
Distributed Architectures for Event-Based
Systems

Valentin Cristea, Florin Pop, Ciprian Dobre, and Alexandru Costan

Abstract. Event-driven distributed systems have two important characteristics,
which differentiate them from other system types: the existence of several soft-
ware or hardware components that run simultaneously on different inter-networked
nodes, and the use of events as the main vehicle to organize component intercom-
munication. Clearly, both attributes influence event-driven distributed architectures,
which are discussed in this chapter. We start with presenting the event-driven soft-
ware architecture, which describes various logical components and their roles in
events generation, transmission, processing, and consumption. This is used in early
phases of distributed event-driven systems’ development as a blueprint for the whole
development process including concept, design, implementation, testing, and main-
tenance. It also grounds important architectural concepts and highlights the chal-
lenges faced by event-driven distributed system developers. The core part of the
chapter presents several system architectures, which capture the physical realization
of event-driven distributed systems, more specifically the ways logical components
are instantiated and placed on real machines. Important characteristics such as per-
formance, efficient use of resources, fault tolerance, security, and others are strongly
determined by the adopted system architecture and the technologies behind it. The
most important research results are organized along five themes: complex event pro-
cessing, Event-Driven Service Oriented Architecture (ED-SOA), Grid architecture,
Peer-to-Peer (P2P) architecture, and Agent architecture. For each topic, we present
previous work, describe the most recent achievements, highlight their advantages
and limitations, and indicate future research trends in event-driven distributed sys-
tem architectures.

Valentin Cristea · Florin Pop · Ciprian Dobre · Alexandru Costan
University Politehnica of Bucharest, 313 Splaiul Independentei,
060042 Bucharest, Romania
e-mail: valentin.cristea@cs.pub.ro,florin.pop@cs.pub.ro,

ciprian.dobre@cs.pub.ro,alexandru.costan@cs.pub.ro

S. Helmer et al.: Reasoning in Event-Based Distributed Systems, SCI 347, pp. 11–45.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

valentin.cristea@cs.pub.ro, florin.pop@cs.pub.ro,

12 V. Cristea et al.

1 Introduction and Motivation

Many distributed systems use the event-driven approach in support of monitoring
and reactive applications. Examples include: supply chain management, transaction
cost analysis, baggage management, traffic monitoring, environment monitoring,
ambient intelligence and smart homes, threat / intrusion detection, and so forth.
In e-commerce applications, the business process can be managed in real time by
generated events that inform each business step about the status of previous steps,
occurrence of exceptions, and others. For example, events could represent order
placements, fall of the inventory below a specific optimal threshold, high value or-
ders, goods leaving the warehouse, goods delivery, and so forth. An event-driven
system detects different events generated by business processes and responds in real
time by triggering specific actions.

Event-driven solutions satisfy also the requirements of large scale distributed
platforms such as Web-based systems, collaborative working and learning systems,
sensor networks, pervasive computing systems, Grids, per-to-peer systems, wireless
networking systems, mobile information systems, and others, by providing support
for fast reaction to system or environment state changes, and offering high quality
services with autonomic behavior. For example, large scale wireless sensor net-
works can be used for environment monitoring in some areas. A large number of
different events can be detected (such as heat, pressure, sound, light, and so forth)
and are reported to the base stations that forward them to event processors for com-
plex event detection and publication. Appropriate event subscriber processes are
then activated to respond to event occurrences. They can set alarms, store the event
data, start the computation of statistics, and others.

Event-driven distributed architectures help in solving interoperability, fault tol-
erance, and scalability problems in these systems. For example, Grid systems are
known for their dynamic behavior: users can frequently join and leave their vir-
tual organizations; resources can change their status and become unavailable due
to failures or restrictions imposed by the owners. To cope with resource failure sit-
uations, a Grid monitoring service can log specific events and trigger appropriate
controls that perform adaptive resource reallocation, task re-scheduling, and other
similar activities. A large number of different event data are stored in high volume
repositories for further processing to obtain information offered to Grid users or ad-
ministrators. Alternatively, the data collected can be used in automatic processes for
predictive resource management, or for optimization of scheduling .

Most important, event-driven distributed architectures simplify the design and
development of systems that react faster to environment changes, learn from past
experience and dynamically adapt their behavior, are pro-active and autonomous,
and support the heterogeneity of large scale distributed systems.

The objective of this chapter is to give the reader an up-to-date overview of
modern event-driven distributed architectures. We discuss the main challenges, and
present the most recent research approaches and results adopted in distributed sys-
tem architectures, with emphasis on incorporating intelligent and reasoning tech-
niques that increase the quality of event processing and support higher efficiency of

Distributed Architectures for Event-Based Systems 13

the applications running on top of distributed platforms. Future research directions
in the area of event-driven distributed architectures are highlighted as well.

2 Background

Events are fundamental elements of event-driven systems. An event is an occurrence
or happening, which originates inside or outside a system, and is significant for, and
consumed by, a system’s component. Events are classified by their types and are
characterized by the occurrence time, occurrence number, source (or producer), and
possible other elements that are included in the event specification. Events can be
primitive, which are atomic and occur at one point in time, or composite, which
include several primitive events that occur over a time interval and have a specific
pattern. A composite event has an initiator (primitive event that starts a compos-
ite event) and a terminator (primitive event that completes the composite event).
The occurrence time can be that of the terminator (point-based semantics) or can
be represented as a pair of times, one for the initiator event, and the other for the
terminator event [43, 21]. The interval temporal logic [1] is used for deriving the
semantics of interval based events when combining them by specific operators in a
composite event structure.

Event streams are time-ordered sequences of events, usually append-only (events
cannot be removed from a sequence). An event stream may be bounded by a time in-
terval or by another conceptual dimension (content, space, source, certainty) or can
be open-ended and unbounded. Event stream processing handles multiple streams,
aiming at identifying the meaningful events and deriving relevant information from
them. This is achieved by means of detecting complex event patterns, event corre-
lation and abstraction, event hierarchies, and relationships between events such as
causality, membership, and timing. So, event stream processing is focused on high
speed querying of data in streams of events and applying transformations to the
event data. Processing a stream of events in order of their arrival has some advan-
tages: algorithms increase the system throughput since they process the events “on
the fly”; more specifically, they process the events in the stream when they occur and
send the results immediately to the next computation step. The main applications
benefiting from event streams are algorithmic trading in financial services, RFID
event processing applications, fraud detection, process monitoring, and location-
based services in telecommunications.

Temporal and causal dependencies between events must be captured by specifi-
cation languages and treated by event processors. The expressivity of the specifi-
cation should handle different application types with various complexities, being
able to capture common use patterns. Moreover, the system should allow com-
plete process specification without imposing any limiting assumptions about the
concrete event process architecture, requiring a certain abstraction of the modeling
process. The pattern of interesting events may change during execution; hence the
event processing should allow and capture these changes through a dynamic behav-
ior. The usability of the specification language should be coupled with an efficient

14 V. Cristea et al.

implementation in terms of runtime performance: near real-time detection and non-
intrusiveness [40]. Distributed implementations of event detectors and processors
often achieve these goals. We observe that, by distributing the composite event de-
tection, scalability is also achieved by decomposing complex event subscriptions
into sub-expressions and detecting them at different nodes in the system [4]. We
add to these requirements the fault tolerance constraints imposed on event composi-
tion, namely that correct execution in the presence of failures or exceptions should
be guaranteed, based on formal semantics. One can notice that not all these require-
ments can be satisfied simultaneously: while a very expressive composite event ser-
vice may not result in an efficient or usable system, a very efficient implementation
of composite event detectors may lead to systems with low expressiveness. In this
chapter, we describe the existing solutions that attempt to balance these trade-offs.

Composite events can be described as hierarchical combinations of events that
are associated with the leaves of a tree and are combined by operators (specific to
an event algebra) that reside in the other nodes. Another approach is continuous
queries, which consists of applying queries to streams of incoming data [17]. A
derived event is generated from other events and is frequently enriched with data
from other sources. The representation of the event must completely describe the
event in order to make this information usable to potential consumers without the
need to go back to the source to find other information related to the event.

Event-driven systems include components that produce, transmit, process, and
consume events. Events are generated by different sources — event producers, and
are propagated to target applications — event consumers. Producers and consumers
are loosely coupled by the asynchronous transmission and reception of events. They
do not have to know and explicitly refer each other. In addition, the producers do
not know if the transmitted events are ever consumed. What the system does is to
offer the events to the interested consumers. To do this, other components are used
such as the event channel and the event processing engine. To them must be added
components for event development, event management, and for the integration of
the event-driven system with the application (Figure 1). We next describe briefly the
roles of these components.

Fig. 1 Components of the event-driven systems

Distributed Architectures for Event-Based Systems 15

Event producers vary from one application to another. For example, mobile lo-
cation sensors (GPS) or readers of mobile RFID tags are frequently used in loca-
tion detection for context aware applications [18]. Web tracking services crawl the
Internet to find new postings and generate events accordingly. RFID tag readings
combined with information from a company’s database can generate events for sup-
ply chain management. Mobile sensors can be used for health monitoring systems.
Stationary sensors for detecting the presence of persons or sensing the ambient con-
ditions are used in smart home applications. The event producer can also be an
application, data store, service, business process, medical equipment, IC card, PC,
phone, TV, PDA, notebook, smart phone, and so forth. It is not surprising that vari-
ous event categories correspond to these sources: temporal, absolute or logical posi-
tioning events, change of status events, interval events, event strings, homogeneous
or heterogeneous composite events, and others. In addition, events carry contextual
information such as social context and group membership [27]. The producer can
be a collaboration support service such as Instant Messaging or email. As we can
see, there is a large variety of event producers, which generate events in different
formats. Consequently, the events need to be converted, prior transmission, to the
format accepted by the event channel. In distributed systems, the producer could
also include a local event processor that has the role of selecting events for trans-
mission over the event channel based on specific rules, or of detecting composite
events. For example, if a temperature sensor generates an event each minute, a local
event filter could select and send on the event channel only the events with tempera-
tures greater than a threshold T. Since, in distributed systems, event producers might
be spread over a large geographic area, filtering helps to reduce the traffic injected
in the transport network that supports the event channels. Also, the producer can
generate composite events out of workflows or message streams. For example, the
application might want to know when the average temperature for each sequence of
ten events “greater than T” events becomes larger than a limit T’. So, an event pro-
cessor local to the producer calculates the average for each group of ten events and
generates a new event when this average is greater than T’. This approach aims to re-
duce the network traffic and the load of the event processing engine by performing,
at the place of the event source, some simple event processing operations.

