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Foreword

ETAPS 2011 was the 14th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised the usual five sister conferences (CC, ESOP, FASE, FOS-
SACS, TACAS), 16 satellite workshops (ACCAT, BYTECODE, COCV, DICE,
FESCA, GaLoP, GT-VMT, HAS, IWIGP, LDTA, PLACES, QAPL, ROCKS,
SVARM, TERMGRAPH, and WGT), one associated event (TOSCA), and seven
invited lectures (excluding those specific to the satellite events).

The five main conferences received 463 submissions this year (including 26
tool demonstration papers), 130 of which were accepted (2 tool demos), giving
an overall acceptance rate of 28%. Congratulations therefore to all the authors
who made it to the final programme! I hope that most of the other authors
will still have found a way of participating in this exciting event, and that you
will all continue submitting to ETAPS and contributing to make of it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2011 was organised by the Universität des Saarlandes in cooperation
with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)
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It also had support from the following sponsors, which we gratefully thank:
DFG Deutsche Forschungsgemeinschaft; AbsInt Angewandte Infor-

matik GmbH; Microsoft Research; Robert Bosch GmbH; IDS Scheer

AG / Software AG; T-Systems Enterprise Services GmbH; IBM Re-

search; gwSaar Gesellschaft für Wirtschaftsförderung Saar mbH;

Springer-Verlag GmbH; and Elsevier B.V.

The organising team comprised:

General Chair: Reinhard Wilhelm
Organising Committee: Bernd Finkbeiner, Holger Hermanns (chair),

Reinhard Wilhelm, Stefanie Haupert-Betz,
Christa Schäfer

Satellite Events: Bernd Finkbeiner
Website: Hernán Baró Graf

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Parosh Abdulla (Uppsala), Gilles
Barthe (IMDEA-Software), Lars Birkedal (Copenhagen), Michael O’Boyle (Ed-
inburgh), Giuseppe Castagna (CNRS Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (Imperial College London), Bernd Finkbeiner (Saarbrücken) Cor-
mac Flanagan (Santa Cruz), Dimitra Giannakopoulou (CMU/NASA Ames),
Andrew D. Gordon (MSR Cambridge), Rajiv Gupta (UC Riverside), Chris Han-
kin (Imperial College London), Holger Hermanns (Saarbrücken), Mike Hinchey
(Lero, the Irish Software Engineering Research Centre), Martin Hofmann (LMU
Munich), Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop
(Vienna), Barbara König (Duisburg), Shriram Krishnamurthi (Brown), Juan de
Lara (Madrid), Kim Larsen (Aalborg), Rustan Leino (MSR Redmond), Gerald
Luettgen (Bamberg), Rupak Majumdar (Los Angeles), Tiziana Margaria (Pots-
dam), Ugo Montanari (Pisa), Luke Ong (Oxford), Fernando Orejas (Barcelona),
Catuscia Palamidessi (INRIA Paris), George Papadopoulos (Cyprus), David
Rosenblum (UCL), Don Sannella (Edinburgh), João Saraiva (Minho), Helmut
Seidl (TU Munich), Tarmo Uustalu (Tallinn), and Andrea Zisman (London).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer for agreeing to publish the
ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2011, Holger
Hermanns and his Organising Committee, for arranging for us to have ETAPS
in the most beautiful surroundings of Saarbrücken.

January 2011 Vladimiro Sassone
ETAPS SC Chair



Preface

This volume contains the papers presented at ESOP 2011, the 20th European
Symposium on Programming held March 30-April 1, 2011, in Saarbrücken,
Germany.

ESOP is an annual conference devoted to fundamental issues in the specifi-
cation, design, analysis, and implementation of programming languages and sys-
tems. ESOP 2011 was the 20th edition in the series. The Programme Committee
(PC) invited papers on all aspects of programming language research including:
programming paradigms and styles, methods and tools to write and specify pro-
grams and languages, methods and tools for reasoning about programs, methods
and tools for implementation, and concurrency and distribution.

Following previous editions, we maintained the page limit to 20 pages, and
a rebuttal process of 72 hours during which the authors could respond to the
reviews of their submission. This year, PC submissions were not allowed. We
received 117 abstracts and in the end got 93 full submissions; one submission
was withdrawn. The remaining 92 submissions received from 3 to 6, and on
average 4, reviews; eventually the PC selected 24 papers for publication. These
proceedings consist of Andrew Appel’s invited paper, and of the 24 selected
papers.

I would like to thank the PC and the subreviewers for their dedicated work
in the paper selection process, and all authors who submitted their work to the
conference. I would also like to thank the 2011 Organizing Committee, chaired
by Holger Hermanns, and the Steering Committee, chaired by Vladimiro Sas-
sone, for coordinating the organization of ETAPS 2011. Finally, I would like to
thank Andrei Voronkov, whose EasyChair system proved (once more) invaluable
throughout the whole process.

January 2011 Gilles Barthe
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Verified Software Toolchain
(Invited Talk)

Andrew W. Appel

Princeton University

Abstract. The software toolchain includes static analyzers to check assertions
about programs; optimizing compilers to translate programs to machine language;
operating systems and libraries to supply context for programs. Our Verified Soft-
ware Toolchain verifies with machine-checked proofs that the assertions claimed
at the top of the toolchain really hold in the machine-language program, running
in the operating-system context, on a weakly-consistent-shared-memory machine.

Our verification approach is modular, in that proofs about operating systems
or concurrency libraries are oblivious of the programming language or machine
language, proofs about compilers are oblivious of the program logic used to verify
static analyzers, and so on. The approach is scalable, in that each component is
verified in the semantic idiom most natural for that component.

Finally, the verification is foundational: the trusted base for proofs of observ-
able properties of the machine-language program includes only the operational
semantics of the machine language, not the source language, the compiler, the
program logic, or any other part of the toolchain—even when these proofs are
carried out by source-level static analyzers.

In this paper I explain some semantic techniques for building a verified toolchain.

Consider a software toolchain comprising,

A Static analyzer or program verifier that uses program invariants to
check assertions about the behavior of the source program.

A compiler that translates the source-language program to a machine-
language (or other object-language) program.

A runtime system (or operating system, or concurrency library) that
serves as the runtime context for external function calls of the machine-
language program.

We want to construct a machine-checked proof, from the foundations of
logic, that Any claims by the static analyzer about observations of the source-language
program will also characterize the observations of the compiled program.

We may want to attach several different static analyzers to the same compiler, or
choose among several compilers beneath the same analyzer, or substitute one operat-
ing system for another. The construction and verification of just one component, such
as a compiler or a static analyzer, may be as large as one project team or research
group can reasonably accomplish. For both of these reasons, the interfaces between

G. Barthe (Ed.): ESOP 2011, LNCS 6602, pp. 1–17, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 A.W. Appel

components—their specifications—deserve as much attention and effort as the compo-
nents themselves.

We specify the observable behavior of a concurrent program (or of a single thread
of that program) as its input-output behavior, so that the statement Program p matches
specification S can be expressed independently of the semantics of the programming
language in which p is written, or of the machine language. Of course, those semantics
will show up in the proof of the claim! Sections 10 and 11 explain this in more detail.

But observable “input-output” behaviors of individual shared-memory threads are
not just the input and output of atomic tokens: a lock-release makes visible (all at once)
a whole batch of newly observable memory, a lock-aquire absorbs a similar batch, and a
operating-system call (read into memory buffer, write from memory buffer, alloc mem-
ory buffer) is also an operation on a set of memory locations. Section 1 explains.

The main technical idea of this approach is to define a thread-local semantics for a
well-synchronized concurrent program and use this semantics to trick the correctness
proof of the sequential compiler to prove its correctness on a concurrent program. That
is, take a sequential program; characterize its observable behavior in a way that ignores
intensional properties such as individual loads and stores, and focus instead on (exter-
nally visible) system calls or lock-aquire/releases that transfer a whole batch of memory
locations; split into thread-local semantics of individual threads; carry them through the
modified sequential proof of compiler correctness; gather the resulting statements about
observable interactions of individual threads into a statement about the observable be-
havior of the whole binary.

Because our very expressive program logic is most naturally proved sound with re-
spect to an operational semantics with fancy features (permissions, predicates-in-the-
heap) that don’t exist in a standard operational semantics (or real computer), we need
to erase them at some appropriate point. But when to erase? We do some erasure (what
we call the transition from decorated op. sem. to angelic op. sem.) before the compiler-
correctness proof; other erasure (from angelic to erased) should be done much later.

We organize our proof, in Coq, as follows. (Items marked • are either completed
or nearly so; items marked ◦ are in the early stages; my principal coauthors on this
research (in rough chronological order) are Sandrine Blazy, Aquinas Hobor, Robert
Dockins, Lennart Beringer, and Gordon Stewart. Items marked – are plausible but not
even begun.)

• We specify an expressive program logic for source-language programs;
◦ we instrument the static analyzer to emit witnesses in the form of invariants;
◦ we reimplement just the core of the static analyzer (invariant checker, not invariant

inference engine) and prove it correct w.r.t the program logic;
• we specify a decorated operational semantics for source-language programs;
• we prove the soundness of the program logic w.r.t. the decorated semantics;
• we specify an angelic operational semantics;
• we prove a correspondence between executions of the decorated and the angelic

semantics;
� we prove the correctness of the optimizing compiler w.r.t. the angelic operational

semantics of the source and machine languages;
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– we prove the equivalence of executions in the angelic operational semantics in a
weakly consistent memory model and in a sequentially consistent memory model;

• we specify an erased (i.e., quite conventional) operational semantics of the ma-
chine language;

• we prove a correspondence between executions of the angelic and erased semantics.

The composition of all these steps gives the desired theorem. Q.E.D.
The � verified optimizing compiler is not by our research group, it is the CompCert

compiler by Leroy et al. [24] with whom we have been collaborating since 2006 on
adjusting the CompCert interfaces and specifications to make this connection possi-
ble. Since Leroy et al.’s correctness proof of CompCert in Coq constitutes one of the
components of our modular verification, it seemed reasonable to do the rest of our ver-
ification in Coq. In addition, some of the logical techniques we use require a logic with
dependent types, and cannot be expressed (for example) in HOL (higher-order logic,
a.k.a. Church’s simple theory of types). We wanted to use a logic whose kernel theory
(in this case, CiC) is trustworthy, machine-checkable, and well understood. Finally, we
wanted a system with well-maintained software tools, mature libraries of tactics and
theories, and a large user community. For all these reasons we use Coq for our Verified
Software Toolchain (VST), and we have been happy with this choice.

1 Observables

Specifications of program behavior must be robust with respect to translation from
source language to machine language. Although the states of source- and target-language
programs may be expressed differently, we characterize the observable behaviors (or
observations) of source- and target-language programs in the same language [15].

Our source language is a dialect of C with shared-memory concurrency using sema-
phores (locks). The C programs interact with the outside world by doing system calls—
with communication via parameters as well as in memory shared with the operat-
ing system—and via lock synchronization (through shared memory). One thread of a
shared-memory concurrent program interacts with other threads in much the same way
that a client program interacts with an operating system. That is, the thread reads and
writes memory to which the other threads (or operating system) have access; the thread
synchronizes with the other threads (or OS) via special instructions (trap, compare-
and-swap) or external function calls (read-from-file, semaphore-unlock). We want the
notion of observable behavior to be sufficiently robust to characterize either kind of
interaction.

For each system call, and at each lock acquire/release, some portion of the memory
is observable. But on the other hand, some parts of memory should not be observable.1

In private regions of memory, compilers should have the freedom to optimize loads
and stores of sequential programs: to hoist loads/stores past each other, and past con-
trol operations, to eliminate redundant loads and stores, etc.—subject only to dataflow
constraints.

1 Of course, the operating system can observe any part of memory that it wants to. But the
O.S. should not “care” about the thread’s local data, while it does “care” about the contents of
memory pointed to by the argument of a write system call.
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Of course, with a naive or ill-synchronized approach to shared memory, it is possible
for one thread to see another’s loads and stores, and therefore the compiler might alter
the output of a program by “optimizing” it. At least for the time being, we restrict our
attention to well-synchronized programs—in which any thread’s write (read) access to
data is done while holding a semaphore granting exclusive (shared) permission to that
data. In such a regime, we can achieve that loads and stores are not observable events.
This is an important design principle.

“Volatile” variables with observable loads/stores can be treated in our framework,
with each load or store transformed—by the front end—into a special synchronization
operation. Leroy has recently instrumented the front end of CompCert to perform this
transformation.

Extensional properties. This approach to program specification deliberately avoids in-
tensional properties, i.e. those that characterize how the computation proceeds. This
design decision frees the compiler to make very general program transformations. How-
ever, that means that we cannot specify properties such as execution time.

Permissions and synchronization. When a thread does a system call or a lock syn-
chronization, there is implicitly a set of addresses that may be “observed.” Our spec-
ification of observations makes this explicit as permissions. A thread that (at a given
time) has write permission to a memory address can be sure that no other thread (or
operating system) can observe it. Lock synchronizations and system calls can change
a thread’s permission in controlled and predictable ways. From the compiler’s point of
view, synchronizations and system calls are instances of external function calls, which
can change memory permissions in almost arbitrary ways.

The permissions have no concrete runtime manifestation—since, of course, we are
compiling to raw machine code on real machines. Instead, they are a “fictional” arti-
fact of static program invariants: a static permission-based proof about a program says
something about its non-stuck execution in a permission-carrying operational seman-
tics. Then, the permissions present in our decorated and angelic operational semantics
disappear in the erased operational semantics.

In fact, the difference between the decorated and angelic operational semantics is
in how the permissions change at external function calls. The decorated operational
semantics is annotated with sufficient program invariants to calculate the change in
permissions; the angelic semantics is equipped with an “angel” that serves as an oracle
for the change in permissions; see Section 7.

2 The Programming Language and Compiler

Our VST project was inspired in part by Leroy’s CompCert verified optimizing C
compiler [24]. CompCert is a remarkable achievement, on the whole and in many par-
ticulars. For example, the CompCert memory model by Leroy and Blazy [25] supports
storing of bytes, integers, floats, and relocatable pointers in a byte-addressable memory;
is sufficiently abstract to support relocation and the kinds of block-layout adjustments
that occur during compilation; and is sufficiently general that the same memory model
can be used for the source-level semantics, the target-machine semantics, and at every
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level in between. The tasteful design of the memory model is one reason for CompCert’s
success.

CompCert “merely” proves that, whenever it compiles a C program to assembly
language, any safe execution in C corresponds to a safe execution in assembly with the
same observable behavior. But where do safe C programs come from, and how can one
characterize the observable behavior of those C programs? If those questions cannot be
answered, then it might seem that CompCert is like a highly overengineered hammer
without any nails.

Our Verified Software Toolchain uses C minor [24] as a source language. C minor
is the high-level intermediate representation used in CompCert for the C programming
language. CompCert compiles the C programming language (or rather, a very substan-
tial subset called C light [9]) through 7 intermediate languages into assembly language
for the PowerPC processor; the third language in this chain of 9 is C minor. For each
language in the chain, Leroy has specified the syntax and operational semantics in the
Coq theorem prover. Each of the 8 compiler phases between these intermediate lan-
guages is proved (in Coq) to preserve observational equivalence between its input (a
program in one intermediate language) and its output (a program in the next language).

We chose to use C minor (instead of C light) as the target for VST, for two reasons:
C minor is more friendly to Hoare-style reasoning as there are no side effects inside
expressions;2 and C minor can be used as a target language from source languages such
as ML or Java.

3 Oracle Semantics

Remarkable as CompCert is, its original specification was too weak to express the in-
teraction of a thread with its context—whether that context is the operating system or
other concurrent threads. We want to remedy that weakness without making fundamen-
tal changes to the CompCert correctness proof.

We factor the operational semantics to separate core programming-language execu-
tion from execution steps in the operating-system/runtime-system/concurrency context,
which we call the oracle for short. We do this because the same oracle will be applied
to both the source- and machine-language programs; and because (conversely) different
kinds of oracles will be applied to the same source- or machine-language program.

The CompCert C compiler [24] is proved correct with respect to a source-level oper-
ational semantics and a machine-level operational semantics. In early versions of Com-
pCert, the source-level semantics was big-step and the machine-level was small-step.
Each semantics generated a trace, a finite or infinite sequence of observable events, that
is, system calls with atomic arguments and return values.

This specification posed obstacles for integration into our verified toolchain: the big-
step semantics was inconvenient for reasoning about concurrent threads; the system
calls did not permit shared memory between client and operating system (e.g. did not
permit the conventional model of system calls); the lack of shared memory meant that

2 More precisely, because C minor is not a subset of C, we had some flexibility to negotiate with
Leroy a few modifications to the specification of C minor: e.g., unlike C minor 2006, C minor
2010 has no side-effects inside expressions.
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a shared-memory concurrency model was difficult; the coarseness of memory-access
permissions meant that concurrent separation logic was difficult; and so on.

Therefore we worked with Xavier Leroy to adjust the specification of CompCert’s
source-level operational semantics. Now it is a small-step semantics, with a lattice of
permissions on each memory address. Instead of a trace model–in which the behavior
of a program is characterized by a sequence of atomic values read or written, we char-
acterize the behavior by the thread’s history of (shared-memory) interactions with the
oracle. Each state of the small-step semantics contains three components: oracle state
Ω, memory m, and core state q. A core step is a small-step of computation that is not
an external function call; an oracle step is taken whenever the computation is at an ex-
ternal function call. Each core step affects only m and q, leaving Ω unchanged; each
oracle-step affects only Ω andm.

What is the oracle? If we are modeling the interaction of a sequential C program with
its operating system, then the oracle is the operating system, and the external function
calls are system calls. If we are modeling the interaction of a sequential C thread with
all the other threads in a shared-memory concurrent computation, then the external
function calls are lock-acquire and -release, and the oracle is all the other threads. An
early version of this oracle model of concurrency is described by Hobor et al. [20,21].

The advantage of the oracle model is that, from the point of view of the C com-
piler and its correctness proof, issues of concurrency hardly intrude at all. Still, Hobor’s
oracle model was only partly modular: it successfully hid the internal details of the
oracle from the compiler-correctness proof, but it did not hide all the details of the
programming language from the oracle. This was a problem, because it was difficult
to characterize the result of compiling a concurrent C program down to a concur-
rent machine-language program. Dockins [15] has a substantially more modular oracle
model, which is the basis for the verified toolchain described here.

4 The Program Logic

Proofs of static analyses and program verifiers are (often) most convenient with respect
to an axiomatic semantics (such as a Hoare Logic) of the programming language; we
call this the program logic. Proofs of compilers and optimizations are (often) most
convenient using an operational semantics.3 Therefore for the source language we will
need both an axiomatic and an operational semantics, as well as a machine-checked
soundness proof that relates the two.

We intend to use the program logic as an intermediate step between a static analysis
algorithm and an operational semantics. We would like to do this in a modular way—
that is, prove several different static analyses correct w.r.t. the same program logic, then
prove the program logic sound w.r.t. the operational semantics. Therefore we want the
program logic to be as general and expressive as possible.

We start with a Hoare Logic for C minor: the judgement Γ � {P}c{Q} means that
command c has precondition P and postcondition Q. Somewhat more precisely, if c
starts in a state satisfying P , then either it safely infinite-loops or it reaches a state

3 At the very least, the particular proof that we want to connect our system to—CompCert—is
w.r.t. an operational semantics.



Verified Software Toolchain 7

satisfying Q. However, C minor has two control-flow commands that can avoid a fall-
through exit: exit n breaks out of n nested blocks (within a function), and return e
evaluates e and returns its value from the current function-call. Thus,Q is really a triple
of three postconditions; an ordinary assertion for fall-through, an assertion parameter-
ized by n (equivalently, a list of assertions) for exit and an assertion parameterized by
return-value for return.

To take a simple example, the judgement

Γ � {∃x. (v⇓x) ∗ (x 4,π�→ 6) ∗ (x+4 4,��→ x)} [v+4] :=4 0 {∃x. (v⇓x) ∗ (x 4,π�→ 6) ∗ (x+4 4,��→ 0)}

can be read as follows: Before execution of the store statement, local variable v points to
some address x; the current thread has partial permission π to read (but not necessarily
write) a 4-byte integer (or pointer) at x; the current 4-byte contents of memory at x is 6;
the thread has full permission � to read or write a 4-byte integer (or pointer) at x + 4;
the current contentents at x+ 4 is x. Furthermore, by the rules of ∗ in separation logic,
x is not aliased to x + 4, though in this case we didn’t need separation logic to tell us
this obvious fact!

After the assignment, the situation is much the same except that the contents of x+4
is now a null pointer. The exit and return postconditions (not shown) are both false
since the store command neither exits nor returns.

The global context Γ maps addresses to their function specifications. The assertion
f : {P}{Q} means f has precondition P and postconditionQ.

Since C (and C minor) permits passing functions as pointers, in the program logic
one can write ∃v. (f ⇓ v) ∗ (v : {P}{Q}), meaning that the name f evaluates to some
pointer-value v, and v has precondition P , etc. Since the function can take a sequence
of parameters and return an optional result, in fact P andQ are functions from value-list
to assertion.

The operators ∃, ∗, �→, and : are all constructed as definitions in Coq from the under-
lying logic. We use a “shallow embedding,” but because of the almost-self-referential
nature of some assertions (“f(x) is a function whose precondition claims that x is a
function whose precondition...”), the construction can be rather intricate; see Section 6.

In a Hoare logic one often needs to relate certain dynamic values appearing in a
precondition to the same values in a postcondition. For example, consider the func-
tion int f(int x){return x + 1; }. One wants to specify that this function returns a value
strictly greater than its argument. We write a specification such as,

∃v. f ⇓ v ∧ v : (∀x : int.{λa.a = x}{λr.r > x})
or, using a HOAS style for the : operator, ∃v. f ⇓ v ∧ v : [int]{P}{Q}
where P = λxλa.(a = x) and Q = λxλr.(r > x). This notation permits the shared
information x to be of any Coq type τ , where in this example τ = int.

The use of HOAS (higher-order abstract syntax) hints that we shallowly embed the
assertions in the surrounding logical framework, in this case Coq, to take advantage of
all the binding structure there.

To reason about polymorphic functions or data abstraction, our Hoare logic permits
universal and existential quantification: ∀x : τ.P ∃x : τ.P
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where τ can be any Coq type, and P can contain free occurrences of x. Of course this is
just Coq “notation” for the HOAS version: ∀[τ ]P ′ ∃[τ ]P ′

where P ′ is a function from τ to assertion.
It is particularly important that τ can be any Coq type including quantified assertions.

That is, the quantification is impredicative. Impredicativity is necessary for reasoning
about data abstraction, where the abstract types in the interface of one module can be
themselves implemented by abstract types from the interface of another module.

To specify inductive datatypes, our program logic has an operator μ for recursively
defined assertions: μx.P (x) satisfies the fixpoint equation μx.P (x) = P (μx.P (x)),
(or in HOAS μP = P (μP )), provided that P is a contractive function [6].

Ordinary Hoare logics have difficulty with pointers and arrays, especially with up-
dates of fields and array slots. Therefore we use a separation logic, which is a Hoare
logic based on the theory of bunched implications. In an ordinary Hoare logic, the as-
sertion P ∧ Q means that P holds on the current state and so does Q. In separation
logic, P ∗ Q means that the current state can be expressed as the disjoint union of
two parts, and P holds on the first part while Q holds on the second part. The assert
emp holds on exactly the empty state, and true holds on any state. Thus the assertion
(P ∗Q) ∧ (R ∗ true) holds on any state s that can be broken into two pieces s1 ⊕ s2,
where P holds on one and Q on the other; and such that R holds on some substate of
the state.

Our separation logic has a notion of partial ownership, or “permissions.” The asser-
tion x

π�→ y means that the current state has exactly one address x in it; the contents
of this address is the value y; and the current state has nonempty permission π to read
(or perhaps also to write) the value. Permissions form a lattice; some permissions give
read access, stronger permissions give write access, and the “top” permission gives the
capability to deallocate the address. In contrast to previous permission models [11,29]
ours is finite, constructive, general, and modeled in Coq [16].

Partial ownerships and overlapping visibility mean that “disjoint union” is an over-
simplification to describe the ⊕ operator; we use a separation algebra, following
Calcagno et al.; but we have a more general treatment of units and identities [16].

To reason about concurrent programs, we use a concurrent separation logic (CSL).
O’Hearn [28] demonstrated that separation logic naturally extends to concurrency, as it
limits each thread to the objects for which it has (virtual) permission to access. Portions
of the heap can have their virtual ownership transferred from one thread to another
by synchronization on semaphores. We have generalized O’Hearn’s original CSL to
account for dynamic creation of locks and threads [21]; Gotsman et al. made a similar
generalization [18]. The assertion �

π
� Rmeans that address � is a lock (i.e., semaphore)

with visibility (permission) π and resource invariant R. Permission π < � means that,
most likely, some other thread(s) can see this lock as well; if only one thread could see �
then it would be difficult to use for synchronization! Any nonempty π gives permission
to (attempt to) acquire the lock. Resource invariant R means that whenever a thread
releases �, it gives up a portion of memory satisfying the assertionR; whenever a thread
acquires �, it acquires a new portion of memory satisfyingR. While � is held, the thread
can violate R until it is ready to release the lock.
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The basic CSL triples for acquire/release are

{� π
� R} acquire � {R ∗ � π

� R} {R ∗ � π
� R} release � {� π

� R}.
In summary, programs have pointers, we want to reason about aliasing, hence Separa-
tion Logic rather than just Hoare Logic. Programs have higher-order functions, poly-
morphism, and data abstraction; hence we want impredicative quantification in the
logic. Programs have concurrency, hence we want resource invariants. Finally, different
front-end static analyses will make different demands on the program logic, so we want
the program logic to be as expressive and general as we can possibly make it. We end
up with impredicative higher-order concurrent separation logic.

5 Instrumenting Static Analyses

Hoare-style judgements can be proved in an interactive theorem prover by applying the
inference rules of the program logic. But there are many kinds of program properties
that, with much less user effort, a static analyzer can “prove” automatically. We are
interested in removing the quotation marks from the previous sentence.

One way to connect a static analyzer to a program logic is to have the analyzer
produce derivation trees in the logic. But this may require a large change to an existing
analyzer, or significantly affect the software design of an analyzer; and the derivation
trees will be huge. Another way would be to prove the analyzer correct, but analyzers
are typically large programs implemented in languages with difficult proof theories;
sometimes they have major components such as SAT solvers or ILP solvers.

We propose to instrument the analyzer in a different way. A typical analyzer infers
program invariants from assertions provided by the user. In a sense, the invariants are
the induction hypotheses needed to verify the assertions. We propose that the analyzer
should output the program liberally sprinkled with invariants. A much simpler program
than the analyzer, the core of the analyzer, can check that the invariants before and after
each program statement (or perhaps, program block) match up.

We will implement the core of each analyzer in the Gallina functional programing
language embedded in the Coq theorem prover. We will use Coq to prove the soundness
of the core w.r.t. our program logic. Then we use Coq’s program-extraction to obtain
a Caml program that implements the core. The toolchain then starts with the full (un-
trusted, unverified) static analyzer, whose results are rechecked with the (verified) core
analyzer.

My undergraduate student William Mansky conducted one successful experiment in
this vein [26]: he reimplemented in Gallina the concurrent-separation-logic-based shape
analysis by Gotsman et al. [19], and proved it correct4 with respect to our program logic.
He found that this shape analysis was simple enough that he could implement the entire
analysis including invariant inference in Gallina, without needing an unverified front
end.

4 Well, almost proved. The problem is that Gotsman et al. assume a Concurrent Separation Logic
with imprecise resource invariants, whereas our CSL (as is more standard [28]) requires precise
resource invariants. The joy of discovering mismatches such as this is one of the rewards in
doing end-to-end, top-to-bottom, machine-checked proofs such as the VST.
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6 Semantic Modeling of Assertions

We want to interpret an assertion P as a predicate on the state of the computation:
more or less, s |= P is interpreted as P (s). Some of our assertion forms character-
ize information about permissions, types, and predicates that are nowhere to be found
in a “Curry-style” bare-bones operational semantics of a conventional target machine.
Therefore we use more than one kind of operational semantics: a decorated semantics
with extra information, an angelic semantics with partial information, and an erased
semantics with even less information.

We have erasure theorems—that any nonstuck execution in the decorated semantics
corresponds to a nonstuck execution in angelic semantics with similar observables, and
ditto for the angelic to the erased semantics. Assertions require the decorated semantics.

A judgement s |= 10 π1�→ 8 ∗ 11 π2�→ 0 means that s (in the decorated and angelic
semantics) must contain not only 8 at address 10 and 0 at address 11, but must also keep
track of the fact that there is exactly π1 permission at 10, and π2 at 11.

The assertions �
π
� R (meaning that � is a lock with resource invariant R and visi-

bility π) and v : [τ ]{P}{Q} (v is a function with precondition P and postconditionQ)
are interesting in that one assertion is characterizing the binding of an address (� or v)
to another assertion (R,P,Q).

Somehow the decorated state smust contain predicates; which in turn predicate over
states. Achieving this—in connection with impredicative quantification and recursive
assertions—is quite difficult; the semantic methods of the late 20th century were not up
to the task. If we interpret assertions naively in set theory, we violate Cantor’s paradox.

We solve this problem using the methods of Ahmed [4] as reformulated into the
“Very Modal Model” [6] and “Indirection Theory” [22]. The recent formulation of
Birkedal et al. [8] could also be used. The basic trick is that each state s indicates a
degree of approximation (a natural number ks). When s |= �

π
� R, then the assertion

R can be applied to states s′ only strictly more approximately than ks. When the com-
putation takes a step s → s′, it must “age” the state by making sure that s′ is strictly
more approximate than s, that is, ks′ < ks.

In a decorated state an address can map to any of:

valπ v Memory data byte v with permission π
lockπ R Lock with resource-invariantR
funπ [τ ]PQ Function entry point with precondition P , post Q

In the angelic semantics the predicates are removed—leaving only valπ v, lockπ, funπ—
and in the erased semantics the permissions are removed.

7 Partial Erasure before Bisimulation

Our toolchain has, near the front end, a higher-order program logic; and near the back
end, an optimizing compiler composed of successive phases. Each phase translates one
language to another (or to itself with rewrites), and each phase comes equipped with a
bisimulation proof that the observable behavior is unchanged.
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The fact that program-states s contain “hair” such as approximation indices and pred-
icates, poses some problems for the modularity of the top-to-bottom verification of the
toolchain. To verify the soundness of the program logic w.r.t. the operational semantics,
we need states s containing predicates. As explained in Section 6, Indirection Theory
requires that predicates embedded in states must be at specific levels of approximation,
and these need to be “aged” (made more approximate) at each step of the computation.
On the other hand, to verify the correctness of the optimizing compiler the predicates
are unneeded, and the aging hampers the bisimulation proofs. For example, a compiler
phase might change the number of steps executed (and thus the amount of aging).

Thus we erase the predicates in moving from the decorated to the angelic seman-
tics. But there are a few places where the predicates have an operational effect, and
we replace these with an angelic oracle that supplies the missing information. All of
our ageable predicates are within the Ω (oracle) component of the state; and thus this
erasure has no effect on them and q components.

Let address �
π
� R be a lock (semaphore) in Concurrent Separation Logic, with

resource invariantR. R must be a precise separation-logic predicate, meaning that R is
satisfied by a unique subheap (if any subset) of a given memory. When a thread releases
this lock, the (unique) subheap satisfying R, of the current heap, is moved from thread-
ownership to lock-pool ownership.

The operational effect on fully-erased memory is only that the semaphore goes from
state 0 to state 1. The operational effect on decorated or angelic memory is that the
permissions π of the thread (and of the lock pool) change. The way the permission-
changeΔπ is calculated, in the decorated semantics, is that R is fetched from the state
and (classically, not constructively) evaluated.5 That is, in a decorated state, at each lock
address, is stored the resource invariant R.

Unlike decorated states, angelic states contain no predicates. Instead of calculating
Δπ from R, the angel is an oracle that contains a list of all Δπ effects that would
have (nonconstructively) satisfied from deleted predicates. At each semaphore-release
operation, the nextΔπ is consumed from the angel.

Dockins [15] shows the proof that For each safe execution in the decorated seman-
tics, there exists an angel that gives a safe execution in the angelic semantics with the
same observable behavior.

8 Bisimulation

After the static analyzer or a program verifier has proved something about the observ-
able behavior of a source program in the decorated semantics, we partially erase to the
angelic semantics. The compiler-correctness proof, showing that source-language and
machine-language programs have identical observables, is done in the angelic seman-
tics of the several intermediate languages.

5 Our own proofs (and those of CompCert) do not use classical axioms such as choice and ex-
cluded middle; we use only some axioms of extensionality. But classical axioms are consistent
with CiC+extensionality, so the user of our program logic may choose to use them. Therefore
we do not assume that the satisfaction of R must be constructive.
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The original CompCert proofs were done by bisimulation, with respect to a simple
notion of finite or infinite traces of atomic events, with no shared memory. Because the
CompCert languages are deterministic, the bisimulations reduce to simpler simulation
proofs. These proofs rely on a set of general lemmas about simulations and bisimula-
tions in small-step semantics equipped with observable traces.

We are able reuse the existing CompCert proofs with very little modification, by en-
suring that our oracle/observable interface is as compatible as possible with the original
trace-based specification. From oracles and observables, Dockins [15] proves a set of
simulation lemmas very similar to the original versions in CompCert. From these, Leroy
can easily adapt the CompCert proofs.6 The fact that the operational semantics is an-
gelic is almost invisible in the CompCert bisimulations, because the angel is consulted
only at certain of the external function calls, and never during ordinary computation
steps corresponding to instructions emitted by the compiler.

If there had been predicates in the heap (i.e. the decorated semantics), the bisimu-
lations would have been harder to prove (and require more changes to the CompCert
proofs), because the aging of predicates required by Indirection Theory would age the
state by different amounts depending how many instructions a compiler optimization
deletes.

Even so, there have been a few changes to the CompCert specification to accommo-
date our verified toolchain. In addition to the new notion of observables, CompCert now
has an address-by-address permission map. Leroy has already modified CompCert (and
its proof) to accommodate these permissions (CompCert 1.7, released 03/2010).

The need for permissions in the (angelic) operational semantics is in response to a
problem explained by Boehm: “Threads cannot be implemented as a library.” [10] He
points out that hoisting loads and stores past aquire/release synchronizations can be un-
safe optimizations, in shared-memory concurrent programs. He writes, “Here we point
out the important issues, and argue that they lie almost exclusively with the compiler
and the language specification itself, not with the thread library or its specification.” In-
deed, the permissions in our decorated or angelic semantics form such a specification,
and CompCert is proved correct with respect to this specification.

9 Weak Memory Models

The angelic semantics (and its management of permissions) must be preserved down
to the back end of the compiler, so that each optimization stage can correctly hoist
loads/stores past other instructions. Only then can full erasure of permissions be done,
into the erased semantics.

At this time, the program is still race-free, and the permissions in the angelic se-
mantics allow a proof of this fact. This suggests that executions in a weakly consistent
memory model should have the same observable behavior as sequentially consistent
executions. It should be possible to prove this, for a given memory model, and to add
this proof to the bottom of the verified software toolchain. Recent results in the formal
specification of weak memory models [31,12] should be helpful in this regard.

6 As of mid-2010, CompCert is not yet fully ported to the new model of observations.
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10 Foundational Verification

Foundational verification is a machine-checked formal verification where we pay par-
ticular attention to the size and comprehensibility of the trusted base, which includes
the specification of the theorem to be proved, the axiomatization of the logic, and the
implementation of the proof checker.

It is instructive to use Proof-Carrying Code as a testbed for gedanken experiments
about what constitutes the trusted base of a formal method for software. Then in the
next section we can apply this methodology to the Verified Software Toolchain, and
compare both the size of the trusted base and the strength of what can be proved.

Consider the claim that Program P in the ML (or Java) language does not load or
store addresses outside its heap. What is the trusted base for a proof of this claim of
memory safety? Implicit in this claim is that P is compiled by an ML (or Java) compiler
to machine language. A full statement of this theorem in mathematical logic would
include: (1) the specification of the operational semantics and instruction encodings of
the machine language, (2) the specification of memory safety as a property of executions
in the machine language, and (3) the entire ML (or Java) compiler. A verification is a
proof of this theorem for P , and naively it might seem that part of this proof is a proof
of correctness of the ML (or Java) compiler.

ML and Java are type-safe languages: a source-language program that type-checks
cannot load or store outside the heap when executing in the source-language operational
semantics. Consequently, the machine-language program should also be memory-safe,
if the compiler is correct. Proof-carrying code (PCC) [27] was introduced as a way
to remove the compiler from the trusted base, without having to prove the compiler
correct—machine-checked compiler-correctness proofs seemed impractical in 1997.
Instead of relying on a correct compiler, PCC instruments the (untrusted, possibly
incorrect) compiler to translate the source-language types of program variables (in
the source-language type system) to machine-language types of program registers (in
some machine-language type system). Then one implements a program to type-check
machine-language programs. Let P ′ be the compilation of P to machine-language; now
the theorem is that P ′ is memory-safe. The trusted base includes the machine-language
type-checker, but not the compiler: that is, one trusts that, or proves that, if P ′ type-
checks then it is memory safe.

Proof-carrying code originally had three important limitations:

1. There is no guarantee that P ′ has the same observable (input/output) behavior as
P , because the compiler is free to produce any program as output so long as it
type-checks in the machine-language type system;

2. For each kind of source-level safety property that one wishes to proof-carry, one
must instrument the compiler to translate source-level annotations to checkable
machine-level annotations;

3. The claim that Any program that type-checks in the machine-language type system
has the desired safety property when it executes is still proved only informally; that
is, there was a LATEXproof about an abstraction of a subset of the type-checker.

Foundational proof-carrying code [5] addresses this third point. We construct a formal
specification of the machine-language syntax and semantics in a machine-checkable
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logic, and a specification of memory-safety in that same logic. Then the theorem is,
Program P ′ is memory-safe, and neither the compiler nor the machine-language type
annotations need be trusted; the type annotations are part of the proof of the theorem,
and the proof need not be trusted because it is checked by machine.

The Princeton foundational proof-carrying code (FPCC) project, 1999-2005, demon-
strated this approach for core Standard ML. We demonstrated that the trusted base could
be reduced to less than 3000 lines of source code: about 800 for a proof checker, writ-
ten in C and capable of checking proofs for any object logic representable in LF; a few
lines for the representation of higher-order logic (HOL) in LF; and about 1500 lines to
represent instruction encodings and instruction semantics of the Sparc processor [32].
We instrumented Standard ML of New Jersey to produce type annotations at each basic
block [13] and we built a semantic soundness proof for the machine-level type system
[1]. Other research groups also demonstrated FPCC for other compilers [17,14].

The late-20th-century limitation that inspired PCC and FPCC—that it is imprac-
tical to prove the correctness of an optimizing compiler—no longer applies. Several
machine-checked compiler-correctness proofs have been demonstrated [23,24,30].
Proof-carrying code is no longer the state of the art.

11 What Is the Trusted Base?

Our main theorem is, Claims by the static analyzer about the source-language program
will characterize the observations of the compiled program.

How is this statement to be represented in a machine-checkable logic? We may
choose to use complex and sophisticated mathematical techniques to prove such a state-
ment. The compiler may use sophisticated optimization algorithms, with correspond-
ingly complex correctness proofs. We can tolerate such complexity in proofs, because
proofs are machine-checked. But complexity in the statement of the theorem is unde-
sirable, because some human—the eventual consumer of our proof—must be able to
check whether we have proved the right thing.

A “claim” by a static analyzer relates a program p to the specification S of its observ-
able behavior. That is, let A be the static analyzer, so that A(p, S) means that the ana-
lyzer claims that every observation o of source-language program p is in the set S. Let
C be the compiler, so that C(p, p′) means that source program p translates to machine-
language program p′. LetM be the operational semantics of machine language, so that
M(p′, o) means that program p′ can run with observation o.

Then the main theorem is, ∀p, p′, S, o. A(p, S) ∧ C(p, p′) → M(p′, o) → o ∈ S.
That is, “if the analyzer claims that program pmatches specification S, and the compiler
compiles p to p′, and p′ executes onM with observation o, then o is permitted by S.”

The statement of this theorem is independent of the semantics of the source lan-
guage! If we expand all the definitions in this theorem, the “big” things are A, C, S,
andM . The consumer of this theorem doesn’t need to understandA or C, he just needs
to make sure that A and C are installed, bit-for-bit, in his computer. The definition S is
just the specification of the desired behavior of the program, and this will be as large or
as concise as the user needs. The semanticsM is only moderately large, depending on
the machine architecture; in the FPCC project the Sparc architecture was specified in
about 1500 lines of higher-order logic. [32]
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What is not in the statement of this theorem is the operational or axiomatic semantics
of the source language, or the semantic techniques used in defining the program logic!
All of these are contained within the proof of the theorem, but they do not form part of
the trusted based needed in interpreting what the theorem claims.

It seems paradoxical that a claim about the behavior of a program can be independent
of the semantics of the programming language. But it works because of the end-to-end
connection between the program logic and the compiler. The theorem can be read as,
“When you apply the compiler to the syntax of this program, the result is a machine-
language program with a certain behavior.” That sentence can be uttered without refer-
ence to the particular source-language semantics.

What else do you need to trust? The analyzer A and compiler C are written in Gal-
lina, the pure functional programming language embedded in the Coq theorem prover.
Coq contains software s1 to check proofs about Gallina programs, and software s2 to
translate Gallina to ML. The OCaml compiler s3 translates ML to machine-language;
the machine language runs with OCaml runtime-system s4. All of these are in the
trusted base, in the sense that bugs in the si can render the proved theorem useless.

FPCC had a much smaller trusted base, avoiding s1–s4.7 But at least these compo-
nents s1–s4 are fixed for all proofs and projects, and well tested by the community; and
perhaps some of the techniques used in the FPCC project, such as a tiny independent
proof checker, could be applied here as well to remove the si from the trusted base.

12 Conclusion

Highly expressive program logics require different semantic methods than compiler-
correctness proofs. Proofs about a sequential thread require different kinds of reason-
ing than proofs about operating systems and concurrency. A top-to-bottom verified
toolchain requires all these kinds of reasoning, and thus we choose the right formal-
ism for each component, and prove the relationships between the formalisms. In this
way we achieve a system that is sufficiently modular that its major components can be
built and proved by entirely separate research groups.

In the process, more work goes into thinking about specifications and interfaces than
into the individual components. This is not a bad thing, in the end.

A formal proof may be “wrong” for either of two reasons: There may be a mistake
in one or more steps of the proof, so that the “proof” fails to prove the stated theorem;
or the statement of the theorem may be not what was intended. Using a proof assistant
to mechanically check the proof prevents the first kind of problem, but not the second.
This is why I find it so important to do a big top-to-bottom system and connect all the
components together in the same metalogic. For example, our paper in LICS’02 [2]
was a correct proof of a nice-looking theorem (semantic model of a type system with
mutable references, polymorphism, and recursive types) but only in the application to
the big Foundational Proof-Carrying Code project did we discover that it was the wrong
theorem: the type system had predicative quantification, but we needed impredicative.
We had to go back to the drawing board and figure out how to do impredicativity as well

7 For the explanation of why no compilers are in FPCC’s trusted base, see [7, §8.2]. Unfortu-
nately that argument does not apply to the VST.
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[3,4]. Footnote 4 describes one such incident in the VST project, and there have been
many more along the way. Big “systems” projects have an important place in research
on the formal semantics of software.
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Abstract. Manifest contracts track precise properties by refining types
with predicates—e.g., {x :Int | x > 0} denotes the positive integers.
Contracts and polymorphism make a natural combination: programmers
can give strong contracts to abstract types, precisely stating pre- and
post-conditions while hiding implementation details—for example, an
abstract type of stacks might specify that the pop operation has in-
put type {x :α Stack | not (empty x)}. We formalize this combination by
defining FH, a polymorphic calculus with manifest contracts, and estab-
lishing fundamental properties including type soundness and relational
parametricity. Our development relies on a significant technical improve-
ment over earlier presentations of contracts: instead of introducing a
denotational model to break a problematic circularity between typing,
subtyping, and evaluation, we develop the metatheory of contracts in a
completely syntactic fashion, omitting subtyping from the core system
and recovering it post facto as a derived property.

Keywords: contracts, refinement types, preconditions, postconditions,
dynamic checking, parametric polymorphism, abstract datatypes, syn-
tactic proof, logical relations, subtyping.

1 Introduction

Software contracts allow programmers to state precise properties—e.g., that a
function takes a non-empty list to a positive integer—as concrete predicates
written in the same language as the rest of the program; these predicates can
be checked dynamically as the program executes or, more ambitiously, verified
statically with the assistance of a theorem prover. Findler and Felleisen [5] in-
troduced “higher-order contracts” for functional languages; these can take one
of two forms: predicate contracts like {x :Int | x > 0}, which denotes the positive
numbers, and function contracts like x :Int → {y:Int | y ≥ x}, which denotes
functions over the integers that return numbers larger than their inputs.

Greenberg, Pierce, and Weirich [7] contrast two different approaches to con-
tracts: in the manifest approach, contracts are types—the type system itself
makes contracts ‘manifest’; in the latent approach, contracts and types live in
different worlds (indeed, there may be no types at all, as in PLT Racket’s contract
system [1]). These two presentations lead to different ways of checking contracts.
Latent systems run contracts with checks: for example, 〈{x :Int | x > 0}〉l n
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checks that n > 0. If the check succeeds, then the entire expression will just
return n. If it fails, then the entire program will “blame” the label l , raising an
uncatchable exception ⇑l , pronounced “blame l”. Manifest systems use casts,
〈Int ⇒ {x :Int | x > 0}〉l to convert values from one type to another (the left-
hand side is the source type and the right-hand side is the target type). For
predicate contracts, a cast will behave just like a check on the target type: ap-
plied to n, the cast either returns n or raises ⇑l . Checks and casts differ when it
comes to function contracts. A function check (〈T1 → T2〉l v) v ′ will reduce to
〈T2〉l (v (〈T1〉l v ′)), giving v the argument checked at the domain contract and
checking that the result satisfies the codomain contract. A function cast (〈T11 →
T12 ⇒ T21 → T22〉l v) v ′ will reduce to 〈T12 ⇒ T22〉l (v (〈T21 ⇒ T11〉l v ′)),
wrapping the argument v ′ in a (contravariant) cast between the domain types
and wrapping the result of the application in a (covariant) cast between the
codomain types. The differences between checks and casts are discussed at length
in [7]. Both presentations have their pros and cons: latent contracts are simpler to
design and extend, while manifest contracts make a clearer connection between
the static constraints captured by types and the dynamic checks performed by
casts. In this work, we consider the manifest approach and endeavor to tame its
principal drawback: the complexity of its metatheory. We summarize the issues
here, comparing our work to previous approaches more thoroughly in Section 6.

Subtyping is the main source of complexity in the most expressive mani-
fest calculi—those which have dependent functions and allow arbitrary terms
in refinements [7,10]. These calculi have subtyping for two reasons. First, sub-
typing helps preserve types when evaluating casts with predicate contracts: if
〈Int ⇒ {x :Int | x > 0}〉l n −→∗ n, then we need to type n at {x :Int | x > 0}. Sub-
typing gives it to us, allowing n to be typed at any predicate contract it satisfies.
Second, subtyping can show the equivalence of types with different but related
term substitutions. Consider the standard dependent-function application rule:

Γ � e1 : (x :T1 → T2) Γ � e2 : T1

Γ � e1 e2 : T2[e2/x ]

If e2 −→ e ′2, how do T2[e2/x ] and T2[e ′2/x ] relate? (An important question when
proving preservation!) Subtyping shows that these types are really the same:
the first type parallel reduces to the second, and it can be shown that parallel
reduction between types implies mutual subtyping—that is, equivalence.

Subtyping brings its own challenges, though. A näıve treatment of subtyping
introduces a circularity in the definition of the type system. Existing systems
break this circularity by defining judgements in a careful order: first the eval-
uation relation and the corresponding parallel reduction relation; then a deno-
tational semantics based on the evaluation relation and subtyping based on the
denotational semantics; and finally the syntactic type system. Making this care-
fully sequenced series of definitions hold together requires a long series of tedious
lemmas relating evaluation and parallel reduction. The upshot is that existing
manifest calculi have taken considerable effort to construct.

We propose here a simpler approach to manifest calculi that greatly simplifies
their definition and metatheory. Rather than using subtyping, we define a type
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conversion relation based on parallel reduction. This avoids the original circu-
larity without resorting to denotational semantics. Indeed, we can use this type
conversion to give a completely syntactic account of type soundness—with just a
few easy lemmas relating evaluation and parallel reduction. Moreover, eliminat-
ing subtyping doesn’t fundamentally weaken our approach, since we can define
a subtyping relation and prove its soundness post facto.

We bring this new technique to bear on FH, a manifest calculus with paramet-
ric polymorphism. Researchers have already studied the dynamic enforcement
of parametric polymorphism in languages that mix (conventional, un-refined)
static and dynamic typing (see Section 6); here we study the static enforcement
of parametric polymorphism in languages that go beyond conventional static
types by adding refinement types and dependent function contracts. Concretely,
we offer four main contributions:

1. We devise a simpler approach to manifest contract calculi and apply it to
FH, proving type soundness using straightforward syntactic methods [19].

2. We offer the first operational semantics for general refinements, where re-
finements can apply to any type—not just base types.

3. We prove that FH is relationally parametric—establishing that contract
checking does not interfere with this desirable property.

4. We define a post facto subtyping relation and prove that “upcasts” from
subtypes to supertypes always succeed in FH, i.e., that subtyping is sound.

We begin with some examples in Section 2. We then describe FH and prove
type soundness in Section 3. We prove parametricity in Section 4 and the upcast
lemma in Section 5. We discuss related work in Section 6 and conclude with
ideas for future work in Section 7.

2 Examples

Like other manifest calculi, FH checks contracts with casts: the cast 〈T1 ⇒ T2〉l
takes a value of type T1 (the source type) and ensures that it behaves (and is
treated) like a T2 (the target type). The l superscript is a blame label, used to
differentiate between different casts and identify the source of failures. How we
check 〈T1 ⇒ T2〉l v depends on the structure of T1 and T2. Checking predicate
contracts with casts is easy: if v satisfies the predicate of the target type, the
entire application goes to v ; if not, then the program aborts, “raising” blame,
written ⇑l . For example, 〈Int ⇒ {x :Int | x > 0}〉l 5 −→∗ 5, since 5 > 0. But
〈Int ⇒ {x :Int | x > 0}〉l 0 −→∗ ⇑l , since 0 �> 0. When checking predicate con-
tracts, only the target type matters—the type system guarantees that whatever
value we have is well typed at the source type. Checking function contracts is a
little trickier: what should 〈Int → Int ⇒ {x :Int | x > 0} → {y:Int | y > 5}〉l v
do? We can’t just open up v and check whether it always returns positives. The
solution is to decompose the cast into its parts:

〈Int → Int ⇒ {x :Int | x > 0} → {y:Int | y > 5}〉l v −→
λx :{x :Int | x > 0}. (〈Int ⇒ {y:Int | y > 5}〉l (v (〈{x :Int | x > 0} ⇒ Int〉l x )))
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Note that the domain cast is contravariant, while the codomain is covariant:
the context will be forced by the type system to provide a positive number, so
we need to cast the input to an appropriate type for v . (In this example, the
contravariant cast 〈{x :Int | x > 0} ⇒ Int〉l will always succeed.) After v returns,
we run the covariant codomain cast to ensure that v didn’t misbehave. So:

〈Int → Int ⇒ {x :Int | x > 0} → {y:Int | y > 5}〉l (λx :Int. x ) 6 −→∗ 6
〈· · · 〉l (λx :Int. 0) 6 −→∗ ⇑l

〈· · · 〉l (λx :Int. 0) (〈Int ⇒ {x :Int | x > 0}〉l′ 0) −→∗ ⇑l ′

Note that we omitted the case where a cast function is applied to 0. It is an
important property of our system that 0 doesn’t have type {x :Int | x > 0}!

With these preliminaries out of the way, we can approach our work: a manifest
calculus with polymorphism. The standard polymorphic encodings of existential
and product types transfer over to FH without a problem. Indeed, our dependent
functions allow us to go one step further and encode even dependent products
such as (x : Int)×{y:α List | length y = x}, which represents lists paired with their
lengths. Let’s look at an example combining contracts and polymorphism—an
abstract datatype of natural numbers.

NAT : ∃α. (zero : α) × (succ : (α→ α)) × (iszero : (α→ Bool)) ×
(pred : {x :α | not (iszero x )} → α)

(We omit the implementation, a standard Church encoding.) The NAT interface
hides our encoding of the naturals behind an existential type, but it also requires
that pred is only ever applied to terms of type {x :α | not (iszero x )}. Assuming
that iszero v −→∗ true iff v = zero, we can infer that pred is never given zero
as an argument. Consider the following expression, where I is the interface we
specified for NAT and we omit the term binding for brevity:

unpack NAT : ∃α. I as α, in pred (〈α⇒ {x :α | not (iszero x )}〉l zero) : α

The application of pred directly to zero would not be well typed, since zero : α. On
the other hand, the cast term is well typed, since we cast zero to the type we need.
Naturally, this cast will ultimately raise ⇑l , because not (iszero zero) −→∗ false.

The example so far imposes constraints only on the use of the abstract
datatype, in particular on the use of pred. To have constraints imposed also
on the implementation of the abstract data type, consider the extension of the
interface with a subtraction operation, sub, and a “less than or equal” predicate,
leq. We now have the interface:

I ′ = I × (leq : α→ α→ Bool) × (sub : (x :α→ {y:α | leq y x} → {z :α | leq z x}))
The sub function requires that its second argument isn’t greater than the first,
and it promises to return a result that isn’t greater than the first argument.

We get contracts in interfaces by putting casts in the implementations. For
example, the contracts on pred and sub are imposed when we “pack up” NAT;
we write nat for the implementation type:

pack 〈nat, (zero, succ, iszero, pred, leq, sub)〉 as ∃α. I ′
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Types and contexts
T ::= B | α | x :T1 → T2 | ∀α.T | {x :T | e}
Γ ::= ∅ | Γ, x :T | Γ, α

Terms
e ::= x | k | op (e1, ... , en ) | λx :T . e | Λα.e | e1 e2 | e T |

〈T1 ⇒ T2〉l | ⇑l | 〈{x :T | e1}, e2, v〉l
v ::= k | λx :T . e | Λα.e | 〈T1 ⇒ T2〉l
r ::= v | ⇑l
E ::= [ ] e2 | v1 [ ] | [ ]T | 〈{x :T | e}, [ ] , v〉l | op(v1, ..., vi−1 , [ ] , ei+1, ..., en)

Fig. 1. Syntax for FH

where:

pred = 〈nat → nat ⇒ {x :nat | not (iszero x )} → nat〉l pred′

sub = 〈nat → nat → nat ⇒ x :nat → {y:nat | leq y x} → {z :nat | leq z x}〉l sub′

That is, the existential type dictates that we must pack up cast versions of our
implementations, pred′ and sub′. Note, however, that the cast on pred′ will never
actually check anything at runtime: if we unfold the domain contract contravari-
antly, we see that 〈{x :nat | not (iszero x )} ⇒ nat〉l is a no-op. Instead, clients of
NAT can only call pred with terms that are typed at {x :nat | not (iszero x )}, i.e.,
by checking that values are nonzero with a cast into pred’s input type. The story
is the same for the contract on sub’s second argument—the contravariant cast
won’t actually check anything. The codomain contract on sub, however, could
fail if sub′ mis-implemented subtraction.

We can sum up the situation for contracts in interfaces as follows: the positive
parts of the interface type are checked and can raise blame—these parts are the
responsibility of the implementation; the negative parts of the interface type
are not checked by the implementation—clients must check these themselves be-
fore calling functions from the ADT. Distributing obligations in this way recalls
Findler and Felleisen’s seminal idea of client and server blame [5].

3 Defining FH

The syntax of FH is given in Figure 1. For unrefined types we have: base types B ,
which must include Bool; type variables α; dependent function types x :T1 → T2
where x is bound in T2; and universal types ∀α.T , where α is bound in T . Aside
from dependency in function types, these are just the types of the standard
polymorphic lambda calculus. As usual, we write T1 → T2 for x :T1 → T2 when
x does not appear free in T2. We also have predicate contracts, or refinement
types, written {x :T | e}. Conceptually, {x :T | e} denotes values v of type T for
which e[v/x ] reduces to true. For each B , we fix a set KB of the constants in that
type; we require our typing rules for constants and our typing and evaluation
rules for operations to respect this set. We also require that KBool = {true, false}.

In the syntax of terms, the first line is standard for a call-by-value polymor-
phic language: variables, constants, several monomorphic first-order operations
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op (i.e., destructors of one or more base-type arguments), term and type ab-
stractions, and term and type applications. The second line offers the standard
constructs of a manifest contract calculus [6,7,10], with a few alterations, dis-
cussed below.

Casts are the distinguishing feature of manifest contract calculi. When applied
to a value of type T1, the cast 〈T1 ⇒ T2〉l ensures that its argument behaves—
and is treated—like a value of type T2. When a cast detects a problem, it raises
blame, a label-indexed uncatchable exception written ⇑l . The label l allows us
to trace blame back to a specific cast. (While our labels here are drawn from an
arbitrary set, in practice l will refer to a source-code location.) Finally, we use
active checks 〈{x :T | e1}, e2, v〉l to support a small-step semantics for checking
casts into refinement types. In an active check, {x :T | e1} is the refinement
being checked, e2 is the current state of checking, and v is the value being
checked. The type in the first position of an active check isn’t necessary for
the operational semantics, but we keep it around as a technical aid to type
soundness. If checking succeeds, the check will return v ; if checking fails, the
check will blame its label, raising ⇑l . Active checks and blame are not intended
to occur in source programs—they are runtime devices. (In a real programming
language based on this calculus, casts will probably not appear explicitly either,
but will be inserted by an elaboration phase. The details of this process are
beyond the scope of the present work.)

The values in FH are constants, term and type abstractions, and casts. We also
define results, which are either values or blame. (Type soundness—a consequence
of Theorems 2 and 3 below—will show that evaluation produces a result, but
not necessarily a value.) In some earlier work [7,8], casts between function types
applied to values were themselves considered values. We make the other choice
here: excluding applications from the possible syntactic forms of values simplifies
our inversion lemmas.

There are two notable features relative to existing manifest calculi: first,
any type (even a refinement type) can be refined, not just base types (as in
[6,7,8,10,12]); second, the third part of the active check form 〈{x :T | e1}, e2, v〉l
can be any value, not just a constant. Both of these changes are motivated by the
introduction of polymorphism. In particular, to support refinement of type vari-
ables we must allow refinements of all types, since any type can be substituted
in for a variable.

Operational Semantics

The call-by-value operational semantics in Figure 2 are given as a small-step rela-
tion, split into two sub-relations: one for reductions (�) and one for congruence
and blame lifting (−→).

The latter relation is standard. The E Reduce rule lifts � reductions into
−→; the E Compat rule turns −→ into a congruence over our evaluation con-
texts; and the E Blame rule lifts blame, treating it as an uncatchable exception.
The reduction relation � is more interesting. There are four different kinds of
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Reduction rules e1 � e2

op (v1, ... , vn) � [[op]] (v1, ... , vn) E Op

(λx :T1. e12) v2 � e12[v2/x ] E Beta

(Λα.e)T � e[T/α] E TBeta

〈T ⇒ T 〉l v � v E Refl

〈x :T11 → T12 ⇒ x :T21 → T22〉l v � E Fun

λx :T21. (〈T12[〈T21 ⇒ T11〉l x/x ] ⇒ T22〉l (v (〈T21 ⇒ T11〉l x)))
when x :T11 → T12 �= x :T21 → T22

〈∀α.T1 ⇒ ∀α.T2〉l v � Λα.(〈T1 ⇒ T2〉l (v α)) E Forall

when ∀α.T1 �= ∀α.T2

〈{x :T1 | e} ⇒ T2〉l v � 〈T1 ⇒ T2〉l v E Forget

when T2 �= {x :T1 | e} and T2 �= {y :{x :T1 | e} | e2}
〈T1 ⇒ {x :T2 | e}〉l v � 〈T2 ⇒ {x :T2 | e}〉l (〈T1 ⇒ T2〉l v) E PreCheck

when T1 �= T2 and T1 �= {x :T ′ | e ′}
〈T ⇒ {x :T | e}〉l v � 〈{x :T | e}, e[v/x ], v〉l E Check

〈{x :T | e}, true, v〉l � v E OK

〈{x :T | e}, false, v〉l � ⇑l E Fail

Evaluation rules e1 −→ e2

e1 � e2

e1 −→ e2
E Reduce

e1 −→ e2

E [e1] −→ E [e2]
E Compat

E [⇑l ] −→ ⇑l E Blame

Fig. 2. Operational semantics

reductions: the standard lambda calculus reductions, structural cast reductions,
cast staging reductions, and checking reductions.

The E Beta, and E TBeta rules should need no explanation—these are the
standard call-by-value polymorphic lambda calculus reductions. The E Op rule
uses a denotation function [[−]] to give meaning to our first-order operations.

The E Refl, E Fun, and E Forall rules are structural cast reductions.
E Refl eliminates a cast from a type to itself; intuitively, such a cast should
always succeed anyway. (We discuss this rule more in Section 4.) When a cast
between function types is applied to a value v , the E Fun rule produces a new
lambda, wrapping v with a contravariant cast on the domain and covariant cast
on the codomain. The extra substitution in the left-hand side of the codomain
cast may seem suspicious, but in fact the rule must be this way in order for type
preservation to hold (see [7] for an explanation). The E Forall rule is similar
to E Fun, generating a type abstraction with the necessary covariant cast. Side
conditions on E Forall and E Fun ensure that these rules apply only when
E Refl doesn’t.

The E Forget, E PreCheck, and E Check rules are cast-staging
reductions, breaking a complex cast down to a series of simpler casts and checks.
All of these rules require that the left- and right-hand sides of the cast be
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different—if they are the same, then E Refl applies. The E Forget rule strips
a layer of refinement off the left-hand side; in addition to requiring that the left-
and right-hand sides are different, the preconditions require that the right-hand
side isn’t a refinement of the left-hand side. The E PreCheck rule breaks a cast
into two parts: one that checks exactly one level of refinement and another that
checks the remaining parts. We only apply this rule when the two sides of the
cast are different and when the left-hand side isn’t a refinement. The E Check

rule applies when the right-hand side refines the left-hand side; it takes the cast
value and checks that it satisfies the right-hand side. (We don’t have to check
the left-hand side, since that’s the type we’re casting from.)

Before explaining how these rules interact in general, we offer a few examples.
First, here is a reduction using E Check, E Compat, E Op, and E OK:

〈Int ⇒ {x :Int | x ≥ 0}〉l 5 −→ 〈{x :Int | x ≥ 0}, 5 ≥ 0, 5〉l
−→ 〈{x :Int | x ≥ 0}, true, 5〉l −→ 5

A failed check will work the same way until the last reduction, which will use
E Fail rather than E OK:

〈Int ⇒ {x :Int | x ≥ 0}〉l (−1) −→ 〈{x :Int | x ≥ 0},−1 ≥ 0,−1〉l
−→ 〈{x :Int | x ≥ 0}, false,−1〉l −→ ⇑l

Notice that the blame label comes from the cast that failed. Here is a similar re-
duction that needs some staging, using E Forget followed by the first reduction
we gave:

〈{x :Int | x = 5} ⇒ {x :Int | x ≥ 0}〉l 5 −→ 〈Int ⇒ {x :Int | x ≥ 0}〉l 5
−→ 〈{x :Int | x ≥ 0}, 5 ≥ 0, 5〉l −→∗ 5

There are two cases where we need to use E PreCheck. First, when multiple
refinements are involved:

〈Int ⇒ {x :{y:Int | y ≥ 0} | x = 5}〉l 5 −→
〈{y:Int | y ≥ 0} ⇒ {x :{y:Int | y ≥ 0} | x = 5}〉l (〈Int ⇒ {y:Int | y ≥ 0}〉l 5) −→∗

〈{y:Int | y ≥ 0} ⇒ {x :{y:Int | y ≥ 0} | x = 5}〉l 5 −→
〈{x :{y:Int | y ≥ 0} | x = 5}, 5 = 5, 5〉l −→∗

5

Second, when casting a function or universal type into a refinement of a different
function or universal type.

〈Bool → {x :Bool | x} ⇒ {f :Bool → Bool | f true = f false}〉l v −→
〈Bool → Bool ⇒ {f :Bool → Bool | f true = f false}〉l

(〈Bool → {x :Bool | x} ⇒ Bool → Bool〉l v)

E Refl is necessary for simple cases, like 〈Int ⇒ Int〉l 5 −→ 5. Hopefully, such
a silly cast would never be written, but it could arise as a result of E Fun or
E Forall. (We also need E Refl in our proof of parametricity; see Section 4.)
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Cast evaluation follows a regular schema:

Refl | (Forget
∗ (Refl | (PreCheck

∗ (Refl | Fun | Forall)? Check
∗)))

Let’s consider the cast 〈T1 ⇒ T2〉l v . To simplify the following discussion, we
define unref(T ) as T without any outer refinements (though refinements on,
e.g., the domain of a function would be unaffected); we write unrefn(T ) when
we remove only the n outermost refinements:

unref(T ) =

{
unref(T ′) if T = {x :T ′ | e}
T otherwise

First, if T1 = T2, we can apply E Refl and be done with it. If that doesn’t work,
we’ll reduce by E Forget until the left-hand side doesn’t have any refinements.
(N.B. we may not have to make any of these reductions.) Either all of the
refinements will be stripped away from the source type, or E Refl eventually
applies and the entire cast disappears. Assuming E Refl doesn’t apply, we
now have 〈unref(T1) ⇒ T2〉l v . Next, we apply E PreCheck until the cast is
completely decomposed into one-step casts, once for each refinement in T2:

〈unref1(T2) ⇒ T2〉l (〈unref2(T2) ⇒ unref1(T2)〉l
(... (〈unref(T1) ⇒ unref(T2)〉l v) ...))

As our next step, we apply whichever structural cast rule applies to 〈unref(T1) ⇒
unref(T2)〉l v , one of E Refl, E Fun, or E Forall. Now all that remains are
some number of refinement checks, which can be dispatched by the E Check

rule (and other rules, of course, during the predicate checks themselves).

Static Typing

The type system comprises three mutually recursive judgments: context well
formedness, type well formedness, and term well typing. The rules for contexts
and types are unsurprising. The rules for terms are mostly standard. First, the
T App rule is dependent, to account for dependent function types. The T Cast

rule is standard for manifest calculi, allowing casts between compatibly struc-
tured well formed types. Compatibility of type structures is defined in Figure 4;
in short, compatible types erase to identical simple type skeletons. Note that we
assign casts a non-dependent function type. The T Op rule uses the ty function
to assign (possibly dependent) monomorphic first-order types to our operations;
we require that ty(op) and [[op]] agree.

Some of the typing rules—T Check, T Blame, T Exact, T Forget, and
T Conv—are “runtime only”. We don’t expect to use these rules to type check
source programs, but we need them to guarantee preservation. Note that the
conclusions of these rules use a context Γ , but their premises don’t use Γ at
all. Even though runtime terms and their typing rules should only ever occur in
an empty context, the T App rule substitutes terms into types—so a runtime
term could end up under a binder. We therefore allow the runtime typing rules
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Context well formedness � Γ

� ∅ WF Empty

� Γ Γ � T

� Γ, x :T
WF ExtendVar

� Γ

� Γ, α
WF ExtendTVar

Type well formedness Γ � T

� Γ

Γ � B
WF Base

� Γ α ∈ Γ

Γ � α
WF TVar

Γ, α � T

Γ � ∀α.T
WF Forall

Γ � T1 Γ, x :T1 � T2

Γ � x :T1 → T2
WF Fun

Γ � T Γ, x :T � e : Bool

Γ � {x :T | e} WF Refine

Term typing Γ � e : T

� Γ x :T ∈ Γ

Γ � x : T
T Var

� Γ

Γ � k : ty (k)
T Const

∅ � T � Γ

Γ � ⇑l : T
T Blame

Γ, x :T1 � e12 : T2

Γ � λx :T1. e12 : x :T1 → T2
T Abs

Γ � e1 : (x :T1 → T2) Γ � e2 : T1

Γ � e1 e2 : T2[e2/x ]
T App

� Γ ty(op) = x1 : T1 → ... → xn : Tn → T
Γ � ei [e1/x1, ..., ei−1 /xi−1 ] : Ti [e1/x1, ..., ei−1 /xi−1 ]

Γ � op (e1, ... , en ) : T [e1/x1, ..., en/xn ]
T Op

Γ, α � e : T

Γ � Λα.e : ∀α.T
T TAbs

Γ � e1 : ∀α.T Γ � T2

Γ � e1 T2 : T [T2/α]
T TApp

Γ � T1 Γ � T2 T1 ‖ T2

Γ � 〈T1 ⇒ T2〉l : T1 → T2
T Cast

� Γ ∅ � {x :T | e1} ∅ � v : T ∅ � e2 : Bool e1[v/x ] −→∗ e2

Γ � 〈{x :T | e1}, e2, v〉l : {x :T | e1} T Check

� Γ ∅ � e : T ∅ � T ′ T ≡ T ′

Γ � e : T ′ T Conv

∅ � v : {x :T | e} � Γ

Γ � v : T
T Forget

� Γ ∅ � v : T ∅ � {x :T | e} e[v/x ] −→∗ true

Γ � v : {x :T | e} T Exact

Fig. 3. Typing rules



28 J.F. Belo et al.

Type compatibility T1 ‖ T2

T ‖ T
C Refl

T1 ‖ T2

{x :T1 | e} ‖ T2
C RefineL

T1 ‖ T2

T1 ‖ {x :T2 | e} C RefineR

T11 ‖ T21 T12 ‖ T22

x :T11 → T12 ‖ x :T21 → T22
C Fun

T1 ‖ T2

∀α.T1 ‖ ∀α.T2
C Forall

Fig. 4. Type compatibility

to apply in any well formed context, so long as the terms they type check are
closed. The T Blame rule allows us to give any type to blame—this is necessary
for preservation. The T Check rule types an active check, 〈{x :T | e1}, e2, v〉l .
Such a term arises when a term like 〈T ⇒ {x :T | e1}〉l v reduces by E Check.
The premises of the rule are all intuitive except for e1[v/x ] −→∗ e2, which is
necessary to avoid nonsensical terms like 〈{x :T | x ≥ 0}, true,−1〉l , where the
wrong predicate gets checked. The T Exact rule allows us to retype a closed
value of type T at {x :T | e} if e[v/x ] −→∗ true. This typing rule guarantees type
preservation for E OK: 〈{x :T | e1}, true, v〉l −→ v . If the active check was well
typed, then we know that e1[v/x ] −→∗ true, so T Exact applies. Finally, the
T Conv rule allows us to retype expressions at convertible types: if ∅ � e : T and
T ≡ T ′, then ∅ � e : T ′ (or in any well formed context Γ ). We define ≡ as the
symmetric, transitive closure of call-by-value respecting parallel reduction, which
we write �. The T Conv rule is necessary to prove preservation in the case
where e1 e2 −→ e1 e ′2. Why? The first term is typed at T2[e2/x ] (by T App), but
reapplying T App types the second term at T2[e ′2/x ]. Conveniently, T2[e2/x ]�
T2[e ′2/x ], so the two are convertible if we take parallel reduction as our type
conversion. Naturally, we have to take the transitive closure so we can string
together conversion derivations. We take the symmetric closure, since it is easier
for us to work with an equivalence. In previous work, subtyping is used instead
of the ≡ relation; one of our contributions is the insight that subtyping—with
its accompanying metatheoretical complications—is not an essential component
of manifest calculi.

We define type compatibility and a few metatheoretically useful operators in
Figure 4.

Lemma 1 (Canonical forms). If ∅ � v : T, then:

1. If unref(T ) = B then v = k ∈ KB for some v
2. If unref(T ) = x :T1 → T2 then v is

(a) λx :T ′1. e12 and T ′1 ≡ T1 for some x ,T ′1 and e12, or
(b) 〈T ′1 ⇒ T ′2〉l and T ′1 ≡ T1 and T ′2 ≡ T2 for some T ′1,T

′
2, and l

3. If unref(T ) = ∀α.T ′ then v is Λα.v ′ for some v ′.

Theorem 2 (Progress). If ∅ � e : T, then either e −→ e ′ or e is a result.

Theorem 3 (Preservation). If ∅ � e : T and e −→ e ′, then ∅ � e ′ : T.
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Closed terms r1 ∼ r2 : T ; θ; δ and e1 � e2 : T ; θ; δ

k ∼ k : B ; θ; δ ⇐⇒ k ∈ KB

v1 ∼ v2 : α; θ; δ ⇐⇒ ∃RT1T2, α �→ R,T1,T2 ∈ θ ∧ v1 R v2

v1 ∼ v2 : (x :T1 → T2); θ; δ ⇐⇒ ∀v ′
1 ∼ v ′

2 : T1; θ; δ, v1 v ′
1 � v2 v ′

2 : T2; θ; δ[v ′
1, v

′
2/x ]

v1 ∼ v2 : ∀α.T ; θ; δ ⇐⇒ ∀RT1T2, v1 T1 � v2 T2 : T ; θ[α �→ R,T1,T2]; δ
v1 ∼ v2 : {x :T | e}; θ; δ ⇐⇒ v1 ∼ v2 : T ; θ; δ ∧

θ1(δ1(e))[v1/x ] −→∗ true ∧ θ2(δ2(e))[v2/x ] −→∗ true
⇑l ∼ ⇑l : T ; θ; δ

e1 � e2 : T ; θ; δ ⇐⇒ ∃r1r2, e1 −→∗ r1 ∧ e2 −→∗ r2 ∧ r1 ∼ r2 : T ; θ; δ

Types T1 � T2 : ∗; θ; δ
B � B : ∗; θ; δ
α � α : ∗; θ; δ

x :T11 → T12 � x :T21 → T22 : ∗; θ; δ ⇐⇒ T11 � T21 : ∗; θ; δ ∧
∀v1 ∼ v2 : T11; θ; δ,

T12 � T22 : ∗; θ; δ[v1, v2/x ]
∀α.T1 � ∀α.T2 : ∗; θ; δ ⇐⇒ ∀RT ′

1T
′
2, T1 � T2 : ∗; θ[α �→ R,T ′

1,T
′
2]; δ

{x :T1 | e1} � {x :T2 | e2} : ∗; θ; δ ⇐⇒ T1 � T2 : ∗; θ; δ ∧
∀v1 ∼ v2 : T1; θ; δ, θ1(δ1(e1))[v1/x ] � θ2(δ2(e2))[v2/x ] : Bool; θ; δ

Open terms and types Γ � θ; δ and Γ � e1 � e2 : T and Γ � T1 � T2 : ∗
Γ � θ; δ ⇐⇒ ∀x :T ∈ Γ, θ1(δ1(x)) � θ2(δ2(x)) : T ; θ; δ ∧

∀α ∈ Γ,∃RT1T2, α �→ R,T1,T2 ∈ θ
Γ � e1 � e2 : T ⇐⇒ ∀Γ � θ; δ, θ1(δ1(e1)) � θ2(δ2(e2)) : T ; θ; δ
Γ � T1 � T2 : ∗ ⇐⇒ ∀Γ � θ; δ, T1 � T2 : ∗; θ; δ

Fig. 5. The logical relation for parametricity

Requiring standard weakening, substitution, and inversion lemmas, the syntactic
proof of type soundness is straightforward. It is easy to restrict FH to a simply
typed calculus with a similar type soundness proof.

4 Parametricity

We prove relational parametricity for two reasons: (1) it gives us powerful rea-
soning techniques such as free theorems [17], and (2) it indicates that contracts
don’t interfere with type abstraction. Our proof is standard: we define a (syn-
tactic) logical relation where each type is interpreted as a relation on terms and
the relation at type variables is given as a parameter. In the next section, we
will define a subtype relation and show that an upcast—a cast whose source
type is a subtype of the target type—is logically related to the identity function.
Since our logical relation is an adequate congruence, it is contained in contextual
equivalence. Therefore, upcasts are contextually equivalent to the identity and
can be eliminated without changing the meaning of a program.

We begin by defining two relations: r1 ∼ r2 : T ; θ; δ relates closed results,
defined by induction on types; e1 � e2 : T ; θ; δ relates closed expressions which
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evaluate results in the first relation. The definitions are shown in Figure 5.1 Both
relations have three indices: a type T , a substitution θ for type variables, and a
substitution δ for term variables. A type substitution θ, which gives the inter-
pretation of free type variables in T , maps a type variable to a triple (R,T1,T2)
comprising a binary relation R on terms and two closed types T1 and T2. We
require that R be closed under parallel reduction (the � relation). A term sub-
stitution δ maps from variables to pairs of closed values. We write θi (i = 1, 2)
for a substitution that maps a type variable α to Ti where θ(α) = (R,T1,T2).
We denote projections δi similarly.

With these definitions out of the way, the term relation is mostly straightfor-
ward. First, ⇑l is related to itself at every type. A base type B gives the identity
relation on KB , the set of constants of type B . A type variable α simply uses the
relation assumed in the substitution θ. Related functions map related arguments
to related results. Type abstractions are related when their bodies are paramet-
ric in the interpretation of the type variable. Finally, two values are related at a
refinement type when they are related at the underlying type and both satisfy
the predicate; here, the predicate e gets closed by applying the substitutions.
The ∼ relation on results is extended to the relation � on closed terms in a
straightforward manner: terms are related if and only if they both terminate at
related results. We extend the relation to open terms, written Γ � e1 � e2 : T ,
relating open terms that are related when closed by any “Γ -respecting” pair of
substitutions θ and δ (written Γ � θ; δ, also defined in Figure 5).

To show that a (well-typed) cast is logically related to itself, we also need
a relation on types T1 � T2 : ∗; θ; δ; we define this relation in Figure 5. We
use the logical relation on terms to handle the arguments of function types
and refinement types. Note that T1 and T2 are not necessarily closed; terms
in refinement types, which should be related at Bool, are closed by applying
substitutions. In the function/refinement type cases, the relation on a smaller
type is universally quantified over logically related values. There are two choices
of the type at which they should be related (for example, the second line of
the function type case could change T11 to T21), but it does not really matter
which to choose since they are related types. Here, we have chosen the type
from the left-hand side; in our proof, we justify this choice by proving a “type
exchange” lemma that lets us replace a type index T1 in the term relation by
T2 when T1 � T2 : ∗. Finally, we lift our type relation to open terms: we
write Γ � T1 � T2 : ∗ when two types are equivalent for any Γ -respecting
substitutions.

It is worth discussing a few points peculiar to our formulation. First, we allow
any relation on terms closed under parallel reduction to be used in θ; terms
related at T need not be well typed at T . The standard formulation of a logical
relation is well typed throughout, requiring that the relation R in every triple be
well typed, only relating values of type T1 to values of type T2 (e.g., [14]). We
have two motivations for leaving our relations untyped. First, functions of type

1 To save space, we write ⇑l ∼ ⇑l : T ; θ; δ separately instead of manually adding such
a clause for each type.
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x :T1 → T2 must map related values (v1 ∼ v2 : T1) to related results...but at
what type? While T2[v1/x ] and T2[v2/x ] are related in our type logical relation,
terms that are well typed at one type won’t necessarily be well typed at the
other. Second, we prove in Section 5 that upcasts have no effect: if T1 <: T2,
then 〈T1 ⇒ T2〉l ∼ λx :T1. x : T1 → T2. That is, we want a cast 〈T1 ⇒ T2〉l ,
of type T1 → T2, to be related to the identity λx :T1. x , of type T1 → T1: the
cast and the identity won’t (in general) have the same type. We therefore don’t
demand that two expressions related at T be well typed at T , and we allow
any relation to be chosen as R, so long as it is closed under parallel reduction.
Another peculiarity is in our treatment of substitutions and type indices. Just
as the interpretation of free type variables in the logical relation’s type index are
kept in a substitution θ, we keep δ as a substitution for the free term variables
that can appear in type indices. Keeping this substitution separate avoids a
problem in defining the logical relation at function types. Consider a function
type x :T1 → T2: our logical relation says that values v1 and v2 are related at
this type when they take related values to related results, i.e. if v ′1 ∼ v ′2 : T1; θ; δ,
then we should be able to find v1 v ′1 � v2 v ′2. The question here is which type
index we should use. If we keep our type indices closed (with respect to term
variables), we cannot use T2 on its own—we have to choose a binding for x !
Knowles and Flanagan [10] deal with this problem by introducing the “wedge
product” operator, which merges two types—one with v ′1 substituted for x and
the other with v ′2 for x—into one. Instead of substituting eagerly, we put both
bindings in δ and apply them when needed—the refinement type case. We think
our formulation is more uniform with regard to free term/type variables, since
eager substitution is a non-starter for type variables, anyway.

As we developed our proof, we found that the E Refl rule

〈T ⇒ T 〉l v � v

is not just a convenient way to skip decomposition of a trivial cast into smaller
trivial casts (when T is a polymorphic or dependent function type); E Refl is,
in fact, crucial to obtaining parametricity in our syntactic setting. For example,
by parametricity, we expect every value of type ∀α.α→ α to behave the same as
the polymorphic identity function. One of the values of this type is Λα.〈α⇒ α〉l .
Without E Refl, however, applying this type abstraction to a compound type,
say Bool → Bool, and a function f of type Bool → Bool would return, by E Fun,
a value that is syntactically different from f , breaking parametricity!2 With
E Refl, 〈T ⇒ T 〉l returns the input immediately, regardless of T , just as
the identity function. So, this rule is a technical necessity, ensuring that casts
containing type variables behave parametrically. (Naturally, the evaluation of
well-typed programs never encounters casts with uninstantiated type variables.)

We have relational parametricity—every well-typed term (under Γ ) is related
to itself for any Γ -respecting substitutions.
2 Intuitively, we expect the returned value should behave the same as the input,

though. Moreover, the subtyping we define is reflexive, so the upcast lemma we
prove applies, as well—though, of course, we used E Refl to prove it!
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Γ � T1 <: T2

Γ � B <: B
S Base

Γ � α <: α
S TVar

Γ, α � T1 <: T2

Γ � ∀α.T1 <: ∀α.T2
S Forall

Γ � T21 <: T11 Γ, x :T21 � T12[〈T21 ⇒ T11〉l x/x ] <: T22

Γ � x :T11 → T12 <: x :T21 → T22
S Fun

casts(T ) =

{
〈T ′ ⇒ {x :T ′ | e}〉l ◦ casts(T ′) if T = {x :T ′ | e}
λx :T . x otherwise

Γ � unref(T1) <: unref(T2)
Γ, x : unref(T1) � casts(T1) x ⊃ casts(T2) (〈unref(T1)⇒ unref(T2)〉l x)

Γ � T1 <: T2
S Refine

Γ � e1 ⊃ e2

∀Γ � θ; δ. (∃v . θ1(δ1(e1)) −→∗ v) implies (∃v . θ1(δ1(e2)) −→∗ v)
Γ � e1 ⊃ e2

Imp

Fig. 6. Subtyping, implication, and closing substitutions

Theorem 4 (Parametricity)

1. If Γ � e : T then Γ � e � e : T, and
2. If Γ � T then Γ � T � T : ∗.

The proof is mostly standard, although—like the proof of semantic type sound-
ness in Greenberg, Pierce, and Weirich [7]—it requires a separate reflexivity
lemma for casts, as mentioned above. We make one small disclaimer: we have
not completed the standard but tedious proof showing that parallel reduction
implies cotermination at similar values, i.e., if e1 � e2 and e1 −→∗ r1, then
e2 −→∗ r2 such that r1 � r2, and vice versa. We expect that our existing Coq
proof of this fact for a similar operational semantics (from [7]) will adapt read-
ily. Note that our proof of type soundness in Section 3 relies on much simpler
properties of parallel reduction, which we have proved.

5 Subtyping and Upcast Elimination

Knowles and Flanagan [10] define a subtyping relation for their manifest calculus,
λH, as a primitive notion of the system. Furthermore, they prove that upcast
elimination is sound: if T1 <: T2, then 〈T1 ⇒ T2〉l is equivalent to the identity
function. Upcast elimination is, at heart, an optimization: since the cast can
never fail, there is no point in running it. We define a subtyping relation for FH
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and prove that upcast elimination is sound. To be clear, the type system of FH
doesn’t have subtyping or a subsumption rule at all; we simply show that upcasts
are logically related—and therefore contextually equivalent—to the identity.

We define subtyping in Figure 6. Our subtyping rules are similar to those in
λH. The first three rules are standard. The rule for dependent function types is
mostly usual: contravariant on argument types and covariant on return types.
Here, we need to be careful about the type of x . Return types T12 and T22
should be compared under the assumption that x has T21, which is a subtype
of the other argument type T11 [4]. However, x in T12 has a different type, i.e.,
T11, so we need to insert a cast to keep the subtyping relation well typed—FH
doesn’t have subsumption!

Our rule for subtyping of refinements differs substantially from λH’s, mostly
because FH allows refinements of arbitrary types, while λH only refines base
types. The S Refine rule essentially says T1 is a subtype of T2 if (1) T1 with-
out the (outermost) refinements is a subtype of T2 without the (outermost)
refinements, and (2) for any v of type unref(T1), if casts(T1) v reduces to a
value, so does casts(T2) 〈unref(T1) ⇒ unref(T2)〉l v , for any l . The intuition
behind the second condition is that, for T1 to be a subtype of T2, the predicates
in T1 (combined by conjunction) should be stronger than those in T2. Recall
that casts(T ) is defined in Figure 6 as the composition of casts necessary to cast
from unref(T ) to T . So, if application of casts(T ) to a value of unref(T ) does
not raise blame, then the value can be typed at T by repeated use of T Exact.

If the implication in S Refine holds for a value v of type unref(T1), then
either: (1) v did not pass the checks in casts(T1), so this value is not in T1; or
(2) v passed the checks in casts(T1) and 〈unref(T1) ⇒ unref(T2)〉l v passed all
of the checks in casts(T2). So, if (1) or (2) hold for all values of type unref(T1),
then it means that all values of type T1 can be safely treated as if they had type
T2, i.e., T1 a subtype of T2.

Finally, we need a source of closing substitutions to compare the evaluation
of the two casts. We use the closing substitutions from the logical relation at T
as the source of “values of type T”. (Arbitrarily, we take the values and types
from the left.) There is a similar situation in the manifest calculi of Knowles
and Flanagan [10] and Greenberg, Pierce, and Weirich [7]. They both define a
denotational semantics for use in their refinement subtyping rule—but they need
to do so, in order to avoid a circularity. We have no such issues, and make the
decision because it is expedient.

We formulate our implication judgment in terms of cotermination at values
rather than cotermination at true (as in [7,10]) because we have to contend with
multiple layers of refinement in types—using cotermination at values reduces the
amount of predicate bookkeeping we have to do.

Having defined subtyping, we are able to show that upcast elimination is
sound.

Lemma 5 (Upcast lemma). If Γ � T1 <: T2 and Γ � T1 and Γ � T2, then
Γ � 〈T1 ⇒ T2〉l � λx :T1. x : T1 → T2.
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6 Related Work

We discuss the related work in two parts. We first distinguish our work from the
untyped contract systems that enforce parametric polymorphism dynamically,
rather than statically as FH does; we then discuss how FH differs from existing
manifest contract calculi in greater detail.

Dynamically Checked Polymorphism

The FH type system enforces parametricity with type abstractions and type vari-
ables, while refinements are dynamically checked. Another line of work omits re-
finements, seeking instead to dynamically enforce parametricity—typically with
some form of sealing (à la Pierce and Sumii [13]).

Guha et al. [9] define contracts with polymorphic signatures, maintaining ab-
straction with sealed “coffers”; they do not prove parametricity. Matthews and
Ahmed [11] prove parametricity for a polymorphic multi-language system with
a similar policy. Ahmed et al. [2] prove parametricity for a gradual typing [15]
calculus which enforces polymorphism with a set of global runtime seals. Strick-
land et al. add support for dynamically checked variable-arity polymorphism to
Typed Racket [16]. Ahmed et al. [3] define a polymorphic calculus for gradual
typing, using local syntactic “barriers” instead of global seals. We believe that
it is possible to combine FH with the barrier calculus of Ahmed et al., yielding
a polymorphic blame calculus [18]. We leave this to future work.

Manifest Systems

Wadler and Findler [18] gave a simple syntactic account of a calculus combining
refinement types and gradual types [15]; they, like us, define subtyping post facto,
proving theorems similar to the upcast lemma. They do not, however, support
dependent function types. Gronski and Flanagan [8] compares non-dependent
latent and manifest contract calculi.

Four existing manifest calculi have dependent function types (such as
[6,7,10,12]) use subtyping and theorem provers as part of the definition of the
type system. All four of these calculi have complicated metatheory. Ou et al. [12]
restrict refinements and arguments of dependent functions to a conservative ap-
proximation of pure terms; they also place strong requirements on their prover.
Knowles and Flanagan [10] as well as Greenberg, Pierce, and Weirich [7] use
denotational semantics to give a firm foundation to Flanagan’s earlier work [6].
We consider three systems in more detail: Knowles and Flanagan’s λH (KF) [10];
Greenberg, Pierce, and Weirich’s λH (GPW) [7]; and FH. The rest of this sub-
section addresses the differences between KF, GPW, and FH.

In Section 1, we discussed in general terms some of the complexity that KF
and GPW encountered. What made KF and GPW so complicated? Both systems
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share the same two impediments in the preservation proof: preservation after
active checks and after congruence steps in the argument position of applications.
KF and GPW resolve both of these with subtyping, using a rule like the following
for refinements:3

∀Γ, x :{x :B | true} � σ. σ(e1) −→∗ true implies σ(e2) −→∗ true

Γ � {x :B | e1} <: {x :B | e2}
Subtyping and the requirement that constants be assigned most specific types,
—i.e., if e[k/x ] −→∗ true for k ∈ KB then ∅ � ty (k) <: {x :B | e}—are used
to show preservation of active checks. The two systems use subtyping to relate
substituted types in different ways. KF use full beta reduction, showing that
subtyping is closed under reduction. GPW use call-by-value reduction, showing
that subtyping is closed under parallel reduction. Once these two difficulties are
resolved, both preservation proofs are standard, given appropriate subtyping
inversion lemmas.

So much for subtyping. Why do KF and GPW need denotational semantics?
Spelled out pedantically, the subtyping rule above has the following premise:

∀σ. Γ, x :{x :B | true} � σ implies (σ(e1) −→∗ true implies σ(e2) −→∗ true)

That is, the well formedness of the closing substitution σ is in a negative po-
sition. Where do closing substitutions come from? We cannot use the typing
judgment itself, as this would be ill-defined: term typing requires subtyping via
subsumption; subtyping requires closing substitutions in a negative position via
the refinement case; but closing substitutions require typing. We need another
source of values: hence, denotational semantics. Both KF and GPW define syn-
tactic term models of types to use as a source of values for closing substitutions,
though the specifics differ.

After adding subtyping and denotational semantics, both KF and GPW are
well defined and have syntactic proofs of type soundness. But in the process
of proving syntactic type soundness, both languages proved semantic soundness
theorems:

Γ � e : T implies ∀Γ � σ, σ(e) ∈ [[σ(T )]]

This theorem suffices for soundness of the language... so why bother with a
syntactic proof? In light of this, GPW only proves semantic soundness. The
situation in KF and GPW is unsatisfying: the syntactic proof of type soundness
motivated subtyping, which motivated denotational semantics, which obviated
the need for syntactic proof. Beyond this, the proofs are hard to scale: adding
in polymorphism or state is a non-trivial task, since we must—before defining
the type system!—construct an appropriate denotational semantics, which itself
depends on our evaluation relation.

FH solves the problem by avoiding subtyping—which is what forced the pres-
ence of closing substitutions and denotational semantics in the first place. The
3 Readers familiar with the systems will recognize that we’ve folded the implication

judgment into the relevant subtyping rule.
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first issue in preservation—that of preserving refinement types after checks have
finished—was resolved in KF and GPW with subtyping. We instead resolve it
with a runtime rule that allows us to type values with any refinement they
satisfy:

� Γ ∅ � v : T ∅ � {x :T | e} e[v/x ] −→∗ true

Γ � v : {x :T | e} T Exact

Adding this rule eliminates one use of subtyping as well as the “most-specific
type” restriction. If we “bit the bullet” and allowed non-empty contexts in
T Exact, then we would need to apply a closing substitution to e[v/x ] be-
fore checking if it reduces to true. But the circularity in subtyping alluded to in
Section 1 was caused by closing substitutions; we must avoid them! The second
issue in preservation—that of conversion between T2[e2/x ] and T2[e ′2/x ]—can
be resolved in a similar fashion. We define another runtime rule that allows us
to convert types:

� Γ ∅ � e : T ∅ � T ′ T ≡ T ′

Γ � e : T ′
T Conv

The conversion we use, ≡, is defined as the symmetric, transitive closure of
CBV-respecting parallel reduction. This is only as much equivalence as we need:
if e2 −→ e ′2, then T2[e2/x ] ≡ T2[e ′2/x ]. These two rules suffice to keep subtyping
out of FH, which in turn avoids denotational semantics.

7 Future Work

We presented a simpler approach to manifest contract calculi, which we applied
to construct FH, a parametrically polymorphic manifest contract calculus. We
hope to extend FH with barriers for dynamically checked polymorphism [3], and
with general recursion and state. (Though we acknowledge that state is a difficult
open problem.) We also hope that FH’s operational semantics and (relatively)
simple type system will help developers implement contracts.
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Proving Isolation Properties for
Software Transactional Memory�

Annette Bieniusa and Peter Thiemann

University of Freiburg, Germany

Abstract. An algorithm for Software Transactional Memory (STM) is
correct if it guarantees a proclaimed degree of isolation between con-
currently executing transactions. A correctness proof requires explicit
modeling of the effects of transaction bodies and the non-deterministic
scheduling of their operations.

We provide a formalization of an STM algorithm that is explicit about
all aspects required for a correctness proof: effects of operations, non-
determinism, and modeling rollback. We prove that this algorithm is
correct by showing that it implements opacity.

1 Introduction

Concurrent programming is notoriously difficult. Programs that rely on shared
memory may exhibit race conditions or other strange effects caused by the sub-
tleties of the underlying memory model. Traditionally, these defects are kept at
bay through synchronization primitives like monitors, locks, and semaphores.
However, these constructs complicate reasoning about programs considerably,
not the least because they might give rise to deadlocks.

While an application aiming for ultimate performance has to tackle these ob-
stacles and must rely on explicit reasoning with the synchronization primitives
to construct a correctness proof, Software Transactional Memory (STM) is an
alternative approach that gives high-level guarantees about the interaction of
concurrent threads. In STM, read or write accesses to shared memory are only
permitted inside a transaction, where a thread is guaranteed an isolation prop-
erty which roughly states that it never sees an inconsistent memory snapshot.

The problems resulting from computations that observe inconsistencies in
their memory snapshot are well-known. For example, in an interleaved execution
of transactions Tx1 and Tx2,

Tx1: read X; read X
Tx2: write X; commit

the second read should return the same value as the first one (repeatable read)
and, furthermore, transaction Tx1 must not be allowed to commit because its
outcome may be based on an obsolete value of X.
� This work was partially funded as part of the JCell project by the Federal Govern-

ment of Germany under grant number 01IH08011.

G. Barthe (Ed.): ESOP 2011, LNCS 6602, pp. 38–56, 2011.
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For another example, consider the interleaved execution

Tx1: read X; commit
Tx2: write X; abort;

where the read operation in Tx1 must not return the value written by Tx2 because
it aborts instead of committing (phantom read). The first transaction Tx1 may
commit unless there are inconsistencies involving other variables.

By avoiding observable inconsistencies, the semantics of transactional memory
provides a comparatively simple model for concurrent programming. Instead
of having the programmer associate several memory locations with a lock and
requiring that the lock needs to be obtained before accessing any of these memory
locations and released thereafter, accesses are grouped together in a transaction
that runs at a proclaimed level of isolation. To prevent conflicting accesses,
each STM algorithm has a built-in contention strategy that detects and resolves
conflicts like the ones exhibited in the examples. The main question is thus what
kind of isolation does an STM algorithm provide.

Prior work on the semantics of transactions [1,12] focused primarily on weak
atomicity, which is important for hybrid applications (for example, an application
that includes legacy code using locking as well as new transactional code) because
it helps to study the interaction of transactional and non-transactional memory
accesses. However, these formalizations do not account for the phenomena due to
the interleaved execution of transactions. For example, in state-of-the-art algo-
rithms like TL2 [4], threads may get stuck even when a fair scheduling of threads
is provided because they are repeatedly forced to abort by other transactions’
successful commits.

To illustrate the mechanism underlying the aborts, this paper pursues an
approach that abstracts program execution by traces of memory accesses and
transaction control operations. To this end, we define a monadic lambda calcu-
lus with threads and transactions, ΛSTM . Similar to approaches in research on
isolation levels of database transactions, each memory access is modeled by an
effect on the global store. By modeling an TM algorithm similar to TL2, the
system is shown to implement the isolation level of opacity.

We claim the following contributions:
1. A formalization of a semantics of transactional memory that is suitable for

proving properties of a TM implementation.
A high-level semantics abstracts so many details that properties of the im-
plementation become trivially evident [8]. A low-level semantics provides
so many details that formal proof of its properties is no longer tractable.
An example is pseudocode for an implementation. Our semantics keeps in
the middle ground. It explicitly models the non-deterministic interleaving of
the operations in each thread including operations in aborting transactions.
However, it does not model implementation details like the construction of
memory snapshots or the implementation of locks.

2. We prove that our semantics implements opacity [7], that is, all execution
traces in our semantics are equivalent to serial execution traces, where the
execution of critical regions (i.e., transaction bodies) is non-interleaved.
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Overview. Section 2 starts with examples that illustrate the basic ideas. Then,
section 3 presents the formalization of the system. Based on the operational
semantics, section 4 continues with the characteristics of the model and shows
the serializability of traces. The paper concludes with related work in section 5
and concludes in section 6.

2 Execution Traces

2.1 Successful Commits

If all transactions in a program run commit successfully at the highest isolation
level, then the execution trace can be turned into a serializable one by adapting
the scheduler’s decisions. For an example, consider a trace where the scheduling
interleaves two transactions t1 and t2 that read and write disjoint variables
x �= y (at marks the start of a transaction and co(x) its commit which writes
variable x):

t1

t2

at1 r1(x)

at2 r2(y)

co1(x)

co2(y)

For this trace, there are two equivalent serial traces:

t1

t2

at1 r1(x)

at2 r2(y)

co1(x)

co2(y)

and

t1

t2

at1 r1(x)

at2 r2(y)

co1(x)

co2(y)

Both traces correspond to evaluations of the program to the same final store.
During the evaluation, each transaction conceptually operates on its own mem-
ory snapshot, taken at the beginning of the transaction. As both transactions
were able to finish successfully, their read and write sets cannot have elements
in common, and all their operations are independent. Hence both serial traces
are equivalent to the original one.

2.2 Read Conflicts

A read conflict occurs if one transaction commits a write operation to a variable
that another transaction is just about to read. In that case, the reading trans-
action must not proceed because its snapshot is no longer consistent with the
current store. Thus, the semantics forces the second transaction to abort.
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As an example, consider the following trace:

t1

t2

at1 ab1

at2 r2(x) co2(x)

The trace illustrates a transaction t1 which has to abort (indicated by ab)
because of a read conflict on variable x (it does not produce a read effect because
the read operation is never permitted, as explained above). Nevertheless, there
is an equivalent serial trace:

t1

t2

at1 ab1

at2 r2(x) co2(x)

2.3 Snapshot Isolation

The next trace gives an example of a non-serializable execution:

t1

t2

at1 r1(x) co2(y)

at2 r2(y) co2(x)

The transactions in this example do not have write or read conflicts as they
update different memory locations. Yet, the memory locations that one transac-
tion read are updated by the other. This effect is a write skew anomaly [2]. The
trace is not serializable because a read operation is supposed to return the last
value written to a variable. Hence, in a serial trace the latter operation would
yield the value written by the first one.

Algorithms that allow traces with write skew anomalies implement a weaker
isolation level called snapshot isolation. It requires that all transactions operate
on reads that belong to one consistent memory snapshot. Updates that are com-
mitted between the begin of a transaction and its commit lead to conflicts only
if the current transaction is about to update the same locations.

2.4 Semantics of Haskell’s orElse

The STM library for Haskell [8], which is shipped with GHC, provides a construct
m1 ‘orElse‘ m2. Its semantics specifies that if there is a failure during the
execution of the or branch m1 (because of a failed read due to a conflict with
a concurrently running transaction or because of a retry instruction issued by
the programmer), the write operations of the or branch are discarded, and else
branch m2 is executed instead.

Although the semantics of Haskell’s STM does not permit write skew anoma-
lies, it provides the programmer with information about conflicting memory
accesses at run time. If the programmer exploits this information, the semantics
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x∈Var l ∈ Ref
v ∈Val ::= l | tt | ff | () | λx.e
e ∈Exp ::= v | x | e e | if e e e | return e | e >>= e

| spawn e | atomic e | (e,Wi, Ri, i, e,H)
| newref e | readref e | writeref e e

Fig. 1. Syntax of ΛSTM . Gray expressions arise only during evaluation.

of a program depends crucially on the scheduling of the threads. As the else
branch is never entered in a serial execution (unless there is an explicition invo-
cation of retry), Haskell STM actually implements an isolation level which is
less restrictive than opacity but more restrictive than snapshot isolation.

This paper concentrates on serializability and opacity. It does not consider
weaker isolation modes like snapshot isolation or Haskell’s orElse construct.

3 Formalization of Transactions

This section formalizes an STM with lazy update, where all write operations
are delayed till the commit operation. The formalization is based on a monadic
call-by-value lambda calculus with references, threads, and transactions.

3.1 Syntax

Figure 1 contains the syntax of ΛSTM . A value is either a reference, a boolean,
the unit constant, or a function. Expressions comprise these values, variables,
function application, conditional, monadic return and bind, spawning of threads,
transactions, transactions in progress (an intermediate expression not arising in
source programs), and the usual operations on references. The expression e1; e2
abbreviates (λx.e2) e1 where x does not appear free in e2 and e[v/x] denotes the
capture-avoiding substitution of x by v in e.

Figure 2 defines the type system for ΛSTM . The type language consists of the
types of the simply typed lambda calculus with base types boolean and unit, a
reference type R τ for references pointing to values of type τ , function types, and
a monadic type μ τ for a monad returning values of type τ . There is a choice of
two monads, IO for general monadic operations and STM for operations inside a
transaction.

The typing judgment contains two environments:Σ tracks the type of memory
locations, and Γ tracks the type of variables. There is a second, heap typing
judgment that relates the type of each memory location to the (closed) value
stored in it. The typing rules are syntax-directed and mostly standard.

3.2 Operational Semantics

Figure 3 introduces some further definitions for the operational semantics. A
program state H,P is a pair consisting of a heap and a thread pool. A thread
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Types τ ::= bool | () | R τ | τ → τ | μ τ
μ ::= IO | STM

Σ|Γ � ff : bool
T-False

Σ|Γ � tt : bool
T-True

Σ|Γ � () : ()
T-Unit

Γ (x) = τ

Σ|Γ � x : τ
T-Var

Σ(l) = τ

Σ|Γ � l : R τ
T-Ref

Σ|Γ, x : τ1 � e : τ2

Σ|Γ � λx.e : τ1 → τ2

T-Func

Σ|Γ � e2 : τ1 → τ2 Σ|Γ � e1 : τ1

Σ|Γ � e2 e1 : τ2

T-App

Σ|Γ � e1 : bool Σ|Γ � e2 : τ Σ|Γ � e3 : τ

Σ|Γ � if e1 e2 e3 : τ
T-If

Σ|Γ � e : τ

Σ|Γ � return e : μ τ
T-Return

Σ|Γ � e1 : μ τ Σ|Γ � e2 : τ → μ τ ′

Σ|Γ � e1 >>= e2 : μ τ ′ T-Bind

Σ|Γ � e : IO τ

Σ|Γ � spawn e : IO ()
T-Spawn

Σ|Γ � e : STM τ

Σ|Γ � atomic e : IO τ
T-Atomic

Σ|Γ � e : STM τ Σ|Γ � e′ : STM τ Σ �Wi Σ � Ri Σ � H
Σ|Γ � (e,Wi, Ri, i, e

′,H) : IO τ
T-Txn

Σ|Γ � e : τ

Σ|Γ � newref e : STM (R τ )
T-Alloc

Σ|Γ � e : R τ

Σ|Γ � readref e : STM τ
T-Deref

Σ|Γ � e1 : R τ Σ|Γ � e2 : τ

Σ|Γ � writeref e1 e2 : STM ()
T-Assign

H(l) = (v, i) ⇒ Σ|[] � v : Σ(l)
Σ � H

Fig. 2. Typing rules of ΛSTM

l ∈Ref
P ∈Program = ThreadId ⇀ Exp
Ti ∈Transaction = Exp× Store× Store× Id× Exp× Store
H, Ri, Wi ∈ Store = Ref ⇀ Val× Id
α ∈Effect = {εt, spt, at t

i, ab
t
i, co

t
i(l̄), r t

i (l), εt
i}

Fig. 3. State related definitions
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Evaluation contexts

E ::= [] e | v [] | if [] e e′

M ::= newref [] | readref [] | writeref [] e | writeref v []
| return [] | [] >>= e

Expression evaluation →
(λx.e) v → e[v/x]

if tt e e′ → e

if ff e e′ → e′

e → e′

E [e]→ E [e′]

Monadic evaluation �
return v >>= e � e v

e → e′

e � e′
m � m′

M[m] � M[m′]

Fig. 4. Operational semantics: Local evaluation steps

pool maps thread identifiers to expressions to be evaluated concurrently. The
execution of a program is represented by a labeled transition relation between
program states.

A transaction in progress is represented by a tuple (e,Wi, Ri, i, e
′,H′). It con-

sists of the expression e that is currently evaluated, the write set Wi and the
read set Ri of the transaction, a (unique) transaction identifier i, a copy of the
original transaction body e′, and a copy H′ of the heap taken at the beginning
of the transaction. The latter two store the relevant state at the beginning of a
transaction to facilitate the consistency check and the abort operation.

A reference corresponds to a heap location. All stores (the heap, the read set,
and the write set of a transaction) map a reference to a pair of a value and a
transaction identifier. The transaction identifier specifies the transaction which
committed or, in case of the write set, attempts to commit the value to the
global store. S(l) denotes the lookup operation of a reference l in a heap S. It
implies l ∈ dom(S). The store update operation S[l �→ y] returns a store that
is identical to S, except that it maps l to y. For two stores S1 and S2, we write
S1[S2] for the updated version of S1 with all entries of S2.

Operations can have different effects α on the global state: the begin transac-
tion (at ti), abort transaction (abti), read reference l (r ti (l)), and commit writing
references l̄ (coti(l̄)) indicating operations on the global shared heap, or empty
effects (εti or εt), with t a thread identifier, and i a transaction id. The empty
effects represent monadic reductions that occur outside a transaction (see top of
Fig. 5).

The evaluation of a program with body e starts in an initial state 〈〉, {t0 �→ e}
with an empty heap and a main thread t0. A final state has the form H, {t0 �→
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P(t) = m m � m′

H,P εt

=⇒ H,P [t �→ m′]
IO-Monad

P(t) =M[spawn m] t′ fresh

H,P spt

=⇒H,P [t �→ M[return ()], t′ �→ m]
Spawn

P(t) = M[atomic m] Ti = (m, 〈〉, 〈〉, i, m,H) i fresh

H,P att
i=⇒H,P [t �→ M[Ti]]

Atomic

P(t) =M[(m, Wi, Ri, i, m
′,H′)] m � m′′

H,P εt
i=⇒H,P [t �→ M[(m′′, Wi, Ri, i, m

′,H′)]]
STM-Monad

P(t) =M[(M′[newref v], Wi, Ri, i, m
′,H′)] l /∈ H,P

H,P εt
i=⇒H,P [t �→ M[(M′[return l], Wi[l �→ (v, i)], Ri, i, m

′,H′)]]
Alloc

P(t) =M[(M′[ writeref l v], Wi, Ri, i, m
′,H′)]

H,P εt
i=⇒H,P [t �→ M[(M′[return ()], Wi[l �→ (v, i)], Ri, i, m

′,H′)]]
Write

P(t) =M[(M′[readref l], Wi, Ri, i, m
′,H′)]

l /∈ dom(Wi) ∪ dom(Ri) H(l) = H′(l) = (v, j)

H,P rt
i (l)
=⇒ H,P [t �→ M[(M′[return v], Wi, Ri[l �→ (v, j)], i, m′,H′)]]

ReadGlobal

P(t) =M[(M′[readref l], Wi, Ri, i, m
′,H′)]

l /∈ dom(Wi) Ri(l) = (v, i)

H,P εt
i=⇒H,P [t �→ M[(M′[return v], Wi, Ri, i, m

′,H′)]]
ReadRSet

P(t) =M[(M′[readref l], Wi, Ri, i, m
′,H′)] Wi(l) = (v, i)

H,P εt
i=⇒H,P [t �→ M[(M′[return v], Wi, Ri, i, m

′,H′)]]
ReadWSet

P(t) =M[(m, Wi, Ri, i, m
′,H′)]

H,P abt
i=⇒H,P [t �→ M[atomic m′]]

Rollback

P(t) =M[(return v, Wi, Ri, i, m
′,H′)]

check(Ri,H) = ok H′ = H[Wi] l̄ = dom(Wi)

H,P cot
i(l̄)=⇒ H,P [t �→ M[v]]

Commit

Fig. 5. Operational semantics: Global evaluation steps
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∀l ∈ dom(Ri) : Ri(l) = H(l)
check(Ri,H) = ok

Check-Ok

∃l ∈ dom(Ri) : Ri(l) �= H(l)

check(Ri,H) = bad
Check-Bad

Fig. 6. Operational semantics: Helper relations

v0, . . . , tn �→ vn}. The rules in Figures 4 and 5 define the semantics of the lan-
guage constructs. In Fig. 4, E [•] denotes an evaluation context for an expression
and M[•] an evaluation context for monadic expressions. We write m to indicate
that an expression has monadic type.

The IO monad is the top-level evaluation mode. Each reduction step α=⇒
chooses an expression from the thread pool P . The non-determinism in this
choice models an arbitrary scheduling of threads.

Spawning a thread (Spawn) creates a new entry in the thread pool and returns
unit in the parent thread.

An atomic expression at the top-level (Atomic) creates a new transaction in
progress with the expression to be evaluated, an empty read and write set, and
a fresh transaction identifier (that has never been used before in a particular
evaluation). Further, a copy of the expression m is needed for possible rollbacks,
and a copy of the current heap to mark the beginning of the transaction.

Any evaluation step that can take place outside a transaction, can also take
place inside (STM-Monad).

Allocation of a new reference (Alloc) must check that the reference is not
yet allocated in the heap. But it must also check that the reference is not yet
allocated in any concurrently running transaction to avoid accidental overwrites
when both transactions commit. This condition is indicated by l /∈ H,P , eschew-
ing a formal definition.

Write operations (Write) are straightforward. They just affect the local write
set and store the value along with the current transaction identifier.

The read operation on references (ReadGlobal) needs to consult the global
state. If a reference cannot be read from the local read or write set, it is accessed
in the current global heap. To maintain the transaction’s consistency, the read
operation is successful only if the value has not been updated since the transac-
tion’s beginning. The value and transaction identifier as registered in the heap
for this reference are then added to the read set and the value is returned to the
transactional computation.

If a reference is present in the read set, but not in the write set, then its value
is taken from the read set (ReadRSet).

If the reference is present in the write set, then its value is taken from the
write set, without checking the read set (ReadWSet).

If none of the preceding three cases holds at a read, then the transaction
aborts and rolls back via Rollback by abandoning the transaction in progress
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and reinstalling the saved transaction body m′ as an atomic block. In fact, this
rule has no precondition so that a rollback may happen non-deterministically at
any time during a transaction. This way, it is easy to extend our model with an
explicit user abort or retry operation. Furthermore, this rule covers the abort
both when reading fails as well as when the commit operation fails.

When committing (Commit), the heap is checked for updates to the references
which are found in the transaction’s read set since the start of the transaction.
There are two cases:

The check is successful: None of the variables read by the transaction have
been committed by another transaction in the meantime. Therefore, the
transaction may publish its writes atomically to the shared heap and return
to the IO monad.

The check fails: The only applicable rule is Rollback. The transaction aborts
and restarts.

Each of these reductions generates the appropriate effect label on the transition
relation. Thus, each sequence of labeled reductions uniquely determines a se-
quence of labels, which we call the trace of the reduction sequence. Unlike other
formalizations, the interleaving of transactions as well as the abort operations
are visible in the trace.

Theorem 1 (Type soundness). The type system in Figure 2 is sound with
respect to the operational semantics of ΛSTM .

Proof. The proof is by establishing type preservation and progress in the usual
way [15]. The proof of progress relies crucially on the use of the Rollback rule
if the comparison of heap entries in ReadGlobal or Commit fails. ��

4 Opacity

Many TM systems implemented opacity before it was even defined. Examples
systems are DSTM [9], McRT-STM [13], and TL2 [4]. Thus, opacity may be
called a standard isolation property of STM. It states that any permitted in-
terleaving of transactions must have an equivalent serialized execution. Further-
more, even aborting transactions are required to view memory locations only in
a consistent way.

We can prove formally that the semantics for ΛSTM satisfies opacity. To this
end, we give a definition for well-formedness of execution traces in terms of the
effects they exhibit.

We then show that reordering certain evaluation steps leads to equivalent re-
ductions sequences. Reductions are considered equivalent if each read operation
returns the same value, each commit operation commits the same values, and
each transaction’s outcome (abort or commit) is the same. To see which reorder-
ing yields equivalent reductions, we define a notion of dependency on effects.

Finally, we show that all reduction sequences produced by the operational
semantics are equivalent to some reduction sequence with a serial trace, up to
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the assignment of unique labels to the transactions. Without loss of generality,
we only consider finite traces: for infinite traces, we would be able to establish
our results for all finite prefixes.

4.1 Well-Formedness

The well-formedness of a trace depends largely on temporal relations between
effects. We denote by α any effect from a trace ᾱ, αj denotes the effect at index
j in the trace, αt an effect from thread t, and αti an effect from transaction Ti
in thread t.

Further, ᾱ|t is the subset of all effects from thread t, and ᾱ|t,i the subsets of
all effects from transaction i in thread t.

Definition 1 (Effect traces). For a trace ᾱ, a total order on the effects α ∈ ᾱ
is defined by their position in the effect trace. For i, j ∈ {1, . . . , |ᾱ|} and i ≤ j,
we use the abbreviation

ᾱ � αi < αj
to denote that an effect αi is happening before αj in an trace ᾱ. Similarly,

ᾱ � β̄ < γ̄
extends the relation to sets of effects if it holds pairwise for all elements.

Definition 2 (Well-formed traces). A trace ᾱ is the sequence ᾱ = α1 . . .αn
of effects αi ∈ Effect, i ∈ 1, . . . , n. A trace ᾱ is well-formed iff the following
conditions hold:

– There is no effect for a thread before its spawn effect.

αt ∈ ᾱ⇒ spt ∈ ᾱ ∧ ᾱ � spt < αt

– There is no effect for a transaction Ti before its atomic effect.

r ti (l) ∈ ᾱ⇒ at ti ∈ ᾱ ∧ ᾱ � at ti < r ti (l)

coti(l̄) ∈ ᾱ⇒ at ti ∈ ᾱ ∧ ᾱ � at ti < coti(l̄)

abti ∈ ᾱ⇒ at ti ∈ ᾱ ∧ ᾱ � at ti < abti
– There is no read effect for a transaction Ti after its commit or abort effect.

coti(l̄) ∈ ᾱ⇒ ∀r ti (l) ∈ ᾱ : ᾱ � r ti (l) < coti(l̄)

abti ∈ ᾱ⇒ ∀r ti (l) ∈ ᾱ : ᾱ � r ti (l) < abit
– A transaction may have either a commit or an abort effect, but not both.

coti(l̄) ∈ ᾱ⇒ abti /∈ ᾱ
abti ∈ ᾱ⇒ coti(l̄) /∈ ᾱ
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– There are no non-transactional effects within a transaction.

εt ∈ ᾱ⇒ �i : ᾱ � atti < ε
t < coti(l̄) or ᾱ � at ti < ε

t < abti

– Transactional effects from the same thread do not interleave.

∀t ∀i �= j : ᾱ � ᾱ|t,i < ᾱ|t,j or ᾱ � ᾱ|t,j < ᾱ|t,i
Definition 3 (Pending transactions). A transaction Ti is pending in a trace
ᾱ if it has neither a commit or an abort effect:

abti /∈ ᾱ and coti(l̄) /∈ ᾱ
In contrast to other definitions of well-formed execution traces (e.g. [14]), we do
not include the condition that the order of all reads and writes in the transaction
is preserved in the effect traces. The operational semantics guarantees that each
transaction is working on a consistent view of the shared memory as indexed by
its time stamp. A read operation returns the last value written, either by another
transaction which updated the global heap, or by the transaction itself in a local
write step. Further, all write operations are published (i.e., made visible to other
transactions) only after the successful commit. Therefore, the trace reflects the
order of the globally visible effects of the read and write operations. The local
reads and writes have no globally visible effect.

Lemma 1. All traces produced by type-correct programs are well-formed.

Proof. Type-correct programs allow only certain compositions of transactional
phases. Effects are only produced when evaluating expressions in the STM monad.
An at ti effect is only produced when entering the STM monad. All read effects are
produced within the STM part, and the evaluation of a transactional expression
finishes with either an abti or coti(l̄) effect. ��

Well-formedness of a trace relates the effects of one transaction to each other.
Complementary, an isolation level defines a relation between the effects of all
transactions that participate in a trace [2]. Serializability, for example, is one of
these isolation levels.

Definition 4 (Serial traces). A well-formed trace ᾱ is serial if for any two
transactions Ti and Tj (i �= j), all effects from Ti occur before all effects from
Tj, or vice versa:

∀ i �= j : ᾱ � ᾱ|ti,i < ᾱ|tj ,j or ᾱ � ᾱ|tj ,j < ᾱ|ti,i
In contrast to other approaches, we do not exclude aborting or pending trans-
actions in the definition for serial traces. Therefore, we actually model opaque
traces.

Definition 5 (Control dependency). An effect αi has a control dependency
on an effect αj, αi �c αj, iff they must occur in that order in any well-formed
trace. A control dependency exists in the following cases:
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– at ti �c r ti (l)
– at ti �c coti(l̄)
– at ti �c abti
– r ti (l) �c abti
– r ti (l) �c coti(l̄)

Definition 6 (Data dependency). An effect αi has a data dependency on an
effect αj, αi �dαj , if they exhibit a write-read, read-write or write-write conflict.
A data dependency exists in the following cases where i �= j:

– r ti (l) �d cot
′
j (l̄) if l ∈ l̄

– coti(l̄) �d r t
′
j (l) if l ∈ l̄

– coti(l̄) �d cot
′
j (l̄′) if l̄ ∩ l̄′ �= ∅

Definition 7 (Dependency). An effect αi is dependent on an effect αj, αi �
αj, iff αi is either control or data dependent on αj and ᾱ � αi < αj in a
trace ᾱ . Effects that are not dependent are called independent. A trace of effects
α is independent from another trace of effects α ′ iff all effects αm ∈ α are
independent from all effects αk ∈ α ′.
Definition 8 (Dependent transactions). A transaction Ti is dependent on
a transaction Tj if αi � αj for an effect αi from Ti and an effect αj from Tj.

Definition 9 (Trace dependencies). Let ᾱ be a well-formed trace. The trace
dependencies Δ(ᾱ) are defined as the set of all tuples of dependent effects in this
trace:

Δ(ᾱ) = {(αi, αj) | αi � αj}
The trace dependencies impose a partial order on a trace. We are interested in
equivalent traces that satisfy the same order and are permutations of each other.
However, the order of trace items inside of every individual thread must not
be changed. We call permutations that leave the relative ordering inside every
thread unchanged admissible permutations. We prove that we can admissibly
permute a trace such that it is serial, and that execution of this trace ends in
the same program state.

In the scope of this paper, the term serializability actually refers to conflict
serializability [14]. In contrast to view seriazability, which defines traces to be
equivalent if the same data items are read and written, conflict serializability
requires that equivalent traces preserve all dependencies.

Definition 10 (Equivalence of traces). A trace ᾱ is equivalent to a trace β̄
iff β̄ is an admissibly permutation of ᾱ and Δ(ᾱ) = Δ(β̄).

Definition 11 (Equivalence of program states). A program state P is
equivalent to a program state P ′, P ∼ P ′ iff for all threads i either P(i) =
P ′(i) or P(i) = M[(m1,Wi, Ri, i,m2,H)],P ′(i) = M[(m1,Wi, Ri, i,m2,H′)]
and H|Ri = H′|Ri .
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Definition 12 (Equivalence of evaluation states). An evaluation state
H,P is equivalent to an evaluation state H′,P ′ iff H = H′ and P ∼ P ′.
Lemma 2 (Permutation of reduction steps). Let R be the two-step
reduction

H,P αi=⇒ H0,P0
αj=⇒ H′,P ′0.

If αi is independent from αj, then there exists an equivalent reduction sequence
R′ of the form

H,P αj=⇒ H1,P1
αi=⇒ H′,P ′1

and P ′0 ∼ P ′1.
Proof. Case distinction on all independent effects.

Effect-free operations (αi = εt or αj = εti) are either pure or work on local
(transactional) state. Therefore, these steps can get swapped with any operation
while resulting in the same heap and thread pool. Reduction steps which result
in an abort only modify the transactions’ local state. The same holds for read
operations. For commit effects, it holds that subsequent independent commit
operations change disjoint parts of the global heap. The rules for inconsistency
checks require that read and write sets of concurrently running transactions are
disjoint in case of successful commit. Therefore reordering independent commit
operations has no influence on the heap’s final state, and produces equivalent
program states. ��

In our semantics the begin of a transaction defines its relative order to other
transactions. Yet, this order is only partial for transactions that perform their
operations interleaved. In this case, they all only commit successfully if their
operations do not conflict with each other. The following lemma shows that for
these transactions, any relative order is permissive.

Lemma 3 (Permutation of committing transactions). Let ᾱ be a well-
formed trace with ᾱ = ᾱ′coti(l̄) and ᾱ′ serial. Further, let Tj be a transaction
with at tjj ∈ ᾱ and ᾱ � at tii < at tjj < cotii (l̄) and there does not exist a k with
ᾱ � at tii < at tkk < at tjj . Then ᾱ is equivalent to a trace β̄ with β̄ � αj < at tii for
all effects αj of transaction Tj.

Proof. According to the restrictions, the trace must have the following structure:

ᾱ = αpre, at tii , r
ti
i (l), at tjj , r

tj
j (l), (abtii |cotii (l̄)), αpost

There are no dependencies between at tjj and any r tii (l), or at tjj and at tii , or any
r tii (l) and any r tjj (l). By Lemma 3 this is therefore equivalent to trace

αpre, at
tj
j , r

tj
j (l), attii , r

ti
i (l), (abtii |cotii (l̄)), αpost

Case distinction on the status of Tj .
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– Case abtjj ∈ ᾱ: There is no dependency between abtjj and any effect of Ti, so
by Lemma 2, the trace is equivalent to

αpre, at
tj
j , r

tj
j (l), abtjj , at

ti
i , r

ti
i (l), αpost

– Case cotjj (l̄) ∈ ᾱ: Assume that r tii (l) � cotjj (l̄). Then, the validation of the
transaction Ti in rule Commit would fail and cotii (l̄) /∈ ᾱ in contradiction to
the assumption. Hence, cotjj (l̄) is not dependent on any effect of Ti, and by
Lemma 2, the trace is equivalent to

αpre, at
tj
j , r

tj
j (l), cotjj (l̄), at tii , r

ti
i (l), αpost

– Case Tj is pending: Then the trace ᾱ is equivalent to

αpre, at
tj
j , r

tj
j (l), at tii , r

ti
i (l), αpost

End case distinction on the status of Tj . ��

In the remainder of this section, we identify which subsequences of a trace are
not serial, and specify an algorithm that moves the effects to the appropriate
place.

Lemma 4 (Conflicts). Let ᾱ be a well-formed trace. Then ᾱ is either serial,
or there exists an αk such that the prefix α1 . . .αk is serial and

1. αk and αk+1 are independent, or
2. αk = r tii (l) and αk+1 = cotjj (l̄) with l ∈ l̄.

Proof. We consider all possible combinations of effects which might occur in a
well-formed trace. Cases that are left out lead violate well-formedness.
Case distinction on αi and αk+1 where i �= j.

– Case αk = εti or αk+1 = εtj : serial or independent.
– Case αk = εtij or αk+1 = ε

tj
j : serial or independent.

– Case αk = at tii and αk+1 = at tjj : serial.
– Case αk = at tii and αk+1 = r tii (l): serial.
– Case αk = at tii and αk+1 = r tjj (l): independent.
– Case αk = at tii and αk+1 = cotii (l̄): serial.
– Case αk = at tii and αk+1 = cotjj (l̄): independent.
– Case αk = at tii and αk+1 = abtii : serial.
– Case αk = at tii and αk+1 = abtjj : independent.
– Case αk = r tii (l) and αk+1 = r tjj (l′): independent.
– Case αk = r tii (l) and αk+1 = r tii (l′): serial.
– Case αk = r tii (l) and αk+1 = cotii (l̄): serial.
– Case αk = r tii (l) and αk+1 = cotjj (l̄): If l ∈ l̄, then this is the second case in

the lemma. Otherwise independent.
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– Case αk = r tii (l) and αk+1 = abtii : serial.
– Case αk = r tii (l) and αk+1 = abtjj : independent.
– Case αk = cotii (l̄) and αk+1 = cotjj (l̄′): According to the operational seman-

tics, it must hold that l̄ ∩ l̄′ = ∅. Therefore, the effects are independent.
– Case αk = cotii (l̄) and αk+1 = abtjj : independent.

End case distinction on αi and αk+1 where i �= j. ��

For the proof of opacity, we define an algorithm which produces for a serializable
trace an equivalent serial trace.

while ᾱ is not serial do
choose αk and αk+1 such that α1 . . . αk is serial and α1 . . . αk+1 is not serial
if αk and αk+1 are independent then swap αk with αk+1

else if αk = r ti
i (l) and αk+1 = co

tj

j (l̄) with l ∈ l̄ then
permute transactions in prefix such that prefix ends with transaction j

end if
end while

Fig. 7. Reordering transactions for opacity

The algorithm in Figure 7 has the following properties:

1. It terminates on all traces produced by a type-correct programs in ΛSTM .
2. For any trace input of a type-correct program in ΛSTM , it gives an equivalent

serial trace.

We prove these properties in several steps.

Lemma 5 (Termination). The algorithm terminates on all traces of type-
correct programs in ΛSTM .

Proof. We show that the algorithm only performs a finite number of swaps for
each pair of effects. Further, for each iteration of the while loop, either a per-
mutation or a swap is performed. The transaction permutations are performed
at most n! times, where n is the number of all transactions that participates in
a trace. Let mt denote the number of effects that a transaction produces, and
m = maxmt. For every permutation, each pair of effects is swapped at most
once ((m − 1)!). As each trace consists only of a finite number of effects, the
algorithm performs at most n!(m− 1)! many swap operations. ��

Lemma 6 (Permutation). The output of the algorithm is a permutation of
the input trace.

Proof. All operations on the trace are permutations of effects. Therefore, effects
are neither removed from nor added to the input trace. ��
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Lemma 7 (Dependencies). The algorithm does not change any dependencies
in the trace.

Proof. Effects are only swapped when they are independent or when permuting
transactions. In the latter case, the dependencies in the trace are respected as is
shown in Lemma 3. ��

Lemma 8 (Correctness of the algorithm). The output of the algorithm is
an equivalent serial trace.

Proof. By Lemmas 6 and 7, the output is equivalent to the input trace. By
Lemma 5, the algorithm terminates on all traces from type-correct programs. In
this case, the condition for entering the while loop is falsified, and therefore the
trace is serial. ��

Theorem 2 (Opacity). Let P0 be a type-correct program. Further, let R be a
sequence of reductions

H0,P0
α1=⇒ . . .

αn=⇒ Hn,Pn.
Then there exists an equivalent sequence R′ of the form

H0,P0
α′

1=⇒ . . .
α′

n=⇒ Hn,P ′n
such that ᾱ(R′) is serial.

Proof. We apply the algorithm for serialization of traces to the traces of R.
Because the algorithm only requires the permutation of independent effects, by
Lemma 2 the result is an equivalent reduction sequence with serial trace. ��

5 Related Work

Weikum and Vossen [14] include a comprehensive overview on theory and prac-
tice of transactional systems. Although their work is based on databases, the
presented results relate to all transaction-based execution environments. They
differentiate in detail between several notions of serializability, and give sound-
ness proofs for all major commit protocols.

Jagannathan and coworkers [10] specify a formal system for transactions with
nesting implemented by a versioning and a locking algorithm. They do not model
aborts, but stuck executions are implicitly rolled back. They show that the pre-
sented algorithms implement serializability.

Abadi and coworkers [1] formalize the semantics of the Automatic Mutual Ex-
clusion (AME) programming model. Similarly, Moore and Grossman [12] provide
a formal model with small-step operational semantics for an impure functional
language. Both works focus on the treatment of memory locations inside and out-
side of transactions, and in which cases the notion of weak and strong atomicity
coincide.
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Doherty and coworkers [5] give a formalization for transactional memory in
terms of an I/O automaton. Their specifications are of different granularities
and aim to for machine-checked correctness proofs of implementations.

Opacity was introduced by Guerraoui and Kapalka [7] as a correctness cri-
terion for transactional memory. They also show how opacity can be efficiently
implemented for different relaxed memory models [6].

Our work is partially inspired by Lipton’s work [11] on a reduction theory for
proving properties of concurrent programs. His main idea was to identify certain
statements that may be moved to the left or to the right in the trace of an inter-
leaved execution. In particular, he establishes that lock acquisition can always be
moved to the right over a statements executing in another thread, whereas lock
release is a left mover. The commonality is that we are also reordering traces to
prove isolation properties, but the difference is that we consider a transactional
framework which also includes explicit transaction aborts.

6 Conclusion and Outlook

Transactional memory has evolved as a serious subdomain in concurrent pro-
gramming. Yet, to this day only few formal models exists that give insight into
properties of TM algorithms and its concrete semantics.

This paper presents the formalization of a TM algorithm with lazy update in
terms of a monadic lambda calculus. The formal model incorporates all standard
TM operations and introduces their abstractions as effects on the global state.
The type system enforces strong atomicity semantics by restricting access to
shared memory to the STM monad. Based on the traces, the semantics is shown
to implement the isolation level of opacity.

We are currently extending the calculus with additional features like I/O
actions and repair facilities for conflicts [3]. So far, the small core calculus and
its effect system facilitated the development of the enriched interface.

It is also possible to adapt the operational semantics such that it implements
other isolation levels like snapshot isolation. The technique of reordering can be
used in a similar fashion to transform execution traces to a canonical form of
traces produced by snapshot isolation.
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Abstract. We present a calculus that models a form of process interaction based
on copyless message passing, in the style of Singularity OS. The calculus is
equipped with a type system ensuring that well-typed processes are free from
faults, leaks, and communication errors. The type system is essentially linear, but
we show that linearity alone is inadequate. On the one hand, it is too strict when
dealing with heap-allocated objects; on the other hand, it leaves room for scenar-
ios where well-typed processes leak significant amounts of memory. We address
these problems using dedicated types for keeping track of dereferenced pointers
and by basing the type system upon an original variant of session types.

1 Introduction

Singularity OS is the prototype of a dependable operating system where software-
isolated processes (SIPs) run in the same address space. Process interaction occurs
solely through the exchange of messages over asynchronous, FIFO channels consist-
ing of a pair of related endpoints (the channel peers), such that any message sent over
one of the endpoints is received on the other endpoint. The communication overhead
is tamed by copyless message passing: only pointers to messages are physically trans-
ferred from one process to another. Static analysis guarantees process isolation, namely
that every process can only access memory it owns exclusively.

In this paper, we present CoreSing#, a calculus that captures the essential features
of Singularity. We equip the calculus with a type system ensuring that well-typed pro-
cesses are free from communication errors, memory faults, and memory leaks. We avoid
communication errors by associating each endpoint with an endpoint type specifying
the sequence of input/output actions allowed on that endpoint. Endpoint types are a
variant of session types [7,8,13] tailored to the Singularity communication model. For
example, the recursive endpoint type

T = rec X .!{arg.?{ack.X},quit.end}
indicates that a process can send an arbitrary number of arg-tagged messages and can
close the endpoint only after it has sent a quit-tagged message. After every arg-tagged
message, the process must be ready to receive an ack-tagged message coming from
the process using the peer endpoint. Communication errors are avoided by imposing
that peer endpoints are typed by dual session types. For example, the dual of T is
T = rec X .?{arg.!{ack.X},quit.end}, which specifies complementary actions with
respect to those occurring in T .

To avoid memory faults and memory leaks, our type system relies essentially on the
linear usage of pointers, although linearity alone proves to be inadequate. As a matter of
fact, linearity is not enough to guarantee the absence of leaks. For instance the function
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void foo() { (e, f) = open(); send(arg, f, e); close(f); }

creates the two endpoints e and f of a channel, sends e as the argument of an arg-
tagged message on f, and closes f. This function uses e and f linearly and it is typable
by associating e and f with suitable endpoint types. Yet, foo leaks some memory: after
the close instruction, no reference to e is left to the process, therefore the arg-tagged
message will never be deallocated. This memory leak can be avoided by imposing a
simple restriction on the endpoint types. The idea is to define a notion of weight for
endpoint types which roughly gives the “size” of the message queues in the endpoints
having those types and to restrict endpoint types to those having finite weight. Then, one
can show that foo is typable only if endpoint types with infinite weight are allowed.

From another point of view, linearity is too restrictive and must be relaxed, since
using a pointer does not necessarily mean consuming the resource it points to. For
example, the same endpoint can be used multiple times, as specified by its endpoint
type. We must also deal with cases where a process owns a cell (that is, a one-field
structure) but not its content. This happens after executing the instruction

send(arg, e, *a);

which sends the content of a in an arg-tagged message on endpoint e. The process
performing the send no longer owns (the memory located at) *a after this instruction,
but it still owns (the memory located at) a. We address this issue by distinguishing
cell types ∗t from exposed cell types ∗•. The former ones denote memory cells that
a process owns together with their content (of type t); the latter ones denote memory
cells that a process owns, but whose content is owned by a different process. In the
code fragment above, a has type ∗t for some t before the send, and type ∗• after the
send. This prevents a from being dereferenced multiple times, until the process regains
ownership of its content, typically by assigning some value it owns into *a.

CoreSing# can be seen as a formalization of the language Sing#, which is an ex-
tension of C# specifically tailored to the implementation of Singularity processes. In
particular, we provide a purely type-based framework to explain channel contracts and
the expose construct in Sing# programs.

In Sing#, a channel contract describes an interaction pattern between the users of the
two endpoints. For instance, the Sing# contract

contract C {
initial state Transfer { !arg → WaitAck; !quit → End }
state WaitAck { ?ack → Transfer }
final state End { } }

describes a pattern where the process using the so-called exporting endpoint behaves as
specified by the endpoint type T defined above, while the process using the importing
endpoint behaves as specified by T . There are clear analogies between contracts and
endpoint types: the contract describes an interaction between two processes in terms of
states and transitions, with a bias towards one of the two processes; the endpoint type
describes the behavior of a single process involved in the interaction.

Regarding the expose construct, it is used by the Sing# compiler to keep track of
memory ownership. In particular, Sing# allows pointer dereferentiation only within
expose blocks. To illustrate the point, consider the following code fragments:
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expose (a)

{ send(arg, *a, b); }

expose (a)

{ send(arg, b, *a); *a = new T(); }

The effect of expose(a) is to transfer the ownership of *a from a to the process expos-
ing the pointer. If the process still owns *a at the end of the expose block, the construct
is well typed. In the fragment on the left hand side, *a is owned by the process before
and after the send, even though the type associated with a might have changed since
the send can possibly change the state of *a’s contract. In the fragment on the right
hand side, the process loses ownership of *a after the send, but it assigns the pointer to
a newly allocated object into *a. The same assignment in the left fragment would cause
a memory leak, while omitting the assignment in the right fragment would prevent the
expose block from being well typed. Distinguishing between cells with type ∗t and
cells with type ∗• is all we need to capture the static semantics of expose(a) blocks
in Sing#. At the beginning of the block, a is accessed and its type turns from ∗t to ∗•;
within the block it is possible to (linearly) use *a; at the end of the block, *a is assigned
with a (possibly different) pointer that the process owns, thus turning a’s type from ∗•
back to some ∗s.

Related work. Session types have been introduced as a structuring mechanism in dis-
tributed systems, where processes engage into a conversation by first establishing a
private session and then carrying on the conversation within the protected scope of the
session. The session type prescribes, for each process involved in the session, the se-
quence and type of messages the process is allowed to send or expected to receive at
each given time. Endpoint types are dyadic, “finite-weight” session types describing
the exchange of heap pointers. There exist session type theories guaranteeing not only
the absence of communication errors, but also the global progress of systems. While
definitely interesting, we do not care about global progress in this work, since it can be
achieved by means of orthogonal mechanisms, as shown for example in [3,1].

Aspects of the Singularity OS and of Sing# have already been formalized and studied
elsewhere. In particular, [14] and [16] introduce general frameworks for reasoning on
(pseudo-)linear access to shared memory. Regarding channel contracts, [12] shows that
they are implementable without deadlocks if they are deterministic and autonomous.
The first condition requires that there cannot be two transitions that differ only for the
target state. The autonomous condition requires that every two transitions departing
from the same state are either two sends or two receives. These conditions make it pos-
sible to split contracts into pairs of dual session types, and to fit existing session type
theories in our setting in such a natural way. To keep session types simple, however, we
do not model Singularity contracts where a final state has outgoing transitions. More ex-
pressive session types [2] could be adopted, but then we should presumably impose also
the synchronizing restriction on channel contracts, as investigated in [14]. In [4] it was
already observed that, to prevent inconsistencies related to the ownership of messages,
special care is required when sending endpoints. There, the authors show that sending
endpoints in a send-state condition is safe. Our investigation provides further motiva-
tions to restrict the endpoints that can be sent as messages. Also, our “finite-weight”
condition generalizes the send-state condition in [4]. Other works [4,6] introduce ap-
parently similar, “finite-weight” restrictions on session types to make sure that message
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queues of the corresponding channels are bounded. In our case, the weight concerns a
different measure and the restriction prevents the creation of cycles involving channel
queues in the heap (see Section 3 for details).

Our work shares many aspects with [14,15], where the authors develop a proof sys-
tem for a significant fragment of Sing#. The proof system is based on a variant of sep-
aration logic [9,11] and permits the derivation of Hoare triples of the form {A} p {B}
where p is a program and A and B are logical formulas describing the state of the heap
before and after the execution of p. A judgment {emp} p {emp} indicates that if p is
executed in the empty heap (the pre-condition emp), then it leaks no memory (the post-
condition emp). However, leaks in [14] manifest themselves only when both endpoints
of any channel used in p have been closed. In particular, it is possible to derive the
judgment {emp} foo() {emp} for the function foo we have shown above, although it
is intuitively clear that foo does indeed leak some memory. We tighten the definition of
“leak” and we are able to declare foo ill typed. Endpoint types allow us to easily detect
communication errors, while this aspect is still to be investigated in the setting of [14].

Structure of the paper. In Section 2 we present the syntax and semantics of CoreSing#
and we formalize faults, leaks, and communication errors. Section 3 presents the type
system for CoreSing# and the soundness results. In Section 4 we briefly sketch some
extensions of the type system which are supported by Sing#. We conclude in Section 5.

2 Syntax and Semantics of CoreSing#

Let us fix some notation: we use P, Q, . . . to range over processes and a, b, . . . to range
over heap pointers (or simply pointers) taken from some infinite set Pointers; we use
x, y, . . . to range over variables taken from some infinite set Variables disjoint from
Pointers and we let u, v, . . . range over names, which are elements of Pointers∪
Variables; finally, we let X , . . . range over process variables. In the following, we will
write ã, x̃, ũ, . . . for denoting sequences of pointers, variables, and names, respectively.
We will sometimes treat ũ as the set of names occurring in the sequence ũ.

The language of processes, defined by the grammar in Table 1, essentially is a
pi-calculus equipped with tag-based message dispatching and primitives for handling
heap-allocated objects (cells and endpoints). To keep the model manageable and the
presentation within the page limits we only consider cells, but multi-field structures can
be accommodated with reasonable effort. The process 0 is idle and performs no action.
Terms rec X .P and X are used for building recursive processes, as usual. The process
u!m〈ũ〉.P sends a message m〈ũ〉 on the endpoint u and continues as P. A message is made
of a tag m along with its parameters ũ. The process ∑i∈I u?mi(x̃i).Pi waits for a message
from the endpoint u. The tag mi of the received message determines the continuation Pi

where the variables xi are instantiated with the parameters of the message. The process
cell(a,u).P creates a new cell located at a, initializes it with u, and continues as P. Sim-
ilarly, open(a,b).P creates a channel, represented as a pair of endpoints a and b. We
will say that b is the peer endpoint of a and vice-versa. The process free(u) declares that
the object located at u is no longer in use. The process expose(u,x).P reads the content
of the cell located at u and binds it to x in the continuation P, while unexpose(u,v).P
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assigns v to the cell located at u. These primitives are named expose and unexpose
because they are strictly related with the expose construct in Singularity. In Section 3
we will see that they also represent complementary scoping primitives. The processes
P⊕Q and P |Q are standard and respectively denote the non-deterministic choice and
the parallel composition of P and Q.

Table 1. Syntax of CoreSing# processes and of heap objects

P ::= Process
0 (idle)

| X (variable)
| free(u) (garbage)
| open(a,a).P (open channel)
| cell(a,u).P (create cell)
| expose(u,x).P (expose cell)
| unexpose(u,u).P (unexpose cell)
| u!m〈ũ〉.P (send)
| ∑i∈I u?mi(x̃i).Pi (receive)
| P⊕P (choice)
| P |P (composition)
| rec X .P (recursion)

μ ::= Heap
/0 (empty)

| a �→ a (cell)
| a �→ [a,q] (endpoint)
| μ,μ (composition)

q ::= Queue
ε (empty)

| m〈ã〉 (message)
| q :: q (composition)

The sets of free and bound names of every process P, respectively denoted by fn(P)
and bn(P), are almost standard. Beware that the process cell(a,u).P binds a but not u,
which is thus free. The construct rec X is the only binder for process variables. We
restrict recursive processes so that in every term rec X .P we have fn(P)∩ bn(P) = /0.
This makes sure that in the unfolding P{rec X .P/X} of a recursive process no name
occurring free in P is accidentally captured.

Heaps, ranged over by μ , . . . , are finite maps from pointers to heap objects repre-
sented as terms defined according to the syntax in Table 1: the heap /0 is empty; the heap
a �→ b is made of a cell located at a that contains b; the heap a �→ [b,q] is made of an
endpoint located at a which is a structure referring to the peer endpoint b and containing
a queue q of messages waiting to be read from a. Heap compositions μ ,μ ′ are defined
only when the domains of the heaps being composed, which we denote by dom(μ) and
dom(μ ′), are disjoint. We assume that heaps are equal up to commutativity and asso-
ciativity of composition and that /0 is neutral for composition. Queues, ranged over by
q, . . . , are finite ordered sequences of messages m1〈c̃1〉 :: · · · :: mn〈c̃n〉. We build queues
from the empty queue ε and concatenation of messages by means of ::. We assume that
queues are equal up to associativity of :: and that ε is neutral for ::.

We define the operational semantics of processes as the combination of a structural
congruence relation, which equates processes we never want to distinguish, and a re-
duction relation. Structural congruence, denoted by ≡, is the least congruence relation
that includes alpha conversion on bound names, commutativity and associativity of |,
and the law P |0 ≡ P.

CoreSing# processes never interact directly with each other: every action performed
by a process has some effect (or depends) on the heap, and processes communicate with
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Table 2. Reduction of systems

(R-CELL)
(μ;cell(a,b).P) → (μ,a �→ b;P)

(R-OPEN)
(μ;open(a,b).P) → (μ,a �→ [b,ε],b �→ [a,ε];P)

(R-CHOICE)
(μ;P⊕Q) → (μ;P)

(R-EXPOSE)
(μ,a �→ b;expose(a,x).P) → (μ,a �→ b;P{b/x})

(R-REC)
(μ;rec X .P) → (μ;P{rec X .P/X})

(R-UNEXPOSE)
(μ,a �→ b;unexpose(a,c).P) → (μ,a �→ c;P)

(R-SEND)
(μ,a �→ [b,q],b �→ [a,q′];a!m〈c̃〉.P)→ (μ,a �→ [b,q],b �→ [a,q′ :: m〈c̃〉];P)

(R-RECEIVE)
k ∈ I

(μ,a �→ [b,mk〈c̃〉 :: q];∑i∈I a?mi(x̃i).Pi) → (μ,a �→ [b,q];Pk{c̃/x̃k})

(R-STRUCT)
P ≡ P′ (μ;P′) → (μ ′;Q′) Q′ ≡ Q

(μ;P) → (μ ′;Q)

(R-PAR)
(μ;P) → (μ ′;P′)

(μ;P |Q) → (μ ′;P′ |Q)

each other by means of the heap. Therefore, the reduction relation defines the transi-
tions of systems instead of processes, where a system is a pair (μ ;P) of a heap μ and
a process P. The reduction relation →, inductively defined in Table 2, is described in
the following paragraph. (R-CELL) and (R-OPEN) respectively create a new cell and a
new channel. The channel consists of two fresh endpoints which refer to each other and
have an empty queue. The cell is properly initialized with the pointer specified in the
process. Both reductions are possible provided that the newly introduced pointers do not
already occur in dom(μ), for otherwise the heap in the resulting system would be unde-
fined. (R-CHOICE) (and its symmetric, omitted) is a standard choice rule, saying that a
process P⊕Q may autonomously reduce to either P or Q leaving the heap unchanged.
For the sake of simplicity, we do not specify the test performed by the process, since it
is irrelevant for the investigation we are pursuing. (R-EXPOSE) reads the content of a
cell and binds it to a variable in the continuation process. As usual, P{b/x} denotes the
capture-avoiding substitution of every free occurrence of x in P with b. (R-UNEXPOSE)
describes the assignment of a pointer c to the content of a cell pointed to by a whose
previous content was b. The pointers b and c may be equal, in which case the reduction
is a no-op. (R-SEND) describes the sending of a message m〈c̃〉 on the endpoint a. The
message is enqueued at the end of a’s peer endpoint queue. (R-RECEIVE) describes
a process waiting for a message from the endpoint a. The message at the front of a’s
queue is removed from the queue, its tag is used for selecting some branch k ∈ I, and its
parameters instantiate the variables x̃k. If the queue is not empty and the first message
in the queue does not match any of the tags {mi | i ∈ I}, then no reduction occurs and
the process is stuck. The rule implicitly assumes that the sequence c̃ of parameters in
the message and the sequence x̃k of variables in the process have equal length. This
will be enforced by the type system in Section 3. (R-STRUCT) describes reductions
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modulo structural congruence. It plays an essential role in ensuring that cell(a,b).P
and open(a,b).P are never stuck, because a and b can always be alpha converted to
some pointers not occurring in dom(μ). Finally, (R-PAR) expresses reductions under
parallel composition. Observe that the heap is treated globally, even when it is only a
sub-process to reduce. There is no reduction for free(a) processes: it is technically con-
venient to treat them as persistent processes so that we can easily track which pointers
have been properly deallocated. A process willing to deallocate a pointer a and to con-
tinue as P afterwards can be modelled as free(a) |P. In the following we write ⇒ for
the reflexive, transitive closure of →, and we write (μ ;P) �→ if there exist no μ ′ and P′
such that (μ ;P) → (μ ′;P′).

In this work we focus on three properties of systems: we wish every system to be
fault free, where a fault is an attempt to use a pointer not corresponding to an allocated
object or to use a pointer in some way which is not allowed by the object it refers to;
we wish every system to be leak free, where a leak is a region of the heap that some
process allocates and that becomes unreachable because no reference to it is directly
or indirectly available to the processes in the system; finally, we wish every system to
enjoy (a limited form of) progress, meaning that no process in the system should get
stuck while reading messages from a non-empty queue. We conclude this section by
making these properties precise, using CoreSing# as the reference calculus.

Before we move on, we need to formalize the reachability of a heap object with
respect to a set of root pointers. Intuitively, a process P may directly reach any object
located at some pointer in the set fn(P) (we can think of the pointers in fn(P) as of the
local variables of the process stored in its stack); from these pointers, the process may
reach other heap objects by exposing cells and by reading messages from the queue of
the endpoints it can reach.

Definition 2.1 (Reachable pointers). Let A ⊆ Pointers. We write reach(A,μ) for the
least set A′ that includes A and such that:

– a ∈ A′ and a �→ b ∈ μ implies b ∈ A′;
– a ∈ A′ and a �→ [b,q :: m〈c̃〉 :: q′] ∈ μ implies c̃ ⊆ A′.

Observe that the peer of an endpoint located at a may not be reachable, because the
calculus has no primitive operator to access the b component in the heap a �→ [b,q]. We
now define well-behaved systems formally.

Definition 2.2 (Well-behaved process). We say that the process P is well behaved if
( /0;P) ⇒ (μ ;Q) implies: (1) fn(Q) ⊆ dom(μ); (2) dom(μ) ⊆ reach(fn(Q),μ); (3) Q ≡
P1 |P2 implies fn(P1)∩ fn(P2) = /0; (4) Q ≡ P1 |P2 and (μ ;P1) �→ where P1 does not
have unguarded parallel compositions imply either P1 = 0 or P1 = free(a) or P1 =
∑i∈I a?mi(xi).Pi where the queue in the endpoint located at a is empty.

