
GINSENG Data Processing Framework

Zbigniew Jerzak, Anja Klein, and Gregor Hackenbroich

Abstract. For many applications guided by sensor networks, such as production
automation and health monitoring, an efficient data processing with performance
assurance is crucial, especially for metrics such as delay and reliability. Our study
of current middleware approaches showed that they do not allow a sophisticated
complex event processing, neither the performance monitoring. In this chapter
we present the GINSENG middleware architecture that provides a 3-tier data pro-
cessing framework to exploit the benefits of basic publish/subscribe systems, tradi-
tional event stream processing and complex business rule processing. Furthermore,
the GINSENG middleware architecture provides performance control mechanisms,
i.e., monitoring metrics and improvement methods, both of the underlying sensor
network and the middleware itself. Finally, it supports the constraints of indus-
trial environments by allowing for the distributed middleware deployment and data
processing.

1 Introduction and Motivation

The overall goal of the GINSENG project is to develop a Wireless Sensor Network
(WSN) that meets application-specific performance targets and integrates existing
industry resource management systems. In order to achieve this goal, the GINSENG
project focuses not only on the development of the physical sensor network but also
on the development of a middleware platform which gathers and processes informa-
tion coming from wireless sensors and connects them to ERP systems.

The target application of the GINSENG project is pipe and oil tank monitoring
in a refinery environment. Here, pressure, volume flow, and tank level sensors are
applied to control the status and enable the predictive maintenance of pipelines and

Anja Klein · Zbigniew Jerzak · Gregor Hackenbroich
SAP Research Dresden, Chemnitzer Straße 48, 01187 Dresden, Germany
e-mail: {zbigniew.jerzak,anja.klein,gregor.hackenbroich}@sap.com

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 125–150.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

{zbigniew.jerzak,anja.klein,gregor.hackenbroich}@sap.com


126 Z. Jerzak, A. Klein, and G. Hackenbroich

tanks. Moreover, refinery employees may be equipped with mobile sensors to mea-
sure gas leakages and raise warnings in case of hazardous situations. In these scenar-
ios a continuous performance control of all involved systems is crucial in order to
prevent undetected emergencies. Such emergencies can be a result of simple delays
concerning data transfer or data processing. Further performance-critical applica-
tion areas relevant for the GINSENG project include: fire detection, energy manage-
ment in manufacturing plants or health care, where status of patients is monitored at
intensive care units.

Beyond the continuous performance control, these scenarios require also the anal-
ysis of temporal relationships between incoming events as well as continuous data
stream processing. Moreover, all information has to be processed as close to the
source as possible. This reduces the transferred data volume and minimizes the con-
gestion probability for the limited bandwidth wireless sensor networks. Finally, the
physical distribution of sensors requires a distributed middleware deployment.

To meet these constraints, the GINSENG project is developing a modular, hier-
archical middleware architecture. The GINSENG middleware can be deployed in a
distributed manner on three different levels (sensor node, gateway and central server)
providing a flexible platform for distributed data processing – the GINSENG Data
Processing Framework.

The remainder of this chapter is structured as follows. In Section 2 we present
the overall architecture of the GINSENG middleware. Subsequently, in Section 3,
we focus on the GINSENG Data Processing Framework: a 3-tier architecture for
distributed data processing. In Section 4 we describe how the GINSENG Data Pro-
cessing Framework is extended to monitor the performance of the wireless sensor
network and the GINSENG middleware. Finally, in Section 5, we summarize the re-
lated work in the field of middleware technologies, publish/subscribe mechanisms,
event stream and business rule processing. We conclude with a summary of this
chapter and an outlook on future work in Section 6.

2 System Architecture

This section gives a brief overview of the GINSENG middleware architecture with
specific focus on the event processing. The GINSENG middleware architecture is
driven by two important factors: (i) it provides an event-based middleware which
(ii) decouples GINSENG components from each other.

The event-based middleware of GINSENG equips the application programmer
with an extensive functionality for the creation of distributed systems. Through its
components the GINSENG middleware allows the programmer to collect, process
and reason on the data as it moves through the system. Moreover, the GINSENG
middleware supports a many-to-many interaction scheme overcoming the shortcom-
ings (tight coupling, inflexibility) of the traditional request-reply schemes [39].

The GINSENG middleware is an event-based system which provides a strong
notion of decoupling which applies to both internal middleware components and
external components which communicate using the GINSENG middleware. The



GINSENG Data Processing Framework 127

WSNOther data sources

executionmanagement

Backend applications

Service & Update
Manager

P
erform

ance M
onitoringDevice Manager Adapter Framework 3rd Party Connectivity

Data
Processing
FrameworkEvent Flow

Monitoring

C
ontent-based

P
ublish/S

ubscribe
Query Processing & Distribution

ERP System 1 ERP System 2 ERP System 3

Event
Stream

Processing

Business
Rules

Engine

Fig. 1 The architecture of the GINSENG middleware – centralized deployment

external components include Wireless Sensor Networks (or other data sources) and
Business Applications (or visualization components) – see Figure 1. Internal com-
ponents include query processing and distribution, and the adapter framework.

The decoupling of GINSENG components is provided by the underlying commu-
nication scheme: the publish/subscribe system. Using the publish/subscribe scheme,
components can register their interest for particular data and receive asynchronous
notifications about events matching their interest. This type of communication is re-
alized by all components within the GINSENG middleware. This approach is also
aligned with the asynchronous (push-based) creation of events by wireless sensors.

Figure 1 shows the details of the GINSENG middleware architecture. The
GINSENG middleware is split in two parts: (i) design-time components for all man-
agement functionality and (ii) runtime components that are relevant during the ex-
ecution. The design time components provide user interfaces for all administrative
tasks and thus allow the monitoring and configuration of the runtime components.

2.1 Core Components

All core components of the GINSENG middleware are connected using the Content-
based Publish/Subscribe system. The publish/subscribe system plays a crucial role
in the GINSENG middleware as it not only delivers events, but also takes part in the
filtering of the information, allowing movement of the computation to within the
proximity of the data sources.

The Adapter Framework is a pluggable infrastructure which allows the GIN-
SENG middleware to connect to arbitrary data (event) sources. Any required
3rd party driver or service enabling the connectivity can be dynamically plugged
into the adapter framework as an independent module. Such modules provide



128 Z. Jerzak, A. Klein, and G. Hackenbroich

connectivity not only to SQL-databases, the SAP Business Suite (e.g., an ERP sys-
tem) or arbitrary web services, but also to smart items such as wireless sensor nodes
or smart meters.

The Data Processing Framework acts as a foundation which allows for plugging
of arbitrary Event Stream Processing (ESP) and Business Rules (BR) engines to ben-
efit from existing well-known and well-tested complex event processing techniques
and to support declarative as well as rule-based event processing.

Finally, the Query Processing and Distribution controls the ESP and BR en-
gine(s). It is plays a significant role in distributed deployments (see Figure 2) of the
GINSENG middleware as it allows optimization of the distributed query execution.
It also provides a single, generic query language to the user or backend application
to encapsulate the applied ESP engine and performance-related meta-information.

The Performance Monitoring is a cross-cutting component. The Performance
Monitoring receives relevant meta-information (e.g., latency, packet loss, processing
time) from all middleware components, provides them to the interested user and
triggers activities for performance improvement.

