that

R(D) =
β

Dγ
, (44)

usually with γ ≈ 1.
Applying our formalism to such a ‘natural’ channel gives

S(D) = R(D) − DdR/dD =
β(1 + γ)

Dγ
,
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dD/dt = −μdS/dD =
μβγ(1 + γ)

D1+γ
,

having the solution

D(t) = [tμβ(2 + γ)(1 + γ)]1/(2+γ),

which, for γ ≈ 1, becomes

D(t) ≈ (6βμt)1/3.

Thus distortion would grow approximately as the cube root of time for such a
system if it were to undergo a self-dynamic process.

Taking γ = 1 and introducing free energy and characteristic time terms g(F )
and h(τ) as above

leads to dynamic equations

dD/dt = 2μβ
D2 − g(F )h(τ)

dD/dt = 2μβ
D2 − g(F )h(τ)D,

(45)

having equilibrium solutions

Dequilib =
√

2μβ
g(F )h(τ)

Dequilib = [ 2μβ
g(F )h(τ) ]

1/3.

(46)

Distributed information input. A somewhat different picture emerges if we
permit input from a one parameter distribution of energy/information sources.
Defining F̂ = g(F )h(τ), we have for the Gaussian and Natural channels respec-
tively, with R(D) = 1/2 log(σ2/D), β/Dγ , γ ≈ 1, the empirical Onsager relations

dD/dt =
μ

2D
− < F̂ >,

μ

2D
− < F̂ > D (47)

and

dD/dt =
2μβ

D2 − < F̂ >,
2μβ

D2 − < F̂ > D, (48)

where < F̂ > is the average over the distribution of incoming information/free
energy. The inherently convex nature of R(D) ensures roughly similar relations
in general.

Typically we can assign some ‘effective temperature’, say T , to the incoming
distribution so that

< F̂ >=

∫∞
0 F̂ exp[−F̂ /kT ]dF̂∫∞
0 exp[−F̂ /kT ]dF̂

= kT . (49)
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This leads to equilibrium distortions

Dequilib =
μ

2kT
,

√
μ

2kT
(50)

for the Gaussian channel, and

Dequilib =

√
2μβ

kT
, [

2μβ

kT
]1/3 (51)

for the Natural channel.
Given a finite maximum for g(F )h(τ) ≡ M , then

< F̂ >=
kT [exp(M/kT )− 1] − M

exp(M/kT )− 1
, (52)

and the expressions for equilibrium distortion must be adjusted accordingly.
Typically, a cognitive system will have a distribution of information inputs

having varying fidelity/energy, and some sort of averaging across them would be
expected. The ‘effective temperature’ approach seems most direct.

These calculations suggest that a simple empirical Onsager treatment may be
quite powerful.

9 Expanding the Mathematical Approach

We have, in the context of the tunable epigenetic catalysis of [101], developed
three separate phase transition/branching models of cognitive gene expression
based on groupoid structures that may be applied to development and its dys-
functions, as known to be particularly influenced by embedding culture. The
first used Landau’s spontaneous symmetry breaking to explore phase transitions
in a groupoid free energy FG[K]. The second examined a holonomy groupoid
in phenotype space generated by disjoint developmental homotopy equivalence
classes, and ‘loops’ constructed by pairing one-way development paths. The third
introduced a metric on a manifold of different information sources dual to cogni-
tive gene expression, leading to a more conventional picture of parallel transport
around a loop leading to holonomy. The dynamical groupoid of [98] (Sec. 3.8) is
seen as involving a disjoint union across underlying manifolds that produces a
holonomy groupoid in a natural manner.

There are a number of outstanding mathematical questions.
The first is the relation between the Landau formalism and the structures

of phenotype space S and those of the associated manifold of dual informa-
tion sources, the manifold M having metric M. How does epigenetic catalysis
in M -space imposes structure on S-space? How is this related to spontaneous
symmetry breaking?

What would a stochastic version of the theory, in the sense of [37], look like? It
is quite possible, using appropriate averages of the stochastic differential equa-
tions that arise naturally, to define parallel transport, holonomy, and the like
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for these structures. In particular a stochastic extension of the results of the
first question would seem both fairly direct and interesting from a real-world
perspective, as development is always ‘noisy’.

The construction of loops from directed homotopy arcs in figure 1 is com-
plicated by the necessity of imposing a consistent piecewise patching rule for
parallel translation at the end of each arc, say from Si to Sn. This can probably
be done by some standard fiat, but the details will likely be messy.

On another matter, we have imposed metrics on S and M space, making pos-
sible a fairly standard manifold analysis of complex cognitive processes of gene
expression and development. While this is no small thing, the ‘natural’ general-
ization, given the ubiquity of groupoids across our formalism, would be to a more
complete groupoid atlas treatment in the spirit of Section 5.2. The groupoid atlas
permits a weaker structure compared with that of a conventional manifold since
no condition of compatibility between arbitrary overlaps of the patches is neces-
sary. It is possible that the groupoid atlas will become, to complicated problems
in biological cognitive process, something of what the Riemannian manifold has
been to physics.

With regard to questions of ‘smoothness’, we are assuming that the cognitive
landscape of gene expression is sufficiently rich that discrete paths can be well
approximated as continuous where necessary, the usual physicist’s hack.

Finally, sections 6 and 7 are based on existence of more-or-less conventional
metrics, and this may not be a good approximation to many real systems. Ex-
tending topological phase transition theory to ‘weaker’ topologies, e.g., Finsler
geometries and the like, is not a trivial task.

10 Discussion

We began with an exploration of the role of culture in mental disorders –
quintessential developmental dysfunctions – and, inferring the general from the
particular, have expanded the perspective to a spectrum of broadly heritable dis-
eases. Culturally structured psychosocial stress, and similar noxious exposures,
can write distorted images of themselves onto human ontology – both child
growth, and, if sufficiently powerful, adult development as well – by a variety of
mechanisms, initiating a punctuated trajectory to characteristic forms of comor-
bid mind/body dysfunction. This occurs in a manner recognizably analogous to
resilience domain shifts affecting stressed ecosystems [48, 52, 97]. Consequently,
like ecosystem restoration, reversal or palliation may often be exceedingly dif-
ficult once a generalized domain shift has taken place. Thus a public health
approach may be paramount: rather than seeking to understand why half a pop-
ulation does not respond to the LD50 of a teratogenic environmental exposure,
one seeks policies and social reforms that limit the exposure.

Both socio-cultural and epigenetic environmental influences – like gene methy-
lation – are heritable, in addition to genetic mechanisms. The missing heritabil-
ity of complex diseases that Manolio et al. [66] seek to find in more and better
gene studies is most likely dispersed within the ‘dark matter’ of these two other
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systems of heritage that together constitute the larger, and likely highly syner-
gistic, regulatory machinery for gene expression. More and more purely genetic
studies would, under such circumstances, be akin to using increasingly powerful
microscopes to look for cosmic membranes of strewn galaxies.

A crucial matter is the conversion of the probability models we present here
into statistical tools suitable for analyzing real data, and hence actually test-
ing the theoretical structure. Some work in this direction has been done in
Section 8, but the problem involves not just programming such models for use,
but identifying appropriate real-world situations, assembling available data sets,
transforming the data as needed for the models, and actually applying them and
comparing the model predictions to data. Indeed, the environmental health lit-
erature contains numerous examples of developmental deviations due to either
chemical exposures or interaction between chemical and socioeconomic expo-
sures, and these could serve as sources of data for direct analysis (e.g., [9, 22,
30, 41, 44, 58, 61, 73, 74, 85, 88, 93, 94, 99]). Thus, quite a number of data sets
exist in the environmental health and socioeconomic epidemiological literature
that could be subjected to meta-analysis and other review for model verifica-
tion and fitting. Our topological models, when converted to statistical tools for
data analysis, hold great potential for understanding developmental trajectories
and interfering factors (teratogens) through the life course. Sets of cross cultural
variants of these data would be needed to address the particular concerns of this
paper. In addition, as the previous section indicates, unsolved mathematical
questions abound.

Nonetheless, what we have done is of no small interest for understanding hu-
man ontology, its pathologies, and their heritability. West-Eberhard [105, 106]
argues that any new input, whether it comes from the genome, like a mutation,
or from the external environment, like a temperature change, a pathogen, or a
parental opinion, has a developmental effect only if the preexisting phenotype is
responsive to it. A new input causes a reorganization of the phenotype, or ‘de-
velopmental recombination’. In developmental recombination, phenotypic traits
are expressed in new or distinctive combinations during ontogeny, or undergo
correlated quantitative change in dimensions. Developmental recombination can
result in evolutionary divergence at all levels of organization.