Let us comment on the conditions (1–4) in Definition 2.2 and see how they capture the
desirable properties discussed earlier. Absence of faults is formalized as the combina-
tion of conditions (1), (3), and (4). Indeed, (1) ensures that any pointer that is directly
reachable refers to an allocated object. Since Definition 2.2 quantifies over every pos-
sible reduction of P, condition (1) must hold for every pointer that is indirectly reach-
able. Condition (3) implies that no well-behaving process can access a deallocated ob-
ject or can deallocate the same object twice, because in CoreSing# we keep track of
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deallocated objects by means of persistent free(u) processes. For example, the process
expose(a,x).expose(a,y).(free(a) | free(x) | free(y)) violates condition (3) because it
deallocates the content of the cell located at a twice. Finally, condition (4) ensures that
a stable, atomic process cannot be an attempt to (un)expose an endpoint or to send or
receive a message using a pointer that refers to a cell. Absence of leaks is formalized
as condition (2), requiring that the set of pointers reachable from Q must include the
whole domain of the heap. The processes open(a,b).0 and expose(a,x).free(x) are
simple examples of violation of condition (2). Progress is formalized as condition (4),
implying that if (μ ;Q) is a stuck configuration, then every non-terminated process in
Q is waiting for a message on an endpoint having an empty queue. This configuration
corresponds to a genuine deadlock where every process in some set is waiting for a mes-
sage that is to be sent by another process in the same set. The same condition requires
that a deallocated endpoint must have an empty queue.

3 Type System

Types. Types describe the nature of objects allocated in the heap. According to Table 1,
the heap contains cells and endpoints, therefore we want to discriminate these entities
using different types. Since endpoints can be used for complex interactions involving
messages with different tags, the type of endpoints will be a structured term describing
a protocol, in the same spirit of session types. Also, we will discriminate between cells
that have been exposed from those that have not. For the sake of minimality we only
focus on types for linear entities. Non-linear entities, which are essential in practice, can
be added by means of orthogonal extensions of the type system, as shown e.g. in [13].

Table 3. Syntax of types

t ::= Type
∗t (cell type)

| ∗• (exposed cell type)
| T (endpoint type)

T ::= Endpoint Type
end (termination)

| X (variable)
| !{mi.Ti}i∈I (internal choice)
| ?{mi.Ti}i∈I (external choice)
| rec X .T (recursive type)

Types, ranged over by t, s, . . . , and endpoint types, ranged over by T , S, . . . , are
defined in Table 3. The cell type ∗t describes a cell whose content has type t; the ex-
posed cell type ∗• also describes a cell, but it says nothing about the content of the
cell and therefore makes the cell visible but inaccessible. Endpoint types describe the
sequence of actions that processes can perform on a given endpoint. The endpoint type
end describes an endpoint on which no further action, save for deallocation, is possible.
The internal choice !{mi.Ti}i∈I describes an endpoint on which a process can send any
message with tag mi for i ∈ I. Depending on the tag mi of the message, the process must
then use the endpoint according to the endpoint type Ti. The external choice ?{mi.Ti}i∈I

describes an endpoint from which a process is supposed to receive a message which is
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guaranteed to have a tag mi for some i ∈ I. After the message is received, the process
must use the endpoint according to the endpoint type Ti. In both choices we assume that
I �= /0 and that i, j ∈ I with i �= j implies mi �= m j (this corresponds to the deterministic
condition for Sing# contracts). When I is a singleton, we will usually write !m.T instead
of !{m.T}, and similarly for external choices. We use endpoint variables and terms of
the form rec X .T for describing recursive protocols, as usual. For instance, rec X .!m.X
describes an endpoint on which a process must send an infinite number of m-tagged
messages. We forbid non-contractive endpoint types such as rec X .X requiring that ev-
ery recursion variable is guarded by an internal or external choice. We assume that a
recursive endpoint type rec X .T and its unfolding T{rec X .T/X} are equal.

We assume a global environment Σ associating message tags with sequences of
types. A judgment of the form Σ � m : 〈t1, . . . , tn〉 indicates that messages tagged by
m have n parameters with type t1, . . . ,tn, in this order. This obliges a sender of a m-
tagged message to provide n parameters with these types and guarantees a receiver of a
m-tagged message that the n parameters have these types.

A crucial notion regarding endpoint types is that of duality. Intuitively, two peer
endpoints should be typed by dual endpoint types to guarantee that the communica-
tions on them occur without errors. For example, the endpoint types !{mi.end}i∈I and
?{mi.end}i∈I are dual: every message sent by the sender process is accepted by the re-
ceiver. More generally, the dual of an endpoint type T , denoted by T , is obtained by
swapping internal and external choices, while end is invariant. Formally:

end = end X = X rec X .T = rec X .T
!{mi.Ti}i∈I = ?{mi.T i}i∈I ?{mi.Ti}i∈I = !{mi.T i}i∈I

Typing the Heap. The heap plays a primary role, not just because it enables the interac-
tion between processes, but also because most properties of well-behaved processes are
direct consequences of related properties of the heap. Therefore, just as we will check
well typedness of a process P with respect to some context that associates the pointers
occurring in P with the corresponding types, we will also need to check that the heap
is consistent with respect to the same context. This leads to a notion of well-typed heap
that we develop in this section. The mere fact that we have this notion does not mean
that we need to type-check the heap at runtime. Well typedness of the heap will be a
consequence of well typedness of processes, and the empty heap will be trivially well
typed.

The context Δ we use for typing heaps (and processes) does not specify an asso-
ciation for every location of the heap, as this would be redundant. For example, the
association a : ∗t tells us not only that a is a pointer to a cell, but also that the content
of the cell, which is another pointer, has itself type t. Therefore, the association b : t
is redundant, assuming that b is the content of the cell located at a, insofar the context
contains the association a : ∗t. The context we use for typing a heap μ is defined on a
proper subset of dom(μ) which happens to be the set of pointers that the processes of
the system have direct access to. The reader can think of dom(Δ) as playing a similar
role as the roots of a garbage collector. The composition of two contexts Δ1 and Δ2,
denoted by Δ1,Δ2, is defined only when dom(Δ1)∩dom(Δ2) = /0.
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Informally, well-typedness of a heap with respect to some context Δ entails the fol-
lowing properties:

(Consistency) Every allocated object is consistent with the corresponding type in
the context. Hence, associations a : ∗t and a : ∗• in the context correspond to cells
a �→ b in the heap; analogously, associations a : T in the context correspond to endpoints
a �→ [b,q] in the heap such that each message in q has parameters that are consistent with
the their type, as determined by the tag of the message; also, the tag is among the ones
occurring in T (we will make this more precise shortly).

(Reachability) Every allocated object is reachable from exactly one of the pointers
in dom(Δ). This has two implications: first, there is no leak in a well-typed heap pro-
vided that every pointer in dom(Δ) occurs in some process; second, a well-typed heap
has no overlapping of the objects that can be reached from different roots, therefore
each allocated object is “owned” by exactly one root. Since the roots will be distributed
linearly among the processes in the system (different processes cannot share the same
root) this immediately guarantees that different processes have access to disjoint regions
of the heap.

(Duality) Peer endpoints have dual endpoint types. This invariant is needed for en-
suring that communications occurring on peer endpoints are error free.

We split heap type checking in two parts: first we define a well-formedness relation
Δ � μ , meaning that μ satisfies the consistency and reachability conditions we have
informally described above. Then, we say that μ is well typed with respect to Δ when
Δ � μ holds and the duality condition is also satisfied. We proceed this way because
consistency and reachability are more conveniently defined in terms of a deduction
system, while duality is a global property that involves pairs of peer endpoints, which
may be (and usually are) located in disjoint regions of the heap.

Table 4. Well-formedness rules for the heap

(T-MEM EMPTY)
/0 � /0

(T-MEM OPEN)
a : ∗• � a �→ b

(T-MEM CELL)
b : t � μ

a : ∗t � μ,a �→ b

(T-MEM SPLIT)
Δ1 � μ1 Δ2 � μ2

Δ1,Δ2 � μ1,μ2

(T-MEM ENDPOINT)
Σ � mi : 〈t̃i〉 (i=1..n) {c̃i : t̃i}i=1..n � μ tail(T,m1 · · ·mn) is defined

a : T � μ,a �→ [b,m1〈c̃1〉 :: · · · :: mn〈c̃n〉]

The relation � is defined in Table 4. In the derivation of a judgment Δ � μ both
the context Δ and the heap μ are treated linearly, implying that μ should contain all
and only the objects that are reachable from the roots in Δ. Axiom (T-MEM EMPTY)
states that the empty heap is well formed only with respect to the empty context. Ax-
iom (T-MEM OPEN) states that the heap a �→ b is well formed with respect to the
context a : ∗• regardless of what b is associated with. Since the type system for pro-
cesses will prevent access to b, the heap region rooted at b is not accessible if a is
typed by ∗•. Rule (T-MEM CELL) states that the heap containing a �→ b is well formed
with respect to the context a : ∗t if it is well formed with respect to the context b : t.
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Rule (T-MEM SPLIT) allows to check well formedness of a compound heap μ1,μ2 by
means of a compound context Δ1,Δ2. Rule (T-MEM ENDPOINT) states that the heap
a �→ [b,q] is well formed with respect to the context a : T , provided that the heap rooted
at the parameters of the messages in q is well formed with respect to the context deter-
mined by the tags of the messages, and that T does indeed specify that the messages in
q are expected to be received in the order in which they occur in q. The last check is
enforced by means of a partial function tail(T,m1 · · ·mn), which is defined by induction
on n as follows:

tail(T,ε) = T
k ∈ I tail(Tk, m̃) = S

tail(?{mi.Ti}i∈I,mkm̃) = S

We will use tail again to enforce an even stronger relation between the endpoint types
of peer endpoints. For the time being, observe that if q is not empty, then T must begin
with as many external choices as the number of messages in the queue. Therefore, in
a well-formed heap every endpoint associated with an endpoint type end or !{mi.Ti}i∈I

must have an empty queue.
Although the context Δ in a judgment Δ � μ only specifies type associations for the

roots of μ it will occasionally be useful to access the type associations for all of the
pointers in dom(μ). To this purpose, we define a closure operator over contexts.

Definition 3.1 (Context closure). Let Δ� μ . The closure of Δ with respect μ , denoted
by [Δ; μ ], is the set of all the judgments a : t that occur in the derivation of Δ� μ .

The following result provides us with a sanity check on the closure of a context: when
Δ � μ the closure of Δ with respect to μ contains the associations for all the objects
allocated in μ and every allocated object is reachable from dom(Δ).

Proposition 3.1. If Δ � μ , then dom(μ) = dom([Δ; μ ]) ⊆ reach(dom(Δ),μ).

We are now ready to complete the definition of well-typed heap, by imposing additional
constraints on peer endpoints.

Definition 3.2 (Well-typed heap). We say that μ is well typed under Δ, notation Δ �
μ , if Δ � μ and for every a �→ [b,m1〈c̃1〉 :: · · · :: mn〈c̃n〉] ∈ μ we have:

1. b �→ [a,m′1〈c̃′1〉 :: · · · :: m′m〈c̃′m〉] ∈ μ;
2. min{n,m} = 0;
3. tail(T,m1 · · ·mn) = tail(S,m′1 · · ·m′m) where a : T ∈ [Δ; μ ] and b : S ∈ [Δ; μ ].

Item (1) requires that, for every endpoint a ∈ dom(μ), its peer is also in dom(μ).
Item (2) states that at most one of the queues of peer endpoints can contain messages.
Item (3) states that the residual endpoint types associated with peer endpoints after
removing the prefixes determined by the tags of the messages in the corresponding
queues must be dual. Observe that, by rule (T-MEM ENDPOINT), both tail(T,m1 · · ·mn)
and tail(S,m′1 · · ·m′m) are defined and that duality is an involution (T = T ), therefore the
items hold for both peers of a channel.
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Table 5. Typing rules for processes

(T-IDLE)
Γ ; /0 � 0

(T-VAR)
Γ ,{X �→ Δ};Δ � X

(T-FREE CELL)
Γ ;u : ∗• � free(u)

(T-FREE ENDPOINT)
Γ ;u : end � free(u)

(T-OPEN)
Γ ;Δ,a : T,b : T � P

Γ ;Δ � open(a,b).P

(T-CELL)
Γ ;Δ,a : ∗t � P

Γ ;Δ,u : t � cell(a,u).P

(T-EXPOSE)
Γ ;Δ,u : ∗•,x : t � P

Γ ;Δ,u : ∗t � expose(u,x).P

(T-REC)
Γ ,{X �→ Δ};Δ � P dom(Δ) = fn(P)

Γ ;Δ � rec X .P

(T-UNEXPOSE)
Γ ;Δ,u : ∗t � P

Γ ;Δ,u : ∗•,v : t � unexpose(u,v).P

(T-CHOICE)
Γ ;Δ � P Γ ;Δ � Q

Γ ;Δ � P⊕Q

(T-SEND)
k ∈ I Σ � mk : 〈t̃〉 Γ ;Δ,u : Tk � P

Γ ;Δ,u : !{mi.Ti}i∈I , ṽ : t̃ � u!mk〈ṽ〉.P

(T-PAR)
Γ ;Δ1 � P Γ ;Δ2 � Q

Γ ;Δ1,Δ2 � P |Q

(T-RECEIVE)
Σ � mi : 〈t̃i〉 (i∈I) Γ ;Δ,u : Ti, x̃i : t̃i � Pi

(i∈I)

Γ ;Δ,u : ?{mi.Ti}i∈I � ∑i∈I u?mi(x̃i).Pi

Typing Processes. We now turn our attention to the typing rules for processes, which
are inductively defined in Table 5. Judgments have the form Γ ;Δ � P where Δ is the
same context we use for typing heaps. The additional context Γ is used for typing re-
cursive processes and therefore plays a role in two rules only, (T-VAR) and (T-REC).
The unusual premise dom(Δ) = dom(P) in rule (T-REC) enforces a weak form of con-
tractivity on recursive processes. It states that rec X .P is well typed under Δ only if
P actually uses the names in dom(Δ). Normally, divergent processes such as rec X .X
can be typed in every context. If this were the case, the process open(a,b).rec X .X ,
which leaks a and b, would be well typed. The idle process is well typed in the empty
context only. As we have seen in the typing rules for the heap, the empty context can
only be used for typing the empty heap, therefore rule (T-IDLE) says that the terminated
process has no leaks. Rules (T-FREE CELL) and (T-FREE ENDPOINT) state that a pro-
cess free(u) is well typed provided that u is the only name owned by the process and
that it corresponds to either an exposed cell (with type ∗•) or to an endpoint on which
no further interaction is possible (with type end). Rules (T-OPEN) and (T-CELL) are
used for respectively typing the creation of a new channel and of a new cell. In both
cases the newly created pointers are visible in the continuation; in (T-OPEN) the rule
guesses two dual endpoint types that, associated with the two endpoints, permits to type
check the continuation; in (T-CELL), the name used for the cell initialization is dis-
charged from the context and becomes unavailable in the continuation, unless the cell
is exposed. Rules (T-CHOICE) and (T-PAR) are standard. Rule (T-SEND) states that
a process u!m〈ṽ〉.P is well typed if u is associated with an endpoint type that permits
the output of m-tagged messages and the parameters of the message have the expected
type as specified in the global context Σ. Also, the continuation P must be well typed
in a context where the parameters have been discharged and the endpoint u is typed
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according to the endpoint type determined by the tag of the message. Rule (T-RECEIVE)
deals with inputs: a process waiting for a message from an endpoint a : ?{mi.Ti}i∈I is
well typed if it can deal with any mi-tagged message. The continuation process may use
the endpoint according to the endpoint type Ti and can access the message’s parame-
ters. Rule (T-EXPOSE) states that the exposure of a cell is well typed only if the cell has
not already been exposed (its type is ∗t for some t and not ∗•) and if the continuation
correctly uses its content and the exposed cell itself. Rule (T-UNEXPOSE) shows that
an exposed cell can be assigned any pointer that the process owns. Observe that the re-
sulting type of the cell may differ from the one the cell had before exposure. This may
happen for two reasons: either because the cell is assigned a different content having a
different type, or because the type of the cell’s content has changed, even if the content
itself has not (endpoint types change over time, even though the pointer to them stays
the same).

It turns out that the function foo in the introduction (properly encoded in CoreSing#)
would be well typed in the empty context, as shown by the derivation below:

Σ � m : 〈?m.end〉 (T-FREE ENDPOINT)
a : end � free(a)

(T-SEND)
a : !m.end,b : ?m.end � a!m〈b〉.free(a)

(T-OPEN)� open(a,b).a!m〈b〉.free(a)

As we have anticipated, this apparently harmless process produces a leak:

( /0;open(a,b).a!m〈b〉.free(a)) ⇒ (a �→ [b,ε],b �→ [a,m〈b〉]; free(a))

The endpoint b is no longer accessible by the process nor has it been properly deallo-
cated. Furthermore, even if there were a mechanism for accessing b (for example, by
peeking into the endpoint located at a) and for reading the message from b’s queue, this
would be catastrophic from the point of view of types: the actual type of b is ?m.end,
but as we remove the message from its queue it turns to end. The b in the message,
however, would maintain the “old” type ?m.end, thus the actual and the inferred types
for b would no longer coincide, with potentially catastrophic consequences. A closer
look at the heap in the reduction above reveals that the problem lies in the cycle involv-
ing b: it is as if the b �→ [a,m〈b〉] region of the heap needs not be owned by any process
because it “owns” itself. In summary, we should tighten our type system and make sure
that no cycle involving endpoint queues is created in the heap. In the process above this
problem would not be too hard to detect, as the fact that a and b are peer endpoints
is apparent from the syntax of the process. In general, however, detecting whether an
endpoint is sent over its peer requires a runtime check, which is not a viable solution as
we aim at static verification of processes.

An alternative approach for attacking the problem which does not require any change
to the typing rules in Table 5 stems from the observation that infinite values (the end-
point located at b above fits well in this category) usually inhabit recursive types. The
type of b is in fact recursive, although only implicitly: we have b : T where T : ?m.end
and Σ � m : 〈T 〉. Forbidding this implicit recursion would prevent the creation of cycles
in the heap, but it would also unnecessarily restrict our language. For example, the end-
point type S = !m′.end where Σ � m′ : 〈S〉 would never cause the creation of cycles in
the heap, even though it is implicitly recursive. The reason is that, if we are sending an
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endpoint b : S over a : S, then its peer endpoint must have the dual type ?m′.end and
therefore must be different from a. In general, cycles in the heap originate from non-
empty queues, and non-empty queues are always associated with endpoints whose type
begins with an external choice. The idea then is to give each endpoint type a weight
that estimates the length of any chain of pointers originating from the queue. Endpoint
types end and internal choices will always have a null weight, since the well formed-
ness conditions for the heap already guarantee emptiness of the queues of the endpoints
with these types.

The weight of a type is formally defined thus:

Definition 3.3 (Weight). Let ↓ be the largest relation such that t ↓ n implies either:

– t = ∗• or t = end or t = !{mi.Ti}i∈I , or
– t = ∗s and s ↓ n, or
– t = rec X .T and T{t/X} ↓ n, or
– t = ?{mi.Ti}i∈I and n > 0 and Σ � mi : 〈s1, . . . ,sn〉 implies s j ↓ n−1, and Ti ↓ n for

every i ∈ I.

We define the weight of a type t as ‖t‖ = min{n ∈ N∪{∞} | t ↓ n}.

Intuitively, t ↓ n means that the weight of t is bounded by n, hence ‖t‖ is the least of
t’s bounds. In the examples we have discussed above, we have ‖T‖ = ∞ and ‖S‖ = 0.
In the following we let ‖t̃‖ = maxs∈t̃ ‖s‖. Observe that the weight of an endpoint type
may change over time, as the endpoint type changes. For example ‖!m.?m.end‖ = 0
and ‖?m.end‖ = 1 assuming Σ � m : 〈〉. For our purposes, the following property is
particularly important:

Proposition 3.2. Let Σ � mi : 〈t̃i〉. Then maxi∈I ‖t̃i‖< ‖?{mi.Ti}i∈I‖.

The reason why the restriction to types with finite weight is sufficient for proving the
soundness of the type system lies in the following proposition relating the reachability
of pointers and the weights of the corresponding types.

Proposition 3.3. Let a : t � μ and b : s ∈ [a : t; μ ]. Then ‖s‖ ≤ ‖t‖.

Proposition 3.3 is useful for deducing that some pointer b is not reachable from a. If
a : t � μ and we know that b must be associated with some type s such that ‖t‖< ‖s‖,
then we can conclude b �∈ dom([a : t; μ ]). In the specific case of endpoints, suppose we
are type checking a process c!m〈a〉.0 where a : t. Clearly c must be associated with some
endpoint type of the form !{mi.Ti}i∈I and its peer, say b, with the corresponding dual
endpoint type s = ?{mi.T i}i∈I . From Proposition 3.2 we deduce that ‖t‖< ‖s‖, therefore
we can conclude a �= b by Proposition 3.3. In particular, we are not enqueueing b into
its own queue.

We should remark that restricting endpoint types so that they have finite weight does
not necessarily guarantee that the heap is free of cycles. For instance, both the following
partially specified processes create cycles in the heap:

P1
def= open(a,b).cell(c,b).expose(c,x).a!m〈c〉.Q1

P2
def= open(a,b).cell(c,a).cell(d,c).expose(d,x).expose(x,y).unexpose(x,d).Q2
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and the reader may easily verify that it is possible to find appropriate Q1 and Q2 such
that P1 and P2 are closed and well typed. The cycles created in these examples are harm-
less because the exposed cell type ∗• is a boundary which processes cannot trespass.

We can now present the subject reduction theorem followed by the soundness of the
type system. Subject reduction is slightly non-standard, in the sense that types in the
context may change as the process reduces. This is common in session type theories,
since session types are behavioral types. In our case, also cell types can change (from
∗t to ∗• and vice-versa). In addition, we need to type heaps as well as processes, and
we write Δ � (μ ;P) when Δ � μ and Δ � P.

Theorem 3.1 (Subject reduction). Let Δ � (μ ;P) and (μ ;P) → (μ ′;P′). Then Δ′ �
(μ ′;P′) for some Δ′.

In the statement of Theorem 3.1 we content ourselves of finding an appropriate context
Δ′ for typing the reduced process correctly as this is all one needs for proving the
soundness of the type system. However, the proof of Theorem 3.1 necessarily relies on
a stronger statement showing how Δ′ is derived from Δ. Technically the most difficult
part of the proof deals with regions of the heap that change owner: when a process
P1 |P2 reduces because P1 sends a message, the parameters of the message may transfer
to the region of the heap owned by P2. Thus, even though the context used for typing P2

does not change (it is P1 that reduces), the proof that the heap owned by P2 is still well
formed may change significantly. The finite-weight restriction on session types plays a
crucial role to ensure that the new heap is well formed.

Theorem 3.2 (Soundness). If � P, then P is well behaved.

We conclude this section with two remarks. The first one is that item (4) in Defini-
tion 2.2 is weaker than deadlock freedom. For example, the process

open(a,b).a?m().b!m〈〉.(free(a) | free(b))

is well typed assuming a : ?m.end and b : !m.end where Σ � m : 〈〉. This process dead-
locks after the creation of the two endpoints, because it attempts at reading from end-
point a before any message is sent on its peer b. Incidentally, the example above shows
that it is possible to have a deadlock also when only one channel is created.

The second remark regards the expressiveness of our framework, and in particular
the possible limitations due to the finite-weight restriction we impose on types. The
following example shows how to work around this restriction in a scenario where the
use of types with infinite weight would be natural (a similar workaround was suggested
in [6]).

Example 3.1 (Linear lists). We can represent a linear list as an endpoint from which
one of two kinds of messages can be received: a nil-tagged message indicates that
the list is empty; a cons-tagged message indicates that the list has at least one ele-
ment, and the parameters of the message are the head of the list and its tail, which
is itself a list. Reading a message from the endpoint corresponds to deconstructing the
list and the tag-based dispatching of messages implements pattern matching. According
to this intuition, the type of lists with elements of type t would be encoded as
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List(t) = ?{nil.end,const .end} where Σ � nil : 〈〉 and Σ � const : 〈t,List(t)〉,
except that in this case we have ‖List(t)‖ = ∞. To fix this, we require users of the list
to signal the imminent deconstruction by sending a dummy, use-tagged message on the
endpoint. This corresponds to defining List(t) = !use.?{nil.end,const .end} where
Σ � use : 〈〉. One can now define syntactic sugar for creating and deconstructing linear
lists, thus:

let a = nil in P
def= open(a,b).(P |b?use().b!nil〈〉.free(b))

let a = const〈u,v〉 in P
def= open(a,b).(P |b?use().b!const〈u,v〉.free(b))

match u with
nil→ P
const(x,y) → Q

def= u!use〈〉.
( u?nil().(free(u) |P)
+ u?const(x,y).(free(u) |Q) )

The interested reader can verify that these processes are well typed . �

4 Extensions

Non-linear usage of endpoints in output actions. An interesting feature of [14] is the
possibility of sending an endpoint over itself. In our setting, this would be modeled as
a process P = u!m〈u〉.Q for some tag m with a parameter of the appropriate type. In [14]
this feature actually plays a fundamental role: there the two endpoints of a channel
must be closed simultaneously, hence it is natural to have a mechanism that reunites
two peer endpoints by receiving one from the other. The process P above fails to type
check according to the rules described in Section 3 because the endpoint u is used non-
linearly both as the endpoint on which the communication occurs and as the message
parameter. It is possible to relax the type system by adding the following rule:

(T-SELF SEND)
k ∈ I Σ � mk : 〈t̃1,Tk, t̃2〉 Γ ;Δ � P

Γ ;Δ,u : !{mi.Ti}i∈I , ṽ1 : t̃1, ṽ2 : t̃2 � u!mk〈ṽ1,u, ṽ2〉.P
There are two differences with respect to (T-SEND), all of which regard the endpoint u:
first of all, u occurs twice, as the endpoint on which the message is sent as well as in the
parameters of the message itself, possibly preceded and followed by more parameters.
The two occurrences of u are treated differently with respect to types: the parameter u is
preventively given type Tk, which corresponds to the correct type of u after the sending
action has occurred. This is safe because, by the time the message is received, the send
action has already completed. The second difference is that the endpoint u is no longer
available in the continuation P, since it has been sent away.

Rule (T-SELF SEND) cannot compromise well formedness of the heap, in the sense
that no cycles can be created even though the rule appears to embed some circularity.
The reason is that, by sending an endpoint over itself, we can rest assured that the
endpoint will be enqueued in the queue of a different endpoint, namely its peer.
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Subtyping. The most common way to increase flexibility of a type system is to introduce
a subtyping relation� that establishes an (asymmetric) compatibility between different
types: any value of type t can be safely used where a value of type s is expected when
t � s. In the flourishing literature on session types several notions of subtyping relations
have been investigated [5,2,13,10]. Here we show how to extend our model with a
subtyping relation which is a straightforward adaptation of the subtyping defined in [5].

Definition 4.1 (Subtyping relation). The subtyping relation � is the largest relation
such that t � s implies:

1. t = ∗• implies s = ∗•;
2. t = ∗t ′ implies s = ∗s′ and t ′ � s′;
3. t = end implies s = end;
4. t = !{mi.Ti}i∈I implies s = !{m j.S j} j∈J with J ⊆ I and Tj � S j for every j ∈ J;
5. t = ?{mi.Ti}i∈I implies s = ?{m j.S j} j∈J with I ⊆ J and Ti � Si for every i ∈ I.

The key point for understanding � is to focus on the concept of endpoint use: using
an endpoint with type end means closing it; using an endpoint with type !{mi.Ti}i∈I

means sending a message with tag mk for some k ∈ I and using the endpoint accord-
ing to Tk thereafter; using an endpoint with type ?{mi.Ti}i∈I means being ready to re-
ceive any message with tag mi for every i ∈ I and using the endpoint according to Tk

thereafter. This leads to the invariance of end, contravariance of internal choice, and
covariance of external choice in Definition 4.1. For instance, it is safe to use an end-
point u : !{mi.Ti}i∈I∪J where v : !{mi.Ti}i∈I is expected because the process using v will
send a message with tag mk for some k ∈ I. Then k ∈ I∪ J, hence the process is using u
correctly according with its type. It may look surprising that� is covariant with respect
to cell types, namely that t � s implies ∗t � ∗s. This relation is sound in our setting
because access to the content of a cell is disciplined by means of open cell types: the
type ∗t only states the type of the values that can be read from the cell, not the type of
the values that can be written in the cell.

Using this subtyping relation, we can relax the type system with a weaker rule for
output actions, along with a subsumption rule:

(T-SEND’)
Σ � m : 〈s̃〉 t̃ � s̃ Γ ;Δ,u : T � P

Γ ;Δ,u : !m.T, ṽ : t̃ � u!m〈ṽ〉.P

(T-SUB)
Γ ;Δ,u : S � P T � S

Γ ;Δ,u : T � P

In rule (T-SEND’) the endpoint type associated with u precisely states the type of mes-
sage that is sent and the actual parameters of the message are allowed to have a sub-
type of the expected type (t̃ � s̃ is the point-wise extension of � to tuples of types).
Rule (T-SUB) is a bit unusual, since it allows to have a smaller type in the conclusion.
This can be explained as the fact that the typing rules do not assign types to processes,
and the subtyping relation changes the type of a name in the context.

We have seen in Section 3 that type weights play a crucial role in ensuring that the
type theory is sound. In principle, since it is the (expected) type of the parameters of
a message that determines the weight of the endpoint type where the message tag oc-
curs, one might fear that subtyping could be exploited for circumventing the finiteness
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restriction we impose on the weight of types. This is not the case, and the rationale is
remarkably simple. As the following proposition states, the weight of types changes in
accordance with the subtyping relation, therefore any application of subtyping can only
decrease the actual weight of types.

Proposition 4.1. t � s implies ‖t‖ ≤ ‖s‖.

According to Definition 4.1, being a subtype does not necessarily mean being a “sim-
pler” type. For example, we have !{m1.T1,m2.T2} � !m1.T1. Yet, the weight of internal
choices is zero, regardless of the number of (and the tags occurring in) branches. Had
we assigned weights to endpoint types merely looking at the message tags occurring in
them, as we initially suggested in Section 3, Proposition 4.1 would not hold.

Unrestricted closing of endpoints. A difference between Sing# and CoreSing# is that
in the former language endpoints can be closed at any time while in CoreSing# this
can only happen when their endpoint type is end. The restricted viewpoint we have
adopted is consistent with the philosophy of session types, where the type of an end-
point describes not only the capabilities of a channel, but also the obligations that a
process owning that channel is bound to. Sing# is more permissive about the closing of
endpoints because, in a controlled environment such as Singularity, it might be desirable
to abruptly terminate communications under exceptional circumstances.

If we relax the obligation to send messages on an endpoint when its type says so, we
might introduce new deadlocks. Therefore we need to devise appropriate mechanisms
for notifying processes that are blocked on input operations on closed endpoints and for
spawning dedicated handlers when these situations occur. Closed endpoints are easily
detectable in CoreSing# because of persistent free(a) processes. Therefore, we only
need to annotate input processes thus

P ::= · · · | ∑i∈I u?mi(x̃i).Pi or P | · · ·
by adding a handler branch ‘· · · or P’ which is selected if the queue associated with
u is empty and the peer endpoint of u has been closed. This behavior is formalized by
rule (R-RECEIVE CLOSE) in Table 6. In the reduced process a free(a) term appears,
meaning that the endpoint used for input cannot be used by the handler.

This is not enough to avoid deadlocks caused by prematurely closed endpoints, be-
cause the queue of a closed endpoint may contain messages that that have other end-
points as parameters. Since no process can access these messages anymore, we must
properly close every endpoint occurring in the queue of a closed endpoint. To this aim
we enrich the reduction relation with rule (R-COLLECT), which formalizes a basic step
of the garbage collector we have just described: any message m〈c̃〉 in the queue of a
closed endpoint is dequeued and deallocated by a process collect(c̃ : t̃) which is induc-
tively defined at the bottom of Table 6. The process uses information provided by the
type system to navigate through the structure of the objects to be deallocated. This will
possibly fire rules (R-RECEIVE CLOSE) and (R-COLLECT) recursively.

Table 7 presents the revised typing rules for handling the unrestricted closing of
endpoints. It is now possible to prove that well-typed processes are well behaved and
that, in addition, if a process is blocked waiting for a message on some endpoint a it is
because the peer endpoint of a has not been closed.
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Table 6. Garbage collector and additional reduction rules

Reduction rules

(R-RECEIVE CLOSE)
(μ,a �→ [b,ε];∑i∈I a?mi(x̃i).Pi or Q | free(b)) → (μ,a �→ [b,ε];Q | free(a) | free(b))

(R-COLLECT)
Σ � m : 〈t̃〉

(μ,a �→ [b,m〈c̃〉 :: q]; free(a)) → (μ,a �→ [b,q]; free(a) |collect(c̃ : t̃))

Garbage collector process

collect(u : ∗•) = collect(u : T ) = free(u)
collect(u : ∗t) = expose(u,x).(free(u) |collect(x : t))

collect(u1 : t1, . . . ,un : tn) = collect(u1 : t1) | · · · |collect(un : tn)

Table 7. Updated typing rules for unrestricted endpoint closing

(T-FREE ENDPOINT’)
Γ ;u : T � free(u)

(T-RECEIVE’)
Σ � mi : 〈t̃i〉 (i∈I) Γ ;Δ,u : Ti, x̃i : t̃i � Pi

(i∈I) Γ ;Δ � Q

Γ ;Δ,u : ?{mi.Ti}i∈I � ∑i∈I u?mi(x̃i).Pi or Q

5 Conclusions

We have defined the static analysis for a calculus where processes communicate through
the exchange of pointers. Verified processes are guaranteed to be free from memory
faults, they do not leak memory, and do not fail on input actions. In this respect our
work shares many objectives with [14], although our approach is type-based, whereas
the one in [14] is proof-based. The proof-based approach relies on an expressive variant
of separation logic and is therefore more general, in terms of properties of the heap that
can be stated and verified. The type-based approach we have presented is tailored for
guaranteeing the three properties above only, but it is simple to understand and efficient
in practice (type checking and subtyping can be implemented in linear time).

Our type system has been inspired by session type theories, in a broad sense. The ba-
sic idea of session types, and of behavioral types in general, is that operating on a (lin-
early used) value may change its type, and thus the capabilities of that value thereafter.
Endpoint types express the capabilities of endpoints, in terms of the type of messages
that can be sent or received and in which order. Cell types and open cell types are, in a
sense, behavioral types for (linear) heap cells: accessing the content of a cell changes
its type from ∗t to ∗•; assigning the content of a cell does the inverse. In fact, it would
be possible to encode cells and cell types in terms of endpoints and endpoint types, if
only endpoint types were polymorphic.

The finite-weight restriction we impose on endpoint types is original to the best of
our knowledge. Singularity restricts communications so that only endpoints in a send-
state, those whose type begins with an internal choice, can be safely sent as messages.
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The restriction is motivated by the implementation of ownership transfer in Singularity,
where it is the sender’s responsibility to explicitly tag sent messages with their new
owner; therefore, a race can arise if the endpoint that the message is sent to changes
owner (a detailed description can be found in [4]). We have shown that uncontrolled
sending of endpoints may also produce memory leaks. Our finite-weight relaxes the
send-state restriction, because endpoints in a send-state always have a null weight.

Acknowledgments. We are grateful to Lorenzo Bettini for discussions on the notion of
memory leak, to Nobuko Yoshida for comments on an early version of this paper, and
to the anonymous referees for the detailed and useful reviews.
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Abstract. The Bayesian approach to machine learning amounts to inferring pos-
terior distributions of random variables from a probabilistic model of how the
variables are related (that is, a prior distribution) and a set of observations of vari-
ables. There is a trend in machine learning towards expressing Bayesian models
as probabilistic programs. As a foundation for this kind of programming, we pro-
pose a core functional calculus with primitives for sampling prior distributions
and observing variables. We define combinators for measure transformers, based
on theorems in measure theory, and use these to give a rigorous semantics to
our core calculus. The original features of our semantics include its support for
discrete, continuous, and hybrid measures, and, in particular, for observations of
zero-probability events. We compile our core language to a small imperative lan-
guage that has a straightforward semantics via factor graphs, data structures that
enable many efficient inference algorithms. We use an existing inference engine
for efficient approximate inference of posterior marginal distributions, treating
thousands of observations per second for large instances of realistic models.

1 Introduction

In the past 15 years, statistical machine learning has unified many seemingly unrelated
methods through the Bayesian paradigm. With a solid understanding of the theoreti-
cal foundations, advances in algorithms for inference, and numerous applications, the
Bayesian paradigm is now the state of the art for learning from data. The theme of
this paper is the idea of writing Bayesian models as probabilistic programs, which was
pioneered by Koller et al. [16] and is recently gaining in popularity [31,30,9,4,14]. In
particular, we draw inspiration from Csoft [37], an imperative language with an infor-
mal probabilistic semantics. Csoft is the native language of Infer.NET [25], a software
library for Bayesian reasoning. A compiler turns Csoft programs into factor graphs [18],
data structures that support efficient inference algorithms [15]. This paper borrows ideas
from Csoft and extends them, placing the semantics on a firm footing.

Bayesian Models as Probabilistic Expressions. Consider a simplified form of TrueSkill
[11], a large-scale online system for ranking computer gamers. There is a population of
players, each assumed to have a skill, which is a real number that cannot be directly
observed. We observe skills only indirectly via a series of matches. The problem is to
infer the skills of players given the outcomes of the matches. In a Bayesian setting, we
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represent our uncertain knowledge of the skills as continuous probability distributions.
The following probabilistic expression models the situation by generating probability
distributions for the players’ skills, given three played games (observations).

// prior distributions, the hypothesis
let skill() = random (Gaussian(10.0,20.0))
let Alice,Bob,Cyd = skill(),skill(),skill()
// observe the evidence
let performance player = random (Gaussian(player,1.0))
observe (performance Alice > performance Bob) //Alice beats Bob
observe (performance Bob > performance Cyd) //Bob beats Cyd
observe (performance Alice > performance Cyd) //Alice beats Cyd
// return the skills
Alice,Bob,Cyd

A run of this expression goes as follows. We sample the skills of the three players from
the prior distribution Gaussian(10.0,20.0). Such a distribution can be pictured as a
bell curve centred on 10.0, and gradually tailing off at a rate given by the variance, here
20.0. Sampling from such a distribution is a randomized operation that returns a real
number, most likely close to the mean. For each match, the run continues by sampling
an individual performance for each of the two players. Each performance is centred
on the skill of a player, with low variance, making the performance closely correlated
with but not identical to the skill. We then observe that the winner’s performance is
greater than the loser’s. An observation observe M always returns (), but represents a
constraint that M must hold. A whole run is valid if all encountered observations are
true. The run terminates by returning the three skills.

A classic computational method to learn the posterior distribution of each of the skills
is by Monte Carlo sampling [21]. We run the expression many times, but keep just the
valid runs—the ones where the sampled skills correspond to the observed outcomes. We
then compute the means of the resulting skills by applying standard statistical formulas.
In the example above, the posterior distribution of the returned skills has moved so that
the mean of Alice’s skill is greater than Bob’s, which is greater than Cyd’s.

Deterministic algorithms based on factor graphs [18,15] are an efficient alternative to
Monte Carlo sampling. To the best of our knowledge, all prior inference techniques for
probabilistic languages, apart from Csoft and recent versions of IBAL [32], are based
on nondeterministic inference using some form of Monte Carlo sampling. The benefit
of using factor graphs in Csoft is to support deterministic but approximative inference
algorithms, which are known to be significantly more efficient than sampling methods,
where applicable.

Observations with zero probability arise commonly in Bayesian models. For exam-
ple, in the model above, a drawn game would be modelled as the performance of two
players being observed to be equal. Since the performances are randomly drawn from
a continuous distribution, the probability of them actually being equal is zero, so we
would not expect to see any valid runs in a Monte Carlo simulation. (To use Monte
Carlo methods, one must instead write that the absolute difference between two drawn
performances is less than some small ε .) However, our semantics based on measure
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theory makes sense of such observations, and corresponds to inference as achieved by
algorithms on factor graphs.

Plan of the Paper. We propose Fun:

– Fun is a functional language for Bayesian models with primitives for probabilistic
sampling and observations (Section 2).

– Fun has a rigorous probabilistic semantics as measure transformers (Section 3).
– Fun has an efficient implementation: our system compiles Fun to Imp (Section 4),

a subset of Csoft, and then relies on Infer.NET (Section 5).

Our main contribution is a framework for finite measure transformer semantics, which
supports discrete measures, continuous measures, and mixtures of the two, and also
supports observations of zero probability events.

As a substantial application, we supply measure transformer semantics for Fun, Imp,
and factor graphs, and use the semantics to verify the translations in our compiler. The-
orem 2 establishes the correctness of the translation from Fun to Imp and the factor
graph semantics of Imp.

We designed Fun to be a subset of the F# dialect of ML [36], for implementation
convenience: F# reflection allows easy access to the abstract syntax of a program. All
the examples in the paper have been executed with our system, described in Section 5.

We end the paper with a description of related work (Section 6) and some concluding
remarks (Section 7). A companion technical report [5] includes: detailed proofs; exten-
sions of Fun, Imp, and our factor graph notations with array types suitable for inference
on large datasets; listings of examples including versions of large-scale algorithms; and
a description, including performance numbers, of our practical implementation of a
compiler from Fun to Imp, and a backend based on Infer.NET.

2 Bayesian Models as Probabilistic Expressions

We present a core calculus, Fun, for Bayesian reasoning via probabilistic functional
programming with observations.

2.1 Syntax, Informal Semantics, and Bayesian Reading

Expressions are strongly typed, with types t built up from base scalar types b and pair
types. We let c range over constant data of scalar type, n over integers and r over real
numbers. We write ty(c) = t to mean that constant c has type t. For each base type b,
we define a zero element 0b. We have arithmetic and Boolean operations on base types.

Types, Constant Data, and Zero Elements:

a,b ::= bool | int | real Base types
t ::= unit | b | (t1 ∗ t2) Compound types
ty(()) = unit ty(true) = ty(false) = bool ty(n) = int ty(r) = real
0bool = true 0int = 0 0real = 0.0
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Signatures of Arithmetic and Logical Operators: ⊗ : b1,b2 → b3

&&, ||,=: bool,bool → bool >,=: int, int → bool
+,−,∗ : int, int → int >: real,real → bool +,−,∗ : real,real → real

We have several standard probability distributions as primitive: D : t → u takes param-
eters in t and yields a random value in u.

Signatures of Distributions: D : (x1 : b1 ∗ · · · ∗ xn : bn) → b

Bernoulli : (success : real) → bool
Binomial : (trials : int∗ success : real) → int
Poisson : (rate : real) → int
DiscreteUniform : (max : int) → int
Gaussian : (mean : real∗ variance : real) → real
Beta : (a : real∗ b : real) → real
Gamma : (shape : real∗ scale : real) → real

The expressions and values of Fun are below. Expressions are in a limited syntax akin
to A-normal form, with let-expressions for sequential composition.

Fun: Values and Expressions

V ::= x | c | (V,V ) Value
M,N ::= Expression

V value
V1 ⊗V2 arithmetic or logical operator
V.1 left projection from pair
V.2 right projection from pair
if V then M1 else M2 conditional
let x = M in N let (scope of x is N)
random (D(V )) primitive distribution
observe V observation

In the discrete case, Fun has a standard sampling semantics; the formal semantics for
the general case comes later. A run of a closed expression M is the process of evaluating
M to a value. The evaluation of most expressions is standard, apart from sampling and
observation.

To run random (D(V )), where V = (c1, . . . ,cn), choose a value c at random, with
probability given by the distribution D(c1, . . . ,cn), and return c.

To run observe V , always return (). We say the observation is valid if and only if the
value V is some zero element 0b.

Due to the presence of sampling, different runs of the same expression may yield
more than one value, with differing probabilities. Let a run be valid so long as every
encountered observation is valid. The sampling semantics of an expression is the con-
ditional probability of returning a particular value, given a valid run.

(Boolean observations are akin to assume statements in assertion-based program
specifications, where runs of a program are ignored if an assumed formula is false.)
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Example: Two Coins, Not Both Tails

let heads1 = random (Bernoulli(0.5)) in
let heads2 = random (Bernoulli(0.5)) in
let u = observe (heads1 || heads2) in
(heads1,heads2)

The subexpression random (Bernoulli(0.5)) generates true or false with equal likeli-
hood. The whole expression has four distinct runs, each with probability 1/4, corre-
sponding to the possible combinations of Booleans heads1 and heads2. All these runs
are valid, apart from the one for heads1 = false and heads2 = false (representing two
tails), since the observation observe(false||false) is not valid. The sampling semantics
of this expression is a probability distribution assigning probability 1/3 to the values
(true, false), (false, true), and (true, true), but probability 0 to the value (false, false).

The sampling semantics allows us to interpret an expression as a Bayesian model.
We interpret the distribution of possible return values as the prior probability of the
model. The constraints on valid runs induced by observations represent new evidence
or training data. The conditional probability of a value given a valid run is the posterior
probability: an adjustment of the prior probability given the evidence or training data.

Thus, the expression above can be read as a Bayesian model of the problem: I toss
two coins. I observe that not both are tails. What is the probability of each outcome?

2.2 Syntactic Conventions and Monomorphic Typing Rules

We identify phrases of syntax up to consistent renaming of bound variables. Let fv(φ)
be the set of variables occurring free in phrase φ . Let φ {ψ/x} be the outcome of sub-
stituting phrase ψ for each free occurrence of variable x in phrase φ . We treat function
definitions as macros with call-by-value semantics. In particular, in examples, we write
first-order non-recursive function definitions in the form let f x1 . . . xn = M, and we
allow function applications f M1 . . . Mn as expressions. We consider such a function
application as being a shorthand for the expression let x1 = M1 in . . . let xn = Mn in M,
where the bound variables x1, . . . , xn do not occur free in M1, . . . , Mn. We allow ex-
pressions to be used in place of values, via insertion of suitable let-expressions. For
example, (M1,M2) stands for let x1 = M1 in let x2 = M2 in (x1,x2), and M1⊗M2 stands
for let x1 = M1 in let x2 = M2 in x1 ⊗ x2, when either M1 or M2 or both is not a value.
Let M1;M2 stand for let x = M1 in M2 where x /∈ fv(M2). The notation t = t1 ∗· · ·∗ tn for
tuple types means the following: when n = 0, t = unit; when n = 1, t = t1; and when
n> 1, t = t1∗(t2∗· · ·∗ tn). In listings, we rely on syntactic abbreviations available in F#,
such as layout conventions (to suppress in keywords) and writing tuples as M1, . . . ,Mn

without enclosing parentheses.
Let a typing environment, Γ , be a list of the form ε,x1 : t1, . . . ,xn : tn; we say Γ is

well-formed and write Γ � " to mean that the variables xi are pairwise distinct. Let
dom(Γ ) = {x1, . . . ,xn} if Γ = ε,x1 : t1, . . . ,xn : tn. We sometimes use the notation x : t
for Γ = ε,x1 : t1, . . . ,xn : tn where x = x1, . . . ,xn and t = t1, . . . ,tn.

The typing rules for this monomorphic first-order language are standard.



82 J. Borgström et al.

Representative Typing Rules for Fun Expressions: Γ � M : t

(FUN OPERATOR)
⊗ : b1,b2 → b3

Γ �V1 : b1 Γ �V2 : b2

Γ �V1 ⊗V2 : b3

(FUN RANDOM)
D : (x1 : b1 ∗ · · · ∗ xn : bn) → b

Γ �V : (b1 ∗ · · · ∗bn)

Γ � random (D(V )) : b

(FUN OBSERVE)
Γ � V : b

Γ � observe V : unit

3 Semantics as Measure Transformers

If we can only sample from discrete distributions, the semantics of Fun is straightfor-
ward. In our technical report, we formalize the sampling semantics of the previous sec-
tion as a small-step operational semantics for the fragment of Fun where every random
expression takes the form random (Bernoulli(c)) for some real c ∈ (0,1). A reduction
M →p M′ means that M reduces to M′ with non-zero probability p.

We cannot give such a semantics to expressions that sample from continuous dis-
tributions, such as random (Gaussian(1,1)), since the probability of any particular
sample is zero. A further difficulty is the need to observe events with probability zero, a
common situation in machine learning. For example, consider the naive Bayesian clas-
sifier, a common, simple probabilistic model. In the training phase, it is given objects
together with their classes and the values of their pertinent features. Below, we show
the training for a single feature: the weight of the object. The zero probability events are
weight measurements, assumed to be normally distributed around the class mean. The
outcome of the training is the posterior weight distributions for the different classes.

Naive Bayesian Classifier, Single Feature Training:

let wPrior() = sample (Gaussian(0.5,1.0))
let Glass,Watch,Plate = wPrior(),wPrior(),wPrior()
let weight objClass objWeight =

observe (objWeight−(sample (Gaussian(objClass,1.0)))
weight Glass .18; weight Glass .21
weight Watch .11; weight Watch .073
weight Plate .23; weight Plate .45
Watch,Glass,Plate

Above, the call to weight Glass .18 modifies the distribution of the variable Glass. The
example uses observe (x−y) to denote that the difference between the weights x and
y is 0. The reason for not instead writing x=y is that conditioning on events of zero
probability without specifying the random variable they are drawn from is not in gen-
eral well-defined, cf. Borel’s paradox [12]. To avoid this issue, we instead observe the
random variable x−y of type real, at the value 0.

To give a formal semantics to such observations, as well as to mixtures of contin-
uous and discrete distributions, we turn to measure theory, following standard sources
[3]. Two basic concepts are measurable spaces and measures. A measurable space is a
set of values equipped with a collection of measurable subsets; these measurable sets



Measure Transformer Semantics for Bayesian Machine Learning 83

generalize the events of discrete probability. A finite measure is a function that assigns
a numeric size to each measurable set; measures generalize probability distributions.

3.1 Types as Measurable Spaces

We let Ω range over sets of possible outcomes; in our semantics Ω will range over
B = {true, false}, Z, R, and finite Cartesian products of these sets. A σ -algebra over
Ω is a set M⊆ P(Ω) which (1) contains ∅ and Ω , and (2) is closed under complement
and countable union and intersection. A measurable space is a pair (Ω ,M) where M is
a σ -algebra over Ω ; the elements of M are called measurable sets. We use the notation
σΩ (S), when S ⊆ P(Ω), for the smallest σ -algebra over Ω that is a superset of S; we
may omit Ω when it is clear from context. If (Ω ,M) and (Ω ′,M′) are measurable
spaces, then the function f : Ω → Ω ′ is measurable if and only if for all A ∈ M′,
f−1(A) ∈ M, where the inverse image f−1 : P(Ω ′) → P(Ω) is given by f−1(A) �
{ω ∈ Ω | f (ω) ∈ A}. We write f−1(x) for f−1({x}) when x ∈ Ω ′.

We give each first-order type t an interpretation as a measurable space T[[t]]� (Vt,Mt)
below. We write () for ∅, the unit value.

Semantics of Types as Measurable Spaces:

T[[unit]] = ({()},{{()},∅}) T[[bool]] = (B,P(B))
T[[int]] = (Z,P(Z)) T[[real]] = (R,σR({[a,b] | a,b ∈ R}))
T[[t ∗ u]] = (Vt ×Vu,σVt×Vu({m×n | m ∈ Mt , n ∈ Mu}))

The set σR({[a,b] | a,b ∈ R}) in the definition of T[[real]] is the Borel σ -algebra on
the real line, which is the smallest σ -algebra containing all closed (and open) intervals.
Below, we write f : t → u to denote that f : Vt →Vu is measurable, that is, that f−1(B)∈
Mt for all B ∈ Mu.

3.2 Finite Measures

A finite measure μ on a measurable space (Ω ,M) is a function M → R+ that is count-
ably additive, that is, if the sets A0,A1, . . . ∈ M are pairwise disjoint, then μ(∪iAi) =
∑i μ(Ai). We write |μ |� μ(Ω). Let M t be the set of finite measures on the measurable
space T[[t]]. We make use of the following constructions on measures.

– Given a function f : t → u and a measure μ ∈ M t, there is a measure μ f−1 ∈ M u
given by (μ f−1)(B)� μ( f−1(B)).

– Given a finite measure μ and a measurable set B, we let μ |B(A)� μ(A∩B) be the
restriction of μ to B.

– We can add two measures on the same set as (μ1 + μ2)(A)� μ1(A)+ μ2(A).
– The (independent) product (μ1 × μ2) of two measures is also definable, and satis-

fies (μ1 ×μ2)(A×B) = μ1(A) ·μ2(B). (Existence and uniqueness follows from the
Hahn-Kolmogorov theorem.)

– Given a measure μ on the measurable space T[[t]], a measurable set A ∈ Mt and a
function f : t → real, we write

∫
A f dμ or equivalently

∫
A f (x)dμ(x) for standard

(Lebesgue) integration. This integration is always well-defined if μ is finite and f
is non-negative and bounded from above.
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– Given a measure μ on a measurable space T[[t]] let a function μ̇ : t → real be a
density for μ iff μ(A) =

∫
A μ̇ dλ for all A ∈ M, where λ is the standard Lebesgue

measure on T[[t]]. (We also use λ -notation for functions, but we trust any ambiguity
is easily resolved.)

Standard Distributions. Given a closed well-typed Fun expression random (D(V )) of
base type b, we define a corresponding finite measure μD(V ) on measurable space T[[b]].

In the discrete case, we first define probability masses D(V ) c of single elements,
and hence of singleton sets, and then define the measure μD(V ) as a countable sum.

Masses D(V ) c and Measures μD(V ) for Discrete Probability Distributions:

Bernoulli(p) true� p if 0 ≤ p ≤ 1, 0 otherwise
Bernoulli(p) false� 1− p if 0 ≤ p ≤ 1, 0 otherwise
Binomial(n, p) i�

( i
n

)
pi/n! if 0 ≤ p ≤ 1, 0 otherwise

DiscreteUniform(m) i� 1/m if 0 ≤ i<m, 0 otherwise
Poisson(l) n� e−l ln/n! if l,n ≥ 0, 0 otherwise
μD(V )(A)� ∑i D(V ) ci if A =

⋃
i{ci} for pairwise distinct ci

In the continuous case, we first define probability densities D(V ) r at individual ele-
ments r. and then define the measure μD(V ) as an integral. Below, we write G for the
standard Gamma function, which on naturals n satisfies G(n) = (n−1)!.

Densities D(V ) r and Measures μD(V ) for Continuous Probability Distributions:

Gaussian(m,v) r � e−(r−m)2/2v/
√

2πv if v> 0, 0 otherwise
Gamma(s, p) r � rs−1e−pr ps/G(s) if r,s, p > 0, 0 otherwise
Beta(a,b) r � ra−1(1− r)b−1G(a + b)/(G(a)G(b))

if a,b ≥ 0 and 0 ≤ r ≤ 1, 0 otherwise
μD(V )(A)�

∫
A D(V )dλ where λ is the Lebesgue measure

The Dirac δ measure is defined on the measurable space T[[b]] for each base type b, and
is given by δc(A)� 1 if c ∈ A, 0 otherwise. We write δ for δ0.0.

The notion of density can be generalized as follows, yielding an unnormalized coun-
terpart to conditional probability. Given a measure μ on T[[t]] and a measurable function
p : t → b, we consider the family of events p(x) = c where c ranges over Vb. We define
μ̇ [A||p = c] ∈ R (the μ-density at p = c of A) following [8], by:

Conditional Density: μ̇ [A||p = c]

μ̇ [A||p = c]� limi→∞ μ(A∩ p−1(Bi))/
∫

Bi
1dλ if the limit exists

and is the same for all sequences {Bi} of closed sets converging regularly to c.

Where defined, letting A ∈ Ma,B ∈ Mb, conditional density satisfies the equation∫
B

μ̇ [A||p = x] d(μ p−1)(x) = μ(A∩ p−1(B)).
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In particular, we have μ̇ [A||p = c] = 0 if b is discrete and μ(p−1(c)) = 0. To show that
our definition of conditional density generalizes the notion of density given above, we
have that if μ has a continuous density μ̇ on some neighbourhood of p−1(c) then

μ̇ [A||p = c] =
∫

A
δc(p(x))μ̇(x)dλ (x).

3.3 Measure Transformers

We will now recast some standard theorems of measure theory as a library of combi-
nators, that we will later use to give semantics to probabilistic languages. A measure
transformer is a function from finite measures to finite measures. We let t � u be the
set of functions M t → M u. We use the following combinators on measure transformers
in the formal semantics of our languages.

Measure Transformer Combinators:

pure ∈ (t → u) → (t � u)
>>> ∈ (t1� t2) → (t2� t3) → (t1� t3)
choose∈ (Vt → (t� u)) → (t � u)
extend∈ (Vt → M u) → (t � (t ∗ u))
observe∈ (t → b) → (t� t)

The definitions of these combinators occupy the remainder of this section. We recall
that μ denotes a measure and A a measurable set, of appropriate types.

To lift a pure measurable function to a measure transformer, we use the combinator
pure ∈ (t → u) → (t � u). Given f : t → u, we let pure f μ A� μ f−1(A), where μ
is a measure on T[[t]] and A is a measurable set from T[[u]].

To sequentially compose two measure transformers we use standard function com-
position, defining >>> ∈ (t1� t2) → (t2� t3) → (t1� t3) as T >>>U �U ◦T .

The combinator choose ∈ (Vt → (t � u)) → (t � u) makes a conditional choice
between measure transformers, if its first argument is measurable and has finite range.
Intuitively, choose K μ first splits Vt into the equivalence classes modulo K. For each
equivalence class, we then run the corresponding measure transformer on μ restricted
to the class. Finally, the resulting finite measures are added together, yielding a finite
measure. We let choose K μ A � ∑T∈range(K) T (μ |K−1(T))(A). In particular, if K is a

binary choice mapping all elements of B to TB and all elements of C = B to TC, we have
choose K μ A = TB(μ |B)(A)+ TC(μ |C)(A). (In fact, our only uses of choose in this
paper are in the semantics of conditional expressions in Fun and conditional statements
in Imp, and in each case the argument K to choose is a binary choice.)

The combinator extend ∈ (Vt → M u) → (t � (t ∗ u)) extends the domain of a
measure using a function yielding measures. It is reminiscent of creating a depen-
dent pair, since the distribution of the second component depends on the value of
the first. For extend m to be defined, we require that for every A ∈ Mu, the func-
tion fA � λ x.m(x)(A) is measurable, non-negative and bounded from above. This will
always be the case in our semantics for Fun, since we only use the standard distribu-
tions for m above. We let extend m μ AB �

∫
Vt

m(x)({y | (x,y) ∈ AB})dμ(x), where



86 J. Borgström et al.

we integrate over the first component (call it x) with respect to the measure μ , and the
integrand is the measure m(x) of the set {y | (x,y) ∈ A} for each x.

The combinator observe∈ (t → b)→ (t� t) conditions a measure over T[[t]] on the
event that an indicator function of type t → b is zero. Here observation is unnormalized
conditioning of a measure on an event. We define:

observe p μ A�
{

μ̇ [A||p = 0b] if μ(p−1(0b)) = 0
μ(A∩ p−1(0b)) otherwise

As an example, if p : t → bool is a predicate on values of type t, we have

observe p μ A = μ(A∩{x | p(x) = true}).

In the continuous case, if Vt = R×Rk, p = λ (y,x).(y− c) and μ has density μ̇ then

observe p μ A =
∫

A
μ(y,x)d(δc ×λ )(y,x) =

∫
{x|(c,x)∈A}

μ̇(c,x)dλ (x).

Notice that observe p μ A can be greater than μ(A), for which reason we cannot
restrict ourselves to transformation of (sub-)probability measures.

3.4 Measure Transformer Semantics of Fun

In order to give a compositional denotational semantics of Fun programs, we give a
semantics to open programs, later to be placed in some closing context. Since obser-
vations change the distributions of program variables, we may draw a parallel to while
programs. In this setting, we can give a denotation to a program as a function from vari-
able valuations to a return value and a variable valuation. Similarly, we give semantics
to an open Fun term by mapping a measure over assignments to the term’s free variables
to a joint measure of the term’s return value and assignments to its free variables. This
choice is a generalization of the (discrete) semantics of pWHILE [2].

First, we define a data structure for an evaluation environment assigning values to
variable names, and corresponding operations. Given an environmentΓ = x1:t1, . . . ,xn:tn,
we let S〈Γ 〉 be the set of states, or finite maps s = {x1 �→V1, . . . ,xn �→Vn} such that for
all i = 1, . . . ,n, ε � Vi : ti. We let T[[S〈Γ 〉]]� T[[t1 ∗ · · · ∗ tn]] be the measurable space of
states in S〈Γ 〉. We define dom(s)� {x1, . . . ,xn}. We define the following operators.

Auxiliary Operations on States and Pairs:

add x (s,V )� s∪{x �→V} if ε �V : t and x /∈ dom(s), s otherwise.
lookup x s� s(x) if x ∈ dom(s), () otherwise.
drop X s� {(x �→V ) ∈ s | x /∈ X} fst((x,y)) � x snd((x,y))� y

We apply these combinators to give a semantics to Fun programs as measure trans-
formers. We assume that all bound variables in a program are different from the free
variables and each other. Below, V[[V ]] s gives the valuation of V in state s, and A[[M]]
gives the measure transformer denoted by M.
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Measure Transformer Semantics of Fun:

V[[x]] s� lookup x s
V[[c]] s� c
V[[(V1,V2)]] s� (V[[V1]] s,V[[V2]] s)

A[[V ]]� pure λ s.(s,V[[V ]] s)
A[[V1 ⊗V2]]� pure λ s.(s,((V[[V1]] s)⊗ (V[[V2]] s)))
A[[V.1]]� pure λ s.(s,fst(V[[V ]] s))
A[[V.2]]� pure λ s.(s,snd(V[[V ]] s))

A[[if V then M else N]]� choose λ s.if V[[V ]] s then A[[M]] else A[[N]]
A[[random (D(V ))]]� extend λ s.μD(V[[V ]] s)
A[[observe V ]]� (observe λ s.V[[V ]] s)>>> pure λ s.(s,())
A[[let x = M in N]]�A[[M]]>>>

pure (add x)>>>A[[N]]>>> pure λ (s,y).((drop {x} s),y)

A value expression V returns the valuation of V in the current state, which is left un-
changed. Similarly, binary operations and projections have a deterministic meaning
given the current state. An if V expression runs the measure transformer given by the
then branch on the states where V evaluates true, and the transformer given by the
else branch on all other states, using the combinator choose. A primitive distribution
random (D(V )) extends the state measure with a value drawn from the distribution D,
with parameters V depending on the current state. An observation observe V modifies
the current measure by restricting it to states where V is zero. It is implemented with the
observe combinator, and it always returns the unit value. The expression let x = M in N
intuitively first runs M and binds its return value to x using add. After running N, the
binding is discarded using drop.

Lemma 1. If s : S〈Γ 〉 and Γ �V : t then V[[V ]] s ∈ Vt .

Lemma 2. If Γ � M : t then A[[M]] ∈ S〈Γ 〉� (S〈Γ 〉 ∗ t).

The measure transformer semantics of Fun is hard to use directly, except in the case of
discrete measures where they can be directly implemented: a naive implementation of
M〈S〈Γ 〉〉 is as a map assigning a probability to each possible variable valuation. If there
are N variables, each sampled from a Bernoulli distribution, in the worst case there are
2N paths to be explored in the computation, each of which corresponds to a variable val-
uation. In this simple case, the measure transformer semantics of closed programs also
coincides with the sampling semantics. We write PM [value = V | valid] for the probabil-
ity that a run of M returns V given that all observations in the run succeed.

Theorem 1. Suppose ε � M : t for some M only using Bernoulli distributions.
If μ = A[[M]] δ() and ε �V : t then PM [value = V | valid] = μ({V})/|μ |.
A consequence of the theorem is that our measure transformer semantics is a general-
ization of the sampling semantics for discrete probabilities. For this theorem to hold, it
is critical that observe denotes unnormalized conditioning (filtering). Otherwise pro-
grams that perform observations inside the branches of conditional expressions would
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have undesired semantics. As the following example shows, the two program fragments
observe (x=y) and if x then observe (y=true) else observe (y=false) would have differ-
ent measure transformer semantics although they have the same sampling semantics.

Simple Conditional Expression: Mif

let x = sample (Bernoulli(0.5))
let y = sample (Bernoulli(0.1))
if x then observe (y=true) else observe (y=false)
y

In the sampling semantics, the two valid runs are when x and y are both true (with
probability 0.05), and both false (with probability 0.45), so we have P [true | valid] = 0.1
and P [false | valid] = 0.9.

If, instead of the unnormalized definition observe p μ A = μ(A∩{x | p(x)}), we
had either of the flawed definitions

observe p μ A =
μ(A∩{x | p(x)})

μ({x | p(x)}) or |μ |μ(A∩{x | p(x)})
μ({x | p(x)})

then A[[Mif]] δ() {true} = A[[Mif]] δ() {false}, which would invalidate the theorem.
Let M′ = Mif with observe (x = y) substituted for the conditional expression. With

the actual or either of the flawed definitions of observe we have A[[M′]] δ() {true} =
(A[[M′]] δ() {false})/9.

4 Semantics as Factor Graphs

A naive implementation of the measure transformer semantics of the previous section
would work directly with measures of states, whose size could be exponential in the
number of variables in scope. For large models, this becomes intractable. In this sec-
tion, we instead give a semantics to Fun programs as factor graphs [18], whose size will
be linear in the size of the program. We define this semantics in two steps. We first com-
pile the Fun program into a program in the simple imperative language Imp, and then
the Imp program itself has a straightforward semantics as a factor graph. Our semantics
formalizes the way in which our implementation maps F# programs to Csoft programs,
which are evaluated by Infer.NET by constructing suitable factor graphs. The imple-
mentation advantage of translating F# to Csoft, over simply generating factor graphs
directly [22], is that the translation preserves the structure of the input model (including
array processing in our full language), which can be exploited by the various inference
algorithms supported by Infer.NET.

4.1 Imp: An Imperative Core Calculus

Imp is an imperative language, based on the static single assignment (SSA) intermediate
form. It is a sublanguage of Csoft, the input language of Infer.NET [25], and is intended
to have a simple semantics as a factor graph. A composite statement C is a sequence of
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statements, each of which either stores the result of a primitive operation in a location,
observes the contents of a location to be zero, or branches on the value of a location.
Imp shares the base types b with Fun, but has no tuples.

Syntax of Imp:

l, l′, . . . Locations (variables) in global store
E,F ::= c | l | (l ⊗ l) Expression
I ::= Statement

l ← E assignment
l s←− D(l1, . . . , ln) random assignment
observeb l observation
if l thenΣ1 C1 elseΣ2 C2 conditional

C ::= nil | I | (C;C) Composite Statement

When making an observation observeb, we make explicit the type b of the observed
location. In the form if l thenΣ1 C1 elseΣ2 C2, the environments Σ1 and Σ2 declare the
local variables assigned by the then branch and the else branch, respectively. These
annotations simplify type checking and denotational semantics.

The typing rules for Imp are standard. We consider Imp typing environments Σ to be
a special case of Fun environments Γ , where variables (locations) always map to base
types. The judgment Σ �C : Σ ′ means that the composite statement C is well-typed in
the initial environment Σ , yielding additional bindings Σ ′.
Part of the Type System for Imp: Σ �C : Σ ′

(IMP SEQ)
Σ �C1 : Σ ′ Σ ,Σ ′ �C2 : Σ ′′

Σ �C1;C2 : (Σ ′,Σ ′′)

(IMP NIL)
Σ � "

Σ � nil : ε

(IMP ASSIGN)
Σ � E : b l /∈ dom(Σ)

Σ � l ← E : ε, l:b
(IMP OBSERVE)

Σ � l : b

Σ � observeb l : ε

(IMP IF)
Σ � l : bool Σ �C1 : Σ ′

1 Σ �C2 : Σ ′
2 {Σ ′

i} = {Σi,Σ ′}
Σ � if l thenΣ1 C1 elseΣ2 C2 : Σ ′

4.2 Translating from Fun to Imp

The translation from Fun to Imp is a mostly routine compilation of functional code to
imperative code. The main point of interest is that Imp locations only hold values of
base type, while Fun variables may hold tuples. We rely on patterns p and layouts ρ to
track the Imp locations corresponding to Fun environments. The technical report has
the detailed definition of the following notations.

Notations for the Translation from Fun to Imp:

p ::= l | () | (p, p) pattern: group of Imp locations to represent Fun value
ρ ::= (xi �→ pi)i∈1..n layout: finite map from Fun variables to patterns
Σ � p : t in environment Σ , pattern p represents Fun value of type t
Σ � ρ : Γ in environment Σ , layout ρ represents environment Γ
ρ � M ⇒C, p given ρ , expression M translates to C and pattern p
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4.3 Factor Graphs

A factor graph [18] represents a joint probability distribution of a set of random vari-
ables as a collection of multiplicative factors. Factor graphs are an effective means of
stating conditional independence properties between variables, and enable efficient al-
gebraic inference techniques [27,38] as well as sampling techniques [15, Chapter 12].
We use factor graphs with gates [26] for modelling if-then-else clauses; gates introduce
second-order edges in the graph.

Factor Graphs:

G ::= new x : b in {e1, . . . ,em} Graph
x,y,z, . . . Nodes (random variables)
e ::= Edge

Equal(x,y) equality (x = y)
Constantc(x) constant (x = c)
Binop⊗(x,y,z) binary operator (x = y⊗ z)
SampleD(x,y1, . . . ,yn) sampling (x ∼ D(y1, . . . ,yn))
Gate(x,G1,G2) gate (if x then G1 else G2)

In a graph new x : b in {e1, . . . ,em}, the variables xi are bound; graphs are identified up to
consistent renaming of bound variables. We write {e1, . . . ,em} for new ε in {e1, . . . ,em}.
We write fv(G) for the variables occurring free in G. Here is an example factor graph
GE. (The corresponding Fun source code is listed in the technical report.)

Factor Graph for Epidemiology Example:

GE = {Constant0.01(pd),SampleB(has disease, pd),
Gate(has disease,

new pp : real in {Constant0.8(pp),SampleB(positive result, pp)},
new pn : real in {Constant0.096(pn),SampleB(positive result, pn)}),

Constanttrue(positive result)}

A factor graph typically denotes a probability distribution. The probability (density) of
an assignment of values to variables is equal to the product of all the factors, averaged
over all assignments to local variables. Here, we give a slightly more general semantics
of factor graphs as measure transformers; the input measure corresponds to a prior
factor over all variables that it mentions. Below, we use the Iverson brackets, where [p]
is 1 when p is true and 0 otherwise. We let δ (x = y) � δ0(x− y) when x,y denote real
numbers, and [x = y] otherwise.

Semantics of Factor Graphs: J[[G]]Σ
′

Σ ∈ S〈Σ〉� S〈Σ ,Σ ′〉
J[[G]]Σ

′
Σ μ A�

∫
A (J[[G]] s) d(μ ×λ )(s)

J[[new x : b in {e}]] s�
∫

V∗ibi
∏ j(J[[e j]] (s,x))dλ (x)

J[[Equal(l, l′)]] s� δ (lookup l s = lookup l′ s)
J[[Constantc(l)]] s� δ (lookup l s = c)
J[[Binop⊗(l,w1,w2)]] s� δ (lookup l s = lookup w1 s⊗lookupw2 s)
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J[[SampleD(l,v1, . . . ,vn)]] s� μD(lookup v1 s,...,lookup vn s)(lookup l s)
J[[Gate(v,G1,G2)]] s� (J[[G1]] s)[lookup v s](J[[G2]] s)[¬lookup v s]

4.4 Factor Graph Semantics for Imp

An Imp statement has a straightforward semantics as a factor graph. Here, observation
is defined by the value of the variable being the constant 0b.

Factor Graph Semantics of Imp: G = G[[C]]

G[[nil]]�∅
G[[C1;C2]]� G[[C1]]∪G[[C2]]

G[[l ← c]]� {Constantc(l)}
G[[l ← l′]]� {Equal(l, l′)}
G[[l ← l1 ⊗ l2]]� {Binop⊗(l, l1, l2)}
G[[l s←− D(l1, . . . , ln)]]� {SampleD(l, l1, . . . , ln)}
G[[observeb l]]� {Constant0b(l)}
G[[if l thenΣ1 C1 elseΣ2 C2]]� {Gate(l,new Σ1 in G[[C1]],new Σ2 in G[[C2]])}

The following theorem asserts that the semantics of Fun coincides with the semantics
of Imp for compatible measures, which are defined as follows. If T : t� u is a measure
transformer composed from the combinators of Section 3 and μ ∈ M t, we say that T
is compatible with μ if every application of observe f to some μ ′ in the evaluation
of T (μ) satisfies either that f is discrete or that μ has a continuous density on some
ε-neighbourhood of f−1(0.0).

The statement of the theorem needs some additional notation. If Σ � p : t and s ∈
S〈Σ〉, we write p s for the reconstruction of an element of T[[t]] by looking up the
locations of p in the state s. We define as follows operations lift and restrict to
translate between states consisting of Fun variables (S〈Γ 〉) and states consisting of Imp
locations (S〈Σ〉), where flatten takes a mapping from patterns to values to a mapping
from locations to base values.

lift ρ � λ s.flatten{ρ(x) �→ V[[x]] s | x ∈ dom(ρ)}
restrict ρ � λ s.{x �→ V[[ρ(x)]] s | x ∈ dom(ρ)}

Theorem 2. If Γ � M : t and Σ � ρ : Γ and ρ � M ⇒ C, p and measure μ ∈ M〈S〈Γ 〉〉
is compatible with A[[M]] then there exists Σ ′ such that Σ �C : Σ ′ and:
A[[M]] μ = (pure (lift ρ)>>> J[[G[[C]]]]Σ

′
Σ >>> pure (λ s. (restrict ρ s, p s))) μ .

Proof. Via a direct measure transformer semantics for Imp. The proof is by induction
on the typing judgments Γ � M : t and Σ �C : Σ ′. ��

5 Implementation Experience

We implemented a compiler from Fun to Imp in F#. We wrote two backends for Imp: an
exact inference algorithm based on a direct implementation of measure transformers for
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discrete measures, and an approximating inference algorithm for continuous measures,
using Infer.NET [25]. Translating Imp to Infer.NET is relatively straightforward, and
amounts to a syntax-directed series of calls to Infer.NET’s object-oriented API.

We have statistics on a few of the examples we have implemented. The lines of
code number includes F# code that loads and processes data from disk before load-
ing it into Infer.NET. The times are based on an average of three runs. All of the runs
are on a four-core machine with 4GB of RAM. The Naive Bayes program is the naive
Bayesian classifier of the earlier examples. The Mixture model is another clustering/-
classification model. TrueSkill is a tournament ranking model, and adPredictor is a
simplified version of a model to predict the likelihood that a display advertisment will
be clicked. In the two long-running examples, time is spent mostly loading and process-
ing data from disk and running inference in Infer.NET. TrueSkill spends the majority of
its time (64%) in Infer.NET, performing inference. AdPredictor spends most of the time
in pre-processing (58%), and only 40% in inference. The time spent in our compiler is
negligible, never more than a few hundred milliseconds.

Summary of our Basic Test Suite:

LOC Observations Variables Time
Naive Bayes 28 9 3 <1s

Mixture 33 3 3 <1s
TrueSkill 68 15,664 84 6s

adPredictor 78 300,752 299,594 3m30s

In summary, our implementation strategy allowed us to build an effective prototype
quickly and easily: the entire compiler is only 2079 lines of F#; the Infer.NET backend
is 600 lines; the discrete backend is 252 lines. Our implementation, however, is only
a prototype, and has limitations. On the one hand, Infer.NET supports a limited set
of operations on specific combinations of probabilistic and deterministic arguments.
Our discrete backend, on the other hand, is limited to small models using only finite
measures.

6 Related Work

To the best of our knowledge, this paper introduces the first rigorous measure-theoretic
semantics shown to be in agreement with a factor graph semantics for a probabilistic
language with observation and sampling from continuous distributions. Hence, we lay
a firm foundation for inference on probabilistic programs via modern message-passing
algorithms on factor graphs.

Formal Semantics of Probabilistic Languages. There is a long history of formal seman-
tics for probabilistic languages with sampling primitives, often combined with recursive
computation. One of the first semantics is for Probabilistic LCF [35], which augments
the core functional language LCF with weighted binary choice, for discrete distribu-
tions. Kozen [17] develops a probabilistic semantics for while-programs augmented
with random assignment. He develops two provably equivalent semantics; one more op-
erational, and the other a denotational semantics using partially ordered Banach spaces.
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Imp is simpler than Kozen’s language, as Imp has no unbounded while-statements, so
the semantics of Imp need not deal with non-termination. On the other hand, observa-
tions are not present in Kozen’s language.

Jones and Plotkin [13] investigate the probability monad, and apply it to languages
with discrete probabilistic choice. Ramsey and Pfeffer [33] give a stochastic λ -calculus
with a measure-theoretic semantics in the probability monad, and provide an embed-
ding within Haskell; they do not consider observations. We can generalize the seman-
tics of observe to this setting as filtering in the probability monad (yielding what we
may call a sub-probability monad), as long as the events that are being observed are
discrete or have non-zero probability. However, zero-probability observations of real
variables do not translate easily to the probability monad, as the following example
shows. Let N be an expression returning a continuous distribution, for example, sample
(Gaussian(0.0,1.0)), and let f x = observe x. The probability monad semantics of the

program let x = N in f x of the stochastic λ -calculus is [[N]]%= λ y.[[f x]]{x �→ y}, which
yields the measure μ(A) =

∫
R(M[[[[f x]]{x �→ y}]])(A) dM[N](y). Here the probabil-

ity (M[[[[f x]]{x �→ y}]])(A) is zero except when y = 0, where it is some real number.
Since the N-measure of y = 0 is zero, the whole integral is zero for all A (in particu-
lar μ(R) = 0), whereas the intended semantics is that x is constrained to be zero with
probability 1 (so in particular μ(R) = 1).

The probabilistic concurrent constraint programming language pcc of Gupta, Ja-
gadeesan, and Panangaden [10] is also intended for describing probability distributions
using independent sampling and constraints. Our use of observations corresponds to
constraints on random variables in pcc. In the finite case, pcc also relies on a sampling
semantics with observation (constraints) denoting filtering. To admit continuous distri-
butions, pcc adds general fixpoints and defines the semantics of a program as the limit
of finite unrollings of its fixpoints, if defined. This can lead to surprising results, for
example, that the distribution resulting from observing that two uniform distributions
are equal may not itself be uniform. In contrast, our goal is an efficient implementation
via factor graphs, which led us to work directly with standard distributions and to have
a semantics of observation that is independent of the program text.

McIver and Morgan [23] develop a theory of abstraction and refinement for proba-
bilistic while programs, based on weakest preconditions. They reject a subdistribution
transformer semantics in order to admit demonic nondeterminism in the language.

We conjecture that Fun and Imp could in principle be conferred semantics within a
probabilistic language supporting general recursion, by encoding observations by plac-
ing the whole program within a conditional sampling loop, and by encoding Gaussian
and other continuous distributions as repeated sampling using recursive functions. Still,
our choices in formulating the semantics of Fun and Imp were to include some distribu-
tions as primitive, and to exclude recursion; compared to encodings within probabilistic
languages with recursion, these choices have these advantages: (1) our measure trans-
former semantics relies on relatively elementary measure theory, with no need to ex-
press non-termination or to compute limits when defining the model; (2) our semantics
is compositional rather than relying on a global sampling loop; and (3) our semantics
has a direct implementation via message-passing algorithms on factor graphs, with ef-
ficient implementations of primitive distributions.
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Probabilistic Languages for Machine Learning. Koller et al. [16] pioneered the idea
of representing a probability distribution using first-order functional programs with
discrete random choice, and proposed an inference algorithm for Bayesian networks
and stochastic context-free grammars. Observations happen outside their language, by
returning the distributions P [A∧B] ,P [A∧¬B] ,P [¬A] which can be used to compute
P [B | A].

Park et al. [30] propose λ◦, the first probabilistic language with formal semantics
applied to actual machine learning problems involving continuous distributions. The
formal basis is sampling functions, which uniformly supports both discrete and contin-
uous probability distributions, and inference is by Monte Carlo methods. The calculus
λ◦ does not include observations, but enables conditional sampling via fixpoints and
rejection.

Infer.NET [25] is a software library that implements the approximate deterministic
algorithms expectation propagation [27] and variational message passing [38], as well
as Gibbs sampling, a nondeterministic algorithm. Infer.NET models are written in a
probabilistic subset of C#, known as Csoft [37]. Csoft allows observe on zero proba-
bility events, but its semantics has not previously been formalized and it is currently
only implemented as an internal language of Infer.NET. IBAL [32] has observations
and uses a factor graph semantics, but only works with discrete datatypes and thus does
not need advanced probability theory. Moreover, there seems to be no proof that the
factor graph denotation of an IBAL program yields the same distribution as the direct
semantics, an important goal of the present work. HANSEI [14] is a programming li-
brary for OCaml, based on explicit manipulation of discrete probability distributions
as lists, and sampling algorithms based on coroutines. HANSEI uses an explicit fail
statement, which is equivalent to observe false and so cannot be used for conditioning
on zero probability events.

FACTORIE [22] is a Scala library for explicitly constructing factor graphs. Although
there are many Bayesian modelling languages, Csoft and IBAL are the only previ-
ous languages implemented by a compilation to factor graphs. Church [9] is a prob-
abilistic form of the untyped functional language Scheme, equipped with conditional
sampling and a mechanism of stochastic memoization. Queries are implemented using
Monte Carlo methods. Blaise [4] supports the compositional construction of sophisti-
cated probabilistic models, and decouples the choice of inference algorithm from the
specification of the distribution. WinBUGS [28] is a popular language for explicitly
describing distributions suitable for Monte Carlo analysis.

Other Uses of Probabilistic Languages. Probabilistic languages with formal semantics
find application in many areas apart from machine learning, including databases [6],
model checking [19], differential privacy [24,34], information flow [20], and cryptog-
raphy [1]. A recent monograph on semantics for labelled Markov processes [29] focuses
on bisimulation-based equational reasoning. The syntax and semantics of Imp is mod-
elled on an existing probabilistic language [2] without observations.

Erwig and Kollmansberger [7] describe a library for probabilistic functional pro-
gramming in Haskell. The library is based on the probability monad, and uses a finite
representation suitable for small discrete distributions; the library would not suffice to
provide a semantics for Fun or Imp with their continuous and hybrid distributions.
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7 Conclusion

Our direct contribution is a rigorous semantics for a probabilistic programming lan-
guage that also has an equivalent factor graph semantics. We have shown that prob-
abilistic functional programs with iteration over arrays, but without the complexities
of general recursion, are a concise representation for complex probability distributions
arising in machine learning. An implication of our work for the machine learning com-
munity is that probabilistic programs can be written directly within an existing declar-
ative language (Fun—a subset of F#), linked by comprehensions to large datasets, and
compiled down to lower level Bayesian inference engines.

For the programming language community, our new semantics suggests some novel
directions for research. What other primitives are possible—non-generative models,
inspection of distributions, on-line inference on data streams? Can we verify the trans-
formations performed by machine learning compilers such as Infer.NET compiler for
Csoft? Are there type systems for avoiding zero probability exceptions, or to ensure that
we only generate factor graphs that can be handled by our back-end?

Acknowledgements. We gratefully acknowledge discussions with Ralf Herbrich, Tom
Minka, and John Winn. Comments from Nikhil Swamy, Dimitrios Vytiniotis, and the
anonymous reviewers were helpful.
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Abstract. Recently it has been shown how transfer functions for linear
template constraints can be derived for bit-vector programs by operat-
ing over propositional Boolean formulae. The drawback of this method is
that it relies on existential quantifier elimination, which induces a com-
putational bottleneck. The contribution of this paper is a novel method
for synthesising transfer functions that does not rely on quantifier elim-
ination. We demonstrate the practicality of the method for generating
transfer functions for both intervals and octagons.

1 Introduction

In model checking [3] the behaviour of a system is formally specified with a
model. All paths through the program are then exhaustively checked against its
requirements. The detailed nature of the requirements entails that the program
is simulated in a fine-grained way, sometimes down to the level of individual
bits. Because of the complexity of this reasoning there has been much interest
in representing states of a program symbolically, as Boolean functions, which
enables states that share commonality to be represented without duplicating
their commonality.

The key idea in abstract interpretation [10] is to abstract away from the de-
tailed nature of states. Then the program checker operates over classes of related
states — collections of states that are equivalent in some sense — rather than
individual states. If the number of classes is small, then all the paths through
the program can be examined without incurring the problems of state-space
explosion. When carefully constructed, the classes of states can preserve suffi-
cient information to prove correctness. However, sometimes so much detail is
lost when working with classes that the technique cannot infer useful informa-
tion. This is because it critically depends on the expressiveness of the classes
and the class transformers chosen to model the instructions that arise in the
program. Class transformers are traditionally known as transfer functions [16];
they express how input states are mapped to output states by an instruction. If
an input state is described by a class, then the transfer function is required to
simulate the execution of the instruction by computing a class which faithfully
describes the output state. Constructing transfer functions is difficult, especially
when the instructions are low-level and operate over finite machine arithmetic.
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This is because classes are themselves expressed as high-level geometric concepts
such as affine and polyhedral spaces, presenting a semantic gap that has to be
bridged.

The seminal work of Reps and his colleagues [29] advocated the automatic
synthesis of transfer functions, though recently the topic has attracted increasing
attention [6,19,23] because of the desire to generate transfer functions for blocks
rather than single instructions. This can improve precision when there is a close
coupling between the operations that constitute a block [19], which is often
the case when recovering high-level semantics from assembly code, for instance,
recovering a 16-bit addition from two consecutive 8-bit additions with carry.

1.1 Deriving Transfer Functions by Quantifier Elimination

Boolean formulae are germane to the problem of transfer function synthesis since
the semantics of blocks are naturally represented as input-output relations — a
technique that is colloquially referred to as bit-blasting [7]. This formulation
of the semantics of a block dovetails with the quantifier-based approach [23] to
transfer function synthesis since, when a formula is presented in CNF, existential
and universal quantifier elimination can be realised straightforwardly [20].

To illustrate the role of quantification, suppose a formula models a block that
mutates a single register whose values on entry and exit are represented by bit-
vectors x and x′, respectively. To derive a transfer function for interval analysis,
it is necessary to ascertain how the maximal value of x′, denoted x′u, relates to
the minimal and maximal values of x, denoted x� and xu. The value of x′u can
be specified in logic [6,23] by asserting that: (i) for every value of x that falls
in the interval [x�,xu], the value of x′u is greater or equal to x′, and (ii) for
some value of x in [x�,xu], the output x′ takes the value of x′u. The “for some”
can be expressed with existential quantification, but the “for every” can only
be expressed with universal quantification. By applying quantifier elimination, a
direct relationship between x�, xu, and x′u can be found, yielding a mechanism
for computing x′u in terms of xl and xu.

1.2 The Drawbacks of Quantifier Elimination

Transfer function synthesis thus involves eliminating quantified variables from
∀y : ϕ where ϕ is a system of propositional constraints and y is a tuple of
variables. When ϕ is propositional, a CNF formula ψ that is equisatisfiable,
denoted ≡, to ϕ can be straightforwardly found [27] by introducing fresh vari-
ables, denoted z, to give ϕ ≡ ∃z : ψ. The transfer function synthesis problem
then amounts to solving ∀y : ∃z : ψ where ψ is in CNF. Alternating quan-
tifiers also arise when transfer functions are synthesised from piece-wise linear
constraints [23].

To eliminate existentially quantified variables, resolution [20, Chap. 9.2.3]
is applied, which may be prohibitively expensive: the quadratic nature of each
resolution step compromises tractability as the size of z increases. The size of z is
proportional to the number of logical connectives in ϕ which, in turn, depends on



Transfer Function Synthesis without Quantifier Elimination 99

the size of the bit-vectors and the complexity of the block under consideration.
It is therefore no surprise that this approach has only been demonstrated for
blocks of microcontroller code where the word-size is just 8 bits [6]. Thus far, the
complexity of resolution has thwarted the wider applicability of this technique,
even when applied carefully, which motivates the search for alternative methods.

1.3 Avoiding Quantifier Elimination

Our contribution is to eliminate the need for existential quantifier elimination
altogether and replace resolution with successive calls to a SAT solver, where
the number of calls grows linearly with the word-size. To illustrate, consider an
octagon [22] which consists of a system of inequalities of the form ±x ± y ≤ d.
For each of these inequalities, our approach derives the least d ∈ Z (which is
uniquely determined) such that the inequality holds for all feasible values of x
and y as defined by some predicate.

As an example, consider the inequality x + y ≤ d. The constant d is char-
acterised as d = min{c ∈ Z | ∀x : ∀y : P (x,y) ∧ (x + y ≤ c)} where P (x,y)
is a predicate constraining the values of bit-vectors x and y. Further, given a
machine with word-length w, the maximal value in an unsigned representation is
given as 2w−1, and thus we can derive an initial constraint 0 ≤ d∧d ≤ 2·(2w−1)
for d, which can be expressed disjunctively as μ� ∨ μu where:

μ� = (0 ≤ d ∧ d ≤ 2w − 1) μu = (2w ≤ d ∧ d ≤ 2 · (2w − 1))

To determine which disjunct characterises d, it is sufficient to test the formula
∃x : ∃y : P (x,y)∧(x+y ≥ 2w) for satisfiability. If satisfiable, then μu is entailed
by d, and μ� otherwise. We proceed by decomposing the new characterisation
into a disjunction and repeating this step w times to give d exactly. When a
transfer function is formulated as a system of guarded affine updates [6, Sect. 2]
then this range refinement technique can be applied to synthesise guards on the
input values of variables.

The second contribution is to finesse the need for quantifier elimination in
the generation of the input-output transformers that constitute the updates of
the transfer functions. We demonstrate this construction not only for intervals,
but for transfer functions over octagons. The method is based on computing
an affine abstraction of a Boolean formula. Operationally, an update is applied
to those inputs that satisfy the respective guard; the update details how the
bounds of an input interval are mapped to new bounds of an output interval.
In the case of octagons, the update maps the constants on the input octagonal
inequalities to new constants on the output inequalities. Deriving updates for oc-
tagons requires range refinement to be interleaved with affine abstraction, which
represents a third contribution. As a fourth contribution, we suggest a simple
way of evaluating these transfer functions.

1.4 Outline of the Approach

Overall, the paper proposes a systematic technique for inferring transfer func-
tions that are defined as systems of guarded updates. Transfer functions are
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inferred for a block by modeling each instruction as one of (at most) three
Boolean functions, according to whether it overflows, underflows or does neither
(is exact). A mode combination is then chosen for each instruction, and a single
Boolean formula is constructed for the block by composing a formula for each in-
struction in the prescribed mode. If the composed formula is unsatisfiable, then
the mode combination is inconsistent. Otherwise the mode combination is feasi-
ble and describes one type of wrapping (or non-wrapping) behaviour that can
be realised within the block. The formula is then used to distill a guard paired
with an update; one pair is computed for each feasible mode combination.

The guard, which is the optimal octagonal abstraction of the formula, is con-
structed one octagonal constraint at a time, by applying a form of dichotomy
search, which amounts to a series of calls a SAT solver, as is explained in Sect. 2.
The update component of the pair specifies how, when the guard is satisfied,
the constraints in an input octagon are mapped to constraints in the output
octagon (or in the degenerative case how to adjust bounds on intervals). Com-
puting the update amounts to inferring a relationship between the bound on an
output constraint and the bounds on the input constraints. Such a relationship
can again be derived by repeated SAT solving, as detailed in Sect. 3. Replicating
this construction for each of the output constraints gives the update operation
for the feasible mode combination.

All these techniques are illustrated for blocks of 32-bit AVR UC3 assembly
code [1], though the techniques are completely generic. We present experimental
evidence in Sect. 5 which shows that the techniques presented in the paper are
able to synthesise transfer functions for blocks where previous approaches based
on quantifier elimination were prohibitively expensive. Sect. 6 surveys the related
work and Sect. 7 concludes.

2 Deriving Guards

We express the concrete semantics of a block with Boolean formulae. Whereas
universal quantifier elimination is attractive computationally, this is not so for
the elimination of existentially quantified variables. We overcome this problem
by reformulating the construction given in [6] for the synthesis of guards.

2.1 Deriving Interval Guards by Range Refinement

Consider deriving a transfer function for the operation INC R0, which increments
the value of R0 by one and stores the result in R0. For this example, we assume
that the operands are unsigned. We represent the value of R0 by a bit-vector r0
and let 〈r0〉 =

∑31
i=0 2i · r0[i] where r0[i] denotes the ith element of r0. The

instruction itself can operate in one of two modes: (1) it overflows (iff 〈r0〉 =
232 − 1) or (2) it is exact (otherwise). The semantics of these two modes can be
expressed as two formulae:

(1) ϕO(X) = ϕ(X) ∧ (
∧31
i=0 r0[i])

(2) ϕE(X) = ϕ(X) ∧ (
∨31
i=0 ¬r0[i])
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where ϕ(X) encodes the increment over bit-vectors X = {r0, r0′} as follows:

ϕ(X) =
∧31
i=0

(
r0′[i] ↔ r0[i] ⊕∧i−1

j=0 r0[j]
)

Both formulae can be converted into CNF by introducing fresh variables z. We
therefore denote the resulting formulae by ϕE(X, z) and ϕO(X, z). Following
our initial approach [6], the transfer function for a multi-modal block (where the
internal instructions can wrap) is described as a system of guarded updates. In
the one-dimensional case, octagonal guards coincide with intervals. Each guard
constitutes an upper-approximation of those inputs that are compatible with the
specific mode. In case of the increment, we derive guards gO and gE defined as:

(1) gO = 232 − 1 ≤ 〈r0〉 ≤ 232 − 1
(2) gE = 0 ≤ 〈r0〉 ≤ 232 − 2

To obtain these guards, we solve a series of SAT instances, rather than following a
monolithic all-in-one approach based on quantifier elimination [6]. To illustrate,
consider the computation of a least upper bound d for 〈r0〉 for the formula
ϕE(X , z). We start by putting:

ψ1
E(X , z) = ϕE(X, z) ∧ 〈r0〉 ≥ 231

As 231 is a power of two, we can finesse the need for a complicated Boolean
encoding of the predicate ≥ by using the equivalent formula:

ψsimp,1
E (X, z) = ϕE(X , z) ∧ r0[31]

which is simpler both to formulate and to solve. Then, the satisfiability of
ψsimp,1
E (X , z) shows that r0 takes a value in the range 231 ≤ 〈r0〉 ≤ 232 − 1.

Consequently, d occurs in the same range. We can thus further refine this range
by testing:

ψ2
E(X , z) = ϕE(z) ∧ 〈r0〉 ≥ (231 + 230)

for satisfiability, or equivalently ϕsimp,2
E (X, z) = ϕE(z) ∧ r0[31] ∧ r0[30]. As

ψsimp,2
E (X , z) is satisfiable, we infer that d satisfies 230 + 231 ≤ d ≤ 232 − 1.

The method continues to refine the constraint on d into two equally sized halves.
Only in the last iteration is the satisfiability check found to fail from which we
conclude that d =

∑31
i=1 2i = 232 − 2. Overall, this deduction requires 32 SAT

instances, but the similarity of the instances suggests that the overhead can be
mitigated somewhat by incremental SAT.

2.2 Deriving Octagonal Guards by Range Refinement

In a second example, we show how to extend the refinement technique from
intervals to octagons. To illustrate the method, consider the following fragment:

1 : ADD R0, R1; 2 : MOV R2, R0; 3 : EOR R2, R1; 4 : LSL R2;
5 : SBC R2, R2; 6 : ADD R0, R2; 7 : EOR R0, R2;
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This program corresponds to an assignment R0’ := isign(R0+R1,R1) for signed
values. The function isign assigns abs(R0+R1) to R0 if R1 is positive, and
-abs(R0+R1) otherwise. R2 is used as a temporary register. The sum of R0 and R1
is computed by instruction (1), and instructions (2) – (7) implement isign. The
semantics of even this simple block is not obvious due to the bounded nature of
machine arithmetic. For instance, if abs is applied to the smallest representable
integer −231 then the result is 231 subject to overflow, which gives −231. To
derive octagons that describe such corner cases, we have to consider all combi-
nations of over- and underflow modes of the instructions. In the above program,
the instructions ADD (sum) and LSL (left-shift) can wrap in different ways, and
thus are multi-modal. Neither EOR nor MOV can wrap; they are both uni-modal.
Note that in general, the instruction SBC (subtract-with-carry) is multi-modal.
However, in the case of two equal operands, the instruction can only result in 0
or −1, depending on the carry-flag. We thus ignore the wrapping of SBC R2, R2
and consider it to be uni-modal for simplicity. Note that only overflows occurred
in the previous example since the single operand was unsigned.

Finding the feasible mode-combinations. In what follows, let μ(X) de-
note the Boolean encoding of the instruction ADD R0, R1 over bit-vectors X =
{r0, r1, . . . } obtained through static single assignment conversion. The seman-
tics of ADD R0, R1 is to compute the sum of R0 and R1 and store the result in
R0. Since we are now working with signed objects, let 〈〈x〉〉 = (

∑w−2
i=0 2i · x[i]) −

2w−1 · x[w − 1] denote the value of x where x[31] is interpreted as the sign-bit.
Then, ADD R0, R1 has three modes of operation: overflow, underflow and exact
operation. Underflow occurs, for example, if the arithmetic sum of 〈〈r0〉〉 and
〈〈r1〉〉 is less than −231. The semantics of these modes can be expressed as three
Boolean formulae:
μO(X) = μ(X) ∧ ¬r0[31] ∧ ¬r1[31] ∧ r0′[31]
μU (X) = μ(X) ∧ r0[31] ∧ r1[31] ∧ ¬r0′[31]
μE(X) = μ(X) ∧ (r0[31] ∨ r1[31] ∨ ¬r0′[31]) ∧ (¬r0[31] ∨ ¬r1[31] ∨ r0′[31])

The instruction LSL R2 shifts R2 to the left by one bit-position, and the most-
significant bit is moved into the carry-flag. If the carry-flag is set, an overflow
occurs. Let νO(X) and νE(X) thus express the overflow and exact modes of LSL
R2. In an analogous way to the first ADD, let ηO(X), ηU (X) and ηE(X) express
the semantics of the instruction ADD R0, R2. Using these encodings that satisfy
a single mode, we can compose a Boolean formula for a fixed mode-combination
that expresses the possibility of one mode of one operation being consistent with
another mode of another operation; the unsatisfiability of this formula indicates
that the chosen modes are inconsistent. For example, the combination of μU (X),
νE(X) and ηE(X) is infeasible. The above block constitutes 3 ·2 ·3 combinations
of modes, but only 6 of which are satisfiable. We thus have to derive guards only
for the feasible combinations.

Deriving guards for the feasible mode-combinations. Consider the case
where (1) underflows, (4) overflows and (6) is exact, with the corresponding
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formula denoted ξ(X). To derive an octagonal abstraction of the inputs that
satisfy ξ(X), first consider the problem of computing the least upper bound
d for the octagonal expression −〈〈r0〉〉 − 〈〈r1〉〉. To do so, let κ be a formula
encoding 〈〈d〉〉 = −〈〈r0〉〉 − 〈〈r1〉〉 where d is signed and κ is extended to 34 bits
to prevent wraps in the octagonal expression (cp. [9, Sect. 3.3]). Then check:

ψ1(X) = ξ(X) ∧ κ ∧ ¬d[33]

for satisfiability to derive a coarse approximation of d. The satisfiability of ψ1(X)
shows that d ≥ 0. We thus proceed with testing:

ψ2(X) = ξ(X) ∧ κ ∧ ¬d[33] ∧ d[32]

for satisfiability. Satisfiability of ψ2(X) shows that d ≥ 232. Following this strat-
egy, the remaining instantiated formulae are unsatisfiable, and we thus infer
the exact bound 〈〈d〉〉 = 232. Rearranging −〈〈r0〉〉 − 〈〈r1〉〉 ≤ 232 we obtain
−232 ≤ 〈〈r0〉〉+ 〈〈r1〉〉. Using the same tactic, we derive 〈〈r0〉〉+ 〈〈r1〉〉 ≤ −231−1.
Repeating this tactic for all five feasible mode-combinations, we obtain the fol-
lowing optimal octagonal guards:

gO(1),O(4),U(6) = 231 ≤ 〈〈r0〉〉 + 〈〈r1〉〉 ≤ 231 ∧ 0 ≤ 〈〈r1〉〉 ≤ 231 − 1
gE(1),E(4),E(6) = −231 ≤ 〈〈r0〉〉 + 〈〈r1〉〉 ≤ 231 − 1
gU(1),O(4),E(6) = −232 ≤ 〈〈r0〉〉 + 〈〈r1〉〉 ≤ −231 − 1
gE(1),O(4),E(6) = 0 ≤ 〈〈r0〉〉 + 〈〈r1〉〉 ≤ 231 − 1 ∧ −231 ≤ 〈〈r1〉〉 ≤ 1
gO(1),O(4),E(6) = 231 + 1 ≤ 〈〈r0〉〉 + 〈〈r1〉〉 ≤ 232

Redundant inequalities, which are themselves entailed by the given guards, are
omitted for clarity of presentation.

Complexity. A total of 4 · 34 + 4 · 33 SAT instances is solved for each guard.
This is due to the bit-extended representation for constraints ±v1 ± v2 ≤ d,
whereas 33 bits are used for constraints ±v1 ≤ d. While this may appear large,
it is important to appreciate that the number of SAT instances grows linearly
with the bit-width. By way of comparison with [6], adding a single propositional
variable to a formula can increase the complexity of resolution quadratically.

3 Deriving Updates

Transformers over template constraints have been previously formulated using
quantification [6,23]. To avoid this, we derive affine relationships between out-
put variables and input variables. These relations are then lifted to symbolic
constraints that detail how the bounds of an input interval are mapped to the
bounds of an output interval. The technique is then refined to support octagons.
Note that Sect. 3.2 and Sect. 3.3 are just given for pedagogical purposes; only
Sect. 3.4 provides a linear symbolic update operation that is optimal.
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3.1 Inferring Affine Equalities

Our algorithm computes an affine abstraction of the models for a given mode-
combination. To solve for affine input-output relations, let X denote the set of
bit-vectors as before. Consider the Boolean formula ξ(X) for the case where
(1) underflows, (4) overflows and (6) is exact. The process of deriving an affine
abstraction follows the scheme given in [6, Sect. 3.2]. It starts with solving the
formula ξ(X), which produces a model m1 where:

m1 =
{ 〈〈r0′〉〉 = −231 , 〈〈r1′〉〉 = −1 , 〈〈r0〉〉 = −231 + 1 , 〈〈r1〉〉 = −1

}
We can equivalently write m1 as a matrix, denoted M1. With variable ordering
〈r0′, r1′, r0, r1〉 on columns, this gives:

M1 =

⎡⎢⎢⎣
1 0 0 0 −231

0 1 0 0 −1
0 0 1 0 −231 + 1
0 0 0 1 −1

⎤⎥⎥⎦
We then add a disequality constraint 〈〈r1〉〉 �= −1 to ξ(X) in order to obtain a
new solution that is not covered by M1. Denote this formula by ξ′(X). Then,
solving for ξ′(X) produces a different model m2, say:

m2 =
{ 〈〈r0′〉〉=−231 + 2 , 〈〈r1′〉〉=−3 , 〈〈r0〉〉=−231 + 1 , 〈〈r1〉〉=−3

}
Joining M1 with M2, which is likewise obtained from m2, yields a matrix that
describes that affine relations common to both models:

M1 � M2 =

⎡⎢⎢⎣
1 0 0 0 −231

0 1 0 0 −1
0 0 1 0 −231 + 1
0 0 0 1 −1

⎤⎥⎥⎦ �

⎡⎢⎢⎣
1 0 0 0 −231 + 2
0 1 0 0 −3
0 0 1 0 −231 + 1
0 0 0 1 −3

⎤⎥⎥⎦ =

⎡⎣1 1 0 0 −231 − 1
0 1 0 −1 0
0 0 1 0 −231 + 1

⎤⎦
Our algorithm now attempts to find a model that violates the constraint given
through the last row, that is, 〈〈r0〉〉 = −231 + 1. Adding a disequality constraint
to ξ′(X) yields a new formula ξ′′(X), for which a SAT solver finds a model:

m3 =
{ 〈〈r0′〉〉 = −231 , 〈〈r1′〉〉 = −4 , 〈〈r0〉〉 = −231 + 4 , 〈〈r1〉〉 = −4

}
Then, we join M1 � M2 with M3 to give:⎡⎣1 1 0 0 −231 − 1

0 1 0 −1 0
0 0 1 0 −231 + 1

⎤⎦ �

⎡⎢⎢⎣
1 0 0 0 −231

0 1 0 0 −4
0 0 1 0 −231 + 4
0 0 0 1 −4

⎤⎥⎥⎦ =
[
1 0 1 1 −232

0 1 0 −1 0

]

Adding a disequality constraint to suppress 〈〈r1′〉〉 − 〈〈r1〉〉 = 0 yields an unsat-
isfiable formula, likewise for 〈〈r0′〉〉 + 〈〈r1〉〉 + 〈〈r0〉〉 = −232. Indeed, we have

(M1 � M2) � M3 =
⊔
i∈N

Mi
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where Mi are matrices describing different models mi of ξ(X). Indeed, an affine
summary of a mode-combination is in some sense universally quantified, since
its relation is satisfied by every model. Moreover (M1�M2)�M3 represents the
best affine abstraction of ξ(X) [6,19]. The resulting equations, however, express
relationships between variables but not between symbolic intervals. As it turns
out, we can lift (M1�M2)�M3 to an equation system over intervals by applying
a set of straightforward transformations.

Complexity. Note that the chain-length in the affine domain is linear in the
number of variables in the system [18]. Thus, the number of iterations required
to compute a fixed point is bounded by the number of variables and does not
depend on the bit-width.

3.2 Lifting Affine Equalities to Interval Updates

We explain how to transform (M1 � M2) � M3 over variables in X into an
equation system over range boundaries. To do so, let V ⊆ X denote the bit-
vectors on entry of the block, and let V ′ ⊆ X denote the bit-vectors on exit.
Further, introduce fresh variables

V � = {r0�, r1�} V u = {r0u, r1u} V ′
� = {r0′�, r1′�} V ′

u = {r0′u, r1′u}

and if necessary transform the equations such that the left-hand side consists of
only one variable in V ′. For the above equations, this gives:

〈〈r1′〉〉 = 〈〈r1〉〉
〈〈r0′〉〉 = −〈〈r0〉〉 − 〈〈r1〉〉 − 232

These equations imply the following affine relations on interval boundaries:

〈〈r1′〉〉u = 〈〈r1′〉〉u 〈〈r0′〉〉u = −〈〈r1〉〉� − 〈〈r0〉〉� − 232

〈〈r1′〉〉� = 〈〈r1′〉〉� 〈〈r0′〉〉� = −〈〈r1〉〉u − 〈〈r0〉〉u − 232

To derive such as system, transform each of the original equations into the form
λv′ ·v′ = ∑

v∈V λv ·v +d where v′ ∈ V ′, λv′ > 0 and λv ∈ Z for all v ∈ V . This
can always be achieved due to the variable ordering. For example, the system
below on the left can be transformed into the system on the right by applying
elementary row operations:[

1 −1 0 0 1
0 1 0 −1 2

]
�

[
1 0 0 −1 3
0 1 0 −1 2

]
Note that the leading coefficients are positive. We then replace each original
equation by a pair of equations as follows:

λv′ · v′u =
∑

v∈X λv · β(λv ,v) + d
λv′ · v′� =

∑
v∈X λv · β(−λv ,v) + d
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The map β : Z × V → (V � ∪ V u) is defined as β(λ,v) = v� if λ < 0 and
β(λ,v) = vu otherwise. The key idea when constructing the upper bound is to
replace each occurrence of a variable in the original system with its upper bound
in case its coefficient is positive, and with its lower bound otherwise. This task
is performed by β. An analogous technique is applied when defining the lower
bound. Applying this technique to all affine systems, we obtain the following five
transfer functions (with the identity constraints on r1′� and r1′u omitted):

fO(1),O(4),U(6) =
{

(〈〈r0′〉〉� = −231) ∧
(〈〈r0′〉〉u = −231)

fE(1),E(4),E(6) =
{

(〈〈r0′〉〉� = 〈〈r0�〉〉 + 〈〈r1�〉〉) ∧
(〈〈r0′〉〉u = 〈〈r0u〉〉 + 〈〈r1u〉〉)

fU(1),O(4),E(6) =
{

(〈〈r0′〉〉� = −232 − 〈〈r0u〉〉 − 〈〈r1u〉〉) ∧
(〈〈r0′〉〉u = −232 − 〈〈r0�〉〉 − 〈〈r1�〉〉)

fE(1),O(4),E(6) =
{

(〈〈r0′〉〉� = −〈〈r0u〉〉 − 〈〈r1u〉〉) ∧
(〈〈r0′〉〉u = −〈〈r0�〉〉 − 〈〈r1�〉〉)

fO(1),O(4),E(6) =
{

(〈〈r0′〉〉� = 232 − 〈〈r0u〉〉 − 〈〈r1u〉〉) ∧
(〈〈r0′〉〉u = 232 − 〈〈r0�〉〉 − 〈〈r1�〉〉)

To illustrate the accuracy of this result, consider the application of the transfer
function fU(1),O(4),E(6) to the input intervals defined by:

〈〈r0�〉〉 = −231 〈〈r0u〉〉 = −231 + 4 〈〈r1�〉〉 = −20 〈〈r1u〉〉 = −10

Then, the above transfer function defines the output intervals by modelling the
wrap that occurs in the first instruction ADD R0 R1 to give 〈〈r0′�〉〉 = −231 + 6
and 〈〈r0′u〉〉 = −231 + 20.

3.3 Lifting Affine Equalities to Octagonal Updates

Consider deriving a transfer function for octagons for ADD R0 R1; LSL R0 where
ADD and LSL operate in exact modes. Computing the affine relation for this mode-
combination gives (〈〈r0′〉〉 = 2 · 〈〈r0〉〉 + 2 · 〈〈r1〉〉) ∧ (〈〈r1′〉〉 = 〈〈r1〉〉). We aim
to construct an update that maps octagonal input constraints with symbolic
constants to octagonal outputs likewise with symbolic constants of the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈〈r0〉〉 ≤ d1
〈〈r1〉〉 ≤ d2

−〈〈r0〉〉 ≤ d3
−〈〈r1〉〉 ≤ d4

〈〈r0〉〉 + 〈〈r1〉〉 ≤ d5
−〈〈r0〉〉 − 〈〈r1〉〉 ≤ d6
−〈〈r0〉〉 + 〈〈r1〉〉 ≤ d7
〈〈r0〉〉 − 〈〈r1〉〉 ≤ d8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈〈r0′〉〉 ≤ 2 · (d1 + d2)
〈〈r1′〉〉 ≤ d2

−〈〈r0′〉〉 ≤ 2 · (d3 + d4)
−〈〈r1′〉〉 ≤ d4

〈〈r0′〉〉 + 〈〈r1′〉〉 ≤ 2 · d1 + 3 · d2
−〈〈r0′〉〉 − 〈〈r1′〉〉 ≤ 2 · d3 + 3 · d4
−〈〈r0′〉〉 + 〈〈r1′〉〉 ≤ 2 · (d3 + d4) + d2
〈〈r0′〉〉 − 〈〈r1′〉〉 ≤ 2 · (d1 + d2) + d4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We start by constructing an update operation that uses the unary input con-
straints only, as indicated by the bar separator. We modify the method pre-
sented in Sect. 2.4 so as to express output constraints in terms of symbolic
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Table 1. Intermediate results for inferring exact affine transformers for octagons

〈〈d′
1〉〉 〈〈d1〉〉 〈〈d2〉〉 〈〈d3〉〉 〈〈d4〉〉 〈〈d5〉〉 〈〈d6〉〉 〈〈d7〉〉 〈〈d8〉〉 max(〈〈d′〉〉)

m1 1 1 1 0 0 1 0 1 1 2
m2 8 3 3 −1 −1 5 −2 2 0 10
m3 22 8 7 0 1 13 3 4 0 26
m4 4 0 3 2 0 3 1 6 3 6

variables d1, . . . , d4 from the input constraints. We obtain the four output unary
constraints by an analogous technique as before by substituting the symbolic
minima and maxima for the symbolic output constants. The binary output con-
straints are derived by linear combinations of the unary output constraints.

Since the output constraints do not use relational information from the in-
puts, such as 〈〈r0〉〉+ 〈〈r1〉〉 ≤ d5, we obtain a sub-optimal update. To illustrate,
suppose 0 ≤ 〈〈r0〉〉 ≤ 4, 0 ≤ 〈〈r1〉〉 ≤ 1 and 〈〈r0〉〉 + 〈〈r1〉〉 ≤ 4. Then we derive:

0 ≤ 〈〈r0′〉〉 ≤ 10 0 ≤ 〈〈r1′〉〉 ≤ 1 0 ≤ 〈〈r0′〉〉 + 〈〈r1′〉〉 ≤ 11

The optimal octagonal abstraction, however, confers the constraints 〈〈r0′〉〉 ≤ 8
and 〈〈r0′〉〉+〈〈r1′〉〉 ≤ 8. Although the above method fails to propagate the effect
of some inputs into the outputs, it retains the property that the update can
be constructed straightforwardly in linear time by lifting the affine relations. In
what follows, we will describe how to derive more precise affine relations for the
outputs.

3.4 Inferring Affine Inequalities for Octagonal Updates

To derive more precise affine updates for octagons, let ξ(X) denote the propo-
sitional encoding for ADD R0 R1; LSL R0 where again ADD and LSL operate in
exact modes. Consider inequality 〈〈r0′〉〉 ≤ d′1 in the output octagon and in par-
ticular the problem of discovering a relationship between d′1 and the symbolic
constants d1, . . . , d8 of the input octagon, as detailed previously.

We proceed by introducing signed 34-bit vectors d1, . . . ,d8 to represent the
symbolic constants d1, . . . , d8. Further, let κ denote a Boolean formula that holds
iff the eight inequalities 〈〈r0〉〉 ≤ 〈〈d1〉〉, . . . , 〈〈r0〉〉−〈〈r1〉〉 ≤ 〈〈d8〉〉 simultaneously
hold. Furthermore, let η denote a formula that encodes the equality 〈〈r0′〉〉 =
〈〈d′

1〉〉 where d′
1 is a signed bit-vector representing d′1. Presenting the compound

formula κ ∧ ξ(X) ∧ η to a SAT solver produces a model:

m1 =
{ 〈〈d′

1〉〉 = 1, 〈〈d1〉〉 = 1, 〈〈d2〉〉 = 1, . . . , 〈〈d7〉〉 = 1, 〈〈d8〉〉 = 1
}

which is fully detailed in Tab. 1. The assignment 〈〈d′
1〉〉 = 1 does not necessarily

represent the maximum value of 〈〈d′
1〉〉 for the partial assignment 〈〈d1〉〉 = 1, . . . ,

〈〈d8〉〉 = 1. Thus let ζ1 denote a formula that holds iff 〈〈d1〉〉 = 1, . . . , 〈〈d8〉〉 = 1
all hold. Then range refinement can be applied to find the maximal value of
〈〈d′

1〉〉 subject to κ ∧ ξ(X) ∧ η ∧ ζ. This gives 〈〈d′
1〉〉 = 2 and a model:

m′
1 =

{〈〈d′
1〉〉 = 2, 〈〈d1〉〉 = 1, . . . , 〈〈d8〉〉 = 1

}
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An affine summary of all such maximal models can be found by interleaving
range refinement with affine join. Thus suppose the matrix M1 is constructed
from m′

1 by using the variable ordering 〈d′1, d1, . . . , d8〉 on columns:

M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 2
0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The method proceeds in an analogous fashion to before by constructing a formula
μ that holds iff 〈〈d8〉〉 �= 1 holds. Solving the formula κ ∧ ξ(X) ∧ η ∧ μ gives the
model m2 detailed in Tab. 1. The model m2, itself, defines a formula ζ2 that is
equi-satisfiable with the conjunction of 〈〈d1〉〉 = 3, . . . , 〈〈d8〉〉 = 0. Maximising
〈〈d′1〉〉 subject to κ ∧ ξ(X) ∧ η ∧ ζ2 gives 〈〈d′1〉〉 = 10 which defines the model

m′
2 =

{〈〈d′
1〉〉 = 10, 〈〈d1〉〉 = 3, . . . , 〈〈d8〉〉 = 0

}
and M2, which in turn yields the join M1 � M2 as follows:

M1 � M2 =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 −2 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 0 1 −2 0 0 0 0 0
0 0 0 0 0 0 1 2 0 2
0 0 0 0 0 0 0 1 1 1

⎤⎥⎥⎥⎥⎦
Repeating this process two more times then gives:

m′
3 =

{〈〈d′
1〉〉 = 26, 〈〈d1〉〉 = 8, . . . , 〈〈d8〉〉 = 0

}
m′

4 =
{〈〈d′

1〉〉 = 6, 〈〈d1〉〉 = 0, . . . , 〈〈d8〉〉 = 3
}

M1 � M2 � M3 =
[
1 0 0 0 0 −2 0 0 0 0
0 1 −1 1 −1 0 0 0 0 0

]
M1 � M2 � M3 � M4 =

[
1 0 0 0 0 −2 0 0 0 0

]
The system M1�M2�M3�M4 then expresses the relationship 〈〈d′1〉〉 = 2 ·〈〈d5〉〉.

To verify that 〈〈d′1〉〉 = 2 · 〈〈d5〉〉 is a fixed point, unlike before, it not sufficient
to impose the disequality 〈〈d′1〉〉 �= 2 · 〈〈d5〉〉 and check for unsatisfiability. This
is because 〈〈d′1〉〉 is defined through maximisation. Instead the check amounts
to testing whether κ ∧ ξ(X) ∧ η is unsatisfiable when combined with a formula
encoding the strict inequality 〈〈d′1〉〉 > 2 · 〈〈d5〉〉. Since the combined system is
unsatisfiable, we conclude that the update for this mode-combination includes
d′1 = 2 · d5. The complete affine update consists of:

d′1 = 2 · d5 d′2 = d2 d′3 = 2 · d6 d′4 = d4
d′5 = 2 · d5 + d2 d′6 = 2 · d6 + d4 d′7 = 2 · d6 + d2 d′8 = 2 · d5 + d4

Observe that these linear symbolic update operations are optimal.



Transfer Function Synthesis without Quantifier Elimination 109

Reflections on octagonal transfer functions. Interestingly, Miné [22, Fig. 27]
also discusses the relative precision of transfer functions, though where the base
semantics is polyhedral rather than Boolean. Using his classification, the trans-
fer functions derived using the synthesis techniques presented in Sect. 3.3 and 3.4
might be described as medium and exact.

3.5 Inferring Bounds for Octagons

For a final example, consider the following code block:

1 : AND R0, 15; 2 : AND R1, 15; 3 : XOR R0, R1; 4 : ADD R0, R1;

The operations AND and XOR are uni-modal; ADD is multi-modal but it only op-
erates in exact mode for this block. For this single mode no affine relationship
exists between the symbolic constants di that characterise the input octagon and
those d′i that characterise the output octagon.

However, even in such cases, it can be still possible to find a d′1 such that
〈〈r0′〉〉 ≤ d′1 by applying range refinement. This gives d′1 = 30. Repeating this
tactic for remaining the symbolic output constants yields:

d′1 = 30 d′2 = 15 d′3 = 0 d′4 = 0
d′5 = 45 d′6 = 0 d′7 = 0 d′8 = 15

4 Evaluating Transfer Functions

Thus far, we have described how to derive transfer functions for intervals and
octagons where the functions are systems of guards paired with affine updates,
without reference to how they are evaluated. In our previous work [6], the ap-
plication of a transfer function amounted to solving a series of integer linear
programs (ILPs). To illustrate, suppose a transfer function consists of a single
guard g and update u pair and let c denote a system of octagonal constraints
on the input variables. A single output inequality in the output system, c′, such
as r0′ + r1′ ≤ d′5, can be derived by maximising r0′ + r1′ subject to the linear
system c ∧ g ∧ u. To construct c′ in its entirety requires the solution of O(n2)
ILPs where n is the number of registers (or variables) in the block. Although
steady progress has been made on deriving safe bounds for integer programs [26],
a more attractive solution computationally would avoid ILPs altogether.

4.1 A Single Guard and Update Pair

Affine updates, as derived in Sect. 3.4, relate symbolic constants on the inequal-
ities in the input octagon to those of the output octagon. These updates confer
a different, simpler, evaluation model. To compute r0′ + r1′ ≤ d′5 in c′ it is suf-
ficient to compute c � g [22] which is the octagon that describes the conjoined
system c∧g. This can be computed in quadratic-time when g is a single inequal-
ity and in cubic-time otherwise [22]. The meet c � g then defines values for the
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symbolic constants di, though these values may include −∞ and ∞. The value
of d′5 is defined by its affine update, that is, as a weighted sum of the di values.
If there is no affine update for d′5, then its value defaults to ∞. If bounds have
been inferred for output octagons (Sect 3.5), then the d′i can possibly be refined
with a tighter bound. This evaluation mechanism thus replaces ILP with arith-
metic that is both conceptually simple and computationally efficient. This is
significant since transfer functions are themselves computed many times during
fixpoint evaluation.

4.2 A System of Guard and Update Pairs

The above evaluation procedure needs to be applied for each guard g and update
u pair for which c�g is satisfiable. Thus several output octagons may be derived
for a single block. We do not prescribe how these octagons should be combined,
for example, a disjunctive representation is one possibility [13]. However, the
simplest tactic is undoubtedly to apply the merge operation for octagons [22]
(though this entails closing the output octagons).

5 Experiments

We have implemented the techniques described in this paper in Java using the
Sat4J solver [21], so as to integrate with our analysis framework for machine
code [30], called [mc]square, which is also coded in Java. All experiments were
performed on a MacBook Pro equipped with a 2.6 GHz dual-core processor
and 4 GB of RAM, but only a single core was used in our experiments.

To evaluate transfer function synthesis without quantifier elimination, Tab. 2
compares the results for intervals for different blocks of assembly code to those ob-
tained using the technique described in [6]. Column #instr contains the number
of instructions, whereas column #bits gives the bit-width. (The 8-bit and 32-
bit versions of the AVR instruction sets are analogous.) Then, #affine presents
the number of affine relations for each block. The columns runtime contain the
runtime and the number of SAT instances. The overall runtime of the elimination-
based algorithm [6] is given in column old (∞ is used for timeout, which is set to
30s). Transfer function synthesis for blocks of up to 10 instruction is evaluated,
which is a typical size for microcontroller code. For these size blocks, we have
never observed more than 10 feasible mode combinations.

Comparison. Using quantifier elimination, all instances could be solved in a rea-
sonable amount of time for 8-bit instructions. However, only the small instances
could be solved for 32 bits (and only then because the Boolean encodings for
the instructions were minimised prior to the synthesis of the transfer functions).
It is also important to appreciate that none of the timeouts was caused by the
SAT solver; it was resolution that failed to produce results in reasonable time.
By way of comparison, synthesising guards for different overflow modes requires
most runtime in our new approach, caused by the fact that the number of SAT
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Table 2. Experimental results for synthesis of transfer functions

block #instr #affine #bits runtime
guards / #SAT affine / #SAT overall old

inc 1 2
8 0.2s / 40 0.1s / 5 0.3s 0.2s
32 0.5s / 136 0.2s / 5 1.0s 23.0s

inc+shift 2 3
8 0.3s / 60 0.1s / 8 0.4s 0.3s
32 0.8s / 216 0.2s / 8 1.0s ∞

swap 3 1
8 — 0.1s / 3 0.1s 0.1s
32 — 0.1s / 3 0.1s 0.2s

inc+flip 4 2
8 0.2s / 40 0.2s / 5 0.4s 0.5s
32 0.9s / 216 0.3s / 5 1.2s ∞

abs 5 3
8 2.5s / 216 0.3s / 8 2.8s 0.8s
32 6.5s / 792 0.3s / 8 6.8s ∞

inc+abs 6 3
8 2.6s / 216 0.3s / 8 2.9s 1.4s
32 6.7s / 792 0.3s / 8 7.0s ∞

sum+isign 7 5
8 4.1s / 360 0.2s / 18 4.3s 4.5s
32 10.7s / 1320 0.4s / 18 11.1s ∞

exchange+abs 10 3
8 2.8s / 216 0.3s / 8 3.1s 9.5s
32 7.2s / 792 0.3s / 8 7.5s ∞

instances to be solved grows linearly with the number of bits and quadratically
with the number of variables (the number of octagonal inequalities is quadratic
in the number of variables). Computing the affine updates consumes only a frac-
tion of the overall time. In terms of precision, the results coincide with those
previously generated [6].

The block for swap is interesting since it consists of three consecutive exclusive-
or instructions, for which there is no coupling between different bits of the same
register. The block is also unusual in that it is uni-modal with vacuous guards.
These properties make it ideal for resolution. Even in this situation, the new
technique scales better. In fact, the Boolean formulae that we present to the
solver are almost trivial by modern standards, the main overhead coming from
repeated SAT solving rather than solving a single large instance. Sat4J does
reuse clauses learnt in an earlier SAT instances, though it does not permit clauses
to be incrementally added and rescinded which is useful when solving maximi-
sation problems [6]. Thus the timings given above are very conservative; indeed
Sat4J was chosen to maintain the portability of [mc]square rather than for raw
performance. Nevertheless, these timings very favourably compare with those re-
quired to compute transfer functions for intervals using BDDs [28], where in
excess of 24 hours is required for single 8-bit instructions.

Deriving octagonal transfer functions. The process of deriving octagonal
transfer functions by lifting (Sect. 3.3) requires an imperceivable overhead com-
pared to computing affine relations themselves, indeed it is merely syntactic
rewriting. The runtimes required for inferring affine inequalities by alternating
range refinement and affine join (Sect. 3.4), however, is typically 3 or 4 times
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slower than those of computing the guards; the number of symbolic constants
on the output inequalities corresponds exactly to the number of input guards.
(We refrain from giving exact times since this component has not been tuned.)

Further optimisations. Since transfer functions are program dependent, one
could first use a simple form of range analysis [5] to over-approximate the ranges
a register can assume. These ranges can be encoded in the formulae, thereby
pruning out some mode-combinations. For example, it is rarely the case that the
absolute value function is actually applied to the smallest representable integer.

6 Related Work

Although the problem of constructing transfer functions has been recognised for
over twenty years, for example, by Cousot and Halbwachs [12] for the polyhedral
domain and by Granger [14] for linear congruences, automatic synthesis has only
recently become a practical proposition due to emergence of robust decision
procedures [19,29] and quantifier elimination techniques [20,23,24].

Transfer functions [29] can always be found for domains that satisfy the fi-
nite ascending chain condition, provided one is prepared to pay the cost of call-
ing a decision procedure repeatedly on each application of a transformer. This
motivates applying a decision procedure in order to compute optimal transfer
functions offline, prior to the actual analysis [6,19].

Our previous work [6] shows how bit-blasting and quantifier elimination can
be applied to synthesise transformers for bit-vector programs. This work was
inspired by that of Monniaux [23,24] on synthesising transfer functions for piece-
wise linear programs. Although his approach extends beyond octagons [32], it is
unclear how to express some instructions (such as exclusive-or) in terms of linear
constraints. Universal quantification, as used in both approaches, also appears in
work on inferring linear template constraints by Gulwani et al. [15]. There, the
authors apply Farkas’ lemma in order to transform universal quantification into
existential quantification, albeit at the cost of completeness since Farkas’ lemma
prevents integral reasoning. However, crucially, neither Monniaux nor Gulwani
et al. provide a way to model integer overflow. By way of contrast, our approach
explains how to systematically handle wrap-around arithmetic in the transfer
function itself whilst sidestepping quantifier elimination.

Transfer functions have been automatically synthesised for intervals using
BDDs by applying interval subdivision [28]. If g : [0, 28 − 1] → [0, 28 − 1] is
a unary operation on an unsigned byte, then its transformer f : D → D on
D = {∅} ∪ {[�, u] | 0 ≤ � ≤ u < 28} can be defined recursively. If � = u then
f([�, u]) = g(�) whereas if � < u then f([�, u]) = f([�,m− 1]) � f([m,u]) where
m = )u/2n*2n and n = )log2(u − � + 1)*. Binary operations can likewise be
decomposed. The 8-bit inputs, � and u, can be represented as 8-bit vectors, as
can the 8-bit outputs, so as to represent f with a BDD. This permits caching
to be applied when f is computed, which reduces the time needed to compute a
best transformer to approximately one day for each 8-bit operation.
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The classical approach to handling overflow is to verify that they do not occur
using unbounded domains as implemented in the Astree tool [11]. However,
for the domain of polyhedra, it is also possible to revise the concretisation map
to reflect the effect of truncation [31]. Another choice is to deploy congruence
relations [14] where the modulus is a power of two [19,25]. Finally, bit-blasting
has been combined with range inference elsewhere [5,8], though neither of these
papers address relational abstraction nor transfer function synthesis.

7 Concluding Discussion

Synopsis. This paper revisits the problem of synthesising transfer functions for
programs whose semantics is defined over finite bit-vectors. The irony is that
although Boolean formula initially appear attractive for synthesis because of the
simplicity of universal projection [6], their real strength is the fact that they are
discrete. This permits octagonal inequalities to be inferred by repeated satisfia-
bility testing, avoiding the need for quantifier elimination, and in particular the
complexity of resolution. The force of this observation is that it extends transfer
function synthesis to architectures whose word size exceeds 8 bits, strengthening
the case for low-level code verification [4,30].

Future work. The problem of synthesising transfer functions is not dissimilar
to that of inferring ranking functions for bit-vector programs [9]. The existence
of a ranking function on a path π with a transition relation rπ(x,x′) amounts
to solving the formula ∃c : ∀x : ∀x′ : rπ(x,x′) → (p(c,x) < p(c,x′)) where
p(c,x) is a polynomial over the bit-vector x and c is a bit-vector of coefficients.
However, if intermediate variables y are needed to express rπ(x,x′), p(c,x),
p(c,x′) or <, then the formula actually takes the form ∃c : ∀x : ∀x′ : ∃y : ν
where ∃y : ν ≡ rπ(x,x′) → (p(c,x) < p(c,x′)). This formula is similar to those
solved in [6] by elimination which begs the question of whether this problem, like
that of transfer function synthesis, can be recast to avoid elimination altogether.

We will also investigate whether transfer functions can be found, not only for
sequences of instructions, but also for entire loops [17,23]. Existing approaches
for the specification of (least inductive) loop invariants rely on existential quan-
tification, and the natural question is whether the techniques proposed in this
paper can annul this complexity. It is also interesting to note that octagons
derived using our approach are tightly closed [22]. Intuitively, this means that
all hyperplanes defined through inequalities actually touch the enclosed volume.
However, the octagons may contain redundant inequalities, and therefore it will
be interesting to see if simplification is worthwhile [2] and, if so, whether non-
redundant octagons can be directly derived using SAT.
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Semantics of Concurrent Revisions

Sebastian Burckhardt and Daan Leijen
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Abstract. Enabling applications to execute various tasks in parallel is difficult
if those tasks exhibit read and write conflicts. We recently developed a program-
ming model based on concurrent revisions that addresses this challenge in a novel
way: each forked task gets a conceptual copy of all the shared state, and state
changes are integrated only when tasks are joined, at which time write-write con-
flicts are deterministically resolved.

In this paper, we study the precise semantics of this model, in particular its
guarantees for determinacy and consistency. First, we introduce a revision calcu-
lus that concisely captures the programming model. Despite allowing concurrent
execution and locally nondeterministic scheduling, we prove that the calculus is
confluent and guarantees determinacy. We show that the consistency guarantees
of our calculus are a logical extension of snapshot isolation with support for con-
flict resolution and nesting. Moreover, we discuss how custom merge functions
can provide stronger guarantees for particular data types that are tailored to the
needs of the application.

Finally, we show we can visualize the nonlinear history of state in our com-
putations using revision diagrams that clarify the synchronization between tasks
and allow local reasoning about state updates.

1 Introduction

With the recent broad availability of shared-memory multiprocessors, many more ap-
plication developers now have a strong motivation to tap into the potential performance
benefits of parallel execution. Exploiting parallel hardware can be relatively easy if
the application performs computations for which parallel algorithms are well known or
straightforward to develop (such as for scientific problems or multimedia applications).
However, traditional parallelization strategies often do not satisfactorily address how to
execute different application tasks that access shared data in parallel.

For example, consider an office application that needs to perform five different tasks:
(1) save a snapshot of the document to disk, (2) react to keyboard input by the user
who is editing the document, (3) perform a spellcheck of the document, (4) render the
document on the screen, and (5) exchange document updates with collaborating remote
users.

Executing such tasks in parallel is not simple, because all of them potentially access
the same data (such as the document) at the same time. For instance, in a case study
on parallelizing a game application [3] we discovered that the parallel execution of
the physics task and the render task is essential to achieve decent speedup on multiple
cores. But these tasks naturally exhibit read-write conflicts: The physics task modifies
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all coordinates of game objects (to simulate elapsed time) while the render task reads
all coordinates (to render a snapshot of the scene).

Avoiding, negotiating, or resolving such conflicts between parallel tasks can be quite
challenging with traditional synchronization models. In fact, many programmers are
deterred by the engineering complexity of performing explicit, manual synchroniza-
tion (such as by using locks and critical sections) or replication (such as by creating
temporary copies or using double buffering).

Our proposed programming model, concurrent revisions [8], simplifies paralleliza-
tion of conflicting tasks by (conceptually) copying shared state automatically on a fork.
Tasks execute in complete isolation because each has its own copy of the shared data
(e.g. the document or the coordinates, in the above examples), somewhat analogous to
source control systems that allow multiple programmers to work on the same code at
the same time by creating local copies of files, and checking changed files back into the
repository.

x = 0 ;
y = 0 ;

r = rfork { x = 1 ; }
y = x ;
rjoin r ;

print x, y ;

x = 0
y = 0 ��•

r = rfork

��

(revision starts)

��·
y = x

��

·
x = 1
��·

rjoin r

��

·

(revision ends)��◦
print x,y

��

Fig. 1. An example of a revision diagram (on the right) representing the execution of a program
(on the left). The effect of the write x = 1 is confined to its revision until that revision is joined.
Thus the print statement prints (1,0).

For example, consider the code in Fig. 1 which illustrates the basic concept of forking
and joining revisions and how to visualize executions using revision diagrams. The
program on the left forks a concurrent revision, obtaining a handle r which it later joins.
The forked revision executes the assignment x = 1, but the effect of this assignment is
confined to that revision until it is joined, at which point all of its changes are applied
to the joining revision. The diagram shows how the state is forked and joined (each
vertex represents a state, and curved arrows represent fork and join), as well as how
the state is locally updated by revisions (vertical arrows represent steps by revisions).
Note that because revisions are isolated, data can flow only along edges in the diagram.
Moreover, because the program specifies where to join revisions and does not depend
on scheduling and timing, the execution is determinate.

Our previous work [8] has already provided some evidence that this concurrent revi-
sion model can be implemented efficiently enough to achieve satisfactory parallelization
speedups, and that it is easier to use than locks or transactions [3]. However, our previ-
ous work left many important questions about the semantics unaddressed, in particular
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relating to determinacy and consistency guarantees. The purpose of our work presented
in this paper is to address these questions rigorously and provide precise answers. We
make the following contributions:

1. We give a minimal calculus describing the concurrent revision model. Because the
calculus is small, it is well suited as a semantic reference and as an experimental
tool to study various extensions or implementations. In fact, it was inspired (and
is very similar to) the AME calculus [24] which served a similar purpose in the
context of transactional memory. Note that we published a preliminary version of
this calculus (without discussion or proofs) in the previous paper [8].

2. Even though the calculus is intrinsically concurrent, we prove that it guarantees
determinacy.

3. We give a comprehensive discussion of consistency guarantees and state merging.
We show that in the absence of write-conflicts and nesting, revisions are analogous
to transactions with snapshot isolation. We also show how the introduction of cus-
tom merge functions into the calculus can allow the programmer to achieve stronger
consistency guarantees tailored to the needs of the application.

4. We formalize the notion of a revision diagram (informally introduced in [8]). These
diagrams capture the revision history of an execution, by showing the order and
nesting of forks and joins. Moreover, they illustrate data flow, since information can
propagate only along edges. We contrast revision diagrams with other commonly
used task graphs (such as DAGs or SP-graphs) and prove that they are semilattices.

Overall, our work shows that the revision model preserves some of the best properties
of sequential programs (deterministic execution, local reasoning about state updates)
without forcing programmers to manually isolate parallel tasks, and without restricting
parallel executions to be fully equivalent to a sequential execution. Rather, parallelism
is expressed directly and explicitly, and always exploitable even if the tasks exhibit
conflicts.

2 Discussion

We start with a high-level informal discussion of various aspects of the revision model,
such as determinacy, nesting of revisions, handling of write-write conflicts, and revision
diagrams. Moreover, we compare revisions to related work on transactional memory
and determinacy.

2.1 Revisions vs. Interleaved Tasks

In our model, revisions are the basic unit of concurrency. They function much like asyn-
chronous tasks that are forked and joined, and they may themselves fork and join other
tasks. We chose the term ‘revision’ to emphasize the semantic similarity to branches in
source control systems where programmers work with a local snapshot of the shared
source code.

In particular, on every revisional fork (rfork), the system conceptually copies the
entire state and each branch works on its own local copy. Every revision is completely
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(sequential consistency) (transactional memory) (concurrent revisions)

x = 0 ; y = 0 ;
t = fork {

if (x = 0) y++ ;
}
if (y = 0) x++ ;
join t ;

assert( (x = 0 ∧ y = 1) ∨
(x = 1 ∧ y = 0) ∨
(x = 1 ∧ y = 1) ) ;

x = 0 ; y = 0 ;
t = fork { atomic {

if (x = 0) y++ ;
}}
atomic { if (y = 0) x++ ; }
join t ;

assert( (x = 0 ∧ y = 1) ∨
(x = 1 ∧ y = 0) ) ;

;

x = 0 ; y = 0 ;
r = rfork {

if (x = 0) y++ ;
}
if (y = 0) x++ ;
rjoin r ;

assert( x = 1 ∧ y = 1 ) ;
;
;

Fig. 2. Outcomes under different programming models

isolated from the others and there is no possibility of communication through shared
state. Any updates in a revision only become re-integrated once the revision is joined.
Since there is no possibility of stateful interleavings with other threads, intra-revision
reasoning (that is, reasoning about code executing within a revision) is sequential.

The revision model is a significant departure from memory models that interleave
tasks at the level of individual instructions, such as sequential consistency [21]. More-
over, this difference is not simply a matter of the interleaving granularity. Transactional
memory, for example, interleaves tasks at the granularity of atomic blocks [22, 15].
However, coarser interleaving does not in itself guarantee determinacy of executions,
as the relative order of the atomic blocks is unspecified. Thus, whether we use sequen-
tial consistency or transactional memory, the interleaving chosen during an execution
depends on nondeterministic arbitration which can vary between executions. In con-
trast, with our concurrent revision model, the precise structure of forks and joins is
completely determined by the program and independent of runtime scheduling.

We illustrate this difference in Figure 2 where we compare the results of a program
for these three models. The program forks a concurrent branch where each branch incre-
ments a variable x or y respectively depending on the value of the other variable (y and
x respectively). Under sequential consistency, there are many interleavings possible and
there are three distinct possibilities for the values of x and y. In the second program, we
use transactional memory to limit the possible interleavings by executing each branch
atomically. This effectively serializes the execution and we see either x = 0 ∧ y = 1
or x = 1 ∧ y = 0 depending on how the branches are scheduled. Using revisions, the
outcome is always determinate: both branches get their own local (conceptual) copy of
the state, and both branches will increment the variables ending in x = 1 ∧ y = 1.

2.2 Local Reasoning vs. Serializability

As Figure 2 shows, we can truly reason about each branch locally without considering
any interleavings. However, note also that there is no equivalent sequential execution
for this example. The lack of equivalence to some sequential execution is no accident:
requiring such equivalence fundamentally limits the concurrency that can be practically
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exploited if tasks exhibit conflicts. For the kind of applications we have in mind, con-
flicts may be quite frequent.

With revisions, conflicts never destroy the available parallelism and never cause roll-
backs. These choices provide substantial practical benefits over the use of rollbacks in
optimistic transactional memory, which does not fare well in the presence of frequent
conflicts, and cannot be easily combined with I/O [33].

Comfortably reasoning about application behavior in the absence of serializability
requires understanding and conceptualizing a nonlinear history of state. We achieve
this by introducing revision diagrams that directly visualize how the global state can be
forked, updated, and joined (Fig. 1, Fig. 3). Revisions correspond to vertical chains in
the diagram, and are connected by curved arrows that represent the forks and joins. We
sometimes label the revisions with the actions they perform. Such diagrams visualize
clearly how information may flow (it follows the edges) and how effects become visible
upon the join. In Section 5 we show that the diagrams have a formal and well-defined
meaning with relation to the calculus.

2.3 State Merging

When joining a revision, two copies of the state need to be merged together, which
naturally raises two questions:

1. Can we always find a common ancestor state to help us determine if either side has
made changes, and what those changes are?

2. If both sides have made changes, how do we resolve such write-write conflicts?
(Note that there are no read-write or write-read conflicts between revisions.)

We answer the first question by showing how our calculus keeps track of the ances-
tor state (Section 3), and by showing that revision diagrams are semilattices and the
ancestor state is in fact the greatest common ancestor (Section 5).

We address the second question by discussing several sensible merge policies. A key
insight that makes state merging practical and convenient is that we need not define
merge functions or policies globally, but can do so separately for each variable. In fact,
we used this insight in previous work to parallelize a game application [8] by declaring
the policy for each variable using special isolation types. Such isolation types allow the
user to convey deep semantic knowledge that helps to exploit the available parallelism
even if there are numerous conflicts.

In this paper, we consider a number of different merge policies. Note that these hap-
pen at the granularity of individual memory locations, not on the global state.

– (Join overwrites). This policy is the default in our basic calculus (Section 3). On
a write-write conflict, the value of the joined revision overwrites the value of the
joining revision.

– (Custom merge function). We can use a user-defined merge function to resolve
conflicts deterministically (Section 4.1).

– (Give up and report). We can refuse to merge write-write conflicts and report the
failure to the user, who can take some appropriate action. (Section 4.3).
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What we found a bit surprising is that the (Join overwrites)-policy is very useful in
practice even though it appears to ’lose state’. This is because it lets us precisely control
which revisions should take precedence over others by ordering the joins accordingly.
For instance, if writes by revision B should take priority over writes by revision A, we
can simply join B after joining A. The (Custom merge function)-policy was useful very
specifically for implementing collections, which are often updated in a commutative
way by concurrent revisions. We did not have any use for the (Give Up and Report)-
policy in the game.

Isolation types are also sensible from a software engineering perspective: in a large
application an architect can annotate the shared data structures with their merge policy,
while the code that uses such data types stays the same: in particular, programmers have
no need to use atomic regions or locks when accessing such data types and can reason
about it without considering interleaved executions.

2.4 Nesting of Revisions

Nesting of revisions is a natural consequence of the fact that revisions can themselves
fork and join other revisions. We show a progression of nesting in the four left most
examples of Fig. 3. The (regular) and (overlap) diagrams do not nest revisions beyond a
depth of 1 (that is, only the main revision is forking and joining revisions). The (nested)
diagram shows simple nesting, where a revision forks a child of depth 2 and then joins
it (before being joined itself). The (bridge) diagram shows that child revisions can “sur-
vive” their parents (i.e. be joined later), and that revisions can be joined by a different
revision than where they were forked.

Possible Impossible
(regular) (overlap) (nested) (bridge) (cross over) (butterfly)
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Fig. 3. Some examples of revision diagrams. The four on the left are all valid revision diagrams.
On the right are two examples of impossible revision diagrams: the first one is not possible since
the main branch cannot join on the outer revision as the (fresh) outer revision handle r cannot be
part of its state. The right-most diagram cannot be constructed for similar reasons, in particular,
all revision diagrams are semi-lattices (Theorem 3).
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However, not all diagrams are possible, because revision handles must flow along
edges. The two right-most examples in Fig. 3 show impossible revision diagrams. We
prove some structural properties of revision diagrams in Section 5, in particular that
revision diagrams are semi-lattices (Theorem 3).

Note that the structure of revision diagrams is entirely dynamic, not lexical. In par-
ticular, once a revision is forked, its handle can be stored in arbitrary data structures
and be joined at an arbitrary later point of time. In some sense, revisions behave like
futures whose side effects are delayed, and take effect atomically at the moment when
the future is forced.

Although we present a fully dynamic model, it is of course possible to design a
language that statically restricts the use of joins, to make stronger scheduling guarantees
(as done in Cilk++ [14, 29]) or to simplify the most common usage patterns and to
eliminate common user mistakes (as done in X10 [23]). In fact, many models (including
an earlier version of our calculus) use a restricted “fork-join” parallelism [7,5]. Whether
such restrictions are necessary or beneficial is beyond the scope of this paper. For now,
we are content with stating that it is relatively easy to add them if desired, while it would
be difficult to remove them from a calculus that depends on restrictive assumptions.

2.5 Related Work

Just as we do with revisions, proponents of transactions have long recognized that pro-
viding strong guarantees such as serializability [27] or linearizability [17] can be overly
conservative for some applications, and have proposed alternate guarantees such as
multi-version concurrency control [26] or snapshot isolation (SI) [4, 11, 30]. In fact,
revisions can be understood as a natural generalization of snapshot isolation, extended
to handle resolution of write-write conflicts following some policy (as discussed in
Section 2.3), and to support nesting (as discussed in Section 2.4). We examine the rela-
tionship to snapshot isolation more formally in Section 4.3.

There has been much prior work on programming models for concurrency [25,12,1,
31,2,6]. Recently, many researchers have proposed programming models for determin-
istic concurrency [7, 5, 32, 28], creating renewed interest in an old problem previously
known as determinacy [10]. All of these models differ semantically from revisions, and
are quite a bit more restrictive. As they guarantee that the execution is equivalent to
some sequential execution, they cannot easily resolve all conflicts on commit (like revi-
sions do). Thus, they must restrict tasks from producing such conflicts either statically
(by type system) or dynamically (pessimistic with blocking, or optimistic with abort
and retry).

To the best of our knowledge, our combination of snapshot isolation and determin-
istic conflict resolution, as first presented in [8], is a novel way to simplify the paral-
lelization of tasks that exhibit conflicts.

Isolation types are similar to Cilk++ hyperobjects [13]: both use type declarations by
the programmer to change the semantics of shared variables. Cilk++ hyperobjects may
split, hold, and reduce values. Although these primitives can (if properly used) achieve
an effect similar to revisions, they do not provide a similarly seamless semantics. In
particular, the determinacy guarantees are fragile, i.e. do not hold for all programs. For
instance, the following program may finish with either x == 2 or x == 1:
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reducer opadd〈int〉 x = 0 ;
cilk spawn { x++ }
if (x= 0) x++ ;
cilk sync

Isolation types are also similar to the idea of transactional boosting, coarse-grained
transactions, and semantic commutativity [16, 19, 20], which eliminate false conflicts
by raising the abstraction level. Isolation types go farther though: for example, the type
versioned〈T〉 does not just avoid false conflicts, but resolves true conflicts deterministi-
cally (in a not necessarily serializable way).

3 Revision Calculus

For reference and to remove potential ambiguities, we now present a formal calculus for
revisions. It is based on a similar calculus introduced by prior work on AME (automatic
mutual exclusion) [24].

Notations. To present the formal syntax and semantics succinctly, we use some standard
and nonstandard notations for partial functions. For sets A, B, we write A ⇀ B for the
set of partial functions from A to B. For f, g ∈ A ⇀ B, a ∈ A, b ∈ B, and A′ ⊂ A,
we adopt the following notations: f(a) = ⊥ means a /∈ dom(f), ε is the empty partial
function with dom(ε) = ∅, f [a �→ b] is the partial function that is equivalent to f
except that f(a) = b, and f ::g is the partial function that is equivalent to g on dom(g)
and equivalent to f on A \ dom(g). In our transition rules, we use patterns of the form
f(a1 �→ b1) . . . (an �→ bn) (where n ≥ 1)) to match partial functions f that satisfy
f(ai) = bi for all 1 ≤ i ≤ n.

3.1 Syntax and Semantics

We show the syntax and semantics of our calculus concisely in Fig. 4. The syntax (top
left) represents a standard functional calculus, augmented with references. References
can be created (ref e), read (!e) and assigned (e := e). The result of a fork expression
rfork e is a revision identifier from the set Rid, and can be used in a rjoin e expression
(note that e is an expression, not a constant, thus the revision being joined can vary
dynamically).

To define evaluation order within an expression, we syntactically define execution
contexts (Fig. 4 right column, in the middle). An execution context E is an expression
“with a hole �”, and as usual we let E [e] be the expression obtained from E by replacing
the hole � with e.

