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Abstract. Events are the main input of event-based systems. Some events are gen-
erated externally and flow across distributed systems, while other events and their
content need to be inferred by the event-based system itself. Such inference has a
clear trade-off between inferring events with certainty, using full and complete in-
formation, and the need to provide a quick notification of newly revealed events.
Timely event inference is therefore hampered by the gap between the actual occur-
rences of events, to which the system must respond, and the ability of event-based
systems to accurately infer these events. This gap results in uncertainty and may
be attributed to unreliable data sources (e.g., an inaccurate sensor reading), unreli-
able networks (e.g., packet drop at routers), the use of fuzzy terminology in reports
(e.g., normal temperature) or the inability to determine with certainty whether a
phenomenon has occurred (e.g., declaring an epidemic). In this chapter we present
the state-of-the-art in event processing over uncertain data. We provide a classifica-
tion of uncertainty in event-based systems, define a model for event processing over
uncertain data, and propose algorithmic solutions for handling uncertainty. We also
define, for demonstration purposes, a simple pattern language that supports uncer-
tainty and detail open issues and challenges in this research area.

1 Introduction

This chapter covers a topic of increasing interest in the event processing research
and practice communities. Event processing typically refers to an approach to soft-
ware systems that is based on event delivery, and that includes specific logic to filter,
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transform, or detect patterns in events as they occur. A first generation of event pro-
cessing platforms is diversified into products with various approaches towards event
processing, including the stream oriented approach, such as: StreamSQL Event-
Flow (StreamBase),[30] CCL (Sybase),[31] Oracle CEP (Oracle),[24] and Stream
Processing Language (IBM) [29]; the rule oriented approach that is implemented in
products such as: AutoPilot M6 (Nastel),[4] Reakt (ruleCore),[28] TIBCO Busines-
sEvents (TIBCO),[33] and Websphere Business Events (IBM) [38]); the imperative
approach is implemented in products such as Apama (Progress Software) [3] and
Netcool Impact Policy Language (IBM) [23]; and, finally, the publish-subscribe
approach that is part of Rendezvous (TIBCO),[32] Websphere Message Queue
(IBM),[39] and RTI Data Distribution System (RTI).[27] As a common denomi-
nator, all of these approaches assume that all relevant events are consumed by the
event processing system, all events reported to the system have occurred, and pro-
cessing of event processing systems can be done in a deterministic fashion. These
assumptions hold in many of the applications first generation platforms support.

Moving to the second generation of event processing platforms, one of the re-
quired characteristics is the extension of the range of applications that employ event
processing platforms beyond the early adopters. Some of the target applications de-
viate from the basic assumptions underlying the first generation of event processing
platforms in both functional and non-functional aspects. In this chapter we focus
on a specific functional aspect, the ability to deal with inexact reasoning [11]. We
motivate this requirement with two examples.

Example 1. An increasing number of event processing systems are based on Twitter
feeds as raw events, by using either structured Twitter feeds, or using tags, e.g., a
bus notiyfing Twitter every time it arrives at a station;1 automated trading decision
applications, based on analysis of Tweets about traded companies,2 etc.. One cannot
assume that the collection of events sent to Twitter is complete. Furthermore, one
cannot assume it is accurate, as some tweets may be of rumor types, some may
contain inaccurate information, and some are even sent by malicious sources. Yet,
in the highly competitive world of trading, Twitter events are considered to be a
good source of information, given that the processing can take into account all these
possible inaccuracies.

Example 2. A service provider is interested in detecting the frustration of a val-
ued customer in order to mitigate the risk of the customer deserting. In some cases
there is an explicit event where a customer calls and loudly expresses dissatisfac-
tion, however in most cases this is inferred from detecting some patterns over the
event history. Assume that practice (or applying some machine learning techniques)
concluded that if a customer approaches the customer service center three times
within a single day about the same topic, this customer is frustrated. The fact that
the customer is frustrated is the business situation that the service provider wants

1 http://twitter.com/hursleyminibus
2 http://www.wallstreetandtech.com/data-management/

showArticle.jhtml?articleID=218101018
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to identify, while the pattern detected on the customer interaction event is only an
approximation of this situation.

In the absence of support for inexact reasoning, applications as those described
above may suffer, either directly or indirectly, from incorrect situation detection.
Using current technology, there are four different ways to support such situations of
uncertainty. First, situations of uncertainty can simply be ignored. Such a solution
may be cost-effective if situations of uncertainty are relatively infrequent, and the
damage of not handling them is not substantial. For example, in network manage-
ment systems problem indications such as device time-out may be lost, but such
events are not critical since they are issued on a recurring basis.

A second solution for handling uncertainty requires situations to be created only
when the event pattern is a necessary and sufficient condition to detect the situa-
tion in a deterministic way. This is the case in many current systems. According
to a third solution, the system is designed so that some detected situations require
reinforcement from multiple indications. For example, in a fraud detection system,
often a fraud suspicion requires reinforcement from multiple patterns, and possibly
within the context of a customer’s history. This is useful when false positives should
be minimized, and it comes at the cost of false negatives.

Finally, it is possible to notify the result of each situation detection to a human
observer that needs to decide whether an action should be taken. Again, this method
is aimed at minimizing false positives.

The applications motivating a second generation of event processing platforms
include applications in which false positives and false negatives may be relatively
frequent, and the damage inflicted by these cases may be substantial, sometimes
critical. For example, a stock value of a company may collapse if automated trading
decisions are based on false rumors. While the motivation exists, the handling of
inexactness in event processing in general is still a challenge in the current state-of-
the-art and in this chapter we explore quantitative methods to manage inexactness.

The rest of the chapter is structured in the following way: Section 2 provides
basic terminology to be used in this chapter; Section 3 provides a taxonomy of
uncertainty cases and the handling of uncertain events is discussed in Section 4;
Section 5 discusses the handling of uncertain situations and Section 6 describes an
algorithm for uncertain derivation of events; We conclude with research challenges
in Section 7.

2 Preliminaries

In this section we provide some basic concepts in event processing (Section 2.1)
and uncertainty handling (Section 2.2). Throughout this chapter we shall use the
following two examples for demonstration.

Example 3. A thermometer generates an event whenever the temperature rises above
37.5◦C. However, the thermometer is known to be accurate to within ±0.2◦C.
Therefore, when the temperature measured by the thermometer is 37.6◦C, there is
some uncertainty regarding whether the event has actually occurred.
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Example 4. Consider an e-Trading Web site, where customers can buy and sell
stocks, check their portfolio and receive information regarding the current price of
any stock. We would like to identify a variety of events, including that of specula-
tive customers (illegal trading events) and customers becoming dissatisfied (CRM –
Customer Relationship Management – related events).

2.1 Event Processing

We base our description of basic concepts in event processing on the model proposed
by Etzion and Niblett [11].