2.2 Core Technology

The component infrastructure of the GINSENG middleware is developed based
on the OSGi Service Platform [59] – a dynamic module system for Java. Each
GINSENG middleware component is developed as two OSGi bundles1 – one for
the design-time configuration and one for the runtime execution. The design-time
bundle exposes the administration interface by component-specific User Interfaces
which are incorporated into the Management Console – see Figure 2. The Man-
agement Console connects to the Central Instance which is a single stop for master
copies of all configuration data and the runtime component code.

The runtime system consists of one or more middleware nodes. Each node pro-
vides a middleware runtime environment, where components’ runtime bundles re-
sponsible for device connectivity, system integration, data processing, data querying,
performance monitoring and performance improvement are deployed and executed.
The runtime bundle of a component is a piece of Java code that communicates with
a real world entity or external application via the content-based publish/subscribe
system.

Each middleware node may run on a regular personal computer, on an embedded
system, or within a virtual machine. The middleware runtime environment is built
on Java technology and therefore platform-independent. All agents deployed within
a node run in an OSGi environment (Eclipse Equinox [35]) which enables dynamic
remote code modifications, without requiring a reboot. This OSGi functionality en-
ables a minimal footprint for the runtime. Only bundles required for the specific ap-
plication scenario are deployed and executed. Nevertheless, it allows this footprint

1 An OSGi bundle consists of Java classes and other resources that deliver functions of a
specific application (component) to application users, as well as providing services and
packages to other bundles.



GINSENG Data Processing Framework 129

Local Monitoring and Control

Central Management

Central

Instance

Middleware

Node

Management

Console

Middleware

Node

Middleware

Node

Middleware

Node

Middleware

Node

Fig. 2 The distributed deployment of the GINSENG middleware

to grow according to the changing requirements. The OSGi environment allows the
deployment of additional bundles, e.g., adapters to connect new data sources, during
runtime. Of course, the lightweight implementation of runtime bundles is a key to
optimal middleware footprint, that developers need to keep in mind.

3 Data Processing Framework

The GINSENG data processing framework advances the current state of the art in
that it combines three technologies to build a unified data processing framework.
The three technologies are a content-based publish/subscribe communication sys-
tem, Event Stream Processing (ESP) engine and Business Rules Engine (BRE). To
the best of our knowledge it is the first approach which combines these technologies
to build a unified, event-driven data processing framework – see Figure 3.

Events created by wireless sensors are transformed using the Adapter Framework
of the GINSENG middleware into the internal GINSENG middleware event format,
which is used by all middleware components. Events in this format are subsequently
passed to the data processing framework which is responsible for stateful processing
of events according to the specified rules. The result of the stateful event processing
in the data processing framework (see Figure 3) is a set of complex (business) events
which are consumed by the backend applications and/or management components.

The data processing framework in the GINSENG middleware consists of two
main parts: the stateless and the stateful part. The input to the data processing
framework consists of simple events produced by the adapter framework. Within the
GINSENG middleware the content-based publish/subscribe system is considered as
the part of the data processing framework. However, since the publish/subscribe sys-
tem is also used to handle events leaving the data processing framework we indicate
this fact by placing it as a separate component in Figure 1.



130 Z. Jerzak, A. Klein, and G. Hackenbroich

stateful
ESP Engine

(Complex Event Processing)

Content-based Publish/Subscribe
(Filtering and Transport)

Business Rules Engine
(Inference Engine)

stateless
rules

Event Flow

stateful
rules

complex
events

filtered
events

business
events

business
rules

stateless

events

Fig. 3 Data processing framework in the GINSENG middleware

The data processing framework follows the principle of upstream evaluation and
downstream replication, which is a well established concept in the literature [10].
Following this principle the GINSENG middleware routes an event in one copy as
far as possible and replicates events only downstream. This means events are repli-
cated as close as possible to the interested components (downstream replication).
Filters and rules are applied, and patterns are assembled upstream, i.e., as close as
possible to the sources of events (upstream evaluation).

The upstream evaluation and downstream replication principle has the following
impact on the GINSENG middleware: stateful patterns and business rules entering
the GINSENG middleware are evaluated as close to the source of relevant events
as possible. However, since publish/subscribe systems are not well suited for han-
dling of stateful rules, the GINSENG middleware decomposes the business rules
into stateless and stateful parts, pushing the processing of the stateless rules within
the proximity of the data producers.

The stateless event processing in the data processing framework is therefore han-
dled by the content-based publish/subscribe system. Publish/subscribe systems use
stateless filters to decide upon the destination of events. In case no destination
matches a given event it is dropped – thus reducing the workload on the stateful
parts of the data processing framework.

The stateful part of the data processing framework consists of two processing
engines: the Event Stream Processing engine (based on the PIPES [33] system)
and the Business Rules Processing engine (based on the JBoss Drools [27]). This
GINSENG approach is aligned with the vision of ESP and BRE approaches merging
into unified CEP platform [7]. The GINSENG vision is driven by the fact that



GINSENG Data Processing Framework 131

Business Rules Engines expose a more mature interface for the non-technical users
while Event Stream Processing engines provide better performance for operations
on multiple sources of homogeneous events.

In addition to the above, the GINSENG middleware extends this approach by as-
serting that the future data processing frameworks will be based on an asynchronous,
data oriented communication protocol: the content-based publish/subscribe system.
The three technologies: ESP, BRE and publish/subscribe share a set of similarities
which further underline the applicability the GINSENG approach. All three tech-
nologies are event-based. They are inherently asynchronous and very well suited
for the processing of large quantities of events. In what follows we describe in de-
tail our effort of merging the three data driven techniques.

3.1 Business Rules Engine

Business rules engines rely on the Rete algorithm [22] to process incoming events
against a set of user-defined rules – see Section 5.4 for details. In the GINSENG
middleware we apply the Business Rules Management System (BRMS) JBoss
Drools [27], where events are represented by Java classes. Every event in JBoss
Drools can be equipped with meta-data which can state the role of the event, a times-
tamp (time-point), duration or an expiration time. JBoss Drools processes events as
they arrive, and due to the ability to perform temporal reasoning it has a built-in
mechanism for garbage collection of events that can no longer match any existing
rule.

The heart of the JBoss Drools system is the fast ReteOO algorithm, which pro-
vides support for sliding windows and temporal operators (before, after, coincide,
during, finishes, finished by, includes, meets, met by, overlaps, overlapped by, starts,
started by) for temporal reasoning. Rules can be specified either using the Drools

Listing 1 Two example JBoss Drools rules

1 define rule1:
2 if s1.val>5
3 && s2.val<8
4 && s3.tmp=5
5 && s1.loc=s2.loc
6 && s2.loc=s3.loc
7 then alarm()
8 end

10 define rule2:
11 if s1.val>5
12 && s2.val<8
13 && s1.qos=s2.qos
14 then alarm()
15 end



132 Z. Jerzak, A. Klein, and G. Hackenbroich

n
e

tw
o

rk
n

e
tw

o
rk

s3?

s1.val>5? s2.val<8? s3.tmp=5?

s1?

s2.loc=
=s3.loc

s1.qos=
=s2.qos

true s1.loc=
=s2.loc

rule1rule2

s2?

root

Fig. 4 The Rete network containing rules depicted in Listing 1

native procedural rule language, or via the use of a custom defined domain specific
language (DSL). Within the GINSENG project we are developing a GINSENG do-
main specific language, tailored for use within a refinery environment, with specific
focus on the oil tank and pipe monitoring. The use of the GINSENG DSL allows
building of an interface between the non-technical refinery personnel and the rule
engine.