The operational semantics (Fig. 4, bottom) describes transitions of the form s→r s
′

which represent a step by revision r from global state s to global state s′. Consider first
the definition of global states (Fig. 4, top right). A global state is a partial function from
revision identifiers to local states: there is no shared global state. The local state has
three parts (σ, τ, e): the snapshot σ is a partial function that represents the initial state
that this revision started in, the local store τ is a partial function that represents all the
locations this revision has written to, and e is the current expression.
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Syntactic Symbols
v ∈ Val ::= c | x | l | r | λx.e
c ∈ Const ::= unit | false | true
l ∈ Loc
r ∈ Rid
x ∈ Var
e ∈ Expr ::= v

| e e | (e ? e : e)
| ref e | !e | e := e
| rfork e | rjoin e

State
s ∈ GlobalState = Rid ⇀ LocalState

LocalState = Snapshot × LocalStore× Expr
σ ∈ Snapshot = Loc ⇀ Val
τ ∈ LocalStore = Loc ⇀ Val

Execution Contexts
E = �
| E e | v E | (E ? e : e)
| ref E | !E | E := e | l := E
| rjoin E

Operational Semantics
(apply) s(r �→ 〈σ, τ, E [(λx.e) v]〉) →r s[r �→ 〈σ, τ, E [[v/x]e]〉]
(if-true) s(r �→ 〈σ, τ, E [(true ? e1 : e2)]〉) →r s[r �→ 〈σ, τ, E [e1]〉]
(if-false) s(r �→ 〈σ, τ, E [(false? e1 : e2)]〉) →r s[r �→ 〈σ, τ, E [e2]〉]

(new) s(r �→ 〈σ, τ, E [ref v]〉) →r s[r �→ 〈σ, τ [l �→ v], E [l]〉] if l /∈ s
(get) s(r �→ 〈σ, τ, E [!l]〉) →r s[r �→ 〈σ, τ, E [(σ::τ )(l)]〉] if l ∈ dom(σ::τ )
(set) s(r �→ 〈σ, τ, E [l := v]〉) →r s[r �→ 〈σ, τ [l �→ v], E [unit]〉] if l ∈ dom(σ::τ )

(fork) s(r �→ 〈σ, τ, E [rfork e]〉) →r s[r �→ 〈σ, τ, E [r′]〉][r′ �→ 〈σ::τ, ε, e〉] if r′ /∈ s

(join) s(r �→ 〈σ, τ, E [rjoin r′]〉)(r′ �→ 〈σ′, τ ′, v〉) →r s[r �→ 〈σ, τ::τ ′, E [unit]〉][r′ �→ ⊥]
(joinε) s(r �→ 〈σ, τ, E [rjoin r′]〉)(r′ �→ ⊥) →r ε

Fig. 4. Syntax and Semantics of the revision calculus

The rules for the operational semantics (Fig. 4, bottom) all follow the same general
structure: a transition s →r s

′ matches the local state for r on the left, and describes
how the next step of revision r changes the state.

The first three rules (apply), (if-true), and (if-false)) reflect standard semantics of
application and conditional. They affect only the local expression. The next three rules
(new), (get), and (set) reflect operations on the store. Thus, they affect both the local
store and the local expression. The (new) rule chooses a fresh location (we simply
write l /∈ s to express that l does not appear in any snapshot or local store of s). The
last two rules reflect synchronization operations. The rule (fork) starts a new revision,
whose local state consists of (1) a snapshot that is initialized to the current state σ::τ ,
(2) a local store that is the empty partial function, and (3) an expression that is the
expression supplied with the fork. Note that (fork) chooses a fresh revision identifier
(we simply write r /∈ s to express that r is not mapped by s, and does not appear in any
snapshot or local store of s). The rule (join) updates the local store of the revision that
performs the join by merging the snapshot, master, and revision states (in accordance
with the declared isolation types), and removes the joined revision. We call r the joining
revision (or joiner), and r′ the joined revision (or joinee). A join can only proceed if the
joinee has executed all the way to a value (which is ignored). The final rule (joinε) is
added to prevent joining a revision handle more than once. If a revision handle is joined
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a second time, the joinee is no longer in the domain of s, and the entire state transitions
to a special error state represented by the empty partial function ε (this state can not be
reached in any other way, and has no outgoing transitions).

3.2 Executions

As usual, we let → be the union of all →r where r ∈ Rid. Furthermore, we use the
following notations for repeated steps: we say s →n s′ if s′ can be reached from s in
exactly n →-steps, we say s →∗ s′ (transitive reflexive closure) if it can be reached
in zero or more steps, s →+ s′ (transitive closure) if it can be reached in one or more
steps, and s→? s′ (reflexive closure) if it can be reached in zero or one steps.

We define global executions of expressions as follows. First, an expression e is a pro-
gram expression if it does not contain any revision identifiers (expressions may contain
revision identifiers during execution, but not initially). We say a sequence of transitions
s0 → s1 → · · · → sn is an execution of a program expression e if s0 = {(r, (ε, ε, e)}
for some r ∈ Rid. We call such an execution maximal if there exists no s′ such that
sn → s′. Finally, given a program expression e we write e ↓ s if there exists a maximal
execution for e with final state s.

3.3 Determinacy

A surprising property of our calculus is that executions are determinate and not depen-
dent on a specific ‘schedule’. Before we can state this precisely, we need a notion of
equivalence of states modulo renaming of revisions and locations.

For a permutationα of Rid and a global state s let α(s) be the global state obtained by
replacing all revision identifiers r that occur in s with α(r). Similarly, define β(s) for a
permutation β of Loc. We say two states s, s′ are equivalent upto αβ-renaming, written
as s ≈ s′, if there exist permutations α of Rid and β of Loc such that s = α(β(s′)).

We now state the main result of this section: executions are determinate modulo
renaming of locations and revisions.

Theorem 1 (Determinacy). Let e be a program expression, and let e ↓ s and e ↓ s′.
Then s ≈ s′.
Before proving this theorem, we make a few observations, and establish a few lemmas
and an important confluence theorem.

Note that some executions may terminate in the special error state ε if they attempt
to join the same revision more than once. Our use of a special error state is important to
guarantee determinacy. Suppose two revisions try to join a third revision simultaneously
(i.e. there is a race between two joins). Without the rule (joinε) the different schedules
may lead to different final states. However, with (joinε), all executions are forced to
eventually end up at ε, maintaining determinacy.

To prepare for the proof, we now state and prove a local determinism lemma and a
confluence theorem.

Lemma 1 (Local Determinism). If s1 ≈ s′1 and s1 →r s2 and s′1 →r s
′
2, then

s2 ≈ s′2.
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Proof. First we observe that by construction, each evaluation context E contains at most
one hole and that there is no choice in which redex to evaluate next. We can now do a
case analysis on E [e] where e is a redex. For a fixed revision r, such expression context is
matched uniquely by at most one operational rule. Moreover, each rule is deterministic
modulo αβ-equivalence. This is trivial for all operations except (new) and (fork) that
create new locations and revisions respectively. Given a state s(r �→ 〈σ, τ, E [ref v]〉),
rule (new) can create different names for the new location, i.e. s = s(r �→ 〈σ, τ [l �→
v], E [l]〉) or s′ = s(r �→ 〈σ, τ [l′ �→ v], E [l′]〉). If l = l′ this is equivalent directly. If
l �= l′ we can apply α-renaming with α = [l/l′] where s = α(s′) which holds since
l′ �∈ s′ and l �∈ s due to the side condition on (new) (and by definition s ≈ s′). We
prove equivalence similarly for (fork).

Lemma 2 (Strong Local Confluence). Let s1 and s′1 be reachable states that satisfy
s1 ≈ s′1. Then, if s1 →r s2 and s′1 →r′ s

′
2, then there exist equivalent states s3 ≈ s′3

such that both s2 →?
r′ s3 and s′2 →?

r s
′
3.

Proof. First we observe that when r = r′, the lemma follows directly from the local-
determinism lemma. We continue the proof for the case r �= r′, and do a case distinction
on the kind of the two operational steps appearing in the assumption of the theorem. We
use the term local step to denote a step that is not (fork), (join), and (joinε).

– (local) / (local). The rules affect independent parts of the state s and thus commute.
As before, we may need to use α-renaming for the (new) case.

– (local) / (fork),(join). Same argument; note that the forked/joined revision can not
be the same as the local one because of the side condition r′ �∈ s (for fork) or
because the joinee can not take a step (for join).

– (joinε) / any. The claim follows because if we could apply (joinε) in some state but
perform a different rule, then (joinε) still applies.

– (fork) / (fork). In this case the side condition r′ �∈ s ensures that both forks will
fork a unique revision. As shown in the proof of the previous lemma, we can safely
apply β-renaming to show both end states are equivalent.

– (fork) / (join). Observe that the (join) cannot join on the revision that forks (since
its expression is not a value). Also, the side condition r′ �∈ s ensures that a unique
revision is forked that is different from r and r′ in the (join) rules.

– (join) / (join). The matched states are s(r �→ 〈σ, τ, E [rjoin r1]〉)(r1 �→ 〈σ1, τ1, v1〉)
and s(r′ �→ 〈σ′, τ ′, E ′[rjoin r2]〉)(r2 �→ 〈σ2, τ2, v2〉). We have two possibilities.
First, if r1 �= r2, both joins commute directly. Otherwise, r1 = r2. In this case the
joinee is shared . Thus, taking step →r leads to a state where s(r1 �→ ⊥) and step
→r′ must use (joinε) ending in state ε, which is also the outcome for the opposite
order.

Theorem 2 (Confluence). For any reachable states s1 ≈ s′1, it holds that if s1 →∗ s2
and s′1 →∗ s′2, then there exist equivalent states s3 ≈ s′3 such that both s2 →∗ s3 and
s′2 →∗ s′3.

Proving confluence from strong local confluence is well-known and often illustrated
using tiling of diagrams. It is useful for several applications (e.g. the lambda calculus
or general term rewriting) but can also be understood more abstractly as a property of
binary relations [18]. We include a quick proof sketch for reference.
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Proof. First, lift the step relation → to equivalence classes of states modulo ≈. Let
x, y, z, u range over equivalence classes, and consider the following three properties:

1. ∀xyz : x→ y ∧ x→ z ⇒ ∃u : y →? u ∧ z →? u
2. ∀n : ∀xyz : x→? y ∧ x→n z ⇒ ∃u : y →∗ u ∧ z →? u
3. ∀n : ∀xyz : x→n y ∧ x→∗ z ⇒ ∃u : y →∗ u ∧ z →∗ u

We can then show that (1) the first claim follows from strong local confluence, (2) the
second claim follows from the first by induction over n, (3) the third claim follows from
the second by induction over n, and (4) the theorem follows from the third claim.

We now conclude with the proof of theorem 1. Given a program expression e and two
maximal executions s0 →∗ s and s′0 →∗ s′ for e, we know s0 ≈ s′0 (by the way we
defined initial states for e), so by the confluence theorem there exist s1 ≈ s′1 such that
s →∗ s1 and s′ →∗ s′1. But since s and s′ are maximal it must be the case that s = s1
and s′ = s′1 and thus s ≈ s′ as claimed.

4 State Merging

The basic calculus introduced in the previous section provides little flexibility as to how
write-write conflicts should be resolved. We now show how to modify the calculus so
that it can support custom merge functions (Section 4.1), how it can be understood as an
extension of snapshot isolation (Section 4.3), and how we can provide stronger consis-
tency guarantees for abstract data types using sequential merge functions (Section 4.4).

(join-merge) s(r �→ 〈σ, τ, E [rjoin r′]〉)(r′ �→ 〈σ′, τ ′, v〉) →r

s[r �→ 〈σ, merge(τ, τ ′, σ′), E [unit]〉][r′ �→ ⊥]

where merge(τ, τ ′, σ′)(l) =

⎧⎨⎩
τ (l) if τ ′(l) = ⊥
τ ′(l) if σ′(l) = τ (l)
mergel(τ (l), τ ′(l), σ′(l)) otherwise

Fig. 5. Extending the revision calculus with merge functions

4.1 Merge Functions

Figure 5 extends the basic calculus with flexible merge functions. There is just one
change to the basic calculus where we replace the (join) rule with the (join-merge) rule.
Instead of composing the new state as τ::τ ′ we call a custom merge(τ, τ ′, σ′) function
that merges the states. If there is no (write-write) conflict at a particular location, this
function behaves just like our earlier composition. In case of conflict, the value at a
location l after a join is determined by a location specific function mergel : Val×Val×
Val → Val which is defined separately for each location l.

Note that the choice of merge function does not influence determinacy. The deter-
minacy proof remains intact regardless of what merge function is chosen (as long as
it is a function of its three inputs). In particular, we need not restrict our attention to
commutative or associative functions only.



128 S. Burckhardt and D. Leijen

The mergel function subsumes the semantics of the previous calculus where a joinee
takes precedence since we can define the default merge function as:

mergel(v, v
′, v0) = v′ (joinee wins)

Similarly, we can implement the dual strategy where updates to a specific location are
ignored if there is a write-write conflict:

mergel(v, v
′, v0) = v (joiner wins)

Note that sometimes, we may wish to define merge functions involving more than a
single variable. In our calculus we can do so by using composite types to group several
variables into a single location and merge them collectively.

4.2 Commutative Merges

We call a merge function commutative if mergel(v, v
′, v0)=mergel(v

′, v, v0). Clearly,
the default merge function is not commutative, but many others are. For example, a rea-
sonable merge function for sets could be:

mergel(s, s
′, s0) = s ∪ s′

which is commutative. This is not the only reasonable merge function though. Consider
the following venn diagram that shows how the sets s, s′, and s0 may interact:

��

��

��

��
��

��

s s′

s0

b
a c

When taking the union of s and s′, we always include the regions a, b, and c. One can
argue however that to end up with s′ from s0, the elements in a were explicitly removed
(and similarly for swith region c). Another reasonable merge function may respect such
removals and remove region a and c from the final result. We can specify this as:

mergel(s, s
′, s0) = (s− s0) ∪ (s′ − s0) ∪ (s ∩ s′)

which is also commutative. Note that when all operations on the set are additive, both
of these merge functions produce the same result since s0 ⊆ (s ∩ s′) in that case.

Ultimately, this discussion simply illustrates that the choice of a merge function
should be informed by what operations are performed (additions only, removals only,
both, etc.). We discuss this idea more formally in Section 4.4, where we show that by
restricting the operations on an abstract data type, we can find merge functions can
provide particularly strong guarantees.
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(join-ok) s(r �→ 〈σ, τ, E [rjoin r′]〉)(r′ �→ 〈σ′, τ ′, v〉) →r

s[r �→ 〈σ, merge(τ, τ ′, σ′), E [true]〉][r′ �→ ⊥] if ¬fail(τ, τ ′, σ′)

(join-fail) s(r �→ 〈σ, τ, E [rjoin r′]〉)(r′ �→ 〈σ′, τ ′, v〉) →r

s[r �→ 〈σ, τ, E [false]〉][r′ �→ ⊥] if fail(τ, τ ′, σ′)

where fail(τ, τ ′, σ′) = undef ∈ rng(merge(τ, τ ′, σ′))

Fig. 6. Extending the merge calculus with failing joins

4.3 Snapshot Isolation

We now explain how to view our system as a generalization of snapshot isolation [4],
a concurrency control algorithm that is widely used in the database community, and
has for example been implemented by Oracle and Microsoft SQL Server (with minor
variations). We use the definition given by Fekete et al. [11].

We claim that our revision calculus is a generalization of snapshot isolation, aug-
mented by (1) the ability to gracefully resolve write-write conflict when a suitable merge
function exists for a particular location, and (2) support nontrivial nesting (Fig. 3) while
maintaining a simple and precise semantics. To see why this is the case, we perform
the reverse process: we (1) introduce the ability to fail on write-write conflicts, and (2)
remove nesting from revisions.

Removing nesting is straightforward (for example, we can disallow forks by all re-
visions but the main revision). As for failing on conflicts, we proceed as follows. To
mirror how transactions fail (and discard state), we introduce the notion of a failing join
as follows.

– We change the merge calculus slightly, by redefining the local merge functions so
that they can return a special value indicating that there is an unresolvable conflict:

mergel : Val × Val × Val → (Val ∪ {undef})
– We extend the merge calculus by replacing (join-merge) with two new rules. The

(join-ok) rule is equivalent to the previous (join-merge) rule but can only be applied
now if all of the location specific merge functions are defined. The rule (join-fail)
applies if at least one of the merges failed and simply ignores all updates in the
joinee. Both rules now return a boolean to the joiner, where true indicates that the
join was successful, and false indicates that it was not.

Consider now the definition of snapshot isolation: A transaction A executing under
snapshot isolation operates on a snapshot of the database taken at the start of the trans-
action. When the transaction concludes, it will successfully commit only if the values
updated by the transaction A were not updated by any other transaction B that commit-
ted after transaction A started.

We can succinctly describe this behaviour in our calculus by letting every mergel
function fail:

mergel(v, v
′, v0) = undef (snapshot isolation)
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When discussing snapshot isolation there is sometimes confusion whether a transaction
should abort if there was a concurrent silent write in the main branch where the original
value has been left unchanged. In our formal calculus there is no such confusion: due
to the second case of the merge function (Fig. 5), concurrent silent writes on the main
branch will not cause a transaction to fail. Note that we can still model the behaviour
where silent writes cause a transaction to fail by assigning sequence numbers to each
value (ensuring that σ′(l) �= τ(l) on silent writes). Dually, we can ignore silent writes
on the child branch by modifying the merge function:

mergel(v, v
′, v0) = ((v′ = v0) ? v′ : undef) (ignore silent wr)

4.4 Abstract Data Types and Sequential Merges

As Theorem 1 shows, our calculus is always determinate, but we have seen in the intro-
duction that it is not always serializable (Fig. 2). However, we can sometimes guaran-
tee equivalence to a sequential execution by raising the abstraction level of operations
on data, and constructing merge functions that are tailored to the operations that are
performed.

For example, consider a program location x that is initially zero and for which we
define the merge function mergex(v, v

′, v0) = v + v′ − v0. Furthermore, assume that
a program performs only one type of operation on x, namely add(i), which adds an
integer i to it. Then the final value of x is always consistent with a serial execution
of all the add operations that occurred in the program. We now explain this idea more
formally.

Abstract Data Types. We define an abstract data type to be a tuple (V, o,Op, op)
where V is a set of values, o ∈ V is an initial value, Op is a set of operations, and
op : Op × V ⇀ V is a partial function. In our formalization, the set Op includes
argument and return values of operations, and op is partial because not all operations
apply in all states.

Example 1. We can define an integer register (i.e. a memory location holding an integer
that can be read and written) as IntReg = (Z, 0,Op, op) where

Op = {get(v) | v ∈ Z} ∪ {set(v) | v ∈ Z}

op(v, o) =

⎧⎨⎩w if o = set(w)
v if o = get(v)
⊥ if o = get(v′) and v �= v′

Sequential Merge Functions. Sometimes we can find merge functions that can simu-
late a deterministic, linear interleaving of the operations. We call such merge functions
sequential. This concept is quite useful in practice since the programmer can design the
application specifically to enable sequential merge functions, by restricting what type of
operations may happen in concurrent revisions. For example, if an application performs
aggregation of results, sequential merges usually exist.
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To study the effect of entire sequences of operations, we introduce the following
concise notations. We consider operation sequences as words in Op∗, and write u(v)
(where u ∈ Op∗ and v ∈ Val) for the combined effect of all the operations in the
sequence u (left to right) applied to the value v, which may be undefined. For example,
this means that for operation sequences u,w ∈ Op∗ and a value v, we have uw(v) =
w(u(v)) if u(v) �= ⊥ and w(u(v)) �= ⊥. We now define sequential merge functions as:

Definition 1. Let A = (V, o,Op, op) be an abstract data type. We say a merge function
m : V ×V ×V → V is sequential for A if for all operation sequences u,w1, w2 ∈ Op∗

such that u(o) �= ⊥, uw1(o) �= ⊥ and uw2(o) �= ⊥, both of the following are true:

1. uw1w2(o) �= ⊥
2. m(uw1(o), uw2(o), u(o)) = uw1w2(o)

The advantage of a sequential merge function is that it guarantees the appearance that
all operations were executed sequentially, with the operations of the joined revision
happening at the time of the join.

Note that condition 1 of Def. 1 does not depend on the actual merge function, but is a
property of the abstract data type. This property may not be satisfiable, thus sequential
merge functions do not exist for all abstract data types. For example, the abstract data
type IntReg defined in Example 1 does not permit sequential merging because it can be
the case that w1 = set(1), w2 = get(0) in which case always uw1w2(0) = ⊥.

Abelian Data Types. Particularly simple to merge are certain abstract data types with
commutative operations that we call abelian. More formally, call an abstract data type
(V, o,Op, op) abelian if there exists a binary operation + on V , and a function δ :
Op → V such that (1) (V,+) is an abelian group with neutral element o, and (2) for all
a ∈ Op we have a(v) = v + δ(a).

We conclude this section with a lemma that shows how to construct sequential merge
functions for abelian data types.

Lemma 3. For an abelian data type (V, o,Op, op) with operation +, the merge func-
tion : m(v1, v2, v) = v1 + v2 − v is sequential.

Proof. Let w1 =
∑n

i=1 ai and w2 =
∑m

i=1 bi and v = u(o). Then claim 2 is satisfied:
m(uw1(o), uw2(o), u(o)) = m(w1(u(o)), w2(u(o)), u(o)) = m(v +

∑n
i=1 ai, v +∑m

i=1 bi, v) = v +
∑n

i=1 ai + v +
∑m

i=1 bi − v = v +
∑n

i=1 ai +
∑m

i=1 bi =
w1w2(u(o)) = uw1w2(o). This implies also that claim 1 is satisfied.

5 Revision Diagrams

In this section we describe and formally define revision diagrams, a special kind of
graph that visually represent the dataflow of computations of our calculus. Revision
diagrams are an essential tool to understand how to program with revisions, somewhat
analogous to the role of stream diagrams for stream programming. Revision diagrams
are not equivalent to other graph classes commonly used for representing concurrent
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Fig. 7. (a) Left: the diagrams illustrate how revision diagrams are constructed incrementally by
transition rules adding vertices. (b) Right: a typical example of a revision diagram.

or parallel qcomputations, such as directed acyclic graphs (DAGs), or series-parallel
graphs (SP-graphs). The goal of this section is to formally define revision diagrams and
to shed more light on their general structure.

Intuitively, revision diagrams represent executions, with vertices being states and
edges being transitions. Technically, revision diagrams are labeled graphs:

Definition 2. A fsj-graph G is a tuple G = (V,E) where V is a set of vertices and
E ⊂ V × {f, s, j} × V is a set of labeled edges.

Graph Notations. We use the usual terminology for graphs, but emphasize a relational

view of edges. For a fixed graphG = (V,E), we define a binary relation
f−→ on vertices

such that (u
f−→ v) def⇔ ((u, f, v) ∈ E), and similarly for

j−→ and
s−→. We also define the

relation → def= (
f−→ ∪ j−→ ∪ s−→).

To define the revision diagram for a given execution, we extend the original oper-
ational semantics so that a fsj-graph is constructed alongside the executing program.
More formally, we extend the original transition relation → to an extended transition
relation →d (where d is just a label for easier distinction) on states (s, (V,E), ρ, γ)
where: s ∈ GlobalState is a global state as defined previously, (V,E) is a fsj-graph,
ρ : V → Rid maps vertices to revision they belong to, and γ : Rid ⇀ V is a partial
function that maps a revision to the last (current) vertex of that revision.

The graph is constructed incrementally by adding new vertices, and edges from the
existing graph to the new vertices, as illustrated in Fig. 7 (a). The precise transition rules
for →d are defined in Fig. 8. Intutively, the constructed graphs represents excecutions
in the following sense (for an example, see Fig. 7 (b)):

– Each vertex v ∈ V belongs to a particular revision ρ(v) and represents the local
state of that revision at a certain point of time.

– The set of all vertices belonging to the same revisions is totally ordered by
s−→, the

successor relation, which describes how the local state of that revision evolves over
time.

– Each edge in
f−→ represents the forking of a new revision. Its destination vertex is

the first vertex of the new revision.
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– Each edge in
j−→ represents the joining of a revision. Its source vertex is that last

vertex of the revision being joined.

We define the initial states to be (s0, G0, ρ0, γ0) where s0 = (r, (ε, ε, e)) is an initial
global state (that is, r is a revision identifier and e is an expression not containing
any revision identifiers), G0 = ({v}, ∅) is a singleton graph, and ρ0 = {v �→ r},
γ0 = {r �→ v}. We say a state (s,G, ρ, γ) is reachable if there exists an initial state
from which it can be reached by zero or more →d-transitions.

Definition 3. A revision diagram is an fsj-graph G that is part of some reachable state
(s,G, ρ, γ).

It is easy to see (comparing the definitions of → and →d) that for any execution
s0 →∗ sn such that sn �= ε, we can find a corresponding extended execution, and vice
versa. Note that this may entail the renaming of revision identifiers in the →-execution,
because the latter does allow the reuse of revision identifiers after the revision has been
joined while →d does not. Our main theorem can now be stated as:

(apply) (s(r �→ 〈σ, τ, E [(λx.e) v]〉), (V, E), ρ, γ ) →d (if v /∈ V )

(s[r �→ 〈σ, τ, E [[v/x]e]〉], (V ∪ v, E ∪ γ(r) s−→ v), ρ[v �→ r], γ[r �→ v] )

(if-true) (s(r �→ 〈σ, τ, E [(true ? e1 : e2)]〉), (V, E), ρ, γ ) →d (if v /∈ V )

(s[r �→ 〈σ, τ, E [e1]〉], (V ∪ v, E ∪ γ(r) s−→ v), ρ[v �→ r], γ[r �→ v] )

(if-false) (s(r �→ 〈σ, τ, E [(false ? e1 : e2)]〉), (V, E), ρ, γ ) →d (if v /∈ V )

(s[r �→ 〈σ, τ, E [e2]〉], (V ∪ v, E ∪ γ(r) s−→ v), ρ[v �→ r], γ[r �→ v] )

(new) (s(r �→ 〈σ, τ, E [ref v]〉), (V, E), ρ, γ ) →d (if l /∈ s and v /∈ V )

(s[r �→ 〈σ, τ [l �→ v], E [l]〉], (V ∪ v, E ∪ γ(r) s−→ v), ρ[v �→ r], γ[r �→ v] )

(get) (s(r �→ 〈σ, τ, E [!l]〉), (V, E), ρ, γ ) →d (if l ∈ dom(σ::τ ) and v /∈ V )

(s[r �→ 〈σ, τ, E [(σ::τ )(l)]〉] (V ∪ v, E ∪ γ(r) s−→ v), ρ[v �→ r], γ[r �→ v] )

(set) (s(r �→ 〈σ, τ, E [l := v]〉), (V, E), ρ, γ ) →d (if l ∈ dom(σ::τ ) and v /∈ V )

(s[r �→ 〈σ, τ [l �→ v], E [unit]〉], (V ∪ v, E ∪ γ(r) s−→ v), ρ[v �→ r], γ[r �→ v])

(fork) (s(r �→ 〈σ, τ, E [rfork e]〉) (V, E), ρ, γ ) →d (if r′ /∈ s, v,w /∈ V and r′ /∈ rng(ρ))
(s[r �→ 〈σ, τ, E [r′]〉][r′ �→ 〈σ::τ, ε, e〉],
(V ∪ {v, w}, E ∪ {γ(r) s−→ v, γ(r) f−→ w}), ρ[v �→ r][w �→ r′], γ[r �→ v][r′ �→ w] )

(join) (s(r �→ 〈σ, τ, E [rjoin r′]〉)(r′ �→ 〈σ′, τ ′, v〉) (V, E), ρ, γ ) →d (if v /∈ V )
(s[r �→ 〈σ, τ::τ ′, E [unit]〉][r′ �→ ⊥],

(V ∪ v, E ∪ {γ(r) s−→ v, γ(r′)
j−→ v}), ρ[v �→ r], γ[r �→ v][r′ �→ ⊥] )

Fig. 8. Operational rules for →d. The rules match the ones in Fig. 4, except for the highlighted
parts, and for the omission of (joinε).

Theorem 3. Let G = (V,E) be a revision diagram. Then G is a semilattice, i.e. for
any two vertices x, y ∈ V , there exists a greatest common ancestor.
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While plausible, this result is not obvious, as it hinges on where exactly revisions can
be joined from: If we could join revisions from anywhere (e.g. if we used sequential
consistency without isolating revisions), the graphs would be general DAGs which are
not always semilattices (e.g. see Fig. 3, on the right). On the other hand, if our revisions
were simply nested like trees (as enforced in Cilk, for example), the resulting graphs
would be SP-graphs which can be easily proved to always be semilattices. For revision
diagrams, however, the proof of the semilattice property is somewhat subtle as it de-
pends on the fact that revisions can be joined only from locations that are downstream
from the fork (since revision handles must flow along lines). For a detailed proof of this
theorem as well as other useful or interesting properties of revision diagrams see the
companion Tech Report [9].

6 Conclusion and Future Work

We have presented a novel programming model based on concurrent revisions. First, we
presented a concise calculus that shows how revisions can maintain determinacy despite
nondeterministic scheduling. Then we provided a discussion of how state merging can
be tailored to the needs of the application. Finally, we formalized revision diagrams, the
fundamental tool to visualize nonlinear histories of state, and showed how they differ
from other task graphs. In future work, we may further investigate state merging and
serialization guarantees. We are also interested in enhancing the calculus with reactive
inputs and outputs and extending the determinacy guarantee to such applications.

Acknowledgments. We thank Tim Harris, Tom Ball and Manuel Fähndrich for their
helpful feedback.
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Abstract. Data-centric multi-user systems, such as web applications, require
flexible yet fine-grained data security mechanisms. Such mechanisms are usu-
ally enforced by a specially crafted security layer, which adds extra complexity
and often leads to error prone coding, easily causing severe security breaches. In
this paper, we introduce a programming language approach for enforcing access
control policies to data in data-centric programs by static typing. Our develop-
ment is based on the general concept of refinement type, but extended so as to
address realistic and challenging scenarios of permission-based data security, in
which policies dynamically depend on the database state, and flexible combina-
tions of column- and row-level protection of data are necessary. We state and
prove soundness and safety of our type system, stating that well-typed programs
never break the declared data access control policies.

1 Introduction

Data-centric multi-user software systems are a pervasive class of software applications,
where transactions manipulate information stored in a shared database on behalf of sev-
eral different users, playing several different roles. In the case of web-based systems, of
which common examples are collaborative applications or social networks, the number
of users may be extremely large, and the security requirements critical. Indeed, such
systems require very flexible yet fine-grained data security mechanisms, including dy-
namic, role-based access control. Moreover, web applications are usually developed
and executed in heterogeneous multiple-tier environments. Access control to data in
such environments is typically performed at runtime by specially crafted security code,
which mediates between the application code and the relational database management
system. Such a security layer is hard to construct, error prone, and may easily cause se-
vere security breaches. To make things a bit harder, access control policies are usually
dependent on stored data and meta-data, and highly dynamic. Addressing such security
requirements is frequently hindered by the expressiveness gap that exists between the
required access control policies at the application side, and the actual security mecha-
nisms provided by database engines.

Properly mapping the access control policies defined at the application side into as-
sociated database mechanisms is often difficult, if not impossible, also because multiple
application profiles should be related to only a few database profiles. As an unfortunate
side result, the enforcement of access control policies at the database level is kept to
a minimum, promoting security breaches, as a consequence of the lack of protection
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between layers. It is therefore important to identify new verification methods to prevent
programmers from inadvertently violating access control constraints in such common
scenarios of permission-based data-centric security.

In this work we develop a programming language approach for expressing and ver-
ifying access control policies to data in (relational) data-centric programs by means of
static type checking. More precisely, we introduce a core language λDB which includes
typeful programming constructs to manipulate (query and update) data stored in data
“entities”, to be physically represented by database tables (cf. the relational model). The
associated type system allows access control policies to be associated to data entities,
allowing queries and updates to the database to be validated against the declared con-
straints, taking into account also the particular information stored, and the current static
state of the current principal. In λDB, access control policies are explicitly represented
at the level of types: we endow λDB with dependent refinement types, which ensure that
well-typed programs do not violate prescribed access control policies.

Access control mechanisms available in database systems are supported by fixed re-
lations between users, operations, and tables. This basic approach induces a so called
“column-level” protection in database tables, based on the static structure of the data
model. Such a static form of access control, however, is far from enough, because in
common situations the authorization to access a particular piece of information de-
pends on information also stored in the database. For example, in web applications, it
is very common to find data with security requirements such as, e.g., “only the man-
ager of a proposal is able to modify it” or “only intranet users can see the submitted
applications”. Similarly, dynamic properties such as “only the current friends of a user
can see his/her photos” are familiar. Notice that, the predicate “friend” as used here is
dynamic and state dependent: a user can be granted a permission (by being selected as
“friend”), that may be later revoked by other transaction. Any access control mechanism
for data-centric systems should therefore be flexible and expressive enough to capture
state dependencies of these kinds, which covers the notion of “row-level” protection to
database entities. Our type system fully addresses such a challenging combination of
column-level, row-level, and authorization permissions to enable the static verification
of policies such as the one above, enabling the type-checker to issue an error whenever
the programmer inadvertently tries to compile insecure code.

Our approach is based on associating expressive conditions as guards to basic op-
erations on data entities (read, update, insert, etc.), and verify such conditions at the
appropriate points in the code by static checking. In this way, it is possible to encode
usual database permissions (but also more general conditions), and verify the program’s
conformance to the access control policies. To this end we build on the notion of refine-
ment types [13,15], extended to a setting where properties depend both on the static state
and on the dynamic state when manipulating entity tables. Intuitively, a refinement type
{x : β | C} classifies values of type β for which the logical expression C holds; for
instance, {x : int | x > 0} is the type of the positive integers. This also allows a type
environment to be seen as a refined property of the declared objects, so that for in-
stance, we may say that a typing environmentΔ = Δ′, a : {x : β | C} entails C{a/x},
writtenΔ � C{a/x}, where C is some condition about the program state. We also con-
sider the combination of refinement types with functional dependent types, something
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entity Person [ userid: string; public: string;
photo: picture; secret: string; ]

read public where true;
read userid where Auth(uid);
read secret where Auth(uid) and uid = userid;
read photo where Auth(uid) and Friends(userid,uid);
write where Auth(userid);

entity Friend [ user: string; friend: string; ]
invariant Friends(user,friend)
write where Auth(user)

Fig. 1. Some Sample Database Entities

particularly useful to express general pre- and post- conditions [15]. In the context of ac-
cess control to database entities, refinement types are useful to express what conditions
are valid for each program fragment and, ultimately, to implement flexible mechanisms
for access control. Notice however, that our requirements for dynamic row-level pro-
tection, as captured in the typing rules for database reading and updating constructs, are
not naturally expressible in existing refinement type systems, due to the dependence of
refinements on the actual data stored in database entities.

We illustrate our approach with a sequence of simple examples, in the scenario of
a social network application. The data model contains, among other elements, entities
Person and Friend, defined in Fig. 1. Entities are defined by enumerating their field
names and types, together with a set of access control policies associated to them. Here
we focus on the “friendship” relation, implemented by entity Friend, and on using it to
control the access users have to each others’ data. Each permission clause is composed
by (i) the kind of access granted (either read or write); (ii) the list of entity fields it
protects; and (iii) a condition, expressed as a logical formula. Field names occur in
the logical conditions, to allow them to refer to data in the entity row. The intended
semantics is that the disjunction of the set of all access control policies for a given
kind of access and field name must be valid for the corresponding operations to be
applied. Intuitively, the capabilities associated to a list of database columns will only
be granted if the associated conditions hold in the context of evaluation. In general, the
evaluation context entails primitive properties (e.g., expressing authorizations), which
may be explicitly asserted, or hold as a consequence of logical deduction from the
primitive ones (conceptually stored in a log [15]). The elementary propositions of such
formulas are predicates parameterized by language identifiers and constants.

In our case, entity Person declares four read permissions and one write permission.
The first read permission stipulates that field public is always readable, as its asso-
ciated condition (true) always holds. The contents of field userid of a row is only
readable if Auth(uid) holds for some uid (identifiers not field names are existen-
tially quantified variables). The third read permission states that field secret should
be accessible only if predicate Auth(userid) holds in the current state. When a con-
dition in a permission clause refers to field names, its validity depends on the actual
data stored on each entity row. Free names in the conditions (for example uid) are
existential parameters in each permission, and will be instantiated by concrete values at
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verification time. In the example, we assume that Auth(user1) asserts that user named
user1 is authenticated in the system. The consequence of this condition is that an au-
thenticated user can only select the field secret from those rows in which field userid
corresponds to its own userid (for brevity, we omit the (trusted) code that establishes
predicate Auth(_) in the login process). The fourth read permission states that an au-
thenticated user (with name user2) can access the field photo of another user (with
name user1) only in the case that predicate Friends(user1,user2) is valid. The write
permission applies to every field in Person and is self-explanatory.

The specification of entity Friend features a write permission and an invariant clause.
The invariant clause says that for each one of the rows [user = user1, friend = user2]
actually stored in entity Friend, the proposition Friends(user1,user2) always holds.
Intuitively, the invariant must hold of a tuple in order for it to be added to the table, so
that it is known to hold for every tuple read from the table; invariants in entity decla-
rations express refinements over the actually stored data. As specified by the write per-
mission, a row such as [user = user1, friend = user2], asserting user2 to be a friend
of user1 can only be created, updated, or deleted in a context where the condition (au-
thorization) Auth(user1) holds. The permissions thus enforce that friends can only be
added (or removed) by the authenticated user user1 to a data record having her as key,
and only if the condition Friends(user1,user2) holds in the current state. This last
condition may hold either because it may be obtained as effect of a query, or by calling
a trusted library (which may establish it by an explicit assume statement).

Permission clauses as introduced in this example, also support reasoning about row-
and column-level protection when accessing data. For instance, the following query,
expressed in a LINQ [16] like syntax,

from p in Person where true select public

is well-typed and safe since the condition in the permission associated to field public

always holds (true). Other fields are protected by stronger conditions. For instance,
reading the contents of the secret field of a row is only possible for the rows where
userid=name and Auth(name). For example, the query

from p in Person where p.userid=loggeduser select secret

will only type-check in a context where Auth(loggeduser) holds, for some given
loggeduser while the query

from p in Person where true select secret

will not type-check. We now consider the definitions of some functions on entities.
Consider a function that fetches the field secret of a given user, with type

getSecret: {n:string | Auth(n)} → string

The refined parameter type acts as a pre-condition, since function getSecret can only
be called if the argument is a string s such that predicate Auth(s) holds. We define
getSecret using a query on entity Person, as follows:

def getSecret(name:{n:string | Auth(n)}):string = {
let l = (from p in Person

where p.userid = name
select p.secret) in

if isEmpty(l) then NULL else head(l) }
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According to the declarations in Fig. 1, the context of the query expression selecting
field secret is required to satisfy predicate Auth(p.userid) for the selected rows.
This is obtained directly from the typing name:{n:string | Auth(n)} and from the
query’s where clause p.userid = name, which holds for all rows in the result of the
query. Notice that we assumed given two predefined operations isEmpty and head to
handle the results of queries.

As a last example, we define a function for fetching the photo of a given user. We
will need two parameters, the logged-on user name and the user name whose photo is
sought. The function getPhoto would then have the following type:

getPhoto: {n:string | Auth(n)} × string → picture

Reading the field photo requires the owner of the photo to be known as a friend of the
authenticated user, expressed by the predicate Friends(−,−).

Recall that Friends(useri,userj) relation is managed dynamically by the applica-
tion, by inserting and deleting rows from entity Friend. Now, given users user1 and
user2 where we know that Auth(user1) is valid (from the function type parameters),
we may statically establish that predicate Friends(user2,user1) is valid. This is done
by querying such a row in entity Friend. We thus have

def getPhoto(name:{n:string | Auth(n)},
othername:string):picture = {

if isFriendOf(othername,name) then
let l = (from p in Person

where p.userid = othername
select p.photo) in

if isEmpty(l) then NULL else head(l)
else NULL }

The conditions for reading field photo can be deduced from the context, which entails
Auth(name) (from the parameter type) and Friends(othername,name) (from the
result of the isFriendOf call). Notice how our type system actually forces the pro-
grammer to perform a runtime test, by consulting the Friend entity before retrieving
the photo. To that end, we may use an auxiliary function isFriendOf, with type

isFriendOf: u:string×v:string → {b:bool | b⇒ Friends(u,v)}

and which encapsulates the table access, and whose return (refined) type entails the
friendship of the given parameters, defined as follows:

def isFriendOf(user:string, friend:string):
{b:bool | b ⇒ Friends(user,friend)} = {

let l = (from f in Friends
where f.user = user

and f.friend = friend
select f) in

if isEmpty(l) then false
else {head(l); true} }

We assume that read permissions for user and friend are true by default. Notice
that the type of head(l) entails Friends(user,friend), resulting from the entity
invariant.
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The rest of the paper is structured as follows. Sections 2 and 3 introduce the syntax
and operational semantics of the λDB language, where a key notion of access control
compliance is also defined (Definition 3.7). In Section 4, a type system for ensuring
safety is proposed and its main results are stated, namely type preservation under re-
duction (Theorem 4.6), progress (Theorem 4.7), and typeful access control compliance
(Corollary 4.8). Section 5 discusses related work.

2 Syntax

In this section we present the syntax of λDB and describe its main constructs. λDB con-
tains a functional core, several constructs for storage and manipulation of data entities,
and logical operators for expressing the knowledge about properties of data in pro-
grams. The syntax of λDB expressions (e), logical propositions (C), values (v), terms
(V ) and permissions (ρ) is given in Fig. 2, where we assume given infinite sets of names
Λ (ranged over by m,n, o, . . .) and of variables V (ranged over by t, x, y, z, . . .). The
distinguished variable this is used in table permissions to refer to a table row.

Expressions include values v, application e(v), records [m1 = e1, . . . ,mk = ek],
where each mi is a field, and field access e.m. λDB values include the unit value (),
true and false, variables, and abstractions λx:τ.e, where τ is the type of x. A value
may also be a record or a collection v1, . . . , vk. We often use the overbar to abbreviate

e ::= (Expressions)
v (Value)

| e (v) (Application)
| [m = e] (Record)
| e.m (Field Selection)
| e op e (Operation)
| e ? e : e (Conditional)
| let x = e in e (Let)
| e1, ..., ek (Collection)
| create t : βρ in e (Create)
| from x in t where e select e (Select)
| update x in t where e with e (Update)
| append e to t (Append)
| delete x in t where e (Delete)
| assume C (Assume)
| assert C (Assert)

C, R, W ::= (Propositions)
p(V ) (Predicate)

| V = V (Equality)
| C ∧ C (Conjunction)
| C =⇒ C (Implication)

u, v ::= (Values)
() (Unit value)

| true (True)
| false (False)
| x (Variable)
| λx : τ.e (Abstraction)
| [m = v] (Record)
| v1, ..., vk (Collection)
| �(v) (Classified Value)

V ::= (Terms)
() (Unit value)

| true (True)
| false (False)
| x (Variable)
| λx : τ.e (Abstraction)
| [m = V ] (Record)
| V1, ..., Vk (Collection)
| �(V ) (Classified Term)
| V.m (Field Selection)

ρ ::= (Permissions)
rd(m, R) (Read)

| wr(m, W ) (Write)

Fig. 2. Syntax of λDB: Expressions, Logical Propositions, Values, Terms, Permissions
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indexed sets; this way, e.g., [m = v] stands for [m1 = v1, . . . ,mk = vk] and v stands
for v1, . . . , vk. If r′ = [. . . ,mi = v′i, . . .], then we denote v′i by r′mi

. Database tables are
modeled by references to collections of records. To represent high security data (data
not accessible according to the permissions and the current knowledge) we introduce
classified values �(v), meaning that value v is not accessible to the current program.
Classified values �(v) cannot appear in source programs, but are useful for expressing
the language semantics and its properties, namely the notion of access control compli-
ance (Definition 3.7). Notice that the language of values is included in the language of
terms, and that the language of terms is included in the language of expressions.

A field access expression e.m, provided e evaluates to a record with a field named
m, evaluates to the contents of them field of such record. We assume some unspecified
set of operations over basic values (ranged over by op) and write e1 op e2 to repre-
sent the application of the operation to the result of evaluating expressions e1 and e2.
Expressions also include a conditional statement e1 ? e2 : e3, with the expected mean-
ing: if e1 then evaluate e2 otherwise evaluate e3. The let expression let x = e1 in e2
assigns the value obtained by evaluating e1 to variable x, and binds x with scope e2
(notice that let is not representable through function application since we require the
argument of application to be a value, for typing purposes). The collection of expres-
sions e1, . . . , ek allows to build collections of values by evaluating e1, . . . , ek. Also, we
assume the extension of the language with other basic values, and with basic language
constructs encoded in a standard way. For instance, we use e1; e2 to denote the sequen-
tial composition of expressions. We use the notation fn() to refer to the set of free
names of expressions, defined as expected. Logical conditions, for example database
access permissions, are expressed in λDB with propositionsC. Logical propositions are
a predicate on a sequence of terms p(V ), a term equality test V1 = V2, a conjunction
C1 ∧ C2, or an implication C1 ⇒ C2. Note that we separately define values v (which
appear in programs) from terms V (which appear in propositions). Terms add to values
the field selection construct, in such way allowing propositions to talk about properties
of record fields, but the intuition is that terms denote values.

Database constructs are SQL-like. Expression create t : βρ in e creates a new
database table and binds it to variable t in scope e. The create expression uses the
table type βρ, which specifies access control policies for t. A full account of types is
given in Section 4; for now it suffices to say that a type βρ, associates t with a (record)
type β for its rows and a set of permissions ρ. As discussed earlier, permissions de-
fine access control policies at the level of database entities, based on logical conditions.
There are two kinds of permissions: a permission rd(m,R) specifies that fieldm can be
read only if conditionR is deducible from the current knowledge. Similarly, permission
wr(m,W ) specifies that fieldm can be modified only if conditionW is deducible from
the current knowledge. In a permission rd(m,R) or wr(m,W ), the (current) database
row to which they apply to is denoted by the reserved variable this , and any other free
variables are considered to be existentially quantified with scopeR orW , respectively.
For example, rd(address, auth(x)∧x = this.id) specifies that field address can only
be read if there is a value s for which auth(s) holds and this.id = s.

Expression from x in t where e1 select e2 specifies a read access to the table t: it
returns the collection of all values obtained by applying the select expression e2 to all
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er ::= e (Expression)
| updater

t e with e (Runtime Update)
| fromr

t x in e where e select e (Runtime Select)
| deleter

t e where e (Runtime Delete)

Fig. 3. Syntax of λDB Runtime Expressions

the rows in t for which the where boolean expression e1 evaluates to true. Variable x is
bound with scope e1 and e2.

Expression update x in t where e1 with e2 updates the fields in the rows of t that
satisfy the where condition e1 according to the record obtained by evaluating e2 for ev-
ery such row. Variable x is bound with scope e1 and e2. Expression append e to t adds
to t the collection of values obtained by evaluating e. Expression delete x in t where e
deletes from t the rows that satisfy the condition e. Variable x is bound with scope e. In
examples we specify the database permissions together with entity invariants (see, e.g.,
Fig. 1). Such invariant specifications are syntactic sugar for table type refinements, as
the following example illustrates. Consider entity Friend in Fig. 1. The corresponding
λDB declaration, letting ρ = rd(user,Auth(user)), wr(friend,Auth(user)), is:
create Friend : {x : [user : string ; friend : string] | Friends(x.user , x.friend )}ρ . . .

As other languages with refinement types, λDB expressions include statements for
adding and checking assertions at runtime: assume C specifies that proposition C
should be assumed true from the current state on, while assert C checks whether propo-
sition C is true in the current state. For our model to make sense, the use of assume C
commands is forbidden to regular users and only allowed in trusted code, accessible to
user code through trusted APIs (following the approach of [6]).

3 Operational Semantics

We now present the operational semantics of λDB and introduce a notion of access con-
trol compliance for λDB programs. The semantics is defined using a reduction relation
and evaluation contexts [19]. Reduction is defined between configurations of the form
(S;C; e), where S is a state, e is an expression, and C is a proposition defining the
current knowledge. A reduction step of the form (S;C; e) → (S′;C′; e′) means that
expression e in state S with knowledge C evolves in one computation step to expres-
sion e′ in state S′ with knowledge C′. State S is a mapping from table names (vari-
ables) to collections of basic values, each one annotated with a set of permissions ρ:
S � {t1 �→ 〈v1〉ρ1 , . . . , tk �→ 〈vk〉ρk

}. We use S(t) to refer to the element 〈v〉ρ such
that t �→ 〈v〉ρ ∈ S. We note dom(S) the set of table names defined in state S. Runtime
expressions (er), representing intermediate states in the computation of database oper-
ations, are given in Fig. 3. In the following, we use e to denote er, where appropriate.
Evaluation contexts specify the structure of language expressions whose inner expres-
sions are active and may reduce. We write C[e] to represent the expression obtained by
replacing the hole · by e in the evaluation context C[·]. The syntax of evaluation contexts
is given in Fig. 4. Reduction relies on an auxiliary notion of knowledge entailment:

Definition 3.1 (Entailment). Let C and C′ be logical propositions. We define C � C′
(C entails C′) if the proposition C ⇒ C′ is derivable in classical propositional logic
extended with equality over terms in V and the axiom scheme [m = v].mi = vi.
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C[·] ::= · (Hole)
| fromr

t x in v where C[·] select e (From)
| updater

t v with v ? e : e, C[·] ? e : e, e (Update-If)
| updater

t v with v, C[·], e (Update)
| append C[·] to t (Append)
| deleter

t v where C[·] (Delete)
| [n = v, o = C[·], m = e] (Record)

| v, C[·], e (Collection)
| let x = C[·] in e (Let)
| C[·] (v) (Application)
| C[·] ? e : e (If)
| C[·] op e (Op Left)
| v op C[·] (Op Right)
| C[·].n (Field)

Fig. 4. Syntax of Evaluation Contexts

(S; C; true?e1:e2)→ (S; C; e1) (r-if-true) (S; C; false?e1:e2) → (S; C; e2) (r-if-false)

(S; C; let x=v in e)→ (S; C; e{v/x})(r-let) (S; C; (λx:τ.e)(v))→ (S; C; e{v/x})(r-app)

v �= �(v′)
(S; C; [. . . , n = v, . . .].n) → (S; C; v)

(r-field)
(S; C; e1) → (S′; C′; e′1)

(S; C; C[e1]) → (S′; C′; C[e′1])
(r-cont)

(S; C; assume C′)→ (S; C ∧ C′; ())(r-assume)
C � C′

(S; C; assert C′)→ (S; C; ())
(r-assert)

Fig. 5. Reduction Rules for Basic Operations

For example, we have (x.m = true ⇒ q(x.m)) ∧ x = [m = true] � q(true).
We may now precisely define the reduction relation on configurations.

Definition 3.2 (Reduction). Reduction, noted (S; C; e) → (S′; C′; e′), is induc-
tively defined by the rules in Fig. 5, 6, and 7.

In order to express the notion of compliance with access control policies, we instru-
ment our semantics so that access to values in the state is guarded by the permissions
associated to the corresponding tables. We use the notion of classified value to mark
the data for which permissions are not entailed by the current knowledge. The rules in
Fig. 5 capture the reductions for the conditional expression (r-if-true) and (r-if-false),
let (r-let), and application (r-app) in a standard way. Rule (r-field) states that a record
value indexed by a field name reduces to the corresponding field value, provided it
is not a classified value. Rule (r-cont) allows for reduction to take place internally to a
given evaluation context. Rule (r-assume) applies to expressions of the form assume C′

which reduce to the unit value and add propositionC′ to the knowledge in the resulting
configuration. By rule (r-assert), an expression of the form assert C′ reduces, to the
unit value, provided that proposition C′ is entailed by the current knowledge.

Fig. 6 and 7 present the reduction rules for the operations on database tables. Rule
(r-create) specifies the creation of a new entry in the state, by associating a fresh table
name with an empty collection. Rule (r-from) specifies the first step of the evaluation
of a from expression by reducing to an intermediate expression. Crucially, the resulting
runtime expression fromr takes a filtered copy of the values associated with table t in
the state, according to the filter() operation defined as follows:
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t′ �∈ dom(S) ∪ fn(e)

(S; C; create t : βρ in e)→ (S, t′ �→ 〈∅〉ρ; C; e{t′/t})
(r-create)

S(t) = 〈v〉ρ v′ = filter(v)ρ
C

(S; C; from x in t where e1 select e2) → (S; C; fromr
t x in v′ where e1{v′

/x} select e2)
(r-from)

S(t) = 〈v〉ρ v′ = filter(v)ρ
C

(S; C; update x in t where e1 with e2) → (S; C; updater
t v with (e1 ? e2 : []){v′

/x})
(r-update)

S(t) = 〈v〉ρ v′ = filter(v)ρ
C

(S; C; delete x in t where e)→ (S; C; deleter
t v where e{v′

/x})
(r-delete)

ok2write(v)ρ
C

(S, t �→ 〈u〉ρ; C; append v to t)→ (S, t �→ 〈u, v〉ρ; C; ())
(r-append)

Fig. 6. Reduction Rules for Table Operations

u = {v′
k | vk = true}

(S; C; fromr
t x in v′ where v select e2) → (S; C; e2{u/x}) (r-fromr)

∀i (e3
i = e1

i ∧ ui = true) ∨ (e3
i = e2

i ∧ ui = false)
(S; C; updater

t v with u ? e1 : e2)→ (S; C; updater
t v with e3)

(r-update-if r)

u = v • v′ ok2update(v, v′)ρ
C

(S, t �→ 〈u′〉ρ; C; updater
t v with v′) → (S, t �→ 〈u〉ρ; C; ())

(r-updater)

u = {vk | v′
k = false} ok2write({vk | v′

k = true})ρ
C

(S, t �→ 〈u′〉ρ; C; deleter
t v where v′)→ (S, t �→ 〈u〉ρ; C; ())

(r-deleter)

Fig. 7. Reduction Rules for Runtime Expressions

Definition 3.3 (Filtering). Given a set of permissions ρ, a proposition C, and a record
r = [m = v], we define filtering of r under C, ρ, by filter(r)ρC � [m = v′] where:

v′i =
{
vi if exists rd(mi, R) ∈ ρ and θ such that C � θ(R{r/this})
�(vi) otherwise

We set filter(v1, . . . , vn)ρC = filter(v1)
ρ
C , . . . ,filter(vn)ρC .

The filtering operation marks a value vi in a record field as classified if no instance of
its read permissions is derivable from the current knowledgeC, replacing vi by �(vi) in
the resulting record. A substitution θ (a finite function from variables to terms) is used
to instantiate all free variables in a permission condition by closed values (except for
the reserved variable this). From now on, we use θ(C) assuming that the domain of θ
is the set of free variables in C, except this . Filtering causes a program to get stuck if
it attempts to select a classified value from a record read from a table later on in the
computation.
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In the runtime counterpart of expression fromx in twhere e1 select e2, expression e1
is expanded to a collection of expressions, where each element (e1{v′

i/x}) instantiates
the cursor variable x with one of the filtered rows (v′i) of table t. Notice that the fromr

expression freezes the current (filtered) state of table t, so as to use it when producing
the final result. Rule (r-fromr) applies to a fromr expression where all conditional ex-
pressions are values, and reduces to a collection of expressions, obtained by replacing
the cursor variable x by each one of the selected rows in the select expression e2.

By rule (r-update), an update expression reduces to a runtime expression updater,
that expresses the modifications to the selected rows of t, via a collection of conditional
constructs (e1?e2:[]), where the cursor variable x is replaced by the filtered values of
table t. If the condition e1 yields true, the modified field values are computed by ex-
pression e2, otherwise the result is an empty record denoting that no modification is to
be performed in that particular row. Rule (r-update-if r), is applied after the evaluation
of all conditions, and performs the corresponding selections. This three-step evaluation
ensures the expected semantics where conditions are all evaluated first. Finally, rule
(r-updater) actually updates the table in the resulting state. The record update operation
below is used to update the collection associated to table name t in the state. It takes
two records r,r′ and produces a record based on the first argument, replacing its field
values with the values of the second record whenever they exist.

Definition 3.4 (Record Update). Let r = [m = v] and r′ = [m′ = v′] be two records
with m′ ⊆ m. The update of record r by r′, noted r • r′, is defined by

r • r′ � [m = u] where ui = (ifmi ∈ m′ then r′mi
else rmi )

We set r • r′ = r1 • r′1, . . . , rn • r′n.

For example [pwd = foo, uid = 9] • [uid = 0] = [pwd = foo, uid = 0].
Rule (r-delete) specifies that a delete expression reduces to the runtime expression

deleter, in which the where expression is expanded into a collection of boolean tests,
again instantiating the cursor variable x with the filtered records v′. Rule (r-deleter)
updates the values in table t in the resulting state, by keeping only the ones whose
corresponding test yields false. Rule (r-append) reduces to a configuration where the
collection associated with table name t is imperatively augmented with values v. The
operations update, delete, and append depend on the runtime verification that the current
knowledge entails the necessary write permissions. Rule updater expression depends on
test ok2update() that checks only the modified fields in a record when compared with
the original row, while rules (r-deleter) and (r-appendr) depend on the test ok2write()
which checks permissions for all fields in the table rows.

Definition 3.5 (Write and Update Permission Checks). Given r = [m = u] and r′ =
[m′ = v] (with m′ ⊆ m), a set of permissions ρ for r, and a proposition C, we define
the write and update permission checks, ok2write(r)ρC , and ok2update(r, r′)ρC by:

ok2write(r)ρC � ∀mi∈m ∃Wi, θi(wr(mi,Wi) ∈ ρ and C � θi(Wi{r/this}))
ok2update(r, r′)ρC �

∀mi∈m′ (rmi = r′mi
) ∨ ∃Wi, θi(wr(mi,Wi) ∈ ρ and C � θi(Wi{r′/this}))

We set ok2write(v)ρC = ok2write(v1)
ρ
C ∧ . . . ∧ ok2write(vn)

ρ
C ,

and ok2update(v, u)ρC = ok2update(v1, u1)
ρ
C ∧ . . . ∧ ok2update(vn, un)

ρ
C .
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β, φ ::= unit (Unit Type)
| bool (Boolean Type)
| [m : β] (Record Type)
| {x : β | C} (Refinement Type)

τ, σ ::= β (Basic Type)
| β∗ (Collection Type)
| Πx : τ. τ (Dependent Function Type)

Fig. 8. Syntax for Types

We may now define the notion of error for λDB configurations.

Definition 3.6 (Error). A configuration (S;C; e) is an error if e is not a value and
there are no S′, C′, e′ such that (S;C; e) → (S′;C′; e′).

Notice that a configuration (S;C; e) immediately attempting to select a field of a record
containing a hidden (classified) value is an error, since by the premise of (r-field), it has
no reduction. Given that classified values are only introduced in data access primitives
by filtering out data in fields for which no read permission is available, we define:

Definition 3.7 (Data Access Control Compliance). A configuration is data access
control compliant if no computation from it gets stuck in a field selection (r-field), up-
date, delete, or append operation, due to a ok2write() or ok2update() test failure.

It is then clear that programs that do not get into errors are in particular access control
compliant. In the next section, we introduce a type system that statically ensures that
well-typed programs do not get into errors, and are therefore access control compliant.

4 Type System

In this section we present our type system, which ensures that well-typed programs are
data access control compliant. The syntax of types is defined in Fig. 8. We have basic
types (β): unit, bool, the record type [m1 : β1, . . . ,mk : βk], and refinement types
{x : β | C}, which capture values of type β for which the proposition C holds (x is
bound with scope C). Types also include collection types β∗ which type collections of
values of type β, and dependent function types Πx : τ.σ, the type of functions that
given a value x of type τ return a value of type σ, where x may occur on σ. As usual,
the standard function type τ → σ is represented by Πx : τ.σ, where x does not occur
in σ. Notice that we forbid collections of functions, collections of collections, etc, for
simplicity. We also introduce table types, denoted βρ to classify table names. Recall
that table names are imperatively bound to collection of values of type β, and have their
contents are guarded by a set of permissions ρ.

We now present our typing relation. A typing judgment of the form Δ � e : τ says
that expression e has type τ under environment Δ. Also, we use Δ � C to say that
knowledge C is logically entailed from the knowledge in environmentΔ (see below).
We introduce an auxiliary type constructor, not expected to appear on source programs,
but needed to type records where some fields may contain secured data. Such types,
called projected types, have the form β�m, where β is a record type or an (hereditary)
refinement of a record type, and are only used to type the query “cursor” in the scope
of database table operations. Intuitively, β�m means the same as β, but selection on a
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“classified” field (a field not in m) is not allowed in well-typed programs. Crucially,
types containing projected types as subexpressions are not allowed, so that the projec-
tion construction in only allowed to occur at the top level of any type. This condition is
important to block illegal information flows out of trusted where and select clauses. In
the sequel, we range both types τ and projected types β�m using μ.

Type declarations, ranged over by γ, are assignments of types to variables, defined
as either x : τ (normal type) or as x : τ�m (projected type) or as t : βρ (table type). For
example, x : [name : β1, email : β2, address : β3]�name,email is a type declaration that
specifies that the only fields accessible in variable x are name and email, while field
address is not accessible. A typing environment, ranged over by Δ, is a sequence of
typing declarations γ1, . . . , γk. A well-formed typing environment satisfies a domain
closure property on type declarations (from left to right). We say typing environmentΔ
is well-formed if for all γ such that Δ = Δ′, γ,Δ′′ and γ = x : τ or γ = x : τ�m or
γ = x : βρ then x �∈ fn(Δ′), where there is a notion of free names of environments,
declarations, and types (we use fn(), taking into account names in the domain and in
the types). From this point on, we assume typing environments are always well-formed.
Also, we use Δπ to denote the environment obtained by deleting fromΔ all identifiers
which are assigned non-basic types. To define the knowledge of a type environment, we
introduce the auxiliary notion of term environment. This is the same as the notion of
environment, but where term declarations may assign types to terms V (see Fig. 2), not
just to variables. So a type environment is also a term environment. Given a term envi-
ronmentΔ, we may consider the knowledge it expresses about the terms it specifies, as
a set (taken as the conjunction) of propositions.

Definition 4.1 (Knowledge). The knowledge of a term declaration γ, noted kn(γ), is
inductively defined on types by:

kn(V :{x:β | C}) � {C{V/x}} ∪ kn(V :β) kn(V :[m:β]) �
⋃

mi∈m kn(V.mi:βi)
kn(V :{x:β | C}�m) � {C{V/x}} ∪ kn(V :β�m) kn(V :[m:β]�n) �

⋃
mi∈n kn(V.mi:βi)

and as kn(γ) � ∅ for other types. Then kn(Δ) is given by kn(Δ, γ) = kn(Δ)∪ kn(γ),
and kn(∅) = ∅. We often identify the set kn(Δ) with the conjunction of its elements.

Definition 4.2 (Derivable Knowledge). Given a term environment Δ, formula C is
derivable knowledge from Δ, noted byΔ � C, if kn(Δ) � C.

Logical entailment has been defined in Definition 3.1. We can verify that knowledge is
preserved by term substitution, that is, kn(Δ){V/x} = kn(Δ{V/x}), and we also have
thatΔ � V :μ impliesΔ � kn(V :μ). We can now define:

Definition 4.3 (Typing). Typing is expressed by judgmentΔ � e : μ, stating expression
e is well-typed by μ in environmentΔ. Typing rules are given in Figs. 9, 10, and 11.

We first discuss the typing rules that do not concern database operations, depicted in
Fig. 9. Rules (t-assert), (t-assume), (t-refine), (t-term-refine), and (t-unrefine) express
standard principles in refinement type theories (see, e.g., [15]), with some simplifica-
tions, due to the absence of subtyping in our presentation. Rule (t-assert) checks if the
environment knowledge supports the specified proposition. Rule (t-assume) (remember
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Δ � C

Δ � assert C : unit
(t-assert) Δ � assume C : { : unit | C} (t-assume)

Δ � () : unit (t-unit)
Δ � V : β Δ � C(V )
Δ � V : {x : β | C(x)} (t-term-refine)

Δ � e : β Δ, x : β � C(x)
Δ � e : {x : β | C(x)} (t-refine)

Δ � e : {x : β | C(x)}
Δ � e : β

(t-unrefine)

Δ � e : Πx : τ. σ Δ � v : τ

Δ � e (v) : σ{v/x} (t-app)
Δ � e1 : σ Δ, x : σ � e2 : τ

Δ � let x = e1 in e2 : τ
(t-let)

Δ, x : τ � e : σ

Δ � λx : τ.e : (Πx : τ. σ)
(t-fun)

op : τ1 → τ2 → σ ∀i∈1,2 Δ � ei : τi

Δ � e1 op e2 : σ
(t-op)

Δ � e1 : {b : bool | C(b)}
Δ, : { : unit | C(true)} � e2 : τ Δ, : { : unit | C(false)} � e3 : τ

Δ � e1 ? e2 : e3 : τ
(t-if)

Δ, x : τ, Δ′ � x : τ (t-id)
∀i Δ � ei : βi

Δ � [m = e] : [m : β]
(t-record)

∀i Δ � ei : β

Δ � e : β∗ (t-collection)

Δ � e : [. . . , n : β, . . .]
Δ � e.n : β

(t-field)
Δ � v : [. . . , n : β, . . .]�m n ∈ m

Δ � v.n : β
(t-fieldProj)

∀i ((vi = �(ui) ∧mi �∈ n) ∨Δ � vi : βi)
Δ � [m = v] : [m : β]�n

(t-recProj) Δ, x : τ �m, Δ′ � x : τ �m (t-idProj)

Δ � x : τ�m fields(τ ) = m

Δ � x : τ
(t-allFields)

Fig. 9. Typing Rules (I)

that assume is only to be used in trusted code, not user code) types the assume witness
(with unit type) with its logical refinement, which may then be added to the current
knowledge (namely, via a let x = assume C in . . .).

We now consider the basic typing rules for database operations (see Fig. 10). Typing
rules for related runtime expressions follow similar lines and are shown in Fig. 11. Rule
(t-from) specifies that a from expression is well-typed if the environment knowledge en-
tails the permissions needed to access the data in the table (I, J,K,L are sets of record
field labels). The where expression e1 returns a boolean b such thatC(x, b) for the given
record x. Thus if x is selected by the test e1, we know C(x, true) holds. Notice that e1
itself is only allowed to use table fields mj (mj ∈ J) for which the appropriate read
permissions Rmj are entailed by the current knowledgeΔ. Using this additional piece
of knowledge (C(x, true)), taking into account that the result of the where test is true
for the selected rows, the set of permissionsRmk

, for fieldsmk ∈ K , is derived. Notice
that the refinement predicate obtained for the where expression (i.e., C(x, b)) carries
information about the actual data being selected. This allows us to capture the intended
row-level access control conditions, as all necessary read permissions are valid for each
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Δ(t) = β{rd(mi,Rmi
) |mi∈I}∪ρ J, K ⊆ I

Δ � ∧
mj∈J θj(Rmj ) Δπ , x : β�J � e1 : {b : bool | C(x, b)}

Δ � C(this , true) =⇒ ∧
mk∈K θk(Rmk )

Δ, x : β�K , : { : unit |C(x, true)} � e2 : φ

Δ � from x in t where e1 select e2 : φ∗ (t-from)

Δ(t) = β{rd(mi,Rmi
) | mi∈I}∪{wr(ml,Wml

) | ml∈L}∪ρ J, K ⊆ I L ⊆ K

Δ � ∧
mj∈J θj(Rmj ) Δπ, x : β�J � e1 : {b : bool | C(x, b)}

Δ � C(this , true) =⇒ ∧
k∈K θmk (Rmk)

β = {r : τ | I(r)} I(r) � H(r) H(r) ∧ U(r) � I(r) φ = {r : |τ |K |U(r)}
D(y) = (

∧
ml∈K−L y.ml = x.ml) ∧

∧
ml∈L θml(Wml{y/this})

Δ, x : β�K , : { : unit |C(x, true)} � e2 : {y : φ | D(y)}
Δ � update x in t where e1 with e2 : unit

(t-update)

Δ(t) = β{rd(mj ,Rmj
) | mj∈J}∪{wr(ml,Wml

) | ml∈L}∪ρ fields(β) = L

Δ � ∧
mj∈J θj(Rmj ) Δπ , x : β�J � e : {b : bool | C(x, b)}

Δ � C(this, true) =⇒ ∧
ml∈L θl(Wml)

Δ � delete x in t where e : unit
(t-delete)

Δ(t) = β{wr(ml,Wml
) | ml∈L}∪ρ fields(β) = L

Δ � e : {x : β | ∧
ml∈L θl(Wml{x/this})}∗

Δ � append e to t : unit
(t-append)

Δ, t : βρ � e : τ β = {r : βr | I(r)} βr is a record type
Δ � create t : βρ in e : τ

(t-create)

Fig. 10. Typing Rules (II)

selected row. For soundness, we type the test in the pure part of the environment Δπ.
This ensures that computation of where clauses will never generate new knowledge,
even if they may generate side effects.

Notice that the type of the cursor x is projected to the set of accessible fields when
typing the where and select expressions, so that only the fields for which permissions
are entailed may be selected (see Rule (t-fieldProj)). Also, to derive the permissions, we
type the cursor identifier x with the (row) element type for the table (β), projected to
the accessible fields (eithermj ormk). The typing of the select expression ensures that
φ is the type of the values returned; in general, φ may implicitly include information on
the invariants of entity t as a refinement.

Rule (t-fieldProj) types the field access to an identifier which type declaration is pro-
jected in a set of field names and where this set contains the accessed field. In rule
(t-allFields), an environment that specifies a projected type declaration for identifier n
types it with the (unrestricted) type τ , provided the projection is over all fields of type
τ — we use fields(τ) to denote the set of fields of the record type τ , possibly occurring
under a refinement type. The combined use of rules (t-allFields) and (t-fieldProj) en-
sures that a record value typed by a projected type can only be used as a non protected
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record when the projection is over the whole set of fields. Otherwise, the only admissi-
ble behavior on such a value will be to select a field in the projection set. This ensures
a tight control on the information flow of secured data. In particular, classified (high)
values �(v) will never be leaked outside the context of a database operation, such as a
where or a select computation, since protected types are not used elsewhere, due to our
typing and syntactic constraints.

Rule (t-update) implements a reasoning similar to (t-from), as far as the where test
is concerned, with fields in J selected for safe reading, based on available read per-
missions Rmj . However, to type the with clause e2, we must check: (1) that e2 copies
without modification (y.ml = x.ml) the fields in K − L for which write permissions
are not deduced, and (2) that write permissions Wmk

are currently entailed for all po-
tentially modified fields mk. In general, write permissions Wmk

may refer to readable
fields (allowed by Rml

), where L ⊆ K (only readable fields may be updated), but not
to other (classified) fields. So, we require in the rule that the permissionsWml

(r) may
only refer to fields of r inK . All these conditions explain the refinementD(y) of φ. To
ensure that the updated row would satisfy the table type β = {r : τ | I(r)} (expressing
invariant I(r)) we verify, through a frame reasoning, that the conjunction of the prop-
erties of the update records produced by e2 together with the properties of the classified
part imply the table invariant I(r) for the updated record r. So, we require that H(r)
only refers to fields of τ not in K and U(r) only refers to fields of τ in K . Notice that
the base record type of φ is the same of β, but with fields out of K removed (noted
|τ |K ). All these conditions ensure that the update v3 = v1 • v2 in rule (r-update-if) is
well defined, and that neither invariants nor write permissions are violated at runtime.

The remaining rules follow similar ideas: (t-delete) verifies that write permissions are
available for all fields of all records selected by the where test, and (t-append) requires
write access to all table fields. We now introduce well-typed configurations.

Definition 4.4 (Well-typed Configuration and State). A configuration (S;C; e) is
well-typed in environment Δ (noted Δ � (S;C; e) if (a) Δ � e : τ ; (b) Δ � S;
and (c) for all Ci ∈ kn(Δ), C � Ci. We also define Δ � S by for all (t �→ 〈v〉ρ) ∈ S
we haveΔ(t) = βρ and for all vi ∈ v, Δ � vi : β.

Notice that (c) states that the runtime condition C (the log) is stronger that the static
knowledge entailed by Δ. This fact is used in our proofs to express that any statically
verified condition (assertions, permissions) also holds at runtime.

We now present our main results, which ensure that programs that go through our
typing rules are access control compliant (in addition to being of course error (stuck)
free in the usual sense). The main statements are Theorem 4.6 (Type Preservation)
— well-typing is invariant under reduction — Theorem 4.7 (Progress) — well-typed
expressions are either values or have a reduction — and Corollary 4.8 — well-typed
expressions comply with access control policies. Detailed proofs may be found in [9].
We first present our type preservation result, which relies on two substitution lemmas.

Lemma 4.5 (Substitution)

1. (Entailment) Let Δ,x : μ,Δ′ � C. If Δ � V : μ thenΔ, (Δ′{V/x}) � C{V/x}.
2. (Typing) Let e be an expression where Δ,x : μ,Δ′ � e : σ. If Δ � v : μ then
Δ, (Δ′{v/x}) � e{v/x} : σ{v/x}.
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Theorem 4.6 (Type Preservation). LetΔ � (S;C; e). If (S;C; e) → (S′;C′; e′) then
there isΔ′ such thatΔ,Δ′ � (S′, C′, e′).

Theorem 4.6 says that any reduction step in well-typed configuration leads to a well-
typed configuration, where the typing of the final configuration is possibly extended so
as to capture added knowledge (e.g., in case of an assume) or new locations of tables
(via create) in the state. Our second result states that a closed well-typed configuration
(S;C; e) either has a value as its distinguished expression e, or has a reduction (it is not
stuck). In particular, it is not an error.

Theorem 4.7 (Progress). Let Δ � (S;C; e) and fn(e) ⊆ dom(S). Then either e is a
value or (S;C; e) → (S′;C′; e′).

Theorem 4.7 states closed well-typed programs never get stuck on a expression which
is not a value, and thus, in particular, well-typed configurations never get stuck on an
assert C statement. Also notice that access to a classified record value is never at-
tempted performed by well-typed programs, and safety of database updates, deletes, and
appends, is also ensured by the validity of runtime control assertions such as ok2write(),
which ultimately depend on assertion checking. By Theorems 4.6 and 4.7 we conclude:

Corollary 4.8 (Data Access Control Compliance). Let Δ � (S;C; e) and fn(e) ⊆
dom(S). Then (S;C; e) is data access control compliant.

Corollary 4.8 tells us, in a technically precise way, that well-typed configurations never
attempt to read data from tables which is forbidden by the prescribed policies, neither
store in tables data that violates the prescribed policies or table invariants.

5 Discussion and Related Work

Refinement types were introduced in [13] in the context of ML type theory. Recently,
Gordon and co-authors have developed a general theory of refinement types for a
concurrent λ-calculus [15]. Their approach is applied in [6], where refinement types
are interpreted as logic assertions which are used to verify authentication/authorization
properties in security protocols. Our model builds on the general framework of refine-
ment types, but does not seem naturally expressible within it; in fact, a key ingredient of
our approach is the integration of refinements with coarse-grained typing principles for
database operations, allowing access policies to selectively depend on the stored data,
on a row-level basis, as required in realistic scenarios. We have no perspective on how
to model our typed language in other related languages, including Fine [17], mainly
because of the need to tightly integrate the constraints needed to statically type-check
the trusted from and update constructs, parametric on general filtering where tests.

Several (proposals of) programming and/or modeling languages integrating data op-
erations into programs — often in the form of SQL-like operations — have been put
forward recently; examples include LINQ [16], Cω [8], Links [11], Ur/Web [10], Dmi-
nor [7], and M; some of these works have tackled security issues. Our work shares the
same general goals with [10]. However, the underlying approaches are very different.
In [10] access policies are defined as queries and programs are checked (using symbolic
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evaluation techniques) so as to guarantee any data exchanged with the database is con-
tained in the result set of some policy, while access control policies may depend on the
actual data and on the knowledge held by the user performing the query — captured by
known, a distinguished predicate. In our approach access control policies also depend
on the actual data; they are expressed in terms of arbitrary logical expressions which can
capture, for instance, the knowledge held by the user or some data relationship, thus in-
troducing extra flexibility. Another fundamental difference between our work and [10]
lies on the conception of access control itself. The approach in [10] enforces a strong
distinction between the access control capabilities of the (trusted) server and those of
its (untrusted) clients. In our work, thanks to refinement types, access control can be
treated in a more uniform way: the actual access control permissions of a participant
(server or clients) depends on the knowledge currently available to it. This is reflected
in the handling of where clauses: in [10] the data by a where clause is not subject to
access control checks, which allows for queries that implicitly leak non-accessible in-
formation while in our approach the where test code is subject to access control checks
in a uniform way, which excludes queries that access classified information, in the pre-
cise sense of Corollary 4.8.

Dminor [7] combines refinement types and expressions enforcing dynamic type tests.
Although a basic form of select expressions is expressible in Dminor (by means of an
accumulator construct), it does not support other database-like expressions nor offers a
simple way of enforcing fine-grained access control permissions over data entities, two
of the distinguishing features of λDB. The approach of [7] is related to the work in RFC
in [6], which we reviewed above. Links [11] is a typed functional programming lan-
guage for web applications. In [5] a secure compilation strategy for Links is formalized
by a concurrent λ-calculus, endowed with a refinement type system, but not address-
ing data management operations. SELinks [12] extends Links with label-based security
policies. In SELinks security labels are associated to objects which contain sensible
data; a labeled object is not accessible. Policy enforcement functions are used to safely
“unlabel” objects, thus implementing the semantics associated to the security labels. A
type system [18] ensures the correct mediation between application code and the policy
enforcement functions. Our focus is on data access control, based on logical condi-
tions on the data itself, where permissions are directly taken in account while typing
database primitives, by means of refinement types, allowing for fine-grained policies to
be directly verified in application level SQL-like database manipulation code.

6 Concluding Remarks

We have presented a type-based approach to statically enforce access control to per-
sistent data in data-centric software systems such as web applications. We believe that
our proposal provides a useful mechanism to enforce the preservation of protection (in
the general sense of [1]) between application-level security and database-level secu-
rity management. Our technical development is based on a core language λDB, which
includes comprehensive SQL-like operations, and is equipped with a refinement type
system. Refinement types are combined with access permissions, allowing the system
to control unsecure information flows across database operations. Although simple to
use, at least in principle, our approach is expressive enough to enforce access control
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policies at a very fine-grained level, in particular allowing security constraints to dy-
namically depend on the stored data, as is often the case in real applications. Our main
results certify that our type system excludes error configurations, namely systems that
violate access control policies, in a technically precise sense. In future work, we intend
to extend our model with more sophisticated permission and access control concerns.
For simplicity and usability, our refinements logic is a simple classical logic, where
deduced facts are monotonically accumulated, while database contents keeps chang-
ing overtime. Nevertheless, this approach is already very useful and consistent with
the scenario of web-based applications, where all the state resides in the database, and
operations are implemented by independent short-running requests. Our type system
ensures that no data access violations may occur in a transaction, given the currently
visible database stored data and related policies. Nevertheless, it would be interesting
to study the adoption in our framework of more expressive logics (e.g., [3,14,4]), and
to research the interplay between refinement types and types for information flow [2].
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Appendix: Typing Rules for Runtime Expressions

Δ(t) = β{rd(mi,Rmi
) | mi∈I}∪ρ J, K ⊆ I

Δ � ∧
mj∈J θmj (Rmj ) ∀vi∈v Δ � vi : β�J

∀ei∈e Δπ � ei : {b : bool | C(vi, b)} Δ � C(this , true) =⇒ ∧
mk∈K θmk (Rmk )

Δ, x : β�K , : { : unit |C(x, true)} � e2 : φ

Δ � fromr
t x in v where e select e2 : φ�

Δ(t) = β{rd(mi,Rmi
) | mi∈I}∪{wr(ml,Wml

) |ml∈L}∪ρ J, K ⊆ I L ⊆ K

Δ � ∧
mj∈J θmj (Rmj ) ∀vi∈v Δ � vi : β ∀v′

i
∈v′ Δ � v′

i : β�J
∀e′

i
∈e′ Δπ � e′i : {b : bool | C(v′

i, b)} Δ � C(this, true) =⇒ ∧
mk∈K θmk (Rmk )

β = {r : τ | I(r)} I(r) � H(r) H(r) ∧ U(r) � I(r) φ = {r : |τ |K |U(r)}
e′′i = e2{v′

i/x} D(y) = (
∧

ml∈K−L y.ml = x.ml) ∧
∧

ml∈L θml(Wml{y/this})
Δ, x : β�K , : { : unit |C(x, true)} � e2 : {y : φ | D(y)}

Δ � updater
t v with e′ ? e′′ : [] : unit

Δ(t) = β{rd(mk,Rmk
) | mk∈K}∪{wr(ml,Wml

) | ml∈L}∪ρ L ⊆ K

∀vi∈v Δ � vi : β Δ � C(this , true) =⇒ ∧
mk∈K θmk (Rmk )

β = {r : τ | I(r)} I(r) � H(r) H(r) ∧ U(r) � I(r) φ = {r : |τ |K |U(r)}
D(y)(

∧
ml∈K−L y.ml = x.ml) ∧

∧
ml∈L θml (Wml{y/this})

∀ei∈e (ei = []) ∨
(Δ � v′

i : β�K ∧ Δ, : { : unit |C(v′
i, true)} � ei : {y : φ | D(y){v′

i/x}})
Δ � updater

t v with e : unit

Δ(t) = β{rd(mj ,Rmj
) | mj∈J}∪{wr(ml,Wml

) | l∈L}∪ρ fields(β) = L

Δ � ∧
mj∈J θmj (Rmj ) ∀vi∈v Δ � vi : β ∀v′

i
∈v′ Δ � v′

i : β�J
∀ei∈e Δπ � ei : {b : bool | C(x, b)} Δ � C(this , true) =⇒ ∧

ml∈L θml (Wml)

Δ � deleter
t v where e : unit

Fig. 11. Typing Rules (III)
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Abstract. Linear relation analysis (polyhedral analysis), devoted to discovering
linear invariant relations among variables of a program, remains one of the most
powerful abstract interpretations but is subject to convexity limitations. Absolute
value enjoys piecewise linear expressiveness and thus natively fits to encode cer-
tain non-convex properties. Based on this insight, we propose to use linear abso-
lute value relation analysis to discover linear relations among values and absolute
values of program variables. Under the framework of abstract interpretation, the
analysis yields a new numerical abstract domain, namely the abstract domain of
linear absolute value inequalities (�kak xk � �kbk �xk � � c), which can be used to
analyze programs involving piecewise linear behaviors (e.g., due to conditional
branches or absolute value function calls). Experimental results of our prototype
are encouraging; The new abstract domain can find non-convex invariants of in-
terest in practice.

1 Introduction

Abstract interpretation [7] provides a general framework for static analysis. One pre-
dominant application is numerical static analysis, i.e., to discover numerical properties
of a program statically and automatically. Linear relation analysis [9], devoted to dis-
covering linear invariant relations among variables of a program, is one of the earliest
but still most powerful abstract interpretations. It yields the known convex polyhedra
abstract domain (�kak xk � c) [9], since the set of the reachable states at each program
point is abstracted as a convex polyhedron. Over the last 30 years, linear relation anal-
ysis has a wide range of applications, especially in the field of analysis and verification
of programs and hybrid systems [14]. Moreover, a variety of weakly (linear) relational
abstract domains have been proposed in recent years, for discovering restricted forms
of linear relations, such as the Octagon domain (�x � y � c) [21], the Two Variables
Per Inequality (TVPI) domain (ax � by � c) [28], and the Template Polyhedra domain
(�kakxk � c where variable coefficients ak are fixed beforehand) [25].

The concrete semantics of a program often involves non-convex behaviors. E.g.,
conditional branch statements often introduce disjunctive behaviors, since different
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computations are performed depending on whether the condition evaluates to true or
false. Besides, many program properties that users may be interested in are non-convex,
e.g., the division-by-zero error. However, the polyhedra abstract domain together with
weakly (linear) relational abstract domains can express only convex sets (without re-
sorting to powerset extensions). The convexity limitations may lead to imprecision in
the analysis and thus can cause many false alarms.

Absolute value (AV) is a fundamental concept in mathematics and of high relevance
in practice. AV function is essentially a kind of piecewise linear functions, and thus
fits to express piecewise linear behaviors in a program that account for a large class
of non-convex behaviors in practice. Moreover, complex non-linear program behaviors
can be abstracted into piecewise linear behaviors, as in the field of hybrid systems. On
the other hand, AV functions are provided by many modern programming languages,
e.g., the abs (absolute value of an integer), fabs (absolute value of a floating-point num-
ber) functions in the C language. And several commonly used mathematical functions
such as fmin (minimum value), fmax (maximum value), fdim (positive difference) in the
C99 standard can be also expressed by AV functions, e.g., max(x� y) � 1

2 (�x� y�� x� y).
Besides, rounding errors in floating-point arithmetic can be also abstracted by AV func-
tions: �round(x) � x� � �rel � �x� � �abs where �rel denotes a relative error and �abs denotes
an absolute error [20]. In addition, in Sect. 2.4, we will show that linear constraints
with interval coefficients which may appear in numerical static analysis [4] can be also
rewritten via AV functions. However, due to non-linearity, AV functions are rarely con-
sidered during program analysis and verification.

In this paper, we propose an analysis to discover linear absolute value relations
among variables of a program, i.e., linear relations among the values and the absolute
values of variables. The analysis yields a new abstract domain, namely the abstract
domain of linear absolute value inequalities (AVI), to infer relationships of the form
�kak xk�bk�xk � � c over program variables xk (k � 1� � � � � n) where constants ak� bk� c � �
are automatically inferred by the analysis. The new domain is more expressive than
the classic convex polyhedra domain and allows expressing certain non-convex (even
unconnected) sets due to the utilization of absolute value. Its domain operations are
constructed based a double description method. The preliminary experimental results
of the prototype implementation are promising on benchmark programs; AVI can find
non-convex invariants of interest in practice.

To sum up, this paper aims at exploiting the piecewise-linear expressiveness of abso-
lute value to design non-convex abstract domains which can be used to capture disjunc-
tive information in a program and which for example will apply to programs involving
AV(-like) function calls. In other words, this paper is dedicated to coping with disjunc-
tive behaviors of a program at the level of abstract domains, with no need to resort to
other techniques to deal with disjunctions [3,8,24].

The rest of the paper is organized as follows. Section 2 shows the equivalence among
linear absolute value inequality systems, extended linear complementary problem
(XLCP) systems and interval linear inequality systems. Section 3 presents a double de-
scription method for XLCP on top of that for polyhedra. Section 4 proposes an abstract
domain of linear AV inequalities based on the double description method for XLCP.



158 L. Chen et al.

Section 5 presents our prototype implementation together with preliminary experimen-
tal results. Section 6 discusses some related work before Section 7 concludes.

2 Linear Absolute Value Inequality Systems and Their
Equivalents

2.1 Linear Absolute Value Inequality Systems (AVIs)

Let � � � denote absolute value (AV). We consider the following system of linear absolute
value inequalities (AVI)

Ax � B�x� � c (1)

where A� B � �m�n and c � �m.

Theorem 1. Any AV inequality�
i aixi �

�
i�p bi�xi� � bp�xp� � c

where bp � 0, can be reformulated as a conjunction of two AV inequalities��
i aixi �

�
i�p bi�xi� � bpxp � c�

i aixi �
�

i�p bi�xi� � bpxp � c

Theorem 1 implies that any AVI system Ax � B�x� � c can be reformulated as an AVI
system A�x � B��x� � c where B� � 0.

2.2 Extended Linear Complementarity Problems (XLCPs)

Given a matrix M � �
n�n and a vector q � �

n, the (standard) linear complementarity
problem (LCP) is defined as the problem of finding vectors x� and x� such that

x� � Mx� � q (2)

x�� x� � 0 (3)

(x�)T x� � 0� (4)

Note that if x� and x� are solutions of the above LCP, then it follows from (3-4) that

x�i x�i � 0 for i � 1� � � � � n

i.e., for each i the following holds: If x�i � 0 then x�i � 0 holds, and if x�i � 0 then x�i � 0
holds. In other words, the zero patterns of x�i and x�i are complementary. Thus, condi-
tion (4) is called the complementarity condition of the above LCP. The LCP problem
is one of the fundamental problems in mathematical optimization theory, which sub-
sumes many mathematical programming problems such as linear programs, quadratic
programs [6]. Here, we present one extension of the LCP that is of interest to us.

Given M� N � �m�n and a vector q � �m, find x�� x� � �n such that

Mx� � Nx� � q (5)

x�� x� � 0 (6)

(x�)T x� � 0� (7)

We call the above problem eXtended Linear Complementary Problem (XLCP), since it
can be proved equivalent to eXtended LCP of Mangasarian and Pang [19].
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2.3 Interval Linear Inequality Systems (ILIs)

Let x � [x� x] be an interval with its bounds (endpoints) x � x. Let �� be the set of all
real intervals [a� a] where a� a � �. Let A� A � �m�n be two matrices with A � A where
the order is defined element-wise, then the set of matrices A � [A� A] � �A � �m�n : A �

A � A	 is called an interval matrix and the matrices A� A are called its bounds. Let us
define the center matrix of A as Ac �

1
2 (A� A) and the radius matrix as 
A �

1
2 (A� A).

Then, A � [A� A] � [Ac � 
A� Ac � 
A]. Note that 
A � 0 always holds.
Let b be a regular vector in �m. The following system of interval linear inequalities

Ax � b

denotes an interval linear inequality system (ILI), that is, the family of all systems of
linear inequalities Ax � b such that A � A. A vector x � �n is called a weak solution of
the interval linear inequality system Ax � b, if it satisfies Ax � b for some A � A.

2.4 Equivalence among AVIs, XLCPs and ILIs

Equivalence between AVIs and XLCPs. Let x � (xi)n
i�1 be a vector. Let vectors x�

and x� be defined by x� � (max(xi� 0))n
i�1 and x� � (max(�xi� 0))n

i�1, so that

x� � 0� x� � 0� (x�)T x� � 0

and

x � x� � x�� �x� � x� � x� (8)

x� �
1
2

(x � �x�)� x� �
1
2

(�x� � x) (9)

wherein �x� � (�xi�)n
i�1.

According to (8), AVI (1) can be reformulated as the following XLCP:

(A � B)x� � (B � A)x� � c

x�� x� � 0

(x�)T x� � 0

Similarly, according to (9), XLCP (5-7) can be reformulated as the following AVI:

1
2

(M � N)x �
1
2

(M � N)�x� � q

Equivalence between AVIs and ILIs. From Theorem 2.19 in [23] (which states that a
vector x � �n is a weak solution of Ax � b iff it satisfies Acx � 
A�x� � b) together with
Theorem 1 in this paper, we can prove that any system of absolute value inequalities
Ax � B�x� � b can be reformulated as a system of interval linear inequalities A�x � b�

where A� B � �m�n� b � �m�A� � ��k�n� b� � �k. The converse also holds.

Example 1. Consider the following AVI: ��x� � 1���x� � �1	. Its corresponding XLCP
will be �x��x� � 1��x��x� � �1� x� � 0� x� � 0� (x�)T x� � 0	, and its corresponding
ILI will be �x � 1��x � 1� [�1� 1]x � �1	.
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Until now, we have shown the equivalence among AVIs, XLCPs and ILIs, which indi-
cates that we can reuse the method that can solve one of them to solve the others. In
this paper, we reduce AVIs (as well as ILIs) to XLCPs and propose a double description
method to characterize all solutions of an XLCP. On the other hand, the equivalence
implies that the AVI domain proposed in this paper can be reused to infer other kinds
of equivalent relations, e.g., to deal with linear constraints with interval coefficients that
may appear in numerical static analysis [4]. In Sect. 4.1, we will see that the AVI do-
main is as expressive as the existing interval polyhedra domain [4] (that employs ILIs
for domain representation) but enjoys better (optimal) domain operations.

3 Double Description Method for XLCP

By Minkowski-Weyl theorem [26], the set P � �
n is a polyhedron, iff it is finitely

generated, i.e., there exist finite sets V�R � �n such that P can be generated by (V�R):

P �

���������
�V ��
i�1

�iVi �

�R��
j�1

� jR j

��������i� �i � 0�� j� � j � 0�
�V ��
i�1

�i � 1

	���
����
where �V �� �R� denote the cardinality of sets V�R respectively. Elements in V are called ex-
treme points, while elements in R are called extreme rays. Using the double description
method, a convex polyhedron can be represented by either its constraint representation
�Ax � b	 or its generator representation (V�R). The two representations are duals: Each
can be computed from the other by Chernikova’s algorithm [18]. And the classic convex
polyhedra abstract domain [9] is designed based on the dual representations.

In this section, we will construct a double description method for XLCP, on top of
that for convex polyhedra. The main idea is the following. Intuitively, (5-6) of an XLCP
describes a convex polyhedron P � �x� � �n� x� � �n � Mx��Nx� � q� x� � 0� x� � 0	,
while the complementary condition (7) specifies that x�i � 0  x�i � 0 holds for all
i � 1� � � � � n, which indicates 2n complementary patterns. Overall, XLCP (5-7) can be
considered as a union of a set of polyhedra, the number of which is in the worst case
2n (one for each complementary pattern). E.g., when n � 1, XLCP (5-7) is equivalent
to the union of 21 polyhedra: �x� � �

n� x� � �
n � Mx� � Nx� � q� x� � 0� x� �

0	 � �x� � �
n� x� � �

n � Mx� � Nx� � q� x� � 0� x� � 0	. It is worth noting that
first not all generators g of P will be the generators of XLCP (5-7), since g may not
satisfy the complementary condition. Second, even for those generators of P that satisfy
the complementary condition, not all combinations of them will result in solutions of
XLCP (5-7). Essentially, we need to group generators according to the complementary
patterns such that each group corresponds to a convex polyhedron and any combination
of generators in one group will always result in a solution of XLCP (5-7).

Example 2. Consider the following XLCP: ��x� � x� � �1� x� � 2� x� � 2� x� �

0� x� � 0� x�x� � 0	. As shown in Fig. 1, the polyhedral generators of ��x� � x� �

�1� x� � 2� x� � 2� x� � 0� x� � 0	 will be

(V�R) �

��
x�

x�


:

��
1
0


�

�
2
0


�

�
0
1


�

�
0
2


�

�
2
2

�
� �
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x
+

x
−

Fig. 1. Generators and their grouping for XLCP

Firstly, the extreme point (2 2)T does not satisfy the complementary condition x�x� � 0,
and thus should be removed, since no combination involving (2 2)T will satisfy x�x� �
0 either. Secondly, for other extreme points that satisfy the complementary condition,
not all convex combinations of them will satisfy x�x� � 0, e.g., convex combinations
of (1 0)T and (0 1)T . To precisely characterize the solution set of the original XLCP,
two groups need to be constructed such that any convex combination of extreme points
from either group (without mixing) forms a XLCP solution:

� ��
x�

x�


:

��
1
0


�

�
2
0

�
� �


�

��
x�

x�


:

��
0
1


�

�
0
2

 �
� �

 �

Taking the first group as an example, the convex combinations between extreme points
(1 0)T and (2 0)T from the first group define points lying on the line segment connecting
(1 0)T and (2 0)T . Indeed, all those points are solutions of the original XLCP.

3.1 Conversion from the Constraint to the Generator Representation

3.1.1 Homogeneous Case

Finding non-negative solutions of a polyhedral cone satisfying the complementary
condition. Let us denote x � (x�� x�)T , where x � �2n� x�� x� � �n. Now we consider
a set of the form

C� � �x � �2n � Ax � 0� x � 0� (x�)T x� � 0	

A vector y � �
2n is said to be a complementary generator of C�, iff y is a polyhedral

generator of �x � Ax � 0� x � 0	 and satisfies (y�)T y� � 0. One simple way to find all
the complementary generators for C� is to first calculate all the polyhedral generators of
�x � Ax � 0� x � 0	 using Chernikova’s algorithm [18] and then remove those generators
that do not satisfy (x�)T x� � 0 at the very end of the whole process. However, this may
cause a lot of unnecessary computation, and even combinatorial explosion.

We aim to design a method that can generate directly only complementary genera-
tors, by taking into account the complementary condition during the intermediate com-
putation. First, let C � �x � Ax � 0� x � 0	 be a polyhedral cone and let y be a vector

in C. Let D be the matrix associated with the constraint system of C, i.e., D �

�
A
I

�

where I � �
n�n denotes the identity matrix. We use S (y� D) � �a � a is a row of D

such that ay � 0	 to denote the set of rows saturated by y. Let Q be the non-redundant
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set of polyhedral generators of C. Note that generators of pointed polyhedral cone are
all extreme rays except the extreme point 0. We apply the following rule to check ad-
jacency: Two rays y1 and y2 are adjacent in Q, denoted as adjacent(y1� y2) � true,
if �S (y1� D) � S (y2� D)� � 1 and there is no y� distinct from y1� y2 in Q such that
S (y1� D) � S (y2� D) � S (y�� D).

Let Q� � �y1� � � � � yr	 be the non-redundant set of complementary extreme rays of
C�. Let H � �x � cx � 0	. Three sets can be defined with respect to the product cyi:

Q�

� � �y � y � Q�� cy � 0	

Q�

� � �y � y � Q�� cy � 0	

Q�

� � �y � y � Q�� cy � 0	�

The non-redundant set of complementary extreme rays of the new cone C��H, denoted
as Q�

�, can be then constructed as:

Q�
� � Q�

� � Q�

� � Q�

where Q� is defined by:

�y � cy � 0� y � �y1 � �y2� (y1� y2) � Q�

� � Q�

�� adjacentc(y1� y2)� � � 0� (y�)T y� � 0	

where adjacentc(y1� y2) � true, if �S (y1� D) � S (y2� D)� �� 1 and there is no y� distinct
from y1� y2 in Q� such that S (y1� D) � S (y2� D) � S (y�� D).

Note that to state adjacentc(y1� y2) � true, we check over only the set Q� that
is a subset of Q since some of the elements in Q may not satisfy the complemen-
tary condition. Thus, it may happen that adjacentc(y1� y2) � true (defined via Q�) but
adjacent(y1� y2) � false (defined via Q). However, in fact, in this case it can be proved
that no positive combination of such y1 and y2 will satisfy the complementary condition.
Let R be the set of extreme rays for C � �x � Ax � 0� x � 0	. Let Rc be the resulting set
of complementary extreme rays for C� � �x � Ax � 0� x � 0� (x�)T x� � 0	 computed
by the above method via Q�. The following theorem guarantees the correctness of the
above incremental process of computing complementary extreme rays for C�.

Theorem 2. Rc contains all and only complementary extreme rays, that is, Rc
� R��y �

y�y� � 0	.

Theorem 2 implies that Rc is equivalent to the result given by first computing all extreme
rays (i.e., R) for C and then removing at the very end those extreme rays that do not
satisfy the complementary condition.

Grouping complementary extreme rays. Note that not all non-negative combinations
of rays in Rc satisfy the complementary condition (x�)T x� � 0 and thus are necessary
in C�. To precisely describe C�, we need to classify Rc into several groups such that the
grouping result Rcc

� �Rc
s1
� � � � �Rc

si
� � � � �Rc

sm
� satisfies

1. �m
i�1Rc

si
� Rc, and

2. Within each group Rc
si

, any nonnegative combination y of rays in Rc
si

satisfies the
complementary condition (y�)T y� � 0.
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Note that Rcc is a cover of Rc. To construct such groups, we use the following method.
First, we construct an undirected graph 	, where each rc

i � Rc corresponds to one
node in 	. And there is an edge between two nodes rc

i and rc
j , if the resulting vector

s � max�rc
i � r

c
j	 satisfies (s�)T s� � 0. The goal then is to find all the maximal complete

subgraphs in 	, each of which corresponds to one group Rc
si

in Rc. After that, we can
characterize C�.

Theorem 3. Let C� � �x � Ax � 0� x � 0� (x�)T x� � 0	 and let Rcc
� �Rc

s1
� � � � �Rc

si
� � � �,

Rc
sm
� be the grouping result of its complementary extreme rays. Then x � C�, iff there

exists some i (i � �� 1 � i � m) such that

x �
�

rc
k�Rc

si

�krc
k

where �k � 0.

Intuitively, Theorem 3 states that C� is a union of a set of polyhedral cones and each
group Rc

si
corresponds to one polyhedral cone. While the sufficient condition is obvious,

the necessary condition can be proved as follows: Suppose y � C� � �x � Ax � 0� x �

0� (x�)T x� � 0	. First, we know that y can be and can only be generated through a
positive combination of a subset of rays in Rc

� R � �x � (x�)T x� � 0	, since the
result z of any positive combination involving r � R � Rc will not satisfy (z�)T z� � 0.
Assume that y can be generated through a positive combination of a set of rays Rc

y where
Rc

y � Rc, which implies that any nonnegative combination of rays in Rc
y will satisfy the

complementary condition. Hence, any Rc
si

satisfying Rc
y � Rc

si
can generate y. Therefore,

there exists some i (1 � i � m) such that y �
�

rc
k�Rc

si

�krc
k where �k � 0.

3.1.2 Inhomogeneous Case

Finding non-negative solutions of a convex polyhedron. By introducing a fresh vari-
able h � �, the inhomogeneous linear system �Ax � b� x � 0	 (where x � �

2n) can
be transformed into an equivalent homogeneous one: �[A � b]y � 0� y � 0	 where
y � (x h)T is a column (2n � 1)-vector with h � 0.

Each extreme ray r of the above homogeneous system has the form of r � (x h)T

with h � 0. We use rh to denote the h component of the vector r. For each extreme ray r,
there are two possibilities: rh � 0 or rh � 0. The set of extreme rays of the homogeneous
system, denoted as Rh, can be divided into two groups: R0

� �r � r � Rh� rh � 0	 and
R1

� �r
rh � r � Rh� rh � 0	. Then, we extract the x part out of the vectors from R0 and
R1. Assume that we get R � �x � (x 0)T � R0	 and V � �x � (x 1)T � R1	. The generators
in V are called extreme points while the generators in R are called extreme rays of the
inhomogeneous system. In other words, we get the generator representation G � (V�R)
for the inhomogeneous system �Ax � b� x � 0	.

Finding non-negative solutions of a convex polyhedron satisfying the complemen-
tary condition. Similarly as above, from the set of complementary extreme rays of
�y � Ay � 0� y � 0� (x�)T x� � 0� y � (x� x� h)T 	 which can be obtained via the method
in Sect. 3.1.1, we can derive the set of complementary generators Gc

� (Vc�Rc) for

P� � �x � Ax � b� x � 0� (x�)T x� � 0	�
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Again, to precisely describe P�, we need to classify Gc into several groups such that the
grouping result Gcc

� �Gc
s1
� � � � �Gc

si
� � � � �Gc

sm
� where Gc

si
� (Vc

si
�Rc

si
), satisfies

1. �m
i�1Vc

si
� Vc� �m

i�1Rc
si
� Rc, and

2. Within each group Gc
si

, any sum z of an arbitrary convex combination of extreme
points from Vc

si
and an arbitrary nonnegative combination of extreme rays from Rc

si
,

satisfies the complementary condition (z�)T z� � 0.

Similarly, to construct such groups, we can use algorithms that find all the maximal
complete subgraphs of an undirected graph. Now we can characterize P�.

Theorem 4. Let P� � �x � �
2n � Ax � b� x � 0� (x�)T x� � 0	, and let Gcc

�

�Gc
s1
� � � � �Gc

si
� � � � �Gc

sm
� be the grouping result of its complementary generators where

Gc
si
� (Vc

si
�Rc

si
). Then x � P�, iff there exists some i (i � �� 1 � i � m) such that

x �
�

vc
j�Vc

si

� jv
c
j �

�
rc

k�Rc
si

�krc
k

where � j� �k � 0� � j� j � 1.

Theorem 4 states that P� is a union of a set of convex polyhedra, the number of which is
sm. Each group Gc

si
describes a polyhedron. Note that sm is not necessarily equal to the

number of complementary patterns (i.e., 2n), since a certain complementary pattern may
define an empty polyhedron and the union of some polyhedra stemming from distinct
complementary patterns may be exactly representable by a single polyhedron.

It is worth noting that generating all the maximal complete subgraphs of an undi-
rected graph is an NP-complete problem [10]. Fortunately, as we will see in Sect. 4, to
design the AVI abstract domain, we do not need to group the complementary generators,
since no domain operation requires Gcc and all domain operations can be implemented
based on only a non-redundant set of complementary generators Gc. In this paper, the
notion of Gcc is only useful to get Theorem 4 which is interesting as it precisely char-
acterizes the topological properties of P� and shows that P� is essentially a (possibly)
non-convex union of a set of convex polyhedra.

3.2 Conversion from the Generator to the Constraint Representation

Let Gc
� (Vc�Rc) be the set of complementary generators of a convex polyhedron P�

satisfying �x � 0� (x�)T x� � 0	. We now consider the problem of constructing the
constraint representation for P� from Gc. It can be achieved by the following steps:

1. Consider Gc
� (Vc�Rc) as the regular generator representation of some convex

polyhedron. Then we use the standard Chernikova’s algorithm to compute the cor-
responding polyhedral constraint representation, i.e., a linear system such as

M�x� � N�x� � b�

2. Add x�� x� � 0 to the above system and remove those constraints from M�x� �
N�x� � b� that become redundant after adding x�� x� � 0. Suppose we get

Mx� � Nx� � b

x�� x� � 0
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3. Add (x�)T x� � 0 to the above system, and we get

Mx� � Nx� � b

x�� x� � 0

(x�)T x� � 0

which will be the XLCP constraint representation for P�.

Observe that the resulting XLCP constraint representation for P� is not necessarily non-
redundant. However, this does not matter much for designing abstract domains, since a
non-redundant generator representation for P� can be ensured.

4 An Abstract Domain of Linear Absolute Value Inequalities

In this section, we propose a new abstract domain, namely the abstract domain of linear
absolute value inequalities (AVI). The key point is to use a system of linear absolute
value inequalities as the domain representation. AVI can be used to infer relationships
of the form �kakxk � �kbk�xk � � c over program variables xk (k � 1� � � � � n), where
constants ak� bk� c � � are automatically inferred by the analysis.

4.1 Representation

An AVI domain element P is described as an AVI system Ax � B�x� � c, where A� B �

�
m�n� c � �

m, and m is the number of constraints in the system. It represents the set
�(P) � �x � �

n � Ax � B�x� � c	, in which each point x � �(P) represents a possible
program environment (or state), i.e., an assignment of numerical/real values to program
variables.

From Sect. 2, we know that a linear AV inequality system is equivalent to an interval
linear inequality system. Thus the AVI domain is as expressive as the interval polyhe-
dra abstract domain [4]. In other words, each AVI domain element is geometrically an
interval polyhedron. Hence, the set of AVI domain elements has the same topological
properties as the set of interval polyhedra:

– An AVI domain element is non-convex (even unconnected) in general.
– The intersection of an AVI domain element with each orthant in �n gives a (possibly

empty) convex polyhedron.

Specifically, from Theorem 6 in Sect. 4.2, we will see that the set union of bounded
convex polyhedra with one per each (closed) orthant can be exactly represented by one
AVI domain element.

Expressiveness lifting. Note that in the AVI domain representation, absolute value
� � � applies to only (single) variables rather than expressions. E.g., consider the relation
y � x � �x � 1� � �x � 1� which encodes the following piecewise linear function

y �

���������
x � 2 if x � �1
�x if � 1 � x � 1
x � 2 if x � 1
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whose plot is shown in Fig. 2. The AVI domain can not express directly this piecewise
linear function (in the space of x� y), since � � � applies to two expressions: x�1 and x�1.
Indeed, in Fig. 2 the region in each orthant is not a convex polyhedron.

−2 −1 1 2

1

0

−1

x

y

Fig. 2. A piecewise linear function

In order to express such piecewise linear relations, we lift the expressiveness of the
AVI domain by introducing new auxiliary variables to denote those expressions that
appear inside the AV function. E.g., we could introduce two auxiliary variables �1� �2

to denote the values of the expressions x � 1 and x � 1 respectively. Then using AVI
domain elements in the space with higher dimension (involving 4 variables: x� y� �1� �2),
such as �y � x � ��1� � ��2�� �1 � x � 1� �2 � x � 1	, we could express complex piecewise
linear relations in the space over lower dimension (involving 2 variables: x� y), such as
y � x � �x � 1�� �x � 1�. Note that �y � x � ��1�� ��2�� �1 � x � 1� �2 � x � 1	 is indeed an
AVI domain element. Following the same strategy, we can also express piecewise linear
relations with nestings of absolute value functions. E.g., to express y � ��x� �1�� ��z� �2�,
by introducing auxiliary variables �1� �2, we could use �y � ��1� � ��2�� �1 � �x� � 1� �2 �

�z� � 2	.
In fact, a large subclass of piecewise linear functions of practical interest can be

represented via AV functions through a so-called canonical (piecewise linear) represen-
tation [5], as known in the field of circuits and systems. Thus, most piecewise linear
relations of interest in the program could be also expressed by the AVI domain, pro-
vided that necessary auxiliary variables are introduced.

4.2 Domain Operations

In the convex polyhedra domain, domain operations can be implemented based on the
double description method for convex polyhedra [9]. Similarly, we will construct do-
main operations for the AVI domain based on the double description method for AVI
systems (which are equivalent to XLCPs). During the implementation, we maintain the
map between abstract environments over x and abstract environments over x�� x� as:

x � x� � x�� �x� � x� � x�

x� �
1
2

(x � �x�)� x� �
1
2

(�x� � x)

where x�� x� satisfy
x� � 0� x� � 0� (x�)T x� � 0
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More precisely, we will construct domain operations for the AVI domain over x, based
on the double description method for XLCP over x�� x�. Note that for the implemen-
tation of the AVI domain, we need only the set of complementary generators Gc

�

(Vc�Rc), without resorting to the grouping information Gcc of the complementary gen-
erators. And the cost of the AVI domain is dominated by the dual conversions between
XLCP constraints and complementary generators.

For the sake of simplicity, from now on, we assume that the AVI element P corre-
sponds to the following XLCP system:

Mx� � Nx� � b

x� � 0� x� � 0� (x�)T x� � 0

and we denote its set of complementary generators as

Gc
� (Vc�Rc)�

Now, we describe the implementation of most common domain operations required
for static analysis over the AVI domain, some of which require only constraints or
generators while some of which require both.

(1) Lattice operations

– Emptiness test: P is empty, iff Vc
� �.

From now on, let P�P� be two non-empty AVI domain elements.
– Inclusion test: P � P� that is �(P) � �(P�), iff

�v � Vc� M� v� � N� v� � b� � �r � Rc� M� r� � N� r� � 0

– Meet: P � P� is an AVI domain element whose XLCP system is

Mx� � Nx� � b
M�x� � N�x� � b�

x� � 0� x� � 0� (x�)T x� � 0

– Join: P � P� is the least AVI domain element containing P and P�, whose set of
complementary generators is the union of those of P and P�: (Vc � V �c�Rc � R�c).
We show by the following theorem that this join operation is optimal, i.e., its output
gives the smallest AVI domain element containing the two input elements.

Theorem 5. Given two AVI domain elements P and P�, for any AVI domain element Q
satisfying �(P) � �(Q) and �(P�) � �(Q), we have �(P � P�) � �(Q).

From this theorem together with Theorem 4, we have the following theorem that ex-
plores further the expressiveness of the AVI domain.

Theorem 6. Given a set of bounded convex polyhedra with one per each closed or-
thant, their set union can be exactly represented by one AVI domain element (through
the same set of variables).

Note that, however, Theorem 6 may not hold when one of the input AVI domain ele-
ments is not bounded. Theorem 6 implies that given two AVI systems that are bounded,
the result of the AVI join is equivalent to the result given by the set union of convex
polyhedral hulls in each orthant.
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(2) Transfer functions

– Test transfer function: [[cx � d�x� � e]]#(P), whose XLCP system is defined as

Mx� � Nx� � b
(c � d)x� � (d � c)x� � e

x� � 0� x� � 0� (x�)T x� � 0

– Projection: [[x j :� random()]]#(P), whose set of complementary generators is
defined as (Vc�Rc � �e�j � e

�
j , �e�j ��e�j 	), where e�j denotes a canonical basis vec-

tor wherein all the components are 0 except x�j � 1, and e�j denotes a canoni-
cal basis vector wherein all the components are 0 except x�j � 1. Observe that

[[x j :� random()]]#(P) is optimal in the AVI domain, although its result may be

less precise than �x j�P
def
� �x[x j
y] � x � �(P)� y � �	 which may be not an AVI

domain element, where x[x j
y] denotes the vector x in which the j-th element is
replaced with y.

– Assignment transfer function: [[x j :� �iaixi � �ibi�xi� � c]]#(P), can be modeled
using test transfer function, projection and variable renaming as follows:�

[[x j :� random()]]# Æ [[�iaixi � �ibi�xi� � c � x�j � 0]]#(P)
�

[x�j
x j]

Note that the assignment transfer function is optimal but not exact. E.g., assign-
ments may cause a polyhedron in one orthant to cross orthant boundaries. In such
case, the result in each orthant is then updated to a possible overapproximation of
the polyhedral convex hull of the regions which belong to that orthant after the
transfer operation.

(3) Widening

– Widening: Given two AVI domain elements P � P�, we define

P � P� def
� �1 � �2 � �x�� x� � 0� (x�)T x� � 0	

where

�1 � � �1 � (Mx� � Nx� � b) � P� �� �1 	�

�2 �

�
�2 � (M�x� � N�x� � b�)

��������1 � (Mx� � Nx� � b)�
�(P) � �((P � ��1 	) � ��2 	)

�

The above widening for the AVI domain is designed following the same principle as
the standard widening of the convex polyhedra domain. The first set �1 contains all
inequalities from the Mx��Nx� � b part of P that are not violated by the larger P�,
while �2 consists of inequalities from the M�x� � N�x� � b� part of P� that can be
exchanged with an inequality from the Mx� � Nx� � b part of P without changing
the represented state. �2 ensures that the result is independent of the (syntactic)
representation of P and P�. Here, we use �1 � (Mx� � Nx� � b) to denote that �1

is one constraint from the system Mx� � Nx� � b. Let �1 be (cx� � dx� � e). The
entailment P� �� �1 can be implemented by checking
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�v� � V �c� c v�� � d v�� � e � �r� � R�c� c r�� � d r�� � 0

Next, we use the following example to show in detail how AVI domain operations can
be constructed based on the double description method. We choose to show the join
operation, since the join is rather interesting (especially when comparing it with poly-
hedral convex hull of the convex polyhedra domain [9] as well as weak join of the
interval polyhedra domain [4]).

Example 3. Consider two AVI domain elements P�
� �(x y)T � 1 � x � 2��1 � y �

1	 � �(x� x� y� y�)T � 1 � x� � x� � 2��1 � y� � y� � 1� x� � 0� x� � 0� y� �

0� y� � 0� x�x� � 0� y�y� � 0	 and P��
� �(x y)T � �2 � x � �1	 � �(x� x� y� y�)T �

�2 � x� � x� � �1� x� � 0� x� � 0� y� � 0� y� � 0� x�x� � 0� y�y� � 0	, shown in
Figure 3(1). Note that P� is a bounded convex polyhedron while P�� is an unbounded
convex polyhedron. And the polyhedral convex hull of P� and P�� results in �(x y)T �

�2 � x � 2	 that is a convex polyhedron. Since P�� is unbounded, we can not apply
Theorem 6 to the set union of P� and P�� which indeed cannot be exactly described by
any AVI domain element (through the same set of variables).

First, if we omit the condition x�x� � 0 � y�y� � 0, the set of regular (polyhedral)
generators for P� and P�� over (x�� x�� y�� y�)T will be respectively

(VP� �RP�) �

��������������

��������������
x�

x�

y�
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If we take into account x�x� � 0� y�y� � 0, we get the sets of complementary genera-
tors for P�and P�� over (x�� x�� y�� y�)T :

(Vc
P� �Rc

P�) �
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And (Vc
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) will be the set of complementary generators for P��P��, i.e.,
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Then, by converting it into the constraint representation, we will get the following
XLCP system for P� � P��:

�1 � x� � x� � 2� x� � 0� x� � 0� x�x� � 0� y� � 0� y� � 0� y�y� � 0	

Finally, we can get the following AVI representation for P� � P��:

P� � P��
� �(x y)T � 1 � �x� � 2	

And the regions of the inputs P� and P�� together with the output Q of the AVI join
operation are shown in Figure 3.

(1)

x

y

P
′′

P
′

P
′

P
′′
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+
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y

x

Q Q

(a) xy

Q

x
−

x
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(b) x�x�

Q

Q

y
−

y
+

(c) y�y�

Fig. 3. Subfigure (1) shows the two input AVI domain elements of the join: P�
� �1 � x � 2��1 �

y � 1� and P��
� ��2 � x � �1�, while subfigure (2) shows the join over the AVI domain:

Q � P� � P��
� �1 � �x� � 2�. The columns (a), (b), (c) depict the regions over the xy, x�x�, y�y�

planes respectively.

5 Implementation and Experimental Results

Our prototype domain, rAVI, is developed based on Sect. 4 using multi-precision ratio-
nal numbers. It makes use of GMP (the GNU Multiple Precision arithmetic library) [1]
and NewPolka [15] that is a rational implementation of the convex polyhedra domain.
rAVI is interfaced to the APRON numerical abstract domain library [15]. Our experi-
ments were conducted using the INTERPROC [16] static analyzer. In order to assess the
precision and efficiency of rAVI, we compare the obtained invariants and the perfor-
mance of rAVI with NewPolka as well as our previous work itvPol which is a sound
floating-point implementation of the interval polyhedra domain [4].
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To demonstrate the expressiveness of rAVI, two simple programs are shown in
Figs. 4-5, together with the invariants generated by the analyzer. In Fig. 4, for AVtest1,
the initial state consists of four points that are respectively from 4 different orthants
over the x-y plane: (1� 1)� (�1� 1)� (�1��1)� (1��1). The loop increases the values of x
and y in each orthant simultaneously, along the direction y � x and y � �x respec-
tively. At program point ①, rAVI can prove that �y� � �x� � �x� � 1 while NewPolka
obtains no information. itvPol can only prove that [�1� 1]x � �1 � [�1� 1]y � �1 (i.e.,
�x� � 1� �y� � 1) and thus can not find any relations among x and y due to the weak join
used in itvPol [4].

real x� y;
assume x � 1 or x � �1;
assume y � 1 or y � �1;
while (true) {
① if (x � 0) { x :� x � 1; }

else { x :� x � 1; }
if (y � 0) { y :� y � 1; }
else { y :� y � 1; }

}

Loc NewPolka itvPol rAVI
① � [�1� 1]x � �1 �x� � �y� 	 �x� � 1

(no information) 	[�1� 1]y � �1

Fig. 4. Program AVtest1 (left) and the generated invariants (right)

The program CmplxTest1 shown in Fig. 5 comes from [13] where it is used as an
example for analyzing time complexity of the program. Here, we modify a bit the pro-
gram by introducing a fresh variable t to denote the value of n� x0. The main goal is to
find an upper bound for the loop counter i. However, NewPolka and itvPol can not find
any upper bound for i, while rAVI can prove that i � 1

2 (�t� � t), i.e., i � max(0� n � x0),
which shows that the time complexity of CmplxTest1 is max(0� n � x0) in terms of the
input parameters x0� n.

CmplxTest1(int x0, n)
x :� x0; i :� 0;
t :� n � x0;
while (x � n) {

i :� i � 1;
x :� x � 1;

} ①

Loc NewPolka itvPol rAVI
① i � 0 i � 0 i � 0

	 i � x � x0 	 i � x � x0
	 i � 1

2 (�t� � t)
	 � � �

Fig. 5. Program CmplxTest1 (left) and the generated invariants related to i (right)

Table 1 shows the comparison of performance and result invariants for a selection
of benchmark examples. Programs AVtest1, CmplxTest1 correspond to those programs
shown in Figs. 4-5. CmplxTest1-3 come from [13] wherein they are used for analyzing
time complexity of programs. program4 and program5 come from our previous work
[4]. “#vars” indicates the total number of program variables in each program. And for
each program, the value of the widening delay parameter for INTERPROC is set to 1.
“#iter.” gives the number of increasing iterations during the analysis.
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Table 1. Experimental results for benchmark examples

Program NewPolka itvPol rAVI Res.
name #vars #iter. t(ms) #iter. t(ms) #iter. t(ms) Inv.

AVtest1 2 4 11 4 45 4 48 � �

AVtest2 2 4 8 3 14 4 31 � �

AVtest3 2 4 9 4 16 5 73 � �

CmplxTest1 5 4 7 4 26 4 57 � �

CmplxTest2 5 6 10 6 34 6 150 � �

CmplxTest3 8 4 17 4 242 4 310 � �

program4 1 5 2 4 4 4 10 � �

program5 2 6 9 5 20 8 45 � �

Invariants. The column “Res. Inv.” compares the invariants obtained. The left sub-
column compares rAVI with NewPolka while the right sub-column compares rAVI with
itvPol. A “�” indicates that rAVI outputs stronger invariants than NewPolka or itvPol,
while a “=” indicates that rAVI outputs equivalent invariants as NewPolka or itvPol.
The results in Table 1 show that rAVI outputs stronger invariants than NewPolka for
all these examples. Note that traditional convex domains (such as the convex polyhedra
domain) are not fit for the benchmark examples shown in Table 1, since these programs
involve non-convex properties that are out of the expressiveness of convex domains.

And in most cases, rAVI outputs stronger invariants than itvPol, although the two
domains have the same expressiveness. This is because domain operations in rAVI are
optimal while most domain operations in itvPol are weak (e.g., the join operation).
For program4, the two domains generate equivalent invariants, because this program
involves only one variable and most domain operations in itvPol become optimal in this
case. During the experiments, we observed that most linear absolute value invariants
generated by rAVI are essentially due to piecewise linear behaviors in the program,
e.g., branches inside loops. In the examples CmplxTest1-3 that are used to show time
complexity, the piecewise linear behaviors mainly come from case by case discussions
over the difference between the loop counter and the input parameter (or the initial
value), e.g., whether the difference is greater than 0 or not.

Performance. The column “t(ms)” presents the analysis times in milliseconds when the
analyzer runs on a 2.4GHz PC with 2GB of RAM running Fedora Linux. From Table 1,
we can see that rAVI is much less efficient than NewPolka, because for these examples
the polyhedra generated by NewPolka during the analysis are rather simple (with very
few or even no non-trivial constraints). Similarly, we can see that rAVI is less efficient
than itvPol, because itvPol is implemented based on floating-point arithmetic and also
because domain operations in itvPol are weak operations with low computational cost.

6 Related Work

In numerical static analysis, linear relations are considered as the most important kind
of numerical relations among variables of a program. The convex polyhedra abstract
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domain [9], devoted to linear relation analysis, is one of the earliest but still remains
one of the most powerful and commonly used numerical abstract domains. For the sake
of efficiency, a variety of weakly relational abstract domains are designed as subdo-
mains of the convex polyhedra domain, such as the Octagon domain [21], the Two
Variables Per Inequality (TVPI) domain [28], the Template Polyhedra domain [25], and
the SubPolyhedra domain [17]. However, this paper goes the other direction. Rather
than aiming at discovering restricted forms of linear relations, we generalize the linear
relation analysis to linear absolute value relation analysis that allows discovering a kind
of piecewise linear relations.

Numerical abstract domains often use conjunctions of convex constraints as the do-
main representation, and thus most domains can only represent convex sets. The con-
vexity limitations may lead to imprecision during analysis. To deal with disjunctions, a
known solution in abstract interpretation is to use disjunctive completion [8,11], such
as powerset extension. However, it can be very costly and widening operators for such
domains are difficult to design [3].

There also exists much work on elaborating the control flow information of the
program to improve the precision. Rival and Mauborgne [22] proposed the trace parti-
tioning abstract domain, which is based on the partitioning of program traces. Sankara-
narayanan et al. [24] showed that a fixed point computed over a powerset extension
corresponds to a fixed point over the base domain computed on an elaboration of the
control flow graph of the program. Simon [27] used a boolean flag to encode the union
of two polyhedra and to perform control flow splitting when necessary.

This paper aims at designing abstract domains that can natively encode non-convex
information. Until now, few existing abstract domains natively allow representing non-
convex sets, e.g., congruences [12], max-plus polyhedra [2], domain lifting by max
expressions [13], interval polyhedra [4].

The AVI domain that we introduce in this paper is closest to our previous work on
the interval polyhedra domain [4]. The AVI domain is as expressive as the interval poly-
hedra domain, but differs from it in the following respects: First, the AVI domain en-
joys optimal domain operations while operations in the interval polyhedra domain are
not optimal; Second, for representation, the AVI domain uses the double description
method while the interval polyhedra domain uses solely constraints; Third, to imple-
ment domain operations, the AVI domain employs Chernikova’s algorithm while the
interval polyhedra domain employs linear programming and Fourier-Motzkin elimina-
tion algorithms; Finally, prototype rAVI for the AVI domain is implemented via rational
numbers while prototype itvPol for the interval polyhedra domain in [4] is implemented
via floating point numbers.

7 Conclusion

In this paper, we present an analysis to discover linear absolute value relations among
variables of a program (�kakxk � �kbk �xk� � c), which generalizes the classic linear
relation analysis (�kakxk � c) [9]. The analysis explores absolute value (AV) to de-
scribe piecewise linear relations in the program, as a mean to deal with non-convex or
non-linear behaviors in the program. First, we show the equivalence among linear AV
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inequality systems, extended linear complementarity problem (XLCP) systems and in-
terval linear inequality systems. The equivalence implies that linear AV relation analysis
can be reused to infer other kinds of equivalent relations in a program, such as interval
linear relations which is of high relevance in numeric static analysis [4]. Then, we con-
struct a double description method for XLCP on top of that for convex polyhedra. On
this basis, we propose an abstract domain of linear AV inequalities that natively allows
expressing non-convex properties and enjoys optimal transfer functions. The AVI do-
main is implemented using rational numbers based on the double description method for
XLCP. Experimental results are encouraging: The AVI domain can discover interesting
non-convex properties, especially for programs involving piecewise linear behaviors.

It remains for future work to consider automatic methods to introduce auxiliary vari-
ables on the fly that can be used inside the AV function to improve the precision of AVI
analysis. Another direction of work is to consider weakly relational abstract domains
over absolute value, with less expressiveness but higher efficiency.
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Abstract. Template polyhedra generalize weakly relational domains by
specifying arbitrary fixed linear expressions on the left-hand sides of in-
equalities and undetermined constants on the right. The domain opera-
tions required for analysis over template polyhedra can be computed in
polynomial time using linear programming. In this paper, we introduce
the generalized template polyhedral domain that extends template poly-
hedra using fixed left-hand side expressions with bilinear forms involving
program variables and unknown parameters to the right. We prove that
the domain operations over generalized templates can be defined as the
“best possible abstractions” of the corresponding polyhedral domain op-
erations. The resulting analysis can straddle the entire space of linear
relation analysis starting from the template domain to the full polyhe-
dral domain.

We show that analysis in the generalized template domain can be
performed by dualizing the join, post-condition and widening opera-
tions. We also investigate the special case of template polyhedra wherein
each bilinear form has at most two parameters. For this domain, we use
the special properties of two dimensional polyhedra and techniques from
fractional linear programming to derive domain operations that can be
implemented in polynomial time over the number of variables in the pro-
gram and the size of the polyhedra. We present applications of general-
ized template polyhedra to strengthen previously obtained invariants by
converting them into templates. We describe an experimental evaluation
of an implementation over several benchmark systems.

1 Introduction

In this paper, we present some generalizations of the template polyhedral do-
main. Template polyhedral domains [34,32] were introduced in our earlier work
as a generalization of domains such as intervals [10], octagons [28], octahedra [7],
pentagons [26] and logahedra [20]. The characteristic feature of these domains is
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that assertions are restricted to a form that makes the analysis tractable. For in-
stance, the assertions involved in the octagon domain are of the form ±x±y ≤ c
for each pair of program variables x and y, along with some unspecified constant
c ∈ R. The goal of the program analysis is to discover a suitable set of constants
so that the resulting assertions are inductive, or equivalently, form a (post-) fixed
point under the program’s semantics [11].

In this paper, we generalize template polyhedral domains to consider tem-
plates with a linear expression on the left-hand side and a bilinear form on the
right-hand side that specifies a parameterized linear expression. For instance,
our analysis can handle template inequalities of the form x− y ≤ c1z + c2w+ d,
wherein x, y, z, w are program variables and c1, c2, d are unknown parameters for
which values will be computed by the analysis so that the entire expression forms
a program invariant. This generalization can straddle the space of numerical do-
mains from weakly relational domains (bilinear form is an unknown constant) to
the full polyhedral domain (bilinear form has all the program variables) [12,8].
The main contributions of this paper are as follows:

– We generalize template polyhedra to consider the case where each template
can be of the form e ≤ f , wherein e is a linear expression over the pro-
gram variables and f is a bilinear form over the program variables involving
unknown parameters that are to be instantiated by the analysis.

– We prove that the domain operations can be performed output sensitively
in polynomial time for the special case of two unknown parameters in each
template. Our technique uses fractional linear programming [5] to simulate
Jarvis’s march for two dimensional polyhedra [9,23].

– We describe potential applications of our ideas to improve fixed points com-
puted by other numerical domain analyses. These applications partially ad-
dress the question of how to select generalized templates and use them in a
numerical domain analysis framework.

We evaluate our approach against polyhedral analysis by using generalized tem-
plates to improve the fixed points computed by polyhedral analysis on several
benchmark programs taken from the literature [3,34]. We find that the ideas
presented in this paper help to improve the fixed point in many of these bench-
marks by discovering new relations not implied by the previously computed fixed
points.

2 Preliminaries

Throughout the paper, let R represent the set of real numbers. We fix a set
of variables X = {x1, . . . , xn}, which often correspond to the variables of the
program under study.

Polyhedra. We recall some standard results on polyhedra. A linear expression e
is of the form a1x1+· · ·+anxn+b, wherein each ai ∈ R and b ∈ R. The expression
is said to be homogeneous if b = 0. For a linear expression e = a1x1+· · ·+anxn+b,
let vars(e) = {xi|ai �= 0}.
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Definition 1 (Linear Assertions). A linear inequality is of the form a1x1 +
· · ·+anxn+b ≤ 0. A linear assertion is a finite conjunction of linear inequalities.

Note that the linear inequality 0 ≤ 0 represents the assertion true, whereas the
inequality 1 ≤ 0 represents false. An assertion can be written in matrix form as
Ax ≤ b, where A is anm×n matrix, while x = (x1, . . . , xn) and b = (b1, . . . , bm)
are n- and m-dimensional vectors, respectively. The ith row of the matrix form
is an inequality that will be written as Aix ≤ bi. Note that each equality is
represented by a pair of inequalities. The set of points in Rn satisfying a linear
assertion ϕ : Ax ≤ b is denoted �ϕ� : {x ∈ Rn | Ax ≤ b}. Such a set is called
a polyhedron. Given two linear assertions ϕ1 and ϕ2, we define the entailment
relation ϕ1 |= ϕ2 iff �ϕ1� ⊆ �ϕ2�.

The representation of a polyhedron by a linear assertion is known as its con-
straint representation. Alternatively, a polyhedron can be represented explic-
itly by a finite set of vertices and rays, known as its generator representation.
There are several well-known algorithms for converting from one representation
to the other. Highly engineered implementations of these algorithms such as the
Apron [24] and Parma Polyhedral (PPL) [2] libraries implement the conversion
between constraint and genrator representations, which is a key primitive for
implementing the domain operations required to carry out abstract interpreta-
tion over polyhedra [12]. Nevertheless, conversion between the constraint and
the generator representations still remains intractable for polyhedra involving a
large number of variables and constraints.

Linear Programming. We briefly describe the theory of linear programming.
Details may be found in standard textbooks, such as Schrijver [35].

Definition 2 (Linear Programming). A canonical instance of the linear pro-
gramming (LP) problem is of the form min. e s.t. ϕ, for a linear assertion ϕ
and a linear expression e, called the objective function.

The goal is to determine a solution of ϕ for which e is minimal. An LP problem
can have one of three results: (1) an optimal solution; (2) −∞, i.e, e is unbounded
from below in ϕ; and (3) +∞, i.e, ϕ has no solutions.

It is well-known that an optimal solution, if it exists, is realized at a vertex
of the polyhedron. Therefore, the optimal solution can be found by evaluating
e at each of the vertices. Enumerating all the vertices is very inefficient because
the number of generators can be exponential in the number of constraints in
the worst-case. The popular simplex algorithm (due to Danzig [35]) employs a
sophisticated hill-climbing strategy that converges on an optimal vertex without
necessarily enumerating all vertices. In theory, simplex is worst-case exponen-
tial. However, in practice, simplex is efficient for most problems. Interior point
methods and ellipsoidal techniques are guaranteed to solve linear programs in
polynomial time [5].

Fractional Linear Programs. Fractional Linear Programs (FLPs) will form
an important primitive for computing abstractions and transfer functions of
generalized template polyhedra. We describe the basic facts about these in this
section. More details about FLPs are available elsewhere [5].
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Definition 3. A fractional linear program is an optimization problem of the
following form:

min.
aT x + a0

cT x + c0
s.t. Ax ≤ b, cT x + c0 > 0 . (1)

A fractional linear program can be solved by homogenizing it to an “equivalent”
LP [5]:

min. aT x + a0z s.t. Ax ≤ bz ∧ cT x + c0z = 1 ∧ z ≥ 0 . (2)

If the LP (2) has an optimal solution (x∗, z∗) such that z∗ > 0 then 1
z∗ x∗ is

an optimal solution to the FLP (1). Furthermore, 1
z∗ x∗ is also a vertex of the

polyhedron Ax ≤ b. If, on the other hand, z∗ = 0, the optimal solution to (1)
is an extreme ray of the polyhedron Ax ≤ b. Finally if LP (2) is infeasible then
the FLP (1) is infeasible.

Transition Systems. We will briefly define transition systems over real-valued
variables as the model of computation used throughout this paper. It is possible
to abstract a given program written in a language such as C or Java with arrays,
pointers and dynamic memory calls into abstract numerical models. Details of
this translation, known as memory modeling, are available elsewhere [22,6,4].
To ensure simplicity, our presentation here does not include techniques for han-
dling function calls. Nevertheless, function calls can be handled using standard
extensions of this approach.

Definition 4 (Transition System). A transition system Π is represented by
a tuple 〈X,L, T , �0, Θ〉, where

– X = {x1, . . . , xn} is a set of variables. For each variable xi ∈ X, there is
an associated primed variable x′i, and the set of primed variables is denoted
by X ′. The variables of X are collectively denoted as a vector x;

– L is a finite set of locations;
– T is a finite set of transitions. Each transition τ ∈ T consists of a tuple
τ : 〈�,m, ρτ 〉 wherein �,m ∈ L are the pre- and the post-locations of the
transition, ρτ [X,X ′] is the transition relation that relates the current state
variables X and the next-state variables X ′;

– �0 ∈ L represents the initial location; and
– Θ is the initial condition, specified as an assertion over X. It represents the

set of initial values of the program variables.

A transition system is linear iff the variables X range over the domain of real
numbers, each transition τ ∈ T has a linear transition relation ρτ that is repre-
sented as a linear assertion over X ∪X ′, and finally, the initial condition Θ is a
linear assertion overX . Further details on transition systems, including their op-
erational semantics and the definition of invariants, are available from standard
references [27].
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3 Generalized Templates

In this section, we introduce the generalized template domain. To begin with,
we recall expression templates. A template T is a set of homogeneous linear
expressions {e1, . . . , em} over program variables X . The approach of template
expressions was formalized in our previous work [34,32]. Let X = {x1, . . . , xn}
be the set of program variables and C = {c1, c2, . . . , d1, d2, . . .} denote a set of
unknown parameters.

Definition 5 (Bilinear Form). A bilinear form over X and C is given by an
expression of the form

f :

(∑
i∈I
cixi

)
+ d, wherein I ⊆ {1, . . . , n}

Given the bilinear form f above, let vars(f) : {xi | i ∈ I} and let pars(f) :
{ci | i ∈ I} ∪ {d} denote the parameters involved in f .

Given a mapping μ : C → R, a bilinear form f : d +
∑

i∈I cixi can be mapped
to the linear expression f [μ] : μ(d) +

∑
i∈I μ(ci)xi

Definition 6 (Generalized Templates). A generalized template G consists
of a set of entries: G = {(e1, f1), . . . , (em, fm)}, where for each i ∈ {1, . . . ,m},
ei is a homogeneous linear expression over X, and fi is a bilinear form over C
and X. The entry (ej , fj) represents the linear inequality ej ≤ fj, where the left-
hand side is a fixed linear expression and the right-hand side is a parameterized
linear expression represented as a bilinear form.

We assume that two bilinear forms fi and fj, for i �= j, cannot share common
parameters, i.e., pars(fi)∩pars(fj) = ∅. Finally, we assume that for each entry
(ei, fi) in a generalized template G, vars(ei) ∩ vars(fi) = ∅, i.e, the left- and
right-hand sides share no variables.

Example 1. Consider program variables X = {x1, x2, x3} and parameters C =
{c1, c2, c3, c4, d1, d2, d3}. An example of a generalized template follows:

G :

⎧⎨⎩ (e1 : x1 , f1 : c1x2 + c2x3 + d1),
(e2 : x2 , f2 : c3x3 + d2),
(e3 : x3 − 2x1 , f3 : c4x2 + d3)

⎫⎬⎭ .

Notation. For a bilinear form fj , will use the variable dj to denote the constant
coefficient and cj,k to denote the parameter for the coefficient of the variable xk.

Generalized templates define an infinite family of convex polyhedra called
generalized template polyhedra.

Definition 7 (Generalized Template Polyhedron). Given a template G, a
polyhedron ϕ :

∧
i Aix ≤ bi is a generalized template polyhedron (GTP) iff ϕ

is the empty polyhedron, or each inequality ϕi : Aix ≤ bi in ϕ can be cast as
the instantiation of some entry (ej , fj) ∈ G in one of the following ways:
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Vertex Instantiation: ϕi : ej ≤ fj [μij ] for some map μij : pars(fj) → R
that instantiates the parameters in pars(fj) to some real values.

Ray Instantiation: ϕi : 0 ≤ fj [μij ] for some map μij : pars(fj) → R.

The rationale behind ray instantiation will be made clear presently. A confor-
mance map γ between a GTP ϕ : Ax ≤ b and its generalized template G, maps
every inequality ϕi : Aix ≤ bi to some entry γ(i) ∈ G so that ϕi may be viewed
as a vertex or a ray instantiation of the template entry γ(i). If a conformance
map exists, then ϕ is said to conform to G.

If ϕ is a GTP that conforms to the template G, it is possible that (1) a
single inequality in ϕ can be expressed as instantiations of multiple entries in G,
and (2) a single entry (ej , fj) can be instantiated as multiple inequalities (or no
inequalities) in ϕ. In other words, conformance maps between ϕ and G, can be
many-to-one and non-surjective.

Example 2. Recalling the template G from Example 1, the polyhedron ϕ1 ∧
· · · ∧ ϕ4, below, conforms to G:

ϕ1 x1 ≤ 1
ϕ2 x1 ≤ x3 − 10

ϕ3 x2 ≤ 2x3 − 10
ϕ4 x3 − 2x1 ≤ 3x2 + 1

The conformance map is given by

γ : 1 �→ (e1, f1), 2 �→ (e1, f1), 3 �→ (e2, f2), 4 �→ (e3, f3) .

On the other hand, the polyhedron x1 ≤ 1 ∧ x1 ≥ 5, does not conform
to G, whose definition in this example does not permit lower bounds for the
variable x1. �
We now describe the abstract domain of generalized templates, consisting of all
the generalized template polyhedra (GTP) that conform to the template G. We
will denote the set of all GTPs given a template G as ΨG and use the standard
entailment amongst linear assertions as the ordering amongst GTPs. Theorem 2
shows that the structure 〈ΨG, |=〉, induced by the generalized template G, is a
lattice.

Note 1. Using ray instantiations, the empty polyhedron false can be viewed as a
GTP for any template G. We define the two polyhedra true and false to belong
to ΨG for any G, including G = ∅.
Abstraction. We now define the abstraction map αG that transforms a given
convex polyhedron ϕ : Ax ≤ b into a GTP ψG : αG(ϕ). If ϕ is empty, then the
abstraction αG(ϕ) is defined to be false. For the ensuing discussion, we assume
that ϕ is a non-empty polyhedron. Our abstraction map is the best possible,
yielding the “smallest” GTP in ΨG through a process of dualization using Farkas’
lemma [8]:

(1) For each (ej , fj) ∈ G, we wish to compute the set of all values of the unknown
parameters in pars(fj) so that the entailment ϕ : Ax ≤ b |= ej ≤ fj holds.
For convenience, we express ej ≤ fj as cT x ≤ d wherein c, d consist of linear
expressions over the unknowns in pars(fi).
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(2) Applying Farkas’ lemma to the entailment above yields a dual polyhedron
ϕDj , whose variables include the unknowns in pars(fj) and some vector of
multipliers λ. This dual polyhedron is written as:

Ax ≤ b |= cT x ≤ d , holds
iff

ϕDj : (∃ λ ≥ 0) AT λ = c, bT λ ≤ d.

(3) We eliminate the multipliers λ from ϕDj to obtain ψj over variables pars(fj).
(4) If ψj is empty, then the abstraction is defined as the universal polyhedron.

Otherwise, each vertex vi of ψj is instantiated to an inequality by vertex
instantiation: ej ≤ fj [pars(fj) �→ vi] Similarly, each ray rk of ψj is instan-
tiated to an inequality by ray instantiation: 0 ≤ fj[pars(fj) �→ rk].

The overall result is the conjunction of all inequalities obtained by vertex and ray
instantiation for all the entries of G. In practice, this result has many redundant
constraints. These redundancies can be eliminated using LP solvers [32].

In the general case, the elimination of λ in step (3) may be computed exactly
using the double description method [31] or Fourier-Motzkin elimination [35].
However, in Section 4 we show techniques where the elimination can be per-
formed in output-sensitive polynomial time when |pars(fj)| ≤ 2 (even when |λ|
is arbitrary) using fractional linear programming. In Section 5, we show how the
result of the elimination can be approximated soundly using LP solvers.

Theorem 1. For any polyhedron ϕ and template G, let ψ : αG(ϕ) be the ab-
straction computed using the procedure above. (A) ψ is a GTP conforming to G,
i.e, ψ ∈ ΨG, (B) ϕ |= ψ and (C) ψ is the best abstraction of ϕ in the lattice:
(∀ψ′ ∈ ΨG) ϕ |= ψ′ iff ψ |= ψ′.

Proofs of all the theorems will be provided in an extended version of this paper.
As a consequence, the existence of a best abstraction allows us to prove that
〈ΨG, |=〉 is itself a lattice.

Theorem 2. The structure 〈ΨG, |=〉 forms a lattice, and furthermore, the maps
(αG, identity) form a Galois connection between this lattice and the lattice of
polyhedra.

Example 3 (Abstraction). We illustrate the process of abstraction through an
example. Consider the polyhedron ϕ over two variables x, y:

ϕ : x ≤ 2 ∧ x ≥ 1 ∧ y ≤ 2 ∧ y ≥ 1 .

We wish to compute αG(ϕ) for the following template
{

(e1 : x, f1 : c1y + d1)
(e2 : y, f2 : c2x+ d2)

}
.

We will now illustrate computing the polyhedron ψ1[c1, d1] corresponding to the
entry (e1 : x, f1 : c1y + d1). To do so, we wish to find values of c1, d1 that
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satisfy the entailment ϕ : (x ∈ [1, 2] ∧ y ∈ [1, 2]) |= x ≤ c1y + d1. Dualizing,
using Farkas’ lemma, we obtain the following constraints

(∃λ1, λ2, λ3, λ4 ≥ 0)

⎡⎣ λ1 − λ2 = 1
λ3 − λ4 = −c1

2λ1 − λ2 + 2λ3 − λ4 ≤ d1

⎤⎦ .

Eliminating λ1,2,3,4 yields the polyhedron: ψ1 : c1 + d1 ≥ 2 ∧ 2c1 + d1 ≥ 2. The
polyhedron ψ1 has a vertex v1 : (0, 2) and rays r1 : (1,−1) and r2 : (− 1

2 , 1).
We obtain the inequality e1 ≤ f1[v1] : x ≤ 0y+ 2 by instantiating the vertex.

Similarly, instantiating using ray instantiation yields: 0 ≤ f1[r1] : 0 ≤ y − 1
and 0 ≤ f1[r2] : 0 ≤ −1

2 y + 1. Considering the second entry (e2, f2) yields the
inequality y ≤ 2 through a vertex instantiation and the inequalities x ≥ 1 and
x ≤ 2 using ray instantiation. Conjoining the results from both entries, we obtain
αG(ϕ), which is equivalent to ϕ. �

Why Ray Instantiation? We can now explain the rationale behind ray in-
stantiation in our domain. If ray instantiation is not included then the best ab-
straction clause in Theorem 1 will no longer hold (see proof in extended version).
Example 4, below, serves as a counter-example. Further, 〈ΨG, |=〉 is no longer a
lattice since the least upper bound ΨG may no longer exist. This can compli-
cate the construction of the abstract domain. Ray instantiations are necessary
to capture the rays of the dual polytope obtained in step (3) of the abstraction
process. Let us assume that r is a ray of a dual polytope ψ[c] that contains all
values of c so that the primal entailment ϕ |= ei ≤ fi[c] holds. In other words,
for any c0 ∈ �ψ�, the inequality I : ei ≤ fi[c0] is entailed by ϕ. If ψ contains a
ray r then c0 +γr ∈ �ψ� for any γ ≥ 0. This models infinitely many inequalities,
all of which are consequences of ϕ:

I(γ) : ei ≤ fi[c0 + γr] = ei ≤ fi[c0] + γfi[r] ,

for γ ≥ 0. Note that, in general, the inequality I(γ1) need not be a consequence
of I(γ2) for γ1 �= γ2. Including the ray instantiation Î : 0 ≤ fi[r] allows us to
write each inequality I(γ) as a proper consequence of just two inequalities I, Î,
i.e, I(γ) : I + γÎ.

Example 4. If ray instantiation is disallowed, then the abstraction αG(ϕ) ob-
tained for Example 3 will be x ≤ 2 ∧ y ≤ 2. However, this is no longer the best ab-
straction possible. For example, each polyhedron x ≤ 2 ∧ y ≤ 2 ∧ x ≤ αy+2−α,
for α ≥ 0, belongs to ΨG and is a better abstraction. However, larger values of
α yield strictly stronger abstractions without necessarily having a strongest ab-
straction. Allowing ray instantiation lets us capture the inequality 0 ≤ y − 1 so
that there is once again a best abstraction. �

Post-Conditions. We now discuss the computation of post-conditions (transfer
functions) across a transition τ : 〈�,m, ρτ [x,x′]〉.

Let ϕ be a GTP conforming to a template G. Our goal is to compute
postG(ϕ, τ), given a transition τ . Since ρτ [x,x′] is a linear assertion, the best
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post-condition that we may hope for is given by the abstraction of the post-
condition over the polyhedral domain: αG(postpoly(ϕ, τ)). We show that the post-
condition postG(ϕ, τ) can be computed effectively, without computing postpoly ,
by modifying the algorithm for computing αG.

1. Compute a convex polyhedron P [x,x′] : ϕ∧ ρτ [x,x′] whose variables range
over both the current and the next state variables: x,x′. If P is empty, then
the result of post-condition is empty.

2. For each entry (ej , fj) ∈ G, we consider the entailment P [x,x′] |= ej [x �→
x′] ≤ fj[x �→ x′].

3. Dualizing, using Farkas’ lemma, we compute a polyhedron ψj over the pa-
rameters in pars(fj).

4. If ψj is non-empty, instantiate the inequalities of the result using the vertices
and rays of ψj . The result is the conjunction of all the vertex-instantiated
and ray-instantiated inequalities.

Theorem 3. postG(ϕ, τ) = αG(postpoly(ϕ, τ)).

For the case of transition relations that arise from assignments in basic blocks
of programs, the post-condition computation can be optimized by substituting
the next state variables x′ with expressions in terms of x before computing the
dualization.

Example 5 (Post-Condition Computation). Recall the template G from Exam-
ple 3. Let ϕ : x ∈ [1, 2], y ∈ [1, 2]. Consider the transition τ with transition
relation ρτ :

ρτ [x, y, x′, y′] : x′ = x+ 1 ∧ y′ = y + 1 .

Our goal is to compute postG(ϕ, τ). To do so, we first compute P : ϕ ∧ ρτ :

P [x,x′] : 1 ≤ x ≤ 2 ∧ 1 ≤ y ≤ 2 ∧ x′ = x+ 1 ∧ y′ = y + 1 .

We consider the entailment P |= x′ ≤ c1y
′ + d1 arising from the first entry of

the template. We may substitute x+ 1 for x′ and y + 1 for y′ in the entailment
yielding:

x ∈ [1, 2] ∧ y ∈ [1, 2] |= x+ 1 ≤ c1(y + 1) + d1 = x ≤ c1y + (d1 + c1 − 1) .

After dualizing and eliminating the multipliers, we obtain ψ1[c1, d1] : 2c1 + d1 ≥
3 ∧ 3c1+d1 ≥ 3. This is generated by the vertex v1 : (3, 0) and rays r1 : (1

2 ,−1)
and r2 : (−1

3 , 1), yielding inequalities x ≤ 3, y ≤ 3, and y ≥ 2 through vertex
and ray instantiation. The overall post-condition is x ∈ [2, 3], y ∈ [2, 3]. �

For common program assignments of the form x := x+ c, where c is a constant,
the post-condition computation can be optimized so that dualization can be
avoided. Similar optimizations are possible for assignments of the form x := c.
The post-condition for non-linear transitions can be obtained by abstracting
them as (interval) linear assignments or using non-linear programming tech-
niques. We refer the reader to work by Miné for more details [29].
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Join. Join over the polyhedral domain is computed by the convex hull operation.
For the case of GTPs, join is obtained by first computing the convex hull and then
abstracting it using αG. However, this can be more expensive than computing the
polyhedral convex hull. We provide an alternate and less expensive scheme that
is once again based on Farkas’ lemma. This join will be effectively computable in
output-sensitive polynomial time when |pars(fj)| ≤ 2 for each template entry.

Let ϕ1 and ϕ2 be two GTPs conforming to a template G. We wish to compute
the join ϕ1 �G ϕ2 that is the least upper bound of ϕ1 and ϕ2 in ΨG.

1. For each entry (ej , fj) ∈ G, we encode the entailments

ϕ1 |= ej ≤ fj and ϕ2 |= ej ≤ fj .

2. Let ψ1[pars(fj)] and ψ2[pars(fj)] be the polyhedra that result from encod-
ing the entailments using Farkas’ lemma and eliminating the multipliers for
ϕ1 and ϕ2, respectively.