An event is an occurrence within a particular system or domain; it is something
that has happened, or is contemplated as having happened in that domain. The word
event is also used to mean a programming entity that represents such an occurrence
in a computing system. We classify events as either raw or derived events. A raw
event is an event that is introduced into an event processing system by an external
event producer. A derived event is an event that is generated as a result of event
processing that takes place inside the event processing system. A derived event can
be generated either by event transformation or event pattern matching. An event
transformation transforms one or more event inputs into one or more event output
by translation, enrichment from external data source, aggregation, composition or
splitting. Example of event transformation is an aggregation that finds the average
of a temperature measurement over a one hour shifting window.

An event pattern is a template, specifying one or more combinations of events.
Given any collection of events one may be able to find one or more subsets of those
events that match a particular pattern. We say that such a subset satisfies the pattern.
An example of an event pattern is a sequence of events of type “buy stock” followed
by an event of type “sell stock.” The pattern matching process in this case creates
pairs of events of these two types that match this pattern, satisfying all matching con-
ditions (same stock, same customer, same day), defined to be the pattern matching
set. A pattern matching set can serve as a composite event, composed of all member
events in the event set, e.g., the two matched event {buy stock, sell stock}. Alterna-
tively, it can yield an event, created as some transformation of the matching set. For
example, the event can be a newly created event type, containing some information
from the payloads of both events, such as: 〈customerid, buyamount, sellamount〉.

A situation is an event occurrence that might require a reaction and is consumed
by an external event consumer. In current systems, a situation can either be a raw
event or a derived event, however, in some cases a derived event is merely an approxi-
mation of a situation. An example of a situation may be the detection of a speculative
customer, with the condition that a speculative customer is a customer that buys and
then sells the same stock on the same day, both transactions exceeding $1M.

The linkage between an event pattern and a situation might suffer from false
positive or false negative phenomena. False negative situation detection refers to
cases in which a situation occurred in reality, but the event representing this situation
was not emitted by an event processing system. In the example discussed above,
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the amount paid for a stock was recorded to be slightly less than $1M, and yet
the customer was indeed a speculative customer. In this case, the event processing
system did not detect it. False positive situation detection refers to cases in which
an event representing a situation was emitted by an event processing system, but
the situation did not occur in reality. In our example, the purchase was recorded
erroneously, and was later corrected, yet the event system declared the customer to
be speculative. Two of the main goals of an uncertainty handling mechanism for
events are a) making explicit, and b) quantifying, the knowledge gap between an
event pattern and the corresponding situation.

A variety of data can be associated with the occurrence of an event. Two examples
of such data are: The point in time at which an event occurred, and the new price of
a stock in an event describing a change in the price of a specific stock. Some data
are common to all events (e.g., their time of occurrence), while others are specific
only to some events (e.g., data describing stock prices are relevant only for stock-
related events). The data items associated with an event are termed attributes. In
what follows, e.attributeName denotes the value of a specific attribute of a specific
event e. For example, e1.occT refers to the occurrence time of event e1. In addition,
the type of event e is denoted by e ∈ type.

2.2 Uncertainty Management Mechanisms

There is a rich literature on mechanisms for uncertainty handling, including, among
others, Lower and Upper Probabilities, Dempster-Shafer Belief Functions, Possi-
bility Measures (see [17]), Fuzzy Sets and Fuzzy Logic [41]. We next present, in
more details, three common mechanisms that were applied in the context of event
processing, namely probability theory, fuzzy set theory, and possibility theory.

2.2.1 Probability Theory

The most well known and widely used framework for quantitative representation
and reasoning about uncertainty is probability theory. An intuitively appealing way
to define this probability space involves possible world semantics [13]. Using such
a definition, a probability space is a triple pred = (W,F,μ) such that:

• W is a set of possible worlds, with each possible world corresponding to a specific
set of event occurrence that is considered possible. A typical assumption is that
the real world is one of the possible worlds.

• F ⊆ 2|W | is a σ -algebra over W . σ -algebra, in general, and in particular F , is a
nonempty collection of sets of possible worlds that is closed under complemen-
tation and countable unions. These properties of σ -algebra enable the definition
of a probability space over F .

• μ : F → [0,1] is a probability measure over F .

We call the above representation of the probability space the possible world repre-
sentation. One problem with possible worlds semantics is performance. Performing
operations on possible worlds can lead to an exponential growth of alternatives. In
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Section 5.1 we present an alternative representation to the possible worlds seman-
tics and in Section 6 we use this alternative representation to compute efficiently
probabilities of complex events.

The most common approach for quantifying probabilities are Bayesian (or be-
lief) networks [25]. However, Bayesian networks are only adequate for represent-
ing propositional probabilistic relationships between entities. In addition, standard
Bayesian networks cannot explicitly model temporal relationships. To overcome
these limitations, several extensions to Bayesian networks have been defined, in-
cluding Dynamic Belief Networks [19] , Time Nets [18], Modifiable Temporal Be-
lief Networks [8] and Temporal Nodes Bayesian Networks [14]. Although these
extensions are more expressive than classical Bayesian networks, they nonetheless
lack the expressive power of first-order logic. In addition, some of these extensions
allow more expressive power at the expense of efficient calculation.

Another formal approach to reasoning about probabilities involves probabilistic
logics (e.g., [5] and [16]). These enable assigning probabilities to statements in first-
order logic, as well as inferring new statements based on some axiomatic system.
However, they are less suitable as mechanisms for the calculation of probabilities in
a given probability space.

A third paradigm for dealing with uncertainty using probabilities is the KBMC
(Knowledge Based Model Construction) paradigm [7]. This approach combines
the representational strength of probabilistic logics with the computational advan-
tages of Bayesian networks. In this paradigm, separate models exist for probabilis-
tic knowledge specification and probabilistic inference. Probabilistic knowledge is
represented in some knowledge model (usually a specific probabilistic logic), and
whenever an inference is carried out, an inference model would be constructed based
on this knowledge.

2.2.2 Fuzzy Set Theory

The background on fuzzy set theory is based on [41, 12, 22]. A fuzzy set M on a
universe set U is a set that specifies for each element x ∈U a degree of membership
using a membership function

μM : U → [0,1]

For example, considering Example 3, the membership function that assigns a value
to the reading of a thermometer can be represented as a bell shape over the range
[37.3◦C,37.7◦C], with higher membership value in the center (37.5◦C), slowly de-
creasing to 0 on both sides. It is worth noting that, unlike probability theory, the area
under the curve does not necessarily sum to 1.

2.2.3 Possibility Theory

Possibility theory formalizes users’ subjective uncertainty of a given state of the
world [10]. Therefore, an event “customer x is frustrated” may be associated with
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a confidence measure πfrustrated (x). Both fuzzy set and possibility theories use a
numerical measure, yet they express different uncertainties. Fuzzy set theory is more
suitable to represent vague description of an object (e.g., value of a temperature
reading) and possibility measures define the subjective confidence of the state in the
world (e.g., the occurrence of an event).

