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Preface

Despite decades of research, common neuropsychiatric diseases remain enigmatic

and debilitating disorders which are associated with significant human and econom-

ic costs. For example, autism and attention-deficit disorder blight the lives of the

young, and schizophrenia, with its profound functional impairments, often impacts

in early adulthood with devastating lifelong consequences. Major depressive disor-

der affects 5–9% of women and 2–3% of men and, according to the World Health

Organization (WHO), about 4% of the world’s population suffers from some form

of drug abuse disorder.

The development of more effective treatments for these and other neuropsychia-

tric disorders requires scientific progress on a broad front. Animal models have a

vital role to play in advancing the field. When deployed in conjunction with detailed

study of these diseases in man, they bring the power to make controlled experimen-

tal interventions, which allow the functional consequences of genetic variations and

polymorphisms to be understood in terms of their cellular systems and behavioural

effects. Further, they provide a means by which complex cognitive and behavioural

phenomena may be dissected and understood. Finally, they provide a bridge to

understanding the effects of drugs on the functioning of the central nervous system,

thereby improving our understanding of the actions of those drugs in man.

This volume discusses some of the latest and most exciting advances. The

selection of topics eschews the conventional approach of organizing material by

discipline, focusing instead on more eclectic, multidisciplinary approaches. It

reflects a personal perspective of those areas in which exciting and important new

developments are taking place. These span the established areas of study, reflecting

both technical and theoretical advances, but also encompass emergent areas such as

the use of MRI in the study of systems responses, epigenetic regulation and gene/

environment interactions, all topics which will surely play an increasing role in the

scientific discourse related to neuropsychiatric diseases.

It is over 60 years since Pauling (Pauling et al. 1949) elucidated the notion of

molecular medicine in the context of sickle cell anaemia. The coming decades must

see the concept firmly embedded in the practice of neuropsychiatric medicine if the
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much needed improvements in therapy are to be delivered. The work discussed in

this volume shows some of the ways in which this vision is being realized.

I am grateful to the authors, all leaders in their fields, who so willingly devoted

their time, energy and expertise to share their research perspectives and produce a

volume which I hope will inform and excite students and experts alike.

February 2011 Jim J. Hagan
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Abstract In this chapter, mutant mouse resources which have been developed

by classical genetics as well as by modern large-scale mutagenesis projects are

summarized. Various spontaneous and induced mouse mutations have been

archived since the rediscovery of Mendel’s genetics in 1900. Moreover, genome-

wide, large-scale mutagenesis efforts have recently been expanding the available

mutant mouse resources. Forward genetics projects using ENU mutagenesis in the

mouse were started in the mid-1990s. The widespread adoption of reverse genetics,

using knockouts and conditional mutagenesis based on gene-targeting technology,

followed. ENU mutagenesis has now evolved to provide a further resource for

reverse genetics, with multiple point mutations in a single gene and this new

approach is described. Researchers now have various options to obtain mutant

mice: point mutations, transgenic mouse strains, and constitutional or conditional

knockout mice. The established mutant strains have already contributed to model-

ing human diseases by elucidating the underlying molecular mechanisms as well

as by providing preclinical applications. Examples of mutant mice, focusing on

neurological and behavioral models for human diseases, are reviewed. Human

diseases caused by a single gene or a small number of major genes have been

well modeled by corresponding mutant mice. Current evidence suggests that

quantitative traits based on polygenes are likely to be associated with a range of

psychiatric diseases, and these are now coming within the range of modeling by

mouse mutagenesis.

Keywords ENU � Forward genetics � Functional genomics � Model mouse �
Mutagenesis � Neurological mutation � Reverse genetics

Abbreviations

AD Alzheimer’s disease

APP Amyloid precursor protein

CD 2-Hydroxypropyl-b-cyclodextrin

CNS Central nervous system

DA Dopamine

DAAO D-amino acid oxidase

EA Episodic ataxia

EMMA European Mutant Mouse Archive

ENU N-ethyl-N-nitrosourea
EUCOMM European Conditional Mouse Mutagenesis

FST Forced swim test

FXTAS Fragile X tremor/ataxia syndrome

G0, G1, G2 Generation-0, Generation-1, Generation-2

GAG Glycosaminoglycan

GSL Glycosphingolipid

HD Huntington’s disease
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HRM High-resolution melting

IMSR International Mouse Strain Resource

KO Knockout

KOMP Knockout mouse mutagenesis project

L100P Leu100Pro

LI Latent inhibition

MEB Muscle–eye–brain disease

MPS Mucopolysaccharidosis

NMDAR N-methyl-D-aspartate receptor

NorCOMM North American Conditional Mouse Mutagenesis

NPC Niemann–Pick C disease

NSAID Nonsteroidal anti-inflammatory drug

OMIM Online Mendelian inheritance in man

PD Parkinson’s disease

PPI Prepulse inhibition

PS Presenilin

Q31L Glu31Leu

RIKEN BRC RIKEN BioResource Center

SCA Spinocerebellar ataxia

TAF TBP-associated factor

TBP TATA-binding protein

TFTC TBP-free TAF-containing complex

TGCE Temperature gradient capillary electrophoresis

1 Introduction

Classically, spontaneous mutations or polymorphic alleles were the only resource

available for mouse genetics. Fancy mice carrying various visible mutations provided

a good resource for genetic studies. Eye and coat-color mutations of agouti, brown,
albino, dilute, and pink-eyed dilution were originally designated as A, B, C, D, and E
loci by indicating their mutant alleles with lowercase letters. All the mutant allele

names (a, b, c, and d) still stand even now except for the pink-eyed dilution that

has been renamed as p. These loci and mutant alleles were contributed to advance the

study of Mendelian inheritance in the animal kingdom. The very first genetic linkage

in amammalwas indeed discovered between albino c and pink-eyed dilution e (or p at
present) loci in 1915 (Haldane et al. 1915). At present, this linkage group is mapped

on chromosome 7. Efficient mutagens such as X-ray and various chemical mutagens

then accelerated the production of mutant alleles genome-wide. The mutagenic

activity of X-rays was originally discovered in the mouse (Little and Bagg 1923)

although the validation of Mendelian inheritance of the X-ray-induced mutation

was first accomplished in Drosophila melanogaster (Muller 1927).

Mouse genetics have not only pioneered the field of classical genetics but

are also on the frontier to develop modern genetics and functional genomics.

Mouse Mutagenesis and Disease Models for Neuropsychiatric Disorders 3



For instance, in 1982 the giant mouse was constructed using transgenic mouse

technology (Palmiter et al. 1982). Then, combining embryonic stem cells and gene-

targeting technology, the knockout (KO) mouse also became available (Thomas

et al. 1986; Doetschman et al. 1988; Robertson et al. 1986). The conventional

transgenic and KO mouse methods allow explorations of loss and gain of functions,

respectively, associated with particular DNA sequence. The KOmouse method also

made it possible to conduct site-directed mutagenesis for the first time in mammals.

As shown in Fig. 1, classic mutagenesis is now called “forward genetics” with a

phenotype-driven approach to elucidate the gene function. On the other hand, the

KOmouse approach is termed “reverse genetics” based on its gene-driven approach.

Systematic repositories provide an essential starting point for researchers seeking

mouse models. The first step for investigators wishing to develop new models may

be to check the International Mouse Strain Resource (IMSR; http://www.findmice.

org/) and other mutant mouse resources such as Jackson Laboratory (http://www.

informatics.jax.org/), RIKEN BioResource Center (RIKEN BRC; http://www.brc.

riken.jp/lab/animal/), and the European Mutant Mouse Archive (EMMA; http://

www.emmanet.org/). If appropriate mutant mice are unavailable, a variety of

methods are available to construct newmodels. In this chapter, the various construc-

tion methods of mutant mice are reviewed. Some examples of established mutant

mice are then discussed, particularly focusing on models of neurological disorders.

2 Forward Genetics with N-Ethyl-N-Nitrosourea

Genetics directly associates genes with traits. Classically, a mutant strain is estab-

lished by its heritable trait first, and then the causative gene is positionally cloned to

understand the biological function (phenotype) at the molecular level (DNA

sequence and gene expression). In this forward genetic approach, a mutant mouse

DNA sequence
Gene

Genome

Biological function
Trait

Phenome

Forward Genetics 

Reverse Genetics 

Phenotype-driven mutagenesis 

Gene-driven mutagenesis 

Fig. 1 Two basic schemes of mutagenesis for functional genomics. To conduct forward genetics,

the screening of a key mutant phenotype is crucial. Then, genetic mapping and positional cloning

identify the responsible mutation in the DNA sequence. In reverse genetics, the gene-targeting

technology introduces a mutation to a particular gene first, and then the embryonic engineering

system produces live mice carrying the mutation and allows the functional analysis of the gene
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strain may be obtained from a preexisting mutation in a natural population as

polymorphism. Alternatively mutant strains are generated using mutagenesis. In either

case, a large number of mice must be screened to obtain the necessary mutations.

2.1 Phenotype-Driven Mutagenesis

Among the various mutagens discovered and studied in the mouse, N-ethyl-N-
nitrosourea (ENU) was found to be one of the most potent (Russell et al. 1979,

1982; Hitotsumachi et al. 1985). X-rays cause large deletions, often exceeding a

mega base of base pairs (Lyon et al. 1992). On the other hand, ENU induces mostly,

if not exclusively, base substitutions (Noveroske et al. 2000). These mutagens

randomly induce mutations genome-wide, and a phenotype-driven approach (forward

genetics) is usually necessary to identify causative gene by positional cloning.

The positional cloning of human genetic diseases started in late 1980s, followed

by initiation of the human genome sequencing project. The importance of developing

model animals had been anticipated. In particular, mutant mice were expected to be

one of the best model animals since the mouse is only the mammalian species in

which the various embryonic and genetic engineering technologies have been

established, has a short generation time, and is small in size. As a result, it has

been one of the main species used in genetic studies. In the mouse, numerous

genetic tools have also been furnished with many inbred strains and genetic

markers. To effectively produce human disease models, phenotype-driven mouse

mutagenesis studies with ENU have been carried out on a large scale from the mid-

1990s (reviewed by Gondo 2008). The basic scheme of ENU mouse mutagenesis is

depicted in Fig. 2.

In early 1990s, Dove and his colleagues had successfully developed a human

disease model using the ENU approach (Moser et al. 1990; Su et al. 1992). They

had found a mutant line that modeled human familial polyposis and positionally

identified an ENU-induced mutation in the responsible gene, Apc (Moser et al.

1990; Su et al. 1992). Takahashi’s group had also vindicated the power of ENU

mutagenesis by discovering a novel gene, clock, by the phenotype-driven approach

(Vitaterna et al. 1994; King et al. 1997). This was the first identification of a gene

controlling circadian rhythms in a mammalian species. Using running wheels to

continuously monitor locomotor activity, Vitaterna et al. (1994) discovered a domi-

nant mutant founder mouse which exhibited a circadian period approximately 1 h

longer than the 23.7-h period found in wild-type controls. These pioneering studies

gave the rationale and incentive to conduct ENUmouse mutagenesis on a large scale,

genome-wide. The overall scheme for an ENU mutagenesis study in the mouse is

summarized in Fig. 2. The generation-1 (G1) mice, which exhibit some phenotypic

anomaly compared to the littermates, are the mutant candidates. When the character-

istic phenotype identified in G1 is inherited in G2 offspring in a Mendelian fashion,

the G1 strain is established as a new mutant line.
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2.2 Gene Mapping and Positional Cloning

Forward genetics with ENU efficiently provides model mice for human diseases.

An appropriate phenotyping platform, based on diagnostic systems of human

diseases, allows the establishment of mutant strains knowing neither the causative

genes nor the molecular pathways. Rather, mutant strains are established by the

identification of some phenotype(s) similar to the targeted human disease. The

pioneering work described in the previous section focused on a particular trait

G0 G0

G1 (F1)

ENU

1b
2b
3b
4b
5b

Strain A Strain B 

Strain B Mutant Candidate 

G2 (F2)

1a
2a
3a
4a
5a

Fig. 2 Large-scale mouse mutagenesis with ENU in the mouse. A large number of Generation-1

(G1) mice are produced from the ENU-treated G0 mice. G1 traits are subjected to phenotypic

screening. Mutant candidate G1 is then mated to confirm the inheritance with respect to the

identified trait. When two different inbred strains are used in G0 parents, this mating scheme also

directly provides the information for the mapping of the established mutant in G2. The tightly

linked molecular markers provide the genetic mapping of the mutation in the mouse genome. In

this schematic chromosome in G2 mice, the marker for locus 4 in strain A (4a) is tightly linked to

the mutant phenotype (“filled” trait); thus the causative gene (triangle) is very close to locus 4. See
Sect. 2.2 for details. It is noteworthy that completely recessive mutations cannot be identified in

this scheme
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related to either tumorigenesis in the intestine (Moser et al. 1990; Su et al. 1992)

or circadian rhythms (Vitaterna et al. 1994; King et al. 1997). The subsequent large-

scale ENU mouse mutagenesis projects have conducted more comprehensive

phenotyping to established model mice more efficiently using, for example, a

battery of morphological, sensory, and behavioral measures known as SHIRPA

(Rogers et al. 2001), which incorporates hematological and biochemical analyses of

blood, blood pressure measurement, and/or funduscopy as part of a comprehensive

phenotyping battery.

Based on the indentified heritable trait, the causative gene is genetically mapped

and positionally cloned. As shown in Fig. 2, a G1 mouse carrying a mutant trait in

an F1 genetic background is mated to the strain B. At first, by analyzing ~50 F2

offspring (¼G2) with ~100 genetic markers between strain A and B, the causative

gene is roughly mapped in an order of 5–10 cM of the genetic distance between the

mutation and markers. After the rough mapping, the fine mapping analysis with

more genetic markers in the roughly mapped region and with 400 or more progeny

from the backcross narrows down the mutant locus in the mouse chromosome. In

these genetic mapping studies, it is necessary to produce 500 or more of the F2 (G2)

mice to pinpoint the candidate region within approximately 1 cM. Naturally, denser

genetic markers provide less experimental deviations as well as more concrete

landmarks to conduct the fine physical mapping. After narrowing the genetic

distance between the mutation and closest marker(s) down to ~1 cM or less, the

physical mapping is conducted as follows. Genomic DNA clones covering all the

closest genetic marker(s) corresponding to the genetic mapping region are isolated

from a genomic DNA library prepared from the mutant mice. In the mouse genome,

1 cM corresponds to roughly 2 Mb. Thus, even if the genetic mapping narrows

the mutated genomic sequence down to 1 cM, the genomic clones should cover, at

least, a 2 Mb region. The resolution of the fine mapping is in the order of a

megabase pair. On the other hand, the standard size of a cloned genomic DNA

fragment even in the BAC library is an order of 100 kb. This tenfold gap between

the genetic mapping and the size of molecular clones renders positional cloning

time-consuming and painstaking.

2.3 Features of Phenotype-Driven ENU Mouse Mutagenesis

Large-scale ENU mouse mutagenesis does not require prior knowledge of genes and

genomic sequences as shown above. It is a classical forward genetics that necessarily

requires neither any recombinant DNA nor advanced embryonic engineering tech-

nologies but does require a large mouse facility and high-throughput phenotyping

platforms. Its comprehensiveness is basically dependent on how many G1 mice are

screened and how extensively their phenotypes are accessed. In a large-scale project,

usually thousands of G1 mice are systematically screened by phenotyping their size,

weight, color, morphology, behavior, neuromuscular coordination, vision, hearing,

hematology, clinical biochemistry, histopathology, and so on (e.g., German Research
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Center for Environmental Health ENUmutagenesis, http://www.helmholtz-muenchen.

de/en/ieg/group-functional-genetics/enu-screen/; MRC, http://www.har.mrc.ac.uk/

research/mutagenesis/phenotype_driven_screens.html; RIKEN, http://www.brc.

riken.go.jp/lab/gsc/mouse/AboutUs/screening.htm). However, there are some

drawbacks; for example, the approach is very effective for dominant but not for

recessive mutant phenotypes. Furthermore, identified mutant phenotype(s) may not

always be inherited in a simple Mendelian fashion. Some identified mutant mice

may also suffer sterility or even lethality depending on the mutant phenotype, and it

is too late to preserve such mutant strains after the onset of fatal phenotypes, since it

is a dominant phenotype-driven mutagenesis and the G1 founder mouse is only the

resource at the time of phenotypic screening. To maintain such disease models, all

the G1 sperm samples are surgically obtained and cryopreserved in liquid nitrogen

semipermanently before the onset of the fatal phenotypes (Inoue et al. 2004). This

frozen sperm archive has provided the key resource for the next-generation gene

targeting in the mouse (see Sect. 4.1).

3 Reverse Genetics with Gene Targeting

The draft human genome project to sequence all human genomic DNA was

completed in 2001 (International Human Genome Sequencing Consortium 2001).

The completion of the human genome sequencing project showed, to the surprise of

the research community, that the human genome potentially coded less than 30,000

genes in the entire human genome, whereas it had been previously estimated to

code for over 100,000 genes (Chikaraishi et al. 1978). Immediately following the

whole human genome sequencing, the mouse became the second mammalian

species to have its genomic DNA fully sequenced (Mouse Genome Sequencing

Consortium 2002). The completion of human and mouse genome projects spurred

the initiation of large-scale mouse mutagenesis efforts to conduct gene targeting or

gene KO studies for all of the mouse genes. The downward revision of the estimated

number of genes in the human and mouse genomes improved the feasibility of these

projects and improved the chances of successful completion. The coding sequences

in the human and mouse genomes were estimated to be only 1–2%. In 2003, mouse

researchers gathered at the Banbury Center at the Cold Spring Harbor Laboratory,

USA, and proposed an international mouse KO/conditional mutagenesis projects

(Austin et al. 2004; Auwerx et al. 2004) and led, in 2006, to a 5-year international

collaborative effort with three major projects; the Knockout Mouse Project

(KOMP) in the USA, the European Conditional Mouse Mutagenesis (EUCOMM)

project in Europe, and the North American Conditional Mouse Mutagenesis

(NorCOMM) in Canada. To coordinate the projects, the International Mouse

Knockout Consortium was also organized (International Mouse Knockout Consor-

tium 2007). The basic scheme of gene targeting, KO/conditional mutagenesis, and

the features of the International Mouse Knockout Consortium are described in the

following section.
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3.1 Gene Targeting

In 2007, the Nobel Prize in physiology or medicine was awarded to Drs. M. R.

Capecchi and O. Smithies for gene targeting and Dr. M. J. Evans for ES cell

development, which made it possible for the first time to conduct site-directed

mutagenesis in the mouse. Briefly, a targeting vector containing genomic DNA

fragments of the targeting gene that is disrupted by a drug resistant gene, such as

the G418-resistant gene, is introduced into mouse ES cells. The rare event of

homologous recombination between the targeting vector and host genomic DNA

substitutes the corresponding endogenous genomic sequence in the target gene for

the disrupted sequence in the targeting vector. After establishing the homologous-

recombinant ES cell line, live mice carrying the disrupted allele in the targeted gene

may be generated by germline transmission through germline chimeric mice. The

approach primarily disrupts the targeted gene providing a null-type allele. KO mice

often result in recessive lethality during embryogenesis due to disruption of the

essential functions of the target gene during early development. Such developmen-

tally essential genes may often exert different functions in adulthood or may even

be dispensable in the adult, depending on the tissue type and/or phase in develop-

ment phase (Duyao et al. 1995; Nasir et al. 1995). To elucidate the functions gene

throughout in later developmental stages, it is therefore necessary to develop

mutant mice in which the essential function in the early embryogenesis remains

intact and deletion is targeted to the tissue and/or developmental time to be

disrupted. An alternative approach is to produce a hypomorph-type mutation rather

than a null-type by knock-in targeting (see Sect. 7).

3.2 Conditional KO Mouse Mutagenesis

The Cre–loxP system has widely been used to maintain expression of an essential

gene during embryogenesis and to turn it off in a particular tissue and/or at a

specific developmental time (for review, see Yu and Bradley 2001). The Cre

enzyme specifically and efficiently mediates homologous recombination between

two copies of the loxP sequence. When two copies of loxP reside in the same DNA

strand with a head-to-tail orientation, the intervening sequence between the two

loxP is excised out by the Cre recombinase. A basic procedure is as follows. In one

gene-targeting strain, two loxP sequences and the G418 gene are placed in two

introns by the gene-targeting method without disturbing the expression of the target

gene. Independently, a Cre-expressing transgenic mouse strain is generated with

the expression of Cre controlled by an appropriate promoter, so that it is expressed

in a specific tissue or at a specific developmental time in an inducible manner,

depending on where and when the target gene is to be knocked out. Finally, in the

offspring obtained by mating the two strains, the Cre expression conditionally

disrupts the target gene in a manner determined by the functional characteristics

of the promoter of the Cre recombinase.
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A hypomorph-type mutation is constructed using a similar strategy to the

Cre–loxP conditional mutagenesis described above. A point mutation(s) instead

of loxP sequences is introduced into the critical coding exon. The constructed

knock-in mouse thus carries, for instance, a single amino acid substitution and is

a suitable approach for evaluating human diseases associated with identified SNPs.

3.3 Features of the International KO Mouse Project

The International Mouse Knockout Consortium (2007) aims to collaboratively

establish targeted ES cell strains covering all the mouse genes. So that the research

community is able to freely obtain KO mice for any gene, thus avoiding redundant

efforts to target the same genes. In addition, the genetic background of ES cell lines,

targeting vectors, and constructed mutant mice may be standardized. Thus, it also

becomes possible to directly compare the results of analyses among various

researchers and laboratories. The targeting vector is designed to have a “KO first

and conditional ready” structure, so that users may apply the established mutant

stain for the conditional disruption of the target gene. This international effort

tremendously reduces the time, cost, and manpower necessary to construct every

mouse gene to be knocked out. However, there are some drawbacks. Users usually

have to derive live mutant mice from the established ES cell line(s), and various

transgenic strains that drive the Cre expression under variety of promoters must be

independently constructed to fully utilize the conditional mutagenesis option.

It must be noted that the KO mouse project aims to disrupt only the protein-coding

sequences that constitute about 1–2% of the mouse genome. However, mutations

and SNPs in noncoding sequences often give rise to altered biological functions and

may be responsible for some human diseases (Emison et al. 2010). Recently, it has

also been proposed to elucidate the biological functions of noncoding RNAs

(Mattick 2009). The functional analysis of noncoding sequences remains to be

elucidated by other approaches.

4 Next-Generation Gene Targeting with ENU

As shown in Sect. 3.2, point mutations constructed by knock-in mutagenesis

provide effective tools to elucidate the fine biological functions of target genes at

the level of each base pair. The conventional gene targeting method is, however,

not efficient enough to develop a variety of point mutations for even a single gene.

A new gene-targeting system to provide various point mutations in any target genes

(and any target genomic sequences including noncoding sequences) has been

developed, paradoxically using ENU mutagenesis. As described in Sect. 2, ENU

randomly induces point mutations without bias for particular base pairs, and when a

large enough collection of ENU-induced mutations are collected and archived, any

target genes or genomic sequences may contain sufficient allelic point mutations to
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enable their fine biological functions to be elucidated. The new reverse genetics,

ENU-based gene-driven mutagenesis, has become possible by archiving tens of

thousands of G1 mutant mouse strains as frozen sperm (Fig. 2) with high-throughput

mutation discovery systems. This “next-generation” gene-targeting approach pro-

vides an important additional mouse mutagenesis system to the research community

(Gondo 2008; Gondo et al. 2009). The schematic flow of the ENU-based gene-driven

mutagenesis is shown in Fig. 3.

IVF and embryo
transfer

ENU

G1 mice

Genomic DNA
archive

PCR and 
Mutation screen 

Frozen sperm
archive

G2 mice

G3 mice

Fig. 3 Next-generation gene targeting: ENU-based gene-driven mutagenesis. ENU mutant mouse

library consists of dual archives of G1 genomic DNA and sperm samples. PCR primers are

designed to amplify the target gene. The PCR products are then subjected to a high-throughput

mutation discovery system. The G1 strains, which are found to carry an ENU-induced mutation

(filled triangle) in the target gene, are revived by in vitro fertilization (IVF) and embryo transfer

technologies. G2 progeny are genotyped and a heterozygous pair is mated to produce G3 mice, one

quarter of which are expected to become homozygous for the discovered mutations. Since a G1

mouse carries 3,000 mutations, G3 mice still have many unidentified ENU-induced mutations

(shaded triangles)
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4.1 Mutant Mouse Library: G1 Mouse Archives by ENU
Mutagenesis

To make the ENU-based gene-driven mutagenesis possible, it was necessary to first

archive sufficient numbers of ENU-induced point mutations. As described in

Sect. 2.3, G1 mice carrying ENU-induced mutations have often been archived as

frozen sperm, providing the resource for the new reverse genetics. Summarizing the

pioneering analyses of ENU-induced mutations in the G1 archive, it was found that

each G1 mouse carried roughly 3,000 base substitutions (reviewed by Gondo et al.

2009). For instance, at RIKEN, approximately 10,000 G1 mice have been archived,

which implies that 3 � 107 point mutations are ready for functional analyses.

Considering that the size of the mouse genome is 3 � 109 bp, on average we may

find a point mutation every 100 bp across the genome. Hence, it is large enough to

be used as a mutant mouse library. To screen for ENU-induced mutations in the

target gene, the genomic DNA from each G1 mouse has also been archived. The

dual archives of G1 sperm and genomic DNA form the mutant mouse library

resource needed for the next-generation gene targeting. It is noteworthy that only

half of the G1 mice produced so far are currently archived as mutant mouse

libraries, since only the G1 males are preserved as frozen sperm. The establishment

of an efficient and reliable ovary cryopreservation method should, making the

G1 females available for the library, contribute significantly to the construction

of a complete mutant mouse library, Alternatively, cryopreservation of fertilized

G1-oocytes and/or clone mouse construction from G1 female cells with a quick and

cost-effective method may also make G1 females available for the construction of

the library.

4.2 High-Throughput Mutation Discovery Systems

As shown in Fig. 3, PCR amplification of the target gene has been the first step in

finding ENU-induced mutations in target sequences. To identify the ENU-induced

mutation(s) in the amplified fragment, direct DNA sequencing with the Sanger

method would be the simplest and most straightforward method. However, each G1

genome has 3,000 mutations in 3 � 109 bp of the genome, implying that to find one

ENU-induced mutation, 1 Mb (¼3 � 109 bp divided by 3,000 mutations) of G1

genomic DNA must be sequenced. Thus, it has not been practical to screen for

ENU-induced mutations by the direct DNA sequencing method. The heteroduplex

detection methods have been found to be a very effective and practical method to

discover the ENU-induced mutations in the G1 mutant mouse library. As shown in

Fig. 2, all the ENU-induced mutations in the G1 mice are heterozygous. The

heteroduplex formation and representative detection systems are schematically

drawn in Fig. 4. After the PCR amplification of target sequences, the PCR products

are denatured and then annealed back again. When an ENU-induced mutation
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heterozygously exists in a G1 mouse, half of the PCR products contain the mutation.

Such PCR products form heteroduplex after reannealing (Fig. 4a). Temperature

gradient capillary electrophoresis (TGCE) (Gao and Yeung 2000; Li et al. 2002;

Murphy et al. 2003), TILLING/Cel1 digestion (Oleykowski et al. 1998; Till et al.

2003), and high-resolution melting (HRM) (Wittwer et al. 2003; Bennett et al.

2003) are sensitive and reproducible heteroduplex detection methods (see Fig. 4b–d,

respectively). Based on this principle, heteroduplex detection reveals which G1

mice carry an ENU-induced mutation in the target PCR products. After the primary

a

b c d

electrophoresis 
electrophoresis
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PCR/heteroduplex formation 
DNA melting curve 
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TGTTCGTTATGCGACA
ACAAGCAATACGCTGT

TGTTCGTTATGAGACA
ACAAGCAATACTCTGT

Maternal products

Paternal products

PCR

TGTTCGTTATGCGACA

ACAAGCAATACGCTGT

TGTTCGTTATGAGACA

ACAAGCAATACTCTGT

Denature

TGTTCGTTATGCGACA
ACAAGCAATACGCTGT

TGTTCGTTATGAGACA

ACAAGCAATACTCTGT

Homoduplex

Heteroduplex

Anneal

TGTTCGTTATGCGACA

ACAAGCAATACGCTGT

TGTTCGTTATGAGACA
ACAAGCAATACTCTGT

Fig. 4 Heteroduplex formation and detection of ENU-induced point mutations. (a) All the G1

mice heterozygously carry the ENU-induced mutation. The PCR amplification of the target

sequence faithfully replicates the maternal and paternal sequences. The heteroduplex and homo-

duplex double-stranded DNA fragments are produced with equal molar ratio by denaturation and

annealing of such PCR products. (b)–(d) Samples containing heteroduplex fragments are then

efficiently detected by several methods. (b) Temperature gradient capillary electrophoresis

(TGCE) separates the heteroduplex from homoduplex by the mobility change of the electrophore-

sis due to the Tm difference between heteroduplex and homoduplex. (c) TILLING/Cel1 digestion

method. The Cel1 endonuclease effectively cleaves a single-base-pair mismatch(es) in the double-

stranded DNA. The heteroduplex sample treated with Cel1 therefore exhibits two cleaved bands

in the electrophoresis, while the homoduplex shows the single band of the intact size. (d) High-

resolution melting (HRM) uses the optical density shift from the double-strand to single-stranded

conformation change of DNA fragments. When the temperature increases, the heteroduplex

fragments dissociate to single-stranded DNA faster than the homoduplex fragments. Accordingly,

the reduction in the optic density of the heteroduplex is faster than that of homoduplex. The red
arrows in (b), (c), and (d) indicate the signals of heteroduplex in each detection system
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screening by heteroduplex detection, only the PCR products containing the hetero-

duplex are subjected to direct DNA sequencing to identify the sites and types of

ENU-induced base substitutions.

4.3 Features of ENU-Based Gene-Driven Mutagenesis

ENU-induced mutations have indeed been found randomly in the whole genome

(Sakuraba et al. 2005). Mutation “cold” or “hot” spots have not been identified.

Therefore, it is statistically possible to estimate how many mutations would be

found by screening the target genes. For instance, the RIKEN mutant mouse library

encompasses ~3 � 107 mutations. The coding sequences are at least 1% in which

30,000 genes are coded at most. Therefore, more than 3 � 105 ENU-induced

mutations reside in the coding sequences; namely, ten mutations reside in each

gene on average. It also has been estimated that 60% and 10% of ENU-induced

mutations in the protein-coding sequences are missense and KO-type mutations,

respectively (Sakuraba et al. 2005). Here, KO-type mutations are defined as non-

sense mutations or splicing mutations which cause drastic peptide changes or even

have no mRNA products due to nonsense mediated decay. In summary, the RIKEN

mutant mouse library itself is able to provide 1.8 � 105 missense and ~3 � 104

KO-type mutations. The RIKEN mutant mouse library has been open to the

research community since 2002 and is available by accessing http://www.brc.

riken.go.jp/lab/mutants/genedriven.htm. Briefly, users may simply design PCR

primers for their target genes and obtain allelic series of mutant strains for func-

tional analyses. As shown in Fig. 3, it is particularly a powerful way to analyze the

recessive effect of a single-base pair in the G3 mice. One of the drawbacks,

however, is that any X-linked genes cannot be targeted, since X chromosomes

carrying ENU-induced mutations in G0 are not transmitted to G1 males (see Fig. 3).

With respect to the targeting of X-linked genes, the development of the G1 females

in the mutant mouse library as described in the previous section is also the key. The

G1 mice also carry many ENU-induced mutations in addition to the discovered

mutations, and to analyze the effect of the discovered mutation only, more than six

generations of backcrosses are usually conducted to eliminate other mutations. In

turn, modifiers, or gene–gene interactions, may be identified among 3,000 genes in

a G1 mouse.

5 Examples of Classic Neurological Mutant Mouse Strains

Large-scale mouse mutagenesis projects have been accelerating the development of

mutant mouse strains. In the best summary available, Lyon et al. (1996) listed 127

mutant loci in the “neurological and neuromuscular” category. Nineteen additional

loci were also added in the “other behavioral” category. In this section, some

14 Y. Gondo et al.

http://www.brc.riken.go.jp/lab/mutants/genedriven.htm
http://www.brc.riken.go.jp/lab/mutants/genedriven.htm


representative classic neurological and/or behavioral mutations established by

forward genetics are reviewed.

5.1 shi, Shiverer

This classic recessive spontaneous mutant exhibits generalized tremor when dis-

turbed from day 12 after birth and increases in severity with age (http://www.

informatics.jax.org/javawi2/servlet/WIFetch?page¼alleleDetail&key¼264). The

identification of the gene of shi was one of the pioneering works of positional

cloning in mammals. Roach et al. (1983) found that the myelin basic protein (Mbp)

was responsible for shi, using Southern hybridization methods with a rat Mbp

cDNA clone as a probe. Kimura et al. (1985) identified that the shi had a large

deletion from intron 1 to exon 1 of the Mbp gene in the mouse. The lack of myelin

resulted in the shivering phenotype. It is a loss-of-function type mutation by a large

spontaneous deletion.

5.2 pcd, Purkinje Cell Degeneration

In 1976, an autosomal recessive mutation, pcd, was identified by its moderate ataxia

with rapid degeneration of nearly all Purkinje cells in the cerebellum beginning at

15–18 days (Mullen et al. 1976). They also found a pleiotropic phenotype of male

sterility in pcd homozygotes. In 2002, the Nna1 gene (Agtpbp1; ATP/GTP binding
protein 1) was identified from the pcd locus (Fernandez-Gonzalez et al. 2002)

by positional cloning. By fine mapping of the pcd region in the mouse genome

and syntenic analysis with the human genome, they nominated the Nna1 gene as a

candidate. Then, they conducted northern blot analysis showing much reduced or

altered expression of Nna1 mRNA of all the three tested pcd alleles (pcd1J, pcd2J,
and pcd3J). The difference in phenotypic severity among the three alleles was

reflected in the mRNA expression. The genomic sequences of pcd2J and pcd3J

had a ~12.2-kb deletion between introns 5 and 8 and an ~7.8-kb insertion in intron

13, respectively. The entire coding sequences of pcd1J were the same as wild type,

and thus they suggested a regulatory mutation in the pcd1J allele. The expression of
the wild-type cDNA in the pcd homozygotes rescued the pcd phenotypes by the

transgenic mouse method (Wang et al. 2006), vindicating the finding that the Nna1
mutation alone is solely responsible for the pcd phenotype.

5.3 d, Dilute

This very old recessive coat-color mutation originated from fancy mice was not

primarily classified in the neurological category (Lyon et al. 1996). However, some
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d alleles have been well known by their pleiotropic traits encompassing a neurolog-

ical disorder and/or lethality. The molecular cloning of the old d allele revealed that
the mutation was caused by the insertion of an ecotropic murine leukemia virus

(called Emv3) into theMyo5a (myosin VA) gene (Jenkins et al. 1981, 1982; Mercer

et al. 1991). TheMyo5a mutation hampered the formation of dendritic processes in

the melanocyte, causing the melanin granules to clump around the nucleus of the

melanocyte and give rise to the coat-color variation.

The neurological anomaly found in some d alleles was implicated in the “tail

region mutation” of theMyo5a gene (Huang et al. 1998). Among ten viable d alleles
collected from spontaneous, radiation, and ENU mutations, they found that three

alleles had not only a lightened coat color but also neurological impairment. Their

study strongly vindicated the importance of the functional analysis of the gene by

various allelic series. It is a good example of how studying only one mutation allele

may overlook and dismiss other significant functions of the gene.

5.4 p, Pink-Eyed Dilution

Another very old coat-color mutation derived from various fancy mice, p, is the
Oca2 gene, which is the homolog for human oculocutaneous albinism type

II (http://www.informatics.jax.org/javawi2/servlet/WIFetch?page¼markerDetail&

key¼12123). Some X-ray-induced p alleles exhibited pleiotropic phenotypes in

addition to the albino eye and coat colors; for instance, neurological, cleft palate,

reproductive, or endocrine disorders were concomitantly found in some X-ray-

induced mutations (summarized by Lyon et al. 1996). Some pleiotropic phenotypes

belong to different complementary groups, suggesting that the X-ray deleted a large

fragment encompassing not only the p gene but also a flanking gene(s). Brilliant

et al. (1991) conducted the molecular cloning of p without mapping as follows.

They focused on one of the p alleles, pun, since it spontaneously reverts to the wild

type with a very high frequency. Using a part of IAP, a retroposon-like mobile

element, as a probe they conducted a large southern blot analysis and found a

uniquely enhanced 2.9-kb signal only in the pun genome compared to the wild or

revertant genomes. Based on the molecular cloning of the 2.9-kb fragment, the

structure and mechanisms of the high reversion rate of the pun allele were revealed
as a large direct duplication and an unequal homologous recombination between the

direct repeat, respectively (Gondo et al. 1993). The 2.9-kb fragment also allowed

the cloning of the full-length cDNA clone (Gardner et al. 1992) as well as flanking

molecular clones to the p locus (Lyon et al. 1992). Based on the molecular analysis

of several mega base pairs of genomic region in and around the p locus, several new
neurological loci were implicated (Lyon et al. 1992). It has lead to the molecular

identification of new loci and genes close to the p locus; e.g., the GABAA gene

(Nakatsu et al. 1993) and the Prader–Willi chromosomal region (Nakatsu et al.

1992; Gardner et al. 1992).
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6 Mouse Models for Human Neurological Diseases

Advances in DNA-cloning and genomic-engineering technologies have enabled

identification of the causative genes for human genetic diseases by positional

cloning since mid-1980s. The completion of human genome sequencing has further

enhanced the identification of various genetic risk factors in the human genome.

The HapMap Project (International HapMap Consortium 2003; http://hapmap.ncbi.

nlm.nih.gov/) was the first large-scale survey of causative genes and genetic risk

factors for human diseases. The identified genes and loci are summarized in Online

Mendelian Inheritance of Man (OMIM; http://www.ncbi.nlm.nih.gov/omim/). To

validate and elucidate the molecular cause and function of the candidate genes,

various mouse models have been developed.

6.1 Neurodegenerative Diseases

The term neurodegenerative disease encompasses Parkinson’s disease (PD),

Alzheimer’s disease (AD), and other disorders characterized by progressive

neuronal cell death. They are usually caused by heterogeneous genetic muta-

tions, and many candidate genes have been identified by genetic analyses of the

patients’ families (e.g., AD, OMIM #104300; PD, OMIM #168600). Mouse

models have been generated by reverse genetics.

Parkinson’s disease (PD) is one of three main classes of basal ganglia disorders

(the others being Huntington’s disease and the dystonias) and affects approximately

1% of the population over age 50. The clinical diagnosis is severe motor distur-

bances characterized mainly by the resting tremor accompanied by bradykinesia,

muscular rigidity, and postural instability. Neuronal degeneration is found in sub-

stantia nigra, locus ceruleus, nucleus basalis, hypothalamus, cerebral cortex, cranial

nerve motor nuclei, and the central and peripheral portion of the autonomic nervous

system. Mouse models have been constructed based on the two different

approaches. One approach is to focus on the development and maintenance of the

dopaminergic (DAergic) neurons, because DAergic neurons are severely affected

in most of the PD patients. Based on this approach, the KO mouse of a nuclear

receptor superfamily gene, Nr4a2 (Nurr1), seems to be a good model for PD because

aged heterozygotes exhibited loss of DAergic neurons, leading to the progressive loss

of DAergic functions. These animals show decreased rotarod and locomotor perfor-

mance, suggesting a motor impairment that is analogous to Parkinsonian deficits

(Jiang et al. 2005). Allelic variants for the human NR4A2 gene, such as a �291

deletion of T and a �245 substitution from T to G, were reported in the familial PD

patients (Le et al. 2002).

The other approach is derived from the neuropathological observations that most

PD patients present intracellular eosinophillic inclusions, known as Lewy bodies,

consisting of ubiquitin, a-synuclein, and other components. It is noteworthy that
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inclusion bodies have been observed in other neurological disorders as well, such as

AD and Huntington’s disease (HD). The double KO mouse strain for the ubiquitin

pathway genes, Uch-L1 and Uch-L3, was developed (Kurihara et al. 2001). Double
homozygous KO mice for Uch-L1gad and UchD3-1 displayed earlier lethality due to

dysphasia. Axonal degeneration of the nucleus tractus solitarius, area postrema of

the medulla, and gracile tract of the medulla and spinal cord were observed in these

mice. Besides, degeneration of dorsal root ganglia cell bodies was detected. Allelic

variants for the human UCHL1 gene, such as Ile93Met and Ser18Tyr amino acid

substitutions, were found in familial PD patients (Leroy et al. 1998). Regarding

the association between PD and the ubiquitin pathway, many allelic variants

for the Parkin ubiquitin ligase (PARK2) gene have been reported in PD patients

(Nuytemans et al. 2010). Park2mutant mice (Itier et al. 2003) also showed a loss of

catecholaminergic neurons in the locus ceruleus and an accompanying loss

of norepinephrine in discrete regions of the central nervous system (CNS) but

not accompanied by the loss of the nigrostriatal dopaminergic system that is

characteristic of patients with Parkinson’s disease. However, the level of dopamine

transporter protein was reduced in the mutant, suggesting a decreased density

of dopaminergic nerve terminals or other adaptative changes in the nigrostriatal

dopamine system.

LRRK2 was identified as a causative gene of PD in the PARK8 locus (Paisán-Ruı́z
et al. 2004), which contains 51 exons spanning 144 kb and encodes a 2,527 amino

acid protein (~250-kDa) with a leucine-rich repeat, a kinase domain, an RAS domain,

and a WD40 domain (Zimprich et al. 2004). Mouse models of KO and knock-in

(Arg1441Gly, Arg144Cys) have been generated; however, no significant gross

neuropathological abnormalities have yet been found (Li et al. 2009; Tong et al.

2009). In the case of Caenorhabditis elegans and Drosophila expressing mutant

human LRRK2, degeneration of DA neurons and behavioral abnormalities were

reported by Yao et al. (2010) and Liu et al. (2008), respectively. Recently, human

Ala53Thr a-synuclein transgenic mice have been combined with a knockdown

of LRRK2 which has been reported to cause synergistic toxicity to neurons and

accelerate the progression of a-synuclein-mediated neuropathology (Lin et al.

2009). The Ala53Thr a-synuclein transgenic mouse had originally been reported to

develop a severe and complex motor impairment leading to paralysis and death,

correlating with the formation of neuronal inclusions (Giasson et al. 2002).

Spinocerebellar ataxias (SCAs) and HD are typical triplet repeat diseases exhibit-

ing neurodegeneration of particular neurons. SCAs refer to the autosomal dominant

cerebellar degenerative disorders, which are defined as cerebellar ataxias with vari-

able involvement of the brainstem and spinal cord. The clinical features of the

disorders are caused by degeneration of the cerebellum and its afferent and efferent

connections. Clinical and later molecular diagnosis by chromosomal mapping have

identified and classified several SCAs. Some of the SCA subtypes, such as SCA1, 2,

3, 6, 7, and 17, were shown to result from the expansion of the CAG repeat

expansions on the specific locus on the different autosome. The causative genes

were named as Ataxin (ATXN)- 1, 2, 3, 6, 7, and 17, respectively, although there are

no structurally common properties among these proteins. Like HD, the CAG triplet
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encodes a polyglutamine stretch. In the case of SCA1, the mutant ataxin-1 protein

predominantly caused degeneration of cerebellar Purkinje cells and neurons within

the brain stem and spinal cord, producing a progressive ataxia and bulbar dysfunc-

tion. Of these subtypes, Atxn1, 7, and 17 have been reported as SCA model mice

(Watase et al. 2002; Helmlinger et al. 2006; La Spada et al. 2001).

The knock-in compound-heterozygous mutant mice of the Atxn1 (¼ Sca1) gene,
Sca1154Q/2Q showed a severe SCA1-like neurological phenotype (Watase et al.

2002). Sca1154Q/2Q mice developed a complex, slowly progressive neurodegenera-

tion resembling that seen in SCA1 patients. Although general function of Ataxin-1

(ATXN1) protein has not been fully revealed, ATXN7 acts as a subunit of TFTC,

the TATA-binding protein (TBP)-free TBP-associated factor (TAF)-containing

complex. Both knock-in (Helmlinger et al. 2006) and transgenic mice (La Spada

et al. 2001) of the Atxn7 (¼Sca7) gene have been reported. For example,

Sca7266Q/5Q mice (Helmlinger et al. 2006) showed the salient features of infantile

SCA7, such as selective neuronal vulnerability and the functional consequences of

the mutant protein on the retina, cerebellum, and hippocampus. ATXN17 encodes

TBP, which is also one of the basal transcription factors. The transgenic mice, in

which TBP-71Q and TBP-105Q were expressed under the mouse prion promoter,

were generated (Friedman et al. 2007). While both transgenic lines exhibited a

neurodegenerative phenotype with aggregated mutant proteins inside of the

nucleus, TBP-105Q exhibited a more severe phenotype than TBE-71Q.

Alzheimer’s disease is characterized by progressive impairments in memory,

behavior, language, and visuospatial skills. Hallmark pathologies within vulnera-

ble brain regions include extracellular-amyloid deposits, intracellular neurofibril-

lary tangles, synaptic loss, and neuronal cell loss. The most prominent mouse

models for this disorder model abnormalities of amyloid precursor protein (APP)

and presenilin (PS) (reviewed by McGowan et al. 2006). Many transgenic mice

have been generated and reported to develop amyloid plaque pathology. The

Tg2576 model (Lys670Met/Asn671Leu) showed reduced spontaneous alternation

performance in “Y”-maze testing, which was enhanced in a double transgenic

mouse with mutated PS1 (Holcomb et al. 1998). TgCRND8 carrying mutated

APP (Lys670Met/Asn671Leu, Val717Phe) was shown to have correlative mem-

ory deficits by Morris water-maze testing (Chishti et al. 2001). Recent progress

and prospective have also been reviewed by G€otz and Ittner (2008) and Ashe and

Zahs (2010).

6.2 Mental Retardation, Ataxia, and Other Neurological
Disorders

Fragile X syndrome and fragile X tremor/ataxia syndrome (FXTAS) are caused by

the same gene, FMR1, with extended CGG repeats in the 50-UTR. In patients with

Fragile X syndrome, more than 200 units of CGG repeat are found. FXTAS appears

in a subgroup of premutation carriers of fragile X syndrome with 55–200 CGG
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units. The first mouse model was developed by targeting the Fmr1 gene (Dutch-

Belgian Fragile X Consortium 1994), as fragile X syndrome patients lacked FMR1

protein due to the silencing of the FMR1 gene by amplification of a CGG repeat and

subsequent methylation of the promoter region. The Fmr1 KO mice showed

macroorchidism, learning deficits, and hyperactivity. A (CGG)98 knock-in mouse

model was generated to model FXTAS (Van Dam et al. 2005). The knock-in mutant

mouse exhibited elevated Fmr1 mRNA levels and ubiquitin-positive intranuclear

neuronal inclusions as described in the patients. FXTAS has the clinical features of

progressive intention tremor and ataxia. They also assessed the (CGG)98 knock-in

mutant mice for cognitive, behavioral, and neuromotor performance at different

ages. Visual–spatial memory and rotarod performance declined with age, and the

older mice tended to avoid the center area during open field tests, potentially

indicating the elevated anxiety. These age-related disturbances may reflect the

progressive cognitive and behavioral difficulties observed in FXTAS patients.

Muscle–eye–brain (MEB) disease was mapped to 1p34-33, and protein O-linked
mannose beta1,2-N-acetylglucosaminyltransferase (POMGNT1) was found to be a

causative gene. The common clinical features of MEB patients are severe muscular

dystrophy, ocular defects, and mental retardation. A gene-trapped mutant mouse

was identified in which a retroviral vector was inserted into the second exon of

the Pomgnt1 gene (Liu et al. 2006). They found that a retroviral insertion in front of
the initiation codon abolished the expression of the Pomgnt1 mRNA, and the

glycosylation of a-dystroglycan was also reduced. The Pomgnt1 mutant mice

were viable, exhibiting multiple developmental defects in muscle, eye, and brain,

similar to the clinical features of MEB.

Episodic ataxia (EA) is an autosomal dominant channelopathy that manifests as

attacks of imbalance and in-coordination (reviewed by Jen et al. 2007). A responsi-

ble gene was mapped to the potassium channel gene, KCNA1, and affected indivi-

duals are heterozygous. KO mice for the Kcna1 gene displayed frequent

spontaneous seizures that correlated on the cellular level with alterations in hippo-

campal excitability and nerve conduction (Smart et al. 1998). Later, a knock-in

mouse carrying the Val408Ala amino acid substitution, which had been found in a

patient’s family on the KCNA1 gene, was also constructed (Herson et al. 2003).

In contrast to the Kcna1 KO mice, the Val408Ala knock-in homozygous mice were

embryonic lethal. The heterozygotes showed stress-induced loss of motor coordi-

nation that was ameliorated by acetazolamide, a carbonic anhydrase inhibitor that

minimizes EA1 symptoms in human patients.

7 Mouse Models for Neurodegenerative Lysosomal Disorders

Lysosomal storage diseases are a group of inherited disorders caused by dysfunc-

tion of synthesis and processing of lysosomal enzymes (Beck 2007; Jakobkiewicz-

Banecka et al. 2007). A lysosomal defect results in accumulation of undegraded

substrates and leads to dysfunction of tissues and organs, including neurons.
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Although most of these diseases are fatal, new therapies have been developed with

recent intensive studies using mouse models.

7.1 Niemann–Pick C Disease

Niemann–Pick C (NPC) disease is a neurodegenerative lysosomal storage disorder

characterized by an accumulation of lipids including cholesterol and glycosphin-

golipids (GSLs) within a cell. Clinically identical diseases, NPC type 1 and type 2,

are caused by mutations in two different proteins: NPC1, a lysosomal–endosomal

transmembrane glycoprotein, and NPC2, soluble lysosomal protein with cholesterol-

binding properties, respectively. To address the functions of these two genes, the

genetic interaction between Npc1 and Npc2 was studied using mouse models (Sleat

et al. 2004). They generated an NPC2 hypomorphic allele by gene targeting and

crossed with a previously established Npc1 spontaneous null allele (Loftus et al.

1997) to obtain Npc1;Npc2 double KO mutants. The results showed that the pheno-

types ofNpc1 andNpc2 single mutants and anNPC1;NPC2 double mutant are almost

identical in terms of disease onset and progression.

Using model mice, pharmacological approaches to NPC have been studied.

Recent biochemical work (Kwon et al. 2009) has shown that both Npc1 and Npc2

proteins function in concert to facilitate the exit of cholesterol from lysosomes to

other sites in the cell. One of the possible treatment strategies for NPC is substrate

deprivation therapy. To reduce the synthesis of the metabolic products GSLs,

N-butyldeoxynojirimycin, which is an inhibitor of glucosylceramide synthase, a

pivotal enzyme in the ganglioside synthesis pathway, was tested in the Npc1mutant

mice (Zervas et al. 2001). In this experiment, treated animals showed delayed onset

of neurological dysfunction, increased average life span, and reduced GSL accu-

mulation, suggesting that inhibitors for GSL synthesis could have a similar ameli-

orating effect on the human disorder. More recently, a second therapeutic agent,

2-hydroxypropyl-b-cyclodextrin (CD), was tested in Npc1 and Npc2 mutant mice.

The result demonstrated that treatment with CD delayed clinical disease onset,

reduced intraneuronal storage and secondary markers of neurodegeneration, and

significantly increased lifespan of both Npc1 and Npc2 mutant mice (Davidson

et al. 2009).

In addition to the effective substrate deprivation therapy, potential second/

adjunctive treatments were reported using model mice. In NPC-1-mutant cells,

lysosomal calcium was substantially decreased as a result of sphingosine storage,

which then resulted in accumulation of lipids including sphingosine and GSL in the

acidic compartment of the cell (Lloyd-Evans et al. 2008). Taking advantage of this

finding, it was demonstrated that elevation of cytosolic calcium with a pharmaco-

logical agent, curcumin, normalized NPC1 disease cellular phenotype and pro-

longed survival of the NPCmouse (Lloyd-Evans et al. 2008). In common with other

neurodegenerative disease, brain inflammation is observed in the NPC1 mouse with

activation of microglia before the neuronal degeneration (Baudry et al. 2003).
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In order to evaluate the contribution of the inflammation to the pathology of NPC

disease, nonsteroidal anti-inflammatory drugs (NSAIDs) were administrated to the

NPC1 mouse (Smith et al. 2009). The results showed that NSAIDs significantly

prolonged the lifespan and slowed the onset of clinical signs, indicating that anti-

inflammatory therapy may be a useful adjunctive treatment.

7.2 Mucopolysaccharidosis

Mucopolysaccharidosis (MPS) is a lysosomal storage disease, which is character-

ized by an inability to degrade glycosaminoglycans (GAGs). Accumulation of

undegraded GAGs in many tissues leads to severe symptoms including CNS

deterioration. In this section, model mice for MPS II, MPS IIIA, and MPS IIIB

are reviewed.

MPSII, also called Hunter syndrome, is an X-linked lysosomal storage disorder

caused by a deficiency in the enzyme iduronate 2-sulfatase (IDS). MPSII is

characterized by progressive somatic and neurological pathologies, including facial

features, hepatosplenomegaly, skeletal deformities, severe retinal degeneration,

hearing impairment, and mental impairment. A model mouse for MPSII was

generated by targeting the ids gene (Muenzer et al. 2002). Hemizygous mice

displayed a progressive accumulation of GAGs in many organs, skeleton deformi-

ties, and neuropathological defects. Furthermore, the affected mice performed

poorly in open-field tests and showed a severely compromised walking pattern

(Cardone et al. 2006). To design an efficient gene therapy approach for the

treatment of MPSII disease, the adeno-associated virus vector carrying ids was

administered to MPSII adult mice (Cardone et al. 2006) and pups (Polito and

Cosma 2009). Treatment with this viral vector resulted in the rescue of GAG

accumulation in visceral organs as well as the CNS. Remarkably, this CNS correc-

tion arose from the crossing of the blood–brain barrier by the IDS enzyme itself,

indicating that early treatment of MPSII mice with adeno-associated virus carrying

ids resulted in prolonged and high levels of circulating the IDS protein that could

efficiently and simultaneously rescue both visceral and CNS defects.

MPS III, also called Sanfilippo syndrome, is a lysosomal storage disease, which

is characterized by inability to degrade heparan sulfate, one of the GAGs. Accumu-

lation of undegraded heparan sulfate in many tissues leads to severe symptoms

including CNS deterioration. The causative gene for MPS IIIA is the N-sulfoglu-
cosamine sulfohydrolase (sulfamidase, Sgsh) gene. A mouse model for MPSIIIA

carried a point mutation in the Sgsh gene, which altered the corresponding amino

acid from Asp to Asn (Bhattacharyya et al. 2001) and exhibited biochemical,

pathological, and clinical features observed in MPSIIIA patients (Bhaumik et al.

1999). To find a potential therapy option for MPSIIIA, inhibition of GAG synthesis

with rhodamine B, a nonspecific inhibitor for GAG biosynthetic pathway, was

tested in the MPS IIIA model mice. Treatment of rhodamine B altered several

clinical parameters of the disease pathology, including reduction in urinary GAG
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excretion, total liver GAG, and lysosomal GAG content in liver and brain in MPS

IIIA mice (Roberts et al. 2006). Furthermore, the rhodamine B treatment was

demonstrated to improve the behavior in MPSIIIA mice (Roberts et al. 2007).

Although substrate reduction therapy is an effective option, inhibition of GAG

synthesis by rhodamine B is not specific. To overcome this problem, other potential

treatments have been developed including transplantation of ES cell-derived glial

precursor cells expressing sulfamidase (Robinson et al. 2010), Sgsh gene transfer by
canine adenovirus vectors (Lau et al. 2010), and intracerebrospinal fluid injection of

the sulfamidase protein (Hemsley et al. 2008, 2009) to the MPSIIIA model mice.

MPSIIIB is caused by the alpha-N-acetylglucosaminidase (Naglu) gene, which
is a lysosomal enzyme required for the stepwise degradation of heparan sulfate. To

generate a mouse model for MPSIIIB, the Naglu gene was disrupted by gene

targeting (Li et al. 1999). This MPSIIIB model mouse showed massive accumula-

tion of heparan sulfate as well as secondary changes in the activity of several other

lysosomal enzymes and elevation of gangliosides in brain. In addition, alterations in

circadian rhythm, activity level, motor function, vision, and hearing, which are

similar to the human disease, were observed (Heldermon et al. 2007). Although

MPSIIIB results in severe progressive neurological defects with high mortality, no

treatment is currently available because of the difficulty in delivering therapeutic

materials to globally affected tissue in the CNS. To develop a new treatment for

this disease, the feasibility of gene-based therapy was addressed in the MPSIIIB

mouse model. Vectors derived from adeno-associated virus coding for Naglu were

transferred by injection into striatum (Cressant et al. 2004) or via an intravenous

and an intracisternal injection following mannitol infusion (Fu et al. 2007) into the

affected MPSIIIB mice. Improved behavior, efficient Naglu delivery to the brain,

and the correction of lysosomal storage with prolonged lifespan suggested that adeno-

associated virus injections might represent an effective treatment for MPSIIIB.

A lentivirus Naglu vector also restored the normal enzyme activity throughout the

large portion of the brain, and the treated animals showed a significantly improved

behavioral performance (Di Domenico et al. 2009). Gene therapy with viral vectors is

a promising treatment for lethal conditions such as MPS, but there are major issues

for clinical application, including carcinogenesis following virus integration into the

host genome, uncontrolled overexpression of the enzyme, and inappropriate immune

responses to the introduced virus (Sands and Davidson 2006).

7.3 Other Neurodegenerative Lysosomal Storage Disorders

GM1 gangliosidosis is an incurable GSL lysosomal storage disease caused by a

genetic deficiency in b-galactosidase (b-gal) and leads to the accumulation of

ganglioside GM1 and its derivative GA1 in the CNS. A mouse model lacking a

functional b-gal gene was generated by homologous recombination (Hahn et al.

1997; Matsuda et al. 1997). Abnormal accumulation of GM1-ganglioside was

progressively observed in the mutant brain and tremor, ataxia and abnormal gait
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become apparent in older mice, thus mimicking the pathological, biochemical, and

clinical abnormalities of the human disease.

Tay-Sachs disease and Sandhoff disease are progressive neurodegenerative

disorders characterized by an accumulation of GM2 gangliosides, particularly in

neurons. These two diseases are clinically indistinguishable and caused by a

mutation in the alpha and beta subunit of hexosaminidase (Hex), respectively.

Targeted KO lines of the Hexa gene were independently generated by three groups

(Yamanaka et al. 1994; Cohen-Tannoudji et al. 1995; Phaneuf et al. 1996). All three

mutant lines exhibited consistent results; the ganglioside was accumulated in

neurons as membranous cytoplasmic bodies characteristically found in the neurons

of Tay-Sachs disease patients. However, the mutant mice showed no apparent

defects in motor or memory function. On the other hand, targeted KO mice of the

Hexb gene resulted in accumulation of both GM2 ganglioside and glycolipid GA2

throughout the CNS. Furthermore, Hexb-deficient mice developed a fatal neurode-

generative disease, with spasticity, muscle weakness, rigidity, tremor, and ataxia

(Sango et al. 1995; Phaneuf et al. 1996).

To develop potential treatment methods for gangliosidosis, one of the used

strategies is to enhance the lysosomal enzyme levels. This method is aimed to

remove ganglioside accumulating within the lysosome and includes enzyme

replacement, bone marrow transplantation, chemical chaperon therapy, and gene

therapy (Lacorazza et al. 1996; Norflus et al. 1998; Matsuda et al. 2003; Takaura et al.

2003). Alternatively, substrate reduction therapy aims to reduce GSL synthesis to

counterbalance the impaired rate of catabolism, using small compounds, which

inhibits the GSL biosynthesis (Kasperzyk et al. 2005; Lee et al. 2007; Baek et al.

2008; Elliot-Smith et al. 2008).

8 Mouse Models for Neuropsychiatric Diseases

Psychiatric diseases such as schizophrenia, bipolar disorder, and autism spectrum

disorders each have a prevalence of about 1% (see O’Tuathaigh et al. (2011);

reviewed by Burmeister et al. 2008), and approximately 17% of the population

experience major depressive disorder (see Krishnan and Nestler 2011). In addition

to the striking population prevalence, psychiatric diseases often have extremely

high heritability; e.g., schizophrenia, bipolar disorder, autism spectrum disorders,

and major depressive disorder with 70–85%, 60–85%, 90%, and 40%, respectively

(Burmeister et al. 2008). Thus, mutant mice might effectively provide good models

for human psychiatric diseases. On the other hand, psychiatric diseases appear to be

mostly quantitative traits governed by polygenes and current mouse mutagenesis

approaches, particularly transgenic and KO/conditional approaches, usually manip-

ulate only one gene at a time. In this section, recent examples of mouse Disc1 and

Srr mutations are reviewed with respect to human psychiatric disease models

(discussed in O’Tuathaigh et al. 2011).
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8.1 Disrupted in Schizophrenia 1 Gene

Genetic epidemiological analyses from family and twin studies have consistently

implicated genetic factors in the development of schizophrenia, although Mende-

lian heredity has not been confirmed (Thaker and Carpenter 2001). Therefore,

Schizophrenia is a common and genetically complex psychiatric disorder. Indeed,

summarizing intensive genetic association studies with schizophrenia, the Online

Mendelian Inheritance in Man (OMIM; http://www.ncbi.nlm.nih.gov/omim) has

listed 35 candidate genes as genetic risk factors from 25 genomic regions in 13

human chromosomes.

Among them, the disrupted in schizophrenia 1 (DISC1) was initially identified at
translocation (1;11)(q42.1;q14.3) that was linked to major mental illness, including

schizophrenia, depression, and bipolar disorder, in a large Scottish family (St Clair

et al. 1990). The DISC1 gene was then positionally cloned in human (Millar et al.

2000), and subsequently the mouse homolog, Disc1, was also cloned (Ma et al.

2002). The positional cloning of the humanDISC1 gene revealed that the full length
of the DISC1 consisted of 854 amino acid residues, and the Scottish translocation

truncated DISC1 after the 597th amino acid residue (Millar et al. 2000). DISC1,

which has been found to interact with over 50 proteins, was expressed in multiple

isoforms in a cell-type-specific manner (reviewed by Porteous and Millar 2006).

A 25-bp deletion of the mouse Disc1 gene was found originally in the 129S6/

SvEv inbred strain (Koike et al. 2006) and later in all the tested 129 derived inbred

strains (Clapcote and Roder 2006). This deletion caused a frameshift mutation,

resulting in 13 novel amino acids followed by a premature stop codon in exon 7.

Neither full-length nor the predicted partial N-terminal protein was detected

in brain, and thus the deletion allele seemed to be null type (Koike et al. 2006).

They also found that both heterozygotes and homozygotes for the deletion allele

exhibited an impaired working memory performance in the C57BL/6 genetic

background, suggesting haploinsufficiency. However, one of the typical pheno-

types of schizophrenia, the reduction in prepulse inhibition (PPI) was not detected

even in homozygotes (Koike et al. 2006).

Two independent missense mutant strains were discovered in exon 2 of the

Disc1 gene from the RIKEN mutant mouse library (Clapcote et al. 2007; also

Sect. 4). Disc1Rgsc1393 and Disc1Rgsc1290 had an amino acid substitution of Glu31-

Leu (Q31L) and Leu100Pro (L100P) in the mouse Disc1 protein, respectively.

Exon 2 of the Disc1 gene encoded the interaction domain with PDE4B, suggesting

that the interaction between Disc1 and PDE4B was a genetic factor contributing

to the development of psychiatric disorders mediated through cAMP signaling

(Millar et al. 2005). Using G1 cryopreserved sperm, the identified Disc1 mutant

strains were revived and backcrossed to the C57BL/6 strain to eliminate other

ENU-induced mutations. At the N6 backcross generation, heterozygotes were

intercrossed to generate each genotype of +/+, Q31L/+, Q31L/Q31L, L100P/+,

L100P/L100P, and Q31L/L100P. These mice were subjected to various behavioral

tests with or without antipsychotic drugs and antidepressants. In addition, anatomical
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and biochemical studies were conducted for each genotype. In summary, two

mutations exhibited quite distinctive characteristics. The L100P allele gave rise

to dominant schizophrenia-like phenotype, while the Q31L allele showed rather

recessive depression-like behavior (Clapcote et al. 2007). For instance, both the

homozygous and heterozygous L100P mice showed lower PPI. Antipsychotic

treatments with clozapine and haloperidol restored their PPI phenotype. Latent

inhibition (LI) tests and working memory tests also detected the schizophrenic

phenotypes in the L100P mice. The Q31L homozygous mice also showed mild

reduction in PPI but did not respond to antipsychotic drugs. Rather, depression-like

behaviors were more prominent in Q31L homozygous mice as suggested by find-

ings in the forced swim test (FST), social interaction test, and by their reward

responsiveness (Clapcote et al. 2007). An antidepressant, bupropion, reversed the

depressive traits in the Q31L mice.

A dominant-negative Disc1 transgenic mouse was also constructed (Hikida et al.

2007). The translocation (1;11)(q42.1;q14.3) found in the Scottish family indicated

that the mental illness was inherited in a dominant fashion. Originally a haploin-

sufficiency model was proposed (reviewed by Porteous and Millar 2006), but a

dominant-negative function of the truncated DISC1 protein was also shown in the

cell culture system (Kamiya et al. 2005). To test the dominant-negative effect of the

truncated DISC1 in vivo, transgenic mice expressing the N-terminal 597 amino acid

residues of the human DISC1 were constructed with the aCaMKII promoter

(Hikida et al. 2007). They found neurodevelopmental anomalies as reported in

schizophrenia patients, and they also found that the transgenic mice exhibited

several behavioral abnormalities such as hyperactivity, disturbance in sensorimotor

gating, olfactory-associated behavior, and depression-like deficits (anhedonia)

(Hikida et al. 2007).

8.2 Serine Racemace Gene

N-methyl-D-aspartate receptors (NMDAR) may be involved in the pathophysiology

of schizophrenia, implicated by the association of the reduction in NMDAR-

mediated signaling pathways, particularly D-serine deficiency, with the disorder

(Coyle 2006). The level of D-serine in vivo is regulated by the synthetic enzyme,

serine racemace (srr; Wolosker et al. 1999a, b), and the degradatory enzyme,

D-amino acid oxidase (DAAO; Mothet et al. 2000). Genetic studies in human

populations showed that SNPs found in the srr and DAAO genes are associated

with schizophrenia (Chumakov et al. 2002; Schumacher et al. 2004; Morita et al.

2007). To investigate the molecular association of the srr gene, several mutant mice

for the srr gene have been developed (Basu et al. 2009; Labrie et al. 2009).

The KO mouse for the srr gene was constructed by Basu et al. (2009). They first
confirmed that the srr KO mice expressed neither protein products nor enzymatic

activities. The cortical D-serine levels in the +/+, heterozygotes, and homozygotes

were 3.6, 2.5, and 0.4 mmoles/g protein, respectively. Electrophysiological studies
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showed impaired glutamatergic neurotransmission and attenuated synaptic plasticity

in the srr homozygous KO mice compared to that of wild type. Finally, the battery

of behavioral tests revealed mild hyperactivity, impaired spatial memory, and a subtle

elevation of anxiety. These findings are consistent with schizophrenia traits. The PPI

test, however, did not detect any differences between the KO homozygotes and the

wild type (Basu et al. 2009).

The next-generation gene-targeting system with ENU mutagenesis (Sect. 4) inde-

pendently provided allelic series of srrmutant mice (Labrie et al. 2009). Eight mutant

mouse strains carrying a base substitution in the srr gene were identified in the

RIKEN mutant mouse library (all the srr mutant strains are available from RIKEN

BioResource Center; http://www.brc.riken.go.jp/lab/mutants/jp/genedriven.htm).

One of the eight strains had a nonsense mutation of Tyr269Stop in the last exon

of the srr gene, predicting a truncated srr product. The Tyr269Stop mice were

revived from frozen sperm and subjected to biochemical, behavioral, and pharma-

cological studies (Labrie et al. 2009). In the Tyr269Stop homozygotes, the tran-

scription of srr mRNA was reduced ~50% of that of wild type. Western blotting

analysis exhibited no srr protein products including the predicted truncated coun-

terpart. No srr enzymatic activities were detected in the brain of Tyr269Stop

homozygotes. Thus, the next-generation gene targeting with ENU mutagenesis

indeed provides an authentic null allele that is equivalent to the KO allele. The

Tyr269Stop mutant mice exhibited schizophrenia-like behaviors, for instance,

reduced sociability, impaired object recognition, spatial learning and memory

deficits, and impaired PPI. These behaviors were restored by clozapine, an antipsy-

chotic drug, and by D-serine for which some preliminary findings suggest antipsy-

chotic activity (Heresco-Levy et al. 2005; Coyle 2006). A striking difference was

the finding of the PPI impairment in Tyr269Stop null mutant mice (Labrie et al.

2009) that was not observed in the above-described KO mice (Basu et al. 2009),

although both of them were analyzed in the same genetic background of C57BL/6.

The schizophrenia-like features seem to be more prominent in the Tyr269Stop

srr mice than in the conventional srr KO mice, a difference that requires further

elucidation.

9 Concluding Remarks

Various mutant mouse resources and mutagenesis systems are reviewed in this

chapter. Many ENU-induced mutant mouse strains established by the phenotype-

driven approach are currently undergoing positional cloning to identify the causa-

tive genes. The next-generation resequencing system should enhance the pace of

positional cloning. The phenotype-driven approaches may also be combined with

sensitized screening to detect modifiers, namely gene–gene interactions or epistatic

interactions (see Bountra et al. 2011).

Conditional-ready KO mice for every mouse gene will be available as ES cell

lines in a year or so by the international collaborative efforts (Sect. 3). In these
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efforts, the KO/conditional mice are constructed in the standardized C57BL/6N

genetic background, therefore eliminating the potentially confounding effects of

segregating genetic factors in different genetic backgrounds. To effectively use the

conditional resource, however, the batteries of Cre–zoo transgenic strains must be

developed (Sect. 3).

Next-generation gene-targeting generates allelic series of ENU-induced point

mutations of the target gene and is already available to the research community

(Sect. 4). In addition, all the ENU-induced mutations in the mutant mouse library

will be cataloged and analyzed using next-generation resequencing technology. The

power of such multiple mutant alleles in the target gene was shown in the case for

the dilute gene (Sect. 5.3) as well as for the Disc1 gene (Sect. 8.1).

The next challenge for modeling human diseases is to develop mutant mice

exhibiting a quantitative trait by combining multiple mutations. The effects of

individual genetic risk factors in human psychiatric diseases are very weak (Pulver

2000), although overall heritability is very high and the diagnoses often overlap

each other (Burmeister et al. 2008). Thus, psychiatric diseases appear to be typical

quantitative traits governed bymanyweak polygenes with pleiotropy. KO/conditional

mice have provided powerful models to elucidate human diseases with monogenic

traits and those caused by several major genes by constructing double- or triple KO

mice. ENU mutant mice and various inbred strains should give rise to model systems

to dissect more complicated quantitative traits and genetic factors that are associated

with human diseases.
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Abstract The fruitfly Drosophila offers a model system in which powerful genetic

tools can be applied to understanding the neurobiological bases of a range of

complex behaviors. The Drosophila and human lineages diverged several hundred

million years ago, and despite their obvious differences, flies and humans share

many fundamental cellular and neurobiological processes. The similarities include

fundamental mechanisms of neuronal signaling, a conserved underlying brain

architecture and the main classes of neurotransmitter system. Drosophila also

have a sophisticated behavioral repertoire that includes extensive abilities to

adapt to experience and other circumstances, and is therefore susceptible to the

same kinds of insults that can cause neuropsychiatric disorders in humans. Given

the different physiologies, lifestyles, and cognitive abilities of flies and humans,

C.J. O’Kane (*)

Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK

e-mail: c.okane@gen.cam.ac.uk

J.J. Hagan (ed.), Molecular and Functional Models in Neuropsychiatry,
Current Topics in Behavioral Neurosciences 7, DOI 10.1007/7854_2010_110
# Springer‐Verlag Berlin Heidelberg 2011, published online 12 January 2011

37



many higher order behavioral features of the human disorders cannot be modeled

readily in flies. However, an increasing understanding of the genetics of human

neuropsychiatric disorders is suggesting parallels with underlying neurobiological

mechanisms in flies, thus providing important insights into the possible mechan-

isms of these poorly understood disorders.

Keywords Addiction � Aggression � Autism � Courtship � Dopamine � Drosophila �
Learning � Memory � Neuropeptides � Schizophrenia � Serotonin � Sleep

Abbreviations

ARM Anesthesia-resistant memory

BBB Blood–brain barrier

cAMP Cyclic AMP

DAT Dopamine transporter

GABA Gamma-aminobutyric acid

LNs Lateral neurons

NMJ Neuromuscular junction

NPF Neuropeptide F

NPY Neuropeptide Y

PACAP Pituitary adenylate cyclase-activating protein

PKA cAMP-dependent protein kinase

SERT Serotonin transporter

SSRI Selective serotonin reuptake inhibitor

VMAT Vesicular monoamine transporter

1 Introduction

Given the complexity and sophistication of behavioral phenotypes in neuropsy-

chiatric disorders, can an apparently much simpler organism such as Drosophila
make a useful contribution to our understanding of these disorders? At a number of

levels from behavioral to molecular, the answer is certainly yes, if used appropri-

ately. Flies and humans have found different solutions to the evolutionary struggle

for survival, but their shared descent from a last common ancestor that already had

a complex nervous system has left their brains and behavior with many traits in

common. These shared traits include the main neurotransmitter systems, gross

subdivisions of the brain along the body axis into forebrain, midbrain and hindbrain

and shared behavioral traits including learning and many forms of behavioral and

synaptic plasticity, circadian behavior, and some level of social behaviors. Flies

offer many strengths for experimental approaches that are impossible in humans
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and still difficult in other vertebrates, including their sophisticated genetics, ease of

many cell biological manipulations, less gene redundancy and a very powerful

toolbox of transgenic methods for neuronal circuit analysis – and for these reasons

are continuing to play a pioneering role in genetic approaches to behavior. Set

against this is their greater evolutionary distance from humans than vertebrate

model organisms, which can manifest as lack of some key genes, lack or change

of gene functions, and more divergent behavior. But as in any challenge, the key

to success is to choose your weapon and exploit the best strengths of each system.

For Drosophila, this can mean either studying a relevant defined behavior such as

learning, circadian behavior, or responses to addictive substances, or increasingly,

using Drosophila to study the cellular roles of gene products implicated by genetic

mapping or genome-wide association studies in the human conditions.

2 The Architecture of the Drosophila Brain and Its

Neurotransmitter Systems

2.1 The Fly Brain

Before looking at fly behavior and what can go wrong with it, how is theDrosophila
brain that mediates this behavior built? The basic building blocks of the brain,

neurons and glia, are found in both flies and mammals. Neurons show almost all

the functional and molecular features of mammalian neurons: axons with their

transport machinery, pumps, and voltage-gated channels that underlie action poten-

tial transmission, presynaptic terminals with all the machinery for synaptic vesicle

release and recycling, dendrites, postsynapses with localized receptor fields and

active zones. Glial cells are found intimately associated with neurons, for example

often surrounding defined axon bundles and forming a blood–brain barrier (BBB)

(Freeman and Doherty 2006).

With only around 105 neurons, the adult Drosophila nervous system has about

one millionth as many neurons as humans have. Nevertheless, this nervous system

still allows a remarkably complex behavioral repertoire, with new surprises about

its capabilities continually appearing. It consists of a bilaterally symmetrical brain,

which is joined to a ventral nerve cord that innervates the thorax and abdomen.

Headless flies that retain only their nerve cord are capable of complex reflexive

behavior, including grooming, and righting of the body if it is inverted (e.g., Ashton

et al. 2001). Similarly to mammals, a segmentally repeated organization is most

obvious in the nerve cord, but ontogeny and localized gene expression also show a

division of the developing brain region into a protocerebrum, deutocerebrum, and

tritocerebrum, which appear broadly evolutionarily homologous to the forebrain,

midbrain, and hindbrain regions of vertebrates (Reichert 2005). At a more detailed

level homologies between fly and mammalian brain regions are less obvious, because

of the evolution of brain organizations that are adapted to their respective lifestyles.
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However, molecular “evo–devo” analysis of a wider phylogenetic range of animals,

including some with lifestyles less divergent from the last common bilaterian ances-

tor, is likely to reveal additional homologies, for example, the recent evidence for

homology between the main neurosecretory regions of invertebrate brains and the

hypothalamus–pituitary system of vertebrates (Tessmar-Raible 2007).

2.2 Neurotransmitter Systems

The similarities between fly and human nervous systems extend also to the main

neurotransmitter systems and channels (Littleton and Ganetzky 2000), which are

the targets of many pharmacological interventions relevant to neuropsychiatric

conditions.

Acetylcholine is the main excitatory neurotransmitter in the Drosophila central

nervous system (CNS), in contrast to the more limited role in the mammalian CNS.

Like mammals, flies also have choline acetyltransferase, acetylcholinesterase, a

vesicular acetylcholine transporter, and nicotinic (ionotropic) and muscarinic

(G-protein-coupled) acetylcholine receptors that respond to nicotinic and musca-

rinic ligands, respectively (e.g., Reaper et al. 1998; Campusano et al. 2007).

Glutamate is the excitatory neurotransmitter at the Drosophila neuromuscular

junction (NMJ), but has a more limited role in the Drosophila than in the mamma-

lian CNS. As expected, Drosophila have a vesicular glutamate transporter, a

glutamate uptake transporter in glial cells (Rival et al. 2004), a range of ionotropic

glutamate receptors (Littleton and Ganetzky 2000) that respond to some of the same

ligands as mammalian receptors, including N-methyl D-aspartate (NMDA) recep-

tors (Cattaert and Birman 2001). Flies also have metabotropic (G-protein-coupled)

glutamate receptors that respond to mammalian receptor ligands (e.g., Zhang et al.

1999; Sinakevitch et al. 2010). As in vertebrates, GABA (gamma-aminobutyric

acid) is the principal inhibitory neurotransmitter in flies, found widely throughout

the brain. Flies have ionotropic GABA-A receptors, G-protein-coupled GABA-B

receptors, and a vesicular GABA transporter (Enell et al. 2007). The pharmacology

of these is broadly similar but not identical to that of vertebrate receptors.

Drosophila GABA-A receptors are generally sensitive to inhibition by picrotoxin

and potentiation by benzodiazepines (Buckingham et al. 2005; Wilson and Laurent

2005; Tanaka et al. 2009), but are inhibited only weakly by bicuculline (Buckingham

et al. 2005). Drosophila GABA-B receptors are sensitive to at least one mammalian

antagonist CGP54626 (Wilson and Laurent 2005).

Monoamine neurotransmitters have a variety of important roles in bothDrosophila
and vertebrates, mediated by G-protein-coupled receptors specific for each neuro-

transmitter. The neurotransmitter phenotype of these neurons is determined by the

enzymes required to synthesize each transmitter, and by the vesicular monoamine

transporter (VMAT) (Greer et al. 2005). The main types are:

Adrenergic: Octopamine and tyramine are the closest equivalents inDrosophila to
the adrenergic neurotransmitters such as epinephrine and norepinephrine, based on
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their pharmacological properties and homology between Drosophila octopamine

receptors and vertebrate beta-adrenergic receptors (reviewed by Roeder 2005).

Dopaminergic: In humans, the dopaminergic system is the target of many

addictive substances. Drosophila also has a dopaminergic system, comprising

over a hundred neurons spread over some 15 clusters per adult brain hemisphere

(Mao and Davis 2009, and references therein). The pharmacology of the Drosophila
system is sufficiently conserved to see effects of substances including cocaine (see

Sect. 3.4 below). While this makes Drosophila a good model for some features of

addiction and dopaminergic function, the behavioral roles of dopaminergic neurons

will be specific to the circuits that they belong to. For example, addictive substances

often work partly by increasing the effects of dopamine in the dopaminergic

mesolimbic system, which is associated with a general sensation of pleasure. On

the other hand, in associative olfactory learning in flies, dopaminergic neurons

that innervate the mushroom body signal an unpleasant aversive stimulus (see

Sect. 3.2). Since theDrosophila brain has several clusters of dopaminergic neurons,

it is entirely possible that some of them mediate a pleasurable stimulus, but the

functions of most dopaminergic neurons in flies are not sufficiently well understood

to answer this question.

Serotonergic: The human serotonergic system plays an important role in many

aspects of mood regulation, affecting aggression, anxiety and depression. It is a

target of a number of antidepressant therapeutics, including tricyclic antidepres-

sants (e.g., imipramine) and selective serotonin reuptake inhibitors (SSRIs, e.g.,

Fluoxetine/Prozac). These potentiate the effect of serotonin by inhibiting the

plasma membrane serotonin transporter (SERT), although tricyclics also target

the adrenergic transporter. Drosophila also has a serotonergic system, with around

40 serotonergic neurons per brain hemisphere (Sitaraman et al. 2008), and a SERT

that shows broadly similar but not identical pharmacological properties to human

SERT (Demchyshyn et al. 1994; Petersen and DeFelice 1999). It has roles in a

number of behaviors including diet (Vargas et al. 2010), sleep (Sect. 3.3) and

aggression (Sect. 3.5).

Histaminergic:Histamine is the neurotransmitter used by a number ofDrosophila
neurons including photoreceptors, and is also transported by Drosophila VMAT

(Romero-Calderón et al. 2006).