3. Let ψ : ψ1 ∧ ψ2 be the intersection. ψ captures all the linear inequalities
that (a) fit the template ej ≤ fj and (b) are entailed by ϕ1 as well as ϕ2.

4. If ψ is non-empty, compute the generators of ψ and instantiate by vertex
and ray instantiation.

The conjunction of all the inequalities so obtained for all the entries in G forms
the resulting join.

Theorem 4. For GTPs ϕ1, ϕ2 corresponding to template G, ϕ : ϕ1 �G ϕ2 is
the least upper bound in ΨG of ϕ1 and ϕ2.

Widening. Given ϕ1 and ϕ2, the standard widening ϕ1∇ϕ2 drops those inequal-
ities of ϕ1 that are not entailed by ϕ2. The result is naturally guaranteed to be in
ΨG providedϕ1 andϕ2 are. Furthermore, the entailment for each inequality can be
checked using linear programming [32]. Termination of this scheme is immediate
since we drop constraints. Mutually redundant constraints used in the standard
polyhedral widening can also be considered for the widening [18].

Note 2. Care must be taken not to apply the abstraction operator on the result
ϕ of the widening. It is possible to construct examples wherein widening may
drop a redundant constraint in ϕ1 that can be restored by the application of the
αG operator [28].

Inclusion Checking. Since our lattice uses the same ordering as polyhedra,
inclusion checking can be performed in polynomial time using LP solvers.

Complexity. Thus far, we have presented the GTP domain. The complexity of
various operations may vary depending on the representation chosen for GTPs.
We assume that each GTP is represented as a set of constraints.

The abstraction of convex polyhedra, computation of join and computation
of post-condition require the elimination of multipliers λ from the assertion ob-
tained after dualization using Farkas’ lemma. The number of multipliers λ equals
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the number of constraints in the polyhedron being abstracted. This number is
of the same order as the number of variables in the program plus the number
of constraints in the polyhedron. It still remains open if the elimination of the
λ multipliers can be performed efficiently by avoiding the exponential blow-up
that is common for general polyhedra. We present two techniques to avoid this
problem:

1. We present algorithms for the special case when each template entry has no
more than two parameters. In this case, our algorithms run in time that is
polynomial in the sizes of the inputs and the outputs.

2. The problem of sound approximations of the results of the elimination that
can be computed in polynomial time will be tackled in Section 5.

4 Two Parameters per Template Entry

In this section, we present efficient algorithms when each template entry has at
most two parameters. Following the discussion on complexity in the previous
section, we directly enumerate the generators of the projection of a dual form
P [c, d,λ] onto c and d using repeated LP and FLP instances. The efficiency of
the remaining operations over GTPs follow from the fact that they can all be
reduced to computing αG.
Abstraction. Our goal is to present an efficient algorithm for αG when each
entry of G has at most two unknown parameters. Specifically, let G be a template
with entries of the form (ei, fi), wherein ei is an arbitrary linear expression over
the program variables and fi is of the form cixj + di, for some variable xj and
unknown parameters ci, di.

Let ϕ[x1, . . . , xn] be a polyhedron over the program variables. If ϕ is empty,
then the abstraction is empty. We assume for the remainder of this section that
ϕ is a non-empty polyhedron. We compute αG(ϕ) by dualizing the entailment
below, for each entry (ei, fi):

ϕ[x1, . . . , xn] |= ei ≤ cixj + di . (3)

Using Farkas’ lemma, we obtain the dual form

ψi[ci, di] : (∃ λ ≥ 0) P [ci, di,λ] (4)

We present a technique that computes the vertices and rays of ψi using a series
of fractional linear programs without explicitly eliminating λ. We first note the
following useful fact:

Lemma 1. The vector (0, 1) is a ray of ψi. Furthermore, since ϕ is non-empty,
the vector (0,−1) cannot be a ray of ψi.
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Fig. 1. Finding vertices and extreme rays of a 2D polygon by adapting Jarvis’s march.
The solid line connects vertices discovered so far. Each edge is discovered by means of
an angle sweep starting from the previously discovered vertex.

4.1 Projecting to Two Dimensions Efficiently

In this section, we consider a polyhedron P [c, d,λ] as in (4). Our goal is to
compute the vertices and rays of ψ : (∃λ) P efficiently. If P is empty, then
the resulting projection is also the empty polyhedron. For the remainder of this
section, P is assumed to be non-empty.

The overall technique for computing the vertices of ψ simulates Jarvis’s march
for computing the convex hull of a set of points in two dimensions [23,9]. In
this case, however, the polyhedron P is specified implicitly as the projection
of a higher dimensional polyhedron. Figure 1 illustrates the idea behind this
algorithm. The algorithm starts with some initial point guaranteed to be on the
boundary of the polyhedron. Given a vertex vi (or the initial point), the next
vertex or extreme ray is computed in two steps:

1. Sweep a ray in a clockwise or counterclockwise direction from the current
vertex until it touches the polyhedron. This ray defines an edge of the projec-
tion. Our algorithm performs the ray sweep by solving a suitably formulated
FLP.

2. Find the farthest point in the polyhedron along this edge. If a farthest point
can be found, then it is a vertex of the projection. Otherwise, the edge is an
extreme ray. This step is formulated as a linear program in our algorithm.

We now discuss Steps 1 and 2 in detail.

Finding an Edge Using FLP. Let v : (a, b) be some vertex of ψ. Consider
the following optimization problem:

min.
d− b
c− a s.t. c > a ∧ P [c, d,λ] (5)

In effect, the optimization yields a direction of least slope joining (c, d) ∈ �ψ�
and (a, b), where c > a. The optimization problem above is a fractional linear
program [5] (also Cf. Section 2).
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Lemma 2. (a) If the FLP (5) is infeasible, then there is no point to the right
of (a, b) in �ψ�. (b) For non-empty ϕ, the FLP cannot be unbounded. (c) An
optimal solution to the FLP yields the direction of least slope, as required by
Jarvis’s march.

Finding the Farthest Point Along an Edge. Once a direction with slope θ
is found starting from a vertex (a, b), we wish to find a vertex along this direction.
This vertex can be found by solving the following LP:

max. c− a s.t. c− a ≥ 0 ∧ d = b+ θ(c− a) ∧ P [c, d,λ] (6)

In effect, we seek the maximum offset along the direction θ starting from (a, b)
such that the end point (c, d) remains in ψ. The LP above cannot be infeasible
(since (c, d) = (a, b) is a feasible point). If the LP above is unbounded then we
obtain an extreme ray of ψ. Otherwise, we obtain an end-point that is a vertex
of ψ. The overall algorithm is similar to Jarvis’s march as presented in standard
textbooks (Cf. Cormen, Leiserson and Rivest, Ch. 35.3 [9] or R.A. Jarvis’s
original paper [23]). Rather than perform a “clockwise” and a “counterclockwise”
march, we make use of the fact that (0, 1) is a ray of ψ and perform an equivalent
“leftward” and a “rightward” march.

1. We start by finding some point on the boundary of ψ. Let (a, b,λ) be some
feasible point in P . We solve the problem min. d s.t. c = a ∧ P [c, d,λ].
The point v0 can be treated as a starting point that is guaranteed to lie on
the boundary of ψ. Note, however, that v0 is not necessarilty a vertex of ψ.
Since ϕ is assumed non-empty, the LP above cannot be unbounded.

2. We describe the rightward march. Each vertex vi+1 is discovered after com-
puting v1, . . . ,vi. Let vi : (ai, bi) be the last vertex discovered.
(a) Obtain least slope by solving the FLP problem in (5).
(b) If the FLP is infeasible, then stop. vi is the right-most vertex and the

vector (0, 1) an extreme ray.
(c) Solve the LP in (6). An optimal solution yields a vertex vi+1. Otherwise,

if the LP is unbounded, we obtain an extreme ray of ψ and vi is the
right-most vertex.

3. The leftward march can be performed using the reflection T : c′ �→ −c, d′ �→
d, carried out as a substitution in the polyhedron P . The resulting generators
are reflected back.

Each generator discovered by our algorithm requires solving FLP and LP in-
stances. Furthermore, the initial point can itself be found by solving at most
two LP instances. Since LPs and FLPs can be solved efficiently, we have pre-
sented an efficient, output-sensitive algorithm for performing the abstraction.
This algorithm, in turn, can be used as a primitive to compute the join and the
post-condition efficiently, as well.

Note 3. It must be mentioned that an efficient (output-sensitive) algorithm for
each abstract domain operation does not necessarily imply that the overall analy-
sis itself can also be performed efficiently in terms of program size and template
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size. For instance, it is conceivable that the intermediate polyhedra and their
coefficients can grow arbitrarily large during the course of the analysis by re-
peated applications of joins and post-conditions. This is a possibility for most
strongly-relational domains, including the two variables per inequality domain
proposed by Simon et al. [37]. Nevertheless, in practice, we find that a careful
implementation can control this blow-up effectively by means of widening.

5 Efficient Approximations

In Section 4, we discussed the special case in which each bilinear form in a
template has at most two parameters. We presented an efficient algorithm for
computing the abstraction operation. However, if |pars(fj)| > 2, we are forced
to resort to expensive elimination techniques using Fourier-Motzkin elimina-
tion [35] or the double description method [31]. An alternative is to perform the
elimination approximately to obtain ψ[c, d] such that

ψ[c, d] |= (∃ λ) P [c, d,λ] .

Note that, since we are working with the dual representation, we seek to under-
approximate the result of the elimination.

We consider two methods for deriving an under-approximation of ψj by com-
puting some of its generators. The under-approximations presented here are sim-
ilar to those used in earlier work by Kanade et al. involving one of the authors
of this paper [25].

Finding Vertices by Linear Programming. We simply solve k linear pro-
grams, each yielding a vertex, by choosing some fixed or random objective fi[c, d]
and solving min. fi s.t. P [c, d,λ], λ ≥ 0. The solution yields a vertex (or a ray)
of the feasible region (c, d,λ). By projecting λ out, we obtain a point inside ψj
or a ray of ψj , alternatively.

Finding Vertices by Ray-Shooting. Choose a point (c0, d0) known to be in-
side ψj (using a linear programming). Let r be some direction. We seek a point of
the form (c0, d0) + γr for some γ ∈ R by solving the following LP:

max. γ s.t. ((c0, d0) + γr) ∈ �P [c, d,λ] ∧ λ ≥ 0� .

Any solution yields a point inside ψj by projection. If the LP is unbounded, we
conclude that r is a ray of ψj .

We refer the reader to Kanade et al. [25] for more details on how under-
approximation techniques described above can be used to control the size of the
polyhedral representation.

6 Applications

In this section, we present two applications of the ideas presented thus far. In
doing so, we seek to answer the following question: how do we derive interesting
templates without having the user of the analysis tool specify them? Note that
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our previous work provides heuristics for guessing an initial set of templates
in a property directed manner and enriching this set based on pre-condition
computations [34].

Improving Fixed-Points. Template polyhedra can be used to improve post-
fixed points that are computed using other known techniques for numerical do-
mains. For instance, suppose we perform a polyhedral analysis for some pro-
gram and compute invariants ϕ : e1 ≤ 0, . . . , em ≤ 0 for linear expressions
e1, . . . , em. A local fixed point improvement template could specify entries of the
form (ei, fi), wherein ei ≤ 0 is an inequality involved in the polyhedral invariant
and fi is a bilinear form involving the program variables that do not appear in
ei. Improvement of fixed points can be attempted under more restrictive settings
where the inequalities ei ≤ 0 are obtained from a less expensive analysis.

Variable Packing. Packing of variables is a commonly used tactic to tackle
the high complexity of domain operations in numerical domains [4,22]. An al-
ternative to packing would involve using generalized templates by specifying
expressions of the form 0 ≤ c1x1 + · · · + ckxk as the template at a particular
location where a variable pack of {x1, . . . , xk} is to be employed. This allows
us to seamlessly reason about multiple packs at different program locations and
integrate the reasoning about packs during the course of the analysis.

7 Implementation and Experiments

In this section, we describe our experimental evaluation of several of the ideas
presented in this paper on some benchmarks.

Implementation. The generalized template polyhedral domain presented in
this paper has been implemented using the Parma Polyhedral Library (PPL)
for manipulating polyhedra [2]. Our implementation supports general templates
with arbitrarily many RHS parameters using generator enumeration capabilities
of PPL. The special case of templates with at most two parameters has been
implemented using the LP solver available in PPL. The analysis engine uses a
naive iteration with delayed widening followed by the narrowing of post-fixed
points, for a bounded number of iterations.

Note 4. In this paper, we have described an algorithm for performing abstraction
using polyhedral projection (elimination of multiplier variables for dualization).
Our implementation uses a different technique based directly on generator enu-
meration: to compute α(ϕ) we simply compute the generators of ϕ and derive
the dual constraints for each template entry from the generators of ϕ. This
has been done since PPL has an efficiently engineered generator enumeration
algorithm. Therefore, our implementation performs a single vertex enumeration
up-front and re-uses the result for each template entry, as opposed to eliminating
multipliers for each template entry.

Template Construction. The overall template construction is based on a
pre-computed fixed point. For our experiments, we use the polyhedral domain
to generate these fixed points. Next, using each inequality e ≤ 0 in the result
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Table 1. Experimental evaluation of the GTP domain on some benchmark examples
using various methods for forming templates. All timings are in seconds. #tpl: # of
templates, #entries: average/min/max number of entries per template, # FP Impr: #
of templates that improve the fixed point, Tpoly: polyhedral analysis time, Tflp: average
time per template with FLP, Tve: average time per template with vertex enum.

M1
Name #var #trs #tpl #entries #fp Tpoly Tflp Tve

avg (min,max) imp avg avg
lifo 8 10 42 1.0 1 , 1 6 0.02 0.02 0.00
tick3i 8 9 78 1.0 1 , 1 0 0.03 0.02 0.01
pool 9 6 64 1.1 1 , 2 8 0.01 0.03 0.01
ttp 9 20 968 1.4 1 , 2 64 0.06 0.02 0.01
cars2 10 7 149 1.1 1 , 2 4 13.5 0.06 0.01
req-gr 11 8 81 1.3 1 , 2 25 0.01 0.06 0.02
cprot 12 8 100 1.3 1 , 2 27 0.02 0.07 0.02
CSM 13 8 131 1.4 1 , 2 27 0.02 0.06 0.02
cprod 18 14 233 1.2 1 , 2 38 0.06 0.13 0.05
incdec 32 28 854 1.1 1 , 2 103 1 0.41 0.23
mesh2x2 32 32 940 1.1 1 , 2 212 1 0.51 0.29
bigjava 45 37 1856 1.4 1 , 2 129 239 0.85 0.48

M2 M3
Name #tpl #entries Tflp Tve #fp #entries T #fp

avg (min,max) avg avg impr avg (min,max) avg impr
lifo 7 6.0 6 , 6 0.6 0.0 6 1.0 1 , 1 0.0 0
tick3i 14 5.6 3 , 7 0.1 0.0 0 1.0 1 , 1 0.0 0
pool 10 7.1 4 , 8 0.5 0.0 8 1.2 1 , 2 0.0 3
ttp 140 9.5 5 , 16 0.4 0.0 32 1.4 1 , 2 0.0 2
cars2 18 9.3 7 , 18 1.4 0.2 3 1.1 1 , 2 0.1 1
req-gr 9 11.3 10 , 16 1.5 0.2 9 1.3 1 , 2 0.0 8
cprot 10 13.4 11 , 20 2.0 0.3 10 1.4 1 , 2 0.0 9
CSM 12 15.3 7 , 22 2.5 0.5 12 1.4 1 , 2 0.0 7
cprod 16 18.1 12 , 32 7.4 1.5 15 1.3 1 , 2 0.1 13
incdec 29 32.7 16 , 60 43.6 87.8 29 1.1 1 , 2 1.1 7
bigjava 44 60.4 34 , 86 67.1 50.4 42 1.4 1 , 2 1.7 8

computed by the polyhedral domain, we compare three methods for forming tem-
plates: (M1) Create multiple templates per invariant inequality, each template
consisting of a single entry of the form e ≤ cjxj+dj, for each xj �∈ vars(e), (M2)
Create one template per inequality, each template consisting of multiple entries
of the form e ≤ cjxj + dj , for each xj �∈ vars(e), and finally, (M3) Create one
template per inequality, consisting of a single entry of the form e ≤ ∑

j cjxj + d
for all variables xj �∈ vars(e). For equalities e = 0, we consider entries of the
form e ≤ cjxj+dj and e ≥ c′jxj+d′j , modifying the methods above appropriately.

Furthermore, for methods M1 and M2, we compare the implementation us-
ing vertex enumeration against the fractional LP implementation for the key
primitive of abstraction, which also underlies the implementation of the join
and post-condition operations. Since the fractional LP algorithm produces the
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same result as the vertex enumeration, we did not observe any difference in the
generated invariants. We compare the running times for these techniques.

Results. Table 1 reports on the time taken for the initial polyhedral analy-
sis run, the number of templates, avg/min/max of the number of entries per
template and the number of analysis runs that discovered a stronger invariant.
The benchmarks have been employed in our previous work [34] as well as other
tools [3]. They range in size from small (≤ 10 program variables) to large (≥ 30
program variables). The initial widening delay was set to 4 for each run of the
polyhedral analysis.

We note that our domain can be used to infer invariants that are not con-
sequences of the polyhedral domain invariants. This validates the usefulness of
generalized templates for improving fixed points. The results using method M2
show that analysis using generalized templates can be expensive when the num-
ber of entries in each template is large. However, method M2 also provides a
fixed point improvement for almost all the templates that were run, whereas in
method M1, roughly 10% of the runs resulted in a fixed point improvement.
Even though method M3 does not allow us to use fractional linear program-
ming, it presents a good tradeoff between running time and the possibility of
fixed point improvement.

The comparison between running times for the fractional LP approach and
the basic approach using vertex enumeration yields a surprising result: on most
larger benchmarks, the fractional LP approach (which is polynomial time, in
theory) is slower than the vertex enumeration. A closer investigation reveals that
each vertex enumeration pass yields very few (∼ 10) vertices and extreme rays.
Therefore, the well-engineered generator enumeration implementation in PPL
invoked once, though exponential in worst-case, can outperform our technique
which requires repeated calls to LP solvers. On the other hand, the constraints
in the dual form P [c, d,λ] obtained by Farkas’ Lemma are common to all the LP
and FLP solver invocations during a run of our algorithm. Incremental solvers
used in SMT solvers such as Z3 [13], could potentially be adapted to speed our
algorithm up.

Finally, the comparison here has been carried out against invariants obtained
by polyhedral analysis. In the future, we wish to evaluate our domain against
other types of invariant generation tools such as VS3 [38] and InvGen [17].

8 Related Work

Polyhedral analysis was first introduced by Cousot & Halbwachs [12] using the
abstract interpretation framework [11]. Further work has realized the usefulness
of domains based on convex polyhedra to the analysis of hybrid systems [19],
control software [4], and systems software [36,21,22,14]. However, these advances
have avoided the direct use of the original polyhedral domain due to the high
cost of domain operations such as convex hulls and post-conditions [35]. In spite
of impressive advances made by polyhedra libraries such as PPL, the combina-
torial explosion in the number of generators cannot be overcome, in general [2].
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However, it is also well-known that these operations can be performed at a lower
polynomial cost (in terms of the problem size and the output size) for two dimen-
sional polyhedra [9,35]. This fact has been used to design fast program analysis
techniques to compute invariants that involve at most two program variables [37].
Further restricting the coefficients to units (±1), yields the weakly-relational oc-
tagon domain wherein the process of reasoning about the constraints can be
reduced to graph operations [28].

The restriction to at most two variables for each invariant and unit coefficients
has been observed to be quite useful for proving absence of runtime errors [21].
On the other hand, current evidence suggests that invariants involving three
or more variables are often crucial for proving safety of string operations and
user-defined assertions [33].

Template polyhedral domains attempt to avoid the exponential complexity of
polyhedral domain operations by fixing templates that represent the form of the
desired invariants [34]. Recently, there have been many advances in our under-
standing of template polyhedral domains. Techniques such as policy iteration
and strategy iteration have exploited ideas from max-plus algebra to show that
the least fixed point in weakly-relational domains is computable [15,16]. These
techniques have been extended to handle templates with non-linear inequalities
using ideas from convex programming [1,16]. The possibility that some of these
results may generalize to the domain presented in this paper remains open.

The problem of modular template polyhedral analysis has been studied by
Monniaux [30], wherein summaries for templates are derived by dualization us-
ing Farkas’ lemma followed by quantifier elimination in the theory of linear
arithmetic. This work has also extended the template domain to handle floating
point semantics for control software. Srivastava and Gulwani [38] present a ver-
ification technique using templates that can specify a richer class of templates
involving quantifiers and various Boolean combinations of predicates. However,
their approach for computing transformers works by restricting the coefficients
to a finite set and “bit blasting” using SAT solvers. The logahedron domain uses
a similar restriction [20]. Invariants with unit coefficients are quite useful for
reasoning about runtime properties of low-level code. However, it is as yet un-
clear if verifying functional properties in domains such as control systems will
necessitate invariants with arbitrary coefficients.

9 Conclusion

We have presented a generalization of the template domain with arbitrary bilin-
ear forms, along with efficient algorithms for computing the domain operations
when the template has at most two parameters per entry. Our experimental
results demonstrate that our techniques can be applied to strengthen the invari-
ants computed by other numerical domains. In the future, we plan to investigate
techniques such as policy and strategy iteration for analysis over generalized
templates. Extensions to non-linear templates and the handling of floating point
semantics are also of great interest.
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Abstract. Memory models for shared-memory concurrent programming
languages typically guarantee sequential consistency (SC) semantics for
datarace-free (DRF) programs, while providing very weak or no guaran-
tees for non-DRF programs. In effect programmers are expected to write
only DRF programs, which are then executed with SC semantics. With
this in mind, we propose a novel scalable solution for dataflow analysis of
concurrent programs, which is proved to be sound for DRF programs with
SC semantics. We use the synchronization structure of the program to
propagate dataflow information among threads without requiring to con-
sider all interleavings explicitly. Given a dataflow analysis that is sound for
sequential programs and meets certain criteria, our technique automati-
cally converts it to an analysis for concurrent programs.

Keywords: dataflow analysis, datarace-free program, concurrency.

1 Introduction

In recent years several new semantics based on relaxed memory models have
been proposed for concurrent programs, most notably the Java Memory Model
[20], and the C++ Memory Model [2]. While the aim of the relaxed semantics
is to facilitate aggressive compiler optimizations and efficient execution on hard-
ware, the guarantees they provide can be quite different from the standard “Se-
quentially Consistent” (SC) semantics. A common guarantee that they typically
provide however is that programs without dataraces will run with SC semantics.
For programs with dataraces there are very weak guarantees: the Java Memory
Model [20] essentially ensures that there will be no “out-of-thin-air” values read,
while the C++ memory model [2] specifies no semantics for such programs.

The prevalence of this so-called “SC-for-DRF” semantics makes the class of
datarace-free programs with sequentially consistent semantics an important one
from a static analysis point of view. An analysis technique that is sound for
this class of programs can in principle be used by a compiler-writer for the
general class of programs, as long as the ensuing transformation preserves the
weak guarantees described above. From a verification point of view as well, most
programs should be first checked for datarace-freedom and then a sound analysis
for datarace-free programs can be used to prove other properties.

With this in mind, in this paper we propose a novel and scalable dataflow anal-
ysis technique for concurrent programs that is sound for datarace-free programs

G. Barthe (Ed.): ESOP 2011, LNCS 6602, pp. 196–215, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Dataflow Analysis for Datarace-Free Programs 197

under the SC semantics. Given a sequential dataflow analysis that meets cer-
tain criteria, our technique automatically produces an efficient and fairly precise
analysis for concurrent programs. The criteria that the underlying analysis must
meet is that each dataflow fact should be dependent on the contents of some
associated lvalue (an lvalue is an expression that refers to memory locations
at runtime). Several sequential dataflow analyses such as null-pointer analysis,
interval analysis and constant propagation satisfy this criteria. Our technique
gives useful information (in terms of precision of the inferred data-flow facts)
at points where the corresponding lvalue is read. For example, in the case of
null-pointer analysis, the dataflow fact “NonNull(p)” is dependent on the con-
tents of the lvalue “p” and is relevant before a statement that dereferences (and
therefore, reads) “p”. Similarly, the fact that an lvalue has a constant value at
a program point is dependent on the contents of the lvalue and is relevant at
statements that read that lvalue.

The main challenge in lifting an analysis for sequential programs to concurrent
programs is that multiple threads can simultaneously modify a shared memory
location. Traditionally the analysis techniques for concurrent programs address
this problem in one of the following ways: they either invalidate the analyzed
fact if there is any possible interference from any other thread [3,15], making the
analysis very imprecise, or they exhaustively explore all possible interleavings
[27], leading to poor scalability. In contrast, our analysis technique uses the
synchronization structure of the program to propagate dataflow facts between
threads. The main insight we use is that it is sufficient to propagate dataflow
facts between threads only at corresponding synchronization points (like from
an “unlock(l)” statement to a “lock(l) statement”). We also show how our
framework can be integrated with a context-sensitive analysis.

We implemented our technique in a framework for automatically converting
dataflow analyses for sequential Java programs to sound analyses for concur-
rent programs and instantiated it for a null-dereference analysis. Our initial
experience with the tool shows that the analysis runs in a few seconds on real
benchmark programs and is able to prove a high percentage of dereferences to be
safe. We also developed a prototype implementation for concurrent C programs.
This allows us to compare our technique empirically with the state-of-the-art
Radar tool [3], and show that our tool is more precise on a few medium-sized
benchmarks.

2 Overview of Our Approach

In this section we informally illustrate our technique with the help of a few
examples. We consider the null-pointer analysis where the goal is to compute a
set of dataflow facts for each edge of the program which tell us which lvalues
are non-null along all executions reaching that edge. Examples of such dataflow
facts can be NonNull(p->data) for the program in Figure 1.

Note that value of the dataflow fact NonNull(p->data) at runtime depends
on the contents of the memory location corresponding to the lvalue p->data.
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Fig. 1. Program 1

Hence, at runtime, the value of this fact can only be modified by writing to the
memory locations corresponding to p->data or p, possibly through some alias.
Moreover, the value of the fact NonNull(p->data) is relevant only before the
statements where p->data is dereferenced or p->data is assigned to some other
pointer or p->data is compared to NULL. For example, in Figure 1, this fact
is relevant before the statements M3, P3, P7 and C3, but not before P6 or M2.
Note that at all edges where this fact is relevant, the successor statements read
p->data. Our analysis guarantees that for a given datarace-free program, if a
fact is computed to be true at a program edge where the fact is relevant, then
it is indeed true at that program edge in all executions of the program.

Figure 1 shows a simple concurrent producer-consumer program, where data
is shared through a shared location, pointed to by p. The call to new returns
newly allocated memory. Note that the main thread sets the pointers p and
p->data to non-null values. The prod thread sets p->data to null after locking
l, but restores its non-nullity before unlocking l. As a result, the cons thread
can dereference p and p->data without checking for non-nullity after locking
l. This code has no null-pointer dereferences in any of its executions. Clearly,
the threads in this code depend on each other to make the pointers non-null
before any other thread can access them. We also note the the program has no
dataraces.

Let us again consider the dataflow fact NonNull(p->data) in the program of
Figure 1. As the program is datarace-free, if a thread writes to p->data or p
and some other thread reads p->data later in the execution, then these accesses
must be synchronized, i.e. there must be a release action (e.g. unlock or spawn)
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by the first thread, followed by an acquire action (e.g. lock or first action of a
thread) by the second thread, between the write and the read. In other words,
in any execution of the program, the action that modifies the dataflow fact and
the action before which it is relevant either belong to the same thread or are
synchronized.

As the first step of our analysis, we introduce new edges between nodes of
the control-flow graphs (CFGs) representing different threads. These edges cor-
respond to possible “release-acquire” pairs at runtime. We refer to this unified
set of CFGs with added edges as the sync-CFG. Figure 1 shows the edges we
add for this program as dashed arrows - from spawn to the first instruction of
the child thread and from the unlock to lock statements if they access the same
lock variable and if they can possibly run in parallel.

In the next step of our analysis, we perform a sequential dataflow analysis
on this sync-CFG to compute a set of dataflow facts at each program edge
that conservatively approximates the join-over-all-paths (JOP) solution over the
sync-CFG.

In Figure 1, we show the lvalues discovered to be non-null by our analysis at
different program points in italics. As p->data is non-null at point M5 in the
main thread before spawning the cons thread, this fact gets propagated to the
first instruction C1 of the cons thread though one of the added edges, and from
there to the lock instruction at C2. Similarly, although p->data is set to null in
the prod thread at P4, it is set back to non-null at P6 before the unlock. This
facts also gets propagated to the lock statement of the cons thread through
the edge P8 to C2. As p->data is non-null in both the paths joining at the C2
of the cons thread, we can determine p->data to be non-null before the lock
statement in all executions. This makes the fact NonNull(p->data) to be true
before the deference of p->data at C3.

The reason why our analysis works is that if, in an execution, an action mod-
ifies the dataflow fact NonNull(p->data) and it is relevant at some later action,
then there exists a static path from the statement of the first action to the
statement of the second action in the sync-CFG and the static dataflow func-
tion corresponding to this path will conservatively approximate the effect of
the execution path segment from the first action to the second action on the
dataflow fact. As an example, consider the interleaved execution path fragment
[P6,C1,P7,P8,C2,C3] where P6 modifies NonNull(p->data) and it is relevant at
C3. There is a static path in the sync-CFG [P6,P7,P8,C2,C3] which has the same
effect on this dataflow fact as the execution path segment.

We note that at points where a fact is not relevant our analysis may compute
incorrect values. For example our analysis computes NonNull(p->data) to be
true at C1 although the interleaved execution path segment [P4,C1] can make it
false. However, the fact NonNull(p->data) is not relevant at C1.

Let us now consider a buggy version of the program, presented in Figure 2.
The main thread is the same as Figure 1. This program is also DRF, but the
prod thread releases the lock after setting p->data to null at P4, and acquires the
lock again before setting it to non-null. If the cons thread dereferences p->data
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Fig. 2. Program 2

in between these two actions, it will dereference a null-pointer. For example,
the execution path segment [P4,P5,C2,C3] will result in null-pointer dereference.
Note that there is a static path [P4,P5,C2,C3] in the sync-CFG that also sets
the fact NonNull(p->data) to false before C3. Hence our analysis will detect
that p->data can be null before the dereference at C3. Note that here also we
incorrectly compute NonNull(p->data) to be true at C1 as the modification of
this fact at P4 is not propagated to C1. Nevertheless, as the program is datarace-
free, before the cons thread reads p->data, it must synchronize with the prod
thread and the modified value for the fact NonNull(p->data) is propagated to
the cons thread through the corresponding static edge ([P5,C2] in this case).

3 Related Work

There are quite a few works on dataflow analysis of concurrent programs in the
literature and they differ considerably in terms of technique, precision and appli-
cability. Some works [16,11,6] create parallel flow graphs similar to our technique
and perform a modified version of sequential analysis on them, but unlike us,
their techniques are applicable to very specific analyses, such as bit-vector anal-
ysis or gen-kill analysis. In particular, they do not handle the analyses where the
value of a dataflow fact can depend on some other dataflow fact. For example,
in null-pointer analysis, p is non-null after a statement p = q only if q is non-
null before the statement. Unlike our technique, they also do not consider many
features of modern concurrent programs such as unbounded threads, synchro-
nization using locks/volatiles etc. For example, the pointer-analysis algorithm
presented in [23] considers only structured par-begin/par-end like synchroniza-
tion constructs.

On the other hand, there are a few works such as [15] that kill the dataflow
facts whenever there is a possible interference. Similarly, Radar [3] uses a datarace
detection engine to conservatively kill a dataflow fact whenever there is a possible
race on the lvalues corresponding to the fact. Our technique is more precise than
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theirs as we propagate the dataflow facts precisely. For example, in Figure 1, Radar
cannot detect the dereference of p->data in the cons thread to be safe. Recently
Farzan et al. [7] presented a compositional technique for dataflow analysis, but it
is applicable to only bit-vector analyses.

Model checkers such as [27] provide an alternative technique to find if a prop-
erty holds at a particular program point. They typically exhaustively enumerate
all interleavings of a program, resulting in poor scalability. CHESS [21] prunes
the number of interleavings by context switching only at the synchronization
points, assuming the program is datarace-free, but scalability still remains an
issue. In contrast ours is a static analysis which does not explore interleavings
explicitly. Moreover, due to infinite state-spaces, model checking of real program-
ming languages cannot cover all program behaviors. Thread modular analyses
[8,9,10] can analyze each thread separately, but either require user-defined an-
notations denoting some invariants or try to infer them automatically, limiting
their scalability and precision. Recently, Malkis et al. [19] proposed a thread-
modular abstraction refinement technique where the set of reachable “global
states” is computed as the cartesian abstraction of sets of reachable “local”
states. If a global state is infeasible, an abstraction refinement step excludes it
from the cartesian abstraction. This technique assumes the number of dynamic
threads to be statically bound. It is not implemented for real programs and the
analysis-refinement cycle limits its scalability.

4 Preliminaries

4.1 Program Structure

In this section we formalize the structure of the subject programs for our analysis.
For ease of presentation, we use a simple core language that has the representa-
tive features of real programming languages with shared-memory concurrency.

The program is composed of a finite number of named thread codes1, one
of which is designated as the main thread. The program is denoted as P =
(T0, . . . , Tk), where each Ti is name of a static thread. Each thread Ti is repre-
sented as a control flow graph (CFG) Ci where each node represents a statement
in the program. We do not consider procedures at this point (context-sensitive
interprocedural analysis is described in Section 8). In the rest of the paper, we use
the terms nodes and statements interchangeably to refer to the static statements
in the program.

Figure 3 defines the syntax of the language partially. Variables are declared
globally. The non-terminal Decl in Figure 3 describes a variable declaration. A
regular (non-synchronization) variable can be of some basic type or structure
type or pointer type. A synchronization variable is either a lock or a thread
identifier.

1 We refer the code of a thread as a static thread and the runtime instance of a thread
as a dynamic thread.
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Decl ::= VarType <var> | Lock <lockvar> | ThreadId <tid>

VarType ::= BasicType | VarType*

Stmt ::= AsgnStmt | BranchStmt | SyncStmt | skip
AsgnStmt ::= Lval := Expr
Lval ::= <var> | *Lval
SyncStmt ::= lock <lockvar> | unlock <lockvar>

| <tid> := spawn <T> | join <tid> | start | end

Fig. 3. Partial syntax of the language

Statements (Stmt in Figure 3) are of following types: assignment, branch,
synchronization and skip. Assignment statements (AsgnStmt in Figure 3) assigns
the value of an expression to an lvalue, which is either a declared variable or
dereference of an lvalue. Expressions are arithmetic or logical expressions over
constants and lvalues or “address of” expressions. Branch conditions can be any
Boolean expression.

For an lvalue l, we define deref (l) to be the set of lvalues that are dereferenced
in the expression of l. Formally,

deref (l) =
{{l′} ∪ deref (l′) if l is of the form ∗l′
∅ otherwise.

For example, if p is a variable and **p is an lvalue, then deref (∗ ∗ p) = {p, ∗p}.
We call an lvalue l relevant at a program edge E and its successor node N

if l is syntactically part of the expression read at the node N . Note that, if l
is relevant at a program edge/node, all lvalues in deref (l) are also relevant at
that program edge. In the program of Figure 1, at C3, the relevant lvalues are p,
p->data and *p->data. We consider only well-typed programs without pointer
arithmetic.

Synchronization statements (SyncStmt in Figure 3) are of special interest to
us. Each thread has a start node and an end node, containing special start and
end statements, respectively. Threads are spawned by spawn statements that
take static thread names as parameters and return thread ids of the child threads.
A parent thread waits for a child thread to finish using a join statement. The
lock and unlock statements have the standard semantics for reentrant locks.
Only synchronization statements can access synchronization variables. Although
we consider only these synchronization statements in this paper, our technique
can be applied to programming languages with other synchronization statements
that have acquire/release semantics (described in Section 4.2), such as read/write
of volatiles in the Java programming language [12].

For a CFG C = (Nodes ,Edges , E0, E�), Nodes denotes the set of nodes,
Edges ⊆ Nodes × Nodes denotes the set of edges, E0 /∈ Edges denotes a spe-
cial start edge with no predecessor node and E� /∈ Edges denotes a special end
edge with no successor node in C. For a node N , epred(N) = {E ∈ Edges |
∃N ′ ∈ Nodes : E = 〈N ′, N〉} denotes the set of predecessor edges of N and
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npred(N) = {N ′ ∈ Nodes | 〈N ′, N〉 ∈ Edges} denotes the set of predecessor
nodes of N . For an edge E = 〈N,N ′〉, {N} is the singleton set of predecessor
node of E, denoted by npred(E) and the set epred(npred(E)) is the set of pre-
decessor edges of E, denoted by epred(E). Similarly, esucc and nsucc denote the
sets of successor edges and successor nodes for an edge or a node, respectively.
Although we overload these notations, the meaning should be clear from the
context. Each CFG has a start node N0 which is the successor node of E0 and
an end node N� which is the predecessor node of E�. Let NM

0 and EM0 denote
the start node and the start edge of the main thread and NM

� and EM� denote
the end node and the end edge of the main thread, respectively.

A path Π in a CFG C is defined as a sequence of nodes 〈N ′0, . . . , N ′n〉 of C,
such that there is an edge in C between N ′i and N ′i+1 for every i, 0 ≤ i < n. A
path Π is called an initial path in C if the first node of the path is the node N0,
the start node in C.

4.2 Execution

Let P be a program written in the language described in Section 4.1. An action
is a dynamic instance of a statement in an execution. For an action a, stmt(a)
denotes the corresponding static statement or node and thread id(a) denotes the
dynamic thread id of the thread performing the action.

An interleaving of P is a sequence of actions 〈a0, . . . , an〉, stmt(a0) = NM
0 ,

possibly from different dynamic threads, such that the projection of the sequence
to any thread id is consistent with the sequential semantics of that thread, given
the values of reads of shared variables. If I is an interleaving of P , I[i] denotes
the ith action in the interleaving. Let a be an action in an interleaving I. By
eprev (a) and enext(a) we denote the program point (CFG edge) reached in the
thread executing a just before and after executing a, respectively. Similarly, by
next(a) we mean the next action in I that belongs to the same dynamic thread as
a. Thus, next(a) = I[j] if a = I[i] and thread id(ai) = thread id(aj), i < j and
there is no k, i < k < j such that thread id(ai) = thread id(ak). If a′ = next(a),
then we say a = prev (a′).

Synchronization actions are of two types: spawn, end and unlock actions
are the release actions, where as join, start and lock actions are the acquire
actions.

An interleaving I of program P is synchronization-valid if

– each unlock action is preceded by a matching lock action. For every prefix
of I, number of unlock actions on a lock variable by a dynamic thread must
be less than or equal to the number of lock actions performed by the same
dynamic thread on the same lock,

– locks maintain mutual exclusion property. If a is a lock action performed
by a dynamic thread t on a lock l, then for any thread t′ �= t, the number
of unlock actions performed on l by t′ before a in I must be exactly equal
to the number of lock actions on l by t′ before a in I.
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– The start action of any thread (except the main thread) is preceded by a
corresponding spawn action that returns a thread id which is the same as
the started thread,

– each join action is preceded by the end action of the thread it waits for.

An interleaving is sequentially consistent (SC) if every read of a memory location
reads the value written by the last preceding write to the same memory location
in the interleaving. We assume that there is an initial write to every memory
location whenever the memory is allocated in an execution. An sc-execution is
simply a synchronization-valid and sequentially consistent interleaving.

4.3 Datarace-Free Programs

Two non-synchronization actions in an sc-execution are conflicting if they both
access a common memory location and at least one of them writes to that mem-
ory location.

Given an sc-execution E of a program P , we say a release action synchronizes-
with subsequent acquire actions corresponding to it. More specifically, an unlock
action synchronizes with any subsequent lock action on the same lock variable, a
spawn action synchronizes with the start action of the thread it spawns and an
end action synchronizes with the join action that waits for the thread to finish.
If in E , an action a synchronizes with an action b, it is denoted by a <Esw b.

Similarly, if in an sc-execution E , a = E [i] and b = E [j] are two actions such
that thread id(a) = thread id(b), i < j and there is no k, i < k < j, such that
thread id(E [k ]) = thread id(E [i ]), then there is a program-order relation between
a and b, denoted by a <Epo b. Note that if a <Epo b, then there is an edge from
stmt(a) to stmt(b) in the CFG of the corresponding static thread.

The happens-before order induced by an sc-execution E , is a partial-order on
the actions of E , denoted by ≤Ehb , and is defined as the reflexive transitive closure
of <Esw and <Epo relations.

An sc-execution E is datarace-free if every pair of conflicting actions are related
by the happens-before order. A program is datarace-free if all sc-executions of
the program are datarace-free. This definition of datarace-freedom is equivalent
to the more intuitive definition [24] - in any sc-execution of a datarace-free
program, two conflicting actions from different dynamic threads cannot happen
immediately after one another.

Many programming languages such as Java [20] and C++ [2] guarantee that
any execution of a datarace-free program in these languages is equivalent to some
sc-execution. We assume that the memory model of our language guarantees
sequentially consistent semantics for datarace-free programs and we are only
interested in datarace-free programs in this paper. Henceforth we refer to an
sc-execution simply as an execution.

5 Analysis for Sequential Programs

In this section, we characterize the class of the analyses for sequential programs
that can be converted to analyses for concurrent programs using our technique.
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This class essentially consists of the “value set analysis” (Section 5.1) and any
consistent abstraction (Section 5.2) of it.

We assume the sequential program to consist of a single main thread. It may
not have any synchronization statement except for the start and end statements
of the main thread. Let us denote the sequential program by P and its CFG by
C = (Nodes ,Edges , E0, E�).

5.1 Value Set Analysis

Intuitively, the value set semantics of a program is an abstract semantics where
the state at each program edge is a map from the each lvalue read or written
in the program to a set of values. The analysis characterizes a conservative
approximation of such a state for each program edge E, i.e. the set of values
corresponding to an lvalue l in the solution should include every value contained
in the memory location corresponding to l at E in any execution of the program
P reaching E.

Formally, the value set analysis VS for a program P is a tuple (LVS ,FVS)
where LVS is the lattice of abstract states and FVS is the set of static flow
functions. An abstract state in this semantics is a map LVals → 2Values , where
LVals is the set of lvalues read/written in program P and Values is the set of
values that can be contained in any memory location. The domain of such states
is denoted as ValueSets. Hence the lattice LVS is a join-lattice (ValueSets,�,
�,⊥,�), where for vs , vs ′ ∈ ValueSets and S ⊆ ValueSets

– vs � vs ′ iff ∀l ∈ LVals : vs(l) ⊆ vs ′(l)
– � = λ l.Values
– ⊥ = λ l.∅
–

⊔
S = λ l.

⋃
vs∈S

vs(l).

We allow the analysis to be flow-sensitive and (partially) path-sensitive. Hence,
the static flow function for any node N is of the form FN : ValueSets ×Edges →
ValueSets, allowing it to propagate different abstract states along different suc-
cessor edges. The flow functions for different types of statements are defined
below. Given an expression e, the denotation �e� : ValueSets → 2Values is a
function that returns a set of values obtained from evaluating e on all possible
concrete states corresponding to a given value set. For an lvalue l, AliasSet(l)
denotes the set of lvalues that may represent the same memory location as l.
Note that for sequential programs, the AliasSet can be computed from the value
sets itself or from some sound pointer analysis such as [1].

If N ∈ AsgnStmt and is of the form l := e, FN (vs , ) = vs ′, where

vs ′(l′) =

⎧⎪⎪⎨⎪⎪⎩
�e�(vs) if l′ = l
�e�(vs) ∪ vs(l′) if l′ ∈ AliasSet(l)
Values if l ∈ AliasSet(deref (l′))
vs(l′) otherwise.

Intuitively, we destructively update the value set of the lvalue at the LHS, but
conservatively update the value set of an lvalue that may be alias of the LHS.
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If an lvalue is dependent on some alias of the LHS, the memory location corre-
sponding to that lvalue might change. Hence its value set is set to �.

If N ∈ BranchStmt and the branch condition is e, then FN (vs , true branch) =
vs ′ and FN (vs , false branch) = vs ′′, where

∀l, v : v ∈ vs ′(l) iff v ∈ vs(l) ∧ ∃v̂s : v̂s(l) = {v} ∧ true ∈ �e�(v̂s)
∀l, v : v ∈ vs ′′(l) iff v ∈ vs(l) ∧ ∃v̂s : v̂s(l) = {v} ∧ false ∈ �e�(v̂s).

Intuitively, a value v is included in the value set of an lvalue l along the true
branch if e can evaluate to true with v contained in l. The false branch is similar.
Branch statements do not generate any value that was not there in the input
value set. Flow functions for other statements are identity functions.

A concrete state of a program P is a map cs : LVals → Values. Given an
action a from an execution E of the program P , pre(a) and post(a) denote the
concrete states immediately before and after a is executed, respectively. If a�
is the last action of E , post(E) = post(a�). Given a program edge E, let Ξ(E)
denote the set of executions of the program up to E, i.e., Ξ(E) = {E | E =
〈a′0, . . . , a′�〉 and E = enext(a′�)}. Then for any edge E, the collecting value set
CVS at E is defined to be

CVS [E] = λ l.
⋃

E∈Ξ(E)

post(E)(l). (1)

Let E = 〈a′0, . . . , a′n〉 be an execution of the sequential program P . ΠE =
〈N ′0, . . . , N ′n〉 is the path corresponding to E where for all i, 0 ≤ i ≤ n, N ′i =
stmt(a′i). Note that for a sequential program, there is an edge in the CFG be-
tween N ′i and N ′i+1 for all i, 0 ≤ i < n. For any analysis A = (L,F), the flow
function for the path ΠE with the initial state d ∈ L along the edge E is de-
fined by FΠE (vs , E) = FN ′

n
(FN ′

n−1
(. . . (FN ′

0
(vs , E′0) . . .), E′n−1), E), where each

E′i = 〈N ′i , N ′i+1〉, E ∈ esucc(N ′n) and each FN ′
i
∈ F . Let Σ(E) be the set of

initial paths up to E. Then the ideal join-over-all-paths (JOP) solution of the
analysis A on P , denoted by JA, at any edge E, is given by

JA[E] =
⊔

Π∈Σ(E)

FΠ(�, E). (2)

For value set analysis, the static flow functions over-approximate the runtime
behavior, i.e. ∀l ∈ LVals : v = post(an)(l) ⇒ v ∈ FΠE (�, enext(an)). We assume
the flow function of an empty path to be identity. Hence for a sequential program,
CVS � JVS .

Any dataflow analysis (say A) characterizes a further conservative approxi-
mation of the JOP by the least solution SA for the following set of equations:

X [E0] = �
∀E ∈ (Edges − {E0}) : X [E] =

⊔
E′∈epred(E)

Fnpred(E)(X [E′], E). (3)

As described in standard literature e.g. [13], if flow functions are monotonic,
JA � SA. In particular, CVS � JVS � SVS . Note that the least solution always



Dataflow Analysis for Datarace-Free Programs 207

exists, but may not be computable for value set analysis. If the underlying lattice
has bounded height, the least solution for A can be computed using an algorithm
like Kildall’s [14].

5.2 Abstractions of Value Set Semantics

In this section, we define consistent abstractions [4] of the value set semantics.
An analysis A = (L,F), where L = (D,�), is a consistent abstraction of VS if
there are a monotonic abstraction function α : ValueSets → D and a monotonic
concretization function γ : D → ValueSets, such that

– ∀x ∈ D : x = α(γ(x)).
– ∀vs ∈ ValueSets : vs � γ(α(vs)).
– ∀E ∈ Edges : SVS [E] � γ(SA[E]) and α(SVS [E]) � SA[E].

Cousot and Cousot [4] provide sufficient “local” conditions to check that one
abstraction is a consistent abstraction of another.

5.3 Null-Pointer Analysis

In this section, we describe a simple null-pointer analysis NPA as an example of
a consistent abstraction of the value set analysis. This analysis can be used to
prove a pointer to be non-null when it is dereferenced. Given a program P , an
abstract state is a map of the form LVals → {NonNull ,MayNull}, where LVals
is the set of lvalues in P . The domain of the analysis DNPA is a set of all such
maps. The concretization function γ : DNPA → ValueSets is defined below for
d ∈ DNPA:

γ(d)(l) =
{

Values if d(l) = MayNull
Values − {NULL} if d(l) = NonNull .

Similarly, if a value set contains NULL, the abstraction function maps it to
MayNull , otherwise to NonNull .

For d1, d2 ∈ DNPA and l ∈ LVals , the join operation is defined below:

d1 � d2(l) =
{

NonNull if d1(l) = d2(l) = NonNull
MayNull otherwise.

The flow functions for a node N , edge E and state d are given below. By d[l ← a]
we denote a map same as d except that d(l) = a.

If N is of the form if (l != NULL):

FN (d,E) =
{
d[l ← NonNull ] if E is the true edge
d otherwise.

If N is of the form l := e:

FN (d,E)(l′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
NonNull if l′ = l, e is an lvalue, and d(e) = NonNull
d(l′) if l′ /∈ AliasSet(l) and l /∈ AliasSet(deref (l′))
d(l′) if l′ ∈ AliasSet(l), e is an lvalue,

and d(e) = NonNull
MayNull otherwise.
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The flow functions for all other statements are identity functions. It is easy to
see that this is an abstraction of the value set analysis.

6 Analysis for Concurrent Programs

Given a concurrent program P and a dataflow analysis A for sequential pro-
grams, our technique converts A to an analysis for P that is sound if P is
datarace-free and A falls into the class of analyses described in Section 5. We
assume availability of a sound may-alias analysis. For example, flow-insensitive
may-alias analyses such as [1] are sound for concurrent programs.

1. Construction of the sync-CFG: We first construct an extended CFG C
for P , called sync-CFG, as follows. We begin by taking the disjoint union
of the CFGs of threads of P . We then add the may-synchronize-with (msw)
edges between nodes of these CFGs as described below. These edges are
added between nodes that might participate in a synchronizes-with relation
at runtime. More specifically, we add the the following types of edges:
1. From a spawn node to the start node of the child thread.
2. From an end node to the corresponding join node of the parent thread.
3. From an unlock node to a lock node, if they access the same lock and

if the corresponding threads may run in parallel.
In case the exact set of edges are difficult be compute, we can use any over-
approximation of it. For example, if locks can be aliased (not possible in the
language described in Section 4.1), we use the may-alias analysis to find out
whether a lock/unlock pair may access the same lock variable at run-time.
Similarly, simple control flow based techniques can be used to conservatively
detect whether two threads can run in parallel. Figure 1 shows the msw
edges added for the shown program fragment.

2. Constructing Flow functions: Flow functions of the synchronization
statements are simply identity functions. Flow functions of other nodes are
same as that of A.

3. Constructing and Solving Flow Equations: The sync-CFG C corre-
sponds to a (non-deterministic) sequential program. We construct the flow
equations for our analysis A over C as given in Equation 3. Finally, we
compute the least solution of these set of equations over the sync-CFG C.

Interpreting the Result. As we show in Section 7, the solution given by our
technique conservatively approximates the value sets of relevant lvalues at a
program edge, while it may not be sound for non-relevant lvalues. Hence the
client of the analysis must use the result to reason about only relevant lvalues.
For example, in the program of Figure 1, our analysis wrongly concludes that
p->data must be non-null at C1, but p->data is not relevant at C1. On the other
hand, it finds p->data to be non-null at C3 where it is relevant and this fact is
sound.
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Alternatively, to present a solution that is sound for all lvalues, we define
a program dependent operation havoc on value set states as follows. For vs ∈
ValueSets, E ∈ Edges and l ∈ LVals,

havoc(vs , E)(l) =
{

Values if l is not relevant at E
vs(l) otherwise.

Then for an abstract analysis A, α(havoc(γ(SA)[E], E)) (or any conservative
approximation of it) is the final solution at edge E. This step essentially sets
the abstract values of non-relevant lvalues at every program point to the most
conservative value. Hence, this method produces useful results only for relevant
lvalues at each program edge, but is sound for all lvalues.

As each component analysis can be computed in time polynomial in size of
the original program, the entire algorithm takes time polynomial in size of the
original program.

7 Proof of Soundness

7.1 For Value Set Analysis

In this section we prove that given a datarace-free concurrent program P , the
solution characterized by the technique described in Section 6 is a conservative
approximation of the collecting semantics defined by Equation 1 for value set
analysis with respect to the relevant lvalues at each program edge. Note that the
least solution to the equation system 3 is a conservative approximation of the
JOP solution over the sync-CFG C of P . Thus it is sufficient for our purpose
to argue that if there is an execution of P in which an lvalue l has a value v
at a program edge E where l is relevant, then there is an initial path in the
sync-CFG to E along which the value v is included in the value set of l at E.
This is shown in Lemma 2 below. We begin with a lemma that will be useful in
proving Lemma 2.

Lemma 1. Let E = 〈a0, . . . , aj〉 be an execution of the program P . Let l be a
relevant lvalue at stmt(aj) and v = pre(aj)(l). Let M be the set of memory
locations corresponding to the lvalues {l} ∪ deref (l) at aj. Let ai, i < j be the
last action before aj that writes to a memory location in M . Then there exists
a static path Π in the sync-CFG C from stmt(next(ai)) to stmt(prev (aj)) such
that ∀vs ∈ ValueSets : v ∈ vs(l) ⇒ v ∈ FΠ(vs , E)(l), where E = eprev(aj).

Proof. As l is relevant at stmt(aj), aj reads all the memory locations of M . As
ai is the last action before aj that writes to one of these memory locations, ai
and aj are conflicting. As the program is datarace-free, we must have ai ≤Ehb
aj . Recall that the happens-before relation is the reflexive transitive closure
of program-order and synchronizes-with relations. It is easy to see that if for
two actions b and b′ from E , b <Epo b

′ or b <Esw b′, then there is an edge in
C from stmt(b) to stmt(b′). Hence, a path Π ′ from stmt(ai) to stmt(aj) in C
can be constructed by joining the edges of C corresponding to these po and sw
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relations. As neither ai nor aj can be synchronization actions (they read/write
to lvalues), hence, in Π ′, stmt(ai) is succeeded by stmt(next(ai)) and stmt(aj)
is preceded by stmt(prev(aj)). Clearly, this path is a subsequence of the list of
nodes corresponding to ai, . . . , aj . We further obtain Π from Π ′ by excluding
stmt(ai) and stmt(aj) from Π ′.

By contradiction, let vs be a value set state such that v ∈ vs(l) and
v /∈ FΠ(vs , E). Then there must be a node N and an edge E in Π such
that E ∈ esucc(N) and there is a value set state vs ′ such that v ∈ vs ′(l) and
v /∈ FN (vs ′, E)(l). From the definition of flow functions from Section 5.1, this
can be possible only in the following two cases:

– N is an assignment to l. As ai was the last assignment to any memory
location in M , the memory location corresponding to l does not change after
ai till aj . If LHS of N was l, then the corresponding action in ai+1, . . . , aj−1
must have written to a memory location in M , which is not possible because
of the choice of ai.

– N is a branch statement and E is the true successor edge and the condition
e is such that it does not evaluate to true when l has a value v. This is not
possible as the execution took the true branch E with the value v in l. The
argument is similar for the false branch.

Hence, there can be no such vs and the lemma is proved. ��
Lemma 2. Let E = 〈a0, . . . , aj〉 be an execution of P . Let l be an lvalue relevant
at stmt(aj) and v = pre(aj)(l). Let N = stmt(aj) and E ∈ epred(N) in C.
Then there exists an initial static path Θ in C from NM

0 up to E, such that
v ∈ FΘ(�, E)(l).

Proof. We prove the lemma by induction on the length k = j + 1 of the
execution E .

Base case: If k = 0, Θ = ε (empty path) and FΘ(�, E) = �. Clearly, v ∈ �(l).
Induction step: Let us assume the result for k < n and consider the case for

k = n.
Let ai be the last action in E before aj which writes to a memory location

corresponding to the lvalues in {l}∪deref (l) at aj . Then we have v = post(ai)(l)
as the value contained in l cannot change after ai in E . As N̂ = stmt(ai) is an
assignment statement, let us denote the singleton edge in esucc(N̂) by Ê. Then
either of the following is true:

1. N̂ writes to a memory location corresponding to an lvalue in deref (l) at
aj . In this case, any path Θ̂ from NM

0 to N̂ (both inclusive) in C will have
v ∈ FΘ̂(�, Ê)(l), as the flow function of N̂ sets the value set of l to Values .
It is easy to see that if a node gets executed, then there is a path from NM

0
to that node in C.

2. N̂ writes to the memory location corresponding to l. Let the RHS be the
expression e. As the length of 〈a0, . . . , ai〉 is less than k, by the induction
hypothesis, there is a path Θ′′ from NM

0 up to but not including N̂ , such
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that for all lvalue l′ read in e, v′ = pre(ai)(l′) ⇒ v′ ∈ FΘ′′ (�, epred(ai))(l′).
Let Θ̂ = Θ′′.N̂ . From the definition of static flow function, this implies
v ∈ FΘ̂(�, Ê)(l).

Now let Π be the path from stmt(next(ai)) to stmt(prev (aj)), excluding both, as
given by Lemma 1. Clearly, E = eprev(aj). Let Θ = Θ̂ ·Π . As v ∈ FΘ̂(�, Ê)(l)
and v = post(ai)(l), using Lemma 1, we have v ∈ FΘ(�, E)(l). ��
We finally prove the following soundness theorem:

Theorem 1. Let P be a datarace-free concurrent program. Let SVS be the so-
lution returned by our technique and let CVS be the collecting value set of P . If
l is an lvalue relevant at an edge E, then CVS [E](l) ⊆ SVS [E](l).

Proof. As already observed in the beginning of this section, since our analysis
finds a conservative approximation of the join-over-all-paths solution over the
paths of sync-CFG C of P , it is sufficient to show that if there is an execution
of P which has a value v in an lvalue l at a program edge E where l is relevant,
then there is an initial path in C to E along which the value v is included in the
value set of l at E. This is a direct consequence of Lemma 2. Hence the theorem
is proved. ��
The following corollary is immediate from Theorem 1 and definition of havoc.

Corollary 1. For a datarace-free program P and for all edges E, CVS [E] �
havoc(SVS [E], E).

7.2 For Abstractions of Value Set Semantics

We now show that the havoced solution characterized by our technique for any
consistent abstraction of value set semantics conservatively approximates the
collecting semantics for value set analysis for a datarace-free program.

Theorem 2. Let A be a consistent abstraction of the value set semantics and SA
be the solution returned by our analysis for a datarace-free concurrent program
P . Then for all edges E, CVS [E] � havoc(γ(SA)[E], E).

Proof. From definition of consistent abstraction, SVS � γ(SA). As havoc is
monotonic, havoc(SVS [E], E) � havoc(γ(SA)[E], E). From Corollary 1, we have
CVS [E] � havoc(SVS [E], E). Thus, CVS [E] � havoc(γ(SA)[E], E). ��

8 Context-Sensitive Analysis

In this section, we describe how a context-sensitive technique, namely the call-
string approach [25], can be integrated into our framework. Due to lack of space,
we only give an informal description here - for details see [5].

A thread now consists of a number of procedures, each with their own rooted
CFGs. Each thread has an entry procedure. Execution of a thread starts with the
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execution of the start node of the entry procedure. We define two new types
of statements: CallStmt of the form <procname>(), where <procname> is the
name of some procedure, and ReturnStmt of the form return. The control flow
structure of a thread is represented by an Interprocedural Control Flow Graph
(ICFG), which is obtained by taking disjoint union of all the CFGs of all the
procedures of the thread and adding call edges (from call statements to the root
nodes of the called procedures’ CFGs) and return edges (from return statements
to the statements immediately following the corresponding call statements call-
ing the procedures containing the return statements). Note that in any CFG,
there are no direct edges from call statements to the next statements.

A call-string is a (possibly empty) sequence of call statements. The domain
of the call-string analysis consists of sets of abstract dataflow states tagged with
call-strings. Intuitively, these tags represent the call stack when an execution
reaches a program point with that abstract value. Clearly, same abstract value
can reach a program point with different tags. For sequential programs, the join
operation joins only those abstract values whose tags match. Flow functions
of nodes other than call and return do not modify the tags, but modify the
abstract values like their context-insensitive counterparts. Flow functions for call
statements do not modify the abstract value, but modify the call-string tags by
pushing the call statement. Flow functions of return statements propagate only
those abstract values along a return edge whose tags have the corresponding call
statement as the last element of the string. They also pop the last element from
such call-string tags. For details of call-string approach for sequential programs,
see [25].

In case of datarace-free concurrent programs, any abstract state reachable
at a release node tagged with any call-string should be joined with all abstract
states reachable at the corresponding acquire node, as the release and the acquire
nodes may belong to different dynamic threads at runtime and there is no relation
among the call-strings of different threads. If the abstract state corresponding
to some call-string is ⊥ at the acquire node, it implies that the call-string is not
reachable at that program node. Hence we join the propagated value only with
the call-strings that are mapped to non-bottom values. In practice, we use an
approximate but sound call-string approach where a call-string is represented
by a finite length suffix, as described in [25]. Details of our context-sensitive
technique can be found in [5].

9 Implementation

We implemented our technique into a framework named STAND (for STatic
ANanlysis for Datarace-free programs) that automatically converts dataflow
analyses for sequential Java programs to analyses for concurrent program. We
use Soot [26] as the frontend and SPARK [17] for the alias analysis. We in-
stantiated STAND for null-dereference analysis and ran it on three large Java
programs, jdbm (a transactional persistence engine), jdbf (an object-relational
mapping system) and jtds (a JDBC driver). Developers of these programs fixed
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the dataraces detected by Chord [22] and hence, they are likely to be datarace-
free. We used a 2.27 GHz Intel Xeon machine with 2 GB RAM for experiments.

We report the percentage of dereferences proven to be safe for our benchmark
programs in column % safe of Table 1. We observe that on an average, STAND is
able to prove over 80% of the dereferences safe. We compare our precision with
an unsound sequential analysis that is obtained by removing the msw edges
(except for edges from spawn to start) from a sync-CFG and running the same
underlying sequential analysis on the modified graph. Note that this analysis
is unsound as it does not account for the interference from other threads. The
column % seq-safe denotes the percentage of dereferences shown to be safe by
this unsound, sequential analysis. We observe that the difference between % safe
and % seq-safe is small. Hence it can be concluded that the loss of precision in
STAND can largely be attributed to the underlying sequential analysis. Finally,
we report the total analysis time in two parts: SPARK time denotes the time
taken by the SPARK alias analysis and STAND time denotes the time taken
by our analysis excluding alias analysis. Note that the analysis time of STAND
after alias analysis is fairly small for these benchmark programs.

Table 1. Results using STAND

Benchmark LOC (w/o lib) % safe % seq-safe STAND time(s) SPARK time(s)
jdbm 19077 79.5 81.0 2.518 35
jdbf 15923 81.9 82.8 2.883 120
jtds 66318 80.3 84.3 1.709 51

Fig. 4. Precision comparison between Radar and Stand

We also compare STAND with Radar [3] by implementing null-pointer anal-
ysis for concurrent C programs using LLVM [18] frontend. We executed Radar
and STAND on five concurrent programs (average size > 1 KLOC) implement-
ing some classic concurrent algorithms and data-structures. The precision results
given in Figure 4 shows that STAND is consistently more precise than Radar. We
manually confirmed the reason behind this precision difference is that Radar kills
a dataflow fact whenever some other thread possibly affects that fact whereas
STAND propagates the exact facts from one thread to another. The analysis
time of STAND for these programs is only 0.8 seconds on average.
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Abstract. Information-flow policies can express strong security requirements
for programs run by distributed parties with different levels of trust. However,
this security is hard to preserve as programs get compiled to distributed systems
with (potentially) compromised machines. For instance, many programs involve
computations too sensitive to be trusted to any of those machines. Also, many
programs are not perfectly secure (non-interferent); as they selectively endorse
and declassify information, their relative security becomes harder to preserve.

We develop a secure compiler for distributed information flows. To minimize
trust assumptions, we rely on cryptographic protection, and we exploit hard-
ware and software mechanisms available on modern architectures, such as secure
boots, trusted platform modules, and remote attestation.

We present a security model for these mechanisms in an imperative lan-
guage with dynamic code loading. We define program transformations to generate
trusted virtual hosts and to run them on untrusted machines. We obtain confi-
dentiality and integrity theorems under realistic assumptions, showing that the
compiled distributed system is at least as secure as the source program.

1 Programming with TPMs

When designing or reviewing the security of a system, a first step is to identify its trusted
computing base (TCB), that is, the set of components that need to be trusted to achieve
a given level of security. For general-purpose networked machines, this set is large and
complex; it includes the hardware, an operating system, a runtime environment and their
libraries (maybe 108 LOCs overall) plus drivers, applications, and dynamically loaded
code. This leads to a best-effort approach to security, at odds with formal verification,
which provides strong guarantees only for smaller, simpler systems.

Minimal TCBs. Modern computer architectures provide hardware support for reduc-
ing TCBs and protecting privileged operations. Thus, most computers come bundled
with some form of secure coprocessor with a dedicated secure instruction set—for ex-
ample, most laptops now embed a Trusted Platform Module (TPM) (TCG, 2005) and
many high-end processors feature a special late launch functionality (AMD’s Secure
Virtual Machine Architecture, 2005, and Intel’s Trusted Execution Technology, 2009).
These instructions can run a given piece of code in isolation, with strong code-based
identity and privileged cryptographic operations, for instance to seal persistent state
or to perform remote attestation. Such hardware mechanisms can greatly reduce the
TCB of security applications, by removing the need to trust the host operating system

G. Barthe (Ed.): ESOP 2011, LNCS 6602, pp. 216–235, 2011.
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and other applications, and thus help protect critical data and computations from mali-
cious software. TPMs are routinely used for secure booting, e.g. BitLocker (Microsoft,
2006) guards access to the master keys for disk encryption, so that the disk content
may be read only after authenticating the user and the operating system. Research pa-
pers also describe e.g. how to build secure online payment systems (Balfe and Paterson,
2008) and how to use late launches to run small pieces of application code in isolation
(McCune et al., 2008, 2009). Still, the secure instructions are remarkably seldom used
in practice. We believe that the complexity of their low-level interface and the lack of
programming tools are major obstacles to their mainstream adoption for writing secu-
rity applications.

Information-flow security. At a more abstract level, language-based security often relies
on information flow policies (Denning, 1976; Myers and Liskov, 2000). Each variable
is assigned a level in a security lattice; this level indicates the intended integrity and
confidentiality of any information stored in this variable. Thus, a program is deemed
completely secure (non-interferent) if an adversary that can access only low-level in-
formation cannot gain (or influence) any higher-level information by executing the pro-
gram. Static analyses and type systems have been developed to verify that a program
is secure with regards to a given policy. Further, it is sometimes possible to compile
such programs to a given system while preserving their security properties. Hence, Jif
(Myers et al., 2001) and FlowCaml (Pottier and Simonet, 2003) provide security type-
checking for Java and Caml, respectively. Further, Jif/Split (Zdancewic et al., 2002;
Zheng et al., 2003) and Swift (Chong et al., 2009) automatically partition distributed
programs into local code, each running at a given security level, representing the level
of trust granted to each host in a distributed system. As can be expected, program
partitioning fails when no host is sufficiently trusted to run some parts of the com-
putation, such as code that operates on secrets provided by mutually-suspicious parties.
Cryptographically-blinded evaluation techniques (Diffie and Hellman, 1976) can some-
times solve this problem, but with a high performance overhead. Instead, in this paper,
we systematically rely on secure hardware to virtually ‘boot’ short-lived, trusted envi-
ronments for executing privileged code.

Example: applying for a loan. Consider a program involving two parties, a bank that
offers loans, and a client that wishes to apply for a loan without disclosing private
information (at least until the loan is granted). Suppose also that the bank does not want
to disclose the parameters used for evaluating loan applications. Although the client and
the bank do not trust one another, they may agree to securely run the loan-evaluation
code on a TPM-enabled client machine. This simple computation is depicted below.

The bank sends its (encrypted, signed) secret input (xb) to the client; the client for-
wards it to the code running the loan evaluation, together with its own input (yc), using
shared local memory; after securely booting, the TPM-protected code decrypts its in-
put, evaluates the loan, and returns its results; finally, the client gets its result (y′c) and
may forward the (encrypted, signed) output (x′b) to the bank if the loan is granted.

The messages passed between the bank and TPM-protected code must be crypto-
graphically protected, so that for instance the bank input may be read and processed
only by that code—not by the client or the network. The code protected by the TPM
is short but complex as regards information flows: the inputs are endorsed (letting the
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client accept the bank input and vice versa) then the outputs are declassified (releas-
ing partial information from the client input to the bank and vice versa). Also, this
code must refuse to run multiple loan evaluations for different client inputs without the
bank’s consent, as this may enable the extraction of the bank input.

Compiling with minimal TCBs. We compile imperative programs with security and lo-
cality annotations to distributed programs using cryptography and TPMs, and we show
that our compilation scheme preserves information-flow security under standard cryp-
tographic assumptions.

To this end, we specify a subset of the TPM instructions within a core imperative
programming language. Our model aims at formal simplicity while still reflecting the
main security features of hardware and cryptographic specifications, at a level of detail
sufficient for reasoning about information flows. We model secure instructions to man-
age monotonic counters; measure code; run code in isolation; cryptographically sign
data using the private attestation key of the TPM; and cryptographically seal and unseal
data associated with some code.

We use this imperative language as the target of a new security-preserving compiler,
built by adapting and extending recent work on cryptographic support for enforcing
information-flow policies (Fournet and Rezk, 2008; Fournet et al., 2009). In their work,
imperative commands are annotated with a host location, indicating where to run the
command. Each location is also given a security level, used to type the source program.
Their compiler, CFLOW, generates a protocol for securing the transfer of control be-
tween locations, as specified by the control flow of the source program, and selective
encryption and authentication for securing the exchange of data.

We add support for dynamic code linking and a more permissive type system, en-
abling us to compile source programs that perform almost arbitrary declassifications
and endorsements. We also provide runtime support for implementing highly-trusted
locations by relying on secure instructions on relatively less trusted machines. Hence,
we obtain distributed systems composed of ordinary application code and privileged
code, with custom cryptographic support to coordinate their execution, such that all
information-flow properties of the source program are preserved.

In summary, our main contributions are:

1. An operational semantics for modelling TPM-based security, focusing on TCB re-
duction by higher-order programming, with sample code and security properties.

2. A robust, flexible extension of CFLOW, enabling endorsement and declassification
in typed source programs, with improved security definitions and theorems.

3. A compilation scheme for booting trusted hosts on demand, taking advantage of
TPM attestation, with correctness and security theorems.
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Contents. Section 2 defines an imperative, probabilistic, higher-order programming
language. Section 3 defines information-flow policies, active adversaries, and target
security properties. Section 4 describes and formalizes secure hardware instructions.
Section 5 presents the CFLOW compiler and its theorems. Section 6 shows how to use
TPM capabilities to implement secure virtual hosts, such as those produced by CFLOW.

An extended paper, the CFLOW compiler, and various code samples are available at
http://msr-inria.inria.fr/projects/sec/cflow. The extended paper
presents additional materials, including proofs; experimental results obtained by adapt-
ing CFLOW to generate statically-linked C code and running it on several small virtual
machines; discussions on our shared memory model and scheduling; and additional re-
sults on attested boot sequences when the adversary can schedule, reboot, and corrupt
host machines (but not their TPMs).

2 An Imperative Higher-Order Language

We define a probabilistic while-language with a command to turn data into executable
code, used later to model dynamic code loading and TPM capabilities. The grammar
for expressions and commands is

e ::= x | op(e1, . . . , en)
P ::= x := e | x := f(x1, . . . , xn) | skip | P ;P

| if e then P else P | while e do P | link e [P̃ ] � | X

where op and f range over deterministic and probabilistic n-ary functions, respectively,
with arity n ≥ 0. Expressions e consist of variables and operations. We write op for
nullary constructors op(). We assume given (polynomial-time) functions for standard
boolean and arithmetic constants (0, 1, . . . ) and operators (||, +, . . . ). Commands P
consist of variable assignments, using deterministic expressions and probabilistic func-
tions, composed into sequences, conditionals, and loops, plus a link command for dy-
namically loading, linking, and running code. We write P̃ for a tuple of commands
P1, . . . , Pn for some n ≥ 0. Command variables X are placeholders for commands,
bound in command contexts and when running link commands. As usual, we often
use anonymous command variables in command contexts, writing P [Q̃] instead of
P [Q̃/X̃]. For instance, (X1;X2;X1)[P1,P2] stands for P1;P2;P1.

Commands as Data. We use data constructors to represent commands (and their ex-
pressions) as expressions, such as op if(e1,e2,e3) for conditionals and op x for vari-
able x. For instance, the command c := c + 5 is represented by op assign(opc, (op plus
(opc,5))). To ease the writing of expressions representing commands, we let 〈P 〉 be the
expression that represents command P . Command expressions can also contain vari-
ables; these variables are quoted within 〈P 〉. For instance, the expression op assign(opc,
(op plus(opc,t))) is written 〈c := c + ‘t〉.

The command link e [P̃ ] � dynamically checks that the result of expression e repre-
sents a valid command at level � (the role of � is explained below) parameterized by
subcommand variables P̃ , and then runs that command after replacing each Xi with

http://msr-inria.inria.fr/projects/sec/cflow
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the command Pi. We write link e � instead of link e [] � when P̃ is empty. These checks
occur at link-time, before running the command, as would be the case with a high-level
virtual machine. In contrast, low-level protection for executable and data memory is
usually enforced later, at runtime (e.g. by triggering memory page faults). Thus, for in-
stance, information flows due to low-level memory error handling are outside the scope
of our model. See also Askarov and Sabelfeld (2009) for a information-flow model of
dynamic loading with run-time monitoring.

Probabilistic Semantics. The full paper details our operational semantics; in this pre-
sentation we only present our main notations. We use a probabilistic semantics mainly
to model cryptographic algorithms as commands.

Program configurations are of the form 〈P, μ〉 where P is a program and μ is a mem-
ory, that is, a function from variables to values. Our operational semantics is defined by
a probabilistic reduction step relation�p between configurations, with 0 < p ≤ 1. We
give below our rule for link commands (with p = 1).

(LINK)
[[e]](μ) = 〈P 〉 � P : �

〈link e [P̃ ] �, μ〉�1 〈P [P̃ /X̃], μ〉
We write Pr[〈P, μ〉;ϕ] for the probability that P terminates with a final memory that
meets condition ϕ. When P always terminates, that is, Pr[〈P, μ〉; true] = 1, we write
ρ∞(〈P, μ〉) for the final distribution of memories obtained by running P with initial
memory μ. For a given domain X , we write μ|X for μ restricted to X and ρ|X for the
projection of ρ onX , that is, ρ|X(μ|X) =

∑
μ′|μ|X=μ′

|X
ρ(μ′).

Cryptographic assumptions. We consider only polynomial-time commands, and rely
on standard computational definitions and assumptions for cryptography primitives; see
the full paper for the details.

We use functions Ge, E , D and GSE , SE , SD for public-key and symmetric-key
generation, encryption, and decryption; functions Gs(), S, and V for public-key gener-
ation, signing, and verification; functions GM, M, and VM for MAC key generation,
computation, and verification; and functions G and H for pseudo-random hash function
initialization and application.

3 Information Flow Security

Next, we define information-flow policies, we describe their enforcement by typing,
and we discuss support for potentially-unsafe information flows. We then model ac-
tive adversaries as command contexts, and give the general form of our target security
properties.

Security Labels. We annotate each variable with a security label. These labels specify
the programmer’s security intent. Except for dynamic links, they do not affect the op-
erational semantics of programs. The security labels form a lattice (L,≤) obtained as
the product of two lattices, for confidentiality levels (LC ,≤C) and for integrity levels
(LI ,≤I). We write ⊥L and �L for the smallest and largest elements of L, and � and �
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(TSUBC)
� P : � �′ ≤ �

� P : �′

(TFUN)
� ỹ : Γ (x)

� x := f(ỹ) : Γ (x)

(TSEQ)
� P : � � P ′ : �

� P ; P ′ : �

(TSKIP)

� skip : �
(TCOND)
� e : � � P : � � P ′ : �

� if e then P else P ′ : �

(TWHILE)
� e : � � P : �

� while e do P : �

(TVAR)

� X : (⊥C ,�I)

Strict rules:

(TASSIGN STRICT)
� e : Γ (x)

� x := e : Γ (x)

(TLINK STRICT)
� e : � � P̃ : (⊥C ,�I)

� link e [P̃ ] � : �

Lax rules:

(TASSIGN ENDORSE)
� e : (c, ) c ≤ C(x)

� x := e : Γ (x)

(TASSIGN ROBUST)
� e : (c, ) c �≤ C(x)

� x := e : Γ (x) � (�C , R(c))

(TLINK PRIVILEGED)
� e : � � P̃ : � � ≤ �′

� link e [P̃ ] �′ : �

Fig. 1. Security type system (for a fixed policy Γ )

for the least upper bound and greatest lower bound of two elements of L, respectively.
We write ⊥C , ⊥I , �C , and �I for the smallest and largest elements of LC and LI ,
respectively. In examples, we often use a four-point lattice defined by LH < HH < HL
and LH < LL < HL, where LH for instance is low-confidentiality high-integrity.

For a given label � = (�C , �I) of L, the confidentiality label �C specifies a read
level for variables, while the integrity label �I specifies a write level; the meaning of
� ≤ �′ is that �′ is at least as confidential (can be read by fewer entities) and at most as
trusted (can be written by more entities) than � (Myers et al., 2006). We let C(�) = �C
and I(�) = �I be the projections that yield the confidentiality and integrity parts of
a label. Hence, the partial order on L is defined as � ≤ �′ iff C(�) ≤C C(�′) and
I(�) ≤I I(�′). We overload ≤C and ≤I , letting � ≤C �′ be C(�) ≤C C(�′) and � ≤I �′
be I(�) ≤I I(�′). We let �I

·= (⊥C , I(�)) be the label with low confidentiality and the
integrity of �.

Policies. Memory policies are functions Γ from variables to security labels. We define
low equality between memories, memory distributions, and distributions, relative to a
label � ∈ L: letting S = {x | Γ (x) ≤ �}, we define μ =� μ

′ as μ|S = μ′|S , ρ =� ρ
′ as

ρ|S = ρ′|S , and d =� d
′ as d|S = d′|S .

A Strict Type System for Non-interference. As a starting point, we equip our language
with a type system that enforces (termination-insensitive) non-interference. Typing
judgments for commands are of the form Γ � P : �. We often omit the policy Γ
when it is clear from the context.

The typing rules for commands appear in Figure 1 (excluding the ‘lax’ rules). We
omit the standard typing rules for expressions, such that � e : � when Γ (x) ≤ � for
each variable x read in e. This type system is similar to those typically used for non-
interference (see e.g. Sabelfeld and Myers, 2003). The only new rule is TLINK STRICT:
the command link e [P̃ ] �, when executed, will check that the expression e represents
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a valid command at level � before running it. Accordingly, we type the command also
at level �, after checking that its actual auxiliary commands have level (⊥C ,�I), as
anticipated by rule TVAR. (We considered typing auxiliary commands and command
variables at other levels, but this is not needed for our present purpose.) We also check
that the expression e has level �, to keep track of the implicit flow from command values
to their runtime effects. To illustrate this rule, consider two variables secret and x at
levels �s = Γ (secret) and �x = Γ (x) such that �s � �x. We have:

1. x := secret is not typable.
2. � link 〈x := secret〉 � : � but runtime type checking will fail.
3. link 〈x := ‘secret〉 �x is not typable (preventing a flow from the command expres-

sion).
4. � link 〈x := ‘secret〉 �s : �s but runtime type checking will fail.
5. link 〈if secret then X〉[ x := 0 ] �s is not typable unless �x = (⊥C ,�I).
6. � link 〈if secret then X〉[ x := 0 ] �s : �s if �x = (⊥C ,�I) but runtime type check-

ing will also fail (preventing an implicit flow from running the auxiliary command).

With the strict typing rules, typing guarantees non-interference:

Theorem 1 (Non-interference). Let Γ be a security policy, P a (strictly) well-typed
command, � ∈ L, and μ0 and μ1 two initial memories such that P always terminates.

If μ0 =� μ1, then ρ∞(〈P, μ0〉) =� ρ∞(〈P, μ1〉).

Declassifications and Endorsements. Our strict type system thus excludes many useful
programs that (by design) selectively declassify secrets or endorse untrusted values.

Example 1 (Password protection). Consider a program that releases a secret after veri-
fying a password entered in variable guess:

if guess = pwd then r := secret

with Γ (guess) = LL, Γ (pwd) = HH, Γ (r) = LH, and Γ (secret) = HH. Although
this program is arguably secure, it endorses guess (which is a priori untrusted), declas-
sifies the outcome of the test (which is secret, since pwd is), then possibly declassi-
fies secret.

Consider now a system that provides a subcommand that conditionally releases a
secret after verifying a password, and tolerates up to three failed attempts (to protect
against brute-force attacks on the password):

c := 0;
link a[if c < 3 && guess = pwd then r := secret else c++] LL

using a counter variable c with Γ (c) = LH and a variable a with Γ (a) = LL for dy-
namically loading code that may call this subcommand. Intuitively, a contains arbitrary
low-level code, representing an active adversary, that cannot leak pwd or secret and
cannot write pwd, secret, or c. If linking succeeds, this code can only access the se-
cret by calling its privileged subcommand, and only the first three calls may succeed.
For instance, running the command above with an initial memory where a is set to the
command



Compiling Information-Flow Security to Minimal Trusted Computing Bases 223

guess := 0; while guess < 10 && r = 0 do { X; guess++ }
leaks secret to r only if pwd is 0, 1, or 2. More generally, if we also assume that pwd is
sampled at random, the probability that any adversary command learns anything about
secret is bounded by the sum of the probabilities of the three most probable passwords
(3/N if there are N uniformly distributed passwords).

We intend to compile such programs, letting the programmer take responsibility for the
source properties of her program, but still ensuring that the compilation process does
not introduce any further potentially-unsafe information flows.

Robustness. In the example above, the programmer deliberately declassifies informa-
tion. Moreover, the declassification depends on the low-integrity variable guess, thereby
letting the adversary influence what is declassified. This is generally dangerous; for in-
stance, our example would be entirely broken with Γ (pwd) = HL. Conversely, a de-
classification is robust when it does not depend on low-integrity data, and thus cannot
be influenced by active adversaries (Zdancewic and Myers, 2001; Sabelfeld and Myers,
2004; Chong and Myers, 2006; Askarov and Myers, 2010). We support non-robust de-
classifications, treating them as a high-integrity endorsement followed by a robust de-
classification, and we rely on a robustness function, R : LC → LI , that indicates the
minimum integrity level required to declassify each confidentiality level. Although we
allow endorsement and non-robust declassification, in the following, we still usually
demand that our security policies be robust:

Definition 1 (Robust policies). For a given robustness function R, � ∈ L is robust
when I(�) ≤ R(C(�)); Γ is robust for R when Γ (x) is robust for all x ∈ dom(Γ ).

A More Permissive Type System. For typing source programs, we define a new type
system, whose typing rules allow declassifications and endorsements but take them into
account to compute the level of the command (sometimes called its ‘program counter’
level). The typing rules appear in Figure 1, using three new ‘lax’ typing rules instead
of the ‘strict’ ones. The rules TASSIGN ENDORSE and TASSIGN ROBUST are two general-
ization of rule TASSIGN STRICT. TASSIGN ENDORSE is TASSIGN STRICT only when e has
at least the integrity of x; otherwise, the assignment endorses e. Irrespective of e, the
command is typed at the level of x. TASSIGN ROBUST enables the declassification of e
into x (c � C(x)) but it records this privileged operation by raising the command type
up to the associated robust integrity level R(c). The rule TLINK PRIVILEGED general-
izes TLINK STRICT by allowing the caller to link e with auxiliary commands at arbitrary
levels of integrity, but it records those levels in the type of the command. This endorses
at link-time any calls to the auxiliary commands, since dynamic typing of the callee
ignores the integrity of auxiliary command variables (rule TVAR).

The lax type system enforces two fundamental properties. First, if a command has
level �, then it does not write variables below �. Second, a command at level � may
declassify values of confidentiality c only if I(�) ≤ R(c).

Theorem 2 (Containment). Let Γ be a policy, � ∈ L, P a command, and μ a memory
such that P terminates. If � P : �′ and �′ �≤ �, then ρ∞(〈P, μ〉) =� μ.
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Theorem 3 (Robust non-interference). Let Γ be a policy, � ∈ L, c ∈ LC such that
I(�) �≤ R(c), andL = {x | c � C(x)}. Let P be a command and μ0, μ1 memories such
that P terminates. If � P : � and μ0|L = μ1|L, then ρ∞(〈P, μ0〉)|L = ρ∞(〈P, μ1〉)|L.

Active Adversaries. In the following, our security properties are parameterized by the
power of the adversary, defined by a security level α ∈ L. We say that a command A
is an adversary command (respectively an adversary command context) if it reads only
variables of lower confidentiality than C(α), write only variables of higher integrity
than I(α), and use links only with a level above α. We are interested in robustness
functions that ensure adversaries can read any variable they can write, at least when the
policy Γ is robust.

Definition 2. R is robust against an adversary level α when, for all confidentiality
levels c ∈ LC , if I(α) ≤ R(c), then c ≤ C(α).

Our next theorem guarantees that, with R robust against α and with a robust security
policy, an adversary command does not gain additional expressiveness by using link.
This justifies our condition on link in the definition of adversary commands.

Theorem 4. Let α be an adversary level, R be a robustness function robust against α,
Γ be a security policy robust for R, and A an adversary command. There exists an
adversary commandA′ with no link commands such that, for all memory μ, if A termi-
nates on μ, then A′ terminates on μ and ρ∞(〈A, μ〉) = ρ∞(〈A′, μ〉).

Properties of Program Transformations. We finally present the main properties we es-
tablish for our compiler, as regards both security and functional correctness. The prop-
erties are stated below for an abstract program transformation between source and target
programs; they are instantiated before each of our main theorems in Sections 5 and 6.

We are interested in transformations that operate on programs that are (possibly) not
perfectly secure, so we cannot define security as the preservation of non-interference.
Instead, for each of our transformations, we demand that there is an inverse map from
target adversaries to source adversaries, essentially showing how to ‘decompile’ each
attack into an attack already present before the transformation is applied.

We consider system configurations obtained by composing an imperative program
P ∈ P , an adversary (e.g. a command context) A ∈ A, and an initial state (e.g. a
memory) μ ∈ M. Their semantics is given by an evaluation function, written 〈〈·〉〉 :
P → A → M → M, and an observational equivalence on states, written ≈ ⊆ M2.
For a given program and an arbitrary adversary, we are interested in the properties of
final states up to ≈. For instance, if we consider commands for a client and a bank
scheduled by an adversary that controls the network, we may let programs range over
pairs of commandsQc, Qb, let adversaries range over binary command contexts, let ≈
be low-equality on memory distributions, and use the evaluation function

〈〈(Qc, Qb), A, μ〉〉 ·= ρ∞(〈A[Qc, Qb], μ〉)

Given definitions for source (P ,A,M,≈, 〈〈〉〉) and target (P ′,A′,M′,≈′, 〈〈〉〉′) con-
figurations, we consider program transformations, written [[·]] : P → P ′, together with
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state projections (that is, surjective functions), written π : M′ → M. (The role of π
is to erase any auxiliary variable introduced by the transformation.) We arrive at the
following definitions:

Definition 3 (Security). ([[·]], π) is secure when, for every source program P ∈ P and
target adversaryA′ ∈ A′, there is a source adversaryA ∈ A such that, for every target
initial memory μ′ ∈ M′, we have 〈〈P,A, π(μ′)〉〉 ≈ π〈〈[[P ]], A′, μ′〉〉′.
Definition 4 (Correctness). ([[·]], π) is correct when, for every source program P ∈ P
and source adversary A ∈ A, there is a target adversary A′ ∈ A′ such that, for every
target initial memory μ′ ∈ M′, we have 〈〈P,A, π(μ′)〉〉 ≈ π〈〈[[P ]], A′, μ′〉〉′.
The two definitions differ in their quantification on adversaries. Informally, all attacks
must be reflected, but not all of them need to be preserved, so we expect functional
correctness only for a well-behaved subset of adversaries, acting for instance as reliable
networks and fair schedulers, and we will use a smaller set A for Definition 4 than for
Definition 3.

4 Command Semantics for Secure Instructions

We model a core subset of the security features available on modern processors with a
TPM. Aiming at formal simplicity, we do not account for all the details of their hard-
ware specification, but still intend to reflect their gist. We set an (intuitively high) robust
security level �TPM for the hardware, and assign that level to fixed variables that model
parts of the hardware-protected memory, together with fixed commands that model se-
cure instructions and have privileged access to these variables. (Their initialization is
described at the end of the section.) We then model software as commands linked to
these privileged subcommands, thereby gaining indirect access to protected variables.

Related Work. We briefly discuss prior models and analyses for TPMs.
Abadi and Wobber (2004) give an authorization logic for a precursor of the TPM.
Gürgens et al. (2008) analyze several TCG protocols. Millen et al. (2007) study re-
mote attestation using a model-checker. Datta et al. (2009) develop a logic for reasoning
about attestation and secure boots. Our model of the TPM differs from theirs in its use
of information flows, memory policies, and cryptographic assumptions. It also covers
confidentiality properties and deals with sealing and unsealing.

Monotonic Counters. The TPM features a collection of monotonic counters, that is,
persistent protected memory whose contents can only be read and incremented, but not
reset (TCG, 2006, p 681). Such counters are essential for protection against replays.

We model just one of these counters, using a public variable c at the integrity level of
the TPM. Thus, our counter can be read by any command but it is exclusively assigned
by the fixed command INC below. In particular, c cannot be reset or decremented.

INC
·= c := c+1 Γ (c) = �ITPM

(Concretely, TPMs manage a few independent counters with finer access control, and
the operating system is in charge of restricting increments to prevent denial of service.)
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Example 2. Continuing with our password example, we may use the monotonic counter
to reliably keep track of guessing attempts:

link a[ if c < 3 && guess = pwd then r := secret else INC ] LL

Platform Configuration Registers. The TPM also features a collection of Platform Con-
figuration Registers (PCR), which are cleared when the machine reboots, then selec-
tively written by TPM commands. As detailed in the full paper, these registers usually
contain measurements of the code running on the machine. PCRs are specialized: the
first PCRs are used for static root of trust measurements as the machine boots (SRTM)
(Grawrock, 2007), while PCRs 17–19 are used for dynamic root of trust measurements
(DRTM) and may be selectively reset without rebooting (TCG, 2006; AMD, 2005).
PCRs are read as high-integrity implicit parameters for many other TPM commands,
such as attestation and seals. We model PCRs as variables hi at level �ITPM. For simplic-
ity, we use just two registers, h1 for SRTM, modified only by EXTEND1, and h17 for
DRTM, initialized by SKINIT and modified by EXTEND17, as explained below.

EXTENDi appends some code identity to hi and can be used to record a delegation
chain starting from a secure kernel (TCG, 2006, p 284). To keep the size of hi constant,
the chain is implemented as a nested hash, using a cryptographic hash functions H. We
model it as

EXTENDi
·= hi := H(hi|identity) Γ (hi) = �ITPM Γ (identity) = (⊥C ,�I)

where ‘|’ is bitstring concatenation and identity is a public-untrusted variable .
SKINIT sets the code identity in h17 to (the hash of) a new command passed as input,

usually called a ‘secure kernel’, then runs that command, and finally clears h17 (AMD,
2005, p 53). We model it as an assignment to h17 from the content of a public-untrusted
variable kernel, followed by a link of kernel with subcommands parameters that pass to
the new kernel the rest of the TPM interface (written T̃PM), then a reset of h17. We let
T̃PM

·= {INC,EXTEND17,ATTEST17,SEAL17,UNSEAL17}.

SKINIT
·= h17 := H(kernel); link kernel[T̃PM] �Isystem; h17 := 0

Thus, h17 either is at its default value 0 or it holds the identity of the kernel that is
currently running, possibly extended by a chain of hashes that records further identity
information. Concretely, the command SKINIT loads code at a privileged (kernel) level.
This is reflected in our model by the link label �Isystem. It is the responsibility of the op-
erating system to validate the kernels passed by user commands before calling SKINIT
e.g. to prevent privilege escalation. In the following, we assume that the hash function
used for all assignment to PCRs is collision-resistant and yields fixed-sized hash values
(so that concatenation of a hash with another value is injective).

Remote Attestation. Each TPM uses a fixed public-key-signature keypair, set during
manufacturing, and used to uniquely identify and authenticate this particular TPM.

ATTEST signs an input value and a subset of the PCRs with the private signing key
(TCG, 2006). The resulting signature guarantees that this value has been ‘attested’ by
a command running on a machine with this TPM and these PCR values. This signature
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can be verified by any command that knows the verification key for the TPM, typically
running on a remote machine; the verifier can then interpret the authenticated value and
PCRs. We model attestation with two variables for the TPM keypair, k+

TPM of level �ITPM
and k−TPM of level �TPM, and two commands

ATTESTi
·= tag := S(i|hi|plain, k−TPM)

VERIFYi
·= if V(i|source|plain, tag, k+

TPM) then X

with public-untrusted inputs source and plain for the presumed value of hi and the
attested value, and output tag for the signature. These commands rely on public-key
signing (S) and signature-verification (V) functions. Since the verification key is public,
VERIFY need not be a privileged command; its variable X stands for the command
guarded by the cryptographic verification.

Sealing. SEAL encrypts and signs the content of a variable together with the current
identity of the sender and the intended identity of the receiver (TCG, 2006, p 298).
Conversely UNSEAL decrypts a variable and verifies its signature, then verifies the
identity of the sender and the current identity of the receiver (TCG, 2006, p 364). The
TPM can handle several nonmigratable keys, but we only model sealing and unsealing
keyed with fixed hardware secrets s.ke and s.ka, both at level �TPM.

SEALi
·= enc := SE(plain,s.ke); mac := M(i|hi|target|enc,s.ka);

cipher := enc|mac; enc := 0; mac := 0

UNSEALi
·= enc|mac := cipher;

if VM(i|source|hi|enc, mac, s.ka)
then plain := SD(enc,s.ke) else plain := 0;
enc := 0; mac := 0

where enc|mac := cipher is syntactic sugar for assigning to enc and mac substrings of
cipher at fixed indexes (since the size of mac is fixed). As illustrated in the rest of the
paper, SEAL and UNSEAL can be used to emulate a persistent, secure memory, and to
communicate securely between TPM commands.

Security and Functionality Properties for Seals. We specify the cryptographic proper-
ties of SEAL and UNSEAL by relating them to an ideal implementation that maintains
a global table for all values sealed so far and encrypts 0s instead of the actual plaintexts.
(The full paper define similar security and functionality properties for attestation.)

SEAL0
i
·= enc := SE(0,s.ke); mac := M(i|hi|target|enc,s.ka);

cipher := enc|mac; logi := logi + ((hi|target|enc),plain)
enc := 0; mac := 0

UNSEAL0
i
·= if VM(i|source|hi|enc, mac, s.ka)

then plain := assoc(logi,(source|hi|enc)) else plain := 0;
enc := 0; mac := 0

Security means that, provided s is generated uniformly at random and no other part
of the code accesses s or log, no probabilistic polynomial program can distinguish
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between (SEAL, UNSEAL) and (SEAL0,UNSEAL0). This property can be reduced
to indistinguishability against chosen plaintext attacks for encryption and resistance
against forgery attacks for signing.

Functionality means that UNSEAL is a partial inverse of SEAL: unsealing a value
sealed with matching source and target hashes always yields the plain sealed value.

Auxiliary Notations. For convenience, we define simple macros for calling SEAL and
UNSEAL. (The full paper defines similar macros for our other security commands.)

x := SEALi(ev, et)
·= target := et; plain := ev; SEALi;

x := cipher; target := 0; plain := 0; cipher := 0

x := UNSEALi(ec, es)
·= source := es; cipher := ec; UNSEALi;

x := plain; source := 0; cipher := 0; plain := 0

Example 3. Continuing with our password example, we define code that seals the secret
and the password to itself (using the current value of h17) within a public-untrusted
variable. Thus, protected by the TPM key, the secret and the password can only be
retrieved by re-running this code. When re-run, the code behaves as in the password
example, retrieving the password and the secret then granting access to the secret if the
password is guessed in less than three attempts.

kernel := 〈
if c = 0 then store := SEAL((pwd,secret),h17)
else { pwd,secret := UNSEAL(store,h17);

if c < 4 && guess = pwd then r := secret};
INC; pwd := 0; secret := 0 〉;

SKINIT;A [SKINIT]

Assuming that, initially, c = 0 and pwd is sampled at random, the probability that a
polynomial adversary learns anything about secret is bounded by the sum of the prob-
abilities of the three most probable passwords plus the (negligible) probabilities that
the adversary finds a collision in the hash function or breaks the cryptography used in
SEAL and UNSEAL.

Initialization. The protected variables of the TPM must be initialized before use. We
write TPM0 for the initialization command. Informally, this command runs once as the
TPM is manufactured. It generates cryptographic keys and sets h1, h17, and c to zero.
For cryptographic reasons, we also need to randomly sample H in a family of universal
one-way hash functions; this is modelled as an implicit parameter ν for H. Concretely,
the public key of the TPM may also be certified by some authority, so that its high
integrity can be dynamically verified.

TPM0
·= k−TPM,k+

TPM := Ge(); s.ke := GSE (); s.ka := GM(); ν := G();
h1 := 0; h17 := 0; c := 0

5 CFLOW Revisited

We describe the CFLOW compiler, giving its specification and outlining its algorithms;
we refer to Fournet et al. (2009) for a detailed presentation. The compiler takes a source
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program plus security and locality policies, and outputs a cryptographically-protected
distributed program. We improve on earlier work by handling more source programs,
with endorsements and declassification, and by providing more precise theorems.

Source language, with locations. We consider a finite set of hosts, or locations, {1, 2,
. . . , i, b, c, v, . . . , n} intended to represent units of trust (principals) and of locality
(runtime environments). The source language is the language of Section 2 extended
with host annotations:

P ::= . . . | b : P

The locality command b : P states that command P should run on host b. Locality com-
mands can be nested, as in c : {Pc; v : Pv}. We assume that every source program has
a locality command at top level, setting an initial host. Since variables are transparently
shared between hosts, locality annotations do not affect our semantics for commands.

Typing locality commands rules. We extend our security policy to assign a level Γ (b) to
each host b; this level indicates which variables b can read and write. We only consider
robust hosts, such that I(b) ≤ R(C(b)). We use the typing rule

(TLOCALITY)
� P : � I(b) ≤I I(�)
� (b : P ) : (⊥, I(�))

The rule states that locality commands are public, thereby reflecting that the transfer of
control between hosts can be observed by the adversary.

We illustrate CFLOW for the example in the introduction. The source code and its
policy specify levels of protection, but leave the choice of cryptographic mechanisms
to the compiler. The actual source and compiled programs are available online.

Example 4 (Applying for a loan: source code). The code is

b: {xb := eb}; c:{yc := ec}; v: {x′b, y′c := f(xb, yc)}; b: {print(x′b)}; c: {print(y′c)}
It involves three hosts: a client c with Γ (c) = (Cc, Ic), a bank b with Γ (b) = (Cb, Ib),
and a ‘virtual’ host v with Γ (v) = (Cc �Cb, Ic � Ib) for the TPM-attested code on the
client machine. All variables indexed by b, c or v are private to b, c or v, respectively.
For instance, Γ (xc) = (Cc, Ic). The bank and the client first write their secret values
(in xb and yc); then v computes the two results (x′b and y′c); finally, the bank and the
client print them (locally). With this source command, for instance, an adversary at the
level of the bank cannot read the client secret, and vice versa.

Compiler transformation. The compiler inputs a command with localities P and a se-
curity policy Γ , and outputs an initialization command,Q0, used to specify initial trust
assumptions, plus a series of commands Q̃ that include one commandQi for each host i
that occurs in the source program. We write Γ ′ for the security policy of these com-
mands. Informally, Qi is a single command that implements and schedules all code
fragments of P located on i. After type checking, the compilation proceeds in 4 passes:
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1. The source program is sliced into local threads, each running on a single host.
2. The distributed control flow between threads is protected, using dynamic checks on

auxiliary program-counter variables, so that the adversary cannot run high-integrity
threads out of schedule.

3. Relying on a single-static-assignment transformation, each variable shared between
different hosts (including the program counters) is replaced by a series of local
replicas, with explicit transfers between replicas.

4. Depending on their security levels, memory transfers between replicas are cryp-
tographically protected, by inserting encryptions to transfer instead low-confiden-
tiality encrypted values, and inserting authentication primitives to transfer instead
low-integrity values. The compiler determines which symmetric keys to use for
these operations, and generates an initial key-exchange protocol to distribute them.
After this pass, the only variables shared between different hosts are (1) the signa-
ture verification keys used by the initial protocol, and (2) public-untrusted variables
at level (⊥,�). (The compiler also generates untrusted code for scheduling these
commands and transferring public-untrusted data.)

These 4 passes define a program transformation Q0, Q̃
·= [[P ]] such that each com-

mandQi has type �Ii . Next, we instantiate Definitions 3 and 4 for this transformation.

Source programs and their adversaries. We let source programs range over well-typed
polynomial commands with locality annotations Informally, source programs enable
their active adversaries to run whenever they pass control between hosts (since the ad-
versary controls at least the network). To each source command P , we associate the
command context P̂ obtained from P by replacing every subcommand of the form
b : P ′ by a command context with two command variables X ;P ′;X ′. For a given ad-
versary level α, we let Ã range over tuples of polynomial adversary commands, with
one command for each command variable. Hence, P̂ [Ã] ranges over commands that
interleave the code of P with adversary commands. (This is analogous to models of
non-interference for concurrency, where the adversary runs between any two program
steps.) Thus, we define source evaluation by

〈〈P,A, μ〉〉 ·= ρ∞〈P̂ [A], μ〉

Implementations and their adversaries. Implementation programs range over our com-
piler outputsQ0, Q̃. OnceQ0 has run, we simulate concurrency by letting the adversary
explicitly schedule commands (Q̃) that represent parallel threads of computation (rather
than having P̂ schedule Ã). The resulting low-level model realistically accounts for all
interleavings of these threads. Implementation adversaries range over adversaries com-
mand contextsA′ with one hole for each host. Thus, we define target evaluation by

〈〈(Q0, Q̃), A′, μ′〉〉 ·= ρ∞〈Q0;A′[Q̃], μ′〉
We let π be the erasure of all variables added in Γ ′: π(μ′) = μ′|dom(μ) and we de-
fine equivalence on final memory distributions (ρ0 ≈ ρ1) as computational indistin-
guishability: for all polynomial commands T , |Pr[〈T, ρ0〉; g = 0]−Pr[〈T, ρ1〉, g = 0]|
is negligible. (We use indistinguishability instead of distribution equality because our
compiler relies on cryptographic security assumptions.)

With the definitions above, our new compilation theorem for CFLOW is
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Theorem 5. Let α ∈ L be such that R is robust against α. Let Γ be a robust policy.
([[·]], π) is secure; and ([[·]], π) is correct when α = (⊥C ,�I).
The theorem demands that the source policy Γ be robust (Definition 1), so that the ad-
versary can read any shared variable that it can write. This hypothesis stems from our
decision to support endorsements in source programs. In particular, the control flow
integrity enforced by pass 2 may otherwise fail to protect programs that combine en-
dorsements and declassifications, as illustrated below.

Example 5 (Non-robust shared variables). Consider a source program that writes a se-
cret s with Γ (s) = HH into a (non robust) variable x with Γ (x) = HL, then erases the
content of x, and finally declassifies x by copying it to p with Γ (p) = LL:

P
·= 1:{x := s}; 2 :{x := 0}; 3 :{p := x}

Let α = LL. With our source semantics, the command context

P̂
·= X1;x := s;X2;x := 0;X3; p := x;X4

ensures that p finally contains either 0 or a value written by the adversary, but not
the value of s. In the implementation, however, the two local commands at hosts 1
and 2 have low integrity, so pass 2 does not guarantee their sequential execution, and an
implementation adversary that schedulesQ2 beforeQ1 lead Q3 to declassify s into p.

Cryptographic protection (pass 4) is also problematic for programs that share non-
robust variables, such as x in Example 5. Although their confidentiality is protected
by encryption, an implementation adversary can swap their contents (by swapping their
encrypted values) and similarly lead the program to declassify the wrong data.

Simulation vs non-interference. Instead of Theorem 5, Fournet et al. (2009) show that
two classes of information-flow properties of the source program are preserved in the
implementation. Our security result is more precise; it guarantees that, for any attack
against our implementation, there is also an attack against the source program, with the
same information leakage. The theorem below confirms that our new result generally
subsumes theirs, and thus yields strong computational non-interference properties. (We
refer to Fournet et al. (2009) and to the full paper for the definitions and discussion of
their notion of computational non-interference for confidentiality and for integrity.)

Theorem 6 (Computational Non-Interference). If a transformation ([[·]], π) is secure,
then it preserves computational confidentiality and integrity.

Example 6 (Simplified implementation). Continuing with our example, and in prepara-
tion for the next section, we give a simplified, hand-written implementation of Exam-
ple 4 that illustrates the main mechanisms of CFLOW while avoiding those irrelevant
here. For instance, the ordering of xb := eb and yc := ec is irrelevant; the ordering of
xb := eb and x′b, y

′
c := f(xb, yc) is protected because x′b, y

′
c := f(xb, yc) does not run

unless xb has been verified. So, instead of the globally shared and signed programs
counter, we use one local anti-replay counter for each host. Communications between
b and v are cryptographically protected, but we let v and c share local memory (since v
will run on c’s machine). Otherwise, all the new (communication) variables are public
and untrusted; the only shared high-integrity variables are the public keys (k+

b and k+
v ).

The commands are :
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Q0
·= k−b ,k+

b := Ge(); k−v ,k+
v := Ge()

Qb
·= if cb=1 then { cb++; xb:= eb; xe := E(xb, k+

v ); xs := S(xe, k−b ) }
else if cb = 2 then { cb++; if V(x′e, x′s, k+

v ) then print(D(x′e, k
−
b )) }

Qc
·= if cc=1 then { cc++; yc := ec } else if cc=2 then { cc++; print(y′c) }

Qv
·= if cv=1 then

{ cv++; if V(xe, xs, k+
b ) then { xv := D(xe, k−v ); x′v, y

′
c := f(xv, yc);

x′e := E(x′v, k
+
b ); x′s := S(xe, k−v ) } }

6 Implementing Virtual Hosts on TPMs

Section 5 shows how to compile an imperative program with shared access-controlled
memory into a distributed program protected by cryptography. The resulting program
runs on a series of machines, and preserves the security properties of the source pro-
gram, subject to the assumption that each local command Qb of the distributed im-
plementation runs on a machine with (at least) the security of its declared level �b.
However, for many useful programs, it is difficult to find such machines for the most
trusted parts of the computation.

This section introduces a transformation that relies on secure instructions to boot
trusted virtual machines. This transformation applies to any distributed programs, in-
cluding those produced by CFLOW in Section 5. Before giving general definitions and
theorems, we illustrate the transformation on Example 6.

Example 7 (Securely booting Qv). The command Qv requires a machine trusted by
both the client and the bank. Assume that the bank trusts the client TPM for runningQv
and knows its public key for attestation. We may use the code

Q0
·= k−b ,k+

b := Ge(); k−TPM,k+
TPM := Ge(); c := 0;

Qb
·= if cb=1 then { cb++; xb:= eb;

if VERIFY(H(〈Kv〉),k+
v , certv)

[ b.k+
v := k+

v ; xe := E(xb, k+
v ); xs := S(xe, k−b ) ] }

else if cb=2 then { cb++; if V(x′e, x
′
s, k

+
v ) then print(D(x′e, k

−
b )) }

Qc
·= if cc=1 then { cc++; yc := ec } else if cc=2 then { print(y′c) }

Qv
·= kernel := 〈Kv〉; SKINIT

Kv
·= if c=0 then

{ INC; k−v ,k+
v := Ge(); certv := ATTEST(k+

v ); key := SEAL(k−v ,h) }
else if c=1 then
{ INC; k−v := UNSEAL(key,h);

if V(xe, xs, k+
b ) then { xv := D(xe, k−v ); x′v, y′c := f(xv, yc);

x′e := E(x′v, ‘k
+
b ); x′s := S(x′e, k

−
v ) } }

In contrast with the host commands of Section 5, TPM-attested host commands do
not have a persistent, protected local memory to keep their trusted key pair. Instead,
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as we dynamically set up host v, we generate its key pair, we use remote attestation
to convince the bank to encrypt its secret towards the implementation of Qv, and we
simulate the persistent local memory using seal/unseal and the TPM counter to protect
against replays.

A General Transformation. Our transformation takes as input a policy Γ , a tuple of
typed commands Q̃ for hosts b̃, including the command of a virtual host v, and a subset
of the variables x̃ of Qv (informally, x̃ represents the private, trusted local state of v).
It assumes the existence of a TPM on host a, at least as trusted as v and not used in the
source program. It generates an implementation policy Γ ′ and a series of implementa-
tion commandsQ′0, Q̃′, defined below. We let Q̃ range over commands such that

1. no command in Q̃ \Qv accesses x̃ (i.e. the variables of x̃ are local to Qv);
2. Qv does not read x̃ before initializing them;
3. � Qb : �Ib for b ∈ b̃;
4. � Qv : �ITPM (i.e. the TPM is as trusted as Qv); and
5. R(C(�TPM)) �≤ I(�b) for b ∈ b̃ (i.e. no host can access the TPM private variables).

Initialization. Recall that the commands Q̃ (including Qv) rely on trusted variables
formally initialized in Q0. In contrast, our implementation of Qv uses SKINIT, so its
own initialization is deferred until runtime and must be explicitly coded. For simplicity,
we assume that, for each host b ∈ b̃, initialization is a command of the form Q0,b

·=
k−b , k

+
b := Ge();. . . that writes private variables and generates a single keypair, with v

initialized last. We also assume that the keys written in Q0 are not overwritten in Q̃.
(These assumptions hold with the CFLOW compiler, up to a reordering of hosts.)

6. Q0
·= (Q0,b; )b�=v;Q0,v;

7. no command in Q̃ \Qb accesses variables written in Q0,b except for k+
b for b ∈ b̃

(i.e. the variables initialized in Q0,b are local to Qb);
8. no command in Q̃ writes k+

b , k
−
b for b ∈ b̃.

Implementation of Q0. Initialization is obtained from Q0 by adding initialization for
the TPM and removing initialization for v: Q′0

·= TPM0; (Q0,b;b.k+
v := 0;)b�=v .

Implementation ofQv. The commandQ′v uses SKINIT to dynamically launch a secure
kernelKv that implementsQv:

Q′v
·= kernel := 〈Kv〉; a.SKINIT

Kv
·= a.INC;

if a.c = c0
v+1 then { v.c := a.c; Qv,0; certv := a.ATTEST17(k+

v )}
else { k−v |k+

v |v.c|v.x̃ := a.UNSEAL17(storev , a.h17);
if v.c = a.c then Qv {v.x/x, x ∈ x̃}{‘k+

b /k
+
b , b �= v}};

storev := a.SEAL17((k−v ,k+
v |v.c+1|v.x̃), a.h17)); k−v , v.c, v.x̃ := 0

The variables v.x̃ (and v.c) are volatile for each run of Q′v; they can be public and
untrusted, but must be cleared before returning. By eliminating trusted and confidential
variables, the transformation lowers the level of Qv hence the level required to run it.
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The identity of Kv is verified by the other hosts, so the command Q′v itself need
not be trusted. The other new variables k+

v , certv, storev are also (formally) public
and untrusted. They need not be trusted for security, although an adversary that can
overwrite them may cause the system to fail. The value c0v is a constant of the program
and corresponds to the initial value of the TPM monotonic counter.

Implementation of Qb for b �= v, b ∈ b̃. As it runs for the first time, each host com-
mandQ′b verifies the attested public key for v and stores it in a new local variable, b.k+

v ,
a local trusted copy to be used instead of k+

v in Qb. To this end, Q′b recomputes the ex-
pected value of h, including the values for c0v and any other keys k+

b′ used in Qv, and
verifies its concatenation with the received public key k+

v using the trusted verification
key of the supporting TPM.

Q′b,i
·= if b.k+

v = 0 then { if a.VERIFY(v.H(〈Kv〉),k+
v ,certv)[ b.k+

v := k+
v ] }

else { Qb,i{b.k+
v /k

+
v } }

Implementation of Γ . The formal implementation of Γ is Γ ′ = Γ{v.x̃, v.c, k+
v , certv,

storev �→ (⊥,�)}{b.k+
v �→ �b, b �= v}.

Security and functional correctness. We express the security and functional correctness
of our transformation as instances of definitions 3 and 4. Source programs range over
commands Q̃ that meet conditions 1–8 above. Source adversaries are parameterized
by α and range over adversary command contexts for Γ . The commands of the dis-
tributed programs are scheduled by the adversary after the execution of Q0; formally:

〈〈Q̃, A, μ〉〉 ·= ρ∞〈Q0;A[Q̃], μ〉
Implementation programs [[Q̃]] range over Q̃′, as defined above. Implementation adver-
saries are parameterized by α and range over valid adversary command contexts for Γ ′.
The commands of the distributed program are scheduled by the adversary after the ex-
ecution of Q′0 but additionally, the adversary and Qv have access to protected versions
of the subroutine SKINITa: we let

S′
·= Q′0; A′[a.SKINITαI ,Q̃′, Q′v[a.SKINIT�′Iv ]]

〈〈Q̃′, A′, μ′〉〉′ ·= ρ∞(〈S′, μ′〉)
where a.SKINIT� runs a.SKINIT after testing that kernel contains code typed at level �.

We let π be the erasure of all variables added in Γ ′: π(μ′) = μ′|dom(μ) and we
define equivalence on final memory distributions (ρ0 ≈ ρ1) as computational indistin-
guishability: for all polynomial commands T such that T does not read {x̃, k−v , k+

v },
|Pr[〈T, ρ0〉; g = 0] − Pr[〈T, ρ1〉; g = 0]| is negligible. Relying on these definitions,
our main theorem for virtual hosts on TPMs is

Theorem 7. Let α ∈ L be such that R is robust against α. Let Γ be a robust policy.
([[·]], π) is secure; ([[·]], π) is correct when α = (⊥C ,�I).
Since its input and output are in the same format, the transformation and its theorem can
be applied several times to implement a series of virtual hosts using different TPMs.
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Abstract. We consider the problem of computing numerical invariants of pro-
grams by abstract interpretation. Our method eschews two traditional sources of
imprecision: (i) the use of widening operators for enforcing convergence within
a finite number of iterations (ii) the use of merge operations (often, convex hulls)
at the merge points of the control flow graph. It instead computes the least induc-
tive invariant expressible in the domain at a restricted set of program points, and
analyzes the rest of the code en bloc. We emphasize that we compute this induc-
tive invariant precisely. For that we extend the strategy improvement algorithm
of Gawlitza and Seidl [17]. If we applied their method directly, we would have to
solve an exponentially sized system of abstract semantic equations, resulting in
memory exhaustion. Instead, we keep the system implicit and discover strategy
improvements using SAT modulo real linear arithmetic (SMT). For evaluating
strategies we use linear programming. Our algorithm has low polynomial space
complexity and performs for contrived examples in the worst case exponentially
many strategy improvement steps; this is unsurprising, since we show that the
associated abstract reachability problem is Πp

2 -complete.

1 Introduction

Motivation. Static program analysis attempts to derive properties about the run-time
behavior of a program without running the program. Among interesting properties are
the numerical ones: for instance, that a given variable x always has a value in the range
[12, 41] when reaching a given program point. An analysis solely based on such interval
relations at all program points is known as interval analysis [11]. More refined numer-
ical analyses include, for instance, finding for each program point an enclosing polyhe-
dron for the vector of program variables [13]. In addition to obtaining facts about the
values of numerical program variables, numerical analyses are used as building blocks
for e.g. pointer and shape analyses.

However, by Rice’s theorem, only trivial properties can be checked automatically
[26]. In order to check non-trivial properties we are usually forced to use abstractions.
A systematic way for inferring properties automatically w.r.t. a given abstraction is
given through the abstract interpretation framework of Cousot and Cousot [12]. This
framework safely over-approximates the run-time behavior of a program.

When using the abstract interpretation framework, we usually have two sources of
imprecision. The first source of imprecision is the abstraction itself: for instance, if the
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property to be proved needs a non-convex invariant to be established, and our abstrac-
tion can only represent convex sets, then we cannot prove the property. Take for instance
the C-code y = 0; if (x <=−1 || x >= 1) { if (x == 0) y = 1; }. No matter what the
values of the variables x and y are before the execution of the above C-code, after the
execution the value of y is 0. The invariant |x| ≥ 1 in the “then” branch is not convex,
and its convex hull includes x = 0. Any static analysis method that computes a convex
invariant in this branch will thus also include y = 1. In contrast, our method avoids
enforcing convexity, except at the heads of loops.

The second source of imprecision are the safe but imprecise methods that are used
for solving the abstract semantic equations that describe the abstract semantics: such
methods safely over-approximate exact solutions, but do not return exact solutions in
all cases. The reason is that we are concerned with abstract domains that contain infinite
ascending chains, in particular if we are interested in numerical properties: the complete
lattice of all n-dimensional closed real intervals, used for interval analysis, is an exam-
ple. The traditional methods are based on Kleene fixpoint iteration which (purely ap-
plied) is not guaranteed to terminate in interesting cases. In order to enforce termination
(for the price of imprecision) traditional methods make use of the widening/narrowing
approach of Cousot and Cousot [12]. Grossly, widening extrapolates the first iterations
of a sequence to a possible limit, but can easily overshoot the desired result. In order
to avoid this, various tricks are used, including “widening up to” [27, Sec. 3.2], “de-
layed” or with “thresholds” [6]. However, these tricks, although they may help in many
practical cases, are easily thwarted. Gopan and Reps [25] proposed “lookahead widen-
ing”, which discovers new feasible paths and adapts widening accordingly; again this
method is no panacea. Furthermore, analyses involving widening are non-monotonic:
stronger preconditions can lead to weaker invariants being automatically inferred; a
rather non-intuitive behaviour. Since our method does not use widening at all, it avoids
these problems.

Our Contribution. We fight both sources of imprecision noted above:

– In order to improve the precision of the abstraction, we abstract sequences of if-
then-else statements without loops en bloc. In the above example, we are then able
to conclude that y �= 0 holds. In other words: we abstract sets of states only at the
heads of loops, or, more generally, at a cut-set of the control-flow graph (a cut-set
is a set of program points such that removing them would cut all loops).

– Our main technical contribution consists of a practical method for precisely com-
puting abstract semantics of affine programs w.r.t. the template linear constraint
domains of Sankaranarayanan et al. [42], with sequences of if-then-else statements
which do not contain loops abstracted en bloc. Our method is based on a strict gen-
eralization of the strategy improvement algorithm of Gawlitza and Seidl [17, 18,
22]. The latter algorithm could be directly applied to the problem we solve in this
article, but the size of its input would be exponential in the size of the program,
because we then need to explicitly enumerate all program paths between cut-nodes
which do not cross other cut-nodes. In this article, we give an algorithm with low
polynomial memory consumption that uses exponential time in the worst case. The
basic idea consists in avoiding an explicit enumeration of all paths through se-
quences of if-then-else-statements which do not contain loops. Instead we use a
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SAT modulo real linear arithmetic solver for improving the current strategy locally.
For evaluating each strategy encountered during the strategy iteration, we use linear
programming.

– As a byproduct of our considerations we show that the corresponding abstract
reachability problem is Πp

2 -complete. In fact, we show that it is Πp
2 -hard even if

the loop invariant being computed consists in a single x ≤ C inequality where x
is a program variable and C is the parameter of the invariant. Hence, exponential
worst-case running-time seems to be unavoidable.

Related Work. Recently, several alternative approaches for computing numerical invari-
ants (for instance w.r.t. to template linear constraints) were developed:

Strategy Iteration. Strategy iteration (also called policy iteration) was introduced
by Howard for solving stochastic control problems [29, 40] and is also applied to
two-players zero-sum games [28, 39, 45] or min-max-plus systems [7]. Adjé et al.
[2], Costan et al. [9], Gaubert et al. [16] developed a strategy iteration approach for
solving the abstract semantic equations that occur in static program analysis by abstract
interpretation. Their approach can be seen as an alternative to the traditional widen-
ing/narrowing approach. The goal of their algorithm is to compute least fixpoints of
monotone self-maps f , where f(x) = min {π(x) | π ∈ Π} for all x and Π is a fam-
ily of self-maps. The assumption is that one can efficiently compute the least fixpoint
μπ of π for every π ∈ Π . The π’s are the (min-)strategies. Starting with an arbitrary
min-stratgy π(0), the min-strategy is successively improved. The sequence (π(k))k of
attained min-strategies results in a decreasing sequence μπ(0) > μπ(1) > · · · > μπ(k)

that stabilizes, whenever μπ(k) is a fixpoint of f — not necessarily the least one. How-
ever, there are indeed important cases, where minimality of the obtained fixpoint can
be guaranteed [1]. Moreover, an important advantage of their algorithm is that it can be
stopped at any time with a safe over-approximation. This is in particular interesting if
there are infinitely many min-strategies [2]. Costan et al. [9] showed how to use their
framework for performing interval analysis without widening. Gaubert et al. [16] ex-
tended this work to the following relational abstract domains: The zone domain [33],
the octagon domain [34] and in particular the template linear constraint domains [42].
Gawlitza and Seidl [17] presented a practical (max-)strategy improvement algorithm
for computing least solutions of systems of rational equations. Their algorithm enables
them to perform a template linear constraint analysis precisely — even if the mappings
are not non-expansive. This means: Their algorithm always computes least solutions of
abstract semantic equations — not just some solutions.

Acceleration Techniques. Gonnord [23], Gonnord and Halbwachs [24] investigated
an improvement of linear relation analysis that consists in computing, when possible,
the exact (abstract) effect of a loop. The technique is fully compatible with the use of
widening, and whenever it applies, it improves both the precision and the performance
of the analysis. Gawlitza et al. [20], Leroux and Sutre [31] studied cases where interval
analysis can be done in polynomial time w.r.t. a uniform cost measure, where memory
accesses and arithmetic operations are counted for O(1).

Quantifier Elimination. Recent improvements in SAT/SMT solving techniques have
made it possible to perform quantifier elimination on larger formulas [36]. Monniaux
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[37] developed an analysis method based on quantifier elimination in the theory of
rational linear arithmetic. This method targets the same domains as the present article;
it however produces a richer result. It can not only compute the least invariant inside
the abstract domain of a loop, but also express it as a function of the precondition
of the loop; the method outputs the source code of the optimal abstract transformer
mapping the precondition to the invariant. Its drawback is its high cost, which makes
it practical only on small code fragments; thus, its intended application is modular
analysis: analyze very precisely small portions of code (functions, modules, nodes of
a reactive data-flow program, . . . ), and use the results for analyzing larger portions,
perhaps with another method, including the method proposed in this article.

Mathematical Programming. Colón et al. [8], Cousot [10], Sankaranarayanan et al.
[41] presented approaches for generating linear invariants that uses non-linear con-
straint solving. Leconte et al. [30] propose a mathematical programming formulation
whose constraints define the space of all post-solutions of the abstract semantic equa-
tions. The objective function aims at minimizing the result. For programs that use affine
assignments and affine guards, only, this yields a mixed integer linear programming for-
mulation for interval analysis. The resulting mathematical programming problems can
then be solved to guaranteed global optimality by means of general purpose branch-
and-bound type algorithms.

2 Basics

Notations. B = {0, 1} denotes the set of Boolean values. The set of real numbers is
denoted by R. The complete linearly ordered set R ∪ {−∞,∞} is denoted by R. We
call two vectors x, y ∈ R

n
comparable iff x ≤ y or y ≤ x holds. For f : X → R

m

with X ⊆ R
n

, we set dom(f) := {x ∈ X | f(x) ∈ Rm} and fdom(f) := dom(f) ∩
Rn. We denote the i-th row (resp. the j-th column) of a matrix A by Ai· (resp. A·j).
Accordingly,Ai·j denotes the component in the i-th row and the j-th column. We also
use this notation for vectors and mappings f : X → Y k.

Assume that a fixed set X of variables and a domain D is given. We consider equa-
tions of the form x = e, where x ∈ X is a variable and e is an expression over D. A
system E of (fixpoint) equations is a finite set {x1 = e1, . . . ,xn = en} of equations,
where x1, . . . ,xn are pairwise distinct variables. We denote the set {x1, . . . ,xn} of
variables occurring in E by XE . We drop the subscript whenever it is clear from the
context.

For a variable assignment ρ : X → D, an expression e is mapped to a value �e�ρ by
setting �x�ρ := ρ(x) and �f(e1, . . . , ek)�ρ := f(�e1�ρ, . . . , �ek�ρ), where x ∈ X, f is
a k-ary operator, for instance +, and e1, . . . , ek are expressions. Let E be a system of
equations. We define the unary operator �E� on X → D by setting (�E�ρ)(x) := �e�ρ
for all x = e ∈ E . A solution is a variable assignment ρ such that ρ = �E�ρ holds. The
set of solutions is denoted by Sol(E).

Let D be a complete lattice. We denote the least upper bound and the greatest lower
bound of a set X ⊆ D by

∨
X and

∧
X , respectively. The least element

∨ ∅ (resp.
the greatest element

∧ ∅) is denoted by ⊥ (resp. �). We define the binary operators
∨ and ∧ by x ∨ y :=

∨{x, y} and x ∧ y :=
∧{x, y} for all x, y ∈ D, respectively.
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For 	 ∈ {∨,∧}, we will also consider x1 	 · · · 	 xk as the application of a k-ary
operator. This will cause no problems, since the binary operators∨ and∧ are associative
and commutative. An expression e (resp. an equation x = e) is called monotone iff all
operators occurring in e are monotone.

The set X → D of all variable assignments is a complete lattice. For ρ, ρ′ : X → D,
we write ρ
ρ′ (resp. ρ�ρ′) iff ρ(x) < ρ′(x) (resp. ρ(x) > ρ′(x)) holds for all x ∈ X.
For d ∈ D, d denotes the variable assignment {x �→ d | x ∈ X}. A variable assignment
ρ with ⊥ 
 ρ 
 � is called finite. A pre-solution (resp. post-solution) is a variable
assignment ρ such that ρ ≤ �E�ρ (resp. ρ ≥ �E�ρ) holds. The set of all pre-solutions
(resp. the set of all post-solutions) is denoted by PreSol(E) (resp. PostSol(E)). The
least fixpoint (resp. the greatest fixpoint) of an operator f : D → D is denoted by μf
(resp. νf ), provided that it exists. Thus, the least solution (resp. the greatest solution)
of a system E of equations is denoted by μ�E� (resp. ν�E�), provided that it exists.
For a pre-solution ρ (resp. for a post-solution ρ), μ≥ρ�E� (resp. ν≤ρ�E�) denotes the
least solution that is greater than or equal to ρ (resp. the greatest solution that is less
than or equal to ρ). From Knaster-Tarski’s fixpoint theorem we get: Every system E
of monotone equations over a complete lattice has a least solution μ�E� and a greatest
solution ν�E�. Furthermore, μ�E� =

∧
PostSol(E) and ν�E� =

∨
PreSol(E).

Linear Programming. We consider linear programming problems (LP problems for
short) of the form sup {c
x | x ∈ Rn, Ax ≤ b}, where A ∈ Rm×n, b ∈ Rm, and
c ∈ Rn are the inputs. The convex closed polyhedron {x ∈ Rn | Ax ≤ b} is called
the feasible space. The LP problem is called infeasible iff the feasible space is empty.
An element of the feasible space, is called feasible solution. A feasible solution x that
maximizes c
x is called optimal solution.

LP problems can be solved in polynomial time through interior point methods
[32, 43]. Note, however, that the running-time then crucially depends on the sizes of
occurring numbers. At the danger of an exponential running-time in contrived cases,
we can also instead rely on the simplex algorithm: its running-time is uniform, i.e.,
independent of the sizes of occurring numbers (given that arithmetic operations, com-
parison, storage and retrieval for numbers are counted for O(1)).

SAT Modulo Real Linear Arithmetic. The set of SAT modulo real linear arithmetic
formulas Φ is defined through the grammar e ::= c | x | e1 + e2 | c · e′, Φ ::= a |
e1 ≤ e2 | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | Φ′. Here, c ∈ R is a constant, x is a real valued variable,
e, e′, e1, e2 are real-valued linear expressions, a is a Boolean variable and Φ,Φ′, Φ1, Φ2
are formulas. An interpretation I for a formula Φ is a mapping that assigns a real value
to every real-valued variable and a Boolean value to every Boolean variable. We write
I |= Φ for “I is a model of Φ”, i.e., �c�I = c, �x� = I(x), �e1 + e2�I = �e1�I + �e2�I ,
�c · e′�I = c · �e′�I , and:

I |= a ⇐⇒ I(a) = 1 I |= e1 ≤ e2 ⇐⇒ �e1�I ≤ �e2�I
I |= Φ1 ∨ Φ2 ⇐⇒ I |= Φ1 or I |= Φ2 I |= Φ1 ∧ Φ2 ⇐⇒ I |= Φ1 and I |= Φ2

I |= Φ′ ⇐⇒ I �|= Φ′

A formula is called satisfiable iff it has a model. The problem of deciding, whether or
not a given SAT modulo real linear arithmetic formula is satisfiable, is NP-complete.
There nevertheless exist efficient solver implementations for this decision problem [15].
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In order to simplify notations we also allow matrices, vectors, the operations ≥,
<,>, �=,=, and the Boolean constants 0 and 1 to occur.

Collecting and Abstract Semantics. The programs that we consider in this article use
real-valued variables x1, . . . , xn. Accordingly, we denote by x = (x1, . . . , xn)
 the
vector of all program variables. For simplicity, we only consider elementary statements
of the form x := Ax + b, and Ax ≤ b, where A ∈ Rn×n (resp. Rk×n), b ∈ Rn

(resp. Rk), and x ∈ Rn denotes the vector of all program variables. Statements of the
form x := Ax + b are called (affine) assignments. Statements of the form Ax ≤ b are
called (affine) guards. Additionally, we allow statements of the form s1; · · · ; sk and
s1 | · · · | sk, where s1, . . . , sk are statements. The operator ; binds tighter than the
operator |, and we consider ; and | to be right-associative, i.e., s1 | s2 | s3 stands for
s1 | (s2 | s3), and s1; s2; s3 stands for s1; (s2; s3). The set of statements is denoted by
Stmt. A statement of the form s1 | · · · | sk, where si does not contain the operator | for
all i = 1, . . . , k, is called merge-simple. A merge-simple statement s that does not use
the | operator at all is called sequential. A statement is called elementary iff it neither
contains the operator | nor the operator ;.

The collecting semantics �s� : 2R
n → 2R

n

of a statement s ∈ Stmt is defined by

�x := Ax + b�X := {Ax+ b | x ∈ X}, �Ax ≤ b�X := {x ∈ X | Ax ≤ b},
�s1; · · · ; sk� := �sk� ◦ · · · ◦ �s1� �s1 | · · · | sk�X := �s1�X ∪ · · · ∪ �sk�X

for X ⊆ Rn. Note that the operators ; and | are associative, i.e., �(s1; s2); s3� =
�s1; (s2; s3)� and �(s1 | s2) | s3� = �s1 | (s2 | s3)� hold for all statements s1, s2, s3.

An (affine) program G is a triple (N,E, st), where N is a finite set of program
points, E ⊆ N × Stmt × N is a finite set of control-flow edges, and st ∈ N is the
start program point. As usual, the collecting semantics V of a programG = (N,E, st)
is the least solution of the following constraint system:

V[st] ⊇ Rn V[v] ⊇ �s�(V[u]) for all (u, s, v) ∈ E

Here, the variables V[v], v ∈ N take values in 2R
n

. The components of the collecting
semantics V are denoted by V [v] for all v ∈ N .

Let D be a complete lattice (for instance the complete lattice of all n-dimensional
closed real intervals). Let the partial order of D be denoted by ≤. Assume that α :
2R

n → D and γ : D → 2R
n

form a Galois connection, i.e., for all X ⊆ Rn and all
d ∈ D, α(X) ≤ d iff X ⊆ γ(d). The abstract semantics �s�� : D → D of a statement
s is defined by �s�� := α ◦ �s� ◦ γ. The abstract semantics V � of an affine program
G = (N,E, st) is the least solution of the following constraint system:

V�[st] ≥ α(Rn) V�[v] ≥ �s��(V�[u]) for all (u, s, v) ∈ E
Here, the variables V�[v], v ∈ N take values in D. The components of the abstract
semantics V � are denoted by V �[v] for all v ∈ N . The abstract semantics V � safely
over-approximates the collecting semantics V , i.e., γ(V �[v]) ⊇ V [v] for all v ∈ N .

Using Cut-Sets to Improve Precision. Usually, only sequential statements (these state-
ments correspond to basic blocks) are allowed in control flow graphs. However, given
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a cut-set C, one can systematically transform any control flow graph G into an equiva-
lent control flow graphG′ of our form (up to the fact that G′ has fewer program points
than G) with increased precision of the abstract semantics. However, for the sake of
simplicity, we do not discuss these aspects in detail. Instead, we consider an example:

st

1

2

3

4 5

x1 := 0

x1 ≤ 1000

x2 := −x1

x2 ≤ −1

x1 := −2x1

x2 ≥ 0

x1 := −x1 + 1 st

1
x1 := 0

x1 ≤ 1000; x2 := −x1;
(x2 ≤ −1; x1 := −2x1 | x2 ≥ 0; x1 := −x1 + 1)

(a) (b)

Fig. 1.

Example 1 (Using Cut-Sets to improve Precision). As a running example throughout
the present article we use the following C-code:

i n t x 1 , x 2 ; x 1 = 0 ; whi l e ( x 1 <= 1000) { x 2 = −x 1 ;
i f ( x 2 < 0) x 1 = −2 ∗ x 1 ; e l s e x 1 = −x 1 + 1 ; }

This C-code is abstracted through the affine program G1 = (N1, E1, st) which is
shown in Figure 1.(a). However, it is unnecessary to apply abstraction at every program
point; it suffices to apply abstraction at a cut-set ofG1. Since all loops contain program
point 1, a cut-set ofG1 is {1}. Equivalent to applying abstraction only at program point
1 is to rewrite the control-flow graph w.r.t. the cut-set {1} into a control-flow graph G
equivalent w.r.t. the collecting semantic. The result of this transformation is drawn in
Figure 1.(b). This means: the affine program for the above C-code is G = (N,E, st),
whereN = {st, 1}, E = {(st, x1 := 0, 1), (1, s, 1)}, and

s′ = x1 ≤ 1000;x2 := −x1 s1 = x2 ≤ −1;x1 := −2x1

s2 = −x2 ≤ 0;x1 := −x1 + 1 s = s′; (s1 | s2)

Let V1 denote the collecting semantics of G1 and V denote the collecting semantics of
G. G1 and G are equivalent in the following sense: V [v] = V1[v] holds for all program
points v ∈ N . W.r.t. the abstract semantics, G is, is we will see, strictly more precise
than G1. In general we at least have V �[v] ⊆ V �1·[v] for all program points v ∈ N . This
is independent of the abstract domain.1 ��

Template Linear Constraints. In the present article we restrict our considerations to
template linear constraint domains [42]. Assume that we are given a fixed template
constraint matrix T ∈ Rm×n. The template linear constraint domain is R

m
. As shown

1 We assume that we have given a Galois-connection and thus in particular monotone best ab-
stract transformers.
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by Sankaranarayanan et al. [42], the concretization γ : R
m → 2R

n

and the abstraction
α : 2R

n → R
m

, which are defined by

γ(d) := {x ∈ Rn | Tx ≤ d} ∀d ∈ R
m
,

α(X) :=
∧{d ∈ R

m | γ(d) ⊇ X} ∀X ⊆ Rn,

form a Galois connection. The template linear constraint domains contain intervals,
zones, and octagons, with appropriate choices of the template constraint matrix [42].

In a first stage we restrict our considerations to sequential and merge-simple state-
ments. Even for these statements we avoid unnecessary imprecision, if we abstract such
statements en bloc instead of abstracting each elementary statement separately:

Example 2. In this example we use the interval domain as abstract domain, i.e., our
complete lattice consists of all n-dimensional closed real intervals. Our affine program
will use 2 variables, i.e., n = 2. The complete lattice of all 2-dimensional closed real in-

tervals can be specified through the template constraint matrix T =
(−I I)
 ∈ R4×2,

where I denotes the identity matrix. Consider the statements s1 = x2 := x1,
s2 = x1 := x1 − x2, and s = s1; s2 and the abstract value I = [0, 1] × R (a 2-
dimensional closed real interval). The interval I can w.r.t. T be identified with the ab-
stract value (0,∞, 1,∞)
. More generally, w.r.t. T every 2-dimensional closed real
interval [l1, u1] × [l2, u2] can be identified with the abstract value (−l1,−l2, u1, u2)
.
If we abstract each elementary statement separately, then we in fact use �s2�

� ◦ �s1�
�

instead of �s�� to abstract the collecting semantics �s� of the statement s = s1; s2.
The following calculation shows that this can be important: �s��I = [0, 0] × [0, 1] �=
[−1, 1] × [0, 1] = �s2�

�([0, 1] × [0, 1]) = (�s2�� ◦ �s1�
�)I. The imprecision is caused

by the additional abstraction. We lose the information that the values of the program
variables x1 and x2 are equal after executing the first statement. ��

Another possibility for avoiding unnecessary imprecision in the above example would
consist in adding additional rows to the template constraint matrix. Although this works
for the above example, it does not work in general, since still only convex sets can be
described, but sometimes non-convex sets are required (cf. with the example in the
introduction).

Provided that s is a merge-simple statement, �s��d can be computed in polynomial
time through linear programming:

Lemma 1 (Merge-Simple Statements). Let s be a merge-simple statement and d ∈
R
m

. Then �s��d can be computed in polynomial time through linear programming. ��

However, the situation for arbitrary statements is significantly more difficult, since, by
reducing SAT to the corresponding decision problem, we can show the following:

Lemma 2. The problem of deciding, whether or not, for a given template constraint
matrix T , and a given statement s, �s��∞ > −∞ holds, is NP-complete.

Before proving the above lemma, we introduce ∨-strategies for statements as follows:
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Definition 1 (∨-Strategies for Statements). A ∨-strategy σ for a statement s is a func-
tion that maps every position of a |-statement, (a statement of the form s0 | s1) within
s to 0 or 1. The application sσ of a ∨-strategy σ to a statement s is inductively defined
by sσ = s, (s0 | s1)σ = sσ(pos(s0|s1))σ, and (s0; s1)σ = (s0σ; s1σ), where s is an ele-
mentary statement, and s0, s1 are arbitrary statements. For all occurrences s′, pos(s′)
denotes the position of s′, i.e., pos(s′) identifies the occurrence. ��
Proof. Firstly, we show containment in NP. Assume �s��∞ > −∞. There exists
some k such that the k-th component of �s��∞ is greater than −∞. We choose k
non-deterministically. There exists a ∨-strategy σ for s such that the k-th component
of �sσ��∞ equals the k-th component of �s��∞. We choose such a ∨-strategy non-
deterministically. By Lemma 1, we can check in polynomial time, whether the k-th
component of �sσ��∞ is greater than −∞. If this is fulfilled, we accept.

In order to show NP-hardness, we reduce the NP-hard problem SAT to our problem.
Let Φ be a propositional formula with n variables. W.l.o.g. we assume that Φ is in
normal form, i.e., there are no negated sub-formulas that contain ∧ or ∨. We define the
statement s(Φ) that uses the variables of Φ as program variables inductively by s(z) :=
z = 1, s(z) := z = 0, s(Φ1 ∧ Φ2) := s(Φ1); s(Φ2), and s(Φ1 ∨ Φ2) := s(Φ1) | s(Φ2),
where z is a variable of Φ, and Φ1, Φ2 are formulas. Here, the statement Ax = b is an
abbreviation for the statement Ax ≤ b;−Ax ≤ −b. The formula Φ is satisfiable iff
�s(Φ)�Rn �= ∅ holds. Moreover, even if we just use the interval domain, �s(Φ)�Rn �= ∅
holds iff �s(Φ)��∞ > −∞ holds. Thus, Φ is satisfiable iff �s(Φ)��∞ > −∞ holds. ��
Obviously, �(s1 | s2); s� = �s1; s | s2; s� and �s; (s1 | s2)� = �s; s1 | s; s2� for all
statements s, s1, s2. We can transform any statement s into an equivalent merge-simple
statement s′ using these rules. We denote the merge-simple statement s′ that is obtained
from an arbitrary statement s by applying the above rules in some canonical way by [s].
Intuitively, [s] is an explicit enumeration of all paths through the statement s.

Lemma 3. For every statement s, [s] is merge-simple, and �s� = �[s]�. The size of [s]
is at most exponential in the size of s. ��
However, in the worst case, the size of [s] is exponential in the size of s. For the state-
ment s = (s(1)1 | s(2)1 ); · · · ; (s(1)k | s(2)k ) , for instance, we get [s] = |(a1,...,ak)∈{1,2}k

s
(a1)
1 ; · · · ; s(ak)

k . After replacing all statements s with [s] it is in principle possible to
use the methods of Gawlitza and Seidl [17] in order to compute the abstract seman-
tics V � precisely. Because of the exponential blowup, however, this method would be
impractical in most cases. 2

Our new method that we are going to present avoids this exponential blowup: instead
of enumerating all program paths, we shall visit them only as needed. Guided by a SAT
modulo real linear arithmetic solver, our method selects a path through s only when it
is locally profitable in some sense. In the worst case, an exponential number of paths

2 Note that we cannot expect a polynomial-time algorithm, because of Lemma 2: even without
loops, abstract reachability is NP-hard. Even if all statements are merge-simple, we cannot
expect a polynomial-time algorithm, since the problem of computing the winning regions of
parity games is polynomial-time reducible to abstract reachability [19].
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may be visited (Section 7); but one can hope that this does not happen in many practical
cases, in the same way that SAT and SMT solving perform well on many practical cases
even though they in principle may visit an exponential number of cases.

Abstract Semantic Equations. The first step of our method consists of rewriting our pro-
gram analysis problem into a system of abstract semantic equations that is interpreted
over the reals. For that, let G = (N,E, st) be an affine program and V � its abstract se-
mantics. We define the system C(G) of abstract semantic inequalities to be the smallest
set of inequalities that fulfills the following constraints:

– C contains the inequality xst,i ≥ αi·(Rn) for every i ∈ {1, . . . ,m}.
– C contains the inequality xv,i ≥ �s��i·(xu,1, . . . ,xu,m) for every control-flow edge

(u, s, v) ∈ E and every i ∈ {1, . . . ,m}.
We define the system E(G) of abstract semantic equations by E(G) := E(C(G)). Here,
for a system C′ = {x1 ≥ e1,1, . . . ,x1 ≥ e1,k1 , . . . ,xn ≥ en,1, . . . ,xn ≥ en,kn} of
inequalities, E(C′) is the system E(C′) = {x1 = e1,1 ∨ · · · ∨ e1,k1 , . . . ,xn = en,1 ∨
· · · ∨ en,kn} of equations. The system E(G) of abstract semantic equations captures the
abstract semantics V � of G:

Lemma 4. (V �[v])i· = μ�E(G)�(xv,i) for all program points v, i ∈ {1, . . . ,m}. ��
Example 3 (Abstract Semantic Equations). We again consider the programG of Exam-
ple 1. Assume that the template constraint matrix T ∈ R2×2 is given by T1· = (1, 0)
and T2· = (−1, 0). Let V � denote the abstract semantics of G. Then V �[1] =
(2001, 2000)
. E(G) consists of the following abstract semantic equations:

xst,1 = ∞ x1,1 = �x1 := 0��1·(xst,1,xst,2) ∨ �s��1·(x1,1,x1,2)
xst,2 = ∞ x1,2 = �x1 := 0��2·(xst,1,xst,2) ∨ �s��2·(x1,1,x1,2)

As stated by Lemma 4, we have (V �[1])1· = μ�E(G)�(x1,1) = 2001, and (V �[1])2· =
μ�E(G)�(x1,2) = 2000. ��

3 A Lower Bound on the Complexity

In this section we show that the problem of computing abstract semantics of affine
programs w.r.t. the interval domain isΠp

2 -hard.Πp
2 -hard problems are conjectured to be

harder than both NP-complete and co-NP-complete problems. For further information
regarding the polynomial-time hierarchy see e.g. Stockmeyer [44].

Theorem 1. The problem of deciding, whether, for a given programG, a given template
constraint matrix T , and a given program point v, V �[v] > −∞ holds, is Πp

2 -hard.

Proof. We reduce the Πp
2 -complete problem of deciding the truth of a ∀∃ proposi-

tional formula [46] to our problem. Let Φ = ∀x1, . . . , xn.∃y1, . . . , ym.Φ′ be a for-
mula without free variables, where Φ′ is a propositional formula. We consider the affine
program G = (N,E, st), with program variables x, x′, x1, . . . , xn, y1, . . . , ym, where
N = {st, 1, 2}, and E = {(st, x := 0, 1), (1, s, 1), (1, x ≥ 2n, 2)} with
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s = x′ := x; (x′ ≥ 2n−1;x′ := x′ − 2n−1;xn := 1 | x′ ≤ 2n−1 − 1;xn := 0); · · ·
(x′ ≥ 21−1;x′ := x′ − 21−1;x1 := 1 | x′ ≤ 21−1 − 1;x1 := 0);
s(Φ′); x := x+ 1

The statement s(Φ′) is defined as in the proof of Lemma 2.
In intuitive terms: this program initializes x to 0. Then, it enters a loop: it computes

into x1, . . . , xn the binary decomposition of x, then it attempts to nondeterministically
choose y1, . . . , ym so that φ′ is true. If this is possible, it increments x by one and loops.
Otherwise, it just loops. Thus, there is a terminating computations iff Φ holds.

Then Φ holds iff V [2] �= ∅. For the abstraction, we consider the interval domain. By
considering the Kleene-Iteration, it is easy to see that V [2] �= ∅ holds iff V �[2] > −∞
holds. Thus Φ holds iff V �[2] > −∞ holds. ��

4 Determining Improved Strategies

In this section we develop a method for computing local improvements of strategies
through solving SAT modulo real linear arithmetic formulas.

In order to decide, whether or not, for a given statement s, a given j ∈ {1, . . . ,m}, a
given c, and a given d ∈ R

m
, �s��j·d > c holds, we construct the following SAT modulo

real linear arithmetic formula (we use existential quantifiers to improve readability):

Φ(s, d, j, c) :≡ ∃v ∈ R . Φ(s, d, j) ∧ v > c
Φ(s, d, j) :≡ ∃x ∈ Rn, x′ ∈ Rn . Tx ≤ d ∧ Φ(s) ∧ v = Tj·x

′

Here, Φ(s) is a formula that relates every x ∈ Rn with all elements from the set �s�{x}.
It is defined inductively over the structure of s as follows:

Φ(x := Ax+ b) :≡ x′ = Ax+ b
Φ(Ax ≤ b) :≡ Ax ≤ b ∧ x′ = x

Φ(s1; s2) :≡ ∃x′′ ∈ Rn . Φ(s1)[x′′/x′] ∧ Φ(s2)[x′′/x]
Φ(s1 | s2) :≡ (apos(s1|s2) ∧ Φ(s1)) ∨ (apos(s1|s2) ∧ Φ(s2))

Here, for every position p of a subexpression of s, ap is a Boolean variable. Let Pos|(s)
denote the set of all positions of |-subexpressions of s. The set of free variables of the
formula Φ(s) is {x, x′}∪{ap | p ∈ Pos|(s)}. A valuation for the variables from the set
{ap | p ∈ Pos|(s)} describes a path through s. We have:

Lemma 5. �s��j·d > c holds iff Φ(s, d, j, c) is satisfiable. ��

Our next goal is to compute a ∨-strategy σ for s such that �sσ��j·d > c holds, provided

that �s��j·d > c holds. Let s be a statement, d ∈ R
m

, j ∈ {1, . . . ,m}, and c ∈ R.