According to West-Eberhard, individual development can be visualized as a
series of branching pathways. Each branch point is a developmental decision, or
switch point, governed by some regulatory apparatus, and each switch point de-
fines a modular trait. Developmental recombination implies the origin or deletion
of a branch and a new or lost modular trait. The novel regulatory response and
the novel trait originate simultaneously. Their origins are, in fact, inseparable
events: There cannot, West-Eberhard concludes, be a change in the phenotype,
a novel phenotypic state, without an altered developmental pathway.

Our analysis provides a new formal picture of this process as it applies to hu-
man development: The normal branching of developmental trajectories, and the
disruptive impacts of teratogeneic events of various kinds, can be described in
terms of a growing sequence of holonomy groupoids, each associated with a set of
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dual information sources representing patterns of cognitive gene expression cat-
alyzed by epigenetic information sources that, for humans, must include culture
and culturally-modulated social interaction as well as more direct mechanisms
like gene methylation. This is a novel way of looking at human development and
its disorders that may prove to be of some use. The most important innova-
tion of this work, however, seems to be the natural incorporation of embedding
culture as an essential component of the epigenetic regulation of human ontol-
ogy, and in the effects of environment on the expression of a broad spectrum of
developmental disorders: the missing heritability of complex diseases found.
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A Mathematical Appendix:
Groupoids

A.1 Basic Ideas

Following [104] closely, a groupoid, G, is defined by a base set A upon which
some mapping – a morphism – can be defined. Note that not all possible pairs of
states (aj , ak) in the base set A can be connected by such a morphism. Those that
can define the groupoid element, a morphism g = (aj , ak) having the natural
inverse g−1 = (ak, aj). Given such a pairing, it is possible to define ‘natural’
end-point maps α(g) = aj , β(g) = ak from the set of morphisms G into A,
and a formally associative product in the groupoid g1g2 provided α(g1g2) =
α(g1), β(g1g2) = β(g2), and β(g1) = α(g2). Then the product is defined, and
associative, (g1g2)g3 = g1(g2g3).

In addition, there are natural left and right identity elements λg, ρg such that
λgg = g = gρg [104].

An orbit of the groupoid G over A is an equivalence class for the relation
aj ∼ Gak if and only if there is a groupoid element g with α(g) = aj and
β(g) = ak. Following [18], we note that a groupoid is called transitive if it has
just one orbit. The transitive groupoids are the building blocks of groupoids in
that there is a natural decomposition of the base space of a general groupoid
into orbits. Over each orbit there is a transitive groupoid, and the disjoint union
of these transitive groupoids is the original groupoid. Conversely, the disjoint
union of groupoids is itself a groupoid.

The isotropy group of a ∈ X consists of those g in G with α(g) = a = β(g).
These groups prove fundamental to classifying groupoids.

If G is any groupoid over A, the map (α, β) : G → A×A is a morphism from
G to the pair groupoid of A. The image of (α, β) is the orbit equivalence relation
∼ G, and the functional kernel is the union of the isotropy groups. If f : X → Y
is a function, then the kernel of f , ker(f) = [(x1, x2) ∈ X × X : f(x1) = f(x2)]
defines an equivalence relation.

Groupoids may have additional structure. As Weinstein [104] explains, a
groupoid G is a topological groupoid over a base space X if G and X are
topological spaces and α, β and multiplication are continuous maps. A criticism
sometimes applied to groupoid theory is that their classification up to isomor-
phism is nothing other than the classification of equivalence relations via the
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orbit equivalence relation and groups via the isotropy groups. The imposition
of a compatible topological structure produces a nontrivial interaction between
the two structures.

In essence, a groupoid is a category in which all morphisms have an inverse,
here defined in terms of connection to a base point by a meaningful path of an
information source dual to a cognitive process.

As [104] points out, the morphism (α, β) suggests another way of looking at
groupoids. A groupoid over A identifies not only which elements of A are equiv-
alent to one another (isomorphic), but it also parametizes the different ways
(isomorphisms) in which two elements can be equivalent, i.e., all possible infor-
mation sources dual to some cognitive process. Given the information theoretic
characterization of cognition presented above, this produces a full modular cog-
nitive network in a highly natural manner.

Brown [15] describes the fundamental structure as follows:

A groupoid should be thought of as a group with many objects, or
with many identities... A groupoid with one object is essentially just a
group. So the notion of groupoid is an extension of that of groups. It
gives an additional convenience, flexibility and range of applications...

Example 1. A disjoint union [of groups] G = ∪λGλ, λ ∈ Λ, is a
groupoid: the product ab is defined if and only if a, b belong to the
same Gλ, and ab is then just the product in the group Gλ. There is an
identity 1λ for each λ ∈ Λ. The maps α, β coincide and map Gλ to λ,
λ ∈ Λ.

Example 2. An equivalence relation R on [a set] X becomes a groupoid
with α, β : R → X the two projections, and product (x, y)(y, z) = (x, z)
whenever (x, y), (y, z) ∈ R. There is an identity, namely (x, x), for each
x ∈ X ...

Weinstein [104] makes the following fundamental point:

Almost every interesting equivalence relation on a space B arises in
a natural way as the orbit equivalence relation of some groupoid G over
B. Instead of dealing directly with the orbit space B/G as an object
in the category Smap of sets and mappings, one should consider instead
the groupoid G itself as an object in the category Ghtp of groupoids and
homotopy classes of morphisms.

The groupoid approach has become quite popular in the study of networks of
coupled dynamical systems which can be defined by differential equation models,
(e.g., [47]).

A.2 Global and Local Symmetry Groupoids

Here we again follow [104] fairly closely. Consider a tiling of the euclidean plane
R2 by identical 2 by 1 rectangles, specified by the set X (one dimensional) where
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the grout between tiles is X = H∪V , having H = R×Z and V = 2Z×R, where
R is the set of real numbers and Z the integers. Call each connected component
of R2\X , that is, the complement of the two dimensional real plane intersecting
X , a tile.

Let Γ be the group of those rigid motions of R2 which leave X invariant, i.e.,
the normal subgroup of translations by elements of the lattice Λ = H ∩ V =
2Z × Z (corresponding to corner points of the tiles), together with reflections
through each of the points 1/2Λ = Z × 1/2Z, and across the horizontal and
vertical lines through those points. As noted in [104], much is lost in this coarse-
graining, in particular the same symmetry group would arise if we replaced
X entirely by the lattice Λ of corner points. Γ retains no information about
the local structure of the tiled plane. In the case of a real tiling, restricted to
the finite set B = [0, 2m] × [0, n] the symmetry group shrinks drastically: The
subgroup leaving X ∩ B invariant contains just four elements even though a
repetitive pattern is clearly visible. A two-stage groupoid approach recovers the
lost structure.

We define the transformation groupoid of the action of Γ on R2 to be the set

G(Γ, R2) = {(x, γ, y|x ∈ R2, y ∈ R2, γ ∈ Γ, x = γy},

with the partially defined binary operation

(x, γ, y)(y, ν, z) = (x, γν, z).

Here α(x, γ, y) = x, and β(x, γ, y) = y, and the inverses are natural.
We can form the restriction of G to B (or any other subset of R2) by defining

G(Γ, R2)|B = {g ∈ G(Γ, R2)|α(g), β(g) ∈ B}

(1). An orbit of the groupoid G over B is an equivalence class for the relation
x ∼G y if and only if there is a groupoid element g with α(g) = x and β(g) = y.
Two points are in the same orbit if they are similarly placed within their tiles

or within the grout pattern.
(2). The isotropy group of x ∈ B consists of those g in G with α(g) = x = β(g).

It is trivial for every point except those in 1/2Λ∩B, for which it is Z2 ×Z2, the
direct product of integers modulo two with itself.

By contrast, embedding the tiled structure within a larger context permits def-
inition of a much richer structure, i.e., the identification of local symmetries.