Event consumers are system components such as software, services, humans,
intelligent applications, business processes, performance dashboards, automated
agents, actuators, or effectors. They receive events communicated by the event pro-
cessing engine and react to these events. The reaction might include the generation
of new events, so that consumers can be event producers as well.

The event processing engine receives events via defined channels, processes
them according to specific rules, and initiates actions on behalf of event consumers.
Processing can be event aggregation, classification, and abstraction, which are used
for generating higher level complex events. For example, event combinations can
be a disjunction or a conjunction of two events, a sequence of two events, occur-
rence of an aperiodic event in a time interval, periodic occurrence of an event, non-
occurrence, and temporal [12]. To these operations, event monitoring, tracking, and

16 V. Cristea et al.

discovery can be added. Finally, event handling (for example event rating) can be
used for situation detection and prediction purposes.

Engines can process the events individually, one at a time, or in the context of
former events. The second approach is known as Complex Event Processing (CEP)
and aims at identifying event patterns by processing multiple events. Detecting event
patterns can determine the generation of new events or trigger actions of event con-
sumers. Intelligent event processing engines base their decisions on AI techniques
and knowledge processing, in which case their behavior adapts continuously to the
changing environment they monitor. Engine actions might include event logging,
which keeps information about the time at which the event occurred. For composite
events, the log preserves the constituent events in the order they were produced. The
event processing can be centralized in a single engine or can be distributed to a net-
work of cooperative event processing agents. Both solutions are used in distributed
systems and have advantages and disadvantages that will be discussed further in this
chapter.

Several models have been proposed for complex event detection. An early ap-
proach was extending finite state automata with support for temporal relationships
between events [40]. A complex event detection automaton has a finite set of states,
including an initial state in which the detection process is started, and generative
states, each one corresponding to a complex event. Transitions between states are
fired by events from an event input alphabet, which are consumed sequentially by
the automaton. When the automaton reaches a generative state a complex event is
detected. This approach provides efficiency through its direct support for event pro-
cessing distribution since detectors can subscribe to composite events detected by
other automata. Finite automata have several advantages: they are a well-understood
model with simple implementations; their restricted expressive power has the benefit
of limited, predictable resource usage; regular expression languages have operators
that are tailored for pattern detection, which avoids redundancy and incompleteness
when defining a new composite event language; complex expressions in a regular
language may easily be decomposed for distributed detection.

Many event processing engines are built around the Event, Condition, Action
(ECA) paradigm [13], which was firstly used in Data Base Management Systems
(DBMS) and was then extended to many other categories of system. These elements
are described as a rule that has three parts: the event that triggers the rule invocation;
the condition that restricts the performance of the action; and the action executed
as a consequence of the event occurrence. To fit this model, the event processing
engine includes components for complex event detection, condition evaluation,
and rule management. In this model, event processing means detecting complex
events from primitive events that have occurred, evaluating the relevant context in
which the events occurred, and triggering some actions if the evaluation result sat-
isfies the specified condition. Event detection uses an event graph, which is a merge
of several event trees [15]. Each tree corresponds to the expression that describes
a composite event. A leaf node corresponds to a primitive event while intermediate
nodes represent composite events. The event detection graph is obtained by merging
common sub-graphs. When a primitive event occurs, it is sent to its corresponding

Distributed Architectures for Event-Based Systems 17

leaf node, which propagates it to its parents. When a composite event is detected,
the associated condition is submitted for evaluation. The context, which can have
different characteristics (e.g. temporal, spatial, state, and semantic) is preserved in
variables and can be used not only for evaluation of the condition but also in the
performance of the action.

In distributed systems, channels are used for event notification or communica-
tion. Events are communicated as messages by using negotiated protocols and lan-
guages such as the FIPA ACL (FIPA Agent Communication Language) used for
inter-agent communication. Protocols can be push-based, in which producers dis-
tribute the events to consumers, or pull-based, in which consumers request the infor-
mation. In the publish-subscribe paradigm [27], producers place notifications into
a channel while consumers subscribe for notifications to specific channels. When
an event is published, all entities that subscribed to that specific event category
are automatically notified. As an alternative, content-based publish-subscribe [47]
mechanisms use the body of the event description for routing the information from
producers to consumers. Finally, concept-based publish-subscribe [19] uses ontolo-
gies and context information to decide on the routing. The publish-subscribe model
has at least two advantages: first, it supports event delivery to multiple consumers;
second, it decouples the event consumers from the rest of the system, with beneficial
effects on scalability and on simplifying systems’ design and implementation.

Event development tools are used for the specification of events and rules. Event
management tools are used for the administration and monitoring of the processing
infrastructure and of the event flows. The integration module includes interface
modules for the invocation and publish-subscribe actions, access to application data,
and adapters for event producers.

3 Event-Driven Distributed System Architectures

The concrete realization of a system requires the instantiation of the abstract archi-
tecture, placement of components on real machines, protocols to sustain the interac-
tions, and so forth, using specific technologies and products [53]. Such an instance
is called system architecture.

Event-driven distributed system architectures must respond to users’ quality re-
quirements, and to problems raised by the distributed nature of platforms and ap-
plications. One challenge is the scale in number of users and resources that are
distributed over large geographic areas. They generate a huge number of events that
must be efficiently processed. For example, in a transaction cost analysis applica-
tion, hundreds of thousands of events per second of transaction records must be
processed [27]. To support such and similar tasks, the distributed system is required
to process composite events with the minimum delay and with minimum resource
consumption, which might require a very careful placement of event services on
available resources, based on load balancing and replication techniques [58]. An-
other challenge is presented by fault tolerance, which requires component replica-
tion combined with recovery techniques and the use of persistent memory for events.

18 V. Cristea et al.

Yet another challenge is the dynamic nature of the context in which the applications
are running. Typical context aware applications are those based on wireless sensor
networks or mobile ad-hoc networks for traffic monitoring, which require a greater
adaptivity that can be supported by AI and knowledge-based techniques. Last but
not least, systems must respond to the needs of large communities of users with dif-
ferent profiles and backgrounds, by offering expressive tools for specifying complex
events, and using intelligent techniques for the manipulation of event patterns.

3.1 Complex Events Detection

Distributed event processing is based on decomposing complex event expressions
into parts that can be detected separately in a distributed approach. An optimal strat-
egy must be used for the distribution of event processing services between clients
and servers or among peers of a distributed system. This is guided by optimization
criteria, which can be a tradeoff between a low latency in event processing and low
resource consumption. It takes into account the characteristics of systems’ infras-
tructure and of the applications, which in most cases are dynamically changing and
ask for flexible and adaptive mechanisms. For example, the policy could encourage
the reuse of an existing complex event detector for several other complex events. In
other cases, it could be more useful to replicate services to support fault tolerance
and reliability or to gain in performance by placing the event processing closer to
the consumers.

In many systems, the generation of new inferred events is based on other events
and some mechanisms for predefined event pattern specifications. A widespread
model that supports the dynamic modification of complex events is the rule based
paradigm, which currently relies on expressive definition of the relevant events and
the update of rules over time. The model uses a set of basic events along with their
inter-relationships and event-associated parameters. A mechanism for automating
the inference of new events [54] combines partial information provided by users
with machine learning techniques, and is aimed at improving the accuracy of event
specification and materialization. It consists of two main repetitive stages, namely
rule parameter prediction and rule parameter correction. The former is performed
by updating the parameters using available expert knowledge regarding the future
changes of parameters. The latter stage utilizes expert feedback regarding the event
occurrences and the events materialized by the complex events processing frame-
work to tune rule parameters. There are some important directions which are worth
exploring, for example casting the learning problem as an optimization one. This can
be achieved by attaching a metric to the quality of the learned results and by using
generic optimization methods to obtain the best values. For example, transforming
rule trees into Bayesian Networks enables the application of learning algorithms
based on the last model [56].

Event workflows are a natural choice for the composition of tasks and activities,
and are used to orchestrate event interactions in distributed event driven systems.
They can be based on associating components into groups or scopes, which induce

Distributed Architectures for Event-Based Systems 19

an hierarchical organization. Two components are visible to each other if there is a
scope that contains them. When a component publishes an event, this is delivered to
all visible subscribers. Each component relies on an interface specifying the types
of events the component publishes (out-events), and the events the component sub-
scribes to (in-events). Scopes are considered components as well. Each scope has
an interface specifying the in- and out-events of the whole group. It regulates the
interchange of events with the rest of the system. Exchange of events can be further
controlled with selective and imposed interfaces that allow a scope to orchestrate the
interactions between components within the scope. In event-driven workflow exe-
cution, ECA rules are fundamental for defining and enforcing workflow logic. Fault
tolerance is supported by exception event notification mechanisms which, combined
with rules, are used in reacting to workflow execution errors. However, further work
remains to be done on how to specify and implement semantic recovery mecha-
nisms based on rules. Also, the specific workflow life-cycle needs to be addressed,
particularly with respect to long running workflows and organizational changes.

The advent of stream processing based on sensor and other data generated on a
continuous basis enhances the role of events in critical ways. Currently, event stream
technologies converge with classic publish/subscribe approaches for event detection
and processing. The key applications of the event stream processing technologies
rely on the detection of certain event patterns (usually corresponding to the appli-
cations domain). However, efficient evaluation of the pattern queries over streams
requires new algorithms and optimizations since the conventional techniques for
stream query processing have proved inadequate [9]. We note that applications may
cope differently with performance requirements on event streams: while some appli-
cations require a strict notion of correctness that is robust relative to the arrival order
of events, others are more concerned with high throughput. An illustration of such
systems that integrate both event streams and publish/subscribe technologies and
support different precise notions of consistency is CEDR, Complex Events Detec-
tion and Response [9]. The proposed model introduces a temporal data dimension
with clear separation of different notions of time in streaming applications. This
goal is supported by a declarative query language able to capture a wide range of
event patterns under temporal and value correlation constraints. A set of consistency
levels are defined to deal with inherent stream imperfections, like latency or out-of-
order of delivery and to meet applications’ quality of service demands. While most
stream processing solutions rely on the notion of stream tuples seen as points, in
CEDR each tuple has a validity interval, which indicates the range of time when the
tuple is valid from the event provider’s perspective. Hence, a data stream is modeled
as a time varying relation with each tuple in the relation being an event. Stream pro-
cessing faces some particular issues in the context of large-scale events processing.
The high volume of streams reaches rates of thousands of detected events per sec-
ond in large deployments of receptors. Also, extracting events from large windows
is a difficult task when relevant events for a query are widely dispersed across the
window.