The basic idea of the Rete algorithm is to create a directed acyclic graph of rule
conditions, a so-called Rete network. Nodes in the graph represent rule conditions,
e.g., a node can realize a selection operator that filters data based on certain con-
straints. Whenever a new event appears or the state of the network changes a repre-
sentation of the event, a so-called working memory element (WME) is created. The
WME is then propagated through the Rete network. This is performed in a forward-
chaining fashion from the root to the leaf nodes of the network. During this process,
every node in the network checks conditions or performs joins and only matching
WMEs are passed on to child nodes. Every WME or tuple of WMEs that reaches a
leaf node represents a match and results in an activation of the corresponding rule.
A rule firing can influence the working memory, i.e., it can change events. If this
is the case, the system again creates WMEs from these events and propagates them
through the network.

Let us consider the set of rules specified in Listing 1. The rule rule1 states that
if an event of type s1 and field val greater than 5 and an event of type s2 and field



GINSENG Data Processing Framework 133

Table 1 Filters and events in predicate-based semantics

Node Description

Root
Starts each Rete network (root). It has no ancestor nodes.

Type

Distinguishes between different event types (e.g. s1?). Type node has only
one input, and acts as a filter by passing only events matching the type of the
node. The number of type nodes is equal to the number of event types occurring
in rules.

Alpha (α)
Performs stateless filtering similar to a selection in relational algebra (e.g.
s1.val>5?).

Beta (β )

Combines two different types of WMEs to produce a joined result (e.g.
s1.loc==s2.loc). Beta nodes usually perform joins, however, extensions
to realize a universal quantifier, an existential quantifier, a negation and differ-
ent aggregation functions are available.

Terminal
A leaf node in the Rete network (e.g. rule2). If an event reaches the terminal
node, this represents the fulfillment of the corresponding rule. Therefore, the
number of terminal nodes is equal to the total number of rules.

val less than 8 and an event of type s3 and field tmp equal 5 all have the field loc
set to the same value than the alarm() function should be called. Similarly, the
rule rule2 states that if an event of type s1 and field val greater than 5 and an
event of type s2 and field val less than 8 have the same value of field qos than the
alarm() function should be called as well.

The set of rules specified in the Listing 1 after loading into the working memory
of the Rete algorithm is presented in Figure 4. The description of each of the node
types which are illustrated in the Figure 4 are presented in Table 1.

3.2 BRM and Publish/Subscribe

For the evaluation of the Business Rules Engine we have used the Linear Road
Benchmark [5] – see Figure 5. The Linear Road Benchmark simulates a tolling sys-
tem on a fictional expressway, where every car is equipped with a transponder which
every 30 seconds emits a car’s position. Position reports are used to generate traf-
fic statistics which in turn determine the toll charges. Our evaluation has indicated
that the GINSENG Data Processing Framework requires additional mechanisms to
lower the memory consumption of the rules processing engine. We have developed
a two-stage strategy for coping with this issue. The first stage encompasses the use
of the publish/subscribe layer while the second (currently in development) extends
this approach to embrace event stream processing engines.



134 Z. Jerzak, A. Klein, and G. Hackenbroich

 0

 50

 100

 150

 200

 250

 0  50  100  150  200  250  300  350  400  450  500
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
m

em
o
ry

 [
M

B
]

p
ro

ce
ss

in
g
 d

el
ay

 [
s]

number of position reports

used memory
allocated memory

processing delay

Fig. 5 Linear Road Benchmark – memory consumption using the Drools business rules
engine

For the first stage – using the publish/subscribe layer – we exploit the nodes
available in the α network in order to drive the processing in the publish/subscribe
layer. Specifically, we extract the stateless conditions contained within α network
and re-use them in the publish/subscribe layer. We extract both type and α nodes
and use their conditions as topics and filters within the publish/subscribe system,
respectively.

For example, let us consider the leftmost branch of the α network depicted in the
Figure 4. This branch will be converted to an OSGi filter with following properties
(props):

Listing 2 OSGi filter

1 Properties p = new Properties();
2 p.put(EventConstants.EVENT_TOPIC, "ginseng/events/s1");
3 p.put(EventConstants.EVENT_FILTER, "s1.val>5");
4 context.registerService(EventHandler.class.getName(), this, p);

The important aspect of the extraction process is that the filters are not removed
from the α network. Instead, filter copies are extracted and following the upstream
evaluation principle moved to within the proximity of the data producer. We have
decided to use this approach for pre-processing of the business rules as it allows us
to exploit the rule parsing and merging mechanism within the Rete network.



GINSENG Data Processing Framework 135

3.3 BRE and ESP

The second stage aiming at the optimization of the event processing within the
GINSENG Data Processing Framework involves event stream processing engines.
Our initial experiments have shown that performing operations like joins on simple
events consumes less memory if done within the Event Stream Processing network
than within the Business Rules Engine. Therefore, we the goal of the second stage
is to migrate parts of the β network into the event stream processing system.

The migration of the β network nodes imposes several implications for the BRE.
The most important issue is the need to change the corresponding parts of the Rete
network. The reason for the change is the fact that execution of the operators within
the β network results in the creation of new event types. This in turn, invalidates
both the α and the β network constructs as new events appear at the input of the BRE.
For example, let us assume that β node s1.loc==s2.loc visible in Figure 4 has
been migrated to an ESP system. This implies that ESP system produces a new type
of event which is a join between events of type s1 and s2. This in turn requires
the creation of new α node in the Rete network which would detect such a new
compound even type.

We are currently evaluating the set of operators and corresponding event types
which pose the best candidates for the migration from the BRM into the ESP system.
In order to provide a general framework we will perform tests using not only the
GINSENG specific data, but also the general benchmarking systems [5].

3.4 Domain Specific Languages for Rule Definitions

In order to shield users from changes in the underlying system GINSENG provides
a domain specific language (DSL) which allows non-technical users to specify new
and modify existing rules. The GINSENG DSL is based on an existing set of tested
rules, which constitute the GINSENG knowledge base. Based on these rules a set
of DSL queries is developed. As an example let us consider the following rule
expressed using the Drools native procedural rule language:

1 If WSNMessage(TankLevel<20, GenTimestamp>152467362)
2 then System.out.println("Oil tank is almost empty.");

The above rule monitors the level of a tank in the refinery. It states that messages
of type WSNMessage contain information with respect to the generation time stamp
(GenTimestamp) and current tank level – TankLevel. The above rule fires, i.e.,
produces a message Oil tank is almost empty, whenever the tank level
is below 20 and the generation time stamp is newer than 152467362. It can be
translated into a DSL rule using the following specification:



136 Z. Jerzak, A. Klein, and G. Hackenbroich

1 [when] If a message indicates that=WSNMessage()
2 [when] - oil tank level is lower than
3 {EnteredLevel}=TankLevel>{EnteredLevel}
4 [when] - and it was generated no later than at
5 {EnteredTimestamp}=GenTimestamp<{EnteredTimestamp}
6 [then] then log
7 "{Message}"=System.out.println("{Message}");

In the above specification first a test for a correct message type (line 1) is ex-
ecuted. Subsequently (lines 2–3), it is tested whether the user entered tank level
(EnteredLevel) is lower than the one contained in the message and (lines 4– 5)
and whether the user entered time stamp (EnteredTimestamp) is newer than
the one contained in the message. Finally (lines 6–7) a user entered message
(Message) is displayed whenever the previous conditions are met. The final rule
written in the GINSENG Domain Specific Language can take the following – easy
to write and understand – form:

1 If a message indicates that
2 - oil tank level is lower than 20
3 - and it was generated no later than at 152467362
4 then log "Oil tank is almost empty."