We construct a second groupoid as follows. Consider the plane R2 as being
decomposed as the disjoint union of P1 = B ∩ X (the grout), P2 = B\P1 (the
complement of P1 in B, which is the tiles), and P3 = R2\B (the exterior of the
tiled room). Let E be the group of all euclidean motions of the plane, and define
the local symmetry groupoid Gloc as the set of triples (x, γ, y) in B × E × B
for which x = γy, and for which y has a neighborhood U in R2 such that
γ(U ∩ Pi) ⊆ Pi for i = 1, 2, 3. The composition is given by the same formula as
for G(Γ, R2).
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For this groupoid-in-context there are only a finite number of orbits:

O1 = interior points of the tiles.
O2 = interior edges of the tiles.
O3 = interior crossing points of the grout.
O4 = exterior boundary edge points of the tile grout.
O5 = boundary ‘T’ points.
O6 = boundary corner points.
The isotropy group structure is, however, now very rich indeed:
The isotropy group of a point in O1 is now isomorphic to the entire rotation

group O2.
It is Z2 × Z2 for O2.
For O3 it is the eight-element dihedral group D4.
For O4,O5 and O6 it is simply Z2.
These are the ‘local symmetries’ of the tile-in-context.
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Abstract. In this paper, we introduce a framework allowing to model
and analyse efficiently Gene Regulatory Networks (GRNs) in their tem-
poral and stochastic aspects. The analysis of stable states and inference
of René Thomas’ discrete parameters derives from this logical formalism.
We offer a compositional approach which comes with a natural transla-
tion to the Stochastic π-Calculus. The method we propose consists in
successive refinements of generalised dynamics of GRNs. We illustrate
the merits and scalability of our framework on the control of the differ-
entiation in a GRN generalising metazoan segmentation processes, and
on the analysis of stable states within a large GRN studied in the scope
of breast cancer researches.

1 Introduction

Modelling, analysis and numerical or stochastic simulations are a usual means
to predict the behaviour of complex living systems such as interacting genes.

Regulations between genes (activation or inhibition) are generally represented
by Gene Regulatory Network (GRN) graphs. However, a GRN graph is not
enough to describe dynamics. In continuous frameworks such as ordinary dif-
ferential equations, parameters for differential equations are needed. In logical
(or qualitative) frameworks such as boolean or discrete networks, dynamics are
driven by René Thomas’ parameters or equivalent [1].

Hybrid modelling brings quantitative aspects — such as temporal or stochastic
parameters — to logical modelling. In the field of formal languages, κ language
[2] or Stochastic π-Calculus [3,4,5] bring theoretical Computer Science frame-
works for biological modelling. In the field of formal verifications of biological
systems, frameworks like Time or Stochastic Petri Nets [6,7], Biocham [8], Timed
Automata [9], Charon (Hybrid Modelling) [10] and Linear Hybrid Modelling [11]
bring the first bricks for verifying and controlling dynamics of such systems.

Inference of temporal and stochastic parameters is still challenging as the
domain of parameters is continuous and its volume generally grows exponen-
tially with the number of genes. Compositional approaches, inherent to process
algebras, aspire at reducing this complexity by allowing a local reasoning.

Our aim is temporal parameters synthesis for verifying formal properties on
hybrid models.
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Our contribution consists in the introduction of both temporal and stochastic
parameters into process algebra models of GRNs through a new Stochastic π-
Calculus framework: the Process Hitting framework.

Starting from a GRN without any other parameters, its largest dynamics
are expressed in Process Hitting and then are refined to match the expected
behaviour. Such a refinement is achieved by constructing cooperativity between
genes and by creating stable states. As we will show, detecting stable states of a
Process Hitting is straightforward, as well as infering the René Thomas’ discrete
parameters K.

Moreover, the Stochastic π-Calculus naturally brings time and stochasticity
into our Process Hitting framework. We introduce a stochasticity absorption fac-
tor to highlight either the temporal or stochastic aspect of reactions. The direct
translation of Process Hitting to the Stochastic π-Calculus allows simulations of
such models by softwares like BioSpi [3] or SPiM [12].

Several points motivate the choice of the Stochastic π-Calculus framework
for introducing the Process Hitting. The Stochastic π-Calculus can be consid-
ered as a “low-level” process algebra: there are very few operators compared,
for instance, to the Beta Workbench [13] or Bio-PEPA [14]. This makes the
presentation of the Process Hitting as a Stochastic π-Calculus framework more
generic. Moreover, the Stochastic π-Calculus comes with a bunch of established
tools as previously cited and translations into various framework have already
been formalized, such as to PRISM, a probabilistic model checking tool [15,16].

This paper is structured as follows. Section 2 introduces our framework and
how it is used to build the generalised dynamics of a GRN. Section 3 presents
dynamics refinement techniques and Section 4 shows how infering the René
Thomas’ parameters leading to such dynamics. Introduction of both temporal
and stochastic parameters within Process Hitting models is addressed in Sec-
tion 5. The overall approach is illustrated by two applications in Section 6. The
first applies the refinement method to a toy GRN involved in biological segmen-
tations phenomena. The temporal and stochastic parameters are then infered to
bring a particular behaviour to the system. The second application shows the
scalability of the Process Hitting framework by modelling a large GRN composed
of 20 genes.

Notations. Given a set S,

n︷ ︸︸ ︷
S × · · · × S, will be abbreviated as Sn. If S is finite

and countable, we note |S| its cardinality. Given a n-tuple C, C[x/y] refers to
the n-tuple C within the element y has been substituted by x. Belonging and
cartesian product for n-tuples are defined similarly to sets. [xi; xi+n] refers to
the interval {xi, xi+1, . . . , xi+n}. ’∧’ stands for the logical and connector.

2 Generalised Dynamics for Gene Regulatory Networks

First, we recall the basis of the René Thomas’ discrete modelling framework
from which we designed our refinement approach. This method is described in
subsections 2.2 and 2.3. This leads to a straightforward translation into the
π-Calculus which makes it possible to express generalised dynamics of GRNs.
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2.1 Gene Regulatory Networks

GRNs are often described by interaction graphs where nodes are genes with acti-
vation and inhibition relations respectively represented by positive and negative
edges [1,17].

In the discrete framework of René Thomas, each gene has at least two quali-
tative levels. The influence of an activating (resp. inhibiting) gene on its target
depends on a threshold value: when the level of the gene is greater or equal than
the threshold, the gene holds a positive (resp. negative) effect; when the level of
the gene is lower than the threshold, the gene holds a negative (resp. positive)
effect [1].

Definition 1 (Gene Regulatory Network Graph). A Gene Regulatory
Network graph is a triple (Γ, E+, E−) where Γ is the finite set of genes and
a

t−→ b ∈ E+ (resp. E−), t positive integer, if and only if the gene a above level t
is an activator (resp. inhibitor) for b. We note ai the level i of the gene a.

Given a GRN graph (Γ, E+, E−), the maximum qualitative level for gene a ∈ Γ
is noted ala where la is the highest threshold involved in its regulations:

la = max({t | ∃b ∈ Γ, a
t−→ b ∈ E+ ∪ E−}) . (1)

We denote levels+(a, b) (resp. levels−(a, b)) the set of levels of a where a effec-
tively activates (resp. inhibits) b.

Definition 2 (Effective Levels). If a
t−→ b ∈ E+, levels+(a, b) = [at; ala ] and

levels−(a, b) = [a0; at−1]. If a
t−→ b ∈ E−, levels+(a, b) = [a0; at−1] and

levels−(a, b) = [at; ala ]. Else levels+(a, b) = levels−(a, b) = ∅.

2.2 The Process Hitting Framework

We want to describe the action of a gene at a given level on another one. If
the gene a at a given level i is an activator for b, it has a positive action on b,
meaning the level of b will tend to increase. Conversely if a at a level i′ is an
inhibitor for b, it has a negative action on b and then the level of b will tend to
decrease.

The action is “a at level i making b at level j increase (or decrease) to level
k”. We say ai hits bj to make it bounce to bk and note this action ai → bj � bk.
In the process hitting framework, ai, bj, bk are refered as processes and a, b as
sorts. Sorts can represent genes, but also logical entities, as described in further
sections.

Definition 3 (Action). An action is noted ai → bj � bk where ai is a process
of sort a and bj �= bk two processes of sort b. ai → bj is the hit part, and bj � bk

the bounce part. When ai = bj, such an action is refered as a self-action and ai

is called a self-hitting process.
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In this paper, one and only one process of each sort is present at any instant.
Hence, hits between different processes of a same sort are prohibited. The set of
these living processes gives the state of the Process Hitting.

Definition 4 (Process Hitting). A Process Hitting PH is a triple (Σ, L,H):

– Σ = {a, b, . . . } is the finite countable set of sorts,
– L =

∏
a∈Σ La is the set of states for PH, with La = {a0 . . . ala} the finite and

countable set of processes of sort a ∈ Σ and la a positive integer, a �= b ⇒
ai �= bj ∀(ai, bj) ∈ La × Lb,

– H = {ai → bj � bk, · · · | (a, b) ∈ Σ2, (ai, bj , bk) ∈ La × Lb × Lb, bj �= bk, a =
b ⇒ ai = bj}, is the finite set of actions.