In various event-driven systems, information is combined from different sources
to produce events with a higher level of abstraction. When the sources are

20 V. Cristea et al.

heterogeneous the events must be meaningfully enriched, possibly by adding meta-
data that is often automatically extracted from semi-structured data [10, 26]. Event
enrichment involves understanding the semantics of the events and of the exter-
nal sources of information. Depending on the degree of abstract knowledge needed,
the event-driven system might generate recommendations automatically, which in
response might call for human involvement. Other approaches to addressing hetero-
geneity of event sources are based on the use of an intermediary ontology-based trans-
lation layer. Such systems include an additional layer of mediation that intelligently
resolves semantic conflicts based on dynamic context information (history of events
or state-context or any other information) and an ontology service [19]. The concept-
based publish/subscribe mechanism is part of the event processing layer. If notifica-
tions are to be routed in the same context then no additional mediation is needed. If
publisher and subscriber use different contexts, an additional mediation step is used.
Therefore, concept-based publish/subscribe can be implemented on top of any other
publish/subscribe methods (channel-based, content-based, subject-based).

3.2 Classes of Event-Driven Distributed Architectures

There are two large classes of event-driven distributed system architectures: client-
server and peer-to-peer. Systems in the first category are based on the asymmetric
relation between clients and servers that run on different machines. A client can ac-
tively invoke a service and waits for the response. The server, passively waits for
invocations, executes the requested service and sends the results back to the client.
Since the server can be client for another server, the possible client-server topologies
can be very diverse. The client-server model has several sub-categories. Web-based
applications use the browser as client and the Web server as broker for message ex-
changes with the application server. This sub-model has several advantages: there
is no need to build special clients for application servers; new application services
can be easily deployed without changing the client; the client’s functionality can
be enriched by downloading code from the server, and executing it in the browser.
Both entities (client and server) can have an event-driven orientation as is illustrated
in the sequel. A second sub-model is the event-driven Service Oriented Architec-
ture (event-driven SOA) in which an event, possibly produced by a client’s action,
can trigger the invocation of one or several services. In turn, service execution can
produce new events that are propagated to other services that contribute to solving
the client’s request. This sub-model is more flexible than the previous one since the
client does not have to know the server in advance. Instead, the server publishes
its interface, and a lookup service allows clients to retrieve the interface description
and formulate service requests according to this description. In addition, the use
of the publish-subscribe paradigm allows clients to be notified when new services
are made available. Clearly, the use of the same paradigm for events and services
simplifies the development of event-driven SOA systems, mainly in enterprise en-
vironments. Some authors [39] consider that event-driven SOA is nothing else than
another style of SOA, two primary styles being “composite application” and “flow”.

Distributed Architectures for Event-Based Systems 21

The event-driven SOA has proved to be very useful in Grid computing, for enhanc-
ing the performance of Grid services in several respects. One is for improving the
collaborative activity in Virtual Organizations, in which partner processes can be-
come more reactive to cooperation events. Another one is in monitoring and con-
trol of data Grid components engaged in performing complex processing on high
volumes of data.

For the second architectural category, we mention multi-agent and peer-to-peer
systems. Entities (agents or peers) have equal capabilities and develop symmetric
relations. In multi-agent systems, both the event processing and business processing
are distributed to agents that can be specialized to different functionalities and inter-
act to perform the specific tasks that correspond to their roles. By definition, agents
react to events that correspond to environment changes. So, agents are reactive, but
they are also proactive, autonomous, adaptive, communicative, and mobile. Con-
sequently, multi-agent systems are attractive for many applications in which these
characteristics are important. Peer-to-peer systems can also base their collabora-
tion, processing and content distribution activities on the event paradigm. They are
very large scale systems capable of self-organizing in the presence of failures and
fluctuations in the population of nodes. They have the advantage that ad hoc admin-
istration and maintenance are distributed among the users, which reduces the cost
of collaboration, communication, and processing.

In the sequel, the discussion is focused on the architectures of intelligent event-
driven distributed systems including service-oriented, Web-based, Grid, multi-agent,
and P2P systems. It aims at analyzing research issues related to the development of
these systems, and to the integration of intelligent and reasoning techniques in dis-
tributed platforms. The impact of these techniques on the efficiency, scalability and
reliability of stand-alone and business integrated platforms is also presented.

3.3 Event-Driven SOA

The event-driven SOA architecture is an extension of the SOA architecture with
event processing capabilities. Services are entities that encapsulate business func-
tionalities, offered via described interfaces that are published, discovered and used
by clients [57]. Complex distributed systems are built as collections of loosely
coupled, technologically neutral, and location independent services that belong
to middleware and application levels. Traditionally, enterprise distributed system
components interact by sending invocations to other components and receiving re-
sponses. Complex interactions are controlled by orchestration (centralized coordi-
nation of services) and choreography (distributed collaboration among services that
are aware of the business process). Events introduce a different interaction model in
which event channels allow consumers to subscribe for specific events, and receive
them when such events are published by producers. This mechanism is adopted in
open standards (e.g. CORBA), and in products or platforms (such as .NET, web-
sphere Business Events, Oracle CEP application server, and others) with the aim
of simplifying the design of complex interactions and supporting interoperability.

22 V. Cristea et al.

Services can be event producers and consumers, but can also act as re-usable com-
ponents for event processing, such as Rule service, Decision service, Invocation
service, and Notification service (see Figure 2).

Fig. 2 Services of the event-driven SOA

The Enterprise Service Bus (ESB) architecture defines facilities for business
events handling and complex event processing, along with message routing, trans-
port protocol conversion, and message splitting / aggregation to support powerful,
flexible, and real-time component interaction. ESB accommodates business rules,
policy driven behavior (particularly at the service level), and advanced features such
as pattern recognition. ESB has a hierarchical structure determined by horizontal
causality of events that are produced and consumed by entities residing in the same
architectural layer [23].

The ESB Core Engine is responsible for event processing and uses the Trans-
formation, message Routing, and Exception Management modules depicted in Fig-
ure 3. Routing and addressing services provide location transparency by controlling
service addressing and naming, and supporting several messaging paradigms (e.g.
request / response or publish / subscribe).

The growing needs of the modern business environment have resulted in new
standards, products and platforms. New emerging technologies are used in Event-
Driven Business Process Management (EDBPM) as an enrichment of BPM with
new concepts of Event Driven Architecture (EDA), Software as Service, Business
Activity Monitoring, and Complex Event Processing (CEP). New standards for EDA
have been defined or are under development by OASIS and OMG:

• Enterprise Collaboration Architecture is a model driven architecture approach for
specifying Enterprise Distributed Object Computing systems; it supports event
driven systems;

Distributed Architectures for Event-Based Systems 23

Fig. 3 ESB Components

• Common Alerting Protocol is a data interchange standard for alerting and event
notification applications;

• WS-Notification is a family of three specifications (WS-BaseNotification, WS-
BrokeredNotification, and WS-Topics) that define a Web services approach to
notification using a topic-based publish/subscribe pattern;

• Notification / JMS Interworking refer to event message mapping, event and
message filtering, automatic federation between a Notification Service channel
concept and topic/queue concepts;

• Production Rules Representation relates to support for specifying Event - Condi-
tion - Action rule sets;

• Document Object Model Level 2 and 3 Events Specification refers to the reg-
istration of event handlers, describes event flows, and provides basic contextual
information for events.

Specific products and platforms have been developed based on these standards.
The Oracle Event-Driven Architecture Suite with Oracle Fusion Middleware prod-
ucts allow customers to sense, identify, analyze and respond to business events in
real-time. Oracle R©EDA is compliant with SOA 2.0, the next-generation of SOA
that defines how events and services are linked together to deliver a truly flexible
and responsive IT infrastructure [38]. Event-driven workload automation, added in
IBM R©Tivoli Workload Scheduler 8.4, performs on-demand workload automation
and plan-based job scheduling [29]. This defines rules that can trigger on-demand
workload automation.

24 V. Cristea et al.

Web services add to SOA their own set of event related standards, WS-Eventing
[28] and WS-Addressing [7], targeting the implementation of event driven service-
oriented ubiquitous computing systems. WS-Addressing offers endpoint descrip-
tions of service partners for synchronous and asynchronous communication.
WS-Eventing defines messaging protocols for supporting the publish/subscribe
mechanism between web service applications. Event notifications are delivered via
SOAP, and the content of the notifications can be described without restrictions for
a specific application.

Much research is directed towards increasing the Web’s (and Web applications’)
reactivity, which means disseminating information about data updates. This can be
realized with events that are combined, transmitted, detected, and used by different
Web servers. Events could be as simple as posting new discounts for flights that
should be notified to interested customers or complex combinations of events that
could happen in a more complex Web-based service. One solution to cope with the
complexity and scale of the Web environment is the use of event-driven declarative
approaches and languages. XChange [44] is a language and an associated runtime
environment that supports the detection of complex events on the web and the sep-
aration between two data categories, namely persistent data (XML or HTML docu-
ments) and volatile data (event data communicated between XChange programs).

Fig. 4 RIA client architecture

Events can increase the reactivity of Rich Internet Applications (RIAs). These
are the Web-based counterparts of many applications that are available on desk-
tops. Clearly, to compete with local desktop environments, they have very high QoS
requirements concerning the client - server interactivity. To respond to these require-
ments, RIAs adopt the fat client model, which implements in the browser the user

Distributed Architectures for Event-Based Systems 25

interface, and uses an asynchronous client-server interaction with reduced waiting
times on both client and server.