In [22], two measures were defined to describe the matching of a subscription
to a publication and can be easily adopted to event processing under uncertainty.
The possibility measure (Π ) expresses the plausability of an event occurrence. The
necessity measure (N) expresses the necessity of occurrence of an event e or, for-
mulated differently, the impossibility of the complement of e. If it is completely
possible to have occurred then possibility is Π (e) = 1. If it is impossible then the
possibility is Π (e) = 0. Intermediate numbers in [0,1] represent an intermediate
belief in event occurrence. A necessity measure is introduced to complement the
information available about the state described by the attribute. The relationship
between possibility and necessity satisfies:

N(e) = 1−Π (ē)
∀e,Π (e)≥ N(e)

where ē represents the complement of e. It is worth noting that if Π (e) is a proba-
bility distribution, then Π (e) = N(e).

2.2.4 Discussion

The literature carries heated debates about the role of fuzzy sets framework and
probabilistic methods. A probabilistic-based approach assumes that one has an in-
complete knowledge on the portion of the real world being modeled. However, this
knowledge can be encoded as probabilities about events. The fuzzy approach, on the
other hand, aims at modeling the intrinsic imprecision of features of the modeled re-
ality. Therefore, the amount of knowledge at the user’s disposal is of little concern.
In addition to philosophical reasoning, the debate also relates to pragmatics. Proba-
bilistic reasoning typically relies on event independence assumptions, making cor-
related events harder to assess. Results presented in [9] show a comparative study of
the capabilities of probability and fuzzy methods. This study shows that probabilis-
tic analysis is intrinsically more expressive than fuzzy sets. However, fuzzy methods
demonstrate higher computational efficiency.

3 Taxonomy of Event Uncertainty

This section provides a taxonomy of event uncertainty. Section 3.1 defines two di-
mensions to classify uncertainties as relating to events and Section 3.2 describes the
causes of event uncertainties for these dimensions.
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3.1 Dimensions of Event Uncertainty

We classify the uncertainty according to two orthogonal dimensions: Element Un-
certainty and Origin Uncertainty. The first dimension, Element Uncertainty, refers
to the fact that event-related uncertainty may involve one of two elements:

Uncertainty regarding event occurrence: Such uncertainty is associated with the
fact that although the actual event occurrence is atomic, the system does not
know whether or not this event has in fact occurred. One example of such an
event is the thermometer reading event from Example 3. Another example is
money laundering, where at any point in time, money laundering may have been
carried out by some customer. However, a Complex Event Processing (CEP) sys-
tem can probably never be certain whether money laundering actually took place.

Uncertainty regarding event attributes: Even in cases in which the event is known
to have occurred, there may be uncertainty associated with its attributes. For
example, while it may be known that an event has occurred, its time of occurrence
may not be precisely known. As another example, an event may be associated
with a fuzzy domain, stating that a temperature is mild, in which case there is
uncertainty regarding the exact temperature.

The second dimension, Origin Uncertainty, pertains to the fact that in a CEP system,
there may be two types of events, raw events, signalled by event sources, and derived
events, which are inferred based on other events. In the following, events which
serve as the basis for the inference of other events will be termed evidence events, be
they raw or derived events. Therefore, there are two possible origins for uncertainty:

Uncertainty originating at the event source: For raw events, there may be uncer-
tainty associated either with the event occurrence itself, or the event’s attributes,
due to a feature of the event source. Example 3, in which uncertainty regarding an
event occurrence is caused by the limited measuring accuracy of a thermometer,
illustrates such a case.

Uncertainty resulting from event inference: Derived events are based on other
events and uncertainty can propagate to the derived events. This is demonstrated
by Example 2, in which uncertainty regarding measures of frustration of a cus-
tomer propagates to the uncertainty of a customer deserting event.

Two additional examples are given next. In Example 5, the uncertainty of an event
originates from the source, but is limited to its attributes, rather than to its occur-
rence. Example 6 shows uncertainty regarding an event’s attributes resulting from
event inference.

Example 5. Consider a case in which an event is generated whenever the tempera-
ture reading changes. Assume that the thermometer under discussion has the same
accuracy as the one defined in Example 3. Furthermore, assume that the new tem-
perature is an attribute of this event. In this case, there is no uncertainty regard-
ing the actual occurrence. There is only uncertainty regarding this new temperature
attribute.
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Table 1 Uncertainty classification

Origin: Event Source Origin: Event Inference
Uncertainty Unreliable Source
Regarding Imprecise Source Propagation of Uncertainty

Event Problematic Communication Medium Uncertain Rules
Occurrence Estimates

Unreliable Source
Uncertainty Imprecise Source Propagation of Uncertainty
Regarding Problematic Communication Medium

Event Estimates
Attributes Time Synchronization in Distributed Systems

Example 6. Consider a case in which an event e3 should be inferred whenever an
event e2 occurs after an event of type e1. Assume that the inferred event e3 has an
attribute a3

1 whose value is the sum of the value of the attribute a1
1 of event e1 and the

value of the attribute a2
1 of event e2. Now assume that both e1 and e2 are known to

have occurred with certainty, but there is uncertainty regarding the value of attribute
a1

1. In this case there is uncertainty only regarding the value of attribute a3
1, and this

uncertainty results from event inference.

The above examples demonstrate that the two dimensions are indeed orthogonal.
Therefore, uncertainty associated with events could be mapped into one of four
quadrants, as shown in Table 1. In addition, due to the orthogonality of these di-
mensions, we define four types of event uncertainty: Uncertainty regarding event
occurrence originating at an event source, uncertainty regarding event occur-
rence resulting from inference, uncertainty regarding event attributes originating
at an event source, and uncertainty regarding event attributes resulting from event
inference.

3.2 Causes of Event Uncertainty

This section describes, at a high level, the various causes of event uncertainty, ac-
cording to the dimensions defined in Section 3.1. Table 1 summarizes the causes of
uncertainty.

3.2.1 Causes of Uncertainty Originating at the Source

Uncertainty regarding event occurrence originating at an event source is caused by
one of the following:

An unreliable source: An event source may malfunction and indicate that an event
has occurred even if it has not. Similarly, the event source may fail to signal the
occurrence of an event which has, in fact, occurred.
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An imprecise event source: An event source may operate correctly, but still fail to
signal the occurrence of events due to limited precision (or may signal events that
did not occur). This is illustrated by Example 3.

Problematic communication medium: Even if the event source has full precision,
and operates correctly 100% of the time, the communication medium between
the source and the active system may drop indications of an event’s occurrence,
or generate indications of events that did not occur.

Uncertainty due to estimates: In some cases, the event itself may be a result of a
statistical estimate. For example, it may be beneficial to generate an event when-
ever a network Denial of Service (DoS) event occurs, where the occurrence of
such a DoS event is generated based on some mathematical model. However, the
reasoner that deduce the event occurrence may produce a false positive type of
error and hence this event also has uncertainty associated with it.