One important neurotransmitter system of psychiatric importance, whose effects

Drosophila cannot model, is the cannabinoids. Initial pharmacological and

sequence analysis suggested no members of the CB1 or CB2 cannabinoid receptor

families in flies (e.g., McPartland et al. 2001). Although more sensitive searches

subsequently identified a distantly related homolog in flies (McPartland et al. 2006),

this has turned out to be an adenosine receptor (Dolezelova et al. 2007; Wu et al.

2009) and the original conclusions that flies lack cannabinoid receptors still stand.

Drosophila has members of at least 15 classes of vertebrate neuropeptide receptors.

Those of potential relevance to neuropsychiatric disorders include galanin,

oxytocin/vasopressin, tachykinins, neuropeptide Y (NPY), thyrotropin-releasing

hormone (TRH), bombesin/GRP, nociceptin, gastrin/cholecystokinin (Hewes and

Taghert 2001; Hauser et al. 2006; N€assel and Homberg 2006). Many of these are

Drosophila as a Model Organism for the Study of Neuropsychiatric Disorders 41



found in Drosophila interneurons and may therefore directly influence behavior.

Known examples include Amnesiac, a neuropeptide similar to mammalian pituitary

adenylate cyclase-activating protein (PACAP), involved in both olfactory memory

and sleep (DeZazzo et al. 1999; Liu et al. 2008; Sects. 3.2 and 3.3); a pigment-

dispersing factor (PDF) expressed in the lateral neurons (LNs) that regulates sleep

and circadian rhythms (Sect. 3.3), and NPY, involved in behaviors including

alcohol tolerance and aggression (Sects. 3.4 and 3.5).

3 Neuropsychiatric Behavioral Disorders in Flies?

3.1 Fly Behavior

At a most basic level, responses to sensory stimuli include attraction or repulsion to

odors, locomotor responses to movement of single objects or the entire visual field,

responses to mechanical or vibrational stimuli, and responses to noxious stimuli

that appear to involve a perception of pain (Vosshall 2007). These behaviors appear

largely reflexive (although are usually plastic to some degree) and have proved

highly amenable to the sophisticated circuit analysis that Drosophila now offers

(Luo et al. 2008; Olsen and Wilson 2008).

However, these responsive behaviors are not the main focus of this chapter. Fly

behavior cannot readily be explained as a series of responses to sensory stimuli, any

more than can human behavior; and it is the higher level control, modulation and

motivation of behavior that is most relevant to neuropsychiatric disorders. We are

gaining an increasingly sophisticated picture of the fly’s behavioral repertoire, and

are thus starting to define the parameters and phenomenology of such higher order

behaviors including motivation, social behavior, and some of the features of

addictive behavior (Vosshall 2007). Once the phenomenology is defined, a genetic

approach allows the molecular and cellular and circuit mechanisms to be defined, as

well as the mechanisms of any impairment caused by genetic or pharmacological

manipulations. Spatial and temporal targeting of expression enables the study of

transgenes such as wild-type learning genes, proteins that can either silence or

activate neuronal activity (e.g., Sweeney et al. 1995; Luo et al. 2008; Sjulson and

Miesenb€ock 2008).

3.2 Learning and Memory

A substantial capacity for learning and memory has been demonstrated in many

tests. One of the best studied examples is olfactory associative learning, in which

flies can learn to associate a specific odor with either punishment or a reward.

The resulting memory can be dissected on the criteria of both molecules and

circuitry into a number of phases, which range from short-term memory within
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seconds or minutes, to long-term memory that lasts for days (Tully et al. 1994;

Isabel et al. 2004). It requires the activity of neurons in a structure called the

mushroom body, which is often compared to the mammalian hippocampus,

although it is not clear whether there is any evolutionary homology between the

structures. While our understanding of the mushroom body circuitry is still deve-

loping, targeted genetic manipulations suggest that punishment and reward are

signaled by innervation of the presynaptic compartment of mushroom body neurons

by dopaminergic and octopaminergic neurons, respectively (Schwaerzel et al.

2003; Riemensperger et al. 2005; Schroll et al. 2006). Association of a conditioned

olfactory stimulus with punishment or reward would then ensue in the presynaptic

compartment of small subsets of mushroom body neurons that receive both the

olfactory stimulus and the punishment or reward stimulus. Retrieval would ensue

when the same conditioned stimulus recurs, even in the absence of the unconditioned

stimulus.

Much remains to be learned about the signaling pathways that mediate

the different phases of learning and retrieval, but work in flies gave some of the

earliest indications that cAMP signaling plays an important role, since mutations

affecting the neuropeptide PACAP, the calcium-sensitive adenyl cyclase Rutabaga,

the cAMP phosphodiesterase Dunce, protein kinase A, and the cAMP-responsive

transcription factor CREB, all affect learning and memory (reviewed by McGuire

et al. 2005). This function of the pathway appears widely conserved phylogeneti-

cally, since cAMP signaling is central to at least some forms of learning in organisms

as diverse as the mollusc Aplysia andmammals (Hawkins 1984; Bourtchuladze et al.

1994; Silva et al. 1998). In humans, the role of the pathway in learning or memory

disorders has not been well characterized, but inhibitors of cAMP phosphodiesterase

show enhancing effects in many vertebrate memory paradigms and have therefore

been suggested as cognitive enhancers (Rose et al. 2005). Furthermore, a human

dunce ortholog PDE4B has been implicated as a risk factor in schizophrenia-like

illness (see Sect. 4.1 below; O’Tuathaigh et al. 2011; Millar et al. 2005).

3.3 Sleep and Rhythms

Sleep disorders are a feature of many degenerative and neuropsychiatric conditions,

including schizophrenia, bipolar disorder, and major depression (see Krishnan

and Nestler 2011). The cause-and-effect relationships between sleep disturbance,

circadian rhythmicity, and other disease symptoms are complex and remain largely

to be dissected. For this reason among many others, there is a compelling need to

understand the nature, regulation, and functions of sleep. Since flies and humans

have very different brain architectures, it came as a great surprise – but perhaps not

to those aware of the sophistication of fly behavior – that flies also have a resting

behavioral state that resembles sleep. The name of Drosophila (“dew lover”) itself

reflects the elevated activity of individual flies around dawn and dusk, as if sleeping

at night and taking siestas during the day. This circadian inactivity is suggestive
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but insufficient to meet the criteria of sleep, but it shows additional characteristics

that do: flies are less responsive to sensory stimulation during inactivity; “sleep

deprivation” homeostatically evokes more short resting episodes and a “sleep

rebound” to make good the deprivation; some of the same molecular expression

markers of sleep and wakefulness are found in flies and mammals and Drosophila
rest and activity can be modulated by stimulants and hypnotics (Hendricks et al.

2000; Shaw et al. 2000). In other parallels to mammals, wakefulness in flies is

promoted by pharmacological or genetic stimulation of dopaminergic neurotrans-

mission, and resting by its inhibition (Andretic et al. 2005; Kume et al. 2005).

Serotonergic (Yuan et al. 2006) and GABAergic (Agosto et al. 2008; Parisky et al.

2008; Chung et al. 2009) neurotransmission both promote rest.

As with other biological processes, one cannot assume that the mechanisms of

sleep are conserved in all respects between flies and mammals. Indeed sequence

homology searches (data not shown) fail to detect one important mechanism for

sleep control in flies, the orexin ligand–receptor pair (reviewed by Sakurai 2007).

The absence of this important neuroendocrine component from flies appears to be

due to a recent evolutionary loss from the fly lineage, since orexin receptor sequences

are detected in other insects (data not shown). The other parallels between fly and

mammalian sleep are possibly more ancient, and strong enough for flies to a

compelling model to dissect the molecular and cellular mechanisms of sleep.

Several approaches are starting to yield rapid progress. Mutagenesis screens (see

Gondo et al. 2011) have recently started to yield mutants of interest. One such

screen has identified mutations in the voltage-gated K+ channel Shaker as causing
short sleep, associated with reduced lifespan, but retaining sleep homeostasis.

Another screen has identified mutations that reduce recovery sleep after sleep

deprivation that affect a glycosylphosphatidylinositol-anchored protein, Sleepless/

Quiver (Koh et al. 2008). Interestingly, these mutations also reduce levels of Shaker

channel and currents (Koh et al. 2008). Together, the strong effects of these mutations

point toward membrane excitability as a key process in sleep. As in other areas of

biology, the expectation is that mutant screens will continue to generate enough

biological raw material for at least a generation of researchers in the field (Harbison

and Sehgal 2008 and see Gondo et al. 2011).

The powerful targeted spatial and temporal expression technologies ofDrosophila
have identified a few specific brain regions or neurons in which molecules or

pathways of interest can act. First, EGFR signaling in a group of neurosecretory

neurons, the pars intercerebralis, promotes sleep. Intriguingly, this structure is

proposed as evolutionarily related to the hypothalamus, central to the control of

sleep in mammals (Foltenyi et al. 2007). Second, different subsets of mushroom

body neurons (better known for its role in learning and memory) can either promote

or antagonize sleep (Joiner et al. 2006). Third, the LNs that express the neuropeptide

PDF promote wakefulness and are targets for the GABA inhibition of wakefulness

(Parisky et al. 2008; Sheeba et al. 2008; Chung et al. 2009). How these components

interact to control all aspects of sleep and wakefulness is still unknown, but we can

expect further work to “join the dots” of the circuitry in the coming years, and

to develop a circuit model of how sleep can be controlled.
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Finally, analysis of cellular phenotypes related to sleep in Drosophila has shown
a striking reduction in synaptic markers in several regions of the Drosophila brain,

which is prevented by sleep deprivation (Gilestro et al. 2009). This is consistent

with sleep being a period in which unwanted synaptic connections are broken down

or weakened. The molecular and genetic tools that allow this process to be monitored

and manipulated promise a much better understanding of how central this process is

to the nature and purpose of sleep.

In summary, Drosophila is emerging as a powerful model for the cellular and

circuit mechanisms of sleep, which will certainly provide many testable models for

the nature of human sleep, and thus provide a route to eventually unraveling the

complex interrelationships between sleep disorders and a wide range of neuropsy-

chiatric conditions.

3.4 Addiction

Addiction to psychoactive substances is a complex range of disorders that have a

great human cost, and we are still far from understanding the cellular mechanisms

involved. Typically, an addictive substance evokes positive reinforcement or reward-

ing experience, thought to be, at least in part mediated by elevating the levels or

effects of extracellular dopamine in the mesolimbic dopamine system (Kauer and

Malenka 2007; Heidbreder 2011 for detailed discussion). In addition, repeated

exposures may result in either sensitization or tolerance, depending on the strength

of exposure and intervals between exposures. Cessation of repeated exposures can

impair normal physiological functions, resulting in withdrawal symptoms.

No substance has yet been demonstrated to evoke a full gamut of addiction in

flies, but this could potentially improve as behavioral testing of flies becomes more

sophisticated. Flies certainly show some of the elements of addictive behavior, and

a number of psychoactive substances, including cocaine, nicotine and ethanol show

strong behavioral effects in flies (McClung and Hirsh 1998; Bainton et al. 2000).

Cocaine induces a dose-dependent range of responses, varying from increased

grooming and decreased locomotion at lower concentrations, through abnormal

locomotor patterns, loss of taxis behaviors, hyperkinetic activity and tremors, to

total akinesia or death at higher concentrations (McClung and Hirsh 1998; Bainton

et al. 2000; reviewed by Heberlein et al. 2009). Furthermore, repeated exposure to

cocaine shows sensitization, with the maximum increase in response occurring when

the second exposure is several hours after the first (McClung and Hirsh 1998).

The behavioral response of flies to cocaine reflects the presence of its main pharma-

cological targets, the plasma membrane monoamine transporters including those for

dopamine (DAT) and serotonin (SERT). As in mammals, dopamine plays a major

role in the effects of cocaine in Drosophila. Pharmacological inhibition of dopamine

synthesis reduces the behavioral effects of cocaine (Bainton et al. 2000) and, in an

apparent contradiction, chronic blockade of both dopaminergic and serotonergic

neurotransmission increases them (Li et al. 2000). The reason for the contradiction
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is not clear, but may reflect the acute or chronic nature of the treatments; neverthe-

less, both results still implicate dopamine in the main cocaine response in flies.

The existence of such responses allows dissection of their control mechanisms

in flies, for example by using powerful mutant screens, together with the powerful

tools for targeted expression and circuit dissection. First, a functional circadian

clock is required for cocaine sensitization in flies (Andretic et al. 1999), and

this appears to reflect a target in dopaminergic neurons that innervate the PDF-

expressing LNs, in which the circadian clock mechanism in turn regulates the ability

of these neurons to control general locomotor activity. Ablation or impairment of

LNs reduces but does not eliminate the overt behavioral effects of cocaine (Tsai et al.

2004). Remarkably, this situation is similar to that in mammals, where there is also

strong interaction between cocaine and clock function (reviewed by Manev and Uz

2006); cocaine alters clock gene expression, and mutations in circadian clock gene

expression significantly alter mouse responses to cocaine. Whether this similarity

reflects a deep underlying conservation of the neuronal circuitry that regulates

rhythmic behavior is still unclear, but it is sufficient to justify further study in flies

of how circadian mechanisms contribute to the effects of cocaine and of other

psychoactive drugs that target the dopaminergic system.

Genetic screens in flies have also implicated the BBB in responses to cocaine.

This is surprising, given the known or likely permeability of this barrier to cocaine

in both mammals and flies (reviewed by Daneman and Barres 2005). Partial loss-

of-function of a G-protein-coupled receptor (“Moody”), which is necessary for

integrity of the BBB that is formed by junctions between glial cells, increases

both cocaine and nicotine sensitivity (Bainton et al. 2000). A direct effect on drug

permeability seems unlikely. The BBB appears largely intact in the mutants and

the physiological basis is therefore unclear. Further investigation of this, and

continuing screens for new mutants affecting fly responses to cocaine, promise

further insights into the mechanisms by which it acts. In particular, this work has

only scratched the surface regarding the mechanisms of cocaine sensitization, and

there is no doubt room for further progress.

Probably the most widely used psychoactive substance is ethanol – but unlike

cocaine, the molecular and neuronal targets for its psychoactive effects are

not clear. Flies therefore offer a useful system for dissecting these effects

and identifying their molecular mechanisms. Indeed, ethanol evokes a set of

responses in flies that shows many similarities to its effects in humans. After initial

exposure to ethanol vapor, flies first become hyperactive, but then gradually

uncoordinated and sedated (Moore et al. 1998); a further effect is apparently

disinhibited courtship of other males (Lee et al. 2008). On repeated exposures,

these responses can show either tolerance (Scholz et al. 2000) or sensitization

(Scholz et al. 2005; Lee et al. 2008), depending on the response assayed and the

kinetics of exposure.

Mutant screens for flies with altered sensitivity to ethanol have revealed some of

the complexity of the mechanisms, and suggest a role of a number of forms

of synaptic plasticity, in defined neurons. Inhibition of cAMP (cyclic AMP)-

dependent protein kinase (PKA) causes increased sensitivity to ethanol
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(Moore et al. 1998). The precise cells responsible have not yet been identified,

although a relatively small set of cells has been identified in which PKA inhibition

by contrast decreases ethanol sensitivity (Rodan et al. 2002), indicating a variety of

targets for the different components of the behavioral response to ethanol. cAMP

also has an important role in mammalian responses to ethanol; for example,

knockout of the AC1 calcium-sensitive adenylyl cyclase increases sensitivity of

mice to ethanol-induced sedation (Maas et al. 2005), similar to the effects of loss of

the equivalent enzyme in Drosophila rutabaga mutants (Moore et al. 1998). A

further similarity to mammals is that neurons expressing or responding to the NPY

homolog, NPF, also contribute to sensitivity to ethanol, without affecting responses

to other sedative agents (Wen et al. 2005; Chen et al. 2008).

What of the mechanisms of tolerance, one of the processes that contributes to

addiction? Genetic and pharmacological approaches have identified both a rapid

tolerance induced by a single large dose of ethanol, and a longer term tolerance

to prolonged exposure to a low concentration, which is dependent on protein synthesis

(Scholz et al. 2000; Berger et al. 2004). Genetic screens have identifiedmutations that

have helped to dissect the rapid tolerance phase into a component that is dependent on

octopamine signaling (regarded as the fly equivalent of norepinehrine) and another

component regulated by the putative transcription factor Hangover, which is

also required for tolerance to other stress treatment (Scholz et al. 2005). Both of

these mechanisms must regulate proteins that mediate tolerance and a good candidate

for such a protein is the BK-type calcium-activated K+ channel Slowpoke, which

contributes positively to tolerance (Cowmeadow et al. 2005, 2006;Wang et al. 2009a,

b). In human HEK cells BK channel properties depend on ethanol concentration

(Yuan et al. 2008) and also develop tolerance to acute ethanol exposure.

In summary, analysis of Drosophila mutants has started both to reveal the

complexity of the psychoactive effects of ethanol, and to distil some of the mechan-

isms out of this complexity. The recent and continuing availability of more mutants

and ethanol-responsive genes (Scholz et al. 2005; Morozova et al. 2006, 2007, 2009;

Bhandar et al. 2009) should help to define the cellular and circuit mechanisms further.

A surprising theme emerging from some of these screens is that mutations affecting a

number of cytoskeletal or cellular trafficking proteins also affect either sensitivity

or tolerance to ethanol in flies, for example a RhoGAP, Homer, the endoplasmic

reticulum protein Arl6IP and the cell adhesion molecule integrin (Rothenfluh et al.

2006; Urizar et al. 2007; Li et al. 2008; Bhandar et al. 2009). Since some of these are

known to affect synaptic function and plasticity, this is suggestive also that structural

changes in synapses may play a role in the effects of ethanol.

3.5 Social Behaviors

Many neuropsychiatric diseases have profound effects on human social behavior.

Compared to humans, or even to the social insects such as hymenopterans,Drosophila
is less obviously a social animal. Nevertheless, flies do show a variety of social
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behaviors from as apparently simple ones like aggregation (Lefranc et al. 2001;

Tinette et al. 2004), to complex ones like courtship and aggression. Some unex-

pected depths in their social behavior have emerged in recent years. The power of

Drosophila genetics and circuit analysis tools is allowing dissection of the mechan-

isms of these behaviors, and while we still have much to learn, there are a few cases

of striking parallels with human behavior.

Courtship. Flies have sophisticated courtship behaviors based on visual, auditory
and pheromonal cues, all involving high level neuronal control (recently reviewed

by Dickson 2008). These behaviors ensure that males will court only females

of the right species, that only unmated females are receptive to males and that

males learn to avoid repeating unproductive courtship encounters, e.g., with mated

females. In addition to these obvious behaviors, more subtle social behaviors related

to courtship are being uncovered. For example production of courtship pheromones

and the behaviors that they control are sensitive to social context (Kent et al. 2008;

Krupp et al. 2008); and it has recently been discovered that Drosophila females can

copy the mate choice preferences of other females (Mery et al. 2009), an ability

that would evoke amazement even when found in vertebrate species.

The highly species-specific nature of courtship obscures any mechanistic simi-

larities between fly and human sexual behavior. However, genetic manipulations of

the sexual identity of neurons in flies can have profound effects on sexual behavior

(e.g., Clyne and Miesenb€ock 2008; Rideout et al. 2010), illustrating the extent to

which such behaviors are under genetic control – notwithstanding the complexity of

nature versus nurture arguments. The need for sexually dimorphic behavior must be

as evolutionary ancient as sexually dimorphic multicellular animals and the genetic

and circuit analysis tools of Drosophila are arguably turning it into the animal in

which we can best understand the neural control of sexual behavior. Flies therefore

offer at least a perspective that will be informative for neuronal control of human

sexual behavior, even if direct mechanistic similarities are as yet not obvious.

Learning. While initial analysis of associative learning failed to find any group

influences on individual learning, more sophisticated analyses have found a strong

influence of social context on some forms of learning and memory in Drosophila
(Chabaud et al. 2009). A form of long lasting memory, anesthesia-resistant memory

(ARM), can be induced by massed training in an aversive learning olfactory choice

paradigm. Remarkably, retrieval performance of individuals in this paradigm is

enhanced by testing in the presence of other trained individuals; whether the basis

for this is purely behavioral or is pheromonal is unknown.

Aggression. Drosophila is not normally thought of as an aggressive animal, but

the potential of arthropods to show aggressive behavior is obvious in insects such as

ants or wasps and in crustacea such as crabs and lobsters. To apply the genetic and

circuit tools of Drosophila to the study of aggression, attempts have been made to

design scenarios in which aggression can reproducibly be generated in Drosophila.
For example, Drosophila males will fight each other in the presence of an immo-

bilized (headless but living) female (Chen et al. 2002), and females will fight in the

presence of a limited food source (Nilsen et al. 2004). Aggression can be modified
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by experience and hierarchical relationships among flies develop on repeated

encounters (Yurkovic et al. 2006).

Targeted expression, circuit analysis, mutant and pharmacological approaches

have identified some surprising similarities between the neurobiology of fly and

human aggression. Male aggressive behavior is almost completely abolished in the

absence of the neurotransmitter octopamine, considered to be the invertebrate

equivalent of norepinephrine (Hoyer et al. 2008) and a small set of octopaminergic

neurons has been identified that mediates aggression (Zhou et al. 2008). Moreover,

serotonin promotes aggression in both flies and mammals, and NPF (or NPY in

mammals) inhibits aggression. All these similarities suggest that aggressive behavior

is an evolutionarily conserved behavioral repertoire with a conserved neural basis. It

still remains to be seen whether the major regulatory neurons are also evolutionarily

conserved and homologous in both mammals and flies. However, the similarities that

are already established provide a good basis for further work on flies, that can be used

to generate models of the molecular, cellular and circuit mechanisms that control

aggression in mammals including humans.

4 Human Neuropsychiatric Disorders in Drosophila?

It is clear that Drosophila has a wide and sophisticated behavioral repertoire

that has enough in common with other animals including humans, to be a powerful

model system for the molecular and circuit mechanisms of these behaviors, and

for impairments in them. However, the most common human neuropsychiatric

disorders have very complex effects on a range of higher human behaviors.

Can these be modeled in flies?

4.1 Schizophrenia

Schizophrenia is a complex and heterogeneous disorder, the best known symp-

toms of which include hallucinations and delusions, and which may overlap with

other disorders including bipolar disorder. Since it is currently impossible to

conceive how to identify these behavioral phenomena in flies, modeling these

aspects of the disease in flies is not feasible. However, these higher level behavioral

phenomena must to some extent reflect underlying neurobiological processes. Consis-

tent with this, schizophrenia has a strong genetic component and some convincing

susceptibility loci have started to emerge, thus providing an opportunity to use flies

to understand the functions of the affected genes (see also Gondo et al. 2011;

O’Tuathaigh et al. 2011). Causative neurobiological processes are still only vaguely

defined, although emerging themes include impairment of connectivity between the

prefrontal cortex and temporal lobe, and subtle dysfunction of glutamatergic and

dopaminergic synapses (see also O’Tuathaigh et al. 2011). The complexity of the
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disease mechanisms is reflected in the length of time taken to map even a few loci

that are associated with the condition (Stefansson et al. 2008; The International

Schizophrenia Consortium 2008; Walsh et al. 2008), and in the recent identification

of large number of loci that make small contributions to disease susceptibility

(Stefansson et al. 2009; The International Schizophrenia Consortium 2009). How-

ever, now that risk genes are being identified,Drosophila has considerable potential
to illuminate how these genes might underlie the cellular and neurobiological basis

of the condition.

DISC1 and PDE4B. Disappointingly, one of the strongest schizophrenia candi-
date genes, DISC1 (Chubb et al. 2008), has no obvious ortholog in flies. DISC1 is a
large predicted coiled-coil protein that diverges relatively rapidly in evolution,

with likely orthologs in lower chordates showing only barely detectable homology

to human DISC1 (data not shown). Therefore, either DISC1 is specific to the

deuterostome lineage of animals (including humans), or protostomes including

Drosophila might have a DISC1 ortholog, but one that is too divergent to be

identified by sequence homology searches. However, flies do have well studied

homologs of some known DISC1 binding partners, including the cAMP phospho-

diesterase PDE4B, itself also implicated in psychiatric illness (Millar et al. 2005).

The Drosophila PDE4B ortholog, dunce, is a learning and memory mutant

(reviewed by McGuire et al. 2005), and the molecular and circuit mechanisms

of how dunce and related genes contribute to neuronal and behavioral plasticity

are the subject of intense study (see Sect. 3 above on learning and memory). If a

Drosophila DISC1 ortholog emerges in future, then flies will offer a wealth of

neurobiological context in which to study its function.

Dysbindin (DTNBP1). Drosophila has been highly informative on functions

of dysbindin that may be relevant to a causative role in schizophrenia. Dysbindin,

encoded by the DTNBP1 locus, is a binding partner of dystrobrevin and a compo-

nent of the BLOC-1 complex that has an emerging role in trafficking in the

endosomal–lysosomal pathway (reviewed by Ryder and Faundez 2009). It has

been implicated in schizophrenia in a number of linkage and association studies

and the condition is associated with lowered levels of dysbindin expression (Straub

et al. 2002; Ross et al. 2006). Strikingly, loss-of-function mutations in Drosophila
dysbindin were recovered in a screen for mutations affecting presynaptic homeo-

static upregulation of glutamatergic release at the NMJ, in response to acute

blockade of postsynaptic receptors (Dickman and Davis 2009). dysbindinmutations

showed only a modest effect on baseline neurotransmission, but severe impairment

of this homeostatic regulation, which is likely to be a key process in regulating the

strength of synaptic transmission to an appropriate level. This finding provides a

plausible model of how dysbindin mutations might cause neurobiological defects

that can lead to the behavioral symptoms of schizophrenia and suggests that defects

in homeostatic regulation of glutamatergic transmission rather than in basal trans-

mission mechanisms are a causative factor (among others) in the condition. The fly

NMJ is a highly amenable system to study synaptic regulation, including processes

known to involve the endosomal–lysosomal system (e.g., Sweeney and Davis 2002;

Wucherpfennig et al. 2003; Wang et al. 2007) and offers many possibilities to test
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whether other schizophrenia susceptibility genes affect synaptic homeostasis, or

other aspects of synaptic regulation.

22q11 deletion. Deletions in the 22q11 region are associated with increased

susceptibility to schizophrenia (Karayiorgou et al. 1995). The relative contributions

of genes in this region remain to be determined, but strong candidates include

COMT1, which encodes the dopamine-metabolizing enzyme catechol-O-methyl-

transferase (Gothelf et al. 2005) and proline dehydrogenase, which encodes a

mitochondrial enzyme that mediates one potential pathway for glutamate biosyn-

thesis (Gogos et al. 1999). Despite having a functional dopaminergic system,

Drosophila has no ortholog of COMT1, since sequence homology searches using

human COMT1 detect more similar homologs in organisms as distant as bacteria

and fungi than in flies (data not shown). The Drosophila homolog of proline

dehydrogenase is sluggish-A; mutations in this gene do not affect basal glutama-

tergic synaptic transmission, although they cause adult locomotor defects and mild

neurodegeneration (Shayan et al. 2000; Fergestad et al. 2008), which are suggestive

of some subtle neuronal dysfunction. Sluggish-A mutants may therefore deserve

testing for synaptic phenotypes similar to those of dysbindin mutants.

Neuregulin (NRG1). Among the other major susceptibility loci (Ross et al. 2006),

neuregulin (encoded by NRG1) also has a Drosophila homolog, the EGF-like

protein known as Vein. This has been implicated in multiple developmental

processes (www.flybase.org) but so far has not been linked to synaptic phenotypes,

although this deserves to be investigated further in light of the above findings on

Drosophila dysbindin function.

DAOA encodes a short 153 amino-acid residue protein that is evolving rapidly,

with no orthologs yet detected outside primates (Chumakov et al. 2002).

Other regions are associated recurrently as copy number variants with schizo-

phrenia (Stefansson et al. 2008; The International Schizophrenia Consortium 2008;

Walsh et al. 2008). One of the smallest of these, 15q11.2, contains only four

candidate genes, three of which have Drosophila orthologs that are required for

normal synaptic development and function. First, mutations in the Drosophila
ortholog of CYFIP1 result in aberrant axon pathfinding and synaptogenesis, appar-

ently by affecting its ability to antagonize the action of actin cytoskeletal regulator

Rac1 and the Fragile X protein ortholog FMR1 (Schenk et al. 2003). Second, the

single Drosophila ortholog of NIPA1 (causative for a dominant form of hereditary

spastic paraplegia) and NIPA2 regulates synaptic organization by inhibiting BMP

receptor endocytic trafficking and signaling (Wang et al. 2007); interestingly,

schizophrenic symptoms are observed in some subgroups of hereditary spastic

paraplegia patients, but this has not yet been noted for patients carrying NIPA1
mutations (McMonagle et al. 2006).

In conclusion, the usefulness of Drosophila as a model to gain mechanistic

insights into schizophrenia is likely to grow. Expecting flies to be a simple

model for schizophrenia is too naı̈ve. Nevertheless, as more susceptibility genes

are identified there is a growing need to understand their neurobiological role and

Drosophila offers a wealth of possibilities for this. As the neurobiological basis

underlying schizophrenia and related conditions emerges, Drosophila offers the
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opportunity to study the relevant neurobiological phenomena in a model with

powerful genetic and cell biological tools.

4.2 Other Developmental Disorders: Bipolar Disorder, Autism

As in the case of schizophrenia, to expect mutant or transgenic flies that can be

considered as simple models of these genetically and phenotypically complex

conditions is overly naı̈ve. Nevertheless, there is sometimes a wealth of understand-

ing from flies on the neurobiological roles of the emerging collection of risk alleles.

Bipolar disorder shows an overlapping spectrum of phenotypes with schizophre-

nia, and although it has a strong genetic component, the individual loci are as yet

even less well defined than for schizophrenia. However, the two conditions share

some susceptibility genes (The International Schizophrenia Consortium 2009;

Craddock and Sklar 2009), meaning that flies should yield comparable insights

into the mechanisms of bipolar disorder as for schizophrenia.

Autism and autism spectrum disorders also present similar difficulties in diagnosis

and mechanistic study to schizophrenia and bipolar disorder, presenting with a

range of features including impaired social awareness and communication. Again

there is a strong genetic component, but no compelling single mechanism (Abrahams

and Geschwind 2008). A small proportion of autism cases can be ascribed to a

heterogeneous collection of specific loci, and genome-wide screens are now identi-

fying additional susceptibility regions as single-nucleotide polymorphisms and copy-

number variants (Glessner et al. 2009; Wang et al. 2009a; Weiss et al. 2009).

Mechanisms for the human disorders are still elusive, but since many of the

susceptibility loci encode synaptic proteins, this points at as yet undefined defects in

synaptogenesis or synaptic organization (Abrahams and Geschwind 2008; Glessner

et al. 2009; Wang et al. 2009a; Weiss et al. 2009). Some loci encode synaptic cell

surface molecules such as cadherins, neurexins and neuroligins, the L-type calcium

channel CACNA1C, the neurexin-like protein Caspr2 (encoded by CNTNAP2)
known for its role in organizing protein localization at nodes of Ranvier, and

semaphorin 5A (SEMA5A), best known for its role in axonal guidance, the postsyn-
aptic density protein Shank3, and the Fragile X protein FMR1. Ube3A protein was

recently shown to regulate postsynaptic receptor trafficking (Greer et al. 2010), and

Tsc1 and Tsc2 regulate dendritic spine size and synapse function (Tavaziole et al.

2005). MECP2, responsible for a syndromic form of autism, Rett Syndrome,

encodes a methylcytosine-binding protein with a predicted role in regulation

of chromatin conformation and gene expression. Interestingly, MECP2 expression

in glia influences the morphology and function of adjacent neuronal dendrites

(Ballas et al. 2009).

Despite the growing characterization of Drosophila social behavior it would be

highly speculative to model the behavioral aspects of autism spectrum disorders in

flies. However, the main value of flies lies in their usefulness as a tool to understand
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the functions of susceptibility genes and studies with fly mutants point to functions

for many of these genes in synapse development and differentiation:

– Neurexin-1 is required to establish normal synaptic architecture, including

apposition of the presynaptic active zone with the postsynaptic receptor field;

loss-of-function mutants show defects in this architecture, and moderate reduc-

tions in synaptic strength (Li et al. 2008).

– Neurexin-IV (Caspr2) has a role in neuron–glia interactions, e.g., in glial migra-

tion, ensheathment, and subdivision of groups of commisural axons (Stork et al.

2009; Wheeler et al. 2009).

– Much of what we know about the role of FMR1 in regulating the synaptic

cytoskeleton and in translational control comes from flies (Zarnescu et al. 2005).

Work in Drosophila continues to reveal new roles of FMR1, e.g., in regulation

of sleep and rhythms (Bushey et al. 2009; Gatto and Broadie 2009). The

availability of whole-organism phenotypes for FMR1 mutants have also

recently allowed a screen for small molecules that rescue FMR1 loss-of-function
phenotypes (Chang et al. 2008) – an approach with future potential for other

genes implicated in neuropsychiatric disorders.

– Levels of semaphorins specify positional targeting of axons during development

(e.g., Zlatic et al. 2009).

4.3 Mood, Stress, and Attention

Mood disorders such as depression and anxiety also have complex etiologies, with

both environmental causes such as stress, and genetic contributions (see Krishnan

and Nestler 2011). They involve systems including the serotonergic system and a

number of neuropeptides (reviewed by Leonardo and Hen 2006). Comparable

behavioral conditions are hard to identify in Drosophila, although there may be

some parallels. For example, NPY helps to counteract the behavioral responses of

stress in humans (Eaton et al. 2007); recently it has been shown that the homolo-

gous NPF system in Drosophila inhibits avoidance responses to external noxious

stimuli, at least in part by negatively regulating neuronal excitation that results from

activation of TRP channels by such stimuli (Xu et al. 2010). As discussed above

(Sect. 2.2) Drosophila also has a serotonergic system, although the functions of

most of its serotonergic neurons are unknown, and at this point in time it can only be

speculated on whether they mediate any higher level mood states. Given the

emerging realization of the sophistication of higher order fly behaviors, it would

not be surprising if such states existed, although detecting them will require equally

sophisticated behavioral experimental approaches. Regardless of progress on this

front, association studies will doubtless identify novel genetic influences on human

mood disorders (e.g., McMahon et al. 2010) and flies will be invaluable in analyzing

their underlying neurobiological function, as they have for other disorders.
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5 Conclusions

In spite of their small size and apparent simplicity, Drosophila show a range of

sophisticated behaviors that have much in common with what are regarded as

“simple” human behaviors that can be impaired in neuropsychiatric disorders,

including behaviors as fundamental as Pavlovian learning and sleep. Here, the

powerful genetic and circuit analysis tools of Drosophila allow investigation of

the mechanisms of these behaviors and of how they can be impaired. Higher order

human behaviors, that are impaired in some of the most devastating neuropsychia-

tric disorders, cannot be modeled so simplistically in flies, but even here there is

potentially much to learn from them. Flies may display some of the underlying

simpler component behaviors (such as ethanol tolerance), or may provide mutant

phenotypes in homologs of susceptibility genes (such as dysbindin) that can provide

important clues on underlying neurobiological mechanisms of the human condition.

Future use of Drosophila in the field is likely to increase, first from increasing

understanding of higher order fly behaviors, and secondly from the use of flies to

understand the functions of the growing number of susceptibility genes emerging

from genome-wide association studies.
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Abstract Huntington’s disease (HD) is a devastating neurodegenerative disorder

that currently has no cure. In order to develop effective treatment, an understanding

of HD pathogenesis and the evaluation of therapeutic efficacy of novel medications

with the aid of animal models are critical steps. Transgenic animals sharing

similar genetic defects that lead to HD have provided important discoveries in

HDmechanisms that cell models are not able to replicate, which include psychiatric

impairment, cognitive behavioral impact, and motor functions. Although transgenic

HD rodent models have been widely used in HD research, it is clear that an animal

model with comparable physiology to man, similar genetic defects that lead to HD,

and the ability to develop similar cognitive and behavioral impairments is critical

for explaining HD pathogenesis and the development of cures. Compared to HD

rodents, HD transgenic nonhuman primates have not only developed comparable
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neuropathology but also present HD clinical features such as rigidity, seizure,

dystonia, bradykinesia, and chorea that no other animal model has been able to

replicate. Distinctive degenerating neurons and the accumulation of neuropil aggre-

gates observed in HD monkey brain strongly support the hypothesis that the unique

neuropathogenic events seen in HD monkey brain recapitulate HD in man. The

latest development of transgenic HD primates has opened a new era of animal

modeling that better represents human genetic disorders such as HD, which will

accelerate the development of diagnostic tools and identifying novel biomarkers

through longitudinal studies including gene expression and metabolite profiling,

and noninvasive imaging. Furthermore, novel treatments with predictable efficacy

in human patients can be developed using HD monkeys because of comparable

neuropathology and clinical features.

Keywords Animal models � Huntington’s disease � Nonhuman primates �
Transgenesis

1 Introduction to Huntington’s Disease

Huntington’s disease (HD) is an inherited autosomal dominant disease which causes

neurodegeneration in humans and was first described by the American physician,

George Huntington in 1872. HD affects the central nervous system (CNS), resulting

in distinct clinical symptoms related to neuronal and brain dysfunction (Li and Li

2006). The prevalence of HD in the Caucasian population is approximately 7–10

patients per 100,000 population; whereas prevalence decreases in other ethnic

groups, such as the African and Asian population (Walker 2007). The progression

of HD is evident by the degeneration of gray and white matter in the brain, resulting

in the loss of neurons (DiFiglia et al. 1997). Classical HD symptoms include

personality changes, emotional disturbances, mental deterioration, involuntary move-

ments, progressive cognitive dysfunction, chorea, dystonia, weight loss, and motor

deficits (Li and Li 2006; Walker 2007). The average onset for HD is 37–38 years and

median life span is 16.2 years after disease onset. In the absence of a cure for HD,

patient care places a major burden on the sufferer, their family, and medical services.

The Huntingtin (HTT) gene was first cloned in 1993 and is located at the 4p16.3

region of the short arm of chromosome 4 (The Huntington’s Disease Collaborative

Research Group 1993; Gusella et al. 1983). HTT is expressed ubiquitously in the

body with the highest levels in the brain and testis (DiFiglia et al. 1995; Li and Li

2004, 2006; Sharp et al. 1995; Trottier et al. 1995). The human HTT gene (also

called IT15) has 67 exons spanning more than 200 kb. Wild-type HTT protein is

approximately 350-kDa with a polymorphic stretch of 6–35 glutamine residues in

the N-terminal domain of exon 1 (The Huntington’s Disease Collaborative

Research Group 1993). HD is the result of an expansion of CAG trinucleotide

repeats (polyglutamine; polyQ; >37 residues) in the HTT gene (Li and Li 2006;

Walker 2007). The number of CAG repeats is highly correlated with the severity of
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the disease. HD patients with> 60 CAG repeats develop symptoms at ~15–20 years

of age. Such patients are categorized as juvenile HD patients. Individuals with CAG

repeats in the range of 37–60 develop HD later in life, and are categorized as adult

HD patients (Estrada Sanchez et al. 2008).

Mutant HTT gene results in a toxic gain-of-function by eliciting cytotoxicity in

affected cells, primarily in the brain. Mutant HTT causes neurodegeneration,

particularly in the striatal region and deeper layers of the cortex (Li and Li 2006;

Walker 2007). The key feature of the early stages of HD is the degeneration of

striatal medium spiny neurons (MSNs); however, cortical degeneration may also be

observed prior to the development of clinical features (Rosas et al. 2005; Vonsattel

and DiFiglia 1998). Other brain regions, such as the hippocampus, the hypothala-

mus, and the cerebellum are also affected in HD patients (Vonsattel et al. 1985).

Another key determining factor of HD is the size of the HTT fragment, which is

highly correlated with the severity and pathogenesis of HD in patients and animal

models. Smaller HTT fragments result in more severe phenotypes and earlier onset of

HD in transgenic HD mouse models (DiFiglia et al. 1997; Graham et al. 2006;

Gutekunst et al. 1999; Li and Li 2006; Schilling et al. 1999). In HD patients and

transgenic mouse studies, the N-terminal HTT fragments were misfolded, forming

aggregates and inclusions in the brain (DiFiglia et al. 1997; Gutekunst et al. 1999).

These studies suggest the proteolysis of full-length HTT to smaller fragments is

important in HD pathogenesis. The HTT gene contains numerous unique protease

cleavage sites within the first 550 amino acids (Graham et al. 2006; Li and Li 2006;

Wellington et al. 2002). These cleavage sites are specific for capsase-3, caspase-6,

calpain, and several unknown aspartic proteases (Gafni and Ellerby 2002; Kim et al.

2001, 2006; Li and Li 2006; Lunkes et al. 2002; Wellington et al. 2002). When the

caspase-6 site was blocked in HD transgenic mice, neuronal function was protected

and striatal neurodegeneration was ameliorated (Graham et al. 2006). This suggests

proteolysis of full-lengthHTTcontributes to neurodegeneration andHDpathogenesis.

Lysosomal proteases, such as cathepsins D, B, and L, also regulate the processing of

mutant HTT and the levels of cleavage products (Kim et al. 2006), suggesting their

roles in the generation ofN-terminalHTT fragments and the clearance ofmutantHTT.

2 Cellular and Neuropathology of HD

HTT plays an important role in intracellular trafficking and interacts with proteins

that are related to transcription, intracellular signaling, trafficking, endocytosis, and

metabolism (Cowan and Raymond 2006; Li and Li 2004). Based on previous

studies, wild-type HTT participates in protein trafficking between the Golgi and

the extracellular space (Strehlow et al. 2007). In addition, mutant HTT can seques-

ter dynactin p150 and kinesin to influence axonal transport (Gunawardena et al.

2003; Szebenyi et al. 2003) and affects vesicle transport, such as the transport of

brain-derived neurotrophic factor (BDNF) along microtubules (Gauthier et al.

2004). The impairment of cellular transport caused by mutant HTT leads to
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neuronal toxicity and the loss of neurotrophic support, which results in neuronal

cell death (Gauthier et al. 2004). Therefore, mutant HTT may lead to HD through

impairment of cellular transport.

Other important factors affecting the progression of HD at the cellular level are the

proteins that interact with mutant HTT. In the past 15 years, a number of cytoplasmic

proteins, such as HTT-associated protein 1 (HAP1) and HTT-interacting protein 1

(HIP1), have been identified that interact with HTT based on a yeast two-hybrid

screen and in vitro binding assays (Borrell-Pages et al. 2006; Li and Li 2006; Li et al.
1995). These proteins have been shown to be involved in the HD pathogenesis. For

example, the binding of HAP1 with HTT is enhanced by an expansion of polyQ

repeats, which regulates the intracellular trafficking of mutant HTT (Li et al. 1995;

Rong et al. 2006, 2007). HIP1, p150, and 14-3-3 are all involved in the cascade of

protein trafficking (Gauthier et al. 2004; Rong et al. 2007), similar to HTT itself.

Additionally, HIP1 is involved in the functions of neuronal cytoskeleton and endo-

cytosis, and also regulates the normal function of HTT with weak binding affinity

(Kalchman et al. 1997; Li and Li 2006). Other cytoplasmic proteins, such as

Huntington associated protein of 40 kDa (HAP40) and Rab protein 5 (Rab5), are

involved in modulating the aggregation and toxicity of mutant HTT through macro-

autophagy (Pal et al. 2006, 2008; Ravikumar et al. 2008). Furthermore, nuclear

factors, such as the coactivators, cAMP response element-binding protein (CREB)-

binding protein (CREBBP) and specificity protein 1 (Sp1), and transcription factors,

such as TATA-binding protein (TBP) and TBP-associated factors 130 (TAF 130),

also play a critical role in HD (Li and Li 2006; Mantamadiotis et al. 2002; Sugars and

Rubinsztein 2003). These studies suggest various cytoplasmic and nuclear proteins

play a regulatory role in HD pathogenesis.

The hallmark neuropathological feature of HD is neuronal loss in the caudate and

putamen, especially targeting MSNs (Vonsattel et al. 1985). In the pathological

diagnosis of HD, two signature characteristics are neuropil aggregates and intra-

nuclear inclusions in neurons (Li and Li 2006; Maat-Schieman et al. 2007; Walker

2007). In the postmortem brains of HD patients and transgenic mice, HTT aggregates

are primarily observed in the nucleus, and mutant HTT accumulates in striatal

neurons as HD progresses (Li and Li 2006; Lin et al. 2001). Based on a structural

biology study, mutant HTT is involved in the aggregation process, forming dimers,

trimers, and oligomers inside the cells (Walker 2007). In addition, HTT inclusions are

the result of protein misfolding which is caused by the mutant polyQ expansion (Li

and Li 2006). The expression pattern of HTT also relates to the progression of HD,

especially in neurons. In healthy individuals, HTT protein is primarily located in the

cytoplasm; whereas mutant HTT protein forms aggregates in the nucleus (Li and Li

2006). In early-stage HD, patients’ brains have more neuropil aggregates than nuclear

inclusions (DiFiglia et al. 1997; Gutekunst et al. 1999); in late-stage HD, more

nuclear inclusions develop. This transition of HTT expression and aggregation may

be related to the development of HD and neural degeneration in the brain. Further-

more, the truncated N-terminal proteins also misfold, aggregate and form inclusions

in HD patients’ brains (DiFiglia et al. 1997; Gutekunst et al. 1999), which results in

the accumulation of toxic mutant HTT leading to neurodegeneration and cell death.
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3 Aberrant Gene Regulation in HD

Although the relationship between polyQ repeats, N-terminal size, and the severity

of HD has been determined in different modeling systems, the effect of mutant HTT

on gene regulation remains unclear. Normally, the HTT complex is involved in

cellular gene regulation; therefore, mutant HTT is expected to influence gene

expression. Based on previous reports, mutant HTT interacts with transcription

factors and coactivators at different binding sites, and several transcription factors

also contain the polyQ-rich domains, which may interact with other polyQ protein

residues (Li and Li 2006; Ryu et al. 2006). For example, mutant HTT represses the

transcription of the p53-regulated promoters, p21 (WAF1/CIP1) and MDR-1 (Bae

et al. 2005; Steffan et al. 2000) and also interacts with transcription factors carrying

polyQ or proline-rich domains, such as CREBBP, TBP, and TAF130 (Li and Li

2006; Perez et al. 1998; Shimohata et al. 2000; Steffan et al. 2001). The CAG

repeats in HTT also change the normal nuclear location of CREBBP to the nuclear

aggregates of HD (Nucifora et al. 2001; Steffan et al. 2000). Transcription activator,

Sp1, and coactivator, TAFII130, are also suppressed by mutant HTT, resulting in

transcriptional inhibition of the dopamine D2 receptor gene, which causes cellular

toxicity (Chen-Plotkin et al. 2006; Dunah et al. 2002). By sequestering transcription

factors, such as Sp1, mutant HTT reduces the opportunities for binding to the

promoter region, thus down-regulating the expression of target genes (Chen-Plotkin

et al. 2006). Furthermore, TBP was found in the HTT aggregates and interacted

with polyQ-containing proteins. With the abnormal interaction of these proteins

that are essential for the survival of target neurons, mutant HTT aggregates lead to

neuronal death in HD (Huang et al. 1998). Since the aberrant expression of mutant

HTT protein was also detected ubiquitously and affected gene expression patterns

in peripheral tissues, such as the muscle and blood (Borovecki et al. 2005; Luthi-

Carter et al. 2002), the gene regulation pathway may also cause dysfunction in

peripheral tissues. For example, HTT aggregates affected liver function and

resulted in the dysregulation of the ubiquitin–proteasome system (Chiang et al.

2009), CCAAT/enhancer binding protein (C/EBPa) and peroxisome proliferator-

activated receptor-g (PPARg), which led to the impairment of urea cycle (Chiang

et al. 2007).

HTT interacts with several essential transcription repressors to regulate gene

expression. REST (Repressor element 1 silencing transcription factor, also known

as NRSF, neuron-restrictive silencing factor) is normally expressed in the cyto-

plasm of neurons; however, in HD, REST is sequestered by mutant HTT and

accumulates in the nucleus of neurons. These changes repress the expression

BDNF, a REST target gene and decrease the survival of striatal neurons by altering

the cooperation of chromatin-modifying proteins (Ooi and Wood 2007; Zuccato

et al. 2003). REST potentially interacts with more than 1,000 sites in the human or

mouse genome, and some sites are putative targets related to neuronal function and

differentiation (Bruce et al. 2004; Johnson et al. 2006; Zuccato et al. 2007), thus the

regulation of REST may contribute to the development of HD. These studies
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suggest that mutant HTT may have a compound effect on regulating gene expres-

sion via transcription factors and cofactors.

Recently, posttranscriptional regulation of noncoding RNAs in metazoan, mice,

and humans, especially in the area of microRNA (miRNA), has been found. Several

miRNAs have been identified which are involved in neuronal functions and devel-

opment (Lim et al. 2005; Vo et al. 2005; Yu et al. 2008). In several neuronal

diseases, such as Fragile X syndrome (Jin et al. 2004; Li et al. 2008; Qurashi et al.

2007), Parkinson’s and Alzheimer’s disease (Kim et al. 2007; Lukiw 2007), miR-

NAs play a critical role in pathogenesis. Furthermore, mutant HTT has been proven

to alter the association status with argonaute 2 protein and P bodies (Savas et al.

2008), suggesting mutant HTT’s role in posttranscriptional processes. Therefore, it

is tempting to speculate that miRNA also plays a role in neuropathogenesis of HD.

Several miRNAs are expressed during brain development; for example, miR-

124 is preferentially expressed in the brain (Lim et al. 2005; Yu et al. 2008) and

miR-132 is enriched in neurons (Vo et al. 2005). These miRNAs are involved in the

control of the neuronal transcriptome and regulation of neuronal morphogenesis

and dendrite development (Lim et al. 2005; Vo et al. 2005; Yu et al. 2008),

suggesting a regulatory role of miRNAs in the brain. Another polyglutamine

disease, spinocerebellar ataxia type 3 (SCA3) (Gondo et al. 2011) is also modulated

by the miRNA, bantam, which acts downstream of SCA3 to prevent degeneration

(Black et al. 2002). Mutations of Dicer in SCA3 enhance polyQ toxicity in both

Drosophila and HeLa cells (Black et al. 2002). In a similar study, the depletion of

Dicer led to dysfunction in miRNA processing and resulted in the death of Purkinje

cells (Schaefer et al. 2007). This evidence implies a neuroprotective role of

miRNAs in neural diseases (Schaefer et al. 2007) and gives insight into the

miRNA pathway in HD.

Due to the interaction between HTT and the transcriptional repressor, REST, HD

may be regulated by miRNAs while REST regulates the expression of several

neuronal miRNAs (Conaco et al. 2006). REST suppresses the expression of miR-

124a in nonneuronal cells and neural progenitors, leading to the existence of

nonneuronal transcripts (Conaco et al. 2006). In the brain tissue of HD mice and

human patients, upregulation of REST enhanced the repression of neuronal-specific

miRNA, mir-132, leading to higher levels of p250GAP mRNA (Johnson et al.

2008). It is possible that other miRNAs may also be involved in the pathogenesis of

HD at the posttranscriptional level.

Epigenetic modification also contributes to HD pathogenesis by altering nucleo-

some dynamics, chromatin remodeling and subsequent transcriptional dysregula-

tion. Histone modification is one epigenetic change that is important in HD. Several

studies have shown aberrant histone modification patterns in HD patients and

animal models. For example, the extent of acetylation and deacetylation of histones

differs between HD and wild-type in cell, fly, and mouse models based on the

expression level of histone acetyltransferase (Giorgini et al. 2008; Sadri-Vakili

et al. 2007; Steffan et al. 2001). In addition, altered histone methylation and histone

methyltransferase are important for transcription-induced neuronal death in HD

(Ryu et al. 2006). Recently, treatments targeting HD epigenetic modification have
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been developed, including histone H3 (K9) methyltransferase and histone deacety-

lase inhibitors (Dompierre et al. 2007; Ryu et al. 2006). These studies support a

potential role of mutant HTT in global gene dysregulation at an epigenetic level

(McCampbell et al. 2001; Ryu et al. 2006; Steffan et al. 2001).

The development of HD may be dependent on the effect of mutant HTT on gene

regulation; therefore, studies of gene regulation are important in fully understand-

ing HD. The genome-wide DNA microarray analysis of HD is a powerful tool to

monitor thousands of gene expression profiles in relation to their pathological

status. As a result, several genomic profiling studies using microarray technologies

have demonstrated the effect of mutant HTT overexpression on the gene expression

profile in different HD mouse models and patients (Borovecki et al. 2005; Chan

et al. 2002; Crocker et al. 2006; Luthi-Carter et al. 2002). There are two categories

of expression changes in HD microarray studies: direct responses to mutant HTT

and indirect/secondary compensatory effects to mutant HTT. Therefore, it is a

challenge to identify the most important transcripts directly related to HD. Because

cellular and molecular alterations in neurons or other somatic cells must precede

clinical symptoms such as motor dysfunction, identifying a set of genes that are

specifically altered at different stages of HD could be useful in early diagnosis and

determining the extent of HD progression. Furthermore, clarifying the transcrip-

tional changes throughout the course of HD will provide important information for

understanding the mechanism of neurodegeneration and the development of HD.

4 Rodent Models of HD and Limitations

Transgenic technology has led biomedical research into a new era for animal

modeling (Gondo et al. 2011), which has accelerated the understanding of gene

function and disease development. In the HD field, several transgenic organisms

have been used as HD models for investigating mechanisms of disease progression.

These include yeasts (Giorgini et al. 2008), flies (Marsh et al. 2003; Williams et al.

2008), zebrafish (Diekmann et al. 2009; Williams et al. 2008), mice (Schilling et al.

1999; Wang et al. 2008), rats (Bugos et al. 2009; von Horsten et al. 2003), and

primates (Brouillet et al. 1995; Palfi et al. 1996, 2007; Yang et al. 2008). Yeasts,

flies, and zebrafish are important model systems that allow easy and simple

genomic manipulation. Additional advantages include their smaller size and easy

maintenance. While novel discoveries of HD mechanism have been achieved in

these model systems, genome composition and physiological functions remain the

limiting factors that distinguish them from higher mammals.

Transgenic mice expressing mutant HTT controlled by different promoters,

including a HTT promoter and a neuron-specific promoter (e.g., prion), show

similar neuropathology and motor impairment compared to HD patients. One of

the most commonly used transgenic mice, R6/2, expresses exon 1 of HTT with

115–156 CAG repeats under the control of human HTT promoter (Davies et al.

1997; Mangiarini et al. 1996). These mice develop a progressive neurological
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phenotype including motor and cognitive deficits (Carter et al. 1999). A dramatic loss

of MSN in the striatum and the formation of intranuclear inclusions in neurons are

similar to those observed in HD patients (Carter et al. 1999; Li et al. 2003; Li and Li

2006; Lione et al. 1999). R6/2 mice also lose weight at approximately 9 weeks old,

suggesting metabolic dysfunction and abnormal regulation of weight-regulating

factors (van der Burg et al. 2008). Furthermore, pre- and post-symptomatic R6/2

mice reveal alterations in corticostriatal synaptic transmission (Levine et al. 2004)

and abnormalities in dopaminergic cell function, which lead to progressive motor and

cognitive symptoms (Cha et al. 1998; Johnson et al. 2006; Kung et al. 2007). Due to

the similarity of R6/2 mice and HD patients in neuropathological alterations and

clinical characteristics, R6/2 mice are broadly used in the investigation of HD

pathogenesis, which include study of the ubiquitin/proteasome system (Bennett

et al. 2007; Bett et al. 2009; Chiang et al. 2009; Maynard et al. 2009), pathological

deficits (Phan et al. 2009; Rossi et al. 2006; Sawiak et al. 2009), mitochondria

functions (Acevedo-Torres et al. 2009; Bogdanov et al. 2001; Ferrante et al. 2004;

Yang et al. 2009), and the development of potential biomarkers (Chopra et al. 2007;

Strand et al. 2005; Tsang et al. 2006). Furthermore, the R6/2 mice are one of the most

broadly used HD mouse models for the development of novel treatments, such as

sodium butyrate chemotherapy1, mithramycin2, V(L)12.3, Happ13, histone deace-

tylase inhibitors4, and Coenzyme Q(10)5.

Another widely used transgenic HD mouse, N171-82Q, expresses the first 171

amino acids of HTT with 82 CAG repeats under the control of neuronal specific

prion promoter (Schilling et al. 1999). N171-82Q mice display similar neurological

symptoms to R6/2 mice in a similar time frame. The HTT N-terminal fragments are

prone to form intranuclear inclusions and neuropil aggregates (Schilling et al. 1999;

Wang et al. 2008). These mice also develop behavioral abnormalities, including

loss of coordination, tremors, hypokinesia, and abnormal gait (Schilling et al.

1999). Studies on N171-82Q mice further support the neurotoxicity of N-terminal

fragments of HTT with expanded CAG repeat. Due to the well-defined character-

istics of N171-82Q mice, they have been broadly used in the investigation of

neuroprotective effects (Gardian et al. 2005; Vamos et al. 2009), chaperone func-

tion (Orr et al. 2008), epigenetic effect (Zadori et al. 2009) and to identify

therapeutic targets and biomarkers of HD (Ramaswamy et al. 2009; Zadori et al.

2009). However, due to the aggressive development of HD at young age and their

short life span (<6 months), R6/2 and N171-82Q, are difficult for maintain for long-

term study.

To prevent the impact of position effect and retain endogenous regulation

elements, yeast artificial chromosome (YAC) HD mice were generated. YAC HD

mice carry full-length HTT with 46 or 72 CAG repeats under the regulation of the

human HTT promoter. Studies using YAC HD mice revealed the cleavage of HTT

leading to neuronal cytoplasmic toxicity followed by nuclear translocation of the

N-terminal fragments of HTT (Hodgson et al. 1999; Van Raamsdonk et al. 2007a,

b). Mice with expanded CAG repeats show motor and cognitive impairment,

striatal degeneration (Hodgson et al. 1999; Van Raamsdonk et al. 2005, 2007a)

and exhibit higher sensitivity to NMDA-induced apoptosis in MSNs cultured from
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postnatal pups (Fernandes et al. 2007; Hodgson et al. 1999; Shehadeh et al. 2006;

Slow et al. 2003). Studies on YAC HDmice also suggested that HTT aggregates are

not necessary for neurodegeneration, while proteolytic cleavage of HTT remains

important in HD pathogenesis (Hodgson et al. 1999; Li and Li 2006).

In addition to overexpression of mutant HTT, gene targeted HD mice were also

generated. HTT is an essential protein responsible for intracellular trafficking and

transcription. Knock-out mice were embryonically lethal, suggesting the vital role

of HTT in early embryo development (Dragatsis et al. 1998). While knock-out mice

are lethal, HTT knock-in mice represent a precise genetic replica with mutant HTT
under the control of normal regulatory elements. HTT knock-in mice display

behavioral phenotypes at approximately 70 weeks, including motor deficit and

gait abnormality (Heng et al. 2007; Lin et al. 2001). Neuropathological character-

istics of a HTT knock-in mouse include the development of reactive gliosis and the

formation of neuronal intranuclear inclusions, predominantly in the striatum (Heng

et al. 2007; Lin et al. 2001; Woodman et al. 2007). Widespread aggregates in the

brain, dysregulated gene expression in the striatum and cerebellum and decreased

expression level of specific chaperones are similar to R6/2 mice (Woodman et al.

2007). The overall neuropathology found in HTT knock-in mice is similar to early

stage in HD patients (Lin et al. 2001).

In addition to transgenic HD mice, transgenic HD rats have also been developed

because their larger brain size is better suited to noninvasive imaging and more

sophisticated and versatile behavioral tests are available. Larger brains are also

advantageous for cell transplantation, cerebrospinal fluid collection, intravenous

cannulation and microsurgery that are relatively limited in mice. Additionally, rat,

not mouse, displays unique genomic characteristics with specific genes related to

human pheromones, immunity, chemosensation, detoxification, and proteolysis

(Gibbs et al. 2004), which may have profound impact on HD pathogenesis. Most

importantly, most of the human disease related genes have orthologs in the rat.

A rat model of HD was first described by Schwarcz et al. (1977). Kainic acid was

stereotaxically injected into rat striatum and resulted in neuronal degeneration

similar to HD (Schwarcz et al. 1977). In fact, potential therapeutic agents for

HD were first developed in the late 1970s using the kainic acid-induced model

(Beaumont et al. 1979; Borison and Diamond 1979; Coyle 1979). Additionally, a

similar focal injection approach using quinolinic acid instead of kainic acid has also

resulted in motor deficit and pyruvate-mediated neuroprotection in rats (Block et al.

1993; McBride et al. 2003; Ryu et al. 2004). Other chemicals, such as malonate, or

viruses expressing mutantHTT have also been introduced into the striatum of rats to

induce lesion that led to HD-like phenotypes (McBride et al. 2003; Meldrum et al.

2000). In addition to the focal injection rat model, the first transgenic HD rat to

carry a truncated HTT cDNA fragment with 51 CAG repeats under control of the

native rat HTT promoter was reported in 2003 (von Horsten et al. 2003). Transgenic

HD rats exhibited similar neurological phenotypes including reduced anxiety,

cognitive impairments, and motor dysfunction. Histopathological analysis revealed

neuronal nuclear inclusions and neuropil aggregates in different regions of the brain,

which was similar to HD patients and transgenic HD mice. Because of their larger
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body size, it is possible to perform magnetic resonance imaging (MRI) and positron

emission tomography (PET) in rats. MRI studies revealed enlarged lateral ventri-

cles and focal lesions in the striatum, while PET scans suggested metabolic

abnormalities in transgenic HD rat (von Horsten et al. 2003).

Besides neuropathology and noninvasive imaging studies in transgenic HD rat,

mitochondria dysfunction was shown to play a critical role in HD pathogenesis. Ca2+-

dependent impairments of mitochondrial oxidative phosphorylation was revealed

as one of the primary causes of HD in transgenic HD rat (Gellerich et al. 2008).

Potential therapy was also developed using the transgenic rat model. Bilateral

globus pallidus deep brain stimulation in HD rat resulted in improvement in

cognitive and motor symptoms, which was considered as a possible treatment for

HD patients (Temel et al. 2006).

Although HD rodent models have had a significant impact in breakthrough HD

research, they have limitations. For example, neural anatomy and gene functions in

rodents are distinct from higher primates. In fact, the extent of overall neurodegen-

eration in transgenic HD rodents HD patients even when similar neurological

symptoms were developed (Davies et al. 1997; Li and Li 2006; Schilling et al.

1999). Possible explanations for these limitations are (1) the extent of neurodegen-

eration is limited by the short life span of rodents (Li and Li 2006), (2) gene

function may vary between rodents and humans, and (3) there are fundamental

differences, especially in the brain, between rodents and humans. While transgenic

HD rodent models will continue to play a critical role in HD research, it is important

to develop an animal model with closer proximity to humans (Chan 2004; Yang

et al. 2008) not only physiologically but also genetically, to better capture the

clinical features of HD and further accelerate our understanding of HD pathogene-

sis and the development of effective therapeutic strategies.

5 Development of HD Nonhuman Primate Models

Nonhuman primates are ideal for modeling human neurodegenerative diseases for a

number of reasons. First, brain functions and anatomy of nonhuman primates are

highly similar to those of humans (Presty et al. 1987; Small et al. 2004; Walker et al.

1988). Second, the complex behavior of nonhuman primates enables advanced

studies of cognition, social and motor development that are progressively impaired

in neurodegenerative disorders (Peters et al. 1996). Third, the large brain size and

comparable anatomical structure of nonhuman primates are suitable for high

resolution in vivo imaging such as MRI and PET, which are powerful diagnostic

tools in humans. Fourth, nonhuman primates also share high similarity in genome

constitution and physiologic functions with humans, thus the likelihood of identify-

ing human ortholog genes in nonhuman primates such as rhesus macaques is higher

than for other species (Chan 2004). Finally, longitudinal studies are possible in

nonhuman primates because of their longer life span. By integrating findings in

in vivo imaging, cognitive and behavioral studies, metabolite profiling and gene
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expression profiling in peripheral blood as disease progresses, HD nonhuman

primates provide a unique model for developing early diagnostic tools, identifica-

tion of biomarkers and therapeutic targets that will accelerate the development of

effective treatments (Chan 2004).

Nonhuman primate models of HD were first reported by chemical induction and

subsequent development of focal lesion in the brain by stereotaxic delivery of

lentiviruses expressed mutant HTT (Burns et al. 1995; Isacson et al. 1990; Lee

and Chang 2004; Palfi et al. 1996). Apomorphine was first used to induce excito-

toxic caudate-putamen lesions that resulted in HD-like phenotypes, such as dyski-

nesias (Isacson et al. 1990). Similar to rat lesion models, focal injection of

quinolinic acid in the caudate and putamen of rhesus monkeys caused spontaneous

HD-like chorea and has led to a new model system for movement disorders (Burns

et al. 1995). Furthermore, focal injection of 3-nitropropionic acid, a mitochondrial

inhibitor, has led to the development of pathophysiological HD phenotypes which

include movement disorder, progressive striatal degeneration, and frontostriatal

syndrome of cognitive impairment. These unique behavioral phenotypes and motor

deficits strongly suggested the high similarity between nonhuman primates and

humans, which are superior to the other model systems especially in replicating

cognitive behavioral and motor impact in HD.

Stereotaxic bilateral injection of lentiviruses carrying mutant HTT into dorsolat-

eral sensorimotor putamen has led to the classic symptoms of HD in nonhuman

primates for up to 30 weeks (Palfi et al. 2007). These monkeys displayed progres-

sive chorea, dystonia, spontaneous dyskinesia, and ipsilateral turning behavior.

Neuropathological studies revealed neuritic and nuclear HTT aggregates, reactive

astrocytes, and the loss of the neurons. This further demonstrated that the expres-

sion of mutant HTT in a specific brain region of nonhuman primates is capable of

replicating HD phenotypes comparable to human patients.

Although the creation of focal lesions in monkey brain by lentiviruses has

successfully induced clinical features of HD and has proven to be a very useful

model for HD research the approach has limitations. Focal lesion primate models

develop neuropathological and behavioral changes similar to those observed in HD

patients but the systemic effect of mutant HTT and its impact on specific neuronal

targets cannot be investigated due to the limited number of target cells that will be

randomly infected by lentiviruses at the injection site. Efficient diffusion of viruses

to surrounding tissues has also limited successful gene delivery into the target cells.

Thus, variations in mutant HTT expression and cellular responses to mutant HTT

are expected. This may lead to misinterpretation due to suboptimal gene transfer in

the target cell population or simply because of variations among different indivi-

duals. Similar limitations apply with focal chemical induction models. Thus, focal

chemical induction and the focal transgenic model might not be sufficient to elicit a

degeneration process and consistent clinical responses between individuals. In

addition to its potential impact on the outcome of the study, focal transgenic

model characteristics cannot be inherited by the next generation and do not allow

the study of systemic effects.
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6 Germline Nonhuman Primate Model of HD

The three basic criteria for a successful transgenic animal are (1) stable integration

of the gene of interest (transgene) into the host cell genome, (2) expression of the

transgene and bioactivity, and (3) transmission of the transgene to the next genera-

tion (germline transmission). The first two points (1 and 2) determine the genotype

and phenotype of a transgenic animal, whereas germline transmission is important

for preserving the unique genotype and phenotype and is critical for extending

availability of the transgenic model to broader applications. When a transgenic

animal is identified as a useful model for human conditions, it is important to

preserve its unique genotype and phenotype. If germline transmission is achieved,

these animals can be reproduced by traditional breeding processes, and the unique

genotype and phenotype will be preserved throughout generations. However, since

rhesus monkeys have a long gestation period (5.5 months) and limited availability,

the generation of transgenic nonhuman primates such as rhesus monkeys is a

challenging task. With the aid of assisted reproductive techniques (ART), larger

numbers of mature oocytes can be recovered from females stimulated by hormonal

regimens, similar to the approach used in human fertility clinics. Together with

in vitro fertilization and culture techniques, high quality embryos can be generated

for gene transfer followed by transplantation into surrogate females for the genera-

tion of transgenic monkeys. Additionally, cryopreservation of gametes derived

from transgenic animals will further ensure the preservation of unique genetic

configurations. Due to the advancement in ART, cryopreserved gametes can also

be used to reproduce offspring at any time.

One of the prerequisite techniques in developing transgenic nonhuman primate

models is an efficient gene delivery method requiring a relatively small number of

animals in the development process. Therefore, despite the fact that nonhuman

primates are one of the best animal models for human disease, the development

of a transgenic nonhuman primate model has not been considered feasible until

such fundamental techniques as efficient gene transfer methods were established.

Lentiviruses has been successfully used for the generation of different transgenic

species including mice, rats, prairie voles, pigs, cattle, and monkeys (Butland et al.

2007; Chapman et al. 2005; Donaldson et al. 2009; Hofmann et al. 2004; Lois et al.

2002; Park 2007; Sasaki et al. 2009; Whitelaw et al. 2004; Yang et al. 2008) with

successful germline transmission and have been shown to be one of the most

important breakthrough technologies in transgenic research.

Five transgenic HD monkeys generated by lentiviral gene transfer in early

embryos were first reported in 2008, which has led to a new era of animal modeling

of human inherited genetic disorder (Yang et al. 2008). Transgenic HD monkeys

carried the exon 1 of human HTT gene with expanded polyQ tract under the

regulation of human ubiquitin promoter. The fact that CAG repeats are highly

unstable, CAG repeat numbers ranging from 29 to 88 was revealed in HD monkeys.

Among the five HD monkeys, four were euthanized at 1 day to 1 year of age due to

the severity of their HD symptoms, including dystonia (Fig. 1a), chorea, seizure,
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and weight loss which were comparable to human HD patients. The remaining

HD monkey carries a single copy of mutant HTT with 29 CAG repeats. Although

the number of CAG repeats is below the threshold for HD in human patients,

rhesus monkeys have only 10–11 CAG repeats flanking the HTT gene. Thus, if

ever developed, later onset of HD is expected in the living HD monkey. While

expression of mutant HTT was determined in placental tissues and peripheral

blood, longitudinal studies include noninvasive imaging, genomic and metabolite

profiling, and cognitive behavioral evaluation are ongoing. Due to the extreme

toxicity of the mutant HTT construct (consisting of the Exon 1 and long CAG

repeats) as shown in the HDmonkeys, the next generation of HD monkeys with less

aggressive phenotypes that develop a later onset of HD should be considered. To

achieve this purpose, weaker promoters, such as HTT promoter, or shorter CAG

repeats with larger HTT fragments will be considered.

HD monkeys revealed the selective expression of mutant HTT in different

regions of the brain and peripheral tissues, which was similar to the expression

pattern in HD patients. Mutant HTT was expressed predominantly in the cortex

and striatum with the formation of intranuclear aggregates (inclusion bodies) and

neuropil aggregates in HDmonkeys, which are signature neuropathological features

in HD patients (Yang et al. 2008) and are comparable to prior studies in HD

transgenic rodents (Davies et al. 1997; Schilling et al. 2007; Vonsattel et al. 1985;

Wang et al. 2008). One distinctive observation was the formation of neuropil

aggregates along the swollen and disrupted neuronal processes, which captured

the process of neuronal degeneration (Fig. 1b) (Wang et al. 2008). In addition, the

expression of mutant HTT was also observed in glial-like cells, which suggested

mutant HTTmay affect both neuronal and nonneuronal cell types in the brain (Wang

et al. 2008). Based on prior study, mutant HTT has been reported to accumulate in

glial nuclei in HD brains (Shin et al. 2005; Bradford et al. 2009, 2010a, 2010b),

which suggest the impact of nonneuronal cells in HD pathogenesis.

Fig. 1 Clinical features and neuropathology in transgenic HD monkeys. (a) Transgenic HD

monkey at 1 month of age showing involuntary dystonic posture of the arms. (b) EM48 immu-

nostaining of the striatum of HD monkeys that expressed exon-1 HTT with 147Q. Mutant HTT is

abundant in the nucleus and forms aggregates in neuronal processes. Arrow indicates aggregates in

the neuronal processes with disrupted appearance. Scale bar ¼ 5 mm
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Besides neuropathology, neuroimaging and cognitive behavioral testing, lym-

phoblast cell lines have been widely used in studies involved in pharmacogenetics

(Hashem et al. 2004), neurodegeneration (Acehan et al. 2007; Panov et al. 2002;

Toneff et al. 2002), transcriptional profiling (Abuhatzira et al. 2005), and the

development of new medications (Hashem et al. 2004). The advantages of using

lymphoblast cell lines are the easy access of peripheral blood and a well-established

protocol for the establishment of lymphoblast cell lines. One may have concerns

about using lymphoblasts to represent neuronal cell types, the primary site of

neurodegeneration, and although there are fundamental differences between lym-

phoblasts and neurons, recent studies have demonstrated that gene expression

profiling in peripheral blood is highly correlated with HD progression and response

to experimental treatment (Borovecki et al. 2005; Sharp et al. 2006). Recent studies

have found abnormalities in lymphocytes, which include elevated levels of oxida-

tive DNA damage (Morocz et al. 2002) and an increased number of apoptotic

monocytes (Bergman et al. 2002). Thus, the alteration of gene expression patterns

that are specifically observed in lymphocytes may be used as diagnostic informa-

tion complementary to clinical evaluation and as a biomarker indicating the pro-

gression of the disease. Furthermore, genomic profiling of neurological diseases

using blood has been suggested as a monitoring scheme of the progression of

disease and response to treatment (Sharp et al. 2006; Tabchy and Housman

2006). Lymphoblast cell lines from HD patients have also been used to investigate

mitochondrion function and comparative study of htt proteolytic fragments with

human brains (Toneff et al. 2002). In addition to the versatile applications of

lymphoblast cell lines, genomic profiles and cellular responses correlated with

disease progression could be closely monitored due to the fact that peripheral

blood could be collected at different stages of HD. Furthermore, lymphoblast cell

lines established at different stages of HD could be a powerful tool for evaluating

the efficacy of novel therapies and chemicals that were designed to target specific

stages of HD, thus stage specific response to novel treatment could also be deter-

mined. Therefore, lymphoblast cell lines in HD monkeys are unique tools for

monitoring the alteration of genomic and cellular function in HD, which could be

correlated with neuroimaging, cognitive and behavioral changes in HD monkeys

longitudinally.

7 Limitations of Nonhuman Primate Models and Future

Directions

Although the advancement of ART in nonhuman primates and the latest develop-

ment of lentiviral gene transfer technology have overcome some of the major

barriers in developing transgenic nonhuman primate models of human inherited

genetic diseases (Chan 2004; Sasaki et al. 2009; Yang et al. 2008), the physiological

constraints of nonhuman primates such as age of puberty (34 years old), long
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gestation time (150–160 days), and singleton pregnancies have become the limiting

factors in transgenic primate modeling. Thus, one of the major challenges in the

field is to generate sufficient numbers of HD monkeys and to make them available

for the biomedical community. Although ART could overcome most of the limita-

tions in traditional breeding schemes, a strategic breeding approach needs to be

designed specifically for each primate model. For transgenic HD monkey models,

thorough characterization of HD monkeys should be accomplished prior to the

derivation of offspring from a HD monkey founder with a unique and known

phenotype, which should be confirmed and evaluated before puberty. When HD

monkeys reach puberty, depending on their gender, different strategies could be in

place for the establishment of a cohort of HD monkeys with the aid of ART. Female

monkeys can either be enrolled in traditional breeding schemes (the most time

consuming approach) or used for hormone stimulation, followed by in vitro fertili-

zation and culture, with a transfer of embryos into surrogate females. This approach

could generate 8–10 babies in 1–2 years based on current success rate in rhesus

macaques. On the other hand, male HD monkeys have an advantage over females

when breeding of a selected HD monkey founder is needed. Female monkeys could

be inseminated using HD monkey semen or a surrogate female could receive

embryos derived from HD monkey sperm. Thus, HD monkey offspring could be

generated in 5–6 months (gestation time of monkey) while the limiting factor is still

the availability of adult females for insemination or as surrogates.

In addition to physiological limitations, a transgenic monkey model is limited to

a dominant genetic disorder by overexpression of the mutant gene. The generation

of a gene targeted monkey by creating a chimeric monkey may not be a realistic

approach because of the long gestation time, singleton pregnancy, and limited

availability of monkeys. Even if chimeric monkeys are generated, subsequent

breeding processes may reduce the practicality of the approach. One possible

method to overcome the hurdle of chimerism is by cloning or nuclear transplanta-

tion. However, there have to date been no successful attempts to generate a viable

cloned monkey. Thus, until the perfection of gene targeting or nuclear transfer

technology has been achieved, transgenic primate models of human inherited

genetic diseases is expected to be primarily focused on dominant genetic defects

or the overexpression of regulatory RNA such as small hairpin RNA to knock down

the expression level of the target genes.

Although recent advancement in modeling human genetic diseases such as HD

has further suggested that higher primates hold great promise in mirroring human

conditions, the high cost of primate research often governs our interest in applying

primate models in critical studies. A transgenic primate animal model could

potentially help us explain the pathogenesis of Alzheimer’s, Parkinson’s, and

Huntington’s diseases because other animal models cannot replicate key aspects

of disease pathology, simply due to their physiological differences from humans

(Yang et al. 2008). However, due to the limited availability of primates and primate

facilities, and relatively high costs, one should only consider working with diseases

that could clearly benefit from a transgenic primate.
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8 Conclusion

Transgenic animal modeling of human diseases has accelerated the progression of

biomedical research in the past decades and has proven to be one of the most

valuable resources in explaining human disease mechanisms and pathogenesis. It is

an exciting time in animal modeling as significant advances in transgenic primate

research in recent years has opened the door for researchers to consider primates as

a model system with the potential of replicating unique human conditions that may

not be possible to achieve with other species. However, one should keep in mind

that since there is no perfect animal model for humans, it is important to embrace

the value of comparative medicine in bringing us a step closer to understand human

diseases, and thus develop effective cures and preventative strategies.
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across patients. Furthermore, any boundaries vis-à-vis other psychotic disorders are

far from clear. Consequently, identification of informative animal models for this

disorder, which typically relate to pharmacological and putative pathophysiological

processes of uncertain validity, faces considerable challenges. In juxtaposition, the

majority of mutant models for schizophrenia relate to the functional roles of a diverse

set of genes associated with risk for the disorder or with such putative pathophysio-

logical processes. This chapter seeks to outline the evidence from phenotypic studies

in mutant models related to schizophrenia. These have commonly assessed the degree

to whichmutation of a schizophrenia-related gene is associated with the expression of

several aspects of the schizophrenia phenotype ormore circumscribed, schizophrenia-

related endophenotypes; typically, they place specific emphasis on positive and

negative symptoms and cognitive deficits, and extend to structural and other patho-

logical features. We first consider the primary technological approaches to the gene-

ration of suchmutants, to include their relative merits and demerits, and then highlight

the diverse phenotypic approaches that have been developed for their assessment. The

chapter then considers the application of mutant phenotypes to study pathobiological

and pharmacological mechanisms thought to be relevant for schizophrenia, particu-

larly in terms of dopaminergic and glutamatergic dysfunction, and to an increasing

range of candidate susceptibility genes and copy number variants. Finally, we discuss

several pertinent issues and challengeswithin the fieldwhich relate to both phenotypic

evaluation and a growing appreciation of the functional genomics of schizophrenia

and the involvement of gene � environment interactions.

Keywords Gene � environment interaction �Mutant model � Phenotype � Psychotic
illness � Schizophrenia � Susceptibility gene

1 Introduction

Schizophrenia is an enigmatic and debilitating psychotic illness that is associated

with profound human, societal and economic costs on a world-wide basis; having

a lifetime prevalence of 0.3–0.6% and an incidence of 10–20 per 100,000 person-

years, patients with schizophrenia show not only substantive functional impair-

ments but also increased mortality that is due primarily to higher rates of suicide,

risk factors for medical morbidity and accidents/misadventures (McGrath et al.

2008; Tandon et al. 2008; Van Os and Kapur 2009). This disorder is characterised

by a multifactorial aetiology that involves genetic liability interacting with epi-

genetic and environmental factors to increase risk for developing the disorder

(Waddington et al. 2007; Gill et al. 2009; Kirby et al. 2010; O’Tuathaigh and

Waddington 2010). Furthermore, any boundaries vis-à-vis other psychotic dis-

orders are far from clear.

Over the past several years, molecular genetics has identified a number of

candidate risk genes, as documented in recent systematic reviews and meta-

analyses (Allen et al. 2008; Gogos 2007; Shi et al. 2008), with the most recent

studies indicating a substantive role for rare structural variants (copy number
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variations (CNVs); International Schizophrenia Consortium 2008, 2009). Some

consensus is emerging to suggest that schizophrenia likely involves the action of

both common alleles of small effect and individually rare but highly penetrant

CNVs (Waddington et al. 2007; Williams et al. 2009). In relation to these

common alleles, the risk variant has yet to be agreed upon and it is at present

unclear whether they each contribute individually in an incremental fashion, act

in a more complex manner, or exert background effects to modify the effect of

rare variants (Gill et al. 2009). Such candidate genes may not confer risk for

schizophrenia per se; rather, there may be: (a) specific relationships between

individual risk alleles and different domains of psychopathology and underlying

pathobiology; (b) specific relationships between individual risk alleles and differ-

ent endophenotypes within the overall schizophrenia syndrome; (c) more general

relationships between risk alleles and aspects of psychotic illness that transcend

conventional diagnostic boundaries, for example in relation to bipolar disorder as

well as schizophrenia; and (d) interactions between individual susceptibility

genes (epistasis) and/or interaction between susceptibility gene(s) and exposure

to one or more environmental adversities.