At a given state s ∈ L, an action ai → bj � bk is playable if both processes ai

and bj are present in s. When this action is played, the process bk replaces bj.

Definition 5 (Next States). Let (Σ, L,H) be a Process Hitting and s ∈ L be
one of its states. The set of the next possible states for s are computed as follows:

next(s) = {s[bk/bj] | ∃(ai, bj) ∈ s2, ∃bk ∈ Lb, ai → bj � bk ∈ H} .

Definition 6 (Stable state). Let PH = (Σ, L,H) be a Process Hitting and
s ∈ L be a state, s is a stable state for PH if and only if next(s) = ∅.

2.3 Graphical Representations of a Process Hitting

We set up two complementary graphical representations of a Process Hitting.
The first one exhibits the actions between process levels, the second one
points out the absence of hits between them. We finally define the State Graph
of a Process Hitting. Figure 1 shows an instance for each of these three
representations.

Given a Process Hitting (Σ, L,H), its Hypergraph represents each action
ai → bj � bk ∈ H by a directed hyperedge from ai to bk passing by bj . The
hit part (ai to bj) is drawn as a plain edge and the bounce part (bj to bk) as a
dotted edge.

Definition 7 (Process Hitting Hypergraph). The Hypergraph of a Process
Hitting (Σ, L,H) is a couple (P, A) where P =

⋃
a∈Σ La are the vertices and

A ⊆ P 3 the directed hyperedges given by A = {(ai, bj , bk) | ai → bj � bk ∈ H}.

In the following we introduce a complementary representation we call Hitless
Graph. It will allow us to obtain extra results such as the stable states of a
Process Hitting (Section 3.2). The Hitless Graph of a Process Hitting (Σ, L,H)
relates two processes of different sorts if and only if they hit neither each other
nor themselves. Vertices of a Hitless Graph may be split into n ≤ |Σ| partitions
having no element inside related to each other: a partition is, for any sort, a
subset of its processes without self-actions. Such a graph is called n-partite.
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Definition 8 (n-Partite Graph). A graph G = (V, E) is n-partite if and only
if V =

⋃n
k=1 Vk, Vk �= ∅, ∀1 ≤ k, k′ ≤ n, Vk ∩ Vk′ = ∅ and (ai, bj) ∈ E ⇒

∃1 ≤ k �= k′ ≤ n, ai ∈ Vk ∧ bj ∈ Vk′ .

Definition 9 (Hitless Graph). Given a Process Hitting PH = (Σ, L,H), its
Hitless Graph PH = (V, E) is defined as a non-directed graph where the vertices
V and edges E are computed as follows:

V =
⋃

a∈Σ

{ai ∈ La | ∀ai′ ∈ La � ai → ai � ai′ ∈ H}

E = {(ai, bj) ∈ V 2 | ∀bj′ ∈ Lb � ai → bj � bj′ ∈ H
∧ ∀ai′ ∈ La � bj → ai � ai′ ∈ H} .

Property 1. By construction of V and E, PH is a n-partite graph, n ≤ |Σ|,
where each partition is a subset of processes for one and only one sort and to
each sort corresponds at most one partition.

We also define the n-cliques of a graph which are subsets of n vertices such that
each element is related to each other.

Definition 10 (n-Clique). Given a graph G = (V, E), C ⊆ V is a |C|-clique
of G if and only if ∀(ai, bj) ∈ C2, {ai, bj} ∈ E.

Property 2. n-cliques of a n-partite graph have one and only one vertex in each
partition.

Finally, the State Graph of a Process Hitting represents the possible transitions
between each couple of its states.

Definition 11 (State Graph). Given a Process Hitting (Σ, L,H), its State
Graph is a directed graph S = (L, E ⊆ L2) with (s, s′) ∈ E ⇔ s′ ∈ next(s).

2.4 From Process Hitting to the π-Calculus

A main advantage of our approach is its natural translation to the π-Calculus.
In this subsection we propose a method to translate any Process Hitting into a
π-Calculus expression.

We briefly present the fragment of the π-Calculus which is sufficient for trans-
lating a Process Hitting. The full syntax for π-Calculus and examples can be
found in [5,18]. π-Calculus expressions compose two kinds of objects: indepen-
dently defined processes and channels shared by some processes. A process P
has the capability to output (resp. input) on a channel γ and then become P ′,
noted !γ.P ′ (resp. ?γ.P ′). Output and input are synchronized operations, i.e. an
outputting process is blocked until another process inputs on the same chan-
nel. A process can also execute an internal action (τ), nil operation (0) or one
amongst several (P ′ + P ′′).

Let PH = (Σ, L,H) be a Process Hitting. For each process ai of PH, a π-
Calculus process Ai is defined as follows. For each action ai → bj � bk ∈ H where
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a0

a1

b0

b1

b2

a0

a1

b0

b1

b2

a0b0 a1b0

a0b1 a1b1

a0b2 a1b2

(a) Hypergraph (b) Hitless Graph (c) State Graph

Fig. 1. Graphical representations for the Process Hitting PH = ({a, b}, {a0, a1} ×
{b0, b1, b2},H) with H = {b0 → a0 � a1, a1 → b0 � b1, a1 → b1 � b2}.

a �= b, a new channel γα is created. The π-Calculus process Ai has the ability to
output on this channel and the π-Calculus process Bj has the ability to input
on this channel so as to become Bk (2). For each self-action ai → ai � aj ∈ H,
Ai has the ability to become Aj after performing an internal action τα (3).

Ai ::=
∑

α=ai → bj � bk∈H
a=b

!γα.Ai +
∑

α=bj → ai � ak∈H
a=b

?γα.Ak (2)

+
∑

α=ai → ai � ak∈H

τα.Ak (3)

2.5 Generalised Dynamics for Gene Regulatory Networks

Our method to analyse GRNs takes benefit from the use of refinement techniques.
Starting from the largest set of possible dynamics for the GRN, we gradually
take into account only the specified behaviours and exclude the other ones, thus
leading to a restrictive process.

We call this largest set of dynamics the generalised dynamics for the GRN
graph. It is described by the following rules: the level of a gene increases (resp.
decreases) if and only if at least one of its activators (resp. inhibitors) is present.
The absence of activators is equivalent to the presence of one inhibitor.

Let G = (Γ, E+, E−) be a GRN graph. For all (a, b) ∈ Γ 2, we build the set of
actions Hb

a from a to b reflecting the rules above:

– If a
t−→ b ∈ E+, all processes of sort a below the threshold t hit all processes

of sort b but b0 to make them decrease to the level below. Moreover, all
processes of sort a above the threshold t hit all processes of sort b but blb to
make them increase to the level above:

Hb
a = {ai → bj � bj−1 | 0 ≤ i < t, 1 ≤ j ≤ lb}
∪ {ai′ → bj′ � bj′+1 | t ≤ i′ ≤ la, 0 ≤ j′ < lb} .
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– If a
t−→ b ∈ E−, the actions are defined similarly to the previous case except

for the bounce directions which are reversed:

Hb
a = {ai → bj � bj+1 | 0 ≤ i < t, 0 ≤ j < lb}
∪ {ai′ → bj′ � bj′−1 | t ≤ i′ ≤ la, 1 ≤ j′ ≤ lb} .

– If b = a and �c ∈ Γ, c
t−→ b ∈ E− ∪E+, gene b lives in absence of activators:

all processes of sort b but b0 hit themselves to decrease to the level below.

Hb
b = {bi → bi � bi−1 | 1 ≤ i ≤ lb} .

– Obviously, if a
t−→ b /∈ E−∪E+ for any t and the previous case does not hold,

we define Hb
a = ∅.

The Process Hitting for the generalised dynamics of G is given by

PH = (Γ,
∏
a∈Γ

{a0, . . . , ala},
⋃

(a,b)∈Γ 2

Hb
a) .

3 Refining Dynamics of Gene Regulatory Networks

We present two methods which aim at narrowing the set of dynamics of a Process
Hitting for a GRN: the first one is based on cooperativity between genes, the
other one deals with the knowledge of the stable states.

3.1 Cooperative Hits

Given two genes c and f regulating a gene a, the action of c on a may depend
on the level of f : there exists a cooperativity between c and f on a. In discrete
frameworks, the cooperativity is often described by a boolean function between
genes levels [1,19]. We show how to build cooperativity within Process Hitting.