The DSL definition of the rule acts like a template for the technical definitions,
which allows the business user not only to understand the rule meaning, but also
frees him from the underlying implementation details, simultaneously providing
the ability to modify the DSL rules. In the example above users can select single
constraints in DSL rules, allowing them to, e.g., test only for the tank level without
performing the test for generation time.

4 Performance Control in Data Processing Framework

The first step towards a comprehensive performance monitoring is the collection
and definition of available and required performance parameters. To evaluate the
performance and quality of the event streams, we identified three classes of perfor-
mance and data quality indicators: (i) event latency, (ii) event loss (reliability), and
(iii) event content quality.

The metadata dimensions detailing these classes depend on (i) application require-
ments and (ii) used sensor nodes and their capabilities of metadata provisioning. To al-
low the comprehensive evaluation of the data quality of sensor measurement streams,
we propose a set of 13 data quality (DQ) and performance dimensions derived from
the DQ categories provided by [52]. We show these in Tables 2, 3, and 4. The
source of the respective metadata item is either the sensor node (S) or the middleware
(MW) itself. Further metadata dimensions can be calculated (C) based on other per-
formance information, allowing easy extension of the provided list. This calculation
is performed by the GINSENG middleware, when the respective meta-information
is required. This list can be easily extended by deriving further dimensions.



GINSENG Data Processing Framework 137

Table 2 List of performance dimensions for event latency

Dimension Description Source

GenerationTimestamp
Timestamp of event message generation, e.g., times-
tamp of sensor measurement

S

MwArrivalTimestamp
Timestamp, indicating the event’s arrival at the middle-
ware

MW

MwLeavingTimestamp
Timestamp, indicating the event is leaving the middle-
ware layer towards an application

MW

NetworkLatency
Time interval required for transferring this specific event
message within the WSN

C

NodeLatency
Average time interval required for transferring events
from the source mote of this event

C

MWLatency
Time interval required for transferring and processing
this event in the middleware

C

Table 3 List of performance dimensions for event loss (reliability)

Dimension Description Source

PacketLossPerMote
Number of message packets lost during data transmission in
the WSN per mote (calculated based on the MoteID and Mes-
sageID)

C

PacketLossAvg Average packet loss over all sensor motes C

Table 4 List of performance dimensions for event content quality

Dimension Description Source

Timeliness
Age of this event message since its generation, calculated as dif-
ference of current system time and generationTimestamp

C

Completeness Fraction of original sensor values C

Accuracy Maximal systematic numeric error of a sensor measurement MW

Confidence Maximal statistical error of a sensor measurement C

DataBasis
Amount of raw data underlying a data processing result or com-
plex event

C



138 Z. Jerzak, A. Klein, and G. Hackenbroich

4.1 Performance Monitoring Infrastructure

To record and manage the above listed parameters within the WSN and the middle-
ware, event messages have to be enriched with performance information. However,
the metadata dimensions listed above would significantly increase the data volume.
Thus, within the GINSENG middleware we apply the window-based approach (first
proposed in [30]) for the data quality management in data streams. To allow for
efficient data quality management, the event stream D, comprising a continuous
stream of m events consisting of n attribute values Ai(1 ≤ i ≤ n), is partitioned into
κ consecutive, non-overlapping data quality windows wi(k)(1 ≤ k ≤ κ), each of
which is identified by its starting point tb, its end point te, the window size ω and
the corresponding attribute Ai. In addition to the event data ei( j)(tb ≤ j ≤ te), the
window contains a set of d performance and data quality information items, each de-
scribing one performance dimension. Each window-wise performance information
item is calculated as an average of the original event-wise meta-information items.
For example, Figure 6 shows the window’s network latency lW SN,w(k) the window
accuracy aw(k) and the window completeness cw(k) with ω = 5.

The window size ω can be defined independently for each event attribute and/or
window. Small jumping windows result in high-granularity performance informa-
tion at the expense of a higher data overhead. A wider window definition guarantees
the important resource savings that are essential for data stream environments; this
happens by risking information with lower granularity and decreased correctness
due to error deviations introduced by the window-wise metadata aggregation.

4.2 Performance and Data Quality Algebra

To compute the performance and quality of event steam processing results, the tradi-
tional stream operators have to be extended as illustrated in Figure 7. For each data
processing function F consisting of operators o ∈ O, a metadata function FM has to
be composed of the data quality operators oM ∈ OM to compute the metadata MY ,
describing the derived knowledge Y = F(X).

Table 5 lists the operators o extracted from traditional event stream processing
engines and the GINSENG application scenarios, for which metadata operators oM

have to be described. The data quality algebra defines how operators influence each
DQ dimension. For a more detailed description the reader is referred to [32].

Generation Timestamp … 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

Pressure … 180 178 177 175 176 181 189 201 204 190 194 192 189 183 215 210 211 199 187 184

Network Latency …

Completeness …

Accuracy … 3 3,9 2,78 2,86

12,92 13,34 12,1 12,12

0,9 0,8 0,9 0,99

Fig. 6 Window-based approach for an event stream sample



GINSENG Data Processing Framework 139

F FM

describes

Sensor Data X Meta Information MX

Y = F(X) MY = FM (MX)

Fig. 7 Generic metadata algebra

Table 5 Data quality algebra operators

Type Operators

Numeric Operators Unary operators (e.g., square root); Binary operators (e.g., addition)

Signal Analysis Sampling; Interpolation; Frequency analysis; Frequency filtering

Relational Algebra Projection; Selection; Aggregation; Join

Rule-based Operators Set operators (e.g., union); Boolean operators; Threshold comparison

4.3 Performance Improvement

In [31], we present the quality-driven optimization of stream processing that im-
proves the resulting quality of data and service. We identify the targeted quality-
driven process optimization as multi-objective, non-linear, continuous optimization
problem with side conditions. We define the optimization objectives (for each data
quality dimension) and optimization parameters (that configure the required stream
processing operators). In the following, we briefly describe the developed generic
optimization framework and discuss major evaluation results.

4.3.1 Optimization Framework

The optimization framework is illustrated in Figure 8. The data quality-driven opti-
mization is executed continuously to tune the data stream processing during system
runtime. As soon as an optimal parameter set is found and deployed, it has to be
checked against the currently processed data stream. The online tuning allows the
seamless adaptation to varying stream rates, measurement values and data quality
requirements.

First, the system evaluates by means of static information like maximal sensor
stream rate or sensor precision, if the user-defined quality requirements can be ac-
complished or if conflicts exclude a realization of all sub-objectives. In the latter
case, the conflict is reported to the user. To check the satisfiability of DQ require-
ments, no access to streaming data is needed.