A role for several of these genes is supported by biological plausibility, such as

their involvement in important neurodevelopmental processes and, thus, putative

disease mechanisms. It should be noted, however, that evidence for biological

plausibility should not be viewed in an exclusionary manner, so as to reduce risk

for discounting or ignoring novel targets for therapeutic interventions. Preliminary

evidence from genome-wide association studies, which should have greater power

to detect the role of common alleles of small effect, have indicated associations

between risk for schizophrenia and several neurodevelopmental proteins previously

implicated in schizophrenia pathobiology, including reelin (Shifman et al. 2008)

and colony-stimulating factor-2 receptor alpha (CSF2RA; Lencz et al. 2007), as

well as as-yet uncharacterised genes such as zinc finger protein 804A (ZNF804A;

Moskvina et al. 2009). However, the absence of validating disease biomarkers

necessarily places a handicap on any efforts to identify common risk alleles, as

does the increasing demand for ever larger sample sizes to endow sufficient power

to yield statistically significant findings.

Most recently, there has been intense interest in multiple, rare CNVs, each of

which may confer risk for schizophrenia in a very small number of cases. These

variations usually consist of DNA sequences that vary between individuals as a result

of duplication or deletion of chromosomal material. Early evidence for the signifi-

cance of CNVs came from patients with velocardiofacial syndrome, which is caused

by a chromosome 22q11 microdeletion and is associated not only with cardiac

anomalies, craniofacial dysmorphology and learning disabilities but also with a

substantive increase in risk for psychosis (Murphy et al. 1999; Murphy and Owen

2001; Karayiorgou and Gogos 2006). Subsequent evidence indicates that there

appears to be a greater number of low-frequency CNVs, at numerous loci, in indivi-

duals with schizophrenia (International Schizophrenia Consortium 2008;Walsh et al.

2008; Kirov et al. 2009a). Several studies have identified common CNV loci, which

map to chromosomes 1q21.1 and 15q13.2 (International Schizophrenia Consortium
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2008; Stefansson et al. 2002). The latter region (15q13.2) is known to contain the a7
nicotinic cholinergic receptor gene (CHRNA7). As a prelude to detailed consideration

below,mice containing heterozygous deletion of the CHRNA7 gene display cognitive

defects (Young et al. 2007), while agonists at the a7 nicotinic cholinergic receptor

may have some efficacy against the negative symptoms and perhaps also the cognitive

deficits of schizophrenia (Freedman et al. 2008).

Interestingly, several studies have provided strong evidence for an association

between schizophrenia and microdeletions affecting the gene neurexin 1 (NRXN1;

Kirov et al. 2008, 2009b; Ikeda et al. 2010; Rujescu et al. 2009). Neurexins are

presynaptic proteins that function as synaptic recognition molecules and mediate

various aspects of synaptic function via binding to neuroligins (Ichtchenko et al.

1995). Mice containing deletion of NRXN1a display behavioural and electrophys-

iological deficits relevant to schizophrenia, including disruption to synaptic trans-

mission and prepulse inhibition (PPI) (Etherton et al. 2009). In summary, while the

involvement of CNVs is undeniable, the size of their contribution as risk factors and

their relationship with specific symptom sub-types is unclear (Gill et al. 2009;

Kirby et al. 2010).

2 Mutant Approaches

Technological developments in high throughput trangenic techniques (see Gondo

et al. 2011 for discussion), alongside improved understanding of the complexity of

the genetic basis of the disorder, have provided an important stimulus to genetic

modelling of schizophrenia and related psychiatric disorders. Fundamentally, two

complementary approaches, i.e. gene-driven (reverse genetics � gene to pheno-

type) or phenotype-drive (forward genetics � phenotype to gene), have been used

to create mice with modification of disease-relevant genes. Recombinant DNA and

evolving techniques now constitute a primary strategy for clarifying the functional

role(s) of putative risk genes and of biological entities for which investigative

pharmacological tools are not yet available, and for identifying novel drug candi-

dates. Phenotype-driven approaches, most notably chemical mutagenesis, have

been used as a means of revealing novel risk pathways involved in related patho-

biological phenotypes (see Gondo et al. 2011).

2.1 Constitutive Mutants

Deletion of a particular gene (‘knockout’ [KO]), insertion of additional gene copies

(‘knockin’) or insertion of human disease mutations (‘transgenic’) in mice has led

to increased understanding of the role of candidate disease genes in pathogenesis

(Chen et al. 2006; O’Sullivan et al. 2006; O’Tuathaigh et al. 2007a). Mutant models

have also shown considerable heuristic value in the evaluation of pharmacological
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interventions, as well as identification of genes that modify phenotypic severity.

Mice with altered expression of a neurochemical pathway component can be used

as animal models for basic and therapeutically targeted research. This is particu-

larly important in the absence of appropriately selective pharmacological agents;

for example, mutant models can provide a unique opportunity to determine the

subunit composition of native receptors with putative involvement in therapeuti-

cally relevant central nervous system (CNS) actions. Similarly, when the targeted

gene is expressed in the brain, the phenotype of mutant mice may reveal genetic

mechanisms underlying normal behaviours and may increase our knowledge of

genetic factors in neuropsychiatric disorders (Waddington et al. 2005, 2007).

Although constitutive mutants continue to provide invaluable information

regarding molecular genetic, pathophysiological and pharmacological processes

related to schizophrenia, such models are not without their limitations. The excised

or otherwise mutated gene is often critical for the viability of the organism, such

that knockout of that gene may be associated with gross deficits or even embryonic

lethality that preclude further phenotypic evaluation; compensatory mechanisms,

biological redundancy and genetic background can each confound phenotypic

assessment; pleiotropy can result in phenotypes that involve diverse brain regions

and functions, thereby complicating analysis of the resultant phenotype. In addi-

tion, it has been increasingly shown that neuropsychiatric phenotypes in candidate

gene mutants can be modulated by gene � gene and gene � environment interac-

tions (see Lesch 2011 for discussion) and by epigenetic factors (see Bountra et al.

2011); further study of mechanisms underlying the action of such phenotypic

modifiers has the potential to provide greater insight into variable penetrance of

disease genes across individuals and populations (O’Sullivan et al. 2006).

2.2 Conditional Mutants

Generation of conditional mutants, allowing spatially and/or temporally controlled

gene mutation, minimises some of the limitations associated with constitutive

mutants. The Cre/loxP system has been widely used as a tool for tissue-specific

mutation and, in association with the use of tetracycline responsive promoters, also

for time-specific gene mutation. Generation of conditional mutants (Sauer 1993;

O’Sullivan et al. 2006) requires two elements: (a) a conventional transgenic mouse

line with Cre targeted to a specific tissue or cell type, and (b) a mouse strain that

embodies a target gene (endogenous gene or transgene) flanked by two loxP sites in

a direct orientation (“floxed gene”). Recombination (e.g. excision and consequent

inactivation of the target gene) occurs only in those cells expressing Cre recombi-

nase, hence the target gene remains active in all cells and tissues which do not

express Cre. These techniques can also be used for the removal of a transgene,

which has been overexpressed in a specific tissue at a certain time point, so as to

study the reciprocal effect of downregulation of that transgene.
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The ability to manipulate both spatial and temporal gene expression in a single

mouse model affords the investigator greater control over gene activity and makes

it possible to address more focused questions relating to the pathobiology of

schizophrenia. These techniques have been particularly utilised in relation to

the in vivo characterisation of the disrupted-in-schizophrenia 1 (DISC1) gene

(see Sect. 4.3.1), where regionally selective, inducible mutants have illuminated

DISC1 involvement in the development of schizophrenia endophenotypes

(Hikida et al. 2007; Li et al. 2007; Pletnikov et al. 2008; Shen et al. 2008).

2.3 Chemical Mutagenesis

Chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) provides an example of a

phenotype-driven approach for modelling genetic disorders (O’Sullivan et al. 2006

and Gondo et al. 2011). Treatment with the mutagen ENU, usually administered via

series of systemic injections in adult male mice, has been shown to induce point

mutations in a genome-wide fashion, enabling identification of previously unknown

genes implicated in disease-relevant phenotypes and resulting in the development of

large-scale mutagenesis projects (Nolan et al. 2000). A notable obstacle is that for any

given phenotype identified, the positional cloning techniques necessary to identify the

causative gene are laborious and time consuming (O’Sullivan et al. 2006; Gondo

2008; Gondo et al. 2011). While ENU mutagenesis has been used predominantly to

investigate dominant mutations (Gondo 2008; see also Gondo et al. 2011), phenotypic

effects of recessive mutations can also be examined, although they require extensive

breeding strategies and considerable experimental numbers (O’Sullivan et al. 2006).

The primary advantage of ENU relative to conventional transgenic techniques is

the ability to generate a diverse range of mutations, from loss- or gain-of-function,

to hyper- or hypomorphs. In a complementary manner, researchers have also

focused on a subset of known candidate genes and screened ENU mutagenesis

libraries for mutations in the target loci. Consequently, this allows determination of

an allele series for each gene by phenotyping different mice harbouring specific

missense or nonsense mutations at a particular locus (Cordes 2005; O’Sullivan et al.

2006). It should be noted, however, that different mouse strains exhibit differential

sensitivity to ENU dosage and that background strain may also predispose to select

phenotypes (Acevedo-Arozena et al. 2008).

2.4 RNAi Gene Silencing

RNA interference (RNAi) strategies consist of targeted in vivo post-transcriptional

gene silencing initiated by double-stranded RNA (dsRNA) homologous to the

target gene (Mahairaki et al. 2009). Insertion of an RNA molecule complementary

to the target mRNA enables endogenous RNA processes to suppress translation and
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thereby downregulate the expression of the target gene (Zamore 2001; Nielsen et al.

2009).

The use of RNAi has spurred the development of efficient delivery methods

capable of producing long-term knockdown of gene function in mice, either globally

or regionally specific (Singer and Verma 2008; Nielsen et al. 2009). The majority of

vectors use widely expressed polymerase III (pol III) or polymerase II promoters to

promote the expression of short hairpin RNAs (shRNA) that are processed into

siRNAs (Brummelkamp et al. 2002). More recently, shRNAs have been engineered

to utilise the endogenous micro RNA (miRNA) machinery to drive the expression of

RNAi; studies have reported a favourable efficiency and toxicity profile relative to

shRNA-based vectors (Nielsen et al. 2009).

Over recent years, lentiviral vectors have received considerable attention as gene

delivery vehicles, with the capability of infecting a variety of dividing and non-

dividing cells, integrating stably into the host genome and resulting in long-term

expression of the transgene. Through stereotaxic injection, lentiviral particles can

be injected into specific brain areas, enabling the expression of shRNAs that target

disease-associated genes. Given that lentiviral vectors integrate into the host

genome, the offspring of a transgenic animal generated using a lentiviral vector is

likely to inherit the provirus and express the transgene or silencing cassette. Other

viral vectors, including adenoviruses and adeno-associated viruses (AAVs), remain

as episomal DNA in transduced cells and do not produce germ-line transmission of

viral DNA. Recent applications included a study showing that delivery of lenti-

viruses expressing shRNAs and targeting the CD81 gene into the nucleus accum-

bens resulted in abolition of cocaine-induced behaviour (Bahi et al. 2005). In a

mouse study, lentiviral silencing of brain-derived neurotrophic factor (BDNF) in

the dentate gyrus but not the CA3 regions of the hippocampus was associated with a

pronounced depression-related phenotype (Taliaz et al. 2010), illustrating the

power of this approach to refine knowledge of gene–endophenotype relationships

in relation to neuropsychiatric disorders.

With traditional methods of generating transgenic animals being both time

consuming and laborious, researchers have begun to capitalise on the capacity of

lentiviral vectors to generate transgenic animals, using either zona pellucida

removal or sub-zonal injection to deliver lentiviral particles to the embryo (Tiscornia

et al. 2003). One notable advantage of this technique has been the ability to generate

efficient transgenesis in species that are incompatible with conventional knockout

technology (Singer and Verma 2008; see Chan et al. 2011).

3 Modelling the Psychopathology of Schizophrenia in Mutants

The psychopathology of psychotic illness is characterised by positive symptoms (such

as hallucinations and delusions), negative symptoms (such as social withdrawal,

anhedonia and flattened affect) and cognitive deficits (such as deficits in working

memory and executive function). Such complexities of psychopathology, together
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with diagnostic uncertainty associated with limited understanding of etiopathol-

ogy, have long confounded efforts to ‘capture’ schizophrenia in valid animal

models (Arguello and Gogos 2006, 2010; Desbonnet et al. 2009a, b; Kirby et al.

2010). Given increasing understanding of the genetics of schizophrenia and of

mutant technologies, contemporary modelling strategies have de-emphasised any

unitary, quasi-holistic approach in seeking to delineate specific gene–endophenotype

relationships; researchers have chosen to focus on a series of specific behavioural

abnormalities, each of which may be more readily modelled in rodents and could be

related to a specific disease endophenotype (Powell and Miyakawa 2006; Low and

Hardy 2007; Desbonnet et al. 2009a; Jaaro-Peled et al. 2010; O’Tuathaigh and

Waddington 2010).

3.1 Positive Symptoms

Given the well-characterised role for dopaminergic (DAergic) hyperfunction and

antagonism in relation to psychotomimetic and antipsychotic activity, respectively

(Guillin et al. 2007), it is unsurprising that validity for positive symptomatology is

commonly assessed using DA-linked behaviours. In this context, phenotypic mod-

elling of positive symptoms in mutants has focused on ‘proxy’ indices of baseline-

and psychotomimetic drug-induced locomotor hyperactivity and disruption of PPI.

The latter phenomenon, whereby presentation of a weak prestimulus inhibits the

reaction of an organism to a subsequent startle stimulus, is disrupted in schizophre-

nia and by amphetamine in animals, and can be ameliorated by antipsychotics; this

phenomenon, involving sensory gating mechanisms at the interface of psychotic

and cognitive processes, can be viewed as a model related, in part, to positive

symptoms (Powell and Geyer 2007; Van den Buuse 2010). Latent inhibition (LI),

where the association between paired stimuli is attenuated by non-reinforced pre-

exposure to the conditioned stimulus, is also disrupted in schizophrenia and by

amphetamine in animals, and is reversible by antipsychotics. These processes,

involving selective attention to relevant over irrelevant stimuli and salience attribu-

tion, are also at the interface of psychotic and cognitive processes (Moser et al.

2000; Bay-Richter et al. 2009; Weiner and Arad 2009).

3.2 Negative Symptoms

Modelling negative symptoms in animals is yet more problematic, being con-

founded by ongoing clinical debates such as the distinction made between ‘pri-

mary’ vs. ‘secondary’ negative symptoms; the former reflect persistent negative

symptoms that are a component of the illness and the latter relate to state

phenomena such as depression and/or extrapyramidal side effects (Blanchard

and Cohen 2006; Winograd-Gurvich et al. 2006). In addition, certain negative
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symptoms, including poverty of speech, are especially difficult to measure in

animals and may comprise abilities unique to humans. However, symptoms such

as social withdrawal, anhedonia and motivational deficits represent constructs

that are conserved across species and expressed across a diversity of species-

specific behaviours (Panksepp 2006; O’Tuathaigh et al. 2010a).

In particular, disturbances in social behaviour represent a core negative symptom in

schizophrenia that is amenable to modelling in animals. Social approach-avoidance

behaviours, including species-typical affiliative (e.g. investigative sniffing) or agonis-

tic (e.g. biting, pinning) behaviours can be assessed dyadically in a novel environment

(File 1980; O’Tuathaigh et al. 2010a). Alternatively, choice paradigms for affiliative

behaviours, where mice are given the choice to spend time in a chamber containing

an unfamiliar mouse vs. an empty chamber are now commonly used to test interest

to engage in social interaction in mouse mutant models related to schizophrenia and

other psychiatric disorders characterised by asociality (Brodkin et al. 2004; Moy et al.

2006; Babovic et al. 2008).

Mouse models for anhedonia have employed reduction in sucrose consump-

tion as evidence of decreased reward function in rodents (Sammut et al. 2001;

O’Tuathaigh et al. 2010a). However, using sucrose volume intake as an index of

anhedonia may be complicated by extraneous factors such as conditioned taste

aversion, presence of competing behaviours such as locomotion or stereotypies,

or visceral malaise (Kirby et al. 2010; O’Tuathaigh et al. 2010a). Furthermore,

it should also be noted that voluntary sucrose consumption has been used to

model anhedonia in relation to depression. This highlights the lack of sufficient

specificity of behavioural measures in small rodents to effect the necessary

distinctions between features related to clinically similar symptoms in schizo-

phrenia and depression.

3.3 Cognitive Deficits

Although the nature of cognitive impairment in schizophrenia is the subject of

ongoing debate, specifically whether it constitutes a generalised deficit or one

involving specialised domains of cognitive dysfunction, there is some agreement

that impairments in working memory and executive function are core deficits;

these may extend to attentional processing, verbal and recognition memory

(Arguello and Gogos 2006, 2010). Given the paucity of pharmacotherapeutic

strategies available for treating cognitive impairment in schizophrenia, research-

ers have emphasised the importance of developing novel, targeted treatments for

ameliorating the cognitive deficits of psychotic illness and model systems are

essential tools to this end (Arguello and Gogos 2010). Aside from verbal mem-

ory, rodent analogues of such cognitive processes are readily available, where a

particular emphasis has been placed on spatial working memory and executive

function, as reviewed in detail elsewhere (Kellendonk et al. 2009; Arguello and

Gogos 2010).
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3.4 Structural and Pathological Features

While the lack of a prominent neuropathological signature has long been considered

an obstacle to the development of accurate preclinical models of schizophrenia,

growing evidence not just for structural but also for more subtle neuropathological

changes in the brain of patients with schizophrenia provide a basis for validation of

putative mouse models; the most widely supported of these structural and neuropath-

ological endophenotypes include enlarged ventricles, as reported in brain imaging

studies, dendritic changes in pyramidal neurons and modification of GABAergic

interneurons in the prefrontal cortex (Jaaro-Peled et al. 2010; O’Tuathaigh and

Waddington 2010). The growing body of evidence implicating risk genes in the

development of such structural and neuropathological markers encourages further

investigation in mutants of mechanisms underlying the cellular/molecular character-

istics of schizophrenia (Jaaro-Peled et al. 2010).

4 Genetic Models Related to Schizophrenia

4.1 Genetic Models Relating to Putative Dopaminergic
Pathophysiology

Over the last 40 years, the prevailing DAergic hyperfunction hypothesis of schizo-

phrenia has been the subject of iterative advances: while positive symptoms appear to

be related to increased release of DA onto subcortical D2 receptors, negative symp-

tomsmay reflect associated reduction in cortical release of DA, particularly involving

D1 receptors in prefrontal cortex (Guillin et al. 2007; Howes and Kapur 2009).

Constitutive KO of individual DA receptor subtypes has facilitated elucidation

of their role in mediating behaviours that show analogous disruption in schizophre-

nia patients. This approach has also been important in understanding which DA

receptor subtypes underpin the behavioural effects of psychotomimetic and anti-

psychotic drugs. The indirect DA agonist amphetamine has been shown to disrupt

sensorimotor gating in the PPI paradigm in D1, D3 and D4 KO but not D2 KOmice,

suggesting the D2 receptor is required for amphetamine-induced disruption of PPI.

Interestingly, the disruptive effect of direct DA agonists on PPI differs, as apomor-

phine disrupts PPI in D2 but not D1 KO mice (Ralph-Williams et al. 2002; Ralph

et al. 1999). Recently, dissociable roles for D1 and D2 receptors in habituation and

sensitization to acoustic startle, a component of PPI, have been identified using a

KO approach (Halberstadt and Geyer 2009); this may be of relevance to subgroups

of patients that display habituation abnormalities.

Antipsychotic drugs enhance low levels of LI, an effect that is reproduced by D2

and D1 KO in females but only by D2 KO in males (Bay-Richter et al. 2009); this

96 C.M.P. O’Tuathaigh et al.



suggests that there may be sex differences in the relative contribution of D1 and D2

receptors to LI itself and potentially to the manner in which antipsychotic drugs

exert their behavioural effects. In relation to the D1-like receptor family, divining

unique roles for D1 vs. D5 receptors across behavioural models related to schizo-

phrenia has so far proven difficult, due to a lack of pharmacological tools of

sufficient selectivity. To date, studies employing KOs have not yet clarified any

distinct contribution from D1 vs. D5 receptors in these forms of behaviour.

The D2 receptor has two isoforms, deriving from alternative splicing: long

(D2L) and short (D2S). Studies in isoform-specific KOs have indicated that it is

the D2L isoform that may be important for antipsychotic drug action (Xu et al.

2002) and of greater importance for extrapyramidal side effects (Wang et al. 2000).

However, effects in behavioural paradigms related more specifically to schizophre-

nia are yet to be investigated fully using this approach.

Given the importance of the prefrontal cortex in mediating cognitive functions

known to be disrupted in schizophrenia, such as working memory and executive

function, together with the rich density of D1 receptors in this region, it is not

surprising that D1 KOs show deficits in spatial working memory and reversal

learning (El-Ghundi et al. 2007; Holmes et al. 2004). The D2 receptor may also

be important in set shifting and reversal learning, as D2 KOs show impairment in

adjusting responding to previously reinforced stimuli when unexpected out-

comes are encountered, and both D2 KOs and antipsychotic drugs have been

shown recently to produce similar reversal learning deficits in a set shifting

paradigm (Kruzich and Grandy 2004; DeSteno and Schmauss 2009). D2 and

D3 KOs also show deficits in spatial working memory (Glickstein et al. 2002;

Karasinska et al. 2005).

Mutants with selective over-expression of subcortical D2 receptors exhibit def-

icits that include reduced incentive motivation, as measured by reduced lever

pressing for food reward in both an operant timing task and under a progressive

ratio schedule of reinforcement (Drew et al. 2009); however, the extent to which this

might represent an avolition phenotype remains to be clarified. While distinct

behavioural profiles have been documented for D3, D4 and D5 KOs (Waddington

et al. 2005), no substantive evidence for a role in negative symptom-related pro-

cesses has been found (O’Tuathaigh et al. 2010a). Clinical studies have indicated

that variation in the DA transporter (DAT) gene may be associated with negative

symptoms (Fanous et al. 2004); in agreement, DAT KOs show impairment in social

interaction (Rodriguiz et al. 2004; Gainetdinov 2008); stereotyped patterns of social

behaviour have also been observed in DAT KOs (Tillerson et al. 2006). However, at

variance with a negative symptom profile, DAT KOs develop a more positive bias

towards a hedonically positive tastant (Costa et al. 2007), while mutants with DAT

knockdown, to 10% of the complement in WT, show no change in responsivity for

sucrose reward in a sucrose consumption task (Cagniard et al. 2006).

Additional DA-related genes, such as AKT1, GSK3b and Nurr1, have been

subjected to varying breadth and depth of interrogation and are considered else-

where (Desbonnet et al. 2009a; Kirby et al. 2010).
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4.2 Genetic Models Relating to Putative Glutamatergic
Pathophysiology

There is a substantive body of evidence for hypoglutamatergic function in schizo-

phrenia: N-methyl D-aspartate (NMDA) receptor (NMDAR) antagonists have been

shown to possess psychotomimetic properties in healthy subjects (Adler et al. 1999;

Kegeles et al. 2000; Coyle 2006) and to exacerbate psychotic symptoms in patients

with schizophrenia (Malhotra et al. 1997). NMDAR deficits have been reported in

schizophrenia, both in postmortem brain (Stone et al. 2007) and in living patients

using SPECT imaging (Pilowsky et al. 2007).

Hypomorphic mutants with 90% reduction in the NMDAR NR1 subunit display

abnormalities across several schizophrenia-related phenotypes (Mohn et al. 1999;

Duncan et al. 2004): decreased responsivity to the NMDAR antagonists PCP and

MK-801, hyperactivity in a novel environment and deficits in PPI and social

interactions that were reversible by antipsychotics, with second-generation agents

(clozapine, quetiapine) appearing more effective than their first-generation coun-

terpart (haloperidol; Mohn et al. 1999; Duncan et al. 2006). Another NMDAR

mutant line, involving deletion of the NR1-associated NR2A (GluR-1) subunit,

exhibited hyperactivity that was ameliorated by haloperidol and risperidone,

together with deficits in spatial and latent learning and augmented DA metabolism

in striatum and frontal cortex (Miyamoto et al. 2001).

Glycine acts at an accessory site necessary for NMDAR function and thus

facilitates NMDA-mediated transmission; glycine agonists promote NMDA-

mediated transmission and may evidence some efficacy against the negative symp-

toms of schizophrenia (Patil et al. 2007). Two mutant lines carrying point mutations

in the NMDAR glycine binding site, Grin1 (D481N) and Grin1 (K483Q), have been

described; they exhibit 5- and 86-fold reductions in receptor glycine affinity,

respectively (Ballard et al. 2002). Grin1 (D481N) mice display hyperactivity in a

novel environment that is not reversible by antipsychotics (Ballard et al. 2002).

These mutants also show reduced sociability; this abnormality was reversed by

administration of D-serine and, to a lesser extent, clozapine (Labrie et al. 2008).

Grin1 (D481N) mice also show cognitive deficits, including abnormalities in spatial

learning and memory as well as spatial recognition (Labrie et al. 2008).

Abnormalities in various components of the NMDAR signalling complex have

been implicated in schizophrenia; these include the glial glutamate and aspartate

transporter (GLAST), which has been shown to be expressed differentially in the

dorsolateral prefrontal cortex, anterior cingulate cortex and thalamus in post-mortem

brain of patients with schizophrenia (Smith et al. 2001; Bauer et al. 2008). GLAST

KOs display haloperidol-sensitive hyperactivity in a novel environment, increased

hyperlocomotor responsivity to MK-801 and impaired sociability (Karlsson et al.

2008, 2009). Knockout of the NMDAR signalling molecule SynGAP is associated

with hyperactivity in the open field and reduced sensitivity to the motor stimulatory

effects of MK-801 (Guo et al. 2009). SynGAP mutants evidence intact sociability but
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impairment in social novelty preference, disrupted PPI, enhanced startle reactivity and

deficits in spatial working memory (Guo et al. 2009).

Vesicular glutamate transporters 1 and 2 (VGluT1 and VGluT2) are recognised

markers of glutamatergic neurons that are responsible for the vesicular packaging

of glutamate in the presynaptic axon terminal (Fremeau et al. 2001). Altered

VGluT1 expression has been documented in the striatum and hippocampus of

patients with schizophrenia (Oni-Orisan et al. 2008). Heterozygous deletion of

VGluT1 was associated with greater attenuation of sucrose consumption following

exposure to a chronic mild stressor (Garcia-Garcia et al. 2009). Mutants with

conditional, heterozygous deletion of VGluT2 in the cortex, hippocampus and

amygdala during the third postnatal week exhibited reduced social dominance in

the tube test and increased sociability (Wallén-Mackenzie et al. 2009).

Additional glutamate-related genes, such as ionotropic and metabotropic recep-

tor subtypes/subunits, aCamKII, calcineurin, DAO, DAOA (G72/G30), D-serine

and SynGAP, have been subjected to varying breadth and depth of interrogation and

are considered elsewhere (Desbonnet et al. 2009a; Kirby et al. 2010).

4.3 Mutant Models Relating to Candidate Risk Genes

In this section,we outlinework relating to the threemost extensively studied candidate

genes (DISC1, DTNBP1, NRG1) and to widely considered 22q11-associated genes.

Additional putative risk genes, such as FEZ1, PPP3CC, reelin and RGS4, have been

subjected to varying breadth and depth of interrogation and are considered elsewhere

(Desbonnet et al. 2009a; Kirby et al. 2010).

4.3.1 Disrupted-in-Schizophrenia-1

A study in a Scottish pedigree demonstrated that a familial mutation in the disrupted-

in-schizophrenia-1 (DISC1) gene, due to a balanced chromosomal translocation at

1q42.1–1q42.3, segregated with several psychiatric disorders, including schizophre-

nia; this association between DISC1 and schizophrenia has been replicated across

diverse populations (Chubb et al. 2008; Hennah et al. 2009; Schumacher et al. 2009).

During embryonic development, DISC1 appears to play an important role in neuro-

development and neuronal plasticity via interaction with several proteins, including

phosphodiesterase-4B, Fez1, NudEL and LIS1; these functions likely alternate,

depending upon the stage of development (Chubb et al. 2008).

The assumption underlying the majority of mutant DISC1 models to date has been

that the chromosomal translocation is associated with the production of a truncated

DISC1 protein that is functionally disruptive. In a line generated using ENU-induced

mutagenesis in exon 2 of DISC1 (Clapcote et al. 2007; Gondo et al. 2011), mutants

were characterised by hyperactivity, antipsychotic-sensitive disruption of PPI and LI
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and impaired working memory but intact spatial learning. In a transgenic line with

inducible and reversible expression of a DISC1 C-terminal fragment under the

aCAMKII promoter, positive symptom indices have yet to be reported; mutants

evidenced reduced sociability with impaired spatial working memory (Li et al.

2007). In a transgenic line with expression of a dominant-negative truncated form of

DISC1 under the aCaMKII promoter, mutants exhibited hyperactivity but no effects

on PPI, social behaviour or cognition (Hikida et al. 2007). In a double transgenic line

expressing human DISC1 under the CMV promoter, with tetracycline under the

aCaMKII promoter, mutants showed a hyperactive phenotype, some evidence for

impaired social behaviour and spatial memory but no effect on PPI (Pletnikov et al.

2008). In a transgenic line with expression of truncated DISC1, mutants displayed

disruption to LI (Shen et al. 2008). Mice of the commonly employed 129S6 Sv/Ev

strain have been shown to carry a 25 bp deletion in exon 6 of the DISC1 gene which

abolishes expression of the DISC1 protein. While there is no evidence for positive- or

negative symptom-related endophenotypes in this line, they show impaired spatial

working memory without impairment in recognition, reference and short-term mem-

ory, spatial learning or associative learning (Koike et al. 2006; Kvajo et al. 2008).

The cognitive phenotypes observed in some DISC1 mutant models may be

consistent with clinical evidence for association between DISC1 risk variants and

cognitive deficits in patients with schizophrenia, including P300 response (a mea-

sure of early attentional processing; Blackwood et al. 2000) and various measures of

memory (Cannon et al. 2005; Burdick et al. 2007). In addition, these studies indicate

that genetic variation in DISC1 may affect risk for schizophrenia by modifying the

morphology and function of hippocampal and prefrontal grey matter (Callicott et al.

2005; Cannon et al. 2005; Di Giorgio et al. 2008). In one transgenic line expressing

truncated DISC1, reduction of hippocampal synaptic transmission as a consequence

of decreased hippocampal dendritic complexity has been observed (Li et al. 2007;

Kvajo et al. 2008). Other structural and pathological markers relevant to schizophre-

nia have been reported in DISC1 mutants, including reduced immunoreactivity of

parvalbumin in the hippocampus and prefrontal cortex (Hikida et al. 2007; Shen

et al. 2008) and enlargement of the lateral ventricles (Hikida et al. 2007).

4.3.2 Dysbindin

Association between risk for schizophrenia and the gene encoding dystrobrevin

binding protein 1 (DTNBP1; dysbindin) has been replicated across diverse samples

(Allen et al. 2008; Gill et al. 2009); however, studies have differed in the risk

haplotypes reported. A series of studies have reported dysbindin risk variants to be

associated with impaired cognitive function: decreased performance in tests of

higher-order cognitive domains (Corvin et al. 2008), enhanced neuronal activity

in prefrontal networks associated with encoding and retrieval of episodic informa-

tion (Thimm et al. 2010) and increased activation of the bilateral middle frontal

gyrus, a component of dorsolateral prefrontal cortex, during a working memory task
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(Markov et al. 2009); general and domain-specific cognitive deficits (Fallgatter

et al. 2006; Donohoe et al. 2007) and disruption to early information processing,

as measured by the P1 response (Donohoe et al. 2008) in schizophrenia. Dysbin-

din has been implicated in reduced exocytosis of glutamate-containing synaptic

vesicles (Weickert et al. 2004; Bray et al. 2005) and binds synaptic and microtu-

bule-interacting proteins (Talbot et al. 2006; Camargo et al. 2007); a number of

these proteins interact with DISC1 (see Sect. 4.3.1), indicating a putative link

between DISC1 and DTNBP1 risk pathways in mediating aspects of neurodeve-

lopment that are disrupted in schizophrenia, including neuronal migration and

synaptic plasticity.

The sdy mouse arose as a spontaneous mutation in the DBA/2J strain due to a

large in-frame deletion of two exons of the mouse DTNBP1 gene; sdymice express

no dysbindin protein. Sdymice have been shown to manifest several schizophrenia-

like phenotypes, although the evidence to date has been inconsistent. This mutant

has been proposed as a murine model of Hermansky–Pudlak syndrome (Li et al.

2003), a disorder characterised by albinism, bleeding tendency and lung disease,

which are not a feature of schizophrenia. Assessment of sdy mutants has produced

inconsistent findings of unaltered (Feng et al. 2008; Bhardwaj et al. 2009),

decreased (Takao et al. 2007; Hattori et al. 2008) or increased (Cox et al. 2009)

spontaneous exploratory activity. Increased DA turnover has also been reported in

sdy mutants (Hattori et al. 2008). While the DBA/2J strain does not show robust

PPI, precluding assessment thereof, backcrossing of the sdy mutation onto a

C57BL6 line revealed a disruptive effect on PPI (Halene et al. 2009).

Sdy mutants evidence: reduction in social contacts and social contact time in a

dyadic paradigm (Feng et al. 2008; Hattori et al. 2008); impaired long-term

memory retention in the Barnes maze, as well as a working memory deficit in the

T-maze forced alternation task (Takao et al. 2008); impaired encoding or maintain-

ing an item in spatial memory, as assessed in a delayed non-match-to-position test

(Jentsch et al. 2009); impaired spatial reference memory and object recognition

memory (Feng et al. 2008). Sdy mutants also show morphological changes in

excitatory asymmetrical synapses on hippocampal CA1 dendritic spines: presynap-

tically fewer but larger glutamatergic vesicles; narrower synaptic cleft; and broader

postsynaptic density (Chen et al. 2008).

4.3.3 Neuregulin-1

Stefansson et al. (2002) first reported a link between a risk haplotype located at the

50 end of neuregulin-1 (NRG1) and schizophrenia; evidence from diverse popula-

tions has sustained an association between variation at the NRG1 locus and

schizophrenia (Bertram 2008; Gong et al. 2009). Post-mortem brain studies

have shown altered mRNA and protein levels of NRG1 isoforms in the dorsolat-

eral prefrontal cortex and hippocampus (Law et al. 2007); NRG1 has been found

to produce at least 31 different isoforms by consequence of alternative splicing
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(Mei and Xiong 2008; O’Tuathaigh et al. 2009a). NRG1 is a growth factor

containing an epidermal growth factor (EGF)-like domain and synthesised as a

membrane-bound form; after undergoing cleavage by the proteases at a juxta-

membrane site, soluble NRG1 is released into synaptic cleft. In response to NRG1

stimulation, ErbB tyrosine kinase transmembrane receptors become dimerised to

form homo- or hetero-dimers and play a significant role in neuronal development,

neuronal migration, axon guidance and synaptic plasticity (Harrison and Law

2006; Mei and Xiong 2008; O’Tuathaigh et al. 2009a).

Targeted mutations of various NRG1 isoforms (I–III) have facilitated delinea-

tion of some of their specific functions. As a consequence of the vital role played

by NRG1 in cardiac and lung development, homozygous deletion of NRG1 in

mice is associated with death in mid-embryogenesis; hence, the majority of

studies on constitutive mutants are conducted using heterozygotes. While sur-

vival is essential for behavioural studies, heterozygous gene deletion may be less

or sometimes more likely to reveal subtle phenotypes, depending on extent of

recruitment of compensatory processes (Gogos et al. 1998; Babovic et al. 2008).

Most NRG1 proteins are synthesised with a transmembrane (TM)-domain.

Mutants with heterozygous deletion of TM-NRG1 exhibit hyperactivity in explo-

ration- and anxiety-related tasks (Stefansson et al. 2002; O’Tuathaigh et al. 2006,

2007b; Karl et al. 2007; Van den Buuse 2010), an effect that is partially reversed by

treatment with the antipsychotic clozapine (Stefansson et al. 2002); ethologically

based assessment of exploratory activity in TM-NRG1 mutants reveals sex-specific

increases in both initial exploratory behaviour and subsequent habituation to the

environment (O’Tuathaigh et al. 2006). Deficits in PPI have also been reported

(Stefansson et al. 2002), although the size of this effect is likely to be modest (Van

den Buuse 2010). TM-NRG1 mutants also show abnormalities of social behaviour,

including a reduction in social novelty preference (O’Tuathaigh et al. 2007b) and

increased aggression during dyadic social encounter (O’Tuathaigh et al. 2008); no

changes across cognitive measures, including spatial learning and working memory,

have been noted (O’Tuathaigh et al. 2007b).

TM-NRG1 mutants demonstrate differential sensitivity to the locomotor- stimu-

lating and disruptive social effects of subchronic NMDAR antagonist administra-

tion (O’Tuathaigh et al. 2010b); they also evidence enhanced sensitivity to the

effects of D9 tetrahydrocannabinol (THC; the primary psychoactive constituent of

cannabis) on locomotor activity, PPI and the development of specific anxiety-

related behaviours (Boucher et al. 2007a). Investigations into potential underpin-

nings of behavioural abnormalities in TM-NRG1 mutants have indicated deficits in

NMDA receptor expression (Stefansson et al. 2002; however, for contrary findings

see Dean et al. 2008), elevated levels of 5-HT2A receptors and the 5-HT transporter

(Dean et al. 2008) and an increase in c-Fos activation, a marker of neuronal

activation, following exposure to the stress of behavioural testing (Boucher et al.

2007b). Constitutive loss of TM-NRG1 has also been associated with structural

brain changes on MRI, notably an increase in cerebellar but reduction in olfactory

bulb and ventricular volume (O’Tuathaigh et al. 2010b).
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Heterozygous deletion of TM-domain NRG1 disrupts the expression of several

NRG1 isoforms (I–III). Findings in mutants with more isoform-specific NRG1

deletions indicate that type III NRG1 mutants show greater deficits in PPI relative

to TM-NRG1 mutants (Chen et al. 2007). Type III NRG1 mutants also evidence

impairment in working memory that is not evident in TM-NRG1 mutants; these

effects may be related to reduced dendritic spine density, enlarged lateral ventricles

and hypofunctionality of PFC and CA1 region of the hippocampus also reported in

this mutant line (Chen et al. 2007). However, neither type III NRG1 mutants nor

targeted disruption of type I/type II NRG1 (NRG1 isoforms containing an Immu-

noglobulin (Ig)-like domain) share the hyperexploratory profile evident in TM-

NRG1 mutants; rather, Ig-NRG1 mutants display impairment in a modified LI

paradigm with intact PPI and unaltered activity (Rimer et al. 2005). Mutants with

heterozygous deletion in the EGF-like domain (a pan-isoform mutation) exhibit an

initial increase in exploratory activity but subsequently show more rapid habituation;

while baseline PPI was unaltered, PPI was disrupted by MK-801 but not by amphet-

amine (Duffy et al. 2008). In contrast with the TM-NRG1 phenotype, recent findings

in EGF-NRG1 mutants indicates reduction in social approach behaviours as well as

deficits in mismatch negativity, a measure of early information processing, which is

disrupted in patients with schizophrenia (Ehrlichman et al. 2009).

Mutants with heterozygous deletion of the ErbB4 receptor, but not ErbB2 or

ErbB3, show hyperactivity in the open field environment (Gerlai et al. 2000).

A hypoactive phenotype has been described in mutants with loss of ErbB signalling

in oligodendrocytes (Roy et al. 2007). B-site APP-cleaving enzyme 1 (BACE-1)

plays a significant role in NRG1 signalling via proteolytic processing of NRG1.

Mutants with knockout of BACE1 KO demonstrate hyperactivity with disruption to

PPI and heightened responsivity to MK-801 (Savonenko et al. 2008).

4.3.4 22q11-Associated Genes

Velocardiofacial syndrome (VCFS) is a 22q11.2 deletion syndrome characterised by

a 25-fold increase in risk for psychosis (Murphy et al. 1999; Murphy and Owen 2001;

Prasad et al. 2008). The phenotype ofmutants carrying amultigene deletion across the

22q11 region includes impaired PPI, neuronal migratory defects and disruption of

cortical neurogenesis, with haploinsufficiency of genes located in this region such as

Tbx1, Gnb1l and Dgcr8 implicated in phenotypic deficits (Meechan et al. 2007; Stark

et al. 2008). Among the genes located on this chromosomal region that have been

associated with the expression of the 22q11-associated psychiatric phenotype, the

three most well supported are proline dehydrogenase (PRODH), Zinc finger DHHC

domain containing 8 (ZDHHC8) and catechol-O-methyltransferase (COMT).

The PRODH gene codes for proline dehydrogenase and has been modestly

implicated in risk for schizophrenia (Liu et al. 2002; Li and He 2006). Mutant

mice with knockdown of PRODH demonstrate a reduction of exploratory activity in
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a novel environment, enhanced behavioural responsivity to amphetamine, reduced

locomotor responsivity to the NMDA antagonist MK-801 and impaired PPI and

associative learning (Gogos et al. 1999; Paterlini et al. 2005). These phenotypic

effects occurred alongside changes in hippocampal glutamatergic and cortical

dopaminergic transmission and upregulation of COMTmRNA in the frontal cortex.

In addition, administration of the COMT inhibitor tolcapone to PRODH mutants

resulted in increased disruption of PPI and impairment of working memory; thus, an

epistatic interaction between PRODH and COMT might contribute to aspects

of schizophrenia and the psychotic phenotype associated with 22q11.2 deletion

(Paterlini et al. 2005).

The enzyme COMT is involved in the catabolism of DA, with functional

polymorphisms in the COMT gene indicated to exert differential regulation of

DA metabolism in prefrontal cortex (Seamans and Yang 2004; Tunbridge et al.

2006). Although studied extensively, evidence linking COMT genotype with risk

for schizophrenia (Allen et al. 2008), or an executive cognition/working memory

endophenotype in schizophrenia (Tunbridge et al. 2006; Barnett et al. 2008),

remains controversial.

While no gross changes in locomotor activity have been observed in COMTKOs

(Gogos et al. 1998), ethologically based assessment of exploratory activity revealed

a subtle and distinct exploratory profile (Babovic et al. 2007). Although sociability

and social novelty preference are unaltered in both heterozygous and homozygous

COMT KO (Babovic et al. 2008), heterozygous COMT mutants evidence increased

aggression in a resident intruder assay (Gogos et al. 1998). In agreement with

clinical studies suggesting a role for COMT in cognition, COMT KOs exhibit

sex-specific enhancement in spatial working memory (Babovic et al. 2008; Papaleo

et al. 2008), while COMT transgenics with overexpression of a human COMT-Val

polymorphism exhibit deficits in attentional behaviour, working memory and

recognition memory; amphetamine disrupted recognition memory in wildtypes

but ameliorated recognition memory in COMT-Val transgenics (Papaleo et al.

2008), providing support for an inverted-U relationship between extent of PFC-

mediated DAergic transmission and cognitive function (Seamans and Yang 2004;

Tunbridge et al. 2006).

The ZDHHC8 gene regulates a brain-expressed putative palmitoyltransferase

and has been implicated in schizophrenia not only because of its chromosomal

location and involvement in synaptic transmission but also, more variably, through

association studies (Liu et al. 2007; Allen et al. 2008). ZDHHC8 KO mice evidence

a sex-specific PPI deficit in females, decreased exploratory activity and reduced

sensitivity to the locomotor stimulatory effects of MK-801 (Mukai et al. 2004). In

addition, decreased density of dendritic spines and glutamatergic synapses in

mutants containing a 1.3-mb deletion in the 22q11.2 chromosomal region are

reversed by reintroduction of enzymatically active ZDHHC8 protein; furthermore,

ZDHHC8 can palmitoylate post-synaptic density-95, an adaptor molecule impli-

cated in dendritic formation (Mukai et al. 2008). Thus, the evidence seems to

indicate that ZDHHC8 may contribute to aspects of schizophrenia and the psychi-

atric phenotype associated with 22q11.2 deletion.
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5 Mutant Models: Conceptual Issues and Methodological

Challenges

5.1 Divining Phenotypes: Genetic Background,
Sex and Phenotypic Battery

When analysing the phenotype of mice with mutation of risk genes, one must take

into account two extra-phenotypic sources of variation that may be operating: (a)

the genetic technology itself and (b) the manner in which the associated phenotype

is assessed. The former refers to the influence of background strain as well as

potential compensatory processes, while the latter factors include the influence of

sex, the selected behavioural phenotyping screen and the interplay of gene and

environment (Waddington et al. 2005; Desbonnet et al. 2009a; Kirby et al. 2010).

The dangers potentially associated with these factors have been highlighted in a

recent editorial which suggested certain standards necessary for mutant studies;

these include appreciation of the importance of background strain and flanking

genes, use of appropriate breeding strategies for experimental animals (e.g. the use

of heterozygous breeding pairs), and consideration of sex-specific phenotypic

effects (Crusio et al. 2009).

5.1.1 Influence of Background Strain

Reviews have repeatedly emphasised the need for extensive knowledge of exist-

ing inbred mouse strains to minimise their potentially confounding effect on the

interpretation of mutant phenotype (Waddington et al. 2005). Constitutive mutant

strains are usually constructed by injecting a genetically modified embryonic stem

(ES) cell, derived commonly from a 129/Sv inbred strain, into a C57BL/6

blastocyst; resultant male chimaeras are then mated with C57BL/6 females and

heterozygous offspring subsequently mated to generate homozygous ‘knockouts’.

In light of well-characterised phenotypic differences between and within mouse

strains (Waddington et al. 2005), these genetic and phenotypic variations between

the inbred mouse strains used to construct genetic models may confound the

interpretation of phenotype derived from a mutant on a mixed genetic background

(e.g. 129Sv/C57BL6), irrespective of the entity targeted by the mutation (Gerlai

and Clayton 1999; Crusio 2004; Crusio et al. 2009).

One approach to resolving this issue involves back crossing such animals into one

strain (e.g. C57BL6) to obtain (by, arbitrarily, up to five back-crosses) incipient or (by,

arbitrarily, greater than five back-crosses) more complete congenicity; a minimum of

ten backcrosses has been advocated (Crusio et al. 2009). Research from our laboratory

using D1 KOs has illustrated the importance of establishing congenicity in a given

knockout line: systematic comparison of the behavioural phenotype of the same D1

receptor mutation on mixed (C57BL6/129Sv) vs. congenic (C57BL6) backgrounds
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revealed differences in both exploratory behaviour profiles and behavioural respon-

sivity to selective D1-like agonists (Clifford et al. 2001; McNamara et al. 2002),

emphasising the necessity for well-defined genetic backgrounds in establishing phe-

notypic profile.

5.1.2 Influence of Sex

For pragmatic reasons, the majority of mutant studies have been carried out either in

males, in mice of ‘either gender’ or, sometimes, in mice of unspecified gender. In

many cases, only small numbers of newly generated mutants are available and it is

common to pool data from males and females to obtain larger sample sizes (Crusio

et al. 2009). However, only systematic comparisons between the sexes will allow

clarification of any phenotypic interaction between sex and genotype. Data on NRG1

and COMT mutants from our laboratory indicate sex-specific alterations across

various behavioural and cognitive domains (O’Tuathaigh et al. 2006; Babovic et al.

2007, 2008). Such sex-specific expression of mutant phenotypes has been documen-

ted numerous times, for example mutants lacking the genes encoding phosphodies-

terase 1B, the D3 dopamine receptor and DARPP-32 (Waddington et al. 2005). This

is of particular relevance in the case of genes associated with risk for psychiatric

disorders characterised by sexual dimorphism; for example, epidemiological studies

in schizophrenia have repeatedly shown gender differences in the development and

outcome of the disease (Tandon et al. 2008).

5.1.3 Choice of Phenotyping Battery

The validity of any mutant model related to schizophrenia is predicated on the validity

and reliability of the phenotypic and statistical tools used to evaluate the endopheno-

type at issue (Powell and Miyakawa 2006; O’Tuathaigh and Waddington 2010).

One substantive issue is that of fundamental structural and functional differences due

to divergent evolutionary processes between rodents and humans. However, the

evidence to date, particularly as it relates to measures of early information processing

and working memory, provides some basis for a positive outlook. It is clear that,

given ethologically appropriate indices of emotional, social and cognitive behaviour,

development of animal analogues of human behaviours which share an over-

lapping neural basis is an achievable goal; however, higher brain functions, such as

language and executive function, some of which are disturbed in schizophrenia and

appear uniquely human, may not be conserved in rodents to allow such modelling

(Jaaro-Peled et al. 2010; O’Tuathaigh et al. 2010a).

Refining the schizophrenia-relevant behavioural repertoire into more accessible

constructs, with incorporation of murine behavioural assessments that can be more

easily translated to human symptoms, will enhance understanding of pathological

mechanisms and help bridge the translational gap between preclinical and clinical

studies (Desbonnet et al. 2009a; Kirby et al. 2010). In a complementary manner,
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integration of molecular, cellular and morphological approaches into phenotypic

analysis will also strengthen the validity of mutant models for schizophrenia;

molecular changes induced by genetic manipulation occur upstream from overt

behavioural alterations and may therefore constitute more direct measures of the

functional role(s) of schizophrenia-related genes. Therefore, multiple levels of

analysis are necessary to reveal the relationship of a specific gene to pathobiology.

5.2 Advances in Understanding the Functional Genomics
of Schizophrenia

Emerging evidence from the field of molecular epigenomics suggests a putative

deficit in microRNA processing in schizophrenia. MicroRNAs are small, noncoding

RNAs that are believed to target at least a third of protein coding genes (Bartel 2004;

Filipowicz et al. 2008) and have been functionally linked with regulation of mRNA

levels for numerous genes in the human cerebral cortex (Zhang and Su 2008).

One possible explanation for lack of consistency regarding risk alleles for

schizophrenia may be dysregulation by miRNAs or other noncoding RNAs of rate

of transcription/translation, leading to abnormal schizophrenia risk gene expression

of phenotypic relevance (Perkins et al. 2007). Several studies have now indicated

altered levels of brain-expressed miRNAs in schizophrenia (Dinan 2009).

A recent study has indicated pharmacological (MK-801-induced) or genetic

(NR1 hypomorphic) disruption of NMDA receptor function to be associated with

decreased levels of a brain-specific miRNA, miR-219 that has been shown to target

CaMKII; pretreatment with either antipsychotic drugs or miR-219-specific anti-

miR attenuated the hyperlocomotor effects of MK-801 (Kocerha et al. 2009).

Increased understanding of the role of miRNAs in regulating phenotypic expression

has the potential to provide further insight into the mechanisms by which genes may

contribute to specific aspects of the schizophrenia phenotype.

5.3 Modelling Gene � Environment Interactions in Mutant
Models of Schizophrenia

It is posited schizophrenia is a brain disorder of developmental origin in which

perturbations in neurodevelopmental processes, associated with a combination of

genetic and environmental factors, long precede the onset of diagnostic psycho-

pathology in adulthood. Hence, assessing putative interactions between genetic

and environmental manipulations in terms of brain function may inform on how

candidate risk schizophrenia genes might modify response to environmental

insults (see also Lesch 2011).
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Twin studies conducted in schizophrenia generate a heritability estimate of

70–80%. A variety of environmental factors are also implicated, including prenatal

infection, obstetric complications, urbanicity, psychosocial stress and substance

abuse (Welham et al. 2009); the severity and timing of these environmental events

is also important (Caspi et al. 2005).

5.3.1 Perinatal Environment

Animal models of maternal infection and immune activation represent one of the

more commonly used paradigms for experimental investigation of the human

association between early environmental adversity and the development of neu-

ropsychiatric disorder in offspring.

Analyses of adult phenotype in the offspring of maternally infected mice reveal

persistent behavioural changes, including deficits in sensorimotor gating, spatial

memory and sociability, with increase in anxiety and enhanced sensitivity to

NMDA receptor antagonists (Asp et al. 2009; Meyer et al. 2008, 2009; Ibi et al.

2010). Investigations into the long-term effects of perinatal immune activation in

DISC1 mutants on adult phenotype revealed gene � environment interactions,

whereby the combination of both genetic abnormality and maternal infection

exacerbated the behavioural and physiological deficits produced by either DISC1

mutation or maternal infection alone (Ibi et al. 2010).

Perinatal immune activation has also been associated with altered expression of

NRG1 (Asp et al. 2009), suggesting that the signalling pathway regulated by NRG1

plays a role in the pathological mechanisms resulting therefrom. The involvement

of NRG1 in the regulation of immune-related neuropathology is further indicated

by a positive dose–response relationship between NRG1 expression and exposure

to the endotoxin LPS in human umbilical endothelial cells (Hoffmann et al. 2010);

the presence of a polymorphism in the NRG1 promoter region correlated positively

with NRG1 expression and was associated with a reduced risk for adverse neuro-

logic outcome in newborn infants, pointing towards a possible neuroprotective role

for NRG1 in early life. In the same vein, prenatal stress may have a greater impact

on the behavioural profile of synaptosomal-associated protein of 25 kDa (Snap-25)

mutants, particularly sensorimotor gating and sociability (Oliver and Davies 2009).

Additionally, maternal separation stress in mutants with KO of complexin II,

another putative schizophrenia risk gene involved in synaptic plasticity and con-

nectivity, disrupts long-term potentiation and spatial learning to greater extent than

in WT counterparts (Yamauchi et al. 2005).

5.3.2 Adolescent Environment

Onset of the schizophrenia occurs typically in late adolescence or early adulthood.

Psychosocial factors, such as those associated with social defeat (Selten and
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Cantor-Graae 2007) and/or social fragmentation (Kirkbride et al. 2008), together

with the varying psychosocial and/or biological adversities associated with living in

cities (Kelly et al. 2010), can contribute to risk for schizophrenia. Exposure to early

post-natal isolation in combination with heterozygous gene deletion of Nurr1, a

mutant characterised by DAergic dysfunction and behavioural abnormalities

related to schizophrenia, has been shown to produce disruption to PPI that was

not evident in Nurr1 mutants without such exposure (Eells et al. 2006).

There is also evidence to suggest that drug abuse during adolescence, partic-

ularly in those with underlying genetic abnormalities, is associated with

increased levels of psychotic symptoms (Henquet et al. 2006). Caspi et al.

(2005) found that development of psychotic features in early adulthood was

predicted by an interaction between Val/Met polymorphism in the COMT gene

and adolescent-onset cannabis use. Recent work in our laboratory has provided

further evidence for this relationship, with the cognitive and social effects of

adolescent exposure to chronic delta-9 tetrahydrocannabinol (the psychoactive

constituent of cannabis) differentially expressed in mutants with KO of the

COMT gene (O’Tuathaigh et al. 2009b). Additionally, subchronic treatment

with phencyclidine (PCP) in NRG1 mutants, followed by washout, resulted in

heightened sensitization of the behavioural response to acute rechallenge with

PCP (O’Tuathaigh et al. 2010b).

6 Conclusions

Although there have been rapid advances over the past several years, it is clear that

we continue to face substantive conceptual, technical, methodological, analytical

and interpretive challenges in applying mutant models to better understand the

pathobiology of schizophrenia. Among these is increasing evidence that genes

and pathologies implicated in schizophrenia overlap with other psychotic disorders,

particularly bipolar disorder. Yet, the breadth and depth of ongoing studies in

mutants holds the prospect of addressing these shortcomings. Overall, there is a

new body of literature supporting a role for both genetic and environmental factors

in the etiopathology of schizophrenia. A contemporary formulation revisits the

‘two-hit hypothesis’, whereby inherent biological vulnerability resulting from

genetic variation interacts with an adverse environmental exposure to trigger the

development of the disorder (Bayer et al. 1999; Le Strat et al. 2009). This is

receiving increasing attention and is leading to the emergence of new, improved

and influential mutant models of gene � environment interaction.

Acknowledgement The authors’ studies are supported by a Science Foundation Ireland Principal

Investigator grant (07/IN.1/B960), a Postdoctoral Fellowship from the Health Research Board

(PD/2007/20), and a Wellcome Trust grant (WT 084592/Z/07/Z).

Molecular Genetic Models Related to Schizophrenia and Psychotic Illness 109



References

Acevedo-Arozena A, Wells S, Potter P et al (2008) ENU mutagenesis, a way forward to under-

stand gene function. Annu Rev Genomics Hum Genet 9:49–69

Adler CM, Malhotra AK, Elman I et al (1999) Comparison of ketamine-induced thought

disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry

156:1646–1649

Allen NC, Bagade S, McQueen MB et al (2008) Systematic meta-analyses and field synopsis of

genetic association studies in schizophrenia: the SzGene database. Nat Genet 40:827–834

Arguello PA, Gogos JA (2006) Modeling madness in mice: one piece at a time. Neuron

52:179–196

Arguello PA, Gogos JA (2010) Cognition in mouse models of schizophrenia susceptibility genes.

Schizophr Bull 36:289–300

Asp L, Beraki S, Kristensson K et al (2009) Neonatal infection with neurotropic influenza A virus

affects working memory and expression of type III Nrg1 in adult mice. Brain Behav Immun

23:733–741

Babovic D, O’Tuathaigh CM, O’Sullivan GJ et al (2007) Exploratory and habituation phenotype

of heterozygous and homozygous COMT knockout mice. Behav Brain Res 183:236–239

Babovic D, O’Tuathaigh CM, O’Connor AM et al (2008) Phenotypic characterization of cognition

and social behavior in mice with heterozygous versus homozygous deletion of catechol-

O-methyltransferase. Neuroscience 155:1021–1029

Bahi A, Boyer F, Kolira M et al (2005) In vivo gene silencing of CD81 by lentiviral expression of

small interference RNAs suppresses cocaine-induced behaviour. J Neurochem 92:1243–1255

Ballard TM, Pauly-Evers M, Higgins GA et al (2002) Severe impairment of NMDA receptor

function in mice carrying targeted point mutations in the glycine binding site results in drug-

resistant nonhabituating hyperactivity. J Neurosci 22:6713–6723
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Abstract Much of the current understanding about the pathogenesis of altered

mood, impaired concentration and neurovegetative symptoms in major depression

has come from animal models. However, because of the unique and complex

features of human depression, the generation of valid and insightful depression

models has been less straightforward than modeling other disabling diseases like

cancer or autoimmune conditions. Today’s popular depression models creatively

merge ethologically valid behavioral assays with the latest technological advances

in molecular biology and automated video-tracking. This chapter reviews depres-

sion assays involving acute stress (e.g., forced swim test), models consisting of

prolonged physical or social stress (e.g., social defeat), models of secondary

depression, genetic models, and experiments designed to elucidate the mechanisms

of antidepressant action. These paradigms are critically evaluated in relation to their

ease, validity and replicability, the molecular insights that they have provided, and

their capacity to offer the next generation of therapeutics for depression.
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Abbreviations

5HT 5-Hydroxytryptamine or serotonin

BDNF Brain-derived neurotrophic factor

CRF Corticotropin-releasing factor

CUS Chronic unpredictable stress

DBS Deep brain stimulation

DNA Deoxyribonucleic acid

ECT Electroconvulsive therapy

FST Forced swim test

GR Glucocorticoid receptor

HPA Hypothalamic–pituitary–adrenal

KO Knockout

LH Learned helplessness

SERT Serotonin transporter

TST Tail suspension test

1 Introduction

Major depressive disorder (MDD) or depression is a heritable neuropsychiatric

syndrome characterized by relatively subtle cellular and molecular alterations

distributed across a circuit of neural substrates (Krishnan and Nestler 2008). This

disease claims a malignant toll on health: a 2007 World Health Organization study

of over 200,000 adults across the world showed that depression produces the

greatest decrement in health when compared with chronic diseases like diabetes

and arthritis (Moussavi et al. 2007). In spite of a large variety of available antide-

pressant medications and alternative therapeutic modalities including several forms

of psychotherapy (e.g., cognitive behavioral therapy) and several other approaches

such as yoga, exercise, and sleep deprivation, depression suffers a huge treatment

gap worldwide, whereby large numbers of individuals who require care do not

receive treatment (Kohn et al. 2004). Depressive disorders cause morbidity across

the entire age spectrum (Kessler et al. 2005): they can be difficult to diagnose and

treat in the pediatric and adolescent period (Prager 2009), complicate the course of

patients with chronic illness (Evans et al. 2005), and increase overall medical

burden in the elderly (Lyness et al. 2006).

Over and above this alarming public health problem, shortfalls in treatment pose

a grave concern. Even if major depression is accurately diagnosed and treated in all
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individuals with perfect treatment compliance, the best remission rates with stan-

dard antidepressants are only 30–40% (Rapaport et al. 2003; Trivedi et al. 2006).

This is in stark contrast with other chronic disorders such as diabetes mellitus

(Krishnan and Nestler 2008), where the correct combination of medications ulti-

mately can ensure normoglycemia and prevent diabetic complications in a large

majority of patients. Several explanations have been put forth for this discrepancy

between the treatment of depression and other chronic disabling conditions. First,

the diagnosis of depressive episodes is made when patients display a certain number

of vaguely defined clinical symptoms (e.g., depressed mood, anhedonia, sleep

changes, appetite changes, guilt, etc.) for a 2-week period. In the absence of more

objective diagnostics such as neuroimaging, genetic variations, biomarkers, or

biopsies, this rudimentary “symptom-counting” approach creates obvious limita-

tions for the development of animal models, clinical trials, and neuropathological

investigations (Krishnan and Nestler 2008). While the symptomatic heterogeneity

of depression (atypical vs.melancholic vs. psychotic, etc.) is well recognized (Rush
2007), little insight has been gained into the etiological and pathophysiological

distinctions between these subtypes. Drug efficacy trials are seldom conducted on

subtype-segregated groups, thereby increasing the chance of abandoning therapies

that may be subtype-specific. Since all available pharmacological treatments for

depression work through altering monoaminergic transmission (Berton and Nestler

2006), it is possible that only one type of depression is being treated (“monoamine-
responsive”). Due to high placebo response rates (Brunoni et al. 2009) and side

effect concerns, monoamine-based agents still constitute a significant proportion of

“new” antidepressants being tested in clinical trials (Mathew et al. 2008). And

finally, given that genetic, neuroimaging, postmortem analyses and laboratory

investigations (e.g., markers in serum or cerebrospinal fluid) have yielded limited

insight into the neurobiology underlying depression (Krishnan and Nestler 2008),

most current theories of depression are based largely on animal models of the

disease, which are also inherently limited.

2 Can Depression Be Modeled in Laboratory Animals?

If the full psychiatric syndrome of depression cannot be recapitulated in rodents or

nonhuman primates, then is it worthwhile to infer anything at all from animal

models of depression? While symptoms such as guilt, suicidality and sad mood

are likely to be purely human features, other aspects of the depressive syndrome

have been replicated in laboratory animals, and in several instances ameliorated

with antidepressant treatment. These include measures of helplessness, anhedonia,

behavioral despair and other neurovegetative changes such as alterations in sleep

and appetite patterns. From an evolutionary perspective, depression has been

proposed to be an analog of the involuntary defeat strategy (IDS), which is

triggered when an animal perceives defeat in a hierarchical struggle for resources

(Sloman 2008). Features of psychomotor retardation, hyperarousal, anhedonia and
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sleep disturbances in the setting of losing such a struggle are postulated to have an

adaptive advantage in that they serve to protect losers from further attack and focus

cognitive assets on planning ways out of complex social problems (Nesse 2000;

Watson and Andrews 2002). Most, if not all, animal models of depression aim to

quantitatively assay some form of experimentally induced defeat or despair, even
though this aspect of mammalian behavior is likely physiological (i.e., adaptive)
rather than pathological. In addition, while despair behavior is often extrapolated as
being depression-like, the application of stress to rodents also produces anxiety-like
changes that are manifestations of the fight or flight response (reduced exploration,

freezing, stress-induced hyperthermia, etc.). Just as anxiety and depression often

overlap clinically, the distinction between stress-induced depression-like and

anxiety-like behaviors is difficult to ascertain, particularly since both types of

behaviors respond to antidepressants. Thus, an important challenge of the field

has been to produce a long-lasting state of depressive pathology in laboratory

animals, which has seldom been achieved.

Today’s depression models are often evaluated by fulfilling three main criteria

(a) face validity (the requirement for a reasonable degree of symptomatic homol-

ogy), (b) construct (or etiological) validity (the requirement for similar causative

factors), and (c) pharmacological validity (which requires the reversal of depres-

sive symptoms by available antidepressants). These criteria serve as guides to

compare models against each other, but each criterion suffers basic flaws (Nestler

and Hyman 2010). For instance, in the olfactory bulbectomy model of depression,

surgically bulbectomized adult rats display increased locomotor activity,

increased aggression, and spatial memory impairments that are all reversed by

the chronic administration of a diverse array of antidepressants (Song and Leo-

nard 2005). While this model may appear to be weak in construct and face

validity, its pharmacological validity is excellent: virtually all classes of available

antidepressants reverse these behavioral changes with a therapeutic delay. Of

course, people with depression do not have olfactory lesions. Nevertheless, our

assessment of poor construct validity is of limited value, since the etiology of

depression is incompletely understood. Strict applications of face validity pose

the risk of excessive anthropomorphization, particularly when assessing rodents

such as mice, rats or tree shrews, which each have their own distinct behavioral

repertoires (Crawley 2000). Since candidate models of depression are often

assessed for reversibility with known monoamine-based antidepressants, there

exists the alarming possibility that the most popular models of depression may, by

design, be insensitive to the antidepressant effects of nonmonoamine-based

agents (Berton and Nestler 2006). A potential fourth criterion is pathological
validity, whereby animal models are validated by their recapitulation of known

postmortem pathological or serological changes found in human depressed

patients. Given our current state of knowledge, this is a very difficult requirement,

but with increasing efforts in this field stemming from more widespread access

to human postmortem tissue, the elucidation of pathological validity criteria may

potentially eliminate the circular arguments that lie at the core of modeling

depression.

124 V. Krishnan and E.J. Nestler



This chapter evaluates the current status of animal models in depression and

highlights certain novel neurobiological insights which have been generated using

these models. Given the emphasis on molecular perspectives, we focus on data

from rodent studies. Preclinical studies in nonhuman primates have largely focused

on the behavioral and endocrinological impacts of early life stress (Gilmer and

McKinney 2003) and, while this is clearly a critical research avenue, this field

has been limited by a variety of factors which restrict nonhuman primate

research. Instead of attempting to be comprehensive, this review highlights

key methodological strengths and limitations and provides recommendations

for further experimentation. The reader is referred elsewhere for a recent sys-

tematic and concise description of the neurobiology of depression (Krishnan

and Nestler 2010).

3 Animal Models of Depression and Molecular Insights

3.1 Models of Acute Stress

3.1.1 Forced Swim Test and Tail Suspension Test

The forced swim test (FST) and tail suspension test (TST) are the most widely used

tests of antidepressant action and are also used to infer “depression-like” behavior.

In the Porsolt test (Porsolt et al. 1977), also known as the FST test, a mouse or rat is

placed in an inescapable cylinder of water and, following an initial period of

struggling, swimming and climbing, the animal eventually displays a floating or

immobile posture. In the TST, immobility is scored while mice are suspended by

their tails. Since water is not required, the TST is not confounded by challenges to

thermoregulation (Cryan and Mombereau 2004). FST or TST immobility has been

interpreted as an expression of behavioral despair or entrapment (Cryan et al. 2005;
Lucki et al. 2001), and is reversed by the acute administration of almost all

available antidepressants. This poses a problem for the model, since antidepressants

restore mood in depressed humans only after many weeks of administration.

Numerous agents that act independently of monoamine signaling have also been

shown to reduce immobility time, such as recombinant ghrelin (Lutter et al. 2008),

ketamine (Maeng et al. 2008), and estradiol (Dhir and Kulkarni 2008), to name a

few. The foremost strength of these models is their ability to rapidly screen novel

agents and phenotype genetically manipulated mice, and both paradigms have been

successfully automated to reduce errors in subjective scoring. As shown in Fig. 1, a

large number of mutant mice have been screened through the FST or TST. There

appear to be a much larger number of “antidepressant-like” knockouts (KO), i.e.,

those mice that exhibit reduced immobility, compared with the number of KOs that

exhibit increased immobility, but this may reflect a constraint of the model since it

was originally designed to capture antidepressant effects. These studies illustrate
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Increased Immobility
(PROdepressant)

adrenergic receptor 2A KO (Schramm et al., 2001)
Adenosine receptor 3A KO (Fedorova et al., 2003)

Aromatase KO (Dalla et al., 2004)

Melatonin receptor 1 KO (Weil et al., 2006)

#BDNF forebrain KO (Monteggia et al., 2006)

*Thyroid hormone receptor KO (Wilcoxon et al., 2007)

Galanin receptor 2 KO (Lu et al., 2008)

Forced Swim Test

Tail Suspension Test

SLITRK1 KO (Katayama et al., 2008)

CRF receptor 2 KO (Bale and Vale, 2003)

NCAM KO (Aonurm-Helm et al., 2008)

Sigma receptor 1 KO (Sabino et al., 2009)

*TRH receptor 1 KO (Zeng et al., 2007)
TRH receptor 2 KO (Sun et al., 2009)

PACAP KO (Hashimoto et al., 2009)

Desert hedgehog KO (Umehara et al., 2008)
Delta opioid receptor KO (Filliol et al., 2000)

Vesicular monoamine transporter 2 HET (Fukui et al., 2007)

#Relaxin-3 KO (Smith et al., 2009)

Conditional CREB overexpression (Newton et al., 2002)

adrenergic receptor 2C KO (Sallinen et al., 1999)
Adenosine receptor 2A KO (El Yacoubi et al., 2001)

Adenylyl cyclase 5 KO (Krishnan et al., 2008)
Acid sensing ion channel-1a KO (Coryell et al., 2009)

CaV 1.3 (L-type channel) KO (Busquet et al., 2009)

     *Clock mutant (Roybal et al., 2007)
Conditional beta-catenin KO (Gould et al., 2008)
CRF conditional overexpression (Lu et al., 2008)

D-aspartate oxidase KO (Weil et al., 2006)
Dopamine receptor 5 KO (Holmes et al., 2001)
*Dopamine transporter KO (Perona et al., 2008)

*CD26 KO (El Yacoubi et al., 2006)

EMX1 KO (Cao and Li, 2002)
Forkhead box O 3A KO (Polter et al., 2008)

Angiotensinogen KO (Okuyama et al., 1999)

Inositol transporter KO (Bersudksy et al., 2008)

GABA receptor A3 KO (Fiorelli et al., 2008)
GABA receptor B1 KO (Mombereau et al., 2004)
GABA receptor B2 KO (Mombereau et al., 2005)

*GABA transporter KO (Liu et al., 2007)
Glutamic acid decarboxylase 65 KO (Stork et al., 2000)

Ikaros KO (Kiehl et al., 2008)

Interleukin 6 KO (Chourbaji et al., 2006)
K channel TREK1/KcnK2 KO (Heurteaux et al., 2006)
Leukemia Inhibitory factor KO (Pechnick et al., 2004)
 *M1 muscarinic receptor KO (Miyakawa et al., 2001)

Metabotropic glutamate receptor 5 KO (Li et al., 2006)
Metabotropic glutamate receptor 7 KO (Cryan et al., 2003)

Monoamine oxidase A KO (Cases et al., 1995)
Monoamine oxidase B KO (Grimsby et al., 1997)

Mu opioid receptor KO (Yoo et al., 2004, Ide et al., 2010)

     MGAT5 KO (Soleimani et al., 2008)

Neurokinin receptor 1 KO (Rupniak et al., 2001)

Neuropeptide Y receptor 2 KO (Tschenett et al., 2003)
Neuropeptide Y receptor 4 KO (Tasan et al., 2009)

Neuronal nitric oxide synthase [nNOS] KO (Salchner et al., 2004)

Nociceptin/orphanin FQ receptor KO (Gavioli et al., 2003)
Norepinephrine transporter KO (Perona et al., 2008)

NMDA receptor 2A subunit KO (Boyce-Rustay and Holmes, 2006)

Phosphodiesterase 4B KO (Zhang et al., 2007)
Purinergic receptor P2X7 KO (Basso et al., 2009)

Serotonin receptor 1A KO (Ramboz et al., 1998)
#Serotonin receptor 1B KO (Jones and Lucki, 2004)

Serotonin receptor 7 KO (Hedlund et al., 2005)
Synaptotagmin IV KO (Ferguson et al., 2004)

Tachykinin 1 KO (Bilkei-Gorzo et al., 2002)
TGF overexpression (Hilakivi-Clarke, 1994)

Tumor necrosis factor receptor 1 or 2 KO (Simen et al., 2006)

Decreased Immobility
(ANTIdepressant)

Protein kinase C interacting protein KO (Barbier and Wang, 2009)

Fig. 1 The forced swim test (FST) and tail suspension test (TST) have been utilized to phenotype

a large number of genetically manipulated mice, illustrating the sheer diversity of genes and

pathways potentially involved in depression-related behavior. Knockout mice (“KO”), transgenic

overexpressors or other types of mutants have been segregated into those that display increased

immobility in either the FST or TST (“pro-depressant”), or reduced immobility (antidepressant-

like). Hash indicates gender differences in the phenotype; asterisk indicates that results may be

confounded by locomotor behavior. Shown are examples of genetic mutant mice examined to date;

studies utilizing virally mediated gene transfer are not included. Abbreviations:HET heterozygote;

BDNF brain-derived neurotrophic factor; TRH thyrotropin-releasing hormone; CREB cyclic

adenosine monophosphate response element binding protein; CRF corticotropin-releasing factor;

NCAM neuronal cell adhesion molecule; PACAP pituitary adenylyl cyclase activating peptide;

SLITRK slit and NTRK-like family member 1;GABA gamma aminobutyric acid; NMDA N-methyl D

aspartate; TGF transforming growth factor; EMX empty spiracles homolog; MGAT mannosyl

glycoprotein acetylglucosaminyl transferase. Images obtained from Cryan and Holmes (2005)
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the number and diversity of genes that may play a role in regulating stress-induced

immobility, including transcription factors, growth factors, endocrine hormones,

immune signaling molecules, and numerous genes encoding proteins required for

synaptic neurotransmission.

Since the majority of mutants phenotyped thus far are constitutive KOs, their

phenotype could be confounded by developmental compensatory effects, e.g.,

biochemical and anatomical alterations which are secondary to the loss of the

gene of interest [see also Gondo et al. (2011); O’Tuathaigh et al. (2011) for further

discussion]. These compensatory effects may, nevertheless, be relevant to the study

of depression. For example, the profound antidepressant-like phenotype of TREK1

(Twik-related K Channel 1) KO mice is associated with markedly altered 5HT1A-

receptor-mediated excitation in the hippocampus (Heurteaux et al. 2006), a change

that is also observed following chronic treatment with a variety of antidepressants

(Haddjeri et al. 1998). Performance on the FST and TST is also dependent on the

background strain of the animals used: systematic comparisons of inbred mice

reveal greater than a tenfold range of immobility (Liu and Gershenfeld 2003;

Lucki et al. 2001; see also Gondo et al. 2011; O’Tuathaigh et al. 2011 for further

discussion). While the effects of background strain tend to complicate phenotypic

analysis of mutant mice, such variation has been exploited for QTL (quantitative
trait loci) analyses, which have implicated genes in certain broad chromosomal

regions in this type of behavioral response (Jacobson and Cryan 2007; Tomida

et al. 2009).

The complexities of “simple” immobility testing are exemplified by data from

serotonin transporter (SERT) KO mice. Since SERT is inhibited by many available

antidepressants, one might expect SERT KO mice to display a robust antidepres-

sant-like phenotype. However, they display increased FST immobility and

decreased TST immobility on a 129S6 or 129S6/SvEV mixed background, have

increased TST immobility on a CD1 background, and yet have no phenotype on a

C57BL/6J background (Alexandre et al. 2006; Holmes et al. 2002; Lira et al. 2003).

Subsequently, a SERT KO rat has been generated through random ENU (N-ethyl-N-
nitrosurea) mutagenesis, which displays increased immobility on the FST (Olivier

et al. 2008). Thus, while SERT inhibition is required for the antidepressant effects

of SSRIs (selective serotonin-reuptake inhibitors) (Holmes et al. 2002), it appears

that the developmental loss of SERT produces a complex phenotype that is clearly

dependent on background strain. While the precise mechanistic details remain

unclear, the observed pro-depressant-like phenotypes may be related to pathologi-

cally elevated synaptic serotonin levels during development causing a decrease in

the number and firing rate of serotonergic neurons (Lira et al. 2003) as well as

disorganized limbic cortical development (Olivier et al. 2008).

3.1.2 The Learned Helplessness Model

Following an uncontrollable and inescapable stress such as exposure to inescap-

able electric shocks, animals develop a state of “helplessness” such that when
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re-exposed to the same shocks, now with an easy escape route, animals will either

display increased escape latency or completely fail to escape (Seligman et al.

1975). Following one or more sessions of inescapable shock, rats have been

shown to develop persistent changes including weight loss, alterations in sleep

patterns and HPA axis activity and loss of spine synapses in hippocampal regions

(Cryan and Mombereau 2004; Haddjeri et al. 1998; Nestler et al. 2002). In

mice, the learned helplessness (LH) syndrome appears to be short-lived (2–3

days), and several mutant lines of mice have been phenotyped on the LH assay,

with results largely compatible with their corresponding FST data. Like the FST

or TST, both mice and rats display a considerable degree of interstrain varia-

tion, and escape deficits are reversed by a variety of antidepressants (Henn and

Vollmayr 2005).

One distinctive feature of LH is the considerable degree of variability in the

expression of helplessness: anywhere from 10 to 80% of animals simply fail to

develop escape deficits. While this may be a disadvantage in certain scenarios, this

variability has been exploited to devise selective inbreeding strategies to create of

helpless and nonhelpless strains of rats which differ across a variety of other

indices, including measures of anhedonia, activity and sleep behavior (Henn and

Vollmayr 2005). DNA microarray analyses performed on hippocampal tissues

reveal that nonhelpless rats activate a distinct pattern of gene expression compared

with helpless or stress-naı̈ve rats, suggesting that their passive responsiveness may

be due to distinct neurobiological changes (Kohen et al. 2005). In mice, the

development of helpless behavior is inversely related to the activation of the

transcription factor DFosB (a stable splice variant of FosB) in the periaqueductal

gray (PAG) of the midbrain. The virally mediated overexpression of DFosB in PAG

neurons protects against developing an escape deficit partly through the transcrip-

tional repression of substance P, a neuropeptide known to modulate the physiology

of serotonergic and other neurons (Berton et al. 2007).

Today, these acute stress models make up the first line of behavioral tests

utilized to phenotype transgenic mice and are also exploited as tools to rapidly

screen putative antidepressant compounds. Even though direct links to human

depression may be weak since they use acute stressors and test acute antidepressant

responses, these tests have directed the field toward a number of previously

unappreciated molecular players (Fig. 1). Of course, to truly implicate these targets

in the pathophysiology of depression without false positives and to shed light on

complex relationships such as those observed in the case of the SERT KOs, positive

hits on these screens require much further validation through a more diverse set of

molecular and behavioral assays, ideally in conjunction with postmortem validation

(Covington et al. 2009; Hunsberger et al. 2007; Krishnan et al. 2008; Svenningsson

et al. 2006). Furthermore, the FST, TST and LH are highly sensitive to manipula-

tions which impair motor function, and the LH model is particularly sensitive to

alterations in central and peripheral pain sensitivity (Cryan and Mombereau 2004).

Therefore, these screening assays should be followed up with tests of motor

function or pain sensitivity.
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3.2 Models of Secondary or Iatrogenic Depression

3.2.1 Hormones of the HPA Axis

The hypothalamic–pituitary–adrenal (HPA) axis is activated by a wide variety of

stressful stimuli, and resultant increases in serum glucocorticoids serve an immediate

adaptive role through increases in gluconeogenesis and lipolysis. The “cortisol”

hypothesis suggests that certain symptoms of depression may be mediated by a

persistently overactive HPA axis, brought about through (1) increased production

of hypothalamic corticotropin-releasing factor (CRF) and (2) reduced negative feed-

back at the level of centrally expressed glucocorticoid receptors (Holsboer and Ising

2009). Clinical studies have demonstrated HPA axis dysregulation in some depressed

individuals, mainly those with severe depression and psychotic symptoms (Gold and

Chrousos 2002), and these patients may uniquely benefit clinically from pharmaco-

logical antagonists of the glucocorticoid receptor (Krishnan and Nestler 2008). In

contrast, atypical depression (associated with increased sleep and appetite), posttrau-

matic stress disorder, chronic fatigue syndrome, and fibromyalgia are associated with

reduced circulating glucocorticoid concentrations and heightened negative feedback

(Krishnan and Nestler 2008), demonstrating that alterations in HPA axis activity in

either direction can result in depressive features. A significant amount of preclinical

effort has been devoted to generating animal models of impaired glucocorticoid

function. Perhaps the most syndromically accurate model of melancholic depression

is the forebrain glucocorticoid receptor (GR) knockout mouse, derived through

conditional deletion of the GR allele via cre-recombinase loxP technology: these

mice display enhanced basal serum glucocorticoid levels, dexamethasone nonsup-

pression, increased FST and TST immobility, and these changes are all reversible

with chronic antidepressants (Boyle et al. 2005). Interestingly, the forebrain over-
expression of GR leads to an identical behavioral phenotype (Wei et al. 2007), which

suggests that the mood altering properties of glucocorticoid signaling are more

complex than simple increases or decreases in steroid or receptor levels.