Adding the capabilities of event processing and declarative rule execution on the
client side leads to intelligent RIA (IRIA) that benefits from increased reactivity,
greater adaptability to complicated requirements, and higher scalability. The sys-
tem’s architecture (Figure 4) presented in [49] supports the event-condition-action
(ECA) paradigm by including a complex event detector, condition evaluator, rule en-
gine, together with adapters for the event sources and the rule language. A rule is im-
plemented as an object in JSON, which contains the triple (event, condition, action).
The event expression uses the operators defined in Snoop [14]. The condition part
introduces restrictions on the set of composite events that are permitted by the event
expression. It uses filters and joins similar to production systems. The action part
includes one or more JavaScript code blocks. The system accepts events from local
sources (resulting from user-browser interaction, Document Object Model events,
and temporal events) and events coming from the network via servers (a stream of
stock market events provided by a Comet server, and events resulting from polling
RSS feeds). Incoming events are forwarded to the complex event detector, which
uses an event detection graph. When a composite event is detected, the associated
condition is evaluated. A Rete network [22] is used as the matching algorithm to
find patterns in a set of objects contained in the Working memory. If a match for
the condition is found, the action is triggered. The action may be the execution of
JavaScript code, the triggering of a new event or the modification of the working
memory used by the condition evaluator. The system has been tested and has shown
that the use of declarative event patterns is able to process continuous event streams
and makes RIAs more reactive and adaptive. Future work is needed to formalize the
JSON ECA rule language. Also, the efficiency of using the active rules on the client
side requires further experimentation in a larger application spectrum.

Event-driven SOA has moved into the sphere of ubiquitous computing. The first
step in this direction was the integration of Web services in small devices and wire-
less network by the definition of a Universal Plug and Play (UPnP) architecture for
direct device interconnections in home and office networks [42]. The second step
was the addition of event-driven capabilities, which give support for context-based
applications by using the sensing services offered by a multitude of ambient device
types (sensors, mobile phones, PDAs, medical instruments, and so forth). Clearly,
the highly heterogeneous devices handle various sets of data that are carried in the
event parameters. The use of WS-Eventing for event notification in embedded ser-
vices is shown in Figure 5 [30]. ECA rules are expressed in WS-ECA, an XML-
based ECA rule description language for web service-enabled devices. Several event
types are accepted: time, service, external, and internal. They can be combined in
complex events with disjunction, conjunction, sequence, and negation operators.
The condition is implemented by an XPath expression. The action part is a con-
junction or disjunction of several primitive or composite actions. Primitive actions
can be a service invocation, the creation and publishing of an external event or the
creation of an internal event and triggering other rules on the same device. WS-ECA

26 V. Cristea et al.

suffers of possible static or dynamic conflicts (several rules triggered by an event
may execute conflicting service actions). Some solutions for conflict detection and
resolution have been proposed [34].

Fig. 5 The use of WS-ECA rules for embedded systems

When event processing is human-centered, the event description technique and
the architecture supporting it must be carefully tailored to include context informa-
tion in a readable form. In the architecture proposed in [31], a statement description,
named Five W’s and one H, includes context information which indicates: the device
that created the statement (Who); the place in which the statement is valid (Where);
the time or period in which the statement is valid (When); the name of the data,
such as ’temperature’ (What); the value domain of the data, for example the set of
natural numbers (How); and the identifier of the previous statement on which the
current statement causally depends. A primitive event is a sequence of one or more
statements in which specific conditions are satisfied.

A composite event expression uses disjunction, conjunction, serialization, and
negation operators. The framework architecture (Figure 6) includes the ubiquitous
centralized server u-Server that receives reports from, and transmits commands to,
several access points, APs, that connect to service nodes. Reports and commands
are transmitted as statements. The event detector in the u-Server transmits detected
events to a Context analyzer (the context is represented by statements received be-
fore the time of the event) which triggers the active rules. The Rule manager gener-
ates commands for the control part of the service nodes.

The statement descriptions can be mapped to the event-condition-action (ECA)
model and can be integrated with WS-Eventing and WS-ECA event technologies
for the implementation of event-driven SOA-based context-aware distributed plat-
forms. While being focused on statement-driven event descriptions, this work opens

Distributed Architectures for Event-Based Systems 27

Fig. 6 Event processing framework architecture

new directions for further research towards an easier adaptation of the u-Server to
dynamic changes of the context by adopting intelligent approaches in the u-Server
functionality.

3.4 Event-Driven Collaboration

Events can be used also in Computer Supported Cooperative Work (CSCW) and
Collaborative Working Environment (CWE), which have evolved from simple forms
of groupware to more recent Virtual Organizations (VOs) used in both scientific
and enterprise environments. A VO is composed of people from different organiza-
tions, working together on a common project, and sharing resources for this purpose.
The collaboration between VO members can be supported by specific tools, which
implement collaboration models adapted to the specific features of distributed sys-
tems, such as forums, chats, shared whiteboards, negotiation support, group building
tools, and so forth. Such collaborations are routine and can take place according to
well established patterns, which are recurring segments of collaboration that can
be captured, encapsulated as distinct components, and used as solutions for further
collaboration problems. Examples of such patterns could be “Team organization”,
“Project plan development”, “Collaborative task execution”, “Report elaboration”,
“Final result analysis” and others. Each pattern can be characterized by some trig-
gering event (for example a specific time or the completion of a specific set of tasks),
by the use of specific collaboration tools (forums, chats, videoconferences, shared
repositories, and so forth), and by the nature and order of activities (one time, repeti-
tive, scheduled, ad-hoc, and so forth). For example, when organizing a project team,
the project leader might publish the number and skills of people needed, and then
candidates make offers. The leader could interview the candidates, make a selec-
tion, notify selected people, and have a meeting with them. During the meeting, the
leader could find out that some of the selected people are not available for the entire
duration of the project. To replace them, the leader can restart the process from the
selection activity.

28 V. Cristea et al.

Some collaborative activities are dynamic and cannot be captured in fixed pre-
defined patterns. Instead, abstract high level patterns can be dynamically adapted to
the continuous changes of the context they are used in by services that exploit col-
laboration knowledge bases and intercommunicate by events [55]. A Recommender
service can provide the actions to be executed and the collaboration tools to be used.
Awareness services process the events and give information about the collaboration
work. Using the monitored events, Analytics services offer statistics about past and
present collaborations. The collaboration patterns must be described in terms of the
collaboration problems solved, the context they work in, the precondition and post
condition of their use, the triggering event, and other relevant features.

The system architecture is presented in Figure 7. The Event and Service Bus
links the event sensors to the Complex Event Processing Engine. Simple events are
accepted by the Event Reasoner, which detects complex events using information
from its Pattern Base. When a pattern is detected, the Event Reasoner notifies the
Rule Engine. This engine uses facts about the collaboration, from the Collaboration
Knowledge, and retrieves the collaboration pattern whose preconditions and triggers
match these facts. Usually, collaboration patterns are combined in workflows and
are mixed with user actions. Based on monitoring the collaboration, the system can
make changes to the current collaboration pattern or recommend another pattern to
replace it.

Fig. 7 Collaborative system architecture

The main contribution of this architecture [55] is the use of collaborative pat-
terns in conjunction with knowledge-based event-driven architectures for coping
with challenging problems of dynamic Virtual Organizations. Future experiments
carried out on platforms that implement the above presented concepts will help to

Distributed Architectures for Event-Based Systems 29

determine the viability of the approach. Also, the development of an ontology [45]
that will provide different levels of abstraction of collaboration patterns could have
an impact on pattern integration in collaborative platforms. Another issue is the ex-
ploitation of the knowledge accumulated in knowledge bases for synthesizing new
high performance collaboration patterns.

3.5 Event-Driven Grids

Event Processing in Policy Oriented Data Grids. Event processing is useful in
Data Grids, which allow users to access and process large amounts of diverse
data (files, databases, video streams, sensor streams, and so forth) stored in dis-
tributed repositories. Data Grids include services and infrastructure made available
to user applications for executing different operations such as data discovery, access,
transfer, analysis, visualization, transformation, and others. Several specific features
influence the Data Grid architecture: users and resources are grouped in Virtual Or-
ganizations, large collections of data must be shared by VO members, access to data
can be restricted, a unified namespace is used to identify each piece of data, differ-
ent meanings can be associated with the same data set due to the use of different
metadata schemas, and others. In order to support data sharing, protection, and fault
tolerance, several services are offered for concurrency, data replication, placement
and backup, resource management, scheduling of processing tasks, user authenti-
cation and authorization and so on. In addition, data consumers and data providers
can specify requirements and constraints on data access and use. The contextual in-
formation about data, users, resources, and services is stored in persistent databases
and is used in management activities related to the data life cycle.

In the Integrated Rule-Oriented Data System, iRODS [46], a Data Grid complex
operation is an event that triggers a sequence of actions and other events. An event
has a name and is represented as an extended ECA-style rule:

A : −C|M1, . . . ,Mn|R1, . . . ,Rn,

in which A is the triggering event, C is the condition for activating the rule, Mi is an
action (named a micro-service) or a “sub”-rule, and Ri is a recovery micro-service.

More than one rule can be defined for an event, in which case the rules are tried
in a priority order. If the condition evaluation (based on the context) is successful,
the sequence of actions is executed atomically. Subsequently, if the execution of an
action fails, the recovery micro-services are executed to roll back the effect of the
performed actions, and another rule is considered for activation.

These extended ECA rules give more flexibility to the system. Even if the set
of rules that applies in a user’s session is fixed, different users and groups can use
different rules. In addition, users and administrators are permitted to define rules and
publish them for use by other users or administrators. The conditions, which are part
of the rules, adapt rule execution to the context. The following example, reproduced
from [46], explains the role of contextual information for a rule that refers to an
ingestion event for uploading a data set into the iRODS data grid:

30 V. Cristea et al.

(a) OnIngest :- userGroup == astro
| findResource, storeFile, regInIcat, replFile
| nop, removeFile, rollback, unReplicate.

(b) OnIngest :- userGroup == seismic && size > 1GB
| findTapeResource, storeFile, regInIcat, seisEv1
| nop, removeFile, rollback.

(c) OnIngest :- userGroup == seismic && size <= 1GB
| findTinyResource, storeFile, regInIcat, seisEv2
| nop, removeFile, rollback.

The format respects the rule structure previously described and includes the event
and condition (on the first line), the action (the second line), and the recovery ser-
vices (the third line). In the three rules, the context is represented by the “user group”
and by the “size” of the data set being processed.