Let (Σ, L,H) be a Process Hitting and σ ⊂ Σ be a set of sorts cooperating
on a given process ak to make it bounce to ak′ . The set of all states of the
cooperating sorts is denoted by S =

∏
z∈σ Lz. The subset of states where the

cooperativity is effective is defined by � ⊂ S.
For applying this cooperation, a new sort is added to the Process Hitting. This

sort is called a cooperative sort and is refered as υ. The set of processes of sort υ
is defined by Lυ = {υς , ∀ς ∈ S}. Each process zi of sort z ∈ σ hits processes υς

of the cooperative sort υ where zi /∈ ς to make it bounce to υς[zi/zj ], zj ∈ ς. We
denote Hσ the set of such actions (4). In this way, the process of sort υ reflects
the current state of its representatives.

The cooperativity between υ processes is added into the Process Hitting by
replacing hits Hcoop from processes of sorts present in σ to ck (5) by hits H′

coop

from processes of the cooperative sort υ selected in � (6).

Hσ = {zi → υς � υς[zi/zj] | ∀z ∈ σ, ∀(zi, zj) ∈ L2
z, ∀υς ∈ Lυ, zj ∈ ς} (4)

Hcoop = {zi → ak � ak′ ∈ H | ∀z ∈ σ} (5)
H′

coop = {υς → ak � ak′ | ∀ς ∈ �} . (6)

The resulting Process Hitting is (Σ ∪ {υ}, L × Lυ, (H \Hcoop) ∪Hσ ∪H′
coop).



178 L. Paulevé, M. Magnin, and O. Roux

Example 1. Let ({f, c, a}, {f0, f1} × {c0, c1} × {a0, a1},H) be a Process Hitting
where {f1 → a0 � a1, c0 → a0 � a1} ⊂ H. The creation of a cooperativity be-
tween f1 and c0 on a0 (σ = {f, c}, � = {f1c0}) is illustrated by Figure 2.

c0 c1

f1

f0

a0

a1

f1

f0

c0 c1

a0

a1

fc01 fc00 fc11 fc10

Fig. 2. Construction of a cooperative hit between f1 and c0 on a0 (thick lines):
σ = {f, c}, � = {f1c0}, υ = fc. fc01 stands for the process corresponding to the state
f0c1 of the cooperating processes σ.

3.2 Stable State Pattern

Given a Process Hitting (Σ, L,H), we prove the |Σ|-cliques of its Hitless Graph
are exactly its stable states. Thus, stable states may be created by removing
from the Process Hitting the very hits that make such patterns appear.

Theorem 1. Let PH = (Σ, L,H) be a Process Hitting and PH its Hitless
Graph. A state s ∈ L is stable if and only if s is a |Σ|-clique for PH.

Proof. By definition, next(s) = ∅ if and only if there is no hit between any
couple of processes present in s. This is equivalent to have s a clique of PH.

Figure 3 shows an instance of Process Hitting having one stable state.
We outline an algorithm for finding the n-cliques of a Hitless Graph PH =

(V, E) where n = |Σ|.
Thanks to Prop. 1, we split V into n partitions corresponding to each process:

V = ∪a∈ΣVa, Va ⊆ La. If one of this partition is empty, there can not be n-
cliques as it requires to have at least one vertex in each partition. We will assume
Va �= ∅, ∀a ∈ Σ.

For each partition a ∈ Σ and each vertex ai ∈ Va, we define Eb
ai

= {bj ∈
Vb | (ai, bj) ∈ E} for each other partition b ∈ Σ, b �= a, the set of vertices in Vb

related to ai. If there exists b ∈ Σ such that Eb
ai

= ∅, the vertex ai is removed
from candidates as it can not belong to a n-clique. Finally, we set Ea

ai
= {ai}.

Once this pruning is performed, we enumerate potential n-cliques. To reduce
this enumeration, we choose the partition a sharing the least number of edges.
For each vertex ai ∈ Va we test for all s ∈

∏
b∈Σ Eb

ai
if s is a clique of PH.

For instance in Figure 3(b), a1 is removed from the Hitless Graph (Eb
a1

= ∅),
the partition associated to c is chosen (involved into only 4 edges), two states
are tested: a0b0c1 and a2b1c0 and the latter reveals to be the only 3-clique.
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a0 a1 a2

b0

b1

c0 c1

a0 a1 a2

b0

b1

c0 c1

(a) Hypergraph (b) Hitless Graph

Fig. 3. A Process Hitting represented by its Hypergraph (a) and its Hitless Graph (b).
The Hitless Graph contains only one 3-clique between a2, b1 and c0 (thick lines): this
is the only stable state of this system.

4 From Process Hitting to René Thomas’ Parameters

A René Thomas’ discrete parameter gives the attractor levels for a gene when
its regulators are in a given configuration. Many frameworks and tools dedicated
to the study of GRNs take the full set of René Thomas’ parameters as essential
input [1,9,11]. In this section, we give a formal method to infer René Thomas’
parameters for a GRN modelled in the Process Hitting framework.

Let (Γ, E+, E−) be a GRN graph. A René Thomas’ parameter Ka,A,B, a ∈
Γ, A∪B ⊆ Γ, A∩B = ∅, gives the interval of attracting levels for a when genes
in A are activating a and genes in B are inhibiting a. In this configuration, if
the level of a is in Ka,A,B, then it will never change; otherwise the level of a will
tend to a level in Ka,A,B.

Let (Σ, L,H) be a Process Hitting where sorts are standing either for genes
or for cooperative sorts, i.e. Σ = Γ ∪ {σ1, . . . , σu} with ∀1 ≤ v ≤ u, σv ⊂ Γ .
Let Ka,A,B be the René Thomas’ parameter to infer. For each sorts b ∈ A ∪ B,
its context Cb

a,A,B is defined as the subset of processes Lb imposed by the René
Thomas’ parameter: if b ∈ A (resp. B) only processes corresponding to positive
(resp. negative) effective levels (Def. 2) are allowed. For each process b ∈ Γ
not regulating a (i.e. b /∈ A ∪ B), its context Cb

a,A,B is simply Lb (7). The
context Cσ

a,A,B for cooperative sorts σ ∈ {σ1, . . . , σu} is the set of states of its
representatives in their context (8).

∀b ∈ Γ, Cb
a,A,B =

⎧⎪⎨
⎪⎩

levels+(b, a) if b ∈ A,
levels−(b, a) if b ∈ B,
Lb otherwise.

(7)

∀σ ∈ {σ1, . . . , σu}, Cσ
a,A,B = {σς | ∀ς ∈

∏
b∈σ

Cb
a,A,B} . (8)

We denote Ha,A,B the subset of the set of actions H on a that may be performed
by processes of the context of any sort (9). A process of sort a is reachable if
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it belongs to the context of a or is the result of any action in Ha,A,B. The set
of such processes is noted L?

a,A,B (10). The set of reachable processes of sort a
not hit by any other processes is noted L∗

a,A,B (11). Thus, as long as present
processes are in the context of their sort, if a process of sort a is in L∗

a,A,B, it
will not be bounced. In this way, L∗

a,A,B is called the set of focal processes of a.

Ha,A,B = {bi → aj � ak ∈ H | bi ∈ Cb
a,A,B ∧ aj ∈ Ca

a,A,B} (9)

L?
a,A,B = Ca

a,A,B ∪ {ak | ∀bi → aj � ak ∈ Ha,A,B} (10)

L∗
a,A,B = L?

a,A,B \ {aj | ∀bi → aj � ak ∈ Ha,A,B} . (11)

Finally, we check that the focal processes are attractors, i.e. all actions Ha,A,B

make processes of sort a bounce in the direction of the focal processes. If such a
condition is satisfied, the focal processes correspond to the value of the requested
René Thomas’ parameter. We point up that all these operations are linear with
the number of actions in the Process Hitting.

Condition 1 (Focal processes are attractors)
∀bi → aj � ak ∈ Ha,A,B, ∀af ∈ L∗

a,A,B, |f − k| < |f − j| .

Property 3 If L∗
a,A,B satisfies Cond. 1, L∗

a,A,B is an interval.

Proof If L∗
a,A,B = {af , . . . , af ′} is not an interval, there exists bi → aj � ak ∈

Ha,A,B such that f < j < f ′. If Cond. 1 applies, we have |f − k| < |f − j| ⇒
k < j ⇒ |f ′ − k| > |f ′ − j| which contradicts Cond. 1.

Theorem 2. If L∗
a,A,B �= ∅ and Cond. 1 holds, then Ka,A,B = L∗

a,A,B .