140 Z. Jerzak, A. Klein, and G. Hackenbroich

Fig. 8 Optimization framework

As the optimization must not interfere with the ongoing data stream processing,
it is separated into an independent system component. To execute the optimization
in parallel with the traditional data stream processing, the processing path with all
its operators is copied into the optimization component. To execute the optimiza-
tion, the framework applies a heuristic optimization algorithm (see Section 4.3.2 for
comparison of different algorithms). In each algorithm iteration, solution individu-
als, defining the stream operators’ configuration, have to be applied, evaluated and
compared. The solution individuals are ranked according to the achieved fitness,
that summarizes all sub-objectives of the optimization problem, and the best solu-
tions are used to start the next iteration. Step by step, the resulting fitness and, thus,
the configuration of the stream operators is improved.

Each solution is evaluated by directing a representative data stream partition
through the copied processing path in the optimization component. This stream
partition for optimization constitutes a data stream window of n data tuples. It may
either be selected in batch-mode at the beginning of each optimization run and used
in each iteration without changes. On the other hand, the partition can be updated
for each algorithm iteration with current tuples from the original stream, to reflect
the dynamic progression of the data stream and allow the continuous optimization.
After the stream partition is completely processed, the fitness of the tested configu-
ration is calculated.

As soon as the fitness accomplishes the user requirements, the optimization prob-
lem is solved. The new parameter setting is applied to the original processing path.
The sampling operators are updated with the optimized sampling rates rsa,opt . The
frequency analyses and aggregations are updated with the determined group sizes



GINSENG Data Processing Framework 141

lopt . Finally, the data quality initialization at the sensor nodes is re-configured with
the new window sizes ωopt .

The logical distinction between optimization and processing enables also their
physical separation, for example on a distinct server node. Thus, the optimiza-
tion task has no negative impact on the performance of the traditional data stream
processing.

4.3.2 Evaluation Results

The evaluation of the optimization framework showed that the processing time rises
nearly linearly for small to medium partition lengths of 100 to 1000 stream tuples.
Only for very large stream partitions does the iteration duration exhibit an expo-
nential character. Further, we can prove linear scalability for increasing processing
complexity. The time required for one algorithm iteration rises linearly with increas-
ing numbers of sensors as data sources and operators in the processing path.

Besides the evaluation of the generic framework, we compared different opti-
mization algorithms. The Monte-Carlo-Search (MC) performs a random search
over the problem domain and serves as reference value defining the lower perfor-
mance bound [38]. The single-objective optimization using the heuristic Evolution
Strategy [36] is executed with randomly chosen weights (SO-R) as well as optimal
weights (SO-O), which determine a well-balanced objective compromise. Finally,
the multi-objective optimization (MO) approximates the Pareto front of all optimal
compromises.

We evaluated the overall time performance of single- and multi-objective opti-
mization with respect to the achieved quality improvement for 16 sensor data sources
and 10 randomly inserted aggregations. The quality improvement is expressed as
percentage value (qbe f ore−qa f ter)/qbe f ore. The Monte-Carlo-Search performs worst
followed by the randomly initiated single-objective optimization, requiring 5.2 and
2.9 seconds, respectively, for a DQ improvement of 10%. The single-objective opti-
mization executed with well-balanced weights performs best (1.6s for 10%). How-
ever, the definition of these weights requires multiple optimization runs and has to
be adapted as soon as stream characteristics or user requirements change. The multi-
objective optimization (MO) is a little slower (1.9s) due to the complex computation
of the Pareto front. However, the result comprises the complete set of all optimal
compromises and no pre-processing to determine optimal weights is necessary.

The evaluation showed that the designed quality-driven optimization provides
good scalability with regard to the applied stream partition length as well as in-
creasing complexity of the data stream processing. Data quality and quality of
service could be improved within a few seconds. Further, we deduce that the single-
objective optimization in batch mode is the best choice for constant user require-
ments and steady data streams. If streaming data values present high fluctuations
or user requirements are often adjusted, the multi-objective optimization constitutes
the better option.



142 Z. Jerzak, A. Klein, and G. Hackenbroich

4.3.3 Open Issues

The research work presented above provides a good starting point toward perfor-
mance control in the GINSENG middleware. We need to extend this quality-driven
optimization framework towards a performance-driven optimization. The optimiza-
tion objectives have to be extended to cover the performance AND data quality
indicators defined above. Further, the applied optimization algorithms, e.g., the evo-
lution strategy, has to be adapted to embrace these novel objectives and the related
optimization parameters. After that, the optimization framework can be applied
without modifications to enable the performance maximization of event stream pro-
cessing in the GINSENG middleware.

5 Related Work

This section provides an overview of the state-of-the art concerning middleware
developments. Further, we discuss publish/subscribe systems and event- and rule-
based processing engines applicable to our processing framework.

5.1 Middleware Technology

In this section we analyze a representative set of existing middleware approaches
with regard to performance control and data processing supported. The project on
Wireless Accessible Sensor Populations (WASP) addresses the energy-efficient and
secure integration of Wireless Sensor Networks (WSN) into applications like traffic
and herd control and integrates data cleansing techniques for data quality improve-
ment [58]. WASP fulfills business applications requirements related to communica-
tion (e.g. on demand, event based sensor data acquisition, WSN discovery), but does
not support time synchronization. With respect to sensor data processing, WASP is
restricted to a basic operator set and does not support complex event processing, nor
performance or quality-guided stream processing.

The middleware developed within the project on PROduct lifecycle Management
and Information tracking using Smart Embedded systems (PROMISE) allows man-
agers, designers, and operators to track, manage and control product information at
any phase of its lifecycle (design, manufacturing, maintenance, recycling), at any
time and anywhere in the world [40]. However, PROMISE does not provide any
tools or components for performance or quality management and monitoring.

The Collaborative Business Items (CoBIs) project [14] provides a service-oriented
approach to support business processes that involve physical entities (goods, tools,
etc.) in large-scale enterprise environments in a transparent way. The CoBIs project
primarily focuses on the design of a service-oriented middleware for deploying, run-
ning, and querying services on sensor nodes and does not support data and event
processing as proposed by the GINSENG approach.

The SAP Auto-ID Infrastructure (AII) enables the integration of all automated
communication and sensing devices (e.g., RFID, Bluetooth and bar-code devices)



GINSENG Data Processing Framework 143

as well as intelligent programmable language controls [45]. SAP AII provides func-
tionalities for the data transfer from sensor motes to backend applications, but does
not include any data processing and performance monitoring technology.

Beyond this small excerpt of existing middleware systems, our comprehensive
analysis showed that middleware approaches for connecting field devices with back-
end systems only support basic pre-processing of sensor data and do not provide
any quality and/or performance control mechanism required by the industrial appli-
cations, where unreliable or deferred data may risk a system breakdown or even per-
sonal injuries. The GINSENG middleware addresses the performance assurances
(reliability, timeliness and precision) and control related issues. Moreover, it pro-
vides a) an abstraction to conceal the heterogeneity of underlying sensor motes, b) a
complex data stream and event processing engine, c) a robust monitoring and man-
agement of application logic.

5.2 Publish/Subscribe Communication

The GINSENG middleware uses the OSGi-based publish/subscribe paradigm as its
underlying communication infrastructure. In what follows we give a brief overview
of the existing approaches towards the design and implementation of publish/sub-
scribe systems.

Publish/subscribe is the first communication paradigm to unify three important
decoupling properties: space, time and synchronization decoupling [21] which
allows for a flexible communication between content producers (publishers) and
content consumers (subscribers). The decoupling properties ensure that the commu-
nication is anonymous (space decoupling), asynchronous (synchronization decou-
pling) and communicating parties do not need to be active at the same time (time
decoupling).