Depression is also commonly observed as an iatrogenic side effect of chronic

glucocorticoid administration and is a key psychiatric symptom of Cushing’s

syndrome which is characterized by hypercortisolemia secondary to adrenal

or pituitary corticotrophic hyperplasia. Thus, the negative consequences of height-

ened HPA axis activity are at least partially related to the adverse effects of

glucocorticoids themselves (McEwen 2007; Pittenger and Duman 2008). Consis-

tent with this hypothesis, mice exposed to 20 days of corticosterone dissolved

in their drinking water to develop decreased responding for food pellets in

an operant conditioning task (an anhedonic phenotype) and increased TST immo-

bility, both of which are reversible by chronic amitriptyline (a tricyclic antidepres-

sant) (Gourley et al. 2008). Such corticosterone exposure decreases activation

of ERK1/2 (extracellular signal regulated kinase 1/2) in the dentate gyrus, which

is itself sufficient to increase FST immobility and antagonize the action of

antidepressants (Duman et al. 2007).
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Increases in circulating serum cortisol in depression may also be secondary to

increased CRF synthesis and secretion (Nemeroff et al. 1984). Many of CRF’s

strong effects on behavior occur through centrally mediated processes independent

of adrenal function, i.e., are not reversed by adrenalectomy (Muller and Holsboer

2006). To tease out the behavioral significance of brain CRF signaling, numerous

transgenic and knockout lines have been generated. While the loss of brain CRF has

negligible behavioral consequences, the transient overexpression of CRF during

development leads to reduced exploratory behavior (increased anxiety) and FST/

TST immobility during adulthood, and constitutive CRFR1KO mice display

increased exploration (anxiolysis) (Kolber et al. 2010; Muller and Holsboer

2006). These data, combined with postmortem evidence of enhanced CRF levels

in depression, have encouraged pharmaceutical companies to invest in the develop-

ment of a safe and effective CRFR1 antagonist to be used in depression and anxiety

disorders (Mathew et al. 2008). However, despite decades of study and numerous

pharmacological prototypes, this hypothesis remains to be tested effectively in

humans. An important challenge in this field has been to selectively antagonize

brain CRF signaling without altering natural HPA axis responsiveness.

3.2.2 Retinoic Acid Derivatives

Isotretinoin (Accutane #), a retinoic acid derivative used as a highly effective

treatment of severe acne, has been associated with an increased risk for depression

and suicide (Bremner and McCaffery 2008). Mice chronically treated with isotreti-

noin develop increases in FST and TST immobility which have thus far been

correlated with decreased hippocampal metabolism and neuronal proliferation

(Crandall et al. 2004; O’Reilly et al. 2006). Isotretinoin is known to bind and

activate retinoic acid receptors (RARs) which are widely distributed in the adult

brain (Bremner and McCaffery 2008). RARs belong to the nuclear hormone

receptor family of transcription factors, and the transcriptional consequences of

isotretinoin exposure within limbic brain regions remain unexplored.

3.2.3 Cytokines and Immune System Dysregulation

Proinflammatory cytokines such as interferon-a are used in humans to treat several

disease states. Many of these recombinantly derived proteins produce clinically

significant depression as a side effect (Loftis and Hauser 2004). A large body of

preclinical evidence suggests a bidirectional association between immune activa-

tion and depressive symptoms: certain cytokines have been shown to induce

depression-like behavior in rodents and primates (Dunn et al. 2005; Felger et al.

2007), and several models of chronic stress produce significant changes in immune

function (Miller et al. 2009). One such example is IL-1b (interleukin-1b): increases
in IL-1b signaling in the hippocampus play a role in mediating the anhedonic and

antineurogenic effects of chronic stress through the actions of the transcription
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factor NFkB (nuclear factor-kB) (Koo and Duman 2008; Koo et al. 2010). A key

priority in this field will be to progress from focusing on the sickness behavior
induced by strong immune stimuli such as LPS (lipopolysaccharide) (O’Connor

et al. 2009) to the behavioral consequences of more elegant manipulations of

specific cytokine signaling axes, as well as defining the therapeutic relevance of a

whole host of antiinflammatory therapeutics popularly prescribed for autoimmune

conditions. Clearly, the answer is not simply decreasing inflammation. The immu-

nization of rats with an altered version of MBP (myelin basic protein) activates

weakly self-reactive T-cells and has been shown to render rats immune to the

anhedonic effects of chronic unpredictable stress (CUS) (Lewitus et al. 2009),

suggesting that specific activators of immune function may in fact promote stress

resilience. Understanding the immunology of depression is particularly applicable

to autoimmune diseases such as multiple sclerosis (MS) where up to 50% of

patients experience clinically significant depression. Murine MS models display

depression-like changes such as weight loss, anorexia and reduced social explora-

tion well before the onset of neurologic deficits (Ghaffar and Feinstein 2007; Gold

and Irwin 2009), suggesting the presence of shared pathogenic mechanisms.

Depression which is secondary to medical conditions (e.g., stroke, pancreatic

cancer, hypothyroidism, hypercortisolemia, etc.) is clinically indistinguishable

from so-called endogenous or primary depression. Without clear knowledge of

the etiology of endogenous depression, models that are designed based on the direct

application of clinical observations are positioned to play a critical role due to their

strong construct validity. A direct comparison of the molecular changes associated

with corticosterone, cytokine and/or isotretinoin exposures versus stress models

are likely to provide insight into shared and distinct pathophysiological mechan-

isms between stress-induced, endogenous, and iatrogenic forms of depression. One

obvious path of investigation would be to employ genome-wide transcriptional

profiling techniques to look for shared patterns of molecular plasticity in both

animal models and patient samples. These “common denominator” patterns could

identify potential targets for antidepressant drug discovery, and such agents would

likely be active against all forms of depression.

3.3 Chronic Stress Models

While acute stress paradigms are used broadly for their ease, automation, and rapid

phenotyping abilities, they offer singular readouts that often cannot be unambigu-

ously interpreted. For instance, increased immobility in the FST is often anthro-

pomorphized as an expression of despair. However, it can also be understood as a

successful and adaptive behavioral response that functions to conserve energy.

Today’s chronic stress models are distinguished by their remarkable ability to

simultaneously produce a set of behavioral alterations with strong face validity for

depression. However, this enhanced face validity often comes at the cost of low

throughput: the precise application of these chronic stress models requires more
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space and time and greater sample sizes and are consequently significantly more

expensive than other models. Thus, fewer laboratories have experienced consistent

success. Furthermore, even with their known pharmacological validity, their low

throughput makes them poorly suited for the pharmacological validation of novel

compounds. In essence, these models are composed of repeated applications of

an uncontrollable and unpredictable stress that is coupled with a quantifiable assay

of depression-like behavior. They are based on clinical evidence that stressful life

events that significantly increase the risk of depressive episodes are generally of a

chronic nature (divorce, financial problems, and sexual abuse) (Krishnan andNestler

2008). As is discussed below, their main strengths lie in their ability to characterize

the neuroplasticity associated with chronic stress or antidepressant exposures.

3.3.1 Chronic Mild Stress

Chronic mild stress (CMS), better described as CUS, paradigms involve the appli-

cation of varied intermittent physical stresses applied over a relatively prolonged

time period (between 1 and 7 weeks, Fig. 2). Sucrose drinking is the most com-

monly utilized assay to assess the impact of CUS and CUS-exposed rats or mice

show deficits in their motivation to consume a dilute (1–2%) solution of sucrose

measured either as total sucrose intake or as a preference against water (Willner

2005). CUS has also been shown to result in a number of other “emotional” changes

that are difficult to objectively quantify, such as grooming deficits and changes

in aggressive and sexual behavior. Many of these phenotypes are reversed by

chronic antidepressants applied either during the stress or as a poststress treatment

(Strekalova et al. 2006). This model has been the subject of considerable contro-

versy related to poor reproducibility (Argyropoulos and Nutt 1997; Broekkamp

1997; Willner 2005), and while some groups have had consistent success in

repeatedly generating anhedonic mice/rats with a given paradigm, others have not

experienced the same reliability. It would appear that this model is particularly

sensitive to subtle variations in design (the various permutations of stressors) and

numerous other sources of variability endemic to behavioral research (e.g., time

of testing, vendor differences, etc.) and has accordingly faded in popularity. While

it may not have the pharmacological screening capabilities of the FST, when

performed reproducibly and reliably, it has clear potential to generate important

molecular insights into depression.

Aside from being a tool to study the physiological consequences of chronic

stress, CUS has been applied recently to phenotype mouse mutants, study gender

differences in stress responses, and validate novel antidepressants (Kong et al.

2009; LaPlant et al. 2009; Vitale et al. 2009). Like LH, CUS studies have reported

significant individual differences. In one mouse study, decreased sucrose prefer-

ence (anhedonia) was only observed in 61% of mice and was uniquely associated

with increased immobility in the FST. In contrast, all CUS-exposed mice developed

changes in locomotor behavior and decreased exploration, suggesting that segregating

a subgroup of anhedonic mice identifies a unique susceptible population that
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displays stress-induced depressive features (Strekalova et al. 2004). A similar

degree of variability has been observed in rats and when CUS-sensitive (i.e.,

vulnerable) rats were treated with antidepressants two distinct populations

emerged: antidepressant-sensitive and antidepressant-resistant (Jayatissa et al.

2006). This ability of CUS to model two poorly understood human phenomena,

stress resilience and antidepressant resistance has inspired a series of microarray

studies aimed at exploring the molecular signatures associated with these

phenomena. Resistance to the antidepressant effects of escitalopram, an SSRI, is

associated with the upregulation of proapoptotic genes including APP (amyloid

precursor protein) and TNF (tumor necrosis factor) in hippocampus, while vulner-

ability to CUS-induced anhedonia is associated with reduced expression of genes

required for cellular proliferation and differentiation (Bergstrom et al. 2007). Similar

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

 Water Deprivation

Continuous Light

Cage
Tilt

Continuous Light

Paired Housing Paired Housing Paired Housing

Damp Bedding

White
Noise

Strobe
Light

Strobe
Light

CHRONIC MILD STRESS (CMS)/ 
CHRONIC UNPREDICTABLE STRESS (CUS)

Increased immobility on FST or TST
Decreased sucrose preference

Decreased grooming
Decreased aggression (males)

Decreased sexual behavior (males)

Unstressed - Vehicle

CMS - Resilient

CMS - Escitalopram NONresponsive

CMS - Vehicle

CMS - Escitalopram responsive

Unstressed - Escitalopram

Chronic Mild Stress

S
u

cr
o

se
 C

o
n

su
m

p
ti

o
n

Time (weeks)

Treatment

a b

c d

Fig. 2 The chronic mild stress (CMS)/chronic unpredictable stress (CUS) model of depression

relies on a series of mostly physical stresses that are presented over 1–6 weeks (Willner 2005). (a)

One example of a rat CUS protocol (Grippo 2009). (b) CUS paradigms in rats and mice produce a

variety of behavioral changes. (c, d) The most popular assay for the effects of CUS is sucrose

preference or sucrose intake whereby reductions in the consumption of a palatable sweet solution

are interpreted as anhedonia. CUS has been applied to the study of stress resilience (CUS-resilient

mice do not display a reduction in sucrose intake) and antidepressant resistance (escitalopram

treated mice do not recover impairments in sucrose drinking). The key for the colored lines is
provided in Panel d. DNA microarray technology combined with gene expression cluster analysis

can aid in correlating behavioral groups with their gene expression patterns. For example, in this

study examining total hippocampal tissue, genes modulated in CUS-resilient and vehicle-treated

unstressed control rats were strongly overlapping, and these gene expression patterns were quite

distant from unstressed rats treated with escitalopram (Bergstrom et al. 2007)
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experiments have been conducted in other brain regions including the amygdala and

cingulate and frontal cortices (Orsetti et al. 2008; Sibille et al. 2009; Surget et al.

2009), each revealing unique region-specific molecular signatures associated with

vulnerability to CUS.

At this stage, cellular heterogeneity represents a key limitation in the interpreta-

tion of these data: microarray studies performed on mixed samples of neuronal,

glial, endothelial and immune cells are likely to result in poor reproducibility and

low signal/noise ratio. Two important developments that are likely to address this

problem are (1) laser capture microdissection techniques, which allow for precise

isolation of limbic nuclei and subnuclei, and (2) mutant mice where subpopulations

of neurons or other cell types are fluorescently labeled, allowing precise sorting of

cells of interest through fluorescence-mediated techniques (Pollak et al. 2008;

Sugino et al. 2006). As technological advances in DNA and protein array analysis

allow for the rapid, reliable, and cost-effective genome-wide analysis of transcrip-

tional regulation, these studies set the stage for an understanding of the complex

gene network interactions involved in the pathophysiology of depression and

antidepressant responsiveness.

3.3.2 Psychosocial Stress Models

One caveat with CUS is its questionable construct validity since certain routinely

employed CUS stressors are physical (e.g., strobe lights, restraint or swim stress, or

abrupt circadian disruptions) and are unlikely to be encountered by rats or mice in

the wild. At least in this respect, models of psychosocial stress display their greatest

strength since they entirely rely on innate social behavior. The central theme in

these models (Fig. 3), whether they are conducted in rats, mice, or tree shrews, is

to allow two or more subjects to socially and physically interact (an agonistic
encounter) such that one achieves dominant status (alpha) and the others remain

subordinate (omega). While some groups identify subordinates between age- and

strain-matched pairs of mice or dyads (Avgustinovich et al. 2005; Malatynska and

Knapp 2005), others employ a “forced subordination” strategy whereby reliably

aggressive rodents (usually larger and/or of a more aggressive strain) are employed

to consistently subordinate other subjects (Berton et al. 2006; Covington and

Miczek 2005). In addition to the intense and unpredictable physical stress during

social encounters, several laboratories add on the psychological stress of prolonged

“sensory contact” through which subordinate mice are housed in the same cage

as their dominant counterparts across a partition that prevents all but sensory

interaction (Martinez et al. 1998). Following multiple defeat encounters, rodents

display reduced social interaction, decreased exploration and locomotor behavior,

anhedonia (e.g., decreased sucrose preference and sexual behavior), increased

stress-induced immobility and alterations in HPA axis and autonomic function

(Avgustinovich et al. 2005; Krishnan et al. 2007), many of which are reversed by

chronic but not acute antidepressant administration (Becker et al. 2008; Rygula

et al. 2008). Like CUS, the establishment and validation of such social stress
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models can be cumbersome and expensive. Reliable expression of aggressive

behavior can be easily disrupted by minor procedural variations such as changes

in bedding or cage size. In addition, laboratory personnel performing social defeat

experiments must attain a sense for the correct “quantity” of aggressive behavior:

while excessively injurious physical interactions are both unethical and irrelevant to

the study of depression, weakly aggressive encounters pose the risk of producing

mild and short-lived phenotypes that may affect molecular analyses.

The decreased sociability following such defeats can be quantifiably assessed

with automated tests of social interaction that permit an assessment of individual

differences among defeated mice. By combining this type of highly quantitative

behavioral analysis with standard molecular and cellular techniques, this model

has shed light on a number of mechanistic hypotheses related to variability in stress

responsiveness. These include the role of activity-dependent BDNF (brain-derived

neurotrophic factor) signaling within the mesolimbic dopamine circuit (Feder

et al. 2009; Krishnan and Nestler 2008), endogenous kappa-opioid signaling

(McLaughlin et al. 2006), the contribution of adult hippocampal neurogenesis

(Lagace et al. 2010) and the role of peripherally derived mediators of energy

homeostasis (Chuang et al. 2010). Such significant variability even among age-

matched members of an inbred strain suggests that this heterogeneity occurs

independently of DNA sequence variations. One possibility is that epigenetic
modifications of the genome, which occur stochastically during development,

may contribute to this variability seen among inbred mice raised in near identical

environmental conditions. These epigenetic mechanisms include covalent modifi-

cations to histones (e.g., histone acetylation, methylation or phosphorylation) or

DNA (e.g., DNA methylation) (Krishnan and Nestler 2008; Bountra et al. 2011).

Social defeat itself has a powerful impact on the epigenome: defeated mice

display increases in repressive histone methylation in the hippocampus and

Fig. 3 (continued) resident mouse and is forced to spend the remainder of the day across a

partition that permits sensory contact without fighting. (b) The main behavioral consequences of

repeated bouts of such social subordination. (c) Aside from face, construct, and pharmacological

validity, one can further validate animal models by demonstrating the presence of identical

molecular changes in human postmortem tissue. Here, 10 days of social defeat in C57Bl/6 mice

increases BDNF protein levels (by immunoblot) in the nucleus accumbens such that vulnerable or

susceptible mice (S) display the greatest increases in BDNF (C controls,U unsusceptible), with the

inset demonstrating a significant inverse correlation between interaction scores and BDNF levels.

This molecular change is also observed in postmortem accumbens samples from male depressed

individuals (Krishnan et al. 2007). (d) ChIP–chip analyses (chromatin immunoprecipitation

followed by DNA promoter arrays) examining genome-wide patterns of a repressive form of

histone H3 methylation in the nucleus accumbens. The region of Venn overlap (“275”) corre-

sponds to 275 genes that are upregulated in susceptible animals and that are also reversed by

imipramine and not seen in resilient animals (Wilkinson et al. 2009). Some examples of genes that

fall within this overlap include CNK1D (casein kinase 1 delta), FGF1 (fibroblast growth factor 1)

and HDAC4 (histone deacetylase 4). These results suggest that inhibiting the stress-induced

histone methylation at these genes through inhibitors of histone methyltransferases constitutes a

potential novel target for antidepressant development
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nucleus accumbens (Tsankova et al. 2006) and increases in histone acetylation in

the NAc (Covington et al. 2009). ChIP–chip techniques (chromatin immunopre-

cipitation combined with promoter array chips) have allowed for an apprecia-

tion of epigenetic profiles associated with the expression of susceptible or

resilient behavior and antidepressant exposure (Wilkinson et al. 2009). This latter

approach has illustrated a significant degree of overlap in patterns of epigenetic

regulation between antidepressant-treated susceptible mice and vehicle-treated

resilient mice, suggesting that certain individuals may avoid the deleterious

effects of stress by naturally mounting an endogenous antidepressant-like

response (Wilkinson et al. 2009). Furthermore, with the advent of pharmacologi-

cal inhibitors of epigenetic enzymes such as histone deacetylase inhibitors

(HDAC inhibitors; see Bountra et al. 2011), one can directly test epigenetic

hypotheses in a more precise manner. For example, the antidepressant effects of

systemically administered weakly selective HDAC inhibitors such as sodium

butyrate and valproic acid (Gundersen and Blendy 2009; Schroeder et al. 2006;

Tsankova et al. 2006) can be recapitulated by a localized infusion of more specific

and selective drugs in the NAc (Covington et al. 2009). Similar strides have been

made in understanding the behavioral impact of DNA methylation (LaPlant et al.

2010). Microarray analyses comparing the effects of systemic fluoxetine and

localized HDAC inhibitor infusions reveal significant overlap in patterns of

transcriptional activation and repression (Covington et al. 2009). On the other

hand, genes influenced by HDAC inhibitors, and not by fluoxetine, may prove

even more interesting in terms of identifying truly novel approaches for more

effective antidepressant treatments.

Other forms of social stress are worth mentioning. Prolonged social isolation

during adulthood results in reduced sucrose drinking and alterations in sexual

reward behavior. While this model has received less recent attention, it displays

excellent construct validity and requires minimal sophistication (Wallace et al.

2009; Wilkinson et al. 2009). Early life stress, typically applied in the form of

maternal separation during early postnatal developmental periods, has been shown

to result in cognitive and emotional changes that persist through adulthood. These

phenotypes, such as altered HPA axis function, increased immobility, weakened

prepulse inhibition, spatial learning deficits, etc., have been linked to a variety of

neuropsychiatric syndromes with strong developmental hypotheses including

schizophrenia (Fumagalli et al. 2007; Lupien et al. 2009). While studies in this

field have traditionally almost exclusively emphasized the role of the HPA axis,

more recent ventures have demonstrated how maternal separation paradigms are

quite aptly designed to study epigenetic forms of neuroplasticity (Murgatroyd et al.

2009) as well as mechanisms by which early life stress can in fact promote

resiliency during adulthood (Lyons et al. 2009). Since social defeat models rely

on differences in intermale aggression, they cannot be directly applied to females.

However, females do display depression-like features following other social stres-

sors such as intermittent crowding or isolation (Herzog et al. 2009). Given the

twofold preponderance of depression in females, further studies of pathophysiolog-

ical mechanisms in female rodent models are a very high priority for the field and
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these psychosocial stress models, in their ability to directly compare across sexes,

are ideal candidates for such studies.

4 Insights from Models of Antidepressant Action

While the molecular targets of current antidepressant agents are known, there

still remain large gaps in understanding their neuroanatomical sites of action and

why these agents are associated with a significant therapeutic delay. Most of the

current knowledge of these mechanisms has come from animal studies examining

neurobiological changes following chronic antidepressant administration, volun-

tary exercise (through the exposure to a running wheel), or the application of ECT.

More recent reports have exploited other strategies in rodents such as repetitive

transcranial magnetic stimulation (rTMS) using a noninvasive cortical stimulating

device (Vieyra-Reyes et al. 2008) as well as more creative cognitive paradigms

such as learned safety, where a benign environmental stimulus that signals “safety”

produces antidepressant-like effects (Pollak et al. 2008).

The most compelling and reproducible biological findings from these approaches

are focused largely on the hippocampus, perhaps due to its well-understood anatomy.

These studies have contributed to the development of neurotrophic model of depres-

sion, whereby stressful experiences through glucocorticoid signaling and other

mechanisms reduce the level of neurotrophic factors such as BDNF in the hippocam-

pus resulting in atrophic morphological changes. Antidepressants, by activating

cellular signaling cascades that culminate in the activation of CREB (cyclic-AMP

response element binding protein), function to enhance levels of BDNF and

other growth factors like VEGF (vascular endothelial growth factor) and VGF

(nonacronymic), which promote the proliferation and differentiation of hippocam-

pal progenitors and alter monoaminergic synaptic transmission (Balu and Lucki

2009; Krishnan and Nestler 2008; Pittenger and Duman 2008). Other key molecular

mediators have been identified, such as p11, a scaffolding protein induced by

antidepressants that binds and enhances the surface expression and activity of

the serotonin 1B (5-HT1B) receptor, promoting an antidepressant-like response in

laboratory assays (Svenningsson et al. 2006). p11 also enhances the activity of

serotonin receptor type 4 (5-HT4) (Warner-Schmidt et al. 2009), which is of

particular significance since 5-HT4 receptor agonists have rapid antidepressant-

like activity. In the CUS model, while only 3–4 days of daily injections of RS67333

(a prototypical 5-HT4 receptor agonist) alleviated the reduced sucrose intake in

CUS-vulnerable rats: citalopram-treated controls required greater than 14 days of

treatment to observe a significant improvement (Lucas et al. 2007). This study

illustrates a key point related to pharmacological validity. Even though acute stress

models are often criticized for their acute responses to antidepressants, efforts

should nevertheless still be devoted to identifying novel agents that do not exhibit

a therapeutic delay. The identification of such rapidly acting agents offers hope that

antidepressants of the future will no longer be limited by their therapeutic delay.
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A clinically validated example of one such a rapidly acting agent is ketamine (aan

het Rot et al. 2010), and recent preclinical experiments reveal that ketamine’s

antidepressant effects may be mediated through rapid forms of glutamatergic

synaptic plasticity (Li et al. 2010).

The neurotrophic hypothesis described above is consistent with the observation

that certain subpopulations of depressed patients display small reductions in total

hippocampal volume with consequent ventricular enlargement (Savitz and Drevets

2009). Aside from these correlative data, there is little direct clinical evidence that

alterations in hippocampal activity alter mood per se. Functional neuroimaging

studies designed specifically to reveal the neuroanatomical substrates of altered

emotional processing in depression have indicated roles for the amygdala and

frontal cortical regions such as the subgenual cingulate cortex (area cg25), where

the application of deep brain stimulation (DBS) produces long-lasting antidepres-

sant effects in treatment-resistant depression (Mayberg 2009). Such profound

effects of DBS applied to Cg25 or the NAc (Bewernick et al. 2010) constitute

not only an important therapeutic development, but also provide unequivocal

evidence regarding neural substrates that participate in improving mood symptoms.

Of interest, patients in these studies were noted to have an immediate and intolera-

ble worsening of depressive symptoms when DBS stimulators were turned off

(Bewernick et al. 2010), illustrating how the antidepressant effects of nucleus

accumbens DBS are profound and yet short-lived. In the future, we can expect

refinements in stimulation parameters and localization of DBS thanks to rodent

studies which have begun to explore the effects of DBS and optogenetic stimulation

(a spatiotemporally precise technique that relies on light-mediated activation of

cation or anion channels) on circuit-level neurophysiology and molecular mediators

(Gradinaru et al. 2009; McCracken and Grace 2009; Temel et al. 2007). While

this approach is still in its infancy, it promises to improve understanding of the

dispersed neurocircuitry involved in complex psychiatric symptoms such as anhe-

donia and may offer insight into how DBS may one day be combined with

pharmacological interventions to enhance antidepressant efficacy.

5 Conclusions

Sadly, in spite of almost 40 years of research into depression’s mechanisms, the

newest agents released on to markets today only vary from their predecessors in

side-effect profile, with negligible improvements in efficacy. Therefore, in addition

to combining pharmacotherapy with psychotherapy, clinicians are often forced

to initiate multiple antidepressant medications simultaneously, or rely on adjunct

medications like thyroid hormone, antipsychotic agents or psychostimulants to

boost the antidepressant response, with each additional medication coming at the

expense of new off-target effects. From the examples discussed above, there is a

diverse array of useful animal models that can expand our understanding of

mechanisms in depression. Rather than advocate for a single “best” model,
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investigators must realize the relative strengths and limitations of each paradigm

and always aim to utilize tools that advance our understanding of the disease. While

there are examples of “simple” tests that have provided key molecular insights

(Berton et al. 2007; Svenningsson et al. 2006), there have been other instances when

more “sophisticated” models have only provided behavioral minutiae (Avgustino-

vich et al. 2005). To increase the likelihood that these models will provide the next

generation of effective antidepressants, the approach to the utilization of animal

models must mature.

The overarching goal should be to narrow the gap between basic and clinical fields

of investigation, and this can be executed at several different levels. Neuroplastic

changes that reliably occur in rodents following stress or antidepressant exposures

can be explored in human postmortem samples, with replications providing a further

validation and increasing knowledge of biomarkers in depression. When examining

genes of interest, instead of focusing on behavioral phenotypes in constitutive

knockout mice, efforts should be focused on recapitulating human polymorphisms

in those genes, understanding their cellular and physiological consequences and

advancing models to tease out more subtle phenotypes. Moreover, given the signifi-

cance of gene � environment interactions in the pathogenesis of virtually all psychi-
atric disorders (Caspi andMoffitt 2006; see also Lesch 2011), we can gain insight into

their neurobiological basis by recapitulating such interactions in animal models

(Carola et al. 2008). Rather than emphasizing the more traditional “treatment versus

control” approach, focusing on individual differenceswill increase the understanding
of biological mechanisms underlying such variability, including a role for epigenetic

mechanisms. Finally, while clinicians continue to refine novel experimental treat-

ments for depression such as intravenous ketamine or DBS, basic scientists must

complement their efforts by exploring the neurobiological mechanisms underlying

those treatments; such translational approaches will further narrow the gap between

human depression and the theoretical formulations of its mechanisms.
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Abstract Studies employing animal models of attention-deficit/hyperactivity dis-

order (ADHD) present clear inherent advantages over human studies. Animal

models are invaluable tools for the study of underlying neurochemical, neuropath-

ological and genetic alterations that cause ADHD, because they allow relatively

fast, rigorous hypothesis testing and invasive manipulations as well as selective

breeding. Moreover, especially for ADHD, animal models with good predictive

validity would allow the assessment of potential new therapeutics. In this chapter,

we describe and comment on the most frequently used animal models of ADHD
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that have been created by genetic, neurochemical and physical alterations in

rodents. We then discuss that an emerging and promising direction of the field is

the analysis of individual behavioural differences among a normal population of

animals. Subjects presenting extreme characteristics related to ADHD can be

studied, thereby avoiding some of the problems that are found in other models,

such as functional recovery and unnecessary assumptions about aetiology. This

approach is justified by the theoretical need to consider human ADHD as the

extreme part of a spectrum of characteristics that are distributed normally in the

general population, as opposed to the predominant view of ADHD as a separate

pathological category.

Keywords ADHD �Atomoxetine �Attention � Behavioural models � Fronto-striatal
loops � Genetic models � Hyperactivity � Impulsivity � Psychostimulants

Abbreviations

5-CSRTT Five-choice serial reaction time task

5-HT Serotonin

6-OHDA 6-Hydroxydopamine

ACg Anterior cingulate cortex

ADHD Attention-deficit/hyperactivity disorder

CPT Continuous performance task

DA Dopamine

DAT Dopamine transporter

DAT1 Dopamine transporter gene 1

DAT-KO Dopamine transporter knock-out

dB Decibels

DRD4 Dopamine receptor D4

DRL Differential reinforcement of low rates of responding

DSM-IV Diagnostic and statistical manual of mental disorders 4th edition

FCN Fixed consecutive number

GH Genetically hypertensive rat

ICD-10 International classification of diseases 10th revision

IL Infralimbic cortex

LHT Lever-holding task

ms Milliseconds

NA Noradrenaline

NAc Nucleus accumbens

NHE Naples high-excitability

OFC Orbitofrontal cortex

PD Post-natal day

PFC Prefrontal cortex

150 A. Bari and T. Robbins



PrL Prelimbic cortex

SHR Spontaneously hypertensive rat

SNAP-25 Synaptosomal-associated protein 25

SSRT Stop-signal reaction time

SST Stop-signal task

TRbeta 1 Thyroid hormone receptor beta 1

WK Wistar-Kyoto

1 Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a complex developmental con-

dition mainly characterized by symptoms of impulsivity, hyperactivity and inatten-

tion (American Psychiatric Association 2000). It is one of the most common

psychiatric disorders diagnosed in childhood with a worldwide prevalence esti-

mated to be 8–12% of the population (Faraone et al. 2003). Possible adverse

consequences of having ADHD include, among others, drug abuse, delinquency,

anxiety and depression, high risk for school failure, social rejection and poor self-

esteem (Barkley 1997b; Biederman 2005). As such, this disorder places an enor-

mous burden in terms of healthcare cost, familial stability and academic outcomes.

1.1 Aetiological Mechanisms and Pathophysiology

To date, the aetiological mechanisms of ADHD are obscure, although the genetic

influence is estimated to be rather strong, probably involving small effects of

several interacting genes (Faraone et al. 2005) that determine the severity of

symptoms. ADHD children are often described as hyperactive, impulsive, with a

short attention span and easily distractible, although the hyperactivity often dis-

appears during adulthood. High rates of comorbidity are also characteristic of

ADHD, which is often accompanied by reading disabilities, anxiety and conduct

disorders (Sobanski 2006; Spencer 2006).

Children with ADHD have a much higher probability of having close relatives

with psychopathology than control children even though it is difficult to separate

the genetic contribution from the shared environment. For example, less educated

parents are more likely to provide a poorly structured educational environment,

which could exacerbate ADHD symptoms in their offspring. On the other hand,

lower levels of parental education may be the consequence of ADHD symptoms

during childhood, revealing the genetic origin of the disorder in their children.

Environmental risk factors include brain traumas during infancy, or perinatal period,

alcohol and drug abuse during pregnancy, autoimmune diseases and bacterial brain
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infections, heavy metal poisoning and psychosocial adversity (Biederman et al.

1995; Mick et al. 2002; Sprich-Buckminster et al. 1993). However, ADHD research

points to heritability as the most common cause of the disorder, with some environ-

mental and familial factors influencing how the symptoms are expressed (Bieder-

man 2005; Wallis et al. 2008).

Patients with ADHD often present brain abnormalities especially of the right

prefrontal cortex (PFC), basal ganglia and cerebellum (Giedd et al. 2001). These

structures are modulated by dopamine (DA) and noradrenaline (NA), which are

implicated in the pathophysiology of ADHD (Faraone and Biederman 1998). DA is

usually associated with reward, learning and motor functions, while NA regulates

arousal, attention and mood. The most prescribed medications to ADHD patients

are psychostimulant drugs, which have a “paradoxical” calming effect on these

patients (Bradley 1937). Low to moderate doses of amphetamine or methylpheni-

date increase the synaptic availability of DA and NA by blocking degradation and

reuptake, promoting release and synthesis (Oades 1987).

Broad cognitive domains that appear disrupted in children with ADHD comprise

self-regulatory functions such as attention, working memory and action selection/

inhibition, as well as affective decision-making and the processing of temporal

information (Barkley 1997a; Nigg 2005). However, it is not yet clear what are the

precise neuropsychological deficits that characterize this complex and multifacto-

rial condition.

1.2 Single and Multiple Deficit Approaches

It is evident that a broad range of cognitive functions are affected in ADHD and

debate continues as to whether the study of behaviourally defined developmental

disorders should be looking for a single cognitive deficit that can explain the

behavioural symptoms or follow a multi-deficit approach (Applegate et al. 1997;

Barkley 1997b; Barkley and Biederman 1997; Pennington 2006; Routh and Roberts

1972; Shaffer and Greenhill 1979; Solanto et al. 2001; Sonuga-Barke 2002).

The first approach leads to the creation of different subtypes based on the main

behavioural features displayed by the affected individuals and, in its extreme form, to

considering them as separate disorders (Lahey and Applegate 2001; Milich et al.

2001). An example of this approach is to be found in the current criteria listed in the

DSM-IV for the diagnosis of ADHD (Table 1). The usual practise is to subdivide

ADHD patients into three subgroups: predominantly impulsive/hyperactive, predom-

inantly inattentive and combined subtype (American Psychiatric Association 2000).

A multi-deficit approach, instead, should consider ADHD as being determined

by the interaction of various cognitive disabilities, probably sharing overlapping

pathophysiological mechanisms which affect a large range of cognitive functions,

as well as different brain regions and neurotransmitter systems (Solanto et al. 2001).

The distinction between single- and multiple-deficit approaches is also relevant for

the treatment of ADHD which to date has not taken into account the possibility of a

targeted intervention based on the particular needs of the different diagnostic
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subtypes. The same consideration applies to the development of animal models,

which often feature only one particular aspect of the pathology in the model

organism or in the behavioural or cognitive construct under test. The creation of

animal models featuring multiple deficits of ADHD is now possible and encouraged

thanks to the advances in our understanding of the heterogeneity and polygenic

nature of this condition. On the other hand, more selective approaches could be also

advantageous in that they simplify the pathology under investigation through the

study of specific endophenotypes and provide a parsimonious method for testing

pharmacological interventions and causal hypotheses (Gottesman and Gould 2003).

1.3 Categorical and Dimensional Approaches

Another distinction that has to be made between different approaches in the study

and treatment of ADHD, as well as for many neuropsychiatric conditions, is

between dimensional and categorical conceptualizations of the pathology, which

are fundamentally equivalent and interchangeable in theory, but not in practise

(Kraemer et al. 2004). A dimensional (or trait) approach would consider ADHD

individuals as representing the extreme end of a continuum of cognitive and

Table 1 Examples of DSM-IV criteria for ADHD and behavioural tasks used to assess inatten-

tion, hyperactivity and impulsivity in rodents

Examples of DSM-IV criteria for ADHD Examples of tasks used to asses DSM-IV

criteria in animal models of ADHD

(1) Inattention
l Often has difficulties sustaining attention in

tasks or play activities

l 5-choice serial reaction time task

(accuracy)
l Often has difficulties organizing tasks and

activities

l Visual timing task

l Is often easily distracted by extraneous

stimuli

l Cross-modal divided attention task

(2) Hyperactivity/impulsivity

Hyperactivity
l Often fidgets with hands or feet or squirms

in seat

l Locomotor boxes

l Often runs about or climbs excessively in

situations in which it is inappropriate

l Open field

l Is often “on the go” or often acts as if

“driven by a motor”

l Làt maze

l Often talks excessively l Circular corridors

Impulsivity
l Often blurts out answers before questions

have been completed

l 5-choice serial reaction time task

(premature responses)
l Often has difficulty awaiting turn l Stop-signal task
l Often interrupt or intrudes on others (e.g.

butts into conversations or games)

l Lever holding task
l Differential reinforcement of low

rates of responding (DRL)
l Delay discounting
l Fixed interval/extinction schedule
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behavioural functioning, as opposed to a categorical view, which assumes that

ADHD is a discrete disorder. The alternative view is based on a certain number

of diagnostic criteria (see Table 1), which define the presence of the pathology, but

without taking into account different degrees of severity (Lubke et al. 2007; Polderman

et al. 2007). These two approaches are complementary in that the former can inform

decisions about the need and the amount of clinical intervention, as well as help

drawing conclusions from experimental evidence, while the second serves to

establish some cut-off points useful for the diagnosis and inclusion criteria in

scientific research.

Studies using a variety of statistical approaches (Gjone et al. 1996; Hudziak et al.

1998; Levy et al. 1997; Lubke et al. 2009) support the view of ADHD as a

continuum, which justifies the emerging tendency towards the use of animals

selected from a normal population as laboratory models of ADHD. These animals

usually display extreme behavioural characteristics and are subsequently assigned

to a separate experimental group or category for statistical analysis and treatment

evaluation purposes, which, in turn, is consistent with a categorical view of the

disorder (Neuman et al. 2005; Rasmussen et al. 2004; Todd et al. 2002).

2 Validity and Utility of Animal Models of ADHD

Ideally, a good animal model of ADHD should have all the symptoms present in

affected patients as well as respond similarly to the same pharmacological inter-

ventions (Davids et al. 2003; Oades 1987). Although the aetiology of ADHD is not

yet clear, animal models should be produced by means of experimental manipula-

tions that are similar to already known predisposing risk factors for the develop-

ment of ADHD such as chemical or physical insults in the newborn, and genetic or

environmental alterations. Behavioural impairments should be evident during neu-

ropsychological tasks, exposure to environments and developmental stages in ways

that resemble the human condition.

Very few animal models of ADHD have been able to mimic multiple deficits at

the same time, but nevertheless their use has proven fruitful. Animal models present

many advantages in the study of human diseases because they have a relatively

simple nervous system compared to human subjects, their environment is easier to

control and their behaviour is easier to interpret and quantify (Sagvolden et al.

2005). Experimentation with animal models has informed ADHD theories on the

neurobiological and genetic mechanisms causally underlying this pathology. More-

over, psychopharmacological studies have elucidated the mechanisms of action of

various drugs used in ADHD pharmacotherapy and have highlighted the possible

risks and long-term side effects of their use.

Animal models of human psychiatric diseases should conform to specific valid-

ity criteria (Sarter et al. 1992). These are face, predictive and construct validity.

Face validity refers to the observable similarities between the model and the clinical

manifestation of the condition modelled. Predictive validity is the capacity of the
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model to predict the efficacy of new treatments and the existence of genetic and

biological correlates of the disease that had not been observed before. Construct

validity pertains to the theoretical status of the model (Willner 1986). The “gold

standard” animal model of ADHD, however, has yet to be defined, but many of the

models available have shown good face and predictive validity, at least for one or a

subset of ADHD symptoms (Sagvolden et al. 2005). Laboratory models of ADHD

have been developed mostly in rodents, partly because more is known about their

biology and genetics and also because they are less expensive and less complex

than non-human primates.

Animal models of ADHD can be grossly divided into groups according to the

method used to create or select them from a normal population of animals. In the

following sections, after an overview of the laboratory tests most frequently used in

animal models of ADHD, we will describe and comment on behavioural models,
selected for specific deficits on certain behavioural tasks; genetic models, which
have been created by genetic manipulation or selective breeding and finally chemi-
cally induced and physical trauma models, which are the result of different kinds of
experimental brain damage and interference with normal neural development.

3 Assessing ADHD Features in Animal Models

To date there is no physical test for ADHD, consequently the diagnosis is com-

monly based on behavioural criteria formally described in the diagnostic manuals

DSM-IV and ICD-10. These manuals list a range of symptoms grouped by clusters

of inattentive, impulsive and hyperactive behaviours, a subset of which have to be

displayed by the subject in order to fulfil the criteria for a diagnosis of ADHD

(Table 1).

Animal models of ADHD are usually screened for behavioural symptoms that

resemble the human condition by the use of laboratory tests, some of which are

directly based on those used in clinical neuropsychology and adapted for use in

model organisms. Researchers use these tasks to assess the validity of the model

according to the defining criteria of ADHD but also to assess behaviours related to,

and often co-morbid with, ADHD (e.g. novelty-seeking, learning deficits, anxiety

and memory impairments), which are also of particular interest. Moreover, neuro-

chemical and neuromorphological assays, both in vivo and in vitro, are other

important ways of validating the model at the physiological level and for gaining

new insights into the neural determinants of the observed behavioural deficits.

3.1 Inattention

Attention deficits are a main feature of the ADHD syndrome. It is not clear,

however, to what extent these deficits represent an independent or super-ordinate

impairment, if they are a consequence of other primary deficits or they simply
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co-occur with the other main behavioural symptoms, sharing the same aetiological

factor. This is because although signs of inattention and deficits in the continuous

performance task (CPT) of attentional performance (Corkum and Siegel 1993) have

been largely replicated, it has been difficult to find specific impairments in ADHD

when attention has been fractionated into sub-processes such as divided, sustained,

and selective attention (Huang-Pollock and Nigg 2003; Huang-Pollock et al. 2005).

However, it has been shown recently that ADHD subjects may have spatially

asymmetric selective attention deficits (Chan et al. 2009) and are impaired in

tasks assessing more generalized alertness levels (Johnson et al. 2008). Thus, as

we will see for animals, detecting attentional impairments in human ADHD cru-

cially depends on the nature of the task used and the specific construct under

investigation.

One of the most frequently used tests of sustained attention in rodents is the five-

choice serial reaction time task (5-CSRTT), which was developed partly with the

aim of investigating and better understanding the deficits underlying ADHD (Carli

et al. 1983; Robbins 2002). The basic task is modelled on the CPT (Beck et al. 1956;

Wilkinson 1963) used to study human attentional processes. The rat version of the

task requires animals to monitor a horizontal array of five apertures and to withhold

from responding until the onset of a stimulus, which is a brief flash of light

presented pseudo-randomly in one of the five holes. Then, the animal has to make

a nose-poke response in the spatial location where the stimulus was presented in

order to receive a food reward (Fig. 1). Generally, the accuracy of stimulus

discrimination provides an index of attentional capacity, while premature responses –

made before the presentation of the stimulus – are regarded as a form of impulsive

behaviour and hence a failure in impulse control (Bari et al. 2008; Robbins 2002).

This is a considerable advantage of the 5-CSRTT because the capacity to measure

Fig. 1 (a) Schematic representation of a 5-choice operant chamber, (b) Diagram representing the

sequence of events during a standard trial of the 5-CSRTT pictures are taken from (Bari et al.

2008)
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both impulsivity and attentional performance in the same setting is a parsimonious

way of assessing the validity of animal models on multiple deficits avoiding the

possible confound of generalization between different task environments.

Attention can also be measured by visual timing tasks (Broersen and Uylings

1999; Granon et al. 1998), cross-modal divided attention paradigms (McGaughy

et al. 1994) and others, although sometimes there is no clear consensus on the

construct measured by a particular task (Bushnell 1998).

3.2 Hyperactivity

Hyperactivity in animal models of ADHD is usually measured by observing and

quantifying motor activity levels (i.e. horizontal locomotion and vertical rearing) in

disparate settings. Most commonly used apparatus for this purpose are activity

chambers equipped with infrared-emitting diode/photocell arrays, which are able to

automatically count beam breaks caused by the movements of the animal. Circular

corridors (Le Moal et al. 1975) and the “Làt maze” (Sadile et al. 1986) have also

been extensively used for the same purpose. As suggested by Solanto (1998, 2000),

a good animal model should display elevated spontaneous locomotor activity over

the 24 h, which returns to normal levels after low doses of psychostimulants, but

without any tolerance, sensitization, long-term effects or difference between acute

and chronic administration of the drug. However, locomotor hyperactivity is not

expressed in novel situations by children with ADHD (Sleator and Ullmann 1981;

Whalen and Henker 1976), but more often in potentially boring and non-stimulating

environments.

3.3 Impulsivity

Impulsivity has perhaps been the most explored construct in the behavioural neuro-

science of ADHD. Although impulsivity is generally considered to be a multifacto-

rial trait (Evenden 1999), the behavioural dimension of inhibitory control lies at its

core and is regarded by many as the cardinal feature of ADHD (e.g. Barkley 1997b;

Nigg 2001). Impulsive behaviour is characterized by deficient inhibitory processes,

that is, by a difficulty in withholding inappropriate, pre-potent responses or thoughts

even in the face of punishment or long-term negative outcomes. In children with

ADHD, impulsivity is often manifested as the inability to wait in a variety of

situations and the tendency to interrupt others’ conversations or games, or to respond

before the end of the question. One of the most disruptive characteristics is the

inability to control one’s emotions resulting in exaggerated affective reactions.

In the theoretical formulation of Barkley (1997b), behavioural inhibition com-

prises three interrelated processes: inhibition of a pre-potent response, stopping an

ongoing response and interference control. More recently, Kipp (2005) distinguished

between behavioural and cognitive inhibition (plus resistance to interference) in the
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context of developmental psychology, referring to the suppression of inappropriate

motor responses and thoughts, respectively. The same distinction, but with different

implications, can be made in a cognitive perspective between the inhibition,

through executive control processes, of motor responses (e.g. withholding or stopping

a response) and motivational and affectively charged processes (e.g. deferred gratifi-

cation) (Castellanos et al. 2006; Nigg 2005; Zelazo and Mueller 2002). Accordingly,

inhibition in humans and other animals is most commonly operationalized by tasks

measuring motor inhibition and delay discounting, respectively.

Inhibitory processes subserve executive functions such as working memory,

self-regulation of affect, motivation and arousal (Barkley 1997b) and are assessed

by the ability to withhold or stop an on-going response, all processes that are

particularly disrupted in ADHD (Adams et al. 2008; Alderson et al. 2007; Schachar

et al. 2000). The stop-signal task (SST, Logan et al. 1984) and the Go/No-Go task

(Pennington and Ozonoff 1996; Trommer et al. 1988) are the most commonly used

behavioural paradigms for measuring the speed and efficacy of response inhibition

in children. Of the various forms of impulsivity, deficits in inhibitory processes as

assessed by these tasks – especially by the SST – are among the most replicated

findings in children with ADHD (Alderson et al. 2007; Castellanos et al. 2006;

Lijffijt et al. 2005; Oosterlaan et al. 1998; Schachar et al. 2000). Therefore, the

adaptation of these two tasks for use in animals represents an enormous advance in

the development and validation of animal models of ADHD (Eagle et al. 2008a;

Eagle and Robbins 2003; Feola et al. 2000; Winstanley et al. 2006).

In both the SST and the Go/No-Go task, the subject is required to produce a

motor response (e.g. lever or button press) upon the presentation of a “Go” signal,

which is usually a visual stimulus. In a subset of trials, a “Stop” or “No-Go” signal

(either visual or auditory) is presented, and the subject has to inhibit the “Go”

response, which is made prepotent by its higher rate of appearance and/or by time

Fig. 2 Schematic diagram representing the typical course of events during correct trials in the Go/

No-go task and SST. Trials are preceded by a short interval (inter-trial interval, ITI) then in Go

trials (centre line, the same for the two tasks) an imperative stimulus is presented which signals the

animal to start the response. Go/No-go task: during No-go trials, the No-go signal is presented

concurrently, or instead of, to the Go signal, thus the animal has to withhold from responding. SST:

during Stop trials, the Stop-signal can be presented at different times post-stimulus, but only after

the Go signal, hence, during the execution of the action which has to be cancelled in order for the

animal to obtain a food pellet
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constraints. The important difference between the two tasks is in the timing of the

“Stop” signal, which is presented shortly after the “Go” signal, therefore closer to
response execution, only in the SST. By contrast, in the Go/No-Go paradigm, the

“No-Go” stimulus is usually presented concurrently with, or instead of, the “Go”

signal (Fig. 2).

This feature of the SST allows the estimation of the speed of the inhibitory

process, the stop-signal reaction time (SSRT), from the distribution of the reaction

times during go trials and the probability of inhibition, through the implementation

of the “race” model (Fig. 3, see Logan 1994). Varying the delay at which the “Stop”

signal is presented, it is possible to bias the outcome of the trial in favour of the go

or the stop process, which are assumed to be mutually independent and to “race”

one another: the fastest process wins the race determining whether the action is

executed or not. The rodent version of the SST has shown good validity in being

able to replicate certain findings from human experimentation in both the neuro-

chemical (Bari et al. 2009; Eagle et al. 2007) and the neuroanatomical (Eagle et al.

2007; Eagle and Robbins 2003) domains, plus informing modern theoretical

accounts of the neurobiological systems involved in behavioural inhibition (Eagle

et al. 2009; Robbins 2007).

Delay discounting paradigms are also very important in ADHD research.

According to Nigg (2005), it would be possible to distinguish a delay aversion

subtype of ADHD, since some patients show deficits in the signalling of delayed

reward and are strongly driven by immediate gratification (Sonuga-Barke 2002,

2005). However, the construct needs further validation in humans, while encourag-

ing results come from animal models of ADHD (Johansen et al. 2005; Sagvolden

et al. 2005) and from psychopharmacological studies of the efficacy of ADHD drugs

(Robinson et al. 2008) on measures of delay aversion. In the delay discounting

Fig. 3 The curve over the time line represents the distribution of reaction times (RT) on go trials.

On stop trials, a tone occurs after the Go stimulus at a particular delay. The stop signal reaction

time (SSRT) is the time necessary to cancel the ongoing action and divides the go RT distribution

in two parts. The left part represents the responses that were faster than the inhibitory process and

thus escape inhibition. The right part represents the probability of inhibiting the response at that

particular stop signal delay (SSD). Note that by changing the delay at which the stop signal is

presented, the SSRT will intersect the RT distribution at different time points increasing or

decreasing the probability to inhibit/respond
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task, impulsive choice is usually defined as the preference for a smaller immediate

reward over a larger but delayed one (Fig. 4). Choosing the small, immediate option

leads to a net loss in the long run and hence the subject has to be able to delay

gratification in order to maximize the quantity of rewards obtained (see Mar and

Robbins (2007) for the detailed procedure in the rat). Humans and other animals

show a similar pattern of temporal discounting for rewards, which can be well

represented by a hyperbolic function (Fig. 5). In rodents, drugs commonly used in

ADHD pharmacotherapy have been shown to reduce impulsive choice in the delay

discounting paradigm (Adriani and Laviola 2004; Robinson et al. 2008).

Other paradigms used to assess impulsivity in rodents are behavioural tasks in

which the subject has to perform an action for a predetermined number of times – or

to withhold from responding for a predetermined amount of time – before emitting

the response that will be rewarded. Any premature behavioural output is considered

Fig. 4 Schematic diagram representing typical course of events during correct trials in the delay

discounting task. Rats have to choose between a small reward delivered immediately (lever A in

the example) and a large reward delivered after a certain amount of time (lever B)

delay to reward
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Fig. 5 Hyperbolic curve representing the rate of reward discounting as a function of the reward

delay following a choice response
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as an impulsive response. Examples of this kind of tasks are the differential

reinforcement of low rates of responding (DRL) schedule, the lever-holding task

(LHT) and the fixed consecutive number (FCN) schedule (Fig. 6). These tasks tax

also cognitive processes that are often disrupted in ADHD such as time estimation,

resistance to interference and organization of motor behaviour (Barkley 1997b;

Evenden 1999; Smith et al. 2002).

In DRL schedules (Ferster and Skinner 1957), a response is rewarded only if

made after a pre-determined amount of time has elapsed since the last response.

Available studies on DRL yielded contrasting results in ADHD sufferers (Avila

et al. 2004; Daugherty and Quay 1991; Gordon 1979) as well as in rodent models of

ADHD (Bull et al. 2000; Sanabria and Killeen 2008). In the LHT (Ferguson and

Paule 1996; McClure et al. 1997), the subject is required to hold a lever or a button

pressed down for a pre-determined amount of time before releasing it in order to be

rewarded. FCN schedules (Evenden 1998) require a certain number of responses in

one location, before producing a single response in a different one, in order to

receive reward. Premature interruption of these chains of responses is usually

punished with a short time-out (e.g. 5 s of darkness).

Finally, Sagvolden and colleagues assess impulsivity in the spontaneously

hyperactive rat by measuring bursts of lever presses with short inter-response

times in the fixed interval/extinction schedule of reinforcement (Johansen et al.

2002; Sagvolden et al. 2005).

4 Dimensional (trait) Models

In animals, as in humans, inter-individual differences in the performance on a

neuropsychological task can be very marked and represent different levels along

a continuum. When performance levels are low compared to the mean of the

population under examination, it is plausible to think of a deficit in the system

responsible for the poor performance, which, in turn, represents a “biomarker” of

the pathology or a pathological trait itself. A defective system can benefit from an

appropriate pharmacological intervention, which may have different effects on a

fully functional one, due to ceiling effects for the neuropsychological measure, or to

Fig. 6 Schematic diagram representing the typical course of events during correct trials in the

DRL, LHT and FCN schedules
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intrinsic limitations of the system itself. Psychostimulants, for example, modulate

brain circuitries differently in ADHD compared to control individuals, according to

the brain imaging studies (e.g. Vaidya et al. 1998). The different modulation of

brain areas between normal and ADHD individuals after drug administration is

likely to reflect the underlying neurochemical and neuroanatomical abnormalities

of the patients, who presumably need different degrees of brain activation when

compared to control subjects during the same task. However, some ADHD drugs

such as methylphenidate and atomoxetine improve performance also in normal

subjects, although this improvement often depends on task difficulty or pre-existing

differences among individuals (e.g. Chamberlain et al. 2006; Clatworthy et al.

2009; Elliott et al. 1997; Turner et al. 2003b). This would be consistent with

ADHD being the extreme manifestation of a condition which is distributed as a

continuum in the general population (Levy et al. 1997; Lubke et al. 2009) and, at the

same time, justifies the use of subjects drawn from a normal population as animal

models of ADHD.

Behavioural deficits in animal models are often induced by means of invasive

manipulations that are, however, unlikely to represent the aetiological factor of the

pathology under examination. Especially in ADHD, for which the causal mechan-

isms are still not known, a valuable approach to model specific symptoms of the

disease in animals would be to select from a general (outbred) population subjects

that deviate negatively from the average performance of that population on a

behavioural measure of interest and use them as animal models (Rivalan et al. 2009).

Rats achieving poor levels of attentional performance on the 5-CSRTT have

been proposed as a model of ADHD (Barbelivien et al. 2001; Puumala et al. 1996).

These rats are not hyperactive, but show impulsivity – as measured by the number

of premature responses – as well as low levels of accuracy. On the other hand, rats

specifically selected for high levels of premature responses (high-impulsive rats) in

the 5-CSRTT have altered characteristics such as lower dopamine D2 receptor

density in the nucleus accumbens (NAc), but not in the dorsal striatum, compared

to non-impulsive rats (Dalley et al. 2007). In fact, both dopaminergic and norad-

renergic neurotransmission have been shown to play an important role in the

expression of impulsivity in the 5-CSRTT (Cole and Robbins 1987; Pattij et al.

2007; van Gaalen et al. 2006), although NA seems more related to resistance to

interference in this task (Carli et al. 1983). The differential behavioural analysis of

high and low performers on the 5-CSRTT and the use of task manipulations that

challenge specific executive functions (e.g. long or variable inter-trial interval,

short stimulus duration, etc.; see Bari et al. 2008) have been validated in part by

studies showing the sensitivity of these models to drugs used in the treatment of

ADHD such as atomoxetine and methylphenidate (Bizarro et al. 2004; Blondeau

and Dellu-Hagedorn 2007; Navarra et al. 2008; Puumala et al. 1996; Robinson et al.

2008) and by their susceptibility to compulsive drug self-administration (Belin et al.

2008). Also in human patients, methylphenidate and atomoxetine improve perfor-

mance in tasks analogous to the 5-CSRTT, such as CPT and the rapid visual

information processing task (Boonstra et al. 2005; Chamberlain et al. 2007; Kupietz

and Balka 1976; Lawrence et al. 2005; Losier et al. 1996).
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Rats that show slow inhibitory processes, as measured by the SST, display

differential responses to drugs used in ADHD pharmacotherapy if compared to

“fast stoppers” in the same task. Thus, amphetamine and modafinil speed stopping

processes only in “slow stoppers” and have limited effects on fast-stopping animals;

methyphenidate improves action inhibition in slow stoppers, but impairs it in fast

stoppers and, finally, atomoxetine speeds SSRT in all animals independent of

baseline performance (Eagle and Robbins 2003; Eagle et al. 2007; Robinson

et al. 2008). Many of these effects closely resemble findings obtained in human

subjects (Chamberlain et al. 2006; Turner et al. 2003a). Other drugs such as

guanfacine (Muller et al. 2005) and citalopram (Chamberlain et al. 2006) do not

affect SSRT speed in human volunteers, neither in rats (Bari et al. 2009), confirm-

ing the strong predictive validity of the rodent version of the SST.

Few attempts have been made in modelling DSM-IV criteria of ADHD, but

promising results in this direction have been obtained by ourselves and other

groups. Blondeau and Dellu-Hagedorn (2007) modelled in rats the characteristics

of different ADHD subtypes using a cluster analysis based on attention (correct

responses) and impulsivity (premature responses) scores on the 5-CSRTT. The

clusters of animals identified by this technique showed varying levels of perfor-

mance when challenged with different doses of methylphenidate and atomoxetine.

In our laboratory, we used a similar procedure to differentiate three subpopula-

tions of rats (efficient, inattentive and impulsive-inattentive) based on their perfor-

mance on two slightly different versions of the SST. Rats were tested on a version

of the task where the stop-signal was very salient (~80 dB, 200 ms) and used the

SSRT obtained as an index of impulsivity. In the modified version, the attentional

load of the task was dramatically increased by shortening the stimulus duration

down to 5 ms and, in this case, the stop accuracy (percentage stop trials inhibited)

was used as the attentional correlate. Both measures (impulsivity and attention)

were then introduced in a cluster analysis. The three subgroups identified in this

way (efficient, inattentive and impulsive-inattentive) clearly showed different

patterns of behaviour when tested for anxiety, novelty seeking and exploratory

activity. When challenged with the wake-enhancing drug modafinil, only impul-

sive-inattentive animals showed a faster SSRT compared to the other groups (Bari

and Robbins, unpublished findings). These preliminary data confirm previous

findings in healthy subjects (Turner et al. 2003a) and rats (Eagle et al. 2007) giving

support to the model as a valid alternative to the median split method that is used to

differentiate subjects according to just one behavioural dimension.

5 Genetic Models

ADHD has been associated with polymorphisms in several genes, most of which

are implicated in catecholaminergic neurotransmission such as the dopamine trans-

porter (DAT) (Lim et al. 2006), the dopamine D4 receptor (DRD4) (Faraone et al.

2001; LaHoste et al. 1996), and the dopamine beta-hydroxylase (Roman et al. 2002)
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genes. Moreover, ADHD is one of the most heritable psychiatric disorders (Faraone

et al. 2005), suggesting that good animal models of ADHD should have heritable

phenotypic traits.

5.1 Inbred Strains

One of the most used animal models of ADHD is the spontaneously hypertensive

rat (SHR) an inbred strain derived from the Wistar-Kyoto (WK) rat, for which may

exist very different sub-lines, thus complicating its use as an appropriate control

strain (Kurtz and Morris 1987). Initially selected for hypertension (Okamoto and

Aoki 1963), the SHR showed unexpectedly high levels of hyperactivity and impul-

sivity that develop over repeated testing and are particularly evident in settings with

low rates of reinforcement (Bull et al. 2000; Moser et al. 1988; Sagvolden 2000;

Sagvolden et al. 2005). Similarly to ADHD patients, the SHR is more sensitive to

immediate reward and less sensitive to delayed reward (Sagvolden et al. 1992;

Sutherland et al. 2009), and shows learning and memory deficits (Wyss et al. 1992).

These traits are present before the SHR develops hypertension and remain stable

during adulthood (Adriani et al. 2003). NA concentrations and tyrosine hydroxylase

gene expression have been found to be higher (de Villiers et al. 1995; Reja et al.

2002), while DA efflux is reduced in the striatum of SHR compared to WK rats

(Linthorst et al. 1991), but see also (Heal et al. 2008). Moreover, SHR brain

displays neuroanatomical abnormalities similar to ADHD patients (Bendel and

Eilam 1992) and altered densitites of DAT (Leo et al. 2003; Watanabe et al.

1997), which can explain the reduced responsiveness to psychostimulants (Russell

et al. 2005). Also serotonin (5-HT) neurotransmission seems to be altered in the

SHR (Pollier et al. 2000; Stocker et al. 2003), although 5-HT is not considered to be

central to the phenotype of this animal model (Russell et al. 2005). Despite its high

face validity, SHR model does not show cognitive deficits across all behavioural

tasks of impulsivity and sustained attention (e.g. van den Bergh et al. 2006), and the

ability of drugs used in the treatment of ADHD to improve performance in this

animal model has been inconsistent (Bizot et al. 2007; Hand et al. 2009; Sagvolden

2006; van den Bergh et al. 2006; Wultz et al. 1990) critically depending on the

behavioural test employed and on the rat strain used as control (Alsop 2007; Heal

et al. 2008; Russell 2007; Sanabria and Killeen 2008). For example, SHR are more

impulsive in tasks such as DRL, LHT, fixed interval/extinction schedules and

delayed reinforcement (Fox et al. 2008; Johansen et al. 2007; Orduna et al. 2009;

Sagvolden 2000; Sagvolden et al. 1998), but are not impaired in tasks of sustained

attention such as the 5-CSRTT and visual discrimination procedures (Thanos et al.

2010; van den Bergh et al. 2006) when compared to normotensive rats. It has been

noted that the WK rat, usually employed as control strain, is hypoactive thus

exaggerating the differences in activity levels compared to the SHR (van den

Bergh et al. 2006), which would influence the results in a variety of tasks. Alsop

(2007) demonstrated that differences in baseline response rate accounted for
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differences between the two strains in tasks of impulsivity and attention. In sum-

mary, the large behavioural (Alsop 2007) and genetic (Festing and Bender 1984;

Johnson et al. 1992) differences compared to the SHR make the WK rats unsuitable

as a control strain for both behavioural and physiological experiments.

The genetically hypertensive (GH) rat (Smirk and Hall 1958), another hyperten-

sive inbred strain phenotypically similar to, but genetically distinct from the SHR,

has been recently described to have high levels of impulsivity in a delayed rein-

forcement task compared to control animals (Sutherland et al. 2009). The GH rat

needs further behavioural investigation in order to be established as a model of

ADHD.

Naples high-excitability (NHE) rats are selected for their high levels of activity

in the Làt maze. They show DA D1 receptor down-regulation and increased DAT

and tyrosine hydroxylase in the PFC suggesting that NHE rats’ impaired attention

and hyperactivity may be caused by hyperfunctioning of the mesocorticolimbic DA

system (Aspide et al. 1998; Sadile et al. 1993; Viggiano et al. 2002). Interestingly,

Granon et al. (2000) showed beneficial effects on attentional performance after D1

agonist (SKF 38393) microinfusion in the PFC of Lister hooded rats tested in the

5-CSRTT. Thus, NHE rats could serve as a useful model for the study of DA D1

receptors involvement in attentional processes.

The inbred acallosal mouse strain I/LnJ is hyperactive in the open field and

spends more time in the central sector of the arena (Magara et al. 2000). However,

not much is known about its neurochemical profile and, although neuroimaging

studies have consistently shown callosal abnormalities in ADHD (Luders et al.

2009; Valera et al. 2007), the total absence of the corpus callosum in this model is

certainly an extreme phenotype.

5.2 Knockout and Transgenic Animals

Mice lacking the DAT (DAT-KO) are hyperactive in new environments and display

learning and memory deficits (Gainetdinov and Caron 2000, 2001; Giros et al.

1996). DAT-KO mice are characterized by high levels of extracellular DA in the

striatum and reduced phasic DA release (Gainetdinov et al. 1999a). Hyperactivity

in this model is reduced by psychostimulants and serotonergic agents (5-HT

transporter inhibitor fluoxetine, 5-HT receptor agonist quipazine and 5-HT precur-

sors), but not by NA reuptake inhibitors (Gainetdinov and Caron 2001; Gainetdinov

et al. 1999b). This has been considered as evidence that in this model psychosti-

mulants do not decrease hyperlocomotion directly by enhancing catecholaminergic

neurotransmission, but by modulating the serotonergic system. Although drugs

targeting the 5-HT system have proven of limited use in the treatment of human

ADHD, a 5-HT2A receptor gene polymorphism has been associated with this

condition (Quist et al. 2000) and antagonists of this receptor ameliorate DAT-KO

mice deficits (Barr et al. 2004), thus it might be worth investigating the potential of

5-HT receptors knockout mice as genetic models of ADHD (e.g. Dalton et al. 2004).
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Despite the high face validity of this animal model of ADHD, it also displays

characteristics that do not resemble the human condition, such as growth retardation

and premature death (Gainetdinov et al. 1998; Giros et al. 1996). Moreover, it is not

clear yet whether ADHD is characterized by increased or decreased DAT function,

and its availability in the human brain has been shown to significantly change in

response to drug medication (Cheon et al. 2003; Jucaite et al. 2005; Krause et al.

2000). This latter point well exemplifies the complexity of using evidence from

human genetic studies to create valid animal models.

The Coloboma mutant mouse, produced by neutron irradiation, bears a mutation

of the synaptosomal-associated protein 25 (SNAP-25) gene and has been proposed

as a model of ADHD (Barr et al. 2000). SNAP-25 is an important protein required

for exocytotic neurotransmitter release and protein translocation, and SNAP-25

gene polymorphisms have been associated with human ADHD (Feng et al. 2005;

Kustanovich et al. 2003; Mill et al. 2002). Coloboma mice display impulsivity in a

delayed reinforcement task (Bruno et al. 2007) and their hyperlocomotion is

decreased by amphetamine but not methylphenidate (Fan et al. 2010; Hess et al.

1996; Wilson 2000). It has been suggested that the hyperactive phenotype of this

model is caused by an imbalance between noradrenergic hyperfunction and dopa-

minergic hypofunction (Jones and Hess 2003; Jones et al. 2001a, b; Russell 2007),

and that its hyperactivity is dependent on NA neurotransmission (Jones and Hess

2003). The coloboma mouse is a promising model of ADHD and recent reports are

indicating possible pathways to test its predictive value suggesting new pharmaco-

logical targets for the treatment of ADHD (Fan et al. 2010).

Although ADHD has been repeatedly associated with DRD4 gene polymorph-

isms (Faraone et al. 2005), DRD4-knockout mice are not often used as animal

models of ADHD (Mill 2007). This is because they display an essentially hypoac-

tive phenotype and supersensitivity to various drugs of abuse (Rubinstein et al.

1997), characteristics that do not resemble human ADHD. However, the combined

use of neonatal dopamine depletion (described below) and DRD4-knockout ani-

mals yielded interesting results. Avale et al. (2004) found that DRD4-knockout

mice did not show hyperactivity after dopamine depletion as did wild-type controls

and that DA D4 antagonist administration prevented wild-type dopamine depleted

animals from developing the hyperactive phenotype. Taken together, these results

confirm the importance of DRD4 in the expression of hyperactivity when the

dopaminergic system is compromised, although it is not clear how to compare

this phenotype with the human polymorphism associated with ADHD. Moreover,

DRD4-knockout mice are not more impulsive than wild-type animals in the delay

discounting and Go/No-go tasks, but only show increased novelty-seeking, (Helms

et al. 2008) confirming the limitations of the use of these knockout mice as a model

of ADHD.

Recently, a genetic mouse model based on the deletion of the beta2-subunit of

the nicotinic receptor has been described as having ADHD-like behavioural inflexi-

bility and inhibitory deficits (Granon et al. 2003). Considering a reported association

between polymorphisms of nicotinic receptor subunit and ADHD (Todd et al. 2003),

high incidence of cigarette smoking in individuals with ADHD (Wilens et al. 2008)
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and the beneficial effects of nicotine administration on attentional function (Levin

and Rezvani 2002), further investigation of this model is warranted (Granon and

Changeux 2006).

Male transgenic mice expressing a mutant form of the human thyroid hormone

receptor (TRbeta1) display increasing hyperactivity over time, impulsivity and

inattention (McDonald et al. 1998; Siesser et al. 2006). Thyroid hormone controls

the development of brain areas involved in the regulation of executive functions

(Bernal 2002; Thompson and Potter 2000). This genetic model shows increased

striatal dopamine turnover and hyperactivity that is reduced by methylphenidate

administration (Siesser et al. 2006).

6 Chemically Induced Models

Despite its high heritability, some forms of ADHD are thought to be caused by

heavy metal exposure (Braun et al. 2006; Nigg 2006; Nigg et al. 2008) or drug

intoxication (Button et al. 2005; Linnet et al. 2003; Streissguth et al. 1994) during

pre-, peri- or post-natal developmental. Such environmental factors may have

teratogenic effects on the foetus during pregnancy, which will lead to ADHD

symptoms in the offspring (Linnet et al. 2003).

6.1 Toxin Exposure

Since exposure to chemicals during pregnancy represents an independent risk factor

for the development of ADHD (Biederman et al. 1995; Mick et al. 2002), it could be

useful to create animal models that simulate such conditions. For example, the

finding of ADHD-like cognitive deficits in animals exposed to nicotine before birth

(Paz et al. 2007) gives strength to the conclusion that maternal smoking during

pregnancy increases the risk of developing ADHD in children (Fung and Lau 1989;

Milberger et al. 1998; Richardson and Tizabi 1994).

Prenatal ethanol exposure (Fahlke and Hansen 1999; Hausknecht et al. 2005)

causes ADHD-like symptoms in animals. Rats prenatally exposed to ethanol

display dysregulation of dopaminergic neurons in the ventral tegmental area,

which is normalized by amphetamine and methylphenidate administration (Shen

and Choong 2006; Xu and Shen 2001).

Heavy metal exposure in early ontogeny causes hyperactivity, which improves

after acute amphetamine or methylphenidate administration. In animals exposed to

lead, 5-HT and DA turnover is decreased in PFC and striatum, respectively

(Silbergeld and Goldberg 1974, 1975). Other heavy metals such as manganese

and cadmium are believed to cause similar effects as lead exposure in producing

hyperactive rats (Kostrzewa et al. 2008; but see Zimering et al. 1982).
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6.2 Brain Lesion Models

Neuroimaging studies have repeatedly shown brain morphological and functional

abnormalities in patients with ADHD (Seidman et al. 2005). Fronto-striatal net-

works are thought to be dysfunctional in ADHD, probably as a consequence of

altered monoaminergic transmission. Most common structural abnormalities have

been found for the cerebellum, the splenium of the corpus callosum, the right

striatum and cortical structures mainly in the right hemisphere (Valera et al.

2007). The prevalent idea is that hypofunctional cortical areas do not adequately

regulate subcortical structures, causing a dysregulation of behavioural and cogni-

tive functions (Fineberg et al. 2009). Thus, interfering with structures and neuro-

transmitter systems that are dysfunctional in ADHD individuals is a powerful tool

for testing the behavioural consequences of these interventions. The use of this

method of creating animal models of ADHD can (1) inform on the cognitive

functions subserved by the lesioned area, (2) help develop a better understanding

of this disorder by parcelling the ADHD syndrome into more discrete deficits and

(3) test the effects of ADHD drugs on a compromised system for which the

pathogenetic process is known. However, animal models created by the use of

neurotoxins do not inform at all about the causes of ADHD, but are useful tools for

studying the contribution of specific brain areas or circuits to cognitive processes

that are affected by this pathology.

The most widely used neurodevelopmental model of ADHD created by lesioning

brain systems is the neonatal 6-hydroxydopamine (6-OHDA) lesioned rat. Shaywitz

et al. (1976a, b) showed for the first time that rats lesioned 5 days after birth with

intracerebroventricular infusion of 6-OHDA apparently display hyperactivity and

other cognitive deficits that are attenuated by acute administration of amphetamine.

Further research demonstrated that the behavioural phenotype also improves after

methylphenidate administration (Davids et al. 2003), and that these animals have

decreased striatal DAT density, increased DRD4 expression and 5-HT system altera-

tions resembling the human condition (Dougherty et al. 1999; Hanna et al. 1996;

Kostrzewa et al. 2008; LaHoste et al. 1996; Zhang et al. 2001). These rats show

patterns of hyperactivity similar to childhood ADHD in that their hyperlocomotion is

less evident in novel environments and then increases with repeated exposures to the

testing apparatus (Archer et al. 1988a; Luthman et al. 1989), but are not impulsive.

Thus, the 6-OHDA model has a good face validity, but lacks construct validity

because is unlikely that an almost complete destruction of the dopaminergic system

accurately mirrors the neurochemical pathology of ADHD. Nevertheless, this model

could provide important insights into the relationship between monoaminergic altera-

tions in ADHD and the mechanisms underlying hyperactivity. For example, the lack

of effect of selective DAT blockers on hyperactivity suggests that psychostimulants

may exert their action mainly on other monoamine transporters in this model (Russell

et al. 2005; Zhang et al. 2002). Accordingly, 5-HT and NA transporter inhibitors, as

well as DRD4 receptor antagonists, greatly reduce hyperactivity in 6-OHDA lesioned

rats (Davids et al. 2002; Zhang et al. 2002).
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Another developmental ADHD model is based on effects of lesioning the

cerebellum at post-natal day 1–12 which causes cerebellar stunting and different

levels of behavioural deficits depending on the method used (Archer et al. 1988b;

Ferguson 1996). Early exposure to methylazoxymethanol acetate, dexamethasone

or trans-retinoic acid all produce cerebellar damage and hyperactivity partly mim-

icking the human condition (Ferguson et al. 1996, 2001; Holson et al. 1997).

However, these models have not been extensively used in ADHD research.

Lesions of specific brain areas have also been used in conjunction with

behavioural tests of impulsivity and inattention. The effects of such lesions are

consistent with the different involvement of partially segregated fronto-striatal

“loops” (Alexander et al. 1990), which subserve executive functions and are

thought to be dysfunctional in ADHD (Fig. 7). In the 5-CSRTT, lesions in rat

anterior cingulate (ACg) and prelimbic (PrL) cortex impaired sustained attention

(Muir et al. 1996), while infralimbic (IL) lesions increased impulsive premature

responding: damage to the orbitofrontal cortex (OFC) caused perseverative

responding (Chudasama et al. 2003). In the same task, lesions of the medial

striatum impair response accuracy and increase both premature and perseverative

responses (Rogers et al. 2001), while NAc core lesions increase impulsivity

without effects on response accuracy (Christakou et al. 2004). Moreover,

Fig. 7 Hypothesized cortico-striatal circuits subserving different cognitive functions and the

processes affected by lesioning specific cortical and subcortical structures in the rat. References:

1Muir et al. (1996); 2 Rogers et al. (2001); 3 Chudasama et al. (2003); 4 Christakou et al. (2004); 5
Mobini et al. (2002); Winstanley et al. (2004) asterisk indicates depending on procedure used; 6
Cardinal et al. (2001); 7 Eagle et al. (2008b), Dagger denotes Bari and Robbins unpublished;

8 Eagle and Robbins (2003). Abbreviations: ACC Anterior cingulate cortex, d Dorsal, dm Dorso-

medial, IL Infralimbic, Nac Nucleus accumbens, OFC Orbitofrontal cortex, STR Striatum
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depleting brain 5-HT by intracerebroventricular infusion of 5,7-dihydroxytrypta-

mine during adulthood produces long-lasting hyperactivity and impulsivity in the

5-CSRTT, but not attentional impairments (Harrison et al. 1997; Robbins 2002).

Finally, attentional deficits with no increase in impulsivity have been obtained by

globally interfering with cholinergic neurotransmission and, under certain condi-

tions, with the noradrenergic system (Carli et al. 1983; Cole and Robbins 1987;

Muir et al. 1994; Robbins et al. 1989). Using the SST, Eagle et al. (2008b) showed

that lesions of the OFC impair stopping performance in the rat, while Bari et al.

(unpublished) found that reversible inactivation of dorso-medial PFC by local

infusion of muscimol selectively slowed SSRT. Moreover, SSRT is slower in rats

with medial striatal lesions (Eagle and Robbins 2003), a region in receipt of OFC

afferents, probably homologous to the caudate nucleus in humans, which has been

shown to be smaller or dysfunctional in ADHD patients (Filipek et al. 1997; Rubia

et al. 1999). In a delay discounting paradigm, Cardinal et al. (2001) showed that

lesions of the NAc core render animals less tolerant to delays, leaving intact the

preference for the large reward when no delays are interposed, while OFC lesions

increased impulsivity in one study (Mobini et al. 2002), but not in another using a

similar paradigm (Winstanley et al. 2004). In the latter study, basolateral amyg-

dala lesions were shown to induce impulsive choice similar to that of the NAc

core lesion.

Collectively, these results confirm the hypotheses of discrete neuroanatomical

substrates being involved in different kinds of impulse control (Fig. 7). Dorsal

sectors of the striatum (served by the nigrostriatal DA pathway) and medial portions

of the PFC are involved in action restraint/inhibition, while more limbic aspects of

the striatum (i.e. NAc, served by the mesolimbic pathway) and of the PFC (i.e.

OFC, probably lateral) are important for affectively charged types of behavioural

inhibition, such as delay of gratification, as well as the expression of compulsive

behaviour.

7 Physical Trauma Models

Physical trauma models of ADHD include neonatal hypoxia and X-ray exposure

(Kostrzewa et al. 2008). Neonatal hypoxia is a risk factor for human ADHD

(Lou 1996) and causes long-lasting monoaminergic and behavioural dysregula-

tions in the rat brain (Dell’Anna et al. 1991, 1993; Iuvone et al. 1996). Exposure

to X-radiation during development damages the hippocampus and causes hyper-

activity and learning deficits in rats (Kostrzewa et al. 2008). These models both

possess predictive validity since they respond to acute amphetamine adminis-

tration (Highfield et al. 1998; Speiser et al. 1983), but are created by means of

physical insults that are unlikely to be the cause of the majority of ADHD cases

in humans.
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8 Overview: Comparisons and Future Directions

An ideal animal model should be able to mimic all the main features of the disease,

both at the behavioural and at the physiological level (McKinney and Bunney

1969). Although models expressing only one or two symptoms are of great interest

and utility, they will not elucidate the full aetiopathology of the ADHD syndrome.

Lesion studies have been able to assign specific roles in the regulation of

behaviour to discrete brain areas, circuits and neurotransmitter systems, and to

mirror the effects of dysfunctional anatomical loci as seen in humans with ADHD.

However, brain structures do not work in a vacuum, and ADHD symptoms are the

result of several dysfunctional loci interacting within a neural network to produce

the observable behaviour. Nevertheless, the behaviour of the lesioned animal,

although induced by an artificial intervention, is functionally equivalent or, in

other words, has comparable behavioural consequences to the symptom under

investigation and hence has important implications for research on the specific

hypothetical construct (Gorenstein and Newman 1980). Not only is important to

take into account the interactions between different brain regions and neurotrans-

mitter systems, but also between the behaviour and the context where it is

expressed. Juvenile hyperactivity, for example, is situation specific and usually is

not expressed in novel or unstructured settings (Whalen and Henker 1976). Hyper-

activity is also a very general construct and potentially caused by very different

pathophysiological mechanisms. Therefore, we should be critical of models that

superficially mimic ADHD symptoms, which probably derive from very different

underlying causes (although that may well also be the case for human ADHD). The

fact that so many of the symptoms of ADHD can be simulated in so very many

different ways highlights the possibility that the syndrome may have multiple

aetiologies, which however may impinge on common neural systems, which

respond to a common pharmacological treatment, in the case of psychomotor

stimulants.

Translational neuropsychological tasks such as the 5-CSRTT, delay discounting

task, Go/No-Go and SST are powerful tools for comparing the performance of

ADHD patients and animal models in analogous standardized settings and, possi-

bly, after comparable pharmacological treatments. In this regard, animal models

have been very useful in understanding the role of the major ascending neuromo-

dulatory systems in the regulation of cognitive processes that are disrupted in

ADHD. Both human and animal research has shown that boosting noradrenergic,

but not serotonergic, activity by inhibiting its reuptake improves behavioural

inhibition as measured by the SST (Bari et al. 2009; Chamberlain et al. 2006;

Robinson et al. 2008), while DA and 5-HT preferentially modulate behaviour when

there is a need of delaying gratification (Rogers et al. 1999; Winstanley et al. 2006).

Physical trauma and toxin-induced models have not yet been thoroughly investi-

gated. These models are able to mirror adequately only rare cases of ADHD, namely

those caused by pre- and peri-natal insults such as maternal substance abuse or

hypoxia during delivery, and those caused by environmental toxin contamination.
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ADHD has a strong genetic component, but is probably characterized by the

products of several interacting genes. Animal models of ADHD offer the unique

opportunity to investigate epigenetic factors such as the effects of different envi-

ronmental manipulations on genetically identical individuals or the effects of

repeated pharmacological treatment on gene expression. Measures of hyperactivity,

impulsivity and inattention are normally distributed in the general population, and

ADHD is regarded by some authors as the extreme end of these quantitative traits

(e.g. Levy et al. 1997). It is worth noting that ADHD drugs such as methylphenidate

and atomoxetine, as well as the wakefulness-promoting agent modafinil, can

improve cognition also in normal subjects (e.g. Chamberlain et al. 2006; Elliott

et al. 1997; Robinson et al. 2008; Turner et al. 2003a) (both rodents and humans),

suggesting that these drugs affect the same neuropsychological processes in ADHD

and healthy individuals, normalizing the performance in patients and boosting

cognitive processes in normal subjects. Thus, the effect of these drugs is not

qualitatively different in the two groups, confirming the view of ADHD as the

extreme manifestation of a continuum which includes “normal” and probably

hypoactive individuals as well, at the other extreme.