Uncertainty regarding the attributes originating at the event source can also be
caused by any of the above reasons. An unreliable or imprecise source may be unre-
liable or imprecise regarding just the attribute values. Similarly, the communication
medium may garble just the values of attributes, rather than messing with event oc-
currence. Finally, estimates or fuzzy values may also result in uncertainty regarding
event attributes.

In distributed systems, there exists an additional cause for uncertainty regarding
the special attribute capturing the occurrence time of the event. This is due to the fact
that in distributed systems, the clocks of various nodes are usually only guaranteed
to be synchronized to within some interval of a global system clock [21]. Therefore,
there is uncertainty regarding the occurrence time of events as measured according
to this global system clock.

It is worth noting that in both of the above cases, uncertainty regarding a specific
event may be caused by a combination of factors. For example, it is possible that
both the event source itself and the communication medium simultaneously corrupt
information sent regarding the same event.

3.2.2 Causes of Inferred Uncertainty

Uncertainty regarding event occurrence resulting from inference has the following
two possible causes:

1. Propagation of Uncertainty: A derived event can be a result of a deterministic
pattern. However, when there is uncertainty regarding the events that are used for
the derivation, there is also uncertainty regarding the derived event.

2. Uncertain Patterns: The pattern itself may be defined in an uncertain manner,
whenever an event cannot be inferred with absolute certainty based on other
events. An example of this is money laundering, where events denoting sus-
picious transactions only serve to indicate the possible occurrence of a money
laundering event. Usually, a money laundering event cannot be inferred with cer-
tainty based on such suspicious transactions.
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Note that these two causes may be combined. That is, it may happen that not only is
the inference of an event based on an uncertain pattern, but also uncertainty exists
regarding the occurrence (or attribute values) of one of the events which serve as
evidence for this inference.

Regarding uncertainty of derived event attributes, the possible causes depend
on how these attributes are calculated from the attributes of the evidence events.
The most intuitive way to calculate such derived attributes is using deterministic
functions defined over the attributes of the evidence events. In such a case, the only
cause of uncertainty in the derived attributes is the propagation of uncertainty from
the attributes of the evidence events. This is because the uncertainty regarding the
event attributes is defined to be the uncertainty regarding the attribute values given
that the event occurred. Therefore, the pattern cannot induce uncertainty regarding
the attribute values of the derived events. However, if the inference system makes
it possible to define the attribute values of the derived events in a non-deterministic
(e.g., fuzzy) manner, uncertain patterns may also be a cause of derived attribute
uncertainty.

4 Handling Uncertainty at the Source

In this section we present two models for representing uncertainty at the source.

4.1 Probability Theory-Based Representation

The model presented next provides a probability theory-based representation for
event uncertainty, based on [35]. A similar model was presented later by Balazinska
et al. in [6] for RFID data. Arguing in favor of probability theory includes following
reasons:

• Probability theory has widespread acceptance.
• Probability theory is a well-understood and powerful tool.
• Many technical results that facilitate its use have been shown formally.
• Under certain assumptions, probability is the only “rational” way to represent

uncertainty (see [17]).
• There are well-known and accepted methodologies for carrying out inferences

based on probability theory, involving structures such as Bayesian networks.
• Probability theory can be used together with utility theory (see [26]) for auto-

matic decision making. Such automatic decision making would facilitate the im-
plementation of automatic actions by complex event processing systems.

To apply probability theory to the handling of event processing in the context of
uncertainty the notion of an event has to be extended, to allow the specification of
uncertainty associated with a specific event. Also, deriving events in the context of
uncertainty needs to be defined.

We represent the information a composite event system holds about each event
instance with a data structure we term Event Instance Data (EID). EID incorporates
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all relevant data about an event, including its type, time of occurrence, etc. In event
composition systems with no uncertainty, each event can be represented by a single
tuple of values Val = 〈val1, . . . ,valn〉, one value for each attribute associated with the
event (see Section 2.1 for the introduction of event attributes). In our case, to capture
the uncertainty associated with an event instance, the EID of each event instance is
a Random Variable (RV). The possible values of EID are taken from the domain
V = {notOccurred}∪V ′, where V ′ is a set of tuples of the form 〈val1, . . . ,valn〉 .

The semantics of a value of E (encoded as an EID), representing the informa-
tion the system has about event e are as follows: The probability that the value of
E belongs to a subset S ⊆ V \ {notOccurred} is the probability that event e has oc-
curred, and that the value of its attributes is some tuple of the form 〈val1, . . . ,valn〉,
where {〈val1, . . . ,valn〉} ⊆ S. Similarly, the probability associated with the value
{notOccurred} is the probability that the event did not occur.

Example 7. Consider an event that quotes a price of $100 for a share of IBM stock
at time 10:45. Say that the system considers the following possible: The event
did not occur at all; the event occurred at time 10:34 and the price of the stock
was $105; and the event occurred at time 10:45 and the price was $100. In addi-
tion, say that the system considers the probabilities of these possibilities to be 0.3,
0.3 and 0.4, respectively. Then, the event can be represented by an RV E whose
possible values are {notOccurred},{10:34, IBM,105}, and {10:45, IBM,100}.
Also, Pr(E = {notOccurred}) and Pr{E = {10 : 34, IBM,105}} are both 0.3 and
Pr{E ∈ {{10 : 45, IBM,100},{10 : 34, IBM,105}}}= 0.7.

Example 8. In case of the thermometer related event appearing in Example 3, as-
sume the following: the conditional probability that the temperature is 37.3◦C, given
that the thermometer reads 37.5◦C, is 0.1, the probability that the temperature is
37.4◦C is 0.15, the probability that the temperature is 37.5◦C is 0.5, the probabil-
ity that the temperature is 37.6◦C is 0.15, and the probability that the temperature
is 37.7◦C is 0.1. The probability that the event did not occur is 0.3 and the prob-
ability that the event did occur is 0.7. Moreover, assume that whenever the event
does occur, the temperature is an attribute of this event. Assume that at time 5, the
thermometer registers a reading of 37.5◦C. This information would be represented
by an EID E with the following set of values: {notOccurred} - indicating that the
event did not occur, and 5 value sets of the form {5,37.X◦C} - indicating that the
event occurred at time 5 with temperature 37.X◦C, and X stands for 1,2,3,4 or 5.
Examples of probabilities defined over E are Pr(E = {notOccurred}) = 0.3 and
Pr(E = {5,37.5◦C}) = 0.5 ·0.7 = 0.35 (due to the removal of the conditioning).

The set of possible values of the EID RVs contains information regarding both the
occurrence of the event and its attributes. Therefore, this representation is sufficient
to represent the uncertainty regarding both occurrence and attributes.