Assume that �s��j·d > c holds. By Lemma 5, there exists a model M of Φ(s, d, j, c).
We define the ∨-strategy σM for s by σM (p) := M(ap) for all p ∈ Pos|(s). By again

applying Lemma 5, we get �sσ��j·d > c. Summarizing we have:
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Lemma 6. By solving the SAT modulo real linear arithmetic formula Φ(s, d, j, c) that
can be obtained from s in linear time, we can decide, whether or not �s��j·d > c
holds. From a model M of this formula, we can obtain a ∨-strategy σM for s such
that �sσM ��j·d > c holds in linear time. ��

Φ(s, (0, 0)�, 1, 0) ≡ ∃v ∈ R . Φ(s, (0, 0)�, 1) ∧ v > 0
Φ(s, (0, 0)�, 1) ≡ ∃x ∈ R2, x′ ∈ R2 . x1· ≤ 0 ∧ −x1· ≤ 0 ∧ Φ(s) ∧ v = x′

1·
Φ(s′) ≡ ∃x′′ ∈ R2 . x1· ≤ 1000 ∧ x′′

1· = x1· ∧ x′′
2· = x2· ∧ x′

1· = x′′
1· ∧ x′

2· = −x′′
1·

≡ x1· ≤ 1000 ∧ x′
1· = x1· ∧ x′

2· = −x1·
Φ(s1) ≡ ∃x′′ ∈ R2 . x2· ≤ −1 ∧ x′′

1· = x1· ∧ x′′
2· = x2· ∧ x′

1· = −2x′′
1· ∧ x′

2· = x′′
2·

≡ x2· ≤ −1 ∧ x′
1· = −2x1· ∧ x′

2· = x2·
Φ(s2) ≡ ∃x′′ ∈ R2 . − x2· ≤ 0 ∧ x′′

1· = x1· ∧ x′′
2· = x2· ∧ x′

1· = −x′′
1· + 1 ∧ x′

2· = x′′
2·

≡ x2· ≤ 0 ∧ x′
1· = −x1· + 1 ∧ x′

2· = x2·
Φ(s1 | s2) ≡ (a1 ∧ Φ(s1)) ∨ (a1 ∧ Φ(s2)) ≡ (a1 ∧ x2· ≤ −1 ∧ x′

1· = −2x1· ∧ x′
2· = x2·)

∨(a1 ∧ x2· ≤ 0 ∧ x′
1· = −x1· + 1 ∧ x′

2· = x2·)
Φ(s) ≡ ∃x′′ ∈ R2 . Φ(s′)[x′′/x′] ∧ Φ(s1 | s2)[x′′/x]

≡ x1· ≤ 1000 ∧ ((a1 ∧ −x1· ≤ −1 ∧ x′
1· = −2x1· ∧ x′

2· = −x1·)
∨(a1 ∧ −x1· ≤ 0 ∧ x′

1· = −x1· + 1 ∧ x′
2· = −x1·))

Fig. 2. Formula for Example 4

Example 4. We again continue Example 1 and 3. We want to know, whether
�s��1·(0, 0)
 > 0 holds. For that we compute a model of the formula Φ(s, (0, 0)
, 1, 0)
which is written down in Figure 2. M = {a1 �→ 1} is a model of the for-
mula Φ(s, (0, 0)
, 1, 0). Thus, we have 0 < �sσM ��1·(0, 0)
 = �s′; s2�

�
1·(0, 0)
 by

Lemma 6. ��
It remains to compute a model of Φ(s, d, j, c). Most of the state-of-the-art SMT solvers,
as for instance Yices [14, 15], support the computation of models directly; if unsup-
ported, one can compute the model using standard self-reduction techniques.

The semantic equations we are concerned with in the present article have the form
x = e1 ∨ · · · ∨ ek, where each expression ei, i = 1, . . . , k is either a constant or an
expression of the form �s��j·(x1, . . . ,xm). We now extent our notion of ∨-strategies in
order to deal with the occurring right-hand sides:

Definition 2 (∨-Strategies). The ∨-strategy for all constants is the 0-tuple (). The ap-
plication c() of () to a constant c ∈ R is defined by c() := c for all c ∈ R. A ∨-
strategy σ for an expression �s��j·(x1, . . . ,xm) is a ∨-strategy for s. The application

(�s��j·(x1, . . . ,xm))σ of σ to �s��j·(x1, . . . ,xm) is defined by (�s��j·(x1, . . . ,xm))σ :=
�sσ��j·(x1, . . . ,xm). A ∨-strategy for an expression e = e0 ∨ e1,, where, for each

i ∈ {0, 1}, ei is either a constant or an expression of the form �s��j·(x1, . . . ,xm), is a
pair (p, σ), where p ∈ {0, 1} and σ is a ∨-strategy for ep. The application e(p, σ)
of (p, σ) to e = e0 ∨ e1 is defined by e(p, σ) = epσ. A ∨-strategy σ for a sys-
tem E = {x1 = e1, . . . ,xn = en} of abstract semantic equations is a mapping
{xi �→ σi | i = 1, . . . , n}, where σi is a ∨-strategy for ei for all i = 1, . . . , n. We
set E(σ) := {x1 = e1(σ(x1)), . . . ,xn = en(σ(xn))}. ��
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Using the same ideas as above, we can prove the following lemma which finally enables
us to use a SAT modulo real linear arithmetic solver for improving ∨-strategies for
systems of abstract semantic equations locally.

Lemma 7. Let x = e be an abstract semantic equation, ρ a variable assignment, and
c ∈ R. By solving a SAT modulo real linear arithmetic formula that can be obtained
from e, ρ and c in linear time, we can decide, whether or not �e�ρ > c holds. From a
modelM of this formula, we can in linear time obtain a ∨-strategy σM for e such that
�eσM �ρ > c holds. ��

5 Solving Systems of Concave Equations

In order to solve systems of abstract semantic equations (see the end of Section 2) we
generalize the ∨-strategy improvement algorithm of Gawlitza and Seidl [22] as follows:

Concave Functions. A set X ⊆ Rn is called convex iff λx + (1 − λ)y ∈ X holds for
all x, y ∈ X and all λ ∈ [0, 1]. A mapping f : X → Rm withX ⊆ Rn convex is called
convex (resp. concave) iff f(λx + (1 − λ)y) ≤ (resp. ≥) λf(x) + (1 − λ)f(y) holds
for all x, y ∈ X and all λ ∈ [0, 1]. Note that f is concave iff −f is convex. Note also
that f is convex (resp. concave) iff fi· is convex (resp. concave) for all i = 1, . . . ,m.

We extend the notion of convexity/concavity from Rn → Rm to R
n → R

m
as

follows: Let f : R
n → R

m
, and I : {1, . . . , n} → {−∞, id,∞}. Here, −∞ denotes

the function that assigns −∞ to every argument, id denotes the identity function, and
∞ denotes the function that assigns ∞ to every argument. We define the mapping f (I) :
R
n → R

m
by f (I)(x1, . . . , xn) := f(I(1)(x1), . . . , I(n)(xn)) for all x1, . . . , xn ∈ R.

A mapping f : R
n → R

m
is called concave iff fi· is continuous on {x ∈ R

n |
fi·(x) > −∞} for all i ∈ {1, . . . ,m}, and the following conditions are fulfilled for all
I : {1, . . . , n} → {−∞, id,∞}:

1. fdom(f (I)) is convex.
2. f (I)|fdom(f(I)) is concave.
3. For all i ∈ {1, . . . ,m} the following holds: If there exists some y ∈ Rn such that

f
(I)
i· (y) ∈ R, then f (I)

i· (x) <∞ for all x ∈ Rn.

A mapping f : R
n → R

m
is called convex iff −f is concave. In the following we are

only concerned with mappings f : R
n → R

m
that are monotone and concave.

We slightly extend the definition of concave equations of Gawlitza and Seidl [22]:

Definition 3 (Concave Equations). An expression e (resp. equation x = e) over R is
called basic concave expression (resp. basic concave equation) iff �e� is monotone and
concave. An expression e (resp. equation x = e) over R is called concave iff e =

∨
E,

where E is a set of basic concave expressions. ��
The class of systems of concave equations strictly subsumes the class of systems of
rational equations and even the class of systems of rational LP-equations as defined by
Gawlitza and Seidl [17, 21] (cf. [22]).
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For this paper it is important to observe that every system of abstract semantic
equations (cf. Section 2) is a system of concave equations: For every statement s,
the expression �s��j·(x1, . . . ,xm) is a concave expression, since (1) the expression

(�s��j·(x1, . . . ,xm))σ is a basic concave expression for all ∨-strategies σ, (i.e. �sσ��j·
is monotone and concave) and (2) the expression �s��j·(x1, . . . ,xm) can be written as

the expression
∨
σ∈Σ(�s��j·(x1, . . . ,xm))σ. Here,Σ denotes the set of all ∨-strategies.

Hence, we can generalize the concept of ∨-strategies as follows:

Strategies. A ∨-strategy σ for E is a function that maps every expression
∨
E occurring

in E to one of the e ∈ E. We denote the set of all ∨-strategies for E by ΣE . We drop
subscripts, whenever they are clear from the context. For σ ∈ Σ, the expression eσ
denotes the expression σ(e). Finally, we set E(σ) := {x = eσ | x = e ∈ E}.

The Strategy Improvement Algorithm. We briefly explain the strategy improvement al-
gorithm (cf. [21, 22]). It iterates over ∨-strategies. It maintains a current ∨-strategy and
a current approximate to the least solution. A so-called strategy improvement operator
is used for determining a next, improved ∨-strategy. In our application, the strategy
improvement operator is realized by a SAT modulo real linear arithmetic solver (cf.
Section 4). Whether or not a ∨-strategy represents an improvement may depend on the
current approximate. It can indeed be the case that a switch from one ∨-strategy to an-
other ∨-strategy is only then profitable, when it is known, that the least solution is of a
certain size. Hence, we talk about an improvement of a ∨-strategy w.r.t. an approximate:

Definition 4 (Improvements). Let E be a system of monotone equations over a com-
plete linear ordered set. Let σ, σ′ ∈ Σ be ∨-strategies for E and ρ be a pre-solution of
E(σ). The ∨-strategy σ′ is called improvement of σ w.r.t. ρ iff the following conditions
are fulfilled: (1) If ρ /∈ Sol(E), then �E(σ′)�ρ > ρ. (2) For all

∨
-expressions e occur-

ring in E the following holds: If σ′(e) �= σ(e), then �eσ′�ρ > �eσ�ρ. A function P∨
which assigns an improvement of σ w.r.t. ρ to every pair (σ, ρ), where σ is a ∨-strategy
and ρ is a pre-solution of E(σ), is called ∨-strategy improvement operator. ��
In many cases, there exist several, different improvements of a ∨-strategy σ w.r.t. a
pre-solution ρ of E(σ). Accordingly, there exist several, different strategy improvement
operators. One possibility for improving the current strategy is known as all profitable
switches [4, 5]. Carried over to the case considered here, this means: For the improve-
ment σ′ of σ w.r.t. ρ we have: �E(σ′)�ρ = �E�ρ, i.e., σ′ represents the best local im-
provement of σ at ρ. We denote σ′ by P eager

∨ (σ, ρ) [17–19, 21].
Now we can formulate the strategy improvement algorithm for computing least so-

lutions of systems of monotone equations over complete linear ordered sets. This al-
gorithm is parameterized with a ∨-strategy improvement operator P∨. The input is a
system E of monotone equations over a complete linear ordered set, a ∨-strategy σinit
for E , and a pre-solution ρinit of E(σinit). In order to compute the least and not some
arbitrary solution, we additionally assume that ρinit ≤ μ�E� holds:
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Algorithm 1. The Strategy Improvement Algorithm

Input :

⎧⎨⎩
- A system E of monotone equations over a complete linear ordered set
- A ∨-strategy σinit for E
- A pre-solution ρinit of E(σinit) with ρinit ≤ μ�E�

σ ← σinit; ρ ← ρinit; while (ρ /∈ Sol(E)) {σ ← P∨(σ, ρ); ρ ← μ≥ρ�E(σ)�; } return ρ;

Lemma 8. Let E be a system of monotone equations over a complete linear ordered
set. For i ∈ N, let ρi be the value of the program variable ρ and σi be the value of the
program variable σ in the strategy improvement algorithm after the i-th evaluation of
the loop-body. The following statements hold for all i ∈ N:

1. ρi ≤ μ�E�. 2. ρi ∈ PreSol(E(σi+1)).
3. If ρi < μ�E�, then ρi+1 > ρi. 4. If ρi = μ�E�, then ρi+1 = ρi. ��

An immediate consequence of Lemma 8 is the following: Whenever the strategy im-
provement algorithm terminates, it computes the least solution μ�E� of E .

At first we are interested in solving systems of concave equations with finitely many
strategies and finite least solutions. We show that our strategy improvement algorithm
terminates and thus returns the least solution in this case at the latest after considering
all strategies. Further, we give an important characterization for μ≥ρ�E(σ)�.

Feasibility. In order to prove termination we define the following notion of feasibility:

Definition 5 (Feasibility ([22])). Let E be a system of basic concave equations. A finite
solution ρ of E is called (E-)feasible iff there exists X1,X2 ⊆ X and some k ∈ N such
that the following statements hold:
1. X1 ∪ X2 = X, and X1 ∩X2 = ∅.
2. There exists some ρ′ 
 ρ|X1 such that ρ′ ∪̇ ρ|X2 is a pre-solution of E , and ρ =

�E�k(ρ′ ∪̇ ρ|X2).
3. There exists a ρ′ 
 ρ|X2 such that ρ′ 
 (�E�k(ρ|X1 ∪̇ ρ′))|X2 .

A finite pre-solution ρ of E is called (E-)feasible iff μ≥ρ�E� is a feasible finite solution
of E . A pre-solution ρ 
∞ is called feasible iff e = −∞ for all x = e ∈ E with
�e�ρ = −∞, and ρ|X′ is a feasible finite pre-solution of {x = e ∈ E | x ∈ X′}, where
X′ := {x | x = e ∈ E , �e�ρ > −∞}.

A system E of basic concave equations is called feasible iff there exists a feasible
solution ρ of E . ��

The following lemmas ensure that our strategy improvement algorithm stays in the
feasible area, whenever it is started in the feasible area.

Lemma 9 ([22]). Let E be a system of basic concave equations and ρ be a feasible
pre-solution of E . Every pre-solution ρ′ of E with ρ ≤ ρ′ ≤ μ≥ρ�E� is feasible. ��

Lemma 10 ([22]). Let E be a system of concave equations, σ be a ∨-strategy for E ,
ρ be a feasible solution of E(σ), and σ′ be an improvement of σ w.r.t. ρ. Then ρ is a
feasible pre-solution of E(σ′). ��
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In order to start in the feasible area, we simply start the strategy improvement algorithm
with the system E ∨−∞ := {x = e∨−∞ | x = e ∈ E}, a ∨-strategy σinit for E ∨−∞
such that (E ∨ −∞)(σinit) = {x = −∞ | x = e ∈ E}, and the feasible pre-solution
−∞ of (E ∨ −∞)(σinit).

It remains to determine μ≥ρ�E�. Because of Lemma 9 and Lemma 10, we are al-
lowed to assume that ρ is a feasible pre-solution of the system E of basic concave equa-
tions. This is important in our strategy improvement algorithm. The following lemma
in particular states that we have to compute the greatest finite pre-solution.

Lemma 11 ([22]). Let E be a feasible system of basic concave equations with e �= −∞
for all x = e ∈ E . There exists a greatest finite pre-solution ρ∗ of E and ρ∗ is the only
feasible solution of E . If ρ is a finite pre-solution of E , then ρ∗ = μ≥ρ�E�. ��

Termination. Lemma 11 implies that our strategy improvement algorithm has to con-
sider each ∨-strategy at most once. Thus, we have shown the following theorem:

Theorem 2. Let E be a system of concave equations with μ�E� 
∞. Assume that we
can compute the greatest finite pre-solution ρσ of each E(σ), if E(σ) is feasible. Our
strategy improvement algorithm computes μ�E� and performs at most |Σ|+|X| strategy
improvement steps. The algorithm in particular terminates, whenever Σ is finite. ��

6 Computing Greatest Finite Pre-solutions

For all systems E of abstract semantic equations (see Section 2) and all ∨-strategies σ,
E(σ) is a system of abstract semantic equations, where each right-hand side is of the
form �s��j·(x1, . . . ,xm), where s is a sequential statement and x1, . . . ,xm are variables.
We call such a system of abstract semantic equations a system of basic abstract semantic
equations. It remains to explain how we can compute the greatest finite solution of such
a system — provided that it exists.

Let E be a system of basic abstract semantic equations with a greatest finite pre-
solution ρ∗. We can compute ρ∗ through linear programming as follows:

We assume w.l.o.g. that every sequential statement s that occurs in the right-hand
sides of E is of the form Ax ≤ b;x := A′x + b′, where A ∈ Rk×n, b ∈ Rk, A′ ∈
Rn×n, b′ ∈ Rn. This can be done w.l.o.g., since every sequential statement can be
rewritten into this form in polynomial time. We define the system C of linear inequalities
to be the smallest set that fulfills the following properties: For each equation

x = �Ax ≤ b;x := A′x+ b′��j·(x1, . . . ,xm),

the system C contains the following constraints:

x ≤ Tj·A′(y1, . . . ,yn)
 + Tj·b′ Ai·(y1, . . . ,yn)
 ≤ bi for all i = 1, . . . , k

Ti·(y1, . . . ,yn)
 ≤ xi for all i = 1, . . . ,m

Here, y1, . . . ,yn are fresh variables. Then ρ∗(x) = sup {ρ(x) | ρ ∈ Sol(C)}. Thus
ρ∗ can be determined by solving |XE | linear programming problems each of which
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can be constructed in linear time. We can do even better by determining an optimal
solution of the linear programming problem sup

{∑
x∈XE ρ(x) | ρ ∈ Sol(C)

}
. Then

the optimal values for the variables x ∈ XE determine ρ∗ (cf. Gawlitza and Seidl
[17, 21]). Summarizing we have:

Lemma 12. Let E be a system of basic abstract semantic equations with a greatest
finite pre-solution ρ∗. Then ρ∗ can be computed by solving a linear programming prob-
lem that can be constructed in linear time. ��
Example 5. We again use the definitions of Example 3. Consider the system E of basic
abstract semantic equations that consists of the equations

x1,1 = �s′; s2�
�
1·(x1,1,x1,2) x1,2 = �s′; s1�

�
2·(x1,1,x1,2),

where s′ := x1 ≤ 1000;x2 := −x1, s1 := x2 ≤ −1;x1 := −2x1, and s2 :=
−x2 ≤ 0;x1 := −x1 + 1. Our goal is to compute the greatest finite pre-solution
ρ∗ of E . Firstly, we note that �s′; s2� = �x1 ≤ 0; (x1, x2) := (−x1 + 1,−x1)� and
�s′; s1� = �(x1,−x1) ≤ (1000,−1); (x1, x2) := (−2x1,−x1)� hold. Accordingly, we
have to find an optimal solution for the following linear programming problem:

maximize x1,1 + x1,2

x1,1 ≤ −y1 + 1 x1,2 ≤ 2y′1 y1 ≤ 0 y′1 ≤ 1000 y1 ≤ x1,1

−y′1 ≤ −1 −y1 ≤ x1,2 y′1 ≤ x1,1 −y′1 ≤ x1,2

An optimal solution is x1,1 = 2001, x1,2 = 2000, y1 = −2000, and y′1 = 1000. Thus
ρ∗ = {x1,1 �→ 2001, x1,2 �→ 2000} is the greatest finite pre-solution of E . ��
Summarizing, we have shown our main theorem:

Theorem 3. Let E be a system of abstract semantic equations with μ�E� 
∞. Our
strategy improvement algorithm computes μ�E� and performs at most |Σ|+|X| strategy
improvement steps. For each strategy improvement step, we have to do the following:
1. Find models for |X| SAT modulo real linear arithmetic formulas, each of which can

be constructed in linear time.
2. Solve a linear programming problem which can be constructed in linear time.

Proof. The statement follows from Lemmas 9, 10, 11, 12 and Theorem 2. ��
Our techniques can be extended straightforwardly in order to get rid of the pre-condition
μ�E�
∞. However, for simplicity we eschew these technicalities in the present article.

7 An Upper Bound on the Complexity

In Section 3, we have provided a lower bound on the complexity of computing abstract
semantics of affine programs w.r.t. the template linear domains. In this section we show
that the corresponding decision problem is not onlyΠp

2 -hard, but in fact Πp
2 -complete:

Theorem 4. The problem of deciding, whether or not, for a given affine program G, a
given template constraint matrix T , and a given program point v, V �[v] > −∞ holds,
is inΠp

2 .
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Proof. (Sketch) We have to show that the problem of deciding, whether or not, for a
given affine program G, a given template constraint matrix T , a given program point
v, and a given i ∈ {1, . . . ,m}, (V �[v])i· = −∞ holds, is in co−Πp

2 = Σp2 = NPNP.
In polynomial time we can guess a ∨-strategy σ for E ′ := E(G) and compute the least
feasible solution ρ of E ′(σ) (see Gawlitza and Seidl [17]). Because of Lemma 2, we can
use a NP oracle to determine whether or not there exists an improvement of the strategy
σ w.r.t. ρ. If this is not the case, we know that ρ ≥ μ�E ′� holds. Therefore, by Lemma 4,
we have ρ(xv,i) ≥ (V �[v])i·. Thus we can accept, whenever ρ(xv,i) = −∞ holds. ��
Finally, we give an example where our strategy improvement algorithm performs expo-
nentially many strategy improvement steps. It is similar to the program in the proof
of Theorem 1. For all n ∈ N, we consider the program Gn = (N,E, st), where
N = {st, 1}, E = {(st, x1 := 0; y1 := 1; y2 := 2y1; . . . ; yn := 2yn−1, 1), (1, s, 1)},
and

s = x2 := x1; (x2 ≥ yn;x2 := x2 − yn | x2 ≤ yn − 1); · · ·
(x2 ≥ y1;x2 := x2 − y1 | x2 ≤ y1 − 1); x1 := x1 + 1.

It is sufficient to use a template constraint matrix that corresponds to the interval do-
main. It is remarkable that the strategy iteration does not depend on the strategy im-
provement operator in use. At any time there is exactly one possible improvement until
the least solution is reached. All strategies for the statement swill be encountered. Thus,
the strategy improvement algorithm performs 2n strategy improvement steps. Since the
size of Gn is Θ(n), exponentially many strategy improvement steps are performed.

8 Conclusion

We presented an extension of the strategy improvement algorithm of Gawlitza and Seidl
[17, 18, 22] which enables us to use a SAT modulo real linear arithmetic solver for de-
termining improvements of strategies w.r.t. current approximates. Due to this extension,
we are able to compute abstract semantics of affine programs w.r.t. the template linear
constraint domains of Sankaranarayanan et al. [42], where we abstract sequences of if-
then-else statements without loops en bloc. This gives us additional precision. Addition-
ally, We provided one of the few “hard” complexity results regarding precise abstract
interpretation.

It remains to practically evaluate the presented approach and to compare it system-
atically with other approaches. Besides this, starting from the present work, there are
several directions to explore. One can for instance try to apply the same ideas for non-
linear templates [22], or to use linearization techniques [35].
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Abstract. Programs written in scripting languages employ idioms that
confound conventional type systems. In this paper, we highlight one im-
portant set of related idioms: the use of local control and state to reason
informally about types. To address these idioms, we formalize run-time
tags and their relationship to types, and use these to present a novel
strategy to integrate typing with flow analysis in a modular way. We
demonstrate that in our separation of typing and flow analysis, each
component remains conventional, their composition is simple, but the
result can handle these idioms better than either one alone.

1 Introduction

“Scripting” languages are widely used in software development. Their lack of
static types is touted as a positive feature that enables rapid prototyping. As
programs grow large and complex, programmers need tools to reason about
their code. A retrofitted type system, which would provide additional static
guarantees, would help programmers manage evolution. However, care must be
taken so that common idioms aren’t deemed untypable; otherwise, either many
programs or the languages themselves would have to change.

In section 2, we present examples from the aforementioned scripting languages
that make heavy use of control and state to reason about “types”. In section 3,
we introduce a core calculus that can express the essence of these examples and
a simple type system for this core calculus; but this type system alone cannot
type-check our examples. In section 5, we present a program analysis that can
reason about the idioms in our examples. One of our contributions is to clarify the
relationship between static types and runtime tags (section 4), which scripting
languages often confuse; we exploit this relationship to integrate type-checking
with flow analysis in a tractable manner. In section 6, we present a simple proof
of soundness for the combination of typing and flow analysis.

We have built an experimental type checker for JavaScript that uses these
ideas. The implementation, discussion, and elided proofs, are available from
http://www.cs.brown.edu/research/plt/dl/flowtyping/v1/.

2 Control and State in Scripting Languages

We consider examples from canonical scripting languages. Our first example is
the JavaScript function in figure 1, which serializes arbitrary values to strings.

G. Barthe (Ed.): ESOP 2011, LNCS 6602, pp. 256–275, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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1 // adapted from the Prototype library, v. 1.6.1

2 function serialize(val) {

3 switch (typeof val) {

4 case "undefined":

5 case "function":

6 return false;

7 case "boolean":

8 return val ? "true" : "false";

9 case "number":

10 return "" + val;

11 case "string":

12 return val;

13 }

14

15 if (val === null) { return "null"; }

16

17 var fields = [ ];

18 for (var p in val) {

19 var v = serialize(val[p]);

20 if (typeof v === "string") {

21 fields.push(p + ": " + v);

22 }

23 }

24 return "{ " + fields.join(", ") + " }";

25 }

Fig. 1. Non-local control in JavaScript

Functions and the special value undefined cannot be serialized, so for these it
returns false. Since val may be any value, in a typed dialect of JavaScript,
serialize should have a type equivalent to � → Str ∪ Bool.

Let us informally reason about the type-safety of serialize. On line 3, the
function branches on the result of typeof val. In JavaScript, the typeof operator1

returns a string representing the “runtime type” of its argument. Thereafter:

– For case "undefined", control falls through to line 5.
– On line 5, for case "function", the function returns false.
– On line 7, for case "boolean", the function branches on val and returns

either "true" or "false". val is a boolean because none of the preceding
cases fall through to line 7.

– On line 9, for case "number", the function uses string concatenation to coerce
the number val to a string. Thus, val is a number because none of the
preceding cases fall through to line 9.

– On line 11, for case "string", the function returns val. Thus, val is a string
because none of the preceding cases fall through to here.

1 To be precise, typeof does not return a (static) type but a (runtime) tag. This
distinction becomes significant in section 4.
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1 # From the Python 2.5.2 standard libraries

2 def insort_right(a, x, lo=0, hi=None):

3 if hi is None:

4 hi = len(a)

5 while lo < hi:

6 mid = (lo+hi)//2

7 if x < a[mid]: hi = mid

8 else: lo = mid+1

9 a.insert(lo, x)

Fig. 2. Heap-sensitive reasoning in Python

This switch is missing a case! If typeof val === "object", none of the earlier
cases match and control will fall through. However, since all the explicitly han-
dled cases return, we know that typeof val === "object" holds on lines 15–24.

JavaScript has a value null and typeof null === "object". Therefore, line 15
tests for null and if the test is true, the program returns "null". However, if
the test is false, because the conditional does not have a false-branch, con-
trol proceeds to line 17. Since the true-branch returns, val !== null holds on
lines 17–24. We can safely use val as an object on these lines. Lines 20 and 21
also employ flow-directed reasoning, but are relatively trivial. Therefore, we can
conclude that serialize is safe.

Heap-Sensitive Reasoning. Let us consider a Python example. The function
insort_right (figure 2) inserts the argument x into the sorted array a, preserv-
ing sortedness. The additional optional arguments, lo and hi, are expected to
be integers that specify the portion of array a to be returned.

The intended defaults are lo=0 and hi=len(a). However, the values of other
arguments are not in scope when these expressions are evaluated. Therefore,
hi=len(a) would signal an unbound identifier error. Instead, the program uses
the default hi=None (which better guards against premature use than would a
numeric default like 0). The test on line 3 and the side-effect on line 4 ensure
that hi is an integer in the continuation of the if-statement (lines 5–9). This
function relies not only on control-flow, but on the interaction of control and
state to reason about types.

Dynamic Dispatch and Type Tests. We reasoned about the use of serialize

and insort_right by following their convoluted control-flow and side-effects, in-
stead of merely following their syntactic structure. A reader may argue that
these functions are “bad style”, so a type system can legitimately reject them.
For example, an easily typable alternative to serialize is to extend the builtin
prototypes (Object, String, etc.) with a serialize method and rely on dynamic
dispatch, instead of reflection. Unfortunately, extending builtin classes runs into
the fragile base class problem [17] and is thus considered bad practice (e.g., [6]).

Irrespective of these options, the code above reflects what programmers do
in practice. Figure 3 offers a conservative estimate of the prevalence of type
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Checks For JS Gadgets Python stdlib Ruby stdlib Django Rails
undefined/nulla 3,298 1,686 538 868 712
instanceofb 17 613 1,730 647 764
typeofc 474 381 4
field-presenced 504 171 348 719
Total Checks 3,789 3,184 2,439 1,867 2,195
LOC 617,766 313,938 190,002 91,999 294,807

a None in Python, and nil in Ruby.
b isinstance in Python, and .is_a? and .instance_of? in Ruby.
c type in Python.
d hasattr in Python, and .respond_to? in Ruby.

Fig. 3. Tag Checks and Related Checks

tests and related checks across a broad corpus of code, by counting occurrences
of type testing operators. We believe these numbers undercount, since they do
not account for heap-sensitive reasoning and other type testing patterns. For
example, we do not try to estimate how often JavaScript programs test for the
presence of a field, because this operation is syntactically indistinguishable from
field lookup.

Perspective. The examples above make heavy use of local control and state
to reason informally about “types”. A static type system that admits these
programs will need to support this style of reasoning and various other features
(e.g., objects). The book-keeping needed to account for control and state can
pervade the entire type system and occlude its typing of other features. Our
novel flow typing system therefore separates typing from the account of flows
and state. We present flow typing for an explicitly typed core calculus. We view
type inference as a programmer convenience [9] that we leave for future work.

3 Semantics and Types

To present formal type and flow analysis systems, we have to settle on a run-
time semantics. The languages under consideration have a kernel of higher-order
functions and state that is essentially the same. This kernel is almost sufficient
for our presentation, but we need to pick control operators and primitive oper-
ators, which do vary between languages. For now we will pick operators based
on JavaScript, and return to this issue in section 5.

Figure 4 specifies the syntax and semantics of λS , which is a core calculus that
is sufficient for our exposition of flow typing. λS includes higher-order functions,
mutable references, conditionals, a control operator (break), and JavaScript-
inspired primitives. Type annotations (discussed below) are ignored during eval-
uation. Although λS has first-class references, note that JavaScript, Python, and
Ruby do not. However, first-class references allow us to model mutable variables
and stateful objects [8, Section 2.1].
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identifiers x
locations l
constants c = num | str | bool | undefined
values v = x | c | func(x · · ·):T { e } | l
expressions e = v | let x = e1 in e2 | ef(e1 · · · en) | opn(e1 · · · en)

| if (e1) { e2 } else { e3 } | break label e | label:T { e }

| ref e | deref e | setref e1 e2

evaluation contexts E = • | let x = E in e | E(e1 · · · en) | vf(v · · ·Ee · · ·)
| opn(v · · ·Ee · · ·) | break label E | if (E) { e2 } else { e3 }

| label:T { E } | ref E | deref E | setref E e | setref v E
stores σ = · | (l, v) σ
types T = Str | Bool | Undef | T1 ∪ T2 | T1 · · · → T | Ref T | ⊥ | �

(E-Let) σE〈let x = v in e〉 → σE〈e[x/v]〉

(E-Prim) σE〈opn(v · · ·)〉 → σE〈δn(opn, v · · · )〉

(βv) σE〈func(x · · ·) { e }(v · · ·)〉 → σE〈e[x/v · · · ]〉

(E-Break) σE1〈label:{ E2〈break label v〉 }〉 → σE1〈v〉, when label /∈ E2

(E-Label-Pop) σE〈label:{ v }〉 → σE〈v〉

(E-Ref) σE〈ref v〉 → (l, v), σE〈l〉 l fresh

(E-Deref) σE〈deref l〉 → σE〈σ(l)〉

(E-SetRef) σE〈setref l v〉 → σ[l/v]E〈l〉

δ1(tagof, num) = "number" δ2(===, v, v) = true
δ1(tagof, undefined) = "undefined" δ2(===, v1, v2) = false, when v1 �= v2

δ1(tagof, str) = "string" δ2(-, num1, num2) = num1 − num2

δ1(tagof, bool) = "boolean"

δ1(tagof, l) = "location"

δ1(tagof, func(x · · ·) { e }) = "function"

Fig. 4. Syntax and Semantics of λS

In this paper, the static types of λS are much richer than its runtime tags.
Therefore, we use a more technically precise name, tagof, to model the typeof
operator of real scripting languages. The break operator can model both break

and return statements of JavaScript. break aborts the current continuation up
to a matching label, and returns a value. We specify the semantics of three primi-
tives, of which physical equality (===) and tagof appear extensively in flow-directed
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(S-Refl) T <: T (S-Trans) S <: U U <: T
S <: T

(S-Bot) ⊥<: T

(S-Top) T <: � (S-Arr) S′ <: S · · · T <: T ′

S · · · → T <: S′ · · · → T ′

(S-Ref) T <: S S <: T
Ref S <: Ref T

(S-UnionE) S1 <: T S2 <: T

S1 ∪ S2 <: T

(S-UnionL) S <: S ∪ T (S-UnionR) T <: S ∪ T

Fig. 5. Subtyping in λS

ty1(tagof) = � → Str ty2(===) = �×� → Bool ty2(-) = Num× Num→ Num

(T-Loc)
Σ(l) = T

Σ; Γ � l : T
(T-Sub)

Σ; Γ � e : S S <: T

Σ; Γ � e : T

(T-Abs)
Σ; Γ ′, x : S, · · · � e : T Γ ′ = Γ with labels removed

Σ; Γ � func(x · · ·):S · · · → T{ e } : S · · · → T

(T-SetRef)
Σ; Γ � e1 : Ref S Σ; Γ � e2 : T T <: S

Σ; Γ � setref e1 e2 : Ref T

(T-If)
Σ; Γ � e1 : Bool Σ; Γ � e2 : T Σ; Γ � e3 : T

Σ; Γ � if (e1) { e2 } else { e3 } : T

(T-Label)
Σ; Γ, label : T � e : T

Σ; Γ � label:T { e } : T
(T-Break)

Γ (label) = T Σ, Γ � e : T

Σ; Γ � break label e : ⊥

Fig. 6. Typing λS (Essential Rules)

reasoning (figure 1). Other expressions, such as tagof x !== "string", are a simple
extension of our theory.

Figure 4 also specifies the syntax of types, T . Types include untagged unions
and a top type �, which were motivated in section 2. We also include the type of
locations, Ref T , and a bottom type ⊥ for control operators that do not return
a value. Given these types, subtyping (figure 5) is conventional.

Our typing relation is also mostly conventional. We present select typing judg-
ments in figure 6. Note that the typing environment binds identifiers and labels.
By T-SetRef, we can write subtypes to locations.2 Finally, like JavaScript, λS
programs cannot break across function boundaries, so we statically disallow it
by dropping labels when typing functions (T-Abs).

2 This is a simple restriction of source and sink types [20, Chapter 15.5].
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r = {"string", "boolean", "number", "undefined", "function", "location"}
R = P(r)

runtime : T → R
runtime(Str) = {"string"}
runtime(Bool) = {"boolean"}
runtime(Num) = {"number"}
runtime(Undef) = {"undefined"}
runtime(S ∪ T ) = runtime(S) ∪ runtime(T )
runtime(S · · · → T ) = {"function"}
runtime(⊥) = ∅
runtime(�) = r
runtime(Ref T ) = {"location"}

static : R× T → T
static(R,Str) = Str, if "string" ∈ R
static(R,Bool) = Bool, if "boolean" ∈ R
static(R,Num) = Num, if "number" ∈ R
static(R,Undef) = Undef, if "undefined" ∈ R
static(R,S · · · → T ) = S · · · → T, if "function" ∈ R
static(R,S ∪ T ) = static(R,S) ∪ static(R, T )
static(R,S ∪ T ) = static(R,S), if static(R,T ) is undefined
static(R,S ∪ T ) = static(R,T ), if static(R,S) is undefined
static(R,�) = �
static(R,Ref T ) = Ref �

Fig. 7. Relationship Between Types and Tags

4 Relating Static Types and Runtime Tags

Consider the following JavaScript program:

function f(x) {

if (typeof x === "string") { return 0; }

else { return (x-1); } }

f(200)

We can model this in λS as follows, with x as a local variable and the breaks
representing return statements and the intended type annotation inserted:3

let f = ref func(y) : Num ∪ Str→ Num {

return:Num {

let x = ref y in
if (tagof (deref x) === "string") { break return 0 }

else { break return ((deref x) - 1) } } }

in (deref f)(200)

Both the λS and original JavaScript programs run without error, returning 199.

3 In earlier work, we desugared JavaScript to λJS in this form [8].



Typing Local Control and State Using Flow Analysis 263

e = · · · | tagcheck R e | tagerr
E = · · · | tagcheck R E

(E-TagCheck)
δ1(tagof, v) ∈ R

σE〈tagcheck R v〉 → σE〈v〉

(E-TagCheck-Err)
δ1(tagof, v) /∈ R

σE〈tagcheck R v〉 → σE〈tagerr〉

(T-Check)
Σ; Γ � e : S static(R,S) = T

Σ; Γ � tagcheck R e : T
(T-TagErr) Σ; Γ � tagerr : ⊥

Fig. 8. Typing and Evaluation of Checked Tags

This λS program fails to type in the type checker of the previous section
because - expects its operands to be numbers, but deref x has type Num ∪ Str.
However, the tag-test informs us, the reader, that x has the static type Str
in the true branch; the type annotation on y bounds its range of values, and
thus enables us to conclude that x has type Num in the false branch. Thus,
the dynamic test and static type annotation collude to demonstrate that this
program is statically safe. Our goal is to enable the static type checker to arrive
at the same conclusion.

To support such reasoning, a retrofitted type system must relate static types
and runtime tags. We show this in figure 7. runtime maps types to tag sets
(due to the presence of unions), but since types are much richer than tags, we
cannot distinguish all static types at runtime, e.g., all arrow types are mapped
to the tag "function" (objects would be modeled similarly). static lets us narrow
a type based on a known tag. For example, if a value has type Str ∪ Num and
its tag set is {"number"}, then static produces the type Num. Note that static is
partial: for example, static({"number"}, Str) is undefined.

Since static relates types and tags, our type system can use it to account for
runtime tag-tests. We use static by extending λS with an auxiliary construct,
tagcheck R e (figure 8), which narrows the type of e based on the tag set R.
By judiciously inserting tagchecks, we can make our example typable.4 We thus
offer tagcheck as an appropriate cast-like operator for scripting languages.

A tagcheck expression can fail in three ways. Two are static: when the tag set
R is incompatible with the type of e, static is undefined; even if it is compatible,
the resulting type may not be what the context expects. However, the third
failure is dynamic: if e reduces to v and tagof(v) /∈ R, then evaluation gets stuck
with a tagerr (E-TagCheck-Err). This error condition manifests itself when we
try to prove a type soundness theorem.

4 Section 5 presents an efficient technique to insert tagchecks automatically, so they
are hidden from the programmer.
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The preservation lemma is conventional:

Lemma 1 (Preservation) If Σ, · � e : T , Σ � σ, and σe → σ′e′, then there
exists a Σ′, such that:

i. Σ′, · � σ′e′ : T , and
ii. Σ ⊆ Σ′.
However, programs can get stuck on tagerrs:

Lemma 2 (Progress) If Σ, · � e : T and Σ � σ, then either:

i. e ∈ v, or
ii. there exist σ′ and e′, such that σe→ σ′e′, or
iii. e = E〈tagerr〉, for some E.

Thus, the type soundness theorem is unsatisfying because of (iii.) of the lemma
above. We could try to “repair” the type system; indeed, a sufficiently compli-
cated type system might not need tagchecks and tagerrs at all. Our key idea is
to admit tagerrs to keep the type system simple, and then discharge them by
other means.

5 Automatically Inserting Safe tagchecks

We need a way to automatically insert tagchecks that fail neither statically nor
at runtime. The tagcheck-insertion technique needs to be sound and handle uses
of local control and state that we presented in section 2. Unlike conventional type
systems, flow analyses are well-suited to such reasoning styles, so we consider flow
analysis here. Unfortunately, whole-program analysis of functional and object-
oriented languages is non-modular and expensive (section 7). Moreover, we need
to relate abstract heaps produced by flow analysis to types produced by type-
checking. We address these problems broadly, before formally presenting one
particular analysis (section 6).

The goal of the flow analysis is to compute the tag-sets necessary for tagcheck

expressions. Therefore, the domain of the analysis will be tag-sets augmented by
some book-keeping information. Returning to the example from section 4, the
comments illustrate the kind of information we need from flow analysis:

1 let f = ref func(y) : Num ∪ Str→ Num {

2 return:Num { /* tagof(y) ∈ {"number", "string"} */

3 let x = ref y in /* x = ref y, tagof(y) ∈ {"number", "string"} */

4 if (tagof (deref x) === "string") { /* same as line 3 */

5 break return 0 /* x = ref y, tagof(y) ∈ {"string"} */

6 }

7 else {

8 break return ((deref x) - 1) /* x = ref y, tagof(y) ∈ {"number"} */

9 } } }

10 in (deref f)(200)
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The flow analysis should compute that x = ref y at all program points, and that
on lines 4 and 8, tagof(y) ∈ {"number", "string"} and tagof(y) ∈ {"number"},
respectively. This information is enough to mechanically transform the program,
replacing the (deref x) expressions with tagcheck {"number", "string"} (deref x)

on line 4 and tagcheck {"string"} (deref x) on line 8. Section 6 details a control-
sensitive, heap-sensitive analysis that produces results such as this.

This analysis, like our type system, is mostly conventional. It is peculiar in
populating the initial abstract heap with tagof(y) ∈ {"number", "string"}. A
whole-program analysis might have used the application on line 10 to populate
the heap with the argument value of 200. In contrast, our analysis remains lo-
cal but exploits the type annotation on y, thus determining that tagof(y) is in
runtime(Num ∪ Str) = {"number", "string"}.

We thus use types to modularize our flow analysis, so the analysis can re-
main strictly intraprocedural. The time complexity of flow analysis is therefore
a function of the size of individual functions in the program, which does not
tend to grow as programs get larger. (Of course, the choice of function calls as
modularity boundaries is not essential.) However, this does reduce precision, as
we see below.

Assignment and Aliasing. Our analysis is locally heap-sensitive and can type-
check the following imperative variant of the example function:

let f = ref func(y) : Num ∪ Str→ Num {

let x = ref y in
let = if (tagof (deref x) == "string") { setref x 1 }

else { false } in
(deref x) - 1 /* x = ref y, tagof(y) ∈ {"number"} */ }

in (deref f)(200)

However, since we restart the analysis at function applications, we do not track
non-local effects. In the following example, since foo(x) may assign either a num-
ber or a string to x, the analysis we present in section 6 simply restarts on all
function applications. Thus we cannot insert a useful tagcheck around the sub-
sequent deref x, so the example is untypable:

let g = ref func(y) : Num ∪ Str→ Num {

let x = ref y in
let = setref x 10 in
let = foo(x) in
(deref x) /* x = ref y, tagof(y) ∈ {"number", "string"} */}

in (deref g)("test")

More sophisticated analyses that tracked ownership or aliasing could make such
examples typeable.

Soundness. Given that our flow analysis ignores actual arguments, is it sound?
To show that a flow analysis is sound, we must define an acceptability rela-
tion and prove that statically computed abstract heaps remain acceptable under
evaluation. However, here is a trivial variation of our example that violates ac-
ceptability:
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JavaScript Python Ruby
Loops � � �
Exceptions � � �
Generators � �
Labelled Statements �
Switch fall-through �
Continuations �

Fig. 9. Control Features of Scripting Languages

values V = x | c | l | func(x · · ·):T { M } | func(x · · ·) { M }

binding expressions B = V | ref V | deref V | setref V1 V2 | opn(V1 · · ·Vn)

| tagcheck R V | tagerr
unlabeled expressions N = let x = B in M | Vf(V · · ·)

| if (V ) { M1 } else { M2 }

labelled expressions M = N l̂

stores S = · | (l, V ) S

Fig. 10. Syntax of λS in CPS

let f = ref func(y) : Num ∪ Str→ Num { /* ... as before ... */ }

in (deref f)(true)

The flow analysis ignores the actual argument true (tagged "boolean") and in-
stead assumes that the type annotation is correct. That is, it assumes that at
runtime, y is tagged either "number" or "string". Thus, we obtain only a weak
soundness lemma (lemma 4).

Although flow analysis admits such mis-applied functions, the type system
ensures that function applications are well-typed. Conversely, although the type
system admits tagerrs at runtime, the flow analysis only inserts tagchecks that
provably do not produce tagerrs. Hence, each component resolves the other’s
weakness and in concert they combine to statically check programs that they
cannot verify alone.

6 Flow Analysis via CPS

A glaring issue with λS is that it has a single control operator, while real scripting
languages support a plethora of control operators (figure 9). To avoid presenting
an overly break-specific program analysis, we convert λS to CPS. CPS has the
added advantage of naming intermediate terms, thereby simplifying our analysis.
CPS is, however, not a requirement; we only use it for convenience.

6.1 CPS Transformation

Figure 10 specifies the syntax of CPS-λS , which, with the exception of V , is a syn-
tactic restriction of λS . V includes administrative functions (explained shortly).
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Ŝ : l̂ → R abstract store
Γ̂ : x → V̂ abstract environments

V̂ = R | Ref l̂ | Deref l̂ R | LocTagof l̂ | LocType l̂ R

R1 ⊆ R2

R1 " R2
LocTagof l̂ " {"string"} LocType l̂ R " {"boolean"}

Deref l̂ R " R Ref l̂ " {"location"}

Fig. 11. Analysis Domains

We specify the CPS transformation using a technique developed by Sabry and
Felleisen [21]. The transformation is defined by four mutually-recursive functions
that respectively map programs, expressions, values, and evaluation contexts
from direct-style to CPS:

Pk : σe→ SM Φ : v → V Ck : e→M Kk : E → V

For illustration, consider representative cases of these functions:

Pk�(l, v) · · · e� = (l, Φ(v)) · · · Ck�e�
Φ�func(x · · ·):S · · · → T { e }� = func(k,x · · ·):(T → ⊥)× S · · · → ⊥ { Ck�e� }

Ck�E〈vf(varg · · ·)〉� = Φ�vf �(Kk�E�,Φ�varg� · · ·)
Kk�E〈let x = • in e〉� = func(x) { Ck�E〈e〉� }

In the last case above, the transformation introduces functions not found in the
source program to receive the bound value. Since all evaluation contexts are
transformed into such “administrative” functions, all control structures are thus
transformed into applications of administrative functions.

For succinctness, we do not introduce continuation-passing operators, and
instead let-bind operators’ results. We elide the semantics of CPS-λS, since it is
essentially the same as the semantics in figure 4. This style of definition makes
it easy to prove that direct-evaluation corresponds to CPS-evaluation, which is
necessary to relate typing and flow analysis.

Lemma 3 (Soundness of CPS Transformation) If σe → σ′e′ using reduc-
tion rule R, then Pk�σe� Pk�σ′e′� using reduction rules R, E-Let, and β̂v.

In the lemma above, β̂v denotes the reduction rule for administrative functions
(defined exactly as βv). The lemma roughly states that intermediate redexes in
CPS are applications of administrative functions and let-expressions.

6.2 Modular Flow Analysis

Figure 11 specifies our abstract values and the lattice that relates them. Ab-
stract stores (Ŝ) map abstract locations (l̂) to tag sets (R). (Abstract locations
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1 let f = func(k, y):(Num→ ⊥)× Num ∪ Str→ ⊥ {

2 // By V-Restart, k = {"function"}, y = {"number", "string"}
3 let x = ref y in // By F-Alloc, x = Ref l̂; l̂ = {"number", "string"}
4 let t1� = deref x in // By F-Deref, t’ = Deref x Ŝ(l̂)
5 let t1 = tagcheck {"number","string"} t1� in // By F-TagCheck, t1 = t1’

6 let t2 = typeof t1� in // By F-Typeof, t2 = LocTypeof l̂

7 let t3 = (t2 === "string") in // By F-TypeIs-Str, t3 = LocType l̂ {"string"}
8 if (t3) { // By F-If-Split applied to l̂

9 k(0) } // By F-App, with l̂ = {"number"}
10 else {

11 let t4� = deref x in // By F-Deref, t4’ = Deref x Ŝ(l̂); l̂ = {"number"}
12 let t4 = tagcheck {"number"} t4� in // By F-TagCheck, t4 = t4’
13 let t5 = t4� - 1 in
14 k(t5) } }

15 in let f� = deref f
16 in f�(kinit,200)

Fig. 12. tagcheck Insertion

are labels on expressions, introduced by CPS.) On the other hand, abstract
environments (Γ̂ ) map identifiers to abstract values (V̂ ) that will account for
tag-tests.

For example, figure 12 presents our example from the previous section in CPS.
The comment on line 2 specifies the initial abstract environment, computed by
applying runtime to the arguments. The remaining comments specify how the
abstract heap and environment are transformed by each statement. These trans-
formation are acceptable, as specified by our acceptability relation (figure 13).

Note that the user-written identifier x is bound to a heap-location. However,
the CPS-introduced identifiers, which name the subexpressions that reason about
x, are not heap-allocated. We exploit this stratification in our analysis domains
to simplify the proof of soundness. The abstract heap and environment contain
values that locally reason about the heap. For soundness, V-Restart therefore
discards the abstract heap and uses reset and del to widen heap-dependent
abstract values to simple tag sets.

Assignment and Aliasing. In figure 14, we account for the effects of assignments
to tag sets. If a program sets an abstract location l̂, then F-SetRef simply updates
l̂ in the abstract store of its continuation. However, the environment may bind
identifiers to abstract values that reason about l̂. Therefore, we use del to widen
l̂-dependent values to simple tag sets.

Local variables cannot reference each other. However, we use references to
model mutable objects as well. A local variable bound to a mutable object is
a reference to a reference, and these objects can be aliased. In these cases, we
stop tracking the potentially-aliased abstract location, once again using del.
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del : l̂, Γ̂ → Γ̂

del(l̂, ·) = ·
del(l̂, x : Deref l̂ R, Γ̂ ) = x : R, del(l̂, Γ̂ )
del(l̂, x : LocTagof l̂, Γ̂ ) = x : {"string"}, del(l̂, Γ̂ )
del(l̂, x : LocType l̂ R, Γ̂ ) = x : {"boolean"}, del(l̂, Γ̂ )
del(l̂, x : Ref l̂, Γ̂ ) = x : r, del(l̂, Γ̂ )
del(l̂, x : V̂ , Γ̂ ) = x : V̂ , del(l̂, Γ̂ )
reset(Γ̂ ) = del(l̂1, del(l̂2, ..., del(l̂n, Γ̂ ))),∀l̂i ∈ Γ̂

Γ̂ � V � V̂

(V-Restart)
·; x : runtime(T ) · · · , reset(Γ̂ ) � M

Γ̂ � func(x · · ·):T · · · → ⊥ { M }� "function"

(V-Const) Γ̂ � c� δ1(, c) (V-Id) Γ̂ � x� Γ̂ (x)

(V-Sub)
Γ̂ � V � V̂ V̂ " V̂ ′

Γ̂ � V � V̂ ′

Ŝ; Γ̂ � M

(F-LetVal)

Γ̂ � V � V̂
Ŝ; x : V̂ , Γ̂ � M

Ŝ; Γ̂ � let x = V in M
(F-Alloc)

Γ̂ � V � R
l̂ : R, Ŝ; x : Ref l̂, Γ̂ � M

Ŝ; Γ̂ � letl̂x = ref V in M

(F-Deref)
Γ̂ � V � Ref l̂ Ŝ(l̂) = R Ŝ; x : Deref l̂ R, Γ̂ � M

Ŝ; Γ̂ � let x = deref V in M

(F-Tagof)
Γ̂ � V � Deref l̂ R Ŝ; x : LocTagof l̂, Γ̂ � M

Ŝ; Γ̂ � let x = tagof V in M

(F-TypeIs-Str)a
Γ̂ � V � LocTagof l̂ Ŝ; x : LocType l̂ {"string"}, Γ̂ � M

Ŝ; Γ̂ � let x = V === "string"in M

(F-TagCheck)
Γ̂ � V � R Ŝ; x : R, Γ̂ � M

Ŝ; Γ̂ � let x = tagcheck R V in M

(F-If-Split)
Γ̂ � V � LocType l̂ R Ŝ[l̂ := R]; Γ̂ � M1 Ŝ[l̂ := Ŝ(l̂)\R]; Γ̂ � M2

Ŝ; Γ̂ � if (V ) { M1 } else { M2 }

(F-App)
Γ̂ � Vf � V̂f Γ̂ � V � R · · ·

Ŝ; Γ̂ � Vf(V · · ·)
a F-TypeIsStr is easily generalized to arbitrary tags; we specialize it to strings for

presentation only.

Fig. 13. Acceptability of Flow Analysis (Essential Rules)
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(F-SetRef)
Γ̂ � V1 � Ref l̂ Γ̂ � V2 � R Ŝ[l̂ := R]; x : Ref l̂, del(l̂, Γ̂ ) � M

Ŝ; Γ̂ � let x = setref V1 V2 in M

(F-Ref-Alias)
Γ̂ � V � Ref l̂ Ŝ; x : r, del(l̂, Γ̂ ) � M

Ŝ; Γ̂ � let x = ref V in M

Fig. 14. Assignment and Aliasing

F-Ref-Alias in figure 14 tackles aliasing in ref expressions. Similar rules apply to
other syntactic forms.

Monotone Framework. Our algorithm for computing tagchecks is a simple mono-
tone framework [15] directly derived from the rules in figure 13. The monotone
framework computes the abstract store and environment at each labelled expres-
sion. We use this information to insert tagchecks into our programs.

Consider each expression of the form:

letl̂ r = deref x in M

Let Γ̂ and Ŝ be the computed abstract environment and store at l̂. If Γ̂ (l̂) =
Ref l̂′, then we transform the expression to:

let r′l̂ = deref x in

let r = tagcheck Ŝ(l̂′) r′ in
M

For type-checking, this inserted tagcheck is mapped back to the original, direct-
style program.

The administrative functions, if applied, can exponentially increase the size
of programs. Therefore, we leave certain administrative redexes unapplied (e.g.,
continuations of if-expressions). The CPS transformation is therefore linear time
and our flow analysis computes meets through administrative functions.

Complexity. Our flow analysis is a monotonic ascent of a lattice of finite height.
For a program of N terms our analysis computes an abstract store and environ-
ment at each term. The domain of abstract stores and environments are both
of size O(N). The range of the abstract store is R, and |R| is a constant. The
range of the abstract environment is V̂ , where V̂ contains the elements of R.
The additional elements of V̂ are incomparable with each other and are all less
than the elements of R. Hence, the height of V̂ is just 1 greater than the height
of R. Thus, the analysis needs time quadratic in the program size. In practice,
our prototype implementation type-checks real-world JavaScript programs in
seconds on modest machines.

Soundness. In addition to figure 13 and figure 14, we require trivial rules for cases
where our flow analysis cannot determine useful information. These additional
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rules admit all other expressions, except tagerrs and possibly-faulty tagchecks.
Soundness also requires auxiliary rules that reason about the concrete values in
the store that are introduced by evaluation. We elided the concrete store from
figures 13 and 14 for clarity; in the following lemmas, we introduce it.

Lemma 4 (Soundness) If Ŝ, · � SM and SM → S′M ′ then either:

i. Ŝ′, · � S′M ′, or
ii. M is a βv-redex, func(x · · ·) : T · · · → ⊥ { N }(V · · ·), where for some V ,
δ1(tagof, V ) /∈ runtime(T ).

6.3 Combining Typing and Flow Analysis

We can now prove a stronger progress result that eliminates tagerrs.

Theorem 1 (Strengthened Progress) If:

i. Σ; · � e : T ,
ii. Σ � σ, and
iii. Ŝ; · � Pk�σe�,
then either:

i. e ∈ v, or
ii. There exist σ′ and e′, such that σe→ σ′e′.

Proof: This follows from lemma 2, with the possibility of tagerrs eliminated by
inspection of figure 13—flow analysis does not admit expressions with tagerrs. �
Theorem 1 requires a corresponding, combined preservation theorem.

Theorem 2 (Combined Preservation) If:

i. Σ; · � e : T ,
ii. Σ � σ,
iii. Ŝ; · � Pk�σe�, and
iv. σe→ σ′e′,

then there exist Σ′ and Ŝ′, such that:

i. Σ′; · � e′ : T ,
ii. Σ′ � σ′,
iii. Σ ⊆ Σ′, and
iv. Ŝ′; · � Pk�σ′e′�.
Proof: Conclusions (i.), (ii.), and (iii.) follow immediately from lemma 1. For
conclusion (iv.), apply lemma 3 to hypothesis (iv.) to get a reduction sequence,
Pk�σe�  Pk�σ′e′�. Apply lemma 4 at each step, eliminating case (ii.) of the
lemma as follows. By lemma 3, intermediate expressions are not βv-redexes, so
case (ii.) does not apply. Suppose e itself has an active βv-redex:

e = E〈func(x · · ·) : U · · · → S { ef }(v · · ·)〉
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Γ � e1 : τ1; φ1 Γ + φ1 � e2 : τ2; φ2 Γ − φ1 � e3 : τ3; φ3

� τ2 <: τ � τ3 <: τ φ = combpred(φ1, φ2, φ3)
Γ � (if e1 e2 e3) : τ ;φ

Fig. 15. If-splitting in Typed Scheme [23]

Once transformed to CPS, e has the form

func(k,x · · ·) : (S →⊥)× U · · · →⊥ { Mp }(V · · ·)

where V · · · are v · · · in CPS. Since e is typed, there exists a Γ such that:

Σ;Γ � func(x · · ·) : U · · · → S { ef }(v · · ·) : S

For all v, Σ;Γ � v : U by inversion. Hence δ1(tagof, v) ∈ runtime(U). Since
conversion to CPS does not change tags, δ1(tagof, v) = δ1(tagof, V ), case (ii.) of
lemma 4 does not apply. �

7 Related Work

Typed Scheme. Typed Scheme [23,24] is a type system designed to admit Scheme
idioms. Typed Scheme uses occurrence typing to account for type tests and type
predicates. However, occurrence typing is unsound in the presence of imperative
features; thus, it is “turned off” when imperative features are used. Unlike the
Scheme programs that Typed Scheme types, programs in mainstream scripting
languages make heavy use of imperative features, which we handle.

Technically, we develop a type system and flow analysis that are complemen-
tary by design (Lemmas 2 and 4), which combine soundly (Theorems 1 and 2),
and which can be enriched independently within the framework of these two
lemmas. We conjecture that a similar structure could be extracted from Typed
Scheme, as the type system is augmented with meta-functions that update the
environment (see Typed Scheme’s use of Γ+ and Γ− to affect the environment,
and combpred to prop type tests to the context in if (figure 15)). We believe
these are similar to transfer functions for dataflow analyses. However, Typed
Scheme is not organized in this manner.

Intensional Polymorphism. Intensional polymorphism [2] provides a typecase
construct that allows programs to inspect and dispatch on the type of values at
runtime. This requires a term-level representation of types at runtime, which is
only possible when the static and dynamic semantics of a programming language
are co-designed. The present work, Typed Scheme, and other retrofitted type
systems (discussed below) do not have access to their types at runtime. Type
dispatch in a retrofitted type system happens indirectly. For example, Typed
Scheme uses predicates [23], while our work relies on the relationship between
static types and runtime tags (section 4).
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Other Retrofitted Type Systems. Soft Scheme [25] performs type inference for
Scheme programs. It handles the full language of the time, and has a limited
form of if-splitting. It does not pay any additional attention to the interaction
of types and control flow. This is reasonable because it, like Typed Scheme, is
focused on Scheme programs that are mostly functional. However, this means
that it too cannot handle the kinds of examples shown in this paper and found
in many scripting languages.

Anderson et al. [1] tackle type inference for JavaScript. However, their lan-
guage is extremely limited, and their type system cannot tackle the idioms dis-
cussed in this paper (section 2).

Heidegger and Thiemann’s [10] recency types account for ad hoc object ini-
tialization patterns that are pervasive in JavaScript, but does not address the
problems that this paper does. Our work does not account for objects. Our pre-
liminary investigation suggests that the two approaches are complementary and
can fruitfully be combined.

Henglein and Rehof [12] present a translation of Scheme to ML that uses type
inference to minimize runtime projections. However, their “type system does not
model control flow information” [12, Section 6.5], which is the goal of our work.

Diamondback Ruby [5] is a type system and type inference for Ruby. Although
its type language includes union types, it does not account for type-tests to
discriminate members of unions, which is the focus of our work. The authors
state that “support for occurrence types would be useful future work”.

Types and Flow Analysis. Shivers shows how control-flow can be extended to
account for type-tests [22, Chapter 9]. However, whole-program analysis for func-
tional and object-oriented languages is non-modular and expensive [4] or difficult
to make effective [3]. Meunier et al. [16] develops a modular analysis for an un-
typed language by using contracts as sources and sinks for abstract values. We
exploit type annotations in the same manner. However, unlike contracts, which
are assumed to be correct, typing ensures that type annotations are correct.
Since all functions have type annotations, our flow analysis problem is signifi-
cantly more tractable than in an untyped language with optional contracts.

Jensen et al. [13,14] and MrSpidey [4] use flow analysis to recover precise type-
like information for arbitrary JavaScript and Scheme programs, respectively. A
significant advantage of flow analysis is that it does not require type annota-
tions. Our work requires and exploits type annotations to achieve modularity,
which leads to quadratic time complexity in theory that appears to translate
into practice (section 6.2).

There are known equivalences between various type systems and control-
flow analyses, e.g., Heintze [11], Nielson and Nielson [18], and Palsberg and
O’Keefe [19]. The aforementioned works extend type systems to calculate infor-
mation that is conventionally calculated by flow analyses. In contrast, our type
system is oblivious to control flow information (figure 6). We use a separate flow
analysis to account for control-sensitive and heap-sensitive reasoning (section 5).
We independently prove typing and flow analysis sound, then show that they
combine in a simple way (section 6.3).
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Definite assignment analysis is a commonly used flow analysis that augments
typing (e.g., see the Java Language Specification [7, Chapter 16]). Definite as-
signment analysis conservatively ensures that variables are assigned before they
are used. Hence, the analysis rejects programs as untypable when all variables
are not definitely assigned. In contrast, our analysis augments the type system
to accept programs that would otherwise be untypable.
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Barriers in Concurrent Separation Logic
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Abstract. We develop and prove sound a concurrent separation logic
for Pthreads-style barriers. Although Pthreads barriers are widely used
in systems, and separation logic is widely used for verification, there
has not been any effort to combine the two. Unlike locks and critical
sections, Pthreads barriers enable simultaneous resource redistribution
between multiple threads and are inherently stateful, leading to signifi-
cant complications in the design of the logic and its soundness proof. We
show how our logic can be applied to a specific example program in a
modular way. Our proofs are machine-checked in Coq.

1 Introduction

In a shared-memory concurrent program, threads communicate via a common
memory. Programmers use synchronization mechanisms, such as critical sections
and locks, to avoid data races. In a data race, threads “step on each others’ toes”
by using the shared memory in an unsafe manner. Recently, concurrent separa-
tion logic has been used to formally reason about shared-memory programs that
use critical sections and (first-class) locks [18,15,13,14]. Programs verified with
concurrent separation logic are provably data-race free.

What about shared-memory programs that use other kinds of synchronization
mechanisms, such as semaphores? The general assumption is that other mech-
anisms can be implemented with locks, and that reasonable Hoare rules can be
derived by verifying their implementation. Indeed, the first published example of
concurrent separation logic was implementing semaphores using critical sections
[18]. Unfortunately, not all synchronization mechanisms can be easily reduced
to locks in a way that allows for a reasonable Hoare rule to be derived. In this
paper we introduce a Hoare rule that natively handles one such synchronization
mechanism, the Pthreads-style barrier.

Pthreads (POSIX Threads) is a widely-used API for concurrent program-
ming, and includes various procedures for thread creation/destruction and syn-
chronization [7]. When a thread issues a barrier call it waits until a specified
number (typically all) of other threads have also issued a barrier call; at that
point, all of the threads continue. Although barriers do not get much attention in
theory-oriented literature, they are very common in actual systems code. PAR-
SEC is the standard benchmarking suite for multicore architectures, and has
thirteen workloads selected to provide a realistic cross-section for how concur-
rency is used in practice today; a total of five (38%) of PARSEC’s workloads use
barriers, covering the application domains of financial analysis (blackscholes),
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computer vision (bodytrack), engineering (canneal), animation (fluidanimate),
and data mining (streamcluster) [4]. A common use for barriers is to manage
large numbers of threads in a pipeline setting. For example, in a video-processing
algorithm, each thread might read from some shared common area containing
the most recently completed frame while writing to some private area that will
contain some fraction of the next frame. (A thread might need to know what
is happening in other areas of the previous frame to properly handle objects
entering or exiting its part of the current frame.) In the next iteration, the old
private areas become the new shared common area as the algorithm continues.

Our key insight is that a barrier is used to simultaneously redistribute own-
ership of resources (typically, permission to read/write memory cells) between
multiple threads. In the video-processing example, each thread starts out with
read-only access to the previous frame and write access to a portion of the
current frame. At the barrier call, each thread gives up its write access to its
portion of the (just-finished) frame, and receives back read-only access to the en-
tire frame. Separation logic (when combined with fractional permissions [5,11])
can elegantly model this kind of resource redistribution. Let Prei be the precon-
ditions held upon entering the barrier, and Post i be the postconditions that will
hold after being released; then the following equation is almost true:

∗
i

Prei = ∗
i

Post i (1)

Pipelined algorithms often operate in stages. Since barriers are used to ensure
that one computation has finished before the next can start, the barriers need
to have stages as well—a piece of ghost state associated with the barrier. We
model this by building a finite automata into the barrier definition. We then need
an assertion, written barrier(bn, π, cs), which says that barrier bn, owned with
fractional permission π, is currently in state cs . The state of a barrier changes
exactly as the threads are released from the barrier. We can correct equation (1)
by noting that barrier bn is transitioning from state cs (current state) to state
ns (next state), and that the other resources (frame F ) are not modified:

∗
i

Prei = F ∗ barrier(bn, �, cs)

∗
i

Post i = F ∗ barrier(bn, �,ns)
(2)

We use the symbol � to denote the full (∼100%) permission, which we require
so that no thread has a “stale” view of the barrier state. Although the on-chip
(or erased) operational behavior of a barrier is conceptually simple1, it may be
already apparent that the verification can rapidly become quite complicated.

Contributions

1. We give a formal characterization for sound barrier definitions.
2. We design a natural Hoare rule in separation logic for verifying barrier calls.
1 Suspend each thread as it arrives; keep a counter of the number of arrived threads;

and when all of the threads have arrived, resume the suspended threads.
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3. We give a formal resource-aware unerased concurrent operational semantics
for barriers and prove our Hoare rules sound with respect to our semantics.

4. Our soundness results are machine-checked in Coq and are available at:

www.comp.nus.edu.sg/∼hobor/barrier

2 Syntax, Separation Algebras, Shares, and Assertions

Here we briefly introduce preliminaries: the syntax of our language, separation
algebras, share accounting, and the assertions of our separation logic.

2.1 Programming Language Syntax

To let us focus on the barriers, most of our programming language is pure vanilla.
We define four kinds of (tagged) values v: TRUE, FALSE, ADDR(N), and DATA(N).
We have two (tagged) expressions e: C(v) and V(x), where x are local variable
names (just N in Coq). To make the example more interesting we add the arith-
metical operations to e. We write bn for a barrier number, with bn ∈ N.

We have ten commands c: skip (do nothing), x := e (local variable assign-
ment), x := [e] (load from memory), [e1] := e2 (store to memory), x:= new e
(memory allocation), free e (memory deallocation), c1; c2 (instruction se-
quence), if e then c1 else c2 (if-then-else), while e {c} (loops), and barrier bn
(wait for barrier bn). To run commands c1 . . . cn in parallel (which, like O’Hearn,
we only allow at the top level [18]), we write c1|| . . . ||cn. To avoid clogging the
presentation, we elide a setup sequence before the parallel composition.

2.2 Disjoint Multi-unit Separation Algebras

Separation algebras are mathematical structures used to model separation logic.
We use a variant described by Dockins et al. called a disjoint multi-unit sep-
aration algebra (hereafter just “DSA”) [11]. Briefly, a DSA is a set S and an
associated three-place partial join relation ⊕, written x⊕ y = z, such that:

A function: x⊕ y = z1 ⇒ x⊕ y = z2 ⇒ z1 = z2
Commutative: x⊕ y = y ⊕ x
Associative: x⊕ (y ⊕ z) = (x⊕ y) ⊕ z
Cancellative: x1 ⊕ y = z ⇒ x2 ⊕ y = z ⇒ x1 = x2
Multiple units: ∀x. ∃ux. x⊕ ux = x
Disjointness: x⊕ x = y ⇒ x = y

A key concept is the idea of an identity: x is an identity if x ⊕ y = z implies
y = z. One fundamental property of identities is that x is an identity if and
only if x⊕ x = x. Dockins also develops a series of standard constructions (e.g.,
product, functions, etc.) for building complicated DSAs from simpler DSAs. We
make use of this idea to construct a variety of separation algebras as needed,
usually with the concept of share as the “foundational” DSA.
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2.3 Shares

Separation logic is a logic of resource ownership. Concurrent algorithms some-
times want to have threads share some common resources. Bornat et al. intro-
duced the concept of fractional share to handle the necessary accounting [5].
Shares form a DSA; a full share (complete ownership of a resource) can be bro-
ken into various partial shares; these shares can then be rejoined into the full
share. The empty share is the identity for shares. We often need non-empty
(strictly positive) shares, denoted by π. A critical invariant is that the sum of
each thread’s share of a given object is no more or less than the full share.

The semantic meaning of partial shares varies; here we use them in two distinct
ways. We require the full share to modify a memory location; in contrast, we only
require a positive share to read from one. There is no danger of a data race even
though we do not require the full share to read: if a thread has a positive share
of some location, no other thread can have a full share for the same location.
We use fractional permissions differently for barriers: each precondition includes
some positive share of the barrier itself and we require that the preconditions
combine to imply the full share of the barrier (plus a frame F ).

In the Coq development we use a share model developed Dockins et al. that
supports sophisticated fractional ownership schemes [11]. Here we simplify this
model into four elements: the full share �; two distinct nonempty partial shares,
�and � , and the empty share �. The key point is that �⊕ � = �.

2.4 Assertion Language

We model the assertions of separation logic following Dockins et al. [11]. Our
states σ are triples of a stack, heap, and barrier map (σ = (s, h, b)). Local
variables live in stacks s (functions from variable names to values). In contrast, a
heap h contains the locations shared between threads; heaps are partial functions
from addresses to pairs of positive shares and values. We also equip our heaps
with a distinguished location, called the break, that tracks the boundary between
allocated and unallocated locations. The break lets us provide semantics for the
x:= new e instruction in a natural way by setting x equal to the current break
and then incrementing the break. Since threads share a common break, there is
a backdoor communication channel; however the existence of this channel is a
small price to pay for avoiding the necessity of a concurrent garbage collector.
We ensure that the threads see the same break by equipping our break with
ownership shares just as we equip normal memory locations with shares.

We denote the empty heap (which lacks ownership for both all memory loca-
tions and the distinguished break location) by h0. Of note, our expressions e are
evaluated only in the context of the stack; we write s � e ⇓ v to mean that e
evaluates to v in the context of the stack s. Finally, the barrier map b is a partial
function from barrier numbers to pairs of barrier states (represented as natural
numbers) and positive shares; we denote the empty barrier map by b0.

An assertion is a function from states to truth values (Prop in Coq). As is
common, we define the usual logical connectives via a straightforward embedding
into the metalogic; for example, the object-level conjunction P ∧Q is defined as
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λσ. (Pσ)∧(Qσ). We will adopt the convention of using the same symbol for both
the object-level operators and the meta-level operators to avoid symbol bloat;
it should be clear from the context which operator applies in a given situation.
We provide all of the standard connectives (�,⊥,∧,∨,⇒,¬, ∀, ∃).

We model the connectives of separation logic in the standard way2:

emp = λ(s, h, b). h = h0 ∧ b = b0
P ∗ Q = λσ. ∃σ1, σ2. σ1 ⊕ σ2 = σ ∧ P (σ1) ∧ Q(σ2)
e1

π�−→ e2 = λ(s, h, b). ∃a, v. (s � e1 ⇓ ADDR(a)) ∧ (s � e2 ⇓ v) ∧
b = b0 ∧ h(a) = (v, π) ∧ dom(h) = {a} ∧ break(h) = �

barrier(bn, π, s) = λ(s, h, b). h = h0 ∧ b(bn) = (s, π) ∧ dom(b) = {bn}

The fractional maps-to assertion, e1
π�−→ e2, means that the expression e1 is

pointing to an address a in memory; a is owned with positive share π, and
contains the evaluated value v of e2. The fractional maps-to assertion does not
include any ownership of the break. The barrier assertion, barrier(bn , π, s), means
that the barrier bn, owned with positive share π, is in state s.

We also lift program expressions into the logic: e ⇓ v, which evaluates e with
σ’s stack (i.e., λ(s, h, b). h = h0 ∧ b = b0 ∧ s � e ⇓ v); [e], equivalent to e ⇓ TRUE;
and x = v, equivalent to V(x) ⇓ v. These assertions have a “built-in” emp.

3 Example

We present a detailed example inspired by a video decompression algorithm. The
code and a detailed-but-informal description of the barrier definition is given in
Figure 1.3 Two threads cooperate to repeatedly compute the elements of two
size-two arrays x and y. In each iteration, each thread writes to a single cell of
the “current” array, and reads from both cells of the “previous” array.

In Figure 1 we give a pictorial representation of the state machine associated
with the barrier used in the code using the following specialized notation:

This notation is used to express the pre- and postconditions for a given barrier
transition. Each row is a pictorial representation (values, barrier states, and
shares) of a formula in separation logic as indicated above. The preconditions are
2 Our Coq definition for emp is different but equivalent to the definition given here.
3 In our Coq development we give the full formal description of the example barrier.
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0: {x1
��−→0 ∗ x2

��−→0 ∗ y1
��−→0 ∗ y2

��−→0 ∗ i
��−→0 ∗ barrier(bn, �, 0 )}

0’: {x1

�

�−−→0 ∗ x2

�

�−−→0 ∗ y1

�

�−−→0 {x1

�

�−−→0 ∗ x2

�

�−−→0 ∗ y1

�

�−−→0

∗ y2

�

�−−→0 ∗ i
�

�−−→0 ∗ barrier(bn, �, 0 )} ∗ y2

�

�−−→0 ∗ i
�

�−−→0 ∗ barrier(bn,� , 0 )}
. . . . . .

1: barrier b; barrier b; // b transitions 0→1
2: n := 0; m := 0;
3: while n < 30 { while m < 30 {
4: a1 := [x1]; a1 := [x1];
5: a2 := [x2]; a2 := [x2];
6: [y1] := (a1+2∗a2); [y2] := (a1+3∗a2);
7: barrier b; barrier b; // b transitions 1→2
8: a1 := [y1]; a1 := [y1];
9: a2 := [y2]; a2 := [y2];
10: [x1] := (a1+2∗a2); [x2] := (a1+3∗a2);
11: n := (n+1);
12: [i] := n;
13: barrier b; barrier b; // b transitions 2→1
14: m := [i];
15: } }
16: barrier b; barrier b; // b transitions 1→3
17: [i] := 0;

. . . . . .

Fig. 1. Example: Code and Barrier Diagram
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on top (one per row) and the postconditions below. Each row is associated with
a move; move 1 is a pair of the first precondition row and the first postcondition
row, etc. A barrier that is waiting for n threads will have n moves; n can be
fewer than the total number of threads. We do not require that a given thread
always takes the same move each time it reaches a given barrier transition.

Note that only the permissions on the memory cells change during a transition;
the contents (values) do not.4 The exception to this is the special column on the
right side, which denotes the assertion associated with the barrier itself. As the
barrier transitions, this value changes from the previous state to the next; we
require that the sum of the preconditions includes the full share of the barrier
assertion to guarantee that no thread has an out-of-date view of the barrier’s
state. Observe that all of the preconditions join together, and, except for the
state of the barrier itself, are exactly equal to the join of the postconditions.

The initial state of the machine is given as an assertion in line 0. The machine
starts with full ownership of the array cells x1, x2, y1, and y2, as well as an
additional cell i, used as a condition variable. The barrier b is fully-owned and is
in state 0. The initial state is then partitioned into two parts on line 0’, with the
left thread (A) and right thread (B) getting the shares �and � , respectively.

Not shown (between lines 0’ and 1) is thread-specific initialization code; per-
haps both threads read both arrays and perform consistency checks. The real
action starts with the barrier call on line 1, which ensures that this initializa-
tion code has completed. Thread A takes move 1 and thread B takes move 2.
Afterwards, thread A has full ownership over y1 and thread B has full ownership
over y2; the ownership of x1, x2, and i remains split between A and B. While
the ownership of the barrier is unchanged, it is now in state 1.

We then enter the main loop on line 3. On lines 4–5, both threads read from
the shared cells x1 and x2, and on line 6 both threads update their fully-owned
cell. The barrier call on line 7 ensures that these updates have been completed
before the threads continue. Since the value T at memory location i is less than
30, only the 1–2 transition is possible; the 1–3 transition requires T≥ 30. Thread
A takes move 1 and thread B takes move 25; afterwards, both threads have partial
shares of y1 and y2, thread A has the full share of x1 and the condition cell i,
and thread B has the full share of x2; the barrier is in state 2.

Lines 8–10 are mirrors of lines 4–6. On lines 11–12, thread A updates the
condition cell i. The barrier on line 13 ensures that the updates on lines 10 and
12 have completed before the threads continue; thread A takes move 2 while
thread B takes move 1. Afterwards, the threads have the same permissions they
had on entering the loop: A has full ownership of y1, B has full ownership of y2,
and they share ownership of x1, x2, and i; the barrier is again in state 1.

4 We use the same quantified variable names before and after the transition because
an outside observer can tell that the values are the same. A local verification can
use ghost state to prove the equality; alternatively we could add the ability to move
the quantifier to other parts of the diagram, e.g., over an entire pre-post pair.

5 In this example a given thread always takes the same move for a given transition;
however, this is not forced by the rules of our logic.
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BarDef ≡ { bd bn : Nat barrier id
(barrier definition) bd limit : Nat # of threads

bd states : list BarStateDef} state list
BarStateDef ≡ {bsd bn : Nat barrier id
(barrier state) bsd cs : Nat state id

bsd directions : list BarMoveList transition list
bsd limit : Nat} # of threads

BarMoveList ≡ {bml dest : Nat next state
(transition) bml bn : Nat barrier id

bml cs : Nat current state
bml limit : Nat # of threads
bml moves : list (assert × assert)} pre/post pairs

Fig. 2. Barrier Definitions

On line 14, thread B reads from the condition variable i, and then the program
loops back to line 3. After 30 iterations, the loop exits and control moves to the
barrier on line 16. Observe that since the (shared) value T at memory location
i is greater than or equal to 30, only the 1–3 transition is possible; the 1–2
transition requires T< 30. Thread A takes move 1 while thread B takes move
2; afterwards, both threads are sharing ownership of x1, x2, y1, and y2 (since
the transition from 1 to 3 does not mention y1 and y2 they are unchanged).
Thread A has full permission over the condition variable i; the barrier is in state
3. Finally, on line 17, thread A updates i; the barrier on line 16 ensures that
thread B’s read of i on line 14 has already occurred.

4 Barrier Definitions and Consistency Requirements

We present the type of a barrier definition in Figure 2 in the form of a data
structure. The definitions include numerous consistency requirements; in Coq
these are maintained with dependent types. From the top down, a barrier defi-
nition (BarDef) consists of a barrier identifier (i.e., barrier number), the number
of threads the barrier is synchronizing, and a list of barrier state definitions. For
programs that have more than one barrier, the individual barrier definitions will
be collected into a list and barrier number j will be in list slot j.

A barrier state definition (BarStateDef) consists of a barrier number, the num-
ber of threads synchronized, a state id, and a transition list; such that:

1. the barrier number matches the barrier number in the containing BarDef
2. the limit matches the limit of the containing BarDef6

3. the state identifier j indicates that this BarStateDef is the j element of the
containing BarDef’s list of state definitions

4. the directions are mutually exclusive

6 A command to dynamically alter the number of threads a barrier managed might
allow different states/transitions to wait for different numbers of threads.
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The first three are unexciting; we will discuss mutual exclusion shortly.
A transition (BarMoveList) contains a barrier number (bn), number of threads

synchronized, current state identifier (cs), next state identifier (ns), and list of
precondition/postcondition pairs (the move list). We require that:

1. bn matches the barrier number in the containing BarStateDef
2. the limit matches the limit in the containing BarStateDef
3. cs matches the state identifier in the containing BarStateDef
4. the length of list of moves (bml moves) is equal to the limit (bml limit)
5. all of the pre/postconditions in the movelist ignore the stack, focusing only

on the memory and barrier map. Since stacks are private to each thread (on
a processor these would be registers), it does not make sense for them to be
mentioned in the “public” pre/post conditions.

6. all of the preconditions in the movelist are precise. Precision is a technical
property involving the identifiability of states satisfying an assertion.7

7. each precondition P includes some positive share of the barrier assertion with
bn and cs, i.e., ∃π. P ⇒ � ∗ barrier(bn, π, cs).

8. the sum of the preconditions must equal the sum of the postconditions,
except for the state of the barrier; moreover, the sum of the preconditions
must include the full share of the barrier (equation (2), repeated here):

∗
i

Prei = F ∗ barrier(bn, �, cs)

∗
i

Post i = F ∗ barrier(bn, �, ns)

Items 1–4 are simple bookkeeping; items 5–7 are similar to technical requirements
required in other variants of concurrent separation logic [18,14,13]. As previously
mentioned, the fundamental insight of this approach is property (8).

The function lookup move simplifies the lookup of a move in a BarDef:

lookup move(bd , cs , dir ,mv) = bd.bd states[cs ].bsd directions[dir ].bml moves[mv ]

Using this notation, we can express the important requirement that all directions
in the barrier state cs of the barrier definition bd are mutually exclusive:

∀dir 1, dir 2,mv1,mv2, pre1, pre2. dir 1 �= dir2 ⇒
lookup move(bd , cs , dir1,mv1) = (pre1, ) ⇒

lookup move(bd , cs , dir 2,mv2) = (pre2, ) ⇒
(� ∗ pre1) ∧ (� ∗ pre2) ≡ ⊥

In other words, it is impossible for any of the preconditions of more than one
transition (of a given state) to be true at a time. The simplest way to understand
this is to consider the 1–2 and 1–3 transitions in the example program. The 1–2
transition requires that the value in memory cell i be strictly less than 30; in
contrast, the 1–3 transition requires that the same cell contains a value greater
7 Precision may not be required; another property (tentatively christened “token”)

that might serve would be if, for any precondition P , P ∗ P ≡ ⊥. Note that precision
in conjunction with item (6) implies P is a token.
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than or equal to 30. Plainly these are incompatible; but in fact the above property
is stronger: both of the moves on the 1–2 transition, and both of the moves on
the 1–3 transition include the incompatibility. Thus, if thread A takes transition
1–2, it knows for certain that thread B cannot take transition 1–3. This way we
ensure that both threads always agree on the barrier’s current state.

5 Hoare Logic

Our Hoare judgment has the form Γ � {P} c {Q}, where Γ is a list of barrier
definitions as given in §4, P and Q are assertions in separation logic, and c is a
command. Our Hoare rules come in three groups: standard Hoare logic (Skip, If,
Sequence, While, Assignment, Consequence); standard separation logic (Frame,
Store, Load, New, Free); and the barrier rule. We give groups two and three in
Figure 3; group one is standard and elided. We note four points for group two.

First, as explained in §2.4, the assertions e ⇓ v, [e] and x = v are bundled with
an assertion that the heap and barrier map are empty(i.e., e ⇓ v ⇒ emp);
thus, we use the separating conjunction when employing them. Second, the rules
are in “side-condition-free form”. Thus, instead of presenting the load rule as
Γ � {e1 π�−→e2} x := [e1] {x = e2 ∗ e1 π�−→e2}, which is aesthetically attractive but
untrue in the pesky case when e2 depends on x (e.g., x := [x]), we use a form that
is less visually pleasing but does not require side conditions.8 It is straightforward
to restore rules with side conditions via the Consequence rule. Third, our Store
and Free rules require the full share of location e1; in contrast, our Load rule
only requires some positive share; this is consistent with our use of fractional
permissions as explained in §2.3. Fourth, memory allocation and deallocation
are more complicated in concurrent settings than in sequential settings, and so
the New and Free rules cause nontrivial complications in the semantic model.

The Hoare rule for barriers is so simple that at first glance it may be hard
to understand. The variables for the current state cs , direction dir , and move

Γ � {P} c {Q} closed(F, c)
Γ � {F ∗ P} c {F ∗ Q} Frame

Γ � {e1
��−→ } [e1] := e2 {e1

��−→e2}
Store

Γ � {e1
π�−→e2 ∗ e1⇓v1 ∗ e2⇓v2} x := [e1] {C(v1)

π�−→C(v2) ∗ x = v2}
Load

Γ � {e⇓v} x:= new e {V(x)
��−→C(v)}

New
Γ � {e1

��−→e2} free e1 {emp}
Free

Γ [bn ] = bd lookup move(bd , cs , dir ,mv) = (P, Q)
Γ � {P} barrier bn {Q} Barrier

Fig. 3. Hoare rules (not pictured: Skip, If, Sequence, While, Assign, and Consequence)

8 Recall from §2: V(x) and C(v) are expression constructors for locals and constants.
In addition, closed(F, c) means that F does not depend on locals modified by c.
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mv appear to be free in the lookup move! However, things are not quite as
unconstrained as they initially appear. Recall from §4 that one of the consistency
requirements for the precondition P is that P implies an assertion about the
barrier itself: P ⇒ Q ∗ barrier(bn, π, cs); thus at a given program point we can
only use directions and moves from the current state. Similarly, recall from §4
that since the directions are mutually exclusive, dir is uniquely determined.

This leaves the question of the uniqueness of mv . If a thread only satisfies a
single precondition, then the move mv is uniquely determined. Unfortunately, it
is simple to construct programs in which a thread enters a barrier while satisfying
the preconditions of multiple moves. What saves us is that we are developing a
logic of partial correctness. Since preconditions to moves must be precise and
nonempty (i.e., token), only one thread is able to satisfy a given precondition
at a time. The pigeonhole principle guarantees that if a thread holds multiple
preconditions then some other thread will not be able to enter the barrier; in this
case, the barrier call will never return and we can guarantee any postcondition.

We now apply the Barrier rule to the barrier calls in line 13 from our example
program; the lookup moves are direct from the barrier state diagram:

Thread A

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

lookup move(b, 2, 1, 2) = (P,Q)

P = y1
�

�−−→vy1 ∗ y2
�

�−−→vy2 ∗ x1
��−→vx1 ∗ i ��−→vi∗barrier(bn , �, 2 )

Q = y1
��−→vy1 ∗ x1

�

�−−→vx1 ∗ x2

�

�−−→vx2 ∗ i
�

�−−→vi∗barrier(bn , �, 1 )

Γ � {P} barrier b {Q}

Thread B

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

lookup move(b, 2, 1, 1) = (P,Q)

P = y1
�

�−−→vy1 ∗ y2
�

�−−→vy2 ∗ x2
��−→vx2∗barrier(bn ,� , 2 )}

Q = y2
��−→vy2 ∗ x1

�

�−−→vx1 ∗ x2

�

�−−→vx2 ∗ i
�

�−−→vi∗barrier(bn ,� , 1 )}
Γ � {P} barrier b {Q}

Note that in this line of the example program, the frame is emp in both threads.
Not shown in Figure 3 is a parallel composition rule. As in [14], each thread

is verified independently using the Hoare rules given; a top-level safety theorem
proves that the entire concurrent machine behaves as expected.

6 Semantic Models

Our operational semantics is divided into three parts: purely sequential, which
executes all of the instructions except for barrier in a thread-local manner; con-
current, which manages thread scheduling and handles the barrier instruction;
and oracular, which provides a pseudosequential view of the concurrent machine
to enable simple proofs of the sequential Hoare rules. Our setup follows Hobor
et al. very closely and we refer readers there for more detail [15,14].
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Purely sequential semantics. The purely sequential semantics executes the in-
structions skip, x := e, x := [e], [e1] := e2, x:= new e, free e, c1; c2, if e
then c1 else c2, and while e {c}. The form of the sequential step judgment is
(σ, c) �→ (σ′, c′). Here σ is a state (triple of stack, heap, barrier map), just as
in §2.4 and c is a command of our language. The semantics of the sequential
instructions is standard; the only “tricky” part is that the machine gets stuck if
one tries to write to a location for which one does not have full permission or
read from a location for which one has no permission; e.g., here is the store rule:

s � e1 ⇓ C(ADDR(n)) s � e2 ⇓ v
n < break(h) h(n) = ( �, v′) h′ = [n �→ ( �, v)]h(

(s, h, b), [e1] := e2; c
) �→ (

(s, h′, b), c
) sstep − store

The test that n < break(h) ensures that the address for the store is “in bounds”—
that is, less than the current value of the break between allocated and unallocated
memory; since we are updating the memory we require that the permission
associated with the location n full ( �). We say that this step relation is unerased
since these bounds and permission checks are virtual rather than on-chip.

We define the other cases of the step relation in a similar way. Observe that
if we were in a sequential setting the proof of the Hoare store rule would be
straightforward; this is likewise the case for the other cases of the sequential
step relation and their associated Hoare rules. If the sequential step relation
reaches a barrier call barrier bn then it simply gets stuck.

Concurrent semantics. We define the notion of a concurrent state in Figure 4. A
concurrent state contains a scheduler Ω (modeled as a list of natural numbers),
a distinguished heap called the allocation pool, a list of threads, and a barrier
pool9. The allocation pool is the owner of all of the unallocated memory cells
(plus the ownership of the break between allocated and unallocated cells); before
we run a thread we transfer the allocation pool into the local heap owned by
the thread so that new can transfer a cell from this pool into the local heap of a
thread when required. When we suspend the thread we remove (what is left of)
the allocation pool from its heap so that we can transfer it to the next thread.

A thread contains a (sequential) state (stack, heap, and barrier map) and a
concurrent control, which is either Running(c), meaning the thread is available to
run command c, or Waiting(bn, dir ,mv , c), meaning that the thread is currently
waiting on barrier bn to make move mv in direction dir ; after the barrier call
completes the thread will resume running with command c.

The barrier pool (Barpool) contains a list of dynamic barrier statuses (DBSes)
as well as a state which is the join of all of the states inside the DBSes. Each
DBS consists of a barrier number (which must be its index into the array of
its containing Barpool), a barrier definition (from §4), and a waitpool (WP). A
waitpool consists of a direction option (None before the first barrier call in a given

9 There is also a series of consistency requirements such as the fact that all of the
heaps in the threads and barrier pool join together with the allocation pool into one
consistent heap; in the mechanization this is carried around via a dependent type as
a fifth component of the concurrent state. We elide this proof from the presentation.
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Cstate ≡ { cs sched : list N schedule
cs allocpool : heap alloc pool
cs thds : list Thread thread pool
cs barpool : Barpool} barrier pool

Thread ≡ { th stk : stack
th hp : heap
th bs : BarrierMap local view of barrier states
th ctl : conc ctl} running or waiting

conc ctl ≡ | Running(c) executing code c
| Waiting(bn, dir, mv, c) waiting on bn

Barpool ≡ { bp bars : list DyBarStatus dynamic barrier status
bp st : stack× heap× BarrierMap} current state

DyBarStatus ≡ { dbs bn : N barrier id
dbs wp : Waitpool waiting thread pool
dbs bd : BarDef}

Waitpool ≡ { wp dir : N option direction id
wp slots : list slot option taken slots
wp limit : N
wp st : stack× heap× BarrierMap} current state

slot ≡ (thread id× heap× BarrierMap) waiting slot

Fig. 4. Concurrent state

state; thereafter the unique direction for the next state), a limit (the number
of threads synchronized by the barrier, and comes from the barrier definition in
the enclosing DBS), a slot list, and a state (which is the join of all of the states
in the slot list). A slot is a heap and barrier map (the stack is unneeded since
barrier pre/postconditions ignore it) as well as a thread id (whence the heap and
barrier map came as a precondition, and to which the postcondition will return).

The concurrent step relation is (Ω, ap, thds , bp) � (Ω′, ap′, thds ′, bp′), where
Ω, ap, thds , and bp are the scheduler, allocation pool, thread list, and barrier
pool respectively. The concurrent step relation has only four cases; the following
case CStep-Seq is used to run all of the sequential commands:

thds [i] = (s, h, b,Running(c)) h⊕ ap = h′
(
(s, h′, b), c

) �→ (
(s′, h′′, b), c′

)
h′′′ ⊕ ap′ = h′′ isAllocPool(ap′) thds ′ = [i �→ (s′, h′′′, b,Running(c′))]thds

(i :: Ω, thds , ap, bp) � (i :: Ω, thds ′, ap′, bp) CStep-Seq

That is, we look up the thread whose thread id is at the head of the scheduler,
join in the allocation pool, and run the sequential step relation. If the command
c is a barrier call then the sequential relation will not be able to run and so
the CStep-Seq relation will not hold; otherwise the sequential step relation will
be able to handle any command. After we have taken a sequential step, we
subtract out the (possibly diminished) allocation pool, and reinsert the modified
sequential state into the thread list. Since we quantify over all schedulers and our
language does not have input/output, it is sufficient to utilize a non-preemptive
scheduler; for further justification on the use of such schedulers see [14].
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The second case of the concurrent step relation handles the case when a thread
has reached the last instruction, which must be a skip:

thds [i] = Running(skip)
(i :: Ω, thds , ap, bp) � (Ω, thds , ap, bp)

CStep-Exit

When we reach the end of a thread we simply context switch to the next thread.
The interesting cases occur when the instruction for the running thread is a

barrier call; here the CStep-Seq rule does not apply. The concurrent semantics
handles the barrier call directly via the last two cases of the step relation; before
presenting these cases we will first give a technical definition called fill barrier slot:

thds[i] = Thread(stk, hp, bs, (Running (barrier bn ; c)))
lookup move(bp.bp bars[bn], dir, mv) = (pre, post)

hp′ ⊕ hp′′ = hp bs′ ⊕ bs′′ = bs pre(stk, hp′, bs′)
bp inc waitpool (bp, bn, dir, mv, (i, (hp′, bs′))) = bp′

thds′ = [i→ (Thread( stk, hp′′, bs′′, (Waiting (bn, dir, mv, c))))] thds

fill barrier slot (thds, bp, bn, i) = (thds′, bp′)

The predicate fill barrier slot gives the details of removing the (sub)state satisfy-
ing the precondition of the barrier from the thread’s state, inserting it into the
barrier pool, and suspending the calling thread. The predicate bp inc waitpool
does the insertion into the barrier pool; the details of manipulating the data
structure are straightforward but lengthy to formalize10.

We are now ready to give the first case for the barrier, used when a thread
executes a barrier but is not the last thread to do so:

fill barrier slot (thds, bp, bn, i) = (thds′, bp′)
¬ bp ready (bp′, bn)

((i :: Ω), ap, thds, bp) � (Ω, ap, thds′, bp′)
CStep-Suspend

After using fill barrier slot, CStep-Suspend checks to see if the barrier is full by
counting the number of slots that have been filled in the appropriate wait pool
by using the bp ready predicate, and then context switches.

If the barrier is ready then instead of using the CStep-Suspend case of the
concurrent step relation, we must use the CStep-Release case:

fill barrier slot (thds, bp, bn, i) = (thds′, bp′)
bp ready (bp′, bn)

bp transition (bp′, bn, out) = bp′′

transition threads (out, thds′) = thds′′

((i :: Ω), ap, thds, bp) � (Ω, ap, thds′′, bp′′)
CStep-Release

The first requirement of CStep-Release is exactly the same as CStep-Suspend:
we suspend the thread and transfer the appropriate resources to the barrier

10 In Coq things are trickier since we track some technical side conditions via dependent
types so this relation also ensures that these side conditions remain satisfied.
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pool. However, now all of the threads have arrived at the barrier and so it is
ready. We use the bp transition predicate to go through the barrier’s slots in the
waitpool, combine the associated heaps and barrier maps, redivide these resources
according to the barrier postconditions, and remove the associated resources
from the barrier pool into a list of slots called out. Finally, the states in out
are combined with the suspended threads, which are simultaneously resumed
by the transition threads predicate. The formal definitions of the bp transition
and transition threads predicates are extremely complex and very tedious and we
refer interested readers to the mechanization.

Oracle semantics. Following Hobor et al. [15,14], we define a third oracular
semantics : (σ, o, c) �→ (σ′, o′, c′). Here the sequential state σ and command c are
exactly the same as in the purely sequential step. The new parameter o is an
oracle, a kind of box containing “the rest” of the concurrent machine—that is,
o contains a scheduler, a list of other threads, and a barrier pool.

The oracle semantics behaves exactly the same way as the purely sequential
semantics on all of the instructions except for the barrier call, with the oracle o
being passed through unchanged. That is to say:(

σ, c
) �→ (

σ′, c′
)(

σ, o, c
) �→ (

σ′, o, c′
) os-seq

When the oracle semantics reaches a barrier instruction, it consults the oracle o
to determine the state of the machine after the barrier:

consult(h, b, o) = (h′, b′, o′)(
(s, h, b), o,barrier bn; c

) �→ (
(s, h′, b′), o′, c

) os-consult

The formal definition of the consult relation is detailed in [15,14] but the idea
is simple. To consult the oracle, one unpacks the concurrent machine and runs
(classically) all of the other threads until control returns to the original thread;
consult then returns the current h′ and b′ (that resulted from the barrier call)
and repackages the concurrent machine into the new oracle o′. The final case of
the oracle semantics occurs when the concurrent machine never returns control
(because it got stuck or due to sheer perversion of the scheduler):

�∃r. consult(h, b, o) = r (i.e., consult diverges)(
(s, h, b), o,barrier bn; c

) �→ (
(s, h, b), o,barrier bn; c

) os-diverge

When control will never return, it does not matter what this thread does as long
as it does not get stuck; accordingly we enter an (infinite) loop.

Soundness proof outline. Our soundness argument falls into several parts. We
define our Hoare tuple in terms of our oracle semantics using a definition by
Appel and Blazy [2]; this definition was designed for a sequential language and
we believe that other standard sequential definitions for Hoare tuples would
work as well11. We then prove (in Coq) all of the Hoare rules for the sequential

11 We change Appel and Blazy’s definition so that our Hoare tuple guarantees that the
allocation pool is available for verifying the Hoare rule for x:= new e.
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instructions; since the os-seq case of the oracle semantics provides a straight lift
into the purely sequential semantics this is straightforward12.

Next, we prove (in Coq) the soundness for the barrier rule. This turns out to
be much more complicated than a proof of the soundness of (non-first-class) locks
and took the bulk of the effort. There are two points of particular difficulty: first,
the excruciatingly painful accounting associated with tracking resources during
the barrier call as they move from a source thread (as a precondition), into the
barrier pool, and redistribution to the target thread(s) as postcondition(s). The
second difficulty is proving that a thread that enters a barrier while holding
more than one precondition will never wake up; the analogy is a door with n
keys distributed among n owners; if an owner has a second key in his pocket
when he enters then one of the remaining owners will not be able to get in.

After proving the Hoare rules from Figure 3 sound with respect to the oracle
semantics, the remaining task is to connect the oracle semantics to the concurrent
semantics—that is, oracle soundness. Oracle soundness says that if each of the
threads on a machine are safe with respect to the oracle semantics, then the entire
concurrent machine combining the threads together is safe. The (very rough)
analogy to this result in Brookes’ semantics is the parallel decomposition lemma.
Here we use a progress/preservation style proof closely following that given in
[14, pp.242–255]; the proof was straightforward and quite short to mechanize. A
technical advance over previous work is that the progress/preservation proofs do
not require that the concurrent semantics be deterministic. In fact, allowing the
semantics to be nondeterministic simplified the proofs significantly.

A direct consequence of oracle soundness is that if each thread is verified with
the Hoare rules, and is loaded onto a single concurrent machine, then if the
machine does not get stuck and if it halts then all of the postconditions hold.

Erasure. One can justly observe that our concurrent semantics is not espe-
cially realistic; e.g., we: explicitly track resource ownership permissions (i.e., our
semantics is unerased); have an unrealistic memory allocator/deallocator and
scheduler; ignore issues of byte-addressable memory; do not store code in the
heap; and so forth. We believe that we could connect our semantics to a more
realistic semantics that could handle each of these issues, but most of them are
orthogonal to barriers. For brevity we will comment only on erasing the resource
accounting since it forms the heart of our soundness result.

We have defined, in Coq, an erased sequential and concurrent semantics. An
erased memory is simply a pair of a break address and a total function from
addresses to values. The run-time state of an erased barrier is simply a pair of
naturals: the first tracking the number of threads currently waiting on the bar-
rier, and the second giving the final number of threads the barrier is waiting for.
We define a series of erase functions that take an unerased type (memory/barrier
status/thread/etc.) to an erased one by “forgetting” all permission information.

12 The Hoare rule for loops (While) is only proved on paper. The loop rule is known
to be painful to mechanize and so the mechanization was skipped due to time con-
straints. It has been proved in Coq for similar (indeed, more complicated from a
sequential control-flow perspective) settings in previous work [2,15].
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File LOC Time Description
SLB Base 1,182 2s Utility lemmas (largely list facts)
SLB Lang 1,240 11s States, program syntax, assertion model
SLB BarDefs 265 2s Barrier definitions
SLB CLang 3,230 1m7s Dynamic concurrent state
SLB SSem 415 17s Sequential semantics
SLB Sem 784 33s Concurrent semantics
SLB ESSem 230 5s Erased semantics
SLB ESEquiv 650 30s Erasure proofs
SLB OSem 1,942 2m10s Oracular semantics
SLB HRules 170 2s Definition of Hoare tuples
SLB OSound 426 30s Soundness of oracle semantics
SLB HRulesSound 1,664 1m14s Soundness proofs for Hoare rules
SLB Ex 2,700 48s Example of a barrier definition
Total 14,898 7m34s

Fig. 5. Proof structure, size and compilation times (2.66GHz, 8GB)

The sequential erased semantics is quite similar to the unerased one, with the
exception that we do not check if we have read/write permission before executing
a load/store. The concurrent erased semantics is much simpler than the com-
plicated accounting-enabled semantics explained above since all that is needed
to handle the barrier is incrementing/resetting a counter, plus some modest
management of the thread list to suspend/resume threads. Critically, our erased
semantics is a computable function, enabling program evaluation. Finally, we
have proved that our unerased semantics is a conservative approximation to our
erased one: that is, if our unerased concurrent machine can take a step from some
state Σ to Σ′, then our erased machine takes a step from erase(Σ) to erase(Σ′).

7 Coq Development

We detail our Coq development in Figure 5. We use the Mechanized Semantic
Library [1] for the definitions of share models, separation algebras, and various
utility lemmas/tactics. In addition to the standard Coq axioms, we use depen-
dent and propositional extensionality and the law of excluded middle.

Over 7,000 lines of the development is devoted to proving the soundness of
the Hoare rule for barriers, largely in the files SLB BarDefs.v, SLB CLang.v,
SLB Sem.v, SLB OSem.v, SLB HRules.v, and a small part of SLB HRulesSound.v.
The rest of the concurrent semantics, the oracle semantics, and the soundness of
the oracle semantics (∼the parallel decomposition lemma) require approximately
1,000 lines, largely in the files SLB Sem.v, SLB HRules.v, and SLB OSound. The
erased semantics requires 230 lines in the file SLB ESSem.v, while the associated
equivalence proofs require 650 lines in the file SLB ESEquiv.v.

The sequential semantics and proofs for the associated Hoare rules re-
quire approximately 2,000 lines drawn from the files SLB Lang.v, SLB SSem.v,
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SLB HRules.v, and SLB HRulesSound.v. We estimate that the proof of the loop
rule would require a further 2,000-3,000 lines. The model of our assertions and the
program syntax are both in SLB Lang.v. Utility lemmas/tactics (SLB Base.v)
and the example barrier (SLB Ex.v) complete the development.

8 Limitations and Future Work

We have two obvious directions for future work. First, we can extend the logic
by making the barriers first-class (i.e., dynamic barrier creation/destruction). In
the present work we thought we could simplify the proofs by having statically
declared barriers in the style of O’Hearn [18]. This turned out to be somewhat
of a mistake: since we were forced to track the barrier states (and partial shares)
explicitly in the Hoare logic, we estimate that 90% of the work required to make
the barriers first-class has already been done in the present work; moreover, a
further 8% (the intrinsic contravariant circularity) would be easy to handle via
indirection theory [16]. With perfect foresight (or if it were nontrivial to restart
a large mechanized proof), we would have certainly made the barriers first-class.

Second, we do not address the tricky problem of program analysis. One place
where we believe that automatic program verification could be easily applied
is in verifying that barrier definitions meet the various soundness requirements.
We would also like to investigate verifying program text containing barrier calls;
one place to begin is constructing a verifier for programs that use OpenMP [10].

9 Related Work

Calcagno et al. proposed separation algebras as models of separation logic [9];
fractional permissions were discussed by Bornat et al. [5]. In our work we use
the share model and separation algebra development of Dockins et al. [11,1].

O’Hearn’s concurrent separation logic focused on programs that used critical
regions [18,6]; subsequent work by Hobor et al. and Gotsman et al. added first-
class locks and threads [15,13,14]. Our basic soundness techniques (unerased
semantics tracks resource accounting; oracle semantics isolates sequential and
concurrent reasoning from each other; etc.) follow Hobor et al. Recently both
Villard et al. and Bell et al. extended concurrent separation logic to channels
[3,19]. The work on channels is similar to ours in that both Bell and Villard track
additional dynamic state in the logic and soundness proof. Bell tracks communi-
cation histories while Villard tracks the state of a finite state automata associated
with each communication channel. Of all of the previous soundness results, only
Hobor et al. had a machine-checked soundness proof; it was incomplete.

An interesting question is whether is it possible to reason about barriers in
a setting with locks or channels. The question has both an operational and a
logical flavor. Speaking operationally, in a practical sense the answer is no: for
performance reasons barriers are not implemented with channels or locks. If we
ignore performance, however, it is possible to implement barriers with channels
or locks13. The logical part of the question then becomes, are the program logics
13 Indeed, it is possible to implement channels and locks in terms of each other.
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defined by O’Hearn, Hobor, Gotsman, Villard, or Bell (including their coauthors)
strong enough to reason about the (implementation of) barriers in the style of the
logic we have presented? As far as we can tell each previous solution is missing
at least one required feature, so in a strict sense, the answer here is again no.

For illustration we examine what seems to be the closest solution to ours:
the copyless message passing channels of Villard et al. Operationally speaking,
the best way to implement barriers seems to be by adding a central authority
that maintains a channel with each thread using a barrier. When a thread hits
a barrier, it sends “waiting” to the central authority, and then waits until it
receives “proceed”. In turn, the central authority waits for a “waiting” message
from each thread, and then sends each of them a “proceed” message. Fortunately
Villard allows the central authority to wait on multiple channels simultaneously.

The question then becomes a logical one. Although it should not pose any
fundamental difficulty, their logic would first need to enhanced with fractional
permissions; in fact we believe that Villard’s Heap-Hop tool already uses the
same fractional permission model (by Dockins et al.) that we do14. Since Villard
uses automata to track state, we think it probable, but not certain, that our
barrier state machines can be encoded as a series of his channel state machines.

There are some problems to solve. Villard requires certain side conditions on
his channels; we require other kinds of side conditions on our barriers; these con-
ditions do not seem fully compatible15. Assuming that we can weaken/strengthen
conditions appropriately, we reach a second problem with the side conditions:
some of our side conditions (e.g., mutual exclusion) are restrictions on the shape
of the entire diagram; in Villard’s setting the barrier state diagram has been
partitioned into numerous separate channel state machines. Verifying our side
conditions seems to require verification of the relationships that these channel
state machines have to each other; the exact process is unclear.

Once the matter of side conditions is settled, there remains the issue of ver-
ifying the individual threads and the central authority. Villard’s logic seems to
have all that is required for the individual threads; the question is how difficult
it would be to verify the central authority. Here we are less sure but suspect that
with enough ghost state/instructions it can be done.

There remains a question as to whether it is a good idea to reason about
barriers via channels (or locks). We suspect that it is not a good idea, even
ignoring the fact that actual implementations of barriers do not use channels.
The main problem seems to be a loss of intuition: by distributing the barrier state
machine across numerous channel state machines and the inclusion of necessary
ghost state, it becomes much harder to see what is going on. We believe that
one of the major contributions of our work is that our barrier rule is extremely
simple; with a quick reference to the barrier state diagram it is easy to determine
what is going on. There is a secondary problem: we believe that our barrier rule

14 To be precise, Heap-Hop uses the code extracted from the fractional permission Coq
proof development by Dockins et al.

15 For example, Villard requires determinacy whereas we do not; he would also require
that the postconditions of barriers be precise whereas we do not; etc.
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will look and behave essentially the same way in a setting with first-class barriers
in which it is possible to define functions that are polymorphic over the barrier
diagram; even assuming a channel logic enriched in a similar way, the verification
of a polymorphic central authority seems potentially formidable.

Finally, work on concurrent program analysis is in the early stages; Gotsman
et al., Calcagno et al., and Villard et al. give techniques that cover some use
cases involving locks and channels but much remains to be done [12,8,20].
Connection to an upcoming result by Jacobs and Piessens. We recently learned
that Jacobs and Piessens have an impressive upcoming result on modular fine-
grained concurrency [17]. Jacobs was able to reason about our example program
using his VeriFast tool by designing an implementation of barriers using locks
and reducing our barrier diagram to a large disjunction for a resource invariant.
However, there are some costs. First, VeriFast requires the user to add annota-
tions, such as function pre- and postconditions, loop invariants, folds/unfolds,
etc. In the case of our 30-line example program, more than 600 lines of anno-
tation were required, not including the code/annotiations for the barrier imple-
mentation itself; in contrast, using our logic, verifying the example program is
extremely simple. Second, it was harder to gain insight into the program from
the disjunction-form of the invariant; in contrast we find our barrier diagrams
straightforward. Finally, it is unclear to us whether the reduction is always pos-
sible or whether it was only enabled by the relative simplicity of our example
program. That said, Jacobs and Piessens have the only logic proven to be able
to reason about barriers as derived from a more general mechanism.

10 Conclusion

We have designed and proved sound a program logic for Pthreads-style barriers.
Our development includes a formal design for barrier definitions and a series
of soundness conditions to verify that a particular barrier can be used safely.
Our Hoare rules can verify threads independently, enabling a thread-modular
approach. Our soundness proof defines an operational semantics that explicitly
tracks permission accounting during barrier calls and is machine-checked in Coq.

Acknowledgements. We thank Christian Bienia for showcasing numerous exam-
ple programs containing barriers, Christopher Chak for help on an early version
of this work, Jules Villard for useful comments in general and in particular on
the relation of our logic to the logic of his Heap-Hop tool, and Bart Jacobs for
discovering how to verify our example program in his VeriFast tool.
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Abstract. Hunt and Sands (POPL’06) studied a flow sensitive type (FST) sys-
tem for multi-level security, parametric in the choice of lattice of security levels.
Choosing the powerset of program variables as the security lattice yields a system
which was shown to be equivalent to Amtoft and Banerjee’s Hoare-style indepen-
dence logic (SAS’04). Moreover, using the powerset lattice, it was shown how to
derive a principal type from which all other types (for all choices of lattice) can
be simply derived. Both of these earlier works gave “algorithmic” formulations
of the type system/program logic, but both algorithms are of exponential com-
plexity due to the iterative typing of While loops. Later work by Hunt and Sands
(ESOP’08) adapted the FST system to provide an erasure type system which de-
termines whether some input is correctly erased at a designated time. This type
system is inherently exponential, requiring a double typing of the erasure-labelled
input command. In this paper we start by developing the FST work in two key
ways: (1) We specialise the FST system to a form which only derives principal
types; the resulting type system has a simple algorithmic reading, yielding prin-
cipal security types in polynomial time. (2) We show how the FST system can
be simply extended to check for various degrees of termination sensitivity (the
original FST system is completely termination insensitive, while the erasure type
system is fully termination sensitive). We go on to demonstrate the power of these
techniques by combining them to develop a type system which is shown to cor-
rectly implement erasure typing in polynomial time. Principality is used in an
essential way to reduce type derivation size from exponential to linear.

1 Introduction

The control of information flow is at the heart of many security goals. The classic multi-
level security policy says that if a piece of data is considered secret from the perspective
of a certain observer of a system, then during execution of the system there should be
no information flow from the datum to that observer. Denning and Denning [DD77]
pioneered the use of program analysis to statically determine if the information flow
properties of a program satisfy a certain multi-level security policy.

A significant trend in the last 10 years has been the use of security type systems to
formulate the analysis of secure information flow in programs, and to aid in a rigorous
proof of its correctness.

The most well-cited works in this area [DD77, VSI96] are flow-insensitive, meaning
that a fixed security level is associated with each variable or data container. To under-
stand the limitations of flow-insensitivity in this context consider the following code
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fragment which swaps the values of two secrets and then swaps the values of two non
secrets, via a temporary variable:

tmp := secret1; secret1 := secret2; secret2 := tmp;
tmp := public1; public1 := public2; public2 := tmp;

The program above is not typeable in a flow-insensitive system because the variable
tmp cannot be correctly assigned a single security level. In a flow sensitive system this
obviously secure program becomes typeable because the level of variable tmp can vary
over time to more accurately reflect the security level of its contents.

Our earlier work [HS06] studies a flow-sensitive type (FST) system for multi-level
security, parametric in the choice of lattice of security levels. It is shown that choosing
the powerset of program variables as the security lattice yields a system which is equiva-
lent to Amtoft and Banerjee’s Hoare-style independence logic [AB04]. Moreover, using
the powerset lattice, it is is shown how to derive a principal typing from which all other
typings (for all choices of lattice) can be simply derived. The FST system is reviewed
in Section 2. Later work by Hunt and Sands [HS08] adapts the FST system to provide
an erasure type system which determines whether some input is correctly erased at a
designated time. In this formulation, flow-sensitivity is essential to erasure typing.

The original FST system and the system of Amtoft and Banerjee (including [AB07])
provided ”algorithmic” formulations of the type system/program logic, but both algo-
rithms are of exponential complexity due to the iterative typing of While loops.

The erasure type system includes at its core a variant of the FST system. The core
differs slightly from the earlier FST system in that it is termination-sensitive (meaning
that it does not ignore those dependencies which arise purely from termination be-
haviour). The key to the erasure typing, however, is the typing of the erasure-labelled
input command:

input x : L1 erased to L2 after C

This command inputs a value from the channel of security level L1 and places it in
variable x, and then executes commandC. The erasure specification “erased toL2” says
that after execution of C the value that was input will only be observable to observers
at level L2 and above. So in particular if level L2 is sufficiently high (so that there are
no observers at all) then the information is completely erased.

To type this command we first establish that C is well typed in a context where x
initially has type L1. But then to deal with the erasure condition we perform a second
typing in which we assume that x initially has type L2, and where we ignore the effects
of any output statements in C.

From an algorithmic perspective, the erasure type system is more inherently expo-
nential than the underlying FST system, in the sense that the non-algorithmic typing
derivations themselves can be exponential in the size of the original program. This is
due to a subprogram C being typed twice within the erasure-labelled input rule.

Contributions. In this paper we start by developing the FST work in two key ways:

1. We specialise the FST system to a form which only derives principal typings (Sec-
tion 2.2); the resulting type system is compact and simple – arguably simpler than
all the previous descriptions of flow-sensitive security analyses – and at the same
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time admits a direct algorithmic reading, yielding principal security typings in poly-
nomial time (Section 2.4).

2. We show (Section 3) how the FST system can be simply generalised to be para-
metric in the degree of termination-sensitivity (the original FST system is com-
pletely termination-insensitive, while the erasure type system is fully termination-
sensitive). From the principal typing of a program we can then deduce both
termination-sensitive (i.e. sensitive to information flows transmitted by the termin-
ation status of a program) and termination-insensitive information flow properties.

We go on to demonstrate the power of these techniques by combining them to develop
a type system which is shown to correctly implement erasure typing in polynomial
time (Section 4). Principality is used in an essential way to reduce type derivation size
from exponential to linear. Again, the key idea is to specialise the system so that it
only derives principal typings. The notion of principality is sufficiently general that the
two different typings of the erasure command can be derived cheaply by instantiating a
single principal typing.

Finally (Section 5) we sketch how the FST system can be extended to handle recur-
sive procedures in polynomial time. The analysis is polymorphic (and hence context-
sensitive) in the procedures, but strikingly the extension to this case does not need to
introduce type variables, and the algorithm does not require the introduction of type
constraints and constraint solving.

Related work is discussed in Section 6.

2 Flow-Sensitive Security Types

We begin by recalling from [HS06] the algorithmic version of the FST system1. See
Fig. 1. We refer to this system as Flow Core (fc). In the While rule, fix denotes the
least fixed-point operator. Well definedness depends on the fact that the typing rules
define a monotone function (see below).

Skip
p � Γ {skip} Γ

Assign
a = Γ (E)

p � Γ {x := E} Γ [x �→ p # a]

Seq
p � Γ {C1} Γ1 p � Γ1 {C2} Γ2

p � Γ {C1 ; C2} Γ2

If
a = Γ (E) p # a � Γ {Ci} Γi i = 1, 2

p � Γ {if E C1 C2} (Γ1 # Γ2)

While
Γf = fix(λΓ. let p # Γ (E) � Γ {C} Γ ′ in Γ ′ # Γ0)

p � Γ0 {while E C} Γf

Fig. 1. Flow Core (fc)

1 There are some notational differences from the original presentation.
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Notation: we will be defining a number of alternative type systems; in most cases
we use an undecorated turnstile (�) in judgements, relying on context to clarify which
particular type system we mean; where we need to make our intention more explicit
(typically, when comparing different systems) we decorate the turnstile with a subscript
(for example, writing �fc for the Flow Core system).

All the type systems we consider are concerned with tracking information flows with
respect to various hierarchies of security levels; each such hierarchy consists of a join-
semilattice with a least element (that is, a partial order in which all finite sets have a
least upper bound). Wherever we say join-semilattice in the sequel we mean one with a
least element; we overload ⊥ to mean the least element of whatever join-semilattice is
under discussion. Each security level models a class of users, grouped according to how
much they are permitted to observe; if a % b then b-users can see everything a-users
can see, and maybe more. Let L be a join-semilattice. Typing judgements in Flow Core
have the form

p � Γ {C} Γ ′
where C is a command, p ∈ L represents the security level of the “program counter”,
and Γ, Γ ′ : PVar → L are environments mapping program variables to security levels.
(PVar is the finite set of variables used in whatever top-level program is being analysed.
Formally this should be an explicit parameter of the typing judgement, but glossing over
this detail saves us from notational clutter without causing any significant problems.)
Throughout the paper we treat function spaces such as PVar → L as join-semilattices,
inheriting their lattice structure pointwise from L (so Γ � Γ ′ = λx.Γ (x) � Γ ′(x), etc).
In these rules, Γ (E) means the join of the levels assigned to the free variables in the
expression E:

Γ (E) =
⊔

x∈fv(E)

Γ (x)

When E has no free variables (it only involves constants) then Γ (E) =
⊔{} = ⊥. We

leave the syntax of expressions unspecified; semantic soundness assumes that expres-
sions are free of side-effects and are interpreted as total functions of the values of their
free variables.

Note that L is an implicit parameter in the definition of Flow Core, so Flow Core
actually defines a family of type systems, indexed by the choice of L.

Although the current paper is not primarily concerned with semantic soundness, it
is helpful to have some intuitions. By assigning levels to variables, an environment
determines a policy, for each level a ∈ L, stating which parts of a memory state a-users
should be allowed to see. Say that two memory states are a-equivalent under policy Γ
iff they agree on all variables x such that Γ (x) % a. Then the intended semantics of a
judgement p � Γ {C} Γ ′ is that it should satisfy

1. C only changes variables x for which Γ ′(x) & p; and
2. for all a, if two initial memory states are a-equivalent under Γ , the corresponding

final stores after execution of C will be a-equivalent under Γ ′.

Semantic soundness of Flow Core with respect to this specification is proved in [HS06].
The use of two type environments (pre- and post-) in Flow Core deserves some ex-

planation. For a top-level program executed in batch mode, it is perhaps more natural
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for a security policy to specify a single assignment of levels to variables, applying both
before and after the program executes. But it is the use of two distinct environments
which allows Flow Core to be flow-sensitive. Consider again the swap program from
the introduction:

tmp := secret1; secret1 := secret2; secret2 := tmp;
tmp := public1; public1 := public2; public2 := tmp;

It is a simple exercise to verify that this can be typed in Flow Core with low � Γ {P} Γ
for Γ mapping tmp and the public variables to low, and mapping the secret variables
to high. The first assignment raises the level of tmp from low to high; this is mod-
elled by fact that the post-environment for the corresponding sub-derivation is not Γ
but Γ ′ = Γ [tmp �→ high]. The assignment tmp := public1 later reduces the level
back down to low; this is modelled by the fact that the post-environment for the cor-
responding sub-derivation is Γ ′[tmp �→ low ] = Γ . In general, to enforce a policy
specified by a single Γ , we would compute the typing ⊥ � Γ {P} Γ ′ and then check
that Γ ′ % Γ (it is safe for a program to make variables less informative than the policy
allows). In a language with IO channels, we are more likely to require a fixed policy
for channels and assume that program variables are not directly observable at all. This
scenario can also be modelled using essentially the same approach (see Section 4).

Flow Core is described in [HS06] as “algorithmic”, by which we mean that the rules
are syntax directed and that, for a given choice of p, Γ , they determine exactly one
derivation for eachC. A consequence is that Flow Core is functional: for each command
C, for all p, Γ , there exists a unique Γ ′ such that p � Γ {C} Γ ′ (it is also monotonic in
p and Γ ). In [HS06] finite convergence of the While rule’s fixed-point construction was
trivially guaranteed by the requirement that L should be finite; here we have relaxed
that constraint by requiring only that L should have finite joins. Nonetheless, finite
convergence is guaranteed because environments are finite and the typing rules only
ever construct elements of L which are finite joins of lattice elements actually used in
the initial environment. Note that the use of fix makes the typing of nested while loops
exponential, since the body of a loop will be typed repeatedly, once for each iteration
towards the fixed-point.

2.1 FST with a pc-Variable

The principal typings result presented in [HS06] is slightly less general than we would
like (and than we need in what follows) because it is restricted to “top-level” typings,
by which we mean typings where p is ⊥. To generalise the result we make a small
change to Flow Core: we adjoin a new variable pc to model the program counter and
we track pc in the type environments, along with the program variables, rather than
reserving a special place for it in the syntax of judgements. The slight disadvantage is
that the If and While rules must now explicitly “reset” pc in their post-environments.
The advantage is that we can easily state a fully general principal typings result, paving
the way to the key contributions of the current paper. Let Var = PVar ∪ {pc}. Type
environments are extended to this new domain, thus Γ : Var → L. Except for the
“resets” mentioned previously, when pc is updated in the new type rules it is always
increased. It is convenient to introduce some notation for such increasing updates: we
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write Γ [x += a] to mean Γ [x �→ Γ (x) � a]. We refer to the modified system as Flow
Core-pc (fpc). The rules are presented in Fig. 2.

Skip � Γ {skip} Γ
Assign

p = Γ (pc) a = Γ (E)
� Γ {x := E} Γ [x �→ p # a]

Seq
� Γ {C1} Γ1 � Γ1 {C2} Γ2

� Γ {C1 ; C2} Γ2

If
p = Γ (pc) a = Γ (E) � Γ [pc += a] {Ci} Γi i = 1, 2

� Γ {if E C1 C2} (Γ1 # Γ2)[pc �→ p]

While
p = Γ (pc) Γf = fix(λΓ. let � Γ [pc += Γ (E)] {C} Γ ′ in Γ ′ # Γ0)

� Γ0 {while E C} Γf [pc �→ p]

Fig. 2. Flow Core-pc (fpc)

It is easily checked that derivations in Flow Core-pc preserve the type assignment
for pc:

Lemma 1. If � Γ {C} Γ ′ then Γ ′(pc) = Γ (pc).

A straightforward induction on C then establishes that Flow Core-pc is essentially
equivalent to Flow Core:

Theorem 1. p �fc Γ {C} Γ ′ iff �fpc Γ [pc �→ p] {C} Γ ′[pc �→ p]

Note that while the theorem appears to leave open the possibility that there may be Flow
Core-pc derivations � Γ {C} Γ ′ without any counterpart in Flow Core, this is ruled
out by Lemma 1.

2.2 Principal Typings

Intuitively, a principal typing for a term is a typing from which all its other typings may
be simply recovered. In this section we show that every command does indeed have a
principal Flow Core-pc typing in this sense. More formally, the most general definition
of principal typing is due to Wells [Wel02]. We do not use Wells’ definition in the
current paper but it is a simple corollary of Theorem 2 (see below) that our principal
typings are indeed principal according to that definition.

The following lemma establishes a property of Flow Core-pc which is fundamental to
the rest of the technical development. Say that a map α is join-preserving if it preserves
all finite joins or, equivalently, if α(⊥) = ⊥ and α(a � b) = α(a) � α(b). It turns out
that join-preserving maps allow us freely to translate one valid typing into another.

Lemma 2. Let L,J be join-semilattices, let Γ, Γ ′ : Var → L and let α : L → J be
join-preserving. If � Γ {C} Γ ′ then � α ◦ Γ {C} α ◦ Γ ′.
The proof of this lemma essentially relies only on the fact that environment update
and � are the key operations used in the type rules. This also holds for all the other
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algorithmic type systems presented in the current paper and so the lemma easily extends
to them. We rely on this fact without further comment in the sequel.

Principal typings are constructed by choosing P(Var) as the security lattice. In what
follows we let Δ range over type environments just in this case (thus Δ : Var →
P(Var)). The semantic content of such a Δ can be understood simply as a set of de-
pendencies: y ∈ Δ(x) means “y depends on x”. On this reading, it would be very
natural to represent environments directly as binary relations rather than functions, so
that we could write, for example, x Δ y in place of y ∈ Δ(x). However, using a dif-
ferent representation just when L = P(Var) would make it awkward to relate P(Var)
typings to typings for other choices of L, which is necessary to establish our principal
typings result. To square this circle we introduce a notion of monadic composition.

For any finite set B, join-semilattice L and g : B → L, define g† : P(B) → L by
g†(X) =

⊔
x∈X g(x). In much of what follows, L will itself be a powerset, in which

case it is implicit that � is ∪. Note that, for any g : B → L, g† is join-preserving:
g†(X ∪ Y ) = g†(X) � g†(Y ) and g†({}) = ⊥. Now, given f : A → P(B) and
g : B → L, define the monadic composition f ; g : A→ L by f ; g = g† ◦f . Note that
given two type environmentsΔ,Δ′ : Var → P(Var), the relational reading ofΔ ; Δ′

is simply relational composition (abusing notation, x Δ ; Δ′ y iff ∃z.x Δ z ∧ z Δ′ y).

Lemma 3 (Kleisli Axioms). For each finite set A, let ηA : A → P(A) be the map
x �→ {x}. Then:

1. ηA† = idP(A)
2. ηA ; f = f for f : A→ L
3. f † ; g = (f ; g)† for f : A→ P(B) and g : B → L

If we restrict attention to the cases where L is a powerset, these are exactly the Kleisli
axioms for the canonical powerset monad (see, for example, [Mog89]).

Note that ηVar (as defined in Lemma 3) is the environment λx ∈ Var . {x}. Hence-
forth we just write η for ηVar . The relational reading of η is just the identity relation.

Let � η {C} Δ (since Flow Core-pc is functional, such a typing exists and is
uniquely determined by C). It is this typing which we claim as the principal typing for
C. The following theorem justifies the claim by showing how every other typing for C
can be recovered from this one:

Theorem 2 (Principal Typings). Let � η {C} Δ. Then � Γ {C} Γ ′ iff Γ ′ = Δ ; Γ .

Proof. Since the type system is functional, it suffices to show that � Γ {C} Δ ; Γ .
By definition of monadic composition, Δ ; Γ = Γ † ◦ Δ. Since Γ † preserves unions,
Lemma 2 says that � Γ † ◦ η {C} Γ † ◦Δ or, equivalently, � η ; Γ {C} Δ ; Γ . By the
second Kleisli axiom, η ; Γ = Γ , thus � Γ {C} Δ ; Γ . ��
From now on we refer to Δ simply as the principal type for C (this is the only part of
the principal typing which is specific to C, since the other component is always η).

2.3 The Principal Type System

We formulate a type system which only constructs principal types and in which every
sub-derivation also derives a principal type. This system is arrived at by specialising
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Flow Core-pc to the case that L = P(Var) and Γ = η and using the Principal Typings
Theorem to replace each sub-derivation by a principal type derivation. Crucially, this
allows us to replace the multiple sub-derivations required in the While rule by a single
derivation, thus removing the exponential cost which they incur. There is just one eureka
step in the specialisation of the While rule; we implement the fixed-point construction
as a transitive closure. We write Δ∗ for the reflexive-transitive closure ofΔ, defined in
the standard way but transposed into functional form:

Δ∗ =
⊔
n≥0

Δn

where Δ0 = η and Δn+1 = Δ ; Δn. (Note that the “infinite join” in this definition
will actually be finite, since Var is finite, though even without this constraint it would
be well-defined, since Var → P(Var) would still be a complete lattice.)

Skip � skip : η
Assign � x := E : η[x �→ {pc} ∪ fv(E)]

Seq
� Ci : Δi i = 1, 2
� C1 ; C2 : Δ2 ; Δ1

If
� Ci : Δi Δ′

i = Δi ; η[pc += fv(E)] i = 1, 2
� if E C1 C2 : (Δ′

1 #Δ′
2)[pc �→ {pc}]

While
� C : Δ Δf = (Δ ; η[pc += fv(E)])∗

� while E C : Δf [pc �→ {pc}]

Fig. 3. Flow Principal (fp)

Theorem 3. Flow Principal derives principal types: �fpc η {C} Δ iff �fp C : Δ.

Proof sketch: Proof is by a simple induction on the structure of C showing that each
Flow Principal rule is the specialisation of its Flow Core-pc counterpart, using the Prin-
cipal Typings Theorem to replace sub-derivations with principal type derivations. For
example, consider the Seq rule. The Flow Core-pc derivation is:

Seq
� η {C1} Δ1 � Δ1 {C2} Δ′2

� η {C1 ; C2} Δ′2
The derivation forC2 is not principal, so we replace it by � η {C2} Δ2 and then apply
the Principal Typings Theorem to deriveΔ′2 = Δ2 ; Δ1.

The proof for the While rule is slightly more involved, because we have to show
that the reflexive-transitive closure in the Flow Principal rule correctly implements the
fixed-point specified in the Flow Core-pc rule, but in essence we are able to equate each
term in an ascending chain for the transitive closure with the corresponding term in the
fixed-point chain.
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2.4 Complexity

Flow Principal (Fig. 3) has a direct algorithmic reading. Here we sketch the complexity
based on a direct implementation of a relational reading of the rules.

The key operations that must be implemented to construct a type are composition
(;), update ([· �→ ·]), union, and reflexive-transitive closure (∗). Representing binary
relations as boolean matrices has a long tradition in program analysis (see e.g. [Pro59]).
In this representation we have one row for each element of the domain and one column
for each element of the range. Thus in the case of our relations between variables,Δ is
represented by a matrix for which there is a 1 in the row for x and column for y if and
only if x Δ y. Composition is then realised by boolean matrix multiplication, union
is just boolean matrix addition (pointwise conjunction), and the single-value update
operation is just row replacement. Using this representation we can easily construct a
polynomial time complexity for type inference:

Theorem 4. Flow Principal can be used to construct principal types in O(nv3) where
n is the size of the program and v is the number of variables.

Proof. Since the size of a type derivation is O(n) there are thus O(n) operations re-
quired to construct the type. Considering the cost of the operations, the potentially
expensive operations are composition and reflexive-transitive closure. Adopting the
boolean matrix representation, the matrices have size v2, and thus the cost of com-
position (matrix multiplication) is v3. Using Warshall’s algorithm the cost of transitive
(and reflexive) closure is also v3. Hence the total cost of constructing the principal type
is O(nv3).

3 Termination Typing

The fc system, like Denning and Denning’s original flow-insensitive analysis of secure
information, enforces an imperfect notion of information flow which has become known
as termination-insensitive noninterference. Under this version of noninterference, infor-
mation leaks are permitted if they are transmitted purely by the program’s termination
behaviour (i.e., whether it terminates or not). This imperfection is the price to pay for
having a security condition which is relatively liberal (e.g. allowing while-loops whose
termination may depend on the value of a secret) and easy to check.

But in some circumstances (for example in the presence of IO [AHSS08]) it may be
desirable to enforce a stronger condition such as termination-sensitive security in which
a secret is not permitted to transmit information even through termination. For example,
suppose that h is high and l is low, then the following programs are not termination-
sensitive secure:

if h then (while true skip) else skip; l := 1

(while h skip) ; l := 1

(An example of a system enforcing this stronger condition is [AB04].) In what fol-
lows we generalise the FST system to track the degree of termination-sensitivity. This
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provides a variant of the system from which a principal type provides both termination-
sensitive and termination-insensitive typings, and even typings which lie between the
two [DS09], for example where we can abide some termination leakage from a large
piece of data (on the basis that the rate of leakage is low) but not for small data.

The idea is to add a termination variable t to the state to record the levels upon
which termination of the command may depend. This corresponds to the termina-
tion effect from [Bou05] (a similar component can be found in earlier type systems
[Smi01, BC01]).2 The only rule which needs to consider the value of the termination
variable is the While-rule. Consider the While rule in Fig. 2. The fixed-point constructs
an environmentΓf in which pc records the maximum level of data which can influence
the value of the loop condition. We therefore need to modify the rule to ensure that it
raises t to this level. Modifying the While rule in this way gives us a new type system
which we refer to as Flow Termination (ft). See Fig. 4. It is clear by comparing the

While
p = Γ (pc) Γf = fix(λΓ. let � Γ [pc += Γ (E)] {C} Γ ′ in Γ ′ # Γ0)

� Γ0 {while E C} Γf [pc �→ p, t += Γf (pc)]

Fig. 4. Flow Termination (ft) (extends Flow Core-pc)

two versions of the While rule that Flow Termination is functional and is a conservative
extension of Flow Core-pc.

After typing a program, the type of the termination variable can be used to deter-
mine whether a certain degree of termination-sensitivity has been achieved. To have
termination-sensitivity we must demand that the type of t is ⊥ - i.e. termination depends
only on public inputs. For termination-insensitivity one can simply ignore t. This gen-
eralisation to include termination-sensitivity is required for the erasure types considered
in the next section.

Although we do not focus on the semantic soundness of the systems in this paper, it is
useful to understand the semantic content of the termination variable. We can state it in-
formally as follows: suppose �ft Γ {C} Γ ′ and a = Γ ′(t). Now suppose thatM and
N are two memory states (mappings from variables to values) which are a-equivalent
under policy Γ . Then C terminates starting with memory stateM iff it terminates start-
ing with memory state N .

The Principal Typings Theorem also holds for the Flow Termination system:

Theorem 5. Let �ft η {C} Δ. Then �ft Γ {C} Γ ′ iff Γ ′ = Δ ; Γ .

Specialising the new While rule in the obvious way, we obtain a modified version of
Flow Principal which computes principal types for Flow Termination. We refer to this
system as Termination Principal (tp). See Fig. 5.

Theorem 6. tp derives principal types: �ft η {C} Δ iff �tp C : Δ.

2 We do not attempt to make the system more liberal in the manner of [Bou05, Smi01, BC01];
this is possible but would require a more pervasive change whereby the type of a variable is a
pair of levels.
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While
� C : Δ Δf = (Δ ; η[pc += fv(E)])∗

� while E C : Δf [pc �→ {pc}, t += Δf (pc)]

Fig. 5. Termination Principal (tp) (extends Flow Principal)

4 Erasure Types

In this section we derive a polynomial time implementation of the erasure type system
from [HS08]. This system uses flow-sensitivity in an essential way to enforce a certain
kind of data erasure policy. As explained in the introduction, the system appears to be
inherently exponential because it makes essential use of a double typing of the body
of the erasure-labelled input command (the Erase rule in Fig.6). Even so, because the
core of the erasure type system is an FST system of essentially the same kind as the
one from [HS06], we are able to apply the techniques from Sections 2 and 3 above.
This enables us to implement erasure typing by transforming the original system into a
polynomial-time system for deriving principal types.

4.1 Non-algorithmic Erasure Type System

Figure 6 presents the type system from [HS08]. Here the syntax input x : a↗ b in C
abbreviates the construction “input x : a erased to b after C” discussed in the Intro-
duction. We refer to this system as Erasure Basic (eb). In rule Erase, deleteOutput(C)
operates on the syntax of C, producing a copy of C in which each output command
has been replaced by skip. Thus to type an erasing input command we have to type its
body, C, twice, under two different type environments. The first typing enforces non-
interference with respect to the security level of the input-channel, while the second
typing enforces non-interference with respect to the erasure level; output commands
in C are ignored during the second typing because the erasure level only applies after
C has executed.

Skip
p � Γ {skip} Γ

Assign
a = Γ (E)

p � Γ {x := E} Γ [x �→ p # a]

Erase
p � Γ [x �→ a] {C} Γ ′ p � Γ [x �→ b] {C′} Γ ′ p " a C′ = deleteOutput(C)

p � Γ {input x : a↗b in C} Γ ′

Output
b = Γ (E) p # b " a

p � Γ {output E on a} Γ

Seq
p � Γ {C1} Γ ′ p � Γ ′ {C2} Γ ′′

p � Γ {C1 ; C2} Γ ′′ If
a = Γ (E) p # a � Γ {Ci} Γ ′ i = 1, 2

p � Γ {if E C1 C2} Γ ′

While
Γ (E) = ⊥ ⊥ � Γ {C} Γ

⊥ � Γ {while E C} Γ
Sub

p1 � Γ1 {C} Γ ′
1

p2 � Γ2 {C} Γ ′
2

p2 " p1, Γ2 " Γ1, Γ
′
1 " Γ ′

2

Fig. 6. Erasure Basic (eb)
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Note that this type system is non-algorithmic. Additionally, in contrast to the FST
systems above, it is not parametric in the choice of security lattice; input and output
commands refer (independently of the type system) to elements from some lattice,
which means that programs can only be typed with respect to that particular lattice.
Both these issues are addressed in Section 4.2 below.

In this system we are primarily concerned with information flows on the I/O chan-
nels. The (flow-sensitive) typing of program variables is thus only a means to the end of
checking that the I/O flows comply with the required security policy. Since the type sys-
tem is monotone in Γ , if a program can be typed at all, it can be typed for the smallest
Γ . We say that a command C is typeable iff there exists a Γ such that ⊥ � ⊥ {C} Γ .

In the following sections we proceed as follows:

1. We develop an algorithmic version of Erasure Basic. At the same time, we gener-
alise the system by introducing auxiliary variables to model the program counter,
the termination channel and the IO channels. This allows all constraints to be re-
moved from the type system (rules Erase, Output and While) and makes it paramet-
ric in the choice of security type lattice. We establish correctness of the new system
with respect to Erasure Basic.

2. We formulate and prove a principal typings result for the generalised system.
3. We specialise the generalised system to one which produces just principal types.

This principal types system has the same complexity as the earlier one (Section 2.4).

4.2 Generalised Erasure Type System

We introduce the following additional variables (assumed disjoint from the program
variables PVar ):

– The variables pc and t, playing the same roles as in Flow Core-pc and Flow Term-
ination above (Sections 2.1 and 3).

– Disjoint sets IVar and OVar of channel variables.

We modify the language syntax to use channel variables in place of fixed channel
names. Input commands now have the form input x : i1↗ i2 in C, with i1, i2 ∈
IVar . Output commands have the form output E on o, with o ∈ OVar . These
are the only places in the syntax where channel variables appear. Commands written
in the original syntax are encoded in the new syntax by application of injective maps
a �→ ia : L → IVar and a �→ oa : L → OVar . For a command C in the old syntax,
we denote its encoding in the new syntax by Ĉ . Thus input x : a↗ b in C becomes
input x : ia↗ ib in Ĉ and output E on a becomes output E on oa. In the rest
of the paperC denotes a command in the new syntax unless explicitly stated otherwise.

Environments become maps Γ : Var → L, where Var = PVar ∪{pc, t}∪ IVar ∪
OVar . The rules for the generalised system are presented in Fig. 7. We refer to this
system as Erasure General (eg).

Some intuitions for the Erasure General rules:

– Once information has flowed to a channel, it has “escaped” the system. This is
reflected in the rules by ensuring that, as for t, the post-assignment for a channel
variable is always at least as great as its pre-assignment.
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Skip � Γ {skip} Γ
Assign

p = Γ (pc) a = Γ (E)
� Γ {x := E} Γ [x �→ p # a]

Erase

p = Γ (pc) aj = Γ (ij) � Γ [x �→ p # aj ] {C} Γj j = 1, 2

∀y ∈ Var .Γ ′(y) =
{

Γ1(y) if y ∈ OVar
Γ1(y) # Γ2(y) otherwise

� Γ {input x : i1↗ i2 in C} Γ ′[i1 += p]

Output
p = Γ (pc) b = Γ (E)

� Γ {output E on o} Γ [o += p # b]

Seq
� Γ {C1} Γ1 � Γ1 {C2} Γ2

� Γ {C1 ; C2} Γ2

If
p = Γ (pc) a = Γ (E) � Γ [pc += a] {Ci} Γi i = 1, 2

� Γ {if E C1 C2} (Γ1 # Γ2)[pc �→ p]

While
p = Γ (pc) Γf = fix(λΓ. let � Γ [pc += Γ (E)] {C} Γ ′ in Γ ′ # Γ0)

� Γ0 {while E C} Γf [pc �→ p, t += Γf (pc)]

Fig. 7. Erasure General (eg)

– In Erasure Basic the Erase rule imposes the constraint that p % a, where a is the
(fixed) input channel type. In Erasure General this constraint has been removed but
the post-environment is updated (Γ ′[i1 += p]) in a way which effectively allows
the constraint to be checked by examining the final result of the type derivation.
The p � b % a constraint in the Output rule is handled similarly.

– In Erasure Basic the While rule imposes the constraint that Γ (E) = ⊥. Erasure
General uses t to track whatever termination flows there may be, without building
in any constraint on what is allowed. Again, flows not permitted by Erasure Basic
can be caught by examining the final result.

– The generalised Erase rule still requires a double typing of the command body. But
rather than deleting output commands in the second typing, we are able simply
to discard those parts of the derived environment relating to output channels. This
is achieved by the definition of Γ ′, which discriminates between output channel
variables and others.

Lemma 4. Erasure General (Fig. 7) is functional and if � Γ {C} Γ ′ then:

1. Γ ′(pc) = Γ (pc)
2. For all x ∈ {t} ∪ IVar ∪ OVar , Γ ′(x) & Γ (x).

The following theorem shows how each Erasure Basic typing can be recovered from a
specified Erasure General typing. They key observation is that the Erasure Basic con-
straints are satisfied iff the termination and channel variable type assignments are in-
variant in the specified Erasure General typing. Given Γ : PVar → L and p ∈ L, let
Γ̂
p

: Var → L be defined by Γ̂
p

= Γ [pc �→ p, t �→ ⊥][ia �→ a, oa �→ a]a∈L.
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Theorem 7. Let C be a command in the original syntax and let �eg Γ̂
p {Ĉ } Γ ′.

Then p �eb Γ {C} Γ1 iff there exists Γ2 % Γ1 such that Γ ′ = Γ̂2
p
.

Corollary 1. Let C be a command in the original syntax and let �eg ⊥ {Ĉ } Γ . Then
C is typeable in Erasure Basic iff Γ (t) = ⊥ and Γ (ia) = a and Γ (oa) = a for each
a ∈ L.

Thus the problem of Erasure Basic typing is reduced to the problem of constructing a
specific Erasure General typing and then checking that the levels of the termination and
channel variables remain fixed.

4.3 Principal Types for Erasure Typing

The Erasure General system is sufficiently similar to the earlier FST systems that the
principal typings result carries over with no significant extra work:

Theorem 8 (Principal Erasure Typings). Let �eg η {C} Δ (see Fig. 7). Then �eg

Γ {C} Γ ′ iff Γ ′ = Δ ; Γ .

Proof. As for Theorem 2.

Using the Principal Erasure Typings Theorem we can specialise Erasure General to de-
rive a system which produces only principal erasure types, just as we did in Section 2.2
for the FST system. The derived rules are shown in Fig. 8. We refer to this system as
Erasure Principal (ep).

Erase

� C : Δ Δj = Δ ; η[x �→ {pc, ij}] j = 1, 2

Δ′(x) =
{

Δ1(x) if x ∈ OVar
Δ1(x) #Δ2(x) otherwise

� input x : i1↗ i2 in C : Δ′[i1 += {pc}]

Output � output E on o : η[o += {pc} ∪ fv(E)]

Fig. 8. Erasure Principal (ep) (extends Termination Principal)

Theorem 9. Erasure Principal derives principal types: �eg η {C} Δ iff �ep C : Δ.

Note that Erasure Principal contains no multiple typings. Indeed, the complexity analy-
sis of Theorem 4 carries over unchanged to Erasure Principal, showing that it isO(nv3).

5 Procedures

In this section we outline the extension of the FST system to a procedural language
to obtain a context-sensitive procedural analysis. In a type-based setting a standard ap-
proach is to use type variables to represent any possible calling context in a parametric
way. This in turn requires the generation of constraints on the values of such type vari-
ables. The key observation here is that the underlying FST system is already sufficiently
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“polymorphic” to enable a smooth extension of the system to procedures without the
need for type variables and type constraints. Because of recursion, the algorithm re-
quires a fixed-point iteration over the analysis of procedure bodies, but this remains
polynomial-time.

First let us divide the set of program variables into two disjoint sets {x1, x2, . . .}
and {y1, y2 . . .} which will be used for a procedure’s formal in-parameters and formal
out-parameters, respectively. We assume that procedure names form a finite indexed set
ProcName = {pi}i∈A. A program Prog is a set

Prog = {pi (in x1, . . . , xni ;out y1, . . . , ymi) Ci}i∈A
where ni,mi ≥ 0 and fv(Ci) ∩ PVar ⊆ {x1, . . . , xni , y1, . . . , ymi} (no global vari-
ables). The grammar of commands from Section 4 is extended with procedure calls:

C ::= · · · | pi(E1, . . .Eni ; z1, . . . , zmi)

where the actual out-parameters z1, . . . , zmi are required to be distinct. For the op-
erational semantics we can assume that there is a distinguished procedure main ∈
ProcName defined with zero parameters. The intended semantics of a procedure call
is call-by-value, return-by-value. Formal out-parameters are initialised to constant val-
ues, formal in-parameters are initialised with the values of the actual in-parameters and
the actual out-parameters are assigned from the formal out-parameters at the end of the
procedure call.

When extending the FST system to handle procedures it is desirable to make the
type system context-sensitive, so that the analysis of a given call takes into account the
context in which it is called. One natural way to achieve this in a compositional type-
based setting is to make the analysis of procedures polymorphic in the security levels
of their parameters. To do this, in turn, would require the introduction of type variables.
However, we can bypass this step altogether. Since our principal type system is already
“polymorphic” we can directly extend it to handle procedures in a context-sensitive
way without making any major changes to the system (such as the introduction of type
variables and an algorithm based on the solution of type constraints).

Each procedure will be typed by a function Var → P(Var). A program typing Ψ
will be a function which gives a type to each procedure, i.e., Ψ : ProcName → Var →
P(Var). Given such a program typing we can type a command. The previous typing
rules are unchanged.

The basic form of the new rule to handle procedure calls is:

Δ = Ψ(pi)

Ψ � pi ( $E;$z) : (Δouti ; Δ ; Δini)[v �→ {v}]v∈PVar−�z

where:

Δini describes the initial dependencies of the formal parameters; the formal in-
parameters are initially dependent on the actual in-parameters, while the formal
out-parameters are initialised to constants and so start with no dependencies, thus:

Δini
= η[xj �→ fv(Ej), yk �→ {}]j∈{1...ni},k∈{1...mi}
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Δouti
describes the assignment of the actual out-parameters from the formal out-

parameters, thus:
Δouti = η[zk �→ {yk,pc}]k∈{1...mi}

If we wish to think of this in terms of instantiation of the polymorphic procedure typeΔ,
thenΔini is the instantiation of the in-parameter types andΔouti is the instantiation of
the out-parameter types. The update in the conclusion of the rule implements the local
scoping of the procedure’s formal parameters; since we disallow global variables, the
only effect of a procedure call on program variables in the calling context is to update
the actual out-parameters, thus it acts as the identity (dependency v �→ {v}) on all other
program variables.

As it stands, this rule does not correctly track termination flows arising from the po-
tential for non-terminating recursions. A conservative solution would be simply to apply
the update [t += {pc}] to the type. A more precise typing would be obtained by using
an auxiliary analysis to distinguish between those procedures which are guaranteed not
to recurse infinitely (in which case the t update is not required) and those which may; a
cheap approach would simply use the structure of the program’s call graph.

In order to type the commands we need a procedure typing which is consistent with
the whole program. Such a typing is described by the following rule:

Prog
∀i ∈ A.Ψ � Ci : Δi Ψ(pi) = Δi

� Prog : Ψ

The recursive calls from a procedure are handled no differently to any other calls, so in
conventional terms the type system could be said to use polymorphic recursion.

Example. Consider the swap operation in the introduction represented as a procedure:

swap(in x1, x2; out y1, y2) y1 := x2 ; y2 := x1

Using the obvious syntactic sugar for in-out parameters, the code sequence in the intro-
duction could then be written:

swap(in out secret1, secret2);
swap(in out public1, public2);

The type for swap would be Δ = η[y1 �→ {x2,pc} , y2 �→ {x1,pc}]. Abbreviating
secret1 as s1 and secret2 as s2, and defining Δin = η[x1 �→ {s1} , x2 �→ {s2}]
and Δout = η[s1 �→ {y1,pc} , s2 �→ {y2,pc}], the typing for the first call above
would thus be:

(Δout;Δ;Δin)[v �→ {v}]v∈{x1,x2,y1,y2} = η[s1 �→ {s2,pc} , s2 �→ {s1,pc}]
and the typing for the second call would be analogous.

5.1 Procedure Typing, Algorithmically

Although the Prog rule describes a valid typing it is not algorithmic. To obtain the
minimal valid typing we construct an ascending chain of approximations:

Ψ0 = λpi.λx. {}
Ψn+1 = λpi.Δ where Ψn � Ci : Δ
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The complexity of typing commands is unchanged (since typing procedure call is
cheap), so the cost of each iteration is O(nv3) as before. The number of iterations
to reach a fixed-point is constant if the call-graph is not recursive (it is bounded by
the depth of the call graph). In the presence of recursion we can bound the number of
iterations at O(v2) (the height of the powerset of variables multiplied by the number
of variables). In Theorem 4, v denoted the number of global variables and channels in
the program. Since we no longer have global variables, v now denotes the number of
channel variables plus the maximum number of parameters of any procedure.