Modern approaches to modelling ADHD in animals should be directed towards

the attempt to isolate the relevant genotype by cross-breeding individuals that show

ADHD-like characteristics, after selecting them from a normal outbred population.

In order to select the relevant phenotype, several behavioural correlates of the

disease should be considered in the same subject. This is not an easy task, but

the same problem is present in the clinic also and is exemplified by the poor

diagnostic selectivity, which at the moment is based only on behavioural observa-

tion. Even the use of standardized neuropsychological tasks tapping into a single

behavioural construct has proven somewhat challenging. For example, in children

with ADHD, impulsivity on a delay discounting task did not correlate with SSRT

(Solanto et al. 2001) � a result recently replicated on rats in our laboratory

(Robinson et al. 2009) � but both measures, taken together, are able to accurately

classify almost 90% of children with ADHD (Sonuga-Barke et al. 2003).

This evidence points to the existence of different aetiopathological pathways for

the development of ADHD symptomatology. Abnormalities in one or several

cortico-striatal circuits subserving different cognitive processes could lead to an

ADHD phenotype, characterized by either difficulties in deferring gratification or

serious problems in behavioural inhibition or both. This could explain the large

heterogeneity present in ADHD patients in terms of behaviour and development of

comorbid disorders as well as the poor correlation between laboratory measures of

impulsivity. A more detailed classification of the disorder not only would be

important for choosing the appropriate therapeutic intervention (especially beha-

vioural), but would also help increasing the reliability of laboratory tests and

neuroimaging data. To obtain a valid animal model, the ADHD phenotype should

be carefully selected through the use of several translational paradigms assessing

the main features of the pathology, and then the frequency of gene polymorphisms

of subjects showing the desired characteristics can be compared to that of control
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animals (Mill 2007). Animal models of ADHD created by these means would

possess strong construct validity and a great heuristic potential for ADHD research.

In conclusion, research approaches to animal models of ADHD should begin to

accommodate the multiple facets of this syndrome that have thus far been consi-

dered mostly in isolation. A strong conceptual background in neurocognitive

functions, more refined diagnostic criteria and carefully described clinical subtypes

must continue to guide these efforts.
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Abstract Autism is a neurodevelopmental disorder that is currently diagnosed by

the presence of three behavioral criteria (1) qualitative impairments in reciprocal

social interactions, (2) deficits in communication, including delayed language

and noninteractive conversation, and (3) motor stereotypies, repetitive behaviors,

insistence on sameness, and restricted interests. This chapter describes analogous

behavioral assays that have been developed for mice, including tests for social

approach, reciprocal social interactions, olfactory communication, ultrasonic

vocalizations, repetitive and perseverative behaviors, and motor stereotypies.

Examples of assay applications to genetic mouse models of autism are provided.
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Robust endophenotypes that are highly relevant to the core symptoms of autism are

enabling the search for the genetic and environmental causes of autism, and the

discovery of effective treatments.

Keywords Autism � Behavior � Candidate genes � Communication � Genetics �
Mice � Mouse models � Olfactory � Repetitive � Social � Vocalization

Abbreviations

5Htt Serotonin transporter mutant line of mice

Avpr1b Arginine vasopressin receptor 1b null mutant line of mice

B6 C57BL/6J inbred strain of mice

BTBR BTBR T+tf/J inbred strain of mice

Fmr1 Fragile X Fmr1 null mutant line of mice

Nlgn2 Neuroligin 2 mutant line of mice

VPA Valproic acid [Di-n-dipropylacetic acid]

1 Introduction

Autism is a neurodevelopmental disorder that is defined by three behavioral criteria

(1) qualitative impairments in social interactions, (2) deficits in communication,

including delayed and noninteractive language, and (3) motor stereotypies, repeti-

tive behaviors, insistence on sameness, and restricted interests (Kanner 1943;

American Psychiatric Association 1994; Piven et al. 1997; Bodfish et al. 2000;

Lord et al. 2000; Dawson et al. 2002; Cuccaro et al. 2003; Frith 2003; Volkmar and

Pauls 2003; South et al. 2005; London 2007; Tager-Flusberg and Caronna 2007;

Happe and Ronald 2008; Baron-Cohen 2009). Prevalence is currently estimated at

1:100 to 1:150 for autism spectrum disorders, a dramatic increase over the past

decade that appears to be related primarily to improved detection (Fombonne 2009;

Hertz-Picciotto and Delwiche 2009; King and Bearman 2009). The essential needs,

for early behavioral intervention through special education programs for children

and social services support for adults, place a high financial burden on society, as

well as heavy personal demands on the families of autistic individuals.

No consistent biological markers for autism have been identified across indivi-

duals to date. Evidence from small numbers of autistic individuals suggests a

variety of indicators, including cortical connectivity abnormalities (Williams and

Minshew 2007), minimal activation of the fusiform gyrus and amygdala during

social tasks (Pelphrey et al. 2002), insufficient GABAergic inhibitory neurotrans-

mission (McDougle et al. 2005), mitochondrial dysfunctions (Zecavati and Spence
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2009), high platelet serotonin (Anderson 2002), autoantibodies (Wills et al. 2009),

and cognitive disabilities following prenatal exposure to valproate (Ornoy 2009)

and environmental toxins (Halladay et al. 2009).

The causes of autism remain unknown; however, the strongest evidence is

genetic. Concordance between monozygotic twins is as high as 90% for autism

spectrum disorders, as compared to 5–10% concordance in dizygotic twins and

siblings (Abrahams and Geschwind 2008; Lintas and Persico 2009). Male-to-

female ratios are above 4:1 (Abrahams and Geschwind 2008). No single gene

mutation has been implicated as uniformly causal. Rather, a variety of de novo

and familial mutations have been documented, including a large number of genetic

mutations and copy number variants, each in a small number of autistic individuals

(Abrahams and Geschwind 2008; Cook and Scherer 2008; Levitt and Campbell

2009; Lintas and Persico 2009). Particularly interesting are clusters of candidate

genes with similar functions, such as the synaptic cell adhesion protein families of

neurexins, neuroligins, shanks, contactins, cadherins, and integrins (Jamain et al.

2003; Laumonnier et al. 2004; Jeffries et al. 2005; Lise and El-Husseini 2006;

Autism Genome Project Consortium 2007; Durand et al. 2007; Garber 2007;

Moessner et al. 2007; Alarcon et al. 2008; Arking et al. 2008; Jamain et al. 2008;

Kim et al. 2008; Lawson-Yuen et al. 2008; Sudhof 2008). Several other neurode-

velopmental disorders display comorbidity with autism. Syndromes caused by

known single gene mutations, in which a significant proportion of individuals

meet the diagnostic criteria for autism, include Fragile X (FMR1), Rett (MECP2),
tuberous sclerosis (TSC), Angelman syndrome (UBE3A), and Phelan–McDermid

syndrome (22q13.3) (Abrahams and Geschwind 2008). Hypotheses which focus on

environmental causes, such as immune dysfunction and environmental toxins, are

often conceptualized in terms of susceptibility genes and gene � environment

interactions (Fombonne 2009; Halladay et al. 2009; Zecavati and Spence 2009).

Biomedical research has benefited from animal models of diseases, which

provide translational systems to test hypotheses about causes and to develop

treatments. The autism research field is at early stages in the development of

appropriate assays with definitive relevance to the features of autism, and appropri-

ate model systems for testing the many hypotheses about genetic and environmental

causes of autism. As described in the sections below, several useful assays and

model systems are now available. These preclinical research tools offer transla-

tional opportunities to test compounds for their ability to reverse autism-relevant

behaviors in mouse models. Potential treatment targets include cell adhesion

proteins that regulate the formation and development of synapses, intracellular

signaling mechanisms mediating synaptic plasticity and pharmacological manipu-

lation of neurotransmission through receptors for GABA, glutamate, serotonin, and

oxytocin (Ehninger et al. 2008b).

As in other fields of biomedical research, mouse models for autism are being

perfected across the required criteria for use in treatment development.Face validity
refers to highly analogous endophenotypes in the human disease and the animal

model. Construct validity refers to the induced cause being nearly identical in the

animal models and the human disease. The first step is to introduce the hypothesized
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cause of the disease in the model organism. The consequences of the mutation,

lesion, toxin, etc. are evaluated with assays that maximize similarities for the human

disease and the model organism. Predictive validity refers to therapeutic efficacy.

Treatments that reverse symptoms in the human disease should similarly reverse

symptoms in the model organism.

To evaluate the roles of mutations in candidate genes for producing the symptoms

of autism, the same gene that is mutated in an autistic individual is similarly mutated

in the mouse genome (see Gondo et al. 2011 for further discussion). Molecular

geneticists have generated thousands of lines of mice with targeted single gene

mutations or humanized knock-in mutations relevant to human diseases, including

autism spectrum disorders and comorbid neurodevelopmental disorders. Given the

behavioral criteria for the diagnosis of autism, and the lack of consistent biomarkers,

mouse behavioral assays with high face validity to the behavioral symptoms of

autism provide the best tools to evaluate the functional outcomes of candidate gene

mutations. The same assays can be used to evaluate environmental hypotheses. The

fundamental challenge is to design mouse behavioral tasks with sufficient face

validity to the core symptoms within each of the three diagnostic behavioral

categories of autism (Crawley 2004, 2007a, b).

This chapter describes strategies from our laboratory and others to model the

diagnostic and associated symptoms of autism in mice. Phenotypes obtained in

mouse models with genetic and environmental manipulations are presented, rele-

vant to several of the proposed molecular causes of autism spectrum disorders.

Preliminary findings from mouse models of autism spectrum disorders that use

hypothesis-driven treatments, which effectively reversed relevant phenotypes, are

discussed.

2 Mouse Behavioral Tasks with Face Validity for the First

Diagnostic Symptom of Autism, Qualitative Impairments

in Reciprocal Social Interactions

Mice are a social species, which engage in easily scored social behaviors including

approaching, following, sniffing, allogrooming, aggressive encounters, sexual

interactions, parental behaviors, nesting and sleeping in a group huddle (Grant

and MacIntosh 1963; Hofer et al. 2001; Miczek et al. 2001; Carter et al. 1992;

Young et al. 2002; Winslow 2003; Terranova and Laviola 2005; Wersinger et al.

2007; Keller et al. 2006; Panksepp et al. 2007; Yang et al. 2007a, b, 2009; Chadman

et al. 2008; McFarlane et al. 2008; Paylor et al. 2008; Scattoni et al. 2008a, b).

Behavioral assays using dedicated equipment have been developed by our labora-

tory and others to quantify the types of social interactions that are unusual in autistic

individuals. These include low spontaneous seeking of interactions with others,

lack of social reciprocity, and failure to develop peer relationships appropriate to

developmental ages.
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We invented a simple social approach task in an automated three-chambered

apparatus, illustrated in Fig. 1a, which compares the time that the subject mouse

spends with a novel mouse versus the time that the subject mouse time spent with a

nonsocial novel object (Moy et al. 2004, 2007, 2008b; Nadler et al. 2004; Kwon et al.

2006; Mineur et al. 2006; Crawley et al. 2007; Yang et al. 2007a, b, 2009; Chadman

et al. 2008; McFarlane et al. 2008; Jamain et al. 2008; Ryan et al. 2008; Page et al.

2009; Radyushkin et al. 2009). If the group of mice spends more time in the side

chamber with a novel mouse than time spent in the side chamber with the novel

object, then sociability is demonstrated. If time spent in the two side chambers is not

statistically different, or timewith the novel object is greater than timewith the novel

mouse, then lack of sociability is demonstrated. A second parameter, time engaged

in sniffing the novel object versus time sniffing the novel mouse, is scored by an

observer to provide an independent corroborating measure of true social interac-

tions. Most strains of mice spend more time with the novel mouse, representing

normal sociability (Moy et al. 2007, 2008a, b; McFarlane et al. 2008; Yang et al.

2009). Equal time spent with the novel mouse and the novel object would represent

impaired sociability in a mouse model of autism. Less time spent with the novel

mouse than with the novel object may be analogous to the tendency of autistic

children and adults to engage in nonsocial activities such as playing exclusively with

a favorite toy train, rather than with the other children or adults in the room.

The social approach task has been applied to investigate many lines of mice with

mutations in candidate genes for autism, ranging from synaptic genes such as

neuroligins to cancer genes such as Pten, and to genes associated with neurotrans-

mission, including the serotonin transporter, GABA receptor subunits, vasopressin

receptors, oxytocin, and vasoactive intestinal peptide, as well as to inbred strains of

mice such as BTBR T+tf/J and BALB/c that display low social approach (Bolivar

et al. 2007; Brodkin 2007; Crawley et al. 2007; Chadman et al. 2008; DeLorey et al.

2008; Jamain et al. 2008; Moy et al. 2008a, b, 2009; Stack et al. 2008; Page et al.

2009; Radyushkin et al. 2009; Zhou et al. 2009). Table 1 summarizes findings with

this task from selected examples.

Reciprocal social interactions between two or more freely moving mice offer

more sensitive assays for some of the specific types of social reciprocity deficits seen

in autism spectrum disorders. Interactive sessions between two mice of the same sex

and age are conducted in an arena, such as the Noldus Phenotyper 3000 illustrated in

Fig. 1c, d. Sessions are videotaped and later scored by an observer, or by videotrack-

ing software (Cheh et al. 2006; Bolivar et al. 2007; Yang et al. 2007a, b, 2009;

McFarlane et al. 2008). Measures that are reliably scored by human observers

include following another mouse, sniffing each other, grooming each other, crawling

over and under each other, sitting together in close physical contact, and sleeping

together in a huddle. Investigators first define the behavioral parameters of interest,

then quantify the number of bouts and/or cumulative time engaged in each behavior,

across a test session as short as 10 min. Either reduced interactions or unusual

interactions can thus be detected. Dyads of partners can be tested at any age

postweaning, and pairs can be composed of any combinations of genotypes, strains,

and genders. Representative examples are described in Table 1.
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Fig. 1 Social approach and juvenile play. Panel A illustrates the automated three-chambered

apparatus, designed as an initial simple assay for sociability in mice (McFarlane et al. 2008; Moy

et al. 2004, 2007; Nadler et al. 2004; Ryan et al. 2008; Yang et al. 2007a, b, 2009). Sets of

photocell beams across the entrances between compartments are sequentially broken when the

mouse moves between compartments. Software tallies the time spent in each chamber and number

of entries into each chamber. The social approach test measures the sociability of the subject

mouse as a simple yes-or-no parameter, defined as significantly more time spent in the side

chamber containing a novel mouse than in the side chamber containing a novel object during a

10-min test session. The equipment can be used to assess preference for social novelty in a

subsequent 10-min test session. Preference for social novelty is defined as significantly more

time spent in the side chamber with a second novel mouse than in the side chamber with the first,

now familiar, mouse (Panel B). Time spent sniffing the novel mouse versus the familiar mouse, or

time spent sniffing the second novel mouse versus a familiar mouse, provides a corroborative

measure of actual social interaction. Number of entries offers a control measure of general

exploratory locomotion. Habituation to the empty test chamber takes place during a 10-min test

session immediately before the sociability session. Innate side preference is evaluated during the

habituation phase. If the group spends significantly more time on one side during habituation, the

room configuration is changed to equalize time in each side chamber during general exploration.

Panels C and D illustrate reciprocal social interactions between two freely moving mice. Recipro-

cal social interaction parameters provide more sensitive measures of relevant components of

interactive sociability. Two juvenile mice, or two adult mice, usually of the same sex, are

videotaped during a 10- to 30-min test session in the Noldus Phenotyper 3000 open field apparatus

192 F.I. Roullet and J.N. Crawley



Social recognition and social memory in mice are evaluated by amount of time

spent sniffing a novel mouse upon repeated exposures, to induce familiarity, and

reinstatement of high levels of sniffing when a novel stimulus animal is introduced

(Bielsky et al. 2004, 2005; Bielsky and Young 2004; Richter et al. 2005; Sanchez-

Andrade et al. 2005; Wersinger et al. 2007; Wanisch et al. 2008). Social memory is

assayed from videotapes in three-chambered environments, using a time delay of up

to 30 min between presentations (Winslow and Insel 2002; Winslow 2003; Young

et al. 2002). In the automated three-chambered apparatus illustrated in Fig. 1b,

preference for social novelty is assayed by replacing the novel object with a second

novel mouse for a 10 min social choice session following the 10 min sociability

session (Moy et al. 2007, 2008a, b; Chadman et al. 2008; McFarlane et al. 2008).

Representative examples are described in Table 1.

3 Mouse Behavioral Tasks with Face Validity for the Second

Diagnostic Symptom of Autism, Communication Deficits

The second category of core symptoms involves language delays, low ability to

maintain interactive conversations, strictly literal use of words, and inability to

understand nuances such as humor, sarcasm, facial expressions, and body language

(Lord et al. 2000; Frith 2003; Tager-Flusberg and Caronna 2007). It will be difficult

to design mouse tasks with high face validity to these uniquely human modes of

communication. Communication in mice is primarily through olfactory cues

(Bowers and Alexander 1967; Doty 1986; Schellinck et al. 1993; Isles et al.

2001; Brennan and Keverne 2004; Keverne 2004; Kavaliers et al. 2005; Wang

et al. 2008; Arakawa et al. 2009; Restrepo et al. 2009; Roullet et al. 2010).

Ultrasonic vocalizations emitted by mice in some social situations may represent

another mode of communication (Maggio and Whitney 1985; White et al. 1998;

Branchi et al. 2001; D’Amato and Moles 2001; Hofer et al. 2001; Gourbal et al.

2004; Panksepp et al. 2007; Scattoni et al. 2008a, b, 2009; W€ohr et al. 2010). Social
olfactory tasks for mice generally measure sniffing of urinary pheronomones

(Humphries et al. 1999; Hurst et al. 2001; Bakker 1994; Brennan and Keverne

2004; Hurst and Beynon 2004; Hurst et al. 2005; Arakawa et al. 2007; Yang and

Crawley 2009) and behavioral responses toward scent marks (Cheetham et al. 2007;

Arakawa et al. 2007, 2009; Roullet et al. 2010). Olfactory habituation/dishabituation

involves presenting a sequence of nonsocial and social cues on cotton swabs and

measuring time spent sniffing to same and to novel odors (Chadman et al. 2008;

�

Fig. 1 (continued) containing a thin layer of clean bedding. The invesigator scores the videotape

using Noldus Observer event software for number of bouts and time spent in each behavioral

category. Event categories include social behaviors such as sniffing, allogrooming, pushing past

with physical contact, and crawling under and over. Control nonsocial behaviors are simulta-

neously scored, such as locomotion and self-grooming. Publications using this task are described

in the text. Photographs contributed by the authors
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Stack et al. 2008; Yang et al. 2009; Yang and Crawley 2009). Scent marking

involves measuring the number of urinary spots deposited by the subject mouse

in proximity to urinary spots deposited by another mouse, or to a urine sample

placed in an arena by the investigator (Hurst and Beynon 2004; Arakawa et al.

2007, 2008; Wang et al. 2008; Roullet et al. 2010). Open field arenas fitted with

specialized urine-absorbing paper and ultrasonic microphones and representative

scent markings by a male mouse in response to a spot of female urine in the center

of the arena, are illustrated in Fig. 2.

Ultrasonic vocalizations are emitted by mouse pups when separated from the nest,

and detected by the parents to locate the straying pup and retrieve it to the nest

(Zippelius and Schleidt 1956; Hofer et al. 2001; D’Amato and Moles 2001; Winslow

and Insel 2002; Shu et al. 2005; Scattoni et al. 2008a, b). Pup calls in the range of

40–90 kHz are a robust, easily replicated phenomenon in mice, which represent

communication in the sense that they elicit a response from the adult parents.

However, intentionality on the part of the pup has not been demonstrated. Another

issue is face validity. It is not obvious that low numbers of pup vocalizations represent

the type of communication deficits seen in autism. Infants later diagnosed with autism

display less crying in some cases, but louder and more frequent and inconsolable

crying in some cases, and normal crying in other cases (Sheinkopf et al. 2000;

Zwaigenbaum et al. 2005). Nevertheless, the number of ultrasonic vocalizations by

separated pups has been widely used as an assay for communication in mouse models

of autism, as described for some of the examples in Table 1.

Ultrasonic vocalizations in juvenile and adult mice may provide better models

for intentional communication in mice. Vocalizations during social interactions by

pairs of previously isolated juvenile mice, calls between pairs of adult females and

vocalizations emitted by adult male mice sniffing female urine, are being analyzed

for call numbers and call properties in mouse models of autism and other neurop-

sychiatric disorders (D’Amato and Moles 2001; Panksepp et al. 2007; Wang et al.

2008; Scattoni G2B paper if in press). In addition, vocalizations have proven to be a

useful measure in mouse models of human speech disorders such as mutations in

the FOXP2 gene (Shu et al. 2005; Fujita et al. 2008; Enard et al. 2009).

4 Mouse Behavioral Tasks with Face Validity for the Third

Diagnostic Symptom of Autism, Repetitive Behaviors with

Restricted Interests

Stereotyped, repetitive behaviors, and the restricted range of interests and activities

that characterize autism (Bodfish et al. 2000; Lord et al. 2000; Cuccaro et al.

2003; Frith 2003; South et al. 2005) are amenable to modeling with available rodent

tasks that incorporate reasonable face validity. Mice engage in motor stereotypies

including vertical jumping, backflipping, circling, digging, marble burying rearing,

repeated sniffing of one location or object, barbering, excessive self-grooming, and

excessive running (Creese and Iversen 1975; Turner et al. 2001; Lee et al. 2002;
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Pogorelov et al. 2005; Korff and Harvey 2006; Lewis et al. 2007; Crawley 2007b;

Welch et al. 2007; Yang et al. 2007a, b; McFarlane et al. 2008, Moy et al. 2008a).

Excessive stereotyped grooming was reported for several mouse lines with muta-

tions in developmental genes. Sapap3 (Welch et al. 2007) andHoxb8 knockout mice

(Greer and Capecchi 2002) exhibit extreme self-grooming that leads to hair loss

and skin injuries. The inbred strain BTBR T+tf/J exhibits the normal pattern of

Fig. 2 Social olfactory scent marking and countermarking. Figure 2 illustrates our apparatus for

measuring urinary scent marking and countermarking behavior in an open field by adult mice.

Scent marking in mice is often used as a mechanism for social dominance in marking territory and

access to females, and may reflect the ability of mice to interpret and respond correctly to social

cues. A sheet of paper with absorbent properties is placed in the bottom of the open field. The male

mouse explores an open field in which a drop of urine from an estrus female has been placed in the

center of the paper. The male will deposit his urine in spots located in proximity to the female urine

sample and throughout the open field. Countermarking is another scent marking test that measures

the scent marks deposited by an adult male in the presence of scent marks previously deposited by

another male on the paper lining. As shown in Panels A and B, ultrasonic microphones positioned

above each of four open fields simultaneously record ultrasonic vocalizations emitted by the

subject mice during the session. At the end of the 5-min test session, the paper is placed under an

ultraviolet lamp for visualization and quantitation of the deposited urinary traces (Panel C).
Alternatively, the sheet of paper is treated with Ninhydrin spray. Scent marks appear as purple

spots (Panel D). Number and location of scent marks are scored and analyzed for factors including

proximity to a female urine spot (circled in blue) by the male subject mouse. See text for further

descriptions. Photographs contributed by the authors
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grooming but at very high levels, representing a prolonged repetitive behavior (Yang

et al. 2007a, b, 2009; McFarlane et al. 2008).

Assays for repetitive behaviors include perseverations, such as the inability to

change to a spatial habit (Ralph et al. 2001; Brigman et al. 2006; Chen et al. 2007;

Moy et al. 2008a). Spatial habits in mice can be induced by first locating the

reinforcer consistently in one place, e.g., the food pellet is always in the left arm

of a T-maze, or the hidden platform is always in the northwest quadrant of a water

maze, during the initial training sessions. If the food pellet is later moved to the right

arm of the T-maze, or the hidden platform is later moved to the southeast quadrant of

the water maze, most mice can learn to change their spatial habit during the reversal

training sessions. A mouse model of autism is predicted to acquire the initial habit

but not the reversal. Examples are described in Table 1. An interesting report with a

Fragile X model engaged in an operant task indicates a resistance to change, in that

general performance was disrupted after an error was made (Moon et al. 2006).

Restricted interest assays for mice are under development. One is a holeboard

array, in which mice usually nosepoke into all of the holes in the floor of an open

field, including holes baited with various objects and odors (Moy et al. 2008a).

A mouse model of autism would be predicted to show nosepoke activity into only

one or a small subset of holes, representing restricted interest in one location or type

of bait. Spontaneous alternation in a Y-maze, which represents a common explor-

atory strategy in mice, could be used to measure restricted exploration to only one

arm of the Y-maze. Another approach is an attentional task, in which a mouse

model of autism would be predicted to excel at maintaining focused attention, and

ignoring distractors.

5 Mouse Behavioral Tasks with Face Validity to Associated

Symptoms of Autism

Associated symptoms of autism that occur in varying percentages of cases include

mental retardation, seizures, anxiety, hyperreactivity to sensory stimuli, and sleep

disturbances. Endophenotypes with face validity to these associated symptoms may

be easier to model in mice. However, analogs of associated symptoms raise ques-

tions about the extent to which they are essential to include in a mouse model of

autism. For example, standard anxiety-related tasks for mice include the elevated

plus-maze, elevated zero maze, light/dark exploration, emergence test, and Vogel

thirsty lick conflict test (Cryan and Holmes 2005; Crawley et al. 2007). Anxiety-

related phenotypes have been reported for the Nlgn2, 5Htt, Fmr1, Avpr1b, and other
lines of mice with mutations that may be relevant to autism (Wersinger et al. 2002;

Holmes et al. 2003; Spencer et al. 2005; Blundell et al. 2009). Seizures in mice are

scored with tonic–clonic rating scales and electroencephalogram recordings. High

levels of seizures and seizure susceptibility have been reported for some lines of

mice with mutations relevant to neurodevelopmental disorders, e.g., GABA recep-

tor Gabrb3 subunit and Pten knockouts (DeLorey et al. 1998; Zhou et al. 2009).
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Compelling findings relevant to associated symptoms offer important leads to

pursue, in defining genes underlying a broad set of neurodevelopmental abnormal-

ities that may converge in the etiology of autism. However, at a practical level,

traits such as seizures, high anxiety-like behaviors, or circadian disruptions produce

confounds in the interpretations of other behavioral findings such as social deficits.

For example, mice with high anxiety-like tendencies will remain in the center

chamber of the three-chambered automated social approach apparatus and will

not explore either the side chamber with the novel mouse or the side chamber

with the novel object. Mice experiencing frequent seizures or lack of sleep may

similarly be generally inactive in all tasks requiring exploratory locomotion. The

role of learning deficits on social behaviors remains to be determined in mice, as

well as in humans.

6 Biological Assays

As described above, clinical studies have reported unusual neuroanatomical features

in some autistic individuals as compared to typically developing children and adults.

Reported differences include larger head circumference at young ages, larger or

smaller volumes of cortical gray matter and white matter, in thickness of long cortical

connectivity pathways and intrahemispherical connections including the corpus

callosum, loss of cerebellar Purkinje cells, reduced amygdala size, and less activation

of brain regions during social tasks in fMRI studies (Herbert et al. 2003; Minshew and

Williams 2007: Pelphrey et al. 2002; Spezio et al. 2007; Amaral et al. 2008;

McAlonan et al. 2008). Analogous morphometric analyses are beginning to be

applied to mouse models (Radyushkin et al. 2009). Hypotheses about impairments

in synaptic connections, dendritic spines, and electrophysiological measures of

synaptic plasticity are being tested in mouse models of neurodevelopmental disorders

(Beckel-Mitchener and Greenough 2004; Dolen et al. 2007; Lauterborn et al. 2007;

Ehninger et al. 2008a; Sudhof 2008; Zhou et al. 2009). Table 1 and the section below

include descriptions of biological and behavioral phenotypes that have been reported

in mutant mouse models of autism spectrum disorders.

7 Comprehensive Phenotypes of Selected Mouse Models

of Autism Spectrum Disorders

7.1 Fragile X

Fragile X syndrome, the major form of mental retardation with a known genetic

basis, is caused by highly expanded CGG trinucleotide repeats within the X-linked

FMR1 gene, an RNA binding protein (Bassell and Warren 2008). Approximately

25% of individuals with Fragile X syndrome also meet the diagnostic criteria for
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autism (Abrahams and Geschwind 2008). Fmr1 knockout mice display several

behavioral phenotypes relevant to autism spectrum disorders, depending on the

genetic background into which the mutation is bred (Errijgers et al. 2008; Moy et al.

2009). As shown in Table 1, well-replicated phenotypes include hyperactivity, high

anxiety-like behaviors, low prepulse inhibition of acoustic startle and mild impair-

ments on water maze learning (Bakker 1994; D’Hooge et al. 1997; Peier et al. 2000;

Spencer et al. 2005; Errijgers et al. 2008). Fmr1 knockout mice display abnormally

high densities of long, thin, immature dendritic spines and impaired long-term

potentiation (Beckel-Mitchener and Greenough 2004; Lauterborn et al. 2007).

Gene therapy with normal human FRM1 rescued the hyperactivity, prepulse inhi-

bition deficit, anxiety-like behaviors, and the social anxiety-like behaviors in Fmr1
knockout mice (Peier et al. 2000; Paylor et al. 2008; Spencer et al. 2008). Treat-

ments with minocycline, brain-derived neurotrophic factor, and mGluR5 receptor

antagonists reduced the dendritic spine abnormalities and long-term potentiation

deficits in Fmr1 knockout mice (Lauterborn et al. 2007; Dolen and Bear 2008;

Bilousova et al. 2009).

7.2 Chromosome 15q11–13 Duplication

Chromosomal duplications and deletions, termed copy number variants, appear

with higher frequencies in autism than in the general population (Sebat et al. 2007).

The most frequent duplication appears to be at the 15q11–13 locus, and is usually

maternally transmitted (Cook et al. 1997; Kwasnicka-Crawford et al. 2007). Mice

with 15q11–13 duplications displayed lack of sociability in the three-chambered

social approach task, and normal acquisition but failure to reverse a spatial habit in

the Morris water maze (Nakatani et al. 2009), as shown in Table 1. Comprehensive

analyses of general health, sensory abilities, and motor functions confirmed normal

physical abilities, including olfactory (Nakatani et al. 2009). It is interesting to note

that paternal transmission of the 15q11–13 duplication in mice produced these

autism-relevant phenotypes to a great extent than the maternal transmission of the

duplication, in contrast to the maternal duplication of 15q11–13 more frequently

causing autism in humans.

7.3 Pten

Phosphatase and tensin homolog on chromosome ten (PTEN) is a tumor suppressor

gene implicated in cancers (Diaz-Meco and Abu-Baker 2009). PTEN mutations

additionally result in macrocephaly, and some individuals meet the diagnostic

criteria for autism (Varga et al. 2009). Mice with Pten null mutations generated

with a conditional neuronal promoter displayed macroencephaly, neuronal hyper-

trophy, poor spatial learning, higher anxiety-like behaviors, higher open field
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activity, elevated acoustic startle, and lack of preference for social novelty (Kwon

et al. 2006). Signaling proteins downstream from Pten include PI3K, AKT, TSC,

and mTOR (Zhou et al. 2009). Remarkably, long-term treatment with the mTOR

inhibitor rapamycin reversed the neuronal soma hypertrophy, dentate gyrus

enlargement, and social interaction deficits in 2-month-old Pten knockout mice

(Zhou et al. 2009).

7.4 BTBR

A broad survey of inbred strains of mice from the top tier of The Mouse Phenome

Project (http://phenome.jax.org/) revealed an obscure strain, BTBR T+tf/J (BTBR),

which displayed specific deficits on social approach and high levels of repetitive

self-grooming, described in Table 1, along with normal scores on measures of

general health, sensory abilities, and motor functions (Moy et al. 2007). Failure to

display sociability in the automated three-chambered social approach task has been

replicated in multiple cohorts of BTBR, across three laboratories, and in both the

light and the dark phases of the circadian cycle (Moy et al. 2007; Bolivar et al.

2007; McFarlane et al. 2008; Yang et al. 2007a, b, 2009). Low reciprocal social

interactions have been found in pairs of juvenile BTBR as compared to pairs of

juvenile C57BL/6J, a commonly used inbred strain with high social approach

(McFarlane et al. 2008; Yang et al. 2007a, b, 2009). Relevant to the second

diagnostic symptom of autism, unusual patterns of ultrasonic vocalizations have

been reported for BTBR (Scattoni et al. 2008a, b). Relevant to the third diagnostic

symptom of autism, normal patterns but very long bouts of repetitive self-grooming in

BTBR have been detected in multiple cohorts in various environments (McFarlane

et al. 2008; Yang et al. 2007a, b, 2009). Similar social approach deficits and unusual

vocalizations have been detected in another inbred strain, BALB/cJ (Brodkin 2007;

Panksepp et al. 2007). While inbred strains do not test specific hypotheses about

autism candidate gene mutations, they provide opportunities to discover back-

ground genes mediating social, communication, and repetitive behaviors. Robust

phenotypes in BTBR offer translational tools to evaluate treatments for low

sociability and high repetitive behaviors. For example, repetitive self-grooming

in BTBR was reduced by acute treatment with an mGluR5 antagonist, MPEP

(Silverman et al. 2010).

7.5 Prenatal Valproic Acid

Valproic acid (VPA) is a drug used in the treatment of epilepsy and mood disorder

(Ornoy 2009). Administered during pregnancy, VPA can induce fetal valproate

syndrome in the offspring, characterized by neural tube defects such as spina bifida,

craniofacial abnormalities (Ardinger et al. 1988; Arpino et al. 2000; DiLiberti et al. 1984;
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Wide et al. 2004), and behavioral and cognitive dysfunctions associated with

autism (Christianson et al. 1994; Moore et al. 2000; Rasalam et al. 2005; Williams

et al. 2001; Williams and Hersh 1997). In rodents, prenatal exposure to VPA results

in deficit in social interaction, repetitive/stereotyped patterns of behavior, a lower

sensitivity to pain but increased sensitivity to nonpainful stimuli, (Schneider and

Przewlocki 2005), disturbed sleep pattern (Tsujino et al. 2007), and alterations in

eye blink conditioning (Stanton et al. 2007). In addition, rats treated in utero with

VPA show cerebellar pathology (Ingram et al. 2000; Rodier et al. 1996), increased
complexity of apical dendritic arborization (Snow et al. 2008), elevated levels of

brain serotonin (Tsujino et al. 2007), and enhanced hyperconnectivity (Rinaldi et al.

2008). Adult mice previously treated in utero with VPA have reduced neuroligin 3

mRNA expression in some brain areas (Kolozsi et al. 2009). Interestingly, prenatal

exposure to VPA produced greater behavioral and physiological abnormalities in

male rats than in female rats (Schneider et al. 2008). Behavioral deficits relevant to

autism (abnormalities in social behavior, stereotypy) were reversed when VPA-

treated rats were exposed to an enriched environment (Schneider et al. 2006).

8 Conclusions

Considerable progress has been made in the translational use of mouse models to

investigate molecular hypotheses about the causes of the behavioral symptoms of

autism spectrum disorders. The nascent field of mouse models of autism will mature

in concert with the clinical field in diagnosing specific symptoms and subcategories

of autism. Evaluation instruments for both the mouse models and the human

syndrome are in place, but considerably more development and refinement is

needed. Interactive conversations between clinical investigators and behavioral

neuroscientists will aid the process of generating mouse assays most relevant to

the core endophenotypes of autism. Synergistic discoveries of genetic mutations in

autistic individuals, genes underlying social, communicative, and repetitive beha-

viors in mice, and the functional consequences of autism candidate gene mutations

in mice, are likely to move the field forward significantly in the next few years.
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Abstract Drug addiction is a syndrome of impaired response inhibition and

salience attribution, which involves a complex neurocircuitry underlying drug

reinforcement, drug craving, and compulsive drug-seeking and drug-taking beha-

viors despite adverse consequences. The concept of disease stages with transitions

from acute rewarding effects to early- and end-stage addiction has had an important

impact on the design of nonclinical animal models. This chapter reviews the main

advances in nonclinical paradigms that aim to at model (1) positive and negative

reinforcing effects of addictive drugs; (2) relapse to drug-seeking behavior; (3)

reconsolidation of drug cue memories, and (4) compulsive/impulsive drug intake.

In addition, recent small animal neuroimaging studies and invertebrate models will

be briefly discussed (see also Bifone and Gozzi, Animal models of ADHD, 2011).

Continuous improvement in modeling drug intake, craving, withdrawal symp-

toms, relapse, and comorbid psychiatric associations is a necessary step to better

understand the etiology of the disease and to ultimately foster the discovery,

validation and optimization of new efficacious pharmacotherapeutic approaches.

The modeling of specific subprocesses or constructs that address clinically defined

criteria will ultimately increase our understanding of the disease as a whole. Future

research will have to address the questions of whether some of these constructs can

be reliably used as outcome measures to assess the effects of a treatment in clinical

settings, whether changes in those measures can be a target of therapeutic efforts,

and whether they relate to biological markers of traits such as impulsivity, which

contribute to increased drug-seeking and may predict binge-like patterns of drug

intake.

Keywords Animal models � Craving �Drug addiction �Drug-seeking �Drug-taking
� Impulse control disorders � Relapse � Substance use disorders � Withdrawal

Abbreviations

5-CSRT 5-Choice serial reaction time

6-OHDA 6-Hydroxydopamine

AA Alko alcohol rats

ADE Alcohol deprivation effect

ANA Alko non alcohol rats

APA American Psychiatric Association

BSR Brain stimulation reward
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CPA Conditioned place aversion

CPP Conditioned place preference

CS Conditioned stimulus

DA Dopamine

DSM-IV Diagnostic and statistical manual fourth edition

EMCDDA European Monitoring Centre for Drugs and Drug Addiction

fMRI Functional magnetic resonance imaging

FR Fixed ratio

HAD High alcohol drinking rats

HAP High alcohol preferring mice

ICD-10 International classification of diseases and related health

problems tenth revision

ICSS Intracranial self-stimulation

LAP Low alcohol preferring mice

LgA Long-access escalation

MK-801 (5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo

hepten-5, 10-imine maleate

NAc Nucleus accumbens

NMDA N-methyl-D-aspartate

OFC Orbitofrontal cortex

PET Positron emission tomography

phMRI Pharmacological magnetic resonance imaging

PR Progressive ratio

SD Discriminative stimulus

sP Sardinian alcohol-preferring rats

VTA Ventral tegmental area

WHO World Health Organization

1 Introduction

According to the World Health Organization (WHO), there are about 200 million

users of illegal drugs worldwide, which represent 3.4% of the world population.

Among other neuropsychiatric diseases, alcohol and drug abuse cost the United

States economy an estimated $544.11 billion per year including costs related to

crime, loss in productivity, health care, incarceration, and drug enforcement opera-

tion (e.g., Uhl and Grow 2004). Recent figures indicate societal costs of about

€57.274 billion per year in the European Community (Andlin-Sobocki and Rehm

2005; Andlin-Sobocki et al. 2005). Most recent information from the National

Survey on Drug Use and Health (NSDUH 2008) reveals that an estimated 20.1

million Americans aged 12 or older were current (past month) illicit drug users

(including marijuana/hashish, cocaine/crack, heroin, hallucinogens, inhalants, or
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prescription-type psychotherapeutics used nonmedically), which represents 8.0%

of that population. Among Americans aged 12 or older, an estimated 129.0 million

(51.6%) reported being current drinkers of alcohol, 58.1 million (23.3%) partici-

pated in binge drinking, whereas heavy drinking was reported by 6.9% of that

population, or 17.3 million people. Finally, an estimated 70.9 million Americans

aged 12 or older (28.4%) were current users of a tobacco product. Overall, an

estimated 22.2 million persons (8.9% of the population aged 12 or older) were

classified with substance dependence or abuse in the past year based on criteria

specified in the Diagnostic and Statistical Manual of Mental Disorders, fourth

edition (DSM-IV).

The European Monitoring Centre for Drugs and Drug Addiction (EMCDDA)

celebrated 15 years of collecting information and reporting on the European drug

problem in 2009. With sales of illicit drugs estimated to generate more than €100
billion, Europe has also now become a laboratory to study drug use across culturally

different countries by using a transversal drug monitoring system that encompasses

30 countries with a combined population of more than half a billion people. The

2009 estimates of drug use in Europe in the adult population (15–64 years old) show

a lifetime prevalence of cannabis of at least 74 million (22.1%), with last-year use

and last-month use reported by about 22.5 million (6.8%) and 12 million (3.6%)

European adults, respectively. For cocaine, EMCDDA reports a lifetime prevalence

of about 13 million (3.9%), with last-year use and last-month use reported by about

4 million (1.2%) and 1.5 million (0.4%) European adults, respectively. Lifetime

prevalence of ecstasy use is about 10 million (3.1%), with last-year use and last-

month use of about 2.5 million (0.8%) and less than one million European adults,

respectively. In addition, lifetime prevalence of amphetamines use is about 12

million (3.5%), with last-year use and last-month use of about two million (0.5%)

and less than one million European adults, respectively. Finally, problem opioid

users are estimated at between 1.2 and 1.5 million Europeans. Drug-induced deaths

in 2009 accounted for 4% of all deaths of Europeans aged 15–39, with opioids being

found in around three quarters. Another defining factor in Europe’s substance use

problem is the concomitant consumption of alcohol across age groups.

Evidence-based addiction medicine originates from different types of studies

conducted in various groups or populations of subjects, which may or may not

apply to a particular drug user with a particular drug history (e.g., mono- or poly-

drug use), a specific genetic makeup, and a set of cultural values. Attempting to

model addiction-related symptomatology therefore requires a careful examination

of the criteria that are currently used to define substance use disorders. Two major

versions of formal diagnostic systems have been developed and regularly updated

by the American Psychiatric Association (APA) and WHO. The most recent set of

diagnostic guidelines published by these organizations are the Diagnostic and

Statistical Manual, Fourth Edition (DSM-IV; APA 1994a, b) and the International

Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10;

WHO 1991). Both of these systems rely on a syndrome-based approach (Edwards

1986) to diagnosing substance use disorders. These diagnostic systems conceptual-

ize substance dependence as a maladaptive pattern of substance use leading to
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significant impairment or distress (Table 1). Addiction then can be defined as a

reward-seeking activity that, through experience, comes to be given such a

high priority that it is maladaptive. Addiction is an acquired chronic disposition to

experience powerful motivation to engage in a reward-seeking activity and/or a

weakened disposition to exercise inhibition. As such, drug addiction has aspects of

impulse control disorders (i.e., increasing sense of tension or arousal before commit-

ting an impulsive act; pleasure, gratification, or relief at the time of committing the

act, and presence or not of regret, self-reproach, or guilt following the act) and

compulsive disorders (i.e., anxiety and stress before committing a compulsive

Table 1 Criteria of substance dependence according to DSM-IV and ICD-10

DSM-IV criteriaa ICD-10 criteriab

Tolerance, as defined by either:

� Need for markedly increased amounts of the

substance to achieve intoxication or desired

effect

� Markedly diminished effect with continued

use of the same amount of the substance

Evidence of tolerance, such that increased doses

of the psychoactive substance are required to

achieve the effects originally produced by

lower doses

Withdrawal, as manifested by either:

� Characteristic withdrawal syndrome for the

substance

� The same (or a closely related) substance is

taken to relieve or avoid withdrawal

symptoms

Physiological withdrawal state when substance

use has been reduced or ceased

The substance is often taken in larger amounts

or over longer periods than intended

A strong desire or sense of compulsion to take

the substance

Persistent desire or unsuccessful efforts to cut

down or control substance use

Difficulties in controlling substance-taking

behavior in terms of its onset, termination

or level of use

A great deal of time is spent in activities

necessary to obtain the substance (e.g.,

visiting multiple doctors or driving long

distances), use the substance (e.g., chain-

smoking), or recover from its effects

Important social, occupational, or recreational

activities are given up or reduced because of

substance use

Progressive neglect of alternative pleasures or

interests because of psychoactive substance

use, increased amount of time necessary to

obtain or take the substance or to recover

from its effects

Continued substance use despite knowledge of

having a persistent or recurrent physical or

psychological problem that is likely to have

been caused or exacerbated by the substance

Persisting with substance use despite clear

evidence of overly harmful consequences,

depressive mood states consequent to heavy

use, or drug-related impairment of cognitive

functioning
a To meet a diagnosis of dependence, an individual would have to endorse three or more of the

seven criteria below, with at least three criteria having been experienced within the same 12-month

period
b To meet a diagnosis of dependence, three or more of the six following criteria must have been

experienced or exhibited at some time during the previous year

Advances in Animal Models of Drug Addiction 217



repetitive behavior, and relief from the stress by performing the act). As an

individual moves from an impulsive disorder to a compulsive disorder, there is

also a shift from a positive to a negative reinforcement process that drives the

motivated behavior.

The extent to which nonclinical paradigms can actually model specific DSM-IV

or ICD-10 criteria is arguable, but the following sections in this chapter will show

that some associations have recently emerged. There are, however, three important

concepts that should be mentioned prior to discussing these associations: (1) the

validity of the nonclinical models; (2) the too often neglected importance of

pharmacokinetics–pharmacodynamic (PK/PD) relationships, and (3) the limitations

of the diagnostic classification systems.

First, understanding the underlying nature of addiction in clinical settings is

contingent upon the actual validity of the nonclinical model and which aspect of the

addiction process is being modeled (Willner 1991). The face validity of nonclinical

models typically refers to whether the overt behavioral qualities of the human

condition are similar to what is observed in the model (Willner 1991). In other

words, the face validity is based on a phenotypic comparison of the animal’s

behavior with what is seen in human addicts. For example, drug self-administration

in nonhuman species is usually referred to as one of the models with the highest

degree of face validity because it mimics voluntary drug-taking behavior in

humans. Predictive validity refers to whether the behavioral outcomes in the

model predict performance in the human condition being modeled (Willner

1991). For example, drug self-administration models are extremely valuable in

assessing whether a novel drug possesses abuse liability in humans; these models

will then be referred to as having a high degree of predictive validity. Finally,

perhaps the most difficult aspect of nonclinical models relates to construct validity

that refers to whether there is a sound theoretical rationale linking the human

condition and the animal model (Willner 1991). Construct validity is extremely

challenging for a disease such as addiction whose etiology is still only partially

understood.

Second, animal modeling requires a constant balance between validity, through-

put, and reliability. However, the extent to which nonclinical models will further

increase our confidence in a potential therapeutic drug target or decrease its

associated risks will also depend on the integration of a PK/PD strategy. The latter

is essential to aid dose selection for transition to human studies. Thus, the selection

of a nonclinical paradigm should also be contingent upon the feasibility of imple-

menting a PK/PD strategy to investigate pharmacological activity in humans that is

similar in type and magnitude to that observed in preclinical efficacy models

(PD and/or disease model). This strategy should aim at answering the following

questions: What is the expected clinical response for the treatment strategy? What

is the level of certainty surrounding the predicted response? How do different

treatment strategies impact response? What dose is required to achieve a target

response? What is the probability of achieving a specific efficacy target while

keeping probability for adverse events below a certain level? What is the optimal

strategy to balance safety and efficacy?
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Third, challenges do also reside on the clinical side of the translational seesaw.

In addition to the validity of nonclinical models, one should recognize the limita-

tions of current diagnostic classification systems. For example, criteria for classifi-

cation only reflect consensus at the time a system of classification is published, and

are therefore constrained by the state of scientific knowledge at any given time.

Furthermore, there might be considerable heterogeneity among individuals within

diagnostic classes, and the prescribed threshold (i.e., dependence defined as the

presence of three or more features) for determining the presence versus absence of a

disorder is potentially an arbitrary cut-off along a continuous dimension of diag-

nostic symptomatology. Finally, there is no evidence that all criteria should be

given equal weight for a diagnosis, and each criterion may not apply equally across

all drug categories.

2 Animal Models of the Positive and Negative Reinforcing

Effects of Addictive Drugs

The following sections review the main advances in animal models of drug

addiction and discuss how they relate to specific aspects of the disease and the

degree to which they serve as a valid index of the human condition (i.e., aspects of

validity). It will also be argued that if one takes addiction as a reward-seeking

behavior that has become out of control, then its assessment, measurement, and/or

modeling should also be undertaken using manifestations of that lack of control.

2.1 Brain Stimulation Reward

Brain stimulation reward (BSR), also referred to as intracranial self-stimulation

(ICSS), is a procedure during which steady rates of lever-pressing behavior in

rats can be maintained if brief electrical stimulation of the medial forebrain

bundle or other rewarding brain sites follows the operant behavior (for a thorough

review, see Gardner 2005). The rate–frequency procedure typically involves the

generation of a stimulation–response function and provides a frequency threshold

measure. The frequency of the stimulation is varied, and the subject’s response

rate is measured as a function of frequency. The relationship between response

rate and pulse frequencies yields a sigmoidal rate–frequency curve. Lateral shifts

along the pulse frequency axis in the rate–frequency curve are a selective measure

of reward, while vertical shifts provide information on motor/performance capac-

ity. Thus, an increase in the level of BSR current that is required to maintain lever-

pressing (i.e., a right-shift along the pulse frequency axis in the rate–frequency

curve paradigm) is taken as evidence of decreased sensitivity to brain reward.

Conversely, almost all drugs of abuse will lower the BSR threshold or produce a
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leftward shift in the rate–frequency curve paradigm. The affective properties of

drug withdrawal can also be assessed using ICSS procedures. For example,

withdrawal from chronic nicotine produces an increase in BSR threshold

(Epping-Jordan et al. 1998; Panagis et al. 2000; for a review, see O’Dell and

Khroyan 2009). Similarly, nicotine-dependent mice and rats show an increase in

current intensity thresholds during withdrawal (Johnson et al. 2008; Stoker et al.

2008). Thus, by measuring the threshold for BSR, one can either assess the degree

to which drugs are rewarding or measure the degree of dysphoria produced by

withdrawal from those drugs.

2.1.1 Notes on the Validity of the BSR Paradigm

BSR has relatively low face validity: the paradigm requires refined surgical inter-

vention and does not overtly mimic any component of drug use in humans.

Predictive validity is moderate: BSR has the advantage of directly interfacing

with brain reward circuits and eliminates any interference with consummatory-

like behaviors. In addition, the paradigm is a reliable measure of brain reward: all

reinforcing drugs lower the threshold for ICSS and the rewarding value of the drug

is predictive of relapse to drug-seeking in humans. However, some brain regions

support higher rates of BSR than others and different circuits might be activated by

different sites. Furthermore, animals must be trained for several weeks to obtain

stable rates of responding or stable thresholds. Finally, construct validity would also

appear to be moderate. First, changes in threshold values are a valid measure of

drug reinforcement. Second, dopaminergic systems play an important role in drug-

induced changes in ICSS. Third, the paradigm mimics negative aspects associated

with drug abstinence.

2.2 Behavioral Sensitization and Cue-Conditioned Locomotion

Behavioral sensitization or reverse tolerance to a drug refers to the progressive and

persistent increase in that drug effect produced by its repeated, intermittent admin-

istration. For example, it has been shown that both direct and indirect dopamine

(DA) agonists can elicit a progressive increment of some of their acute behavioral

responses (Castro et al. 1985; Hoffman and Wise 1992; Silverman 1991; Stewart

and Badiani 1993; Szechtman et al. 1993). The long-term behavioral, neurochemi-

cal, and molecular adaptive responses to the repeated administration of these drugs

are thought to underlie the addiction process as well as stimulant-induced psychoses

(for preclinical evidence, see Paulson et al. 1991; Post and Rose 1976; Robinson and

Becker 1986; for clinical evidence, see Lieberman et al. 1997; Sato 1986). Although

the neural basis of behavioral sensitization to DA agonists still remains to be

completely elucidated, considerable progress has been achieved in the phenomeno-

logical characterization of the sensitization phenomenon at both the behavioral and
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the neurochemical levels. The repeated administration of psychostimulants produces

persistent adaptations within the mesolimbic DA system (Kalivas and Stewart

1991; Robinson and Becker 1986), and the resulting molecular and neurochemical

changes may lead to behavioral sensitization, which in turn has been linked

theoretically with the addiction process (for thorough reviews, see Robinson and

Berridge 1993, 2001, 2008). It is believed that an increase in extracellular DA in the

somatodendritic region of the DA neurons in the ventral tegmental area (VTA)

(Cador et al 1995; Kalivas and Stewart 1991; Kalivas and Weber 1988; Vezina

1993) initiates the necessary pre- and postsynaptic processes for behavioral sensiti-

zation to the systemic administration of DA agonists to be expressed at terminal

regions of the DA neurons in the nucleus accumbens (NAc) (Kalivas and Duffy

1990, 1993; Parsons and Justice 1993; Patrick et al. 1991; Pettit et al. 1990;

Robinson et al. 1988; Segal and Kuczenski 1992a; but for time-dependent changes

in DA levels in response to the acute vs. repeated administration of DA agonists, see

Heidbreder et al. 1996; Kuczenski and Segal 1989; Segal and Kuczenski 1992b;

Weiss et al. 1992). Mesolimbic DA activity also underlies the reinforcing properties

of DA agonists, which can be sensitized when these drugs are either injected

repeatedly or self-administered (Horger et al 1990; Lorrain et al. 2000; Shippenberg

and Heidbreder 1995; Vezina et al. 1999, 2002). Recent evidence suggests that

behavioral sensitization can be observed in humans (for reviews, see Leyton 2007;

Sax and Strakowski 2001; Vezina and Leyton 2009). For example, drug-associated

behaviors are sensitized following repeated exposure to amphetamine (Strakowski

and Sax 1998; Strakowski et al. 1996). Furthermore, expression of neurochemical

sensitization is observed following repeated administration of amphetamine

(Boileau et al. 2006; Cox et al. 2009; but see Narendran and Martinez 2008).

Cue-conditioned locomotion is based on Pavlovian conditioning. In this proce-

dure, rats are typically injected with a drug and immediately placed in individual

locomotor activity cages (experimental environment), which the animals presum-

ably perceive as an environment distinct from their home environment. The proce-

dure is repeated once a day for 4–5 days and locomotor responses are recorded

during each session. Upon repeated administration of the drug in the experimental

environment, a progressive behavioral sensitization develops, which is typically

reflected by a progressive enhancement of the locomotor response to the drug

(see above). This phenomenon is also referred to as context-dependent behavioral

sensitization and may have a role in the development of compulsive drug-seeking

behaviors (Robinson and Berridge 2001, 2008).

2.2.1 Notes on the Validity of the Behavioral Sensitization

and Cue-Conditioned Locomotion Paradigms

The extent to which these paradigms have translational value to the design of

clinical studies is questionable. First, few controlled human studies of this process

have been published in the literature. Second, in those published studies, some

self-reported subjective responses might be sensitized whereas others seem to
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exhibit tolerance; the reasons underlying this differential response are currently

unknown. In contrast, sensitization of objective endpoints such as eye-blink rate,

elevated mood, and talkativeness lacks replication in controlled studies. Third,

sensitized responses in humans can be associated with personality traits, indicating

that certain individual characteristics may alter the human response to repeated

stimulant administration. Fourth, in subjects diagnosed with new-onset and mild-

to-moderate psychotic symptoms or with a recent history of intravenous cocaine

use, sensitization to behavioral responses may not be observed. Fifth, raters in these

studies typically observe the same individuals following both placebo and stimulant

administrations, which could influence results based on rater expectations. Sixth,

human studies have reported that women are more likely than men to show

differences in stimulant response based on the number of previous stimulant

exposures. Finally, in contrast with nonclinical studies, a complex interaction exists

between measured and expected drug effects in humans. The subjects’ ability to

guess what they have received, coupled with their expectations of what psychosti-

mulant-induced effects actually are, is likely to influence their subjective response

to drug ingestion.

2.3 Conditioned Place Preference

The conditioned place preference (CPP) paradigm relies on the phenomenon

of secondary conditioning in which a neutral stimulus that has been paired with a

reward acquires the ability to serve as a reward itself. Consequently, a drug

treatment and its presumed internal effects (interoceptive cues) are paired with

the external neutral stimuli of a particular environment. If during a subsequent test

the animal increases the time that it spends approaching and maintaining contact

with the stimuli in that environment, it is inferred that the drug treatment was

rewarding. In a so-called biased CPP procedure, the animal receives repeated drug

administration in their initially nonpreferred environment (if examining the reward-

ing effects of a drug), or the preferred side (if examining the aversive effects of a

drug). In an unbiased CPP experiment, the animals are randomly assigned without

regard to initial bias for either side of the conditioning apparatus (for reviews see

Tzschentke 1998, 2007).

The CPP paradigm can also be used to evaluate aversive effects and is then

typically referred to as conditioned place aversion (CPA). For example, one may

use place conditioning to measure aversive effects induced by nicotine withdrawal

(Krishnan-Sarin et al. 1999; Malin et al. 1992, 1993; O’Dell and Khroyan 2009). In

these studies, animals typically receive chronic nicotine via osmotic minipumps for

5–7 days. During conditioning, the animal receives a nicotinic receptor antagonist

(e.g., mecamylamine) to precipitate withdrawal and is confined to one side of the

apparatus. On alternating days they receive saline in the other compartment.

Following conditioning, nicotine-dependent adult rats reliably display a CPA for
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the compartment where they experienced withdrawal (O’Dell and Khroyan 2009;

O’Dell et al. 2007; Suzuki et al. 1996).

2.3.1 Notes on the Validity of the CPP Paradigm

The CPP paradigm has a low-to-moderate degree of face validity: the drug is

administered noncontingently and there is evidence that the behavioral and neuro-

chemical effects of abused drugs differ depending on whether drug administration

is controlled by the subject. However, in this paradigm environmental cues are

repeatedly paired with the drug and eventually become a conditioned stimulus.

Thus, when animals express a CPP, the environment is said to have acquired

secondary reinforcing properties much like drug-related cues elicit conditioned

responses and craving in humans. The predictive validity of the CPP model is

also moderate: one of the main advantages of this paradigm is its ability to assess

both rewarding (CPP) and aversive (CPA) effects of drugs, a similarity with

the subjective effects of drugs in humans. The CPP/CPA model also seems to be

predictive of the efficacy of some pharmacotherapies (e.g., mecamylamine and

Rimonabant® can decrease nicotine-induced CPP, whereas Bupropion® attenuates

physical signs of withdrawal and CPA produced by nicotine withdrawal). However,

one should be aware that route of drug administration, duration of conditioning

sessions and number of environmental pairings can significantly affect place condi-

tioning. Furthermore, because tests of conditioning are conducted in the absence of

drug, the issue of state-dependency must be addressed: memories acquired during

exposure to a drug may be forgotten when the drug wears off and not remembered

until re-exposure to the drug. Conversely, material learned in an undrugged state

may be forgotten when a drug is taken; and material learned under one drug may be

forgotten when another drug is used. In addition, a lack of a conditioned response

may indicate a loss of the reinforcing effects of a drug or a generalized impairment

of learning or memory processes required for the acquisition or performance of a

conditioned response. Finally, genetic studies using CPP must take into account

possible genotypic differences in the saliency of environmental cues used for

conditioning.

2.4 Subjective Effects of Drugs: Drug Discrimination

Drug discrimination refers to the perception of the effects of drugs, and assesses

whether or not the experimental subject perceives the drug as the pharmacological

equivalent of another drug (for a thorough review, see Colpaert 1999). Pharmaco-

logical equivalence refers to the fact that drugs from different chemical classes

may produce similar pharmacological effects that collectively constitute their

pharmacological profile. The primary hypothesis underlying drug discrimination

research is that the ability to perceive and identify the particular subjective effects

Advances in Animal Models of Drug Addiction 223



of drugs and their withdrawal syndromes promotes drug-seeking behaviors (Falk

and Lau 1995). In a typical drug discrimination experiment, animals are trained to

discriminate the injection of a training dose of a drug (the training drug; D) from the

injection of saline (S). Food-deprived rats are trained to press one of two levers for

food in daily sessions before which the animals are injected with either D or S. After

D injection, the animal is required to press the drug lever (DL) to obtain food, and

presses on the other lever do not yield food. After S injection, the animal now is

required to press the saline lever (SL) and presses on the DL are without conse-

quences. Training is pursued until the animal reliably selects the appropriate lever

after injections of either D or S. Once trained, the animals undergo tests of stimulus

generalization. Before the test session, the animal receives S, the training dose,

any other dose of D, or any dose of any other agent. If the test treatment makes the

animal select DL, then it is considered that stimulus generalization occurred, and

it is inferred that the test treatment produced a discriminative stimulus that is

qualitatively similar to that produced by D. If the test treatment makes the animal

select SL, then it is considered that it did not produce stimulus generalization.

2.4.1 Notes on the Validity of the Drug Discrimination Paradigm

Generalization gradients are dependent on the dose of drug used for training and,

therefore, the use of multiple training doses is essential. Different test procedures

may yield different results depending on the variable used to measure generaliza-

tion. Species and strain differences as well as the experimental history of the animals

used in drug discrimination may alter the discriminative stimulus effects of a drug.

Finally, differences in the discriminative stimulus effects of a drug may occur

depending on whether appetitive or aversively maintained responding is employed.

2.5 Withdrawal

In a typical drug withdrawal model, animals are chronically treated with a drug, and

then abruptly withdrawn (for a review on animal models of nicotine withdrawal, see

Malin and Goyarzu 2009). For example, in the case of nicotine, the frequency of

withdrawal signs are observed and coded from a checklist which includes writhes

and gasps, wet shakes and tremors, ptosis, bouts of teeth chattering and chewing, as

well as less frequent signs such as foot licks, scratches, yawns, and episodes of

freezing behavior (Malin et al. 1992). Emotional and motivational correlates of

withdrawal signs have also been described, such as shifts in ICSS reward thresholds

(see above) or aversion as assessed by place preference conditioning (see above).

Withdrawal models have been shown to be predictive of withdrawal signs in

humans (Krishnan-Sarin et al. 1999; Malin 2001; Malin and Goyarzu 2009;

Malin et al. 1993) and as such have a fair face and predictive validity.
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3 Intravenous Drug Self-Administration

More than 20 psychoactive drugs that are abused by humans have also been found

to act as reinforcers in rodents and nonhuman primates, thus supporting the

hypothesis that drug self-administration in animals may be a reliable predictor of

abuse liability in man. The self-administration model has probably one of the

highest face validities as virtually all drugs of abuse, but also natural reinforcers,

such as food or sucrose are self-administered by laboratory animals. Nonclinical

drug self-administration studies performed over a relevant range of doses are

typically characterized by an inverted U-shaped function between drug dose and

a measure of behavior (e.g., response rate or number of self-administered injec-

tions). The ascending portion of this inverted U-shaped curve, which is typically

studied in clinical self-administration studies, may provide the most informative

data on the reinforcing effects of a drug. A major focus of preclinical research on

drug self-administration has been to examine the variables (behavioral and phar-

macological) that modify this behavior. Consequently, different reinforcement

contingencies have led to variants of the core self-administration model (for

reviews, see Haney and Spealman 2008; Oleson and Roberts 2008).

3.1 Measurement of Patterns of Rate of Drug Intake
(Low Fixed-Ratio Schedules)

In low fixed-ratio (FR) schedules of reinforcement, the response requirements

for each drug infusion are set at a fixed number. Within a range of drug doses

that maintain stable responding, animals will typically increase their response

rate as the unit dose is decreased, but will reduce their rate of self-administra-

tion when the unit dose is increased. It has been argued (Yokel and Wise 1975,

1976) that because animals compensate by increasing their rate of self-admin-

istration (under low FR reinforcement conditions) following decreases in unit

amount of self-administered drug, such increased rates of FR self-administration

must reflect decreased reinforcer efficacy. Yet, 6-hydroxydopamine (6-OHDA)

lesions of the meso-accumbens DA system (Roberts 1989) confound that interpre-

tation as partial depletion of DA in the NAc produces partial inhibition of cocaine

self-administration. Since the reinforcing efficacy of cocaine is believed to corre-

late with its enhancement of DA in the NAc (de Wit and Wise 1977; Ettenberg

et al. 1982; Gardner 2000, 2005; Spyraki et al. 1987; Wise and Rompré 1989), the

decreased FR drug self-administration seen during recovery from the 6-OHDA-

induced DA depletion has been interpreted as reflecting decreased reinforcer

efficacy. The main issue, however, is that the same alteration in the reinforcing

efficacy of cocaine manifests itself by opposite patterns of low FR drug self-

administration (i.e., by either increased or decreased FR drug-self-administration)

(Roberts and Zito 1987).
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3.2 Measurement of the Relative Strength of a Reinforcer
Independent of Response Rate (Progressive Ratio Schedules)

During progressive ratio (PR) schedules of reinforcement rats must complete

increasing FR response requirements to obtain a reinforcer (here the drug). The

essential feature of the PR schedule is that the response requirement continues to

increase until responding ceases altogether and the reinforcer is no longer obtained.

The final ratio completed is termed “breaking point” or “break point”. Since the PR

break-point is an index of the relative strength of a reinforcer to sustain responding,

independent of response rate, one assumes that a shift in PR break point produced

by a pharmacological agent indicates that the latter decreases the reinforcing value

of the drug (Arnold and Roberts 1997; Morgan and Roberts 2004; Richardson and

Roberts 1996; Rowlett 2000; Stafford et al. 1998). The escalation in final ratios,

which translates into a leftward and upward shift in the cocaine dose–response

curve (also referred to as “reverse tolerance” or “sensitization” – see above) is

affected by the unit injection dose of cocaine and by the speed of drug infusion

(Liu et al. 2005; Morgan et al. 2006).

3.3 Measurement of the Impact of the Conditioned
Reinforcing Properties of the Drug-Paired
Stimulus (Second-Order Schedules)

To address the potential issue of sequential drug build-up inherent to the PR

paradigm, conditioned reinforcement paradigms have been developed. These mod-

els typically combine instrumental and Pavlovian (classical) conditioning proce-

dures. Second-order schedules of drug reinforcement have examined how a

response sequence is maintained by intermittent reinforcement of instrumental

behavior (typically a lever press) by the environmental stimulus that has acquired

conditioned reinforcement properties (Everitt and Robbins 2001; Goldberg 1973;

Goldberg and Tang 1977). One of the main advantages of second-order schedules

of reinforcement is that responding for the drug can be maintained for extended

periods prior to actual drug infusion. Furthermore, this model is not contaminated

by cumulative drug effects. Decreased responding during the first and second

intervals produced by treatment with a pharmacological agent is typically explained

as an attenuation of the impact of the conditioned reinforcing properties of the

drug-paired stimulus. A concomitant increase in latency to the first presentation of

the contingent conditioned stimulus and the first cocaine infusion may suggest

that the decrease in drug intake under the second-order schedule is related to a

decreased motivation to respond for that drug. This paradigm may potentially

dissociate brain mechanisms underlying drug-seeking vs. drug-taking behaviors

(Whitelaw et al. 1996).
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3.4 Additional Models of Intravenous Drug Self-Administration

3.4.1 Runway Model

In this model, the time required for an animal to run down a straight alley from a

start compartment to a goal compartment where a drug is administered is a reliable

index of the animal’s motivation to seek that drug (for a review, see Ettenberg

2009). Changes in the animals’ motivation to seek the drug produce shifts in the run

times required to reach the goal compartment. This method incorporates aspects of

both drug self-administration and CPP, and is close to the second-order schedules of

reinforcement model (see above).

3.4.2 Long-Access Training and Drug Intake Escalation

The phenomenon of long-access escalation (LgA), which models the increased drug

intake observed in human addicts, has been systematically demonstrated by showing

that providing extended access (i.e., at least 6 h) during daily low FR self-adminis-

tration sessions results in an increase, or “escalation” in the rate of drug intake over

weeks (Ahmed and Koob 1998, 1999; for a review, see Zernig et al. 2007).

3.5 Notes on the Validity of the Intravenous Drug
Self-Administration Paradigm

Self-administration under low FR schedules of reinforcement typically results

in an inverted U-shaped curve, and both leftward and rightward shifts in the

dose–response function will decrease self-administration, but will also simulta-

neously increase self-administration of other doses. Thus, the interpretation of

downward shifts in the dose–response function might be problematic, and the

generation of full dose–response functions is absolutely essential in the design of

such studies. Few publications actually provide such information and contribute to

the lack of clarity around the use of low response-cost FR reinforcement schedules.

In addition, drug self-administration is quite sensitive to nonspecific effects of

pharmacological treatments on behavior, and the effect of this treatment on non-

drug reinforcers should always be carefully assessed. Thus, low FR schedules of

reinforcement are useful for exploring patterns of rate of drug intake, which are

an ambiguous measure of drug efficacy unless full dose–response functions are

generated, but are less appropriate to assess changes in the reinforcing efficacy of

drugs of abuse. The PR paradigm, however, seems to benefit from translational

value into clinical trials as the reinforcing effects of cocaine, D-amphetamine,

caffeine, and methylphenidate are influenced by behavioral demands following

drug administration in humans (Rush et al. 2001; Stoops et al. 2004, 2007).
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The increased final ratios observed after PR training seems to address the DSM-IV

criterion of increased time and energy spent to obtain a drug. Although the PR

break-point shift paradigm measures the reinforcing efficacy and motivation to self-

administer drugs, one should be aware that the sequential build-up of the drug

following repeated self-administration may lead to unwanted results including

impaired instrumental responding that might be misinterpreted as impairment of

reinforcement or incentive motivation. To palliate this potential confounding fac-

tor, it would appear that the first, drug-free interval of responding under a second-

order schedule of reinforcement has particular translational value in that it provides

(1) a measure of drug-seeking behavior and reinforcing efficacy that are not

affected by the pharmacological effects of recently administered drug, and (2) a

means of investigating the role of drug-paired stimuli in drug-seeking behavior.

Finally, the escalation in drug intake observed after LgA training appears to address

the DSM-IV criterion of increased consumption over time.

One of the issues in self-administration paradigms, as also observed in the

majority of nonclinical models, relates to the duration of exposure to a potentially

new pharmacotherapeutic agent. Acute or subchronic administration regimes are

still the rule and rodent as well as nonhuman primate models may have significantly

higher predictive validity by adopting protocols that include longer periods of

medication treatment. It is also worth noting that the great majority of nonclinical

drug self-administration studies do not provide alternative reinforcers as part of the

experimental design. One may hypothesize that increasing the relative availability

of alternative reinforcers may actually result in reduced drug choice, and that

medications that decrease the reinforcing effects of drugs might shift choice from

these drugs to nondrug alternatives. More research is needed to understand the

impact of nondrug reinforcers on drug choice.

3.6 Oral Alcohol Self-Administration

The intravenous self-administration of alcohol is difficult to sustain in rodents.

An alternative method to measure alcohol consumption in rodents is to provide the

animals with a choice between bottles containing a given percentage of alcohol

and a bottle containing water (for a review, see Spanagel 2009). The proportion of

alcohol intake relative to total fluid intake is then calculated as a preference ratio.

More recently, selected high alcohol-preferring rat and mice lines have been used

in alcohol preference models. For example, the Finnish model also referred to alko

alcohol (AA) and alko nonalcohol (ANA) rats consists of two strains of rats

that were selectively bred since 1963 based on their selection or rejection of a

10% alcohol solution and water (Eriksson 1968). The AA and ANA lines also show

relevant behavioral traits that are abnormal in human alcoholics (e.g., high impul-

sivity) (M€oller et al. 1997). A second line of rats, typically referred to as the

Sardinian alcohol-preferring (sP) rat line, has also been selectively bred for high

alcohol preference and consumption for more than 20 years (Colombo et al. 1997).
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A third line of alcohol-preferring rats is the alcohol-preferring (P) and the high-

alcohol-drinking (HAD) lines from Indiana University (Li et al. 1993). High and

low alcohol-preferring mice (HAP and LAP, respectively) were also generated by

the same Group (Grahame et al. 1999). The relevance of alcohol preference models

in alcohol-preferring rat and mice lines to chronic alcoholism in humans is,

however, questionable since these animals significantly decrease their alcohol

intake when they are offered sugar-enhanced diets.

A variant of the oral alcohol self-administration model is the persistent alcohol

intake following alcohol vapor exposure. Continuous alcoholization by inhalation

of alcohol vapors can result in a blood alcohol concentration greater than 150 mg/dl

and typically leads to high alcohol intake and preference in experimental animals

(Roberts et al. 2000). One of the shortcomings of this model is that drinking

behavior following exposure to alcohol vapors is transient and declines after

approximately a week. To palliate this limitation, a new model using repeated

cycles of intoxication and mild withdrawal has been developed (Rimondini et al.

2002). The validity of this model is supported by data showing (1) an increase in

severity of alcohol withdrawal symptoms following repeated detoxification cycles

(Maier and Pohorecky 1989; McCown and Breese 1990), and (2) an increase in

operant responding for alcohol on a PR schedule of reinforcement following

repeated withdrawal cycles from chronic alcohol intake (Brown et al. 1998).

4 Models of Relapse to Drug-Seeking Behavior

One of the main challenges in drug addiction treatment is the high rate of relapse to

drug-seeking and drug-taking after detoxification. This challenge actually reflects

the complexity of long-term and persistent neuroadaptations produced by drugs of

abuse. Nonclinical modeling of these neuroadaptations may, therefore, lead to a

better understanding of the behavioral, environmental, and neural mechanisms

underlying relapse and to the development of new pharmacotherapies to prevent

reinstatement of drug-seeking and drug-taking behaviors. In the following para-

graphs, we briefly review some of the nonclinical reinstatement models, which

study factors that underlie relapse in humans.

4.1 Reinstatement Models of Relapse Using Operant
Drug Self-Administration

The propensity for relapse during abstinence can be modeled in the so-called

reinstatement paradigms using operant intravenous drug self-administration (for

thorough reviews, see Fuchs et al. 2008; Shaham et al. 2003; Yahyavi-Firouz-Abadi

and See 2009). In reinstatement models, animals are typically trained to

self-administer a drug in an operant conditioning chamber where drug delivery is
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paired with the presentation of a conditioned stimulus (CS) (e.g., light or tone).

After self-administration training, the animals are subjected to behavioral extinc-

tion in the same chamber. During extinction, the animals are tested under condi-

tions of nonreinforcement (i.e., responses no longer result in drug reinforcement or

CS presentations) until drug-seeking behavior is extinguished. Drug-seeking

behavior (i.e., the instrumental response that previously yielded the drug) is then

measured in response to either a “priming” injection of the drug itself (drug-induced

reinstatement) (de Wit and Stewart 1981), re-exposure to the CS (CS-induced rein-

statement) (Erb et al. 1996), or exposure to stressors (stress-induced reinstatement)

(See 2002, 2005). Most reinstatement studies with stressors typically use intermittent

electric shock pulses, applied to the tail or feet, as well as restraint and forced-swim

stress. There is, however, increased need for stressors (e.g., maternal separation, food

deprivation or social defeat stress) that translate more validly to clinical conditions

(Miczek et al. 2008; Yap and Miczek 2008). In the runway version of the reinstate-

ment model, rats are trained to run an alley once each day for drug reinforcement (for

a review, see Ettenberg 2009). After the initial training period, the drug reinforcer is

removed and the operant running is progressively extinguished. A single unexpected

reinforced trial reliably reinstates operant responding (i.e., running) on the next trial

(24 h later). In contrast to lever-press procedure, re-exposure to the drug reinforcer

occurs following the emission of the operant runway response, as opposed to a

noncontingent experimenter-administered injection of the drug.

The lack of robust and enduring behavioral effects of cocaine-associated cues

in typical “reinstatement” paradigms (de Wit and Stewart 1981; Fuchs et al. 1998;

Tran-Nguyen et al. 1998; Weissenborn et al. 1995) appears to be inconsistent with

the presumed strength and persistence of motivating effects of drug cues in humans

(Childress et al. 1993). An important consideration in the stimulus control of drug-

seeking behavior involves the role of discriminative stimuli (Weiss et al. 2000).

Discriminative stimuli signal the availability of a reinforcer and thereby set the

occasion to engage in behavior that brings the organism in contact with the

reinforcing substance. A condition often associated with drug craving in humans

is cognitive awareness of drug availability (Meyer and Mirin 1979). It has been

argued, therefore, that the manner in which drug-associated contextual cues attain

their incentive properties is likely to involve the predictive nature of these stimuli

rather than only classically CS-response associations (McFarland and Ettenberg

1997). This hypothesis is supported by the results obtained in a model of extinction/

reinstatement in which cocaine-associated cues induce a robust and enduring

drug-seeking behavior in abstinent rats as measured by the recovery of extinguished

responding at a previous drug-paired lever (Cervo et al. 2003; Weiss et al. 2000,

2001). In this procedure, a discriminative stimulus (SD) predictive of drug avail-

ability to discrete cues is usually paired to each drug self-infusion. The animals first

receive extensive stimulus discrimination training, during which drug reinforced

and non-reinforced training sessions alternate (Ciccocioppo et al. 2002). During the

reinforced sessions, drug availability is contingent upon instrumental responding in

the presence of a passively presented SD (CSþ) and a response-contingent “time-out”

stimulus. During nonreinforced sessions, drug reinforcement is withheld in the
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presence of a different SD (S�) and time-out stimulus (CS�). After this stimulus

discrimination training, subjects undergo extinction in the absence of

the discriminative and time-out stimuli. On the reinstatement test days, drug

seeking is assessed in the presence of the Sþ/CSþ and the S�/CS� using a

repeated testing design, thus allowing the study of dose–response curves of the

effects of pharmacological manipulations on drug-seeking behavior.

Variants of the cue-triggered reinstatement model include the contextual,

renewal, abstinence, incubation of craving, and conflict models. In the contextual

reinstatement model, animals are trained to self-administer a drug in a distinct

environmental context (context A), in which CS presentations are not programmed

to occur (Fuchs et al. 2005). After self-administration training, animals’ responding

is extinguished in yet a different context (context B). On the reinstatement test day,

the subjects are re-exposed to the previously drug-paired context (context A), which

results in reinstatement of responding.

In the renewal paradigm, the animals undergo self-administration training after

which their responding is extinguished in a different context, but in the presence

of the previously drug-paired CS. On the test day, subjects are given response-

contingent access to the CS in the previously drug-paired context (Crombag et al.

2002, 2008; Bossert et al. 2006). Renewal of drug seeking has been argued to reflect

the context’s ability to predict drug availability contingent upon responding.

In the abstinence model, subjects are first trained to self-administer a drug in

the absence of a CS. After training, subjects undergo a forced drug-free period

(abstinence). On the test day, subjects are re-exposed to the drug-paired context in

the absence of a CS, which results in drug seeking behavior (Grimm et al. 2002).

In contrast to the other reinstatement procedures described above, subjects do not

undergo extinction training before testing.

In the case of craving incubation, animals typically self-administer a drug under

a low FR schedule of reinforcement, and then undergo several periods of abstinence

before returning to the operant chamber where they acquired self-administration.

Following extinction, cue-induced reinstatement is triggered by re-introducing

the conditioned cue. Incubation refers to the observation that the amount of

cue-reinforced responding increases proportionally to the duration of the abstinence

period (Grimm et al. 2001, 2003; Lu et al. 2004).

Finally, in the conflict model, adverse consequences (e.g., painful foot shock)

eliminates drug-seeking behavior, which is then reinstated by presentation of

relapse “triggers” as described in the other reinstatement models. Evidence seems

to suggest that drug-paired environmental cues can trigger relapse in this model

(Cooper et al. 2007).

4.2 Reinstatement Models Using CPP

In the CPP version of the reinstatement model, extinction typically involves

exposing animals to the previously drug-paired context while in a drug-free state
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(Epstein et al. 2006; Shalev et al. 2002; for a review, see Aguilar et al. 2009). The

CPP response is considered to be extinguished when (1) there is no significant

difference between the time spent in the drug-paired compartment in the extinction

session and the time spent in the same compartment during preconditioning; (2)

there is no significant difference between the time spent in the drug-paired com-

partment by the drug and vehicle groups, or (3) animals spent less than 50% of the

total time in the drug-paired compartment on two consecutive days (Li et al. 2002;

Shoblock et al. 2005).

In the drug priming-induced reinstatement an extinguished CPP response is

recovered after a priming injection of the conditioning drug or, in some cases, of

a different drug to that administered during conditioning. In the stress-induced

reinstatement an extinguished CPP response is recovered following exposure to

stressful events such as intermittent footshock (Lu et al. 2000; Wang et al. 2006),

immobilization (Ribeiro Do Couto et al. 2006), restraint stress (Sanchez et al.

2003), continuous tail-pinch (Ribeiro Do Couto et al. 2006), single forced swim

(Ma et al. 2007), conditioned withdrawal (Lu et al. 2005), conditioned fear

(Sanchez and Sorg 2001), and defeat in social interaction with a conspecific

(Ribeiro Do Couto et al. 2006).

4.3 Reinstatement Models of Alcohol-Seeking Behavior

The first alcohol reinstatement study in rats was reported by Chiamulera and

colleagues in 1995 (Chiamulera et al. 1995). Since then, other research groups

have shown that intermittent foot-shock stress with or without response-contingent

presentation of an alcohol-associated cue (Lê et al. 1998; Liu and Weiss 2002) as

well as alcohol-associated olfactory and other cues (Katner et al. 1999) can reinstate

previously extinguished responding for alcohol.