An additional concept, relevant in the context of event composition systems, is
that of Event History (EH). An event history EHt2

t1 is the set of all events (of interest
to the system), as well as their associated data, whose occurrence time falls between
t1 and t2. For example, consider the following events: an event e1, at time 10:30,
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quoting the value of an IBM share as $100; event e2, at time 10:45, quoting the value
of an IBM share as $105; event e3 at time 11:00, quoting the value of an IBM share
as $103. Using the notation described above, the events e1, e2, e3 can be described by
the tuples {10:30, IBM,100}, {10:45, IBM,105}, and {11:00, IBM,103}. Examples
of event histories defined on these events are the following: EH10:45

10:30 = {e1,e2},
EH11:00

10:45 = {e2,e3}, EH10:35
10:30 = {e1} and EH11:00

10:30 = {e1,e2,e3}. It is worth noting
that there does not exist an event history that consists of both e1 and e3, and that
does not include e2.

The actual event history is not necessarily equivalent to the information regarding
the event history possessed by the system. For example, a thermometer reading of
37.5◦C is not necessarily the “true” one, as illustrated in example 8. We will there-
fore make the distinction by denoting the event history possessed by the system by
system event history.

4.2 Fuzzy Set Theory-Based Representation

In [22], a model for representing basic fuzzy events, both in subscriptions and in
publications, is given. An event will be of the form “x is Ã” where x is an attribute
of an event and Ã is a fuzzy value, associated with a membership function. For
example, following Example 8, an event of the form “temperature of sensor s is
normal” can be defined with the following membership definition of the fuzzy term
normal:

μnormal (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < 37.3◦C
0.1 if x = 37.3◦C
0.15 if x = 37.4◦C
0.5 if x = 37.5◦C
0.15 if x = 37.6◦C
0.1 if x = 37.7◦C
0 if x > 37.7◦C

It is worth highlighting the differences between the two approaches presented in
this section. The example above provides an interpretation of a fuzzy term using
a distribution of values. In Example 8, we provided an interpretation of possible
values, given an exact reading. Given the different settings, there is a room for both
representations, and investigating the best method for combining them is a topic for
future research.

5 Handling Inference Uncertainty

Inference uncertainty is handled by extending the notion of an event pattern, used
in deterministic event processing systems, to represent the uncertainty associated
with event derivation. This is described in this section, based on [35]. Although the
description uses probability theory as a basis for the extension, this framework can
be adapted to the use of fuzzy set theory or possibility theory. In the next section
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we discuss methods for precise and efficient probability computation, as well as
methods for evaluating complex fuzzy events.

In this chapter, we follow the KBMC approach, as introduced in Section 2.2:
Knowledge is represented as probabilistic patterns (see Section 5.1), while proba-
bility calculation is carried out by constructing a Bayesian network based inference
model (see Section 6).

Contemporary deterministic event processing systems use pattern matching for
situation detection. In such systems, a situation is said to have occurred if the stream
of incoming events match some pattern. At each point in time t, the existence of
relevant patterns can be checked in the event histories that are known at that time.
A pattern p is given in the form

〈
seln

p, predn
p,eventTypep,mappingExpressionsp , probp

〉

where:
seln

p is a deterministic predicate returning a subset of an event history of size less
than or equal to n (for some integer n). If the returned subset has strictly less then
n elements, no further evaluation of the pattern is carried out. A possible selection
expression is “the first two events of type stockQuote.” Therefore, for the event his-
tory e1,e2,e3, if only e1 is of type stockQuote the pattern is not triggered. However,
if both e1 and e3 are of type stockQuote, then the subset {e1,e3} is selected, and
evaluation of the pattern continues.

predn
p is a predicate of arity n over event instances (note that this is the same n

appearing in seln
p). This predicate is applied to the n event instances selected by seln

p.
An example of predn

p is “the events e1,e2,e3 have occurred in the order e1,e2,e3, all
three events are events regarding the same stock, and event e3 occurred no later than
5 minutes after event e1.”

eventTypep is the type of event inferred by this pattern. It can be, for example,
an event of type speculativeCustomer.

mappingExpressionsp is a set of functions, mapping the attribute values of the
events that triggered this pattern to the attribute values of the derived event.

probp ∈ [0,1] is the probability of inferring the derived event given that the pat-
tern has occurred. The exact semantics of this probability are defined in Section 5.1.

By definition, the predicates defined by seln
p and predn

p are deterministic, as
are the functions mappingExpressionsp. Therefore, the only uncertainty present in
the pattern is represented by the quantity probp. Indeed, many deterministic com-
posite event languages, e.g., the Situation Manager pattern Language [2] can be
viewed as defining a set of patterns P such that each pattern p ∈ P is of the form〈
seln

p, predn
p,eventTypep,mappingExpressionsp

〉
.

We assume that an event type is either explicit or inferred by a single pattern. This
is done for simplicity. If there is more than one source of information for an event
type (e.g., two patterns), the probabilities supplied by the separate sources (patterns)
must be combined to create a well-defined probability space (see Section 5.1).

We conclude this section with the definition of a specific language, instantiating
each part of the rule, including the allowable syntax and semantics of sr, pr, etc. In
this language, we have the following:

• seln
p is of the form 〈selExpression1, . . . ,selExpressionn〉, where selExpressioni

is a selection expression of the form εi ∈ eventTypei, with eventType being a
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valid event type. Given an event history, selExpressioni will select a single event,
εi. The event εi selected by selExpressioni is the first event in the event history of
type eventTypei that was not selected by a selection expression selExpression j

such that j < i.
• predn

p is a conjunctive predicate defined over the events ε1, . . . ,εn selected by
seln

p, of the form ∧m
i=1 predicatei. predicatei is either a temporal predicate, or an

equality relation between attributes. If predicatei is an equality predicate, it is
of the form εk.attributel = ε j.attributem for k = j. This specifies that the value
of attributel of event εk must be the same as attributem of event ε j. A temporal
predicate predicatei takes one of the following forms:

– a ≤ εk.occT ≤ b, where a and b are temporal constants denoting time points
in the range [0,∞]. This predicate specifies that the event has occurred within
the interval [a,b].

– ε j.occT < εk.occT for k = j. This predicate defines a partial order over subsets
of events.

– ε j.occT ≤ εk.occT ≤ ε j.occT + c for k = j, where c is a temporal constant
such that c > 0. This predicate specifies that an event has happened within a
specified interval relative to another event.

• Regarding mappingExpressionr the occurrence time of the derived event is al-
ways determined to be the point in time at which the inference was carried out.
As for other attributes, two types of functions are allowed. The first is a function,
mapping a specific attribute value of a specific event participating in patternr to
an attribute of the derived event. The second is the mapping of a constant value
to a derived attribute.