Fig. 8 iRODS architecture

The iRODS architecture is shown in Figure 8. When a user invokes a service, a
rule is fired that activates micro-services. To do this, the rule engine uses informa-
tion from the rule base and Current State. The micro-services can run in parallel
or at different times and can intercommunicate by using a Messaging Server. They
check the conditions and execute operations on data resources (for example copying
a file) or on the MetaData Base. The modifications of the MetaData Base are persis-
tent and can be viewed by other services and by other subsequently executed rules.
Micro-services can also intercommunicate by means of a white-board that keeps the
local context information. Micro-services can have side-effects outside the iRODS
system. For example, the creation of a file can be such a side-effect. Sending an
e-mail is another example. The two mentioned operations behave differently with
respect to recovery: while a created file can be destroyed, a sent mail cannot be
cancelled although a separate mail could be sent to ask the receiver to discard it.

Distributed Architectures for Event-Based Systems 31

While the intelligent event-driven paradigm can be found in other works related
to processing high data volumes [51], iRODS is, to our knowledge, the first at-
tempt to use this paradigm in a Data Grid. The rule-based event processing engine
has been successfully integrated with the Data Grid at San Diego Supercomputer
Center (SDSC), and it is expected that further experiments will help to improve its
performance and adding new features to the platform.

Grid Event Driven Monitoring. The Global Grid Forum elaborated a Grid
Monitoring Architecture (GMA) model [5] as a reference to encourage monitoring
systems implementations in Grid environments. GMA has several components: a
producer, which implements at least one Application Programming Interface (API)
for providing events; a consumer that uses an implementation of at least one con-
sumer API; a registry (or lookup service). After discovering each other through
the registry, producers and consumers communicate directly. GMA defines several
types of interactions between producers and consumers: publish/subscribe, notifica-
tion, and query/response. It also defines a republisher and a schema repository. The
republisher implements producer and consumer interfaces for filtering, aggregating,
summarizing, broadcasting, and caching, which correspond to the reactive and pro-
cessing component of composite event driven models. The schema repository holds
the event schema, as a collection of defined event types. A system that supports an
extensible event schema must have an interface for dynamic and controlled addition,
modification and removal of event types.

A relevant implementation of this model is MonALISA [35], a system able to
monitor and control large-scale distributed systems. MonALISA is designed as an
ensemble of autonomous self-describing agent-based dynamic services. These ser-
vices are able to collaborate and cooperate in performing a wide range of distributed
event detection, filtering and processing. The system’s architecture is based on four
layers of services, closely coupled with the GMA model and the abstract model
of composite event-driven systems. The first layer is the lookup services network,
which provides dynamic registration and discovery for all other services and agents.
The second layer represents the event producers. They provide the execution en-
gine that accommodates many monitoring modules, event detectors and a variety of
loosely coupled agents that analyze the collected information in real-time. Dynam-
ically loadable agents and filters are able to process the events locally and commu-
nicate with other services or agents in order to perform global optimization tasks
according to some sets of specified rules. The use of dynamic remote event sub-
scription allows a service to register an interest in a selected set of event types, even
in the absence of a notification provider at registration time. Proxy services make
up the third layer of the MonALISA framework (Figure 9). They provide intelligent
multiplexing of the events requested by the clients or other services and are used for
reliable communication among agents. Higher-level services and clients (the event
consumers) access the detected events using the proxy layer and thus can obtain real-
time or historical data by using a predicate mechanism for requesting or subscribing
to selected events and for imposing additional conditions or constraints for inter-
esting events. Once subscribed, consumers receive a stream of relevant events that

32 V. Cristea et al.

are stored and processed. The high level services allow filtering of these events and
implement a custom aggregation mechanism to support complex composite events
and present global views.

Fig. 9 MonALISA architecture

MonALISA further supports the reactive component of the abstract model, using
the detected and processed events to improve the monitored system. The automated
management framework implemented within MonALISA represents the first step
toward the automation of decisions that can be made based on the monitored events.
Actions can be performed at two key points: locally, close to the event producers
(in the MonALISA service) where simple actions can be executed; and globally, in
a central event consumer (client) where the logic for triggering the actions can be
more sophisticated, as it can depend on several flows of events. Hence, the central
consumer is equipped with several decision-making agents that help in operating
complex systems: restarting remote services when they do not pass functional tests,
sending alerts when automatic restart procedures do not fix problems, managing the
DNS-based load balancing of the central machines, automatically executing stan-
dard applications when CPU resources are idle, and supporting scheduling decisions
based on real-time events.

3.6 P2P Systems

Peer-to-peer (P2P) systems consist of interconnected nodes that have similar func-
tions and execute similar tasks. Peers directly share resources such as content, CPU

Distributed Architectures for Event-Based Systems 33

cycles, storage and bandwidth, without requiring the support of a global centralized
server. Instead, they cooperate by means of events that take the form of messages
exchanged between peers. P2P systems are capable of adapting to failures and dy-
namic populations of nodes while maintaining acceptable performance. P2P sys-
tems are used to support application services for communication and collaboration,
distributed computation, content distribution, and so forth, and middleware services
like routing and location, anonymity, and privacy.

While resource sharing is based on direct communication between peers, lookup
and locating the peer to communicate with are supported by different mechanisms,
which use an overlay network that connects all peers and supports the exchange of
events between peers. The overlay is built on top of a physical computer network
such as the Internet but has a different topology. Also, the mechanisms depend on
the category of P2P network. In unstructured networks, the placement of resources
is not related to the overlay topology. By contrast, structured networks map keys that
reflect resource characteristics (or content) to node addresses where the resource is
located [3].

In unstructured P2P networks, a flooding mechanism is used for event transmis-
sion. Each event is transmitted by a peer to all neighboring peers in the overlay. Each
receiving peer processes the event (for example, discards the event if it is not inter-
ested in it or stores it for further tracking). If the event is addressed to the receiving
peer, the event detector processes it, decides on the rule to be executed, and performs
the corresponding actions. If the event should be made known to other peers then
the current peer forwards it to its neighbors in the overlay network. This approach
is used in Gnutella [60] and other similar P2P systems. Routes can be computed
by a central event dispatcher (ED). Peers are autonomous computational units that
interact with other peers by explicitly producing and consuming events. An event is
generated by a peer and sent to the ED, which computes the route that includes all
subscriber nodes. The event then traverses this predetermined path. Since the solu-
tion is based on a central ED node, is not scalable and does not tolerate faults [20].

Better approaches are offered by structured P2P networks, consisting of transmit-
ting an event only to those neighbors situated on the path towards its subscribers.
Traffic reduction is particularly important when events need to be transmitted to
a small number of subscriber peers. One solution is to arrange the subscribers into
logical clusters such that the event routing is performed by a small number of nodes.

When an event is produced by node A (see Figure 10), it is transmitted to one
node in the cluster of subscriber peers (peer B in the figure), which in turn transmits
it further to other subscribers (nodes C and D in the figure).

A publish-subscribe architecture based on node clustering (see Figure 11) could
include two layers. One is concerned with the management of subscription groups;
the other deals with routing events within the network. Subscription groups are
formed based on the events’ content (the content-based model) or the category they
should belong to (the topic-based model). In each node, an Event Handler trans-
mits events, publishes them and notifies subscribers. A Subscription Lookup &

34 V. Cristea et al.

Fig. 10 The topology of the event-driven overlay network systems

Partition Merging component uses a catalogue to map event topics to node addresses
for transmitting events. A Subscription Handler performs the node clustering men-
tioned earlier. The Multicast component connects the event clustering logic to the
P2P network overlay underneath.

Fig. 11 A general node architecture

Scribe [11] implements this publish/subscribe architecture for managing sub-
scription groups and the multicast communication necessary to send an event to its
subscribers. It is constructed on top of Pastry, a P2P location and routing platform

Distributed Architectures for Event-Based Systems 35

that achieves peer clustering based on the similarity of 128-bit keys used as node
identifiers. The routing is performed by always sending an event message to the
neighbor identified by a key being numerically closest to the key of the destination
subscriber. In Scribe each subscription group has a unique groupID. The node with
the ID numerically closest to the groupID acts as the rendezvous point for the associ-
ated group. Each node having an interest in receiving a particular flow of events joins
a corresponding group. Each event is routed to the rendezvous node, which further
sends it in the form of a multicast message to all members of that group. A similar
approach is used in Bayeux [61]. These systems suffer from high cost of maintain-
ing the publish/subscribe groups. Also, each group is accessed through one ren-
dezvous node, which is a communication bottleneck and a single-point-of-failure.
TERA [6] avoids this disadvantage by introducing several Access Point Lookup
components per group, which are able to receive and route events to the appropriate
subscribers.

In mobile environments, producers must be able to send events even to sub-
scribers that are permanently on the move. A notification service has to store all
events while subscribers are offline. Once a peer is reachable again, large amounts of
data associated with the saved events have to be delivered to it. The peer would have
to process them locally in order to extract relevant information [50]. However, in
some mobile environments, such as Intelligent Transportation Systems, peers have
only a few seconds of connectivity and very limited bandwidth [59]. This may lead
to loss of high priority events, such as safety-critical driver warnings, with effects
on the system’s effectiveness and efficiency. Solutions have been proposed such as
using a combination of Distributed Hash Tables (DHTs) with Aspect-oriented Space
Containers [33]. The Space Container is a storage and retrieval component for struc-
tured, spatial-temporal distributed data. Aspects are components with customizable
application logic executed either before or after the operation on the Space Con-
tainer for event processing. Aspects are executed on the peer where the Space Con-
tainer is located and can be triggered by operations on the Space Container. A peer
(e.g. a vehicle) subscribes for events by deploying a Space Container, installing
an Aspect, and publishing it in the DHT network. The Aspect registers itself as a
subscriber and, independently of the connectivity mode of the original subscriber,
receives events, processes them and stores the results in the Space Container for the
use of the original peer.

Most of the available P2P systems are research prototypes, which concentrate on
scalability and reliability rather than on durability in P2P environments. Durability
refers to the capability to correctly send the events to all subscribers, even if nodes
or links in the underlying communication layer fail. In these P2P systems, some
nodes may be involved in subscription groups receiving many events, while others
may rarely receive any event. So, load balancing of subscriber groups among all
peers in the network is also an issue. The separation of the communication layer
from the subscription management layer presents another problem: in these systems
events are sent to nodes that are not necessarily interested in receiving them.