Long-term alcohol self-administration procedures with repeated deprivation

phases produce alcohol-experienced animals showing a transient increase in alco-

hol consumption and alcohol preference after a period of forced abstinence, which

is also referred to as the alcohol deprivation effect (ADE). The ADE reflects alcohol

craving, and can be observed in long-term alcohol-drinking rats that have devel-

oped alcohol dependence (H€olter et al. 1998; Spanagel and H€olter 1999) as well as
in nondependent rats (Heyser et al. 1997; H€olter et al. 2000). The ADE is also

prolonged and enhanced in alcohol preferring P- and HAD-rat lines after repeated

deprivation phases (Rodd-Henricks et al. 2001).

Finally, in the point-of-no-return model of alcohol self-administration rats

have access to alcohol for 9 months, followed by a long-term abstinence period

of 9 months. After this period the rats again have access to alcohol and exhibit

high alcohol intake and preference over several weeks (Wolffgramm and Heyne

1995).
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5 Models of Reconsolidation of Drug Cue Memories

In the previous section it has been shown that, with the exception of a few models,

reinstatement paradigms typically use extinction training. We have also reported

evidence that responses to an extinguished cue can re-emerge by changing contexts

(renewal), or by re-exposure to the unconditioned stimulus (reinstatement).

In contrast to extinction, reconsolidation is the process of restabilizing the memory

trace after it is retrieved or “reactivated” (Tronson and Taylor 2007; for a review,

see Taylor et al. 2009). From a translational perspective, there are two possible

strategies in order to reduce the motivational impact of drug cues: enhance the

extinction of drug cue memories (Quirk and Mueller 2008) or disrupt reconsolida-

tion of these memories (Nader et al. 2000). Extinguishing drug cue memories does

not appear to be efficacious in reducing relapse in either humans (Conklin and

Tiffany 2002) or rats (Crombag and Shaham 2002). Recent studies have focused on

the disruption of reconsolidation of fear memory (Debiec and LeDoux 2006;

McCleery and Harvey 2004; Tronson and Taylor 2007) and evidence suggests

that cue-induced alcohol-seeking behavior is reduced by disrupting reconsolidation

of ethanol-associated memories (Von der Goltz et al. 2009). Both the protein

synthesis blocker anisomycin and the N-methyl-D-aspartate (NMDA) receptor

antagonist MK-801 ((5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo

hepten-5,10-imine maleate) given immediately after re-exposure of animals to

alcohol-paired conditioned stimuli were shown to impair the ability of these stimuli

to induce alcohol-seeking behavior in subsequent test sessions (von der Goltz et al.

2009).

6 Models of Compulsive/Impulsive Drug Intake

6.1 Impulsivity as a Multifactorial Construct

Impulsivity is a multifactorial construct encompassing several processes that

include: (1) an inability to delay gratification; (2) an inability to withhold a

response; (3) acting before all of the relevant information is provided, and (4)

decision making that is risky and inappropriate (for a thorough review on impulsiv-

ity, see Duka and Crews 2009; see also Bari and Robbins 2011). Delay of gratifica-

tion and inability to withhold a response are also often referred to as cognitive

and motor impulsivity, respectively. Cognitive impulsivity may result from deficits

in attention, an inability to discriminate reward magnitude, disruptions in time

perception, a misunderstanding of response contingencies, an inability to consider

future events, or a distortion in the value of long-term consequences. Similarly,

apparent deficits in motor impulsivity may result from disruptions in sensory,
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motor, or timing abilities, even if the ability to withhold an automatic (prepotent)

response is intact.

6.2 Measurement of Impulsivity

There are typically three broad classes of tests to measure impulsivity: (1)

measures of response inhibition based on the suppression of a prepotent response

(Logan et al. 1997); (2) measures of delay discounting, which define impulsivity

in terms of choice preference for a small reward available immediately (or after a

short delay) over a larger reward available in the future (Bickel and Marsch 2001;

Reynolds 2006; Bari and Robbins 2011), and (3) measures of cognitive impulsiv-

ity that refers to decision-making processes. One component of cognitive impul-

sivity is referred to as “reflection impulsivity” or the tendency to collect and

assess information before making complex decisions (Kagan 1966). Reflection

impulsivity may be related to what other authors have referred to as “nonplanning

impulsivity” (Patton et al. 1995) or “lack of premeditation” (Whiteside and

Lynam 2001). Additional measures to assess cognitive impulsivity also include

tasks during which the subject has to select between a conservative option and a

more risky option that offers a “superficially seductive” gain (Bechara 2003;

Knoch and Fehr 2008).

6.3 Impulsivity Constructs in Drug Addiction Research

Drug addicts’ behaviors have commonalities with patients suffering from damage to

the orbitofrontal cortex (OFC). The OFC is thought to moderate impulsive choice

(Mobini et al. 2002; Rudebeck et al. 2006), and to represent subjective value during

decision-making (Izquierdo et al. 2004; Padoa-Schioppa and Assad 2006; Roesch and

Olson 2004; Schoenbaum andRoesch 2005). Damage to the humanOFC increases the

tendency to choose immediate rewards over larger, delayed rewards (Berlin et al.

2004) and impairs the ability to refrain from responding to formerly rewarding cues

that are no longer reinforced (Dias et al. 1996; McAlonan and Brown 2003; Mishkin

1964; Ostlund and Balleine 2007; Rahman et al. 1999; Rolls et al. 1994; Schoenbaum

and Roesch 2005; Schoenbaum et al. 2007; Tait and Brown 2007).

Abnormal OFC function has been associated with substance abuse (Boettiger et al.

2007; Crews and Boettiger 2009; Dom et al. 2005; Ersche et al. 2005; Everitt

et al. 2007; London et al. 2000; Volkow and Fowler 2000), and the impairment in

reversal learning in cocaine addicts and animals that have chronically self-adminis-

tered cocaine (Schoenbaum and Shaham 2008) or alcohol (Obernier et al. 2002)

is consistent with the loss of control that is characteristic of addiction. Finally,

reduced OFC activity during decision-making among abstinent alcoholics is corre-

lated with their tendency to choose immediate over delayed rewards (Boettiger
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et al. 2007), further suggesting that a dysfunction of the OFC may contribute to the

persistence of addictive disorders.

6.4 Animal Models of Impaired Response Inhibition
and Impulsive Choice

Animal models provide a means to prospectively evaluate the influence of both

impaired response inhibition and impulsive choice on several aspects of drug abuse.

For example, rats selected for poor inhibitory control on the 5-choice serial reaction

time (5-CSRT) task make more responses during the acquisition of nicotine self-

administration (Diergaarde et al. 2008) and self-administer larger amounts of

cocaine (Dalley et al. 2007) compared to those selected for good inhibitory control.

Rats screened for high levels of impulsive choice on a delay-discounting task

subsequently self-administer more ethanol (Poulos et al. 1995) and intravenous

nicotine (Diergaarde et al. 2008), acquire cocaine self-administration faster (Perry

et al. 2005, 2008), and show greater reinstatement of cocaine-seeking (Perry et al.

2008) than those with low levels of impulsive choice (Perry and Carroll 2008).

Furthermore, heightened impulsivity on two different measures, impulsive choice

(delay discounting) (Anker et al. 2009) and impaired inhibition (5-choice serial

reaction time) (Dalley et al. 2007) is associated with greater escalation of cocaine

self-administration in rats, a finding that relates to clinical studies suggesting that

self-reported impulsivity is a significant risk factor in the occurrence of binge-like

patterns of crack/cocaine intake in women (Lejuez et al. 2007). Taken together,

these results support the hypothesis that impaired response inhibition and impulsive

choice are associated with increased drug-seeking and may predict binge-like

patterns of drug intake.

7 Neuroimaging Models

The DA D2/3 receptor antagonist [11C]-raclopride, a widely used radioligand for

positron emission tomography (PET) studies of DA D2/3 receptors in the brain,

competes with DA for receptor-binding sites. Therefore, its displacement can be

used as an indirect assay of DA release or reuptake inhibition in drug addicts

compared to normal controls. Over the last 15 years, PET studies in drug addicts

have shown that: (1) cocaine addiction translates into decreased DA D2/3 receptor

availability in the striatum compared to drug-naı̈ve controls (Volkow et al. 1993)

and reduced DA release in the striatum in response to intravenous administration of

amphetamine (Martinez et al. 2007; Volkow et al. 1997); (2) chronic use of other

drugs of abuse such as methamphetamine, alcohol, and heroin is also associated

with decreased DA D2/3 receptors in the striatum (Volkow et al. 2002; Volkow and
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Wise 2005); (3) decreased and increased DA D2/3 receptors in the striatum seems to

predict the subjective effects (i.e., pleasantness and unpleasantness, respectively) of

intravenous psychostimulants in normal healthy human volunteers (Volkow et al.

1999); (4) increased DA release in the left ventral striatum, dorsal putamen and

dorsal caudate nucleus is associated with ratings of a positive response to intrave-

nous amphetamine in drug-naı̈ve subjects (Oswald et al. 2005), and (5) cue-induced

craving is associated with increased DA D2/3 receptor occupancy by DA in the

striatum in human alcohol and stimulant abusers (Heinz et al. 2004; Volkow et al.

2006; Wong et al. 2006). The latter finding also concurs with functional imaging

studies showing activation of the anterior cingulate cortex and OFC by drug-

associated stimuli that elicit craving (Childress et al. 1999; Garavan et al. 2000;

Goldstein et al. 2007; Grant et al. 1996). In line with these clinical studies,

recent nonclinical PET studies have shown that low DA D2/3 receptors associated

with high impulsivity may predict elevated rates of intravenous cocaine self-

administration and a vertical shift in the cocaine dose–response function relative

to nonimpulsive control rats (Dalley et al. 2007, 2009). These findings, in turn,

are compatible with previous findings in rats screened for impulsivity on a delay-

discounting paradigm (Perry et al. 2005; Poulos et al. 1995).

In addition to nonclinical PET paradigms, the recent combination of pharmaco-

logical treatment with functional magnetic resonance imaging (fMRI), also referred

to as pharmacological MRI (phMRI), in rodents provides a new method to identify

functional changes sequentially over real time in response to the acute, subchronic,

or chronic administration of drugs (see Bifone and Gozzi 2011). The classical

univariate analysis of phMRI data emphasizes the specialization of function within

different brain areas (also referred to as functional segregation). However, brain

functional processes rely on efficient information flow within widely distributed

and highly integrated neuronal networks, and drug effects may be partly explained

by disrupted connectivity. The application of multivariate approaches to the analysis

of phMRI time-series can provide insight into the functional integration of the brain

and into changes in inter-regional interactions in response to drug treatment. For

example, a recent preclinical phMRI study that used inter-subject functional con-

nectivity analyses of phMRI responses to d-amphetamine showed that selective

antagonism at DA D3 receptors produced a reversed correlation between responses

in the VTA and the dorsal thalamus, and a reduced correlation between the VTA

and ventral striatum (Schwarz et al. 2007). These findings suggest that a modified

functional connectivity within a circuit that is a key substrate in the so-called

reward system may play an important role in the efficacy of selective DA D3

receptor antagonists in attenuating drug-seeking behavior.

Functional neuroimaging in translation, however, faces several challenges. First,

despite the growing number of publications assuming that there is a tight coupling

between the measured blood oxygen-level-dependent (BOLD) signal and neural

processes, there is still limited understanding of the BOLD response in terms of

neuronal activation. For example, there are situations in which neural activation

is not reflected in a BOLD increase or situations in which BOLD responses can be

identified in the absence of neural activation (Schummers et al. 2008; Sirotin and
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Das 2009). Second, statistical analyses typically focus on the voxel producing the

maximal signal, also referred to as “peak voxel,” with a correction for multiple

comparisons. However, a “peak-voxel” approach may lead to overestimation of the

size effect and the predictive value of brain responses might be significantly

inflated. Third, functional patterns of brain activation eventually depend on a

deep understanding of brain anatomy and its functional specialization. This is to

say that a lack of precise localization will inevitably yield a lack of precision in

our understanding of the underlying processes. The commonly used anatomical

localization techniques are based on brain atlases that do not take into account inter-

subject variability and represent only a small portion of the human population.

Even more challenging is the paucity of information about the variability of brain

function per se. In other words, the translational value of functional imaging

techniques will ultimately rely on the identification of stable patterns of activation

that represent certain functions, which also take into account both anatomical and

functional variability within and between subjects. In contrast with the language

used by many neuroscientists to explain their brain imaging findings, the funda-

mental limitations described above are calling for caution. Diagnosing those limita-

tions is essential to further enhance the translational value of neuroimaging

approaches.

8 Unbiased Phenotype-Driven Genetic Model Systems:

Invertebrate Models with Drosophila and Caenorhabditis
elegans

Drosophila and the nematode Caenorhabditis elegans (C. elegans) have been

intensively studied organisms in biology, and have provided insight into develop-

mental and cellular processes that are conserved with mammals, including humans

(see O’Kane 2011 for further discussion). Adult flies have a relatively sophisticated

nervous system (approximately 250,000–300,000 neurons), and genes implicated in

the actions of drugs of abuse are, for the most part, conserved (for reviews, see

Heberlein et al. 2009; Wolf and Heberlein 2003). C. elegans is also one of the most

amenable organisms with a completely sequenced genome consisting of approxi-

mately 19,000 genes, and a nervous system of 302 neurons (Schafer 2004). Most

impressive is the completion of a series of refined characterizations of each neuron

and neuronal connections using electron microscopy (Schafer 2004). Furthermore,

C. elegans shows sensitivity to drugs of abuse such as alcohol and nicotine (Davies
et al. 2003; Feng et al. 2006). For example, acute and chronic exposure to nicotine

has shown a key role of the conserved transient receptor potential canonical (TRPC)

channels in modulating the activity of nicotinic acetylcholine receptors (Feng et al.

2006). In addition, activation of a BK potassium channel, SLO-1, was shown to

mediate the acute behavioral effects of alcohol (Davies et al. 2003).
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Although studies of addiction in Drosophila and C. elegans are still in their

infancy, the high-throughput behavioral paradigms that have been developed thus

far together with genetic studies may provide valuable information on the effects of

drugs of abuse at the level of specific neurons and functional neural circuitry (see

O’Kane 2011). Furthermore, unbiased genetic screens have already been used to

identify novel potential candidate genes regulating drug-related behaviors. How-

ever, one potential caveat is to assume that because a gene associated with a specific

function in humans also shows a behavioral effect in flies or worms, then that fly or

worm behavior is necessarily relevant to that function in humans. This type of

association is clearly questionable in the light of between-species variation in the

genetic architecture of complex traits.

9 Conclusions

The previous sections presented the addiction process as comprised of multiple

stages and sources of reinforcement including positive reinforcement, negative

reinforcement, conditioned positive reinforcement, and conditioned negative rein-

forcement. The nonclinical paradigms that were described aim at modeling those

sources of reinforcement and must, therefore, achieve the highest standards of

validity and meet essential criteria if they are to translate ultimately into clinical

relevance. First, drug delivery should be active (i.e., the experimental subjects must

have full control over drug delivery), dose–response effects should be systematically

observed, and drug exposure should be chronic or subchronic rather than acute. The

first point is one of the shortcomings of some models such as the CPP paradigm, i.e.,

passive drug administration, lack of systematic dose–response studies, and relatively

low exposure to the drug. Second, typical reinstatement experiments in rodents are

conducted under drug-free conditions; by definition, true relapse in humans can only

be observed when compulsive drug consumption follows a period of abstinence.

Third, most reinstatement models include extinction training. Although the latter

isolates the influence of the CS on reinstatement from that of the context, response

habit or stress, it unfortunately reduces the face validity of the model given that

humans rarely undergo extinction. Thus, models that assess drug seeking after a

drug-free abstinence period as opposed to instrumental extinction training may

better capture the nature of cue-induced relapse in humans. In the case of abstinence

models, the fact that subjects do not undergo extinction training improves the face

validity of this model, but restricts data interpretation as drug-seeking may actually

reflect response habit, novelty-induced stress, exploratory behavior, and/or innate

motivation in addition to context-induced incentive motivation for drug. Fourth,

evaluations of potential pharmacotherapies for drug addiction in animal models

most often use acute medication pretreatment paradigms. Predictive validity of

those models would actually improve if they were to adopt protocols that include

longer periods of medication treatment. Fifth, improved predictive validity also lies in

the efficacy of pharmacological manipulations that affect drug-seeking behavior
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in specific animal models, and how this nonclinical efficacy profile translates into

alleviation of craving and relapse propensity in clinical populations.

The extent to which each of these nonclinical paradigms models a specific DSM-

IV criterion is arguable, but some associations have emerged. First, the concept of

addiction as a progressive transition from a positive to a negative reinforcement

process that drives the motivated behavior somehow reaffirms the importance of

withdrawal in addiction (i.e., criterion 2) (Table 1). In that respect, measuring the

degree of dysphoria produced by drug withdrawal using the BSR paradigm is

highly relevant. Second, the escalation in drug intake observed after long-access

training and drug intake escalation mimic increased consumption over time (i.e.,

criterion 3) (Table 1). Third, the increased final ratios observed in PR paradigms

appear to model the increased time and energy expended to obtain the drug (i.e.,

criterion 5) (Table 1). Fourth, we have reviewed evidence suggesting that loss of

control is one of the key features of both drug and behavioral addictions. However,

despite their potential translational value, few of the “classical” paradigms

described in the previous paragraphs do actually address dysfunctional decision-

making processes or alterations in impulsive behavior. Recent advances in animal

models have exploited the translational value of behavioral economics models to

address the notion of discounting of delayed rewards to provide a readout of

impulsivity and its related corollary of loss of control (i.e., criterion 6) (Table 1

and see Bari and Robbins 2011 for further discussion). Animal studies investigating

the link between abnormal information processing in the mesocorticolimbic system

and changes in responding for delayed or intermittent reinforcement are thus

extremely valuable. Similarly, procedures examining choice responding under

concurrent schedules of reinforcement may provide valuable insight into drug-

seeking because the impact of competing reinforcers, and the work required to

obtain each, can be measured simultaneously. Finally, significant work remains to

be done to explore the mechanisms involved in animal models of craving and

relapse and to relate these mechanisms to vulnerability to addiction.

Beyond validity-related issues, the choice of a nonclinical paradigm should also

be based upon a good understanding of what needs to be achieved for the target

patient population and how PD data can be reliably linked with PK data. This can

only be done by answering questions as follows: what exactly is the disease

indication for the target compound; what is the proposed treatment response profile;

what is the proposed clinical route and frequency of dosing; what is the expected

efficacious concentration in a physiological fluid (i.e., concentration–effect rela-

tionship); how long should that concentration be maintained to obtain the desired

pharmacological response; what, if any, are the biological markers to monitor

toxicity and/or therapeutic effects; do changes in route or delivery rate alter the

course of effect; is response to treatment time-dependent (e.g., onset mechanism,

disease progression)? If a valid PK/PD strategy is in place and if a strong PK/PD

relationship is characterized, then efficacy and tolerability can be reliably predicted

from the PK data and relevant scenarios can be simulated for decision-making or

clinical purposes.
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The continually evolving knowledge base of the neurobiological underpinnings

of drug addiction using the relevant nonclinical paradigms to address the right

clinical questions in the context of a well-designed translational strategy will

provide a heuristic framework that will help in developing the treatment of drug

addiction.
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Abstract Although converging epidemiological evidence links exposure to stress-

ful life events with increased risk for affective spectrum disorders, there is extraor-

dinary interindividual variability in vulnerability to adversity. The environmentally

moderated penetrance of genetic variation is thought to play a major role in deter-

mining who will either develop disease or remain resilient. Research on genetic

factors in the aetiology of disorders of emotion regulation has, nevertheless, been

complicated by a mysterious discrepancy between high heritability estimates and a

scarcity of replicable gene-disorder associations. One explanation for this incongruity

is that at least some specific gene effects are conditional on environmental cues,
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i.e. gene-by-environment interaction (G � E) is present. For example, a remarkable

number of studies reported an association of variation in the human serotonin

(5-HT) transporter gene (SLC6A4, 5-HTT, SERT) with emotional and cognitive

traits as well as increased risk for depression in interaction with psychosocial

adversity. The results from investigations in non-human primate and mouse support

the occurrence of G � E interaction by showing that variation of 5-HTT function is

associated with a vulnerability to adversity across the lifespan leading to unfavour-

able outcomes resembling various neuropsychiatric disorders. The neural and

molecular mechanisms by which environmental adversity in early life increases

disease risk in adulthood are not known but may include epigenetic programming

of gene expression during development. Epigenetic mechanisms, such as DNA

methylation and chromatin modification, are dynamic and reversible and may also

provide targets for intervention strategies (see Bountra et al., Curr Top Behav

Neurosci, 2011). Animal models amenable to genetic manipulation are useful in

the identification of molecular mechanisms underlying epigenetic programming by

adverse environments and individual differences in resilience to stress. Therefore,

deeper insight into the role of epigenetic regulation in the process of neurodevelop-

mental programmes is likely to result in early diagnosis of affective spectrum

disorders and will contribute to the design of innovative treatments targeting neural

pathways that foster resilience.

Keywords Cognition � Depression � Emotion � Environment � Epigenetics � Gene �
Mouse � Primate � Resilience � Serotonin transporter

Abbreviations
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1 Introduction

Research on genetic factors in the aetiology of neuropsychiatric diseases has been

complicated by a mysterious discrepancy between high heritability estimates and a

scarcity of replicable gene-disorder associations. This “missing heritability” is now

either euphemized as the “dark matter” of gene-trait association or aggravated as

the “looming crisis in human genetics”. Several explanations for this incongruity

have been suggested (Manolio et al. 2009; Yang et al. 2010). These include larger

numbers of variants with smaller effect size which are yet to be found; rarer variants

with larger effects that are not detected by available single-nucleotide polymor-

phism arrays which ignore variants present in <5% of the population; other

structural variations such as repeat length variants or short copy number variations

which are not detected by existing arrays; inadequate power to detect gene-by-gene

interactions (G � G) or, finally, inadequate accounting for the shared environment

to be found among relatives.

Another plausible explanation for the missing heritability is that at least some

specific gene effects are conditional on environmental cues, i.e. gene-by-environment
interactions. Particularly stressful childhood experiences such as trauma, abuse,

neglect or other forms of early life adversity are important risk factors for multiple

diseases, including obesity, cardiovascular disease and neuropsychiatric illness

later in life. Why one individual develops cardiovascular disease while another

develops depression following early life stress is thought to be influenced by

genetic susceptibility factors. Although converging epidemiological evidence

links exposure to stressful life events with increased risk for neuropsychiatric

disorders, there is remarkable interindividual variability in vulnerability to envi-

ronmental cues. The environmentally moderated penetrance of genetic variation is

therefore thought to play a major role in determining who will either develop

disease or remain resilient. In this context, the ability to recover from trauma or

crisis as well as resistance against biological and psychosocial risks – commonly called

resilience – is not conceptualized as an innate trait but comprising a variable capacity

initially acquired during development in the context of individual–environment

interaction. A consolidated state of resilience is therefore rooted in specific resources

of both individual genetic framework and social circumstances. There is consider-

able demand for research on the molecular mechanisms of genetic and epigenetic

programming of motivational, attentional and emotional neural circuits underlying

the development and consolidation of resilience.

Gene � environment interactions (G � E), involving specific gene polymorph-

isms, such as are found with the serotonin (5-HT) transporter gene (SLC6A4,
synonyms: 5-HTT, SERT) for example, have been identified and replicated in

humans and animal models. Research on the role of the 5-HTT in the pathophysio-

logy of stress-linked disorders accompanied by emotional dysregulation has

a history spanning more than half a century. Following the influential discovery

of presynaptic neurotransmitter uptake by Hertting and Axelrod (1961) and

shortly after its identification as the initial target of antidepressant drug action
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(Raisman et al. 1979), the 5-HTT was first linked with the pathogenesis of depres-

sion by Langer and associates (Langer et al. 1981). After cloning of the rat 5-HTT

gene (Slc6a4) (Blakely et al. 1991), the era of molecular genetic studies of emotion

regulation began with three seminal papers in 1996 that reported associations

between 5-HTT variation and anxiety-related traits (Lesch et al. 1996) as well as

depression (Collier et al. 1996; Ogilvie et al. 1996).

In the years following the first reports linking 5-HTT variation with anxiety- and

aggression-related traits, numerous clinical entities have been studied for associa-

tion with disorders characterized to a large extent by emotional dysregulation,

including depression, bipolar affective disorder, attention-deficit/hyperactivity dis-

order, alcohol dependence, suicide, eating disorders and autism or disorders related

to morphogenetic actions of 5-HT in other organ systems such as heart, blood

vessels, bowel, and bone (Lesch and M€ossner 2006; Murphy et al. 2004, 2008).

Modest effect sizes typical of complex traits, polygenic patterns of inheritance,

epistatic and epigenetic interactions and sample heterogeneity across studies are

all factors which have led to inconsistent replication and have confounded attempts

to reach agreement regarding the role of 5-HTT in the pathophysiology of all

these diseases. Nevertheless, the impact of 5-HTT on complex traits in humans,

non-human primates and genetically modified mice has become a model par
excellence in cognitive, biosocial, and psychiatric neurosciences (Lesch 2007;

Murphy and Lesch 2008; Suomi 2003).

The eye-opener that early life stress and other modes of G � E uniquely

reinforce or even uncover links between 5-HTT variation, behaviour and psychopa-

thology in humans and non-human primates has heralded a new era of behavioural

genetics. Several recent studies suggest that 5-HTT variation interacts with delete-

rious early rearing experience in rhesus macaques and in mice to influence atten-

tional, emotional and (social) cognitive processing (Canli and Lesch 2007). Thus,

the identification of 5-HTT as a modifier of emotionality, and its interaction with

environmental adversity, was a first step en route to an explanation of the molecular

dimension of personality, emotion, (social) cognition and behaviour; suggests

strategies to identify physiologic pathways and mechanisms that lead to other

disorders of cognitive function and emotion regulation; provides tools to dissect

the interactive effects of genes and environment in the development of affective

disorders and holds the potential to predict response to treatment. It is anticipated

that controlling environmental factors will eventually improve the reliability of

genetic approaches.

This chapter focuses, from an epigenetic perspective, on the nature of an innate

variability in brain 5-HTT function that predisposes to a wide spectrum of psychi-

atric disorders in which emotional dysregulation is a common denominator. The

various psychobiological facets of 5-HTT variation and resulting phenomes will

be critically reviewed with emphasis on neurodevelopmental programming. The

relevance of G � E in emotional and (social) cognitive processes is also high-

lighted and an appraisal of morphofunctional imaging of G � E in emotionality is

provided. Evidence for neural modularity of cognition and emotion is also taken

into consideration. Finally, views of developmental programming by epigenetic
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mechanisms will be discussed in the perspective of the complex genetic architec-

ture of emotional behaviour and social interaction in non-human primates and

rodents. Better understanding of the role of epigenetic programming, particularly

with respect to genome-wide modification of DNA and chromatin structure in

complex tissues such as the brain, in the context of adverse life events, ageing

processes, and resilience is likely to have far-reaching consequences for health, and

mental health in particular.

2 5-HTT � Environmental Adversity Interaction in Humans

It is now well established that much of the impact of genetics on emotionality,

including anxiety and depression, depends on interactions between genes and

the environment. Such interactions imply that the expression of environmental

effects occurs only in the presence of a permissive genetic background. There are

several established environmental risk factors for disorders of emotional regulation.

For example, numerous studies of G � E in humans have assessed the influence

of childhood maltreatment and abuse, stressful events across the lifespan, socio-

economic status and chronic somatic illness. Cumulative, repeated, or protracted

exposures to adversity appear to exert a stronger effect than discrete acute events

(Uher and McGuffin 2008, 2010 for reviews).

The work by Caspi and co-workers (Caspi et al. 2003) indicated that individuals

carrying the low-expressing, short variant of a repetitive sequence in the upstream

transcriptional control region of 5-HTT (Lesch et al. 1996), now commonly referred

to as the 5-HTT-linked polymorphic region (5-HTTLPR), are up to twofold more

likely to get depressed after stressful events such as bereavement, romantic disasters,

illnesses or losing their job. Moreover, early trauma inflicted by childhood maltreat-

ment significantly increased the probability of developing depressive syndromes

in later life in individuals with the short allele of the 5-HTTLPR. A remarkable

body of evidence suggests that emotionality and stress reactivity can be influenced by

experiences early in life, and it has long been supposed that severe early life trauma

may increase the risk for anxiety and affective disorders (Brown and Harris 2008).

For example, adults experiencing four out of a possible seven severe early traumatic

events showed a more than fourfold increased risk for depressive symptoms and

about a 12-fold increased risk for attempted suicide (Felitti et al. 1998). No direct

correlation between any specific childhood trauma and specific adult anxiety or mood

disorder could be made, however, suggesting that other, possibly genetic, factors

determine the precise pathology that is precipitated by the traumatic event. The

observation that during early development individuals are particularly susceptible

to adverse environmental influences is currently being confirmed by studies in non-

human primates and mouse models that have demonstrated influential effects of

the quality of maternal care on life-long emotional behaviour and brain functioning

(see Sects. 3 and 4).
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These results further support the notion that a combination of genetic disposition

and specific life events may interact to facilitate the development of mental illness.

What went largely unnoticed, however, were the implications for the genetics of

personality. Depression is strongly associated with anxiety- and depression-related

traits, the personality dimensions that have been linked with allelic variation of

5-HTT function. Given the high co-morbidity between anxiety and depression and

the evidence for their modulation by common genetic factors (Kendler et al. 1993,

1995; Lesch 2003), it is likely that predisposition to disorders of emotional regula-

tion will also be determined by environmental adversity whose impact on the brain

is under genetic control.

Converging evidence from a large number of studies on the influence of

5-HTT � E established that stressful life events specifically contribute to the

pathogenesis of anxiety and depression as well as of disorders in which anxiety

and depression are co-morbid condition (Uher and McGuffin 2010) (Fig. 1). The

effect however is variable, being closely related in time to the onset of disease and

having more impact on first onset than on recurrences. Several caveats have to be

kept in mind when G � E interaction is investigated in clinical cohorts. The

assessment of stressful life events is generally retrospective and it is crucial to

minimize recall bias, distortions and inaccuracies. As the temporal relationship

between stressful life events and onset of anxiety disorders and depression is

incompletely understood, a cohort of patients need to be followed over a sufficient

period of time following an objectively recorded stressful event to establish the

time course of G � E interactions. Moreover, there is evidence that experience and

recall of stressful life events are partially under the control of both genes and

Neuroticism as well as a personal history of anxiety and depression that predict

reporting of life stress (Uher and McGuffin 2010). Although genetic factors that

Fig. 1 Neither genes nor environment act alone: interaction between serotonin transporter gene

(5-HTT) variation and environmental adversity (G � E) in the susceptibility of depression and

related disorders. 5-HTT � E has been demonstrated in humans as well as in non-human primate

and mouse models
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influence retrospective report of environmental cues overlap with those that affect

personality traits, a causal relationship between adversity and affective symptom-

atology has, nevertheless, been demonstrated independent of individual differences

in personality and recall.

While clinical evaluation and self-report of life events revealed that the effect

of psychosocial adversity on depression and suicidal behaviour is modified by

allelic variation of 5-HTT function, which renders carriers of the 5-HTTLPR

short variant more vulnerable to depression, the neural mechanisms underlying

this moderator effect are poorly understood. Although human and non-human

primate functional imaging studies have begun to elucidate the neural circuits

involved in the 5-HTT � E risk factor (see Sect. 5), a molecular understanding of

this phenomenon is essentially lacking (Canli et al. 2006; Kalin et al. 2008).

In summary, these findings point toward molecular and cellular mechanisms

by which early stressful experiences induce persistent changes in gene expression

and neuronal function whose initiation or maintenance is influenced by 5-HTT.

The molecular mechanisms by which early life stressors increase risk for disorders

of emotional regulation in adulthood is not known but it is presumed to include

epigenetic programming of gene expression during development and throughout

the entire lifespan.

3 Interaction of 5-HTT and Maternal Separation

in Rhesus Macaques

Animal models have become indispensable tools for studying the biological func-

tion of genes that are involved in the pathogenesis of neuropsychiatric disorders

(Fig. 1). Since the neural and genetic basis of emotional and behavioural traits is

already laid out in all mammalian species and may reflect selective forces among

our remote ancestors, research efforts have recently been focussed on non-human

primates, especially Macaca mulatta. Following the complete sequencing of the

rhesus genome, this macaque species has become the “workhorse” of behavioural

genetics of non-human primates. In this primate model environmental influences,

while as complex as in humans, can be more easily controlled for and thus are less

likely to confound gene-behaviour associations. In rhesus monkeys, all forms of

emotionality and cognitive processing are moderated by environmental cues and

marked disruptions to the mother–infant relationship confer increased risk for

emotional dysregulation and cognitive impairment (Suomi 2003).

In rhesus monkeys, maternal separation (MS) and replacement of the mother by

an inanimate surrogate mother during the first months of life results in long-term

consequences for the functioning of the central 5-HT system, defects in peer

interaction and social adaptation and is associated with increases in anxiety and

depression-related behaviours such as rocking and excessive grooming (Higley

et al. 1991). These behavioural studies already indicate that early life adversity
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can directly induce long-term neuroplastic changes in emotion circuits that alter

anxiety and depression-related responses in adulthood.

One of the most replicated findings in psychobiology is the observation of lower

5-hydroxyindoleacidic acid (5-HIAA), the major metabolite of 5-HT, in the brain

and cerebrospinal fluid (CSF) in impulsive aggression and suicidal behaviour.

In rhesus monkeys brain 5-HT turnover, as measured by concentrations of

5-HIAA in the cisternal CSF, shows a strong heritable component and is trait-

like, with confirmed stability over an individual’s lifespan (Higley et al. 1992;

Kraemer et al. 1989). Early experiences have long-term consequences for the

function of the central 5-HT system, as indicated by robustly altered CSF 5-

HIAA levels, as well as anxiety, depression- and aggression-related behaviours in

rhesus monkeys deprived of their mother at birth and raised only among peers. This

animal model of MS was therefore used to study G � E by testing for associations

between central 5-HT turnover and allelic variation of 5-HTT function based on a

repeat length variation (rh5-HTTLPR) structurally and functionally orthologous to

the 5-HTT-linked polymorphic region in humans (Lesch et al. 1997) (Fig. 2). The

findings suggested that the rh5-HTTLPR genotype is predictive of CSF 5-HIAA

concentrations, but that early experiences make unique contributions to variation

in the functioning of the 5-HT system in later life and thus provides evidence of

an environment-dependent association between the 5-HTT and a direct measure

of brain 5-HT function (Bennett et al. 2002). The consequences of deleterious early

experiences of MS seem consistent with the notion that the 5-HTTLPR may

influence the risk for disorders of emotion regulation.

Fig. 2 Effect of interaction between maternal separation and rh5-HTTLPR genotype on psycho-

social development, including brain 5-HT function, emotion regulation, social competence, stress

reactivity, behaviour, and psychopathology across the lifespan of rhesus macaques
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Studies were extended to the neonatal period of rhesus macaques, a time in early

development when environmental influences are modest and least likely to con-

found gene-behaviour associations. Between postnatal days 7–30 mother-reared

and maternally deprived neonates were assessed on a standardized neurobeha-

vioural test designed to measure orienting, motor maturity, reflex functioning and

temperament. Main effects of genotype and, in some cases, MS � genotype inter-

actions, were demonstrated for items indicative of orienting, attention and temper-

ament. In general, infants with the s form of the rh5-HTTLPR displayed higher

behavioural stress-reactivity compared to one variant homozygote, as shown by

diminished orientation, lower attentional capabilities and increased affective

responding (Champoux et al. 2002). However, the genotype effects were more

pronounced for animals raised in the neonatal nursery than for animals reared by

their mothers. These results demonstrate the contributions of MS and genetic

background, and their interaction, in a model of behavioural development during

the neonatal phase.

Beyond the neonatal period, particularly during adolescence of rhesus

monkeys, evidence for a complex interplay between inter-individual differences

in the functions of the 5-HT system and social success has also been accumulated.

The interactive effect of rh5-HTTLPR genotype and early rearing environment on

social play and aggression was explored in infants and adolescents (Barr et al.

2003). Rhesus monkeys homozygous for the long variant were more likely to

engage in rough play than those with the long/short variants, with a significant

interaction between 5-HTT genotype and MS. Peer-reared infants carrying the

short variant were less likely to play with peers than those homozygous for the

long allele, whereas the rh5-HTTLPR genotype had no effect on the incidence of

social play among mother-reared monkeys. Socially dominant mother-reared

monkeys were more likely than their peer-reared counterparts to engage in

aggression. In contrast, peer-reared but not mother-reared monkeys with the

low-activity short allele exhibited more aggressive behaviours than their long/

long variant counterparts. This genotype by rearing interaction for aggressive

behaviour indicates that peer-reared subjects with the short allele, while unlikely

to win in a competitive encounter, are more inclined to persist in aggression once

it begins.

Since allelic variation of 5-HTT function is associated with anxiety-related traits

as well as an increased risk for developing depression in the face of adversity, the

impact of rh5-HTTLPR � MS interaction on stress-elicited endocrine responses

was determined in infant rhesus macaques. Adrenocorticotropic hormone (ACTH)

and cortisol plasma concentrations in monkeys reared with their mothers or in peer-

only groups were determined at baseline and during separation stress at 6 months of

age. Cortisol increased during separation and there was a main effect of rearing

condition with decreased cortisol among peer-reared macaques. Monkeys carrying

the rh5-HTTLPRs variant had higher ACTH. ACTH increased during separation,

and there was a maternal deprivation � rh5-HTTLPR interaction, such that peer-

reared short allele carriers had higher ACTH during separation than long variant

homozygotes. A confirmatory study further revealed that this interaction is sexually
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dichotomous and the interactive effect may underlie the increased incidence of

certain stress-related disorders of emotional regulation in women (Barr et al.

2004b). These findings confirm the data from studies in human populations that

allelic variation of 5-HTT function affects hypothalamic–pituitary–adrenal (HPA)

axis activity and that the influence of rh5-HTTLPR on hormonal responses during

stress is modulated by early life adversity and displays sex specificity (Mannie et al.

2009; O’Hara et al. 2007; Wust et al. 2009).

Previous research also revealed that peer-reared primates display a higher

preference for alcohol compared to other young adults. Furthermore, maternally

deprived female rhesus macaques show exaggerated HPA axis responses to alcohol

(Higley and Linnoila 1997). Because their environments can be controlled, use of

the macaque model permits investigation of independent influences as well as

potential interactions between 5-HT signalling pathway-related genes, MS, and

other stressors in the aetiology of alcohol dependence. Given that 5-HT signalling

and HPA axis hormones are involved in the reinforcement of alcohol intake and

contribute to the risk for symptoms of withdrawal and relapse in alcohol depen-

dence in a gender-specific manner, the interactive effect of rh5-HTTLPR genotype

and early rearing environment on the patterns of preference and consumption across

a 6-week alcohol consumption paradigm was examined (Barr et al. 2004a). Female

rhesus macaques were reared with their mothers in social groups or in peer-only

groups. As young adults, they were then given the choice of an alcohol solution or

vehicle. Interactions between rearing condition and rh5-HTTLPR genotype, with

dramatically higher levels of ethanol preference, were demonstrated in s variant

carriers. An effect of rearing condition on alcohol consumption during the 6 weeks

was found as well as a phase � MS interaction, such that peer-reared animals

progressively increased their levels of consumption. This was especially evident

for peer-reared females carrying the rh5-HTTLPR s variant. Thus, the high com-

posite scores for alcohol intake and alcohol-elicited aggression associated with the

low-expressing short rh5-HTTLPR variant in female rhesus monkeys confirm an

interaction between the 5-HT system activity and early aversive experience in the

vulnerability to alcohol dependence and represent a clinically valid model for

type II alcoholism.

Taken together, these findings provide substantial evidence of an environment-

dependent association between allelic variation of 5-HTT expression and central

5-HT function and illustrate the possibility that specific genetic factors play a role

in regulating behaviours in primates which are modulated by 5-HT signalling

pathways. Because rhesus monkeys exhibit temperamental and behavioural traits

which parallel anxiety, depression- and aggression-related trait dimensions in

humans associated with the low activity short 5-HTTLPR variant, it may be

possible to search for evolutionary continuity in this genetic mechanism for inter-

individual differences. Non-human primate studies may also be useful to help

identify environmental circumstances that compound the vulnerability conferred

by a particular genetic makeup or, conversely, act to improve behavioural outcomes

associated with a distinct genetic disposition.
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4 5-HTT-Deficient Mouse: A Model for Epigenetic

Programming of Development

Quantitative genetic research on rodent models is based primarily on inbred strain

and selection studies. While comparisons between different inbred strains of mice

expose remarkable differences in behavioural measures, differences within strains

can be attributed to environmental influences. Inbred and recombinant inbred strain

studies are highly efficient for dissecting genetic influences, for investigating

interactions between genotype and environment and for testing the disposition-

stress model. Furthermore, investigations in rodents have shown that intra- and

extra-uterine maternal signals have long-lasting consequences on anxiety-like

behaviour in the offspring and can synergistically induce long-term plastic changes

in anxiety- and depression-related neural circuits.

Since humans and mice have almost the same genome size and share many

orthologous genes mapped to syntenic chromosomal regions, it is conceivable that

gene variations which influence a behavioural trait in humans may be modelled in

the mouse. Based on the close similarity in the genomes between the two species

and the extensive knowledge derived from the sequencing of the murine genome,

mouse mutants have become the standard model. With the introduction of efficient

gene targeting techniques, the mouse is the only mammal uniting the top-down and

bottom-up genetic approach, from phenotype to gene and from gene to phenotype,

respectively (see also Gondo et al. 2011; O’Tuathaigh et al. 2011 for discussion).

Moreover, these mouse models provide efficient ways to control and manipulate

environmental factors and allow dissection of the molecular mechanisms of G � E

interactions.

In mouse, there is no analogue to the human and macaque 5-HTTLPR, but it is

possible to either inactivate the 5-HTT (Bengel et al. 1998) or to use transgenic

approaches to increase its expression (Jennings et al. 2006). Inactivation of the

murine 5-Htt and the resulting disturbance of brain 5-HT system homeostasis has

considerably advanced our understanding of the neurobiological basis of anxiety

and depression-related behaviour in mice (Lesch 2005; Murphy and Lesch 2008).

5-Htt�/� knockout mice show behaviours consistent with anxious and depressive

traits; they appear reluctant to explore brightly lit spaces or elevated open platforms

and give up struggling early when put in a stressful situation (Holmes et al. 2003).

Remarkably, certain types of depression-like behaviour (e.g. behavioural despair)

are manifest only after repeated exposure to stressors, which may be analogous to

repeated or chronic stressful life events in humans (Wellman et al. 2007). 5-Htt�/�

mice also show exaggerated neuroendocrine reactions to acute stress, similar to the

increased HPA reactivity reported in some depressed patients. The effect of 5-Htt

deficiency on anxiety and depression-like behaviours in mice may be mediated by

reduced 5-HT clearance mechanism during a vulnerable developmental period but

can still be selectively reversed by pharmacological 5-HT1A receptor inhibition

later in life, suggesting an enduring modulatory involvement of the 5-HT system.
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In addition, 5-Htt deficient mice provide a practical tool to study the impact

of genetic mechanisms on the development and plasticity of the brain, (Altamura

et al. 2006; Di Pino et al. 2004; Persico et al. 2001, 2003; Salichon et al. 2001). The

anxious-depressive phenotype in 5-Htt�/�mice is associated with increased dendritic

branching in fear associated circuits, including the medial prefrontal cortex and the

amygdala (Wellman et al. 2007; Nietzer et al., in press). However, despite growing

evidence for a critical role of the 5-Htt in the integration of synaptic connections in

the mouse brain during critical periods of development and adult life, knowledge of

the machinery involved in these fine-tuning processes remain incomplete.

Several studies used heterozygous 5-Htt+/� mice (displaying a 50% gene dose-

dependent reduction of 5-Htt expression, thus representing a practical model for

individuals with the short 5-HTTLPR variant). These studies found that, although

the mice do not show behavioural deficits at baseline, they developed increased

anxiety and depression-like behaviour in adulthood when exposed to prenatal

stressors (Heiming et al. 2009; van den Hove et al. manuscript submitted), to

early life adverse experiences including maternal neglect (Wellman et al. 2007)

or to psychosocial stress in adult life (Bartolomucci et al. 2010; Jansen et al. 2010;

Lewejohann 2010) (Fig. 3). It is proposed that such animal G � E paradigms serve

Fig. 3 Gene� enviromental adversity in the 5-HTTþ/� mouse model based on the work by Caspi

and coworkers (2003): (a), heterozygous 5-Httþ/� mice (displaying a 50% gene dose-dependent

reduction of 5-Htt expression, thus representing a model for individuals with the short 5-HTTLPR

variant) have used. These studies demonstrated that, although these mice do not show behavioural

deficits at baseline, they developed increased anxiety and depression-like behaviour in adulthood

when exposed to prenatal stressors (b), to early life adverse experiences including maternal neglect

(c), or to psychosocial stress in adult life (d). These of modes of G� E serve as specific models for

the increased vulnerability to environmental adversity across the lifespan in individuals with the

low-expressing short 5-HTTLPR variant
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as specific models for the increased vulnerability to environmental adversity across

the lifespan in individuals with the low-expressing short 5-HTTLPR variant.

4.1 Prenatal Stress

Exposure to early life stress elicited by repeated mild electric footshock in the

second postnatal week failed to further aggravate the increased anxiety and depres-

sion-like phenotype of 5-Htt deficient mice (Carroll 2007). Therefore, environmen-

tal adversity during early life may be more successfully modelled using

ecologically relevant paradigms such as maternal neglect, simulation a threatening

habitat for a female mouse and her pups or other species relevant adverse environ-

mental challenges. Given the importance of early life stressors and their interaction

with 5-HTT genotype in the development of affective disorders in humans, it is

important to model the interaction of 5-Htt deficiency with prenatal or perinatal
stress in mice.

Heiming and co-workers (Heiming et al. 2009) exposed pregnant and lactating

5-Htt+/� females to the olfactory cues of unfamiliar adult males, signalling the

risk of infanticide. When mothers had lived in a threatening environment, their

offspring showed increased anxiety-like and reduced exploratory behaviour com-

pared to controls and the effects were most pronounced in 5-Htt�/� mice. It was

concluded that the behavioural profile of the offspring was shaped in an adaptive

way, preparing the young for an adverse environment. When modulated by 5-Htt

genotype, which alters 5-HT neurotransmission, offspring may develop potentially

pathological levels of avoidance behaviour, which are determined by the G � E

interaction.

Van den Hove and associates (2010, manuscript submitted) developed a prenatal

stress paradigm by restraining pregnant 5-Htt+/� mice three times a day for 45 min

in transparent glass cylinders filled with water up to a height of 5 mm, whilst being

exposed to bright light. Prenatal maternal stress was performed daily during the

last week of pregnancy (E13–E17). The results indicate that the long-term effects

of prenatal stress on anxiety and depression-like behaviour in the offspring are

partly dependent on the 5-Htt genotype. Genome-wide expression analysis of the

hippocampus of these mice revealed G � E effects on apoptotic and psychoimmu-

nological processes.

4.2 Maternal Neglect

Another species-relevant adverse environmental stressor in rodents is deficient

maternal care in the first postnatal weeks. Previous investigations in rats indicated

that maternal behaviour has long-lasting consequences on anxiety-like behaviour

of the offspring. MS for several hours a day during the early postnatal period results
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in increased anxiety-like behaviours as well as increased stress hormone reactivity

in adult animals (Kalinichev et al. 2002). Similarly, pups that are raised by mothers

that display low licking and grooming behaviour show higher levels of anxiety-like

behaviour than pups raised by high licking and groomingmothers, and cross fostering

studies show that these influences are primarily environmental (Caldji et al. 1998;

Liu et al. 2000). Cross fostering offspring of low licking and grooming mothers to

high licking and grooming mothers is able to impart low anxiety-like behaviour to

the offspring, whereas the converse does not influence this behaviour. Offspring of

high licking and high grooming mothers raised by low licking and grooming

mothers do not show high anxiety-like behaviour, suggesting that specific genes

inherited by the high licking and grooming offspring protect them from the effects

of low licking and grooming mothering. Furthermore, Francis et al. (1999) have

shown that the effect of high licking and grooming can be passed from one

generation to the next. Females raised by high licking and grooming mothers

themselves become high licking and grooming mothers and go on to produce low

anxiety offspring regardless of whether their biological mother showed low or high

licking and grooming. This epigenetic inheritance of anxiety-like behaviour under-

scores the power that environmental influences can exert to persistently remodel

circuits in the brain during early development.

Studies using mice of defined genetic backgrounds have also begun to shed

light on the molecular mechanisms of specific G � E interactions. Anisman

et al. (1998) found that mice of the low licking and grooming Balb/c inbred

strain cross-fostered at birth to the high licking and grooming C57BL/6 inbred

strain display improvements in a hippocampus dependent memory task. Because

the reverse cross fostering, where C57BL/6 pups are raised by Balb/c mothers,

does not alter the behaviour of C57BL/6 mice, it appears that the C57BL/6

genetic background protects the pups from the effects of a Balb/c maternal

environment. However, by transplanting C57BL/6 embryos into Balb/c foster

mothers shortly after conception, Francis et al. (2003) were able to show that a

combined prenatal and postnatal Balb/c maternal environment is sufficient to

confer Balb/c behaviour on C57BL/6 offspring, demonstrating that intra- and

extra-uterine maternal signals can synergistically induce long-term plastic

changes in anxiety- and depression-related neural circuits.

To study the neural and molecular mechanisms underlying epigenetic program-

ming by early adverse environment in an animal model amenable to genetic

manipulation a G � E paradigm was developed in the mouse (Fig. 4a, b). It was

shown that the effects of an adverse rearing environment on anxiety-related beha-

viour are modulated by mutations in 5-HTT in a way that mimics the interaction

between early stress and 5-HTT seen in humans (Carola et al. 2008). Mice experien-

cing low maternal care showed deficient gamma-aminobutyric acid-A (GABA-A)

receptor binding in the amygdala and heterozygous 5-Htt+/�mice showed increased

anxiety and depression-like behaviour and decreased serotonin turnover in hippo-

campus and striatum (Fig. 4c). Strikingly, levels of brain-derived neurotrophic

factor (BDNF) mRNA in hippocampus were elevated exclusively in 5-Htt+/�

mice experiencing poor maternal care, suggesting that developmental programming
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Fig. 4 Interaction between rearing environment and 5-Htt function in mice: BDNF as a molecular

substrate of both 5-Htt deficiency and maternal care (modified from Carola et al. 2008). (a) and

(b), Epigenetic programming by early adverse environment in mice deficient for 5-Htt. The effects

of maternal neglect on anxiety-like behaviour is modulated by 5-Htt inactivation in a way that

mimics the interaction between early life stress and 5-HTTLPR genotype observed in rhesus

macaques and humans. (c), heterozygous 5-Httþ/� mice experiencing maternal neglect showed

increased anxiety-like behaviour. (d), Identification of neural and molecular substrates of G � E

interaction: BDNF mRNA concentrations in hippocampus are elevated exclusively in heterozy-

gous 5-Httþ/� mice experiencing poor maternal care, suggesting that developmental programming

of hippocampal circuits may underlie the 5-HTT � E adversity risk factor
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of hippocampal circuits may underlie the 5-Htt � E risk factor (Fig. 4d). These

findings demonstrate that 5-HT plays a similar role in modifying the long-term

behavioural effects of rearing environment in mice as it does in non-human

primates and identifies BDNF as a possible molecular substrate of this risk factor.

It is therefore predicted that some of the principle neural and molecular mechan-

isms which underlie G � E interactions in mouse and non-human primate models

are relevant to the aetiology of disorders of emotional regulation in humans.

4.3 Chronic Psychosocial Stress in Adulthood

Although epidemiological evidence links exposure to stressful life events with

increased risk for disorders of emotional regulation, there is significant individual

variability in vulnerability to environmental cues and the penetrance of genetic

variation is thought to play a major role in determining who will develop disorders.

Identifying the molecular mechanisms underlying this G � E risk factor will

facilitate an understanding of the individual differences in resilience to stress.

Therefore, a mouse model of the 5-HTT � adult life stress associated with winner

or loser experience in a resident-intruder paradigm was recently generated.

Jansen et al. (2010) reported that male mice of all three 5-Htt genotypes

experiencing social defeat on three consecutive days displayed increased anxi-

ety-like behaviour and decreased exploration, irrespective of winning or losing.

In losers, a distinct effect of genotype occurred. Homozygous 5-Htt�/� males

showed more anxiety-like behaviour and less exploration than the other geno-

types. In winners, no genotype-dependent variation was found. Genotypes did not

differ in basal activation of the stress hormone system but there was a main effect

of social experience with higher corticosterone levels in losers compared to

winners. This effect was most pronounced in the heterozygous 5-Htt+/� mice,

indicating that anxiety circuits and stress reactivity retain their plasticity through-

out adulthood and can be shaped by genotype and social experiences during this

phase of life.

Bartolomucci et al. (2010) subjected wild-type and heterozygous 5-Htt+/� male

mice to 3 weeks of chronic psychosocial stress in a dominant/subordinate context of

a resident-intruder paradigm (Fig. 5). The 5-Htt genotype did not affect the physio-

logical consequences of stress as measured by changes in body temperature, body

weight gain and plasma corticosterone. However, when compared with wild-type

littermates, heterozygous 5-Htt+/� mice experiencing high levels of stressful life

events, in the form of repetitive social defeat, showed significantly depressed

locomotor activity and increased social avoidance toward an unfamiliar male in a

novel environment. 5-Htt+/� mice exposed to high aggression stress also showed

significantly lower levels of 5-HT turnover than wild-type littermates, selectively in

the frontal cortex, which is a structure that is known to be involved in fear control

and avoidance responses, and that is implicated in susceptibility to depression. These

data point toward a useful animal model for better understanding the increased
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vulnerability to stress which has been reported in individuals carrying the low-

expressing short 5-HTTLPR variant, and suggest that social avoidance represents a

behavioural endophenotype of the interaction between 5-HTT and psychosocial

stress.

To identify changes in mRNA expression of novel candidate genes associated

with altered prenatal, rearing and adult psychosocial environment and/or 5-HTT

genotype, genome-wide microarray-based expression profiling of mRNA

extracted from brain region-specific tissue and laser-dissected single neurons

will have to be performed in mice from the various G � E paradigms (Ichikawa

et al. 2008) (Fig. 7). By determining differential gene expression resulting from

chromatin modification, future experiments promise to identify genes that are

epigenetically regulated by environmental adversity and 5-Htt in the mouse.

These genes are likely to be candidate susceptibility genes for anxiety disorders

and may serve as potential diagnostic and therapeutic targets. The evidence for

epigenetic inheritance of anxiety and depression-like behaviour underscores the

view that environmental influences can persistently remodel circuits in the brain

during early development. 5-Htt deficient and other genetically modified mice

will therefore be essential for the dissection of the molecular and neural mechan-

isms of epigenetic processes and of the neurodevelopmental–behavioural inter-

face (Lesch and M€ossner 2006).

Fig. 5 The chronic social defeat mouse model (modified from Bartolomucci et al. 2010):

Increased social avoidance (a), decreased locomotor activity, and increased serotonin concentra-

tions (c) in the frontal cortex of mice in 5-Httþ/� mice receiving highest aggression in the resident-

intruder paradigm, whereas both wildtype and 5-Httþ/� mice show increased body weight, body

temperature, aggression-induced hyperthermia, and corticosterone plasma concentrations follow-

ing social defeat (b)
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5 Neural Mechanisms of Epigenetic Programming

As already outlined clinical evaluation and self-report of life events revealed that

the effect of psychosocial stress on depression and suicidal behaviour is modified

by allelic variation of 5-HTT function, which renders carriers of the short 5-

HTTLPR variant more vulnerable to depression (see Sect. 2). As a first approxima-

tion toward identifying the neural circuits involved in controlling these epigenetic

processes, individuals with self-reported life stress but no history of psychopathol-

ogy were investigated with multimodal magnetic resonance imaging (MRI)-based

imaging (functional, perfusion, structural). Based on functional MRI and perfusion

data, support was found for a model by which life stress interacts with the effect of

5-HTTLPR genotype on amygdala and hippocampal resting activation, which may

provoke a chronic state of vigilance, threat or rumination (Canli et al. 2006). Life

events also differentially affected, as a function of 5-HTTLPR genotype, functional

connectivity of the amygdala and hippocampus in response to emotional stimuli

with a wide network of other regions, as well as grey matter structural features.

These interactions may constitute a neural mechanism for epigenetic vulnerability

or resilience against depressive illness and may have a morphological substrate in

the increased dendritic branching and spine density within the fear circuit of 5-HTT

deficient mice, including both the medial prefrontal cortex and the amygdala

(Wellman et al. 2007; Nietzer et al. in press) (Fig. 6).

By the same token, the previously reported whole-brain analyses of activation,

functional connectivity and greymatter density and volume also showed amoderation

of the same prefrontal cortex-amygdala circuitry by 5-HTTLPR genotype� life stress

interaction (Canli et al. 2006). In addition, the superior parietal lobule, superior

temporal gyrus, inferior frontal gyrus, precentral gyrus and insula were affected by

5-HTT � E. The remarkable fact about these regions is that they belong to circuits that

integrate imitation-related behaviour, from which social cognition and behaviour in a

social world has evolved (Iacoboni 2005). Social cognition is a construct comprising

representations of internal somatic states, interpersonal knowledge andmotivations as

well as procedures used to decode and encode the self relative to other people. This

complex set of processes, which are carefully orchestrated to support skilled social

functioning and communication-facilitated networking, has recently been associated

with activity in distinct neural circuits (Adolphs 2009; Kitayama and Park 2010).

Regions involved in imitation, imitative learning, social cognition and commu-

nication skills (Amodio and Frith 2006; Carr et al. 2003), and affected by 5-HTT
� life stress, include the superior parietal lobule, superior temporal gyrus, inferior

frontal gyrus, precentral gyrus, insula, anterior cingulate and amygdala. Some of

these regions contain mirror neurons (Rizzolatti and Craighero 2004; Uddin et al.

2005), which are activated during goal-directed behaviour or the observation of

such behaviour in others, and Von Economo neurons, which are believed to play a

role in social bonding. Dysfunction of both neural units is thought to cause social

and communication disabilities associated with autistic syndromes (Allman et al.

2005; Dapretto et al. 2006). The morphological alterations in 5-HTT deficient mice
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in conjunction with data G � E functional MRI data suggests that social compe-

tence and behaviour involving mirror or Von Economo neurons are neural targets of

epigenetic moderation may be subject to an interaction between psychosocial

adversity and 5-HTTLPR genotype (Canli and Lesch 2007).
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Fig. 6 Social defeat increases proximal length of apical dendrites in the medial prefrontal cortex

(mPFC) (a), while both 5-Htt genotype and social defeat modify spine density in the amygdala

(b) (modified from Nietzer et al., in press).
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Future psychophysiological and morphofunctional imaging studies in both

the animal model and the humans will have to address whether an interaction of

5-HTTLPR and life stress moderates neural activation during imitation or social

processing tasks. As investigations have begun to refine the methodologies for

capturing epigenetic effects on the brain, we may better understand the mechanisms

that render some individuals susceptible and others resilient to depression and other

affective spectrum disorders.

6 “To Be or Not to Be”: 5-HTT � Psychosocial Adversity

Interaction Is Subject to Evolutionary Pressure

Recently, a series of studies have emerged showing that the short 5-HTTLPR

variant is associated with improved cognitive functions. Therefore, these factors

may counteract or completely offset the negative consequences of the anxiety and

depression-related traits (for review: Homberg and Lesch in press). For instance, it

has been shown that carriers of the 5-HTTLPR short-allele exhibited increased

emotionally cued startle responses (Brocke et al. 2006) and a stronger attentional

Fig. 7 The molecular cycle of epigenetics in the susceptibility of depression and related co-

morbid disorders: Gene variation affecting transcriptional control is permissive for environmental

adversity moderating epigenetic mechanisms that involve methylation of DNA and acetylation of

histones which, in turn, impacts regulation of gene expression. Silencing chromatin by DNA

methylation and histone deacetylation switches genes off, whereas activation of chromatin by

DNA demethylation and histone acetylation switches genes on
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bias for anxious word stimuli (Beevers et al. 2007) along with greater difficulty

disengaging their attention from stimuli with strong negative or positive valence

(Beevers et al. 2009), and a bias to focus on positive images (Beevers et al. 2010). It

has also been shown that in depression carriers of the short variant benefit most

from social support (Brummett et al. 2008), indicating that sensitivity to positive

stimuli can alleviate the negative consequences of sensitivity to adverse events. In a

social context, short-allele carriers display more aggressive behaviours (Schwandt

et al. 2010) and are characterized by an increased vulnerability to the adverse

effects of psychosocial stress associated with subordinate status (Jarrell et al. 2008).

An analogous attentional bias in rhesus monkeys is particularly striking: The

short variant of the rh5-HTTLPR has been associated with a reduction in time spent

gazing at images of faces compared to non-face images, less time looking in the eye

regions of faces and larger pupil diameters when gazing at photos of a high versus

low status male macaques (Watson et al. 2009). The reluctance of rhesus macaques

carrying the short allele to gaze directly at the eyes and faces of con-specifics, as

well as their enhanced sympathetic response to the images of high-status males,

suggests that these individuals experience greater anxiety than those homozygous

for the long variant when viewing potential social threats. The greater pupil

diameter indicates that the short-allele carrying monkeys found images of high-

status male faces to be more arousing, which is in harmony with the observations of

Beevers and associates (Beevers et al. 2010) that humans carrying the short-allele

tend to exhibit a bias to focus on positive images and thus may experience more

arousal when viewing rewarding pictures.

At the level of cognitive flexibility, it was found that the 5-HTTLPR short-allele

is associated with improved performance in trials of attentional set shifting (Borg

et al. 2009), which is in accord with increased attention towards task parameters

(Roiser et al. 2007). The cognitive enhancement is also consistent with the obser-

vation that short-allele carriers show increased processing of negative feedback

(Althaus et al. 2009). In rhesus monkeys, the short-allele of the rh5-HTTLPR was

associated with superior performance on an array of cognitive tasks: the probability

discounting task, the delay discounting task, the reversal learning task and the

delayed match-to-sample task (Jedema et al. 2009). The better performance in the

probability discounting task is consistent with the increased attention to high and

low probabilities in the risky decision-making task in humans carrying the short

5-HTTLPR variant (Roiser et al. 2006) and may be explained by augmented

cortico-limbic activation (Fallgatter et al. 1999, 2004) and superior ability to

integrate feedback information over time to guide behaviour on subsequent choices

(Althaus et al. 2009).

Connected to the medial prefrontal cortex-amygdala circuitry, other brain

regions implicated in allelic 5-HTT function-mediated behavioural responses are

the orbitofrontal cortex (OFC), the pulvinar nucleus of the thalamus and the bed

nucleus stria terminalis. The OFC shows prominent morphological alterations and

differential functional activation in response to environmental manipulation in

rhesus monkeys carrying the short allele (Kalin et al. 2008). The OFC signals

representations of expected outcomes and compares an expected with the actual
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outcome of behaviour. When incongruent, it modulates the activity of downstream

brain areas that are involved in response selection and action, such as the amygdala

and striatum. In that way, increased OFC activity may allow short-allele carriers

to flexibly adapt behaviour when a mismatch is detected between the expected

and actual outcome of behaviour, for instance during reversal learning in rhesus

macaques (Jedema et al. 2009).

Taken together, the studies in non-human primates complement the findings

in human on emotionality in social settings and suggest that the 5-HTTLPR short-

variant is associated with increased attention (Roiser et al. 2007) to task parameters

and may contribute to improved decision making and improved cognitive flexibility

(Borg et al. 2009; Jedema et al. 2009; Roiser et al. 2006, 2009). Moreover, it may be

linked with heightened social vigilance and, generally, sensitivity to environmental

cues per se, which could result in maladaptive responsiveness when danger or social

threats are absent. However, it may also be highly adaptive in distinct contexts

or circumstances and consequently subject to positive selective pressure. That is,

seizing opportunities and the simultaneous avoidance of potential harmful antago-

nistic interactions may lead to social (and thus, reproductive) success.

Heightened vigilance, i.e. high attentional biases directed towards motivation-

ally relevant stimuli, may be the common denominator in the high emotionality

and cognitive enhancement associated with allelic variation of 5-HTT function

(Homberg and Lesch in press). The challenge is now to understand how the brain

determines when to respond either emotionally or cognitively depending on environ-

mental stimuli. Integration of these findings will provide novel hypotheses for the

understanding of the mechanisms underlying the co-occurrence of anxiety-related

traits and enhanced cognitive function in association with 5-HTT � E interaction.

7 Molecular Mechanisms of Epigenetic Programming

The molecular mechanisms by which early stress increases risk for disorders of

emotional regulation in adulthood is not known, but is presumed to include epige-

netic programming of gene expression (see Bountra et al. 2011; Weaver et al. 2004,

2006). Identifying the molecular mechanisms behind the long-term behavioural

effects of altered rearing environments is a major goal of research in the field of

developmental programming. Persistent changes in the expression of several genes

have been documented in adult animals exposed to altered rearing environments.

Decreased expression and function of the glucocorticoid receptor (GR) has been

associated with a low maternal care environment and has been the subject of several

studies (for review: Seckl and Meaney 2004). Decreased GABA-A receptor binding

and subunit expression as well as increased corticotropin-releasing hormone (CRH)

mRNA have been documented in the amygdala of offspring of low licking and

grooming mothers and is proposed to be required for their increased anxiety-related

and stress response behaviour, respectively (Calatayud et al. 2004; Caldji et al.

1998). Changes in hippocampal expression of NMDA receptor subunits, BDNF,
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neural cell adhesion molecule (NCAM), synaptophysin and acetylcholine esterase

have also been reported in offspring of low versus high licking and grooming

mothers (Liu et al. 2000). Recent work in rats has suggested that changes in the

activity of the GR promoter play a critical role in the epigenetic programming of

adult stress response by rearing environment. Decreased methylation and increased

histone 3 acetyl-K9 binding of the GR I7 promoter was found in hippocampus of

adult rats receiving low licking and grooming (Weaver et al. 2004). Treatment of

these rats in adulthood with the histone deacetylase inhibitor (HDAC), tricostatin

A, reversed the effects of low licking and grooming on GR expression. Remarkably,

tricostatin treatment also reversed the effects of rearing environment on stress

hormone responses, demonstrating a role for chromatin remodelling in maintaining

the long-term effects of rearing environment. In a parallel study by the same group,

supplementing the diet of high licking and grooming mothers with methionine in

adulthood increased GR promoter methylation and stress response, suggesting that

epigenetic programming of GR can be pharmacologically adjusted either up or

down with corresponding changes in stress response activity (Weaver et al. 2005).

8 Conclusions and Outlook

Modest advances in behavioural genetics are contrasted by giant leaps in an

epigenomic era still in its infancy. The application of paradigms novel to neuroge-

netic approaches including generation of genetically modified mice, validation of

G � E models in non-human primates and rodents, application of functional

neuroimaging and next-generation sequencing technologies in the quest for rare

genetic variants with high effect size but variable penetrance and inclusion of a

more extensive phenotypic spectrum (e.g. higher cognitive functions, social com-

petence, resilience) have strengthened the connection between 5-HTT, (social)

cognition and emotionality and continue to enable a more profound understanding

of how common and rare genetic variation modulates human behaviour.

In this overview I have attempted to integrate findings from studies in G � E

animal models which underscore the central role of 5-HT and its fine-tuning by

5-HTT functionality in embryonic patterning events, brain development, and syn-

aptic plasticity, particularly in neural circuits related to (social) cognitive and

emotional processes. Increasing evidence suggests that epigenetic mechanisms

may play a crucial role in neurodevelopmental programming of behavioural

abnormalities. Among a number of environmental cues, social environment can

act as a primary risk for the development of anxiety and depression-related pheno-

types (Fig. 8). The best evidence derives from findings of developmental outcomes

associated with institutional deprivation that consistently highlight the increased rates

of disorders of emotional regulation. Further support comes from the risk-attenuating

role of alternative social environments through resilience-focused therapeutic

intervention. Moreover, the social environment has been shown to determine the

extent to which patients with affective disorders develop co-morbidity. Through
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modification of DNA and associated histones, epigenetic mechanisms translate

environmental stimuli into changes in gene expression as neural correlates of epige-

netic programming. Epigenetically influenced behavioural modifications are accom-

panied by changes in gene expression. Thus, these mechanisms are hypothesized to

play an essential role in the interplay of genetic and environmental cues in determining

anxiety and depression-related phenotypes. Epigenetic markers identified by

genome-wide expression, DNA methylation, and histone modification profiles are

dynamic and reversible and may also provide powerful targets for pharmacological

intervention strategies. Therefore, deeper insight into the role of epigenetic regula-

tion in the process of neurodevelopmental programmes, in particular in relation to

depression and co-morbid disorders, will contribute to the establishment of early

diagnosis and the development of innovative treatments targeting neural pathways

that foster resilience.

Finally, anxiety disorders and depression are known to be influenced not only by

environmental stressors but also by each individual’s unique genetic background.

The mouse models also permit analysis of synthetic mutant phenotypes or
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Fig. 8 Changes in mRNA expression of novel candidate genes associated with altered rearing

environment and/or 5-Htt genotype may be identified by microarray-based expression profiling of

mRNA extracted from brain region-specific tissue and laser-guided dissection of homogeneous

neuron populations in mice from G � E paradigms. Whole-genome expression screening methods

combined with high-throughput methylation and histone acetylation profiling microarray techni-

ques both genome-wide and of selected genes in mice from stress-specific G � E paradigms

promise to identify genes that are epigenetically regulated by 5-Htt � E interaction in the mouse.

These genes are likely novel candidate susceptibility genes for disorders of emotion regulation and

will serve as potential diagnostic and therapeutic targets
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polygenic characteristics based on epistatic interaction and pleiotropy. Epistasis

with genes with strong evidence-based rationale, such as BDNF, has a potential to

further refine the concept and indicate mechanisms underlying the observed G � E

interaction (Ren-Patterson et al. 2005). However, the majority of neural substrates

and circuitries that regulate emotional processes or cause affective disorders remain

remarkably elusive. Among the reasons for the lack of progress are remaining

conceptual deficiencies regarding the genetic and neural architecture of emotional-

ity and behavioural despair, which make it difficult to develop and validate reliable

models of depression. As analyses of epigenomes in non-human primates and

rodents will likely contribute fundamentally to our understanding how humans

have evolved, the next stage of complexity concerns the nature of genetic variation,

either common or rare, and epigenetic programming among humans and its influ-

ence on inter-individual differences at the level of physiology and disease patho-

genesis, as well as the relative impact of genetic and environmental determinants on

cognition, emotion and, ultimately, behaviour.
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Abstract Epigenetics describes the phenomenon of heritable changes in gene

regulation that are governed by non-Mendelian processes, primarily through bio-

chemical modifications to chromatin structure that occur during cell development

and differentiation. Numerous lines of evidence link abnormal levels of chromatin

modifications (either to DNA, histones, or both) in patients with a wide variety of
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diseases including cancer, psychiatry, neurodegeneration, metabolic and inflamma-

tory disorders. Drugs that target the proteins controlling chromatin modifications

can modulate the expression of clusters of genes, potentially offering higher therapeu-

tic efficacy than classical agents with single target pharmacologies that are susceptible

to biochemical pathway degeneracy. Here, we summarize recent research linking

epigenetic dysregulation with diseases in neurosciences, the application of relevant

animal models, and the potential for small molecule modulator development to

facilitate target discovery, validation and translation into clinical treatments.

Keywords Chromatin � Epigenetics � Histone modifying enzymes � Inhibitors

Abbreviations

2-OG 2-Oxo-glutarate

AAV Adeno-associated virus

BDNF Brain-derived neurotrophic factor

BET Bromodomain and extra C-terminal domain protein

CaMK Ca2+/calmodulin-dependent protein kinase

CDK5 Cyclin-dependent kinase 5

ChIP Chromatin immunoprecipitation

CoA Coenzyme A

CpG Short stretches of DNA in which the frequency of C and G base pairs

are higher than other regions

CREB cAMP response element binding protein

CRH Corticotrophin releasing hormone

CTCL Cutaneous T-cell lymphoma

DNMT DNA methyltransferase

FAD Flavin adenine dinucleotide

FPC Frontopolar cortex

FRET Forster resonance energy transfer
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GR Glucocorticoid receptor

H3K9Me2 Histone H3 dimethylated at lysine-9 e-nitrogen
HAT Histone acetyl transferase

HDAC Histone deacetylase

HSV Herpes simplex virus

IKB IkB transcription factor

IKK IkB kinase

JMJD Jumonji (demethylase) domain

KDM Lysine demethylase

KO Knockout

LG Licking and grooming

LSL Lox P-stop-Lox P cassette
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LTP Long-term potentiation

MAOI Monoamine oxidase inhibitor

MBD Methyl-CpG-binding domain protein
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MeCP2 Methyl CpG binding protein 2

miRNA MicroRNA

NAc Nucleus accumbens

NFkB Nuclear factor-kappaB

NGFIA Nerve growth factor inducible protein A

PHD Plant homeodomain

PRMT Arginine methyltransferase

PTGS Post-transcriptional gene silencing

SAHA Suberoyl-aniline hydroxamic acid

SirT Sirtuin (NAD+-dependent histone deacetylase)

SUMO Small ubiquitin-like modifier

TSA Trichostatin A

TSS Transcription start site

WT Wild-type

1 Introduction: Epigenetic Regulation of Gene Expression

The last decade has seen an impressive amount of data that has followed work by

developmental biologist, Conrad Waddington, who created the concept of epige-

netics. This basic model articulates how identical genotypes can result in a wide

collection of phenotypes as development and differentiation proceeds in an organ-

ism (Waddington 1957). When Waddington coined the term, the physical nature of

genes and their role in heredity was not known; he used it as a conceptual model of

how genes might interact with their surroundings to produce a phenotype. Over

time, this paradigm of phenotypic landscapes took an additional meaning by

including “potentially heritable changes in gene expression that do not involve

changes in DNA sequence” (Jaenisch and Bird 2003). It is now widely accepted that

the eukaryotic chromatin structure is at the basis of all phenomena that are now

collectively ascribed to “epigenetics” – that is gene regulation, gene imprinting or X

chromosome inactivation. It is also obvious that now the original meaning of

“epigenetics” is becoming more blurred, since many researchers use widely the

phrase “epigenetics” also in the context of, for example genome integrity or cell-

cycle regulation to describe in general chromatin modifications, architecture or

gene regulation, thus spurring a semantic debate (Petronis 2010).

It is clear that chromatin states must be considered as highly dynamic and

plastic, and hence any mechanism that changes a chromatin state is implicated

as being potentially involved in epigenetic function. Chromatin modifications

that have been related to epigenetic functions include methylation of DNA;

post-translational modifications to chromatin proteins, especially histones; and
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microRNAs, a recent addition to epigenetic mechanisms which add another layer of

complexity to chromatin function and gene regulation. The chemical modification

of chromatin components (often referred to as “marks”) is not uniformly distributed

in the genome, but is applied regionally where it serves to regulate “local” activity

such as gene transcription or silencing. There are two important aspects to consider:

first, several of the modifications appear “stable” and can be inherited from one cell

or even organism to the next generation, thereby underpinning the concept of

epigenetic landscape and heritability. Second, despite this apparent stability, it is

now clear that most if not all modifications are potentially reversible, thus creating a

high level of plasticity, allowing cells to respond dynamically to, for example,

environmental cues. In this chapter, the different aspects of epigenetic mechanisms

are briefly described, before outlining specific examples of the application of

animal models to understand the role of epigenetics in neuropsychiatric system

function. Finally, we outline progress in chemical biological approaches to investi-

gate and dissect epigenetic phenomena in more detail.

1.1 DNA Methylation as Epigenetic Mark

In eukaryotes ranging from plants to humans, DNA methylation is found exclu-

sively at the C5 position of the pyrimidine ring of cytosine residues. DNA methyl-

ation frequently occurs in repeated sequences, and helps to suppress the expression

and mobility of transposable elements. The majority of all CpGs are methylated in

mammals, whereas unmethylated CpGs are grouped in clusters called “CpG

islands” (short stretches of DNA in which the frequency of C and G base pairs

are higher than other regions) that are present in the 50 regulatory regions of many

genes (Klose and Bird 2006). Importantly, methylation patterns differ greatly

between somatic and stem cell types as revealed by genome-wide methylcytosine

sequence analysis (Lister et al. 2009). Furthermore, the discovery of hydroxy-

methylcytosine in mammalian cells (Penn et al. 1972; Kriaucionis and Heintz

2009), its implication in methyl DNA analysis, and its differential distribution in

chromatin reveals that the “landscape” of DNA modification is not yet fully

understood (Huang et al. 2010; Penn et al. 1972; Loenarz and Schofield 2009;

Tahiliani et al. 2009). In many disease processes such as cancer, gene promoter

CpG islands achieve abnormal hypermethylation (Smiraglia et al. 2001), which

results in heritable transcriptional silencing, for example of tumour suppressor

genes, which in turn provides the rationale for methyltransferase inhibitors such

as azacytidine as epigenetic therapies. DNA methylation patterns are known to be

established and modified in response to environmental factors by a complex

interplay of at least three independent DNA methyltransferases, DNMT1,

DNMT3A and DNMT3B, the loss of any of which is lethal in mice (Li et al.

1992). DNMT1 transfers patterns of methylation to a newly synthesized strand after

DNA replication to hemimethylated DNA, and therefore is referred to as the

“maintenance” methyltransferase. DNMT1 is essential for proper embryonic devel-

opment, imprinting and X-inactivation (Goll and Bestor 2005).
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DNA methylation may regulate the transcription of genes in two ways: directly,

by impairment of binding of transcriptional regulators to the gene; and indirectly,

by binding of methyl-CpG-binding domain (MBD) proteins to methylated DNA

(Klose and Bird 2006). These MBD proteins recruit additional proteins to the target

site, such as histone deacetylases, methyltransferases and other chromatin remodel-

ling proteins that can modify histones, thereby forming inactive, silent chromatin

(Fuks et al. 2003). Notably, loss of methyl-CpG-binding protein 2 (MeCP2) has

been implicated in Rett syndrome (Kriaucionis and Bird 2003), and methyl-CpG-

binding domain protein 2 (MBD2) mediates the transcriptional silencing of hyper-

methylated genes in cancer (Klose and Bird 2006).

1.2 Histone Modifications Dictate Chromatin Structure
and Regulate Transcription

Eukaryotic DNA is packaged into a chromatin structure, consisting of repeating

nucleosomes formed by wrapping 146 base pairs of DNA around an octamer of four

core histones (H2A, H2B, H3, and H4). It has long been known that covalent

modification of the proteinaceous component of chromatin, especially histones,

plays an essential role in chromatin biology and epigenetics. The histones, particu-

larly their N-terminal tails, are subject to a large number of post-translational

modifications (Kouzarides 2007), which establish global chromatin environments,

thereby regulating gene expression and genome function, and mediating DNA-

based biological processes (see above). The H3 and H4 histones have long tails

protruding from the nucleosome which can be covalently modified at multiple

positions. Modifications of the tails include methylation, acetylation, phosphoryla-

tion, ubiquitination, sumoylation, citrullination and ADP-ribosylation (Kouzarides

2007) (Fig. 1 and Table 1).

Modification of specific residues results in distinct outcomes, for example

acetylation of lysine residues in histones is associated with transcriptionally active

genes, whereas the effect of lysine methylation on epigenetic functions is sequence

and methylation-state specific (Kouzarides 2007). The cores of histones H2A and

H3 can also be modified. The combinations of modifications are thought to form the

so-called “histone code” (Strahl and Allis 2000; Jenuwein and Allis 2001) mediated

by a system of so-called “readers, writers and erasers” (Table 2) allowing the

chromatin to adopt a highly complex and dynamic nature.

1.3 MicroRNAs Emerge as a Novel Epigenetic Mechanism

MicroRNAs are short ~22 nucleotide RNA sequences that bind to complementary

sequences in the 30 untranslated region of multiple target mRNAs, usually resulting

in their silencing (Bartel 2004; Bartel and Chen 2004). This post-transcriptional
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gene silencing (PTGS), which was initially considered a bizarre phenomenon

limited to petunias and a few other plant species, has been shown to occur in both

plants and animals and has roles in viral defense and transposon silencing mechan-

isms (Hammond et al. 2001). MicroRNAs possibly target ~60% of all genes, are

abundantly present in all human cells and are able to repress hundreds of targets

each. The recent discovery of non-coding RNAs (Sleutels et al. 2002) suggests that

an RNA component may contribute to epigenetic gene regulation. Small interfering

RNAs can modulate transcriptional gene expression via epigenetic modulation of

targeted promoters. Importantly, one study implicates miRNA as a factor in the

development of schizophrenia (Feng et al. 2009; Need et al. 2009).