The above properties position pub/sub paradigm as a very attractive interaction
scheme for building loosely coupled, event driven applications. Moreover, due to
the decoupling properties publish/subscribe can act as a enabling technology for
higher level dynamic and distributed event-driven services, like Complex Event Pro-
cessing or Business Rules Processing. It is strictly for this reason that we design
the GINSENG middleware to rely on the publish/subscribe paradigm as its basic
communication primitive.

The basic interaction scheme of the publish/subscribe system is based on the
well known observer pattern [24]. Data consumers express their interest using sub-
scriptions. The first publish/subscribe systems started appearing over two decades
ago. One of the first publish/subscribe systems was Information Bus [37] which is
similar in concept to the generative communication model of tuple spaces [9]. The
Information Bus implements a topic-based publish/subscribe paradigm, i.e., filters
in subscription events took a form of fixed topics. The Information Bus and other
topic-based publish/subscribe systems [49, 6] allow content consumers to dynami-
cally specify topics which segment the information into channels. Publishers can



144 Z. Jerzak, A. Klein, and G. Hackenbroich

specify to which channel the produced information belong, thus allowing interested
subscribers to receive it.

The increasing need for heterogeneity and expressiveness among publish/sub-
scribe systems has lead to the development of the content-based [41] and type-
based [20] systems. Type-based systems provide type safety and encapsulation by
using the hierarchy of the class structure to filter events. Content-based systems pro-
vide a much greater degree of flexibility by relying on arbitrary filter expressions
(often in form of conjunctions of predicate functions [10, 29]) in order to select
events of interest to the subscribers.

Parallel to the academic development of the publish/subscribe communication
systems, the industry has started the adoption and standardization of the publish/-
subscribe communication. One of the first widely recognized and available speci-
fications was the Java Message Service [26] (JMS) which has been implemented
in multiple commercial, e.g., SonicMQ [51], and open source products, e.g., Hor-
netQ [28]. Other publish/subscribe specifications are WS-Eventing [17] and WS-
Notification [12, 25]. WS-Eventing and WS-Notification standards are not limited
to topic-based subscriptions (like JMS), allowing the definition of arbitrary filters in
form of XPath [18] queries in case of WS-Eventing or user defined queries (includ-
ing, e.g., XPath) in case of WS-Notification.

The OSGi publish/subscribe system has been proposed by the OSGi Alliance
in the Service Platform Specification [53]. The publish/subscribe communication
scheme implemented in the GINSENG middleware is defined within the Event Ad-
min service specification [54] and provides a topic-based publish/subscribe system
with additional ability to increase the filter selectivity (content-based publish/sub-
scribe) by using a LDAP-style filter specification [50].

5.3 Event Stream Processing

The author in [34] states that CEP systems process incoming raw events from mul-
tiple data sources in real-time using algorithms and rules to determine correlations,
trends and patterns expressed in outgoing complex events. This goal is achieved by
handling the correlation of temporal as well as other events which occur simultane-
ously and in high volumes [7]. While the Event Stream Processing (ESP) part of
the CEP technology is relatively new to the market with first commercial offerings
appearing in 2004 [46] the Business Rules part of the CEP technology is already
familiar to most organizations [44].

The event stream processing systems can perform filtering, correlation, trans-
formation and aggregation operations on multiple event streams. There exist a
number of academic prototypes which have also been partially transformed into
commercial offerings. Examples include Aurora/Borealis [1, 2] (commercialized by
Coral8 [15]), TelegraphCQ [11] (commercialized by Truviso [56]) and PIPES [33]
(commercialized by RTM Realtime Monitoring GmbH [42]). The processing of
data within ESP engines is driven by queries which can take be either declarative,



GINSENG Data Processing Framework 145

e.g., CQL: The Continuous Query Language [4], or procedural, e.g., SQuAl [2].
Declarative queries resemble the standard SQL syntax with event stream specific
extensions (e.g. support for windows), while procedural approaches allow for com-
position of queries out of well known building blocks (operators).

In recent years due to the distributed nature of data sources and the increasing
availability of the on-demand resources [16] the distributed ESP approaches have
been the focus of academic research. Recent developments include systems like Bo-
realis [1], System S [3] and NextCEP [47]. The focus of the distributed ESP research
lies on the scalability (via load and query distribution across multiple system nodes)
and fault tolerance (in most cases via state-machine replication [13, 48]) issues.

In what follows we give a brief descriptions of two open source ESP systems
which are used within the GINSENG middleware. The first system we use is
PIPES [33]. PIPES is a flexible and extensible infrastructure providing fundamen-
tal building blocks to implement a data stream management system. It constructs
directed acyclic query graphs based on a publish/subscribe mechanism which is inte-
grated into the graph nodes. PIPES is based on XXL [8] – a Java library that contains
a rich infrastructure for implementing advanced query processing functionality.

The second ESP system which is used in the GINSENG middleware is Esper [19].
Esper implements an Event Query Language (EQL) which allows for registering
of queries in the engine. A listener class is called by the engine when the EQL
condition is matched as events flow in. The EQL enables the expression of com-
plex matching conditions that include temporal windows, joining of different event
streams, as well as filtering, aggregation, and sorting. Esper statements can also
be combined together with “followed by” conditions thus deriving complex events
from more simple events. Events can be represented as Java classes, XML docu-
ments or java.util.Map, which promotes reuse of existing systems acting as
messages publishers. Esper also includes a historical data access layer to connect to
databases, combining historical data and real time data in one single query.

5.4 Business Rules Engines

Business Rules Management Systems (BRMS) provide the ability to easily ex-
press the rules in a simple and understandable way by using abstractions, such as
flowcharts, decision trees and decision tables as well as scoring models and textual
if-then rules [7]. Therefore, the benefit of BRMS lies in the fact that a change in
the rules can be easily reflected in the system by a non-technical user. BRMS, in
contrast to CEP solutions, are a mature offering with good market penetration.

Business rules engines (BRE), which constitute the core of the BRMS offerings,
are in most cases designed to accept discrete events which typically have a complex
payload (multiple elements) [7]. There exist currently a number of commercial of-
ferings for business rules platforms, including, but not limited to, Tibco Business
Events [55], UC4 Automation Engine [57] and ruleCore CEP Server [43]. There ex-
ist also non-commercial or open source systems, examples being JBoss Drools [27]



146 Z. Jerzak, A. Klein, and G. Hackenbroich

and Jess [23]. The common denominator for most of the business rules engines is
the use of the Rete algorithm [22] to process incoming events against the stored
rules. The use of the Rete algorithm allows reuse of the common parts of rules
and thus reducing the number of operations which are necessary to match incoming
events.

6 Summary

In this chapter, we presented the GINSENG middleware which closes the gap be-
tween (wireless) sensors networks and arbitrary backend applications, such as the
monitoring tool for a manufacturing site, the health care system at an intensive
care unit in a hospital or a zoological warehouse to track the routes of endangered
animals.

After a short description of the overall GINSENG architecture, the main part of
this chapter focused on the distributed event stream processing. With the presented
3-tier data processing framework composed of a low-level publish/subscribe system,
an exchangeable event stream processing engine and the high-level business rule
processing engine, we enabled the seamless integration of raw sensor events into
the complex business rule evaluation.