5.1 Event Inferencing Using Probability Theory

A valid probability space needs to be defined to quantify the probabilities associated
with each event derived using an uncertain pattern. Therefore, pattern reasoning fa-
cilities need to be able to compute at any point in time t the probability that an event
e, with specific data, occurred at some time t ′ ≤ t. In addition, the only evidence that
can be taken into account is that which is known to the system at time t. Therefore, a
(possibly different) probability space is defined for each t. Extending our discussion
in Section 2.2.1, the probability space at time t is a triple predt = (Wt ,Ft ,μt) such
that:

• Wt is a set of possible worlds, with each possible world corresponding to a spe-
cific event history that is considered possible at time t. An assumption that holds
in all practical applications is that the number of events in each event history, as
well as the overall number of events, is finite. This is because an actual system
cannot consider an infinite number of events in a finite time period. Therefore,
each possible world corresponds to an event history that is finite in size. In addi-
tion, we assume that the real world is one of the possible worlds.
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• Ft ⊆ 2|Wt | is a σ -algebra over Wt .
• μt : Ft → [0,1] is a probability measure over Ft .

A less intuitive, yet more computationally useful way to define the probability space
is as follows. Let E1,E2, . . . be the set of EIDs representing the information about
all events of interest. It is clear that each finite event history can be represented by
a finite number of values e1, . . . ,en, such that there exists a finite number of EIDs
E1, . . . ,En where ei is a possible value of Ei. Therefore, each possible world wt ∈Wt

can be represented by such a finite number of values. In addition, as the overall
number of events is finite, there is a finite number of events E1, . . . ,Em such that Ei

could have occurred in some wt ∈Wt . Finally, if |Wt | is finite, each Ei can only have
a finite number of associated values (one for each world in Wt ) in which it appears.
Note that in such a case, each possible wt can be represented by a finite number
of values Val1, . . . ,Valm, where the value Val1, . . . ,Valn for some n ≤ m is a set of
values, each such set representing the values of one of the n events that occurred
in wt , and Valn+1, . . .Valm are all {notOccurred}. From this it follows that if the
probability space predt represents the knowledge of the composite event system at
time t, this knowledge can be represented by a set of m EIDs - E1, . . . ,Em.

Therefore, in the case where |Wt | is finite, it is possible to define the probability
space predt as (Ωt ,Ft ,μ ′t ) where:

• Ωt = {Val1, . . . ,Valm} such that the tuple Val1, . . . ,Valm is the set of values corre-
sponding to an event history, where this event history is a possible world wt ∈Wt

as described above. Obviously, |Ωt | is finite.
• Ft = 2|Ωt |
• μ ′t ({Val1, . . . ,Valm}) = μt(wt) such that wt is the world represented by
{Val1, . . . ,Valm}

Fig. 1 Alternative probability space representation
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This representation is termed the EID representation.
Figure 1 provides an illustration of two equivalent representations of the proba-

bility space. A possible world is marked as ovals in Figure 1. The figure presents
two EIDs, one at the top and the other at the bottom. The participation of an event
with a concrete value is marked by an arrow from the specific value to the possible
worlds in which it participates. It is worth noting that the bottom event does not
participate in world W1, and therefore its value there is {notOccurred}.

As a concluding remark, note that each possible set of values of EIDs,
{Val1, . . . ,Valm} corresponds to some event history. Therefore, given an EID rep-
resentation of predt , where |Ωt | is finite, it is obviously possible to create the cor-
responding finite-size possible worlds representation by defining a possible world
wt ∈Wt for each distinct set of values {Val1, . . . ,Valm}.

We now define the semantics of patterns in the probability space discussed above.
Intuitively, in such a probability space the semantics of each pattern p are as follows:
Let EHt2

t1 be an event history. If the pattern p is applied at some time t ≥ t2, and the
set of events selected by seln

p from EHt2
t1 is of size n and is such that predn

p on this
event is true, then the event inferred by pattern p occurred with probability probp. In
addition, in such a case, the value of its corresponding attributes is the value defined
by mappingExpressionsp. Otherwise, the event cannot be inferred.

Formally, let seln
p(EHt2

t1 ) denote the set of events selected by seln
p from EHt2

t1 ,
and let predn

p(seln
p(EHt2

t1 )) denote the value of the predicate predn
p on seln

p(EHt2
t1 )

(recall that if |seln
p(EHt2

t1 )| < n then the pattern is not applied). In addition, let
val1, . . . ,valn denote the value of the attributes of the inferred event ep as defined
by mappingExpressionsp. Then, if the specific event history is known, and denot-
ing by Ep the EID corresponding to ep, we have the following:

Pr(Ep = {occurred,val1, . . . ,valn}| EHt2
t1 ) = probp i f predn

p(SELn
p(EHt2

t1 )) = true
(1)

Pr(Ep = {notOccurred}| EHt2
t1 ) = (1− probp) i f predn

p(SELn
p(EHt2

t1 )) = true
(2)

Pr(Ep = {notOccurred}| EHt2
t1 ) = 1 i f predn

p(SELn
p(EHt2

t1 )) = f alse
(3)

Recall from Section 5.1 that if |Wt | is finite, the probability space can be represented
by a finite set of random variables, each with a finite set of values. In addition, note
that the pattern semantics defined above specify that the probability of the derived
event does not depend on the entire event history, but rather on the events selected by
seln

p. Therefore, let us denote by E1, . . . ,Em the set of EIDs that describe knowledge
regarding the event history, and assume, without loss of generality that {E1, . . .El}
describe the subset of {E1, . . . ,Em} that are candidates for selection by seln

p (note
that l ≥ n, as seln

p must choose the first n events that have actually occurred).
An EID E is a candidate for selection if there is a possible event history in the
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probability space predt such that there is a set of n events which will be chosen by
seln

p from this event history, and the event e corresponding to E is in this set. Then
for all sets of values {Val1, . . . ,Valm} such that Ei = Vali, we have that

Pr(Ep|E1, . . .El) = Pr(Ep|E1, . . . ,El,El+1, ...Em) (4)

i.e., Ep is conditionally independent of {El+1, . . . ,Em} given {E1, . . .El}. Now let
Val1, . . . ,Vall denote a specific set of values of E1, . . .El . Given such a set of specific
values, the subset {e′j1 , . . . ,e′jn} selected by seln

p is well defined. Therefore, we have
from the above equations that:

Pr(Ep = {occurred,val1, . . . ,valn}|Val1, . . . ,Vall) = probp i f predn
p(e
′
j1 , . . . ,e

′
jn) = true

(5)

Pr(Ep = {notOccurred}|Val1 , . . . ,Vall) = (1− probp) i f predn
p(e
′
j1 , . . . ,e

′
jn) = true

(6)

Pr(Ep = {notOccurred}| e1, . . . ,el) = 1 i f predn
p(e
′
j1 , . . . ,e

′
jn) = f alse

(7)

Eqs. 5-7 state that the inferred event and its values are conditionally probabilisti-
cally independent of all events prior to the inference, given exact information re-
garding the events that are candidates for selection by the corresponding selection
expression.