Proof. By construction of L∗
a,A,B and application of Cond. 1 and Prop. 3, it

immediately appears that if L∗
a,A,B �= ∅, it is the set of attracting levels for a.

Consequently, there might exist configurations without any correspondence with
René Thomas’ parameters. First, L∗

a,A,B = ∅ means the gene a is unstable in the
fixed context, i.e. its level is changing forever. Second, Cond. 1 is violated when
there exists opposite focal processes, i.e. the fate of a is not deterministic.

One of the main reasons for non-determinism of Process Hitting is the absence
of cooperativity between hits to a same target which may then independently
be bounced to both higher and lower processes. We leave as an open question
the problem to know whether such unstable and/or non-deterministic dynamics
are biologically relevant.

5 Temporal and Stochastic Parameters

Further dynamics refinements may be achieved by taking into account the tem-
poral and stochastic dimensions of biological reactions. On the one hand, we may
consider the probability of a reaction to occur at a given state. By introducing
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stochastic parameters into discrete models, we aim at computing the probabil-
ity of observing an expected behaviour. On the other hand, because they are
faster, some reactions always apply before others. By introducing temporal pa-
rameters into discrete models, we aim at reducing their dynamics to match such
behaviours.

5.1 From Process Hitting to the Stochastic π-Calculus

The Stochastic π-Calculus [20] adds the capability to attach use rates to channels
and internal actions of the π-Calculus. This gives a natural introduction for
temporal and stochastic aspects in our Process Hitting framework.

A use rate controls both the duration and the probability of a reaction (com-
munication on a channel or internal action). It is associated to a probability
distribution for firing reaction along the time. The usual probability distribu-
tion is the exponential one, allowing efficient simulations through a Gillespie-like
algorithm [12,21]. This is the one we consider for the rest of this paper.

The probability along time t of firing a reaction with use rate r is given by
F (t) = 1 − e−rt. The average duration of this reaction is r−1 with a variance of
r−2. When x reactions are possible having use rates of r1, . . . , rx respectively,
the probability that the yth reaction is fired is given by ry

r1+···+rx
.

The translation of Process Hitting (Σ, L,H) into the Stochastic π-Calculus is
the same as the one presented in Section 2.4. Additionally, to each channel γα,
or internal action τα, a use rate rα is attached.

5.2 Stochasticity Absorption

Use rates are both temporal and stochastic parameters. Nonetheless, these two
aspects are closely tied: the lower a use rate is, the higher the variance around its
mean duration is. We introduce a stochasticity absorption factor to control this
variance to favour either the stochastic or the temporal behaviour of an action.

We propose to replace the exponential distribution of a reaction with a rate
r by the distribution of the sum of sa random variables each having an ex-
ponential distribution of parameter r.sa. The resulting probability distribution
is also known as the Erlang distribution. The average duration is unchanged:
(r.sa)−1sa = r−1, but the variance is divided by sa: (r.sa)−2sa = r−2sa−1. sa
stands for the stochasticity absorption factor. Based on the previously presented
translation from the Process Hitting to the Stochastic π-Calculus, we supply a
simple method to achieve this stochasticity absorption factor which do not re-
quire to adapt simulation algorithms based on the memoryless property of the
exponential law [22].

Basically, to each channel γα, or internal action τα, a use rate rα and a stochas-
ticity absorption factor saα is attached. To each component α of the sum defined
by the π-Calculus process Ai in the expressions (2),(3), a counter cα is attached,
initially, cα = 1. This counter is given as a parameter for Ai. As long as this
counter is not equal to saα, Ai is restarted and the counter is incremented by
one. When the counter reaches the stochasticity absorption factor value, the next
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process replaces Ai, having all its counters reset to 1. Let (Σ, L,H) be a Process
Hitting, for each process ai of PH, a π-Calculus process Ai is defined as follows.

Ai(c̃) ::=
∑

α=ai → bj � bk∈H
a=b

!γα.Ai(c̃)

+
∑

α=bj → ai � ak∈H
a=b

[cα < saα]?γα.Ai(c̃[cα + 1]) + [cα = saα]?γα.Ak(1̃)

+
∑

α=ai → ai � ak∈H

[cα < saα]τα.Ai(c̃[cα + 1]) + [cα = saα]τα.Ak(1̃)

where ĉ = c1, . . . , cn with n = |{bj → ai � ak ∈ H}|. ĉ[cα + 1] = c1, . . . , cα +
1, . . . , cn. Ak(1̃) is an abbreviation for the recursive call to Ak with all parameters
set to 1. [cond]π.P stands for an action π enabled only when cond is satisfied.

6 Applications

6.1 Metazoan Segmentation

In this section, we illustrate our method and its benefits on a case study in
which our aim is to control the final state of the corresponding GRN. The GRN
we chose has been established in silico by François et al. [23] but in a differ-
ential equations framework. It aims at generalizing a common motif present in
biological segmentation networks such as the Drosophila.

The GRN (Figure 4(a)) is composed of three genes. A wavefront gene f ac-
tivates the gap-gene a whose products are responsible or stripes. Gene f also
activates a gene c whose products repress the gene a. The auto-inhibition of c
generalizes a chain of repressors on a. The apparition of stripes has to be reg-
ular. We attach to each gene two processes representing their qualitative levels
(missing or present) — for instance c0 (absence) and c1 (presence) are processes
for c. When f switches off, c goes to process c0 and a has two fates, ending either
at process a0 or a1. We are interested in controlling the final process for a.

The Process Hitting for generalised dynamics of the GRN (Section 2) is com-
puted first. Figure 4(b) shows its hypergraph. The specification of dynamics
implies two cooperative hits in the Process Hitting: first, c0 needs products of
f to bounce to process c1; second, expression of a only increases if both f acti-
vates it (i.e. process f1 is present) and c does not inhibit it (i.e. c0 is present).
Consequently, we create a cooperative sort fc reflecting the state of f and c
(Section 3.1) and replace the independent hits from c0 and f1 to c0 and a0 by
hits from fc10. The resulting Process Hitting is represented in Figure 5(a).

By looking at the Hitless Graph of the Process Hitting (Figure 5(b)), only
one stable state is present: f0c0fc00a0. The stability of the state f0c0fc00a1 is
controlled by the absence of inhibition by f0 on a1. By removing the action
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f

c a
c1

c0

a1

a0

f0

f1

(a) (b)

Fig. 4. The starting Gene Regulatory Network graph (a), arrow-ended edges repre-
sent the positive regulations, and bar-ended edges the negative ones. All regulation
thresholds are 1. The Process Hitting (b) for its generalized dynamics. Cooperativity
between f1 and c0 on a0 and c0 will be applied in the same way as in example. 1.

c1

c0

f0

f1

a1

a0

fc11

fc10

fc01

fc00

c0

f0

a1

a0

fc11 fc10 fc01 fc00

(b)(a)

Fig. 5. The final Process Hitting (a) resulting from the refinement of the generalized
dynamics depicted on Fig. 4(b). Cooperativity between f1 and c0 on a0 and c0 has
been built in the same way as in example 1. Absence of hit from f0 to a1 (dashed lines)
controls the presence of the relation between f0 and a1 in the Hitless Graph (b). If such
a relation exists, two 4-cliques are presents: c0f0fc00a0 and c0f0fc00a1 (thick lines).
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Fig. 6. Simulation of the Process Hitting for segmentation: evolution of the expressions
of the gap-gene a (top), the autonomous clock c (middle) and the wavefront f

f0 → a1 � a0 from the Process Hitting, we make the state f0c0fc00a1 stable. The
full set of corresponding René Thomas’ parameters for the genes a and c is
inferred by applying the method depicted in Section 4. We get:

Ka,∅,{a,c,f} = 0 Ka,{a,c},{f} = 1 Kc,∅,{c,f} = 0
Ka,{a},{c,f} = 0 Ka,{a,f},{c} = 0 Kc,{c},{f} = 0
Ka,{c},{a,f} = 0 Ka,{c,f},{a} = 1 Kc,{f},{c} = 0
Ka,{f},{a,c} = 0 Ka,{a,c,f},∅ = 1 Kc,{c,f},∅ = 1 .

We are interested in controlling the final process of sort a — either a0 or a1
— when f goes down to f0. Looking at the Process Hitting hypergraph on
Figure 5(a) and considering f0 is present, we deduce that the more c1 is present,
the more a1 may be hit by c1 to bounce to a0; similarly, the more fc10 is present,
the more a0 may be hit by it to bounce to a1. We tune actions only triggered by
f0: we reduce the presence of c1 by increasing the rate of the action f0 → c1 � c0
and extend the presence of fc10 by reducing the rate of f0 → fc10 � fc00. This
leads to an increase of the probability for a to bounce to process a1.