As GINSENG targets performance-critical application scenarios where long data
transfer delays, and missing or incorrect events may be hazardous, we proposed
mechanisms for the on-the-fly performance monitoring. Besides metrics for the ba-
sic performance measurement, a performance algebra to compute the accuracy of
event processing results and methods for the eventual performance improvement
were illustrated. Finally, we gave an overview of related work concerning middle-
ware approaches, as well as publish/subscribe, event and rule-based processing en-
gines applicable to our processing framework.

In further work, we will investigate and refine the integration between the event
processing engine and the business rules system. Moreover, the data quality driven
optimization of the event stream processing will be extended to cover all dimensions
listed in Tables 2, 3, and 4 as well as the GINSENG domain specific query language.
Finally, we will evaluate the GINSENG middleware against existing middleware,
event stream and business rules approaches to demonstrate the advantages of the
3-tier processing architecture over stand-alone processing engines.

Acknowledgments

The research leading to these results has received funding from the European Community’s
Seventh Framework Program (FP7/2007-2013) under grant agreement No. 224282. We
would also like to thank Sebastian Weng for his support with the execution of the Linear
Road benchmark.



GINSENG Data Processing Framework 147

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.-H.,
Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.:
The design of the borealis stream processing engine. In: CIDR 2005: Second Biennial
Conference on Innovative Data Systems Research, pp. 277–289 (2005)

2. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker,
M., Tatbul, N., Zdonik, S.B.: Aurora: a new model and architecture for data stream
management. VLDB J. 12(2), 120–139 (2003)

3. Amini, L., Jain, N., Sehgal, A., Silber, J., Verscheure, O.: Adaptive control of extreme-
scale stream processing systems. In: ICDCS 2006: 26th IEEE International Conference
on Distributed Computing Systems, Lisboa, Portugal, July 2008, p. 71. IEEE Computer
Society, Los Alamitos (2006)

4. Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic founda-
tions and query execution. The VLDB Journal 15(2), 121–142 (2006)

5. Arasu, A., Cherniack, M., Galvez, E.F., Maier, D., Maskey, A., Ryvkina, E., Stonebraker,
M., Tibbetts, R.: Linear road: A stream data management benchmark. In: Nascimento,
M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.)
VLDB, pp. 480–491. Morgan Kaufmann, San Francisco (2004)

6. Baldoni, R., Beraldi, R., Quéma, V., Querzoni, L., Piergiovanni, S.T.: Tera: topic-based
event routing for peer-to-peer architectures. In: Jacobsen, H.-A., Mühl, G., Jaeger, M.A.
(eds.) DEBS 2008: Proceedings of the 2007 Inaugural International Conference on Dis-
tributed Event-Based Systems, Toronto, Ontario, Canada, June 2007. ACM International
Conference Proceeding Series, vol. 233, pp. 2–13. ACM, New York (2007)

7. Brett, C., Gualtieri, M.: Must you choose between business rules and complex event
processing platforms? Forrester Research (January 2009)

8. Cammert, M., Heinz, C., Krämer, J., Schneider, M., Seeger, B.: A status report on xxl
- a software infrastructure for efficient query processing. IEEE Data Eng. Bull. 26(2),
12–18 (2003)

9. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32(4), 444–458 (1989)
10. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area event

notification service. ACM Trans. Comput. Syst. 19(3), 332–383 (2001)
11. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong,

W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: Telegraphcq:
Continuous dataflow processing for an uncertain world. In: CIDR 2003: First Biennial
Conference on Innovative Data Systems Research (2003)

12. Chappell, D., Liu, L.: Web Services Brokered Notification. 1.3 (2006),
http://docs.oasis-open.org/wsn/wsn-ws brokered
notification-1.3-spec-os.htm

13. Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., Riche, T.: UpRight
cluster services. In: Proceedings of the 22 nd ACM Symposium on Operating Systems
Principles (SOSP), pp. 277–290 (2009)

14. CoBIs. Collaborative Business Items, http://www.cobis-online.de/
15. Coral8 Inc. Complex event processing with coral8,

http://download.microsoft.com/.../complex event
processing with coral8 final.pdf

16. Creeger, M.: Cloud computing: An overview. Queue 7(5), 3–4 (2009)
17. Davis, D., Malhotra, A., Warr, K., Chou, W.: Web service eventing, w3c working draft

(2009), http://www.w3.org/tr/2009/wd-ws-eventing-20090317/

http://docs.oasis-open.org/wsn/wsn-ws$_$brokered$_$notification-1.3-spec-os.htm
http://docs.oasis-open.org/wsn/wsn-ws$_$brokered$_$notification-1.3-spec-os.htm
http://www.cobis-online.de/
http://download.microsoft.com/.../complex$_$event$_$processing$_$with$_$coral8$_$final.pdf
http://download.microsoft.com/.../complex$_$event$_$processing$_$with$_$coral8$_$final.pdf
http://www.w3.org/tr/2009/wd-ws-eventing-20090317/


148 Z. Jerzak, A. Klein, and G. Hackenbroich

18. DeRose, J.C.S.: Xml path language, xpath (1999),
http://www.w3.org/tr/xpath

19. EsperTech. Esper reference documentation (1999),
http://esper.codehaus.org/esper-3.3.0/doc/reference/en/
pdf/esper reference.pdf

20. Eugster, P.: Type-based publish/subscribe: Concepts and experiences. ACM Transac-
tions on Programming Languages and Systems 29(1), 1–50 (2007)

21. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of publish/-
subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

22. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match problem.
Artif. Intell. 19(1), 17–37 (1982)

23. Friedman-Hill, E.: Jess, http://www.jessrules.com/
24. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of Reusable

Object-Orineted Software. Addison-Wesley Professional, Reading (1995)
25. Graham, S., Hull, D., Murray, B.: Web Services Brokered Notification. 1.3. Web

Services Base Notification. 1.3 (2006), http://docs.oasis-open.org/wsn/
wsn-ws base notification-1.3-spec-os.htm

26. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java message service (April
2002), http://java.sun.com/products/jms/

27. JBOSS. Drools, http://labs.jboss.com/drools
28. JBoss. Hornetq, http://www.jboss.org/hornetq
29. Jerzak, Z., Fetzer, C.: Bloom filter based routing for content-based publish/subscribe. In:

DEBS 2008: Proceedings of the second international conference on Distributed event-
based systems, Rome, Italy, July 2008, pp. 71–81. ACM, New York (2008)

30. Klein, A.: Incorporating quality aspects in sensor data streams. In: Proceedings of the
1st ACM Ph.D. Workshop in CIKM (PIKM), pp. 77–84 (2007)

31. Klein, A., Lehner, W.: How to optimize the quality of sensor data streams. In: ICCGI
2009: Proceedings of the 2009 Fourth International Multi-Conference on Computing in
the Global Information Technology, pp. 13–19. IEEE Computer Society, Los Alamitos
(2009)

32. Klein, A., Lehner, W.: Representing data quality in sensor data streaming environments.
J. Data and Information Quality 1(2), 1–28 (2009)

33. Kraemer, J., Seeger, B.: Pipes - a public infrastructure for processing and exploring
streams. In: Weikum, G., Koenig, A.C., Deßloch, S. (eds.) Proceedings of the 9th ACM
SIGMOD International Conference on Management of Data, pp. 925–926. ACM, New
York (2004)