Table 1 Histone modifications and their functions

Modification Position Function

KAc H3K9, 14, 18

H4K5, 8, 12, 16, 20

Activation

Activation

KMe H3K4

H3K9

Activation

Activation

KMe3 H3K4

H3K9

H3K27

K3K36

H3K79

H4K20

Activation

Repression

Repression

Activation

Activation

Repression

Ser/Thr phosphorylation H3T3

H3S10

Mitosis

Mitosis

Ubiquitylation H2AK119

H2BK20

Repression

Activation

SUMOylation H4, H2B Repression

Biotinylation H3K4, K9, K27

H4K8, K12

Repression

Repression

Table 2 Readers, writers and erasers of histone modifications

Modification Writer Eraser Reader

Lysine acetylation Histone acetyl

transferase (HAT)

Histone deacetylase

(HDAC)

Bromodomain

Lysine methylation Histone

methyltransferase

(HMT)

Histone lysine

demethylase (KDM)

Tudor, chromo,

MBT, PHD

Lysine phosphorylation Kinases (Aurora, PRK1,

Haspin)

Phosphatases 14-3-3

Ubiquitylation Ubiquitin ligase Isopeptidase None known

SUMOylation SUMO ligase SUMO protease None known

Biotinylation Holocarboxylate

synthetase

Biotinidase None known
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2 Evidence for Epigenetic Processes in Neuropsychiatric

Disorders

Drug discovery in epigenetics is in its infancy. Targeting the enzymes and

recognition domains that regulate chromatin is an attractive approach to modulate

the coordinated expression of multiple genes, potentially circumventing issues

associated with traditional single-target pharmacology. Altered gene expression

patterns linked with apoptosis and cell cycle arrest have prompted the develop-

ment of DNA methyltransferase and histone deacetylase inhibitors, which have

achieved success as chemotherapeutics. For example, vorinostat has been

approved by the FDA for treating cutaneous T-cell lymphoma (CTCL). Other

inhibitors FK228, PXD101, PCI-24781, ITF2357, MGCD0103, MS275, Valproic

acid and LBH589 have also demonstrated therapeutic potential as monotherapy or

in combination with other anti-tumour drugs in CTCL and other malignancies

(Li and Chen 2009; Hrzenjak et al. 2010; Kim et al. 2010; Lee et al. 2010; Takai

and Narahara 2010; Tan et al. 2010). Recently DNA methyltransferase inhibitors

such as azacytidine have shown clinical efficacy in treatment of haematological

malignancies and in neuroendocrine tumours (Brown et al. 2009; Voso et al.

2009; Alexander et al. 2010; Zhu et al. 2010). Clearly, these mechanisms also

have the potential to modify regulatory cascades in post-mitotic cells, such as

neurons. Epigenetic regulatory proteins play a leading role in neuronal develop-

ment, but in addition, growing evidence suggests that adult neurons respond to

various environmental signals via dynamic changes in DNA methylation and

histone modifications. Because, in contrast to genetic alterations, changes in

epigenetic marks are potentially reversible, these processes are important to

mechanisms of memory formation and cognition via modulation of genes

involved in synaptic plasticity, such as brain-derived neurotrophic factor

(BDNF) and reelin (Levenson and Sweatt 2005; Szyf 2009). Epigenetic abnorm-

alities, possibly introduced during either embryogenesis, puberty, or adulthood,

have also been noted in several psychiatric disorders, including drug addiction,

depression and schizophrenia (Tsankova et al. 2007). In the following sections,

we survey the evidence for involvement of epigenetic processes in the aetiology

of neuropsychiatric disorders.

2.1 Addiction

Drug addiction involves long-lasting adaptations in the brain’s rewards circuitry,

mediated in part by alterations in gene expression. Models of addiction in which the

molecular, cellular and behavioural responses in rodents to psychostimulant drugs

of abuse, for example cocaine are described by Heidbreder (2011).
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2.1.1 Role of Methyltransferases

Repeated cocaine exposure leads to persistent changes in gene expression and

altered neuronal morphology within rodent nucleus accumbens (NAc), a key

component of the brain’s reward circuitry (Robinson and Kolb 2004; Hyman

et al. 2006). Chromatin remodelling underlies these changes (Kumar et al. 2005;

Renthal et al. 2007, 2008, 2009; Borrelli et al. 2008; Stipanovich et al. 2008; Brami-

Cherrier et al. 2009). Maze et al. (2010) have shown that repeated cocaine admin-

istration in mice produces repression of the methyltransferase G9a in NAc, leading

to decreased levels of the repressive mark H3K9me2, selective gene induction and

thereby increased preference for cocaine in the place preference paradigm (Fig. 2).

Furthermore, the authors demonstrate an increase in the density of dendritic spines

in this region of the brain.

These changes were mimicked by pharmacological inhibition of G9a, using

BIX01294 or attenuated/inhibited by overexpression of G9a using herpes simplex

vectors (HSV-G9a). The repression of G9a is also shown to be mediated via an

increased expression of DFosB (a stable splice product of the immediate early gene

fosB) in NAc. The latter was selectively induced in NAc using bi-transgenic

NSE–tTA � tet OP DFosB mice (Transgenic DFosB). Such induction produces

the same sequelae as repeated cocaine administration. Bilateral intra NAc injections

of adeno-associated virus (AAV) vectors expressing DFosB (AAV–DFosB) also
produced a repression of G9a in NAc. Conversely, overexpression in the NAc of

DJunD, a dominant negative mutant protein that antagonizes DFosB transcriptional

activity, blocked the ability of repeated cocaine to increase dendritic spine forma-

tion in the NAc (Fig. 2).

Together, these experiments elegantly demonstrate that chronic drug abuse

produces selective gene induction, via repression of a methyltransferase, correlat-

ing with a behavioural outcome (increased preference for the drug) and a structural

change (increased spine density). These effects are mimicked by a pharmacological

Repeat cocaine

Transgenic ΔFosB  ve
Increased ΔFosB or AAV- ΔFosB ΔJunD

BIX01294

-ve

-ve
Repression / inhibition of G9a

Decreased H3K9me2

HSV-G9aBIX01294

Selective gene induction

Increased place preference Increased density of dendritic spines

Fig. 2 Repeat cocaine produces transcriptional, anatomical and behavioural changes via repres-

sion of a methyl-transferase (G9a)
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inhibitor of the methyltransferase, or attenuated by upregulation of the same

enzyme (Maze et al. 2010)

2.1.2 Role of Histone Deacetylases

Renthal and colleagues (Renthal et al. 2009) using the same paradigm (repeat

cocaine administration), reported the effects on acetylation and methylation pat-

terns of gene promoters in NAc. They demonstrated increased acetylation of

Histone 3 (H3) at 1,004 gene promoters and decreased acetylation at 83 gene

promoters. The former included FosB, Cdk5 (cyclin-dependent kinase 5) and

BDNF. Similarly there was hyperacetylation at Histone 4 (H4) in 692 and hypo-

acetylation at 123 gene promoters. There was little overlap in hyper (15%) and hypo

(1%) acetylation patterns at H3 and H4 proteins. Levels of acetylation of H3 and H4

were maximal between �500 and þ200 base pairs (relative to transcription start

site, TSS) and showed a bimodal peak for H3 and unimodal for H4. Chronic cocaine

did not alter the spatial distribution of acetylation, only the magnitude.

These workers also demonstrated that chronic cocaine produced a decrease in

dimethylation of H3K9 and H3K27 (repressive marks) at 209 gene promoters and

an increase at 898. This methylation was broader, occurring at�1,600 toþ500 base

pairs relative to TSS. Similar to the acetylation patterns, cocaine did not alter the

spatial distribution.

There was only a 2% overlap in genes showing a decrease in histone acetylation

and an increase in histone methylation, indicating that activation or repression of

cocaine regulated promoters in NAc occurs via independent alterations in acetyla-

tion and methylation patterns. The authors conclude that the most common

mechanisms for activation are acetylation (rather than demethylation) and for

repression are methylation (as opposed to deacetylation).

Using chromatin immunoprecipitation (ChIP), Renthal et al. (2009) showed that

cocaine treatment led to 4% more (1,553) promoters being bound to the transcrip-

tion factor DFosB, compared to saline treated animals. About 13% of these DFosB
gene targets showed coincident increases in histone acetylation, indicating that

DFosB may be acting as a transcription factor at these genes. However, DFosB may

also act as a repressor since 8% of DFosB target genes showed increased H3 K9/

K27 methylation.

The group also demonstrated increased DFosB binding to Sirt1 and 2 promoters

(silent information regulator of transcription, NAD-dependent histone deacetylase,

also called sirtuins), and an associated increase in H3 acetylation. In order to

demonstrate a functional consequence of this binding (DFosB) and the chemical

modification (histone acetylation), they incubated NAc lysates with the fluorescent

substrate for Sirt1 or Sirt2 and thereby concluded that chronic cocaine did indeed

increase Sirt1 and 2 activity in NAc. Furthermore the non-selective inhibitor of Sirts

(sirtinol) produced a silencing of NAc neurons, assessed using whole cell current

clamp of spiny neurons. The non-specific Sirt activator (resveratrol) produced the

opposite effect i.e. increased excitability in these neurons. These pharmacological

290 C. Bountra et al.



agents also produced opposite effects on cocaine reward. Resveratrol given sys-

temically (since it penetrates the blood brain barrier) produced an increase in

cocaine induced place conditioning and sirtinol (given directly into NAc) produced

a decrease in this behaviour. It will be informative to re-assess these conclusions

using more specific reagents, ideally administrated via an identical route.

Since cAMP response element binding protein (CREB, another transcription

factor) is activated by phosphorylation at Ser 133, the same group performed ChIP

for phospho CREB and showed that it binds nearly 38% (1,743) more genes after

chronic cocaine compared to saline. In 12% of these, there was an increase in

histone acetylation (promoting transcription) and in 1% an increase in H3 dimethyl

K9/K27 (promoting repression) marks. Examples of genes binding phospho CREB

included Pdyn, cFos, neurogranin and Grin2A.

This extensive study by Renthal and colleagues (Renthal et al. 2009) demon-

strates the large number of promoters that are acetylated or methylated by chronic

cocaine, the little overlap in the activating or repressing marks, lack of correlation

between activating marks and the binding of two transcription factors (DFosB and

phospho CREB), increased activity of the deacetylases Sirt1/2 and the key roles of

these two enzymes in modulating activity of spiny neurons in NAc and the

behavioural effects of cocaine (Fig. 3).

Kumar et al. (2005) showed hyperacetylation of histones in NAc following both

acute and chronic cocaine administration. Furthermore, the behavioural responses

to cocaine were increased following systemic administration of the non-selective

HDAC inhibitor – suberoyl-anilide hydroxamic acid (SAHA – inhibits class I and II

HDACs). Renthal et al. (2007) have shown that mice receiving intra NAc injections

of SAHA also produced an increase in the rewarding responses to cocaine (illus-

trating the pivotal role of NAc in these behaviours). The same workers found that

HDAC 3 and 5 were most highly expressed in NAc, but their respective mRNA

levels were unaffected by cocaine.

Since Class II HDACs (4, 5, 7 and 9) are phosphorylated and hence exported out

of the nucleus, the group explored the effects of cocaine on phosphorylation of these

enzymes. They showed that chronic cocaine administration caused a significant

induction of phosphorylated HDAC5 (Ser 259) at 30 min post, but this alteration

Repeat cocaine

Acetylation and Methylation changes in select genes

ΔFosB or pCREB binding

Increased Sirt 1 and 2 activity ResveratrolSritinol
-ve

Increased activity in spiny neuronesIncreased place preference

Fig. 3 Repeat cocaine produces chromatin modifications, transcription factor binding, increased

HDAC activity and thereby electrophysiological and behavioural changes
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had resumed basal levels 24 h later. These effects were not observed after an acute

dose. Renthal et al. (2007) investigated the sub-cellular localization of HDAC5 by

infecting NAc with HSV vector expressing flag-tagged HDAC5 (HSV-HDAC5).

Nuclear export after chronic cocaine in vivo was confirmed using anti-flag anti-

serum. This translocation of phospho HDAC5 (pHDAC5) from nucleus to cyto-

plasm was inhibited by the CaMK inhibitor, KN93. The authors conclude that

phosphorylation and subsequent nuclear export of HDAC5 is a mechanism for

regulating the promoter acetylation of cocaine-induced genes (Fig. 4).

Since HSV-mediated transgene expression is transient (max at 1–4 days, nor-

malized by day 7; Barrot et al. 2002, Carlezon et al. 1998; Green et al. 2006),

Renthal and colleagues used this method for overexpressing HDAC5 during train-

ing of place conditioning as opposed to during expression of place preference.

Bilateral overexpression of HDAC5 in NAc using this approach was shown to

decrease the rewarding effects of cocaine. Viral vectors expressing HDAC5 lacking

the catalytic domain (HDAC5cd) and hence function, attenuated these changes.

Treating mice with systemic Trichostatin A (non-selective HDAC inhibitor),

produced similar behavioural effects (Fig. 4).

HDAC5 KO mice and littermate controls were given daily cocaine injections for

7 days, and then tested for cocaine CPP after 4 days withdrawal. Whilst the cocaine

naı̈ve HDAC5 KO mice displayed similar preference to cocaine as their littermate

controls, in the animals which had previously been exposed to cocaine, the HDAC5

KO displayed hypersensitization to cocaine reward. This reward hypersensitivity

was normalized in HDAC5 KO mice, which received intra-NAc injections of HSV-

HDAC5 during the chronic cocaine course, prior to conditioned place preference

training.

Renthal et al. (2007) also explored the HDAC5 target genes mediating this

reward hypersensitivity. They found 1,616 genes differentially regulated in NAc

in HDAC5 KO treated with chronic cocaine, versus wild-type (WT) animals treated

with chronic cocaine. One hundred and seventy two of these were regulated by

cocaine in KOs (KO cocaine versus KO saline). Nearly all of this subset were

regulated in the same direction in cocaine treated – KO vsWT and in KO cocaine vs

vehicle. Since HDAC5 functions as a transcriptional repressor, it was surprising to

Chronic cocaine HDAC5cd

or Trichostatin A-ve

HDAC5 in NAcHSV-HDAC5

KN93
-ve

Increased pHDAC5

Export into cytoplasm

Decrease cocaine reward

Fig. 4 HDAC5 produces a decrease in cocaine reward through phosphorylation and subsequent

transport into cytoplasm

292 C. Bountra et al.



see a subset of genes which were downregulated in NAc of HDAC5 KO. One

possible explanation for this is that the upregulated genes can act as transcriptional

repressors, for example the histone methyltransferase SUV39H1 (Bannister et al.

2001; Lachner et al. 2001). Many of these 172 genes are implicated in dopamine

transmission in NAc, neuronal excitability in NAc or in cocaine responses.

The important feature of this study is that it illustrates how HDAC5 function is

modulated by chronic cocaine, but not acute. Following chronic injections, nuclear

HDAC5 function is decreased by a CaMK-mediated phophorylation, followed by

transport into cytoplasm.

2.1.3 Role of NFkB

Although chronic cocaine-induced changes in dendritic spines on NAc neurones

have been correlated with behavioural sensitization, the molecular pathways under-

lying these changes are poorly understood. The transcription factor NFkB is rapidly

activated by diverse stimuli and regulates expression of many genes known to

maintain cell structure.

Russo et al. (2009) have studied the role of NFkB signalling on neuronal

morphology (spine density) and the rewarding effects of cocaine. They initially

demonstrated that chronic cocaine treatment produced an increase in expression of

NFkB subunits p65/Rel A and p105/p50, a trend towards an increase in IKBb and

no change in IKBa. These changes were associated with an increase in the activat-

ing mark, acetylation at H3 (H3ac), at p105/p50, p65/RelA and IKBb genes. Not

surprisingly, there was no change in this mark at IKBa genes. Chronic cocaine did,

however, produce a decrease in the repressive mark H3K9me3 in all four of the

above sub-populations of genes. This would suggest that increased activation and

decreased repression are acting synergistically for this subset of genes – not a

conclusion arrived at by Renthal and colleagues (Renthal et al. 2009) when study-

ing a broader set of genes.

Russo et al. (2009) used virally mediated gene transfer to either express a

constitutively active (HSV-IKKca) or dominant negative (HSV-IKKdn) mutant of

inhibitor of Kb kinase. They showed that overexpression of IKKdn (inhibition of

NFkB) produced a decrease in the density of basal dendritic spines on NAc

neurons, and over-expression of IKKca produced an increase. Importantly, HSV-

IKKdn blocked the chronic cocaine induced increase in dendritic spines (Fig. 5).

When explored in vivo, HSV-IKKdn injected bilaterally into NAc led to a

decrease in cocaine-induced place preference and blocked the development of

reward sensitization (prior exposure to cocaine produces a sensitization to the

rewarding effects; see Heidbreder 2011). However, activation of NFkB via bilateral

injection of HSV-IKKca produced no significant effect. This study highlights the

importance of a transcription factor NFkB, which is well documented in inflamma-

tory pathology (Biswas and Lewis 2010; Dong et al. 2010; Langereis et al. 2010) to

have a profound effect on neuronal structural and behavioural plasticity.
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2.2 Suicide and Depression

2.2.1 Role of Methyltransferases

McGowan et al. (2008) investigated methylation patterns of ribosomal RNA

(rRNA) genes in human hippocampi of suicide victims (history of childhood

abuse or neglect) and control subjects (sudden death without history of childhood

abuse or neglect). They showed that the rRNA promoter and 50 regulatory region

showed increased methylation in suicide subjects compared to controls. Most CpG

sites (21 out of 26) showed greater methylation in suicide victims compared to

control, with no site specificity in methylation. No CpG site showed greater

methylation in controls. There were no significant differences in methylation in

cerebella (a region not associated with psychopathology), between suicide and

control subjects. Furthermore, there was no relationship between methylation status

and diagnosis, for example substance abuse victims and mood disorder victims (non

substance abuse). The increased methylation in suicide victims was associated with

a decrease in expression of rRNA in suicide victims, relative to controls.

This study is certainly consistent with the hypothesis advocated by this lab that

early life experiences/events alter epigenetic status of genes mediating neuronal

functions. One limitation of the study design is the absence of samples from control

subjects with a history of child abuse. The sample size is understandably small

(n ¼ 12 for abuse and n ¼ 12 for non-abuse), but the results are consistent with

others suggesting that suicide has a developmental origin (using psychological

autopsy methods and epidemiological longitudinal designs).

In a parallel study, Poulter et al. (2008) investigated the expression of DNA

methyltransferase (DNMT) in brain regions in depressed suicide victims compared

with control subjects who had died suddenly of causes other than suicide. Since the

group had previously reported (Merali et al. 2004) a region-specific decrease in

mRNA for GABAA receptor a1 subunit in suicide brain, they also investigated

methylation status of this promoter. They report a decreased expression of DNMT1

and an increased expression of DNMT3B in frontopolar cortex (FPC) in suicide

Reward sensitisation

Repeat cocaine

Increased expression of NFĸB

Increased acetylation of NFĸBDecreased H3K9me3

Increased spine density

HSV-IKKdn HSV-IKKca-ve

Increased place preference

Fig. 5 A well-documented inflammatory mediator, NFkB plays a key role in cocaine induced

neuro-anatomical and neuro-behavioural changes
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victims. There were no significant differences in DNMT3A between suicide and

control groups. The increase in DNMT3B mRNA correlated with an increase in

protein. Interestingly, there was no correlation between age and DNMT expression,

in either of the two groups. In hippocampi, DNMT levels did not vary between

suicide and control cohorts, but in amygdala there was a decrease in DNMT1 and

DNMT3B in the former group.

Of the 16 CG sites investigated in GABAA receptor a1 subunit gene, three were
hypermethylated in the suicide group compared to control (fragment 1, 200–300 bp,

about 500 bases from TSS – site 2 suicide ¼ 16%, control ¼ 4%; site 4 suicide

¼ 20%, control ¼ 10%). The hypermethylation was found to be gene specific,

since GABAA receptor a5 subunit was equally methylated (8% or more) in both

cohorts. The study is important in that it highlights region-specific alteration in

DNMTs in human “diseased” vs normal tissue, and gene and site-specific effects of

these enzymes.

2.2.2 Role of Histone Deacetylases

There is a large literature suggesting overlaps or similarities in responses to cocaine

and stress (Erb et al. 1996; Ahmed and Koob 1997; Koob and Kreek 2007).

Furthermore, there are many reports documenting that anti-depressant drugs alter

histone acetylation and methylation in specific brain regions (Lee et al. 2006;

Tsankova et al. 2006) in animals. Indeed, sodium butyrate, a weak and non-

selective HDAC inhibitor exerts some anti-depressant-like effects in animals

(Tsankova et al. 2006; Schroeder et al. 2007). Renthal and colleagues (Renthal

et al. 2007) have used a model of social defeat stress to mimic the behavioural

aspects of human depression (Berton et al. 2006). Social avoidance induced by

chronic defeat stress is reversed by chronic treatment with anti-depressants (Berton

et al. 2006; Tsankova et al. 2006). Renthal and co-workers showed that chronic

social defeat stress leads to decreased levels of HDAC5 mRNA in NAc without

altering phosphorylation or the subcellular distribution. Acute social defeat did

not alter HDAC5 levels. Furthermore, chronic treatment with the anti-depressant

imipramine produced a reversal of the decrease in HDAC5 mRNA. Other HDACs

tested (1, 2, 3, 4 and 9) did not demonstrate such a reciprocal regulation by stress

and imipramine.

The HDAC5 KOs developed greater social avoidance after chronic social defeat

stress compared to the wild-type animals. The HDAC5 KO did not differ in

response to acute defeat nor in models of acute stress or anxiety (forced swim

test, elevated plus maze and open field). These experiments further highlight the

important role of HDAC5 in modulating stress responses.

Covington et al. (2009) analysed brains from stress and control mice in social

defeat assay. They showed that acetylation levels of H3K14ac were decreased by

about 50% 1 h after stress; but are significantly increased 1 and 10 days after the test.

A similar finding was reported in human post-mortem brain (depressed vs matched

control individuals), from patients who were or were not taking anti-depressants.
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In the same study, the authors report that the anti-depressant fluoxetine was without

effect on H3K14ac in the mouse NAc. The laboratory also showed decreased levels

of HDAC2 mRNA (no change in HDAC 1 and 3) and reduced enzyme levels up to

15 days after the defeat episode. A parallel effect on HDAC2 protein levels in

clinical samples was also noted. Once again fluoxetine produced no effect on

HDAC2 enzyme activity in the mouse assay. Furthermore, Covington et al.

(2009) showed that chronic infusion (5 days continuous infusion via bilateral

cannulae into NAc) of the HDAC inhibitors MS275 (100 mm) or SAHA (100 mm)

reversed the reduction in social interaction observed in defeated mice. The HDAC

inhibitors also reversed the reduced preference for sucrose and the reduction in

mobility (forced swim test) in defeated animals.

MS275 (intra NAc infusion, 10 days) and fluoxetine (systemic pellet implanta-

tion) reduced many of the gene expression changes induced in NAc by social defeat

stress. Overall MS275 affected a larger number of genes than fluoxetine, but

similarly regulated about 37% of fluoxetine affected genes. Other fluoxetine regu-

lated genes were either not affected (15%) or regulated in the opposite direction

(48%) by MS275. Of the HDAC inhibitor affected genes fluoxetine had similar

effects, no effects or opposite effects on 48, 9 and 43%, respectively. The data

indicate some overlap in mode of action of MS-275 with fluoxetine and hence

potential clinical efficacy. The differences may be indicative of superior or inferior

profiles in efficacy or adverse events.

Many of the genes regulated by MS275 are involved in affecting dendritic/

synaptic plasticity and gene transcription. There are a number of important findings

in this study: the effects on acetylation and levels of the likely enzyme mediator

(HDAC2) are prolonged, both effects were similar to those observed in clinical

samples and in social defeat paradigm the effect of the HDAC inhibitor was

behaviourally comparable to a widely used clinical anti-depressant fluoxetine, but

at the transcription level the effects were on a broader number of genes. The latter

may possibly translate into therapeutic superiority, either as greater or as broader

efficacy.

2.3 Psychotic Behaviour and Schizophrenia

2.3.1 Role of Methyltransferases

There are no clinical data on efficacy for drugs which target epigenetic mechanisms

in schizophrenia. However, there is a literature on similar hypermethylation pat-

terns of specific promoters in post-mortem brain from schizophrenics and in a

mouse model (Reeler heterozygous mice). An excellent review on reelin, glutamic

acid decarboxylase 67 (GAD67), GABAergic neurons and psychoses has been

written by Tueting and colleagues (Tueting et al. 2006). Briefly, they report that,

in GABA-ergic neurones in post-mortem brain tissue from schizophrenic patients

(Fig. 6), Reelin levels are decreased by about 50%, DNMT1 levels are increased
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and Reelin and GAD67 promoters are hypermethylated. Reeler heterozygous mice

(+/rl) exhibit pathologies similar to those found in post-mortem brain tissue taken

from schizophrenic patients and that levels of GAD67, dendritic arborization and

spine density (in cortex and hippocampus) are all decreased. Treating normal mice

with methionine (a methyl group precursor for the methyl donor in transfer reac-

tions, S-adenosyl-methionine) produces increases in DNMT1 levels, brain and

behavioural abnormalities, similar to +/rl animals (Fig. 6).

2.3.2 Role of Histone Deacetylases

Prolonged treatment of schizophrenia patients with L-methionine leads to psychotic

symptoms in 79% of patients (Wyatt et al. 1971). Furthermore, cytosine hyper-

methylation down-regulates gene expression by affecting binding of transcription

factors or by attracting methyl-CpG-binding domain (MBD) proteins, for example,

histone deacetylases MeCP2 and MBD2, both of which are highly expressed in the

brain (Ng and Bird 1999; Fan and Hutnick 2005). Both these protein families bind

to selective gene promoters with a high affinity for symmetrically hypermethylated

CpG dinucleotides. It has been reported (Dong et al. 2005) that L-methionine-

induced hypermethylation is associated with increased binding of MeCP2 and

MBD2 and that hypermethylation and decreased protein expression are attenuated

with valproate (an HDAC inhibitor, Tremolizzo et al. 2002, 2005). Dong et al.

(2005) have also shown that L-methionine administered to mice (5.2 mmol/kg sc,

twice daily, up to 15 days) down-regulates reelin and GAD67 mRNA and protein

expression in frontal cortices of mice (Fig. 7). This was associated with increased

binding of MeCP2 and MBD2 to the respective promoters, as assessed using ChIP

assays. This effect of L-methionine is gene specific since it does not affect mRNA or

protein expression of GAD65 and its binding of MeCP2 antibody.

Valproic acid (2 mmol/kg) increases acetylated H3 in brain (Tremolizzo et al.

2002, 2005); but importantly increases this in reelin and GAD67 promoter sites.

Furthermore, valproic acid decreases L-methionine induced MeCP2 binding to

L methionine

Increased DNMT1

Hypermethylation of Reelin and GAD67 promoters

Decreased Reelin and GAD67

Decreased spine density

Psychotic behaviours

Fig. 6 Increased methionine

intake in mice produces

protein and behavioural

changes, also observed in

post-mortem psychotic brain
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reelin and GAD67 promoters (to levels seen in vehicle treated controls). The effect

of valproic acid cannot be attributed to its anti-convulsant activity because imida-

zenil, an anti-convulsant, potentiates GABAA receptors containing a5 subunits, but
has no effect on receptors containing a1 subunits and does not increase acetylated

H3 in the brain. Imidazenil also had no effect on L-methionine induced MeCP2

binding to reelin promoters. This study highlights the potential for HDAC inhibitors

in normalising the decrease in reelin and GAD67 expression in cortical GABAergic

neurones and thereby offering a potential new treatment modality for schizophrenia.

2.4 Rett Syndrome

Rett syndrome (RS) is a post-natal progressive neuro-development disorder

observed in girls in early childhood. In the second year of life, there is a decelera-

tion of head growth (microcephaly), developmental stagnation and muscle hypoto-

nia. These are followed by loss of hand skills, speech and social interaction. Patients

even as early as the third year of life have respiratory abnormalities, seizures,

autistic features, weight loss and severe motor deterioration. Most girls with RS

are confined to a wheelchair by their teenage years. As patients get older they often

develop parkinsonian features. Some patients survive until the sixth or seventh

decades of life. The disease is mediated by mutations in MeCP2 (Amir et al. 1999).

MeCP2 mutations have now been noted in males and in other neuropsychiatric

diseases (Jan et al. 1999; Lam et al. 2000; Watson et al. 2001; Klauck et al. 2002;

Maiwald et al. 2002; Carney et al. 2003; Budden et al. 2005; Masuyama et al. 2005;

Milani et al. 2005; Dayer et al. 2007).

There are at least three mouse models with different MeCP2 (a methyl-CpG-

binding protein) mutations. The conditional knockout (Chen et al. 2001; Guy et al.

2001) undergoes a period of normal development followed by severe progressive

L methionine

CG hypermethylation

Decreased binding of transcription factors

Increased binding 
of MBD proteins-ve

Decreased Reelin and GAD67

Valproate

-ve
-ve

Psychotic behaviours

Fig. 7 HDAC inhibitors reduce methionine-induced hypermethylation, binding of MBD proteins

and protein expression changes in GABAergic neurones
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neurological dysfunction and then death at 8–10 weeks. Another model truncates

MeCP2 at amino acid 308 (Shahbazian et al. 2002). These mice appear normal until

6 weeks and then develop progressive neurological phenotypes. The truncated

protein maintains normal chromatin localization but H3 is hyperacetylated in the

brain (Shahbazian et al. 2002; Moretti et al. 2005; McGill et al. 2006). Finally, in

the third model, MeCP2Tg, there is a twofold increase in expression of human

MeCP2 resulting in abnormalities starting at about 10 weeks of age (Collins et al.

2004).

Transcriptional profiling studies in brain from MeCP2 null mice have not

identified major gene expression changes, indicating that MeCP2 is not a global

repressor. Several studies have therefore probed candidate genes. BDNF was

identified as a target of MeCP2 through a candidate gene approach (Chen et al.

2003a, b) who have shown that MeCP2 binds the promoter of BNDF in silent wild-

type cultured neurons. Membrane depolarization leads to CaMKII-mediated phos-

phorylation of MeCP2 at serine 421, and hence unbinding from the promoter, thus

allowing transcription (Chen et al. 2003a, b; Zhou et al. 2006). Neurons expressing

the S421A mutant were not able to be phosphorylated and hence are not released

from the BDNF promoter by depolarization (Zhou et al. 2006). Although these

cortical culture studies indicate MeCP2 binding to BDNF promoter and hence

affecting its transcription in an activity-dependent manner, the in vivo studies are

less clear.

MeCP2 null mice brains show increased expression of the glucocorticoid regu-

lated genes, serum glucocorticoid inducible kinase 1 (Sgk1) and FK506 binding

protein (Fkbp5) in pre-, early- and late symptomatic animals. These changes are not

mediated by high glucocorticoid levels since these were unaltered in the basal state.

Nuber et al. (2005) have also demonstrated MeCP2 binding to Sgk1 and Fkbp5

genes in wild-type brain. It is certainly possible therefore that RS may at least partly

be influenced byMeCP2 modulation of these and potentially other stress responsive

genes.

McGill et al. (2006) have shown that MeCp2 308/y mice exhibit increased

anxiety-like behaviours, an exaggerated stress response (increased corticosterone

levels), increased levels of corticotrophin-releasing factor (CRF) and increased

binding of MeCP2 to the CRF promoter. The increased expression of CRF, how-

ever, appeared to occur only in neurons normally expressing CRF and not in non-

expressing tissues, suggesting that MeCP2 is a not a “silencer” of gene expression,

but rather is a “modulator”.

Guy et al. (2007) have explored the reversibility of RS symptoms using a mouse

in which a Lox-stop cassette (MeCP2lox-stop), which behaves as a null mutation, is

conditionally activated through a tamoxifen inducible Cre transgene. Small,

repeated doses of tamoxifen reversed the late onset neurological phenotype

observed in adult MeCP2lox-stop Cre heterozygotes. As activation of MeCP2

produces an attenuation of the symptoms, the study shows that MeCP2 deficient

neurones are not permanently damaged.

Giacometti et al. (2007) have further demonstrated partial rescue by post-natal

reactivation of MeCP2 in mutant mice. This group targeted a transgene carrying the
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MeCP2 cDNA downstream of a Lox P-stop-Lox P (LSL) cassette (in colla1 locus).

The LSL MeCP2 transgene was then rescued by excision of the stop signal. Four

different transgenes were used to activate MECP2; (1) in neurones and glia (Nestin-

Cre), (2) in post-mitotic neurons during embryogenesis (Tau-Cre), (3) in forebrain,

hippocampus, mid-brain and brainstem at P0–P15 (CamKII-Cre-93) and finally in

forebrain at P15–P30 (CamKII-Cre-159). Activation of the LSL MECP2 transgene

prolonged lifespan and delayed motor neuron deterioration in MeCP2-/y mice. The

magnitude of these effects was time specific and regionally specific. Greatest

rescue, which extended lifespan to 8 months, was obtained in lines providing earlier

and widest Cre expression in neurons, that is in Tau and Nestin transgenes. Post-

natal rescue (Cre 93 and Cre 159) in comparison only extended lifespan by 4 weeks

with effects in Cre 93 being better than Cre I59. The authors concluded that it is

desirable to normalize MeCP2 levels in a broad neuronal population as early as

possible. These elegant studies demonstrate the potential reversibility of symptoms

in adult animals.

2.5 Effects of Early Life Experience and Diet

Several lines of evidence suggest that the intra-uterine and post-natal environment

can have major effects on the course of chronic disease in later life. Maternal care in

early life is one such determinant. Increased licking and grooming (LG) of pups by

maternal rats has been shown to increase expression of glucocorticoid receptors

(GRs) in hippocampus, decrease hypothalamic CRF, and provoke an attenuated

hypothalamic–pituitary–adrenal (HPA) stress response (Liu et al. 1997; Francis

et al. 1999). Cross fostering can reverse these effects. McGowan et al. (McGowan

and Kato 2008) have demonstrated that offspring of high LG mothers exhibit

increased histone acetylation, decreased DNA methylation, and increased GR

promoter binding of transcription factor nerve growth factor inducible protein A

(NGFIA). Maternal care not only affected expression of GR but also modulated

levels of several hundred genes (Weaver et al. 2005). These effects were shown to

be reversible. Weaver et al. (2004) injected Trichostatin A (TSA), a non-selective

inhibitor of HDACs (Yoshida et al. 1990) into brains of pups with low LG mothers.

This promoted GR acetylation, reduced DNA methylation (by facilitating interac-

tion of demethylases with DNA), increased GR levels and hence reduced stress

responsivity. All parameters approached those of pups with high LG mothers. The

converse effect could also be produced by injecting L-methionine into lateral

ventricles (100 mg/ml, 2 ml daily for 7 days) of offspring with high LG mothers.

This promoted DNA methylation, reduced GR expression and increased stress

responsiveness. The animals also exhibited reduced anxiety as assessed by time

spent in the centre of an open field (Weaver et al. 2005, 2006). Methionine affected

expression of 300 genes. This effect is specific since this represented only 1% of

genes evaluated on the array.
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Champagne et al. (2008) have demonstrated that offspring with low LG mothers

exhibit shorter dendritic branch length and lower spine density in CA1 cells,

impaired long-term potentiation (LTP) under basal conditions but enhanced LTP

in response to high corticosterone in vitro, enhanced memory in hippocampal-

dependent contextual fear conditioning paradigm in vivo, and reduced hippocampal

levels of glucocorticoid and mineralocorticoid receptors compared to offspring of

high LG mothers. These studies demonstrate that early life experiences can affect

anatomical substrates (dendrite length), but the outcome of these experiences may

be modulated in later life by environmental influences such as stress, corticosterone

levels and memory or LTP.

The findings on the effects of maternal care now have some quite remarkable

parallels with clinical findings (McGowan et al. 2008). More recently, McGowan

et al. (2009) have demonstrated that suicide victims with a history of childhood

abuse have decreased levels of GR mRNA associated with increased levels of

promoter methylation and decreased binding of NGFIA, compared to suicide

victims with no history of childhood abuse. Since cytosine methylation is largely

considered stable, the differences in DNA methylation are unlikely to be attribut-

able to events immediately preceding death or during the post-mortem period. This

study reinforces the hypothesis that social environment in childhood affects hippo-

campal gene expression through altered epigenetic processes. Stable epigenetic

marks such as DNA methylation may then persist into adulthood to influence

vulnerability to psychopathology and susceptibility to chronic disease.

There are numerous preclinical reports documenting effects of dietary methio-

nine on brain development, aging and neurodegenerative pathologies (Slyshenkov

et al. 2002; Van den Veyver 2002). Developmental choline deficiency alters SAM

levels (Niculescu et al. 2006; Kovacheva et al. 2007) and dietary factors including

zinc and alcohol can influence SAM formation (Ross 2003; Davis and Uthus 2004;

Pogribny et al. 2006; Ross and Milner 2007). Other dietary components may act as

HDAC inhibitors, for example broccoli contains sulforaphane which has been

reported to increase H3 and H4 acetylation in PBMCs in mice a few hours after

consumption (Dashwood and Ho 2007).

3 Chemical Probes for Epigenetic Target Validation

As described in the introduction, the epigenetic code is comprised of modifications

to DNA bases (methylation and hydroxymethylation), and post-translational modi-

fications to histones. Modulation of the writers, readers and erasers of these histone

modifications holds the potential to treat chronic, multifactorial diseases in a more

holistic way than traditional single-target pharmacology. In order to understand the

potential therapeutic consequences of pharmacological intervention at these targets,

a systematic study of their roles is required, ideally using a combination of genetic,

biochemical and small molecule intervention in vitro and in vivo.
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In the following sections, we briefly review progress towards the generation of

chemical probes for epigenetic histone-modifying enzymes and recognition

domains.

3.1 Modulators of Histone Acetylation

Histone acetylation occurs at the e-nitrogen of lysine residues within histone core

and tails. The writers and erasers of histone acetylation are, respectively, histone

acetyltransferases (HATs) and histone deacetylases (HDACs). The simplest conse-

quence of histone lysine acetylation is a decrease in electrostatic charge on histones

leading to reduced affinity for DNA, which correlates with transcriptional activa-

tion: hence, many transcription factors contain a HAT domain or form complexes

with HATs. Conversely, histone deacetylation results in an increase in the electro-

static attraction between DNA and histones, resulting in tighter binding and thereby

repression of transcription. However, histone acetylation also influences the recruit-

ment of transcriptional regulators (including other histone modifying enzymes),

likely through acetyllysine recognition by bromodomains, which constitute the

“readers” of this modification.

3.1.1 Histone Acetyltransferase Inhibitors

Histone acetyl transferases use acetyl CoA as co-factor, and can be classified into

three broad families depending on their catalytic domains: the GNAT (GCN5-

related N-acetyltransferase) family, including SAGA and PCAF; the MYST

(MOZ, Ybf2/Sas3, Sas2, Tip60) family, including HBO1; and “orphan” HATs

with greater sequence diversity from classical HAT domains, including HAT1,

p300 and CBP. The potential clinical impact of HAT modulation covers a wide

range of indications including multiple cancers, HIV, diabetes mellitus, cardiac

disease and neurodegeneration (Manzo et al. 2009).

There is a clear need for drug-like HAT inhibitors for use in target validation

experiments. A bisubstrate class of inhibitors link CoA and substrate peptide to

mimic the Ac-CoA-lysine intermediate. The simplest analogue, LysCoA, showed a

Ki of 16 nM against p300 (Table 3). This and a number of LysCoA-containing

histone peptides have been used as in vitro probes for a range of HATs (Lau et al.

2000). A number of natural products, including curcumin and garcinol, show non-

selective inhibition of HATs. Modified garcinol analogues show varying selectivity

profiles across HATs, with some compounds showing selective inhibition of p300

in the micromolar range (Mantelingu et al. 2007). A series of isothiazolones that

inhibit p300 and PCAF was discovered by high-throughput screening. One ana-

logue, CCT077791, reduced total acetylation of histones H3 and H4, levels of

specific acetylated lysine marks and acetylation of A-tubulin. These compounds

were shown to be covalent modifiers of HATs (Stimson et al. 2005).
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3.1.2 Histone Deacetylase Inhibitors and Activators

HDACs are grouped into four classes based on sequence homology and mechanism.

The first two classes, referred to as “classical” HDACs, are zinc dependent and their

activity is inhibited by the hydroxamic acid TSA. The third class, referred to as

sirtuins (see above), is NAD+-dependent proteins and is not affected by TSA. The

fourth class is also zinc dependent, but is considered an atypical category based on

low sequence homology to the classes I and II.

Unlike HATs, the development of HDAC inhibitors is well advanced and two

HDAC inhibitors, vorinostat (Table 3) and romidepsin, are already marketed for the

treatment of CTCL. At the time of writing, these and at least eleven other inhibitors

are in clinical trials for a variety of other cancers, including Hodgkin’s lymphoma,

melanoma, pancreatic, nasopharyngeal and prostate (Ma et al. 2009; Tan et al. 2010).

The potential of HDAC inhibitors to activate the expression of mRNAs that are

down-regulated in schizophrenia, depression, drug addiction and other conditions

has led to interest in embarking on clinical trials with HDACis such as MS-275,

which show some evidence of limited CNS-penetration (Grayson et al. 2008).

Histone acetylation homeostasis has recently been shown to be perturbed in the

neurodegenerative mechanisms of Huntington’s disease, Parkinson’s disease, Ken-

nedy disease, amyotropic lateral sclerosis and Rubinstein–Taybi syndrome as well

as stroke. Clinical trials have been initiated to evaluate the safety and efficacy of

HDAC inhibitors for the treatment of Huntington’s disease, amyotropic lateral

sclerosis and spinal muscular atrophy (Hahnen et al. 2008). A recent discovery

showing that inhibition of HDAC2 negatively regulates memory formation and

synaptic plasticity has created excitement that the development of specific inhibi-

tors of this isoform could be used as cognitive enhancers, particularly in neurode-

generative patients (Guan et al. 2009). In addition, HDAC inhibitors have effects on

the acetylation of key factors that regulate immune cell function via modulation of

inflammatory transcriptions: for example HDAC3 and 6 have been shown to control

acetylation of the NFkB subunit p65, suggesting that these agents could be used to

modulate neuroinflammatory conditions (Adcock 2007).

The success of vorinostat has encouraged the development of many HDAC

inhibitors with diverse selectivity profiles and there are numerous reviews on the

subject, for example (Grayson et al. 2008; Hahnen et al. 2008; Paris et al. 2008; Tan

et al. 2010). The majority of HDAC inhibitors conform to a “cap-linker-chelator”

pharmacophore. Those that have entered clinical trials are variants of one of two

zinc-chelating groups: the hydroxamic acid, present in vorinostat and TSA, or the

aminobenzamide moiety present in MS-275 (Table 3). Other zinc-chelating groups

under investigation include mercaptoacetamides, alpha-keto oxazoles, trifluoro-

methyl ketones, and silane-diols (Wang and Dymock 2009).

In general, the hydroxamic acids in clinical trials show broad activity across

HDAC isoforms, while the aminobenzamides show some selectivity for class I over

class II isoforms. The nature of the linker and cap is also important in determining

isoform selectivity: within the cinnamic hydroxamic acids, the pyrrole-linked

MC-1568 shows unusual selectivity in favour of class II isoforms, whilst the
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phenyl-hydrazine linked pandacostat is almost completely pan-active (Bradner

et al. 2009) (Table 3). It should be noted that to date HDAC inhibitors in the most-

characterized hydroamic acid (vorinostat) and benzamide (MS-275) classes show

poor brain penetration, limiting their usefulness as tools and potential therapeutics for

CNS diseases (Dhalluin et al. 1999) (Palmieri et al. 2009; Hooker et al. 2010).

Sirtuin inhibitors include sirtinol Table 3, splitomycins including the derivative

HR73 which shows activity on human SirTs, and cambinol, which inhibited growth

of Burkitt lymphoma xenografts in mice (Grozinger et al. 2001; Pagans et al. 2005;

Heltweg et al. 2006). Selective SIRT2 inhibition by AGK2 has been shown to effect

neuroprotection in models of Parkinson’s and Huntington’s diseases by decreasing

sterol biosynthesis (Outeiro et al. 2007; Luthi-Carter et al. 2010). Several com-

pounds including resveratrol have been characterized as activators of SIRT1 and

used to propose a mechanistic link between SIRT1 activation and delay in the onset

of age-related diseases such as type 2 diabetes, Parkinson’s and Alzheimer’s,

although controversy has ensued after it was demonstrated that these compounds

do not act directly on SIRT1, serving as a reminder of the importance of using

high quality, well-characterized chemical probes in drug target validation studies

(Pacholec et al. 2010).

3.1.3 Bromodomain Inhibitors

The bromodomain is a conserved ~110 amino acid module which recognizes

acetylated lysines in proteins including histones (Dhalluin et al. 1999), thereby

participating in deciphering the histone code (Strahl and Allis 2000). The human

genome encodes for 57 distinct bromodomains contained in 42 proteins, with some

proteins containing two or more distinct bromodomains.

Bromodomain-containing proteins have been classified into several distinct

subgroups based on their function: (1) HATs, including GCN5, PCAF and

TAFII250; (2) ATP-dependent chromatin-remodelling complexes, including

Brahma, Swi2, Snf2 and Brg1; (3) the BET (bromodomain and extra C-terminal

domain) family, a class of transcriptional regulators carrying two tandem bromo-

domains and an extra terminal (ET) domain (Florence and Faller 2001). Although

the function of a number of bromodomain-containing proteins has been studied in

depth, allowing some association with specific diseases, the roles of many bromo-

domains remain to be elucidated. Within the BET family, BRD2 is genetically

associated with juvenile myoclonic epilepsy (Cavalleri et al. 2007), while knock-

down experiments have implicated BRD4 in a range of transcriptional co-activation

targets including NFkB (Huang et al. 2009). Bromodomain-containing HATs

including CREBBP, PCAF and GCN5, have been extensively studied but conclu-

sions drawn from gene knockdown studies do not allow the individual contributions

of the different domains to be elucidated.

At the time of writing, very few small molecule ligands for bromodomains have

been described. The carbazole MS7972 (Table 3), discovered by NMR screening of

commercially available acetamide-containing small molecules against CREBBP,
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showed a KD of ~20 uM as determined by titration in tryptophan fluorescence

experiments. In U2OS cells, MS7972 at 200 uM modulated p53 stability and

function in response to DNA damage (Sachchidanand et al. 2006).

The triazolothienodiazepine (Example 17, Table 3) is claimed to displace acety-

lated histone H4 peptides from BRD4 with an IC50 of 13 nM using a FRET assay

with FLAG-tagged BRD4 and biotinylated H4 peptide. This compound showed

antiproliferative effects at submicromolar concentrations against a panel of cancer

cell lines, in particular a GI50 of 14 nM against MV4-11 leukemic cells (Mitsubishi/

Tanabe Int. Pat. Appl. WO09/084693).

3.2 Modulators of Histone Methylation

Like acetylation, histone methylation occurs within histone core and tails at the

e-nitrogen of lysine residues but also on arginine guanidyl groups. The writers and

erasers of histone lysine methylation are, respectively, histone lysine methyltrans-

ferases (HMTs) and histone demethylases (KDMs). Arginine is methylated by protein

arginine methyltransferases (PRMTs) and demethylated by histone arginine

demethylase (HAD). Methylated lysines and arginines are recognized by a range

of different binding modules including chromodomains, tudordomains, MBT

domains and PHD domains, which are often constituents of catalytic enzyme

complexes, enhancing specificity and/or activity of a catalytic domain towards

specific histone marks.

3.2.1 Histone Lysine Methyltransferases

Histone lysine methyltransferases (HMTs) catalyse mono-, di-, or tri-methylation

of lysine residues of histones and other proteins. More than 20 human HMTs have

been identified (Blackledge and Klose 2010), and with the exception of DOT1L, all

contain the evolutionarily conserved SET domain, which uses S-adenosyl methio-

nine as co-factor (Fog et al. 2007). The SET domain containing HMTs are classified

into five subfamilies based on SET domain homology and are named after their

founding members: SUV39, SET1, SET2, RIZ and SMYD3.

To date, three selective small molecule HMT inhibitors have been reported

(Greiner et al. 2005; Kubicek et al. 2007; Liu et al. 2009). Chaetocin (Table 4), a

fungal mycotoxin that belongs to the class of 3–6 epidithio-diketopiperazines

(Greiner et al. 2005) inhibits the human SUV39H1 (IC50 ¼ 0.8 mM), an H3K9

HMT, and is selective for H3K9 HMTs over HMTs that do not target H3K9.

Although cytotoxic under some conditions, 0.5 mMchaetocin showsmarked cellular

reduction of di-methylation and tri-methylation of H3K9 and no changes in the

methylation state of H3K27, H3K36 and H3K79. BIX01294 has been characterized

as a selective small molecule inhibitor of G9a (IC50 ¼ 1.9 mM) and GLP (IC50

¼ 0.7 mM)with excellent selectivity over several H3K9 HMTs including SUV39H1

(IC50 > 45 mM) and ESET (IC50 > 45 mM), other HMTs such as SET7/9

308 C. Bountra et al.



T
a
b
le

4
S
m
al
l
m
o
le
cu
le

m
o
d
u
la
to
rs
o
f
re
ad
er
s
an
d
w
ri
te
rs
o
f
h
is
to
n
e
m
et
h
y
la
ti
o
n
m
ar
k
s

M
o
d
u
la
to
r

S
tr
u
ct
u
re

A
ct
iv
it
y
/s
el
ec
ti
v
it
y

M
o
d
u
la
to
r

S
tr
u
ct
u
re

A
ct
iv
it
y
/

se
le
ct
iv
it
y

H
is
to
ne

ly
si
ne

m
et
hy
l
tr
a
ns
fe
ra
se
s

H
is
to
ne

de
m
et
hy
la
se
s
(2
-O

G
de
pe
nd

en
t)

C
h
ae
to
ci
n

N H
N

N

O

O

O
H

S
SNH

N
N

OO

O
H

S
S

S
U
V
3
9
H
1
:

IC
5
0
0
.8

mM
S
el
ec
ti
v
e
fo
r
H
3
K
9

m
et
h
y
la
ti
n
g

en
zy
m
es

N
-O

x
al
y
l
g
ly
ci
n
e

O

N
H

C
O

2H

C
O

2H

JM
JD

2
E
:
IC

5
0

7
8
mM

2
,4
-P
y
ri
d
in
e

d
ic
ar
b
o
x
y
li
c

ac
id

NC
O

2H

C
O

2H

JM
JD

2
E
:
IC

5
0

1
.4

mM

B
IX

0
1
2
9
4

N

N
N

N

O
M

e

O
M

e

N
H

N
G
9
a:

IC
5
0
1
.9

mM
G
L
P
:
IC

5
0
0
.7

mM
S
U
V
3
9
H
1
,
E
S
E
T
,

S
E
T
7
/9
,
P
R
M
T
1
:

IC
5
0
>
4
5
mM

B
ip
y
ri
d
y
l-

bi
s-
ca
rb
o
x
y
li
c

ac
id

N

N

C
O

2H

C
O

2H
JM

JD
2
E
:
IC

5
0

6
.6

mM

(c
on

ti
nu

ed
)

Animal Models of Epigenetic Regulation in Neuropsychiatric Disorders 309



T
a
b
le

4
(c
o
n
ti
n
u
ed
)

M
o
d
u
la
to
r

S
tr
u
ct
u
re

A
ct
iv
it
y
/s
el
ec
ti
v
it
y

M
o
d
u
la
to
r

S
tr
u
ct
u
re

A
ct
iv
it
y
/

se
le
ct
iv
it
y

U
N
C
0
2
2
4

N

N
N

N

O
M

e

O

N
H

N
P

h

N
M

e 2

G
9
a:

IC
5
0
1
6
n
M

G
L
P
:
IC

5
0
2
0
n
M

S
E
T
7
/9
:
IC

5
0
1
6
n
M

S
E
T
8
/P
re
S
E
T
7
:
IC

5
0

1
6
n
M

N
-O

x
al
y
l
ty
ro
si
n
e

d
er
iv
at
iv
e

O

N
H

C
O

2H

C
O

2H

O
S

O
O

B
r

JM
JD

2
E
:
IC

5
0

5
.4

mM

H
is
to
n
e
d
em

et
h
yl
as
es

(F
A
D
de
pe
nd

en
t)

T
ra
n
y
lc
y
p
ro
m
in
e

N
H

2

L
S
D
1
:
K
i
3
5
7
mM

S
A
H
A

(V
o
ri
n
o
st
at
)

NH

O

O
H

N H

O
JM

JD
2
E
:
IC

5
0

1
4
mM

P
o
m
al
id
o
m
id
e

N H
O

ON

O

N
H

2

U
n
ch
ar
ac
te
ri
ze
d

in
v
it
ro

B
ai
ca
le
in

OO
O

H

H
O

H
O

JM
JD

2
E
:
IC

5
0

4
.0

mM

310 C. Bountra et al.



(IC50 > 45 mM), and the arginine methyltransferase PRTM1 (IC50 > 45 mM –

Table 4). In cellular assays, BIX01294 at 4.1 mM reduced the H3K9Me2 level of

bulk histones; however, it was toxic at higher concentrations (Kubicek et al. 2007).

A more potent analogue, UNC224, has recently been obtained using structure-based

design (Liu et al. 2009).

3.2.2 Histone Lysine Demethylase Inhibitors

Lysine demethylases fall into two major classes defined by their oxidative mecha-

nism and cofactor. The LSD family, homologues of the flavin-containing mono-

amine oxidases, use the cofactor FAD (Yang et al. 2007), while the family of

Jumonji-domain containing demethylases use Fe(II) together with the cofactor

2-oxoglutarate (Bannister and Kouzarides 2005).

Several small molecule LSD1 modulators have been reported: these include

known non-specific monoamine oxidase inhibitors (MAOIs), including tranylcy-

promine (Culhane et al. 2010) and pargyline (Metzger et al. 2005), and thalidomide

derivatives pomalidomide and lenalidomide (Escoubet-Lozach et al. 2009)

(Table 4). The latter two compounds show effects on histone H3K9 and H3K4

methylation levels in cells, apparently mediated by modulation of LSD1-catalysed

demethylation, although direct action on the enzyme has not been demonstrated

in vitro. The inhibition by tranylcypromine has been shown to occur by formation

of a covalent adduct with the FAD cofactor.

JMJD2 demethylases are inhibited by analogues of the co-factor 2-oxoglutarate

(2-OG), including N-oxalylamino acids, pyridine dicarboxylates and related bipyr-

idyl derivatives (Table 4). Other chemotypes that are also presumed to bind to the

active site Fe(II) include catechols, hydroxamic acids (including the clinically used

HDAC inhibitor SAHA/Vorinostat), and cofactor byproducts/analogues, such as

succinate and fumarate (Rose et al. 2008; Sakurai et al. 2010). Targeting the

catalytic Fe(II) brings with it the challenge of achieving selectivity, since the co-

factor and Fe(II)-binding sites of 2-OG oxygenases are generally very similar.

Recently, the protein crystal structure of JMJD2A has been combined with a

dynamic combinatorial chemistry approach to derive a series of substituted oxalyl

tyrosines that exploit a subpocket of this enzyme to achieve selectivity over PHD2

(Rose et al. 2010).

3.2.3 Histone Methyl Lysine Binding Domain Inhibitors

Several families of structurally distinct protein modules have been shown to bind to

methylated lysines in histones and other proteins: the so-called “royal family” –

made up of Tudor, Agenet, chromo, PWWP and MBT domains; the plant home-

odomain – PHD; the WD40 repeat protein – WDR5, and ankyrin repeats (Taverna

et al. 2007; Collins et al. 2008).
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In general, the binding of these domains to methyl-lysine containing peptides is

fairly weak, typically in the range 10–100 uM (Kd). A recent review of the available

high-resolution X-ray crystal structures of these domains summarizes the key

recognition features of various KMe states as an electron-rich aromatic cage inter-

acting with the lysine cation with additional charge neutralization and H-bonding by

from 0 to 2 acidic functionalities – depending upon the methylation state of lysine

(Adams-Cioaba and Min 2009). Although no small molecule methyl-lysine binding

domain inhibitor has been described to date, high-throughput assays have recently

been described allowing detection of compounds that disrupt the interaction

between MBT or Tudor domains and histone peptides, so non-peptide antagonists

of methyl-lysine binding should appear from diversity screening and structure-based

design approaches in the near future (Quinn et al. 2009; Wigle et al. 2010).

3.3 Modulators of Other Histone Modifications

3.3.1 Histone Phosphorylation

Serine, threonine and tyrosine residues in histones are subject to phosphorylation by

a variety of kinases. As for non-histone proteins, phosphorylation result in specific

recognition events, recruiting other proteins into complex formation. For example,

phosphorylation of H3S10 by the kinase PIM1 results in binding of a 14-3-3

protein, which recruits HATs to nucleosomes, leading to a cascade of histone

modification and protein binding events, with the overall effect of activating

transcriptional elongation (Zippo et al. 2009). AuroraB-catalysed phosphorylation

of H3S10 (and other proteins) is required for chromosome condensation, and its

inhibition or down-regulation leads to a variety of errors in mitosis: a large number

of inhibitors are under study as anticancer agents (Perez Fidalgo et al. 2009).

Phosphorylation of H3T11 by the kinase PRK1 apparently accelerates demethyla-

tion of H3K9me3 by the demethylase JMJD2Cs (Metzger et al. 2008); in contrast,

phosphorylation of H3S10 prevents demethylation of H3K9 by the JMJD2

demethylase (Ng et al. 2007). Phosphorylation levels on histones are controlled

by interplay between kinases and phosphatases, which include Protein Phosphatase

Type 1 (PP1).

3.3.2 Histone Ubiquitylation, SUMOylation, Biotinylation and Poly(ADP)

ribosylation

Ubiquitination of lysine residues is classically associated with protein degradation

in the cytosol and has only recently been shown to occur on histones (Suganuma

and Workman 2008). Ubiquitination of H2A and H2B histones is believed to act as

a master switch for other post-translational modifications that ultimately regulate

gene expression (Minsky et al. 2008). Small molecule ubiquitination inhibitors

312 C. Bountra et al.



have been identified, such as Ro106-9920 which blocks NFkB-dependent cytokine
expression in cells and rats (Swinney et al. 2002).

Small ubiquitin-like modifier (SUMO)-specific activating, conjugating and

ligating enzymes catalyse the ligation of SUMO proteins to lysines in histones,

particularly in histone H4, where SUMOylation is associated with transcriptional

repression, through the recruitment of HDACs and HP1 (Shiio and Eisenman

2003).

Histone biotinylation is catalysed by holocarboxylase synthetase, although later

studies have shown that the activated biotinyl-50-AMP is capable of biotinylating

histones in the absence of enzyme (Hassan and Zempleni 2008; Healy et al. 2009).

Eleven biotinylation sites have been identified in histones H2A, H3, and H4. K12-

biotinylated histone H4 is enriched in heterochromatin, repeat regions, and plays a

role in gene repression. No inhibitors of histone biotinylation have been reported.

ADP-ribosylation of histones can be can be mono- or poly-, mediated byMARTs

(Mono-ADP-ribosyltransferases) or PARPs (poly-ADP-ribose polymerases),

respectively (Hassa et al. 2006). Although this modification has been known for

over two decades, only one site, H2BE2ar1, has been definitivelymapped, and so the

direct effect on chromatin regulation is poorly understood. Despite this, numerous

PARP inhibitors have been developed, including several in clinical trials for oncol-

ogy (Ferraris 2010).

3.4 Freely Available Chemical Probes for Epigenetics:
A Novel Paradigm

As will have become clear in the preceding sections, although broad spectrum

HDAC inhibitors have been successfully developed as anticancer therapies, there

remains a great need for well characterized, potent, selective and cell-permeable

chemical probes for all of the protein families involved in epigenetic regulation of

gene expression.

In order to address this need, we have recently initiated an international consor-

tium in which industry and academia are collaborating to generate chemical probes

for histone modifying enzymes and recognition domains (Edwards et al. 2009). The

partnership comprises the Structural Genomics Consortium (SGC), the Universities

of Oxford and Toronto, the US National Institutes of Health (NIH) Chemical

Genomics Center, GlaxoSmithKline, Pfizer and a network of academic collabora-

tors, combining capabilities in purified protein production, structural biology, bio-

chemical and biophysical assay development, high-throughput screening, medicinal

chemistry and cellular biology. The research builds on the output of the SGC, which

has produced most of these human proteins in purified form and has determined the

three-dimensional structures of many.

We are taking a systematic approach to generating the chemical probes. Rather

than selecting specific “therapeutically relevant” proteins at the outset, the major
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protein families involved in modifying and recognizing histone marks are being

studied as protein family systems. For each protein family, ligand mimetic chemical

libraries are designed and synthesized using structure-based approaches. The

libraries are screened at each of the collaborating groups, using newly developed

biochemical and biophysical assays; this structure-driven knowledge-based

approach is complemented by diversity screens that are identifying otherwise

unpredicted ligand chemotypes. Iterative improvement of potency and selectivity

is accelerated by the family-wide availability of the purified proteins at the SGC and

the growing level of structural understanding of the protein families and their

interactions with ligands. The overall progress is being overseen by a committee

of scientists having expertise in epigenetics and chromatin biology.

To ensure that the chemical probes will be used immediately and with maximal

benefit to the biomedical community, they are treated as precompetitive reagents

and made available to all researchers without restriction on use (http://www.thesgc.

org/chemical_probes/epigenetics/). The success of the program and the continued

involvement of industry both rely on the scientific community’s willingness to use

the chemical probes properly and share their data without restriction on use.

Taken together, we expect that the chemical probes will enable a scale and depth

of experiments on epigenetic signalling by both academic and industrial investiga-

tors that could not otherwise be achieved. We look forward to the many exciting

experiments that will guide the medical research community’s understanding of

which epigenetic targets can be modulated to elicit a therapeutic benefit, and

thereby trigger the development of novel treatments for unmet medical need.

4 Animal Models and Reagents to Probe Biology

This area of science is relatively new, the animal models are established and the

reagents are invariably limited in number and quality. We aim to help address the

latter, by generating high quality, well characterized (potent, selective, cell pene-

trant) small molecules “probes”. These may then be used to dissect biological

pathways, and disease mechanisms, and hence drive new targets into drug discov-

ery. It is of course right that we cannot model a “system” in a cellular assay and

hence we have to use in vivo animal models. The data we have given in this chapter

is without exception compelling and exciting. It has allowed the labs to explore

hypotheses and establish correlations between molecular, cellular and behavioural

parameters. The question regarding the predictive utility or translatability of these

in vivo animal models remains. It is with this in mind that we have emphasized

wherever possible any clinical data for neuro-psychiatric disease.

The challenges of drug discovery are compounded for neuropsychiatric diseases

by the need in most cases for penetration across the blood–brain barrier and often a

lack of access to relevant clinical disease tissue. Furthermore, it is conceivable that

in many of these diseases we have “overestimated” the role of genetics and under-

estimated the role of environmental factors or epigenetics in their aetiology and
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plasticity. Herein lies our optimism – by exploring this area of biology we will

identify novel targets which will deliver highly effective therapeutics for these

chronic diseases.
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Abstract Functional magnetic resonance imaging (fMRI) methods have been

extensively applied to study the human brain and its functional organization in

healthy and disease states. A strong rationale exists for the extension of this

approach to animal models as a translational tool to bridge clinical and preclinical

research. Specifically, the development of pharmacological MRI (phMRI), i.e., the

use of fMRI to map spatiotemporal patterns of brain activity induced by pharmaco-

logical agents, has provided a robust and flexible tool to resolve brain circuits and

mechanism-specific functional changes produced by selective intervention in dif-

ferent neurotransmitter systems in vivo. This chapter describes the methodological

aspects of fMRI and phMRI in preclinical species, and some of the key findings,
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with a special emphasis on the translational potential of these methods in neuro-

pharmacological research.

Keywords Brain circuits � Complex networks � fMRI � Functional connectivity �
Pharmacological MRI � phMRI

Abbreviations

5-HT 5-Hydroxytryptamine

Acb Nucleus accumbens

BOLD Blood oxygen level dependent

CBF Cerebral blood flow

CBV Cerebral blood volume

CRF Corticotropin-releasing factor

EEG Electro-encephalogram

FDG 18F-fluoro-deoxy-glucose

fMRI Functional magnetic resonance imaging

GABA g-Aminobutyric acid

GlyT-1 Glycine transporter type-I

mCPP 1-(m-Chlorophenyl) piperazine
MEG Magneto-encephalography

mPFC Medial prefrontal cortex

MRI Magnetic resonance imaging

nAChR Nicotinic acetylcholine receptor

NK1 Neurokinin 1 (NK1)

NMDAR N-methyl-D-aspartate receptor

PCP Phencyclidine

PET Positron emitting tomography

phMRI Pharmacological magnetic resonance imaging

rCBV Relative cerebral blood volume

VTA Ventral tegmental area

1 Introduction

Since its inception in the 1970s, magnetic resonance imaging (MRI) has rapidly

become a widely applied radiological technique owing to its superior soft-tissue

contrast, absence of ionizing radiation exposure and versatility. Multiple combina-

tions of pulse sequences, acquisition parameters and exogenous contrast agents can

be used to sensitize image contrast to different tissue characteristics and
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physiological parameters, thus enabling a variety of clinical applications to muscu-

loskeletal, oncological, cardiovascular, and neurological imaging.

The recent discovery (Ogawa et al. 1990) that brain MR images are sensitive to

changes in tissue perfusion and blood oxygenation levels paved the way for the

development of noninvasive MRI of brain function, dubbed functional magnetic

resonance imaging (fMRI). The close interrelation between regional blood flow,

metabolism, and neuronal activity has been known for a long time. The Italian

physiologist Angelo Mosso was the first to record regional changes in vascular

pulsation in the human cortex during mental activity (Mosso 1881; Ogawa et al.

1990), an observation that was confirmed and expanded by Roy and Sherrington in

experimental models (Roy and Sherrington 1890). It was not until the early 1990s,

however, that Ogawa and other authors conceived the application of MRI methods

to map regional hemodynamic changes as a surrogate for neuronal activation

(Ogawa et al. 1990; Kwong et al. 1992; Bandettini et al. 1992; Frahm et al.

1992). Since then, the inherent advantages of fMRI over other functional imaging

methods (e.g., water PET, EEG, MEG etc) in terms of spatiotemporal resolution

and noninvasiveness have determined the prevalence of this technique in functional

neuroimaging.

Following the first pioneering studies, fMRI has been extensively applied to

demonstrate and study functional segregation in the human brain. In this context,

the regional localization of fMRI responses elicited by motor and sensory stimuli,

or by cognitive and emotional tasks, is interpreted as evidence of the functional

specialization of the underlying neuronal substrate. Complex paradigms, involving

comparisons between probe and reference tasks, have been developed to isolate the

functional role of specific brain areas. By way of example, the subject may be asked

to perform a word retrieval task, and the activation recorded during the task

performance is then contrasted against passive viewing of words, thus enabling

the researcher to disentangle retrieval-specific activity from the complex pattern of

fMRI responses elicited by the task. This framework, grounded on the principle of

cognitive subtraction and variations thereof (Posner et al. 1988), provides the

conceptual basis for the increasingly sophisticated neuropsychological paradigms

used to investigate the functional organization of the human brain.

More recently, considerable attention has been devoted to the functional inter-

actions between brain regions (Horwitz 2003), a viewpoint that is complementary

to the traditional focus on functional specialization. The idea underlying this

approach is that complex brain processes do not merely arise from “switching

on” or “switching off” individual brain structures, but rather from the concerted

modulation of activity in a set of spatially and anatomically distinct regions. From

this angle, correlations between the fMRI signals in remote brain regions engaged

by a task or even at rest may be interpreted in terms of mutual interactions, or

functional connectivity (Friston 1996; Horwitz 2003). These two frameworks for

the analysis of fMRI data, i.e., functional localization versus connectivity, reflect

the concept that higher brain function emerges from the interplay between the

seemingly conflicting principles of functional segregation and integration. Consis-

tent with this picture, the spatiotemporal patterns of brain activity measured by
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fMRI methods are often thought of as circuits of lumped elements (functionally

specialized brain regions) and their links (structural or functional connections

among different regions).

Functional MRI has been widely applied to study the neuronal circuits engaged

by neuropsychological paradigms in the healthy human brain, and has brought

about considerable progress in our understanding of the brain functional architec-

ture. Likewise, functional imaging methods have provided novel tools to investi-

gate the neurobiological substrates of psychiatric and neurological illnesses.

Psychiatric diseases are heterogeneous disorders, often described as clusters of

symptoms, and are inherently complex, with polygenic and multifactorial origins

(Gottesman and Gould 2003). This complexity makes it difficult to unambiguously

identify specific genes or neuropathological features that may underlie their onset

and progression. Hence, the quest for “endophenotypes,” i.e., more objective and

measurable markers that might help deconstruct these complex syndromes into

more tractable components, whose genetic or environmental underpinnings may be

more readily identified. Functional imaging methods have contributed a new

powerful means to this end by enabling the association of symptoms and pheno-

types with specific brain circuits. For example, a number of recent studies have

demonstrated abnormal BOLD fMRI activation of the amygdala and related circuits

in depressed subjects engaged in emotion-recognition paradigms, thus pointing to

emotion-processing circuitry as a potential pathophysiological substrate for depres-

sion (Sheline et al. 2001; Fu et al. 2004; Pezawas et al. 2005; Chen et al. 2007).

While these intriguing results have yet to be replicated a larger scale in the general

patient population, the impact of functional neuroimaging methods on the under-

standing of psychiatric conditions is potentially huge.

The development of functional MRI methods has been driven primarily by

human investigations, but there exists significant scope for their application in

preclinical species. Provided that a degree of homology exists between brain

circuits in humans and animals, it is conceivable to apply fMRI methods to

understand and demonstrate the construct-validity of disease models, thus improv-

ing their relevance to the human condition and their predictivity. Moreover, the

combination of functional MRI with more invasive techniques in preclinical species

may be useful to understand the physiological basis of the fMRI responses, and to

validate the imaging endpoint for clinical investigation. Last but not least, animal

models may provide useful tools to test the effects of putative medicines on the

activity of specific brain circuits thought to be implicated in aspects of the human

disease prior to proceeding to more complex and expensive clinical trials, thus

expediting the drug-discovery process. Hence, the translational potential of a

noninvasive imaging technique such as fMRI is attractive for both basic and applied

brain research.

However, several constraints and limitations have made the application of fMRI

methods to animal models, and particularly to rodents, less than straightforward.

First, imaging experiments in rodents require the use of anesthesia to prevent

motion artifacts and to reduce animal stress (Flecknell 1987). Moreover, the vast

repertoire of paradigms used to probe cognitive or emotional aspects of brain
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function in freely moving and behaving animals cannot be applied under the

constrained experimental conditions of an fMRI experiment. An interesting

approach to overcome some of these limitations relies on pharmacological mani-

pulation, and has been dubbed “pharmacological MRI” (phMRI) (Leslie and James

2000), i.e., fMRI as applied to map spatiotemporal patterns of brain activity induced

by pharmacological challenges. The main merits of phMRI lie in its ability to elicit

robust and reliable fMRI signals even under anesthesia, and to enable selective

stimulation of different neurotransmitter systems, thus providing a means to study

the neurochemical basis of fMRI responses and the corresponding circuitry engaged.

A number of recent studies have demonstrated mechanism-specific patterns of

activation corresponding to key circuits in the rat brain, and phMRI is gaining

momentum as a translational neuroimaging tool.

In this chapter, we review the application of phMRI in rodents, with the aim to

emphasize the ability of this method to resolve brain circuits and to provide a

systems level view of brain function in preclinical species. In Sect. 2, we focus on

the anatomical localization of phMRI signals and their dependence on the mecha-

nism of action of the probe agent. Selected examples are presented to illustrate the

neurofunctional and anatomical specificity of phMRI activation patterns, and their

correspondence with key circuits involved, e.g., in reward processing, motivated

behavior or fear processing. In Sect. 3, we focus on functional connectivity in the

rodent brain as measured by phMRI. The principles of this approach are reviewed,

and demonstrated with examples that emphasize the close correspondence between

functional connectivity networks and neurotransmitter pathways engaged by the

stimulation paradigm. Finally, we discuss the translational potential of this

approach in the light of recent applications of phMRI in humans.

2 Pharmacological Magnetic Resonance Imaging

The term phMRI was introduced by Leslie and James (2000) to indicate the

application of functional MRI methods to map the spatiotemporal patterns of

brain activity elicited by acute pharmacological challenge. In this context, acute

drug administration serves as a probe to stimulate or inhibit activity in neuronal

circuits, or to study the modulatory effects of behavioral preconditioning, pharma-

cological pretreatment or genetic background on drug-induced patterns of activa-

tion. While the effects of drugs on neuronal responses, vascular reactivity and

neurovascular coupling can be complex, multimodal studies have corroborated

the idea that in many instances the phMRI responses can be interpreted in terms

of neuronal (de)activations induced by the rapid change in receptor or transporter

occupancy following drug challenge. Hence, we find it natural to organize the

review of phMRI studies by the specific neurotransmitter system stimulated by

the primary drug challenge. In the following subsections, we review recent phMRI

studies involving some of the major excitatory, inhibitory, and modulatory
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neurotransmitter systems, with a special focus on the different brain circuits

involved, and on the neurofunctional specificity of the phMRI responses.

2.1 Glutamate

Glutamate is the most important excitatory neurotransmitter in the brain. In con-

junction with its inhibitory counterpart g-aminobutyric acid (GABA), glutamate

exerts a tight control of both tonic and phasic activity of wide neuronal populations

and circuits (Kandel et al. 2000). Moreover, glutamate plays a key role in the neuro-

metabolic cascade that determines the hemodynamic response to changes in neuro-

nal activity (Zonta et al. 2003).

Several phMRI studies have described the functional effects of pharmacological

manipulation of glutamatergic neurotransmission. Of particular interest is a recent

series of studies with antagonists of the N-methyl-D-aspartate receptor (NMDAR)

such as ketamine and phencyclidine (PCP) (Gozzi et al. 2008a, b, c, 2010a). These

drugs are the subject of extensive investigation due to their ability to induce

symptoms reminiscent of those of schizophrenia in healthy subjects, a finding

that has led to the hypothesis that a decreased NMDAR function may be a predis-

posing or even causative factor for this disabling disease (Farber 2003; Kristiansen

et al. 2007). The similarity between NMDAR antagonist-induced psychosis and

schizophrenia is also widely exploited preclinically to model schizophrenia symp-

toms and to provide experimental models that may prove useful in the development

of novel treatments for the human disorder. Specifically, the ability of drugs to

inhibit behaviors induced by NMDAR antagonists may be interpreted as a pharma-

codynamic signal of pharmacological activity, or as a predictor of the efficacy of

novel pharmacological treatments for schizophrenia (Large 2007). Within this

framework, noninvasive neuroimaging techniques such as phMRI can be applied

to spatially resolve the neuronal circuitry engaged by glutamate NMDAR antago-

nism in humans and preclinical species, thus providing a valuable translational tool

for schizophrenia and psychosis research.

The use of NMDAR antagonists to model schizophrenia symptoms in preclinical

models is however complicated by the strong dose-dependence of the effects they

exert. Indeed, at sufficiently high doses PCP and ketamine act as anesthetics and

their psychotogenic effects arise only at lower, subanesthetic doses (Krystal et al.

1994; Morris et al. 2005). As rodent neuroimaging studies are typically performed

under anesthesia, the interaction of NMDAR antagonists with the anesthetic agents

needs to be carefully assessed to identify workable doses and anesthetic regimens.

This aspect was specifically investigated in a recent experiment where the

phMRI response to PCP in halothane-anesthetized rats was mapped for varying

levels of anesthesia and different PCP challenge doses (Gozzi et al. 2008c). Not

surprisingly, both anatomical distribution and sign of the response depended

strongly on anesthetic level and challenge dose, with sustained and widespread

deactivation at higher PCP doses or anesthesia levels, a signal of positive
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interaction between the drug and the anesthetic agent. However, at appropriate

combinations of PCP and anesthetic doses a focal and robust pattern of activation

was observed in cortico–limbo–thalamic areas, including visual, orbitofrontal,

cingulate cortices, the amygdala, dorsolateral, and ventromedial thalamus, ventral

and posterior hippocampus and basal ganglia (Gozzi et al. 2008b, c) (Fig. 1).

Analogous patterns of activation have been shown using various NMDA recep-

tor antagonists (dizolcipine/MK801 and ketamine) and functional readouts (i.e.,

BOLD) under similar anesthetic conditions (Littlewood et al. 2006; Roberts et al.

2008). Importantly, the activation pattern highlighted in these studies is consistent

with that observed in conscious rats with 2-deoxyglucose autoradiography (Duncan

et al. 1998a, b, 1999; Miyamoto et al. 2000), single unit electrophysiological

recording (Homayoun et al. 2005), [14C]-iodoantipyrine CBF measurements

(Cavazzuti et al. 1987) and immediate-early gene expression (Nakki et al. 1996).

Thus, a judicious choice of anesthetic regimen and drug dose appears to preserve

the neuroanatomical substrates stimulated by NMDAR antagonists in conscious

subjects. A good correspondence was also found between these animal findings and

the patterns of brain activity measured in humans under ketamine infusion using

either metabolic (FDG-PET) or hemodynamic (BOLD) neuroimaging techniques

(Langsjo et al. 2003; Deakin et al. 2008; Gozzi et al. 2008b). Hence, the circuitry

recruited by acute NMDAR antagonism appears to be consistent across species and

imaging modalities, thus making the use of NMDAR antagonists an attractive

translational paradigm.

The focal nature and anatomical localization of the pattern of activation pro-

duced by NMDAR antagonism may provide important information regarding the

circuitry mediating psychosis. A number of clinical neuroimaging studies show

evidence of a strong correlation between fronto–thalamo–hippocampal hyperactivity

and cognitive and perceptual alterations observed in unmedicated schizophrenia

Fig. 1 Maps of rCBV

response following acute PCP

challenge (0.5 mg/kg i.v.;

n ¼ 24) relative to vehicle

(n ¼ 6), showing significant

activation of the cortico–

limbo–thalamic circuit.

Adapted from Gozzi et al.

(2008b, 2010b) with

permission. Abbreviations:

V1 primary visual cortex;

VHip ventral hippocampus;

RS retrosplenial cortex; DLth
dorso-lateral thalamus; VMth
ventro-medial thalamus; Cg
cingulate cortex; Acb nucleus

accumbens; mPFC medial

prefrontal cortex
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patients (Parellada et al. 1994; Silbersweig et al. 1995; Liddle et al. 2000; Ngan

et al. 2002; Soyka et al. 2005). Moreover, functional impairment of limbic cortical

areas such as cingulate and retrosplenial cortices has been associated with the

development of thought disorder, disturbance of consciousness, and overall cogni-

tive decline (Mitelman et al. 2005; Kircher and Thienel 2005). Likewise, the

identification of robust foci of activation in the thalamus is in agreement with recent

evidence supporting a critical role of thalamic gating disturbance in the pathophysi-

ology of schizophrenia (Clinton andMeador-Woodruff 2004). Finally, PCP-induced

activation of mesolimbic and nigrostriatal structures is in good agreement with the

classical dopamine hypothesis of schizophrenia, where dysregulation of dopamine

transmission is implicated at the onset of positive symptoms (Carlsson et al. 1999).

These observations demonstrate a significant degree of correspondence between the

brain areas activated by PCP challenge, and some of the key brain circuits that are

thought to be dysfunctional in schizophrenia. This suggests that phMRI with

NMDAR antagonists may provide a useful paradigm to study the neuroanatomical

substrate of psychosis, and to test the effects of existing and putative antipsychotics

on these circuits.

Recently, Gozzi et al. (2008b) investigated the modulatory effects of several

antipsychotic agents with distinct pharmacological mechanisms on the patterns of

activation induced by PCP in the rat. Dopaminergic agents such as the dopamine D2

receptor antagonists raclopride did not significantly affect the response to PCP,

consistent with a downstream implication of the dopamine system with respect to

the mechanism that elicits the phMRI response to the PCP challenge. On the other

hand, agents known to inhibit aberrant glutamatergic activity, such as the metabo-

tropic glutamate receptors (mGluR2/3) agonists LY354740, or the sodium channel

blocker lamotrigine, suppressed entirely the activation induced by PCP, thus

indicating a primary role of glutamatergic neurotransmission in the functional

response to PCP. Consistent with this notion, a recent study showed that stimulation

of the glycine coagonist site of the NMDAR either by direct agonism with D-serine,

or by blockade of glycine reuptake with the glycine transporter type 1 (GlyT-1)

inhibitor SSR504734 completely prevented PCP-induced phMRI activation in

anesthetized rats (Gozzi et al. 2008a). Some of these findings in animal models

have been confirmed in psychobiological (Krystal et al. 1999; Anand et al. 2000) or

neuroimaging (Deakin et al. 2008) studies with the NMDAR antagonist ketamine in

humans. Interestingly, the mGluR2/3 receptor agonist LY2140023 was shown to

provide significant therapeutic benefit to schizophrenia patients in a randomized

phase-II clinical trial (Patil et al. 2007), a finding that has not been replicated in a

recent second study, where however a larger than anticipated placebo response was

observed (Kinon et al. 2010). Although further research is needed to ascertain the

exact therapeutic contribution of this mechanism in schizophrenia, the limited clini-

cal data produced so far support a putative pathophysiological role of NMDAR

dysfunction and the translational use of neuroimaging assays exploiting the psycho-

togenic effects of NMDAR antagonists.

The ability of neuroimaging methods to spatially resolve patterns of activation is

critical to identify the neuronal substrate of drugs with multireceptor targets. In a
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recent study, pretreatment with the prototypical second-generation antipsychotic

clozapine, a drug characterized by a complex receptor profile (Meltzer 1996),

resulted in a region-dependent modulation of the phMRI response to PCP, with

complete suppression of the relative cerebral blood volume (rCBV) response in the

thalamus (Gozzi et al. 2008b). In the light of the key role of altered thalamic gating

to the etiopathology of schizophrenia, it is tempting to interpret the region-depen-

dent effect of clozapine as a mechanistic marker of its superior antipsychotic

efficacy, particularly in refractory patients. Individual components of the complex

profiles of many antipsychotics can be studied using the PCP/phMRI paradigm in

combination with selective tool compounds. By way of example, selective seroto-

nin 5HT2A receptor antagonism, an important component of clozapine and other

second generation antipsychotics, was shown to regionally inhibit the pattern of

activation produced by PCP in the septo–fronto–hippocampal circuit (Fig. 2)

(Gozzi et al. 2010a). This observation is of particular interest given the ample

clinical evidence suggesting a correlation between fronto–hippocampal hyperactiv-

ity and cognitive and perceptual alterations in unmedicated schizophrenia patients

(Parellada et al. 1994; Silbersweig et al. 1995; Liddle et al. 2000; Medoff et al.