Finally, to obtain regular stripes, we set a high stochasticity absorption factor
to actions responsible of the bounces of processes of sort c and a when f1 is
present. Figure 6 plots the evolution of the genes a,c and f during a simulation
under SPiM [24] of the Process Hitting illustrated by Figure 5(a) with initial
state f1c0fc10a0 and a fast rate for the action f0 → c1 � c0 compared to the rate
of c1 → a1 � a0. The rate values have been arbitrarily choosen and respect the
infered relations between them. Appendix B.1 details the Process Hitting used
for the simulation.

From the obtained simulation trace, we observe that f0 hits c1 before c1 had
time to hit a1: the final state is then f0c0fc00a1.

Thanks to the Process Hitting framework, it has been easy to build a qual-
itative model of the biological system by refining the generalised dynamics of
the GRN. Using a simple reasoning on the Process Hitting structure, relation
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between regulation delays to favour a final state have been infered. These results
are coherent with those obtained using differential equations as done in [23].

6.2 ERBB Receptor-Regulated G1/S Transition

The aim of this section is to demonstrate the scalability of the refining approach
on Process Hittings modelling large GRNs.

EGF

ERBB2ERBB1 ERBB3

ERBB1 2 ERBB1 3 ERBB2 3 IGF1R

MEK1AKT1

ERalpha MYC

CycD1 p27 p21 CycE1

CDK6 CDK2CDK4

pRB

Fig. 7. ERBB receptor-regulated G1/S transition GRN reproduced from [25, Figure 3]
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The selected GRN relates regulations between 20 genes. This GRN models
the ERBB receptor-regulated G1/S transition involved in the breast cancer. It
has been extracted from published data by Sahin et al. [25] and is reproduced
in Figure 7. This network acts as an activation cascade for the gene pRB which
controls the G1/S transition involved in cell divisions. The gene EGF then acts
as an input of this cascade: when expressed, pRB will be potentially activated.
Based on the literature, Sahin et al. have also established a set of logical rules
controlling the activation of the various genes present in the network.

Starting from the GRN, its generalised dynamics expressed in Process Hitting
is first computed. Then, cooperations between the different sorts are built from
the logical rules. The Process Hitting obtained contains 670 actions and stands
for 264 (≈ 2.1019) states that has hopefully not be built. This model is fully
detailled in Appendix B.2.

The computation of all the stable states present in the dynamics is done using
the algorithm sketched by Section 3.2. It results in 5 stables states (also detailled
in the appendix) that are computed in less than one second.

It is worth noticing that no assumption is made on the initial state of the sys-
tem. All the stable states of the model are computed. This is a major difference
with the approach presented in [25] where only dynamics starting from a fixed
state can be studied.

7 Conclusion

We introduced the Process Hitting framework for modelling qualitative dynamics
of GRNs with temporal and stochastic features. Temporal and stochastic param-
eters determine probabilities, durations and temporal variance of reactions in the
model. We exhibited a direct translation from Process Hitting to the Stochastic
π-Calculus. Detection of stable states and inference of René Thomas’ parame-
ters for dynamics derive from this framework. The methods we offered work by
successive refinements of generalised dynamics for GRNs, by specifying both the
cooperativity between genes and the expected stable states. We illustrated this
method by inferring temporal parameters for the dynamics of a GRN generaliz-
ing metazoan segmentation processes (with the aim of controlling its final state).
The scalability of the presented approach has been experimented on a Process
Hitting modelling a GRN composed of 20 genes and computing its stable states.

The Process Hitting brings a formal framework for progressively adding knowl-
edge of the dynamics of a GRN by refining an abstracted behaviour. The com-
positionality of the framework and the presence of particular structure patterns
lead to scalable methods for dynamics analyses (stable states, René Thomas’
parameters, etc.). Mainly, thanks to these Process Hitting patterns, it becomes
possible to perform a local analysis, which has the major advantage to prevent
us from exploring the full state and parameter space.

In future works, we aim at identifying more Process Hitting patterns leading
to the emergence of particular behaviours (e.g. oscillations) and especially hybrid
patterns coupling both discrete structure and continuous temporal and stochas-
tic parameters. The verification of Process Hittings could be performed by using
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a translation into Petri Nets or into PRISM. Translating Process Hittings into
more sophisticated process aglebras (Beta Workbench, Bio-PEPA, etc.) may also
be of interest. Finally, techniques have to be developed to infer automatically
temporal and stochastic parameters of Process Hittings modelling GRNs.

Supplementary Material

The Process Hitting compiler to SPiM, a stable states computer and presented
models are available at the following URL:
http://www.irccyn.ec-nantes.fr/˜pauleve/processhitting-refining.tar.gz
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188 L. Paulevé, M. Magnin, and O. Roux

13. Dematte, L., Priami, C., Romanel, A.: The Beta Workbench: a computational tool
to study the dynamics of biological systems. Brief Bioinform., bbn023 (2008)

14. Ciocchetta, F., Hillston, J.: Bio-pepa: A framework for the modelling and analysis
of biological systems. Theoretical Computer Science 410(33-34), 3065–3084 (2009)

15. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006.
LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

16. Norman, G., Palamidessi, C., Parker, D., Wu, P.: Model checking probabilistic and
stochastic extensions of the π-calculus. IEEE Transactions on Software Engineer-
ing 35(2), 209–223 (2009)

17. Bernot, G., Cassez, F., Comet, J.P., Delaplace, F., Müller, C., Roux, O.: Seman-
tics of biological regulatory networks. Electronic Notes in Theoretical Computer
Science 180(3), 3–14 (2007)

18. Milner, R.: A calculus of mobile processes, parts. I and II. Information and Com-
putation 100, 1–77 (1992)

19. Bernot, G., Comet, J.P., Khalis, Z.: Gene regulatory networks with multiplexes. In:
European Simulation and Modelling Conference Proceedings, pp. 423–432 (October
2008)

20. Priami, C.: Stochastic π-Calculus. The Computer Journal 38(7), 578–589 (1995)
21. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The

Journal of Physical Chemistry 81(25), 2340–2361 (1977)
22. Priami, C.: Stochastic π-calculus with general distributions. In: Proc. of the 4th

Workshop on Process Algebras and Performance Modelling, CLUT, pp. 41–57
(1996)

23. Francois, P., Hakim, V., Siggia, E.D.: Deriving structure from evolution: metazoan
segmentation. Mol. Syst. Biol. 3 (2007)

24. Phillips, A.: SPiM, http://research.microsoft.com/~aphillip/spim
25. Sahin, O., Frohlich, H., Lobke, C., Korf, U., Burmester, S., Majety, M., Mattern, J.,

Schupp, I., Chaouiya, C., Thieffry, D., Poustka, A., Wiemann, S., Beissbarth, T.,
Arlt, D.: Modeling ERBB receptor-regulated G1/S transition to find novel targets
for de novo trastuzumab resistance. BMC Systems Biology 3(1) (2009)

A Process Hitting Related Tools

This appendix briefly presents currently available implementations of tools ma-
nipulating Process Hittings. They are available at the following URL:

http://www.irccyn.ec-nantes.fr/˜pauleve/processhitting-refining.tar.gz

Implemented in the OCAML language, these tools have a command-line user
interline.

A.1 Process Hitting Specification

A basic language has been setup to specify Process Hitting using a text file. Main
features are presented here, more details can be found in the provided archive.
Full examples of Process Hitting specifications are given in Appendix B.

Sort definition. A sort is declared by giving the process with the highest rank
(i.e. ala for the sort a, with the notations used in Section 2).

process a X

http://research.microsoft.com/~aphillip/spim
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Action specification. An action ai → bj � bk is added by the following instruction:
a i -> b j k @ rate ~ absorption

Generalised dynamics of GRNs. The GRN macro computes the generalised dy-
namics of the specified GRN according to Section 2.5. An activating (resp. in-
hibiting) edge a

X−→ b from gene a to gene b active with a threshold X is noted
as a X -> + b (resp. a X -> - b).

Hereafter is an instance of the use of the GRN macro for the GRN having
activating edges a

1−→ b and a
2−→ a, and inhibiting edge b

1−→ b.
GRN([a 1 -> + b; b 1 -> - a; a 2 -> + a ])

Refinement: cooperations. The COOPERATIVITY([a1;...;an] -> b j k, [s1;...;sp])

macro creates a cooperative sort σ = {a1, . . . , an} for the bounce bj � bk. This
cooperation is effective for every state s1, . . . , sp.