36 V. Cristea et al.

3.7 Agent Systems

Software agents react in response to other agents and to environment changes, and
can act independently (are autonomic). In addition, agents initiate actions that affect
the environment (are pro-active), are flexible (able to learn) and cooperate with other
agents in multi-agent systems. Some agents are mobile (can migrate from one place
to another). Agent architectures are distributed, robust, and fault tolerant.

Fig. 12 Event-driven Agent architecture

These characteristics make agents suitable for distributed system middleware,
more specifically for parallel execution of tasks, event monitoring, load balancing,
trust evaluation, intrusion detection, routing, and other tasks that benefit from the
combination of agent distribution and intelligent techniques to obtain optimal solu-
tions.

This section presents relevant architectural features of agents and multi-agent
platforms in relation to their role in event-driven distributed systems. The general
event-driven agent architecture is presented in Figure 12. The main components
are the event processor (EP), a rule base (RB), and a knowledge base (KB). The
occurrence of an event is detected by the event processor and is stored in the knowl-
edge base, which then activates a specific rule or set of rules from the rule base.
The actions that correspond to the activated business rules are then executed. Com-
plex control functions or computations result from cooperation among agents in the
multi-agent system.

Distributed Architectures for Event-Based Systems 37

In reactive agent architectures, the event processor includes modules that are
also typically found in other distributed architectures: The adapter transforms mes-
sages, coming from the environment or other agents, to the format required by the
event processor. The pattern matcher receives events from the adapter, combines
them and detects complex events with the help of a pattern repository. To ease this
process, the subscriber inspects the pattern repository, determines the set of interest-
ing possible future events, and subscribes for them. Other features might be present
in specific contexts, for example those related to exception patterns [16]. An ex-
ception pattern Eex for E is obtained by complementing E and eliminating events
that cannot happen or are not relevant for the complemented pattern. Thus, Eex rep-
resents all the conditions that make E not happen. The agent must include internal
policies that are triggered when exceptions are detected. Pattern matching is per-
formed by residuating all event patterns found in the pattern repository with the
event that has occurred. For example, for the event pattern E = a ·b ·c (meaning that
event a must be followed by b and then by c), the residual with a is E/a = b · c,
which is the pattern left to be satisfied after the occurrence of the event a.

Intelligent pro-active agents have additional capabilities for interpreting percep-
tions, drawing inferences, taking decisions, planning actions, and scheduling their
execution. They act upon the environment to fulfill the goal for which they were
designed. This goal-oriented reasoning allows the agent to commit to the course of
action that best accomplishes its task. Intelligent agents have additional capabilities
such as supporting contradictory rules, learning, social abilities, natural language
processing capabilities and others.

In multi-agent architectures, capabilities are distributed, giving rise to different
agent types. The authors of [32] present a design in which three primary types
of intelligent agents are used: reasoning, learning and evolving agents. Reasoning
agents have the ability to make inferences by following a chain of predefined rules,
and can be proactive in their behavior. Learning agents are capable of following a
set of rules, and also improving their responses by learning from their experience
(for example, by dynamically weighting their decisions). Evolving agents improve
their behavior with each successive generation. Agents can play other roles too in
event-driven architectures [25]. For example, event processing agents [36, 37] act as
event detectors, while routing agents are used to construct different types of event
channels [24].

Learning is at the base of agent adaptation as response to unexpected events or
to dynamic environments. For example, multi-agent systems should adapt to agent
failures. They should also support events that occur randomly, events with fluctu-
ating priorities (importance), the inclusion of new information sources and agents,
and so forth. The architecture of CyberARIES [48] has an agent part, and a dis-
tribution layer. The distribution layer manages the event flows between agents and
determines which agents should assist other agents during perception. Agents re-
ceive continuous flows of images from one or more camera, filter images and select
motion events. They use a motion detection algorithm to acquire a model of the en-
vironment. The first step is the construction of a background model from successive
frames, using an Auto Regressive filter. In addition, the motion detection algorithm

38 V. Cristea et al.

classifies moving objects either as people (single or in groups), vehicles or unknown
objects. The agents act together as a neural network, permanently adapting the clas-
sification algorithm based on their previous experience. The final result can be con-
figured dynamically, for example calling a service if a person is noticed or adjusting
the movement trajectory based on obstacles noticed. Improvements have been added
to this work in [41] who include a surveillance system composed of mobile path-
planning robots. The system, called CyberScout, produces a timely interpretation of
the environment using feedback from perception processes.

Cooperation abilities (mentioned previously) of agents are important in many
other systems, such as those for tracking moving targets. In a sensor-based agent
infrastructure for tracking [52], each sensor, which is fixed at a specific physical
location, collaborates with neighboring sensors to triangulate their measurements
and obtain an accurate estimate of the position and velocity of the mobile targets
passing through their coverage area. As more targets appear in the area, the sensors
need to decide which ones to track and when to track them, always being aware
of the status and usage of sensor resources. Since accurate target tracking requires
triangulation, an agent that finds a potential target must contact other agents to ask
for their help. AI methods are used to optimize the selection of objects to track
and also of the neighbors to help triangulating positions while minimizing resource
consumption.

Scalability is an important requirement for interactive intelligent multi-agent
systems. In EVA (Evolutionary Virtual Agent) conversational system, a virtual as-
sistant, also called a conversational creature [2], undertakes a dialogue in natural
language. EVA has a 3D face with real-time animations and is able to support nat-
ural language interactions. EVA’s goals are very ambitious: to correctly answer the
user’s questions in minimal time, avoid some inappropriate questions, achieve tasks
that the user seems interested in, and build a user profile. The cognitive part of
EVA consists of a natural language processing module, a reasoning module, and a
learning module. The reasoning module is a multi-agent system with a pro-active
architecture based on a combination of an active layer and a reactive layer. The ac-
tive layer includes a plan agent (which creates sequences of actions for achieving a
goal) and a strategy agent (which adapts the layer’s behavior to the environment). To
ensure pro-activeness, the active layer reconfigures the priorities of the agents in the
reactive layer when specific events occur. The decisions are based on measuring the
values of some parameters that characterize the environment. For learning, a classi-
fier system is introduced to express agent behaviors and activate specific procedures
accordingly.

Integrating the event-driven component with the business part of the system
can be a challenge especially when both parts have high performance requirements.
This is the case, for example, in a virtual reality environment for training or com-
puter games, in which AI and Virtual Reality techniques are used to simulate the
real world inhabited by autonomous intelligent entities [8]. The system incorporates
capabilities for simulating intelligent autonomous entities and, at the same time,
for responding to high performance demands of visualizing the virtual world. In a
high performance implementation, each agent can have its own computer to run on

Distributed Architectures for Event-Based Systems 39

independently of the visualization module. This is made possible due to a frame-
work that includes three modules: a FIPA compliant multi-agent platform that acts
as middleware, a multi-agent system (MAS) that runs on top of the multi-agent
platform, and a visualization module. MAS uses two classes of agents: inhabitant
agents simulate beings in the virtual environment and execute actions that change
the state of the virtual world; and a simulation controller maintains consistency and
synchronization between the inhabitant agents and the virtual world.

The simulation controller has a 3-layer architecture. The simulation layer con-
tains the world’s knowledge base that maintains the data representing the virtual
world state, and the simulator’s logic manager module that controls the simulation.
The reactive layer contains the sensory responder module that captures events from
the environment, performs agents’ actions, modifies the world’s knowledge base and
sends the changes to other agents involved; it also has a second component which
sends information to several graphic viewers that are connected to the simulation.
The social layer supports interaction with other agents.

Inhabitant agents have also a 3-layer architecture. The physical environment layer
connects to the virtual world through sensors (that capture events in the virtual
world) and effectors (that send actions to the simulation controller). The cognitive
layer has a memory module (knowledge base), a decision module (with a reactive
sub-module for immediate reactions and a deliberative sub-module for better solu-
tions based on the use of the knowledge base), and a perform module with a list of
tasks, a scheduler and a dispatcher. The social layer supports interaction with other
agents.

Since many results presented previously refer to pilot implementations of event-
driven distributed systems, further work is needed to reinforce the results obtained
so far. Important research issues include: ensuring platform independence of event-
based multi-agent systems, supporting high scalability, resolving issues related to
uncertain environments by new facilities for trust estimation, increasing reliabil-
ity, confidence support, resistance to security attacks, and others. More efforts are
needed in understanding the role of agent mobility and self-replication for ensur-
ing multi-agent systems resistance to external attacks. Also, improved collaborative
methods leading to better perception of environment changes are needed.

4 Conclusions and Future Work

This chapter focuses on distributed intelligent event processing in Web, Grid, P2P,
and agent-based systems. Previous work and research for solving scalability, in-
teroperability, and fault tolerance problems are discussed, with emphasis on those
solutions that ensure high reactivity and adaptability to environment changes, pro-
active and autonomous behavior, learning and social abilities. For each major topic
the impact, strengths, weaknesses, and possible improvements are presented.

Adopting event processing in distributed systems is supported by specific mod-
els such as the ECA rules paradigm. The capacity to describe the composition
and derivation of complex events supports reasoning over event relationships and

40 V. Cristea et al.

distribution of the event detection functionality. In addition, the declarative nature
of the rules facilitates adaptation to new and evolving situations.

Event-driven capabilities have been added to distributed systems by extensions
to traditional architectures. The extension of SOA has benefited from the publish /
subscribe mechanism included in the original SOA model. In addition, the SOA ori-
entation towards open standards has stimulated the development of standards related
to events and event services, as well.

The Web has been extended by adding event processing capabilities to servers
and clients (browsers) with the aim of making them more responsive to dynamic
changes of Web resources (data) and increasing interactivity in user dialogues. Web
monitoring services allow users to express their interests and respond by sending
alerts or executing other activities. For example, Google Alerts sends users email
notifications of events related to their interests.

Event driven capabilities are used in collaborative VOs to help users cooperate
for achieving common tasks, or for Grid performance optimization. P2P networks
have adopted new models for distributed event transmission and routing, and for
event detection that exploit the collaboration of nodes with similar capabilities. Last
but not least, multi-agent systems have innate capabilities (pro-activeness, learning,
social abilities, and so forth) that make them suitable for perceiving and processing
environment events.