As a concluding remark, we note that the mechanism of this section can also
be used to predict future events, i.e., at each point in time t, events occurring at any
point in time t ′ could be inferred, based on a set of probabilistic patterns described at
the beginning of the chapter. In order to enable such prediction, however, prediction
patterns should be defined that, at time t, given a set of events, infer events whose
occurrence time t ′ is such that t ′ > t.

5.2 Event Inferencing Using Fuzzy Set Theory

Recall that in Section 4.2, we have defined events of the form “x is Ã,” associated
with a membership function μA (x). Let R be a relation, describing how complex
events are evaluated. The membership function of a complex event s over a set of m
events (x1,x2, ...,xm) is defined as follows:

M (x1,x2, ...,xm) = R(μA1 (x1) ,μA2 (x2) , ...,μAm (xm))

R determines the method according to which membership values of different fuzzy
sets can be combined. For example, consider the event “temperature of sensor s is
normal” presented above, and assume another fuzzy event “day t is hot,” with the
following membership function:
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μhot (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < 20◦C
0.1 if 20◦C ≤ x < 25◦C

0.15 if 25◦C ≤ x < 30◦C
0.75 if 30◦C ≤ x

We can define a complex event “temperature of sensor s is normal and day t is hot”
with the membership function

M(x1,x2) = min(μnormal (x1) ,μhot (x2))

The min operator is the most well-known representative of a large family of oper-
ators called triangular norms (t-norms, for short), routinely deployed as interpreta-
tions of fuzzy conjunctions (see, for example, the monographs [20, 15]).

A triangular norm T : [0,1]× [0,1]→ [0,1] is a binary operator on the unit inter-
val satisfying the following axioms for all x,y,z ∈ [0,1]:

T (x,1) = x (boundary condition)

x≤ y implies T (x,z)≤ T (y,z) (monotonicity)

T (x,y) = T (y,x) (commutativity)

T (x,T (y,z)) = T (T (x,y),z) (associativity)

The following t-norm examples are typically used as interpretations of fuzzy con-
junctions:

T m(x,y) = min(x,y) (minimum t-norm)

T p(x,y) = x · y (product t-norm)

T l(x,y) = max(x + y−1,0) (Lukasiewicz t-norm)

All t-norms over the unit interval can be represented as a combination of the triplet
(T m,T p,Tl) (see [15] for a formal presentation of this statement). For example, the
Dubois-Prade family of t-norms T d p, also used often in fuzzy set theory and fuzzy
logic, is defined using T m, T p and T l as:

T d p(x,y) =
{

λ ·T p( x
λ , y

λ ) (x,y) ∈ [0,λ ]2

T m(x,y) otherwise

The average operator belongs to another large family of operators termed fuzzy
aggregate operators [20]. A fuzzy aggregate operator H : [0,1]n→ [0,1] satisfy the
following axioms for every x1, . . . ,xn ∈ [0,1]:

H(x1,x1, . . . ,x1) = x1 (idempotency) (8)

for every y1,y2, . . . ,yn ∈ [0,1] such that xi ≤ yi,

H(x1,x2, . . . ,xn)≤ H(y1,y2, . . . ,yn) (increasing monotonicity) (9)

H is a continuous function (10)
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Let x̄ = (x1, . . . ,xn) be a vector such that for all 1 ≤ i ≤ n, xi ∈ [0,1] and let
ϖ̄ = (ϖ1, ...,ϖn) be a weight vector that sums to unity. Examples of fuzzy aggregate
operators include the average operator Ha(x̄) = 1

n ∑n
1 xi and the weighted average

operator Hwa(x̄, ϖ̄) = x̄ · ϖ̄ . Clearly, average is a special case of the weighted
average operator, where ϖ1 = · · · = ϖn = 1

n . It is worth noting that T m (the min
t-norm) is also a fuzzy aggregate operator, due to its idempotency (its associative
property provides a way of defining it over any number of arguments). However,
T p and T l are not fuzzy aggregate operators.

T-norms and fuzzy aggregate operators are comparable, using the following in-
equality:

min(x1, . . . ,xn)≤ H(x1, . . . ,xn)

for all x1, . . . ,xn ∈ [0,1] and function H satisfying axioms 8-10.
T m is the only idempotent t-norm. That is, T m(x,x) = x.3 This becomes handy

when comparing t-norms with fuzzy aggregate operators. It can be easily proven
(see [15]) that

T l(x,y)≤ T p(x,y)≤ T m(x,y) (11)

for all x,y ∈ [0,1].
Following this discussion, it becomes clear that the space of possible computation

methods for the similarity of complex events is large. Additional research is required
to identify the best fuzzy operator for a given complex event.

6 Algorithms for Uncertain Inferencing

This section is devoted to the efficient inferencing in a setting of uncertainty. We
provide an example of an algorithm for uncertain inferencing of events, following
[36]. In a nutshell, the proposed algorithm works as follows: Given a set of rules and
a set of EIDs at time t, a Bayesian network is automatically constructed, correctly
representing the probability space at t according to the semantics defined in Section
5.1. Probabilities of new events are then computed using standard Bayesian network
methods.

Two important properties that must be maintained in any algorithm for event
derivation (both in the deterministic and uncertain setting), are determinism and ter-
mination [40]. Determinism ensures that for the same set of explicit EIDs, the algo-
rithm outputs the same set of derived EIDs. Termination ensures that the derivation
algorithm terminates.

An algorithm for constructing a Bayesian network in this setting should take into
account two main features. First, the Bayesian network is dynamically updated as
information about events reaches the system. This is to ensure that the constructed
network reflects, at each time point t, the probability space at t. Second, throughout
the inference process additional information beyond the Bayesian network is stored.
This additional information is used both to allow an efficient dynamic update of the
network, and to make the inference process more efficient.

3 For a binary operator f , idempotency is defined to be f (x,x) = x (similar to [20], pp. 36).
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The set of patterns is assumed to have no cycles, and a priority is assigned to each
pattern so that determinism is guaranteed. By a cycle we mean a set of complex
events that are both determined and participate in the decision making of each other.
Priority determines a unique ordering of rule activation and can be set using rule
quasi-topological ordering [1].

Recall that by definition, the occurrence time of each derived event is the time
in which the pattern was applied. Therefore, the single possible occurrence time of
each EID defines a full order on the EIDs (this single point in time for EID E is
denoted by E.occT ). In addition, according to Eq. 4, the uncertainty encoded with
each EID is independent of all preceding EIDs, given the EIDs that may be selected
by the selection expression. Therefore, a Bayesian network is constructed such that
the nodes of the network consist of the set of random variables in the system event
history, and an edge exists between EID E1 and EID E2 iff E1.occT ≤ E2.occT and
E2 is an EID corresponding to an event that may be inferred by pattern p, where the
event corresponding to E1 may be selected by seln

p. A network constructed by these
principles encodes the probabilistic independence required by Eq. 4 (see [25]). This
structure is now augmented with values based on Eq. 5-7. It is worth noting that this
construction of the Bayesian network guarantees the probabilistic independence of
EIDs. Any value dependency (e.g., similar readings of close-by sensors) needs to be
captured by pattern definition.