The following instruction creates a cooperativity between sorts a and b to
bounce process c0 to c1 only if a1b0 or a0b1 are present.

COOPERATIVITY([a;b] -> c 0 1, [[1;0];[0;1]])

Refinement: action removing An action ai → bj � bk can be deleted by using the
macro RM:

RM({a i -> b j k})

A.2 Compiler to SPiM

This tool translates a Process Hitting specification into a SPiM model according
to Section 5.2.

phc -spim <model.ph> <output.spi>

A.3 Stable States Listing

The stable states of a Process Hitting are determined used an implementation
of the algorithm sketched in Section 3.2. This algorithm computes the n-cliques
of the hitless graph for the given Process Hitting, where n is the number of
sorts. The efficiency of this computation heavily relies on the order of sorts
when building cliques. Currently, basic heuristics are used to select the order of
the sorts. More sophisticated analyses may conduct to dramatically improve the
efficiency of this algorithm.

This tool is compiled into the executable ph-stable-states and takes as
argument the filename of the Process Hitting specification :

ph-stable-states <model.ph>

B Process Hitting Examples

This appendix details the Process Hittings used in Section 6. They are specified
in the language presented in the previous appendix.



190 L. Paulevé, M. Magnin, and O. Roux

B.1 Metazoan Segmentation

The following Process Hitting models the metazoan segmentation presented
in Section. 6.1. Actions are specified separately and rates have been assigned
to values matching the relations infered in the application case study. The
directive sample and initial state instructions are of use for SPiM only. A result of
the execution of this Process Hitting translated into SPiM is given by Figure 6.

directive sample 40.

process a 1 process c 1 process f 1
process fc 3 (* cooperative sort {f,c} *)
c 1 -> fc 0 1 @5.
c 1 -> fc 2 3 @5.
c 0 -> fc 1 0 @10.
c 0 -> fc 3 2 @5.
f 1 -> fc 0 2 @10.
f 1 -> fc 1 3 @10.
f 0 -> fc 2 0 @0.1
f 0 -> fc 3 1 @0.1

(* actions on c *)
fc 2 -> c 0 1 @0.5~50 (* only if (f1,c0) *)
c 1 -> c 1 0 @0.5~50
(* actions on a *)
fc 2 -> a 0 1 @1.~50 (* only if (f1 ,c0) *)
c 1 -> a 1 0 @1.~50
(* actions on f *)
f 1 -> f 1 0 @0.034~100 (* auto -off *)
f 0 -> c 1 0 @0.1

initial state f 1, c 0, a 0

B.2 ERBB Receptor-Regulated G1/S Transition

The following Process Hitting results from the case study presented in Sec-
tion 6.2. It starts by specifying the GRN depicted by Figure 7 to compute its
generalised dynamics. The logical rules setup by Sahin et al. [25] are then applied
by using sorts cooperativity.

This Process Hitting contains 670 actions and 264 (≈ 2.1019) states. Only
5 stable states exist and are determined in less than a second using the tool
presented in the previous appendix.

Below is the list of stable states present in the Process Hitting. For each stable
state, only genes at level 1 are written.

– AKT1, CDK2, CDK4, CDK6, CycD1, CycE1, EGF, ERBB1, ERBB1 2, ERBB1 3, ERBB2,

ERBB2 3, ERBB3, ERalpha, MEK1, MYC, pRB.

– AKT1, CDK2, CDK4, CDK6, CycD1, CycE1, ERalpha, IGF1R, MEK1, MYC, pRB.

– AKT1, CDK2, CycE1, EGF, ERBB1, ERBB1 2, ERBB1 3, ERBB2, ERBB2 3, ERBB3, ERal-

pha, MEK1, MYC.

– AKT1, CDK2, CycE1, ERalpha, IGF1R, MEK1, MYC.

– ∅ (all genes have level 0).
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process AKT1 1
process CDK2 1 process CDK4 1 process CDK6 1
process CycD1 1 process CycE1 1
process EGF 1 process ERalpha 1
process ERBB1 1 process ERBB1_2 1 process ERBB1_3 1
process ERBB2 1 process ERBB2_3 1 process ERBB3 1
process IGF1R 1 process MEK1 1 process MYC 1
process p21 1 process p27 1
process pRB 1

GRN([
ERBB2_3 1 -> + AKT1; ERBB2_3 1 -> + MEK1; ERBB2_3 1 -> - IGF1R;
ERBB2 1 -> + ERBB2_3 ; ERBB2 1 -> + ERBB1_2 ; ERBB3 1 -> + ERBB2_3 ;
ERBB3 1 -> + ERBB1_3 ;
CycE1 1 -> + CDK2;
MEK1 1 -> + CycD1; MEK1 1 -> + ERalpha ; MEK1 1 -> + MYC;
CDK4 1 -> + pRB; CDK4 1 -> - p21; CDK4 1 -> - p27;
ERalpha 1 -> + CycD1; ERalpha 1 -> + IGF1R; ERalpha 1 -> + p21;
ERalpha 1 -> + MYC; ERalpha 1 -> + p27;
MYC 1 -> + CycE1; MYC 1 -> - p21; MYC 1 -> + CycD1; MYC 1 -> - p27;
CDK6 1 -> + pRB;
ERBB1 1 -> + ERBB1_2 ; ERBB1 1 -> + ERBB1_3 ; ERBB1 1 -> + AKT1;
ERBB1 1 -> + MEK1;
IGF1R 1 -> + AKT1; IGF1R 1 -> + MEK1;
ERBB1_3 1 -> + AKT1; ERBB1_3 1 -> + MEK1;
p27 1 -> - CDK2; p27 1 -> - CDK4;
CDK2 1 -> - p27; CDK2 1 -> + pRB;
p21 1 -> - CDK2; p21 1 -> - CDK4;
CycD1 1 -> + CDK4; CycD1 1 -> + CDK6;
EGF 1 -> + ERBB1; EGF 1 -> + ERBB2; EGF 1 -> + ERBB3;
AKT1 1 -> + CycD1; AKT1 1 -> + MYC; AKT1 1 -> - p27; AKT1 1 -> + ERalpha ;
AKT1 1 -> + IGF1R; AKT1 1 -> - p21;
ERBB1_2 1 -> + AKT1; ERBB1_2 1 -> + MEK1;

])

COOPERATIVITY([ERBB1;ERBB2] -> ERBB1_2 0 1, [[1;1]])
COOPERATIVITY([ERBB1;ERBB3] -> ERBB1_3 0 1, [[1;1]])
COOPERATIVITY([ERBB2;ERBB3] -> ERBB2_3 0 1, [[1;1]])

COOPERATIVITY([ERBB2_3 ;AKT1] -> IGF1R 0 1, [[0;1]])
COOPERATIVITY([ERBB2_3 ;ERalpha ] -> IGF1R 0 1, [[0;1]])
COOPERATIVITY([AKT1;ERalpha ] -> IGF1R 1 0, [[0;0]])

COOPERATIVITY([AKT1;MEK1] -> ERalpha 1 0, [[0;0]])
COOPERATIVITY([AKT1;MEK1;ERalpha ] -> MYC 1 0, [[0;0;0]])
COOPERATIVITY([ERBB1;ERBB1_2 ;ERBB1_3 ;ERBB2_3 ;IGF1R] -> AKT1 1 0,

[[0;0;0;0;0]])
COOPERATIVITY([ERBB1;ERBB1_2 ;ERBB1_3 ;ERBB2_3 ;IGF1R] -> MEK1 1 0,

[[0;0;0;0;0]])
COOPERATIVITY([CycE1;p21;p27] -> CDK2 0 1, [[1;0;0]])
COOPERATIVITY([CycD1;p21;p27] -> CDK4 0 1, [[1;0;0]])
COOPERATIVITY([ERalpha ;MYC;AKT1;MEK1] -> CycD1 0 1, [[1;1;1;0];[1;1;0;1]])
COOPERATIVITY([AKT1;MEK1] -> CycD1 1 0, [[0;0]])
COOPERATIVITY([ERalpha ;AKT1;MYC;CDK4] -> p21 0 1, [[1;0;0;0]])
COOPERATIVITY([ERalpha ;CDK4;CDK2;AKT1;MYC] -> p27 0 1, [[1;0;0;0;0]])
COOPERATIVITY([CDK2;CDK4;CDK6] -> pRB 0 1, [[0;1;1];[1;1;1]])
RM({CDK2 0 -> pRB 1 0})
RM({EGF 1 -> EGF 1 0}) (* prevent self -degradation (input) *)
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