6 Related Work

To our knowledge, this is the first published work which shows how flow-sensitive
multi-level security typing can be achieved in polynomial time. Our own previous work
[HS06] includes an “algorithmic” type system which has exponential complexity. We
also showed that the system of Amtoft and Banerjee [AB04] is equivalent to a particular
instance of ours, but the published algorithmic versions of their system [AB04, AB07]
are also exponential.

We are not claiming, however, that the core algorithm presented in the current paper
is optimal. The specialised principal type systems we have described effectively reduce
the general security typing problem to a pure dependency analysis and there are a num-
ber of previously published polynomial algorithms for implementing essentially similar
dependency analyses:

– The work of Banâtre et al [BB93a, BBL94, BB93b] presents dependency analyses
which are similar to the Amtoft and Banerjee system. [BBL94] in particular is for
a similar language and takes an algorithmic approach. The algorithm involves con-
structing and then traversing a graph whose nodes correspond to program points.
[BB93b] is one of the only papers which attempts formally to relate a dependency
analysis to multi-level security analysis. The account is not entirely satisfactory,
since the details of the multi-level analysis are not made explicit, but the conclusion
is that the dependency analysis subsumes multi-level security analysis. This is also
implicit in Andrews and Reitman’s information flow logic [AR80], whereby a log-
ical flow deduction is made independently of a particular policy assigning security
levels to variables. The principal typings result of [HS06] confirms that conclusion
but also shows that (a) dependency analysis is itself a special case of flow-sensitive
multi-level security analysis and (b) if multi-level security in a given lattice is the
property of interest, dependency analysis doesn’t provide any additional precision.

– Algorithms for program slicing also incorporate dependency analysis and it is in-
tuitively clear that they could be adapted to implement the principal type systems
of the current paper. Weiser [Wei84] describes an O(n2) algorithm for building an
individual slice, which would yield an O(n2v) algorithm for calculating the full
matrix of dependencies (applying it once per variable).

Later work by Horwitz et al [HRB90] casts the slicing problem as a graph traver-
sal problem and extends the basic algorithm to the inter-procedural case, using a
powerful grammar-based technique to analyse procedure calls in a context-sensitive
manner. Hammer and Snelting [HS09, Ham10] explicitly apply this graph-based
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approach to the problem of information flow analysis. The algorithm presented by
Horwitz et al is polynomial but the accompanying algorithmic analysis is stated
for measures which are specific to their grammar constructions, preventing any
straightforward comparison with the algorithm sketched for procedures in the cur-
rent paper. More fundamentally, it is not clear how to relate the relative precision
of the two approaches.

– The dependency analysis of Bergeretti and Carré [BC85] shares the same moti-
vations as the slicing work (aiding with program comprehension, testing and de-
bugging). Although the analysis is described in a more informal and arguably less
straightforward way, their algorithm seems to be essentially equivalent to the basic
principal types system described in the current paper and indeed their analysis of
its complexity is O(nv3), in agreement with ours. The paper does not deal with
the extension to recursive procedures. This work forms the basis of the information
flow analysis of the commercial Spark Examiner tool [CH04], suggesting that it is
algorithmically adequate.

A number of papers deal with the implementation of security type systems for similar
languages e.g. [VS97, DS06] and for more complex ones [PS03], but these all have
flow-insensitive treatments of imperative variables. Other algorithmic but non type-
based treatments of flow-sensitive information flow include Clark et al’s flow logic
approach [CHH02].

Regarding erasure there is rather little prior work; the type system of the authors
[HS08] and the concurrently developed system described by Chong and Myers [CM08]
are perhaps the only examples. Chong and Myers do not describe an algorithm, although
there approach is implemented in a restricted form as part of the Jif compiler. Their
approach is incomparable because it concerns a different kind of erasure specification:
it is assumed that there is an additional runtime mechanism which will overwrite all
data with a certain label at a designated erasure time. The purpose of the types system
is to ensure that there will be no sensitive data “left behind” when this is done. This
makes less work for the static analysis and one can get away with a flow-insensitive
system.

7 Conclusions and Future Work

We have presented a new approach to type-based security analysis which hinges on
specialisation to principal types. The approach leads to a novel high-level structural
description of a principal typing which has a direct algorithmic reading. By taking
advantage of principality we provide polynomial complexity for systems which were
previously presented in an implicitly exponential manner.

One direction for future work would be to see if this development can be carried over
to richer language features (e.g. [ABB06]). Do dynamic allocation, structured data and
aliasing fundamentally change the algorithmic approach?

Another direction would be to consider the theoretical question of expressiveness.
Among analyses which extract no information about expressions beyond the free vari-
ables that they contain, is the analysis optimal? In the context of slicing, Weiser gives
an example which can be used to show that our analysis is not optimal ([Wei84], Fig 3).
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However if we consider the class of analyses which are also invariant under loop and
recursion unrolling (as we believe ours is) then we suspect that an optimality result may
be within reach.
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Abstract. Exchanging mutable data objects with untrusted code is a delicate
matter because of the risk of creating a data space that is accessible by an attacker.
Consequently, secure programming guidelines for Java stress the importance of
using defensive copying before accepting or handing out references to an inter-
nal mutable object. However, implementation of a copy method (like clone())
is entirely left to the programmer. It may not provide a sufficiently deep copy
of an object and is subject to overriding by a malicious sub-class. Currently no
language-based mechanism supports secure object cloning. This paper proposes a
type-based annotation system for defining modular copy policies for class-based
object-oriented programs. A copy policy specifies the maximally allowed sharing
between an object and its clone. We present a static enforcement mechanism that
will guarantee that all classes fulfill their copy policy, even in the presence of
overriding of copy methods, and establish the semantic correctness of the over-
all approach in Coq. The mechanism has been implemented and experimentally
evaluated on clone methods from several Java libraries.

1 Introduction

Exchanging data objects with untrusted code is a delicate matter because of the risk
of creating a data space that is accessible by an attacker. Consequently, secure pro-
gramming guidelines for Java such as those proposed by Sun [13] and CERT [5] stress
the importance of using defensive copying or cloning before accepting or handing out
references to an internal mutable object. There are two aspects of the problem:

1. If the result of a method is a reference to an internal mutable object, then the re-
ceiving code may modify the internal state. Therefore, it is recommended to make
copies of mutable objects that are returned as results, unless the intention is to share
state.

2. If an argument to a method is a reference to an object coming from hostile code, a
local copy of the object should be created. Otherwise, the hostile code may be able
to modify the internal state of the object.

A common way for a class to provide facilities for copying objects is to implement a
clone() method that overrides the cloning method provided by java.lang.Object.
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The following code snippet, taken from Sun’s Secure Coding Guidelines for Java,
demonstrates how a date object is cloned before being returned to a caller:

public class CopyOutput {
private final java.util.Date date;
...
public java.util.Date getDate() {

return (java.util.Date)date.clone(); }
}

However, relying on calling a polymorphic clone method to ensure secure copying
of objects may prove insufficient, for two reasons. First, the implementation of the
clone() method is entirely left to the programmer and there is no way to enforce that
an untrusted implementation provides a sufficiently deep copy of the object. It is free
to leave references to parts of the original object being copied in the new object. Sec-
ond, even if the current clone() method works properly, sub-classes may override the
clone() method and replace it with a method that does not create a sufficiently deep
clone. For the above example to behave correctly, an additional class invariant is re-
quired, ensuring that the date field always contains an object that is of class Date and
not one of its sub-classes. To quote from the CERT guidelines for secure Java program-
ming: “Do not carry out defensive copying using the clone() method in constructors,
when the (non-system) class can be subclassed by untrusted code. This will limit the
malicious code from returning a crafted object when the object’s clone() method is
invoked.” Clearly, we are faced with a situation where basic object-oriented software
engineering principles (sub-classing and overriding) are at odds with security concerns.
To reconcile these two aspects in a manner that provides semantically well-founded
guarantees of the resulting code, this paper proposes a formalism for defining cloning
policies by annotating classes and specific copy methods, and a static enforcement
mechanism that will guarantee that all classes of an application adhere to the copy
policy. We do not enforce that a copy method will always return a target object that is
functionally equivalent to its source. Rather, we ensure non-sharing constraints between
source and targets, expressed through a copy policy, as this is the security-critical part
of a copy method in a defensive copying scenario.

1.1 Cloning of Objects

For objects in Java to be cloneable, their class must implement the empty interface
Cloneable. A default clone method is provided by the class Object: when invoked
on an object of a class, Object.clone will create a new object of that class and copy
the content of each field of the original object into the new object. The object and its
clone share all sub-structures of the object; such a copy is called shallow.

It is common for cloneable classes to override the default clone method and provide
their own implementation. For a generic List class, this could be done as follows:

public class List<V> implements Cloneable
{

public V value;
public List<V> next;
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public List(V val, List<V> next) {
this.value = val;
this.next = next; }

public List<V> clone() {
return new List(value,(next==null)?null:next.clone()); }

}

Notice that this cloning method performs a shallow copy of the list, duplicating the
spine but sharing all the elements between the list and its clone. Because this amount of
sharing may not be desirable (for the reasons mentioned above), the programmer is free
to implement other versions of clone(). For example, another way of cloning a list is
by copying both the list spine and its elements1, creating what is known as a deep copy.

public List<V> deepClone() {
return new List((V) value.clone(),

(next==null ? null : next.deepClone())); }

A general programming pattern for methods that clone objects works by first creating a
shallow copy of the object by calling the super.clone() method, and then modifying
certain fields to reference new copies of the original content. This is illustrated in the
following snippet, taken from the class LinkedList in Fig. 8:

public Object clone() { ...
clone = super.clone(); ...
clone.header = new Entry<E>(null, null, null); ...
return clone;}

There are two observations to be made about the analysis of such methods. First, an
analysis that tracks the depth of the clone being returned will have to be flow-sensitive,
as the method starts out with a shallow copy that is gradually being made deeper. This
makes the analysis more costly. Second, there is no need to track precisely modifications
made to parts of the memory that are not local to the clone method, as clone methods
are primarily concerned with manipulating memory that they allocate themselves. This
will have a strong impact on the design choices of our analysis.

1.2 Copy Policies

The first contribution of the paper is a proposal for a set of semantically well-defined
program annotations, whose purpose is to enable the expression of policies for secure
copying of objects. Introducing a copy policy language enables class developers to state
explicitly the intended behavior of copy methods. In the basic form of the copy policy
formalism, fields of classes are annotated with @Shallow and @Deep. Intuitively, the
annotation @Shallow indicates that the field is referencing an object, parts of which
may be referenced from elsewhere. The annotation @Deep(X) on a field f means that
a) the object referenced by this field f cannot itself be referenced from elsewhere, and

1 To be type-checked by the Java compiler it is necessary to add a cast before calling clone() on
value. A cast to a sub interface of Cloneable that declares a clone() method is necessary.



320 T. Jensen, F. Kirchner, and D. Pichardie

b) the field f is copied according to the copy policy identified by X. Here, X is either the
name of a specific policy or if omitted, it designates the default policy of the class of
the field. For example, the following annotations:

class List { @Shallow V value; @Deep List next; ...}

specifies a default policy for the class List where the next field points to a list ob-
ject that also respects the default copy policy for lists. Any method in the List class,
labelled with the @Copy annotation, is meant to respect this default policy.

In addition it is possible to define other copy policies and annotate specific copy
methods (identified by the annotation @Copy(...)) with the name of these policies. For
example, the annotation2

DL: { @Deep V value; @Deep(DL) List next;};
@Copy(DL) List<V> deepClone() {
return new List((V) value.clone(),

(next==null ? null : next.deepClone())); }

can be used to specify a list-copying method that also ensures that the value fields of a
list of objects are copied according to the copy policy of their class (which is a stronger
policy than that imposed by the annotations of the class List). We give a formal defi-
nition of the policy annotation language in Section 2.

The annotations are meant to ensure a certain degree of non-sharing between the
original object being copied and its clone. We want to state explicitly that the parts of the
clone that can be accessed via fields marked @Deep are unaccessible from any part of
the heap that was accessible before the call to clone(). To make this intention precise,
we provide a formal semantics of a simple programming language extended with policy
annotations and define what it means for a program to respect a policy (Section 2.2).

1.3 Enforcement

The second major contribution of this work is to make the developer’s intent, expressed
by copy policies, statically enforceable using a type system. We formalize this enforce-
ment mechanism by giving an interpretation of the policy language in which annota-
tions are translated into graph-shaped type structures. For example, the annotations of
the List class defined above will be translated into the graph that is depicted to the
right in Fig. 1 (res is the name given to the result of the copy method). The left part
shows the concrete heap structure.

Unlike general purpose shape analysis, we take into account the programming
methodologies and practice for copy methods, and design a type system specifically
tailored to the enforcement of copy policies. This means that the underlying analysis
must be able to track precisely all modifications to objects that the copy method al-
locates itself (directly or indirectly) in a flow-sensitive manner. Conversely, as copy
methods should not modify non-local objects, the analysis will be designed to be more
approximate when tracking objects external to the method under analysis, and the type
system will accordingly refuse methods that attempt such non-local modifications. As

2 Our implementation uses a sightly different policy declaration syntax because of the limitations
imposed by the Java annotation language.
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Fig. 1. A linked structure (left part) and its abstraction (right part)

a further design choice, the annotations are required to be verifiable modularly on a
class-by-class basis without having to perform an analysis of the entire code base, and
at a reasonable cost.

As depicted in Fig. 1, concrete memory cells are either abstracted as a) �out when
they are not allocated in the copy method itself (or its callee); b) � when they are just
marked as maybe-shared; and c) circle nodes of a deterministic graph when they are
locally allocated. A single circle furthermore expresses a singleton concretization. In
this example, the abstract heap representation matches the graph interpretation of anno-
tations, which means that the instruction set that produced this heap state satisfies the
specified copy policy.

Technically, the intra-procedural component of our analysis corresponds to heap
shape analysis with the particular type of graphs that we have defined. Operations in-
volving non-local parts of the heap are rapidly discarded. Inter-procedural analysis uses
the signatures of copy methods provided by the programmer. Inheritance is dealt with
by stipulating that inherited fields retain their “shallow/deep” annotations. Redefinition
of a method must respect the same copy policy and other copy methods can be added to
a sub-class. The detailed definition of the analysis, presented as a set of type inference
rules, is given in Section 3.

2 Language and Copy Policies

The formalism is developed for a small, imperative language extended with basic, class-
based object-oriented features for object allocation, field access and assignment, and
method invocation. A program is a collection of classes, organized into a tree-structured
class hierarchy via the extends relation. A class consists of a series of copy method dec-
larations with each its own policyX , its namem, its formal parameter x and commands
c to execute. A sub-class inherits the copy methods of its super-class and can re-define
a copy method defined in one of its super-classes. We only consider copy methods. Pri-
vate methods (or static methods of the current class) are inlined by the type checker.
Other method calls (to virtual methods) are modeled by a special instruction x :=?(y)
that assigns an arbitrary value to x and possibly modifies all heap cells reachable from y
(except itself). The other commands are standard. The copy method call x :=mcn:X (y)
is a virtual call. The method to be called is the copy method of namem defined or inher-
ited by the (dynamic) class of the object stored in variable y. The subscript annotation
cn:X is used as a static constraint. It is supposed that the type of y is guaranteed to be
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x , y ∈ Var f ∈ Field m ∈ Meth cn ∈ Class id X ∈ Policy id

p ∈ Prog ::= cl

cl ∈ Class ::= class cn [extends cn] {pd md}
pd ∈ PolicyDecl ::= X : {τ}
τ ∈ Policy ::= (X, f)

md ∈ MethDecl ::= Copy(X) m(x):=c
c ∈ Comm ::= x :=y | x :=y .f | x .f :=y | x :=null

| x := new cn | x :=mcn:X (y) | x :=?(y) | return x
| c; c | if (∗) then c else c fi | while (∗) do c done

Notations: We write % for the reflexive transitive closure of the subclass relation induced by a
(well-formed) program that is fixed in the rest of the paper. We write x a sequence of syntactic
elements of form x.

Fig. 2. Language Syntax

a sub-class of class cn and that cn defines a method m with a copy policy X . This is
ensured by standard bytecode verification and method resolution.

We suppose given a set of policy identifiers Policy id, ranged over byX . A copy pol-
icy declaration has the form X : {τ} where X is the identifier of the policy signature
and τ is a policy. The policy τ consists of a set of field annotations (X, f) ; . . . where
f is a deep field that should reference an object which can only be accessed via the re-
turned pointer of the copy method and which respects the copy policy identified by X .
The use of policy identifiers makes it possible to write recursive definitions of copy poli-
cies, necessary for describing copy properties of recursive structures. Any other field is
implicitly shallow, meaning that no copy properties are guaranteed for the object ref-
erenced by the field. No further copy properties are given for the sub-structure starting
at shallow fields. For instance, the default copy policy of the class List presented in
Sec. 1.2 writes: {(List.default, next)}.

We assume that for a given program, all copy policies have been grouped together
in a finite map Πp : Policy id → Policy . In the rest of the paper, we assume this map
is complete, i.e. each policy nameX that appears in an annotation is bound to a unique
policy in the program p.

The semantic model of the language defined here is store-based:

l ∈ Loc
v ∈ Val = Loc ∪ {&}
ρ ∈ Env = Var → Val
o ∈ Object = Field → Val
h ∈ Heap = Loc ⇀fin (Class id ×Object)

〈ρ, h, A〉 ∈ State = Env × Heap × P(Loc)

A program state consists of an environment ρ of local variables, a store h of locations
mapping3 to objects in a heap and a set A of locally allocated locations in the current
method or one of its callees. This last component does not influence the semantic tran-
sitions: it is necessary to express the type system interpretation exposed in Sec. 3, but
is not used in the final soundness theorem. Each object is modeled in turn as a finite

3 We note ⇀fin for partial functions on finite domains.
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(x :=y, 〈ρ, h,A〉)� 〈ρ[x �→ ρ(y)], h, A〉 (x :=null , 〈ρ, h,A〉)� 〈ρ[x �→ �], h,A〉
ρ(y) ∈ dom(h)

(x :=y.f , 〈ρ, h,A〉)� 〈ρ[x �→ h(ρ(y), f)], h, A〉
ρ(x) ∈ dom(h)

(x .f :=y, 〈ρ, h,A〉)� 〈ρ, h[(ρ(x), f) �→ ρ(y)], A〉
l �∈ dom(h)

(x := new cn, 〈ρ, h,A〉)� 〈ρ[x �→ l], h[l �→ (cn, o�)], A ∪ {l}〉

(return x , 〈ρ, h,A〉)� 〈ρ[ret �→ ρ(x)], h, A〉

h(ρ(y)) = (cny, ) lookup(cny,m) =
(
Copy(X′) m(a):=c

)
cny � cn

(c, 〈ρ�[a �→ ρ(y)], h, ∅〉)� 〈ρ′, h′, A′〉
(x :=mcn:X (y), 〈ρ, h,A〉)� 〈ρ[x �→ ρ′(ret)], h′, A ∪ A′〉

dom(h) ⊆ dom(h′) ∀l ∈ dom(h) \ Reachh(ρ(y)), h(l) = h′(l)
∀l ∈ dom(h) \ Reachh(ρ(y)), ∀l′, l ∈ Reachh′ (l′) ⇒ l′ ∈ dom(h) \ Reachh(ρ(y))

v ∈ {�}+ Reachh(ρ(y)) ∪ (dom(h′) \ dom(h))

(x :=?(y), 〈ρ, h,A〉)� 〈ρ[x �→ v], h′, A\Reach+h (ρ(y))〉
(c1, 〈ρ, h,A〉)� 〈ρ1, h1, A1〉 (c2, 〈ρ1, h1, A1〉)� 〈ρ2, h2, A2〉

(c1; c2, 〈ρ, h,A〉)� 〈ρ2, h2, A2〉
(c1, 〈ρ, h,A〉)� 〈ρ1, h1, A1〉

(if (∗) then c1 else c2 fi, 〈ρ, h,A〉)� 〈ρ1, h1, A1〉
(c2, 〈ρ, h,A〉)� 〈ρ2, h2, A2〉

(if (∗) then c1 else c2 fi, 〈ρ, h,A〉)� 〈ρ2, h2, A2〉

(while (∗) do c done, 〈ρ, h,A〉)� 〈ρ, h,A〉
(c;while (∗) do c done, 〈ρ, h,A〉)� 〈ρ′, h′, A′〉
(while (∗) do c done, 〈ρ, h,A〉)� 〈ρ′, h′, A′〉

Notations: We write h(l, f) for the value o(f) such that l ∈ dom(h) and h(l) = o. We write
h[(l, f) �→ v] for the heap h′ that is equal to h except that the f field of the object at location
l now has value v. Similarly, ρ[x �→ v] is the environment ρ modified so that x now maps to v.
The object o	 is the object satisfying o	(f) = & for all field f , and ρ	 is the environment such
that ρ	(x) = & for all variables x. We consider methods with only one parameter and name it
p. lookup designates the dynamic lookup procedure that, given a class name cn and a method
name m, find the first implementation of m in the class hierarchy starting from the class of name
cn and scanning the hierarchy bottom-up. It returns the corresponding method declaration. ret
is a specific local variable name that is used to store the result of each method. Reachh(l) (resp.
Reach+

h (l)) denotes the set of values that are reachable from any sequence (resp. any non-empty
sequence) of fields in h.

Fig. 3. Semantic Rules

function from field names to values (references or the specific ( reference for null val-
ues). We do not deal with base values such as integers because their immutable values
are irrelevant here.

The operational semantics of the language is defined (Fig. 3) by the evaluation rela-
tion � between configurations Comm × State and resulting states State. The set of
locally allocated locations is updated by both the x := new cn and the x :=mcn:X (y)
statements. The execution of an unknown method call x :=?(y) results in a new heap
h′ that keeps all the previous objects that were not reachable from ρ(l). It assigns the
variable x a reference that was either reachable from ρ(l) in h or that has been allocated
during this call and hence not present in h.
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2.1 Policies and Inheritance

We impose restrictions on the way that inheritance can interact with copy policies. A
method being re-defined in a sub-class can impose further constraints on how fields
of the objects returned as result should be copied. A field already annotated deep with
policyX must have the same annotation in the policy governing the re-defined method
but a field annotated as shallow can be annotated deep for a re-defined method.

Definition 1 (Overriding Copy Policies). A program p is well-formed with respect to
overriding copy policies if and only if for any method declaration Copy(X ′) m(x ):= . . .
that overrides (i.e. is declared with this signature in a subclass of a class cl ) another
method declaration Copy(X) m(x ):= . . . declared in cl , we have

Πp(X) ⊆ Πp(X ′).
Example 1. The java.lang.Object class provides a clone() method of policy {} (be-
cause its native clone() method is shallow on all fields). A class A declaring two fields
f and g can hence override the clone() method and give it a policy {(X, g)}. If a class
B extends A and overrides clone(), it must assign it a policy of the form {(X, g); . . . }
and could declare the field f as deep. In our implementation, we let the programmer
leave the policy part that concerns fields declared in superclasses implicit, as it is sys-
tematically inherited.

2.2 Semantics of Copy Policies

The informal semantics of the copy policy annotation of a method is:

A copy method satisfies a copy policy X if and only if no memory cell that is
reachable from the result of this method following only fields with deep anno-
tations in X , is reachable from another local variable of the caller.

We formalize this by giving, in Fig. 4, a semantics to copy policies based on access
paths. An access path consists of a variable x followed by a sequence of field names fi
separated by a dot. An access path π can be evaluated to a value v in a context 〈ρ, h〉
with a judgment 〈ρ, h〉 � π ⇓ v. Each path π has a root variable ↓π ∈ Var . A judgment
� π : τ holds when a path π follows only deep fields in the policy τ .

Definition 2 (Secure Copy Method). A methodm is said secure wrt. a copy signature
Copy(X){τ} if and only if for all heaps h1, h2 ∈ Heap, local environments ρ1, ρ2 ∈
Env , locally allocated locationsA1, A2 ∈ P(Loc), and variables x, y ∈ Var ,

(x :=mcn:X (y), 〈ρ1, h1, A1〉)� 〈ρ2, h2, A2〉 implies ρ2, h2, x |= τ

Note that because of virtual dispatch, the method executed by such a call may not be
the method found in cn but an overridden version of it. The security policy requires that
all overriding implementations still satisfy the policy τ .

Lemma 1 (Monotonicity of Copy Policies wrt. Overriding)

τ1 ⊆ τ2 implies ∀h, ρ, x, ρ, h, x |= τ2 ⇒ ρ, h, x |= τ1
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Access path syntax
π ∈ P ::= x | π.f

Access path evaluation

〈ρ, h〉 � x ⇓ ρ(x)
〈ρ, h〉 � π ⇓ l h(l) = o

〈ρ, h〉 � π.f ⇓ o(f)
Access path root

↓x = x ↓π.f = ↓π
Access path satisfying a policy
We suppose given Πp : Policy id → Policy the set of copy policies of the considered program p.

� x : τ
(X1 f1) ∈ τ, (X2 f2) ∈ Πp(X1), · · · , (Xn fn) ∈ Πp(Xn−1)

� x.f1. . . . .fn : τ
Policy semantics

∀π, π′ ∈ P, ∀l, l′ ∈ Loc, x = ↓π, ↓π′ �= x,

〈ρ, h〉 � π ⇓ l , 〈ρ, h〉 � π′ ⇓ l′,
� π : τ

⎫⎬⎭ implies l �= l′

ρ, h, x |= τ

Fig. 4. Copy Policy Semantics

Proof. Under these hypotheses, for all access paths π, � π : τ1 implies � π : τ2. Thus
the result holds by definition of |=.

Thanks to this lemma, it is sufficient to prove that each method is secure wrt. its own
copy signature to ensure that all potential overridings will be also secure.

3 Type and Effect System

The annotations defined in the previous section are convenient for expressing a copy
policy but are not sufficiently expressive for reasoning about the data structures being
copied. The static enforcement of a copy policy hence relies on a translation of policies
into a graph-based structure (that we shall call types) describing parts of the environ-
ment of local variables and the heap manipulated by a program. In particular, the types
can express useful alias information between variables and heap cells. In this section,
we define the set of types, an approximation (sub-typing) relation % on types, and an in-
ference system for assigning types to each statement and to the final result of a method.

The set of types is defined using the following symbols:

n ∈ N t ∈ t = N + {⊥,�out ,�}
Γ ∈ Var → t Δ ∈ Δ = N ⇀fin Field → t

Θ ∈ P(N ) T ∈ T = (Var → t) × Δ × P(N)

We assume given a set N of nodes. A value can be given a base type t in N +
{⊥,�out ,�}. A node n means the value has been locally allocated. The symbol ⊥
means that the value is equal to the null reference (. The symbol �out means that the
value contains a location that cannot reach a locally allocated object. The symbol � is
the specific “no-information” base type. A type is a triplet T = (Γ,Δ,Θ) ∈ T where

Γ is a typing environment that maps (local) variables to base types.
Δ is a graph whose nodes are elements of N . The edges of the graphs are labeled with

field names. The successors of a node is a base type. Edges over-approximate the
concrete points-to relation.
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Θ is a set of nodes that represents necessarily only one concrete cell each. Nodes in
Θ are eligible to strong-update while others (weaks nodes) can only be weakly
updated.

In order to link types to the heap structures they represent, we will need to state reach-
ability predicates in the abstract domain. Therefore, the path evaluation relation is ex-
tended to types using the following inference rules:

[Γ, Δ] � x ⇓ Γ (x)

[Γ, Δ] � π ⇓ n

[Γ, Δ] � π.f ⇓ Δ[n, f ]

[Γ, Δ] � π ⇓ �
[Γ, Δ] � π.f ⇓ �

[Γ, Δ] � π ⇓ �out

[Γ, Δ] � π.f ⇓ �out

Notice both �out and � are considered as sink nodes for path evaluation purposes4.

3.1 From Annotation to Type

The set of all copy policies Πp ⊆ PolicyDecl can be translated into a graph Δp as
described hereafter. We assume a naming process that associates to each policy name
X ∈ Policy id of a program a unique node n′X ∈ N .

Δp =
⋃

X:{(X1,f1);...;(Xk,fk)}∈Πp

[
(n′X , f1) �→ n′X1

, · · · , (n′X , fk) �→ n′Xk

]
Given this graph, a policy τ = {(X1, f1); . . . ; (Xk, fk)} that is declared in a class cl is
translated into a triplet:

Φ(τ) =
(
nτ , Δp ∪

[
(nτ , f1) �→ n′X1

, · · · , (nτ , fk) �→ n′Xk

]
, {nτ}

)
Note that we unfold the possibly cyclic graphΔp with an extra node nτ in order to be
able to catch an alias information between this node and the result of a method, and
hence declare nτ as strong. Take for instance the type in Fig. 1: were it not for this
unfolding step, the type would have consisted only in a weak node and a � node, with
the variable resmapping directly to the former. Note also that it is not necessary to keep
(and even to build) the full graphΔp in Φ(τ) but only the part that is reachable from nτ .

3.2 Type Interpretation

The semantic interpretation of types is given in Fig. 5, in the form of a relation

〈ρ, h,A〉 ∼ [Γ,Δ,Θ]

that states when a local allocation history A, a heap h and an environment ρ are coher-
ent with a type (Γ,Δ,Θ). The interpretation judgment amounts to checking that (i) for
every path π that leads to a value l in the concrete memory and to a type t in the graph,
the auxiliary type interpretation 〈ρ, h,A〉 , [Γ,Δ] � v ∼ t holds; (ii) every strong node

4 The sink nodes status of � (resp. �out ) can be understood as a way to state the following
invariant enforced by our type system: when a cell points to an unspecified (resp. foreign) part
of the heap, all successors of this cell are also unspecified (resp. foreign).
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Auxiliary type interpretation

〈ρ, h,A〉 , [Γ,Δ] � � ∼ t 〈ρ, h,A〉 , [Γ,Δ] � r ∼ 

Reachh(l) ∩ A = ∅

〈ρ, h,A〉 , [Γ,Δ] � l ∼ 
out

l ∈ A n ∈ dom(Σ) ∀π, 〈ρ, h〉 � π ⇓ l ⇒ 〈Γ,Σ〉 � π ⇓ n
〈ρ, h,A〉 , [Γ,Δ] � l ∼ n

Main type interpretation

∀π, ∀t,∀l,
[Γ,Σ] � π ⇓ t
〈ρ, h〉 � π ⇓ r

}
⇒ 〈ρ, h,A〉 , [Γ,Δ] � r ∼ t

∀n ∈ Θ, ∀π, ∀π′
, ∀l, ∀l′,

[Γ,Σ] � π ⇓ n ∧ [Γ,Σ] � π′ ⇓ n
〈ρ, h〉 � π ⇓ l ∧ 〈ρ, h〉 � π′ ⇓ l′

}
⇒ l = l′

〈ρ, h,A〉 ∼ [Γ,Δ, Θ]

Fig. 5. Type Interpretation

in Θ represents a uniquely reachable value in the concrete memory. The auxiliary judg-
ment 〈ρ, h,A〉 , [Γ,Δ] � v ∼ t is defined by case on t. The null value is represented by
any type. The symbol � represents any value and �out those values that do not allow to
reach a locally allocated location. A node n represents a locally allocated memory loca-
tion l such that every concrete path π that leads to l in 〈ρ, h〉 leads to node n in 〈Γ,Δ〉.

We now establish a semantic link between policy semantics and type interpretation.
We show that if the final state of a copy method can be given a type of the form Φ(τ)
then this is a secure method wrt. the policy τ .

Theorem 1. Let Φ(τ) = (nτ , Δτ , Θτ ), ρ ∈ Env , A ∈ P(Loc), and x ∈ Var . Assume
that, for all y ∈ Var such that y is distinct from x, A is not reachable from ρ(y) in a
given heap h, i.e. Reachh(ρ(y)) ∩A = ∅. If there exists a state of the form 〈ρ′, h, A〉, a
return variable res and a local variable type Γ ′ such that ρ′(res) = ρ(x), Γ ′(res) = nτ
and 〈ρ′, h, A〉 ∼ [Γ ′, Δτ , Θτ ], then ρ, h, x |= τ holds.

Proof. We consider two paths π′ and π such that x = ↓π, ↓π′ �= x, 〈ρ, h〉 � π′ ⇓ l,
� π : τ , 〈ρ, h〉 � π ⇓ l and look for a contradiction. Since � π : τ , there exists a node
n ∈ Δτ such that [Γ ′, Δτ ] � π ⇓ n. Furthermore 〈ρ′, h〉 � π ⇓ l so we can deduce that
l ∈ A. Thus we obtain a contradiction with 〈ρ, h〉 � π′ ⇓ l because any path that starts
from a variable other than x cannot reach the elements in A.

3.3 Sub-typing

To manage control flow merge points we rely on a sub-typing relation % described
in Fig. 6. A sub-type relation (Γ1, Δ1, Θ1) % (Γ2, Δ2, Θ2) holds if and only if (ST1)
there exists a fusion function σ from dom(Δ1) to dom(Δ2)+{�}. σ is a mapping that
merges nodes and edges in Δ1 such that (ST2) every element t1 of Δ1 accessible from
a path π is mapped to an element t2 of Δ2 accessible from the same path, such that
t1 ≤σ t2. In particular, this means that all successors of t1 are mapped to successors
of t2. Incidentally, because � acts as a sink on paths, if t1 is mapped to �, then all its
successors are mapped to � too. Finally, when a strong node in Δ1 maps to a strong
node in Δ2, this image node cannot be the image of any other node in Δ1—in other
terms, σ is injective on strong nodes (ST3).



328 T. Jensen, F. Kirchner, and D. Pichardie

Value sub-typing judgment
t ∈ t

⊥ ≤σ t

t ∈ t\N
t ≤σ 
 
out ≤σ 
out

n ∈ N

n ≤σ σ(n)
Main sub-typing judgment

σ ∈ N(Δ1) → N(Δ2) + {
}(ST1)

∀t1 ∈ t, ∀π ∈ P, [Γ1, Δ1] � π ⇓ t1 ⇒ ∃t2 ∈ t, t1 ≤σ t2 ∧ [Γ2, Δ2] � π ⇓ t2(ST2)

∀n2 ∈ Θ2, ∃n1 ∈ Θ1, σ
−1(n2) = {n1}(ST3)

(Γ1, Δ1, Θ1) � (Γ2, Δ2, Θ2)

Fig. 6. Sub-typing

Intuitively, it is possible to go up in the type partial order either by merging, or by
forgetting nodes in the initial graph. The following example shows three ordered types
and their corresponding fusion functions. On the left, we forget the node pointed to by
y and hence forget all of its successors (see (ST2)). On the right we fusion two strong
nodes to obtain a weak node.

f
x

f � x
f

f
x

f

f

y

f �
�σ1

�σ2

The logical soundness of this sub-typing relation is formally proved with the follow-
ing theorem.

Theorem 2. For any type T1, T2 ∈ T and state 〈ρ, h,A〉, T1 % T2 and 〈ρ, h,A〉 ∼ [T1]
imply 〈ρ, h,A〉 ∼ [T2].

Proof. See [10] and the companion Coq development.

3.4 Type and Effect System

The type system verifies, statically and class by class, that a program respects the copy
policy annotations relative to a declared copy policy. The core of the type system con-
cerns the typability of commands, which is defined through the following judgment:

Γ,Δ,Θ � c : Γ ′, Δ′, Θ′.

The judgment is valid if the execution of command c in a state satisfying type (Γ,Δ,Θ)
will result in a state satisfying (Γ ′, Δ′, Θ′) or will diverge.

Typing rules are given in Fig. 7. We explain a selection of rules in the following.
The rules for if (∗) then else fi , while (∗) do done , sequential composition and
most of the assignment rules are standard for flow-sensitive type systems. The rule for
x := new “allocates” a fresh node n with no edges in the graphΔ and let Γ (x) refer-
ence this node.

There are two rules concerning the instruction x .f :=y for assigning values to fields.
If the variable x is represented by node n, then either the node is strong and we update
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Command typing rules

Γ,Δ, Θ � x :=y : Γ [x �→ Γ (y)], Δ,Θ
n fresh in Δ

Γ,Δ,Θ � x := new cn : Γ [x �→ n],Δ[(n, ) �→ ⊥], Θ ∪ {n}
Γ (y) = t t ∈ {
out ,
}

[Γ,Δ,Θ] � x :=y.f : Γ [x �→ t], Δ, Θ
Γ (y) = n

Γ,Δ, Θ � x :=y.f : Γ [x �→ Δ[n, f ]], Δ,Θ

Γ (x) = n n ∈ Θ
Γ,Δ,Θ � x .f :=y : Γ,Δ[n, f �→ Γ [y]],Θ

Γ (x) = n n �∈ Θ (Γ,Δ[n, f �→ Γ [y]], Θ) � (Γ ′
, Δ

′
, Θ

′) (Γ,Δ, Θ) � (Γ ′
, Δ

′
, Θ

′)

Γ,Δ,Θ � x .f :=y : Γ ′, Δ′, Θ′

Γ,Δ,Θ � c1 : Γ1, Δ1, Θ1 (Γ1, Δ1, Θ1) � (Γ ′, Δ′, Θ′)
Γ,Δ,Θ � c2 : Γ2, Δ2, Θ2 (Γ2, Δ2, Θ2) � (Γ ′

, Δ
′
, Θ

′)

Γ,Δ,Θ � if (∗) then c1 else c2 fi : Γ ′
, Δ

′
, Θ

′

Γ
′
, Δ

′
, Θ

′ � c : Γ0, Δ0, Θ0 (Γ,Δ,Θ) � (Γ ′
, Δ

′
, Θ

′) (Γ0, Δ0, Θ0) � (Γ ′
, Δ

′
, Θ

′)

Γ,Δ, Θ � while (∗) do c done : Γ ′
, Δ

′
, Θ

′

Γ,Δ,Θ � c1 : Γ1, Δ1, Θ1 Γ1, Δ1, Θ1 � c2 : Γ2, Δ2, Θ2

Γ,Δ, Θ � c1; c2 : Γ2, Δ2, Θ2

Πp(X) = τ Φ(τ) = (nτ , Δτ ) nodes(Δ) ∩ nodes(Δτ ) = ∅ (Γ [y] = ⊥) ∨ (Γ [y] = 
out)
Γ,Δ,Θ � x :=mcn:X (y) : Γ [x �→ nτ ], Δ ∪Δτ , Θ ∪ {nτ}

Πp(X) = τ Φ(τ) = (nτ , Δτ ) nodes(Δ) ∩ nodes(Δτ ) = ∅
KillSuccn(Γ,Δ,Θ) = (Γ ′, Δ′, Θ′) Γ [y] = n

Γ,Δ, Θ � x :=mcn:X (y) : Γ ′[x �→ nτ ], Δ′ ∪Δτ , Θ
′ ∪ {nτ}

(Γ [y] = ⊥) ∨ (Γ [y] = 
out )
Γ,Δ,Θ � x :=?(y) : Γ [x �→ 
out ], Δ, Θ

KillSuccn(Γ,Δ,Θ) = (Γ ′, Δ′, Θ′) Γ [y] = n

Γ,Δ, Θ � x :=?(y) : Γ ′[x �→ 
out ],Δ
′, Θ′

Γ,Δ, Θ � return x : Γ [ret �→ Γ [x]], Δ,Θ
Method typing rule

[ · �→ ⊥][x �→ 
out ], ∅, ∅ � c : Γ,Δ, Θ
Πp(X) = τ Φ(τ) = (nτ , Δτ ) (Γ,Δ,Θ) � (Γ [ret �→ nτ ], Δτ , {nτ})

� Copy(X) m(x):=c
Program typing rule

∀cl ∈ p, ∀md ∈ cl, � md

� p
Notations: We write Δ[(n, ) �→ ⊥] for the update of Δ with a new node n for which all
successors are equal to⊥. We write KillSuccn for the function that removes all nodes reachable
from n (with at least one step) and sets all its successors equal to�.

Fig. 7. Type System

(or add) the edge in the graph Δ from node n labeled f to point to the value of Γ (y),
or it is only weak and we must merge the previous shape with its updated version.

As for method calls, two cases arise depending on whether the method is copy-
annotated or not. In each case we must also discuss the type of the argument y . On the
one hand, if a method is associated with a copy policy τ , we compute the corresponding
type (nτ , Δτ ) and type the result of x :=mcn:X (y) starting in (Γ,Δ,Θ) with the result
type consisting of the environment Γ where x now points to nτ , the heap described by
the disjoint union ofΔ andΔτ , and the set of strong nodes augmented with nτ . If y is a
locally allocated memory location of type n, we must remove all nodes reachable from
n, and set all its successors to �. On the other hand, the method is not associated with
a copy policy. If the parameter y is null or not locally allocated we know that x points
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to a non-locally allocated object. Else y is a locally allocated memory location of type
n, and we must kill all its successors in the abstract heap.

Finally, the rule for method definition verifies the coherence of the result of analysing
the body of a methodm with its copy annotation Φ(τ). Type checking extends trivially
to all methods of the program.

Note the absence of a rule for typing an instruction x .f :=y when Γ (x ) = � or �out .
In a first attempt, a sound rule would have been

Γ (x) = �
Γ, Δ � x .f :=y : Γ, Δ[ ·, f �→ �]

Because x may point to any part of the local shape we must conservatively forget all
knowledge about the field f . Moreover we should also warn the caller of the current
method that a field f of his own local shape may have been updated. We choose to sim-
ply reject copy methods with such patterns. Such a strong policy has at least the merit
to be easily understandable to the programmer: a copy method should only modify lo-
cally allocated objects to be typable in our type system. For similar reasons, we reject
methods that attempt to make a method call on a reference of type � because we can
not track side effect modifications of such methods without loosing the modularity of
the verification mechanism.

We first establish a standard subject reduction theorem and then prove type sound-
ness. We assume that all methods of the considered program are well-typed.

Theorem 3 (Subject Reduction). Assume T1 � c : T2 and 〈ρ1, h1, A1〉 ∼ [T1].
If (c, 〈ρ1, h1, A1〉)� 〈ρ2, h2, A2〉 then 〈ρ2, h2, A2〉 ∼ [T2].

Theorem 4. If � p then all methodsm declared in the program p are secure.

For the proofs see [10] and the companion Coq development.

Example 2 (Case Study: java.util.LinkedList). In this example, we demonstrate
the use of the type system on a challenging example taken from the standard Java li-
brary. The class java.util.LinkedListprovides an implementation of doubly-linked
lists. A list is composed of a first cell that points through a field header to a collection
of doubly-linked cells. Each cell has a link to the previous and the next cell and also to
an element of (parameterized) type E. The clone method provided in java.lang library
implements a shallow copy where only cells of type E may be shared between the source
and the result of the copy. In Fig. 8 we present a modified version of the original source
code: we have inlined all method calls, except those to copy methods and removed ex-
ception handling that leads to an abnormal return from methods5. Note that one method
call in the original code was virtual and hence prevented inlining. Is has been necessary
to make a private version of this method. This makes sense because such a virtual call
actually constitutes a potentially dangerous hook in a cloning method, as a re-defined
implementation could be called when cloning a subclass of Linkedlist.

In Fig. 8 we provide several intermediate types that are necessary for typing
this method (Ti is the type before executing the instruction at line i). The call to

5 Inlining is automatically performed by our tool and exception control flow graph is managed
as standard control flow but omitted here for simplicity.
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1 class LinkedList<E> implements Cloneable {
2 private @Deep Entry<E> header;
3
4 private static class Entry<E> {
5 @Shallow E element;
6 @Deep Entry<E> next;
7 @Deep Entry<E> previous;
8 }
9

10 @Copy public Object clone() {
11 LinkedList<E> clone = null;
12 clone = (LinkedList<E>) super.clone();
13 clone.header = new Entry<E>;
14 clone.header.next = clone.header;
15 clone.header.previous = clone.header;
16 Entry<E> e = this.header.next;
17 while (e != this.header) {
18 Entry<E> n = new Entry<E>;
19 n.element = e.element;
20 n.next = clone.header;
21 n.previous = clone.header.previous;
22 n.previous.next = n;
23 n.next.previous = n;
24 e = e.next;
25 }
26 return clone;
27 }
28 }

⊥n e ⊥T13 clone
header �out

⊥
clone

header

next

prev.

elem.⊥
⊥

n e ⊥⊥T14

T16 clone
header elem.⊥ n e ⊥⊥

prev.

nex
t

clone

prev.
header elem.
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t
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T17
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⊥
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prev.
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prev.
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T22
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T24 �out

Fig. 8. Intermediate Types for java.util.LinkedList.clone()

super.clone at line 12 creates a shallow copy of the header cell of the list, which
contains a reference to the original list. The original list is thus shared, a fact which is
represented by an edge to �out in type T13.

The copy method then progressively constructs a deep copy of the list, by allocating
a new node (see type T14) and setting all paths clone.header, clone.header.next
and clone.header.previous to point to this node. This is reflected in the analysis
by a strong update to the node representing path clone.header to obtain the type T16
that precisely models the alias between paths clone.header, clone.header.next
and clone.header.previous (the Java syntax used here hides the temporary variable
that is introduced to be assigned the value of clone.header and then be updated).

This type T17 is the loop invariant necessary for type checking the whole loop. It is
a super-type of T16 (updated with e �→ �out ) and of T24 which represents the memory
at the end of the loop body. The body of the loop allocates a new list cell (pointed to
by variable n) (see type T19) and inserts it into the doubly-linked list. The assignment
in line 22 updates the weak node pointed to by path n.previous and hence merges the
strong node pointed to by n with the weak node pointed to by clone.header, repre-
senting the spine of the list. The assignment at line 23 does not modify the type T23.

Notice that the types used in this example show that a flow-insensitive version of the
analysis could not have found this information. A flow-insensitive analysis would force
the merge of the types at all program points, and the call to super.clone return a type
that is less precise than the types needed for the analysis of the rest of the method.



332 T. Jensen, F. Kirchner, and D. Pichardie

4 Inference

In order to type-check a method with the previous type system, it is necessary to infer
intermediate types at each loop header and conditional junction points. A standard ap-
proach consists in turning the previous typing problem into a fixpoint problem in a suit-
able sup-semi-lattice structure. This section presents the lattice that we put on (T ,%).
Proofs are generally omitted by lack of space but can be found in the companion report.
Typability is then checked by computing a suitable least-fixpoint in this lattice. We
end this section by proposing a widening operator that is necessary to prevent infinite
iterations.

We write ≡ for the equivalence relation defined by T1 ≡ T2 if and only if T1 % T2
and T2 % T1. Although this entails that % is a partial order structure on top of (T ,≡),
equality and order testing remains difficult using only this definition. Instead of consid-
ering the quotient of T with ≡, we define a notion of well-formed types on which %
is antisymmetric. To do this, we assume that the set of nodes, variable names and field
names are countable sets and we note ni (resp. xi and fi) the ith node (resp. variable
and field). A type (Γ,Δ,Θ) is well-formed if every node inΔ is reachable from a node
in Γ and the nodes in Δ follow a canonical numbering based on a breadth-first traver-
sal of the graph. Any type can be garbage-collected into a canonical well-formed type
by removing all unreachable nodes from variables and renaming all remaining nodes
using a fixed strategy based on a total ordering on variable names and field names and
a breadth-first traversal. We note GC this transformation. The following example shows
the effect of GC using a canonical numbering.

x1

⊥
⊥ �

x2 x3

f1 f2 f2

f1

f1 f2f1

f2

f1�

x1

⊥ ⊥ �

x2 x3

f1 f2 f2

f1

f1 f2f1

f2

n1

n2 n3

n4 n5

gc
f2

Since by definition, % only deals with reachable nodes, the GC function is a ≡-
morphism and respects type interpretation. This means than inference engine can at
any time replace a type by a garbage-collected version. This is useful to perform an
equivalence test in order to check fixpoint iteration ending.

Lemma 2. For all well-formed types T1, T2 ∈ T , T1 ≡ T2 iff T1 = T2.

Definition 3. Let � be an operator that merges two types according to the algorithm in
Fig. 9.

The procedure has T1 = (Γ1, Δ1, Θ1) and T2 = (Γ2, Δ2, Θ2) as input, then takes the
following steps.

1. It first makes the disjunct union ofΔ1 andΔ2 into a non-deterministic graph (NDG)
α, where nodes are labelled by sets of elements in t. This operation is performed
by the lift function, that maps nodes to singleton nodes, and fields to transitions.
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/ / I n i t i a l i z a t i o n .
/ / α−nodes a r e s e t s i n t .
/ / α− t r a n s i t i o n s can be
/ / non−d e t e r m i n i s t i c .
α = lift(Γ1,Γ2,Δ1 ∪Δ2)

/ / S t a r t w i th e n v i r o n m e n t s .
for {(x, t); (x, t′)} ⊆ (Γ1 × Γ2) {

fusion({t, t′})
}

/ / P r o p a g a t e i n α .
while ∃f ∈ Field , ∃u ∈ α, |succ(u, f)| > 1 {

fusion(succ(u,f))
}

/ / Re tu rn t o t y p e s .
(Γ,Δ,Θ) = ground(Γ1,Γ2,α)

/ / N i s a s e t o f t ∈ t .
/ / �N� d e n o t e s t h e node i n α
/ / l a b e l l e d by t h e s e t N .
void fusion (N) {
α← α+ �N�
for t ∈ N {
for f ∈ Field {

if ∃u, α(t, f) = u {
/ / Re−r o u t e ou tbound edges .
α← α[(�N�, f) �→ u]

}
if ∃n′, α(n′, f) = t {

/ / Re−r o u t e inbound edges .
α← α[(n′, f) �→ �N�]

}}
α← α− u

}}

Fig. 9. Join Algorithm

2. It joins together the nodes in α referenced by Γi using the fusion algorithm6.
3. Then it scans the NDG and merges all nondeterministic successors of nodes.
4. Finally it uses the ground function to recreate a graphΔ from the now-deterministic

graph α. This function operates by pushing a node set to a node labelled by the
≤σ-sup of the set. The result environment Γ is derived from Γi and α before the
Δ-reconstruction.

All state fusions are recorded in a map σ which binds nodes inΔ1 ∪Δ2 to nodes inΔ.

Theorem 5. The operator � defines a sup-semi-lattice on types.

Proof. See [10].

The poset structure does not enjoy the ascending chain condition. The following chain
is an example infinite ascending chain.

f⊥x ...� x ⊥ � f� x ⊥f... ...�
We have then to rely on a widening [7] operator to enforce termination of fixpoint com-
putation. Here we follow a very pragmatic approach and define a widening operator
∇ ∈ T × T → T that takes the result of � and that collapses together (with the opera-
tor fusion defined above) any node n and its predecessors such that the minimal path
reaching n and starting from a local variable is of length at least 2.

5 Experiments

The policy language and its enforcement mechanism has been implemented in the form
of a security tool for Java byte code. Standard Java @interface declarations are used

6 Remark that Γi-bindings are not represented in α, but that node set fusions are trivially trace-
able. This allows us to safely ignore Γi during the following step and still perform a correct
graph reconstruction.
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to specify native annotations, which enable development environments such as Eclipse
or Netbeans to parse, identify and auto-complete @Shallow, @Deep, and @Copy tags.
Source code annotations are being made accessible to bytecode analysis frameworks.
Both the policy extraction and enforcement components are implemented using the
Javalib/Sawja static analysis libraries7 to derive annotations and intermediate code rep-
resentations.

In its standard mode, the tool performs a modular verification of annotated classes.
We have run experiments on several classes of the standard library (specially in the
package java.util) and have successfully checked realistic copy signatures for them
(see the companion web page for examples). These experiments have also confirmed
that the policy enforcement mechanism facilitates re-engineering into more compact
implementations of cloning methods in classes with complex dependencies, such as
those forming the gnu.xml.transformpackage. For example, in the Stylesheet class
an inlined implementation of multiple deep copy methods for half a dozen fields can be
rewritten to dispatch these functionalities to the relevant classes, while retaining the ex-
pected copy policy. This is made possible by the modularity of our enforcement mecha-
nism, which validates calls to external cloning methods as long as their respective poli-
cies have been verified. However, some cloning methods will necessarily be beyond the
reach of the analysis. We have identified one such method in GNU Classpath’s TreeMap
class, where the merging of information at control flow merge points destroys too much
of the inferred type graph. A disjunctive form of abstraction seems necessary to verify
a deep copy annotation on such programs and we leave this as a challenging extension.

The analysis is also capable of processing un-annotated methods, albeit with less
precision than when copy policies are available—this is because it cannot rely on an-
notations to infer external copy method types. Nevertheless, this capability allows us to
test our tool on two large code bases. The 17000 classes in Sun’s rt.jar and the 7000
in the GNU Classpath have passed our scanner un-annotated. Among the 459 clone()
methods we found in these classes, only 15 have been rejected because of an illegal
assignment or method call and we were unable to infer the minimal signatures {} (the
same signature as java.lang.Object.clone()) in 78 methods. Our prototype confirms
the efficiency of the enforcement technique because all these verifications took only 25s
on a laptop computer.

Our prototype, the Coq formalization and proofs, as well as examples of annotated
classes can be found at http://www.irisa.fr/celtique/ext/clones.

6 Related Work

Several proposals for programmer-oriented annotations of Java programs have been
published following Bloch’s initial proposal of an annotation framework for the Java
language [4]. These proposals define the syntax of the annotations but often leave their
exact semantics unspecified. A notable exception is the set of annotations concerning
non-null annotations [8] for which a precise semantic characterization has emerged [9].
Concerning security, the GlassFish environment in Java offers program annotations of

7 http://sawja.inria.fr

http://www.irisa.fr/celtique/ext/clones
http://sawja.inria.fr
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members of a class (such as @DenyAll or @RolesAllowed) for implementing role-
based access control to methods.

To the best of our knowledge, the current paper is the first to propose a formal,
semantically founded framework for secure cloning through program annotation and
static enforcement. The closest work in this area is that of Anderson et al. [2] who have
designed an annotation system for C data structures in order to control sharing between
threads. Annotation policies are enforced by a mix of static and run-time verification.
On the run-time verification side, their approach requires an operator that can dynami-
cally “cast” a cell to an unshared structure. In contrast, our approach offers a completely
static mechanism with statically guaranteed alias properties.

Aiken et al. proposes an analysis for checking and inferring local non-aliasing of
data [1]. They propose to annotate C function parameters with the keyword restrict
to ensure that no other aliases to the data referenced by the parameter are used during
the execution of the method. A type and effect system is defined for enforcing this disci-
pline statically. This analysis differs from ours in that it allows aliases to exist as long as
they are not used whereas we aim at providing guarantees that certain parts of memory
are without aliases. The properties tracked by our type system are close to escape anal-
ysis [3,6] but the analyses differ in their purpose. While escape analysis tracks locally
allocated objects and tries to detect those that do not escape after the end of a method
execution, we are specifically interested in tracking locally allocated objects that es-
cape from the result of a method, as well as analyse their dependencies with respect to
parameters.

Our static enforcement technique falls within the large area of static verification of
heap properties. A substantial amount of research has been conducted here, the most
prominent being region calculus [14], separation logic [11] and shape analysis [12]. Of
these three approaches, shape analysis comes closest in its use of shape graphs. Shape
analysis is a large framework that allows to infer complex properties on heap allocated
data-structures like absence of dangling pointers in C or non-cyclicity invariants. In
this approach, heap cells are abstracted by shape graphs with flexible object abstrac-
tions. Graph nodes can either represent a single cell, hence allowing strong updates, or
several cells (summary nodes). Materialization allows to split a summary node during
cell access in order to obtain a node pointing to a single cell. The shape graphs that
we use are not intended to do full shape analysis but are rather specialized for track-
ing sharing in locally allocated objects. We use a different naming strategy for graph
nodes and discard all information concerning non-locally allocated references. This
leads to an analysis which is more scalable than full shape analysis, yet still powerful
enough for verifying complex copy policies as demonstrated in the concrete case study
java.util.LinkedList.

7 Conclusions and Perspectives

Cloning of objects is an important aspect of exchanging data with untrusted code. Cur-
rent language technology for cloning does not provide adequate means for defining and
enforcing a secure copy policy statically; a task which is made more difficult by impor-
tant object-oriented features such as inheritance and re-definition of cloning methods.
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We have presented a flow-sensitive type system for statically enforcing copy policies
defined by the software developer through simple program annotations. The annotation
formalism is compatible with the inheritance-based object oriented programing lan-
guage and deals with dynamic method dispatch. The verification technique is designed
to enable modular verification of individual classes, in order to provide a framework that
can form part of an extended, security-enhancing Java byte code verifier. By specifically
targeting the verification of copy methods, we consider a problem for which it is possi-
ble to deploy a localized version of shape analysis that avoids the complexity of a full
shape analysis framework.

The present paper constitutes the formal foundations for a secure cloning framework.
All theorems except those of Section 4 have been mechanized in the Coq proof assistant.
Mechanization has been of great help to get right the soundness arguments but has been
made particularly challenging because of the storeless nature of our type interpretation.

Several issues merit further investigations in order to develop a full-fledged software
security verification tool. In the current approach, virtual methods without copy policy
annotations are considered as black boxes that may modify any object reachable from
its arguments. An extension of our copy annotations to virtual calls should be worked
out if we want to enhance our enforcement technique and accept more secure copying
methods. More advanced verifications will be possible if we develop a richer form of
type signatures for methods where the formal parameters may occur in copy policies,
in order to express a relation between copy properties of returning objects and param-
eter fields. The challenge here is to provide sufficiently expressive signatures which at
the same time remain humanly readable software contracts. The current formalisation
has been developed for a sequential model of Java. We believe that the extension to
interleaving multi-threading semantics would be feasible without major changes to the
type system because we only manipulate thread-local pointers. Spelling out the formal
details of this argument is left for further work.
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Abstract. We propose React(C ), an expressive programming language
for stochastic modeling and simulation in systems biology that is based
on biochemical reactions with constraints. We prove that React(C ) can
express the stochastic π-calculus, in contrast to previous rule-based pro-
gramming languages, and further illustrate the high expressiveness of
React(C ). We present a stochastic simulator for React(C ) independently
of the choice of the constraint language C . Our simulator decides for a
given reaction rule whether it can be applied to the current biochemical
solution. We show that this decision problem is NP-complete for arbi-
trary constraint systems C and that it can be solved in polynomial time
for rules of bounded arity. In practice, we propose to solve this problem
by constraint programming.

1 Introduction

The paradigm of chemical reactions is predominant in programming languages
used for modeling and simulation in systems biology [6,9,3,19,1]. Chemical reac-
tions are advantageous in that they can be given both, a continuous semantics in
terms of ordinary differential equations (odes) as well as a stochastic semantics
in terms of continuous time Markov chains (ctmcs). While odes describe deter-
ministically the average dynamics of molecule populations, ctmcs describe the
probabilities and speed of molecular interactions in an individual-based manner.
The continuous semantics of a system of chemical reactions is an abstraction of
its more precise stochastic semantics.

Biochemical reactions in the κ-calculus are widely accepted as a useful mod-
eling language for systems biology [4,12,5,6]. The underlying idea is to model
biochemical reactions as graph rewrite rules. The following rewrite rule, for in-
stance, states that a C-molecule with a free binding site 1 can be linked to
an A-B complex by using the free binding site 1 of A (while the complex uses
binding sites 2 of A and 1 of B).

A(1 + 2y), B(1y), C(1) 4.5−−→ (νx)A(1x + 2y), B(1y), C(1x)

The stochastic rate 4.5 determines the distribution of the speed of this interac-
tions according to the law of mass-action.

G. Barthe (Ed.): ESOP 2011, LNCS 6602, pp. 338–357, 2011.
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The alternative paradigm of agent-based modeling languages attracted also
much interest for modeling and simulation in systems biology. It underlies the
stochastic π-calculus and its many extensions, [18,21,14,17,23,11], BioAmbients
[20], BlenX or beta-binders [22], etc. The close relationship between modeling
languages of both paradigms was first pointed out by Cardelli [2]. He identi-
fied the fragment of the stochastic π-calculus without ν-binders with systems
of chemical reactions with the same ctmcs in order to obtain a continuous se-
mantics of π-calculus processes in terms of odes. So far, however, there exists
no positive result showing the expressiveness of the stochastic π-calculus for any
language of chemical reactions. There exists a result for the π-calculus without
stochastic semantics, which was shown equally expressive to the join calculus, a
programming language based on chemical reaction rules, by Fournet et. al. [7].
Unfortunately, the encoding presented cannot be adapted to a stochastic setting
in any obvious manner. Conversely, Danos and Laneve [6] showed that binary
reaction rules of the κ-calculus without ν-binders on the left-hand side can be
encoded in the π-calculus. The stochastic semantics is preserved as shown in [15].
A main limitation of the κ-calculus compared to the π-calculus is the restriction
to graph rather than hypergraph rewriting.

In this paper we present React(C ), a language of biochemical reaction rules
with constraints. React(C ) extends on the κ-calculus by hyperedge rewriting in
particular. The graph rewrite rule from the κ-calculus above, for instance, can
be written as follows, where free is a constant standing for a free binding site:

A(free; y), B(y), C(free) 4.5−−→ (νx) A(x; y), B(y), C(x)

Note that names of binding sites are identified by positions in React(C ). The
usefulness of hypergraph rewriting can be illustrated at modeling compartments,
where the natural idea is to attribute each molecule by its compartment’s name,
i.e., to introduce a hyperedge per compartment that links all its molecules. One
can then constrain reactions to happen only within a same compartment. For
instance, consider a dimerization reaction between two A-molecules in the same
compartment x:

A(x, free), A(x, free) 3.1−−→ (νz)A(x; z), A(x; z)

Variables with numeric values and arithmetic constraints are supported by
React(C ) too. These are useful for modeling dynamic volumes of compartments
and to cope with alternative kinetics as those of the π-calculus. Simpler finite do-
main constraints were proposed for biological modeling in [13] and in BioCham.
The following reaction rule for instance states that a polymerase bound at the
DNA nucleotide with position x can advance to the next nucleotide at position
y = x+ 1 if x belongs to the finite domain {1, . . . 47} \ {37}. The speed is given
by the law of Mass action with a stochastic rate of 4.5.

∀x ∈ {1, . . . 47} \ {37}. Pol (x),Dna(y)
if y=x+1 then 4.5 else 0−−−−−−−−−−−−−−−−−→ Dna(x),Pol (y)

Finally, React(C ) enables general kinetics beside Mass action and Michaelis-
Menten. Note that BioCham [3] and sbml [9] support both these kinetics but
neither variables nor ν-binders.
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Our main technical contribution is a proof that React(C ) can indeed express
the stochastic π-calculus, even if restricted to binary reaction rules with equality
constraints and arithmetics on real numbers. This result is relevant since the π-
calculus is the usual yardstick for the expressiveness of concurrent languages. Our
result also illustrates that React(C ) can express extensions of the stochastic π-
calculus with constraints such as π@ [23] (without priorities) and the attributed
π-calculus [11]. This means that all previous models in these languages carry over
to React(C ) in a systematic manner. Hyperedges and constraints thus provide
the missing link between rule-based and agent-based modeling languages.

We present a stochastic simulation algorithm for React(C ) that is independent
of the choice of the constraint language C . Our simulator must decide for a given
reaction rule whether it can be applied to the current biochemical solution. We
show that this decision problem is NP-complete for arbitrary constraint systems
C and that it can be solved in polynomial time for rules of bounded arity. In
practice, we propose to solve this problem by constraint programming.

Our hardness proof relies on hypergraphs, so it does not apply to the κ-
calculus. Indeed, the so called rigidity property of the κ-calculus (Lemma 3 of
[5]) fails for React(C ). Rigidity states that a matching of a connected pattern
is entirely determined by matching only a single one of its molecules. It implies
that the matching problem for the κ-calculus restricted to rules with connected
patterns can be solved in P-time. The general case with multiple connected
components remains open. We leave it also open whether the scalable simulation
algorithm for the κ-calculus from [5] can be lifted to React(C ) in any sense.

Outline. We start with a small languageReact= of biochemical reaction rules with
equality constraints in Section 2 and show that it can express the stochastic π-
calculus in Section 3 and 4. The main remaining problem not discussed so far, is
to link stochastic mass-actions semantics with redex based stochastic semantics as
in the stochastic π-calculus. The full language React(C ) is presented in Section 5
and our simulation algorithm based on constraint programming in Section 6.

2 Reaction Rules with Equality Constraints

We present a small language of biochemical reaction rules with equality con-
straints React= that can express the stochastic π-calculus. We equip React=

with a stochastic semantics that follows the usual law of Mass action.
We assume a signature A of molecule names A ∈ A, each of which has a fixed

arity in ar(A) ∈ N0. We also assume an infinite set N of (link) names ranged
over by x, y and write x̃ for a possibly empty sequence of names x1; . . . ;xn. A
molecule a is a term A(x̃) with n = ar (A).

We define the biochemical solutions of React= in Fig. 1 as terms s that are
constructed from molecules A(x̃), the composition operator s , s ′, and the empty
solution 0. We often think of a biochemical solution as a (hyper-) graph of
molecules that are linked by (hyper-) edges. For instance A(x), B(x) describes
the graph with two nodes A(x) and B(x) linked by a single edge named x. Such
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Solutions s ::= A(x̃) | s, s ′ | 0 where A ∈ A, x̃ ∈ N
Rate expressions e ::= if x1=x2 then e1 else e2 where x1, x2 ∈ N

| e1 + e2 | e1 ∗ e2 | d and d ∈ R+
0

Reaction rules r ::= s
e−→ (νx̃)s ′ where fn(r) = fn(s)

Reactions ρ ::= s
d−→ s ′

Fig. 1. Syntax of reaction rules of language React=

Precongruence (s1, s2), s3 ≈ s1, (s2, s3) s1, s2 ≈ s2, s1 s, 0 ≈ s

Congruence
s ≈ s ′ σ : N → N injective

s ≡ s ′σ

Fig. 2. Precongruence and congruence on solutions

graphs do neither depend on the order of molecules nor on the concrete choice
of link names. For instance, the same graph is obtained by solutions B(y), A(y)
and A(x), B(x).

In Fig. 2, we define two congruence relations on solutions. The precongruence
≈ captures order independence. It is the least equivalence relation on solutions
that renders the composition operator “,” associative and commutative with the
neutral element 0. We write [s ]≈ for the equivalence class of a solution s . Clearly,
we can identify precongruence classes with multisets of molecules. The weaker
congruence relation ≡ accounts for the irrelevance of concrete names in addition.
It is defined such that s ≡ s ′ if and only if there exists a solution s ′′ ≈ s and
an injective function σ : N → N such that s ′ = s ′′σ, i.e., the term obtained by
renaming all names x in s ′′ to σ(x).

We write fn(s) for the set of names occurring in s . As usual, we define iter-
ated compositions

∏0
i=1 si = 0,

∏n
i=1 si = (

∏n−1
i=1 si), sn, and sm =

∏m
i=1 s . If

a1, . . . , an are pairwise distinct molecules then we define ·∏n
i=1 ami

i =
∏n
i=1 ami

i .
Modulo precongruence, this term stands for the multiset with mi occurrences of
molecule ai.

Reactions ρ are terms of the form s1
d−→ s2. They can be applied to rewrite

solutions congruent to s , s1 to some solution congruent to s , s2:

(react)
s ′1 ≡ s , s1 s , s2 ≡ s ′2
s1

d−→ s2 � s ′1 → s ′2
Judgements ρ � s ′1 → s ′2 capture the non-deterministic semantics of reactions.
Note that the rate constant d is irrelevant here; it matters in the stochastic
semantics only, see below.

Reaction rules r are terms of the form s e−→ (νx̃)s ′. They are to be under-
stood as schemas that define sets of reactions, one reaction per substitution
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(cond1)
e1 ⇓ d1

if x=x then e1 else e2 ⇓ d1
(cond2)

x1 �= x2 e2 ⇓ d2

if x1=x2 then e1 else e2 ⇓ d2

(reals)
d ∈ R+

0

d ⇓ d
(+)

e1 ⇓ d1 e2 ⇓ d2

e1 + e2 ⇓ d1 +R d2
(∗) e1 ⇓ d1 e2 ⇓ d2

e1 ∗ e2 ⇓ d1 ∗R d2

Fig. 3. Big-step evaluator of rate expressions

(inst)
σ : fn(s)→ N σ′ : {x̃} → N\(N ∪ fn(s)) injective eσ ⇓ d

s
e−→ (νx̃)s ′ ⇓σ,N sσ

d−→ s ′σ′σ

Fig. 4. Instantiation and evaluation of reactions rules to reactions

σ : N → N . Reaction rules contain a rate expressions e. Substitutions σ in-
stantiating the rule are applied to e before evaluation, yielding another rate
expression that we denote by eσ. Before formalizing the semantics of reaction
rules, we need to define the values of rate expressions.

A rate expression e is a term built from constants d ∈ R+
0 , addition e+e, mul-

tiplication e ∗ e, and rate-valued equality constraints if x1=x2 then e1 else e2.
We write fn(e) for the set of names occurring in e and Exprs for the set of all rate
expressions. Usual Boolean-valued constraints are subsumed, as for instance the
conjunctive equality and inequality constraints x=y ∧ y 
=z by rate expression
if x=y then (if y=z then 0 else 1) else 0. In Fig. 3, we define an evaluator
for rate expressions ⇓: Exprs → R+

0 as usual. Note that this evaluator always
terminates: neither there exist program errors nor non-termination.

A reaction rule r = s e−→ (νx̃)s ′ uses the new operator (νx̃) that binds the
names in x̃ with scope s ′ similarly to the new operator of the π-calculus. It
requires the creation of new names x̃ with scope s ′. Being new means to not
occur in the current solution to which the rule is applied. The free names of
(νx̃)s ′ are thus defined by fn((νx̃)s ′) = fn(s ′) \ {x̃}, and the free names of the
reaction rule by fn(r) = fn(s) ∪ fn(e) ∪ fn((νx̃)s ′).

The instantiation (Inst) of a reaction rule r = s e−→ (νx̃)s ′ to some reaction
is defined in Fig. 4. There, we assume that N ⊆ N is a finite set of names
– this will be the set of names of the current chemical reaction – and that
σ : fn(s) → N is a substitution. Even though the domain of σ is restricted to
fn(s) we can still apply σ to r, since fn(r) = fn(s) is assumed in the syntax of
React=. As a consequence, there exist only finitely many such substitutions and
thus only finitely many rule instances to be considered (for some fixed new-name
generator). The application of σ to r is defined as follows. First, some new-name
generator σ′ : {x̃} → N \ (N ∪ fn(s)) introduces new names fresh for N and
fn(s) on r.h.s. of r, second, substitution σ is applied to the resulting rule, third,
the expression eσ is evaluated to some real number d. In this case, we say that
r can be instantiated ρ by σ and N , where ρ = sσ d−→ s ′σ′σ, and write r ⇓σ,N ρ.
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(count)
s ≈ ·∏n

i=1 ami
i s ′ ≈ ·∏n+m

i=1 a
m′

i
i

count(s; s ′) =
∏n

i=1

(
m′

i
mi

) (reactma)
s ′1 ≈ s, s1 s, s2 ≡ s ′2

s1
d−→ s2 � s ′1

d∗count(s1;s′1)−−−−−−−−−→ s ′2

(rulesma)
s1 ≡ s ′1 d =

∑
r∈R

∑
{(d′,σ) | r⇓σ,fn(s′1)ρ, ρ � s′1

d′−→s2}
d′

R � s1
d−→
ma

s2

Fig. 5. Stochastic mass-action semantics of React=

The non-deterministic semantics of a reaction rule can now be defined by
reduction to the non-deterministic semantics of reactions:

(rule)
r ⇓σ,fn(s) ρ ρ � s −→ s ′

r � s −→ s ′

The set of free names of the current solution s is passed over to the instantiator
r ⇓σ,fn(s) ρ, in order to ensure that new-bound names are instantiated by fresh
names for the current solution. Recall that only finitely many substitutions σ :
fn(r) → fn(s) are to be considered. These are the possible matchings of the left
hand side of the rule with the current solution.

The stochastic semantics of React(C ) in Fig. 5 refines the non-deterministic
semantics. The rate of a reaction rule now determines the probability and speed
of its application according to the law of mass action. Inference rule (count)
defines count(s ; s ′) which is the number of occurrences of multiset [s ]≈ in multi-
set [s ′]≈. Note that it has a unique value independently of the choice of s and s ′

in their congruence class, i.e. the ordering on the multiset elements imposed by
s and s ′ does not affect the result. Furthermore, recall that

(
m
m′

)
= 0 if m′ > m,

so that count(s ; s ′) = 0 if multiset [s ]≈ is not contained in [s ′]≈. Inference rule
(reactma) states how to apply a reaction rule s1

d−→ s2 to a solution s ′1. This
works as in the non-deterministic case (react) except that an application rate
d ∗ count(s1; s ′1) is computed. Inference rule (rulesma) describes applications of
systems of chemical reactions R to a given solution s while producing s ′. The
situation is analoguous to the non-deterministic semantics in (rule) except that
we now have to sum up the application rates d′ of all instantiations σ of reaction
rules in R to reactions that can reduce s to s ′.

The stochastic semantics of React(C ) defines a ctmc for each set of chemical
reactions. The states of this Markov chain are equivalence classes [s ]≡ of solu-
tions s modulo full congruence. Its state transitions are obtained by applying
reactions rules according to rule (rulesma). That is, reaction rates of all instan-
tiations of rules in R that lead to the same state [s ]≡ are summed up providing
the rate of a single transition. Note that the precongruence must be used while
counting (since different renamings should not be counted). Consider, e.g., so-
lution s = A(x), A(y) and rule r = A(x1), A(x2)

2.1−−→ A(x1). For r we obtain
two possible instantiations σ = {(x1, x), (x2, y)} and σ′ = {(x1, y), (x2, x)} both
leading to the same state [s ′]≡ = [s ′′]≡ where s ′ = A(x) and s ′′ = A(y). Thus,
we obtain one transition [s ]≡

4.2−−→ [s ′]≡.
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(red)
s1 =

∏n
i=1 ai s2 =

∏n′
i=1 a ′

i

redex (s1; s2) = {� : {1, . . . , n} → {1, . . . , n′} injective |
a ′

�(i) = ai for all i ∈ {1, . . . , n}}

(reactred)
s ′1 ≈ s, s1 s, s2 ≡ s ′2 d ∈ R+ � ∈ redex (s1; s ′1)

s1
d−→ s2 � s ′1

d−→
�

s ′2

(rulesred)
s ′1 ≡ s1 d =

∑
r∈R

∑
{(d′,�) | r⇓

σ,fn(s′1)ρ, ρ� s′1
d′−→
�

s2}
d′

R � s1
d−−→

red

s2

Fig. 6. Stochastic redex semantics of language React=
red

3 An Alternative Stochastic Semantics

We provide an alternative stochastic semantics for systems of reaction rules in
the small language that is based on redexes in analogy to the usual semantics of
the stochastic π-calculus. We call the small language with the redex semantics
React=

red
and show that React=

red
can be encoded into React= while preserving

ctmcs. This encoding will provide the first part of our encoding of the stochastic
π-calculus into React=.

The particularity of a redex semantics is that it treats solutions as lists in
some fixed order. It then enumerates all redexes by which a smaller list can
be mapped into a larger list. A redex of a solution s1 =

∏n
i=1 ai in a solution

s2 =
∏n′

i=1 a′i is an injective function � : {1, . . . , n} → {1, . . . , n′}, such that
a′�(i) = ai for all i ∈ {1, . . . , n}. Note that � depends on the order of molecules in
s1 and s2. For instance, solution A,A has two redexes in itself, �1 = {(1, 1), (2, 2)}
and �2 = {(1, 2), (2, 1)}, even though count(A,A;A,A) =

(2
2

)
= 1. The reason is

that the notion of redexes is order sensitive in contrast to the notion of multiset
inclusion on which function count used in the Mass action semantics is based.

The stochastic redex semantics rules are given in Fig. 6. The language of reac-
tion rules with this semantics is called React=

red
. Definition (red) introduces the

set redex (s1; s2) of all redexes by which s1 matches s2. Inference rule (reactred)
applies a reaction at a redex to a solution. Rule (rulesred) treats the applica-
tion of all instances of reaction rules to a solution. Notice that in contrast to rule
(rulesma) of React=, rule (rulesred) does not consider substitutions to identify
rule instances, since redexes can be used for this purpose equally well.

Lemma 1. For all r, �, and s there exists at most one σ, such that r ⇓σ,fn(s) ρ

and ρ � s d−→
�

s ′.

Proof. Let r be the rule s1
e−→ (νx̃)s2. Since r ⇓σ,fn(s) ρ, rule (inst) provides that

σ : fn(s1) → fn(s). By the definition of rule (reactred), for all names x ∈ fn(s1)
it holds that the values σ(x) are uniquely determined by � and S. �
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�s
e−→ (νx̃)s ′� =def s

�e�s−−→ (νx̃)s ′

�e�∏n
i=1 Ai(x̃i) =def e ∗∏n

i=1

∑n
j=i eq(Ai(x̃i); Aj(x̃j)), with

eq(A1(x̃1); A2(x̃2)) =def

{
0 if A1 �= A2

eq′(x̃1; x̃2) if A1 = A2

eq′((x1; x̃1); (x2; x̃2)) =def if x1=x′
1 then eq′(x̃1; x̃2) else 0

eq′((); ()) =def 1

Fig. 7. Encoding from React=
red to React=

In order to find an encoding from React=
red

to React=, we need to quantify
the discrepancy between count(s1; s2) and the cardinality #redex (s1, s2). Since
redexes are order sensitive, this is given by the difference between a combination
without repetition (Mass action) and a variation without repetition (redexes).
That is for each molecule ai in a solution

∏n
i=1 ai the number of positions i′ > i

need to be counted, where ai = ai′ . In a solution s ≈ ·∏n
i=1 ami

i this number is
given by mi! for molecule ai.

Lemma 2. For all solutions s ≈ ·∏n
i=1 ami

i , s ′ ≈ ·∏n+m
i=1 am

′
i

i such that mi ≤
m′i for all i ∈ {1, . . . , n}:

#redex (s ; s ′) =
n∏
i=1

(
m′i
mi

)
∗mi! = count(s ; s ′) ∗

n∏
i=1

mi!

Based on a claim that the number of redexes does not depend on the concrete
order fixed by a solution, the proof is straightforward by induction on n.

We present the encoding �·� : React=
red

→ React= in Fig. 7. The basic idea is to
balance the difference between Mass action and redex quantification by counting
the number of permutations of molecule places in solution lists according to the
ideas above. Our encoding from React=

red
to React= is correct, in that it preserves

ctmcs.

Proposition 1. The encoding �·� : React=
red

→ React= preserves the ctmc, in
that for all rule sets R ∈ React=

red
and solutions s it holds R � s d−−→

red

s ′ if and

only if �R� � s d−−→
ma

s ′.

The proof basically proceeds by structural induction on the rules of the stochastic
semantics of React=

red
and React=. It is based on Lemma 1 and on another lemma

that states that for all reaction rules s1
e−→ s2 of React=

red
and substitutions σ,

it holds that if s1σ ≈ ·∏m
i=1 ami

i and eσ ⇓ d ∈ R+ then �e�s1 ⇓ d ∗
∏m
i=1mi!, so

that Lemma 2 can be applied.

4 Expressing the Stochastic π-Calculus

In this section, we propose an encoding of the stochastic π-calculus into React=
red

preserving the underlying ctmc, according to React=
red

alternative semantics of
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Prefixes π ::= x?ỹ receiver where x, ỹ, z̃ ∈ N
| x:d!z̃ sender and d ∈ R+

0

Sums M ::= π.P prefixed process
| M1 + M2 choice

Processes P, Q,O ::= A(x̃) defined process where A ∈ A
| P1 | P2 parallel composition
| (νx)P channel creation
| 0 idle process

Definitions D ::= A(x̃) � M process definition where fn(M) ⊆ {x}

Fig. 8. Syntax of the π-calculus

Sect. 3. The definition of the π-calculus we propose here corresponds to its
“biochemical” variant: the bodies of parametric process definitions are sums of
prefixed processes, possibly restricted. In order to simplify the presentation of
the encoding, but not at the expense of the expressiveness, the syntax given in
Fig. 8 excludes ν-operators over sums. Free names and structural congruence are
defined as usual for π-calculus reduction semantics.

The stochastic semantics of the π-calculus as given in Fig. 9 refines the usual
non-deterministic semantics. It is based on standard indexing of processes and
prefixes, which allows the enumeration of all the pairs of prefixes that give rise to
some reduction, as well as on the presence of normal forms, that allow the very
compact expression of a process as a parallel composition of defined processes
possibly preceded by restrictions.

In order to formalize the encoding from the π-calculus to reaction rules, we
define a standard correspondence between (sets of) π-calculus process definitions
and (sets of) rules. For the sake of readability, our encoding relies on the following
assumptions:

– The set of names N of the π-calculus is that of React=
red

and all free names
on the right hand side of a definition A(x̃) � P are bound on the left, i.e.
fn(P ) ⊆ {x̃}.

– The set of molecule names A of the π-calculus is that of React=
red

and the
number of names |x̃| in definitions A(x̃) � P must be equal to the arity of A
fixed by A. Furthermore all formal parameters in x̃ must be pairwise distinct
and there exists no multiple definitions, that is for any pair of definitions
Ai(x̃i) � Pi, i ∈ 1, 2, it holds that A1 
= A2.

Definition 1 (Normal form). Processes P = (νx̃)ΠiAi(ỹi) are said to be in
normal form. The subset of P of processes in normal form is denoted as P̂.
Thus, in the following, P̂ denotes a process in normal form.

Modulo the usual structural congruence rules any process can be put into normal
form:
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(comSπ)
P1 =

∑
h π1

h.P 1
h P2 =

∑
h π2

h.P 2
h π1

l = x:d!z̃ π2
m = x?ỹ |ỹ| = |z̃|

P1 | P2
d−−−→

(l,m)
P 1

i | P 2
j [z̃/ỹ]

(defSπ)
A1(x̃1) � M1 A2(x̃2) � M2 M1[ỹ1/x̃1] | M2[ỹ2/x̃2]

d−−−→
(l,m)

Q

A1(ỹ1) | A2(ỹ2)
d−−−→

(l,m)
Q

(reductSπ)

P = (νỹ)
∏n

h=1 Ah(x̃h)
Aj(x̃j) | Ak(x̃k) d−−−→

(l,m)
Q O ≡ (νỹ)

(
Q | ∏h∈{1,...,n}\{j,k} Ah(x̃h)

)
P

d−−−−−→
(j,l,k,m)

O

(sumSπ)
P ≡ P ′ d =

∑
{(d′,(j,l,k,m))|P ′ d′−−−−−→

(j,l,k,m)
O}

d′

P
r−→ O

Fig. 9. Stochastic semantics for the π-calculus

Lemma 3 (Congruent normal form). For every π-calculus process P , there
exists P̂ ≡ P such that P̂ is in normal form.

Each process may be put in several different normal forms. In order to define
the encoding from processes to solutions, we need to choose a unique normal
form φ(P ) for each P . Of course, the associative and commutative properties of
structural congruence, as well as α-renaming, allow several distinct normalization
functions φ(·) to be defined. For our purpose, the specific choice is not relevant,
as long as the same φ(·) is always selected hereinafter.

Lemma 4 (Normalization function). There exists (at least) one surjective
and total function φ : P → P̂ such that ∀P ∈ P : φ(P ) ≡ P and ∀P ∈ P̂ :
φ(P ) = P .

Normal forms are useful to define the stochastic semantics of the π-calculus,
given in Fig. 9. This semantics relies on redexes which are here tuples that
locate a pair of complementary prefixes. In the reduction

(νx̃)(A1(x̃1), . . . , An(x̃n)) d−−−−−→
(j,l,k,m)

Q

an interaction with rate d involves the lth (output) prefix of process Aj and the
mth (input) prefix of process Ak. From those located interactions, rule (sumSπ)
sums up the rates of the reductions leading to a common state, so that the
specific pairs of complementary prefixes are forgotten.

Similarly to the stochastic semantics of the π-calculus, the encoding of the
π-calculus in React=

red
relies on the correspondence between the redexes of these

two languages. Such encoding consists in two parts: the first one allows the trans-
lation of parametric process definitions to reaction rules, the second one defines
a tight correspondence between π-calculus processes and React=

red
solutions.
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The translation of parametric process definitions occurs in two steps: first, a
rule is generated for each redex that locates a pair of complementary prefixes,
which do not necessarily share the same subject name; then, the rates of identical
rules are summed up. In order to illustrate these informal ideas, let us consider
the following process definitions:

A(x, ẋ) � x:d!ẋ.0 + x:d!ẋ.0 + ẋ?z.B(x, ẋ, z)
B(y, ẏ, ÿ) � y:d′!ÿ.(νz)A(y, z) + ẏ:d′′!ÿ.B(y, ẏ, ÿ)

Depending on how those definitions are instantiated, at most 4 interactions can
occur. Those are given by redexes (j, l, k,m) identifying the lth output prefix of
the jth definition and the mth input prefix of the kth definition1. For the above
definition, those redexes are (1, 1, 1, 3), (1, 2, 1, 3), (2, 1, 1, 3) and (2, 2, 1, 3). A
rule, constrained by the equality of the subject of the prefixes, corresponds to
each redex:

(1, 1, 1, 3) : A(x, ẋ), A(y, ẏ)
if x=ẏ then d else 0−−−−−−−−−−−−−−→ B(y, ẏ, ẋ)

(1, 2, 1, 3) : A(x, ẋ), A(y, ẏ)
if x=ẏ then d else 0−−−−−−−−−−−−−−→ B(y, ẏ, ẋ)

(2, 1, 1, 3) : B(y, ẏ, ÿ), A(x, ẋ)
if y=ẋ then d′ else 0−−−−−−−−−−−−−−→ (νz)A(y, z), B(x, ẋ, ÿ)

(2, 2, 1, 3) : B(y, ẏ, ÿ), A(x, ẋ)
if ẏ=ẋ then d′′ else 0−−−−−−−−−−−−−−−→ B(y, ẏ, ÿ), B(x, ẋ, ÿ)

We get rid of the redex indexing of rules by summing up the rates of identical
rules, and thus we obtain the following rule-based model that corresponds to the
above π-calculus definitions:⎧⎪⎪⎪⎨⎪⎪⎪⎩

A(x, ẋ), A(y, ẏ)
2∗if x=ẏ then d else 0−−−−−−−−−−−−−−−→ B(y, ẏ, ẋ),

B(y, ẏ, ÿ), A(x, ẋ)
if y=ẋ then d′ else 0−−−−−−−−−−−−−−→ (νz)A(y, z), B(x, ẋ, ÿ),

B(y, ẏ, ÿ), A(x, ẋ)
if ẏ=ẋ then d′′ else 0−−−−−−−−−−−−−−−→ B(y, ẏ, ÿ), B(x, ẋ, ÿ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
We can now formalize the encoding. First we define the translation of π-calculus
process definitions in reaction rules, then we formalize how to translate a process
to a solution (and back to a process again).

Definition 2 (From process definitions to reaction rules). Let D be a fi-
nite set of process definitions of π-calculus, D = {δs|δs = As(x̃s) �

∑ns

t=1 π
t
s.P

t
s}

with cardinality |D|. The tuple R′D of reaction rules corresponding to D is defined
as R′D = {(i, ri)|ri = si

ei−→ (νx̃i)s ′i}, where i is a composite index i = (j, l, k,m)
for all j, l, k,m such that:

– the jth and kth definitions in D are δj = Aj(x̃j) �
∑nj

t=1 π
t
j .P

t
j and δk =

Ak(x̃k) �
∑nk

t=1 π
t
k.P

t
k if k 
= j and δk = Aj(x̃′j) �

∑nj

t=1 π
t
j .P

t
j [x̃

′
j/x̃j ] other-

wise, for some fresh names x̃′j;
– 1 ≤ l ≤ nj and 1 ≤ m ≤ nk

1 Note that here we refer to jth and kth definitions while in the stochastic semantics
the same redex refers to the jth and kth processes of the current state.
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– πlj = y1:d!z̃o and πmk = y2?z̃i with |z̃o| = |z̃i|;
– si = Aj(x̃j), Ak(x̃k) and s ′i = φ( P lj | Pmk [z̃o/z̃i] )
– ei = if y1=y2 then d else 0.

Given a rule r, the multiplicity m(r) of r in R′D is defined as m(r) = | {i | (i, r) ∈
R′D} |. The set RD of reaction rules corresponding to D is defined as

RD = {s m(r)∗e−−−−→ (νx̃)s ′ | (i, r) ∈ R′D for some i and r = s e−→ (νx̃)s ′}
In practice, the translation of a process in a solution removes the restrictions in
front of the process and preserves the names of defined processes and of channels.

Definition 3 (From processes to solutions). Let P be a π-calculus process,
with P̂ = (νz̃)(A1(x̃1) | · · · | An(x̃n)). The solution sP corresponding to P is
defined as sP = A1(x̃1), . . . , An(x̃n).

The reverse translation adds again restrictions in front of the process, by pre-
serving all the names.

Definition 4 (From solutions to processes). Let s be a solution, with s =
A1(x̃1) | · · · | An(x̃n). The process Ps corresponding to s is defined as Ps =
(νx̃1) . . . (νx̃n)P−(ν)

s , with P−(ν)
s = A1(x̃1), . . . , An(x̃n).

The remarkable expressiveness of React=
red

allows it to provide a tight corre-
spondence with the π-calculus: in fact, the state space generated by a π-calculus
process P without free names is isomorphic to the one generated by its corre-
sponding solution sP . Moreover, the transition rate between any pair of states
is preserved by the encoding, so that the ctmc associated with any π-calculus
process P without free names is isomorphic to the one associated with its cor-
responding solution sP . This important property is captured by the following
theorem.

Theorem 1. Let D be a finite set of process definitions of π-calculus, RD be the
set of reaction rules corresponding to D according to Def. 2. Let P be a π-calculus
process with fn(P ) = ∅. Then:

1. P d−→ P ′ ⇒ RD � sP
d−−→

red

sP ′ ;

2. RD � sP
d−−→

red

s ′ ⇒ P
d−→ Ps′ .

Surely, it is possible to relax the requirement of absence of free names for π-
calculus processes at the price of losing isomorphism, since some process tran-
sitions are lost. Still it would be easy to identify again the isomorphic subchain
of ctmc of the corresponding solution of React=

red
.
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5 Biochemical Reaction Rules with General Constraints

In this section, we define a powerful language of biochemical reaction rules,
React(C ), which besides others permits constraints in an arbitrary constraint
system C , ν-binders on the left hand side, reflexivity, and general kinetics.

We define constraint languages like in higher-order logic in the simply typed
call-by-value λ-calculus, extended by pairs, letrec expressions, case statements
for matching molecules or solutions, and constants. We parametrize our λ-
calculus by choice of base types, molecule constructors, and constants with a
fixed semantics. Therefore, parameter C of React(C ) is assumed to be a tuple
C = (B,A, C, [[.]]) with the following properties:

– B = {ι, . . .} is a set of type constants such as nat0 (non zero natural numbers)
and real for real numbers. Simple types build B and 3 further constants are
defined in Fig. 10. They are ranged over by τ .

– A = {A : τ̃ , . . .} is a set of typed molecule names, τ̃ is a tuple of types.
– C = {c : τ, . . .} is a set of typed constants. If τ = τ1 → . . . → τn → τ ′ for

some nonfunctional type τ ′ then we say that the arity of c is ar (c) = n.
This set may contain constants for arithmetic functions such as + : nat0 →
nat0 → nat0.

– for every constant c : τ1 → . . . → τn → τ ′′ of arity n, there is a function
[[c : τ ]]s : Vals(τ1) × . . . × Vals(τn) → Vals(τ ′′). Here, Vals(τ) is the set of
values of type τ which are closed in that the only remaining variables are
to type link, which is defined as usual for the simply typed λ-calculus (see
Figs. 10 and 11).

Note that simple types τ include, beside type constants in B and function types,
two forms of molecule types, A(τ̃ ) for molecules of species A with parameters of
type τ̃ and a constant mol which is the type of molecules. Furthermore, there is
a type constant sol for solutions and a type link for link names.

Expressions as defined in Fig. 10 consist of λ-calculus terms extended with
constants, molecule and solution data terms, and their respective matching con-
structs. Rules for their evaluation are provided in Fig. 12. A solution expression
is a list of expressions e1, . . . , en that the type system forces to evaluate to
molecules. The special term current sol evaluates to the current solution (that
is the current state). In the matching case mol e of A(x̃) then e1 else e2
variables x̃ scope over e1. If e evaluates to a molecule A(ṽ) then e1 is evalu-
ated with variables x̃ binding values ṽ. Otherwise, e2 is evaluated. Similarly, in
the matching case sol e of xy, z then e1 else e2, variables x, y and z scope
over e1. If e evaluates to A(ṽ), s then e1 is evaluated where x binds to A(ṽ), y
binds to the multiplicity of A(ṽ) in solution A(ṽ), s, and z binds to s with all
occurrences of A(ṽ) removed from s .Otherwise, that is when e evaluates to the
empty solution, e2 is evaluated. Values of this constraint language are standard.

Language React(C ) has full support for reflexivity, meaning that the current
solution can always be reflected into a value of the language. This is a powerful
feature, since it permits to express global constraints on the current solution,
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Types τ ::= ι | τ → τ | A(τ̃) | sol | mol | link where ι ∈ B, A ∈ A
Expres-
sions

e ∈ Exprs ::= c | x | λx.e | ee where c ∈ C, x, y, z ∈ N
| letrec x = e in e | A(ẽ)

| case mol e of A(x̃) then e else e | 0 | e, e
| current sol | case sol e of xy, z then e else e

Solution
patterns

p ∈ Pats ::= A(x̃) | p, p | 0

Solutions s ∈ Sols ::= A(ṽ) | s, s | 0
Values v ∈ Vals ::= x | 0 | s | λx.e | c v1 . . . vk where 0 ≤ k < ar(c) or k = 0

Reaction
rules

r ::= (νx̃)p e−→ (νỹ)s
where fn(r) ⊆ fn((νx̃)p)
and {ỹ} ∩ (fn(r) ∪ fn(e) ∪ {x̃}) = ∅

Fig. 10. Expressions and values of React(C )

which do not only depend on the subsolution matching the left-hand-side of a
rule.

In particular, we can rely on reflexivity in order to support arbitrary kinetics,
as we illustrate by the following sequence of examples. There, we assume that C
supports a constant =: mol→ mol→ nat0 for the equality function on molecules
and + : nat0 → nat0 → nat0 for the addition over natural numbers. We start
with a function that counts all molecules of a solution.

count mols � λs. letrec f = (case sol s of xy , z then y + (fz) else 0)
in fs

Similarly, we can count the number of A named molecules in a solution:

countA � λs. letrec f = case sol s of xy, z then
case mol x of A(x1, . . . , xk) then 1 + (fz)
else (fz)

else 0 in fs

It is also possible to have a function that receives a molecule and a so-
lution and counts the number of this molecule in a solution. For instance,
count mol A() A(), B(), A() is supposed to evaluate to 2.

count mol � λmλs. letrec f = case sol s of xy , z
then (if x = m then 1 + (fz) else (fz))

else 0 in fs

Our next objective is to define function count as needed to define the Mass action
kinetics. Here we use the additional function constant binom : nat0 → nat0 →
nat0 that computes binomial coefficients. This means that we assume that the
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(t-var)

x : τ ∈ Γ

Γ � x : τ1
(t-fun)

Γ, x : τ1 � e : τ2

Γ � λx.e : τ1 → τ2
(t-spec)

A : τ̃ ∈ A Γ � ẽ : τ̃

Γ � A(ẽ) : A(τ̃)

(t-app)

Γ � e1 : τ1 → τ2 Γ � e2 : τ1

Γ � e1e2 : τ2
(t-rec)

Γ, x : τ ′ � e1 : τ ′ Γ, x : τ ′ � e2 : τ

Γ � letrec x = e1 in e2 : τ

(t-const)

c : τ ∈ C
Γ � c : τ

(t-match)

Γ � e1 : molA : τ̃ ′ ∈ A Γ, x̃ : τ̃ ′ � e2 : τΓ � e3 : τ

Γ � case mol e1 of A(x̃) then e2 else e3 : τ

(t-mol)

Γ � e : A(τ̃)
Γ � e : mol

(t-self)

Γ � current sol : sol
(t-sol-elem)

Γ � e : mol
Γ � e : sol

(t-sol-append)

Γ � e : sol Γ � e′ : sol
Γ � e, e′ : sol

(t-rule-set)

∀r ∈ R � r

� R

(t-mult)

Γ � e1 : sol Γ, x : mol, y : nat, z : sol � e2 : τ Γ � e3 : τ

Γ � case sol e1 of xy, z then e2 else e3 : τ

(t-rule)

dom(Γ ) = (fn(P ) ∪ fn(e))\{x̃}
Γ, x̃ : link � p : sol Γ, x̃ : link � e : real Γ, x̃, ỹ : link � s : sol

� (νx̃)p e−→ (νỹ)s

Fig. 11. Type system for expressions and rules

constraint language C provides this constant, such that for all natural numbers
n and m and solutions s it holds that [[binom ]]s(n,m) =

(
n
m

)
.

count � λs1λs2. letrec f = case sol s1 of xy , z then
(binom (count mol x s2)

(count mol x s1)) ∗ (fz)
else 0 in fs

Reaction rules are enriched with ν-binders on the left-hand side, similarly to
the κ-calculus. They have thus the form (νx̃)p e−→ (νỹ)s . ν-bound variables on
the right hand side should not occur elsewhere in the rule. ν-bound variables on
the left hand side must match link names that are entirely removed from the
solution by rule application, see Fig. 13. Typing rule (t-rule) for rules ensures
that ν-bound variables have link type, that reactant and product patterns are
of sol type and that e has real type, see Fig. 11. For a well-typed rule set R
and a solution s , typing is preserved by reduction.

Proposition 2 (Subject reduction). Let R be a rule set and s be a solution,
if Γ � s for some typing context Γ , and � R, and R � s d−→ s ′ then Γ � s ′.

6 Stochastic Simulator

We propose a stochastic simulator that applies to both React= and React(C )
and is independent of the choice of constraint system C . We also discuss the
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v ⇓s v

e1 ⇓s λx.e e2 ⇓s v′ e[v′
/x] ⇓s v

e1e2 ⇓s v

e1 ⇓s v1 �= λx.e e2 ⇓s v2 v1v2 ⇓s v

e1e2 ⇓s v

c : τ ∈ C ar(x) = n e1 ⇓s v1 . . . en ⇓s vn

c e1 . . . en ⇓s [[c]]s (v1, . . . , vn)
e2[e1/x] ⇓s v

letrec x = e1 in e2 ⇓s v

ẽ ⇓s ṽ

A(ẽ) ⇓s A(ṽ)
e1 ⇓s A(ṽ′) e2[ṽ′/x̃] ⇓s v

case mol e1 of A(x̃) then e2 else e3 ⇓s v

e1 ⇓s B(ṽ′) A �= B e3 ⇓s v

case mol e1 of A(x̃) then e2 else e3 ⇓s v

e1 ⇓s s1 s1 ≡ ·∏n
i=1 ami

i s1 = a1, s
′
1 s2 ≡ ·∏n

i=2 ami
i e2[a/x, m1/y, s2/z] ⇓s v

case sol e1 of xy, z then e2 else e3 ⇓s v

e1 ⇓s 0 e3 ⇓s v

case sol e1 of xy, z then e2 else e3 ⇓s v

e ⇓s s e′ ⇓s s ′

e, e′ ⇓s s, s ′ current sol ⇓s s

Fig. 12. Big-step evaluation of expressions

(inst)

σ : fn((νx̃)p) ∪ fn(e)→ Vals type preserving eσ′σ ⇓ d

σ′ : {x̃} → N\N ′ injective σ′′ : {x̃′} → N\(N ∪ fn((νx̃)p) ∪ fn(e)) injective

(νx̃)p e−→ (νx̃′)s ⇓σ,σ′,N,N′ pσ′σ d−→ sσ′′σ

(react)
s ′1 ≈ s, s1 s, s2 ≡ s ′2 d ∈ R+

s1
d−→ s2 � s ′1

d−→ s ′2

(sum)
s ′1 ≡ s1 d =

∑
r∈R

∑
{(d′,σ,σ′) | r⇓σ,σ′,fn(s′1),fn(s2)ρ, ρ � s′1

d′−→s2}
d′

R � s1
d−→
ma

s2

Fig. 13. Stochastic mass-action semantics of React(C )

algorithmic complexity of a single simulation step. It should be noted that the
efficient simulation algorithm for the κ-calculus [5], which updates matches of
rules dynamically, cannot be generalized in any obvious manner, since hyper-
edges spoil the principle of rigidity (unique matches for connected patterns).

A stochastic simulator allows to execute a system of chemical reaction rules R
on a biochemical solution s . It then computes traces by repeatedly applying the
reaction rules in R to the current solution, with s as the initial solution. Note
that these traces also contain the time delays Δ for every step. Our simulator
is given in Fig. 14. It may compute infinite traces but the overall simulation
time could easily be limited. Given the current solution s , the rule set R, and
the current time point t, our simulator computes the set of applicable reactions
(l, r, s ′) of R on s with their rates r and selects one of them non-deterministically
by Gillespie’s ssa algorithm [8] and also returns its time delay Δ. Note that
label l is some pair (σ, fn(s ′)) for React= and some pair (σ, σ′, fn(s), fn(s ′)) for
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s imu lat e (s, t) // with system of reaction rules R

l e t Reacts = {(d, (l, r, s ′)) | r ∈ R, r ⇓l ρ, ρ � s
d−→ s ′} // compute all potential

reaction steps
l e t (d, (l, r, s ′), Δ) = ssa(Reacts) // choose transition and time delay by ssa

output (d, (l, r, s ′), Δ) // trace the chosen reaction
s imu lat e (s ′, t + Δ)

Fig. 14. Stochastic Simulator for React= and React(C )

React(C ) where σ′ takes care of the ν-binders on the left-hand side of r. The
algorithm then outputs the selected step, its rate, and its delay and continues
with s ′ at time point t+Δ.

Algorithmically, the main problem to be solved by the simulator is to compute
the set of applicable reactions for a given system R of rules and a solution s .
The following proposition states that every step of the simulator can be done
in polynomial time under the assumption that the maximal arity n of reaction
rules is bounded. This result is relevant, since the encoding of definitions of the
stochastic π-calculus produces only reactions rules of arity 2. We define the size
|r| of a rule as the number of its symbols, and similarly the size |s | of a solution.

Proposition 3. Let r be a reaction rule (νx̃)
∏n
i=1 Ai(x̃i)

e−→ (νx̃′)p′ and s a

solution
∏m
j=1 A

′
j(ṽ

′
j) then the set of possible instantiations {l | r ⇓l ρ, ρ � s d−→

s ′} can be computed in time O(|r| + |s |+mn).
Proof. We enumerate all injective functions � : {1, . . . , n} → {1, . . . ,m} and
tests whether they define a redex. There are mn many of such functions and
testing whether � is a redex costs time O(|s | + |r|). Again this is enough, since
all free variables of r occur freely on the left hand side. �

Note that a naive approach that enumerates all possible assignments of pattern
variables to values in s leads to an algorithm in O(|r||s|) which is exponential in
the solution size and thus unfeasible.

The next proposition shows that we cannot obtain a simulator with steps in
polynomial time, neither for React(C ) nor for React=, without imposing addi-
tional restrictions such as a bound on the maximal arity of reaction rules. The
input is a reaction rule r and a solution s and the output is “yes” if and only
if r is applicable to s , i.e., if there exists a substitution σ such that r ⇓σ,fn(s) ρ
and ρ � s d−→ s ′.

Proposition 4. The reaction-applicability problem is np-complete for both
React= and React(C ).

Proof. The generate and test algorithm in the Proof of Proposition 3 can be
run in non-deterministic polynomial time, so reaction applicability is in np.
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In order to prove np-hardness, we show that 3SAT can be reduced to reaction-
applicability in polynomial time. We illustrate the ideas of our encoding at the
following two 3SAT clauses as an example.

(b1 ∨ b2) ∧ (b1 ∨ b2 ∨ b3)
We now express theses clauses by a reaction rule p d−→ s ′ that is supposed to
match a solution s . For each of the two clauses Ci where 1 ≤ i ≤ 2, we fix
a variable xi which will match either of the three Boolean variable b1, b2, b3
and that zi matches the value of this Boolean variable in variable assignments
satisfying the clauses. We use molecule names in A = {Ci, Eij | 1 ≤ i, j ≤ 2}.
1. The first clause is expressed by adding a reactant C1(x1, z1) to pattern p

and molecules C1(b1, 1), C1(b2, 0) to the solution s .
2. The second clause is expressed by adding a reactant C2(x2, z2) to pattern p

and molecules C2(b1, 1), C2(b2, 1), C2(b3, 0) to the solution s .
3. In order to express that zi must match the Boolean that is assigned to the

Boolean variable matching xi, we encode condition xi = xj ⇒ zi = zj for all
1 ≤ i < j ≤ 2. This can be done by adding the reactants Eij(xi, xj , zi, zj)
to pattern p and the following molecules to solution s :∏

β,β′∈B

∏
1≤k �=l≤3 Eij(bk, bk, β, β), Eij(bk, bl, β, β

′)
So if xi and xj match the same bk then zi and zj must match the same
Boolean β. Otherwise, there is no restriction.

Pattern p grows linearly in the size of the clauses, while solution s grows both,
quadratically with the number of clauses and quadratically with the number of
Boolean variables, and thus polynomially in the size of the clauses. �

Computing matching redexes by constraint programming. We propose to use
constraint programming in order to find an algorithm that computes the set of
applicable reactions for a given system R of reaction rules and a biochemical
solution s with a complexity less than the worst complexity O(|r| + |s | +mn).
This is relevant, since this algorithm will always need quadratic time for each
step of binary rules, while one would hope for linear time in many cases.

Rather than generating all redex candidates � and then testing whether � is
indeed a redex of r and s , we define a constraint that states whether a redex
candidate for a solution is indeed a redex and then solve this constraint by
constraint programming, i.e. by propagating and splitting rather than generating
and testing. For a given solution s = ·∏n

i=1 ami

i and a reaction
∏m
i=1 pi

e−→ s ′,
the constraint ψ(r, s) is defined as follows:

ψ(
∏m
i=1 pi

e−→ s ′, ·∏n
i=1 ami

i ) = e ⇓ d ∈ R+ ∧mi=1Ii ∈ {1, . . . , n} ∧ pi = aIi∧
∧mi=1#{j | Ii = Ij} ≤ mi

We use finite domain variables Ii and so called element constraints for express-
ing ∧mi=1Ii ∈ {1, . . . , n} ∧ pi = aIi which states that all pi match aIi (line 2).
Strong propagators for element constraints are provided by all current constraint
programming libraries. Additional requirements are that the number of patterns
matched to the same molecule must not exceed the number of that molecule in
the solution (line 3) and that e evaluates to a successful value (line 1).
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7 Conclusion

We introduced a new language of biochemical reaction rules with constraints
React(C ) that is highly expressive. We sowed that with equality constraints and
hyperedges the missing features for subsuming the expressiveness of the stochas-
tic π-calculus are provided. Besides constraints React(C ) supports reflexivity,
which enables modelers to define arbitrary kinetics.

We presented a simulator for React(C ) that computes steps in polynomial
time, under the assumption that the arity of reaction rules is bounded. We
showed that efficient simulation is impossible without this assumption. A con-
straint programming solution that may often avoid the higher polynomials in
the worst case was presented. An implementation is under way.

In future work, we would like to show that the attributed π-calculus π(C )
can be encoded in React(C ) restricted to binary rules. Furthermore, we conjec-
ture that the imperative π-calculus can be encoded into React(C ) restricted to
ternary rules. This would prove that React(C ) subsumes BioAmbients as well.
The relationship of React(C ) to Bigraphs is also to be elaborated.
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Abstract. We study a higher-order concurrent language with crypto-
graphic primitives, for which we develop a sound and complete, first-
order testing theory for the preservation of safety properties. Our theory
is based on co-inductive set simulations over transitions in a first-order
Labelled Transition System. This keeps track of the knowledge of the ob-
server, and treats transmitted higher-order values in a symbolic manner,
thus obviating the quantification over functional contexts. Our charac-
terisation provides an attractive proof technique, and we illustrate its
usefulness in proofs of equivalence, including cases where bisimulation
theory does not apply.

1 Introduction

The verification of higher-order distributed systems that employ security proto-
cols is now more than ever relevant to software development. Extensions of the
π-calculus [18] with cryptographic primitives, such as the spi-calculus [3] and the
applied π-calculus [1], have provided an effective framework for modelling secu-
rity and authentication protocols of first-order systems [3,1,4,8,2,5,9,6,11,10]. It
is only natural that similar extensions to the higher-order π-calculus (HOπ)
[19] would be equally effective for modelling and verifying security and authen-
tication protocols of higher-order systems, such as distributed systems in which
code is communicated between principals over public channels [17,25].

This paper is inspired by the work of Maffeis et al. [17], where the focus is
in the safety of higher-order authentication protocols. The authors use a higher-
order version of the spi-calculus, augmented with a combination of static and
dynamic typing that enables the use of untrusted code in the dynamic verification
of authentication policies. They call this “Code-Carrying Authorisation”.

Our goal is to develop behavioural theories for such a language, and in this pa-
per we make the first step by studying safety in the language HOspi, a version of
HOπ augmented with the symmetric cryptographic primitives of the spi-calculus
and an extremely simple type system. To the extent of our knowledge, this is
the first theory of safety for such a language.
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Even in HOspi there are examples of systems that use Code-Carrying Autho-
risation similar to those in [17]. Consider a rather simple part of a conference
server that expects the submission of a review for a particular paper by a par-
ticular reviewer Rev1 or any legitimate delegate reviewer:

Conf = inp subm(xsubm). decxsubm as {|(xr , fprf ) |}sp
in νa. fork fprf ({|a |}srev1

). inp a(). outp ok(xr ). �

The paper has been associated by the server to key sp and the reviewer to key
srev1 . After receiving a possible submission on subm, the server verifies that the
sender had access to the paper by successfully decrypting the input message
with sp . The message contains the review (bound to xr ) and a function (bound
to fprf ) which can be used to prove that the review came from Rev1 or by a
delegate reviewer. To do this, the server generates a fresh channel a, encrypts it
with the key srev1 , and gives it as an argument to the function. The legitimacy
of the review is verified by an input on a, which can only be matched by an
output in the function bound to fprf , after it successfully decrypts its argument.

Reviewer Rev1 can submit a review by the following code:

Rev1 = outp subm({|r,Fprf 1
|}sp). �

where Fprf 1
= λx. dec x as {|z |}srev1

in outp z(). �

Alternatively, Rev1 can delegate the review of the paper to Rev2 by giving to the
latter access to the paper (i.e. the key sp) and a function that can be used to
prove the delegation:

Rev′1 = outpdeleg({|sp ,Fdel12 |}srev2
). �

Fdel12 = λ(x, y). dec x as {|z |}srev1
in outp y({|z |}srev2

). �

When this function is applied to a challenge {|a |}srev1
bound to x and a contin-

uation channel bound to y, it sends the challenge {|a |}srev2
on y. Hence, Rev2

can submit a review using the following code:

Rev2 = inp deleg(xdeleg). decxdeleg as {|xp , fdel12 |}srev2

in outp subm({|r,Fprf 2
|}xp). �

Fprf 2
= λx. νb. fork fdel12(x, b). inp b(y). dec y as {|z |}srev2

in outp z(). �

One would want to prove that the system where Rev1 submits a review is equiv-
alent to the system where the review is delegated to Rev2. This can be done by
proving that the system

Sys1 = νsp , srev1 , srev2 . (Conf | Rev1 | D)

is observationally equivalent to

Sys2 = νsp , srev1 , srev2 . (Conf | Rev′1 | Rev2)

where D generates dummy traffic on channel deleg .
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It is important therefore to develop techniques for proving the equivalence of
higher-order concurrent systems with cryptographic primitives. These techniques
depend on the particular choice of semantic equivalence, ranging from branching-
time equivalences, such as reduction barbed congruence [25,1,4,13] and bisimula-
tion equivalence [2], to linear-time equivalences, such as may-testing equivalence
[3,4,12] and must-testing equivalence [12]. We aim at developing proof tech-
niques that are adaptable to many semantic equivalences;1 here we focus on safe
equivalence, which is closely related to may-testing equivalence [7].

There are two main previous approaches that could potentially be used for
proving safe equivalence for HOspi. The first would be to adapt Sangiorgi’s well-
known translation from the HOπ with finite types into the standard π-calculus
[20], based on triggers, thereby in principle allowing first-order proof principles
to be applied to HOspi. However it is unclear how the translation could be
adapted to HOspi in a way that will be fully abstract and useful in proofs
of equivalence. The second approach would be to make use of environmental
bisimulations [23], which has been shown to provide a sound, complete and useful
proof technique for reduction barbed congruence in Applied HOπ, a higher-order
concurrent language with cryptographic primitives [25]. However, environmental
bisimulations do not provide a complete proof principle for linear-time semantic
equivalences, such as safe equivalence.

Here we pursue an alternative strategy similar to that of Jeffrey and Rathke
[14], developing a proof technique which works at the level of a Labelled Transi-
tion System (LTS) for HOspi. The success of LTS-based reasoning for first-order
calculi makes us confident that this approach is adaptable to semantic equiv-
alences other than safe equivalence, and to higher-order concurrent languages
with richer type-systems, as that by Maffeis et al. [17].

Configurations in our LTS record the interaction of the observer with the pro-
cess, as well as the knowledge of the observer at every step of this interaction.
This is similar in spirit to the environments used in environmental bisimulations
[23,25] and in proof techniques for first-order cryptographic calculi [2,4]. Our
LTS is first-order because it employs a symbolic treatment of higher-order val-
ues generated by the context, which obviates the need for quantification over
functional contexts. Our approach is informed by the translation to triggers but
avoids the complexities and incompleteness issues of a potential translation to
a first-order language. We believe this to be the first first-order semantics for a
higher-order language with cryptographic primitives.

We develop a sound and complete first-order co-inductive proof principle for
safe equivalence for HOspi processes in terms of novel set simulations. These are
essentially simulations over our first-order LTS between configurations and sets
of configurations.

The symbolic treatment of functions in the LTS is a sound approach for
HOspi because the language allows attackers to only apply functions or test
them for equality. A variation of the language and theory that can express more

1 For example semantic equivalences that can be used to prove security properties
such as safety and non-interference.
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Syntax

x, y, f ∈ Var a, b, c, n, k, r ∈ Name u, v ∈ Var ∪ Name

T ::= Nm | Pr | T × T | Enc(T ) Type

P, Q ::= � | outp u(V :T ). P | inp u(x:T ). P | (P | P ) | νn. P | fork V (u). P Proc
| ifV = V thenP elseP | let f = λx. P inP
| match V as (x, y) inP | decrV as {|x |}u inP elseP

U, V, W ::= x | n | (V, V ) | λrx. P | {|V |}k Val

Reduction Semantics

outp c(V :T ). P | inp c(x:T ). Q → P | Q{V/x} (Rcomm)
decr {|V |}k as {|x |}k inP elseQ → P{V/x} (Rdec-S)
decr {|V |}l as {|x |}k inP elseQ → Q if k �= l (Rdec-F)
match (V, U) as (x, y) inP → P{V/x, U/y} (Rmtch)
let f = λx.P inQ → νr. Q{λrx. P/f} if r �∈ fn(P, Q) (Rlet)
fork (λrx. P )(n). Q → P{n/x} | Q (Rapp)
ifU =V thenP elseQ → P if �equal (U,V ) (Rif-T)
ifU =V thenP elseQ → Q if � �equal(U, V ) (Rif-F)
P1 | Q → P2 | Q if P1 → P2 (Rpar)
νa.P1 → νa. P2 if P1 → P2 (Rnu)
P1 → P2 if P1 ≡ P ′

1 → P ′
2 ≡ P2 (Rcng)

Fig. 1. Syntax and reduction semantics of HOspi

sophisticated attackers, for example attackers that can learn the complete source-
level text of transmitted code, as in Applied HOπ [25], would also be possible,
but not first-order, and it would be closer to the theory of Sato and Sumii [25].

The language and reduction semantics are given in Section 2 while the LTS of
configurations is in Section 3. In Section 5 we explain set simulations and state
their soundness and completeness. We illustrate the usefulness of set simulations
in Section 6, by giving coinductive proofs relating higher-order systems, such as
those discussed above. The paper concludes with discussion of related and future
work in Section 7.

2 Semantics of HOspi

We study the language HOspi, a higher-order concurrent calculus with primitives
for symmetric-key cryptography, similar to those of the spi-calculus [3]. Public-
key cryptography can be added to the language without any significant change to
the semantics and the theory of the following sections. The syntax and reduction
semantics of HOspi are shown in Figure 1. We employ the standard π-calculus
abbreviations; (≡) is the standard π-calculus structural equivalence.

We use a lightweight dynamic type system for HOspi which helps stream-
line the presentation of our theory. Closed values in HOspi, ranged over by V
and U , are either names of type Nm, process abstractions (λrx. P ) of type Pr,
pairs of type T × T ′, and messages encrypted with a name ({|V |}k) of type
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Enc(T ). Abstractions, for simplicity, can be applied to names with the construct
fork (λrx. P )(n). Q and fork the body P as a new process in parallel with the
continuation Q (Rapp). We write fork (λrx. P )(n) when the continuation is �.

Communication happens by synchronisation of an output (outp c(V :T ). P )
and an input (inp c(x:T ). Q) over a common channel c (Rcomm). The dynamic
type system guarantees that communication happens only when the transmitted
and the expected value have the same type. Restriction (νn. P ) encodes privacy
of information, such as keys, which can be extruded by communication.

In a cryptographic calculus it is important for processes or attackers to be able
to detect the retransmission of messages. This creates the requirement for an
equality semantics defined at any type, including function type (Rif-T, Rif-F).
We use an equality semantics, denoted by equal and present in languages like
Scheme, which identifies only functional values representing the same object,
identical names, and pairs and encrypted packages with equal components. Ob-
ject identity for functional values is possible by requiring each such value to be
generated by the construct let f =λx. P inQ, which annotates the value with
a fresh name r (Rlet). Equality at function type is thus reduced to equality
of names. Such an equality construct is convenient for a symbolic treatment of
functions in the following sections. We call a closed process with no functional
values source-level ; the reduction semantics of Figure 1 are defined only for
processes derivable by a source-level process, which guarantees that functional
values annotated with the same name were generated by a single let statement.

The remaining reduction rules are rather standard and deal with decryption of
messages (Rdec-S, Rdec-F), the deconstruction of pairs (Rmtch), and π-calculus
processes (Rpar, Rnu, Rcng). We omit the else branch of decryption if it is �.

A safety property can be formulated as a safety test Tω; a process which
reports bad behaviour on a special channel ω. Let us write R ↓ω whenever R ≡
νñ. outpω(V :T ). R1 | R2, and ω 
∈ {ñ}.
Definition 2.1 (Passing Safety Tests). A process P passes a safety test Tω,
written P cannot Tω, when P | Tω →∗ R implies R ��↓ω.
Definition 2.2 (Safety Preservation). Two source-level processes P and Q
are related by P �∼safe Q when for all source-level tests Tω, P cannot Tω implies
Q cannot Tω. We use P �safe Q to denote the associated equivalence.

The reader familiar with [7] will recognise this safe-preorder as the inverse of
the well-known may-testing preorder. An important property of (�∼safe), as with
other contextual equivalences, is that it enables compositional reasoning.

Proposition 2.3 (Compositional Reasoning). If P �∼safe Q then P | R �∼safe
Q | R and νn. P �∼safe νn.Q.

3 First-Order Semantics

We describe the interaction between a process and an observer by transitions in
an LTS. The LTS uses configurations that record the values transmitted from
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the process to the observer and vice versa, the knowledge of the observer, and
the private knowledge of the process. The LTS is first-order : only the names
that annotate abstractions are exchanged between the process and the observer,
not the abstractions themselves. Below we explain the details of configurations
and transitions in this LTS.

3.1 Configurations

An LTS configuration describes the state of a process interrogated by an observer
and takes the form 〈H ‖K ‖ I〉� P where

– K is the current knowledge of the observer, a finite set of names
– I is the current private knowledge of the process, the set of names known to

the process P but not the observer
– H is the history of the interaction between the observer and the process, in

which the messages exchanged are accessible via indices
– P is an extended process, which may contain pointers to values in the history.

The interrogation of the process by the observer proceeds by the exchange of
messages between them, each message being recorded in H , and available for
use in future interactions. We first explain how these interactions take place,
and how they are recorded.

Example 3.1. First we consider the configuration

〈H0 ‖K ‖ s, r〉� outp c({|λrx. P0 |}s). P1

where the key s (and the annotation r) are private to the configuration. Suppose
the channel name c is known to the observer; that is c ∈ K. Then the process
can output the encrypted message on c, resulting in the configuration

〈H1 ‖K ‖ s, r〉� P1

where H1 = H0, κ �→{|λrx. P0 |}s. The history is extended with a new entry,
indexed by the fresh κ, which records the message received, {|λrx. P0 |}s; these
indices κ of messages received from the process are taken from a distinct set of
output abstract names (OAName) The observer now has access to this message
via the index κ, but not to the contents since the key s is private to the process.

If P1 = outp c(s). P2, it can send the key s to the observer and end up in the
configuration

〈H1 ‖K, s ‖ r〉� P2

Here the history has not changed since it is only necessary to record the non-
base values used in the interactions. But the knowledge of the observer has been
extended with the key s. Now using this key the observer has access to the
abstraction and may apply it to a name or use it in a message sent back to
the process. However in the latter case, in order to maintain a clear interface
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between the observer and process, the abstraction itself is not used. For example
if P2 = inp c(x). P3, the above configuration can transition to

〈H2 ‖K, s ‖ r〉 � P3{ι/x}

where H2 is the history H1, (ι�→{|κ.decrs |}l), ι is a fresh index taken from a
separate set of input abstract names (IAName) used for recording the messages
sent from the observer to the process, and l is any key in the observers knowledge
(K, s). But note that the process actually only receives the input index ι, and in
the history the observer pattern κ.decrs represents the actual abstraction λrx. P0
previously received from the process. ��
Thus, in a configuration the historyH records the non-base messages exchanged,
using κ ∈ OAName for those sent by the process, and ι ∈ IAName for those
received by the process. We use the following metavariables to range over these
sets.

ι ∈ IAName α ∈ AName = IAName ∪ OAName
κ ∈ OAName ζ ∈ AName ∪ Name

Moreover, as we have seen in the previous example, observers can access data
bound to output names in the history using observer patterns in order to further
interrogate the process. As we will see, the process can dually access data bound
to input names in the history using process patterns. The structure of these
patterns is:

φ ::= ι | φ.op ProcPattern
ψ ::= κ | ψ.op ObsPattern

op ::= 1 | 2 | decrs Op
π ∈ Pattern = ProcPattern ∪ ObsPattern

The process (observer) pattern ι (resp. κ) refers to the value in the history that
is bound to that name; π.i refers to the ith projection of the value referred to by
π, and π.decrs refers to the contents of a message encrypted with s and referred
to by π.2 Therefore we extend the syntax for values (AVal) and processes (AProc)
to contain such patterns (U ,V ::= . . . | π AVal).

The meta-function fan(P) gives the abstract names in P , and T (α) gives the
type of the abstract name α. Patterns are typed by the following rules.

�α : T (α)
�π : T1 × T2

�π.i : Ti
�π : Enc(T )
�π.decrs : T

The observer may use its accumulating knowledge K, together with the ab-
stract values received from the process, occurring in the history H , to further
the interrogation of the process. However, unlike [21,23,25], in order to keep
the LTS first-order we severely restrict the ability of the observer to construct
higher-order values. The soundness of our technique in Section 5 shows that this
restriction does not compromise the possible observations made in the LTS.

2 The use of s in the pattern π.decrs is only for quantifying over possible patterns,
given a set of known keys.
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Example 3.2. Consider the following configuration

〈H0 ‖K ‖ ·〉� inp c(x). inp c(y). decx as {|z |}y in fork z(n)
where c ∈ K. The process is expecting an encrypted function on the channel c. In
our LTS the observer can only supply a symbolic representation of an abstrac-
tion, denoted ♦r, informally representing an arbitrary but unknown function
annotated with the name r. So after the first input we get the configuration

〈H1 ‖K, s, r ‖ ·〉� inp c(y). dec ι1 as {|z |}y in fork z(n)
where H1 = H0, (ι1 �→{|♦r |}s). The key s and annotation r are freshly generated
by the observer and are added to the knowledge.

After the key s is passed to the process by the next input we get

〈H1 ‖K, s, r ‖ ·〉� dec ι1 as {|z |}sin fork z(n)
The process can now use the key s to decrypt the message indexed by ι1. How-
ever, in order to keep the process independent of the actual observer interrogat-
ing it (i.e. avoid the propagation of observer-generated non-base values in the
process), our operational semantics will ensure that the successful decryption of
pattern ι1 will actually generate the process pattern ι1.decrs, and we obtain the
configuration

〈H1 ‖K, s, r ‖ ·〉� fork (ι1.decrs)(n)

The pattern ι1.decrs gives to the process access to the “function” ♦r in the
history H1. However, since this is purely symbolic its application to n cannot
lead to any real computation; as we will see, this symbolic application is recorded
by the LTS. ��
Well-formed histories map abstract names to values of the same type. Moreover,
indexed input values contain only observer patterns and indexed output values
contain only process patterns, and all references to abstract names are to the
left of each binding.

if (ι�→V) ∈ H then fan(V) ⊂ OAName
if (κ �→V) ∈ H then fan(V) ⊂ IAName
if H,α�→V , H ′ then fan(V) ⊆ dom(H)

Given a well-formed historyH and a pattern π we define the partial dereferencing
operation HK(V), relative to the knowledge K:

HK(V) = V if V 
∈ Pattern
HK(α) = V if (α�→V ′) ∈ H and HK(V ′) = V
HK(π.decrs) = V if HK(π) = {|V ′ |}s, HK(V ′) = V , and s ∈ K
HK(π.i) = HK(Vi) if HK(π) = (V ′1,V ′2) and HK(V ′i) = Vi

We write H(V) when only the first two rules are used and H∗(V) when the
knowledge contains all names.

The closure of the observers knowledge K under decryption of messages in
the history H is given by the construction K�

H .
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(ζ, H ′, K′) ∈ inpH,K,I(T ) c ∈ K

〈H ‖K ‖ I〉 � inp c(x:T ).P c?ζ−−→ 〈H,H ′ ‖K, K′ ‖ I〉 � P{ζ/x}
Tin

(ζ, H ′, K′) ∈ outp (V:T ) I ′ = I\(K, K′)�

H,H′ c ∈ K

〈H ‖K ‖ I〉 � outp c(V:T ).P c!ζ−−→ 〈H,H ′ ‖ (K, K′)�

H,H′ ‖ I ′〉 � P
Tout

〈H ‖K, I ‖ ·〉 � P c!ζ−−→ 〈H, H ′ ‖K′ ‖ ·〉 � P ′

〈H ‖K, I ‖ ·〉 � Q c?ζfr−−−→ 〈H ′′ ‖K′′ ‖ ·〉 � Q′ ζfr �∈ fan(Q)

〈H ‖K ‖ I〉� P | Q τ−→ 〈H ‖K ‖ I〉 � P ′ | Q′{H ′(ζ)/ζfr}
Tcomm

HK(ψ) = λrx.Q
〈H ‖K ‖ I〉 � P app(ψ,r,n)−−−−−−→ 〈H ‖K ‖ I〉 � P | Q{n/x}

Tapp-Obs

HK∪I(φ) = ♦r I ′ = I\(K, n)�
H

〈H ‖K ‖ I〉 � fork φ(n).P sig(r,n)−−−−−→ 〈H ‖ (K, n)�
H ‖ I ′〉 � P

Tapp-♦

HK∪I(V) = λrx.P
〈H ‖K ‖ I〉 � forkV(n). Q τ−→ 〈H ‖K ‖ I〉 � P{n/x} | Q

Tapp-λ

Fig. 2. Main LTS rules (omitting symmetric rules)

Definition 3.3 (Knowledge closure). n∈K�
H if n∈K or ∃ψ.H(K�

H)(ψ)=n.

In the rest of this paper will only consider well-formed configurations, and we
will use C to range over them.

Definition 3.4. 〈H ‖K ‖ I〉� P is well-formed when:

– H is well-formed, and K is closed (K�
H ⊆ K)

– Observer values use only K: ∀(ι�→V) ∈ H. fn(V) ⊆ K.
– Private and global names are distinct: K ∩ I = ∅.
– Closed: fv(codom(H),P) = ∅, fn(codom(H),P) ⊆ K ∪ I, and

fan(codom(H), P ) ⊆ dom(H).
– Well-annotated: if λrx.P is in the configuration then r ∈ I; if λrx.P ′ is also

in the configuration then P = P ′; if ♦r in the codomain of H then r ∈ K.

3.2 Transitions

Our LTS defines labelled transitions between the configurations, briefly discussed
informally in the examples of the previous section. The main transitions of
the LTS are shown in Figure 2, subject to the well-formedness conditions for
configurations.
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Rule Tout describes an output on channel c, labelled by c!ζ. The channel
name c must be in the knowledge of the observer and the effect of the action on
the configuration is calculated using the auxiliary relation outp(V : T ):

(n, ·, {n}) ∈ outp(n : Nm) (κ, (κ �→V), ∅) ∈ outp(V : T ) if T 
= Nm

Thus, if the output value V is a name it is added directly to the observers
knowledge; otherwise it is added to the history H via a new index. In both cases
the output transition may allow the observer to discover previously private names
known only to the process, by decrypting the current and previous messages.
This knowledge extension of the observer is taken into account by the closure of
the environment’s knowledge ( )�H .

Rule Tin describes an input transition, labelled by c?ζ; as for the output rule,
the channel name c must be in the knowledge of the observer. The input value
of type T is provided by the set inpH,K,I(T ) as a tuple of an abstract or actual
name ζ, a history extension H ′, and a knowledge extension K ′:

(n, ·, {n}) ∈ inpH,K,I(Nm) if n 
∈ I
(ι, (ι�→♦r), {r}) ∈ inpH,K,I(Pr)
(ι, (ι�→(H1(ζ1), H2(ζ2))), (K1,K2))

∈ inpH,K,I(T1 × T2) if (ζi, Hi,Ki)∈ inpH,K,I(Ti)
(ι, (ι�→{|H1(ζ) |}s), (K1,K2))∈ inpH,K,I(Enc(T )) if (ζ,H1,K1)∈ inpH,K,I(T )

and (s, ·,K2)∈ inpH,K,I(Nm)
(ι, (ι�→ψ), ∅) ∈ inpH,K,I(T ) if �HK(ψ) : T 
= Nm

At type Nm, the input value is a name disjoint from the private names of the
process I that can be either in K or fresh. At type Pr, the input can be the
symbol ♦r and r is added in the knowledge K. The cases for T1×T2 and Enc(T )
proceed by induction on the type, returning a singleton history extension and
the union of the knowledge extension. At any non-base type, an output pattern
can be used to reference a value that was previously sent to the observer.

Communication is achieved by rule Tcomm. Here, one of the processes inputs
a fresh (actual or abstract) name, which is replaced by the value output by the
other and may be indexed in the history. This is a τ -transition in which the
observer does not participate; therefore the history H and knowledge K remain
unchanged.

At any point in time the observer may choose to apply to a name n one of the
abstractions reachable by an observer pattern ψ using keys from the knowledge
K (Tapp-Obs). Intuitively this means that the abstraction in question λrx.Q
was previously sent by the process to the observer, perhaps as the contents of an
encrypted message, but which can be now decrypted with the current knowledge
K. The resulting transition, labelled app(ψ, r, n), causes the application to run
in parallel with the observed process.

Tapp-♦ encodes the situation where the process applies an unknown abstrac-
tion that was created by the observer; such abstractions are only reachable by
the process via a process pattern φ that uses keys from K ∪ I. The effect of this
rule is merely a signal sig(r, n) to the observer containing the annotation of the
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Tdecr-S

H � V.decrs � V ′

〈H ‖K ‖ I〉 � decrV as {|x |}s inP elseQ
τ−→ 〈H ‖K ‖ I〉� P{V ′/x}

Tdecr-F

HK∪I(V) = {|V ′ |}l s �= l

〈H ‖K ‖ I〉 � decrV as {|x |}s inP elseQ
τ−→ 〈H ‖K ‖ I〉 � Q

Tcond-T

H � equal(V1,V2)

〈H ‖K ‖ I〉 � ifV1 =V2 thenP elseQ
τ−→ 〈H ‖K ‖ I〉� P

Tcond-F

H � ¬equal(V1,V2)

〈H ‖K ‖ I〉 � ifV1 =V2 thenP elseQ
τ−→ 〈H ‖K ‖ I〉 � Q

Tmatch

H � V.1� V1 H � V.2 � V2

〈H ‖K ‖ I〉 � matchV as (x1, x2) inP
τ−→ 〈H ‖K ‖ I〉� P{V1/x1,V2/x2}

Tdef-λ
r �∈ I ∪K

〈H ‖K ‖ I〉 � let x=λy.P inQ
τ−→ 〈H ‖K ‖ I, r〉 � Q{λry.P/x}

Tpar-L

〈H ‖K ‖ I〉 � P μ−→ 〈H ′ ‖K′ ‖ I ′〉 � P ′

〈H ‖K ‖ I〉 � P | Q
μ−→ 〈H ′ ‖K′ ‖ I ′〉 � P ′ | Q

Tnu

a �∈ I ∪K

〈H ‖K ‖ I〉 � νa.P τ−→ 〈H ‖K ‖ I, a〉 � P

Fig. 3. More LTS rules (omitting symmetric rules)

abstraction that was applied and the argument given. The resulting process is
just the continuation of the application. As we will see, this transition is sufficient
to reason about applications of input values and can be seen as a form of trigger
semantics [19,20,14]. The process can also apply a process-generated abstraction,
which is a τ -step in the LTS (Tapp-λ) since the application is unobservable.

The rest of the LTS rules are shown in Figure 3 and encode silent transitions
and a congruence rule for parallel composition (Tpar-L). Rules Tdecr-S and
Tdecr-F reduce a successful and an unsuccessful decryption using the following
evaluation predicate:

H,K � {|V |}s.decrs � V
H,K � (V1,V2).i� Vi
H,K � φ.op� φ.op if HK(φ.op) = V 
= n
H,K � φ.op� n if HK(φ.op) = n

The important point in the rule Tdecr-S is that if the encrypted message V is
a process pattern, that refers to some data in the history H , then the successful
decryption returns not the actual contents of the message but rather another
process pattern with which the contents can be extracted from the history.

Rule Tmatch reduces the decomposition of a pair using the same evaluation
predicate, while rules Tcond-T and Tcond-F reduce conditionals using a stan-
dard equality predicate that dereferences all patterns:
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H � equal(n, n)
H � equal(♦r,♦r)
H � equal(λrx.P , λrx.Q)
H � equal({|V |}s, {|V ′ |}s) if H � equal(V ,V ′)
H � equal((V1,V2), (V ′1,V ′2)) if H � equal(V1,V ′1) and H � equal(V2,V ′2)
H � equal(π,V ′) if H � equal(H∗(π),V ′)
H � equal(V , π) if H � equal(V , H∗(π))

Bound names in the process are promoted to actual names at the level of the
configuration by a τ -move (Tnu) that simplifies the handling of extrusion.

We write
μ
=⇒ to mean the reflexive, transitive closure of τ−→, if μ = τ , and

τ=⇒ μ−→ τ=⇒ otherwise. We call t=⇒ a weak trace of C if it is a sequence of non-τ
actions t = μ1 . . . μn and for some C′, C τ=⇒ μ1−→ τ=⇒ . . . τ=⇒ μn−−→ τ=⇒ C′.

The following propositions show that silent transitions do not change the
history and knowledge of a configuration, weakly correspond to reduction steps
of HOspi, and are invariant to transfer of knowledge between the process and
the environment.

Proposition 3.5. If 〈H1 ‖K1 ‖ I1〉� P τ−→ 〈H2 ‖K2 ‖ I2〉�Q′ then H1 = H2
and K1 = K2.

Proposition 3.6. If P → Q then there exist ã, c̃, Q′, such that fn(P ) ⊆ c̃,
Q ≡ νã.Q′ and 〈· ‖ c̃ ‖ ·〉� P τ−→∗ 〈· ‖ c̃ ‖ ã〉�Q′.

Proposition 3.7. If 〈· ‖ c̃ ‖ ã〉� P τ−→ 〈· ‖ c̃ ‖ b̃〉�Q then νã. P →∗ νb̃. Q.

Proposition 3.8 (Knowledge Transfer)

〈H1 ‖K1 ‖ I1, b〉� P τ−→ 〈H2 ‖K2 ‖ I2, b〉�Q iff
〈H1 ‖K1, b ‖ I1〉� P τ−→ 〈H2 ‖K2, b ‖ I2〉�Q

Finally, private names can be renamed to fresh names without affecting the
transitions of the configuration.

Lemma 3.9. If 〈H ‖K ‖ I, a〉�P μ−→ 〈H ′ ‖K ′ ‖ I ′, a〉�Q and b 
∈ I ′ ∪K ′ then

〈H{b/a} ‖K ‖ I, b〉� P{b/a} μ{b/a}−−−−→ 〈H ′{b/a} ‖K ′ ‖ I ′, b〉�Q{b/a}.

4 History Equivalence

Given a history H of a configuration C, an observer with knowledge K can make
a number of tests on the values previously output by C and bound to output
abstract names in H : it can attempt to decode encrypted values with keys from
K, and compare values reachable with keys from K with other constructed
values. The following equivalence states when two histories are indistinguishable
by these tests for a given knowledge K.
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Definition 4.1 (History Equivalence (�)). Two histories H, H ′ are equiv-
alent under the knowledge K, and we write K �H � H ′, if

dom(H) = dom(H ′) (ι�→V) ∈ H iff (ι�→V) ∈ H ′
∀ψ,V . fn(ψ,V) ⊆ K ∧ fan(ψ,V) ⊆ dom(H) ∩ OAName

=⇒ (H � equal(ψ,V) iff H ′ � equal(ψ,V))

Intuitively the first two conditions of the above definition require that equivalent
histories describe the same sequence of inputs and outputs, and the observer-
generated inputs are equal. The final condition compares values in the history,
reachable by an observer pattern ψ using keys from K, with any other value
that the observer can construct. These tests subsume the decryption tests of the
observer.

Example 4.2. Consider an observer with knowledge K, where k1, k2 
∈ K, and
the histories H = (κ1 �→{|a |}k1) and H ′ = (κ1 �→{|a |}k2). The observer can test
whether the message in each of the histories is encrypted with a known key k ∈ K
by attempting to decrypt it using k. This test, which fails in both histories, is
encoded in the definition of (�) by the equality: equal(κ1, {|κ1.decrk |}k).

In fact, under the given knowledge K, the two histories are indistinguish-
able by an observer and K � H � H ′. If, after an output of the configuration,
the knowledge K is extended with the key k1 then the observer can distin-
guish the two histories by successfully decrypting the message in H and fail-
ing to do so in H ′. The equality that distinguishes the histories in this case is
equal(κ1, {|κ1.decrk1 |}k1), which is true under H and false under H ′. ��
Example 4.3. Consider a, k2 ∈ K, k1 
∈ K, and the histories H = (κ1 �→{|a |}k1)
and H ′ = (κ1 �→{|b |}k1). The observer cannot distinguish the two histories as
any decryption test will fail for both. If after a transition the histories become

H = (κ1 �→{|a |}k1, κ2 �→{|k1 |}k2) H ′ = (κ1 �→{|b |}k1, κ2 �→{|k1 |}k2)
the observer can decrypt the second message and increase the knowledgeK with
the key k1. With the new knowledge, the decryption of the first message reveals
that its content is different in H and H ′. This is captured in the definition of
(�) by the following equality that holds only under H : equal(κ1.decrk1 , a). ��
Example 4.4. The observer can also test two outputs of the configuration for
equality. Thus, even with an empty knowledge, the histories

H = (κ1 �→{|a |}k, κ2 �→{|a |}k) H ′ = (κ1 �→{|a |}k, κ2 �→{|b |}k)
are distinguished. This is captured by the equality equal(κ1, κ2). ��
The necessary equality tests to decideK�H � H ′ are finite. If we ignore function
types, we can easily verify this statement by considering that the length of a
history, the type of each position in the history, and the values of each type
using a finite knowledge K are finite. For function types, we observe that the
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histories of well-formed configurations (Definition 3.4) contain functions λrx.P
with r in the private names of the configuration, and therefore r 
∈ K. This means
that in a well-formed configuration any equality H�equal(ψ, λrx.P) with r ∈ K
is false—these tests are unnecessary.

However, (�) tests functions for equality via the use of patterns and ♦-values.

Example 4.5. Consider the knowledge K = {r} and the histories H = (ι�→♦r,
κ �→ι) and H ′ = (ι�→♦r, κ �→λr′x. fork ι(x)). The first history describes a process
that outputs the same function that it received as an input, while the second its
eta-expansion. These histories are distinguishable by an observer using the test
equal(κ,♦r), which is true under H but not under H ′. ��
The finite-test equivalence (�) is not too permissive as it implies that the equiv-
alence theory of values under related histories is the same. Moreover, we extend
history equivalence to configurations.

Proposition 4.6. If K �H � H ′ then for all values V1,V2 with fn(V1,V2) ⊆ K
and fan(V1,V2) ⊆ dom(H): H � equal(V1,V2) iff H ′ � equal(V1,V2).

Definition 4.7. 〈H ‖K ‖ I〉�P � 〈H ′ ‖K ′ ‖ I ′〉�Q if K = K ′ ∧K �H � H ′.

5 Set Simulations

Here we give a coinductive characterisation of safety preservation for HOspi
based on set simulations. This gives a convenient, and complete, proof method-
ology which, moreover, is amenable to the usual up-to techniques [22]. Indeed
our formulation is already up-to τ -moves. In this extended abstract we give a
sketch of the characterisation. A set simulation is a relation between configura-
tions and sets of configurations, ranged over by S. For the definition we need to
extend LTS transitions to sets.

Definition 5.1 (Set Transition). If S is a set of configurations: S μ−→ S′ when
S′ is non-empty and S′ ⊆ {C′ | ∃C ∈ S. C μ−→ C′}; S μ

=⇒ S′ when S′ is non-empty
and S′ ⊆ {C′ | ∃C ∈ S. C μ

=⇒ C′}.
Definition 5.2 (Set Simulation up-to τ). A relation X between configura-
tions and sets of configurations is a set simulation up-to τ if for all C X S:

1. there exists C′ ∈ S such that C � C′
2. if C μ

=⇒ C′ and μ 
= τ then there exists S′ such that S μ
=⇒ S′ and C′ τ=⇒X S′.

The definition for a set simulation up-to τ is monotone; therefore the largest set
simulation up-to τ exists and we write it as (�). Set similarity up-to τ is sound
and complete with respect to the safety preorder.

Theorem 5.3 (Soundness and Completeness of (�)). P �∼safe Q iff
〈· ‖K ‖ ·〉�Q � {〈· ‖K ‖ ·〉� P}.
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The main intuition of set simulations is that they are insensitive to the branching
behaviour of processes.

Example 5.4. Consider the following example:

P = outpa(). (outp b(). � + outp c(). �)
Q = outpa(). outp b(). � + outpa(). outp c(). �

These two terms are not bisimilar because when P takes an a-move, Q would
need to match it, committing to one of the two branches. From a safety per-
spective, however, the two terms are equivalent since there is no safety test that
distinguishes them. We can construct a set simulation that relates the two pos-
sible states of Q with a single state of P , which effectively delays the choice of
a particular branch of Q; here we let C(R) = 〈· ‖ {a, b, c} ‖ ·〉�R:

{(C(P ), {C(Q)}), (C(outp b(). � + outp c(). �), {C(outp b(). �), C(outp c(). �)})}
��

6 Examples

6.1 Messaging Servers

As our first example we consider a specification of a messaging service with
load balancing, which allows its clients to send a message once (using the state
channel st), and distributes clients to a number of transmission servers, each
listening to a separate channel in the set S. For simplicity the load balancing
algorithm is abstracted away by an internal choice operator, denoted by Σ:

MServerreq,res,p,S
= νsk , st . inp req(x). dec x as {|yck |}p in∑

s∈S

(
outp res({|λrx. inp st(). outp s({|x |}sk ). � |}yck). outp st(). �

)
Here the choice of server is decided before the client receives a response from the
server. However, an implementation of this service may delegate this decision to
the code sent to the client:

MServer′req,res,p,S
= νsk , st . inp req(x). dec x as {|yck |}p in

outp res({|λrx. inp st().
∑
s∈S

outp s({|x |}sk ). � |}yck). outp st(). �

It is not possible to show that the safety properties of the specification MSys =
νp. (Client | MServer) are preserved by the implementation MSys′ = νp. (Client |
MServer′) in a behavioural theory based on bisimulations. This is because the two
systems are not bisimilar: the choice of the messaging channel from S happens
before the message on res in MSys, and after that message in MSys′. However,
using our linear theory of safety we can prove this equivalence. The interesting
direction is proving MSys′ �∼safe MSys.
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We do this proof by reasoning compositionally. By Proposition 2.3, it suffices
to show that MServer′ �∼safe MServer. We consider the following continuations of
MServer and MServer′.

Srv1 = inp req(x). .. Srv′1 = inp req(x). ..
Srv2(ck , s)= outp res({|F(s) |}ck ). .. Srv′2(ck )= outp res({|F′ |}ck). ..
Srv3 = outp st(). � Srv′3 = outp st(). �
Srv4(s) = outp s({|x |}sk ). � Srv′4(s) = outp s({|x |}sk). �
F(s) = λrx. inp st().

outp s({|x |}sk). �
F′ = λrx. inp st().∑

s∈S
outp s({|x |}sk). �

We let K0 = {req, res , p}∪S and I0 = {sk , st} and the configurations of MServer:

C1 = 〈· ‖K0 ‖ I0〉� Srv1

C2(H,K, ck , s) = 〈H ‖K0 �K, ck ‖ I0, r〉 � Srv2(ck , s)
C3(H,K) = 〈H ‖K0 �K ‖ I0, r〉� Srv3

C4(H,K,R, s) = 〈H ‖K0 �K ‖ I0, r〉� Srv4(s) | R
C5(H,K, I,R) = 〈H ‖K0 �K ‖ I〉�R

and the corresponding configurations of MServer′ obtained by replacing Srv1 to
Srv4 by Srv′1 to Srv′4, respectively.

As shown in Figure 4, the choice of the messaging channel in MServer happens
before the response of the server, and after that in MServer′. Hence, in our set
simulation we relate each configuration C′2(H ′,K, ck) and C′3(H ′,K), where the
value {|F′ |}ck has been indexed by some κ in H ′, with the set S2(H ′,K, ck) and
S3(H ′,K, κ, ck), respectively:

S2(H,K, ck) = {C2(H,K, ck, s) | s ∈ S}
S3(H ′,K, κ, ck) = {C3(H,K, ck, s) | s ∈ S, H(κ) = {|F(s) |}ck ,

(∀α 
= κ.H(α) = H ′(α))}
We construct the relation of well-formed configurations:

X = {(〈· ‖K0 ‖ ·〉�MServer, {〈· ‖K0 ‖ ·〉�MServer′}), (C′1, {C1})}
∪ {(C′2(H,K, ck),S2(H,K, ck)) | ∃ι1. H(ι1) = {|ck |}p}
∪ {(C′3(H ′,K),S3(H ′,K, κ, ck)}) | H ′(κ) = {|F′ |}ck , ck ∈ K}
∪ {(C′4(H ′,K,R), {C4(H,K,R)}) | R deadlocked and Φ(H,H ′)}
∪ {(C′5(H ′,K, I ′, R), {C5(H,K, I,R)}) | R deadlocked and

r ∈ I, r ∈ I ′ and Φ(H,H ′)}
where Φ(H,H ′) def= ∃κ. H(κ) = {|F(s) |}ck and

H ′(κ) = {|F′ |}ck and (∀α 
= κ.H(α) = H ′(α))

We prove that X is a set simulation up-to τ by considering the possible weak
transitions from these configurations, the main of which are shown in Figure 4,
and by showing that configurations related in X are also related in (�). The latter
is easy since related histories contain either identical values, or abstractions with
the same annotations (F(s) and F′).
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C1

...

C2

C2

...
...

...

C3

C3

C4(s1)

C4(sn)

C5

C5

req?ι1

req?ι1

res !κ1

res !κ1

app((κ1.decrp), r, n)

app((κ1.decrp), r, n)

s1!κ2

sn!κ2

C′1 C′2 C′3
...

C′4

C′4

...

C′5

C′5

req?ι1 res !κ1

app((κ1.decrp), r, n)

app((κ1.decrp), r, n)

s1!κ2

sn!κ2

Fig. 4. Main transitions of MServer and MServer′

6.2 Example 2: Conference Servers

We now prove that the conference system Sys2, shown in the introduction, pre-
serves the safety properties of Sys1. Here the function annotations are not im-
portant and we omit them. We also assume that functions can be applied to
non-base values, which can be encoded by:

fork (λx. P )(V ) def= νc. fork (λy. inp y(x). P )(c). outp c(V ). �
We prove that Sys1 �∼safe Sys2 by using Theorem 5.3 and giving a set simulation
X such that Sys2 X {Sys1}. First we consider the dummy process D and the
continuations of Conf and Rev2:

D1 = μX. inpdel12(x). X D2 = μX. outpdel12({|s, λ. � |}s). X
D = D1 | νs.D2 Conf1 = outpok(r). �
Rev21 = outp subm({|r,Fprf 2

{Fdel12/fdel12}|}sp). �
Rev22(ι) = outp subm({|r,Fprf 2

{(ι.decrsrev1 .2)/fdel12}|}sp). �
We let K0 = {subm, del12, r} and I0 = {sp , srev1 , s}, and consider the families
of configurations for Sys1:

C1 = 〈· ‖K0 ‖ I0〉� Conf | Rev1 | D1 | D2
C2(H,K) = 〈H ‖K0 �K ‖ I0〉� Conf | D1 | D2
C3(H,K) = 〈H ‖K0 �K ‖ I0〉� Conf1 | D1 | D2
C4(H,K) = 〈H ‖K0 �K ‖ I0〉� D1 | D2
C5(H,K) = 〈H ‖K0 �K ‖ I0〉� Rev1 | D1 | D2

We also let I ′0 = {sp , srev1 , srev2}, and consider for Sys2:
C′1 = 〈· ‖K0 ‖ I ′0〉� Conf | Rev′1 | Rev2
C′2(H,K) = 〈H ‖K0 �K ‖ I ′0〉� Conf | Rev2
C′31(H,K) = 〈H ‖K0 �K ‖ I ′0〉� Conf | Rev21
C′32(H,K, ι) = 〈H ‖K0 �K ‖ I ′0〉� Conf | Rev22(ι)
C′4(H,K) = 〈H ‖K0 �K ‖ I ′0〉� Conf
C′5(H,K) = 〈H ‖K0 �K ‖ I ′0〉� Conf1
C′6(H,K,R) = 〈H ‖K0 �K ‖ I ′0〉�R

Here R will represent the process in states that do not lead to an output on ok .
The proof is completed by showing that the following relation is a set simulation
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up-to τ . The proof is similar to the one in the previous example, but due to
space constrains here we give only the relation.