34. Leavitt, N.: Complex-event processing poised for growth. Computer 42(4), 17–20
(2009)

35. McAffer, J., VanderLei, P., Archer, S.: OSGi and Equinox: Creating Highly Modular
Java Systems. Addison-Wesley Professional, Reading (2010)

36. Michalewicz, Z.: Genetic Algorithms Plus Data Structures Equals Evolution Programs.
Springer, Heidelberg (1994)

37. Oki, B.M., Pflügl, M., Siegel, A., Skeen, D.: The information bus – an architecture for
extensible distributed systems. In: Liskov, B. (ed.) Proceedings of the 14th Symposium
on the Operating Systems Principles, pp. 58–68. ACM Press, New York (1993)

38. Patel, N.R., Smith, R.L., Zabinsky, Z.B.: Pure adaptive search in monte carlo optimiza-
tion. Mathematical Programing 43(3), 317–328 (1989)

39. Pietzuch, P.R.: Hermes: A Scalable Event-Based Middleware. PhD thesis, Computer
Laboratory, Queens’ College. University of Cambridge (February 2004)

http://www.w3.org/tr/xpath
http://esper.codehaus.org/esper-3.3.0/doc/reference/en/pdf/esper_reference.pdf
http://esper.codehaus.org/esper-3.3.0/doc/reference/en/pdf/esper_reference.pdf
http://www.jessrules.com/
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.htm
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.htm
http://java.sun.com/products/jms/
http://labs.jboss.com/drools
http://www.jboss.org/hornetq


GINSENG Data Processing Framework 149

40. PROMISE. PROduct lifecycle Management and Information tracking using Smart Em-
bedded system, http://www.promise.no/

41. Rosenblum, D.S., Wolf, A.L.: A design framework for internet-scale event observation
and notification. SIGSOFT Softw. Eng. Notes 22(6), 344–360 (1997)

42. RTM Realtime Monitoring GmbH, http://www.realtime-monitoring.de/
43. ruleCore. Cep server, http://rulecore.com/
44. Rymer, J.R., Gualtieri, M., Brown, M., Salzinger, C.: The forrester wave: Business rules

platforms, q2 2008 (April 2008)
45. SAP AG. SAP Auto-ID Infrastructure, http://www.sap.com/platform/

netweaver/autoidinfrastructure.epx
46. Schulte, W., Blechar, M., Jones, T., Sholler, D., Thompson, J., Malinverno, P., Gassman,

B.: The growing impact of commercial complex-event processing products. Gartner
Research (October 2009)

47. Schultz-Moller, N.P., Migliavacca, M., Pietzuch, P.: Distributed complex event process-
ing with query rewriting. In: DEBS 2009: Proceedings of the 2009 International Confer-
ence on Distributed Event-Based Systems, pp. 1–12 (2009)

48. Singh, A., Fonseca, P., Kuznetsov, P., Rodrigues, R., Maniatis, P.: Zeno: eventually
consistent byzantine-fault tolerance. In: NSDI 2009: Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation, pp. 169–184. USENIX
Association, Berkeley (2009)

49. Skeen, M.D., Bowles, M.: Apparatus and method for providing decoupling of data ex-
change details for providing high performance communication between software pro-
cesses. U.S. Patent No. 5,557,798 (July 1989)

50. Smith, M., Howes, T.: Lightweight directory access protocol (ldap): String representa-
tion of search filters. Request for Comments: 4515 (2006)

51. SonicMQ, http://web.progress.com/en/sonic/
52. Strong, D.M., Lee, Y.W., Wang, R.Y.: Data quality in context. Communications of the

ACM 40(5), 103–110 (1997)
53. The OSGi Alliance. Osgi service platform - core specification (2009),

http://www.osgi.org/
54. The OSGi Alliance. Osgi service platform - service compendium (2009),

http://www.osgi.org/
55. TIBCO. Businessevents, http://www.tibco.com/software/

complex-event-processing/businessevents
56. Truviso. Web analytics software, http://www.truviso.com/
57. UC4. Automation engine, http://www.uc4.com/products-solutions/

automation-engine.html
58. WASP. Wireless Accessible Sensor Populations.,

http://www.wasp-project.org/
59. Wütherich, G., Hartmann, N., Kolb, B., Lübken, M.: Die OSGi Service Platform: Eine

Einführung mit Eclipse Equinox. dpunkt, Heidelberg (2008)

http://www.promise.no/
http://www.realtime-monitoring.de/
http://rulecore.com/
http://www.sap.com/platform/netweaver/autoidinfrastructure.epx
http://www.sap.com/platform/netweaver/autoidinfrastructure.epx
http://web.progress.com/en/sonic/
http://www.osgi.org/
http://www.osgi.org/
http://www.tibco.com/software/complex-event-processing/businessevents
http://www.tibco.com/software/complex-event-processing/businessevents
http://www.truviso.com/
http://www.uc4.com/products-solutions/automation-engine.html
http://www.uc4.com/products-solutions/automation-engine.html
http://www.wasp-project.org/


150 Z. Jerzak, A. Klein, and G. Hackenbroich

Glossary

GINSENG The goal of the EU-project GINSENG is the development of a performance-
controlled wireless sensor network.

WSN A Wireless Sensor Network is a network of sensor nodes that communicate
wirelessly.

Middleware The middleware is a computer software that connects software components
or applications.

Publish/-
Subscribe

Publish/Subscribe (or pub/sub) is a messaging paradigm where senders
(publishers) broadcast messages that are only received by Subscribers who
defined their interest in advance.

BR Business Rules are application- or domain-specific rules defining the selec-
tion of alternative execution paths in complex business processes.

BRP The Business Rule Processing evaluates incoming business and/or event
data against business rules to guide business processes.

BRM The Business Rule Management includes the definition, management and
processing of business rules.

ESP The Event Stream Processing embraces all techniques and methods for the
real-time processing of continuous or discrete event data.

CEP The Complex Event Processing combines and evaluates incoming raw
events against rules or patterns to create outgoing complex events.

DSL A Domain Specific Language is a programming or specification language
dedicated to a particular problem domain, a particular problem representa-
tion technique, and/or a particular solution technique.

DQ The Data Quality defines the appropriateness of a given data item for a
specific task, expressed e.g., as accuracy or completeness.

Performance The performance of a system describes its non-functional ability to solve a
specific task, expressed e.g., as latency or reliability.

Performance
Control

The performance control includes the monitoring of the current system per-
formance as well as methods for the performance improvement.

MO The Multi-objective Optimization targets for the Pareto front of optimal
compromises between all involved sub-objectives.

SO The Single-objective Optimization summarizes all sub-objectives in one ob-
jective function, which is optimized afterwards.

MC The Monte-Carlo-Search performs a random search over all possible solu-
tions to find the optimal one.


	GINSENG Data Processing Framework
	Introduction and Motivation
	System Architecture
	Core Components
	Core Technology

	Data Processing Framework
	Business Rules Engine
	BRM and Publish/Subscribe
	BRE and ESP
	Domain Specific Languages for Rule Definitions

	Performance Control in Data Processing Framework
	Performance Monitoring Infrastructure
	Performance and Data Quality Algebra
	Performance Improvement

	Related Work
	Middleware Technology
	Publish/Subscribe Communication
	Event Stream Processing
	Business Rules Engines

	Summary
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