Event-based distributed systems are an active research field with many contrib-
utors. New ideas have been recently proposed and tested, which show the feasi-
bility of solutions based on the new concepts. Nevertheless, these proposals need
further evaluation studies to confirm their validity and performance in more signif-
icant, larger scale environments, and for a larger application spectrum. This will
require the development of specific evaluation models and metrics for event-based
distributed systems. While some results have been reported in the literature [27],
more efforts and collaboration with neutral benchmark organizations, like TPC and
SPECS, will be needed.

Clearly, testing and evaluation are just two steps of the complex software and
system development process for event-driven distributed systems. An important
trend will be moving the interest from the development of individual pilot systems
to methodologies, software engineering methods, models, and frameworks for the
whole software process, which includes requirements specification, design, imple-
mentation, deployment, maintenance, policy statement, and system administration.
Techniques and methods to develop high performance distributed event detectors
and rule-based systems are important subjects for future research. Also, since the
design patterns approach has been successfully used in different domains, it is ex-
pected that more effort will be directed towards understanding and formalizing the
architectural features of the event-driven distributed systems developed so far, and
deriving design patterns for different application domains.

Further work on event formalization is also needed, including formal specifica-
tion and verification of models used in complex event processing. Research and
development in several other directions could also be of interest. One is related
to information produced by heterogeneous sources. In order to combine them for

Distributed Architectures for Event-Based Systems 41

deriving meaningful complex events, context information (metadata) might be
added to better understand the semantics of events and also of the event sources.
Context information is also needed in adaptive pervasive systems in which event
and context semantics play an important role for the discovery and composition of
services. More work is needed in the development of event, context, and service on-
tologies. Also, future research will be focused on classifying events and developing
discriminant functions for event classes. Developing new methods for exploiting
knowledge bases and learning processes could help in improved event detection
and replace the human intervention that is used in some systems. Another issue
is related to enhancing the event life cycle model with new approaches for event
replication, logging, disregarding, consumption, and others to develop a common
consistent framework for the operational semantics of event-driven systems [27].

Since wireless and mobile event-driven systems are expected to cover large-area
applications, issues related to high variations of connectivity and unreliable data
communication will be an important research subject. New policies, event seman-
tics, state synchronization methods on reconnection, late event delivery, security,
and others will have to be considered in the design of event-driven systems based
on wireless and low capability devices.

Another topic of interest, which goes beyond the borders of event-based systems,
will be security such as privacy and protection of producers and consumers. These
issues are augmented by the use of profiling techniques for enhancing the perfor-
mance and precision of event processing engines, and of portable devices used in
tracking services. More research will be focused on techniques and methods for en-
suring anonymity and for controlling access to sensitive information. Also, more
work will be required in finding solutions for reducing the vulnerabilities due to the
distribution of system components over large geographic areas, the broadcast com-
munication, and the reduced capabilities of low-end equipment used frequently as
event producers or consumers.

References

1. Allen, J., Gerguson, G.: Action and Events in Interval Temporal Logic. Journal of Logic
and Computation 4(5), 31–79 (1994)

2. Ameur, R., Heudin, J.-C.: Interactive Intelligent Agent Architecture. In: Proceedings of
the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology (WI-IATW 2006), pp. 331–334. IEEE Computer Society, Washington
(2006)

3. Androutsellis-Theotokis, S., Spinellis, D.: A Survey of Peer-to-Peer Content Distribution
Technologies. ACM Computing Surveys 36(4), 335–371 (2004)

4. Anicic, D., Fodor, P., Stojanovic, N., Stühmer, R.: Computing complex events in an
event-driven and logic-based approach. In: Proceedings of the Third ACM international
Conference on Distributed Event-Based Systems (DEBS 2009), Nashville, Tennessee,
USA, pp. 1–2 (2009)

42 V. Cristea et al.

5. Aydt, R., Smith, W., Swany, M., Taylor, V., Tierney, B., Wolski, R.: A Grid Monitoring
Architecture. GWDPerf-16-3, Global Grid Forum (2001),
http://wwwdidc.lbl.gov/GGF-PERF/GMA-WG/papers/
GWD-GP-16-3.pdf (retrieved on February 02, 2010)

6. Baldoni, R., Beraldi, R., Quema, V., Querzoni, L., Tucci Piergiovanni, S.: A Scalable
p2p Architecture for Topic-Based Event Dissemination. Technical report, Universita di
Roma “La Sapienza” (2007)

7. Bank, D.: Web Services Eventing, W3C Member Submission (2006), http://
www.w3.org/Submission/WS-Eventing (retrieved February 26, 2010)

8. Barella, A., Carrascosa, C., Botti, V.: Agent Architectures for Intelligent Virtual En-
vironments. In: 2007 IEEE/WIC/ACM International Conference on Intelligent Agent
Technology (IAT 2007), pp. 532–535 (November 2007)

9. Barga, R.S., Goldstein, J., Ali, M., Hong, M.: Consistent Streaming Through Time: A Vi-
sion for Event Stream Processing. In: Proc. of the 3rd Biennial Conference on Innovative
Data Systems Research (CIDR), Asilomar, California, USA, pp. 363–374 (2007)

10. Blanco, R., Wang, J., Alencar, P.: A metamodel for distributed event based systems. In:
Proceedings of the Second international Conference on Distributed Event-Based Systems
(DEBS 2008), vol. 332, pp. 221–232. ACM, New York (2008)

11. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: SCRIBE: A large-scale and
decentralized application-level multicast infrastructure. IEEE JSAC 20(8), 1489–1499
(2002)

12. Chakravarthy, S., Adaikkalavan, R.: Provenance and Impact of Complex Event Process-
ing (CEP): A Retrospective View. In: Buchmann, A., Koldehofe, B. (eds.) Special Issue
of IT - Complex Event Processing, vol. 51(5), pp. 243–249. Oldenbourg Publications
(September 2009)

13. Chakravarthy, S., Adaikkalavan, R.: Ubiquitous Nature of Event-Driven Approaches: A
Retrospective View (Position Paper). In: Proceedings of the Dagstuhl Seminar 07191
(2007), http://drops.dagstuhl.de/volltexte/2007/1150/pdf/
07191.ChakravarthySharma.Paper.1150.pdf (retreived January 10, 2010)

14. Chakravarthy, S., Mishra, D.: Snoop: An expressive event specification language for ac-
tive databases. Data Knowledge Engineering 14(1), 1–26 (1994)

15. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.-K.: Composite Events for Active
Databases: Semantics, Contexts and Detection. In: Proceedings of the 20th International
Conference on Very Large Data Bases, pp. 606–617. Morgan Kaufmann Publishers Inc.,
San Francisco (1994)

16. Chakravarty, P., Singh, M.P.: An event-driven approach for agent-based business process
enactment. In: Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), Article No.: 214, Honolulu, Hawaii, pp.
1261–1263 (May 2007)

17. Chandrasekaran, S., Franklin, M.: Streaming queries over streaming data. In: Proc. of
the 28th Int. Conference on Very Large Data Bases (VLDB 2002), pp. 203–214 (2002)

18. Cheng, S., Jih, W., Hsu, J.Y.: Context-aware Policy Matching in Event-driven Architec-
ture. In: AAAI 2005 Workshop: Contexts and Ontologies: Theory, Practice and Applica-
tions, Pittsburgh, Pennsylvania, USA, pp. 140–141 (2005)

19. Cilia, M., Antollini, M., Bornovd, C., Buchman, A.: Dealing with heterogeneous data
in pub/sub systems: The Concept-Based approach. In: International Workshop on Dis-
tributed Event-Based Systems (DEBS 2004), Edinburgh, Scotland (2004),
http://www.dvs.tu-darmstadt.de/publications/pdf/
Concept-based04.pdf (retrieved 10 January, 2010)

http://wwwdidc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-3.pdf
http://wwwdidc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-3.pdf
http://www.w3.org/Submission/WS-Eventing
http://www.w3.org/Submission/WS-Eventing
http://drops.dagstuhl.de/volltexte/2007/1150/pdf/07191.ChakravarthySharma.Paper.1150.pdf
http://drops.dagstuhl.de/volltexte/2007/1150/pdf/07191.ChakravarthySharma.Paper.1150.pdf
http://www.dvs.tu-darmstadt.de/publications/pdf/Concept-based04.pdf
http://www.dvs.tu-darmstadt.de/publications/pdf/Concept-based04.pdf

Distributed Architectures for Event-Based Systems 43

20. Cugola, G., Di Nitto, E., Fuggetta, A.: The jedi event-based infrastructure and its appli-
cation to the development of the OPSS WFMS. IEEE Trans. Softw. Eng. 27(9), 827–850
(2001)

21. Dasgupta, S., Bhat, S., Lee, Y.: Event Semantics for Service Composition in Pervasive
Computing. In: Intelligent Event processing - AAAI Spring Symposium 2009, pp. 27–
37. AAAI Press, Menlo Park (2009)

22. Doorenbos, R.B.: Production Matching for Large Learning Systems, PhD Thesis (1995),
http://reports-archive.adm.cs.cmu.edu/anon/1995/
CMU-CS-95-113.pdf (retrieved March 11, 2010)

23. Ermagan, V., Krüger, I.H., Menarini, M.: Aspect-oriented modeling approach to define
routing in enterprise service bus architectures. In: Proceedings of the 2008 International
Workshop on Models in Software Engineering (MiSE 2008), Leipzig, Germany, pp. 15–
20 (2008)

24. Etzion, O.: Event Cloud. Encyclopedia of Database Systems, 1034–1035 (2009)
25. Fortino, G., Garro, A., Mascillaro, S., Russo, W.: Using event-driven lightweight DSC-

based agents for MAS modelling. International Journal on Agent Oriented Software En-
gineering (IJAOSE) 4(2), 113–140 (2010)

26. Hinze, A., Michel, Y., Schlieder, T.: Approximative filtering of XML documents in a
publish/subscribe system. In: 29th Australasian Computer Science Conference, ACSC
2006, pp. 177–185 (2006)

27. Hinze, A., Sachs, K., Buchmann, A.: Event-Based Applications and Enabling Technolo-
gies. In: Proc. of the 3rd ACM International Conference on Distributed Event-Based
Systems (DEBS 2009), Nashville, TN, USA (2009), Session Keynote papers, Article
No.: 1. http://delivery.acm.org/10.1145/1620000/1619260/
a1-buchmann.pdf?key1=1619260&key2=9544530821
&coll=GUIDE&dl=GUIDE&CFID=98611992&CFTOKEN=93216417 (retrieved
January 15, 2010)