Based on the above principles, a Bayesian network is constructed and dynami-
cally updated as events enter the system. At each point in time, nodes and edges may
be added to the Bayesian network. The algorithm below describes this dynamic con-
struction. The information regarding the new event is represented by some EID E ,
the system event history is represented by EH, and the constructed Bayesian net-
work by BN. The algorithm follows:

1. EH← EH ∪{E}
2. Add a node for E to BN.
3. For each such pattern p in a decreasing priority order:

a. Denote by seln
p(EH) the subset of EIDs in EH that may be selected by seln

p
(these are all EIDs whose type attribute is of one of the types specified by
seln

p).
b. If there is a subset of events in seln

p(EH) that may be selected by seln
p such

that predn
p is true, add a vertex for the derived event’s EID Ep. In addition, add

edges from all events in seln
p(EH) to the event Ep.

c. For Ep, fill in the quantities for the conditional probabilities according to Eq.
5-7.

4. Calculate the required occurrence probabilities in the probability space defined
by the constructed Bayesian network.

The algorithm describes at a high level the calculation of the required probabili-
ties, omitting the details of several steps. The omitted details include the mecha-
nism for selection of events as indicated by seln

p, the evaluation of the predicates
defined by predn

p, and the exact algorithm used to infer the required probabilities
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from the Bayesian network. In all of these cases, standard algorithms from the do-
mains of deterministic event composition and Bayesian networks may be used and
extended. The specific algorithms used for these tasks will determine the complex-
ity of our algorithm. However, the dominant factor will be the calculation of the
required probabilities from the Bayesian network, which is known to be compu-
tationally expensive. Therefore, ways to speed up this step, including reduction in
network size and approximate computation, are topics that warrants future research
(see discussion in Section 7).

6.1 Inference Example

This section illustrates the above algorithm using a specific example. Assume that
in the system there exists a pattern p1 designed to recognize an illegal stock trading
operation, and which is defined as follows: seln

p1
is

〈ε1 ∈ stockSell,ε2 ∈ stockPurchase〉

predn
p1

is

(ε1.occT ≤ ε2.occT ≤ ε1.occT +5)∧ (ε1.stockTicker = ε2.stockTicker)∧ (ε1.customerID = ε2.customerID)

eventTypep1 is illegalStockTrading, and mappingExpressionp1 consists of two
functions: The first maps ε1.stockTicker to the stockTicker attribute of the inferred
event, and the second maps ε1.customerID to the customerID attribute of the in-
ferred event. Finally, probp is 0.7. The intuition underlying such a definition is that
the sale of a stock, followed closely by a purchase of the same stock, is an indication
of suspicious activity.

Consider now the following information about the possible occurrence of an
event e1 such that

e1 ∈ stockSell,e1.occT = 5,e1.stockTicker = “IBM”,e1.customerID = “C1”

In addition, the probability that this event occurred is 0.6. This information is rep-
resented in the system by an EID E1 with two possible states: {notOccurred} and
{occurred,stockSell,5, IBM,Customer1} (we will abbreviate the second state by
{occurred}. The constructed Bayesian network will consist of a single node E1

with Pr(E1 = {notOccurred}) = 0.4 and Pr(E1 = {occurred}) = 0.6.
Another information is also received regarding the possible occurrence of an ad-

ditional event

e2 ∈ stockSell,e2.occT = 9,e2.stockTicker = “IBM”,e2.customerID = “C1”

This is represented in the system by the EID E2 with two states as above, which is
added to the Bayesian network. At this stage, the Bayesian network consists of two
disconnected nodes, E1 and E2.
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Fig. 2 Inference Example, Part I

Fig. 3 Inference Example, Part II

Note that although two possible events have occurred, there is no possible world
in which two events are selected by seln

p1
, and, therefore, the pattern p1 is not recog-

nized. Now, assume that information regarding a third event e3 reaches the system,
such that

e3 ∈ stockPurchase,e3.occT = 5,e3.stockTicker = “IBM”,e3.customerID = “C1”

This is represented in the system by the EID E3. Now there is one possible world in
which there is a non-zero probability that Ep occurs - this is the world in which the
event history is e2,e3. Therefore, a node Ep is added to the network, and edges will
be added from E1, E2, E3 to Ep. This will result in the Bayesian network depicted
in Figure 2.

In addition, the event corresponding to the EID Ep occurs only if e1 did not occur,
and e2 and e3 both occurred. Therefore, according to Eq. 5-7,

Pr(Ep = {occurred}|E1 = {notOccurred},E2 = {occurred},E3 = {occurred}) = 0.7
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and
Pr(Ep = {occurred}|E1,E2,E3) = 0

for all other value combinations of E1, E2 and E3.
Finally, if we define an additional pattern p′ which states that an event has a non-

zero occurrence probability whenever ep and an additional event of type e4 occurs,
and e4 is signaled, this will result in the network depicted in Figure 3.

7 Conclusions

In this chapter we have provided the basics of uncertain event processing. We have
provided a basic model of uncertain events, demonstrated the use of probability
theory, fuzzy set theory, and possibility theory in measuring uncertainty of events
and the inferencing of such uncertainty in complex events. A specific simple event
language is presented, highlighting the role of uncertainty management in event-
based systems.

The challenges, associated with the use of uncertainty in event processing, may
be classified into three categories, namely model, usability, and implementation is-
sues, as detailed next.

In the modeling area, we have shown that probability-based models are suitable
for some cases, but for other cases, there are more suitable models such as possibility
theory or fuzzy set theory. The challenge is to construct a flexible generalized model
that can match the appropriate model for a specific implementation.

In the usability area, a major difficulty is the practicality of obtaining the required
rules and probabilities. As in many cases, it may be difficult even for domain experts
to correctly specify the various cases as well as the probabilities associate with them.
Machine learning techniques may apply for automatic generation of rules and prob-
abilities, but the state-of-the-art in this area supports mining only simple patterns;
furthermore, in some cases, the history is not a good predictor of the future. Initial
work regarding automatic derivation of such rules appears in [34].

In the implementation area, event processing systems may be required to comply
with scalability and performance requirements. Therefore, there is a need to develop
algorithmic performance improvements to the current models such as Bayesian net-
works, which are known to be computationally intensive. See [37] for some initial
steps in this direction. Possible additional directions for future work include per-
formance improvements of existing derivation algorithms, either by general algo-
rithmic improvements, or by developing domain and application specific efficient
algorithms.
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