X = {(〈· ‖K0 ‖ ·〉� Sys2, {〈· ‖K0 ‖ ·〉� Sys1}), (C′1, {C1}),
∪ {(C′2(H ′,K), {C1(H,K)}) | ∃κ. Φ1(H,H ′, κ)}
∪ {(C′31(H,K), {C1(H,K)})}
∪ {(C′32(H ′,K, ι), {C1(H,K)}) | ∃ι ∈ dom(H). Φ1(H,H ′, κ) ∧H ′(ι) = κ}
∪ {(C′4(H ′,K), {C2(H,K)}) | Φ2(H,H ′)}
∪ {(C′5(H ′,K), {C3(H,K)}) | H = H ′ ∨ Φ1(H,H ′) ∨ Φ2(H,H ′)}
∪ {(C′6(H ′,K, �), {C4(H,K)}) | H0 = H ′0 ∨ Φ1(H0, H

′
0) ∨ Φ2(H0, H

′
0)}

∪ Y
where

Φ1(H,H ′, κ)
def= ∃H0. H=H0, (κ �→{|s, λ. � |}s) ∧H ′=H0, (κ �→{|sp ,Fdel12 |}srev2

)

Φ2(H,H ′)
def= ∃H0, H

′
0, F. H=H0, (κ �→{|r,Fprf 1

|}sp) ∧H ′= H′0, (κ �→{|r, F |}sp)
∧ (

(H0=H ′0 ∧ F=Fprf 2
{Fdel12/fdel12}) ∨

(∃ι, κ, . Φ1(H0, H
′
0, κ) ∧H ′0(ι) = κ ∧

F =Fprf 2
{(ι.decrsrev2 .2)/fdel12})

)
and Y relates the configurations that do not lead to a signal on ok :

Y = {(C′6(H,K, (Conf | Rev′1)), {C2(H,K)})}
∪ {(C′6(H ′,K,Conf), {C2(H,K)}) | ∃κ. Φ1(H,H ′, κ)}
∪ {(C′6(H,K,R), {C4(H,K)}) | R ∈ {Rev′1, (Rev′1 | Rev2),Rev21}}
∪ {(C′6(H ′,K,Rev2), {C4(H,K)}) | ∃κ. Φ1(H,H ′, κ)}
∪ {(C′6(H ′,K,Rev22(ι)), {C4(H,K)}) | ∃κ. Φ1(H,H ′, κ) ∧H ′(ι) = κ}

7 Related and Future Work

We have proposed a behavioural testing theory for safe equivalence for a higher-
order version of the spi-calculus. We have given a characterisation of safety
preservation in terms of novel set simulations, which provides a sound and com-
plete proof methodology for process equivalence; the usefulness of the method-
ology has been demonstrated via simple illustrative examples. The LTS in our
proof methodology makes extensive use of the current knowledge of observers, or
adversaries, a generalisation of similar ideas for the first-order spi-calculus [2,4],
and environmental bisimulations [23,25].

Sato and Sumii [25] defined a higher-order version of the applied π-calculus
called the Applied HOπ calculus, developed a bisimulation method which is sound
and complete with respect to reduction barbed congruence, and gave bisimula-
tion proofs for secrecy properties of example higher-order systems. This work
uses a strong assumption about the power of attackers: higher-order terms are
sent over channels as decomposable syntax objects. The resulting proof method-
ology is significantly different from ours, employing environmental bisimulations
and sophisticated up-to-context techniques [23]. However, bisimulations do not
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provide a complete proof technique for linear-time equivalences, such as safe
equivalence. We believe that an LTS-based theory can be developed for safe
equivalence for Applied HOπ, but that would not be first-order as for HOspi,
where a weak assumption about attackers is used. We leave this to future work.

Sangiorgi has given a translation of HOπ with finite types to the π-calculus
[20,19] based on triggers, and a full-abstraction proof. This translation, gener-
ating a fresh trigger at every output, would be unsound for HOspi where trans-
mitted functions can be tested for equality. An adaptation of the translation
where a trigger is generated at every function definition [24, Sec. 13.2] would be
sound but incomplete, at least without the use of a complex type system in the
target language [24, pg. 402]. To the extent of our knowledge the details of such
a translation have not been published. However, our LTS directly encodes the
intuitions of the translation, avoiding the issues with full-abstraction.

Jeffrey and Rathke [14] used symbolic triggers, an encoding of triggers as ex-
tended processes in an LTS, to prove that bisimilarity in their LTS characterises
reduction barbed congruence in the presence of recursive types, where Sangiorgi’s
fully-abstract translation does not apply. Our LTS takes this idea a step further
by encoding a notion of triggers within the interaction history recorded in the
configurations. This allows us to define a first-order theory for HOspi, a more
intricate language that HOπ. Also we study a linear-time semantic equivalence,
via set simulations, rather than reduction barbed congruence and bisimulation.

We believe that the approach to higher-order semantics we follow here, using
an augmented LTS of configurations, is robust. In addition to safety for HOspi,
we have followed this approach to characterise reduction barbed congruence for
HOπ [15], and we believe that other equivalences, such as must-equivalence [12],
can be similarly treated. Different cryptographic primitives, such as those used
in the applied π-calculus, can also be easily accommodated. We believe that
this approach can be applied to higher-order cryptographic languages with more
complex type-systems such as the language in [17].

Symbolic techniques that reduce the quantification over first-order messages
have been developed for the spi- and applied π-calculus [8,5,9]. Our symbolic
treatment addresses the quantification over higher-order, rather than first-order,
values. The use of simple types keeps the quantification over first-order messages
finite up to fresh names.

Finally, we intend to investigate possible connections between our operational
notion of histories and game semantics models for HOπ [16].

Acknowledgements. We are thankful to Eijiro Sumii and the anonymous ref-
erees for useful comments on this work.
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A New Method for Dependent Parsing
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Abstract. Dependent grammars extend context-free grammars by al-
lowing semantic values to be bound to variables and used to constrain
parsing. Dependent grammars can cleanly specify common features that
cannot be handled by context-free grammars, such as length fields in
data formats and significant indentation in programming languages. Few
parser generators support dependent parsing, however. To address this
shortcoming, we have developed a new method for implementing de-
pendent parsers by extending existing parsing algorithms. Our method
proposes a point-free language of dependent grammars, which we be-
lieve closely corresponds to existing context-free parsing algorithms, and
gives a novel transformation from conventional dependent grammars to
point-free ones.

To validate our technique, we have specified the semantics of both
source and target dependent grammar languages, and proven our trans-
formation sound and complete with respect to those semantics. Further-
more, we have empirically validated the suitability of our point-free lan-
guage by adapting four parsing engines to support it: an Earley parsing
engine; a GLR parsing engine; memoizing, arrow-style parser combina-
tors; and PEG parser combinators.

1 Introduction

Context-free grammars are widely used in data format and programming lan-
guage specifications and are the foundation of many parsing tools. Unfortunately,
they are not powerful enough to fully specify the syntax of most data formats and
programming languages—these require context-sensitive features. For example,
XML has balanced tags; many data formats have unbounded length fields; C and
C++ have typedef names; Python, Haskell, and many markup languages have
significant indentation; Javascript has optional line-ending semicolons; Standard
ML has user-defined infix operators; and Ruby and command-line shells have
“here documents.”

Specifications that use grammars, therefore, augment them with prose de-
scribing the context-sensitive features of the syntax. This half-formal approach
is not ideal. Often, it results in an ambiguous or incomplete specification, which
leads to incompatible implementations. This problem is so severe that some
communities have abandoned grammars altogether, e.g., the syntax of HTML5
is specified by a state machine given in pseudo-code [7].

Moreover, a specification given as a grammar plus prose cannot serve as the
input to a parser generator or automated analysis. In the best case, the im-
plementor will be able to figure out a “lexer hack” that hides context-sensitive
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features away from the grammar, which can then be processed separately by a
parser generator. However, such tricks are hard to discover, and the result is not
easy to understand, analyze, or replicate—witness the fact that there are many
parser generators producing parsers written in Haskell or Python, but very few
of them generate parsers of Haskell or Python.

In previous work, we used dependent grammars to cleanly specify context-
sensitive syntax [10]. Dependent grammars extend context-free grammars by
allowing semantic values to be bound to variables and used to guide subsequent
parsing. For example, the value of a length field can be used to constrain the
length of a following sequence, or the indentation of a line can be used to control
the block structure of a Python program or Cisco IOS configuration section. We
found dependent grammars to be an excellent formalism for specifying the kinds
of context-sensitivity required in practical examples.

We also implemented dependent parsing, by extending Earley’s algorithm for
context-free parsing with semantic values, environments, and parsing constraints.
This was more difficult. In particular, the machinery of environments had to be
propagated throughout every part of the algorithm and correctness proof. This
was delicate work, considering that there is a history of erroneous algorithms
in the area (for example, Earley’s algorithm for parse forest reconstruction did
not account for all parse trees [17], and Tomita’s original GLR algorithm fails
to terminate on grammars with ε-rules and hidden left recursion [18]).

Dozens of other context-free parsing algorithms have been developed over
many years, and we would like to adapt them for dependent parsing. More-
over, we would like to take advantage of existing implementations of these al-
gorithms, because some of them have been finely tuned and represent many
man-years of work. It is worth mentioning that, often, these sophisticated pars-
ing engines do not even operate directly on grammars—instead, grammars are
compiled into lower-level representations (for example, automatons), which are
then “executed” by the parsing engine. Adding dependency to these engines by
our previous method would involve complex changes to both the front-end and
back-end, a prohibitive amount of work.

Therefore, we have developed a much simpler method of extending existing
parsing algorithms to perform dependent parsing. Its key characteristics are:

– We introduce a new grammar intermediate language that supports depen-
dent parsing without requiring environment machinery in the parsing engine.

– We compile a user-level dependent grammar into the intermediate language
by a series of source-to-source transformations which move all environment
manipulations into semantic actions of the intermediate language.

While there is a wealth of prior work on compiling away environment manip-
ulations, from combinatory algebras to more recent work like Paterson’s arrow
notation [14], our work is distinguished by being compatible with a wide variety
of existing parsing algorithms and engines (see Section 8 for further discussion).
To demonstrate this compatibility, we have built four back ends for our depen-
dent parser generator, each based on a different context-free parsing algorithm.



380 T. Jim and Y. Mandelbaum

Contributions. We show how to use standard programming language and com-
piler techniques to implement parsers for dependent grammars:

– We define the semantics of Gul, a minimal user-level language of dependent
grammars. Gul supports binding semantic values and using them in parse
constraints, as well as standard semantic actions. Gul bindings are lexically
scoped.

– We define the semantics of Gil, a point-free intermediate language of depen-
dent grammars. Gil grammars parse inputs while passing semantic values
from left to right (like an L-attributed grammar with guarded reductions),
and, in our experience, it can be supported by most existing parsing engines
with little difficulty.

– We define a novel source-to-source transformation for splitting a Gul gram-
mar into (1) a Gil grammar and (2) a coroutine for managing binding and
executing semantic actions.

– We have validated our choice of features in Gul by using it to implement
grammars taken from a wide variety of domains.

– We have validated our technique by implementing Gil with a variety of dif-
ferent parsing backends, either through extension or directly on top of native
features. These backends include a scannerless Earley parser, a GLR parser,
arrow-style parser combinators, and PEG parser combinators.

– Finally, we have proven that our translation from Gul to Gil is semantics-
preserving. The paper includes the statement of our central theorem, and
a number of significant supporting lemmas, along with brief summaries of
their proofs.

An extended version of the material in this paper can be found in a companion
technical report [9].

2 Gul, a User-Level Language

Gul is the user-level dependent grammar language that we will use throughout
the paper. Gul is a minimal language that omits many features of our parser
generator, Yakker; however, Yakker itself implements most of these features by
translation to Gul. Most of the features of Gul will be familiar to anyone who
has used a lexer or parser generator. The more unusual aspects are these:

– We support all context free grammars, even ambiguous grammars. We do
not require grammars to avoid left recursion, or be in a restricted class such
as the LALR(1) or LL(k) grammars.

– We include parsing constraints, @when(e), which act to prune possible parses.
– We support foreign parsers with the form @box(e). For example, e could be

a library function for parsing one of the hundreds of existing time and date
formats.

Gul Syntax. We define Gul’s syntax as follows:

G = (A1(x1) = R1), . . .
R = ε | c | (R | R) | (*x=eR) | (x=R R) | {e} | A(e) | @when(e) | @box(e)
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A Gul grammar is a sequence of definitions for nonterminals in terms of right
sides. We use G, A, and R to range over Gul grammars, nonterminals, and right
sides, respectively. Gul right sides are based on regular expressions, including
the empty string ε, terminals c, alternation, and Kleene closure (written as
a prefix ‘*’). The Kleene closure performs a fold over a portion of the input.
The expression e provides an initial value, and right-side R plays the role of a
combining function: x is bound in R’s scope to the previous accumulating value
and R’s result provides the new value. The expression e is taken from some
general-purpose programming language, which we call the target language. The
right side (x=R1 R2) is the concatenation of R1 and R2, where x is bound to
the semantic value of R1 in the scope R2. Semantic actions are written {e}. Gul
nonterminals are defined with formal parameters ranging over semantic values,
and are applied to target-language expressions. Parsing constraints are written
@when(e), and foreign parsers are written @box(e).

Our techniques are not specific to any particular target language, but for the
sake of concreteness we will start by assuming some variant of the untyped,
call-by-value lambda calculus.

Notational Conveniences. In our examples, we will write concrete terminals
in quotes, for example, ‘b’ for the ASCII character lowercase b. We assume that
the target language has a distinguished unit value, written (), as well as booleans
and some notion of sets (used in the semantics of @box(e)). If the parameter
of a nonterminal A is not used in its right side, we omit it, and similarly we
write (R1 R2) for a concatenation which does not require binding. A Kleene-
closure which accumulates the unit value can be written (*R). We may omit
the parentheses in (*R), (*x=eR), (R1 R2), (R1 | R2), and (x=R1 R2) when
this does not cause confusion. We write @pos for a @box that evaluates to the
current input position, without consuming any input.

Gul Semantics. We now discuss the unusual aspects of Gul’s semantics (we
give the complete semantics in the technical report [9]). The semantics is defined
by rules assuming a fixed grammar, G, and a fixed input, D, and they make use
of the target language semantics via a partial evaluation function, eval(E, e),
where E is an environment mapping variables to values.

The rules define judgments of the form 〈E, i〉 R=⇒ 〈v, i′〉, meaning that right
side R evaluates to semantic value v in environment E, starting at input position
i and finishing at position i′. Evaluation can be nondeterministic: we can have
〈E, i〉 R=⇒ 〈v1, i1〉 and 〈E, i〉 R=⇒ 〈v2, i2〉 where v1 
= v2, or i1 
= i2, or both.

These three rules show that we use a standard call-by-value semantics:

eval(E, e) = v

〈E, i〉 {e}
==⇒ 〈v, i〉

〈E, i〉 R1==⇒ 〈v1, i1〉
〈E[x = v1], i1〉 R2==⇒ 〈v2, i2〉
〈E, i〉 (x=R1 R2)

=======⇒ 〈v2, i2〉

eval(E, e) = v, (A(x) = R) ∈ G

〈[x = v], i〉 R=⇒ 〈v1, i1〉
〈E, i〉 A(e)

===⇒ 〈v1, i1〉
A semantic action {e} evaluates to the value of e without consuming input;
a concatenation (x=R1 R2) evaluates R1, binds its value to x, then evaluates
R2; and A(e) evaluates e, binds it to the formal parameter of A, then parses
according to the right side of A.
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The semantics of parsing constraints and foreign parsers are given as follows:

eval(E, e) = true
〈E, i〉 @when(e)

======⇒ 〈(), i〉
〈v, j〉 ∈ eval(E, e(D)(i))
〈E, i〉 @box(e)

=====⇒ 〈v, j〉

The rule for @when(e) states that no progress can be made unless the constraint
e is satisfied (there is no rule for the false case). To evaluate @box(e), we evaluate
e applied to the complete input D and the current input position i. The foreign
parser can be nondeterministic—it may return more than one result 〈v, j〉—but
we require j ≥ i. Note that the expression e can include values bound within
the grammar (e.g., by (x=R1 R2)). Furthermore, a foreign parser is free to
examine the complete input, and not just the portion between i and j. Note that
foreign parsers subsume semantic actions, parsing constraints, terminals, and
the empty string. Similarly, Kleene closure could be encoded using an additional
nonterminal. Howeve, we have chosen to include those forms natively for reasons
discussed at the end of Section 3.

We say that a grammar G accepts input D with value v if 〈·, 0〉 A1==⇒ 〈v, |D|〉,
where A1 is the implicit start symbol of G. While we restrict our definition
to parses which begin with an empty environment, in practice, we expect that
grammars will be written with respect to some distinguished environment Einit,
which may contain bindings for library functions, foreign parsers, etc. We can
simulate such an environment simply by substituting the contents of Einit into
our grammar before parsing.

We give an example Gul grammar in Section 4.2.

3 The Intermediate Language Gil

Gil is a lower-level language that corresponds closely to context-free grammars
extended to support semantic values.

Gil Syntax. We define Gil’s syntax as follows:

g = (A1 = r1), . . .

r = ε | c | (r | r) | (*r) | (r r) | {f} | A(farg, fret) | @when(fpred, fnext) | @box(fbox, fret)

Gil, like Gul, is based on regular expressions over terminals and nonterminals.
To distinguish between Gul and Gil we use g, r, and f to range over Gil gram-
mars, right sides, and target language expressions, instead of Gul’s G, R, and e.
Gil lacks the binding forms of Gul: nonterminals are defined without a formal
parameter, and there is no binding concatenation. Note that in Gil, nontermi-
nals, constraints and foreign parsers take two arguments, whose purpose we will
explain in a moment.

Gil Semantics. We give the full semantics of Gil in the technical report [9],
and note a few key points here in the main text. Gil right sides are semantic-
value transformers—they relate input values to output values—and thus, each
right side takes an implicit value parameter. Semantic actions are the base value
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transformers, and our rule for concatenation shows that Gil threads values from
left to right across parses:

f(v) = v1

〈v, i〉 {f}−−→ 〈v1, i〉
〈v, i〉 r1−→ 〈v1, i1〉, 〈v1, i1〉 r2−→ 〈v2, i2〉
〈v, i〉 (r1r2)−−−−→ 〈v2, i2〉

Here are the rules for parsing constraints, nonterminals, and foreign parsers:

fpred(v)=true
(v′ =fnext(v))
〈v, i〉 @when(fpred ,fnext)−−−−−−−−−−−−→ 〈v′, i〉

farg(v)=v1, (A=r) ∈ g
〈v1, i〉 r−→ 〈v2, i2〉
fret(v)(v2)=v3

〈v, i〉 A(farg,fret)−−−−−−−−→ 〈v3, i2〉

〈v1, i1〉 ∈ fbox(v)(D)(i)
fret(v)(v1)=v2

〈v, i〉 @box(fbox,fret)−−−−−−−−−−→ 〈v2, i1〉
The first argument of a parsing constraint is used to compute a boolean de-
termining whether parsing will continue, while the second is for calculating the
transformed value. Nonterminals and boxes use their first argument to calculate
the argument of the nonterminal or box, and the second to merge the result
value with the original value. For example, if we define

zero = ‘0’ {λv.2× v}, one = ‘1’ {λv.(2 × v) + 1},
then we can calculate the binary value of a sequence of 1s and 0s with

bits = {λv.0} *(zero(λv.v, λv.λv2 .v2) | one(λv.v, λv.λv2.v2)).

Here we use the action {λv.0} to initialize the value to 0. The function λv.v used
in the argument positions for zero and one simply propagates the current value
to those nonterminals. The function λv.λv2.v2 is used on the return, and it sets
the new current value to the value v2 returned from the nonterminal.

Finally, we can calculate a sum with this right side:

bits(λv.(), λv.λv1 .v1) ‘+’ bits(λv1.(), λv1.λv2.v1 + v2).

Here the value returned from the first parse of bits is bound to v1, and the
value from the second parse of bits is bound to v2. The function λv1.λv2.v1 + v2
performs the addition. Notice that there are two occurrences of (λv1), one for
each parse of bits; the semantics of nonterminals ensures that all occurrences of
v1 end up bound to the same value.

From these examples, we can see that the second argument of a nonterminal
acts something like a continuation. Unlike in continuation-passing style, however,
the continuation is not passed to the right side of the nonterminal; it is invoked
by the caller, and not the callee. This is necessary to achieve maximal sharing
to efficiently parse ambiguous grammars, which may require multiple parses
of a single nonterminal at the same input position and with the same input
parameter, but with different continuations.

In Gil, foreign parsers could subsume the empty string, terminals, and parsing
constraints, and Kleene closure could be encoded using an additional nontermi-
nal. We have retained these features because they are either supported natively
by existing context-free parsing engines or could be more efficiently implemented
on top of existing features than the more general @box.
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4 The Coroutine Transformation

In this section, we show how to compile a Gul rule with bindings, parsing con-
straints, and other semantic actions into a Gil rule in which all of the semantic
elements of the Gul rule have been gathered together into one Gil action (value
transformer). This single Gil action is used as a sort of coroutine by the parsing
engine as it processes the input according to the rest of the Gil rule.

4.1 Assumptions on the Target Language

The coroutine is a target language program that we build from the actions in the
original Gul rule. We treat these actions opaquely, in a cut-and-paste fashion;
consequently, we limit our assumptions about the target language and make our
techniques more widely applicable. Nevertheless, to build the coroutine, we will
have to assume that some language features are available. Essentially, we require
the target language to support some features of an untyped call-by-value lambda
calculus, as indicated by the following grammar of expressions:

e = x | (e e) | (λx.e) | (fun f x.e) | () | � | λ C | . . .
C = �.e | (C | C)

We are assuming that we can use target language variables and function applica-
tion, that we have first-class and recursive functions, and we have a distinguished
unit value (). We assume that we can use a countable set of labels, ranged over
by �; for concrete labels, we use underlined integers, like 3. We also make use
of a match-function construct: λ(�1.e1 | · · · | �n.en). Here, we expect that a
match-function is applied to a label �i, and the result of the application is the
corresponding case ei.1 Finally, we permit let expressions which can be desugared
in the standard way.

Note that we have not said that the target language is an untyped lambda
calculus—it is sufficient for these features to be embeddable in the target lan-
guage. In Section 5, we discuss the exact properties that we require of the target
language. When the target language is statically typed, there are additional
considerations, which we discuss in Section 6.

4.2 Coroutines by Example

To illustrate Gul-to-Gil compilation, we use an example adapted from the gram-
mar for the IMAP mail protocol:

literal = ‘{’ x=number ‘}’ p1=@pos *CHAR8 p2=@pos @when(p2 − p1 =x)

An IMAP literal is a number surrounded by braces, followed by a sequence of
characters (CHAR8s). We assume that number is a nonterminal that matches a
1 As a corollary of our correctness proof, we know that we cannot have match failures

in our construction.
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sequence of ASCII digits and returns the equivalent semantic integer as its result.
Recall that @pos is an abbreviation for a foreign parser that matches the empty
string and returns the input position, so that p1=@pos binds p1 to the position
in the input just after the right brace, and p2=@pos binds p2 to a position after
some number of CHAR8s. The parse constraint @when(p2 − p1 = x) matches
the empty string if the predicate (p2 − p1 = x) returns true, and otherwise fails
to match anything.2

We transform this Gul rule into the following Gil rule:

literal = {finit} ‘{’ number(f1, f2) ‘}’ {f3} *CHAR8 {f4} @when(f5, f6)

(We will define finit and f1–6 shortly.)
Recall that every Gil rule is a value transformer, and the initial value of a rule

is its (implicit) parameter. Here, literal has no parameter, so we will use the unit
value () for its initial value. According to the Gil semantics and the right side
of the rule, we can begin parsing a literal by passing the initial value to finit,
which is itself a value transformer that we define as follows:

finit = λ−.λ 1.()
| 2.λx.λ 3.let p1 = pos();

λ 4.let p2 = pos();
λ 5.(p2 − p1 = x)
| 6.()

As we will see, finit is the coroutine that carries out all of the semantic actions
of the original Gul rule.

The Gil parsing engine starts parsing the rule by applying finit to the current
value, and expects to get a new value in return. finit takes the current value and
ignores it (λ−), since it is unit. finit returns a new value (beginning with λ 1)
that incorporates all of the semantic actions of the original Gul rule. The parser
will pass this value through a series of the other transformers f1–5 of the rule to
execute the semantic actions as required.

It is helpful to annotate finit to highlight the values that will be passed to
each transformer by the parser:

λ−. λ 1. () number

| 2.λx. λ 3.let p1 = pos();

λ 4.let p2 = pos();

λ 5.(p2 − p1 = x)
| 6. () literal-return

5,6

4

3

1,2

2 IMAP literals can be implemented more efficiently in Gul, but this simple version
serves better for our exposition. Also, this example can be generalized to support
repetition of arbitrary-length nonterminals by including a counter variable on the
Kleene-closure and comparing it to x in the constraint.
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Here, we have boxed each expression that will compute a return value for a
transformer. The label of a box indicates which transformer or transformers will
receive the value. For example, finit returns a value that will be passed to f1 and
f2, so we box the return value and label it with 1, 2.

Parsing continues by reading a left brace character, reaching number(f1, f2)
in the right side. We apply f1 to the current value (the 1,2-box) to calculate the
parameter to number. We define f1 simply as λv.v(1), so we end up applying
the value to 1, hence the (λ 1) case of the 1,2-box is evaluated. This returns (),
since number takes no parameters; we have boxed this and labeled it to indicate
that it will be the initial value passed to number.

The parsing engine uses f2 to handle the binding of x to the result of number.
We define f2 = λv.v(2), so we end up applying the 1,2-box to 2, and hence the
(| 2) case is evaluated. The parsing engine applies this to the result of number.
The number is bound to x and the 3-box becomes the new current value.

Next, the parsing engine applies f3 to the current value. We define f3 =
λv.v(3), so the current input position is bound to p1, and the 4-box becomes the
new value.
f4–6 are defined in the same way as f1–3, so the parsing engine ends up using

the 4-box to bind p2, and the 5,6-box to calculate the predicate (p2 − p1 = x).
If this evaluates to true, the engine uses the 5,6 box to calculate the final value,
(), of the successful parse; otherwise, this run of the parse fails.

4.3 Coroutines Formalized

We now formalize the translation of Gul into Gil. We begin with a property
that conservatively approximates when nonterminals and right sides make use
of Gul’s context-sensitive features. We term this property relevance.

Definition 1 (Relevance). The relevance of the nonterminals and right sides
of a grammar are defined as the least relations satisfying the following properties:

– A right side is relevant if it includes a target-language expression or a rele-
vant nonterminal.

– A nonterminal is relevant if its right-side is relevant.

Notice that bindings do not impact relevance, because what matters for parsing
is whether the binding is used.

Irrelevant and relevant right-sides are handled differently by our translation.
Therefore, to reduce the number of cases that need be considered during the
translation, we specify a normal form for grammars that places syntax-directed
constraints on the relevance of subterms. Normalized grammars use an extended
syntax that includes the forms (R1 R2), (*R) and A, which are only abbrevia-
tions in Gul.

Definition 2 (Normalization). A right side R is normalized if every subterm
R′ of R satisfies the following properties:

N1 If R′ is (x=R1 R2) then both R1 and R2 are relevant.
N2 If R′ is (R1 R2) then at least R1 is not relevant.
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N3 If R′ is (R1 | R2) then R1 and R2 share the same relevance.
N4 If R′ is (*R1) then R1 is not relevant.
N5 If R′ is (*x=eR1) then R1 is relevant.
N6 If R′ is A then the right-side defining A in G is not relevant.
N7 If R′ is A(e) then the right-side defining A in G is relevant.

A grammar G is normalized if every rule satisfies the following properties:

N8 If (A(x) = R) ∈ G then R is relevant.
N9 If (A = R) ∈ G then R is not relevant.

Any right side R can be transformed into a normalized right side accepting the
same language, and similarly for any grammar. We illustrate such transforma-
tions in [9].

Once a grammar has been normalized, we can translate its rules into Gil as
follows. If R is not relevant, then R only uses syntax common to both Gul and
Gil—that is, R is a Gil right side. In that case, the Gul rule A = R is translated
to the Gil rule A = R. If R is relevant, then a Gul rule A(x) = R is turned
into a Gil rule by a sequence of transformations, as indicated in the following
definition. Below, we describe each of the transformations in turn.

Definition 3 (Gul-to-Gil Transformation). We say that a normalized Gul
grammar G transforms to a Gil grammar g, written G⇒ g, iff

– If (A = R) ∈ G then (A = R) ∈ g.
– If (A(x) = R) ∈ G then (A = {λx.λ(C[[E [[R�]]]][·])} D[[R�]]) ∈ g, where R� =
L[[R]].

Labeling L[[·]]. Our first step is to add labels to Gul right sides. These labels
serve to synchronize the construction of coroutines with the insertion of dispatch
functions. The insertion of labels considerably simplifies the specification of those
two phases, which otherwise could not be specified independently.

We only need to add labels to relevant subterms of a right side. The labeling
transformation is given in Figure 1. We use underlined integers for labels, and use
� to range over integers used as labels. Each label identifies a control-flow point
in the right side: in �R, � is the control-flow point just before evaluating R, and in
R�, � is the control-flow point just after evaluating R. In the case for sequences,
we do not label subterm R1, because we are guaranteed, by normalization, that
it is irrelevant.

Erasing E [[·]]. The coroutine for a Gul right side is constructed exclusively from
relevant subterms of the right side. We can simplify the definition of coroutine
production if we first erase all subterms that are not relevant. A suitable trans-
formation is given in Figure 2. It has the important property that the resulting
right side exactly preserves the control-flow of the labels of the original right
side. The interesting case is for sequences, which, by normalization, are the only
place irrelevant terms may appear within relevant terms. Notice that the result
of erasing looks like a labeled, nondeterministic program.
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L[[R]] = R′ (R is normalized)

If R is not relevant, then L[[R]] = R.

Otherwise, L[[R]] is defined by the following
cases. In each case, � and �′ denote fresh
labels.

L[[{e}]] = �{e}

L[[A(e)]] = �A(e)�′

L[[@box(e)]] = �@box(e)�′

L[[@when(e)]] = �@when(e)�′

L[[(R1 | R2)]] = (L[[R1]] | L[[R2]])

L[[(R1 R2)]] = (R1 L[[R2]])

L[[(x=R1 R2)]] = �(x=L[[R1]] L[[R2]])

L[[(*x=eR)]] = �(*x=eL[[R]])�′

Fig. 1. Labeling right sides

E [[R]] = R′ (R is relevant and nor-
malized)

E [[�{e}]] = �{e}

E [[�A(e)�′ ]] = �A(e)�′

E [[�@box(e)�′ ]] = �@box(e)�′

E [[(R1 | R2)]] = (E [[R1]] | E [[R2]])

E [[(R1 R2)]] = E [[R2]]

E [[�(x=R1 R2)]] = �(x=E [[R1]] E [[R2]])

E [[�(*x=eR)�′ ]] = �(*x=eE [[R]])�′

Fig. 2. Erasing irrelevant subterms

Coroutine Production C[[·]]. Given a labeled Gul right side R, we construct the
match-cases of its coroutine using the function C[[·]], defined in Figure 3. The
function makes use of contexts defined by the grammar

K = [·] | x ([·]),
and we write K[e] to “fill the hole” of K, resulting in a target expression. Our
contexts are much simpler than typical contexts used in programming languages:
they have only two forms, and they cannot bind variables. C[[·]] is written in the
style of a continuation-passing transform, and we use contexts K as the continu-
ation argument of the transform. By using contexts, rather than target language
expressions, as arguments to the transform, we obtain a one-pass algorithm
whose result does not have administrative redexes [3].

The first case of Figure 3 handles semantic actions. Unlike in Gul, the results
of semantic actions are not passed to the parsing engine, but are instead passed
directly to the contextK. This directness has some helpful implications for typed
target languages, which we discuss in Section 6. The case for constraints splits
its arguments into two match-cases, one for each label. The first evaluates the
predicate and the second (invoked when the predicate is true) evaluates the input
continuation. In Gul, constraints always have unit as their semantic value, so we
pass the continuation the unit value. The case for nonterminals is quite similar
to that of constraints, but reifies the continuation as a function expecting the
return value of the nonterminal. The case for box does the same.
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C[[R]]K = C

C[[�{e}]]K = �.K[e].

C[[�@when(e)�′ ]]K =
(
�.e | �′.K[()]

)
.

C[[�A(e)�′ ]]K =
(
�.e | �′.λx.K[x]

)
where x is a fresh variable.

C[[�@box(e)�′ ]]K =
(
�.e | �′.λx.K[x]

)
where x is a fresh variable.

C[[(R1 | R2)]]K =
(C[[R1]]K | C[[R2]]K

)
.

C[[�(x=R1 R2)]]K =
�.let g x = λ

(C[[R2]]K
)
;

λ
(C[[R1]](g[·]))

C[[�(*x=eR)�′ ]]K =
�.let rec g x = λ

(
�′.K[x] | C[[R]](g[·]));

g(e)

Fig. 3. Coroutine production. In the last
two cases, g denotes a fresh variable.

D[[R]] = r (R is normalized)

If R is not relevant, then D[[R]] = R.

Otherwise, D[[R]] is defined as follows,
where d(�) = λv.v(�):

D[[�{e}]] = {d(�)}

D[[�@when(e)�′ ]] = @when(d(�),d(�′))

D[[�@box(e)�′ ]] = @box(d(�), d(�′))

D[[�A(e)�′ ]] = A(d(�),d(�′))

D[[(R1 | R2)]] = (D[[R1]] | D[[R2]])

D[[(R1 R2)]] = (R1 D[[R2]])

D[[�(x=R1 R2)]] = {d(�)} D[[R1]] D[[R2]]

D[[�(*x=eR)�′ ]] = {d(�)} *(D[[R]]) {d(�′)}

Fig. 4. The dispatching transformation

In the case of choice, we simply combine the match-cases of each branch into
a single set of match cases. In the case for binding, we reify the continuation
for R1 as a (bound) function before transforming R1. This detail prevents the
inadvertent capture of free variables in R2 by bindings in R1. Since we are
treating the semantic actions in Gul grammars opaquely (Section 4.1), we do
not have the luxury of alpha-varying right-sides. We do, however, assume the
ability to generate variables which are fresh with respect to target-language
expressions.

Finally, the case for fold performs a reification just as in the binding case. The
coroutine uses a recursive function, and combines the case for exiting the fold
with the cases of the fold body. We provide an initial value to x by applying the
function to expression e, and bind x to the body’s most recent semantic value
in each iteration of the function.

Dispatching D[[·]]. We transform the labeled Gul right side to a Gil right side
by replacing each label occurrence � with a dispatch function (λv.v(�)), which
“informs” the coroutine of the current position in the control-flow graph. The
transformation is given in Figure 4. As with labeling, we ignore R1 in the case
for sequences.
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5 Correctness

The goal of our coroutine transformation is to simplify both the task of imple-
menting a dependent parsing system and the task of proving said system correct.
This section discusses correctness: specifically, that the result of our transforma-
tion parses the same language and results in the same value as the original Gul
grammar, under appropriate conditions. We provide a summary of our correct-
ness results here, and leave an extended discussion to our companion technical
report [9].

An essential goal of our construction has been to avoid dealing with the details
of the target language, as we discussed earlier. Our metatheory retains this focus,
by stating and proving our theorem with respect to an abstract target language.
Instead of a concrete language, we have derived a set of properties that we require
of the evaluation function of the language in order to prove our soundness and
completeness result. These properties are given in [9], and are unexceptional.

In the theorem and lemmas that follow, we use some well-formedness con-
ditions for grammars, expressions, contexts and right-sides. These conditions
essentially ensure that variables and nonterminal names are properly bound.
Only well-formedness of contexts requires, in addition, totality from the context:
if its hole is filled with a closed value, it must evaluate to a value. The formal
definitions of well-formedness can be found in [9].

It is worth noting that we require call-by-value evaluation for the function
constructs used by coroutines. This constraint is needed for soundness because
we have defined Gul with a call-by-value semantics; a call-by-name semantics for
coroutines would result in some Gil parses succeeding where Gul parses fail. We
believe it would be straightforward to adapt Gul, Gil, and our transformation
to a call-by-name semantics.

Theorem 1, below, states the main result of this section.

Theorem 1. If G is normalized, WF(G), and G⇒ g, then

1. If (A = R) ∈ G and (A = r) ∈ g, then for all inputs,
(a) if 〈·, 0〉 R=⇒ 〈v, i〉 then 〈(), 0〉 r−→ 〈(), i〉, and
(b) if 〈(), 0〉 r−→ 〈(), i〉 then 〈·, 0〉 R=⇒ 〈(), i〉.

2. If (A(x) = R) ∈ G and (A = r) ∈ g, and v closed, then for all inputs,
(a) if 〈[x=v], 0〉 R=⇒ 〈v′, i〉 then 〈v, 0〉 r−→ 〈v′, i〉, and
(b) if 〈v, 0〉 r−→ 〈v′, i〉 then 〈[x=v], 0〉 R=⇒ 〈v′, i〉.

In order to prove Theorem 1, we will state and prove stronger results for both
relevant and irrelevant terms. We need the stronger statements because the
theorem describes properties of whole rules, while we need to know properties
of individual right-sides. Yet, this change is not as easy as it might sound. The
coroutine transformation is not local to right sides, but global to an entire rule.
Therefore, we must relate the coroutine that would be generated for a particular
right-side in isolation to the coroutine of the rule of which the right side is part.

A first attempt might be to relate the coroutines with equivalence. However,
equivalence alone is too strict for relating our local and global coroutines because
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the case for alternatives and fold both locally require a smaller coroutine—
one with fewer match cases—than that provided by the surrounding context.
Therefore, we extend equivalence to an ordering relation on expressions, similar
to subtyping. We call this relation sufficiency, written E � e ⇒ e′, and read “e
is sufficient for e′.”

Informally, an expression e is sufficient for an expression e′ if e can be used
in place of e′. In the study of subtyping, this is often called the principal of safe
substitution [16]. We capture this notion formally in the following lemma, which
we use throughout our proof of Lemma 3, below.

Lemma 1. Let e = λ(�1.e1 | . . . | �n.en). If WF(E, e) and E � e′ ⇒ e then
E � e′ �i ≡ e �i, for i = 1 to n.

We now state the two essential lemmas used in proving the soundness and com-
pleteness of our transformation of Gul grammars. Note that both of these lemmas
assume an implicit Gul grammar G, which is normalized and well-formed, and a
corresponding, implicit, Gil grammar g, for which G⇒ g holds. The first lemma
addresses irrelevant right sides, on which the translation has little effect.

Lemma 2 (Translation correctness for irrelevant terms). If R is irrele-
vant and normalized, then

a) If 〈E, i〉 R=⇒ 〈v′, i′〉 then ∀v, 〈v, i〉 R−→ 〈v, i′〉.
b) If 〈v, i〉 R−→ 〈v′, i′〉 then v = v′ and ∀E, 〈E, i〉 R=⇒ 〈(), i′〉.
The second lemma addresses relevant right sides. Notice how we relate the cur-
rent Gil value v1 with the right-side’s coroutine via the sufficiency relation. Notice
further, though, that our result involves equivalence. This apparent strengthen-
ing is due to Lemma 1 above.

Most of the proof of this lemma involves reasoning about the evaluation be-
havior of the generated coroutines.

Lemma 3 (Translation correctness for relevant terms). If R is relevant
and normalized, WF(E, R), WF(E, K), v1 is closed, R� = L[[R]], and E � v1 ⇒
λ(C[[E [[R�]]]]K) then

a) If 〈E, i〉 R=⇒ 〈v, i′〉 then ∃v2. 〈v1, i〉 D[[R�]]−−−−→ 〈v2, i′〉 and E � K[v] ≡ v2.
b) If 〈v1, i〉 D[[R�]]−−−−→ 〈v2, i′〉 then ∃v. 〈E, i〉 R=⇒ 〈v, i′〉 and E � K[v] ≡ v2.

6 Typed Target Languages

Up until now we have assumed that our target language is untyped. However, we
have implemented our parser generator, Yakker, in a statically typed language
(OCaml), and this requires a few modifications to our coroutine transformation.

The principal difficulty is that many parsing engines need to manipulate
collections of semantic values, for example, on a semantic-value stack. ML’s
homogeneous data structures therefore require us to give our semantic values
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(coroutines) a uniform type. Since our coroutines return a number of types
(booleans for parsing constraints, foreign parsers, etc.), we must wrap them
in a union datatype.

This sort of type casting is standard in ML parsers. The coroutine transfor-
mation significantly simplifies matters, however, because the types of Gul-bound
variables do not appear in the coroutine union type: all bindings are implemented
by closures, which hide the types of free variables. This is a key reason that we
prefer coroutines over our original implementation of dependent parsing that
used explicit environments.

We use a separate union type for call arguments and return values, which we
call the value type. In Yakker, we currently require user annotations to specify
argument and return types, and we construct the value type and insert the
necessary injections and projections automatically. (The type annotations are
not strictly necessary, e.g., the dypgen parser generator is able to eliminate
them by type inference.) The coroutine type is then given as follows:

type value
type coroutine =
| Bool of boolean
| Value of value
| Return of coroutine → coroutine
| Box of int → input → (coroutine ∗ int) list
| Continue of int → coroutine

Next, we must add the necessary injections and projections to and from the
coroutine type. We add injections in the translation from Gul to the coroutine,
and we add projections in the translation from Gul to Gil. The addition of
injections is largely straightforward, and we only note that every nonterminal
must end with a Value injection, which can be accomplished by setting the
context used to construct the initial coroutine to Value[·].

Projections are similarly straightforward. First, change dispatch functions to
project from the Continue branch and then compose every dispatch with a pro-
jection appropriate to the location of the dispatch. So, for example, a dispatch
located in a @box would be followed by a projection from the Box branch.
Second, the initial coroutine must begin by projecting its argument from the
Value branch, as must all fret functions. For example, here is the typed rule for
nonterminals:

C[[�A(e)�
′
]]K =

(
�.Value(e) | �′.λValue(x).K[x]

)
where x is fresh.

Notice that the first match-case performs an injection, whereas the second case
uses pattern matching to perform a projection.

7 Evaluation

We have investigated several practical aspects of our method.
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Implementing Gil. To evaluate the difficulty of extending a context-free pars-
ing algorithm to support the additional features of Gil, we implemented Gil on
four different back ends:

Scannerless Earley. Our main implementation is a transducer-based, scanner-
less Earley parsing engine. Earley parsing is a general context-free parsing
method that relies on nondeterministic, breadth-first exploration of possible
parses. The standard Earley algorithm implements parse recognition without
semantic values; we had to add semantic values to the algorithm, but this
was a straightforward modification. The overall structure of the algorithm
remained unchanged.

PEG. We have a Parsing Expression Grammar [5] interpretation of Gil. It sup-
ports all the features of Gil, but interprets choice as deterministic and pri-
oritized (first match). The coroutine translation is fully compatible with the
PEG back end, despite the different choice semantics, and required no mod-
ifications to be retargeted.

GLR. dypgen [13] is a GLR parser generator written in OCaml. dypgen has
native support for “flowing” a value through a parse and supports most
of the features of Gil3, so no modifications to dypgen were necessary to
support coroutines. However, implementing the semantics of Gil on dypgen
did require a fairly deep and precise understanding of dypgen’s semantics.

Memoizing Parser Combinators. Our final back end is a set of parser com-
binators based on Johnson’s memoizing, top-down parser combinators for all
context-free grammars [11]. Our combinators are fairly faithful to Johnson’s
originals, fixing one significant performance problem and adjusting for the
differences between Scheme and OCaml. The added support for Gil’s context-
sensitive features had a trivial impact on the difficulty of implementing the
combinators. As with the other back ends, the use of coroutines with parser
combinators required no modifications to the coroutine generator.

Although every parsing algorithm is different, our experience with these four
back ends convinces us that extending existing context-free parsing algorithms
to support the additional features of Gil is usually straightforward, and certainly
simpler than extending them with environments, as in our earlier work.

We found that to support Gil, the parsing engine needs three essential ele-
ments: (1) it must thread semantic values along with parses; (2) it must include
a mechanism for abandoning a parse; and (3) it must support nonterminals pa-
rameterized by semantic values. Note that (1) is usually already a feature of
any practical parsing tool. For (2), note that we are starting from parsing en-
gines which can already parse all context-free languages, including ambiguous
languages; such parsers necessarily include machinery for attempting multiple
parses and abandoning failed parses. Parameters for nonterminals (3) are very

3 Note that dypgen also has support for Gul-style dependency, implemented, in part,
with explicit environment manipulations. Nevertheless, our ability to target dyp-
gen based only on the Gil-relevant features demonstrates the applicability of our
coroutine translation to a GLR engine.
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naturally supported by top-down parsers. In bottom-up parsers they are less
common, but we did not find them difficult to implement with dypgen’s existing
features, for example.

Implementing the coroutine transformation. We use the coroutine trans-
formation in the front end of our Yakker parser generator. While our experience
is subjective, we found the translation from paper to software to be straightfor-
ward. The core of our actual implementation is nearly identical to the pipeline
presented in this paper. The major difference is that our front end supports
many features that we have not mentioned, and, consequently, we implemented
the coroutine transformation without normalization and erasing, at the cost of
additional cases to consider in the other stages of the transformation. Based
on our experience, we feel that the formal presentation in this paper contains
sufficient information for a practical implementation.

Use cases. Finally, we have written a variety of examples in Yakker’s Gul-
style language. These examples demonstrate the practical utility of the features
supported by Gul, lending weight to the argument for dependent parsing. In
addition, our ability to generate working parsers from our grammars demon-
strates that our technique works in practice, not just in theory. The examples
are described in [9], and include languages like OCaml, JavaScript, Python,
and Aurochs PEGs, and data formats including IMAP messages, IETF RFC
grammars, Mail.app mailboxes, and the many formats expressible in the PADS
languages.

8 Related Work

In earlier work, we presented a formalism that incorporated support for de-
pendent parsing, scannerless parsing, full context-free grammars and foreign
parsers [10]. That work focused on the correctness of the translation from gram-
mars to transducers and their execution using an Earley-style algorithm. This
work represents a significant advance beyond our previous work. It proposes a
fundamentally different, and more general, approach to the handling of depen-
dency, both in theory and in practice. Our separation of binding concerns into
a coroutine means that correctness proofs of other techniques can be free of all
the binding and environment concerns which played such a prominent role in
our previous work. The same benefits carry over to the implementation, as we
discussed in Section 7. In addition, our user-level language Gul differs from the
grammar language of our previous work in a number of useful ways. It adds
lexical scoping of variables, return values for nonterminals, binding to nested
right-sides, and a functional interpretation of binding. Also, boxes now have ac-
cess to the entire input. Moreover, our theory makes explicit the requirements we
place on the target language, rather than supposing an untyped lambda calculus.

There are many alternative grammar formalisms for supporting some degree
of context sensitivity. We have compared many of the closely related formalisms
with our dependent grammars in earlier work [10]. However, we add here a brief
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comparison with definite clause grammars (DCGs) [15], a popular formalism
for specifying grammars as logic programs. While the power of a particular
formulation of DCGs depends on that of the underlying logic language, there
are certainly examples with as much power as Gul. Moreover, the support for
unification in logic languages provides a more flexible interpretation of variable
bindings. However, DCGs rely critically on the features and semantics of the logic
language in which they are embedded. In contrast, we are striving to provide
an approach to implementing dependent parsing that is compatible with many
different parsing algorithms, and applicable across many different programming
languages.

Of the existing approaches to handling dependent parsing, the most straight-
forward is to compile grammars into recursive-descent parsers where binding
and expressions in the grammar are copied directly into the target language of
the parser. This approach is taken, for example, by the compiler of the PADS
data description language [4]. In the case of embedded grammar languages, like
monadic parser combinators, the binding support of the target language is even
used directly [8,12].

However, this higher-order approach results in much of the grammar being
trapped under lambdas, thereby prohibiting useful analyses and transformations
which can be critical for performance or even termination (for example, the
recent left-corner transform for typed grammars [1]) [12,19]. Paterson proposed
the arrow notation as an alternative approach that allows such analyses and
transformations for arrow combinators [14]. In essence, the translation of the
arrow notation to (point-free) arrow combinators “pushes down” binders to the
computations that use them, while “lifting” the other elements (in our case,
grammar constructs) out from beneath the binders. All bound variables are
collected in a tuple which is threaded through the computation.

Our coroutine transformation can be viewed as an alternative translation to
point-free style that is better suited to our goal of supporting a wide variety of
target languages and reusing existing parsing engines. In particular, we want to
support table-based parsers (such as LR, GLR, and Earley parsers) and ML-
style typed languages. These parsers require a uniform type for semantic values.
Therefore, if we used environment tuples as semantic values, we would have
to wrap them in a union type, e.g., to place them on a semantic value stack.
Specifying such a union type would require either that the parser generator
discover the types of all bound variables or that the user write them down, both
of which we want to avoid; the former, so as not to further constrain the choice
of target language, and the latter, so as not to burden the user. In our method,
the bound values are stored in closures and hence their type is hidden from the
type of our semantic values (the coroutines).

Coroutines and parsing have a long history together. For example, Conway
originally introduced coroutines as a way to structure a one-pass compiler, in-
cluding lexer and parser [2], and Warren used them in evaluating the attributes
of an attribute grammar [20]. Our work differs from most uses of coroutines in an
essential technical detail. In the standard approach, there is dynamically only
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one instance of any given coroutine, and, at each invocation, it resumes from
the last point at which it yielded. Furthermore, the coroutine itself is responsi-
ble for maintaining its state (including its last code location). In contrast, our
coroutines are pure (assuming pure embedded actions), which has two major im-
plications: the parsing engine is responsible for maintaining the current version
of any coroutine, and it is free to duplicate a coroutine as necessary for exploring
different parsing branches.

Technically, our coroutines are closer to trampolined computations than to
classic coroutines. Our method of implementing our coroutines is very close to
the trampolined style of Ganz, et al., in which a computation is written such
that its control flow can be managed externally by a so-called trampoline [6].
Our approach is different in two ways. First, because of our concern for sharing
nonterminal parses, we needed to extend their method with a novel treatment
of call and return. Second, our trampoline—the parsing engine—has a closer
relationship with the coroutine. Instead of simply “bouncing” the coroutine at
each step, it guides the control flow with the integer argument to the coroutine’s
closure. Moreover, our coroutines communicate information back to the parsing
engine, whether for foreign parsers or for parsing constraints.
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Abstract. We present a static analysis by Abstract Interpretation to
check for run-time errors in parallel C programs. Following our work on
Astrée, we focus on embedded critical programs without recursion nor
dynamic memory allocation, but extend the analysis to a static set of
threads. Our method iterates a slightly modified non-parallel analysis
over each thread in turn, until thread interferences stabilize. We prove
the soundness of the method with respect to a sequential consistent se-
mantics and a reasonable weakly consistent memory semantics. We then
show how to take into account mutual exclusion and thread priorities
through partitioning over the scheduler state. We present preliminary ex-
perimental results analyzing a real program with our prototype, Thésée,
and demonstrate the scalability of our approach.

Keywords: Parallel programs, static analysis, Abstract Interpretation,
run-time errors.

1 Introduction

Ensuring the safety of critical embedded software is important as a single “bug”
can have catastrophic consequences. Previous work on the Astrée analyzer [5]
demonstrated that static analysis by Abstract Interpretation could help, when
specializing an analyzer to a class of programs (synchronous control/command
avionics C software) and properties (run-time errors). In this paper, we describe
ongoing work to achieve similar results for parallel embedded programs. We wish
to match the current trend in critical embedded systems to switch from large
numbers of single-program processors communicating through a common bus to
single-processor multi-threaded applications communicating through a shared
memory (for instance, in the context of Integrated Modular Avionics). We focus
on detecting the same kinds of run-time errors as Astrée does (arithmetic and
memory errors) and take data-races into account (as they may cause such errors),
but we ignore other concurrency errors (such as dead-locks, live-locks, or priority
inversions), which are orthogonal.
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Our method is based on Abstract Interpretation [7], a general theory of the
approximation of semantics, which allows designing static analyzers that are
sound by construction, i.e., consider a superset of all program behaviors and thus
cannot miss any bug, but can cause spurious alarms due to over-approximations.
At its core, our method performs an analysis of each thread considering an
abstraction of the effects of the other threads (called interferences). Each analysis
generates a new set of interferences, and threads are re-analyzed until a fixpoint
is reached. Thus, few modifications are required for a non-parallel analyzer to
analyze parallel programs. Moreover, we show that few thread re-analyses are
required in practice, resulting in a scalable analysis.

As we target embedded software, we can safely assume that there is no re-
cursion nor dynamic allocation of memory, threads, or locks, which makes the
analysis easier. In return, we handle two subtle points. Firstly, we consider a
weakly consistent memory model: memory accesses not protected by mutual ex-
clusion may cause behaviors that are not the result of any thread interleaving
to appear, as they expose to concurrent threads compiler optimizations that are
transparent on non-parallel programs. We handle this by proving that our se-
mantics is invariant by some classes of program transformations. Secondly, we
take into account the effect of a real-time scheduler that schedules the threads on
a single processor according to strict, fixed priorities: only the unblocked thread
of highest priority may run. This ensures some mutual exclusion properties that
our target program exploits, and so should our analysis. This is achieved by
partitioning with respect to an abstraction of the global scheduling state.

Our paper is organized as follows: Sec. 2 presents a classic non-parallel se-
mantics, Sec. 3 considers threads in a shared memory, and Sec. 4 adds support
for locks and priorities; Sec. 5 presents our prototype and experimental results,
Sec. 6 discusses related work, and Sec. 7 concludes and envisions future work.
We alternate between two kinds of semantics: semantics based on control paths,
that can model precisely thread interleavings, and semantics by structural in-
duction on the syntax, that give rise to effective abstract interpreters. Figure 1
summarizes the semantics introduced in the paper, using ⊆ to denote the “is
less abstract than” relation. Our analysis has already been mentioned, briefly
and informally, in [4, § VI]. We offer here a formal, rigorous treatment.

2 Non-parallel Programs

This section recalls a classic static analysis by Abstract Interpretation of the run-
time errors of non-parallel programs, as performed for instance by Astrée [5].
The formalization introduced here will be extended later to parallel programs,
and it will be apparent that an analyzer for parallel programs can be constructed
by extending an analyzer for non-parallel programs with few changes.

2.1 Syntax

For the sake of exposition, we reason on a vastly simplified programming lan-
guage. However, the results extend naturally to a realistic language, such as the
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Fig. 1. Semantics defined in this paper

subset of C excluding recursion and dynamic memory allocation. We assume
a fixed, finite set V of variables and F of function names. A program has an
entry-point entry ∈ F and associates to each function name f ∈ F a structured
statement body(f) ∈ stat in the following grammar:

stat ::= X ← expr (assignment, X ∈ V)
| if expr then stat (conditional)
| while expr do stat (loop)
| stat ; stat (sequence)
| f() (function call, f ∈ F)

expr ::= X | [c1, c2] | expr "� expr
where X ∈ V , c1, c2 ∈ R ∪ {±∞}, " ∈ {+,−,×, / }, � ∈ L

(1)

For the sake of simplicity, we do not handle local variables (all variables are
visible at all program points) nor function arguments and returns. Due to the
absence of recursion, these could be easily simulated by using a finite set of global
variables. Our toy language is limited to a single data-type (real numbers in R)
and numeric expressions. Constants are actually constant intervals [c1, c2], which
return a fresh value between c1 and c2 when evaluated. This allows modeling
non-deterministic expressions and inputs from the environment. Each operator
"� is tagged with a syntactic location � and we denote by L the finite set of all
syntactic locations. The output of an analyzer will be the set of locations � with
errors (or rather, a superset of them, due to approximations).

2.2 Concrete Structured Semantics P

We present a concrete semantics, that is, the most precise mathematical expres-
sion of program semantics we consider. As it is undecidable, it will be abstracted
in the next section to obtain a sound static analysis.

A program environment ρ ∈ E maps each variable to a value, i.e., E def= V →
R. The semantics E� e � of an expression e ∈ expr maps an environment to a set
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of values in P(R) (sets accounting for non-determinism) and a set of run-time
error locations in P(L) (in our simple case, only for divisions by zero). It is
defined by structural induction as follows:

∀e ∈ expr , E� e � : E → (P(R)× P(L))
E�X �ρ

def= ({ ρ(X) }, ∅)
E� [c1, c2] �ρ

def= ({ c ∈ R | c1 ≤ c ≤ c2 }, ∅)
E� e1 "� e2 �ρ

def=
let (V1, Ω1) = E� e1 �ρ in
let (V2, Ω2) = E� e2 �ρ in
({ x1 " x2 |x1 ∈ V1, x2 ∈ V2, " 
= / ∨ x2 
= 0 },
Ω1 ∪Ω2 ∪ { � | " = / ∧ 0 ∈ V2 })

where " ∈ {+,−,×, / }

(2)

We now consider the complete lattice D def= P(E)×P(L) with partial order $ de-
fined as the pairwise set inclusion (A,B) $ (A′, B′) def⇐⇒ A ⊆ A′∧B ⊆ B′. We
denote by � the associated join, i.e., pairwise set union. The structured seman-
tics S� s � of a statement s is a morphism in D that, given a set of environments
R and errors Ω before a statement s, returns the reachable environments after
s as well as Ω enriched with the errors encountered during the execution of s:

∀s ∈ stat , S� s � : D → D
S�X ← e �(R,Ω) def=

(∅, Ω) � ⊔
ρ∈R let (V,Ω′) = E� e �ρ in ({ ρ[X �→ v] | v ∈ V }, Ω′)

S� s1; s2 �(R,Ω) def= (S� s2 � ◦ S� s1 �)(R,Ω)
S� if e then s �(R,Ω) def= (S� s � ◦ S� e 
= 0? �)(R,Ω) � S� e = 0? �(R,Ω)
S�while e do s �(R,Ω) def=

S� e = 0? �(lfp λX. (R,Ω) � (S� s � ◦ S� e 
= 0? �)X)
S� f() �(R,Ω) def= S� body(f) �(R,Ω)
S� e �� 0? �(R,Ω) def=

(∅, Ω) � ⊔
ρ∈R let (V,Ω′) = E� e �ρ in ({ ρ | ∃v ∈ V, v �� 0 }, Ω′)

with �� ∈ {=, 
= }

(3)

where ρ[X �→ x] is the environment that maps X to x, and elements Y 
= X
to ρ(Y ). Loops and conditionals use the synthetic “guard” statements e = 0?
and e 
= 0? that filter their argument and keep only those environments that
may evaluate, respectively, to null (i.e., false) or non-null (i.e., true) values.
Guards and assignments are collectively called atomic statements. The semantics
of loops uses a least fixpoint operator lfp to compute a loop invariant. We have
the following property:

Theorem 1. ∀s, S� s � is well defined and a strict, complete �−morphism.

We can now define the concrete structured semantics of the program as follows:
P def= Ω, where (−, Ω) = S� entry() �(E0, ∅) (4)

where E0 ⊆ E is a set of initial environments (e.g., E0 def= { ρ0 } where ∀X ∈
V , ρ0(X) = 0). Thus, we observe the set of run-time errors that can appear in
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executions starting at the beginning of entry in an initial environment. Note
that, as ∀s, S� s �(∅, Ω) = (∅, Ω), we also observe errors occurring in executions
that loop forever or halt before the end of entry.

2.3 Abstract Structured Semantics P�

The semantics P is not computable as it involves least fixpoints in an infinite-
height domain D. An effective analysis will instead compute an abstract se-
mantics over-approximating the concrete one. This semantics is parametrized
by an abstract domain of environments, i.e., a set E� of computer-representable
abstract elements, with a partial order ⊆�. Each abstract element represents
a set of concrete environments through a monotonic concretization function
γE : E� → P(E). In particular, there is an element E�0 ∈ E� representing ini-
tial environments: γE(E�0) ⊇ E0. We also require a sound and effective abstract
version of every concrete operator:

∪�E : (E� × E�) → E�
with ∀A�, B� ∈ E�, γE(A� ∪�E B�) ⊇ γE(A�) ∪ γE(B�)

and, for atomic statements s, i.e., s ∈ {X ← e, e = 0?, e 
= 0? }:
S� s �� : (E� × P(L)) → (E� × P(L))
with ∀(R�, Ω), (S� s � ◦ γ)(R�, Ω) $ (γ ◦ S� s ��)(R�, Ω)
where γ(R�, Ω) def= (γE(R�), Ω)

i.e., the soundness condition requires an abstract operator to output supersets
of the environments and error locations returned by the concrete one. Finally,
when E� has infinite strictly increasing chains, we require a widening operator
�E to ensure the convergence of abstract fixpoint computations in finite time:

�E : (E� × E�) → E�
with ∀A�, B� ∈ E�, γE(A� �E B�) ⊇ γE(A�) ∪ γE(B�)
and ∀(Y �i )i∈N, the sequence X�

0
def= Y �0 , X

�
i+1

def= X�
i �E Y

�
i+1

reaches a fixpoint X�
k = X�

k+1 for some k ∈ N.

There exist many such abstract domains, for instance the interval domain [7],
where an element of E� associates an interval to each variable, or the octagon
domain [17], where an element of E� is a conjunction of constraints of the form
±X ± Y ≤ c with X,Y ∈ V , c ∈ R.

Given an abstract domain, we can provide an abstract semantics for non-
atomic statements by induction, similarly to the concrete semantics (3), except
that loops use the widening operator �E :

S� s1; s2 ��(R�, Ω) def= (S� s2 �� ◦ S� s1 ��)(R�, Ω)
S� if e then s ��(R�, Ω) def=

(S� s �� ◦ S� e 
= 0? ��)(R�, Ω) ∪� S� e = 0? ��(R�, Ω)
S�while e do s ��(R�, Ω) def=

S� e = 0? ��(lfpλX.X � ((R�, Ω) ∪� (S� s �� ◦ S� e 
= 0? ��)X))
S� f() ��(R�, Ω) def= S� body(f) ��(R�, Ω)

(5)
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where (R�1, Ω1) ∪� (R�2, Ω2)
def= (R�1 ∪�E R�2, Ω1 ∪Ω2) and (R�1, Ω1)� (R�2, Ω2)

def=
(R�1 �E R

�
2, Ω1 ∪Ω2). The program semantics is, similarly to (4):

P� def= Ω, where (−, Ω) = S� entry() ��(E�0, ∅) . (6)
The following theorem states the soundness of the abstract semantics:

Theorem 2. P ⊆ P�.

As our programs have no recursive procedures, the recursion in S� · �� is bounded
and we obtain an effective and sound static analysis. It is flow-sensitive and fully
context-sensitive (behaving as if all function calls were inlined). It is relational
whenever E� is (e.g., with octagons [17]). Moreover, the number of abstract
elements to keep in memory does not depend on the program size but on the
maximum nesting of conditionals and loops: the analyzer is thus very memory
friendly, which is critical to analyze large programs, as in Astrée [5].

2.4 Concrete Path-Based Semantics �

We now propose an alternative concrete semantics based on control paths, which
will come handy when considering parallel programs interleaving several threads.
For non-parallel programs, its output is equal to that of the structured one.

A control path p is a finite sequence of atomic statements (i.e., X ← e, e = 0?,
e 
= 0?). We denote by Π the set of all control paths. The set of paths π(s) ⊆ Π
of a statement s is defined as follows:

π(X ← e) def= {X ← e }
π(s1; s2)

def= π(s1);π(s2)
π(if e then s) def= ({ e 
= 0? };π(s)) ∪ { e = 0? }
π(while e do s) def= (lfp λX. { ε } ∪ (X ; { e 
= 0? };π(s))); { e = 0? }
π(f()) def= π(body(f))

(7)

where ε denotes then empty path, and ; denotes path concatenation (by analogy
with statement sequencing s1; s2) and is naturally extended to sets of paths.
When s contains a loop, π(s) is infinite, although many paths may be infeasible,
i.e., have no corresponding execution (e.g., if all loops have a static bound).

Using the definitions from the structured semantics (3), we can define the
semantics ��P � of a set of paths P ⊆ Π as:

��P �(R,Ω) def=
⊔ { S� s1; . . . ; sn �(R,Ω) | s1; . . . ; sn ∈ P } (8)

which is similar to the standard meet over all paths solution1 of data-flow prob-
lems [18, § 2], but for concrete executions in the infinite-height lattice D. The
meet over all paths and maximum fixpoint solutions of data-flow problems are
equal for distributive frameworks; similarly, our structured and path-based con-
crete semantics (based on complete �−morphisms) are equal:

Theorem 3. ∀s ∈ stat , ��π(s) � = S� s �.

1 The lattices used in data-flow analysis and abstract interpretation are dual: the
former uses a meet to join paths while we employ a join.
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3 Parallel Programs in Shared Memory

In this section, we consider several threads that communicate through a shared
memory, without any synchronization primitive. We also discuss memory con-
sistency models and their effect on the semantics and static analysis.

A program has now a fixed, finite set T of threads. Each thread t ∈ T has an
entry-point function entryt ∈ F . All the variables in V are shared and can be
accessed by all threads.2

3.1 Concrete Interleaving Semantics P∗

The simplest and most natural model of parallel program execution considers
all possible interleavings of control paths from all threads. These correspond to
sequentially consistent executions, as coined by Lamport [15]. A parallel control
path p is a finite sequence of pairs (s, t), where s is an atomic statement and
t ∈ T . The semantics �∗�P � of a set of parallel control paths P is:

�∗�P �(R,Ω) def=
⊔ { S� s1; . . . ; sn �(R,Ω) | (s1,−); . . . ; (sn,−) ∈ P } (9)

We denote by π∗ the set of all parallel control paths in the program:

π∗
def= { p | ∀t ∈ T , projt(p) ∈ π(body(entry t)) } (10)

where projt(p) projects p on a thread t by extracting the maximal path s1; . . . ; sn
such that (s1, t); . . . ; (sn, t) is a sub-path of p. The semantics P∗ of the parallel
program is then:

P∗
def= Ω, where (−, Ω) = �∗�π∗ �(E0, ∅) . (11)

3.2 Concrete Interference Semantics PI

Because it reasons on infinite sets of paths, the interleaving concrete semantics
is not easily amenable to flow-sensitive abstractions. We propose here a more
abstract semantics that can be expressed by induction on the syntax and will
lead to an effective static analysis after further abstraction.

We start by enriching the non-parallel semantics of Sec. 2.2 with a notion of
interference. We call interference a triple (t,X, v) ∈ I, where I def= T × V × R,
indicating that the thread t can set the variable X to the value v. The semantics
of expressions is updated to take as extra arguments the current thread t and
an interference set I ⊆ I. When fetching a variable X ∈ V , each interference on
X from other threads is applied:

EI�X �(t, ρ, I) def= ({ ρ(X) } ∪ { v | (t′, X, v) ∈ I, t 
= t′ }, ∅) (12)

while other functions are not changed with respect to (2), apart from propa-
gating t and I recursively. As the interference is chosen non-deterministically,
distinct occurrences of X in an expression may evaluate to different values. The
2 As the set of threads is finite, thread-local variables, such as function locals and pa-

rameters, could be handled by duplicating the functions and renaming the variables.



Static Analysis of Run-Time Errors 405

E0 : flag1 = flag2 = 0

flag1 ← 1; flag2 ← 1;

if (flag2 = 0) if (flag1 = 0)

critical section critical section

(a) Mutual Exclusion Algorithm.

E0 : x = y = 0

x ← x + 1; x ← x + 1;

y ← x;

(b) Parallel Incrementation.

Fig. 2. Incompleteness examples for the interference semantics

semantics of statements is also enriched with interferences and is now a complete
�−morphism in the complete lattice DI def= P(E)×P(L)×P(I). The semantics
of an assignment in a thread t both uses and enriches the interference set:

SI�X ← e, t �(R,Ω, I) def=
(∅, Ω, I) � ⊔

ρ∈R ({ ρ[X �→ v] | v ∈ V }, Ω′, { (t,X, v) | v ∈ V })
where (V,Ω′) = EI� e �(t, ρ, I) .

(13)

The other functions (not presented here) are easily derived: guards e �� 0? pass
I to EI� e � and return I unchanged, while non-atomic statements are similar to
(3), replacing S� · � with SI� · �. Moreover, using SI� · � in (8) defines a path-based
semantics with interference �I�P, t �. Theorem 3 naturally becomes:

Theorem 4. ∀t ∈ T , s ∈ stat , �I�π(s), t � = SI� s, t �.

The semantics SI� s, t � still considers a statement s from a single thread t. To
take into account multiple threads, we iterate the analysis of all threads until
errors and interferences are stable:

PI
def= Ω, where (Ω,−) def=

lfpλ(Ω, I).
⊔
t∈T let (−, Ω′, I ′) = SI� entryt(), t �(E0, Ω, I) in (Ω′, I ′) .

(14)

The interference semantics is sound with respect to the interleaving one (11):

Theorem 5. P∗ ⊆ PI.

However, it is generally not complete. Consider, for instance the program frag-
ment in Fig. 2(a) inspired from Dekker’s mutual exclusion algorithm. According
to the interleaving semantics, both threads can never be in their critical section
simultaneously. The interference semantics, however, allows thread 1 to read
flag2 as either 0 (from E0) or 1 (from interferences) at any program point,
and likewise for thread 2 and flag1, and so, there is no mutual exclusion. In
Fig. 2(b), two threads increment the same zero-initialized variable x. According
to the interleaving semantics, either the value 1 or 2 is stored into y. However,
in the interference semantics, the fixpoint builds a growing set of interferences,
up to { (t, x, i) | t ∈ T , i ∈ N }, as each thread increments the possible values
written by the other thread, resulting in any positive value being written into y.

3.3 Abstract Interference Semantics P�
I

The concrete interference semantics is defined by structural induction. It can
thus be easily abstracted. We assume, as in Sec. 2.3, the existence of an abstract
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domain E� abstracting sets of environments, with a concretization γE and an
element E�0 abstracting E0. Additionally, we assume the existence of an abstract
domain N � that abstracts sets of reals. It is equipped with a concretization
γN : N � → P(R), a least element ⊥�N such that γN (⊥�N ) = ∅, an abstract join
∪�N and, if it has strictly increasing infinite chains, a widening �N . Interferences
are then abstracted using the domain I� def= (T ×V)→ N �, with concretization
γI(I�)

def= { (t,X, v) | v ∈ γN (I�(t,X)) }, and ∪�I and �I defined point-wise.
Abstract semantic functions now have the form: SI� · �� : D�I → D�I with D�I def=
E� × P(L)× I�, and the soundness condition becomes:

(SI� s, t � ◦ γ)(R�, Ω, I�) $ (γ ◦ SI� s, t ��)(R�, Ω, I�)

where γ(R�, Ω, I�) def= (γE(R�), Ω, γI(I�)), i.e., the abstract function over-
approximates environment, error, and interference sets.

Classic abstract domains can be easily converted to the interference seman-
tics. Consider, for instance, the case of an assignment (R�′, Ω′, I�′) = SI�X ←
e, t ��(R�, Ω, I�), when N � is the interval domain [7] and E� is an arbitrary
domain. For each variable Y occurring in e, we compute its abstract inter-
ference: Y � def=

⋃�
N { I�(t′, Y ) | t 
= t′ }. If Y � 
= ⊥�N , then Y is substi-

tuted in e with the interval constant Y � ∪�N itvY (R�) (where itvY (R�) ex-
tracts the bounds of Y in the abstract environment R�) to get an expression
e′. The result abstract environment and error set can now be computed us-
ing the native operators on E� as (R�′, Ω′) = S�X ← e′ ��(R�, Ω). Finally,
I�′ = I�[(t,X) �→ itvX(R�′) ∪�N I�(t,X)]. Note that I� is not isomorphic to the
interval domain [7]: the former abstracts V → P(R) and the later P(V → R).
Sound abstractions for atomic statements then lift by induction on the syntax
to sound abstractions for all statements, as in (5). Finally, an abstraction of the
interference fixpoint (14) can be computed by iteration on abstract interferences,
using a widening to ensure termination:

P�I
def= Ω, where (Ω,−) def=

lfp λ(Ω, I�). ∀t ∈ T , let (−, Ω′t, I�t ′) = SI� entry t(), t ��(E�0, Ω, I�) in
(
⋃
t∈T Ω

′
t, I

� �I
⋃�
I { I�t ′ | t ∈ T }) .

(15)

The following theorem states the soundness of the analysis:

Theorem 6. PI ⊆ P�I .

The obtained analysis remains flow-sensitive and can be relational (provided
that E� is relational) within each thread, but abstracts interferences in a flow-
insensitive and non-relational way. It is expressed as an outer iteration that
completely re-analyzes each thread until the abstract interferences stabilize, and
so, can be implemented easily on top of existing non-parallel analyzers. Com-
pared to a non-parallel program analysis, the cost is multiplied by the number of
outer iterations required to stabilize interferences. This number remained very
low in our experiments (Sec. 5). More importantly, the overall cost is not related
to the (combinatorial) number of interleavings, but rather to the amount of
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abstract interferences I�, i.e., of actual communications between the threads.
The speed of convergence can be controlled by adapting the widening �N .

3.4 Weakly Consistent Memory Semantics P′
∗

The interleaving concrete semantics P∗ of Sec. 3.1, while simple, is not realistic.
A first issue is that, as noted by Reynolds in [21], such a semantics requires
choosing a level of granularity, i.e., some basic set of operations that are assumed
to be atomic. In our case, we assumed assignments and guards to be atomic. In
contrast, an actual system may schedule a thread within an assignment and
cause x to be 1 at the end of the program in Fig. 2(b) instead of the expected
value, 2. A second issue, noted by Lamport in [14], is that the latency of loads
and stores in a shared memory may break the sequential consistency in true
multiprocessor systems: threads running on different processors may not agree
on the value of a shared variable. E.g., in Fig. 2(a), each thread may acknowledge
the change of value of a flag after it has tested the other one, causing both critical
sections to be entered simultaneously. Moreover, Lamport noted in [15] that
reordering of independent loads and stores in one thread by the processor can
also break sequential consistency (for instance performing the load from flag2
after the store to flag1 instead of before in the left thread of Fig. 2(a)). More
recently, it has been observed [16] that optimizations in modern compilers have
the same ill-effect even on mono-processor systems: program transformations
that are perfectly safe on a thread considered in isolation (for instance, reordering
the assignment flag1← 1 and the test flag2 = 0) can cause non sequentially
consistent behaviors to appear. In this section, we show that the interference
semantics correctly handles these issues, by proving that it is invariant under a
“reasonable” class of program transformations.

Acceptable program transformations of a thread are defined with respect to
the path-based semantics � of Sec. 2.4. A transformation of a thread t is ac-
ceptable if it gives rise to a set π′(t) ⊆ Π of control paths such that every path
p′ ∈ π′(t) can be obtained from a path p ∈ π(body(entryt)) by a sequence of
elementary transformations from Def. 1 below, q � q′ indicating that the
statement sequence q in a path can be replaced with q′. These transformations
can only reduce the amount of errors and interferences, so that an analysis of the
original program is sound with respect to the transformed one. In Def. 1, we say
that X ∈ V is fresh if it does not occur in any thread; X ∈ V is local if it occurs
in the current thread only; s[e′/e] is the statement s where some but not neces-
sarily all occurrences of expression e may be changed into e′; var(e) is the set of
variables appearing in e; lval(s) is the set of variables modified by s; nonblock(e)
hods if evaluating e cannot block the program: ∀ρ, E� e �ρ = (V,−) with V 
= ∅;
e is deterministic if, moreover, |V | = 1; noerror(e) holds if evaluating e is always
error-free: ∀ρ, E� e �ρ = (−, ∅).
Definition 1 (Elementary path transformations)
1. Redundant store elimination: X ← e1;X ← e2 � X ← e2

when X /∈ var(e2) and nonblock(e1).
2. Identity store elimination X ← X � ε.
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3. Reordering of assignments: X1 ← e1;X2 ← e2 � X2 ← e2;X1 ← e1
when X1 /∈ var(e2), X2 /∈ var(e1), and nonblock(e1).

4. Reordering of guards: e1 �� 0?; e2 �� 0? � e2 �� 0?; e1 �� 0?
when noerror(e2).

5. Reorder guard before assignment: X1 ← e1; e2 �� 0? � e2 �� 0?;X1 ← e1
when X1 /∈ var(e2) and either nonblock(e1) or noerror(e2).

6. Reorder assignment before guard: e1 �� 0?;X2 ← e2 � X2 ← e2; e1 �� 0?
when X2 /∈ var(e1), X2 is local, and noerror(e2).

7. Assignment propagation: X ← e; s � X ← e; s[e/X ]
when X /∈ var(e), var(e) are local, and e is deterministic.

8. Sub-expression elimination: s1; . . . ; sn � X ← e; s1[X/e]; . . . ; sn[X/e]
when X is fresh, ∀i, var(e) ∩ lval(si) = ∅, and noerror(e).

9. Expression simplification: s � s[e′/e]
when ∀ρ, I, EI� e �(t, ρ, I) ) EI� e′ �(t, ρ, I).

Store latency can be simulated using rules 8 and 3. Breaking a statement into
several ones (i.e., reducing the granularity of atomicity) is possible with rules
7 and 8. Global optimizations, such as constant propagation and folding, can
be achieved using rules 7 and 9, while rules 1–6 allow peephole optimizations.
Additionally, thread transformations that respect the set of control paths (such
as loop unrolling or function inlining) are acceptable.

Given the set of transformed paths π′(t), the interleaved executions π′∗ and
the semantics P′∗ can be defined as in (10), (11):

π′∗
def= { p | ∀t ∈ T , projt(p) ∈ π′(t) }

P′∗
def= Ω, where (−, Ω) = �∗�π

′
∗ �(E0, ∅) .

(16)

The following theorem extends Thm. 5 to transformed programs:

Theorem 7. P′∗ ⊆ PI.

However, it is not complete. The two semantics coincide, for instance, in the
program of Fig. 2(a). However, in the case of Fig. 2(b), the interference semantics
assumes that y can take any positive value, while the interleaving semantics
after program transformation still only allows the values 1 and 2. Note also that
Thm. 7 holds for our “reasonable” collection of program transformations, but
may not hold when considering “unreasonable” ones. For instance, flag1 ← 1
should not be replaced (e.g., by a misguided prefetching optimizer) with flag1
← 42; flag1 ← 1 in Fig. 2(a), as this would cause the value 42 to be possibly
seen by the other thread. Our interference semantics disallows such “out-of-thin-
air” values to be introduced. This is consistent with other semantics, such as the
Java one [16,22]. Another example of invalid transformation is the reordering of
assignments X1 ← e1;X2 ← e2 � X2 ← e2;X1 ← e1 when e1 may block the
program (e.g., due to a division by 0) as the transformed program could expose
errors in e2 that cannot occur in the original program. Nevertheless, Def. 1 is not
exhaustive and could be extended with some other “reasonable” transformations.
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4 Parallel Programs with a Scheduler

The language and semantics of the preceding section are now extended to handle
explicit synchronization primitives and a real-time scheduler.

4.1 Priorities and Synchronization Primitives

We denote by M a finite, fixed set of non-recursive mutual exclusion locks, so-
called mutexes. The language (1) of Sec. 2.1 is enriched with primitives to control
mutexes and scheduling as follows:

stat ::= lock(m) (mutex locking, m ∈M)
| unlock(m) (mutex unlocking, m ∈ M)
| X ← islocked(m) (mutex testing, X ∈ V , m ∈M)
| yield (thread pause)

(17)

These new statements are considered to be atomic and the set of paths of a
program (7) is extended by stating π(s) def= { s } for them. We also assume that
threads have fixed and distinct priorities. Thus, we denote threads in T simply
by numbers from 1 to |T |, being understood that thread t has a strictly higher
priority than thread t′ when t > t′.

Our scheduling model is that of real-time processes, found in embedded sys-
tems (e.g, the ARINC 653 specification [2]) and as an extension to POSIX
threads. Moreover, we consider that a single thread can execute at a given time
(e.g., when all threads share a single processor). In this model, the unblocked
thread with the highest priority always runs. All threads start unblocked but
may block voluntarily by locking a mutex that is already locked or by yielding,
which allows lower priority threads to run. Yielding denotes blocking for a non-
deterministic amount of time, which is useful to model timers (as we abstract
away actual time) or waiting for some external resource. A lower priority thread
can be preempted when unlocking a mutex if a higher priority thread is waiting
for this mutex. It can also be preempted at any point by a yielding higher pri-
ority thread that wakes up non-deterministically. Thus, we cannot assume that
a blocked thread is necessarily waiting at a synchronization statement.

This scheduling model is precise enough to take into account fine mutual ex-
clusion properties that would not hold if we considered arbitrary preemption or
true parallel executions on concurrent processors (as found, e.g, in desktops). For
instance, in Fig. 3, the high priority thread avoids a call to lock / unlock by
testing with islocked whether the low priority thread acquired the lock and, if
not, executes its critical section (modifying Y and Z) confident that the low pri-
ority thread cannot execute and enter its critical section before the high priority
thread explicitly yields. Such reasoning is required to analyze precisely our tar-
get application (Sec. 5), and requires the real-time scheduler and single-processor
hypotheses assumed in this section.
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low priority high priority

lock(m); X ← islocked(m);
Y ← 1; if X = 0 then
Z ← 1; Z ← 2;
T ← Y − Z; Y ← 2;
unlock(m); yield;

Fig. 3. Using priorities to ensure mutual exclusion

4.2 Concrete Scheduled Interleaving Semantics PH

We now refine the semantics of Sec. 3 to take scheduling into account, starting
with the concrete interleaving semantics P∗ of Sec. 3.1. Interleavings that do
not respect mutual exclusion or priorities are excluded, and thus, we observe
fewer behaviors. This is materialized by the dotted ⊆ arrows between concrete
semantics in Fig. 1 (no such property holds for abstract semantics as they are
generally non-monotonic due to the use of widenings).

We define a domain of scheduler states H that associates to each thread
whether it is ready, yielding, or waiting for some mutex, as well as the set of
mutexes it holds:H def= (T → { ready, yield ,wait(m) |m ∈M})×(T → P(M)).
The domain of statements becomes: DH def= P(H×E)×P(L). The semantics of
atomic statements is decomposed into three steps. Firstly, the function enabledt :
DH → DH that keeps only the states where a given thread t can run:

enabledt(R,Ω) def= ({ ((b, l), ρ) ∈ R | b(t) = ready ∧ ∀t′ > t, b(t′) 
= ready }, Ω) .

Secondly, the semantic function S′H� s, t � for atomic statements s in thread t:

S′H�yield, t �(R,Ω) def= ({ ((b[t �→ yield ], l), ρ) | ((b, l), ρ) ∈ R }, Ω)
S′H� lock(m), t �(R,Ω) def= ({ ((b[t �→ wait(m)], l), ρ) | ((b, l), ρ) ∈ R }, Ω)
S′H�unlock(m), t �(R,Ω) def= ({ ((b, l[t �→ l(t) \ {m }]), ρ) | ((b, l), ρ) ∈ R }, Ω)
S′H�X ← islocked(m), t �(R,Ω) def=

({ ((b, l), ρ[X �→ 0]) | ((b, l), ρ) ∈ R, ∀t′ ∈ T , m /∈ l(t′) } ∪
{ ((b, l), ρ[X �→ 1]) | ((b, l), ρ) ∈ R, ∃t′ ∈ T , m ∈ l(t′) }, Ω)

S′H� s, t �(R,Ω) def=
({ ((b, l), ρ′) | ((b, l), ρ) ∈ R, (R′,−) = S� s �({ ρ }, Ω), ρ′ ∈ R′ }, Ω′)
where (−, Ω′) = S� s �(R,Ω), for all other statements s, using (3).

Thirdly, a scheduler step that wakes up yielding threads non-deterministically
and gives each available mutex to the highest priority thread waiting for it:

sched(R,Ω) def= ({ ((b′, l′), ρ) | ((b, l), ρ) ∈ R }, Ω), where
∀t, if b(t) = wait(m) ∧ ∀t′ 
= t, m /∈ l(t′) ∧ ∀t′ > t, b(t′) 
= wait(m)

then b′(t) = ready and l′(t) = l(t) ∪ {m }
else l′(t) = l(t) and b′(t) = b(t) ∨ (b′(t) = ready ∧ b(t) = yield) .

The semantics of an atomic statement s in a thread t combines all three steps:

SH� s, t �
def= sched ◦ S′H� s, t � ◦ enabledt . (18)
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The semantics �H�P � of a set P of interleaved paths and the semantics PH of
the program are then defined, similarly to Sec. 3.1, (9)–(11), as:

�H�P �(R,Ω) def=⊔ { (SH� sn, tn � ◦ · · · ◦ SH� s1, t1 �)(R,Ω) | (s1, t1); . . . ; (sn, tn) ∈ P }
PH

def= Ω, where (−, Ω) = �H�π∗ �({h0} × E0, ∅)
(19)

where h0
def= (λt. ready , λt. ∅) denotes the initial scheduler state. As in Sec. 3.1,

many control paths in π∗ are unfeasible, i.e., return an empty set of environments,
some of which are now ruled-out by the enabledt function. Nevertheless, errors
from a feasible prefix of an unfeasible path are still taken into account. This
includes, in particular, any error that occurs before a deadlock.

4.3 Scheduled Weakly Consistent Memory Semantics P′
H

In addition to restricting the interleaving of threads, synchronization primitives
also have an effect when considering weakly consistent memory semantics: they
enforce some form of sequential consistency at a coarse granularity level. More
precisely, the compiler and processor handle synchronization statements spe-
cially, introducing the necessary flushes into memory and register reloads, and
refraining from optimizing across them.

We thus adapt the semantics P′∗ of Sec. 3.4 as follows. We consider a trans-
formed thread as a set of paths π′(t) obtained from π(body(entry t)) using elemen-
tary path transformations from Def. 1, but no transformation should cross any
synchronization primitive lock(m), unlock(m), yield orX ← islocked(m). Let
π′∗ be defined as before as the interleaving of paths from all π′(t). The scheduled
weakly consistent memory semantics is, based on (19):

P′H
def= Ω, where (−, Ω) = �H�π′∗ �({h0} × E0, ∅) . (20)

4.4 Concrete Scheduled Interference Semantics PC

We now provide a structured version of the scheduled interleaving semantics
PH. Similarly to Sec. 3.2, it is based on a notion of interferences, and it is not
complete. To avoid considering interferences between parts of threads that are
in mutual exclusion, interferences are partitioned with respect to a thread-local
view of scheduler configurations. The finite set of configurations C is defined as:

C def= P(M)× P(M)× {weak , sync(m) |m ∈M}
where the first subset of M denotes the mutexes locked by the thread while
the second one denotes the mutexes held by no thread at all (as tested with
islocked). The last component in C allows distinguishing between two kinds of
interferences, which are depicted in Fig. 4: weakly consistent interferences (weak
component in C) corresponding to read / write pairs not protected by mutual
exclusion (Fig. 4.(a)), and well synchronized interferences (sync(m) component
in C) where both the read and the write are protected by the same mutex m
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Fig. 4. Weakly consistent versus well synchronized scheduled interferences

(Fig. 4.(b)). Weakly consistent interferences behave as in Sec. 3.2. For well syn-
chronized accesses, only the last write before unlocking a mutex affects a read,
and only until the variable read is overwritten while the mutex is held. The
partitioned domain of interferences is then: I def= T × C × V × R.

The semantics of a variable X read from an environment ρ ∈ E by a thread
t is similar to (12), but we only apply the weakly consistent interferences from
I ⊆ I that are not in mutual exclusion with a current configuration c ∈ C:
EC�X �(t, c, ρ, I) def=

({ ρ(X) } ∪ { v | (t′, c′, X, v) ∈ I, t 
= t ∧ excl(c, c′) }, ∅)
where excl((l, u, s), (l′, u′, s′)) def⇐⇒ l ∩ l′ = u ∩ l′ = u′ ∩ l = ∅ ∧ s = s′ .

(21)

Other constructions are handled as in (2), where t, c, I are passed unused and
unchanged. To handle precisely the islocked primitive in code similar to Fig. 3, it
is necessary to represent some relationship between environments and scheduler
states. Hence, environments are also partitioned with respect to C, although
the third component of configurations is not used and always set to weak . The
semantic domain of statements is now DC def= P(C ×E)×P(L)×P(I), partially
ordered by point-wise set inclusion. The semantics of assignments is similar to
that of (13), applied point-wise to each configuration:

SC�X ← e, t �(R,Ω, I) def= (∅, Ω, I) �⊔
(c,ρ)∈R ({ (c, ρ[X �→ v]) | v ∈ V }, Ω′, { (t, c,X, v) | v ∈ V })

where (V,Ω′) = EC� e �(t, c, ρ, I) .
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The semantics of synchronization primitives is as follows:

SC� lock(m), t �(R,Ω, I) def=
({ ((l ∪ {m }, ∅, s), ρ′) | ((l,−, s), ρ) ∈ R, ρ′ ∈ in(t, l,m, ρ, I) },
Ω, I ∪⋃ { out(t, l,m′, ρ) | ((l, u,−), ρ) ∈ R, m′ ∈ u })

SC�unlock(m), t �(R,Ω, I) def=
({ ((l \ {m }, u, s), ρ) | ((l, u, s), ρ) ∈ R },
Ω, I ∪⋃ { out(t, l \ {m },m, ρ) | ((l,−,−), ρ) ∈ R })

SC�yield, t �(R,Ω, I) def=
({ ((l, ∅, s), ρ) | ((l,−, s), ρ) ∈ R },
Ω, I ∪⋃ { out(t, l,m′, ρ) | ((l, u,−), ρ) ∈ R, m′ ∈ u })

(22)

SC�X ← islocked(m), t �(R,Ω, I) def=
({ ((l, u ∪m∗t , s), ρ′[X �→ 0]) | ((l, u, s), ρ) ∈ R, ρ′ ∈ in(t, l,m, ρ, I) }∪
{ ((l, u \ {m }, s), ρ[X �→ 1]) | ((l, u, s), ρ) ∈ R },
Ω, I ∪ { (t, c,X, v) | v ∈ { 0, 1 }, (c,−) ∈ R })

where m∗t
def= {m } if no thread t′ > t can lock m, and ∅ otherwise

in(t, l,m, ρ, I) def=
{ ρ′ | ∀X ∈ V , ρ′(X) = ρ(X) ∨ (t′, (l′, ∅, sync(m)), X, ρ′(X)) ∈ I,
t 
= t′, l ∩ l′ = ∅ }

out(t, l,m, ρ) def= { (t, (l, ∅, sync(m)), X, ρ(X)) |X ∈ V } .
The functions in(t, l,m, ρ, I) and out(t, l,m, ρ) respectively model entering and
exiting a critical section protected by a mutex m in a thread t that also holds
the mutexes in l: out collects a set of well synchronized interferences from an
environment, while in applies them to an environment. Obviously, lock(m) uses
in on m, while unlock uses out . Additionally, X ← islocked(m) creates two
partitions: one where X = 1, and one where X = 0 and m is assumed to be
unlocked, which is remembered in u. However, the assumption thatm is unlocked
only stands if the thread cannot be preempted at any point by a higher priority
thread lockingm, hence the side-condition onm∗t — in practice, this condition is
checked by remembering in the semantics which locks are issued by each thread;
we do not present this for lack of space. Moreover, it stands only until the thread
calls a blocking primitive (i.e., lock or yield), which gives the opportunity to a
lower priority thread to lock m. Thus, blocking primitives use out to exit critical
sections protected by all m ∈ u. Note that by replacing X ← islocked(m) with
X ← [0, 1], we would obtain a less precise semantics, but which is also sound for
true parallel or non real-time systems. We do not show the semantics of guards
and non-atomic statements; they can be derived from (3) easily. The semantics
PC of a program has the same fixpoint form as (14):

PC
def= Ω, where (Ω,−) def= lfpλ(Ω, I).⊔

t∈T let (−, Ω′, I ′) = SC� entryt(), t �({c0} × E0, Ω, I) in (Ω′, I ′)
(23)

where the initial configuration is c0
def= (∅, ∅,weak) ∈ C.

The semantics is sound with respect to that of Secs. 4.2–4.3:

Theorem 8. PH ⊆ PC and P′H ⊆ PC .
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As in Sec. 3.4, this semantics is not complete. An additional loss of precision
comes from the handling of well synchronized accesses. A main limitation is that
such accesses are handled in a non-relational way, hence PC cannot represent
relations enforced at the boundaries of critical sections but broken within, while
PH can. For instance, in Fig. 3, we cannot prove that Y = Z holds outside critical
sections, but only that Y, Z ∈ [1, 2]. This shows in particular that even programs
without data-races have behaviors in PC outside the sequentially consistent ones.
Yet, we can prove that T = 0, i.e., the assignment to T is free from interference.
Our implementation is actually a little smarter than (22) and uses a modified out
that does not consider interferences for variables not modified while m is held.
Finally, our implementation can also report data-races by simply inspecting the
set of interferences during each assignment.

4.5 Abstract Scheduled Interference Semantics P�
C

The interference semantics with scheduler PC can be abstracted similarly to PI .
As in Sec. 3.3, we assume the existence of two abstract domains E� and N �

abstracting respectively P(E) and P(R). We lift these domains by partitioning
under C: D�C def= (C → E�) × P(L) × I�, where abstract interferences are in
I� def= (T × C × V) → N �. The concretization is: γ(R�, Ω, I�) def= ({ (c, ρ) | ρ ∈
γE(R�(c)) }, Ω, { (t, c,X, v) | v ∈ γN (I�(t, c,X)) }). Sound abstract transfer func-
tions can be derived easily from those in E� and N �. For instance, the assignment
is similar to that of Sec. 3.3, except that it is applied point-wise to each R�(c)
and it only considers the abstract interferences from the configurations not in
mutual exclusion with c. Synchronisation primitives are implemented mostly by
joining partitions (using ∪�E) and copying non-relational information between
E� and N � (for in and out). Transfer functions for non-atomic statements are
derived as in (5). Finally, the abstract analysis P�C computes a fixpoint over the
interferences identical to (15). The resulting analysis is sound:

Theorem 9. PC ⊆ P�C.

Due to partitioning, P�C is less efficient than P�I . However, partitioned environ-
ments are mostly empty: Sec. 5 shows that, in practice, at most program points,
R�(c) = ⊥�E except for a few of configurations. Partitioned interferences are less
sparse because, being flow-insensitive, they accumulate information for configu-
rations reachable from any program point. However, this is not problematic: as
interferences are non-relational, a large number of partitions can be manipulated
efficiently. Thanks to partitioning, the precision of P�C is much better than P�I in
the presence of locks and priorities. For instance, P�C can discover that T = 0 in
Fig. 3, while the analysis of Sec. 3.3 would only discover that T ∈ [−1, 1] due to
spurious interferences from the high priority thread.

5 Experimental Results

The abstract analysis of Sec. 4.5 has been implemented in Thésée, our proto-
type analyzer. It analyzes C without recursion nor dynamic memory allocation.
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It is sound, and checks for integer and float arithmetic overflows, divisions by
zero, invalid array and pointer accesses, and assertion failures. It also reports
data-races, but ignores other parallel-related hazards. In particular, it does not
check for dead-locks nor unbounded priority inversions. In fact, they cannot oc-
cur in our target application as all locks have a timeout. Thésée is based on
Astrée [5], a static analyzer for synchronous embedded C software, which was
successfully applied to prove the absence of run-time errors in large critical con-
trol/command software from Airbus [10]. Thésée benefited directly from Astrée’s
numerous abstract domains and iteration strategies targeting embedded C code.
The adaptation to the analysis of parallel programs, including the addition of
the interference fixpoint iterator and the scheduler partitioning domain, required
adding approximately 6 KLines of code to the 100 KLines analyzer, and did not
require any structural change.

Our target parallel application is another large program from Airbus consist-
ing of 1.6 MLines of C code and 15 threads. It runs under an ARINC 653 real-
time OS [2]. The code is quite complex as it mixes string formatting, list sorting,
network protocols (e.g., TFTP), and automatically generated synchronous logic.
The program was completed with a 2 500 line hand-written model of the ARINC
653 OS implementing the various API calls, in C enriched with analyzer-specific
intrinsics (mutex lock, unlock, etc.).

The analysis currently takes 14h on our 2.66 GHz 64-bit intel server using
one core. An important result is that only four iterations are required to stabi-
lize abstract interferences. Moreover, there are a maximum of 52 partitions for
abstract interferences and 4 partitions for abstract environments, so that the
analysis fits in 32 GB of memory. The analysis generates around 7600 alarms.
This high number is understandable: Thésée is naturally tuned for avionic con-
trol/command software as it inherits abstract domains E�, N � from Astrée, but
the analyzed program is not limited to control/command processing. We started
adapting these domains and can already report some improvements compared
to earlier experimental results (50h and 12000 alarms [4, § VI]), using the same
iterator and scheduler partitioning. However, independently from the choice of
abstract domains E�, N �, a better treatment of well synchronized interferences
will surely be required to achieve zero false alarms. Following the design-by-
refinement of Astrée [5], we have focused on the analysis of a single (albeit large
and complex) real-life software and started refining the analyzer to lower the
number of alarms.

6 Related Work

There are far too many works on the semantics and analysis of parallel programs
to provide a fair survey and comparison here. Instead, we focus on a few works
that, we hope, provide a fruitful comparison with ours.

The idea of attaching to each thread location a local invariant and to handle
proofs of parallel programs as that of sequential programs with interferences
dates back to the Hoare-style proof method of Owicki and Gries [19] and Lamport
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[13] and has been well studied since (see [9] for a modern account and a partial
survey). It has been studied from an Abstract Interpretation point of view in
[8] and applied to static analysis. Two examples are the analysis of C with
POSIX threads by Carré and Hymans [6] and that of Java with its weak memory
model by Ferrara [11]. Unlike those, we do not handle thread creation, but we
do take into account scheduler properties. Fully flow-insensitive analyses, e.g.
Steensgaard’s popular points-to analysis [23], naturally handle parallel programs.
Unfortunately, the level of accuracy required to prove safety properties demands
the use of (at least partially) flow-sensitive and relational methods, which we do.

Model-checking also has a long history of verifying parallel systems, including
recently weak memory models [3]. Partial order reduction methods [12] are used
to limit the number of interleavings to consider, with no impact on completeness.
In contrast, we abstract the problem sufficiently so that no interleaving need
to be considered at all, at the cost of completeness. Unlike context-bounded
approaches [20], our method considers all executions until completion.

Weakly consistent memory models have been studied mostly for hardware [1].
Pugh pioneered its use in programming language semantics, culminating with
the Java memory model [16]. It is described in terms of implicit conditions on
interleaved execution traces and is quite complex. We chose instead a generative
approach based on control path transformations matching closely optimization
models, similarly to the work of Saraswat et al. [22]. Our focus is on models
that are realistic and can be abstracted into interference semantics suitable for
efficient static analysis.

7 Conclusion

We presented a static analysis to detect all run-time errors in embedded C soft-
ware with several threads communicating through a shared memory with weak
consistency and scheduled according to strict priorities. Our method is based
on a notion of interferences and partitioning with respect to a scheduler state.
It can be implemented on top of analyzers for sequential programs, leveraging
a growing library of abstract domains. Promising early experimental results on
real code demonstrate the scalability of the approach.

A broad avenue for future work is to bridge the gap between the interleaving
semantics and its incomplete abstraction in terms of interferences. Abstracting
well synchronized accesses in a non-relational way is a severe limitation that
we wish to suppress. We also wish to add support for other synchronization
primitives, such as condition variables and atomic variables, and exploit more
properties of real-time schedulers. A more precise analysis may require the use
of history-sensitive abstractions, an avenue we wish to explore. Moreover, more
precise or more general interference semantics could be designed by adjusting
the notion of weak memory consistency. Finally, we wish, in future work, to an-
alyze errors specifically related to parallelism, such as dead-locks, live-locks, and
priority inversions, including quantitative time-related properties (e.g., bounded
priority inversions).



Static Analysis of Run-Time Errors 417

References

1. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
IEEE Comp. 29(12), 66–76 (1996)

2. Aeronautical Radio, Inc. (ARINC). ARINC 653, http://www.arinc.com/
3. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification prob-

lem for weak memory models. In: 37th ACM SIGACT/SIGPLAN Symp. on Prin-
ciples of Prog. Lang., pp. 7–18. ACM, New York (2010)

4. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
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Abstract. We employ automata over infinite alphabets to capture the
semantics of a finitary fragment of ML with ground-type references. Our
approach is founded on game semantics, which allows us to translate
programs into automata in such a way that contextual equivalence is
characterized by a finitary notion of bisimilarity. As a corollary, we derive
a decidability result for a class of first-order programs, including open
ones that contain unspecified first-order procedures.

1 Introduction

Recent years have seen a surge of interest in automata-theoretic models over
infinite alphabets. It stemmed from the realization that finite automata, while
immensely successful, do not lend satisfactory representations of a variety of in-
teresting phenomena. In program verification, for instance, one might want to
consider the interaction of unboundedly many agents, each of which issues re-
quests that have to be traceable. In database theory, in turn, integrity constraints
are often expressed in terms of data values possibly drawn from an infinite set
(as opposed to data labels, which come from a finite one). Since giving automata
too much power in manipulating values from an infinite domain quickly results
in undecidability, decidable models over infinite alphabets have to be restricted
so that the values can only be tested for equality. A number of such formalisms
have been proposed in recent years: register automata [7], pebble automata [14]
and data automata [3], to name a few.

The general goal of our paper is to draw techniques from these developments,
adapt them to use in programming language semantics so that, ultimately, they
can be applied to program verification: in our case, to automated equivalence
checking.

Our results will concern Reduced ML [16], which is a subset of ML with
ground-type references only (neither higher-order functions nor reference names
can be stored in memory). This is a simple fundamental language that combines
functional and imperative programming in a minimal fashion and in the style of
ML. Despite its simplicity, it gives rise to a subtle theory of contextual program
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equivalence, which comprises elements of secrecy, freshness, locality and object
identity. Here are several sample (in)equivalences that can be (dis)proved in an
automated fashion using our results.

– Dynamically generated reference names are private1.

� letn = ref(0) in λxint ref .(x =int ref n) ∼= λxint ref .false : int ref → bool

– Intermediate states of computation are invisible.

x : int ref � x := 0;x := 1 ∼= x := 1 : unit

– Local declarations and function abstraction do not commute in general.

� λxunit.letn = ref(0) inn 
∼= letn = ref(0) in (λxunit.n) : unit→ int ref

– But they do sometimes, at the cost of explicit initialization.

f : int ref → int � λxunit.letn = ref(0) in f(n)
∼= letn = ref(0) inλxunit.n := 0; f(n) : unit→ int

– In a similar fashion local variables can be globalized.

guard : unit→ int, body : int ref → unit �
while guard() do (letn = ref(0) in body(n))
∼= letn = ref(0) in (while guard() do (n := 0; body(n))) : unit

– Not all differences between names can be picked up by the environment, as
reference names are not storable.

f : int ref → unit � letn1 = ref(0) in letn2 = ref (0) in f(n1); (n2 := !n1);n2∼= letn = ref 0 in f(n);n : int ref

In order to derive decidability results for program equivalence, we shall consider
a finitary fragment of Reduced ML: with finite datatypes, no recursion and
restricted higher-order types. To be exact, our approach will be applicable to
terms Γ � M : θ, where θ as well as the type of each identifier in Γ is of the
form β or β → β, and β stands for any base type (unit, int or int ref), like in all
of the examples given above.

To enable a systematic and computer-aided verification of equivalence between
such terms, we translate them into a special class of automata over infinite
alphabets in such a way that languages accepted by the automata will be faithful
representations of their fully abstract game semantics [12].

Game semantics views interaction as an exchange of moves (play) between two
players representing the environment (Opponent) and the program (Proponent)
respectively. In our particular game model the moves will contain (reference)
names drawn from a countable set of locations. Each move will also be equipped
with a carefully selected fragment of the current heap, represented as a set of
1 x =int ref r denotes reference equality test.
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(name,value) pairs. The involvement of an infinite set of names makes it very
natural to view such plays as words over an infinite alphabet.

The automata we employ are deterministic variants of fresh-register au-
tomata [17], which themselves build upon register automata [7]: each automaton
will be equipped with a finite set of registers in which names can be stored for
future reference. The automata are designed in such a way that, in the spirit of
register automata, they can classify each name coming from the environment as
known (currently stored in one of the registers) or as locally fresh – not present
in current memory. On the other hand, the names that a program can send to its
environment will be either those already in its memory, or globally fresh ones, i.e.
names that have not been encountered thus far, but can be obtained on demand
by invoking a fresh-name generator, in the style of fresh-register automata. We
therefore see that local freshness is inherently a property of Opponent, while
global freshness is specific to Proponent.

Our decision procedure comprises three stages.

– First we construct automata that represent term behaviour (in the sense
of game semantics) under the liberal assumption that the environment is
capable of distinguishing all names created by the program and modifying
the corresponding values at any time.

– Subsequently we refine the automata so that they capture exactly the inter-
actions with contexts of Reduced ML.

– Finally, we introduce a finite notion of bisimilarity on the automata to as-
certain that they represent equivalent interactions. Because the underlying
game model is fully abstract, this relates contextual equivalence to decidable
bisimilarity.

On the whole, our work combines automata-theoretic and semantic insights to
develop a new verification routine.

Related Work. We make a notable step towards a full classification of decid-
able fragments of Reduced ML. Our results apply to reference types, while all
earlier work [6,10,13] on that topic was based on the game model of RML [1],
a variant of Reduced ML with “bad variables” (terms of type int ref with des-
ignated methods for reading and writing). Consequently, when reference types
were present in a typing judgment the induced notion of equivalence was strictly
stronger than in Reduced ML proper. For example, x := !x and () could be dis-
tinguished by a bad variable that crashes on dereferencing. Another drawback
of RML was that reference equality could not be studied, as it did not make
sense. RML had a definite advantage though, as the associated game model was
based on a finite set of moves. Equivalence in Reduced ML turns out much
more subtle and the corresponding fully abstract game model [12] is unsuited to
finite-alphabet representations. It so happens that the presence of bad variables
does not change the induced observational equivalence in the call-by-name case
of Idealized Algol [8], where a complete map of decidable fragments already ex-
ists [11] and increases in complexity (of deciding equivalence) are tightly linked
to type-theoretic order.
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θ ::= unit | int | int ref | θ → θ

Γ � () : unit
i ∈ {0, · · · ,max}

Γ � i : int
Γ �M : θ

π(Γ ) �M : θ
π ∈ Perm(Γ )

Γ �M : int Γ �M0 : θ · · · Γ � Mmax : θ
Γ � case(M)[M0, · · · , Mmax ] : θ

Γ � M : int Γ � N : unit
Γ � while M doN : unit

Γ �M : int ref
Γ � !M : int

Γ �M : int ref Γ � N : int
Γ � M :=N : unit

Γ � M : int
Γ � ref M : int ref

Γ, x : θ � x : θ
Γ �M : θ → θ′ Γ � N : θ

Γ � MN : θ′
Γ, x : θ �M : θ′

Γ � λxθ.M : θ → θ′

Fig. 1. Syntax of RedMLfin

Contextual equivalence in ML-like languages, also those richer than Reduced
ML, has also been studied extensively using relational techniques [15,2,4], albeit
without decidability results.

2 Finitary Reduced ML

Finitary Reduced ML (RedMLfin) is the (call-by-value) λ-calculus over the
ground types unit, int, int ref augmented with (finitely many) integer constants
0, · · · ,max , branching, looping and reference manipulation. Its typing rules are
given in Figure 1. Note that we have not included reference equality testing,
as it is expressible [15] (assuming max > 0). For instance, one can define
eqint ref : int ref → int ref → int to be

λxint ref .λyint ref . let vx = ref !x in
let vy = ref !y in
let b = ref 0 in

(x := 0; y := 1; (if !x = 1 then b := 1 else ());x := !vx; y := !vy; !b).

In the above and in what follows, we write

– letx =M inN for the term (λxθ.N)M ;
– M ;N for the term (λxθ.N)M , if x is not free in N ;
– ifM thenM1 elseM0 for case(M)[M0,M1, · · · ,M1];
– and M =int ref N for eqint refM N .

We refer the reader to [16] for a detailed exposition of the operational semantics.

Definition 1. Two terms-in-context Γ � M : θ and Γ � N : θ are con-
textually equivalent if, and only if, for any RedMLfin-context C[−] such that
� C[M ], C[N ] : unit, C[M ] evaluates to () iff C[N ] does. Then we write
Γ �M ∼= N : θ.
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In this paper we show that contextual equivalence is decidable for a fragment of
RedMLfin, called RedMLβ→βfin , to be defined next.

Definition 2. Suppose Γ = [x1 : θ1, · · · , xm : θm]. The term-in-context Γ �
M : θ belongs to RedMLβ→βfin provided each of θ1, · · · , θm, θ is generated by the
grammar

θ ::= β | β → β
in which β stands for any base type (unit, int or int ref).

In Section 4 we shall define a class of automata over infinite alphabets to which
terms of RedMLβ→βfin will be translated in Sections 5 and 6. In order to make the
translation more concise, we are going to focus on translating terms in canonical
form only. The canonical shapes are defined as follows.

C ::= () | i | xint ref | case(xint)[C, · · · ,C] | (while (!xint ref) do C); C |
(xint ref := i); C | let yint =!xint ref in C | letxint ref = ref (0) inC |
λxβ .C | let yβ = z() inC | let yβ = z i inC | let yβ = z xint ref in C

Lemma 3. Let Γ � M : θ be an RedMLβ→βfin -term. There exists a RedMLβ→βfin -
term Γ � CM : θ in canonical form, effectively constructible from M , such that
Γ �M ∼= CM .

Proof. CM can be obtained via a series of η-expansions, β-reductions and com-
muting conversions involving let and case. ��

3 Game Semantics

In this section we briefly recapitulate the game semantics of Reduced ML [12],
insofar as it concerns modelling RedMLβ→βfin . We present it in a more concrete
way, specialized to the types of RedMLβ→βfin , along with examples that motivate
the respective technical conditions.

Game semantics views computation as a dialogue between the environment
(Opponent, O) and the program (Proponent, P ). The game model we are
going to sketch falls into the realm of nominal game semantics : moves may
involve names drawn from an infinite set A. Consequently, we can apply name-
permutations to moves, plays and strategies. Put otherwise, they form nominal
sets [5]. We begin with some auxiliary definitions before specifying what it means
to play our games.

Definition 4. – For every type θ let us define the associated set of labels Lθ
as follows: Lunit = {�}, Lint = {0, · · · ,max}, Lint ref = A, Lβ→β′ = {�}. We
shall write L for the set of all labels.

– Given a RedMLβ→βfin typing judgment Γ �M : θ we write TΓ�θ for the set of
associated tags, defined to be

{cx, rx | (x : θx) ∈ Γ, θx 
≡ β} ∪ {r↓} ∪ {c, r | θ 
≡ β}
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Thus, for each function-type identifier x in Γ , we have introduced tags cx and rx.
They can be viewed as calls and returns related to that identifier. Similarly, r↓
can be taken to correspond to the fact thatM was successfully evaluated, and, if
θ is a function type, c and r refer respectively to calling the corresponding value
and obtaining a result.

Given Γ � M : θ, � ∈ L and t ∈ TΓ�θ, we shall say that the pair (�, t) is
consistent if the following conditions are satisfied.

– If t = r↓ then � ∈ Lθ.
– If t = cx then θx ≡ β → β′ and � ∈ Lβ .
– If t = rx then θx ≡ β → β′ and � ∈ Lβ′ .
– If t = c then θ ≡ β → β′ and � ∈ Lβ .
– If t = r then θ ≡ β → β′ and � ∈ Lβ′ .

Suppose Γ = [x1 : θ1, · · · , xm : θm]. The set of initial moves IΓ is defined to be
{(�1, · · · , �m) | �i ∈ Lθi , 1 ≤ i ≤ m}.

Definition 5. A play2 over Γ � θ is a (possibly empty) sequence of the form
ι(�1, t1) · · · (�k, tk) such that ι ∈ IΓ , all pairs (�i, ti) are consistent and t1 · · · tk
is a prefix of a word matching Xr↓(cXr)∗, where X = (

∑
(x:θx)∈Γ
θx �≡β

(cx rx))∗. We

assume that Xr↓(cXr)∗ degenerates to Xr↓ if c, r are not available (i.e. θ is a base
type). A play is complete whenever t1 · · · tk matches a word from Xr↓(cXr)∗.

The shape of plays can be thought of as a record of computation. First, calls are
being made to the free identifiers of function type (expression X), then a value
is reached (r↓) and, if the type of the value is a function type, we have a series
of calls and returns with external calls in-between ((cXr)∗).

We shall refer to ι and (�i, ti) as moves. Moves are assigned ownership as
follows: ι and those with tags rx, c belong to O (environment) and the rest (tags
cx, r↓, r) belong to P (program). We shall write o and p to range over O- and
P -moves respectively. We shall say that � ∈ A is an O-name (resp. P -name) in a
given play s, provided the first occurrence of � was in an O-move (resp. P -move).
The set of O- and P -names in s will be denoted by O(s) and P (s) respectively.

The fully abstract game model of Reduced ML [12] is based on a more com-
plicated notion of plays, in which each move can contain a store. Since we are
considering a language with ground-type references only, i.e. references names
themselves cannot be stored, programs will not be able, in general, to remember
all names obtained from the environment. Accordingly, we shall not insist that
the stores contain values for all names introduced by O, but only those that are
potentially available to the program. Intuitively, these are environment names
that the program has managed to bind. The notion of P -view helps to capture
this concept.

2 Readers familiar with game semantics will notice that we omit justification pointers
in plays. This is because they are uniquely recoverable with the help of tags.
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Definition 6. Given a play s, we define its P -view �s� as follows.

�ι� = ι
�s (�r, rx)� = �s� (�r, rx)
�s (�c, c)� = �s′� (�r↓ , r↓) (�c, c) s = s′(�r↓ , r↓)s

′′

�s p� = �s� p

It can be checked that the P -view of a play is also a play. Given a play s, the
set AvP(s) of P -available names is defined as P (s)∪O(�s�). We can now define
a new notion of play, in which players can play moves equipped with stores
(moves-with-store, for short).

Definition 7. A play-with-store over Γ � θ is a sequence mΣ1
1 · · ·mΣk

k of
moves-with-store satisfying the conditions below.

– m1 · · ·mk is a play over Γ � θ.
– For any P -move m2i = (�2i, t2i), if �2i ∈ O(m1 · · ·m2i) then �2i ∈
�m1 · · ·m2i−1�.

– For any 1 ≤ i ≤ k, Σi is a partial function from A to {0, · · · ,max} such
that dom(Σi) = AvP(m1 · · ·mi).

Using the richer notion of play we define strategies.

Definition 8. A strategy σ is a non-empty, even-prefix closed set of plays-with-
store closed under name-permutation. Given a play s, let us write [s] for its
equivalence class with respect to name-permutation. A deterministic strategy is
also required to satisfy the following condition: whenever s1oΣ1

1 p
Σ′

1
1 , s2o

Σ2
2 p

Σ′
2

2 ∈
σ, [s1oΣ1

1 ] = [s2oΣ2
2 ], then [s1oΣ1

1 p
Σ′

1
1 ] = [s2oΣ2

2 p
Σ′

2
2 ].

We have shown how to assign deterministic strategies to programs of Reduced
ML in [12]. Let us write �Γ �M : θ�0 for the deterministic strategy correspond-
ing to the RedMLβ→βfin -term Γ �M : θ.

Example 9. – � � λxunit.letn = ref(0) inn : unit→ int ref�0 consists of plays of
the following shape

ι∅ (�, r↓)∅ (�, c)Σ
′
0 (n1, r)Σ1 (�, c)Σ

′
1 (n2, r)Σ2 · · · (�, c)Σ′

i−1 (ni, r)Σi (�, c)Σ
′
i · · ·

O P O P O P O P O

where Σ′0 = ∅ and, for all i > 0, Σi = Σ′i−1 ∪ {(ni, 0)}, dom(Σ′i) = dom(Σi).
Moreover, for any i 
= j we have ni 
= nj . Note that Σ′i can be different
from Σi, i.e. the environment is free to change the values stored at all of the
locations that have been revealed to it. Here the stores keep on growing as
the names are being generated by the program.

– � � λxint ref .case(!x)[1, 0, 0, · · · , 0] : int ref → int�0 generates, among others,
the play

ι∅ (�, r↓)∅ (n, c)(n,2) (0, r)(n,2) (n′, c)(n
′,0) (1, r)(n

′,0) (n, c)(n,0) (1, r)(n,0).

Note that in the play above the store does not grow as the names are being
played by the environment and they disappear from P -view after each call.
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By comparing strategies corresponding to terms we cannot yet prove all equiv-
alences. This is because strategies do not take into account the fact that the
environment (O) must also be subjected to restrictions concerning recognizabil-
ity and visibility of names.

Example 10. The following equivalences hold. Yet, strategies corresponding to
the terms on the left contain plays-with-store, given below, that seem to contra-
dict this.

1. f : int ref → unit � letn = ref(0) in fn; (λxint ref .eqint ref xn)∼= letn = ref(0) in fn; (λxint ref .0) : int ref → int

�∅ (n, cf )(n,0) (�, rf )(n,2) (�, r↓)(n,2) (n, c)(n,2) (1, r)(n,2)

O P O P O P

2. f : int ref → unit � letn = ref(0) in fn;n := 0; (λxunit.case(!n)[1, 0, 0, · · · ]) ∼=
letn = ref(0) in fn; (λxunit.1) : unit→ int

� (n, cf )(n,0) (�, rf )(n,k) (�, r↓)(n,0) (�, c)(n,1) (0, r)(n,1)

In 1. O played a P -name that could not possibly be remembered by a context
with ground-type references. In 2. O changes the value stored at such a location.
This mismatch motivates further restrictions on the shape of strategies that are
dual to those already imposed on P .

Definition 11. Given a play s, we define its O-view (�s�) as follows.

�ε� = ε
�ι s (�cx , cx)� = ι (�cx , cx)
�ι s (�r↓ , r↓)� = ι (�r↓ , r↓)
�s (�r, r)� = �s′� (�c, c) (�r, r) s = s′ (�c, c)s′′ and c 
∈ s′′
�s o� = �s� o

The side condition in the last but one case stipulates that (�c, c) be the last move
in s with tag c (i.e. c matches r).

Returning to our examples, we can now see that in the fifth move O was play-
ing/modifying a location from outside the current O-view.

Definition 12. – A play-with-store mΣ1
1 · · ·mΣk

k is relevant if, for all
O-moves (�2i+1, t2i+1)Σ2i+1 (1 < 2i+ 1 ≤ k) the following conditions hold.
• If �2i+1 ∈ P (m1 · · ·m2i+1) then �2i+1 ∈ �m1 · · ·m2i�.
• For any n ∈ P (m1 · · ·m2i), if n 
∈ �m1 · · ·m2i� then Σ2i+1(n) = Σ2i(n).

– A protoplay is a sequence of moves-with-stores mΣ1
1 · · ·mΣk

k such that
m1 · · ·mk is a play and, for any 1 ≤ i ≤ k,
• n ∈ dom(Σi) ∩ P (m1 · · ·mi) iff n ∈ �m1 · · ·mi�;
• n ∈ dom(Σi) ∩O(m1 · · ·mi) iff n ∈ �m1 · · ·mi�.
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Let us write �Γ �M : θ�1 for the set of protoplays obtained by restricting �Γ �
M : θ�0 to relevant plays and subsequently constraining stores to contain only
P -names occurring in the suitable O-view. Protoplays are still not sufficient to
prove all equivalences, because they do not convey the idea that the environment
might not be able to recognize all different P -names.

Example 13. The following terms are equivalent, yet they induce different pro-
toplays.

f : int ref → unit � letn1 = ref(0) in letn2 = ref (0) in f(n1); (n2 := !n1);n2∼= letn = ref (0) in f(n);n : int ref

�∅ (n1, cf )(n1,0) (�, rf )(n1,k) (n2, r↓)(n2,k) �∅ (n, cf )(n,0) (�, rf )(n,k) (n, r↓)(n,k)

In an interaction the environment will only be able to detect a difference between
two P -names if they occur in the same O-view. Consequently, if P repeats a name
introduced by himself, but none of the previous occurrences are present in the
O-view, the name should present itself to the environment as if it were fresh.
This motivates the last definitions.

Definition 14. Given a protoplay s, let us subject it to the following refreshment
routine: as long as s = s1(�, t)Σs2, where (�, t) is a P -move, � ∈ P (s), � occurs
in s1, but its only occurrence in �s1(�, t)� is in the final move, apply the following
to s

– if t = r↓ then replace � with a fresh name.
– if t = cx then replace � with a fresh name and, provided � occurs there, also

in the following O-move;
– if t = r then replace � with a fresh name and, provided � occurs there, in all

the following moves with tags c and r.

Definition 15. Let �Γ � M : θ�2 consist of protoplays from �Γ � M : θ�1 re-
freshed according to Definition 14.

A play-with-store or a protoplay will be called complete, if the underlying play is
complete. Given a set S of plays-with-store or protoplays, let us write comp(S)
for the subset of S consisting of complete elements only.

Theorem 16 (Lemma 17 [12]). For any RedMLβ→βfin -terms Γ � M1,M2 : θ,
Γ �M1 ∼=M2 : θ if, and only if, comp(�Γ �M1 : θ�2) = comp(�Γ �M2 : θ�2).

In Section 5, for a given term Γ � M : θ of RedMLβ→βfin in canonical form, we
shall construct a family of automata representing �Γ �M : θ�0. It will be refined
in Section 6 to represent �Γ � M : θ�2. Section 7 will be devoted to crafting a
bisimulation relation that will enable us to implement the equivalence test from
Theorem 16.
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4 Automata

As Example 9 demonstrates, the stores present in plays can grow indefinitely
and, even though we shall work with infinite alphabets, we cannot afford to
represent them literally, as this would amount to being able to memorize an
unbounded supply of names. Instead we shall skip store information in O-moves
on the understanding that, whenever this is done, the omitted value could be
arbitrary. Similarly, if store values are omitted for P -moves, it will be the case
that P does not change them, i.e. they remain the same as in the previous
O-move. According to this convention the first play from Example 9 can be
faithfully represented by ι∅ (�, r↓)∅ (�, c)∅ (n1, r)(n1,0) (�, c)∅ (n2, r)(n2,0) · · · .

Next we introduce the kind of automata that will be used as acceptors of
(representatives of) plays. In a single transition step they will be able to read
a (representation of a) single move-with-store (�, t)Σ (subject to the condition
that Σ is a subset of the actual store). On the technical level, the automata are
a variant of fresh-register automata [17], adapted to process plays-with-stores.
Their sets of states will be partitioned into O- and P -states, which correspond
to the stages of play when O and P respectively are about to make a move. The
machines will be equipped with a finite number of registers for storing names.
At O-states they will be able to recognize whether the currently read name is
present in one of the registers. At P states they will be able to process a currently
stored name or a fresh one (one that has not been processed so far).

To enable a finite specification of the automata and to describe their semantics
we introduce the following definitions. Recall that A is the set of names. Let
C = {�, 0, · · · ,max} be the set of constants. Let us also fix a finite set T of tags
and a positive integer n.

Definition 17. – L = C ∪ { fr(i), kn(i) | 1 ≤ i ≤ n } is the set of symbolic
labels. We use � to range over its elements.

– Reg is the set of all ρ : {1, · · · , n} → A ∪ {�} such that ρ(i) = ρ(j) ∈ A
implies i = j. Its elements will be called register assignments and, from now
on, we shall use ρ to range over them.

– Stos = {1, . . . , n} → {�, 0, . . . ,max} is the set of symbolic stores, which will
be ranged over by S.

– Sto is the set of partial functions Σ : A ⇀ {0, . . . ,max} such that dom(Σ)
contains at most n elements. Its elements will be referred to as stores and
ranged over by Σ.

– LT = L× T× Stos is the set of transition labels, ranged over by (�, t)S.

We shall abuse notation somewhat and write dom(ρ) for the set ρ−1(A), and
similarly for dom(S). Given a pair (ρ, S) ∈ Reg × Stos such that dom(ρ) =
dom(S), we can derive the store Sto(ρ, S) = { (ρ(i), S(i)) | i ∈ dom(ρ) }.

We can now define (nr, n)-automata, which will be used for representing game
semantics. An (nr, n)-automaton is equipped with n registers, the first nr of which
will be read-only.

Definition 18. An (nr, n)-automaton of type θ is given as a quintuple A =
〈Q, q0, ρ0, δ, F 〉 where:



Algorithmic Nominal Game Semantics 429

– Q is a finite set of states, partitioned into QO (O-states) and QP (P -states);
– q0 ∈ QP is the initial state;
– ρ0 ∈ Reg is the initial register assignment such that dom(ρ0) = {1, · · · , nr};
– δ ⊆ (QO × LT×QP )∪ (QP × LT×QO)∪ (QO ×P({nr + 1, . . . , n})×QO)∪

(QP × P({nr + 1, . . . , n})×QP ) is the transition relation;
– F ⊆ QO is the set of final states.

Additionally, the following properties must hold.

– if (q, (�, t)S , q′) ∈ δ and � = fr(i) then i > nr and i ∈ dom(S).
– if θ is a base type then there is a unique final state qF , and δ � {qF } = ∅ (no

outgoing transition).

Our automata operate on words over the infinite alphabet (C ∪ A) × T × Sto.
We shall write (�, t)Σ to refer to its elements. We first explain the meaning of
the transition function informally. Suppose A is at state q1 and ρ is the current
register assignment.

– If (q1, (�′, t)S , q2) ∈ δ , A can move to state q2 on the input symbol (�, t)Σ if
one of the following conditions is satisfied.
• � ∈ C, �′ = �, dom(S) ⊆ dom(ρ) and Σ = Sto(ρ, S).
• � ∈ A, �′ = kn(i), ρ(i) = �, dom(S) ⊆ dom(ρ) and Σ = Sto(ρ, S).
• � ∈ A, �′ = fr(i), dom(S) ⊆ dom(ρ) ∪ {i}, Σ = Sto(ρ[i �→ �], S) and

∗ either q1 ∈ QO and � does not belong to ρ({1, · · · , n}) (locally fresh),
∗ or q1 ∈ QP and � has not appeared in the current run of A (globally

fresh).
In this case the automaton also sets ρ(i) to �.

– If (q1, N, q2) ∈ δ, where N is a subset of writable register indices, A can clear
all registers in N (i.e. set ρ(i) = � for all i ∈ N) and move to q2 without
reading any input symbol (ε-transition).

The above is formalized next. A configuration of A is a triple (q, ρ,H) ∈ Q̂,
where Q̂ = Q× Reg × Pfn(A) and Pfn(A) is the set of finite subsets of A.

Definition 19. Let A = 〈Q, q0, ρ0, δ, F 〉 be an (nr, n)-automaton. The configu-
ration graph (Q̂,−→δ) of A is defined as follows (transitions are labelled by ε or
elements of (C ∪ A)× T× Sto). For all (q, ρ,H) ∈ Q̂ and (q, (�, t)S , q′) ∈ δ:

– if � ∈ C and dom(S) ⊆ dom(ρ) then (q, ρ,H)
(�,t)Σ

−→ δ (q′, ρ,H) where Σ =
Sto(ρ, S),

– if � 
∈ C and dom(S) ⊆ dom(ρ′) then (q, ρ,H)
(�,t)Σ

−→ δ (q′, ρ′, H ′) where Σ =
Sto(ρ′, S), H ′ = H ∪ {�}, and
• if � = kn(i) then � = ρ(i) and ρ′ = ρ,
• if � = fr(i) and q ∈ QO then � /∈ ρ({1, · · · , n}) and ρ′ = ρ[i �→ �],
• if � = fr(i) and q ∈ QP then � /∈ ρ({1, · · · , nr}) ∪H and ρ′ = ρ[i �→ �].

Moreover, for all (q, ρ,H) ∈ Q̂ and (q,N, q′) ∈ δ we have (q, ρ,H) ε−→δ

(q′, ρ′, H), where ρ′ = ρ[N �→ �]. The set of strings accepted by A is defined
to be
L(A) = { !� ∈ ((C ∪ A)× T× Sto)∗ | (q0, ρ0, ∅)

��−→−→δ (q, ρ,H), q ∈ F }.
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Definition 20. We say that A is deterministic if, for any reachable configura-
tion q̂ and any q̂ �1−→δ q̂1, q̂

�2−→δ q̂2, if �1 = �2 then q̂1 = q̂2.

Here is a structural constraint that guarantees determinacy.

Definition 21. A is strongly deterministic if:

– for each q ∈ QP there exists at most one transition out of q: | δ � {q}| ≤ 1;
– for each q ∈ QO and (q, (�1, t)S1 , q1), (q, (�2, t)S2 , q2) ∈ δ:

• if �1 = fr(i1) and �2 = fr(i2) then i1 = i2,
• if �1 = �2 and S1 = S2 then q1 = q2,
• dom(S1) \ { i | �1 = fr(i)} = dom(S2) \ { i | �2 = fr(i)}.

– for any q1 ∈ QO, if there exists q2 ∈ QO such that (q1, N, q2) ∈ δ, then this
is the only outgoing transition from q1: | δ � {q1}| = 1.

Definition 22. Let A = 〈Q, q0, ρ0, δ, qF 〉 be a strongly deterministic automa-
ton of base type. We define the set of quasi-final states E to be the set of
states that reach qF in one step. Then E is canonically partitioned as E =⊎

(�,t)S E(�,t)S where E(�,t)S = { q ∈ Q | (q, (�, t)S , qF ) ∈ δ } and A is uniquely
determined by the structure A− = 〈Q, q0, ρ0, δ, E〉.
The following remark sheds some light on the formal nominal setting underlying
our constructions. It can be safely skipped by readers not familiar with nominal
sets [5].

Remark 23. Note that the initial register assignments of our automata contain
names. One can view the automata as elements of nominal sets where name-
permutation works as follows: for any name-permutation π, π · 〈Q, q0, ρ0, δ, F 〉 =
〈Q, q0, π · ρ0, δ, F 〉, where π · ρ = π ◦ ρ. Note that then L(π · A) = π · L(A).

Moreover, the indexed families of automata to be used in the next definition
are of nominal nature. Let X be a nominal set. By an X-indexed family of
automata of type θ we mean a set {Ax | x ∈ X } such that eachAx is an (nxr , nx)-
automaton of type θ and, moreover, for any name-permutation π, Aπ·x = π ·Ax.

5 From Terms to Plays-with-Stores

Let Γ = [x1 : θ1, · · · , xm : θm] and Γ � C : θ be a RedMLβ→βfin -term in canonical
form. Let us write I+Γ�θ for the set of plays-with-store of length 1 over Γ �
θ. Recall that each of them will have the form ιΣ0 , where ι ∈ IΓ , i.e. ι =
(�1, · · · , �m), where �i ∈ Lθi . Let Lι = {�i | θi ≡ int ref} and nι = |Lι|. Then
dom(Σ0) = Lι. Let idx : {1, · · · , nι} → {1, · · · ,m} be defined by idx(i) = j if
�j ∈ Lι, there are i−1 different names in ι to the left of �j (|{�1, · · · , �j−1}∩Lι| =
i− 1) and �j is not among them (�j 
∈ {�1, · · · , �j−1}).

We now instantiate the automata defined in the previous section by using the
finite set of tags T = TΓ�θ. A canonical form of RedMLβ→βfin will be translated
into a family of automata indexed by I+Γ�θ. For each ιΣ0 ∈ I+Γ�θ , the correspond-
ing automaton will accept exactly the words w such that ιΣ0w is a complete
play induced by the canonical form. The family will be infinite, but finite when
considered up to name-permutability.
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Definition 24. For any RedMLβ→βfin -term Γ � C : θ in canonical form we define
an I+Γ�θ-indexed family of automata � C � = { � C �ιΣ0 | ιΣ0 ∈ I+Γ�θ } by induction
on the shape of C. In all cases � C �ιΣ0 will have nι

Σ0

r = nι read-only registers and
the initial assignment will be ρι

Σ0

0 (i) = �idx(i). The precise number of registers
can be calculated easily by reference to the constituent automata. Let us write S0
for the function S0 : {1, · · · , n} → {�, 0, · · · ,max} defined by S0(i) = Σ0(�idx(i))
(1 ≤ i ≤ nι) and S0(i) = � (i > nι). The base and inductive cases are as follows.3

– � () �ιΣ0 = q0
(�,r↓)S0

�� qF

– � j �ιΣ0 = q0
(j,r↓)S0

�� qF

– �xint ref �ιΣ0 = q0
(kn(j),r↓)S0

�� qF , where x ≡ xk and �idx(j) = �k
– � case(x)[C0, · · · ,Cmax ] �ιΣ0 = � Cj �ιΣ0 , where x ≡ xk and �k = j
– � (x := i); C �ιΣ0 = � C �

ιΣ
′
0
, where x ≡ xk and Σ′0 = Σ0[�k �→ i]

– � let y =!x in C �ιΣ0 = � C �(ι Σ0(�k))Σ0 , where x ≡ xk
– � let yunit = z() inC �ιΣ0 is given by q0

(�,cz)S0
�� q1

(�,rz)S

�� � C �(ι �)ΣS , where S
ranges over all symbolic stores with domain {1, . . . , nι} and ΣS(�idx(i)) =
S(i).

– � let yint = z() in C �ιΣ0 = q0
(�,cz)S0

�� q1
(j,rz)S

�� � C �(ι j)ΣS with S as above
and 0 ≤ j ≤ max.

– � let yint ref = z() inC �ιΣ0 = q0
(�,cz)S0

�� q1
(kn(j),rz)S

��

(fr(nι+1),rz)S′ ����������������� � C �(ι ρ0(j))ΣS

� C �(ι a)Σ
S′

where 1 ≤ j ≤ nι, S is as above, a is a name that does not occur in ι,4 S′

ranges over symbolic stores with domain {1, · · · , nι + 1}, ΣS′(�idx(i)) = S′(i)
(1 ≤ i ≤ nι) and ΣS′(a) = S′(nι + 1)

– � let yβ = z i inC �ιΣ0 and � let yβ = z xint ref inC �ιΣ0 are defined similarly to
the above.

– �λxunit.C �ιΣ0 = q0
(�,r↓)S0

�� q1
(�,c)S

�� (� C �(ι �)ΣS [r/r↓])

{nι+1,...,n}

��
, where the

loopback connects the final state of � C �(ι �)ΣS [r/r↓] to q1. Note that S ranges
over all symbolic stores with domain {1, . . . , nι} and ΣS(�idx(i)) = S(i) (1 ≤
i ≤ nι). The other cases of λ-abstraction are dealt with in a similar way.

– Case of letxint ref = ref (0) inC. Let a be a name not in ι, let Σ′0 = Σ0[a �→ 0]
and consider the (nι + 1, n)-automaton � C �

(ι a)Σ′
0
. For each 0 ≤ j ≤ max

define an (nι, n)-automaton � C �
(j)
ιΣ0 to be a copy of � C �

(ι a)Σ′
0

in which

3 Note that we ignore initial register assignments of automata that do not appear in
starting positions in the diagrams.

4 Any such choice of a yields the same automaton � C �
(ι a)

Σ
S′ after its initial register

assignment is removed.
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• all transitions with label kn(nι + 1) are removed,
• all transitions with symbolic store S such that S(nι+1) 
= j are removed,
• and nι + 1 is removed from all symbolic stores in remaining transitions.

We define � letxint ref = ref (0) in C � as an (nι, n)-automaton obtained by in-
terconnecting � C �

(0)
ιΣ0 , · · · , � C �

(max)
ιΣ0 and � C �

(ι a)Σ′
0
.

�� � C �
(0)
ιΣ0

��

��

�� � C �
ιΣ

′
0

� C �
(1)
ιΣ0

��

��

����������������������

. . .

� C �
(max)
ιΣ0

��

��
�����������������

The transitions between the copies (arrows in the figure) are as follows. For

each q1
(�,t)S

−−−→ q2 in � C �
ιΣ

′
0
, where q1 is a P -state:

• if � 
= kn(nι + 1) then, for each j 
= S(nι + 1), we add a transi-
tion from the state q1 of � C �

(j)
ιΣ0 to state q2 of � C �

(S(nι+1))
ιΣ0 , with label

(�, t)S�(dom(S)\{nι+1});
• if � = kn(nι + 1) then, for each 0 ≤ j ≤ max, we add a transition from

the state q1 of � C �
(j)
ιΣ0 to state q2 of � C �

ιΣ
′
0
, with label (fr(nr + 1), t)S.

– For (while (!x) do C); C′, let Σ0, . . . , Σh be all the stores with the same domain
as Σ0. Assume x ≡ xk. Recall the presentation of an automaton given in
Definition 22. We define � (while (!x) do C); C′ �ιΣ0 to be � C′ �ιΣ0 if Σ0(�k) =
0. Otherwise it is defined to be a combination of � C �−

ιΣ0 , · · · , � C �−
ιΣh

and
� C′ �ιΣ0 , · · · , � C′ �ιΣh connected together as explained below.

�� � C �−
ιΣ0

��

��

��

��������������������������������������

�������������������������������������������������������
� C′ �ιΣ0

� C �−
ιΣ1

��

��

�������������������� ��

��																																										��
� C′ �ιΣ1

. . . . . .

� C �−
ιΣh

��

��
����������������

  















��

��
� C′ �ιΣh

For each quasi-final state q ∈ E(�,r↓)S of each � C �−
ιΣi

let i be such that
�idx(i) = �k. Add transitions labelled {nι + 1, . . . , n} in the following cases.
• If S(i) = 0, add one from q to the initial state of � C′ �ιΣS ,
• if S(i) 
= 0 add one from q to the initial state of � C �−

ιΣS
.

We shall now formalize in what sense the automata defined above can be taken
to represent strategies.

Definition 25. Let s = mΣ1
1 · · ·mΣk

k be a play over Γ � θ and t = mΘ1
1 · · ·mΘk

k

be a sequence of moves-with-store. We say that s is an extension of t if the
following conditions are satisfied.
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– Θi ⊆ Σi (1 ≤ i ≤ k)
– For any 1 ≤ i ≤ *k/2+, if a ∈ dom(Σ2i) \ dom(Θ2i) then Σ2i−1(a) is defined

and Σ2i(a) = Σ2i−1(a).

Note that, because s is a play, the clause about Σ2i−1(a) being defined amounts
to stipulating that Θ2i(a) be defined if the first occurrence of a in m1 · · ·mk is in
m2i. Observe that this is always the case for words accepted by automata from
Definition 24, as the store values are always printed out for fresh labels. Let us
write ext(t) for the set of all extensions of t.

Lemma 26. For any ιΣ0 ∈ I+Γ�θ, the automaton � C �ιΣ0 is strongly determin-
istic and

⋃
t∈L(� C �

ιΣ0 ) ext(ιΣ0t) = { ιΣ0t | ιΣ0t ∈ comp(�Γ � C : θ�0) }.
Proof. Strong determinacy follows from the shape of the automata. For the latter
part, the non-trivial cases are:

letx = ref (0) inC : The role of � C �
(j)
ιΣ0 (0 ≤ j ≤ max ) is to mimic the strategy

corresponding to letx = ref (0) inC before the name a (corresponding to the
reference name x) is revealed. Accordingly, O is not allowed to play the name
for the first time (as in the definition of composition [12]) or change store-
values associated with a. P can still change them, though, and the current
value at a is represented by the superscript (j). If P reveals the name for
the first time, a fresh name is generated, written to register nι + 1, and
computation proceeds to � C �

ιΣ
′
0
.

λxβ .C : Correctness follows from the fact that the strategy corresponding to
λxβ .C is single-threaded, i.e., following (�, r↓), it is an interleaving of inde-
pendent copies of strategies for C.

(while (!x) do C); C′ : Observe that the strategy for (while (!x) do C) can be viewed
as a subset of the single-threaded strategy for λyunit.if !x then C else (), where
the final values of free variables are communicated to the next thread and on
reaching 0 by x control is transferred to the strategy for C′. This is precisely
what the construction achieves. ��

6 Automata for Protoplays

In this section we shall transform the automata representing �Γ � C�0 to rep-
resent �Γ � C�2. To that end, we need to focus on protoplays that have been
refreshed according to Definition 14. Such protoplays adhere to a specific pat-
tern with respect to P -names: any P -name that appears in the O-view for the
first time has not appeared earlier. This implies that in each such protoplay
s = s1(�, t)Σ with � ∈ P (s):

– if t = cx or t = r↓ then � is fresh for s1,
– if t = r then either � is fresh for s1 or it has been introduced by some move

with tag r.

The moral is that P -names introduced with tag cx or r↓ are played only once.
In the former case, O may play them in his next move, but then they will not
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reappear in the protoplay. In the latter case, no moves can be made after the
P -name (θ ≡ int ref). Hence, we can safely replace P -names introduced with
tags cx and r↓ by dummy labels (�) and still have a faithful representation, pro-
vided their values are remembered. We shall accommodate them in special labels
so that the representation is still a protoplay, albeit in the following extended
syntax.

Remark 27. Using � will also let us see that for terms Γ � C : β one does not
need globally fresh transitions. Hence the corresponding automata will then be
variants of register automata [7] rather than fresh-register automata [17].

Definition 28. – For every base type β we define the set of extended labels
L+
β = Lβ ∪ { �〈i〉 | � ∈ Lβ ∪ {�}, 0 ≤ i ≤ max }.

– We define the set of transition labels L+ = L ∪ { �〈i〉 | � ∈ L ∪ {�}, 0 ≤ i ≤
max }.

We proceed to define a translation from an automatonA in the original syntax to
an automaton A+ in the extended one, following the intuitions described above.
As a first step, we are going to enrich A with information about ownership of
the names that are currently stored in the registers. This is concretely achieved
as follows.

Definition 29. For each automaton A = 〈Q, q0, ρ0, δ, F 〉 construct the automa-
ton A+ = 〈Q′, q′0, ρ′0, δ′, F ′〉 by setting

Q′ = { (q,NO, NP ) ∈ Q× P({1, . . . , n})2 | NO ∩NP = ∅, {1, . . . , nr} ⊆ NO },
q′0 = (q0, {1, . . . , nr}, ∅), ρ′0 = ρ0, F ′ = Q′ � F , and defining δ′ as follows.

– If q
(�,t)S

−−−→ q′ in A then (q,NO, NP )
(�,t)S

−−−→ (q′, NO, NP ), provided dom(S) =
NO ∪NP and � ∈ C ∪ {kn(i) | i ∈ NO ∪NP }.

– If qO
(fr(i),t)S

−−−−−→ qP in A then (qO, NO, NP )
(fr(i),t)S

−−−−−→ (qP , NO ∪ {i}, NP \ {i}),
provided dom(S) = NO ∪ NP . If the transition is from qP to qO, the dual
holds.

– If q N−→ q′ in A then (q,NO, NP ) N−→ (q′, NO \N,NP \N).

For each q ∈ Q′ we shall write O(q) and P (q) for its second and third components

respectively. We say A+ is non-overwriting if, for any q
(fr(i),t)S

−−−−−→ q′, we have that
i 
∈ O(q)∪P (q). Observe that the constructions presented in Definition 24 always
yield non-overwriting automata. We can show that the new automaton reaches
state q only if its non-empty registers are those in NO(q)∪NP (q) and, moreover,
each register in NO(q) (resp. NP (q)) is filled with an O-name (a P -name). Note
also that A+ is strongly deterministic, if A was.

For the next step, recall that we are using a finite set of tags T = TΓ�θ ,
for some Γ, θ. The new automaton will feature states augmented with an extra
component N to record those P -names that were originally introduced by cx-
moves but have been replaced by �. For O-states we need an extra component
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S which records the symbolic store prior to hiding, and also an index i ∈ N ∪
{-} reporting whether the preceding move was a name replaced now by � (by
convention, if the preceding move was not such then the index is set to ‘-’).

Definition 30. Let A+ = 〈Q, q0, ρ0, δ, F 〉 be non-overwriting. We define an au-
tomaton A+ = 〈Q′, q′0, ρ′0, δ′, F ′〉 with labels from L+ by setting

Q′ = { (q,N) | q ∈ QP , N ⊆ P (q) } ∪
{ (q,N, S, i) | q ∈ QO, N ⊆ P (q), S ∈ Stos, i ∈ N ∪ {-} }

q′0 = (q0, ∅), ρ′0 = ρ0, F ′ = Q′ � F and by defining δ′ as follows.

qP
(�,cx)S

−−−−→ q � ∈ C ∪ {kn(j) | j ∈ O(q)}

(qP , N)
(�,cx)S�O(q)

−−−−−−−−→ (q, N, S, -)

qO
(�,rx)S

−−−−→ q � /∈ {kn(j) | j ∈ P (q)}

(qO , N, S′, i)
(�〈S(i)〉,rx)S�O(q)

−−−−−−−−−−−→ (q, N)

S�(N\{i})=S′�(N\{i})

i∈N

qP
(kn(j),cx)S

−−−−−−−→ q j ∈ P (q)

(qP , N)
(�〈S(j)〉,cx)S�O(q)

−−−−−−−−−−−−→ (q, N, S, j)

qO
(kn(j),rx)S

−−−−−−−→ q j ∈ P (q)

(qO , N, S′, j)
(�〈S(j)〉,rx)S�O(q)

−−−−−−−−−−−−→ (q, N)
S�(N\{j})=S′�(N\{j})

qP
(fr(j),cx)S

−−−−−−→ q

(qP , N)
(�〈S(j)〉,cx)S�O(q)

−−−−−−−−−−−−→ (q, N ∪ {j}, S, j)

qO
(�,rx)S

−−−−→ q � /∈ {kn(j) | j ∈ P (q)}

(qO, N, S′, -)
(�,rx)S�O(q)

−−−−−−−−→ (q, N)
S�N=S′�N

qP
(�,r)S

−−−→ q � /∈ {kn(j) | j ∈ N}

(qP , N)
(�,r)S�O(q)∪(P (q)\N)

−−−−−−−−−−−−−→ (q, N, S, -)

qO
(�,c)S

−−−−→ q � /∈ {kn(j) | j ∈ N}

(qO , N, S′, -)
(�,c)S�O(q)∪(P (q)\N)

−−−−−−−−−−−−−−→ (q, N)
S�N=S′�N

qP
(kn(j),r)S

−−−−−−→ q j ∈ N

(qP , N)
(fr(j),r)S�O(q)∪{j}∪(P (q)\N)

−−−−−−−−−−−−−−−−−−→ (q, N \ {j}, S, -)

q
N′

−−→ q′

(q, N, . . . ) N′

−−→ (q′, N \N ′, . . . )

qP

(kn(j)/fr(j),r↓)S

−−−−−−−−−−→ q

(qP , N)
(�〈S(j)〉,r↓)S�(O(q)\{j})

−−−−−−−−−−−−−−−−→ (q, N, S, j)

qP

(�,r↓)S

−−−−→ q � ∈ C

(qP , N)
(�,r↓)S�O(q)

−−−−−−−−→ (q, N, S, -)

Let us write �Γ � C : θ�ιΣ0
2 for all the protoplays from �Γ � C : θ�2 that begin

with ιΣ0 .

Lemma 31. For any ιΣ0 ∈ I+Γ�θ, the automaton � C �+
ιΣ0 is non-

blocking, strongly deterministic, non-overwriting and5 ⋃
t∈L(� C �+

ιΣ0
)
ext(ιΣ0t) =

comp(�Γ � C : θ�ιΣ0
2 ).

Proof. Note that the computation histories of the new automata have been ob-
tained by restricting the automata obtained from Lemma 26 so that they trace
out relevant plays only:

– O never uses P -names invisible to him thanks to rules6 4 (j in kn(j) has to
match (qO, N, S′, j)) and 6 ( � /∈ {kn(j) | j ∈ N}),

5 Here ext(· · · ) will stand for the set of extensions with respect to protoplays.
6 Counting from left to right, top to bottom.
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– O will not change values referred to by P -names not available to him, because
restrictions of the form S � · · · = S′ � · · · forbid that.

The labels generate protoplays, because of the S � · · · restrictions on symbolic
stores. The refreshments of Definition 14 are performed via rules 9 and 11 (as
well as introducing � in rules 3 and 5, if the P -names were introduced with cx
tags). Consequently, the lemma follows from Lemma 26. ��
From now on we shall assume that from each non-initial state of � C �+

ιΣ0 it
is possible to reach a final state (if this is not the case, states violating this
reachability requirement can be removed without affecting the above lemma).
Note that because of strong determinacy, this implies that the automata will
not have ε-cycles. This technical assumption will allow us to relate language
equivalence to bisimulation in the next section.

7 Bisimulation

Here we define a notion of (weak) bisimilarity that will allow us to carry out
the test from Theorem 16. Note that, given a term, our second translation to
automata yields representatives for each complete protoplay in �· · ·�2. These
representatives are by no means canonical, as can be seen below.