28. Huang, Y., Gannon, D.: A Comparative Study of Web Services-based Event Notifica-
tion Specifications. In: Proceedings of the 2006 international Conference Workshops on
Parallel Processing (ICPPW), pp. 7–14. IEEE Computer Society, Washington (2006)

29. IBM. IBM Tivoli Workload Scheduler Version 8.2: New Features and Best Practices.
IBM Press (2004)

30. Jung, J., Park, J., Han, S., Lee, K.: An ECA-based framework for decentralized coordi-
nation of ubiquitous web services. Inf. Softw. Technol. 49(11-12), 1141–1161 (2007)

31. Jung, J.-Y., Hong, Y.-S., Kim, T.-W., Park, J.: Human-Centered Event Description for
Ubiquitous Service Computing. In: Proc. of International Conference on Multimedia
and Ubiquitous Engineering, International Conference on Multimedia and Ubiquitous
Engineering (MUE 2007), Seoul, Korea, pp. 1153–1157 (2007)

32. Khalifa, Y.M.A., Okoene, E., Al-Mourad, M.B.: Autonomous Intelligent Agent-Based
Tracking Systems, Recent Developments. ICGST-ACSE Journal 7(1), 21–31 (May
2007)

33. Kühn, E., Mordinyi, R., Keszthelyi, L., Schreiber, C., Bessler, S., Tomic, S.: Aspect-
Oriented Space Containers for Efficient Publish/Subscribe Scenarios in Intelligent Trans-
portation Systems. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS,
vol. 5870, pp. 432–448. Springer, Heidelberg (2009)

34. Lee, W.-s., Lee, S.-y., Lee, K.-c.: Conflict Detection and Resolution method in WS-ECA
framework. In: Proc. of The 9th International Conference on Advanced Communication
Technology, vol. 1, pp. 786–791 (2007)

http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
http://delivery.acm.org/10.1145/1620000/1619260/a1-buchmann.pdf?key1=1619260\&key2=9544530821\&coll=GUIDE\&dl=GUIDE\&CFID=98611992\&CFTOKEN=93216417
http://delivery.acm.org/10.1145/1620000/1619260/a1-buchmann.pdf?key1=1619260\&key2=9544530821\&coll=GUIDE\&dl=GUIDE\&CFID=98611992\&CFTOKEN=93216417
http://delivery.acm.org/10.1145/1620000/1619260/a1-buchmann.pdf?key1=1619260\&key2=9544530821\&coll=GUIDE\&dl=GUIDE\&CFID=98611992\&CFTOKEN=93216417

44 V. Cristea et al.

35. Legrand, I.C., Cirstoiu, C., Grigoras, C., Betev, L., Costan, A.: Monitoring, account-
ing and automated decision support for the alice experiment based on the MonALISA
framework. In: Proceedings of the 2007 Workshop on Grid Monitoring (GMW 2007),
Monterey, California, USA, pp. 39–44 (2007)

36. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems, May 18. Addison-Wesley Professional, Reading (2002)

37. Luckham, D., Schulte, R. (eds.): Event Processing Glossary - Version 1.1, Event Process-
ing Technical Society (July 2008), http://www.ep-ts.com/ (retrieved January 10,
2010)

38. Memon, A., Xie, Q.: Using Transient/Persistent Errors to Develop Automated Test Ora-
cles for Event-Driven Software. In: Proceedings of the 19th IEEE international Confer-
ence on Automated Software Engineering. ASE, pp. 186–195. IEEE Computer Society,
Washington (2004)

39. Michelson, B.M.: Event-Driven Architecture Overview. Patricia Seybold Group /
Business-Driven ArchitectureSM, February 2, pp. 1–8 (2006),
http://soa.omg.org/Uploaded%20Docs/EDA/bda2-2-06cc.pdf (Re-
trieved January 10, 2010)

40. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer, Heidelberg
(2006)

41. Oliver, C.S.: Autonomous Mission Planning for a Distributed Surveillance System. Mas-
ter Thesis: Department of Electrical and Computer Engineering. Carnegie Mellon Uni-
versity, USA (2000)

42. OMA. OMA Web Services Enabler (OWSER): Overview. OMA-AD-OWSER
Overview-V1 1-20060328-A (2006),
http://www.openmobilealliance.org/releaseprogram/
owserv11.html (retrieved March 20, 2010)

43. Paschke, A.: Design Patterns for Complex Event Processing. In: Proceedings of the
2nd International Conference on Distributed Event-Based Systems (DEBS 2008), Rome,
Italy (2008), http://arxiv.org/ftp/arxiv/papers/0806/
0806.1100.pdf (retrieved Januaruy 15, 2010)

44. Pătrânjan, P.L.: The Language XChange: A Declarative Approach to Reactivity on the
Web. PhD thesis. University of Munich, Germany (September 2005)

45. Pattberg, J., Fluegge, M.: Towards an ontology of collaboration patterns. Lecture
Notes in Informatics, vol. 120 (2007), pp. 85–96 (2009), http://subs.emis.de/
LNI/Proceedings/Proceedings120/gi-proc-120-007.pdf (retrieved
February 1, 2010)

46. Rajasekar, A., Moore, R., Wan, M.: Event Processing in Policy Oriented Data Grids. In:
Proc. of Intelligent Event Processing AAAI Spring Symposium, Stanford, California,
USA, pp. 61–66 (2009)

47. Rosenblum, D., Wolf, A.: A design framework for internet-scale event observation and
notification. ACM SIGSOFT Software Engineering Notes 22(6), 344–360 (1997)

48. Saptharishi, M., Bhat, K., Diehl, C., Oliver, C., Savvides, M., Soto, A., Dolan, J.,
Khosla, P.: Recent Advances in Distributed Collaborative Surveillance. In: Proceedings
of SPIE’s 14 Annual Conference on Aerospace-Defense Sensing, Simulation and Con-
trols, AeroSense, Orlando, USA, pp. 129–208 (2000)

49. Schmidt, K.-U., Stühmer, R., Stojanovic, L.: Gaining Reactivity for Rich Internet Appli-
cations by Introducing Client-side Complex Event Processing and Declarative Rules. In:
Proc. of the Intelligent Event Processing - AAAI Spring Symposium, pp. 67–72. Stan-
ford University, USA (2009)

http://www.ep-ts.com/
http://soa.omg.org/Uploaded%20Docs/EDA/bda2-2-06cc.pdf
http://www.openmobilealliance.org/releaseprogram/owserv11.html
http://www.openmobilealliance.org/releaseprogram/owserv11.html
http://arxiv.org/ftp/arxiv/papers/0806/0806.1100.pdf
http://arxiv.org/ftp/arxiv/papers/0806/0806.1100.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings120/gi-proc-120-007.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings120/gi-proc-120-007.pdf

Distributed Architectures for Event-Based Systems 45

50. Schwiderski-Grosche, S., Moody, K.: The SpaTeC composite event language for spatio-
temporal reasoning in mobile systems. In: Proceedings of the Third ACM international
Conference on Distributed Event-Based Systems (DEBS 2009), Nashville, Tennessee,
USA, pp. 1–12 (2009)

51. Seufert, A., Schiefer, J.: Enhanced Business Intelligence - Supporting Business Processes
with Real-Time Business Analytics. In: Proceedings of the 16th International Workshop
on Database and Expert Systems Applications (DEXA 2005), pp. 919–925 (2005)

52. Soh, L., Tsatsoulis, C.: Reflective Negotiating Agents for Real-Time Multisensor Target
Tracking. International Journal Conference on Artificial Intelligence, 1121–1127 (2001)

53. Tanenbaum, A.S., van Steen, M.: Distributed Systems. Principles and paradigms, 2nd
edn. Prentice-Hall, Englewood Cliffs (2007)

54. Turchin, Y., Gal, A., Wasserkrug, S.: Tuning complex event processing rules using the
prediction-correction paradigm. In: Proceedings of the Third ACM international Con-
ference on Distributed Event-Based Systems (DEBS 2009), Nashville, Tennessee, USA,
pp. 1–12 (2009)

55. Verginadis, Y., Apostolou, D., Papageorgiou, N., Mentzas, G.: Collaboration Patterns in
event-driven environments for Virtual Organizations. In: Intelligent Event Processing -
AAAI Spring Symposium 2009, Atlanta, US, pp. 92–97 (2009)

56. Vijayakumar, N., Plale, B.: Missing Event Prediction in Sensor Data Streams Using
Kalman Filters. In: Ganguly, A.R., Gama, J., Omitaomu, O.A., Gaber, M.M., Vatsavai,
R.R. (eds.) Knowledge Discovery From Sensor Data, pp. 149–170. CRC Press, Boca
Raton (2009)

57. von Ammon, R., Emmersberger, C., Ertlmaier, T., Etzion, O., Paulus, T., Springer, F.: Ex-
isting and future standards for event-driven business process management. In: Gokhale,
A., Schmidt, D.C. (eds.) Proceedings of the Third ACM International Conference on
Distributed Event-Based Systems 2009, pp. 1–5. ACM, New York (2009)

58. Xhafa, F., Paniagua, C., Barolli, L., Caballé, S.: A Parallel Grid-based Implementation
for Real Time Processing of Event Log Data in Collaborative Applications. Int. J. Web
and Grid Services, IJWGS 6(2) (2010) (in press)

59. Zaera, M.: Wave-based communication in vehicle to infrastructure real-time safety-
related traffic telematics. Master’s thesis, Telecommunication Engineering. University
of Zaragoza (August 2008)

60. Zhao, S., Stutzbach, D., Rejaie, R.: Characterizing files in the modern Gnutella network:
A measurement study. In: Proc. Multi-media Computing and Networking Conf., San
Jose, CA, USA, pp. 267–280 (2006)

61. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.D.: Bayeux: an ar-
chitecture for scalable and fault-tolerant wide-area data dissemination. In: Proc. of the
11th International Workshop on. Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV 2001), Danfords on the Sound, Port Jefferson, New York,
USA, pp. 11–20 (2001)

	Distributed Architectures for Event-Based Systems
	Introduction and Motivation
	Background
	Event-Driven Distributed System Architectures
	Complex Events Detection
	Classes of Event-Driven Distributed Architectures
	Event-Driven SOA
	Event-Driven Collaboration
	Event-Driven Grids
	P2P Systems
	Agent Systems

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