Example 32. The following terms are equivalent.

f : unit→ int ref � f(); f() ∼=
let z = ref (2) inwhile (!z) do (f(); z := case(!z)[0, 0, 1, · · · ]) : unit

The corresponding automata for �· · ·�0 (and �· · ·�2, which coincides with �· · ·�0
in this case) accept respectively the words given below.

(�, cf)∅(n1, rf )(n1,k1)(�, cf)(n1,k1)(n2, rf ){(n1,k
′
1),(n2,k2)}(�, r↓){(n1,k

′
1),(n2,k2)}

(�, cf )∅(n1, rf )(n1,k1)(�, cf )(n2, rf )(n2,k2)(�, r↓)∅

The notion of bisimulation to be introduced aims to identify different represen-
tatives of identical protoplays by checking that they represent consistent store
histories. First we define it on configuration graphs of automata. Let us say that
that stores Σ1, Σ2 are compatible, written Σ1 , Σ2, if Σ1 ∪ Σ2 is a valid store
(i.e. for all a ∈ dom(Σ1) ∩ dom(Σ2), Σ1(a) = Σ2(a)).

Definition 33. Let Ai = 〈Qi, q0i, ρ0i, δi, Fi〉 be automata of type θ, for i = 1, 2,
and let us write F εi for the set of states that can reach some final state by means
of empty transitions. We call a relation R ⊆ Q̂1 × Ston1+n2 × Q̂2 a simulation
on A1 and A2 if, for all (q̂1, Σ, q̂2) ∈ R,

– if π1(q̂1) ∈ F1 then π1(q̂2) ∈ F ε2 , (π1 the first-projection function);

– if q̂1
(�,t)Σ1−−−−→δ1 q̂

′
1 and π1(q̂1) ∈ Q1O then either q̂2

ε−→δ2 q̂
′
2 and (q̂1, Σ, q̂′2) ∈

R, or there is a finite D ⊆ A such that, for all Σ2 , Σ1 with dom(Σ2) = D,

there is some q̂2
(�,t)Σ2−−−−→δ2 q̂

′
2 with (q̂′1, Σ1 ∪Σ2, q̂

′
2) ∈ R;
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– if q̂1
(�,t)Σ1−−−−→δ1 q̂

′
1 and π(q̂1) ∈ Q1P then either q̂2

ε−→δ2 q̂
′
2 and (q̂1, Σ, q̂′2) ∈

R, or there is some q̂2
(�,t)Σ2−−−−→δ2 q̂

′
2 with (q̂′1, Σ1 ∪ Σ2, q̂

′
2) ∈ R and Σ2 ,

Σ1 ∪ (Σ � (dom(Σ) \ dom(Σ1)));
– if q̂1

ε−→δ1 q̂
′
1 then (q̂′1, Σ, q̂2) ∈ R.

We call R a bisimulation if both R and R−1 are simulations. We say that A1
and A2 are bisimilar, written A1 ∼ A2, if there is a bisimulation R such that
((q01, ρ01, ∅), ∅, (q02, ρ02, ∅)) ∈ R.

Although bisimilarity is an infinite notion, we can capture it with a finite (and,
hence, decidable) notion of symbolic bisimilarity, which relates states of the au-
tomata augmented with auxiliary finite structure, rather than configurations.
This can be achieved by keeping a log of how the registers of the two automata
are dynamically related, that is, which of their registers contain common names
and which contain private ones. Transitions can then be simulated by referring
to that log and updating it. For example, at the symbolic level, a transition

of the form q1
(kn(i),t)S1−−−−−−→ q′1 of automaton A1 can be matched by A2 with

q2
(kn(j),t)S2−−−−−−−→ q′2 if we know that registers i and j are related, and symbolic

stores S1 and S2 are equal at their related registers. If, however, our log tells us

that i is private to A1, then A2 can only simulate it by q2
(fr(j),t)S2−−−−−−→ q′2 if q1, q2

are O-states.

Lemma 34. � C1 �+
ιΣ0 ∼ � C2 �+

ιΣ0 iff comp(�Γ � C1�
ιΣ0
2 ) = comp(�Γ � C2�

ιΣ0
2 ).

Proof. L2R: Take s ∈ comp(�Γ � C1�
ιΣ0
2 ). By Lemma 31 there exists t1 ∈

L(� C1 �+
ιΣ0 ) such that s ∈ ext(ιΣ0t1). Because � C1 �+

ιΣ0 ∼ � C2 �+
ιΣ0 we can find

t2 ∈ L(� C2 �+
ιΣ0 ) such that s ∈ ext(ιΣ0t2) by using s to resolve choices of missing

store values in the corresponding bisimulation game. Hence s ∈ comp(�Γ �
C2�

ιΣ0

2 ). The other inclusion is symmetric.
R2L: Suppose � C1 �+

ιΣ0

∼ � C2 �+

ιΣ0
. Because the automata are deterministic,

accept the same sets of extensions with respect to protoplays and final states
can always be reached, there must exist s ∈ comp(�Γ � C1�

ιΣ0

2 ) = comp(�Γ �
C2�

Σ0
2 ) and j ∈ {1, 2} such that s ∈ ext(ιΣ0tj), where tj ∈ L(� Cj �+

ιΣ0 ), but

s 
∈ ext(ιΣ0t3−j) for any t3−j ∈ L(� C3−j �+
ιΣ0 ), which contradicts Lemma 31. ��

Theorem 35. Program equivalence for RedMLβ→βfin terms is decidable.

Proof. Let k be the number of equivalence classes of initial moves IΓ with re-
gard to name-permutability and let ι0, · · · , ιk be their representatives. Then it
suffices to verify � C1 �+

ιΣ0 ∼ � C2 �+
ιΣ0 for all ι = ι0, · · · , ιk and all possible stores

Σ0 with domain Lι. Altogether only finitely many bisimulation queries need to
be made. ��
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8 Further Work

It would be desirable to understand what other models over infinite alphabets
are suitable for representing RedMLfin-terms featuring more complicated types.
For instance, it seems that a variant of pushdown automata would be needed
to capture terms of type � (unit→ unit)→ unit. Another interesting avenue for
future work concerns investigating relationships between automata over infinite
alphabets and history-dependent automata [9].
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Abstract. Separation logic is a concise method for specifying programs
that manipulate dynamically allocated storage. Partially inspired by sep-
aration logic, Implicit Dynamic Frames has recently been proposed, aim-
ing at first-order tool support. In this paper, we provide a total heap
semantics for a standard separation logic, and prove it equivalent to the
standard model. With small adaptations, we then show how to give a
direct semantics to implicit dynamic frames and show this semantics cor-
rectly captures the existing definitions. This precisely connects the two
logics. As a consequence of this connection, we show that a fragment
of separation logic can be faithfully encoded in a first-order automatic
verification tool (Chalice).

1 Introduction

Separation logic (SL) [5,11] is a popular approach to specifying the behaviour
of programs, as it naturally deals with the issues of aliasing. Separation logic
assertions extend classical logic with extra connectives and predicates to de-
scribe memory layout. This makes it difficult to reuse current tool support for
verification. Implicit Dynamic Frames (IDF) [15] was developed to give the ben-
efits of separation logic specifications while leveraging existing tool support for
first-order logic.

Although IDF was partially inspired by separation logic, there are many differ-
ences between SL and IDF that make understanding their relationship difficult.
SL does not allow expressions that refer to the heap, while IDF does. SL is de-
fined on partial heaps, while IDF is defined using total heaps and permission
masks. The semantics of IDF are only defined by its translation to first-order
verification conditions, while SL has a direct Kripke semantics for its assertions.
These differences make it challenging to understand the relationship between
the two approaches.

In this paper, we develop an extended separation logic that both captures
the original semantics of separation logic, and correctly captures the semantics
of IDF. To achieve this we provide a separation logic based on total heaps and
a permission mask. The permission mask specifies the locations in the heap
which are safe to access. Our formulation allows expressions that access the

G. Barthe (Ed.): ESOP 2011, LNCS 6602, pp. 439–458, 2011.
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heap to be defined, however it complicates the definition of the separation logic
“magic wand” connective. In order to faithfully capture the original semantics
of separation logic, and thus use magic wand to give the weakest pre-condition
of commands, we present a non-standard definition of magic wand that includes
changes to the total heap.

We also show that this extended separation logic correctly captures the se-
mantics of the IDF formulas, we focus on the form of IDF found in the concurrent
verification tool Chalice [9]. As the semantics of IDF formulas are only defined
indirectly via weakest pre-condition calculations for a language using them, we
show that the verification conditions (VCs) generated by the existing Boogie2 [8]
encoding and the VCs generated from the separation logic proof rules are logi-
cally equivalent. This shows that our model directly captures the semantics of
IDF.

This strong correspondence enables us to encode a fragment of separation
logic containing separating conjunction, points to assertions, equalities and con-
ditionals on pure assertions (a typical fragment used in verification tools), into
Chalice - a tool based on first-order theorem proving.

Outline. The paper is structured as follows. We begin by presenting the back-
ground definitions of both separation logic and implicit dynamic frames (§2); we
then develop our extended separation logic (§3). We prove the correspondence
between VCs in the two approaches (§4). Finally, we discuss related work (§5)
and consider possible extensions and conclude (§6).

The contributions of this paper are as follows:

– We define a total heap semantics for separation logic, and prove it equivalent
with the standard (partial heaps) semantics for the logic.

– We define a direct semantics for the implicit dynamic frames logic (the spec-
ification logic of the Chalice tool), which has so far only been given a seman-
tics implicitly, via verification conditions.

– We show how to encode a standard fragment of separation logic into an
implicit dynamic frames setting, preserving its semantics.

– We show that verification conditions as computed for separation logic coin-
cide via our translation and semantics with the verification conditions com-
puted by Chalice.

2 Background and Motivation

2.1 Standard Separation Logic

Separation logic [5,11] is a verification logic which was originally introduced to
handle the verification of sequential programs in languages with manual memory
management such as C. The key feature of the logic is the ability to describe the
behaviour of commands in terms of disjoint heap fragments, greatly simplifying
the work required when “framing on” extra properties in a modular setting. Since
its inception, separation logic has evolved in a variety of ways. In particular,
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variants of separation logic are now used for the verification of object-oriented
languages with garbage collection, such as Java and C♯ [12].

In order to handle concurrency, separation logic has been extended to consider
its basic points-to assertions as permissions [10], determining which thread is
allowed to read and write the corresponding state. To gain flexibility, fractional
permissions [4,3] were introduced, allowing the permissions governed by points-
to assertions to be split and combined. A fractional permission is a rational
number 0 < π ≤ 1, where 1 denotes full and exclusive (read/write) permission,
and any other permission denotes read-only permission. In this paper we focus
on the following core fragment of separation logic with fractional permissions.

Definition 1 (Separation Logic Assertions (SL)). We assume a set of ob-
ject identifiers1, ranged over by ι. We also assume a set of field identifiers,
ranged over by f . Values, ranged over by v are either object identifiers, integers,
or the special value null.

The syntaxes of separation logic expressions (ranged over by e) and assertions
(ranged over by a, b) are defined as follows2. In this definition, n ranges over
integer constants, and 0 < π ≤ 1.

e ∶∶= x ∣ null ∣ n

a ∶∶= e = e ∣ e.f
π
↦ e ∣ a ∗ a ∣ a −∗ a ∣ a ∧ a ∣ a ∨ a ∣ a → a

We will refer to this separation logic simply as SL hereafter.

The key feature of separation logic is the facility to reason locally about separate
heap portions. As such, the standard semantics for separation logic is formulated
in terms of judgements parameterised by partial heaps (sometimes called heap
fragments), which can be split and combined together as required. The critical
new connectives are the separating conjunction ∗, and the magic wand −∗. The
separating conjunction a ∗ b expresses that a and b are true and depend on
disjoint fragments of the heap. The magic wand a−∗b expresses that if any extra
partial heap satisfying a is combined with the current partial heap, then the
resulting heap is guaranteed to satisfy b.

Fractional permissions3 are employed to manage shared memory concurrency
in the usual way - a thread may only read from a heap location if it has a non-
zero permission to the location, and it may only write to a location if it has the
whole (full) permission to it. By careful permission accounting, it can then be
guaranteed that a thread can never modify a heap location while another thread
can read it. Note that permissions are handled (via points-to predicates e.f

π
↦ e′)

on a per-field basis: it is possible for an assertion to provide permission for only
one field of an object. This fine granularity of permissions allows for greater
1 These could be considered to be addresses, but we choose to be parametric with the

concrete implementation of the heap.
2 Note that variables x need not be program variables, but can also be specification-

only variables (sometimes called logical, ghost or specification variables).
3 Chalice, described in the next subsection, actually uses a slight variation on fractional

permissions to make automatic theorem proving easier.
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flexibility in the resulting logic - it can be specified that different threads have
access to different fields of an object at the same time, for example. Combination
of partial heaps includes combination of their permissions, where they overlap.

Definition 2 (Partial Fractional Heaps)

– A partial fractional heap h is a partial function from pairs (ι, f) of object-
identifier and field-identifier to pairs (v, π) of value and non-zero permission
π. Partial heap lookup is written h[ι, f], and is only defined when (ι, f) ∈
dom(h).

– Partial heap extension: h1 ⊆ h2, iff ∀(ι, f) ∈ dom(h1). h2[ι, f] = h1[ι, f].
– Partial heap compatible: h1 ⊥ h2 iff ∀(ι, f) ∈ dom(h1)∩dom(h2).↓1(h1[ι, f])=
↓1(h2[ι, f]) ∧ ↓2(h1[ι, f]) + ↓2(h2[ι, f]) ≤ 1.

– The combination of two partial heaps, written h1 ∗ h2, is defined only when
h1 ⊥ h2 holds, by the following equations:

dom(h1 ∗ h2) = dom(h1) ∪ dom(h2)

∀(ι, f) ∈ dom(h1 ∗ h2).

(h1 ∗ h2)[ι, f] =

⎧
⎪
⎪
⎪

⎨

⎪⎪
⎪
⎩

(↓1(h1[ι, f]), ↓2(h1[ι, f])) if (ι, f) ∉ dom(h2)

(↓1(h2[ι, f]), ↓2(h2[ι, f])) if (ι, f) ∉ dom(h1)

(↓1(h1[ι, f]), (↓2(h1[ι, f]) + ↓2(h2[ι, f]))) otherwise

We use ↓n to denote the nth component of a tuple.

There are two main flavours of separation logic studied in the literature: classical
separation logic, and intuitionistic separation logic. In this paper, we consider
intuitionistic separation logic. In intuitionistic separation logic, truth of asser-
tions is closed under heap extension, which is appropriate for a garbage-collected
language such as Java/C♯, rather than a language with manual memory man-
agement, such as C. The standard intuitionistic separation logic semantics for
our fragment SL is defined as follows.

Definition 3 (Standard Semantics for SL). Environments σ are partial
functions4 from variable names to values. Separation logic expression seman-
tics, [[e]]σ are defined by [[x]]σ = σ(x), [[n]]σ = n and [[null]]σ = null. The
semantics of assertions is then as follows:

h,σ ⊧SL e1.f
π
↦ e2 ⇐⇒ ↓2(h[[[e1]]σ, f]) ≥ π ∧ ↓1(h[[[e1]]σ, f]) = [[e2]]σ

h,σ ⊧SL e = e′ ⇐⇒ [[e]]σ = [[e
′
]]σ

h,σ ⊧SL a ∗ b ⇐⇒ ∃h1, h2.( h = h1 ∗ h2 ∧ h1, σ ⊧SL a ∧ h2, σ ⊧SL b)

h,σ ⊧SL a −∗ b ⇐⇒ ∀h′.( h′ ⊥ h ∧ h′, σ ⊧SL a ⇒ h∗h′, σ ⊧SL b)

h,σ ⊧SL a ∧ b ⇐⇒ h,σ ⊧SL a ∧ h,σ ⊧SL b

h,σ ⊧SL a ∨ b ⇐⇒ h,σ ⊧SL a ∨ h,σ ⊧SL b

h,σ ⊧SL a → b ⇐⇒ ∀h′.( h ⊆ h′ ∧ h′, σ ⊧SL a ⇒ h′, σ ⊧SL b)

4 However, we assume that all applications of environments are well-defined; i.e., when-
ever we write σ(x), that x ∈ dom(σ). This assumption is justified so long as the
program and specifications are type-checked appropriately.
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The semantics for the separating conjunction and magic wand express the re-
quired splitting and combination of partial heaps. The semantics for logical im-
plication → considers all possible extensions of the current heap, so that assertion
truth is closed under heap extension [5].

Assume/Assert. Verification in Boogie2 and related technologies uses two
commands commonly to encode verification: assume A and assert A. The first
allows the verification to work forwards with the additional assumption of A,
while the second requires A to hold otherwise it will be considered a fault. These
can be given weakest precondition semantics of:

wp(assert A,B) = A ∧B wp(assume A,B) = A ⇒ B

From a verification perspective, these primitives can be used to encode many ad-
vanced language features. For example, in a modular verification setting with a
first-order assertion language, a method-call is encoded by a sequence assert pre;
havoc(Heap); assume post, in which pre and post are the pre- and post-conditions
of the method respectively, and havoc(.) is a Boogie command that causes the
prover to forget all knowledge about a variable/expression.

With separation logic, there are two forms of conjunction and implication,
the standard (additive) ones ∧ and →, and the separating (multiplicative) ones
∗ and −∗. This naturally gives rise to a second form of assume and assert for the
multiplicative connectives (assume∗ and assert∗), with the following weakest
precondition semantics:

wp(assert∗ A, B) = A ∗B wp(assume∗ A, B) = A −∗B

These commands can be understood as follows: assert∗ A removes a heap frag-
ment satisfying A, and assume∗ A adds a heap fragment satisfying A. In a
verification setting where assertions express permissions as well as functional
properties, these can be used to correctly model the transfer of permissions
when encoding various constructs. In a separation logic setting, a method call is
encoded as assert∗ pre;assume∗ post.

In Chalice, which handles an assertion logic based on Implicit Dynamic
Frames, functional verification is based on two new commands: inhale A and
exhale A, which are also given an intuitive semantics of adding and removing
access to state. One outcome of this paper is to make this intuitive connection be-
tween inhale/exhale and assume∗/assert∗ formal, by defining a concrete and
common semantics which can correctly characterise both assertion languages.

2.2 Chalice and Implicit Dynamic Frames

The original concept of Dynamic Frames comes from the PhD thesis of Kassios
[7,6]. The idea is to tackle the frame problem by allowing method specifications
to declare the portion of the heap they may modify (a “frame” for the method
call) via functions of the heap. The computed frames are therefore dynamic, in
the sense that the actual values determined by these functions may change as
the heap itself gets modified. Implicit Dynamic Frames [15,14] takes a different
approach to computing frames - a first-order logic is extended with a new kind
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of assertion called an accessibility predicate (written e.g., as acc(x.f)) whose role
is to represent a permission to a heap location x.f . In a method pre-condition,
such an accessibility predicate indicates that the method requires permission to
x.f in order to be called - usually because this location might be read or written
to in the method implementation. By imposing the restriction that heap deref-
erence expressions (whether in assertions or in method bodies) are only allowed
if a corresponding permission has already been acquired, this specification style
allows a method frame to be calculated implicitly from its pre-condition.

Chalice [9] is a tool written for the automatic verification of concurrent pro-
grams. It handles a fairly simple imperative language, with classes (but no inher-
itance), and several interesting concurrency features (locks, channels, fork/join
of threads). The tool proves partial correctness of method specifications, as well
as absence of deadlock. The core of the methodology is based on the Implicit
Dynamic Frames specification logic, using accessibility predicates to handle the
permissions necessary to avoid data races between threads.

In this paper we ignore the deadlock-avoidance aspects of Chalice, and focus
on the aspects which guarantee functional correctness. Verification in Chalice
is defined via an encoding into Boogie2, in which two auxiliary Chalice com-
mands inhale p and exhale p are used. These commands reflect the addition
and removal of permissions from the state, as well as expressing assumptions
and assertions about the heap. For example, method calls are represented by
exhale pre;inhale post. The command exhale pre has the effect of giving up any
permissions mentioned in accessibility predicates in pre, and generating assert
statements for any logical properties such as heap equalities. Dually, inhale post
has the effect of adding any permissions mentioned in post and assuming any
logical properties.

Definition 4 (Our Chalice Subsyntax). Expressions E and assertions p in
our fragment of Chalice are given by the following syntax definitions:

E ∶∶= x ∣ n ∣ null ∣ E.f
p ∶∶= E = E ∣ acc(E.f, π) ∣ p ∗ p

Note that Chalice actually uses the symbol for logical conjunction (∧ or &&)
where we write ∗ above. However, in terms the semantics of the logic this is
misleading - in general it is not the case that p ∧ p (as written in Chalice) is
equivalent to p. Chalice’s conjunction treats permissions multiplicatively, that is
acc(x.f,1)∧acc(x.f,1) is actually equivalent to falsity. As we will show, Chalice
conjunction is actually directly related to the separating conjunction of separa-
tion logic, hence our choice of notation here. Where we use the symbol ∧ later
in the paper, we mean the usual (additive) conjunction, just as in SL.

Chalice performs verification condition generation via an encoding into Boo-
gie2, which makes use of two special variables P and H. The former maps ob-
ject identifier and field name pairs to permissions, in this instance a fractional
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permission, and is used for bookkeeping of permissions5. The latter maps object
identifier and field name pairs to values, and is used to model the heap of the
real program. These maps can be read from (e.g., P[o, f]) and updated (e.g.,
P[o, f] ∶= 1) from within the Boogie2 code, which allows Chalice to maintain
their state appropriately to reflect the modifications made by the source program.
In particular, the inhale and exhale commands have semantics which include
modifications to the P map, to reflect the addition or removal of permissions by
the program.

The critical aspect of Chalice’s approach to data races, is to guarantee that as-
sertions about the heap are only allowed when at least some permission is held to
each heap location mentioned. This means that assertions cannot be made when
it might be possible for other threads to be changing these locations - all logical
properties used in the verification are then made robust to possible interference.
Syntactically, this is enforced by requiring that assertions used in verification
contracts are self-framing [6] - which means that the assertion includes enough
accessibility predicates to “frame” its heap expressions. For example, the asser-
tion x.f = 5 is not self-framing, since it refers to the heap location x.f without
permission. On the other hand, (acc(x.f,1) ∗ x.f = 5) is self-framing.

3 A Total Heaps Semantics for Separation Logic

In this section we present a semantics for separation logic, which is based on
states consisting of a total heap and a separate permission mask. Intuitively,
the idea is that the permission mask specifies which locations in the heap we
currently have permission to - this subset of the heap approximately corresponds
with the partial heap which would be used in the standard semantics. The ad-
vantage of such a semantics is that it is simpler to relate to other logics with
similar semantics and to encodings into first-order logic, as we will show later.

To facilitate comparisons, we define our semantics for an extended separation
logic syntax, including not only the constructs of Definition 1, but also acces-
sibility predicates from Implicit Dynamic Frames, and an enriched expression
syntax that depend on the heap.

Definition 5 (Extended Separation Logic). We define the expressions E
and assertions A of extended separation logic (SL+), by the following grammar
(in which n stands for any integer constant):

e ∶∶= x ∣ null ∣ n
E ∶∶= e ∣ E.f

A ∶∶= E = E ∣ e.f
π
↦ e ∣ A ∗A ∣ A −∗A ∣ A ∧A ∣ A ∨A ∣ A → A ∣ acc(E.f, π)

Note that the syntax of separation logic assertions (ranged over by a; see Defi-
nition 1) is a strict subset of the SL+ assertions A defined above. The syntax of
separation logic expressions e is also a strict subset of SL+ expressions E.
5 Technically, one should think of P as a ghost variable, since it does not correspond

to real data of the original program.
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Our aim is to give a total heap semantics for this more-general assertion
language, implicitly defining a suitable semantics for both the fragment corre-
sponding to SL assertions, and that corresponding to the assertions of Implicit
Dynamic Frames. This semantics depends on states which are specified by a
combination of a total heap and a permission mask which separately tracks
permissions to heap locations.

Definition 6 (Total Heaps and Permission Masks). A total heap H is a
total map from pairs of object-identifier o and field-identifier f to values v. Heap
lookup is written H[o, f].

A permission mask Π is a total map from pairs of object-identifier and field-
identifier to permissions. Permission lookup is written Π[o, f].

We write Π1 ⊆ Π2 for permission extension, i.e., ∀(o, f). Π1[o, f] ≤ Π2[o, f].
We write ∅ for the empty permission mask; i.e., the mask which assigns 0 to

all locations.

Evaluation of extended separation logic expressions depends on a given environ-
ment and heap, and is defined by:

[[x]]σ,H = σ(x) [[n]]σ,H = n [[E.f]]σ,H = H[[[E]]σ,H , f] [[null]]σ,H = null

The meaning of separation logic expressions is preserved (and is independent of
the heap), as the following lemma shows:

Lemma 1. ∀e, σ,H. [[e]]σ,H = [[e]]σ

In order to define our semantics, we need to be able to combine permission
masks:

Definition 7 (Combining Permission Masks). Two permission masks Π1
and Π2 are compatible, written Π1 ⊥ Π2, if it holds that:

∀(o, f). Π1[o, f] +Π2[o, f] ≤ 1

The combination of two permission masks, written Π1 ∗ Π2 is undefined if Π1
and Π2 are not compatible, and is otherwise defined pointwise to be the following
permission mask:

(Π1 ∗Π2)[o, f] = Π1[o, f] +Π2[o, f]

To define and prove results about our semantics, we need operations for replacing
and removing portions of a heap, according to a specified permission. To this
end, we introduce the following auxiliary definitions.

Definition 8 (Total Heap Operations). Two heaps H1 and H2 agree on

permissions Π, written H1
Π
≡ H2, if the two heaps agree on all locations given

non-zero permission by Π, i.e.,

H1
Π
≡ H2 ⇐⇒ ∀o, f.Π[o, f] > 0 ⇒ H2[o, f] = H1[o, f]
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The restriction of H to Π, written H↾Π is a partial fractional heap, defined by:

dom(H↾Π) = {(o, f) ∣ Π[o, f] > 0}
∀(o, f) ∈ dom(H↾Π).↓1((H↾Π)[o, f]) = H[o, f]
∀(o, f) ∈ dom(H↾Π).↓2((H↾Π)[o, f]) = Π[o, f]

The main difficulty in defining a semantics for SL using total heaps is getting the
treatment of the magic wand connective correct. Since the standard semantics
of this connective involves a quantification over all partial heaps which can be
combined with the current one (i.e., all those which are compatible), it is not
obvious how a corresponding definition can be made when starting from a total
heap. The key idea is to model the “addition” of a new heap fragment which takes
place in the standard semantics by acquiring some additional permissions, and
then considering all possible heaps which have different values at the locations
corresponding to these new permissions. In this way, the “newly acquired” region
of our total heap can take on arbitrary new values. We model this by considering
all heaps which agree with the current heap over the part to which any permission
is held, and also satisfy the requirements of the “additional” heap.

Definition 9 (Total Heap Semantics for SL+). We define validity of SL+-
assertions with respect to a specified total heap H and permission mask Π re-
cursively on the structure of the assertion:

H,Π,σ ⊧SL+ e.f
π
↦ e′ ⇐⇒ Π[[[e]]σ,H , f] ≥ π ∧ H[[[e]]σ,H , f] = [[e′]]σ,H

H,Π,σ ⊧SL+ A ∗B ⇐⇒ ∃Π1,Π2. (Π = Π1 ∗Π2 ∧ H,Π1, σ ⊧SL+ A ∧

H,Π2, σ ⊧SL+ B)

H,Π,σ ⊧SL+ A −∗B ⇐⇒ ∀Π ′,H ′.( Π ′⊥Π ∧ H ′
Π
≡ H ∧ H ′,Π ′, σ ⊧SL+ A
⇒ H ′,Π ∗Π ′, σ ⊧SL+ B)

H,Π,σ ⊧SL+ A ∧B ⇐⇒ H,Π,σ ⊧SL+ A ∧ H,Π,σ ⊧SL+ B

H,Π,σ ⊧SL+ A ∨B ⇐⇒ H,Π,σ ⊧SL+ A ∨ H,Π,σ ⊧SL+ B

H,Π,σ ⊧SL+ A → B ⇐⇒ ∀Π ′,H ′.( Π ⊆ Π ′ ∧ H ′
Π
≡ H ∧ H ′,Π ′, σ ⊧SL+ A

⇒ H ′,Π ′, σ ⊧SL+ B)

H,Π,σ ⊧SL+ acc(E.f, π) ⇐⇒ Π[[[E]]σ,H , f] ≥ π

H,Π,σ ⊧SL+ E = E′ ⇐⇒ [[E]]σ,H = [[E′]]σ,H

Note the similarity between the definitions for magic wand −∗ and logical impli-
cation →.6 This is because both cases involve heap extension in the partial heap
semantics; in our total heap semantics we model heap extension by enabling
the assignment of new arbitrary values to the part of the heap we have not yet
acquired permission to. We observe that validity of assertions in this semantics
is closed under permission extension.

6 Note the intuitionistic implication can be defined in terms of the pointwise classical
implication (→c) in separation logic: A → B ⇐⇒ true −∗ (A →c B).
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Proposition 1. If H,Π,σ ⊧SL+ A and Π ⊆ Π ′ then H,Π ′, σ ⊧SL+ A.

Proof. By straightforward induction on the structure of the assertion A.

Semantically, an assertion is framed by a permission mask if it only depends on
the values of heap locations which the permission mask assigns permission to.
An assertion is semantically self-framing if it is only true for permission masks
large enough to frame it. These semantic notions of framing and self-framing are
formalised as follows:

Definition 10 (Framing, Self-Framing and Pure Assertions). A permis-
sion mask Π ′ frames an assertion A (Π ′ frames A) if and only if:

∀Π,H,σ,H ′. (H,Π,σ ⊧SL+ A ∧H ′
Π′

≡H ⇒ H ′,Π,σ ⊧SL+ A)

An assertion A is self-framing if and only if it is only satisfied under permission
masks which frame it, i.e.,

∀Π,H,σ,H ′. (H,Π,σ ⊧SL+ A ∧H ′
Π
≡H ⇒ H ′,Π,σ ⊧SL+ A)

An assertion A is pure7 if and only if it doesn’t depend on permissions, i.e.,

∀Π,H,σ. (H,Π,σ ⊧SL+ A ⇒ H,∅, σ ⊧SL+ A)

For example, the assertion x.f = 5 is only framed by permission masks which give
permission to location (x, f). It is not self-framing, since with an environment
σ such that σ(x) = ι, a heap H such that H[ι, f] = 5 and an empty permission
mask Π , we have H,Π,σ ⊧SL+ x.f = 5. However, the heap H ′ = H[(ι, f) ↦ 4]

satisfies H ′
Π
≡H , but we have H ′,Π,σ /⊧SL+ x.f = 5. On the other hand, the

assertions acc(x.f,1) ∗ x.f = 5 and x.f
1
↦ 5 are both self-framing.

Intuitively, self-framing assertions are robust to arbitrary interference on the
rest of the heap. For separation logic assertions, this property holds naturally,
since it is impossible for an assertion to talk about the heap without including the
appropriate “points-to” predicates, which force the corresponding permissions to
be held.

Lemma 2. All separation logic assertions a (Defn 1) are self-framing.

Proof. We prove, by straightforward induction on the structure of the assertion
a, the equivalent statement:

∀a,H,Π. (H,Π,σ ⊧SL+ a ⇔∀H ′. (H ′
Π
≡H ⇒ H ′,Π,σ ⊧SL+ a))

We now turn to relating our total heap semantics for separation logic, with the
standard semantics. To do this, we need to relate partial heaps with pairs of total
heap and permission mask. Given any total heap H and permission mask Π we
can construct a corresponding partial heap H↾Π . Conversely, any partial heap
h can be represented as the restriction of a total heap H to the permission mask
7 We may have considered pure assertions to depend on the heap as well. This however,

does not have the right logical characterisation: A is pure iff ∀B,A ∗B = A ∧B.
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corresponding to all the permissions in h. This representation however, is not
unique - there are many such total heaps H we could choose such that h = H↾Π .
However, the different choices of H can only differ over the locations given no
permission in Π , and the previous lemma demonstrates that such differences
do not affect the semantics of assertions. For our correspondence result, it is
therefore without loss of generality to consider partial heaps constructed by
H↾Π . We can then show that our total heap semantics for SL is sound and
complete with respect to the standard semantics:

Theorem 1 (Correctness of Total Heap Semantics). For all SL-assertions
a, environments σ, total heaps H, and permission mask Π:

H,Π,σ ⊧SL+ a ⇐⇒ (H↾Π), σ ⊧SL a

Proof. By induction on the structure of the assertion a, using Lemma 1.

This result demonstrates that our total heap semantics correctly models the
standard semantics of separation logic assertions. However, because our assertion
language is more general than that of separation logic, not all properties of the
separation logic connectives transfer across to the full generality of SL+. For
example, in separation logic, the assertions a−∗(b−∗c) and (a∗b)−∗c are (always)
equivalent. This is not quite the case in SL+. In order to precisely characterise
the laws which hold, we require a notion of semantic entailment.

Definition 11 (Semantic Entailment, Validity and Equivalence). A SL+

assertion A is semantically valid (written ⊧SL+ A) if it holds in all situations;
i.e.,

⊧SL+ A ⇔ ∀H,Π,σ. H,Π,σ ⊧SL+ A

Given SL+ assertions A and B, we say that A semantically entails B (and write
A ⊧SL+ B) if and only if B holds whenever A does; i.e.,

A ⊧SL+ B ⇔ ∀H,Π,σ. (H,Π,σ ⊧SL+ A ⇒ H,Π,σ ⊧SL+ B)

Given SL+ assertions A and B, we say that A is equivalent to B (and write
A ≡SL+ B) if and only if A ⊧SL+ B and B ⊧SL+ A.

We can now show how various laws which hold for separation logic transfer (in
some cases partially) to our more general setting of SL+.

Proposition 2. For all SL+ assertions A1, A2, A3:

1. ⊧SL+ A1 ∗ (A1 −∗A2) → A2 and ⊧SL+ A1 ∧ (A1 → A2) → A2
2. A1−∗(A2−∗A3) ⊧SL+ (A1∗A2)−∗A3 and A1 → (A2 → A3) ⊧SL+ (A1∧A2) → A3
3. ∀H,Π,σ, if ∀Π ′. (Π ′⊥Π) ∧H,Π ′, σ ⊧SL+ A1 ⇒ Π ∗Π ′ frames A1, then:

H,Π,σ ⊧SL+ (A1 ∗A2) −∗A3 ⇒ H,Π,σ ⊧SL+ A1 −∗ (A2 −∗A3)

4. ∀H,Π,σ, if ∀Π ′. (Π ′⊥Π) ∧ H,Π ∗ Π ′, σ ⊧SL+ A1 ⇒ Π ∗ Π ′ frames A1,
then: H,Π,σ ⊧SL+ (A1 ∧A2) → A3 ⇒ H,Π,σ ⊧SL+ A1 → (A2 → A3)

5. If A1 ⊧SL+ (A2 −∗A3) then (A1 ∗A2) ⊧SL+ A3
6. If A1 is self-framing and (A1 ∗A2) ⊧SL+ A3 then A1 ⊧SL+ (A2 −∗A3)
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To see that the usual separation logic laws do not all hold in general, consider for
example the two assertions P1

def
= (x.f = 1 −∗ (x.f = 2 −∗ 1 = 2)) and P2

def
= (x.f =

1 ∗x.f = 2) −∗ 1 = 2. The assertion P2 is always true, essentially because no heap
exists which satisfies (x.f = 1∗x.f = 2), and so the implication in the semantics
of the wand holds vacuously. However, the assertion P1 is not always true - if
we consider the case where we do not have permission to x.f when checking the
wand, we can pick two heaps which agree on our existing permissions and which
assign x.f the values 1 and 2 respectively. However, 1 = 2 will of course be false
in any configuration.

The usual separation logic laws do however hold for self-framing assertions
(which by Lemma 2) includes all separation logic assertions).

Corollary 1. For all self-framing SL+ assertions A1, A2, A3:

1. ⊧SL+ A1 ∗ (A1 −∗A2) → A2
2. ⊧SL+ A1 ∧ (A1 → A2) → A2
3. A1 −∗ (A2 −∗A3) ≡SL+ (A1 ∗A2) −∗A3
4. A1 → (A2 → A3) ≡SL+ (A1 ∧A2) → A3
5. A1 ⊧SL+ (A2 −∗A3) if and only if (A1 ∗A2) ⊧SL+ A3

To complete this section, we observe that we are able to eliminate the “points-
to” assertions from our syntax without loss of expressiveness. This is because of
the following proposition:

Proposition 3. For all e,f ,e′,π we have e.f
π
↦ e′ ≡SL+ acc(e.f, π) ∗ e.f = e′.

Proof. Directly from the semantics.

This result along with Theorem 1 shows that we can faithfully represent SL
assertions in an implicit dynamic frames logic, in which permissions are tracked
by accessibility predicates, and assertions about the heap are managed inde-
pendently. Because our proofs are inductive on the structure of assertions, this
representation result can also be applied to any fragments of SL. In particular,
if we take the core fragment of SL typically supported by tools (in which asser-
tions are built from separating conjunction and a restricted form of implication
in which A → B is only allowed if A is permission-free), then we can faithfully
encode this fragment into the logic of Chalice (Definition 4).

However, Chalice has its own semantics for this logic, which is implicitly
defined via the weakest-precondition semantics for the language. Therefore, in
order to provide a strong connection between standard separation logic and the
Chalice methodology we must also show that our total heap semantics can be
used to accurately reflect the semantics of Chalice. This is the focus of the next
section.

4 Verification Conditions

In this section, we precisely connect the semantics of our assertion language
with Chalice. Chalice does not provide a direct model for its assertion language.
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It instead defines the semantics of assertions using the weakest pre-condition
semantics of the commands inhale and exhale. We show that this semantics
precisely corresponds with the semantics in SL+.

4.1 Chalice

Chalice is defined by a translation into Boogie2 [8], which generates verification
conditions on a many-sorted classical logic with first-order quantification. It has
sorts for mathematical maps, which are used by Chalice to encode both the heap
and the permission mask. We use φ to range over formulas in this logic, and
σ ⊧FO φ to mean φ holds in the standard semantics of first-order logic given the
interpretation of free variables σ, and ⊧FO φ means holds in all interpretations.

The definitions throughout this section generate expressions that have these
two specific free variables: H for the current heap, and P for the current permis-
sion masks. Thus, H[x, f] = 5 means in the current heap the variable x’s field
named f contains value 5. In the assertion logic, this corresponds to x.f = 5
where the heap access is implicit.

To enable us to relate the verification conditions in separation logic with those
in Chalice, we need to be able to relate formulas in one approach with the other.
We can provide a syntactic translation from the Chalice assertion logic into the
first-order logic.

Definition 12. We translate expressions that implicitly access the heap into
expressions that explicitly access the heap as follows:

�x	 = x �null	 = null �E.f	 = H[�E	, f]

and we translate formulas as follows:

�acc(E.f, π)	 = P[�E	, f] ≥ π
�p ∗ q	 = ∃P1,P2. �p	[P1/P] ∧ �q	[P2/P] ∧ (P1 ∗ P2 = P)

�E = E′	 = �E	 = �E′	

where [P1/P] means the replacement of P with P1, and P1 ∗P2 = P is a ternary
predicate, true if and only if ∀i.P1(i) + P2(i) ≤ 1 ∧ P(i) = P1(i) + P2(i).

For example, the formula acc(x.f, π) ∗ x.f = 5 will be translated to

∃P1,P2. (P1[x.f] ≥ π) ∧ (H[x, f] = 5) ∧ P = P1 ∗ P2

which we can simplify to (P[x.f] ≥ π) ∧ (H[x, f] = 5), that is the current heap
contains 5 at x, f and the current permission mask has at least π permission on
that location.

By interpreting the heap variable with concrete heap, and the permission
mask variable with a concrete permission mask, we can show that the translated
formula is true iff the original SL+ formula was true.

Lemma 3. σ,H ↦ H,P ↦ Π ⊧FO �p	 ⇐⇒ H,Π,σ ⊧SL+ p
where σ,H ↦ H,P ↦ Π is an interpretation that has all the mappings of σ and
additionally maps the current heap, H, and permission mask, P, to the heap, H,
and the permission mask, Π.
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Chalice does not allow arbitrary formulas to be used as argument to inhale
and exhale: it restricts the formulas to be self-framing. Chalice does not use
the semantic check from earlier, but instead uses a syntactic formulation that
checks self-framing from left-to-right. Note that this means that syntactic self-
framing is not symmetric with respect to ∗. For instance, acc(x.f, π) ∗x.f = 5 is
syntactically self-framing, but x.f = 5∗acc(x.f, π) is not. Somewhat surprisingly
this is required by the way the verification conditions are generated.

Definition 13. We define the footprint8 of a formula; an expression with the
H variable free in it, that has the type of a set of locations and field name pairs.

foot(E = E′) = {} foot(acc(E.f, π)) = {(�E	, f)}
foot(A ∗B) = foot(A) ∪ foot(B)

We define a boolean expression syn framedψ(E) to mean that all the fields men-
tioned in E are in the set ψ.

syn framedψ(E.f) = syn framedψ(E) ∧ �E	.f ∈ ψ
syn framedψ(x) = syn framedψ(null) = True

We lift this to formulas as

syn framedψ(E = E′) ⇐⇒ syn framedψ(E) ∧ syn framedψ(E
′
)

syn framedψ(acc(E.f, π)) ⇐⇒ syn framedψ(E.f)
syn framedψ(A ∗B) ⇐⇒ syn framedψ(A) ∧ syn framedψ∪foot(A)(B)

Note that when we check that B is framed in A ∗B, we can use the footprint of
A; these syntactic checks do not treat ∗ as associative and commutative.

A formula, A, is syntactically self-framing, if it is framed by the empty set,
syn framed∅(A).

We can now provide the definitions of the weakest pre-conditions of the com-
mands for inhale and exhale. In Figure 1, we present the weakest pre-conditions
of commands in Chalice from [9]. We write wpch(C,φ) for the weakest pre-
condition of the command C given the post-condition φ. Chalice models the
inhaling and exhaling of permission by mutating the permission mask variable.
To exhale an equality (or any formula not mentioning the permission mask) we
simply assert it must be true. This does not need to modify the permission mask.
To exhale p∗q, first we exhale p and then q. When an access predicate is exhaled,
first we check that the permission mask contains sufficient permission, and then
we remove the permission from the mask.

To inhale an equality, it is simply the same as assuming it. To inhale a p ∗ q,
we first inhale p and then q. There are two cases for inhaling a permission:
(1) we don’t currently have any permission to that location; and (2) we do
currently have permission to that location. The first case proceeds by adding
the permission, and then havocing the contents of that location, that is, making
sure any previous value of the variable has been forgotten. The second case
simply adds the permission to the permission mask.
8 foot( ) corresponds to the required access set in [15].
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wpch(exhale(E = E′), φ) = wpch(assert �E = E′�, φ)

wpch(exhale(p1 ∗ p2), φ) = wpch(exhale(p1);exhale(p2), φ)

wpch(exhale(acc(E.f,π), φ)
= wpch(assert(P[�E�, f]) ≥ π;P[�E�, f] ∶= P[�E�, f] − π,φ)

wpch(inhale(E = E′), φ) = wpch(assume �E = E′�, φ)

wpch(inhale(p1 ∗ p2), φ) = wpch(inhale(p1);inhale(p2), φ)

wpch(inhale(acc(E.f,π), φ)
= wpch(assume(P[�E�, f] = 0);P[�E�, f] ∶= π;havoc(H[�E�, f]), φ)
∧wpch(assume(0 < P[�E�, f] ≤ 1 − π);P[�E�, f]+=π; , φ)

where
wpch(P[o, f] ∶= x,φ) = φ[upd(P , (o, f), x)/P]
wpch(havoc(H[x, f]), φ) = φ[upd(H, (x, f), z)/H] fresh z
wpch(assume E,φ) = E → φ
wpch(assert E,φ) = E ∧ φ
wpch(C1;C2, φ) = wpch(C1,wpch(C2, φ))

where upd(a, b, c)[b] = c and upd(a, b, c)[d] = a[d] provided d ≠ b.

Fig. 1. Abridged weakest pre-condition semantics for Chalice [9]

4.2 Relationship

In the rest of this section, we show that the verification conditions (VCs) gen-
erated by Chalice are equivalent to those generated by SL+. We focus on the
inhale and exhale commands as these represent the semantics of the Chalice
assertion language. By showing the equivalence, we show that our model of SL+

is also a model for Chalice.
We write wpsl(C,A), to be the weakest pre-condition in SL+ of the formula

A with respect to the command C. We treat inhale and exhale as the multi-
plicative versions of assume and assert (see §2.1), and thus have the following
weakest pre-conditions:

wpsl(exhale(A),B) = A ∗B wpsl(inhale(A),B) = A −∗B

Our core result is to show that both inhale and exhale have equivalent VCs in
the two approaches.

Definition 14 (equiv(C)). We define the VCs of a command as equivalent in
both systems, equiv(C), iff for every self-framing SL+assertions, A, we have

⊧FO �wpsl(C,A)	 ⇐⇒ wpch(C,�A	)

Our notion of equivalence of VCs only requires commands to have equiva-
lent weakest pre-conditions for self-framing post-conditions, thus we need to
show that each command preserves self-framing. If commands did not preserve
self-framing, then sequencing could not be proved by induction on the sub-
commands.
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Lemma 4. Each command preserves semantic self-framing: If A and p are self-
framing, then so are wpsl(inhale p,A) and wpsl(exhale p,A).

The key to showing our semantics for SL+ correctly embodies Chalice is to show
that the VCs generated for the inhale and exhale commands are equivalent.
The exhale is straightforward.

Lemma 5. ∀p. equiv(exhale p)

Proof. By induction on p.

The proof of inhale is more involved. This depends on the inhaled formula
being syntactically self-framing. We must first prove a collection of lemmas to
enable the proof to proceed by induction. (1) We need to connect the weakest pre-
condition of an inhale with the footprint of a formula: that is, know that inhaling
a formula adds its footprint to the permission mask. (2) The Chalice’s VCs break
inhale p∗q into two inhales. This logically corresponds to currying/uncurrying
a wand formula in SL+, but this is only true if the first formula is framed in the
current world, so we need an analog of this for the VC world. Finally, (3) we
need to know that introducing additional havocs to locations outside the current
permission mask does not affect the weakest pre-condition assuming that the
post-condition is framed by the current permission mask.

Lemma 6

1. wpch(assume(ψ < P);inhale p,A) is equivalent to
wpch(assume(ψ < P);inhale p ;assume(ψ ∪ foot(p) < P),A);

2. If syn framedψ(p1), then wpch(assume(ψ < P),�p1−∗(p2−∗A)	) is equivalent
to wpch(assume(ψ < P),�(p1 ∗ p2) −∗A	); and

3. If syn framedψ(A), then wpch(assume(ψ < P);havoc(H[P]),�A	) is equiv-
alent to wpch(assume(ψ < P),�A	).

where ψ < P means ∀i ∈ ψ.P[i] ≠ 0, and havoc(H[P]) means havoc every field
in the heap with no permission in P.

Proof. 1. By induction on p.
2. Direct consequence of Proposition 2.3 and 2.2.
3. From definition of framing.

We want to show that if p is syntactically self-framing, then inhale p is equiva-
lent in both approaches. However, we need to prove a stronger fact that accounts
for the permissions we may have inhaled so far. In particular, as inhale p1 ∗ p2
is implemented by first inhaling p1 and then p2, when we consider inhaling p2 it
may not be self-framing. However, the context will have inhaled sufficient per-
missions that it is framed in that context. We prove that the VCs are equivalent
in a context in which the inhale is framed.

Lemma 7. If syn framedψ(p) and syn framedψ∪foot(p)(A), then

wpch(assume(ψ < P); inhale p,�A	)
⇐⇒ wpch(assume(ψ < P),�wpsl(inhale p,A)	)
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Proof. By induction on p. The ∗ case uses Lemma 6.1 to rearrange the program
so that the inductive hypothesis can be used on q2, and Lemma 6.2. is used to
rearrange separation logic assertion:

wpch(assume(ψ < P); inhale q1 ∗ q2,�Q	)
⇔ wpch(assume(ψ < P);inhale q1;assume(ψ ∪ foot(q1) < P);inhale q2,�Q	)
⇔ wpch(assume(ψ < P);inhale q1;assume(ψ ∪ foot(q1) < P);�q2 −∗Q	)
⇔ wpch(assume(ψ < P);inhale q1,�q2 −∗Q	)
⇔ wpch(assume(ψ < P),�q1 −∗ (q2 −∗Q)	)
⇔ wpch(assume(ψ < P),�(q1 ∗ q2) −∗Q	)
⇔ wpch(assume(ψ < P),�wpsl(inhale q1 ∗ q2,Q)	)

The acc case uses Lemma 6.3 to show that their is no difference between hav-
ocing just the inhaled location, and havoc all locations that you do not have
permissions to. Assume that P[�E	.f] = 0,

wpch(assume(ψ < P);inhale acc(E.f, π),�Q	)

⇔ wpch(assume(ψ < P);inhale acc(E.f, π);havoc(H[P]),�Q	)

⇔ wpch(assume(ψ < P);P[�E	.f] ∶= π;havoc(H[�E	.f]);havoc(H[P]),�Q	)

⇔ wpch(assume(ψ < P);havoc(H[P]);P[�E	.f] ∶= π,�Q	)
⇔ wpch(assume(ψ < P),�acc(E.f, π) −∗Q	)
⇔ wpch(assume(ψ < P),�wpsl(inhale acc(E.f, π),Q)	)

Case where P[�E	.f] ≠ 0 follows similiarly.

Corollary 2. If p is syntactically self-framing, then equiv(inhale p).

Proof. As we only consider self-framing post-conditions follows trivially from
previous lemma.

Remark 1. Without the syntactic self-framing requirement on inhales, it would
be unsound to break inhale A∗B into inhale A;inhale B. In particular, in the
Chalice semantics, the behaviour of inhale(A ∗B) and inhale(B ∗A) are dif-
ferent. For instance, consider inhale(x.f = 3∗acc(x.f)) and inhale(acc(x.f) ∗
x.f = 3).

wpch(inhale(x.f = 3 ∗ acc(x.f)),�x.f = 3	) ⇐⇒ x.f ≠ 3
wpch(inhale(acc(x.f) ∗ x.f = 3),�x.f = 3	) ⇐⇒ true

The translation given by Smans et al. [15] does not suffer this problem as it
does the analogue of inhale in a single step. However, it checks self-framing in
a similar way, and thus would also rule out the first inhale.

In this section, we have shown that the encoding of inhale and exhale into
Boogie2 is equivalent to the separation logic weakest pre-condition semantics.
As a consequence, we have shown two things: (1) our model accurately reflects
the semantics of Chalice’s assertion language, and (2) a fragment of separation
logic can be directly encoded into Chalice precisely preserving its semantics.
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5 Related Work

In this paper, we have provided a version of separation logic [5,11], which allows
arbitrary expressions over the heap. We have modified the standard presenta-
tion of an object-oriented heap for separation logic [12] to separate the notion
of access from value. Most previous separation logics have combined these two
concepts. One notable exception is the separation logic for reasoning about Cmi-
nor [1]. This logic also separates the ability to access memory, the mask, from
the actual contents of the heap. The choice in this work was to enable a reuse of
a existing operational semantics for Cminor, rather than producing a new opera-
tional semantics involving partial states. In the Cminor separation logic, they do
not consider the definition of magic wand, or weakest pre-condition semantics,
which is crucial for the connection with Chalice [9].

Smans’ original presentation of IDF was implemented in a tool, Veri-
Cool [15,14]. The results in this paper, should also apply to the verification
conditions generated by VeriCool. In recent work, Smans et al. [16] describe an
IDF approach as a separation logic. However, they do not present a model of
the assertions, just the VCs of their analog of inhale and exhale. Hence, it does
not provide the strong connection between the VCs and the model of separation
logic that we have provided.

There have been many other approaches based on dynamic frames [6,7] to en-
able automated verification with standard verification tool chains, for instance,
Dafny [13] and Region Logic [2]. Like Chalice, both also encoded into Boogie2.
The connection between these logics and separation logic is less clear. They ex-
plicitly talk about the footprint of an assertion, rather than implicitly. However,
our new separation logic might facilitate greater comparison.

6 Extensions and Applications

In this section we highlight the potential impact of our connection between
separation logic and the implicit dynamic frames of Chalice, by explaining several
ways in which ideas from one world can be transferred to the other.

Supporting Extra Connectives. Our extended separation logic supports
many more connectives than have previously existed in implicit dynamic frames
logics. For example, the support for a “magic wand” in the logic (or indeed an
unrestricted logical implication) is a novel contribution, which paves the way for
investigating how to extend Chalice to support this much-richer assertion lan-
guage. While a formal semantics for the magic wand does not immediately tell
us how to implement inhaling and exhaling such assertions correctly, it provides
us with a means of formally evaluating such a proposal. Furthermore, our direct
semantics for the assertion logic of Chalice provides a means of judging whether
a particular implementation is faithful to the intended logical semantics.

Evaluating the Chalice Implementation. Various design decisions in the
Chalice methodology can be evaluated using our formal semantics. For example,
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Chalice deals with potential interference from other threads by “havocing” heap
locations whenever permission to the location is newly granted. An alternative
design would be to “havoc” such locations whenever all permission to them
was given up in an exhale, instead. This would provide different weakest pre-
conditions for Chalice commands, and it would be interesting to investigate what
differences this design decision makes from a theoretical perspective. Our results
provide the necessary basis for such investigations.

Separation logics typically feature recursive (abstract) predicates in their as-
sertion language. The Chalice tool also includes an experimental implementation
of recursive predicates (without arguments), along with the use of “functions”
in specifications to describe properties of the state in a way which could sup-
port information hiding. In the course of investigating how to extend our results
to handle predicates in the assertion logics, we discovered that the current ap-
proach to handling predicates/functions in Chalice is actually unsound in the
presence of functions and the decision to havoc on inhales rather than exhales.
We, and the Chalice authors, are now working on a redesign of Chalice predi-
cates based on our findings. As above, the formal semantics and connections we
have provided give us excellent tools for evaluating such a redesign.

Implementing Separation Logic. One exciting outcome of the results we
have presented is that a certain fragment of separation logic specifications can
be directly represented in implicit dynamic frames and automatically verified
using the Chalice tool. This is a consequence of three results:

1. We have shown that our total heap semantics for separation logic coincides
with its prior partial heaps semantics.

2. We have shown that we can replace all “points-to” predicates with logical
primitives from implicit dynamic frames, preserving semantics.

3. We have shown that the Chalice weakest-pre-condition calculation agrees
with the weakest pre-conditions used in separation logic verification.

The critical aspect which is missing is the treatment of predicates - once we can
extend our correspondence results to handle recursively-defined predicates in the
logics (which are used in virtually all separation logic verification examples), then
it will be possible to exploit our work to use Chalice to implement separation
logic verification. This will open up many interesting practical areas of work,
in comparing the performance and encodings of verification problems between
Chalice and separation logic based tools.

Old Expressions. We have also observed that the use of a total heap seman-
tics seems to make it easy to support certain extra specification features in a
separation logic assertion language. In particular, the use of “old” expressions
in method contracts (allowing post-conditions to explicitly mention values of
variables and heap locations in the pre-state of the method call) is awkward to
support in a partial heaps semantics, since it expresses relationships between
partial heap fragments which may not have obviously-related domains. As a
consequence, separation logic based tools typically do not support this feature.
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However, with our total heap semantics it seems rather easy to evaluate old ex-
pressions by simply replacing our total heap with a copy of the pre-heap. While
the details remain to be worked out, this seems to suggest that both separa-
tion logic and implicit dynamic frames can be made more expressive using the
connections proved in our work.
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Abstract. In a language with procedures calls and pointers as parame-
ters, an instruction can modify memory locations anywhere in the
call-stack. The presence of such side effects breaks most generic inter-
procedural analysis methods, which assume that only the top of the
stack may be modified. We present a method that addresses this issue,
based on the definition of an equivalent local semantics in which writing
through pointers has a local effect on the stack. Our second contribution
in this context is an adequate representation of summary functions that
models the effect of a procedure, not only on the values of its scalar and
pointer variables, but also on the values contained in pointed memory lo-
cations. Our implementation in the interprocedural analyser PInterproc
results in a verification tool that infers relational properties on the value
of Boolean, numerical and pointer variables.

1 Introduction

Relational interprocedural analysis is a well-understood static analysis technique
[7,26,20]. It consists in associating at each program point a relation between
the input state and the current state of the current procedure, so that at the
exit point of a procedure P one obtains its input/output summary function
capturing the effect of a call to P . Interprocedural analysis is also a form of
modular analysis that enables the analysis of recursive programs.

Applying it requires the ability to identify precisely the input context of a
procedure in the program, that is, the relevant part of the call-context that
influences the execution of the callee procedure, as well as the output context,
that is, the part of the state-space that may be altered by the procedure. This
might be more or less simple:

– it is simple for procedures taking integer parameters and returning integer
results; summary functions are relations R ⊆ Zn

– if a procedure accesses and modifies global variables, these may be treated
as implicit input/output parameters that are added to the explicit ones;
this applies to procedures manipulating dynamically allocated objects, if
the memory heap is viewed as a special global variable [25,17].

This paper addresses the case where procedures might take pointer parameters
referring to stack variables, as in Fig. 2. This occurs in C/C++ programs, and in
a weaker way in Pascal and Ada languages through reference parameter passing.
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Sect. 2 Sect. 3 Sect. 4 (interprocedural abs.) Sects. 5 & 6︷ ︸︸ ︷
Standard
semantics

︷ ︸︸ ︷
πl←→ Local

semantics

︷ ︸︸ ︷
πr←→ Instrumented

semantics −−−→←−−−
α

γ Stack
abstraction

︷ ︸︸ ︷
−−−→←−−−
α

γ Activation record
abstraction

Preserves: Reachable stacks Top of reachable stacks
(Invariants on variables)

Fig. 1. Methodology followed in the paper

Pointers to the execution stack raise two difficulties in this context:

(i) the effect of an instruction *p=*p+1 might modify a location anywhere in
the stack, instead of being located in the top activation record;

(ii) aliasing of different pointer expressions referring to the same location.

Point (i) makes difficult to isolate precisely the effective input context of a pro-
cedure, keeping in mind that filtering out the irrelevant parts of the call-context
is important for modularity and thus efficiency. This has been addressed in [2]
for the simpler case of references, and in [31] in for general pointers, but in a
less general way that us. Point (ii) is a widely studied problem in compiler opti-
misation and program verification. Points-to or alias analysis have been widely
studied [13]. However, most work target compiler optimisation and the preci-
sion achieved is insufficient for program verification. Array and shape analyses
[11,25,17], which may be seen as sophisticated alias analyses, target automatic
program parallelization or program verification, but focus mainly on arrays or
heap objects, and much less on pointers to the stack in an interprocedural con-
text. We also observe that many established static analyzers avoid this specific
problem: Astrée [8] inlines on the fly procedure calls and does not perform an
interprocedural analysis. This is also the case for Fluctuat [9]. Caduceus [10],
before being embedded in Frama-C, explicitly discarded pointers on the stack.
On the other hand, PolySpace Verifier [24] has necessarily a specific treatment
for them, but the technique is unknown (unpublished).

Our goal is thus to enhance existing interprocedural analysis that infers in-
variants on the values of scalar variables with the treatment of pointers to the
execution stack. Typically, we want to infer an enough precise summary function
for the swap procedure, in order to infer the postcondition below:

{0≤x≤2y≤10} swap(&x,&y) {0≤y≤2x≤10}
Our approach is based on abstract interpretation [6]. We focus on pointers to
the stack and we do not consider global variables, structured types and dynamic
allocation; the combination with these features is discussed in the conclusion.

Our approach is original in several ways:

– our approach derives an effective analysis by decomposing it in the well-
identified steps depicted on Fig. 1, and delays approximations on pointers
and scalar variables to the last step, instead of mixing interprocedural and
data abstractions;

– as a result, we perform in parallel an alias and a scalar analysis;
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– we infer summary functions and invariance properties that are fully relational
between alias properties (on pointers) and scalar properties (on Booleans and
integers), and we define a symbolic representation for such properties;

– in the special case of Boolean programs, we prove our analysis to be exact.

Outline and contributions. Fig. 1 depicts graphically the methodology followed
in the paper and emphasises (in bold font) our theoretical contributions. Sect. 2
describes the analysed language. Sect. 3 propose an alternative local semantics,
in which the input context of a procedure is made explicit and the effect of a
procedure is local (within the top of the activation stack). We prove this se-
mantics to be equivalent to the standard one. Sect. 4 reminds how relational
interprocedural analysis can be expressed as a stack abstraction [19], which al-
lows us to formalize correctness proofs (available in [28]). It reduces the analysis
on stacks to an analysis on activation records. Sect. 5 investigates the problem of
representing efficiently sets and relations on activation records. Sect. 6 describes
the abstraction of activation records with the BddApron library and shows an
experiment with the PInterproc analyzer that we implemented. It discusses al-
ternative abstract domains that lead to more classical analyses. Sect. 7 discusses
related work and we draw some perspectives in Sect. 8.

2 The Language and Its Standard Semantics

We extend with pointers (Tab. 1) the language analysed by Interproc [16], which
features procedures with call-by-value parameter passing, local variables,
numerical and boolean expressions, assignments, conditionals and loops, see
Figs. 2, 7 and 9. Our language excludes structured types and dynamically allo-
cated objects.

We consider types of the form τ0∗k = τ0

k︷ ︸︸ ︷∗ · · · ∗ and left values are of the form
∗k id, which can be found either on the left side of an assignment, or anywhere in
expressions (like **x + *y - 2). We also have the nil pointer constant and the
expression &id. Procedure calls have the form y = P (x), where x and y are the
vectors of effective input and output parameters. Procedure definitions have the
form

proc P (fp1 : t1, . . . , fpm : tm) : (fr1 : t′1, . . . , frn : t′n)
var z1 : t′′1 , . . . , zp : t′′p ;
begin . . . end

where fp and fr are (vectors of) formal input and output parameters, z are the
local variables, and t, t’, t” their associated type. We write fp(i) for the ith com-
ponent of the vector. The code of the full program is modelled with a Control
Flow Graph (CFG), Fig. 2, in which an edge is either
– an intraprocedural edge c

instr−−−→ c′ (test or assignment),

– a call edge c
call y=P (x)−−−−−−−−→ s linking a call point c (in the caller) to the start

point s of the callee,



462 P. Sotin and B. Jeannet

Table 1. Language extension

(a) Types.

τ ::= τ0
| τ∗

τ0 ::= bool
| int

(b) Expressions.

left ::= id variable
| ∗left dereferencing

expr ::= left read memory
| &id address taking
| nil nil pointer
| . . .

Table 2. Semantic domains

Γ︷ ︸︸ ︷
〈n, F 〉 ∈ Stack = N × (N → Act)

Act = Var →
Val︷ ︸︸ ︷

Addr ∪ Scalar
Addr = (N × Var) ∪ {nil,⊥}

Scalar = B ∪ Z

proc swap(p:int*,q:int*) returns ()
var tmp:int;
begin // (s)

tmp = *p;
*p = *q;
*q = tmp; // (e)

end
var a:int,b:int,

x:int*,y:int*;
begin

x=&a; y=&b; // (c1)
swap(x,y); // (r1)=(c2)
swap(y,x); // (r2)

end

s

c1

r1

c2

r2 e

x=&a
y=&b

swap(pa,pb)

swap(pb,pa)

ca
ll

sw
ap
(x
,y
)

ret
swap(x,y)

ca
ll

sw
ap
(y
,x
)

ret swap(y,x)

tmp = *p;
*p = *q;
*q = tmp;

Fig. 2. Program example and Control Flow Graph (CFG)

– or a return edge e
call y=P (x)−−−−−−−−→ r linking the exit point e of the callee proce-

dure to a return point r of the caller.

The return point associated to a call point c will be denoted by ret(c).

Semantics. The semantic domains are given on Tab. 2. A program state is a
stack of activation records. A stack Γ = 〈n, F 〉 is defined by its size n and a
function F : [1..n] → Act that returns the activation record at the given index.
An activation record contains the current control point encoded in a pc variable
and the values of the local variables. A pointer value is either the null value
nil, the special value ⊥ denoting a pending pointer, or a normal address (n, id),
referring to the variable id located at the index n. A pending pointer value ⊥
typically occurs when a callee procedure returns a pointer to one of its local
variables. We adopt the following alternative view of the stack:

Stack = N × (
N → (

Act︷ ︸︸ ︷
Var → Val)

) � N × (
(N × Var) → Val

)
Tab. 3 defines the semantics of expressions. The semantics of a nil or a pending
pointer dereference is undefined.

The semantics of the language is given as a transition system (Stack, I, �),
where � is a transition relation on stacks and I is the set of initial stacks of
height one. Tab. 4 defines � for the interprocedural edges of the CFG. The call
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Table 3. Standard semantics: expressions

[[left]]A : Stack → N × Var Address of a left value
[[expr]]V : Stack → (N × Var) ∪ {nil,⊥} ∪ Scalar Value of an expression

[[id]]A = 〈n, id〉
[[∗left]]A = [[left]]V

when [[left]]V /∈ {nil,⊥}

[[left]]V = F ([[left]]A)
[[&id]]V = [[id]]A

[[nil]]V = nil
(The argument Γ = 〈n, F 〉 is implicit)

Table 4. Standard semantics: transitions

F (n, pc) = c F ′(n+1, pc) = c′

∀i, F ′(n+1, fp(i)) = F (n,x(i))
∀z ∈ Varτ∗\fp, F ′(n+1, z) = nil
∀z ∈ Varτ0\fp, F ′(n+1, z) ∈ Scalar
∀z ∈ Var, ∀k ≤ n, F ′(k, z) = F (k, z)

〈n, F 〉 � 〈n+1, F ′〉

(Call c
call y:=P (x)−−−−−−−−−→ c′)

F (n+1, pc) = c

F ′ = F

[ 〈n, pc〉 �→ c′

〈n,y(i)〉 �→ F (n+1, fr(i))

]
F ′′ = F ′[ a �→ ⊥ if F ′(a) = 〈n+1, id〉 ]

〈n+1, F 〉 � 〈n, F ′′〉

(Ret c
ret y:=P (x)−−−−−−−−→ c′)

copies the effective parameters in the formal parameters. It also initializes the
local variables of pointer type to nil. The return copies the formal results in the
effective results, then it forgets the last activation record. Pointers to addresses
of this activation record are turned to pending values. Intraprocedural edges
generate simpler transitions, like choosing the next control point for tests, and
updating the stack for assignments. In this semantics, undefinedness (compari-
son with a pending value or invalid dereference) generates a sink state without
successors.

Analysis goal. Our aim is to perform a reachable state analysis of such pro-
grams and more precisely to compute for each program point an invariant on
the values of variables. Formally, the set of reachable stacks is Reach(I, �) =
{Γ | ∃Γ0 ∈ I, Γ0 �∗ Γ}, and our goal is to compute the set of top activation
records of these stack.

We want to apply relational interprocedural analysis methods for this purpose.
As discussed in the introduction, this requires to identify the input context of
a procedure, which may include in our case the content of a pointed location
anywhere in the stack, which may be later modified by the procedure during its
execution. In contrast, general interprocedural analysis techniques [20] assume
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that side-effects performed by a procedure are limited to the current activation
record.

3 An Equivalent Local Semantics

The aim of this section is to define a local semantics in which the effect of a
procedure is limited to the top activation record. The idea of this semantics, in-
spired by [2], is that a procedure works on local copies (called external locations)
of the locations that it can reach with its pointer parameters.

The first challenge is to take into account aliasing properties between pointer
parameters and to define a correct input parameter passing mechanism. Consider

Caller (σ)

Callee

Any location
Local (Var)
External loc. Points-to

bindσ
Copy

(a) Legend.

qqnil
q nil

ppnil p nil

(b) All nil, both sem.

qq
q

pp
p

(c) All distinct, standard.

“∗∗pp” “∗p”

qq
q

“∗pp”
pp

p

(d) All distinct, local.

qq
q

pp
p

(e) ∗∗qq and ∗q are aliased, std.

“∗∗pp, ∗p”

qq
q

“∗pp”
pp

p

(f) ∗∗qq and ∗q are aliased, local.

qq
q

pp
p

(g) ∗qq and q are aliased, std.

“∗∗pp, ∗p”

qq
q

“∗pp”
pp

p

(h) ∗qq and q are aliased, local.

Fig. 3. Procedure call in the standard and local semantics: call f(qq,q) to a procedure
f(int** pp, int* p)
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a call f(qq,q) to a procedure f(int** pp, int* p). Fig. 3 considers different
aliasing situation between qq and q in the caller, and the consequences on the
set of external locations in the callee. We depict the situation on the left for
the standard semantics, on the right for the local semantics. We will define a
function bind, depicted with dashed arrows, that maps locations in the caller
to external locations in the callee that are reachable from its input parameters.
Figs. 3(g)(h) illustrates a non trivial situation: in the caller, qq points to q, but
in the callee pp does not point to p.

The second point is then to define a correct return parameter passing mecha-
nism. When the procedure f returns, the modifications on its external locations
should be propagated back to the corresponding locations in the caller, which
may be themselves local or external w.r.t. their own caller.

3.1 Local Semantics

Table 5. Semantic domains

Γ ∈ Stack = Act


σ ∈ Act = Loc →
Val︷ ︸︸ ︷

Loc ∪ {nil,⊥} ∪ Scalar
l ∈ Loc = Var ∪ External

External = P(Deref)
Deref = {∗kfp(i)}

Tab. 5 defines the semantic do-
mains. Values can be stored as
before in local variables, but also
in external locations. These ex-
ternal locations are identified by
the set of left values that refer to
them at the beginning of the cur-
rent procedure. Fig. 3 illustrates
this naming scheme.

The evaluation of the expressions are the same as in Tab. 1b, except that
left values are now all fetched in the top activation record σ. We have [[left]]Vσ =
σ([[left]]Aσ ) and [[id]]Aσ = id. The semantics of an interprocedural instruction is
captured by a relation Rinstr(σ, σ′) between two top activation records.

Binding. The key point of the local semantics lies in the procedure calls and
returns. The external locations (ie. local copies) have to be determined and
valued at call time, then propagated back at return time.

The purpose of the function bindσ is to map locations of the caller that can
be reached by effective parameters to the external locations in the callee:

bindσ : Loc(Caller) → External(Callee)

bindσ(l) = D if D =
{ ∗k fp(i) ∣∣ [[∗kx(i)]]Vσ = l ∧ k≥1

} �= ∅ (1)

with σ ∈ Act(Caller) being the activation record at the call point. The function
bindσ(l) binds a location l of the caller to the set of dereferences in the callee
that can refer to it at call time. If this set is empty, bindσ(l) is undefined and
l cannot be modified by the callee. The constraint k ≥ 1 reflects the fact that
modifications of the formal parameters do not alter the effective parameters
(call-by-value). This function is injective and can be reversed into the function
bind−1

σ . Fig. 3 depicts bindσ for different contexts σ.
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Table 6. Local semantics: transitions

b̃indσ(v) =
{

bindσ(v) if v ∈ Loc
v otherwise

(Pass)

b̃ind−1
σ (v) =

⎧⎨⎩ bind−1
σ (v) if v ∈ P(Deref)

⊥ if v ∈ Var
v otherwise

(Pass−1)

R+
y:=P (x)(c)(σ, σ′)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ(pc)=c ∧ σ′(pc)=c′

∀i, σ′(fp(i)) = b̃indσ(σ(x(i)))
∀e ∈ dom(bind−1

σ ), σ′(e) = b̃indσ ◦ σ ◦ bind−1
σ (e)

∀z ∈ Varτ∗\fp, σ′(z) = nil
∀z ∈ Varτ0\fp, σ′(z) ∈ Scalar

Γ.σ → Γ.σ.σ′

(CallL c
call y=P (x)−−−−−−−−→ c′)

R−
y:=P (x)(c)(σ, σ′, σ′′)

⎧⎪⎨⎪⎩
σ(pc)=c ∧ σ′(pc)=c′ ∧ σ′′(pc)=ret(c)

σ′′
side= σ

[
l �→b̃ind−1

σ ◦ σ′ ◦ bindσ(l)
∣∣ l ∈ dom(bindσ)

]
σ′′ =σ′′

side

[
y(i) �→b̃ind−1

σ (σ′(fr(i)))
]

Γ.σ.σ′ → Γ.σ′′

(RetL c′
ret y=P (x)−−−−−−−−→ ret(c))

Caller

Callee

Loc

Scalar ∪ {nil,⊥}

External Var

fp

x

Loc

⊆

⊇
⊇

⊇ σ

σ′

bind−1

bind

Fig. 4. Binding

0 5a b

(a) Before call.

5 0a b

p q

(b) Before return, standard.

0 5a b

p q

5 0“∗p” “∗q”

(c) Before return, local.

Fig. 5. Standard and local stack before returning from swap(&a,&b)
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Procedure calls and returns. Tab. 6 formalizes the transitions, and Fig. 4 illus-
trates the relationships between the involved sets and functions.

During a procedure call, a new activation record σ′ is pushed on the stack,
and initialized with the adequate values in the caller (parameters, external lo-
cations). The return operation first propagates the side effects by copying back
the externals, then copies the return values and pops the activation record. The

copies between caller and callee rely on the functions b̃indσ and b̃ind−1
σ which

take care of address conversion.

3.2 Preservation of Properties by the Local Semantics

Proving that the standard and local semantics are equivalent w.r.t. reachability
properties raises a technical difficulty: side-effects due to pointers to the stacks
are propagated immediately in the standard semantics, whereas this propagation
is delayed until procedure return in the local semantics, as illustrated on Fig.5.

To deal with this, we define a function that “projects” a local stack into
a standard stack and takes care of the above-mentioned propagation. We first
define a function address : N × Loc → N ×Var that returns the original variable
in the stack referred to by a location at the ith activation record in a local stack
σ1 . . . σn:

address(i, l) =
{

address(i − 1, bind−1
σi−1

(l)) if l ∈ External
〈i, l〉 if l ∈ Var

This function is then generalized to values:

ãddress(i, v) =
{

address(i, v) when v ∈ Loc
v when v ∈ {nil,⊥} ∪ Scalar

We last define a function that assigns values to variables in a standard stack,
possibly by searching the external location representing it at the highest index
in the local stack:

value(i, z) =

{
value(i + 1, bindσi(z)) if z ∈ dom(bindσi) ∧ i �= n

ãddress(i, σi(z)) otherwise

Definition 1. The projection function πl : Stackins → Stackstd is defined by
πl(σ1 . . . σn) = 〈n, F 〉 where F (i, z) = value(i, z)

πl is not injective because a local stack keeps track of past values of variables
when these are copied in external locations. For instance, if one considers the
local stack on Fig. 5c, modifying the value of location a does not modify its
image by π.

Thm. 1 states that both transition systems behave the same way (proof in
appendix). We can thus compute the exact reachability set in the standard se-
mantics by computing it in the local semantics and projecting the result (Cor. 1).

Theorem 1. πl(i) = s ⇒
{∀s′, s � s′ ⇒ ∃i′, i → i′ ∧ πl(i′) = s′

∀i′, i → i′ ⇒ ∃s′, s � s′ ∧ πl(i′) = s′

Corollary 1. Reach(I, �) = πl(Reach(I,→))
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4 Interprocedural Abstraction

The previous section defined a local semantics in which side-effects involve only
the top of the stack, so as to enable the application of relational interprocedural
analysis techniques, which manipulate relations between activation records (but
not relations between stacks). In this section, we formalize a relational interpro-
cedural analysis based on the local semantics.

As explained in the introduction, relational interprocedural analysis associates
at each program point a relation between the input state and the current state
of the current procedure, so that the exit point of a procedure contains its
input/output summary. Fig. 6 illustrates the use of the summary Xe which
captures the effect of a call to Pj to obtain the relation Xr at the return point.

We follow the formalization of [19], that reformulates classical presentations
[7,26,20] by deriving relational interprocedural analysis as an abstract interpreta-
tion of the concrete (local effects) semantics. The advantage of this formalization
is twofold:
– it allows to derive automatically abstract transfer functions and to prove

their correctness; this is not obvious when the input and output parameter
passing mechanisms are as complex as in Tab. 6; for instance [20] does not
investigate this issue.

– it separates the abstraction made by the interprocedural analysis method
from the abstraction performed on activation records, as depicted on Fig. 1.

Relational instrumentation. Establishing a relation between the input and
the current state at any point of a procedure requires to memorize the input state.
We thus consider an semantics on instrumented pairs (σ0, σ) ∈ Act2 where σ0 is
the input state. Alternatively (as in [19]), it can be seen as introducing copies
fp0 and l0 of the formal parameters and external locations in σ.

Formally, this relational instrumentation is defined from any local transi-
tion system (Act∗, I,→) by a transition system ((Act × Act)∗, I ′, ↪→) where
I ′ = {(σ, σ) | σ ∈ I} and ↪→ is defined by the rules of Tab. 7. It is clear that
there is a one-to-one correspondence between the executions of the transition

〈return y:=Pj(x)〉
Xc(σ0

i , σi)
(call point)

Xe(σ0
j , σj)

(exit point)
R+

y:=Pj(x)
(c)(σi, σ

0
j )

(unification of actual and formal parameters)
R−

y:=Pj(x)(c)(σi, σ
′
j , σ′

i)
(output parameter passing)

Xr(σ0
i , σ′

i) (return point)

Pi Pk

si Pj sk

sj

c

c′

ej

σ0
j

σ′
j

σ0
i

σi

σ′
i

Xe

Xc

Xr
x � fp

ret y:=P
j (x)

σ0
k

σk

σ′
k

Xc
′

Xr
′a � fp

ret
b:
=Pj(a

)

Fig. 6. Procedure return in relational interprocedural analysis. The relation Xr at
return point is obtained by a (special) composition of relations Xc and Xe.
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Table 7. Relational instrumentation for interprocedural analysis

Γ.σ → Γ.σ′

Υ.〈σ0, σ〉 ↪→ Υ.〈σ0, σ′〉 (IntraI)

Γ.σ → Γ.σ.σ′

Υ.〈σ0, σ〉 ↪→ Υ.〈σ0, σ〉.〈σ′, σ′〉 (CallI)
Γ.σ.σ′ → Γ.σ′′

Υ.〈σ0, σ〉.〈σ0′
, σ′〉 ↪→ Υ.〈σ0, σ′′〉 (RetI)

Table 8. Abstract postcondition defining a forward semantics on activation records

post�(τ) : P(Act2) → P(Act2) defined by Y � = post�(τ)(X�) with

τ = c
instr−−−→ c′ Y � =

{
〈σ0, σ′〉

∣∣∣∣ 〈σ0, σ〉 ∈ X�

Rinstr(c, c′)(σ, σ′)

}
(2)

τ = c
call y=Pj(x)−−−−−−−−−→ sj Y � =

{
〈σj , σj〉

∣∣∣∣ 〈σ0, σ〉 ∈ X�

R+
y=P (x)(c)(σ, σj)

}
(3)

τ = ej
ret y=Pj(x)−−−−−−−−→ ret(c) Y � =

⎧⎪⎨⎪⎩〈σ0, σ′〉

∣∣∣∣∣∣∣
〈σ0, σ〉 ∈ X� ∧ 〈σ0

j , σj〉 ∈ X�

R+
y=P (x)(c)(σ, σ0

j )
R−

y=P (x)(c)(σ, σj , σ
′)

⎫⎪⎬⎪⎭ (4)

systems → and ↪→. The second important point is that all stacks reachable by
↪→ are coherent stacks (see Definition 2).

Definition 2 (Coherent stack). Given a local semantics (Act∗, I,→), an in-
strumented stack Υ = 〈σ0

1 , σ1〉 . . . 〈σ0
n, σn〉 in (Act2)
 is coherent if ∀i < n :

R+(σi, σ0
i+1), where R+(σ, σ′) = ∃Γ : Γ.σ → Γ.σ.σ′.

Reachable stacks are coherent because initial stacks are so, and this property
is preserved by all transitions in Tab. 7. If R+(σ, σ′), we say that σ is a valid
call-context for σ′. We write C((Act2)
) for the set of coherent stacks.

Stack abstraction and induced forward semantics. The stack abstraction
consists in collapsing sets of stacks into sets of activation records, and conversely
in using the coherence property to rebuild stacks. We define the Galois connec-
tion P(C((Act2)
)) −−−→←−−−

α

γ P(Act2) with:

α(X) = {υi | υ1 · · ·υn ∈ X ∧ 1 ≤ i ≤ n} (5)

γ(X�) =
{

υ1 · · · υn
∣∣∣∣∀1 ≤ i ≤ n, υi ∈ X�

υ1 · · · υn is coherent

}
(6)

Let post(c instr−−−→ c′) : P(C((Act2)
)) → P(C((Act2)
)) be the concrete postcon-
dition operator associated to a CFG edge, which can be deduced from Tabs. 6
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and 7. The induced abstract postcondition is defined in Tab. 8. Notice that
Eqn. (4) reformulates the rule of Fig. 6; the condition R+

y=P (x)(c)(σ, σ0
j ) tells

that σ is valid context for σ0
j .

Proposition 1 (post� is a correct approximation of post)
For any τ , post�(τ) ◦ α � α ◦ post(τ).
If τ is not a return transition, then post�(τ) ◦ α = α ◦ post(τ).

Not surprisingly, the transfer function is less precise for return transitions. How-
ever, generalizing a result of [19] we get the following optimality result that
reformulates in our setting the Interprocedural Coincidence Theorem of [20].

Theorem 2. lfp(λX� . α(I ′)�post�(X�)) = α(Reach(I, ↪→)) = hd(Reach(I, ↪→))

This means that as far as we are interested in invariants at each control point,
which concern only top activation records of reachable stacks, the stack abstrac-
tion is exact.

5 Representing Sets and Relations of Activation Records

Let us remind the steps we followed, depicted in Fig. 1: we defined in Sect. 3 a
local semantics, to which we apply the stack abstraction defined in Sect. 4, so
as to obtain a reachability analysis on sets of activation records. In this section,
we discuss the encoding of activation records by functions of signature Id →
B ∪ E ∪ Z, and their symbolic manipulation with logical formula (E denotes
enumerated values). This is a first step toward an abstraction leading to an
effective implementation.

External locations and pointers. The set of external locations appears both
in the domain and the codomain of activation records σ, see Tab. 5. Two facts
are important:

(1) the set of potential external locations External = P({∗kfp(i)}) is finite;
(2) the set of active external locations depends through the function bindσ on

the call-context σ, see Fig. 3, and it is much smaller.

(1) implies that the domain of σ is finite and that the value of pointers belongs
to a finite set. (2) comes from two properties: for a given call-context σ,
– typing forbids some subsets: all elements of bindσ(l) ∈ External = P(Deref)

represent aliased dereferences and thus have the same type;
– for two locations l1 �= l2, bindσ(l1) and bindσ(l2) are disjoints.

We thus pick a representative for each set with a function repr : P(Deref) →
Deref defined by repr(D) = min� D with ∗k1 fp(i1) � ∗k2 fp(i2) ⇔ i1 ≤ i2. The
order � is a total order on D because of the above-mentioned typing property.

As a result, an activation record can be represented with a function of signa-
ture Id → B ∪ E ∪ Z with Id = Var ∪ External and E = {nil} ∪ Var ∪ External.

Concerning the number of external locations, in a procedure of signature
(fp(1) : τ0∗k1 , . . . , fp(n) : τ0∗kn) in which all scalars pointed by formal parameters
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proc swapi(p:int**,q:int**)
begin
**p = **p + 1;
**q = **q + 1;
(*p,*q) = (*q,*p);

end

p=p0 =&“∗p” ∧ “∗p”0 =&“∗∗p” ∧ “∗∗p”0 =10∧
q=q0 =&“∗q” ∧ “∗q”0 =&“∗∗q” ∧ “∗∗q”0 =20∧

“∗p”=&“∗∗q” ∧ “∗q”=&“∗∗p”∧
“∗∗p”=“∗∗p”0+1 ∧ “∗∗q”=“∗∗q”0+1

(a) At exit point: logical representation

p0 p q0 q

“∗p”0 “∗p” “∗q”0 “∗q”

“∗∗p”0 “∗∗p” “∗∗q”0 “∗∗q”
10 10 20 20

(b) At start point

p0 p q0 q

“∗p”0 “∗p” “∗q”0 “∗q”

“∗∗p”0 “∗∗p” “∗∗q”0 “∗∗q”
10 11 20 21

(c) At exit point

Fig. 7. Duplication of locations and examples of a summary function

have the same type τ0, we have thus
∑

1≤i≤n ki external locations, which are all
active if there is no aliasing at all. If there are several scalar types involved, we
sum up the sums associated to each scalar type.

Representing sets. Our logical formula will use the following atoms:

p=&x p points to variable x
p=&l p points to location l

l1 = l2 l1 and l2 have same value
l = 7 location l contains scalar 7

For example, we can describe the set of activation records

a b c

5 10 0

p

∨ a b c

p

5 10 0

with X = (p=&a ∨ p=&b)∧
a=5 ∧ b=10 ∧ c=0

Instrumented activation records. We actually represent pairs 〈σ0, σ〉 of activation
records in Tab. 8 with single activation records containing copies fp0 and l0 of
formal parameters and external locations. Fig. 7 illustrates this point. Fig. 7b
depicts the activation record at the start point of the procedure, and Fig. 7c
shows the modified values (in bold lines) at the exit point. Fig. 7a represent it
as a logical formula. We remind that keeping the values of locations fp0 and l0
will allow to select valid calling context for procedure return, see Fig. 6.

Representing relations. In Tab. 8, postconditions associated to call and
return are based on the relation R+(σ, σ′) defined in Tab. 6 that relates a call-
context to the initial activation record in the callee. We illustrate the transcrip-
tion of this relation with a quantifier-free logical formula. Consider the function
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a b

∗p10 ∗p20

q1 q2

p1 p2

Caller

Callee
(g)

a b

∗p10 ∗p20

q1 q2

p1 p2

Fig. 8. Distinct aliasing, distinct bindings

g(int* p1, int* p2) and a call instruction g(q1,q2) in the context depicted
on Fig. 8 where q1 and q2 can point to a and/or b, see Fig. 8. We have

R+
g(q1,q2) = (q1=nil ⇔ p1=nil)

∧ (q1=⊥ ⇔ p1=⊥)
∧ (q1=&a ⇔ (p1=&“∗p1” ∧ “∗p1”=a))
∧ (q1=&b ⇔ (p1=&“∗p1” ∧ “∗p1”=b))
∧ (q2=nil ⇔ p2=nil)
∧ (q2=⊥ ⇔ p2=⊥)
∧ ((q2 	= q1 ∧ q2=&a) ⇔ (p2=&“∗p2” ∧ “∗p2”=a))
∧ ((q2 	= q1 ∧ q2=&b) ⇔ (p2=&“∗p2” ∧ “∗p2”=b))
∧ (q2=q1 ⇔ p2=p1)

When q1 and q2 are aliased (q2 = q1), the value of “∗p2” is unconstrained.
The external location used is still named ∗p1, meaning that repr({∗p1, ∗p2}) =
∗p1. Generally speaking we have to enumerate the possible values of the actual
parameter q1, q2, and in each case assigning the correct value for the formal
parameters, according to Tab. 6.

Once sets of and relations on activation records are represented with such
logical formula, it is possible to compute the application of the relation to a set
or to perform relation composition.

6 Abstracting Sets of Activation Records

The forward semantics of Tab. 8 manipulates activation records, the structure of
which has been investigated in the previous section. We begin by an important
result:

For recursive Boolean programs with pointers on the stacks, we obtain
an exact analysis w.r.t. invariance properties that can be implemented.

This is a consequence of Theorems 1 and 2, and the observation that the state-
space induced by activation records is finite in this case. However in the presence
of numerical variables it is not any more the case, and we need to perform an
abstraction. We start by describing the one we implemented in our tool, and we
then discuss alternatives which also abstract pointers and lead to more classical
analyses.

Logico-numerical abstraction with BddApron. BddApron [14] is a static
analysis library that provides an abstract domain based on the following Galois
connection:

P(Id → B ∪ E ∪ Z) −−−−→←−−−−
αN

γN
A = (Bn → N )
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where Id is a finite set of identifiers, E is a set of user-defined enumerated types,
and N is any abstract domain for numerical variables provided by the Apron

library [18], for instance intervals or convex polyhedra. This abstraction treats
finite-state expressions exactly and approximates the operations involving nu-
merical tests and assignments. Abstract values are efficiently represented using
mtbdds with numerical abstract values in terminal nodes; we use for this the
Cudd library [27].

As discussed in the previous section, an activation record can be encoded
with a function Id → B∪E∪Z, thus sets of activations records can be effectively
abstracted with this library. We implemented a version of the Interproc analyzer
[16] based on it, that analyses the class of program defined in Sect. 2.

We obtain a tool called PInterproc that infers at each program point in-
variants that are fully relational between aliasing/pointer properties and invari-
ance/scalar properties. PInterproc can be tried on-line1 on a number of examples,
or on any program provided by the user.

Compared to the original version of Interproc, PInterproc has to preprocess
expressions and assignments before feeding them to BddApron. Expressions like
*p+*q>=0 are typically expressed as conditional expressions

(if p=&a then a else b) + (if q=&a then a else b) >= 0

which are supported by the library and normalized by pushing operations +,>=
under the tests. Assignments like *p:=e are decomposed in

if p=&a then a:=e else b:=e

The relation R+ discussed in Sect. 5 is encoded exactly as a Boolean expression
with equality constraints on numerical locations, whereas relation R−(σ, σ′, σ′′)
defined in Tab. 6 and used in Eqn. (4) is actually encoded as a parallel assignment
defining σ′′.

Example of analysis. We consider the procedure of Fig. 9 that transfers the
content of a pointed integer into another one, in a way similar to bank account
transfer. The source is set to 0 and its value is credited to the destination. If
the source or destination are nil, then no movement is performed. We show that
the summaries generated by our analysis are alias-sensitive, and more generally
context sensitive. The summary generated for procedure transfer (at (4)) is
dependent from the possible aliasing contexts. We show (partial) invariant at
point (4) and its call-context dependencies:

(4)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛⎝src=&“∗src” ∧ dest=&“∗dest”
∧0≤“∗src”0≤10 ∧ “∗dest”0 = 3
∧“∗src” = 0 ∧ “∗dest” = “∗dest”0 + “∗src”0

⎞⎠ from (1)

∨
(
src=&“∗src” ∧ dest=nil
∧11≤“∗src”0≤13 ∧ “∗src” = “∗src”0

)
from (2)

∨
(
src=&“∗src” ∧ dest=&“∗src”
∧11≤“∗src”0≤13 ∧ “∗src” = 0

)
from (3)

1 http://pop-art.inrialpes.fr/interproc/pinterprocweb.cgi

http://pop-art.inrialpes.fr/interproc/pinterprocweb.cgi
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var a:int,b:int;
begin

a = 0;
while(a <= 10) do
b = 3;
transfer(&a,&b); // (1)

done;
transfer(&a,nil); // (2)
transfer(&a,&a); // (3)

end

proc transfer (src:int*,dest:int*)
begin
if (not (src == nil)) and

(not (dest == nil)) then
*dest = *dest + *src;
*src = 0;

endif; // (4)
end

Fig. 9. Bank account transfer program

The aliasing context at call point (3) exhibits what can be a bad behaviour of
the procedure (money or debt disappeared), when both parameters points to the
same integer. Other experiments can be found at the webpage of PInterproc.

Complexity. Due to space constraints, we produce only a rough complexity anal-
ysis. Assuming l = lp + lb + ln external locations, resp. decomposed resp. into
locations of pointer, Boolean, and numerical type (see Sect. 5 for an evaluation
of l) and v = vp+vb+vn local variables decomposed in the same way, an abstract
value can be represented by a mtbdd

– with at most 2(lp + vp) log2(l + v) + 2(lb + vb) Boolean variables,
– and with numerical abstract values on at most 2(ln + vn) dimensions.

The factor 2 is due to the copies of formal parameters and external locations.
The discussion in Sect. 5 about the number of possible locations and the ef-
fective size of enumerated types encoding pointer values is very important in
practice for efficiently encoding activation records and for controlling the num-
ber of disjunctions to handle in expressions and assignments. In particular the
term log2(l + v) totally ignores the type information that restricts the possible
values of pointers, whereas our implementation performs such optimizations.

Alternative abstractions. An important idea of this work is to derive an ef-
fective analysis by decomposing it in the well-identified steps depicted on Fig. 1,
and to delay as much as possible approximations on pointers and variables. We
show here that our methodology allows to express more classical, previously pub-
lished analyses. We assume that an activation record is encoded with a function
Id → B∪E∪Z and we decompose Id = Idp ∪ Ids into identifiers of resp. pointer
and scalar types.

– We can obtain a pure alias analysis if we forget the values of scalars, using
the abstraction

P(Id → B ∪ E ∪ Z) −−−→←−−−
α

γ
A = P(Idp → E) � P(Bn)

This defines a flow-sensitive, context-sensitive, and fully relational interpro-
cedural alias analysis, in which procedure summaries establishes a relation
between aliasing properties at start and exit points.
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– If we perform a further non-relational abstraction:

P(Idp → E) −−−→←−−−
α

γ
(Idp → P(E))

we obtain a flow-sensitive, context-insensitive interprocedural points-to anal-
ysis. Procedure summaries are of the form Pin∧Pout and does not really relate
input to output alias properties.

– We can also obtain the reduced product of an alias and a scalar analysis as
follows:

P(Id → B ∪ E ∪ Z) −−−→←−−−
α

γ P(Idp → E) × P(Ids → B ∪ Z)

The two analyses interacts during the fixpoint computation; typically the
logico-numerical abstract domain will query the alias property when com-
puting the effect of an assignment *p=*p+1, to know to which location p may
point to.

7 Related Work

In 2001, Hind made a survey [13] of twenty years of pointer analysis. It is legit-
imate to ask what is the contribution of our paper in such a well-studied field.
First we emphasize that most pointer analyses try to determine the possible
aliasing in a program, regardless of the boolean and numerical values manipu-
lated. One of our contribution is to allow the functional analysis of programs
with pointers, in which the aliasing information both benefits from and benefits
to the logico-numerical information.

Alias analysis for compilation. Pointer analyses that are directed to program op-
timisation are not suitable for a precise data-flow analysis (DFA). Andersen [1]
and Steensgaard [29] founded two families of algorithms for flow-insensitive
points-to analysis. Their methods lead to fast analysis (million lines of code),
with a precision sufficient for optimisation but unfortunately insufficient for pro-
gram functional analysis. In [13], Hind reported the point of view of Manuel
Fähndrich, who states that “For error detection and program understanding,
[. . . ] there seems to be a lower bound on precision, below which, pointer infor-
mation is pretty useless”. However, we share with those analyses the concern of
a precision adapted to the “client analysis” needs (eg. [5] and [12]). In our ap-
proach, the pointer analysis is merged with the logico-numerical analysis, which
enhances the precision of both analyses.

The abstract domain library BddApron we use relies on Bdds to encode the
value of pointers. Bdds have already been used in alias analysis, together with
Datalog, for a context-sensitive, flow-insensitive points-to analysis for Java [30],
but they are necessarily more efficient than analysis in pure Datalog [3]. We
actually use Bdds in combination with numerical values, so the observation of
[3] does not apply as is to our case.

Alias analysis for verification. Precise, but expensive, pointer analyses have also
been proposed. For example, Landi and Ryder [21] tackles the may-alias problem
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and they merge into an algorithm the semantic work we did in Section 3 and an
abstraction (less precise than the one we present in Section 4 and 6) This fusion
of two distinct aspects of the analysis prevent the reuse of the algorithm with
different abstraction schemes. Wilson and Lam [31] presents a lot of similarities
with our work. They tackle more general C programs and they use a notion of
external locations. However, they only address may-analysis of pointers (thus
ignoring properties on scalars), and their analysis is defined by algorithms and
not by semantic domains. Compared to our work, the lack of such a formalisation
makes difficult its generalization to a different context (eg, combining it with
scalar analysis using BDDs and convex polyhedra, or with shape analysis using
a shape domain) and forbids soundness proofs. (available in [28]). The work
that actually inspired us for the local semantics is Bourdoncle’s [2], in which
the semantics adaptation (of reference parameters) is done independently of the
abstraction step. As this work targets the Pascal language it does not handle
pointers to the stack. Pointer parameters bring more difficulties for the analysis
and for context determination than reference parameters.

Pointers on the execution stack are different from pointers within the heap.
Interprocedural shape analyses like [25,17] address the specific problem of verify-
ing the recursive data-structures in the heap. They are both based on a relational
interprocedural analysis, but [25] uses a tabulated representation for summary
functions whereas [17] exploits a more symbolic representation of relations be-
tween input/output memory heaps, in a spirit similar to Sect 5. Control-flow
analysis (CFA) aims at discovering the partly implicit control flow of higher-
order or object-oriented programs such as Java (see [22] for a survey). CFA
often includes rather precise alias analysis, but of pointers to the heap only, as
such programs do not have pointers to the execution stack.
Inferring invariants on variables of programs. The original Interproc analyser
deals with a simple language with procedures and recursive calls. It cannot han-
dle most C-like programs since they often rely on pointers, dynamic allocation
and arrays. The work we present here is a step toward the C language. As men-
tioned in the introduction, several well-established C analysers like Astrée [8]
and Fluctuat [9] that infer sophisticated properties on numerical variables tar-
get specific kinds of programs for which they can inline procedures, so they only
need to handle intraprocedural use of pointers (eg. see [23] for Astrée).

8 Conclusion

We addressed the problem of interprocedural analysis in the presence of pointers
to the stacks. By doing so, we make a step toward the analysis of C codes which
often rely on pointers as parameters and side-effects.

Our approach follows the abstract interpretation scheme depicted on Fig. 1
and carefully separate semantic and algorithmic issues. The first contribution
of the paper is an alternative local semantics for our language, in which the
instructions act locally on the stack, even in the presence of pointers and side-
effects. We prove it to be equivalent to the original semantics, which is not so
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straightforward. We are convinced that this approach can be easily generalized
to more complex languages with dynamic allocation.

We then apply relational interprocedural analysis to this local semantics,
which result in a forward semantics manipulating sets of activation records.
Our second contribution concerns the symbolic representation of such activation
records, that relate alias properties on pointers and properties on scalar vari-
ables and locations pointed to by pointers. We abstract these activation records
with the relational abstract domains provided by the library BddApron, and we
implemented the PInterproc analyzer as an extension of the Interproc for
programs with pointers on local variables.

We prove as a side-effect that for Boolean programs, our analysis is exact
w.r.t. invariance properties at each control point. We also show in Sect. 6 that
by further abstractions our approach leads to known alias analysis techniques,
that are less precise but more efficient.

The main question in our view is to which extend our approach can be gener-
alized to more expressive programs. Concerning global variables, one can push
them on the stack when instrumenting them (see [15]) and the main change is
that the domain of pointer values is larger, as we get more locations in stacks.
Adding structured types (eg. records) raises two difficulties: aliasing properties
are more complex, and it becomes possible to build an unbounded linked list
on the call stack, which induces an unbounded number of external locations in
our local semantics. This calls for a mechanism to merge external locations, as
done in shape analysis [4,25,17]. At last, in the presence of dynamically allo-
cated objects, we are convinced that one can still exploit our local semantics,
and the question is how to combine an existing shape abstract domain with our
abstraction for scalar and pointer variables.

Acknowledgements. The authors thanks Pascal Fradet for its suggestions and
the anonymous reviewers for their comments and pointers to related work.
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Abstract. Nominal Isabelle is a definitional extension of the Isabelle/HOL theo-
rem prover. It provides a proving infrastructure for reasoning about programming
language calculi involving named bound variables (as opposed to de-Bruijn in-
dices). In this paper we present an extension of Nominal Isabelle for dealing
with general bindings, that means term-constructors where multiple variables are
bound at once. Such general bindings are ubiquitous in programming language
research and only very poorly supported with single binders, such as lambda-
abstractions. Our extension includes new definitions of α-equivalence and estab-
lishes automatically the reasoning infrastructure for α-equated terms. We also
prove strong induction principles that have the usual variable convention already
built in.

1 Introduction

So far, Nominal Isabelle provided a mechanism for constructing α-equated terms, for
example lambda-terms, t ::= x | t t | λx. t, where free and bound variables have names.
For such α-equated terms, Nominal Isabelle derives automatically a reasoning infras-
tructure that has been used successfully in formalisations of an equivalence checking
algorithm for LF [18], Typed Scheme [17], several calculi for concurrency [2] and a
strong normalisation result for cut-elimination in classical logic [21]. It has also been
used by Pollack for formalisations in the locally-nameless approach to binding [14].

However, Nominal Isabelle has fared less well in a formalisation of the algorithm W
[19], where types and type-schemes are, respectively, of the form

T ::= x | T → T S ::= ∀ {x1,. . . , xn}. T (1)

and the ∀ -quantification binds a finite (possibly empty) set of type-variables. While it
is possible to implement this kind of more general binders by iterating single binders,
this leads to a rather clumsy formalisation of W.

Binding multiple variables has interesting properties that cannot be captured easily
by iterating single binders. For example in the case of type-schemes we do not want to
make a distinction about the order of the bound variables. Therefore we would like to
regard the first pair of type-schemes as α-equivalent, but assuming that x, y and z are
distinct variables, the second pair should not be α-equivalent:

∀ {x, y}. x → y ≈α ∀ {y, x}. y → x ∀ {x, y}. x → y �≈α ∀ {z}. z → z (2)

G. Barthe (Ed.): ESOP 2011, LNCS 6602, pp. 480–500, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Moreover, we like to regard type-schemes as α-equivalent, if they differ only on vacu-
ous binders, such as

∀ {x}. x → y ≈α ∀ {x, z}. x → y (3)

where z does not occur freely in the type. In this paper we will give a general bind-
ing mechanism and associated notion of α-equivalence that can be used to faithfully
represent this kind of binding in Nominal Isabelle.

However, the notion of α-equivalence that is preserved by vacuous binders is not
always wanted. For example in terms like

let x = 3 and y = 2 in x − y end (4)

we might not care in which order the assignments x = 3 and y = 2 are given, but it
would be often unusual to regard (4) as α-equivalent with

let x = 3 and y = 2 and z = foo in x − y end

Therefore we will also provide a separate binding mechanism for cases in which the
order of binders does not matter, but the “cardinality” of the binders has to agree.

However, we found that this is still not sufficient for dealing with language con-
structs frequently occurring in programming language research. For example in lets
containing patterns like

let (x, y) = (3, 2) in x − y end (5)

we want to bind all variables from the pattern inside the body of the let, but we
also care about the order of these variables, since we do not want to regard (5) as α-
equivalent with

let (y, x) = (3, 2) in x − y end

As a result, we provide three general binding mechanisms each of which binds multiple
variables at once, and let the user chose which one is intended in a formalisation.

By providing these general binding mechanisms, however, we have to work around
a problem that has been pointed out by Pottier [13] and Cheney [5]: in let-constructs
of the form

let x1 = t1 and . . . and xn = tn in s end

we care about the information that there are as many bound variables xi as there are ti.
We lose this information if we represent the let-constructor by something like

let (λx1. . . xn . s) [t1,. . . ,tn]

where the notation λ . indicates that the list of xi becomes bound in s. In this rep-
resentation the term let (λx . s) [t1, t2] is a perfectly legal instance, but the lengths
of the two lists do not agree. To exclude such terms, additional predicates about well-
formed terms are needed in order to ensure that the two lists are of equal length. This
can result in very messy reasoning (see for example [2]). To avoid this, we will allow
type specifications for lets as follows
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trm ::= . . . | let as::assn s::trm bind bn(as) in s
assn ::= anil | acons name trm assn

where assn is an auxiliary type representing a list of assignments and bn an auxiliary
function identifying the variables to be bound by the let. This function can be defined
by recursion over assn as follows

bn(anil) = ∅ bn(acons x t as) = {x} ∪ bn(as)

The scope of the binding is indicated by labels given to the types, for example s::trm,
and a binding clause, in this case bind bn(as) in s. This binding clause states that all the
names the function bn(as) returns should be bound in s. This style of specifying terms
and bindings is heavily inspired by the syntax of the Ott-tool [16].

However, we will not be able to cope with all specifications that are allowed by
Ott. One reason is that Ott lets the user specify “empty” types like t ::= t t | λx. t
where no clause for variables is given. Arguably, such specifications make some sense
in the context of Coq’s type theory (which Ott supports), but not at all in a HOL-based
environment where every datatype must have a non-empty set-theoretic model.

Another reason is that we establish the reasoning infrastructure for α-equated terms.
In contrast, Ott produces a reasoning infrastructure in Isabelle/HOL for non-α-equated,
or “raw”, terms. While our α-equated terms and the raw terms produced by Ott use
names for bound variables, there is a key difference: working with α-equated terms
means, for example, that the two type-schemes

∀ {x}. x → y = ∀ {x, z}. x → y

are not just α-equal, but actually equal! As a result, we can only support specifications
that make sense on the level of α-equated terms (offending specifications, which for
example bind a variable according to a variable bound somewhere else, are not excluded
by Ott, but we have to).

Although in informal settings a reasoning infrastructure for α-equated terms is nearly
always taken for granted, establishing it automatically in Isabelle/HOL is a rather non-
trivial task. For every specification we will need to construct type(s) containing as ele-
ments the α-equated terms. To do so, we use the standard HOL-technique of defining
a new type by identifying a non-empty subset of an existing type. The construction we
perform in Isabelle/HOL can be illustrated by the following picture:

α-
clas.

α-eq.
terms

existing
type
(sets of raw terms)

non-empty
subset

new
type

isomorphism

We take as the starting point a definition of raw terms (defined as a datatype in Is-
abelle/HOL); then identify the α-equivalence classes in the type of sets of raw terms
according to our α-equivalence relation, and finally define the new type as these α-
equivalence classes (non-emptiness is satisfied whenever the raw terms are definable as
datatype in Isabelle/HOL and our relation for α-equivalence is an equivalence relation).
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The problem with introducing a new type in Isabelle/HOL is that in order to be use-
ful, a reasoning infrastructure needs to be “lifted” from the underlying subset to the
new type. This is usually a tricky and arduous task. To ease it, we re-implemented in
Isabelle/HOL [8] the quotient package described by Homeier [6] for the HOL4 sys-
tem. This package allows us to lift definitions and theorems involving raw terms to
definitions and theorems involving α-equated terms. For example if we define the free-
variable function over raw lambda-terms

fv(x) = {x} fv(t1 t2) = fv(t1) ∪ fv(t2) fv(λx.t) = fv(t) − {x}

then with the help of the quotient package we can obtain a function fvα operating
on quotients, or α-equivalence classes of lambda-terms. This lifted function is char-
acterised by the equations

fvα(x) = {x} fvα(t1 t2) = fvα(t1) ∪ fvα(t2) fvα(λx.t) = fvα(t) − {x}

(Note that this means also the term-constructors for variables, applications and lambda
are lifted to the quotient level.) This construction, of course, only works if α-equivalence
is indeed an equivalence relation, and the “raw” definitions and theorems are respectful
w.r.t. α-equivalence. To sum up, every lifting of theorems to the quotient level needs
proofs of some respectfulness properties (see [6]). In the paper we show that we are
able to automate these proofs and as a result can automatically establish a reasoning
infrastructure for α-equated terms.

Contributions: We provide three new definitions for when terms involving general
binders are α-equivalent. These definitions are inspired by earlier work of Pitts [11]. By
means of automatic proofs, we establish a reasoning infrastructure for α-equated terms,
including properties about support, freshness and equality conditions for α-equated
terms. We are also able to derive strong induction principles that have the variable con-
vention already built in. The method behind our specification of general binders is taken
from the Ott-tool, but we introduce crucial restrictions, and also extensions, so that our
specifications make sense for reasoning about α-equated terms. The main improvement
over Ott is that we introduce three binding modes (only one is present in Ott), provide
formalised definitions for α-equivalence and for free variables of our terms, and also
derive a reasoning infrastructure for our specifications from “first principles”.

2 A Short Review of the Nominal Logic Work

At its core, Nominal Isabelle is an adaption of the nominal logic work by Pitts [12].
This adaptation for Isabelle/HOL is described in [7] (including proofs). We shall briefly
review this work to aid the description of what follows.

Two central notions in the nominal logic work are sorted atoms and sort-respecting
permutations of atoms. We will use the letters a, b, c, . . . to stand for atoms and p, q,
. . . to stand for permutations. The purpose of atoms is to represent variables, be they
bound or free. It is assumed that there is an infinite supply of atoms for each sort. In the
interest of brevity, we shall restrict ourselves in what follows to only one sort of atoms.
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Permutations are bijective functions from atoms to atoms that are the identity every-
where except on a finite number of atoms. There is a two-place permutation operation
written · :: perm ⇒ β ⇒ β where the generic type β is the type of the object over
which the permutation acts. In Nominal Isabelle, the identity permutation is written as
0, the composition of two permutations p and q as p + q, and the inverse permutation of
p as − p. The permutation operation is defined over the type-hierarchy [7]; for example
permutations acting on products, lists, sets, functions and booleans are given by:

p·(x, y)
def
= (p·x, p·y)

p·b
def
= b

p· []
def
= []

p·(x::xs)
def
= (p·x)::(p·xs)

p·X
def
= {p·x | x ∈ X}

p· f
def
= λx. p·(f (− p·x))

Concrete permutations in Nominal Isabelle are built up from swappings, written as
(a b), which are permutations that behave as follows:

(a b) = λc. if a = c then b else if b = c then a else c

The most original aspect of the nominal logic work of Pitts is a general definition for the
notion of the “set of free variables of an object x”. This notion, written supp x, is general
in the sense that it applies not only to lambda-terms (α-equated or not), but also to
lists, products, sets and even functions. The definition depends only on the permutation
operation and on the notion of equality defined for the type of x, namely:

supp x
def
= {a | infinite {b | (a b)·x �= x}} (6)

There is also the derived notion for when an atom a is fresh for an x, defined as a

# x
def
= a /∈ supp x. We use for sets of atoms the abbreviation as #∗ x, defined as

∀ a∈as. a # x. A striking consequence of these definitions is that we can prove without
knowing anything about the structure of x that swapping two fresh atoms, say a and
b, leaves x unchanged, namely if a # x and b # x then (a b) ·x = x. While in the older
version of Nominal Isabelle, we used extensively this property to rename single binders,
it proved too unwieldy for dealing with multiple binders. For such binders the following
generalisations turned out to be easier to use.

Property 1. If supp x #∗ p then p·x = x.

Property 2. For a finite set as and a finitely supported x with as #∗ x and also a finitely
supported c, there exists a permutation p such that p·as #∗ c and supp x #∗ p.

The idea behind the second property is that given a finite set as of binders (being bound,
or fresh, in x is ensured by the assumption as #∗ x), then there exists a permutation p
such that the renamed binders p·as avoid c (which can be arbitrarily chosen as long as
it is finitely supported) and also p does not affect anything in the support of x (that is
supp x #∗ p). The last fact and Property 1 allow us to “rename” just the binders as in x,
because p·x = x.

Most properties given in this section are described in detail in [7] and all are for-
malised in Isabelle/HOL. In the next sections we will make extensive use of these prop-
erties in order to define α-equivalence in the presence of multiple binders.
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3 General Bindings

In Nominal Isabelle, the user is expected to write down a specification of a term-calculus
and then a reasoning infrastructure is automatically derived from this specification (re-
member that Nominal Isabelle is a definitional extension of Isabelle/HOL, which does
not introduce any new axioms).

In order to keep our work with deriving the reasoning infrastructure manageable,
we will wherever possible state definitions and perform proofs on the “user-level” of
Isabelle/HOL, as opposed to write custom ML-code. To that end, we will consider first
pairs (as, x) of type (atom set) × β. These pairs are intended to represent the abstrac-
tion, or binding, of the set of atoms as in the body x.

The first question we have to answer is when two pairs (as, x) and (bs, y) are α-
equivalent? (For the moment we are interested in the notion of α-equivalence that is
not preserved by adding vacuous binders.) To answer this question, we identify four
conditions: (i) given a free-atom function fa of type β ⇒ atom set, then x and y need to
have the same set of free atoms; moreover there must be a permutation p such that (ii)
p leaves the free atoms of x and y unchanged, but (iii) “moves” their bound names so
that we obtain modulo a relation, say R , two equivalent terms. We also require that
(iv) p makes the sets of abstracted atoms as and bs equal. The requirements (i) to (iv)
can be stated formally as the conjunction of:

(as, x) ≈ set
R, fa, p (bs, y)

def
=

(i) fa x − as = fa y − bs (iii) (p·x) R y
(ii) fa x − as #∗ p (iv) p·as = bs

(7)

Note that this relation depends on the permutation p; α-equivalence between two pairs is
then the relation where we existentially quantify over this p. Also note that the relation
is dependent on a free-atom function fa and a relation R. The reason for this extra
generality is that we will use ≈ set for both “raw” terms and α-equated terms. In the
latter case, R will be replaced by equality = and we will prove that fa is equal to supp.

The definition in (7) does not make any distinction between the order of abstracted
atoms. If we want this, then we can define α-equivalence for pairs of the form (as, x)
with type (atom list) × β as follows

(as, x) ≈ list
R, fa, p (bs, y)

def
=

(i) fa x − set as = fa y − set bs (iii) (p·x) R y
(ii) fa x − set as #∗ p (iv) p·as = bs

(8)

where set is the function that coerces a list of atoms into a set of atoms. Now the last
clause ensures that the order of the binders matters (since as and bs are lists of atoms).

If we do not want to make any difference between the order of binders and also
allow vacuous binders, that means restrict names, then we keep sets of binders, but
drop condition (iv) in (7):

(as, x) ≈ set+
R, fa, p (bs, y)

def
=

(i) fa x − as = fa y − bs (iii) (p·x) R y
(ii) fa x − as #∗ p

(9)
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It might be useful to consider first some examples how these definitions of α-
equivalence pan out in practice. For this consider the case of abstracting a set of atoms
over types (as in type-schemes). We set R to be the usual equality = and for fa(T) we
define

fa(x) = {x} fa(T1 → T2) = fa(T1) ∪ fa(T2)

Now recall the examples shown in (2) and (3). It can be easily checked that ({x, y}, x
→ y) and ({y, x}, y → x) are α-equivalent according to ≈ set and ≈ set+ by taking p to be
the swapping (x y). In case of x �= y, then ([x, y], x → y) �≈ list ([y, x], x → y) since there
is no permutation that makes the lists [x, y] and [y, x] equal, and also leaves the type
x → y unchanged. Another example is ({x}, x) ≈ set+ ({x, y}, x) which holds by taking
p to be the identity permutation. However, if x �= y, then ({x}, x) �≈ set ({x, y}, x) since
there is no permutation that makes the sets {x} and {x, y} equal (similarly for ≈ list). It
can also relatively easily be shown that all three notions of α-equivalence coincide, if
we only abstract a single atom.

In the rest of this section we are going to introduce three abstraction types. For this
we define

(as, x) ≈ abs set (bs, x)
def
= ∃ p. (as, x) ≈ set

=, supp, p (bs, x) (10)

(similarly for ≈ abs set+ and ≈ abs list). We can show that these relations are equivalence
relations.

Lemma 1. The relations ≈ abs set, ≈ abs list and ≈ abs set+ are equivalence relations.

Proof. Reflexivity is by taking p to be 0. For symmetry we have a permutation p and for
the proof obligation take −p. In case of transitivity, we have two permutations p and q,
and for the proof obligation use q + p. All conditions are then by simple calculations.

This lemma allows us to use our quotient package for introducing new types β abs set,
β abs set+ and β abs list representing α-equivalence classes of pairs of type (atom
set) × β (in the first two cases) and of type (atom list) × β (in the third case). The el-
ements in these types will be, respectively, written as [as]set.x, [as]set+.x and [as]list.x,
indicating that a set (or list) of atoms as is abstracted in x. We will call the types abstrac-
tion types and their elements abstractions. The important property we need to derive is
the support of abstractions, namely:

Theorem 1 (Support of Abstractions). Assuming x has finite support, then

supp [as]set.x = supp [as]set+.x = supp x − as, and
supp [bs]list.x = supp x − set bs

This theorem states that the bound names do not appear in the support. For brevity we
omit the proof and again refer the reader to our formalisation in Isabelle/HOL.

The method of first considering abstractions of the form [as]set.x etc is motivated by
the fact that we can conveniently establish at the Isabelle/HOL level properties about
them. It would be laborious to write custom ML-code that derives automatically such
properties for every term-constructor that binds some atoms. Also the generality of the
definitions for α-equivalence will help us in the next sections.
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4 Specifying General Bindings

Our choice of syntax for specifications is influenced by the existing datatype package
of Isabelle/HOL and by the syntax of the Ott-tool [16]. For us a specification of a term-
calculus is a collection of (possibly mutual recursive) type declarations, say tyα1, . . . ,
tyαn, and an associated collection of binding functions, say bnα1, . . . , bnαm. The syntax in
Nominal Isabelle for such specifications is roughly as follows:

type
declaration part

⎧⎪⎪⎨⎪⎪⎩
nominal datatype tyα

1 = . . .

and tyα
2 = . . .

. . .

and tyα
n = . . .

binding
function part

⎧⎨⎩binder bnα
1 and . . . and bnα

m

where
. . .

(11)

Every type declaration tyα1..n consists of a collection of term-constructors, each of which
comes with a list of labelled types that stand for the types of the arguments of the term-
constructor. For example a term-constructor Cα might be specified with

Cα label1::ty′1 . . . labell::ty′l binding clauses

whereby some of the ty′1..l can be contained in the collection of tyα1..n declared in (11).
In this case we will call the corresponding argument a recursive argument of Cα. The
labels annotated on the types are optional. Their purpose is to be used in the (possibly
empty) list of binding clauses, which indicate the binders and their scope in a term-
constructor. They come in three modes:

bind binders in bodies bind (set) binders in bodies bind (set+) binders in bodies

The first mode is for binding lists of atoms (the order of binders matters); the second
is for sets of binders (the order does not matter, but the cardinality does) and the last is
for sets of binders (with vacuous binders preserving α-equivalence). As indicated, the
labels in the “in-part” of a binding clause will be called bodies; the “bind-part” will be
called binders. In contrast to Ott, we allow multiple labels in binders and bodies.

There are also some restrictions we need to impose on our binding clauses in com-
parison to the ones of Ott. The main idea behind these restrictions is that we obtain a
sensible notion of α-equivalence where it is ensured that within a given scope an atom
occurrence cannot be both bound and free at the same time. The first restriction is that
a body can only occur in one binding clause of a term constructor (this ensures that
the bound atoms of a body cannot be free at the same time by specifying an alternative
binder for the same body).

For binders we distinguish between shallow and deep binders. Shallow binders are
just labels. The restriction we need to impose on them is that in case of bind (set) and
bind (set+) the labels must either refer to atom types or to sets of atom types; in case
of bind the labels must refer to atom types or lists of atom types. Two examples for the
use of shallow binders are the specification of lambda-terms, where a single name is
bound, and type-schemes, where a finite set of names is bound:
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nominal datatype lam =
Var name

| App lam lam
| Lam x::name t::lam bind x in t

nominal datatype ty =
TVar name

| TFun ty ty
and tsc = All xs::(name fset) T ::ty bind (set+) xs in T

In these specifications name refers to an atom type, and fset to the type of finite sets.
Note that for lam it does not matter which binding mode we use. The reason is that
we bind only a single name. However, having bind (set) or bind in the second case
makes a difference to the semantics of the specification (which we will define in the
next section).

A deep binder uses an auxiliary binding function that “picks” out the atoms in one
argument of the term-constructor, which can be bound in other arguments and also in the
same argument (we will call such binders recursive, see below). The binding functions
are expected to return either a set of atoms (for bind (set) and bind (set+)) or a list of
atoms (for bind). They can be defined by recursion over the corresponding type; the
equations must be given in the binding function part of the scheme shown in (11). For
example a term-calculus containing Lets with tuple patterns might be specified as:

nominal datatype trm =
Var name

| App trm trm
| Lam x::name t::trm bind x in t
| Let p::pat trm t::trm bind bn(p) in t

and pat = PNil | PVar name | PTup pat pat
binder bn::pat ⇒ atom list
where bn(PNil) = []

| bn(PVar x) = [atom x]
| bn(PTup p1 p2) = bn(p1) @ bn(p2)

(12)

In this specification the function bn determines which atoms of the pattern p are bound
in the argument t. Note that in the second-last bn-clause the function atom coerces a
name into the generic atom type of Nominal Isabelle [7]. This allows us to treat binders
of different atom type uniformly.

As said above, for deep binders we allow binding clauses such as Bar p::pat t::trm
bind bn(p) in p t where the argument of the deep binder also occurs in the body. We call
such binders recursive. To see the purpose of such recursive binders, compare “plain”
Lets and Let recs in the following specification:

nominal datatype trm = . . .
| Let as::assn t::trm bind bn(as) in t
| Let rec as::assn t::trm bind bn(as) in as t

and assn = ANil | ACons name trm assn
binder bn::assn ⇒ atom list
where bn(ANil) = []

| bn(ACons a t as) = [atom a] @ bn(as)

(13)

The difference is that with Let we only want to bind the atoms bn(as) in the term t, but
with Let rec we also want to bind the atoms inside the assignment. This difference has
consequences for the associated notions of free-atoms and α-equivalence.
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To make sure that atoms bound by deep binders cannot be free at the same time,
we cannot have more than one binding function for a deep binder. Consequently we
exclude specifications such as

Baz1 p::pat t::trm bind bn1(p) bn2(p) in t
Baz2 p::pat t1::trm t2::trm bind bn1(p) in t1, bind bn2(p) in t2

Otherwise it is possible that bn1 and bn2 pick out different atoms to become bound,
respectively be free, in p. (Since the Ott-tool does not derive a reasoning infrastructure
for α-equated terms with deep binders, it can permit such specifications.)

We also need to restrict the form of the binding functions in order to ensure the bn-
functions can be defined for α-equated terms. The main restriction is that we cannot
return an atom in a binding function that is also bound in the corresponding term-
constructor. That means in (12) that the term-constructors PVar and PTup may not have
a binding clause (all arguments are used to define bn). In contrast, in case of (13) the
term-constructor ACons may have a binding clause involving the argument trm (the
only one that is not used in the definition of the binding function). This restriction is
sufficient for lifting the binding function to α-equated terms.

In the version of Nominal Isabelle described here, we also adopted the restriction
from the Ott-tool that binding functions can only return: the empty set or empty list (as
in case PNil), a singleton set or singleton list containing an atom (case PVar), or unions
of atom sets or appended atom lists (case PTup). This restriction will simplify some
automatic definitions and proofs later on.

In order to simplify our definitions of free atoms and α-equivalence, we shall assume
specifications of term-calculi are implicitly completed. By this we mean that for every
argument of a term-constructor that is not already part of a binding clause given by the
user, we add implicitly a special empty binding clause, written bind ∅ in labels. In case
of the lambda-terms, the completion produces

nominal datatype lam =
Var x::name bind ∅ in x

| App t1::lam t2::lam bind ∅ in t1 t2
| Lam x::name t::lam bind x in t

The point of completion is that we can make definitions over the binding clauses and
be sure to have captured all arguments of a term constructor.

5 Alpha-Equivalence and Free Atoms

Having dealt with all syntax matters, the problem now is how we can turn specifications
into actual type definitions in Isabelle/HOL and then establish a reasoning infrastructure
for them. As Pottier and Cheney pointed out [13,5], just re-arranging the arguments of
term-constructors so that binders and their bodies are next to each other will result in
inadequate representations in cases like Let x1 = t1. . . xn = tn in s. Therefore we will
first extract “raw” datatype definitions from the specification and then define explicitly
an α-equivalence relation over them. We subsequently construct the quotient of the
datatypes according to our α-equivalence.
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The “raw” datatype definition can be obtained by stripping off the binding clauses
and the labels from the types. We also have to invent new names for the types tyα and
term-constructors Cα given by the user. In our implementation we just use the affix
“ raw”. But for the purpose of this paper, we use the superscript α to indicate that a
notion is given for α-equivalence classes and leave it out for the corresponding notion
given on the “raw” level. So for example we have tyα �→ ty and Cα �→ C where ty is
the type used in the quotient construction for tyα and C is the term-constructor on the
“raw” type ty.

We subsequently define each of the user-specified binding functions bn1..m by re-
cursion over the corresponding raw datatype. We can also easily define permutation
operations by recursion so that for each term constructor C we have that

p·(C z1 . . . zn) = C (p·z1) . . . (p·zn) (14)

The first non-trivial step we have to perform is the generation of free-atom functions
from the specification. For the raw types ty1..n we define the free-atom functions
fa ty1..n by recursion. We define these functions together with auxiliary free-atom
functions for the binding functions. Given raw binding functions bn1..m we define
fa bn1..m. The reason for this setup is that in a deep binder not all atoms have to be
bound, as we saw in the example with “plain” Lets. We need therefore a function that
calculates those free atoms in a deep binder.

While the idea behind these free-atom functions is clear (they just collect all atoms
that are not bound), because of our rather complicated binding mechanisms their defini-
tions are somewhat involved. Given a term-constructor C of type ty and some associated
binding clauses bc1. . . bck, the result of fa ty (C z1 . . . zn) will be the union fa(bc1)
∪ . . . ∪ fa(bck) where we will define below what fa for a binding clause means. We
only show the details for the mode bind (set) (the other modes are similar). Suppose
the binding clause bci is of the form bind (set) b1. . . bp in d1. . . dq in which the body-
labels d1..q refer to types ty1..q, and the binders b1..p either refer to labels of atom types
(in case of shallow binders) or to binding functions taking a single label as argument (in
case of deep binders). Assuming D stands for the set of free atoms of the bodies, B for
the set of binding atoms in the binders and B ′ for the set of free atoms in non-recursive
deep binders, then the free atoms of the binding clause bci are

fa(bci)
def
= (D − B) ∪ B ′. (15)

The set D is formally defined as D
def
= fa ty1 d1 ∪ ... ∪ fa tyq dq where in case di

refers to one of the raw types ty1..n from the specification, the function fa tyi is the
corresponding free-atom function we are defining by recursion; otherwise we set fa tyi
di = supp di.

In order to formally define the set B we use the following auxiliary bn-functions for
atom types to which shallow binders may refer

bnatom a
def
= {atom a} bnatom set as

def
= atoms as bnatom list as

def
= atoms (set as)

Like the function atom, the function atoms coerces a set of atoms to a set of the generic
atom type. The set B is then formally defined as
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B
def
= bn ty1 b1 ∪ ... ∪ bn typ bp

where we use the auxiliary binding functions for shallow binders. The set B ′ collects
all free atoms in non-recursive deep binders. Let us assume these binders in bci are
bn1 l1, . . . , bnr lr with l1..r ⊆ b1..p and none of the l1..r being among the bodies d1..q.
The set B ′ is defined as

B ′ def
= fa bn1 l1 ∪ ... ∪ fa bnr lr

This completes the definition of the free-atom functions fa ty1..n.
Note that for non-recursive deep binders, we have to add in (15) the set of atoms that

are left unbound by the binding functions bn1..m. We used for the definition of this set
the functions fa bn1..m, which are also defined by mutual recursion. Assume the user
specified a bn-clause of the form bn (C z1 . . . zs) = rhs where the z1..s are of types
ty1..s. For each of the arguments we calculate the free atoms as follows:

• fa tyi zi provided zi does not occur in rhs (that means nothing is bound in zi
by the binding function),

• fa bni zi provided zi occurs in rhs with the recursive call bni zi, and
• ∅ provided zi occurs in rhs, but without a recursive call.

For defining fa bn (C z1 . . . zn) we just union up all these sets.
To see how these definitions work in practice, let us reconsider the term-constructors

Let and Let rec shown in (13) together with the term-constructors for assignments ANil
and ACons. Since there is a binding function defined for assignments, we have three
free-atom functions, namely fatrm, faassn and fabn as follows:

fatrm (Let as t) = (fatrm t − set (bn as)) ∪ fabn as
fatrm (Let rec as t) = (faassn as ∪ fatrm t) − set (bn as)

faassn (ANil) = ∅
faassn (ACons a t as) = (supp a) ∪ (fatrm t) ∪ (faassn as)

fabn (ANil) = ∅
fabn (ACons a t as) = (fatrm t) ∪ (fabn as)

Recall that ANil and ACons have no binding clause in the specification. The correspond-
ing free-atom function faassn therefore returns all free atoms of an assignment (in case
of ACons, they are given in terms of supp, fatrm and faassn). The binding only takes
place in Let and Let rec. In case of Let, the binding clause specifies that all atoms given
by set (bn as) have to be bound in t. Therefore we have to subtract set (bn as) from
fatrm t. However, we also need to add all atoms that are free in as. This is in contrast
with Let rec where we have a recursive binder to bind all occurrences of the atoms in
set (bn as) also inside as. Therefore we have to subtract set (bn as) from both fatrm t
and faassn as.

An interesting point in this example is that a “naked” assignment (ANil or ACons)
does not bind any atoms, even if the binding function is specified over assignments.
Only in the context of a Let or Let rec, where the binding clauses are given, will some
atoms actually become bound. This is a phenomenon that has also been pointed out in
[16]. For us this observation is crucial, because we would not be able to lift the bn-
functions to α-equated terms if they act on atoms that are bound. In that case, these
functions would not respect α-equivalence.
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Next we define the α-equivalence relations for the raw types ty1..n from the speci-
fication. We write them as ≈ty1..n. Like with the free-atom functions, we also need to
define auxiliary α-equivalence relations ≈bn1..m for the binding functions bn1..m, To
simplify our definitions we will use the following abbreviations for compound equiva-
lence relations and compound free-atom functions acting on tuples.

(x1,. . . , xn) (R1,. . . , Rn) (x′1,. . . , x′n)
def
= x1 R1 x′1 ∧ . . . ∧ xn Rn x′n

(fa1,. . . , fan) (x1,. . . , xn)
def
= fa1 x1 ∪ . . . ∪ fan xn

The α-equivalence relations are defined as inductive predicates having a single clause
for each term-constructor. Assuming a term-constructor C is of type ty and has the
binding clauses bc1..k, then the α-equivalence clause has the form

prems(bc1) . . . prems(bck)
C z1 . . . zn ≈ty C z′1 . . . z′n

The task below is to specify what the premises of a binding clause are. As a special
instance, we first treat the case where bci is the empty binding clause of the form

bind (set) ∅ in d1. . . dq .

In this binding clause no atom is bound and we only have to α-relate the bodies. For this

we build first the tuples D
def
= (d1,. . . , dq) and D ′ def

= (d′
1,. . . , d′

q) whereby the labels
d1..q refer to arguments z1..n and respectively d′

1..q to z′1..n. In order to relate two such
tuples we define the compound α-equivalence relation R as follows

R
def
= (R1,. . . , Rq) (16)

with Ri being ≈tyi if the corresponding labels di and d′
i refer to a recursive argument

of C with type tyi; otherwise we take Ri to be the equality =. This lets us define the

premise for an empty binding clause succinctly as prems(bci)
def
= D R D ′, which can

be unfolded to the series of premises d1 R1 d′
1 . . . dq Rq d′

q. We will use the unfolded
version in the examples below.

Now suppose the binding clause bci is of the general form

bind (set) b1. . . bp in d1. . . dq. (17)

In this case we define a premise P using the relation ≈ set given in Section 3 (similarly
≈ set+ and ≈ list for the other binding modes). This premise defines α-equivalence of
two abstractions involving multiple binders. As above, we first build the tuples D and
D ′ for the bodies d1..q, and the corresponding compound α-relation R (shown in (16)).
For ≈ set we also need a compound free-atom function for the bodies defined as

fa
def
= (fa ty1,. . . , fa tyq)

with the assumption that the d1..q refer to arguments of types ty1..q. The last ingredient
we need are the sets of atoms bound in the bodies. For this we take
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B
def
= bn ty1 b1 ∪ . . . ∪ bn typ bp .

Similarly for B ′ using the labels b′
1..p. This lets us formally define the premise P for a

non-empty binding clause as:

P
def
= ∃ p. (B, D) ≈ set

R, fa, p (B ′, D ′) .

This premise accounts for α-equivalence of the bodies of the binding clause. However,
in case the binders have non-recursive deep binders, this premise is not enough: we also
have to “propagate” α-equivalence inside the structure of these binders. An example is
Let where we have to make sure the right-hand sides of assignments are α-equivalent.
For this we use relations ≈bn1..m (which we will formally define shortly). Let us as-
sume the non-recursive deep binders in bci are bn1 l1, . . . , bnr lr. The tuple L is then
(l1,. . . ,lr) (similarly L ′) and the compound equivalence relation R ′ is (≈bn1,. . . ,≈bnr).
All premises for bci are then given by

prems(bci)
def
= P ∧ L R ′ L ′

The auxiliary α-equivalence relations ≈bn1..m in R ′ are defined as follows: assuming a
bn-clause is of the form bn (C z1 . . . zs) = rhs where the z1..s are of types ty1..s, then
the corresponding α-equivalence clause for ≈bn has the form

z1 R1 z′1 . . . zs Rs z′s
C z1 . . . zs ≈bn C z′1 . . . z′s

In this clause the relations R1..s are given by

• zi ≈ty z′i provided zi does not occur in rhs and is a recursive argument of C,
• zi = z′i provided zi does not occur in rhs and is a non-recursive argument of C,
• zi ≈bni z′i provided zi occurs in rhs with the recursive call bni xi and
• True provided zi occurs in rhs but without a recursive call.

This completes the definition of α-equivalence. As a sanity check, we can show that the
premises of empty binding clauses are a special case of the clauses for non-empty ones
(we just have to unfold the definition of ≈ set and take 0 for the existentially quantified
permutation).

Again let us take a look at a concrete example for these definitions. For (13) we have
three relations ≈trm, ≈assn and ≈bn with the following clauses:

∃ p. (bn as, t) ≈ list
≈trm, fatrm, p (bn as ′, t ′) as ≈bn as ′

Let as t ≈trm Let as ′ t ′

∃ p. (bn as, (as, t)) ≈ list
(≈assn, ≈trm), (faassn, fatrm), p (bn as ′, (as, t′))

Let rec as t ≈trm Let rec as ′ t ′

ANil ≈assn ANil

a = a ′ t ≈trm t ′ as ≈assn as ′

ACons a t as ≈assn ACons a ′ t ′ as

ANil ≈bn ANil

t ≈trm t ′ as ≈bn as ′

ACons a t as ≈bn ACons a ′ t ′ as
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Note the difference between ≈assn and ≈bn: the latter only “tracks” α-equivalence of
the components in an assignment that are not bound. This is needed in the clause for
Let (which has a non-recursive binder).

6 Establishing the Reasoning Infrastructure

Having made all necessary definitions for raw terms, we can start with establishing
the reasoning infrastructure for the α-equated types tyα1..n, that is the types the user
originally specified. We sketch in this section the proofs we need for establishing this
infrastructure. One main point of our work is that we have completely automated these
proofs in Isabelle/HOL.

First we establish that the α-equivalence relations defined in the previous section are
equivalence relations.

Lemma 2. Given the raw types ty1..n and binding functions bn1..m, the relations
≈ty1..n and ≈bn1..m are equivalence relations.

Proof. The proof is by mutual induction over the definitions. The non-trivial cases in-
volve premises built up by ≈set, ≈set+ and ≈list. They can be dealt with as in Lemma 1.

We can feed this lemma into our quotient package and obtain new types tyα1..n represent-
ing α-equated terms of types ty1..n. We also obtain definitions for the term-constructors
Cα1..k from the raw term-constructors C1..k, and similar definitions for the free-atom
functions fa tyα1..n and fa bnα1..m as well as the binding functions bnα1..m. However,
these definitions are not really useful to the user, since they are given in terms of the
isomorphisms we obtained by creating new types in Isabelle/HOL (recall the picture
shown in the Introduction).

The first useful property for the user is the fact that distinct term-constructors are not
equal, that is

Cα x1 . . . xr �= Dα y1 . . . ys (18)

whenever Cα �= Dα. In order to derive this fact, we use the definition of α-equivalence
and establish that

C x1 . . . xr �≈ty D y1 . . . ys (19)

holds for the corresponding raw term-constructors. In order to deduce (18) from (19),
our quotient package needs to know that the raw term-constructors C and D are respect-
ful w.r.t. the α-equivalence relations (see [6]). Assuming, for example, C is of type ty
with argument types ty1..r, respectfulness amounts to showing that

C x1 . . . xr ≈ty C x′1 . . . x′r

holds under the assumptions that we have xi ≈tyi x′i whenever xi and x′i are recursive
arguments of C and xi = x′i whenever they are non-recursive arguments. We can prove
this implication by applying the corresponding rule in our α-equivalence definition and
by establishing the following auxiliary implications

(i) x ≈tyi x′ ⇒ fa tyi x = fa tyi x′ (iii) x ≈tyj x′ ⇒ bnj x = bnj x′

(ii) x ≈tyj x′ ⇒ fa bnj x = fa bnj x′ (iv) x ≈tyj x′ ⇒ x ≈bnj x′
(20)
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They can be established by induction on ≈ty1..n. Whereas the first, second and last
implication are true by how we stated our definitions, the third only holds because of
our restriction imposed on the form of the binding functions—namely not returning any
bound atoms. In Ott, in contrast, the user may define bn1..m so that they return bound
atoms and in this case the third implication is not true. A result is that the lifing of the
corresponding binding functions in Ott to α-equated terms is impossible.

Having established respectfulness for the raw term-constructors, the quotient pack-
age is able to automatically deduce (18) from (19). Having the facts (20) at our disposal,
we can also lift properties that characterise when two raw terms of the form

C x1 . . . xr ≈ty C x′1 . . . x′r

are α-equivalent. This gives us conditions when the corresponding α-equated terms
are equal, namely Cα x1 . . . xr = Cα x′1 . . . x′r. We call these conditions as quasi-
injectivity. They correspond to the premises in our α-equivalence relations.

Next we can lift the permutation operations defined in (14). In order to make this
lifting to go through, we have to show that the permutation operations are respectful.
This amounts to showing that the α-equivalence relations are equivariant [7]. As a result
we can add the equations

p·(Cα x1 . . . xr) = Cα (p·x1) . . . (p·xr) (21)

to our infrastructure. In a similar fashion we can lift the defining equations of the free-
atom functions fn tyα1..n and fa bnα1..m as well as of the binding functions bnα1..m and
the size functions size tyα1..n. The latter are defined automatically for the raw types
ty1..n by the datatype package of Isabelle/HOL.

Finally we can add to our infrastructure a cases lemma (explained in the next section)
and a structural induction principle for the types tyα1..n. The conclusion of the induction
principle is of the form P1 x1 ∧ . . . ∧ Pn xn whereby the P1..n are predicates and the
x1..n have types tyα1..n. This induction principle has for each term constructor Cα a
premise of the form

∀ x1. . . xr. Pi xi ∧ . . . ∧ Pj xj ⇒ P (Cα x1 . . . xr) (22)

in which the xi..j ⊆ x1..r are the recursive arguments of Cα.
By working now completely on the α-equated level, we can first show that the free-

atom functions and binding functions are equivariant, namely

p·(fa tyαi x) = fa tyαi (p·x) p·(bnαj x) = bnαj (p·x)
p·(fa bnαj x) = fa bnαj (p·x)

These properties can be established using the induction principle for the types tyα1..n.
Having these equivariant properties established, we can show that the support of term-
constructors Cα is included in the support of its arguments, that means

supp (Cα x1 . . . xr) ⊆ (supp x1 ∪ . . . ∪ supp xr)

holds. This allows us to prove by induction that every x of type tyα1..n is finitely sup-
ported. Lastly, we can show that the support of elements in tyα1..n is the same as fa tyα1..n.
This fact is important in a nominal setting, but also provides evidence that our notions
of free-atoms and α-equivalence are correct.
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Theorem 2. For x1..n with type tyα1..n, we have supp xi = fa tyαi xi.

Proof. The proof is by induction. In each case we unfold the definition of supp, move
the swapping inside the term-constructors and then use the quasi-injectivity lemmas
in order to complete the proof. For the abstraction cases we use the facts derived in
Theorem 1.

To sum up this section, we can establish automatically a reasoning infrastructure for the
types tyα1..n by first lifting definitions from the raw level to the quotient level and then
by establishing facts about these lifted definitions. All necessary proofs are generated
automatically by custom ML-code.

7 Strong Induction Principles

In the previous section we derived induction principles for α-equated terms. We call
such induction principles weak, because for a term-constructor Cα x1. . . xr the induc-
tion hypothesis requires us to establish the implications (22). The problem with these
implications is that in general they are difficult to establish. The reason is that we cannot
make any assumption about the bound atoms that might be in Cα.

In [20] we introduced a method for automatically strengthening weak induction prin-
ciples for terms containing single binders. These stronger induction principles allow the
user to make additional assumptions about bound atoms. To sketch how this strength-
ening extends to the case of multiple binders, we use as running example the term-
constructors Lam and Let from example (12). Instead of establishing Ptrm t ∧ Ppat p,
the stronger induction principle for (12) establishes properties Ptrm c t ∧ Ppat c p where
the additional parameter c controls which freshness assumptions the binders should sat-
isfy. For the two term constructors this means that the user has to establish in inductions
the implications

∀ a t c. {atom a} #∗ c ∧ (∀ d. Ptrm d t) ⇒ Ptrm c (Lam a t)
∀ p t c. (set (bn p)) #∗ c ∧ (∀ d. Ppat d p) ∧ (∀ d. Ptrm d t) ∧⇒ Ptrm c (Let p t)

In [20] we showed how the weaker induction principles imply the stronger ones. This
was done by some quite complicated, nevertheless automated, induction proof. In this
paper we simplify this work by leveraging the automated proof methods from the
function package of Isabelle/HOL. The reasoning principle these methods employ is
well-founded induction. To use them in our setting, we have to discharge two proof obli-
gations: one is that we have well-founded measures (for each type tyα1..n) that decrease
in every induction step and the other is that we have covered all cases. As measures we
use the size functions size tyα1..n, which we lifted in the previous section and which are
all well-founded.

What is left to show is that we covered all cases. To do so, we use a cases lemma
derived for each type. For the terms in (12) this lemma is of the form

∀ x. t = Var x ⇒ Ptrm ∀ a t ′. t = Lam a t ′⇒ Ptrm
∀ t1 t2. t = App t1 t2 ⇒ Ptrm ∀ p t ′. t = Let p t ′⇒ Ptrm

Ptrm (23)
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where we have a premise for each term-constructor. The idea behind such cases lemmas
is that we can conclude with a property Ptrm, provided we can show that this property
holds if we substitute for t all possible term-constructors.

The only remaining difficulty is that in order to derive the stronger induction prin-
ciples conveniently, the cases lemma in (23) is too weak. For this note that in order to
apply this lemma, we have to establish Ptrm for all Lam- and all Let-terms. What we
need instead is a cases lemma where we only have to consider terms that have binders
that are fresh w.r.t. a context c. This gives the implications

∀ a t ′. t = Lam a t ′∧ {atom a} #∗ c ⇒ Ptrm
∀ p t ′. t = Let p t ′∧ (set (bn p)) #∗ c ⇒ Ptrm

which however can be relatively easily be derived from the implications in (23) by a
renaming using Properties 1 and 2. In the first case we know that {atom a} #∗ Lam a
t. Property (2) provides us therefore with a permutation q, such that {atom (q ·a)} #∗

c and supp (Lam a t) #∗ q hold. By using Property 1, we can infer from the latter that
Lam (q·a) (q· t) = Lam a t and we are done with this case.

The Let-case involving a (non-recursive) deep binder is a bit more complicated. The
reason is that the we cannot apply Property 2 to the whole term Let p t, because p might
contain names that are bound (by bn) and so are free. To solve this problem we have to
introduce a permutation function that only permutes names bound by bn and leaves the
other names unchanged. We do this again by lifting. For a clause bn (C x1 . . . xr) =
rhs, we define

p·bn (C x1 . . . xr)
def
= C y1 . . . yr with

⎧⎪⎪⎨⎪⎪⎩
yi

def
= xi provided xi does not occur in rhs

yi
def
= p·bn ′ xi provided bn ′ xi is in rhs

yi
def
= p·xi otherwise

Now Properties 1 and 2 give us a permutation q such that (set (bn (q·bn p)) #∗ c holds
and such that [q·bn p]list.(q·t) is equal to [p]list. t. We can also show that (q·bn p) ≈bn
p. These facts establish that Let (q ·bn p) (p · t) = Let p t, as we need. This completes
the non-trivial cases in (12) for strengthening the corresponding induction principle.

8 Related Work

To our knowledge the earliest usage of general binders in a theorem prover is described
in [10] about a formalisation of the algorithm W. This formalisation implements binding
in type-schemes using a de-Bruijn indices representation. Since type-schemes in W
contain only a single place where variables are bound, different indices do not refer
to different binders (as in the usual de-Bruijn representation), but to different bound
variables. A similar idea has been recently explored for general binders in the locally
nameless approach to binding [3]. There, de-Bruijn indices consist of two numbers,
one referring to the place where a variable is bound, and the other to which variable is
bound. The reasoning infrastructure for both representations of bindings comes for free
in theorem provers like Isabelle/HOL or Coq, since the corresponding term-calculi can
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be implemented as “normal” datatypes. However, in both approaches it seems difficult
to achieve our fine-grained control over the “semantics” of bindings (i.e. whether the
order of binders should matter, or vacuous binders should be taken into account).

Another technique for representing binding is higher-order abstract syntax (HOAS).
This technique supports very elegantly many aspects of single binding, and impressive
work has been done that uses HOAS for mechanising the metatheory of SML [9]. We
are, however, not aware how multiple binders of SML are represented in this work.
Judging from the submitted Twelf-solution for the POPLmark challenge, HOAS cannot
easily deal with binding constructs where the number of bound variables is not fixed.
In the second part of this challenge, Lets involve patterns that bind multiple variables at
once. In such situations, HOAS seems to have to resort to the iterated-single-binders-
approach with all the unwanted consequences when reasoning about the resulting terms.

The most closely related work to the one presented here is the Ott-tool [16] and the
Cαml language [13]. Ott is a nifty front-end for creating LATEX documents from specifi-
cations of term-calculi involving general binders. For a subset of the specifications Ott
can also generate theorem prover code using a raw representation of terms, and in Coq
also a locally nameless representation. The developers of this tool have also put forward
(on paper) a definition for α-equivalence of terms that can be specified in Ott. This defi-
nition is rather different from ours, not using any nominal techniques. To our knowledge
there is no concrete mathematical result concerning this notion of α-equivalence. Also
the definition for the notion of free variables is work in progress.

Although we were heavily inspired by the syntax of Ott, its definition of α-equi-
valence is unsuitable for our extension of Nominal Isabelle. First, it is far too compli-
cated to be a basis for automated proofs implemented on the ML-level of Isabelle/HOL.
Second, it covers cases of binders depending on other binders, which just do not make
sense for our α-equated terms. Third, it allows empty types that have no meaning in a
HOL-based theorem prover. We also had to generalise slightly Ott’s binding clauses. In
Ott you specify binding clauses with a single body; we allow more than one. We have
to do this, because this makes a difference for our notion of α-equivalence in case of
bind (set) and bind (set+). Because of how we set up our definitions, we also had to
impose some restrictions (like a single binding function for a deep binder) that are not
present in Ott.

Pottier presents in [13] a language, called Cαml, for representing terms with general
binders inside OCaml. This language is implemented as a front-end that can be trans-
lated to OCaml with the help of a library. He presents a type-system in which the scope
of general binders can be specified using special markers, written inner and outer. It
seems our and his specifications can be inter-translated as long as ours use the binding
mode bind only. However, we have not proved this. Pottier gives a definition for α-
equivalence, which also uses a permutation operation (like ours). Still, this definition is
rather different from ours and he only proves that it defines an equivalence relation. A
complete reasoning infrastructure is well beyond the purposes of his language. Similar
work for Haskell with similar results was reported by Cheney [4].

In a slightly different domain (programming with dependent types), the paper [1]
presents a calculus with a notion of α-equivalence related to our binding mode bind
(set+). The definition in [1] is similar to the one by Pottier, except that it has a more
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operational flavour and calculates a partial (renaming) map. In this way, the definition
can deal with vacuous binders. However, to our best knowledge, no concrete mathemat-
ical result concerning this definition of α-equivalence has been proved.

9 Conclusion

We have presented an extension of Nominal Isabelle for dealing with general binders,
that is term-constructors having multiple bound variables. For this extension we
introduced new definitions of α-equivalence and automated all necessary proofs in Is-
abelle/HOL. To specify general binders we used the specifications from Ott, but ex-
tended them in some places and restricted them in others so that they make sense in the
context of α-equated terms. We also introduced two binding modes (set and set+) that
do not exist in Ott. We have tried out the extension with calculi such as Core-Haskell,
type-schemes and approximately a dozen of other typical examples from programming
language research [15].

We have left out a discussion about how functions can be defined over α-equated
terms involving general binders. In earlier versions of Nominal Isabelle this turned out
to be a thorny issue. We hope to do better this time by using the function package
that has recently been implemented in Isabelle/HOL and also by restricting function
definitions to equivariant functions (for them we can provide more automation).

Acknowledgements. We thank Peter Sewell for making the informal notes [15] avail-
able to us and also for patiently explaining some of the finer points of the Ott-tool.
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Fournet, Cédric 216

Gawlitza, Thomas Martin 236
Gherghina, Cristian 276
Gordon, Andrew D. 77
Greenberg, Michael 18, 77
Guha, Arjun 256

Hennessy, Matthew 358
Hobor, Aquinas 276
Hunt, Sebastian 297

Igarashi, Atsushi 18

Jeannet, Bertrand 459
Jensen, Thomas 317
Jim, Trevor 378
John, Mathias 338

Kaliszyk, Cezary 480
King, Andy 97
Kirchner, Florent 317

Koutavas, Vasileios 358
Krishnamurthi, Shriram 256

Leijen, Daan 116
Lhoussaine, Cédric 338

Mandelbaum, Yitzhak 378
Margetson, James 77
Messa, Chiara 57
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