2001; Ngan et al. 2002; Soyka et al. 2005). Notably, glucose metabolism studies

using positron emission tomography (PET) demonstrated a tight correlation

between depression of cortico–hippocampal activity and antipsychotic action eli-

cited by a single-dose of the atypical antipsychotic risperidone (Liddle et al. 2000),

thus corroborating the clinical significance of this circuit in schizophrenia.

Collectively, all these preclinical and clinical findings support the use of

NMDAR antagonists in combination with functional neuroimaging as a valuable

translational paradigm to study the neuropathological processes that might contrib-

ute to the symptoms of schizophrenia, and to investigate how these processes are

modulated by antipsychotic agents.

Fig. 2 (a) Volumetric reconstruction of the pattern of rCBV activation produced by acute challenge

with PCPwith respect to vehicle, and (b) attenuating effect of pretreatment with the selective 5-HT2A

antagonist M100907 (1.5 mg/kg i.p., group 1 vs. group 2) in fronto–septo–hippocampal regions.

PFC medial prefrontal cortex; VHc ventral hippocampus; Sp septum. Adapted from Gozzi et al.

(2010a) with permission

Functional and Pharmacological MRI in Understanding Brain Function 331



2.2 g-Aminobutyric Acid

Consistent with the fundamental role of the inhibitory neurotransmitter GABA in

controlling local and general excitatory tones, pharmacological modulation of

GABA elicits robust phMRI responses. Early studies showed sustained and

regional brain activation upon infusion of the GABAA antagonist and epileptogenic

drug bicuculline in the rat (Reese et al. 2000). More recently, Kalisch et al. (2004)

demonstrated differential BOLD-contrast responses to the anxiolytic and GABA-

modulator diazepam as a function of the trait-anxiety phenotype in different rat

strains. The same authors reported a striking anatomical correspondence between

phMRI and Fos immunoreactivty measurements under similar experimental con-

ditions (Kalisch et al. 2004). These findings suggest that insufficient activation of

anxiety-inhibiting structures (i.e., medial prefrontal cortex) may play a key role in

determining high trait anxiety. The involvement of GABA-mediated signal changes

has also been suggested for the BOLD-response to the opioid and addictive drug

heroin (Xu et al. 2000; Xi et al. 2004).

On the methodological side, GABA-releasing agents can be used as tools to

unravel the individual neurometabolic components underlying cerebral deactiva-

tion and the elusive nature of negative fMRI responses. In a recent study, Gozzi and

colleagues applied a multimodal approach to investigate the negative phMRI signal

changes produced by the GABA-transporter-inhibitor and anticonvulsant drug

tiagabine (Gozzi et al. 2006a). The drug-induced dose-dependent increases in

extracellular GABA-concentration that were correlated with decreases in hemody-

namic parameters. Interestingly, reduced tissue perfusion was accompanied by

increased tissue oxygen tension, thus demonstrating an overall reduction of oxida-

tive metabolic activity. Similar approaches have been exploited to qualify the

specific hemodynamic and metabolic processes involved in negative BOLD-

response to different stimuli, or to describe their dependence on resting GABAergic

tone (Chen et al. 2005b).

2.3 Dopamine

Dopamine is involved in many brain functions, including reward processing,

control of motivated and goal-oriented behavior, and cognition (Kandel et al.

2000). Moreover, dopamine is thought to mediate the reinforcing properties of

drugs of abuse, and the long-term plastic changes responsible for addictive beha-

viors, craving and ultimately relapse (Koob and LeMoal 2001; Volkow et al. 2007).

Hence, the dopaminergic system has been extensively studied in the preclinical

imaging arena.

A number of studies with dopamine-mimetic drugs or dopamine-releasing agents

including apomorphine (Schwarz et al. 2006b) amphetamine (Chen et al. 1997;

Nguyen et al. 2000; Schwarz et al. 2004a, c; Dixon et al. 2005; Chen et al. 2005a;
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Preece et al. 2007) and cocaine (Marota et al. 2000; Febo et al. 2004; Schmidt et al.

2006) have demonstrated consistent patterns of phMRI responses including meso-

limbic and mesocortical dopamine pathways, as well as cortical regions. However,

dopamine may induce vascular responses independent of changes in neuronal

activity by interacting with dopamine D1 and D5 receptors expressed in the micro-

vasculature (Choi et al. 2003; Jenkins et al. 2003). Moreover, many psychostimu-

lants also induce strong changes in arterial blood pressure, a potential confound that

might affect central hemodynamic responses.

Several studies have addressed these issues, and the role of different neurochem-

ical and neurometabolic contributions to the functional MRI response to dopami-

nergic agents, with the aim of demonstrating the specificity of signal changes.

Concurrent phMRI and microdialysis measurements showed significant correlation

between dopamine release and hemodynamic response in the rat striatum (Schwarz

et al. 2004b, c). However, no correlation was found between cerebral blood volume

(CBV) changes and local dopamine levels in the cortex, thus suggesting that direct

interactions of dopamine with cortical vasculature cannot account for the strong

phMRI response to cocaine (Schwarz et al. 2004c). Consistent with this finding,

multimodal CBF and tissue oxygen level measurements in situ demonstrated a

strong coupling between cocaine-induced hemodynamic responses and local

metabolic changes, thus confirming that a purely vascular effect is unlikely to be

the primary determinant of the phMRI response (Ceolin et al. 2004).

Several studies have investigated the role of blood-pressure changes as a poten-

tial confound in phMRI experiments. In an elegant study, Luo et al. (2003) used a

nonbrain penetrant salt form of cocaine (cocaine-methyliodide) to rule out potential

peripheral contributions to the pattern of fMRI activation elicited by cocaine.

Nonbrain penetrant vasopressors were also used to demonstrate that autoregulation

in the rat brain is functional over a wide range of arterial blood pressure values

under the anesthetic conditions used for the phMRI experiments, and that abrupt

changes in blood pressure within that window do not result in significant central

phMRI confounds (Gozzi et al. 2007). Febo et al. (2004) observed mesolimbic

increases in BOLD signal in response to intracranial injections of cocaine in awake

rats undergoing phMRI, thus suggesting that stimulant-induced fMRI responses

generalize to the waking state. These studies provide converging evidence that the

peripheral effects of stimulants (e.g., increased heart rate and blood pressure)

cannot account for the central hemodynamic changes measured with phMRI.

The neurochemical specificity of the functional responses produced by amphet-

amine and other dopamine-releasing agents has been investigated by several

research groups. A recent paper (Knutson and Gibbs 2007) reviewed the experi-

mental evidence suggesting that the hemodynamic response to dopamine-mimetic

agents predominantly depends on agonism at dopamine D1 receptors on postsynap-

tic neural membranes, with D2 receptors playing an indirect, modulatory role.

These mechanistic studies in animals have greatly advanced our understanding

of neurovascular transduction of dopaminergic stimuli, and provide a robust

interpretative framework for clinical fMRI paradigms that probe dopamine
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neurotransmission and its modulation by genetic, pharmacological, or psychody-

namic conditioning (Knutson and Gibbs 2007).

Dopamine-releasing agents can also be used as probe challenge to study the

modulatory effects of pharmacological pretreatment on the evoked pattern of

phMRI response. This approach has been recently applied to the characterization

of the functional effects of a dopamine D3 receptor antagonist (SB277011), a class

of compounds that reduce drug-seeking behavior in animal models, and have

potential as pharmacological agents to treat addiction (Micheli et al. 2007).

A single dose of dopamine D3 receptor antagonist administered prior to an amphet-

amine or a cocaine challenge increased evoked-dopamine outflow (Congestri et al.

2009) and phMRI response in the cingulate cortex and multiple areas of the

mesolimbic dopamine system, including the nucleus accumbens (Acb), a dopami-

nergic afferent region rich in dopamine D3 receptors and involved in the control of

motivation and goal-oriented behavior (Fig. 3) (Schwarz et al. 2004a; Micheli et al.

2007). To correlate these findings with the behavioral evidence showing a robust

effect of these compounds as inhibitors of compulsive drug-seeking and relapse

(Heidbreder et al. 2005), it has been suggested that potentiation of dopaminergic

responses by D3 receptor antagonism may rescue hyporeactivity of the dopamine

system produced by long-term drug-abuse and restore dopaminergic tone in states

of addiction (reviewed by Volkow et al. 2007).

2.4 Acetylcholine

Most functional neuroimaging studies of cholinergic neurotransmission in rodents

involve the prototypical nicotinic acetylcholine receptor (nAChRs) agonist nicotine.

Acute exposure to nicotine enhances cognitive functions such as attention,

learning, and memory in humans and preclinical species (Levin and Simon 1998;

Rezvani and Levin 2001; Levin and Rezvani 2002). The drug also has also

a b

Fig. 3 (a) Distribution of dopamine D3 receptors in the rat brain and (b) pattern of potentiation of

the phMRI response to amphetamine challenge by dopamine D3 receptor antagonist SB277011A.

SB277011A modulates phMRI response in the Nucleus Accumbens (Nac), a key structure in

the mesolimbic dopamine system, consistent with the focal expression of DA D3 receptros in

this region
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addictive properties, an effect that probably involves the recruitment of the meso-

limbic dopamine system and its cortical terminals (Mathieu-Kia et al. 1998).

Consistent with its pharmacological profile, acute administration of nicotine to

drug-naı̈ve rats produced focal activation of corticolimbic regions including the

amygdala, ventral hippocampus, medial prefrontal, orbital, insular, and anterior

cingulate cortex (Fig. 4) (Gozzi et al. 2006b). Analogous studies were performed by

Stein and colleagues in human smokers using BOLD fMRI (Stein et al. 1998).

Interestingly, the pattern of activation observed by Stein in humans is remarkably

similar to that activated by nicotine in the rat. The cingulate and several frontal lobe

divisions, including the dorsolateral, orbital, and medial frontal, were among the

most prominently activated regions in both studies. The frontal lobes with their rich

dopaminergic innervations and the cingulate cortex, through its connections with

many neocortical association, motor, and sensory regions, are thought to be

involved in cognitive functions known to be affected by nicotine intake (Warburton

1990). In addition, nicotinic receptors are present on both the somatodendritic and

the axon terminals of locus ceruleus noradrenergic neurons, which are known to

project to much of the forebrain and hippocampus.

These neurons and their projections are thought to regulate or modulate behav-

ioral arousal and vigilance (Aston-Jones et al. 1994). This converging evidence

suggests that the regions identified by human and rat phMRI studies represent a

plausible neuronal substrate of the psychopharmacological action of nicotine.

Consistent findings have also been reported by Nagata et al. (1995), who measured

increased blood flow in the frontal lobes after cigarette smoking using 15O positron

emission tomography (PET).

Gozzi et al. (2006b) also investigated the relative contribution of a7 and a4b2*
nAChR subtypes to the observed activation pattern of nicotine by using selective

nAChR subtype agonists, and found that the selective a4b2* nAChR selective

agonists 5-iodo-A-85380 elicits a pattern of activation identical to that of nicotine,

whereas no signal changes were observed with the a7 agonist cpdA. A later study of

0.35 mg/kg i.v.    nicotine p<0.01

Orbitofrontal ctxInsular cortex

Cingulate ctx

Rhinal  Cortex
Amygdala

mPFC

Ventral Hippocampus

Fig. 4 Maps of rCBV

response to acute nicotine

challenge (0.35 mg/kg i.v.) in

the rat brain, showing signifi-

cant activation of key cortical

areas involved in cognitive

processing, including

prefrontal, orbitofrontal,

insular and cingulate cortices.

Adapted from Gozzi et al.

(2005) with permission
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the effect of a selective a4b2 nAChR agonist using a CBV-weighted protocol in

awake rats produced consistent results (Skoubis et al. 2006). These studies suggest

that, of the many nAChR subtypes at which nicotine show significant activity, the

a4b2* nACh receptors predominantly mediate the psychopharmacological and

functional effects of nicotine, a finding corroborated by genetic and behavioral

studies (Levin 2002; Picciotto 2003; Kauer 2005).

2.5 Serotonin

Serotonin (5-HT) is a modulatory neurotransmitter involved in key brain functions

such as mood control, cognition, sleep and pain processing, through interactions

with a heterogeneous family of receptor subtypes (Kandel et al. 2000). Several

phMRI studies have addressed aspects of the complex role of serotonergic neuro-

transmission by pharmacologically targeting specific receptors subtypes.

In a recent study, the effects of the 5-HT1B and 5-HT2C agonist mCPP on the

regulation of feeding behavior in rats were examined using phMRI (Stark et al.

2006, 2008). The authors identified several structures with increased activity and,

more importantly, structures exhibiting decreased activation not evident from

standard immunochemistry markers of neuronal activity such as Fos. The study

also allowed the identification of a plausible mechanism by which mCPP induces

hypophagia in terms of both a specific receptor subtype (i.e., 5-HT2C) and the

neuroanatomical circuitry (i.e., hypothalamus and medulla oblongata).

An early demonstration of the exquisite sensitivity of phMRI measures to

serotonergic stimulation was provided by Scanley et al. (2001), who used CBV

fMRI to investigate the effects of the 5-HT1A receptor agonist 8-OH-DPAT in the

rat. Acute challenge with 8-OH-DPAT resulted in a reduction of CBV (negative

response) in brain areas rich in 5-HT1A receptors, including hippocampus, septum,

caudate, cingulate cortex, and thalamus. The pharmacological specificity of the

effect was corroborated by the ability of the selective 5-HT1A antagonist WAY-

100635 to block the response to 8-OH-DPAT. The presence of functional deactiva-

tion is consistent with the molecular role of the 5-HT1A receptor, a G-protein

coupled inward rectifying potassium channel that produces rapid membrane

hyperpolarization and suppresses neural firing upon endogenous or exogenous

stimulation (Tsetsenis et al. 2007).

The effects of acute selective inhibition of the reuptake of serotonin in drug

naı̈ve rats was recently investigated using the antidepressant fluoxetine (Schwarz

et al. 2007b). The pattern of activation induced by acute fluoxetine administration

was widespread, and involved both cortical and subcortical regions, consistent with

the ubiquitous presence of serotonin in the brain. Importantly, a good delineation of

the ascending serotonergic pathways originating in the raphe nuclei was observed

using correlation analysis (Schwarz et al. 2007b) (see next section), thus corrobor-

ating the serotonergic origin of the phMRI responses. The implications of these

findings are discussed more in detail in a later section of this chapter (Sect. 3.1).
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2.6 Neuropeptides

The ability of phMRI to resolve circuits recruited by specific neurotransmitter

systems can be exploited to map the effects of substances that do not effectively

cross the blood–brain barrier, such as neuromodulatory peptides, in preclinical

species, where more invasive methods of administration can be applied. The

potential of this approach was demonstrated in a study of the rCBV changes

induced by intracerebroventricular (ICV) infusion of synthetic psychoactive

peptides through MR compatible indwelling cannulae. ICV administration of the

metabolically stable neurokinin 1 (NK1) receptor agonist GR73632 elicited sus-

tained CBV increase in several brain structures, including the amygdala, the

caudate putamen and the cortex (Gozzi et al. 2005). Interestingly, the onset of the

response was rapid, within minutes, thus suggesting that the response was initiated

by interactions of the peptide with periventricular receptors and propagated down-

stream to deeper structure through functional connections. The same technique has

also been applied to study the effect of corticotropin-releasing factor (CRF) (Gozzi

et al. 2004). This method may represent a valuable tool for studying the functional

correlates of the central activity induced by agents characterized by poor brain

penetration, or to separate peripheral and central effects of psychoactive agents

targeting widely distributed receptor pools. A recent example of this technique has

been provided by Febo et al. (2005), who demonstrated the feasibility to separate

central and peripheral contributions produced by psychostimulants.

3 Functional Connectivity Analysis of Brain Circuits

FMRI has been instrumental to study brain functional segregation, i.e., the func-

tional specialization of discrete brain regions engaged by specific stimuli (Posner

et al. 1988), including pharmacological stimuli, as extensively discussed in the

previous section. To this end, fMRI time series are typically analyzed with

massively univariate methods, testing the hypothesis of a greater (or lower) activity

during execution of a task, or under drug challenge, than at baseline on a pixel-by-

pixel basis (spatial smoothing notwithstanding) (Friston 1997). Functional special-

ization is then inferred from the segregation of activated pixels in anatomically or

functionally defined brain regions, further emphasized by the application of statis-

tical thresholds for the significance of fMRI activation.

While the evidence of functional specialization of brain cortical regions appears

compelling, even the simplest sensorimotor task involves the integrated activity of

multiple brain areas (Luria 1973), a notion consistent with the dicothomic princi-

ples of functional segregation and integration underlying the brain’s functional

organization. Multivariate analyses of fMRI time series can be applied to assess

the distributed nature of brain neurophysiological response and to address interac-
tivity among different structures (Friston et al. 1994; Rogers et al. 2007).
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These approaches rely on the evaluation of some definition of correlation or

covariance between spatially remote neurofunctional events. In this context, statis-

tical dependencies among signals originating in different brain regions are inter-

preted in terms of functional connectivity, as opposed to structural connectivity,
which denotes the presence of physical neuronal connections between remote brain

structures (Ramnani et al. 2004). While the concept of functional connectivity is

thought to capture the flow of information between brain regions, and the parallel

nature of brain functional processes, it should be noted that it necessarily implies

neither the presence of actual physical links between the regions involved, nor a

causal relationship between spatially remote activations.

Functional connectivity has been investigated in both humans and laboratory

animals with a number of techniques, and using different definitions of the notion of

covarying activity. At the cellular level, functional connectivity has been measured

by assessing the temporal coherence in the spiking activity of individual neurons

(Gerstein and Perkel 1969). On a larger spatial scale, electroencephalography

(EEG) has been applied to evaluate cross-correlation between signals from pairs

of scalp electrodes and their coherence in specific frequency bands (Adey et al.

1961; Pfurtscheller and Andrew 1999) under evoked response or resting conditions.

Interregional correlations in the metabolic responses across subjects have been used

to investigate functional connectivity from PET studies with FDG in humans

(Horwitz et al. 1984; Bartlett et al. 1987), or from autoradiographic data in labora-

tory animals (Soncrant et al. 1986).

The inception of fMRI has significantly expanded the repertoire of methods to

study resting-state or task-evoked functional interactivity in the human brain.

Increased flexibility has also enabled the exploration of different measures of

interregional covariance, including temporal correlation, and correlations in the

fMRI response amplitude across conditions and subjects [for a review of these

methods see Horwitz (2003) and references therein]. It should be noted that while

all these approaches represent legitimate definitions of functional connectivity, they

interrogate different aspects of the regional interdependence and are not necessarily

equivalent.

The recent discovery that spontaneous, low frequency fluctuations in the fMRI

signals from the human brain at rest exhibit coherent patterns within defined net-

works has opened an interesting avenue of investigation, often referred to as

“resting-state fMRI” (Beckmann et al. 2005). By way of example, a network of

functional connectivity corresponding to brain regions whose activity is higher at

rest than during an experimental task has been identified, and interpreted as

evidence in support of the existence of a “default mode” of baseline brain function

(Greicius et al. 2003). Interestingly, alterations in resting state functional connec-

tivity have been observed under a number of pathological conditions, including

Alzheimer’s disease (Li et al. 2002), multiple sclerosis (Lowe et al. 2002), and

schizophrenia (Zhou et al. 2008).

While there is a large body of work assessing functional connectivity in the

human brain, the extension of these methods to preclinical species, and particularly

to rodents, is very recent. The study of functional connectivity in laboratory
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animals, where imaging can be combined with more invasive methods, may

provide a better understanding of the physiological basis of the interregional

correlations in fMRI signals observed in humans, and of the origin of the alterations

in functional connectivity observed in pathological states. Several studies in labo-

ratory animals have followed the path of human resting state fMRI. Synchronous

low-frequency fluctuations were detected in bilateral primary somatosensory cortex in

the rat brain at rest under alpha-chloralose anesthesia (Lu et al. 2007). Interestingly,

significant correlation between fMRI responses and delta oscillations measured

with epidural EEG were observed, thus suggesting a link between spontaneous

fMRI fluctuations and the underlying neuronal electrical activity. Similarly corre-

lated fluctuations were also detected in the rat under isoflurane (Kannurpatti et al.

2008), halothane (Majeed et al. 2009) or medetomidine anesthesia (Pawela et al.

2008, 2009; Zhao et al. 2008). All these studies used a seed-correlation region

approach (i.e., signal time-course correlations were computed with respect to a

specific region chosen by the experimenter a priori) and demonstrated encouraging

correlations between bilaterally symmetrical cortical regions. However, coherent

networks of connectivity akin to those observed in humans (e.g., the default mode

network) have not been observed in the rat using this method to date. Whether this

reflects experimental impediments (e.g., the use of anesthesia, or high stress-levels

due to restraint) or rather a different functional architecture of the rodent brain with

respect to that of higher species such as primates is the subject for further investi-

gation. However, the presence of multiple reports describing the identification of

coherent functional-connectivity default mode networks in deeply anesthetized

monkeys (Vincent et al. 2007) or humans (Greicius et al. 2003; Kiviniemi et al.

2005; Horovitz et al. 2008) as well as in comatose patients (Boly et al. 2009)

intriguingly favors the latter hypothesis.

A conceptually different approach to the study of functional connectivity in

rodents has been explored using phMRI, a strategy that has proven very effective in

determining the circuital and neurochemical basis of pharmacologically evoked

fMRI responses. Several recent studies using this approach have shown exquisite

delineation of focal patterns of correlated responses corresponding to key neuro-

transmitter pathways (Schwarz et al. 2007a, b, c, 2008, 2009). Moreover, network

analysis of functional connectivity patterns obtained with phMRI has provided the

first evidence of organized networks of functional connectivity in the rat brain, thus

demonstrating the potential of this method to explore the brain functional architec-

ture, an aspect discussed in greater detail in sections (Sect. 3.3).

Functional connectivity analysis of phMRI data requires image analysis

approaches that are substantially different from those applied to study low-

frequency spontaneous fluctuations. In this section, we summarize the key princi-

ples and methodological aspects of correlation analysis of phMRI data, and review

recent studies exploring pharmacologically induced or modulated functional con-

nectivity in the rat brain. Moreover, we discuss novel statistical methods based on a

network representation of functional connectivity data, and their application to

resolve the functional organization of the rat brain.
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3.1 Correlation Analysis in phMRI

In a typical phMRI experiment, a drug challenge is administered systemically (e.g.,

intravenously or intraperitoneally) during the acquisition of the fMRI time series

(Schwarz et al. 2004c; Gozzi et al. 2006b, 2008b). The time resolution of fMRI is

determined by the timescale of the hemodynamic response following neuronal

excitation, and is of the order of seconds. This temporal resolution is sufficient to

capture the time-course of the slow spontaneous fluctuations measured by resting

state fMRI (typically below 0.15 Hz). However, the phMRI signal changes follow-

ing a drug challenge are much slower (typically lasting tens of minutes or more)

than the hemodynamic response to a single neural “event” (Schwarz et al. 2003).

Moreover, the signal time-course reflects drug kinetics and pharmacodynamic

effects, and is similar in all brain regions affected (Schwarz et al. 2004c, 2005).

Hence, intrasubject temporal correlations of the phMRI responses tend to be

anatomically nonspecific; variability across subjects further complicates the gene-

ration of a suitably representative and meaningful group image.

To circumvent this problem, an alternative approach has been proposed that

calculates interregional correlations in the response amplitude across subjects
(Schwarz et al. 2007b), in the fashion of the procedures applied in metabolic PET

or autoradiography studies (Horwitz et al. 1984; Soncrant et al. 1986). Schemati-

cally, the correlation analysis procedure used in phMRI studies can be summarized

in terms of the following steps. First, individual subject time series are coregistered

to a common stereotaxic space (Schwarz et al. 2006a). Time courses from individ-

ual image voxels are then extracted for each subject, and suitable regressors are

fitted to the data to determine response amplitudes (Schwarz et al. 2005). In this

context, we intend the response amplitude to represent the magnitude of the

postinjection signal change elicited by the acute drug challenge. These values

provide voxel-specific vectors of response amplitude across subjects. Intersubject

correlations are then calculated for each voxel in reference to a selected “seed”

region, using the vector of response amplitudes from step B. Finally, statistical

correlation maps, i.e., maps of voxels whose response amplitude correlates signifi-

cantly (in a statistical sense) with those in the reference region are generated.

This approach leverages variations in the spatial profile of the response observed
across subjects following drug challenge. Figure 5 provides an outline of this

process, and an exaggerated visual impression of the intersubject variability in

the phMRI response profile.

A recent study (Gozzi et al. 2010b) has significantly expanded the area of

application of these methods by combining phMRI, intersubject functional connec-

tivity and advanced mouse genetics to provide a direct link between cells, circuits,

and behavior. Specifically, the authors combined phMRI and focal pharmacoge-

netic silencing to spatially resolve behavior-specific circuits controlled by a discrete

neuronal population expressed in the central nucleus of the amygdala (CeA), a brain

region involved in emotional processing and behavioral response to fear (LeDoux

2003). Reversible suppression of neural activity in a subset (“type-I”) of CeA
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neurons was achieved by inducing cell-specific expression of the serotonin 1A

receptor (Htr1aR) in mice devoid of the endogenous receptor (the resulting mice

called Htr1aCeA), a strategy recently described by Gross and coworkers (Tsetsenis

et al. 2007). The Htr1aR is coupled to GIRK potassium channels, and its activation

induces rapid and reversible membrane hyperpolarization of the cells expressing the

receptor. Hence, the use of systemically administered Htr1aR agonists (like the

selective compound 8-OH-DPAT) can be exploited to obtain cell-specific inhibition

of spontaneous neuronal firing in behaving animals (Tsetsenis et al. 2007). By

combining fMRI with this pharmacogenetic inhibition strategy, the authors were

able to identify a novel pathway in the mammalian brain apt to regulate passive and

more active components of fear responses. Specifcally, selective inhibition of type-I

CeA cells led to widespread increased cortical arousal as visualized by phMRI upon

acute administration of the selective Htr1AR agonist 8-OH-DPAT. Intersubject

functional connectivity analyses of phMRI time-courses was critical in resolving

the neuronal circuitry underlying the increased cortical activity. Significant correla-

tion was found between the CeA and several ventral forebrain cholinergic nuclei

such as the substantia innominata and the diagonal band, and the same cholinergic

nuclei exhibited tight correlations with the cortical areas activated upon inhibition of

type-I CeA neurons. The involvement of the cholinergic system was confirmed in

additional phMRI studies showing that the cortical arousal was blocked by central

(but not peripheral) cholinergic antagonists. Remarkably, an analysis of the behav-

ioral correlates of cortical activation in Htr1aCeA mice highlighted a pivotal role of

type-I CeA cells as suppressors of cholinergic-activity and exploratory behavior and

promoters of freezing (passive) fear responses, thus leading to the identification of a

novel neural pathway that biases fear responses toward either passive or active

coping strategies. Methodologically, this work expands the applicability of func-

tional connectivity analyses to genetically modified mouse models, and provides at

the same time a compelling demonstration of the combined use neuroimaging

methods and advanced pharmacogenetic systems as a new powerful paradigm to

identify and resolve behaviorally relevant neural circuits in the living brain.

Fig. 5 Schematic overview of the principle underlying across-subject functional correlation.

Different subjects show different spatial profiles of responses to the pharmacological challenge.

This variability is leveraged to extract response vectors for each image voxel (left-hand panel).
Intersubject correlations are then calculated for each pair of image voxels, or for a voxel in

reference to a seed region. Adapted from Schwarz et al. (2009) with permission
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3.2 Functional Connectivity in Neurotransmitter Systems

The first demonstration of this approach applied correlation analysis of rCBV

changes in the rat induced by acute challenge with D-amphetamine and fluoxetine,

two widely used (and abused) drugs that target key monoaminergic systems

(Schwarz et al. 2007b).

One of the main effects of D-amphetamine in the brain is the presynaptic

stimulation of dopamine release resulting in increased extracellular levels of dopa-

mine at the terminals of dopaminergic neurons (Everitt and Robbins 2005). The

psychoactive and reinforcing properties of D-amphetamine are thought to be

mediated by stimulation of the mesolimbic dopamine pathway, a small bundle of

neurons originating from the ventral tegmental area (VTA) in the midbrain and

projecting to the ventral part of the striatum, the Acb (Everitt and Robbins 2005).

Consistent with this hypothesis, correlation maps of phMRI responses referenced to

the VTA clearly delineated the parallel major axes of this pathway forward through

the ventromedial thalamus to the ventral striatum (Fig. 6). Other downstream

patterns of functional connectivity could be identified by moving the reference

region along the functional connectivity pathway. Using the shell of the Acb as the

seed region, a functional connectivity pattern largely coincident with that of the

Fig. 6 Map of the responses

to D-amphetamine

covarying (across-subjects)

with those in the ventral

tagmental area (VTA).

The pattern of connectivity

delineates the mesolimbic

dopamine pathway

extending forward to the stri-

atum. Adapted from Schwarz

et al. (2007b) with

permission. LHb lateral habe-

nula; Acb nucleus accumbens
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VTA, but extending to the medial prefrontal cortex (mPFC), was identified, consis-

tent with the known reciprocal projections of this region to the accumbens. Moving

further down the dopamine pathway, broader cortical involvement, including

somatosensory and motor cortices was observed. In this way, it was possible to

discriminate between connectivity in the primary dopaminergic projections, and

connectivity with downstream structures.

A second remarkable example of the use of functional connectivity to delineate

circuits engaged by specific neurotransmitters was obtained by the same authors

with fluoxetine, a selective serotonin reuptake inhibitor (SSRI) (Stahl 1998) and a

clinically effective antidepressant. The main source of serotonergic projections to

the forebrain originates in the raphe nuclei of the brain stem. Correlation analysis

using the raphe as a reference region showed a focal delineation of major ascending

serotonergic projections to the forebrain and cortex, and a network of subcortical

structures including hippocampus and amygdala, a pattern of connectivity consis-

tent with the drug’s mechanism of action (Fig. 7).

This study represented the first in vivo demonstration of functional connectivity

in discrete neurotransmitter systems. The correlation analysis was guided by a

judicious choice of seed region that was informed by previous knowledge of the

systems under investigation. While the confirmatory evidence produced in this

study represented convincing validation of the method, approaches that are inde-

pendent of the specific choice of reference region would be desirable for more

exploratory studies where the mechanism of action of the drug is unknown.

A more general approach to study patterns of connectivity from phMRI data has

been proposed (Schwarz et al. 2007a), whereby a hypothesis-free cluster analysis

was applied to resolve networks of correlated brain activity stimulated by

D-amphetamine without prior definition of a seed correlation region. Forty-eight

volumes of interest (VOIs) providing a reasonably complete breakdown of the

image volume acquired were delineated automatically using a three-dimensional

Fig. 7 Map of the responses to fluoxetine covarying (across-subjects) with those in the Raphe

nucleus. The responses were predominantly subcortical and included regions in mesencephalic

areas, the thalamus, amygdala and caudate putamen. Ascending projections to forebrain regions

are visible in the horizontal slice shown at right. Adapted from Schwarz et al. (2007b) with

permission. Ins insular cortex; thal thalamus; CPu caudate putamen; amyg amygdala
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digital reconstruction of the Paxinos and Watson rat brain atlas coregistered with

the MRI rat brain template (Schwarz et al. 2006a). Pairwise correlations within the

set of selected structures were calculated by computing the Pearson linear correla-

tion coefficient r between the response vectors in each pair of structures, yielding a
48 � 48 correlation matrix summarizing the similarities in response profile among

the selected VOIs (Fig. 8). To identify groups of brain structures within the full

correlation matrix that were closely coupled in their response to D-amphetamine,

these authors applied a k-means clustering algorithm (Everitt et al. 2001), an

optimization-based method that minimizes a distance measure between the Nv

response vectors. When applied to a D-amphetamine phMRI data set, the algorithm

indicated that the 48 response vectors should be optimally clustered into three

groups of VOIs to maximize intercluster over intra-cluster dispersion in the normal-

ized cross-subject response profiles. Interestingly, one of the clusters predominantly

consisted of brain structures involved in the mesolimbic and nigrostriatal dopamine

pathways, including the VTA and substantia nigra (SN), together with ventral

structures along the major axes of these pathways (Fig. 8c). It is important to

emphasize that the clustering results did not identify merely a trivial solution in

which strongly responding regions were grouped together while those responding

more weakly were clustered apart. Instead, key brain areas involved in primary

dopamine pathways emerged naturally from the data in the form of a group of

tightly interconnected structures, thus overcoming the limitations imposed by the

need of introducing a priori knowledge in the analysis.

a b

c

Fig. 8 Interregional correlations in response to D-amphetamine. (a) Cross-correlation matrix for

the 48 brain structures examined; (b) Connections between the 48 structures in sagittal view. Each

region is indicated by a black dot, and the connections by red lines. (c) A cluster of structures

identified by the k-clustering algorithm, corresponding to the primary projection of the mesolimbic

dopamine system. Adapted from Schwarz et al. (2007a) with permission
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In the phMRI approach, a drug challenge serves the purpose of eliciting a brain

response whose intersubject variability provides a basis to calculate interregional

correlations. From a pharmacological point of view, it is also important to ascertain

whether drug treatment canmodulate brain functional connectivity, since this might

shed light on the drug mechanism of action at a systems level. One interesting

approach to addressing this problem has been proposed by Schwarz et al. (2007c),

whereby the effects of a compound of interest were assessed by examining how it

modulated the correlated responses to a different probe compound. Specifically,

this study investigated the effects of a selective dopamine D3 receptor antagonist, a

putative treatment of addiction, on the pattern of functional connectivity stimulated

by D-amphetamine. The DA D3 receptor has a particularly focal distribution in the

brain, with high levels of expression in mesolimbic brain structures involved in

reward-related processes, including the VTA and the Acb (Schwarz et al. 2004a;

Heidbreder et al. 2005). The phMRI responses to amphetamine were acquired for

the two groups, one treated with the selective DA D3 receptor antagonist

SB277011A, and one with vehicle. The effects of pretreatment with SB277011A

were calculated by comparing the correlation matrices describing functional con-

nectivity in the two treatment groups. Interestingly, main changes in interregion

correlations were associated with the VTA, the origin of dopaminergic projections

to the forebrain. Specifically, these involved connectivity of the VTA with the

ventral subiculum and ventral CA3 fields in the hippocampus, dorsolateral and

midline dorsal thalamus, piriform cortex and superior colliculi. In the midline

dorsal thalamus and hippocampus, the relationship was altered from a significantly

positive correlation with the VTA to a significantly negative one, with a dramatic

inversion of the sign of the connectivity.

The thalamus and hippocampus are important components of a limbic brain

circuit, and thought to be involved in drug addiction, providing modulatory

inputs to the prefrontal cortex, an important brain region involved in goal-directed

behavior. Pharmacological modulation of functional connectivity within this circuit

may explain the inhibition of drug-seeking behavior consistently observed with

SB277011A and other selective dopamine D3 receptor antagonists (Cervo et al.

2007). Methodologically, this study extended the applicability of intersubject

functional connectivity analyses of phMRI data to antagonist–agonist experiments,

where modulations in the correlation structure underlying the response to a probe

signal may be detected.

3.3 Complex Network Analysis and Community Structure
of Functional Connectivity in the Rat Brain

Functional connectivity analyses of neuroimaging data aim to elucidate relation-

ships between signals originating in spatially distinct brain regions. This emphasis

on interaction between different brain structures is a good conceptual match for

Functional and Pharmacological MRI in Understanding Brain Function 345



representing the data as a graph, or network, of nodes and links. In this representa-

tion, image voxels or parcellated brain regions represent the nodes, and a measure

of similarity or correlation in their responses defines the edges linking the nodes

(Salvador et al. 2005; Eguiluz et al. 2005; Achard et al. 2006; Achard and Bullmore

2007). In recent years, networks from a wide variety of fields, describing connec-

tion patterns as diverse as social collaborations, metabolic pathways or air traffic,

have been characterized and found to exhibit rich behaviors beyond those of simple

random networks; accordingly, they are referred to as “complex networks”

(Strogatz 2001). Network analysis of functional connectivity data to date has

concentrated on the characterization of global properties of the network, which

can reveal much about the properties of the system. For example, networks derived

from human brain imaging data have been shown to possess a scale-free degree

distribution and exhibit “small world” behavior – a finding that has implications for

information transfer in the brain (Bullmore and Sporns 2009).

Complex networks of functional connectivity derived from phMRI data in the rat

have been recently investigated (Schwarz et al. 2008, 2009). In these papers, the

nodes were defined as individual image voxels (0.128 mm3) in the 3D image

volume, and the strength of the edge between each pair of nodes was based on

the Pearson correlation coefficient between the intersubject response amplitude

vectors in the two voxels. This value was converted into an equivalent z-statistic
using Fisher’s r-to-z transformation. The magnitudes of these normalized correla-

tion values were used to describe the strength of the correlation between each pair

of nodes and used to construct an edge weight matrix. Finally, the edge weight

matrix was thresholded and binarized to define a binary adjacency matrix. Analysis

of the structural properties of the resulting networks outlined interesting topological

features, including a small-world structure, and a long tailed distribution of node

degrees (i.e., number of connections for certain node), indicative of the presence of

hubs, namely a subset of highly connected nodes in cortical regions.

Beyond global characterization, the coexistence of functional segregation and

integration in brain activity (Tononi et al. 1994) suggest that some degree of

modularity i.e., subnetworks or clusters of more tightly linked nodes, might exist

within functional connectivity networks. The issue of the identification of such

groups of nodes characterized by denser connections between their constituents

than to other nodes outside the group has received considerable recent attention in

the field of complex networks. This concept originated in the study of social

relationships and has been consequently dubbed “community” structure. The first

application of this concept to the analysis of brain functional connectivity networks

has been recently demonstrated using phMRI data in rodents challenged with

fluoxetine (Schwarz et al. 2008). In this paper, a network-theoretic community

structure algorithm, based on the maximization of a mathematical formalism of

“modularity,” was applied to resolve functionally and anatomically segregated

communities within a functional connectivity network derived from phMRI

responses. Specifically, an algorithm based upon maximizing the value of a mathe-

matical definition of modularity Q (Newman and Girvan 2004; Newman 2006)

was applied to identify number and composition of subnetworks within a widely
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distributed network of functional connectivity obtained under pharmacological

challenge with fluoxetine. For a certain partition of the network, Q measures the

difference between the fraction of the edges connecting nodes within communities

and the same fraction in the case of a randomly connected network with the same

partition. The closer the value of Q is to its theoretical maximum 1, the stronger the

community structure, i.e., the more modular the network. Algorithms seeking a

network partition that maximizes modularity yield an estimate of the number of

communities into which the network should be optimally split, the composition of

each community and an associated value of max(Q). In the case of functional

connectivity networks, an optimal partition can reveal the system-level functional

organization of the brain under the particular experimental conditions studied, as

well as providing a measure of the emergent modularity. The application of this

method to the functional connectivity network in the rat challenged with fluoxetine

revealed three communities of nodes (Fig. 9). The pixels in the two largest com-

munities were symmetrically distributed between the left and right hemispheres and

their distributions corresponded closely to known anatomical and functional sub-

divisions of the rat brain. It is important to emphasize that division was obtained

from a network representation based on image pixels with neither imposition of

symmetry nor any prior anatomical constraints. Interestingly, one of the commu-

nities comprised nodes corresponding primarily to subcortical structures – striatum,

thalamus, and amygdala – but also regions of the hippocampus and entorhinal,

medial prefrontal and cingulate cortices (Fig. 9a). The finding of pixels in the

cingulate and prefrontal areas grouped with those in striatal and thalamic structures

is consistent with the fact that these cortical regions are the main cortical target of

input from the basal ganglia via extensive reciprocal connections with the thalamus

(Uylings et al. 2003). These cortical regions are anatomically similar to other

regions of the cortex yet functionally distinct. Similarly, pixels in the entorhinal

cortex and in the hippocampus were assigned to the same community, reflecting the

dense connections between these structures. Most other cortical nodes, including

those located in the motor, somatosensory, and visual cortices, were assigned to a

second community (Fig. 9b), while a third community (Fig. 9c) mainly comprised

pixels near the brain edge, the ventricles and in white matter and the cerebellum.

The community structure approach is somewhat akin to other multivariate

methods, such as Principal Component Analysis and Independent Component

Analysis, which have been extensively applied to seek structure within imaging

data in a model-independent way (Friston 1997; McKeown et al. 1998; Beckmann

and Smith 2004). Unlike these, however, this community structure approach

explicitly takes into account the topology of the functional connections, with

communities defined on the basis of link density and distribution. This concept

may be more readily interpretable in biological terms than measures such as the

orthogonality (Friston et al. 1993; Friston 1997) or statistical independence

(McKeown et al. 1998) of spatial modes that are optimized by other algorithms.

A key point in this approach is that the identification of communities within a

functional imaging network contains information on both segregation and integra-

tion. A partition of the overall network into smaller subunits suggests a degree of
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functional segregation in the response, whereas the set of brain regions – not

necessarily contiguous – identified within each subnetwork reflects their integrated

action in response to the experimental stimulus. Importantly, the value of the

modularity Q provides a measure of the degree of functional segregation in the

network and may provide the basis for an operational definition of this.

This first demonstration of the potential of community structure analysis of

functional connectivity in preclinical species has been rapidly translated to human

functional connectivity, and several studies extending this approach to resting state

fMRI have subsequently appeared in the literature (Meunier et al. 2009; Bullmore

and Sporns 2009). However, a few questions remain open and are the object of active

investigation. For example, binarization of the adjacency matrix was used to make

Fig. 9 Anatomical representation of the three communities identified by modularity maximiza-

tion in a functional network derived from phMRI responses to fluoxetine. Adapted from Schwarz

et al. (2008) with permission
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the problem computationally tractable. However, application of a threshold to retain

only the strongest correlations ignores information that may be contained in the

distribution of the weaker links, and the extension to fully weighted functional

connectivity networks is the natural development for this approach, dependent on

the availability of computationally efficient partitioning algorithms. Also, introduc-

tion of a direction to the edges linking pairs of nodes, perhaps using Granger

causality or related concepts, would provide a means of creating directed graphs

of connectivity that may be informative of the roles played different nodes. Finally,

and most importantly, the origin of structured patterns of correlated responses is still

largely unknown. Specifically, it is unclear whether the patterns of functional

connectivity reflect interregional correlations induced by the drug challenge itself,

or the intrinsic organization of the brain, perhaps determined by the structure of the

underlying neuronal substrate.

A follow-up paper applied community structure analysis to address this question

(Schwarz et al. 2009). To this end, three different pharmacological challenges

(D-amphetamine, fluoxetine, and nicotine) were investigated, and the emergent

communities under different pharmacological conditions were compared to dis-

criminate between connectivity patterns that are stimulus-specific and those inde-

pendent of the particular neurotransmitter system(s) engaged by the drug, which

may thus correspond to general features of the rat brain functional architecture.

Interestingly, common features across all three networks revealed two groups of

tightly coupled brain structures that responded as functional units independent of

the drug, including a network involving the prefrontal cortex and subcortical

regions extending from the striatum to the amygdala. This suggests that this

network of functional connectivity may reflect a general feature of the brain

organization, and is consistent with evidence showing strong intrinsic connectivity

between neurons in these brain structures. Hence, structural connectivity of the

neuronal substrate appears to constraint functional connectivity, and stimulus

independent patterns of functional connectivity reflect the structure of large-scale

neuronal wiring in the rat brain.

4 Conclusions

FMRI methods have been extensively applied over the last 20 years to study the

human brain and its functional organization in healthy and disease states. A strong

rationale exists for the extension of this approach to animal models as a transla-

tional tool to bridge clinical and preclinical research. In this chapter, we have

reviewed methodological aspects of functional MRI in preclinical species and

some of the key findings. Specifically, we have described the use of phMRI, i.e.,

the application of fMRI to map spatiotemporal patterns of brain activity induced by

pharmacological agents. The main merits of this approach lie in its ability to elicit

robust and reliable activations even under anesthesia conditions required to reduce

motion artifacts and animal stress, and to enable selective stimulation of different
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neurotransmitter systems, thus providing a experimental framework to study the

neurochemical basis of fMRI responses. While phMRI is still a relatively young

technique, a decade of methodological development and validation provides a solid

basis for its application to study the complex neurochemical control of brain

function at a systems level. Many of the examples reported above demonstrate

drug and mechanism specific patterns of brain (de)activation, thus providing func-

tional fingerprints of pharmacological activity. Moreover, the combination of

imaging methods with neurochemical, metabolic or electrophysiological techni-

ques in animal models provides a powerful means to relate the hemodynamic

responses measured with phMRI to underlying changes in neuronal activity.

Finally, we have discussed the analysis of phMRI in terms of functional connectiv-

ity, a measure of correlation in the responses in spatially remote brain areas. While

conceptually different from the human resting state fMRI, which relies on sponta-

neous fluctuations of the fMRI signal in the brain in the absence of external stimuli,

the phMRI approach has proven a powerful tool to explore functional connectivity

in rodents, and to map a variety of different neurotransmitter pathways. PhMRI has

also provided a useful experimental framework to explore novel statistical methods

of analysis of functional connectivity represented in terms of complex networks.

Particularly, network partitioning methods have made it possible for the first time to

resolve biologically and anatomically meaningful patterns of correlated responses

in the rat brain, thus providing a novel and powerful method to investigate the brain

functional architecture in preclinical species.

While functional MRI in preclinical species has been driven by imaging appli-

cations in humans, the methodological gap between the clinical and the preclinical

arenas is closing, with increasingly sophisticated approaches now available for

animal studies. The few examples in which comparable studies have been per-

formed in humans and in preclinical species, e.g., with NMDA receptor antagonists,

demonstrate encouraging correspondence across species, thus supporting the use of

phMRI approaches as a translational tool.
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species. The (mini)pig shows multiple advantageous characteristics that have led to

an increase in the use of this species in studies modeling human medical issues,

including neurobehavioral (dys)functions. For example, the cerebral cortex of pigs,

unlike that of mice or rats, has cerebral convolutions (gyri and sulci) similar to the

human neocortex. We expect that appropriately chosen pig models will yield results

of high translational value. However, this claim still needs to be substantiated by

research, and the area of pig research is still in its infancy. This chapter provides an

overview of the pig as a model species for studying cognitive dysfunctions and

neurobehavioral disorders and their treatment, along with a discussion of the pros

and cons of various tests, as an aid to researchers considering the use of pigs as

model animal species in biomedical research.

Keywords Animal model � Dementia � Depression - Psychosis � Eating disorders �
Magnetic resonance imaging � Neurodegenerative diseases � Pig (Sus scrofa) �
Positron emission tomography (PET) � Translational research

Abbreviations

ADME Absorption, distribution, metabolism, and excretion

APPsw Amyloid precursor protein, Swedish mutation

CNS Central nervous system

CS Conditioned stimulus

HCA Hypothermic circulatory arrest

HPA Hypothalamic–pituitary–adrenal

MR Magnetic resonance

MRI Magnetic resonance imaging

ORT Object recognition test

PET Positron emission tomography

RNA Ribonucleic acid

US Unconditioned stimulus

1 Introduction

Biomedical research is currently predominantly performed using rodents. Mice

constitute approximately 80% of all animals used in biomedical research. Interest

in the pig, in particular the miniature pig (minipig) as a useful model species is

growing. The scientific advantages of using pig models in biomedical research were

first described in detail in the 1970s (Baldwin and Stephens 1971; Chaput et al. 1973).

In various areas of pharmacological research, the pig is already an established

360 E.T. Gieling et al.



model species, in particular owing to the anatomical similarities to humans (body

size, cardiovascular system, skin, urinary system), functional similarities (gastroin-

testinal system, immune system) and the availability of disease models (diabetes,

atherosclerosis, gastric ulcer, wound healing) (Gad 2007; Mortensen et al. 1998;

Swindle and Smith 1998). Pigs are frequently used for the characterization of

cardiovascular, diabetes and dermatology drugs.

Furthermore, compared to mice, the immune system of the pig is more similar to

that of humans, with 80% similarity on compared variables between pigs and

humans versus 10% between mice and humans (Schook et al. 2005). The sequence

and chromosome structural homology of the pig genome also shows strong simi-

larity to that of humans (Chen et al. 2007; Lunney 2007; Petersen et al. 2009).

The biotransformation of many drugs in man and pig is similar, as shown by

liver metabolism studies (Witkamp and Monshouwer 1998). Therefore, pigs are

suited for pharmacokinetic and toxicological studies, mainly as a substitute for dogs

and nonhuman primates (Nunoya et al. 2007). The pig is a suitable animal for most

routes of administration and for the evaluation of most pharmacokinetic (absorp-

tion, distribution, metabolism and excretion; ADME) endpoints. To reduce the

amount of drug needed for efficacy and safety testing, the G€ottingen minipig is

often selected for preclinical drug studies. Finally, the inbreeding of (mini)pig lines

for xenotransplantation studies is of importance, and larger pig breeds are used for

the evaluation of the efficacy and safety of developmental medical devices, such as

implanted insulin pumps and cardiovascular devices and prostheses (International

Organization for Standardization 2002).

As a nonendangered species, the pig may replace some areas of research, which

are currently performed with other larger model animal species, such as nonhuman

primates or dogs. The use of nonhuman primates, in particular, (Bailey 2005) and

companion species meets strong ethical concerns and substantial opposition in a

large proportion of the population (Rollin 2006). A short phylogenetic distance, i.e.,

high resemblance between the model species and the species to be modeled is

expected to increase the relevance and generalizability of results obtained in the

model species (van der Staay et al. 2009a). Moreover, the use of pigs, generally

regarded as production animals, may lead to less controversy in the public view

than the use of companion animals such as dogs (see Fig. 1). It is expected that the

research on (mini)pigs can fill the gap between preclinical studies in rodents and

clinical trials in humans (de Groot et al. 2005; Lind et al. 2007; Nunoya et al. 2007;

Vodička et al. 2005).

The (mini)pig shows multiple advantageous characteristics that have led to an

increase in the utilization of this species in studies modeling human medical

problems, including neurobehavioral (dys)functions. The cerebral cortex of pigs,

unlike that of mice or rats, has cerebral convolutions (gyri and sulci) similar to

human neocortex (see Table 1). This may facilitate physiological experiments and

neuropathological comparisons with the human brain (Alisky 2006). The relatively

large gyrencephalic brain promotes using the (mini)pig, particularly younger ani-

mals, for (noninvasive) imaging techniques (Arnfred et al. 2004; Danielsen et al.

2001).
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1.1 Neuroimaging in Pigs

Imaging research has increasingly been conducted using pigs in recent years, both

as a technique to further investigate pigs as model animals (particularly develop-

mental models) and as a step beyond rodents when characterizing PET ligands. A

few salient studies are discussed here and a more comprehensive review has

recently been published by Sauleau (2009).

Studies using functional MRI have been used to locate functional homologues of

primate cortical areas, including the visual (Gizewski et al. 2007) and somatosensory

(Duhaime et al. 2006) cortex. By stimulating the animals either visually, using a

flashing light, or with sensory stimuli such as snout stimulation, one can determine the

brain areas which are activated by these stimuli. Thus far, these studies have shown a

high similarity between pigs and humans in terms of stimuli needed to produce

activation and in the cortical areas activated. Interestingly, pain sensitivity was

shown to become increasingly focused in piglets when followed from 2 to 6 months,

with low reactivity in 2-month-old piglets, generalized cortical activity at 4 months

and focused responses in the contralateral sensory cortex and brainstem at 6months of

age (Fang et al. 2005). The study reveals developmental changes in mammalian pain

response pathways, which would be difficult to investigate in man due to ethical

constraints, thus underlining the utility of the developmental model.

Ethical and emotional appreciation of values

small

large

large

small

small large

large small
Perceived degree
of resemblance, familiarity,
empathy

Ethical concerns
about the model animal species
or animal model

Extrapolation and
phylogenetic distance to species

to be modeled
Degree of resemblance
with species to be modeled

Relevance and
generalizability
of results

large small

Scientific appreciation of values

striving for generalizability vs.
ethical reservations against using
(particular) model animal species
or animal models

Area
of potential
conflict:

Fig. 1 Area of potential conflict between emotional and ethical values and scientific facts when

selecting a model animal species for scientific research. Ethical concerns against using a particular

model animal species (e.g., primates or companion animals) and the (perceived) degree of

resemblance with humans or familiarity and empathy toward a species are often correlated. On

the other hand, a low extrapolation distance and phylogenetic distance, and a high degree of

resemblance between the model species and the species to be modeled are expected to increase the

relevance and generalizability of results. Due to their high similarity with humans and the growing

concerns about using nonhuman primates as model species, the pig may provide an excellent

alternative. In particular, the smaller perceived similarity with humans, and the larger empathic

distance to this species reduces the area of potential conflict, whereas the anatomical and

physiological and genetic resemblance with humans is high

362 E.T. Gieling et al.



Pigs have also been favored animal models for testing tracers being developed

for human PET studies, including tracers for nicotinic receptors (Brust et al. 2008;

Patt et al. 1999, 2005, 2010), histaminergic receptors (Plisson et al. 2009), seroti-

nergic receptors (Ettrup et al. 2009; Kornum et al. 2007b), serotonin transporters

(Brust et al. 2003) and type 1 glycine transporters (Passchier et al. 2010). With their

relatively large, gyrencephalic brain, and PK characteristics highly similar to

humans, pigs are frequently the species of choice as an intermediate between

rodents and humans when testing tracers.

A number of initiatives are actively evaluating and promoting the pig as a model

animal species, for example the National Swine Resource and Research Center

(NSRRC; http://www.nsrrc.missouri.edu/), established in 2003; the initiative

“Advantages of Domestic Species as Dual-Purpose Models that Benefit Agricultural

and Biomedical Research” (http://www.adsbm.msu.edu/Home/tabid/54/Default.

aspx), and the EU Sixth Framework Program project RETHINK (http://www.

rethink-eu.dk) that evaluates the potential impact of toxicity testing in the minipig

as an alternative approach in regulatory toxicity studies. Due to its smaller body

size, the minipig is more suited to be housed and tested under laboratory conditions

than the domestic pig (see Fig. 2).

Table 1 Brain weights and sizes of adult humans, pigs, dogs, cats, rats, and mice

Species

Human Pig Dog Cat Rat Mouse

Brain size

Approximate

brain

weight

(grams)

1,300–1,400 80–180

(large

variation

between

breeds)

70–130

(large

variation

between

breeds; e.

g., �72

in

Beagles)

�30 �2 �0.5

Gyri and

sulci

Gyrence-

phalic

Gyrence-

phalic

Gyrence-

phalic

Gyrence-

phalic

Lissence-

phalic

Lissence-

phalic

Note the large variation between breeds of pigs and dogs as a consequence of strong selection on

body size and appearance. Brains redrawn to scale from “Major National Resources for Studying

Brain Anatomy,” of the University of Wisconsin, Michigan State University, and the National

Museum of Health and Medicine (see: http://www.brainmuseum.org/index.html). The brains of

gyrencephalic animals have rounded elevations or convolutions or gyri, and grooves or sulci, on

the surface of the hemispheres, whereas the brains of lissencephatlic animals such as rats and mice

do not
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However, the potential of (mini)pig-based animal models for investigating (dys)

functions of the nervous system and their consequences for the regulation of normal

and abnormal behavior has not yet been fully explored (Nielsen et al. 2008; Schook

et al. 2005). There even appears to be a recent trend toward reducing the number of

studies using nonrodent species in biomedical research (Reynolds 2009; Roberts

et al. 2003). In particular, mice are the dominant animal model species in biomedi-

cal research, absorbing the bulk of all funding. However, a range of animal models,

based on different model animal species is required for extrapolating and translat-

ing results from animal studies to humans (Roberts et al. 2003).

1.2 Genetically Modified Pigs

A broad range of genetically engineered rodent models has been developed to gain

new insight into the brain–behavior functions and into the neuropathological pro-

cesses, which underlie neurodegenerative and neuropsychiatric disorders (Branchi

et al. 2003; Cryan and Holmes 2005). Many recent reviews have addressed the

experimental techniques to construct transgenic (Sachs and Galli 2009;Wheeler and

Walters 2001), knockout, antisense oligonucleotides, and most recently, interfering

RNA animal models (Hoyer 2007; Salahpour et al. 2007). However, the translational

value of rodent models in the field of neurosciences has come under criticism,

mainly for the apparent lack of translational value of a large body of mouse-based

research for predicting the clinical efficacy of therapeutics to treat neurobehavioral

disorders in humans (Benatar 2007; Dirnagl 2006).

This critique has stimulated the development of genetically engineered pig

models of neurobehavioral disorders (Kragh et al. 2009; Prather et al. 2008).

Despite ongoing progress in technical developments, the production of transgenic

pigs remains a demanding task (Niemann and Kues 2007). However, new

approaches have proven that the development of transgenic pig models needs not

be more time consuming than that of murine transgenic models (Aigner et al. 2010).

Progress in swine genomics, coordinated by the Swine Genome Sequencing Con-

sortium (Amaral et al. 2009; Ramos et al. 2009), transcriptomics (Tuggle et al.

2007) and proteomics (Miller et al. 2009) are expected to make the pig an interest-

ing and valuable model species for biomedical research. The majority of studies

Fig. 2 Their smaller size and

low weight make minipigs

more suited for biomedical

research than the domestic pig
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with genetically modified pigs are performed in the area of xentotransplantation

(Klymiuk et al. 2010).

A research group at the University of Aarhus (Denmark) is developing a

transgenic pig model of Alzheimer’s disease, in which the APPsw mutation has

successfully been expressed in the pig brain (Kragh et al. 2009). However, it has not

yet been shown that these transgenic pigs develop Alzheimer’s disease-like neuro-

pathology and associated behavioral dysfunctions. A wide range of behavioral tests

designed for pig studies is already available for this purpose and additional tests are

now being developed and validated (see below). Although the genetically modified

pig as a large animal model of behavioral and neuropsychiatric disorders is still in

its infancy, we expect that both the recent developments in genetic methods and

behavioral tests will boost its use in the near future.

However, this chapter is not a plea for deciding to work with pigs. The choice of

a model animal species should be multifactorial weighing theoretical, practical, and

ethical factors. Weighing the scientific evidence relating to the predictive and

construct validity of the animal model (van der Staay et al. 2009a), against the

adversity of housing and testing under laboratory conditions is an appropriate basis

for selecting the model animal species for biomedical research (Webster et al.

2010). Nevertheless, it is anticipated that appropriately chosen pig models will

yield results with high translational value, although this claim needs to be sub-

stantiated empirically, as pig research in this area still is in its infancy. An overview

is provided of the pig as model species for studying cognitive dysfunctions and

neurobehavioral disorders and their treatment, along with discussion of pros and

cons of various tests, as an aid to researchers considering the use of pigs in

biomedical research.

2 The (Mini)Pig in Cognitive Neurobehavioral Research

There is a wealth of tests for assessing learning and memory in rodents, and to be

suitable for cognitive biobehavioral research, validated cognitive tests are needed

which assess cognitive functions in pigs. Cognitive studies using pigs have been

classified according to the underlying mode of learning, briefly outlining the most

interesting and promising studies to give an overview of this field of research. Some

of the studies described are designed to gain relatively fundamental knowledge but

can also be used as a basis for future applied cognitive biomedical research.

2.1 Classical Conditioning Studies

The first category is a form of associative learning. Pigs can be easily conditioned

(Kratzer 1971) using classical (Pavlovian) conditioning, but only a small number of

studies have applied this training method. Moreover, the majority of these tasks are
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aversively motivated. For example, Noble and Adams (1963) examined the effect

of interval length between a conditioned stimulus (CS) and an unconditioned

stimulus (US) on classical conditioning performance (bracing posture). In several

experiments, domestic pigs were exposed to different interval times (1–8 s)

between a conditioned (increase in illumination and/or vibratory-auditory cue)

and unconditioned stimulus (electric shock) while confined in a crate or placed in

a sling. The bracing posture was found to be more pronounced with increasing CS

and US interval.

2.2 Operant Conditioning Studies

Operant conditioning procedures using aversive or appetitive reinforcers have been

applied more frequently than classical conditioning procedures in pig cognition

studies. The first experiments applying operant panel-switching (lever pressing) in

pigs were performed in the 1970s (Kennedy and Baldwin 1972). At the beginning

of the twenty-first century, panel-switching was applied in studies on the effects of

housing and gender (Sneddon et al. 2000). Ferguson et al. (2009) applied various

lever pressing tasks in mini-pigs and compared the results with those of rats and

nonhuman primates. Acquisition of the task was found to be poor, though this was

likely caused by the physical difficulty of operating the apparatus with the hooves

and by the relatively short duration of the study.

Croney et al. (2003) showed that pigs were able to discriminate between the

colors orange and green and the olfactory cues coconut and almond using an

operant task (clicker training; a click sound followed by a food reward for a correct

choice). Results showed that pigs are able to discriminate between both cues even

when multiple choices (2–10 smells or colors) were presented simultaneously.

In another multiple choice task, Wang et al. (2007) trained pigs to discriminate

between two different visual cues (one or two versus three black dots) in a (non-

spatial) radial arm maze task, with reward located at the end of the correct arm. Two

days after training on this task (40 trials), memory was tested by presenting the same

task again in one trial. Pigs were able to acquire the task even faster (fewer trials)

when supplemented with sialic acid (possibly a conditional nutrient during rapid

brain growth). Sialic acid was also found to positively influence memory perfor-

mance; a single memory test trial was performed 2 days after completion of a set of

learning trials. This study shows the potential utility of the task for studying the

effects of putative cognition enhancers on memory and/or motivation.

More difficult are the operant discrimination tasks in which Moustgaard et al.

(2004, 2005) shaped pigs to place their snouts in a response hole for a reward in

which an incorrect choice or decision led to a punishment (20 s of darkness).

The pigs were trained to discriminate between visual (black–white) and spatial

(left–right) cues in a go-no go task. After the pigs acquired the discriminations, an

extra-dimensional shift was applied (visual to spatial or the other way around).

Boars and sows reached the same level of performance and no important role of
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attention to stimulus dimensions was found. In the go-no go task, approximately all

animals reached behavioral criterion (>90% correct choices per session).

Aversive operant tasks were performed a few times during the late 1960s and

1970s. The negative stimuli applied were mainly electric shocks and, in one study, a

water-maze (Barnes et al. 1969; Chaput et al. 1973; Hammell et al. 1975; Kratzer

1969). A more recent experiment making use of negative reinforcement studied

time perception and anticipation of future events (Spinka et al. 1998). In this

preference test, pregnant sows were trained to enter one of two rooms each contain-

ing several feeding crates. Once the sow entered a crate, food was provided and the

crate closed automatically. In the left room, the crate opened automatically again

after 30 min but in the right room the pig was confined for 240 min. After a training

period in which sows were allowed in the left or right room variably, the sows were

allowed to choose freely. In general, they chose the short confinement crates in the

left room, suggesting that pigs have perception of time.

2.3 Spatial Learning and Memory Studies

Mazes have been useful in assessing the spatial abilities of pigs. Mazes can be

divided into the so-called “alley” mazes’ (one correct route to a fixed goal) and

“free-choice” mazes (rewards can be found in different places and those places

can be (re)visited in every desired order). Only a few studies using alley-mazes

have been reported in pig research, but de Jong and colleagues studied the

influence of housing enrichment on long-term memory in an alley maze (based

on a Hebb–Williams maze) (de Jong et al. 2000). After the pigs had been trained

to perform the task, their retention performance was tested 9 weeks later. Based

on the increased number of line crossings and the longer latency to reach the food

reward, de Jong et al. concluded that pigs raised in a barren environment showed

impaired long-term memory compared to those pigs housed in an enriched

environment (de Jong et al. 2000). Siegford et al. (2008) used an alley maze to

cognitively enrich young piglets. Five-day-old piglets were released into the

maze (increasing in complexity). Returning to the home pen with the sow was

their reward. The piglets that were maze-trained, i.e., exposed to cognitive

challenges, were found to show a decreased fear of unfamiliar persons compared

to controls housed under the same conditions after weaning. Learning perfor-

mance of the cognitively enriched animals was also observed: in a spatial water

maze for pigs, maze enriched pigs escaped faster to the platform compared to

piglets that had previously been subjected to a treatment of short lasting social

isolation. However, the normal controls (housed with the sow without any further

treatment) performed similarly to the trained animals and therefore enhancement

of cognitive performance cannot unequivocally be ascribed to the early cognitive

enrichment of the piglets.

Foraging arenas in which several food rewards can be found, the so-called free

choice mazes, are used to study the susceptibility of pigs’ spatial memory
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performance to disruptions in the environment (Mendl et al. 1997), environmental

enrichment and learning performance (Sneddon et al. 2000) and to investigate the

pigs’ abilities to discriminate between food of different value (Held et al. 2005).

One of these mazes is the spatial holeboard, in which spatial working and reference

memory performance can be assessed simultaneously.

In a study by Arts et al. (2009), the test arena consisted of 16 food buckets placed

in a 4 � 4 pattern (see Fig. 3). Every animal was assigned its own configuration of

rewarded buckets (4 out of 16) and was trained to collect the baits. Working

memory or short-term memory errors (revisits to already visited baited buckets)

and long-term or reference memory errors (visits and revisits to never baited

buckets) were measured. The pigs quickly learned the task to criterion, with

performance at or above the level of rodents. Mild mixing stress did not influence

working and reference memory performance.

Instead of an open arena with baited places, spatial tests in pigs have also been

designed using tasks with baited and nonbaited arms or rooms. In 1999, Laughlin

and colleagues used a radial-arm maze (8 arms, 4 arms baited) to show that

environmental stimuli could cause some disruption of memory of many food sites

(Laughlin et al. 1999). They demonstrated this by applying a disturbance factor

(e.g., weighing in a crate) during the 10-min retention interval between sample and

choice trials. Also win-shift/win-stay strategies have been studied in a radial-arm

maze (Laughlin and Mendl 2000).

A learning impairment study in pigs that suffered from induced hypothermic

circulatory arrest (HCA) was performed in a multi-room maze by Hagl et al. (2005).

Six out of eight rooms contained a reward. During each trial, an animal was allowed

to visit only one of the rooms (all other doors were closed immediately after the first

entry into one of the rooms) with time between trials being 30 s. Later task difficulty

Fig. 3 Dimensions of the

holeboard apparatus with a

4 � 4 matrix of holes for

assessing spatial working and

reference memory in pigs,

rats (A) and mice (B)

368 E.T. Gieling et al.



was increased by only rewarding all the rooms situated on the left side and reversing

the rewarded rooms during the subsequent trials. This experiment found impaired

performance of the HCA animals but only for the second, more difficult test.

2.4 Recognition Studies

Another type of task applied in pigs assesses recognition (social or object recogni-

tion). The rodent-oriented “object recognition test” (ORT) (Ennaceur and Meliani

1992; Ennaceur and Delacour 1988; Ennaceur et al. 1989) is one of those tasks and

can provide memory performance measures as well as noncognitive effects of

experimental manipulations (Sik et al. 2003). Where object recognition generally

deals with exposure and reexposure (successive trials), social recognition (recogni-

tion of conspecifics or humans or social learning) is often studied in a simultaneous

setting.

The ORT has not yet indisputably proven its relevance in pigs (Gifford 2005;

Gifford et al. 2007), although some studies point in this direction (Kornum et al.

2007a; Moustgaard et al. 2002). In theory, this test could be promising and

potentially fulfill several of the criteria that will be discussed in Sect. 5 “Experi-

mental and Practical Implications for Biomedical Research.” Up till now, the main

question to be answered is whether pigs show a preference for exploring an

unfamiliar object when presented together with a familiar one.

Several social recognition studies have found pigs to be able to discriminate

between familiar and unfamiliar congeners (de Souza et al. 2006; Kristensen et al.

2001; McLeman et al. 2005) based on tactile, visual, and/or olfactory information.

In the domain of socially cued behaviors, also observational learning-like studies

in pigs have been conducted. Held and colleagues studied this phenomenon (Held

et al. 2000, 2001) and described it as “the exploitation of knowledge of an

individual by another pig.” In a spatial arena with hidden food rewards, non-

informed pigs were allowed in together with an informed individual or could

choose between following an informed or noninformed individual. Results sug-

gested that the noninformed individuals did follow informed individuals, rather

than engaging in an alternative task examining the food buckets at random.

Results cautiously suggest knowledge exploitation in pigs and abilities to appre-

ciate visual perspective, i.e., the ability to appreciate what others can and cannot

see. Further research is needed.

An awareness study in pigs was very recently performed by Broom et al. (2009).

They investigated whether piglets are able to locate a rewarded food bowl with the

use of information from a mirror. One group of pigs was allowed in a pen with a

mirror for 5 h and a control group was not. Later that day, the test was performed.

Pigs were individually allowed into the room (controlled for smell) with the mirror.

Only through the mirror could a food bowl (familiar to the animals) be seen, present

on the other side of a barrier. Most animals familiar with a mirror looked at the

mirror and then directly walked around the barrier and reached the food bowl.
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Almost all control animals first approached the mirror and then walked behind it.

When the mirror was replaced by a wire mesh and the food bowl placed behind it,

mirror experienced pigs directly walked around the wire mesh. To go around the

barrier and get access to the food, a map of the environment and awareness of an

animal’s own movement abilities are needed. So pigs’ abilities indicate assessment

awareness i.e., an ability to assess and deduce the significance of a situation in

relation to itself over a short time span.

3 Pig Models of Psychiatric Disorders

3.1 Schizophrenia

The similarity of the pig brain to the human brain has led to the exploration of the

pig as a model animal for psychiatric disorders in humans. Recently, the amphet-

amine-treated minipig as putative animal model of schizophrenia has been inves-

tigated. Amphetamine treatment has been used to mimic symptoms of psychosis

and to provide a model system that enables assessment of the efficacy of putative

antipsychotics. The majority of these studies used rodents as subjects. Lind and

colleagues found that amphetamine caused hyperlocomotion in minipigs in the

open field test (Lind et al. 2005a) and evoked an increased release of dopamine in

the pig brain (Lind et al. 2005b). In an acoustic startle test, amphetamine disrupted

prepulse inhibition in minipigs (Lind et al. 2004). These observations raise the

possibility of using pigs to evaluate the antipsychotic-like actions of compounds.

We investigated the effects of antipsychotic drugs on the spontaneous behavior

and on the D-amphetamine-induced increase in locomotor activity in an open field,

using young adult male G€ottingen minipigs as subjects (van der Staay et al. 2009b).

Using both a within-subjects design and a between-subjects design, we showed that

the open field behavior of minipigs is highly reproducible when measured after

administration of drug vehicles. Whereas amphetamine causes huge increases in

locomotor activity in rodent species (Nordquist et al. 2008), only a mild (approxi-

mately 30%) increase was found in minipigs injected s.c. with 0.4 or 0.7 mg kg�1.

Higher or lower doses were less effective or ineffective in the minipig. The

effective D-amphetamine dose range in rats appears to be wider than that measured

in minipigs, and the dose response curve has shifted to the right in rodents. The

effective dose of 0.4 mg kg�1 in minipigs is similar to that shown to induce

restlessness in nonhuman primates (Peacock and Gerlach 1999; Peacock et al.

1999). The decrease of behavioral activity of minipigs after administration of the

highest dose tested (2 mg kg�1) suggests that this dose causes motor side effects in

these animals. These observations indicate that the moderate D-amphetamine-

induced increase in locomotion better reflects the effects of psychostimulants on

primate behavior than the large increase in locomotion evoked by D-amphetamine

in mice or rats.
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The subcutaneous administration of the antipsychotic therapeutics haloperidol

and risperidone (dose 0.04 mg kg�1) reduced spontaneous locomotion (distance

moved, mean velocity, and total duration of moving) of minipigs in the open field.

The lowest effective dose of haloperidol and risperidone to decrease spontaneous

behavior in rats is higher: 0.08 mg kg�1, and 0.62 mg kg,
�1 respectively (Bardin

et al. 2007). The effective doses in our pig study are within the range used for human

dosing, i.e., 0.01–0.03 mg kg�1 for haloperidol and 0.03–0.05 mg kg�1 for risperi-

done (van der Staay et al. 2009b). This suggests that minipigs may be more sensitive

to antipsychotics than rats, but comparative pharmacokinetic studies are lacking.

The amphetamine-induced increased activity of minipigs in the open field was

dose dependently antagonized by administration of haloperidol and risperidone

(0.01 and 0.04 mg kg�1). The high dose (0.04 mg kg�1) of both antipsychotics

fully antagonized the amphetamine-induced behavior (van der Staay et al. 2009b).

The minimal effective dose of the antipsychotic drugs for reversal of D-amphet-

amine-induced behavior in minipigs is in the range of doses used in nonhuman

primates (0.015 mg kg�1 s.c.) (Peacock and Gerlach 1999). This dose does not

suppress D-amphetamine-induced locomotion in rodents. Taken together, the data

from these minipig experiments indicate that the pharmacological homology

between minipigs and primates is greater than between rodents and primates.

Furthermore, the data suggest that the D-amphetamine-treated minipig may be

suited to characterize novel antipsychotics, a notion that needs experimental sup-

port from future studies.

3.2 Depression

It has been suggested, based on the similarity of platelet fatty acids in humans

suffering from depression and in (stressed) pigs, and on a review of the relevant

literature, that the pig may provide a model of human depression (Cocchi et al.

2008). Stress is believed to be a major etiological factor in depressive illness and

chronic stress appears to elicit major depression (Kendler et al. 2003), although

some investigators disagree (Holmes 2003). The hypothalamic–pituitary–adrenal

(HPA) axis is activated by stressful stimuli and chronically enhanced activity of the

HPA system is the main neuroendocrine characteristic of depression (Belmaker and

Agam 2008). We have shown that pairing two unfamiliar piglets for a period of 2 h

results in a rapid threefold transient increase of the saliva cortisol concentration as a

consequence of the acute social stress that is elicited by rank order fights (van der

Staay et al. 2007). However, in a study in which female piglets underwent repeated

defeat, a form of recurrent psychosocial stress, we found only a transient, but no

long term, increase in saliva cortisol levels, with no effects on organ weights,

number of GR and MR in the ventral hippocampus, or on serotonin turnover in

the dorsal hippocampus (van der Staay et al. 2008). Increasing the duration,

frequency, and/or intensity of the stressful events (e.g., prolongation of the period

and increase in the number of defeat experiences) might induce depression-like
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symptoms but an alternative approach was chosen. Previous studies have shown

that tethering – a common farming practice until its recent banning in Europe – is a

chronic stressor to sows (van der Beek et al. 2004). We investigated whether long-

lasting, recurrent tethering stress over a period of approximately 2 or 4 years in

sows leads to enduring effects on measures that may be indicative of (major)

depression (van der Staay et al. 2010). We found that the pituitary gland was lighter

in tethered sows than in loose sows. Furthermore, plasma cortisol levels were

higher in the tethered sows than in the loose sows. The older, but not the younger,

tethered sows had heavier adrenal glands than their loose counterparts. Microarray

analyses revealed an increased expression of b-globin mRNA in the hippocampus

and to a lesser extent in the frontal cortex of the older tethered sows, compared with

the older loose sows. Taken together, the findings indicate that pigs experiencing

chronic stress develop some depression-like symptoms. Consequently, pigs

exposed to chronic stress may be considered an animal model of some symptoms

of depression. However, further studies are needed to extend and validate this

putative model.

3.3 Eating Disorders

Pigs, like humans, are omnivores. Their gut transit time is similar to that of humans

and enzyme activity in the gut and absorption show many similarities. Therefore

pigs are extensively used for testing the safety, and to a lesser extent, the efficacy of

food additives. Pigs have a high motivation for food intake and a natural propensity to

develop atherosclerosis and obesity (Koopmans et al. 2009; Skold et al. 1966; van der

Meulen et al. 2009). We recently investigated whether pigs are suitable for the

investigation of the efficacy of CNS-active anorectic drugs that are developed for

the treatment of obesity. Six pigs of a large breed (production animals), body weight

approximately 60 kg, were housed individually and fed two meals a day. Two

clinically effective anorectic drugs, the serotonin reuptake inhibitor Sibutramine®,
and the cannabinoid receptor-1 antagonist Rimonabant®, were mixed with 25 g of

mashed feed that were offered as a small “pre meal” to the pigs 1 h before the regular

morning meal. Drug doses were 0.3, 1.0 and 3.0 mg kg�1 and were escalated during

the study. The oral administration of the two test drugs alternated. All six pigs

received the six drug treatments (within subject design). One hour after drug intake

the standard diet was available unrestricted for 60 min. Food consumption was

measured every 90 s by weighing the food trough. Morning meal size on drug test

days was compared to meal size of control days (no drug in the 25 g pre meal).

Morning meal size under nondrug conditions was 1.0–1.2 kg. Administration of

Rimonabant® and Sibutramine® reduced morning meal size dose dependently.

Maximum reduction of food intake during the morning meal was 250–300 g. We

concluded that Rimonabant® and Sibutramine® have short term effects on central

mechanisms of satiety. The doses in this pig study are comparable to the effective

doses in humans. This again illustrates the pharmacological homology between pigs
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and humans. Pigs may be a useful species in satiety research and for the preclinical

evaluation of nutritional and pharmacological strategies aiming at body weight

reduction.

4 Developmental Pig Models (Prenatal, Perinatal and Postnatal

Development)

4.1 Hypoxia–Ischemia Models

Piglets have been extensively used to model hypoxia–ischemia in neonates. The

model was established and used by several groups simultaneously starting in the

late 1980s. Perfusion of neonate piglet brains was demonstrated to be adversely

affected by either hypoxia (produced by inhalation of low percentages of oxygen),

ischemia (by tourniquet or surgically implanted ligatures around the carotid artery)

(Leffler et al. 1989), or combinations of both (Odden et al. 1989). These effects

were measurable during the procedures, but long-lasting effects 24 h post insult

were seen on constriction and dilation responses of blood vessels as well as

prostanoid synthesis.

Much attention has been focused on examining the effects of hypoxia–ischemia

on the brain acutely in the hours following hypoxia–ischemia, with follow up

measures up to 7 days post hypoxia–ischemia. Improved imaging techniques

have allowed for extensive mapping of damage caused by hypoxic–ischemic

events, including edema visible at 24 h (Cheng et al. 2005) and up to 7 days post

insult (Vial et al. 2004). In addition, near-infrared spectroscopy was introduced as a

method that is portable (thus more useful in clinical settings for assessing neonate

hypoxia–ischemia) and reliably able to measure responses to hypoxic–ischemic

events in piglets (Kurth et al. 2002; Winter et al. 2009).

A number of parameters have been developed in the piglet model that can

function as early markers for clinical outcome. These include near-infrared spec-

troscopy, which is predictive of edema development when measured at 30 min, long

before edema appears on MRI images (Winter et al. 2009), phosphocreatine

recovery in the first hours after hypoxia–ischemia, which is a good predictor of

secondary energy failure at 24–48 h (Cady et al. 2008; Iwata et al. 2008), and

diffusion-weighted imaging and proton MR spectroscopy, which provided earlier

prognostic information than traditional MRI or diffusion-tensor imaging (Munkeby

et al. 2008).

Recent studies have focused on using the piglet model of hypoxia–ischemia to

develop treatments to prevent or reduce effects of hypoxia–ischemia on damage to

various areas of the brain. Cooling has been studied in piglets, producing good results

with bothwhole-body cooling (O’Brien et al. 2006) and head-only cooling (Robertson

and Iwata 2007). Pharmacological interventions, including allopurinol, deferoxamine

(Peeters-Scholte et al. 2002a, 2003), 2-imminobiotin (Peeters-Scholte et al. 2002b, c)
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and cannabidol (Alvarez et al. 2008) have also been shown to have protective effects

when administered immediately after hypoxia–ischemia in newborn piglets.

Building upon the traditional newborn piglet model, several studies have mod-

ified the protocol to test related issues. Intrauterine ischemia induced by umbilical

cord clamping has been demonstrated to cause increased glial formation and white

matter lesions after 48 h, when the ischemia is induced at the beginning of the third

trimester (Lyng et al. 2006). Interestingly, however, umbilical cord clamping does

not seem to produce strong asphyxia in term piglets (van Dijk et al. 2008). Another

extension of the model has been the inclusion of birth weight as a potential index for

intrauterine growth restriction. Multiple births seen in pigs allow for comparisons

between low birth weight piglets and normal birth weight siblings (Burke et al.

2006; Moxon-Lester et al. 2007). The addition of intrauterine ischemia and vari-

ables such as birth weight provide an interesting avenue for expanding the utility of

the model.

While these studies provide strong evidence that the piglet model can provide

information for development of prognostic criteria for outcomes and development

of interventions in human neonates, the follow up times are generally very short,

ranging from a few hours to, at maximum, a week. More long-term follow up

studies are needed to validate the model for long-term outcome parameters into

childhood and adulthood. Neuroprotection has been a difficult field for animal

studies, with few successful translations from animal studies to human clinical

use. It remains to be seen whether the piglet model will improve the number of

candidate drugs which make it to the clinic. Clinical studies in humans which are

currently underway will aid in determining the predictive validity of the piglet

model for neuroprotection in neonates (Kaandorp et al. 2010).

4.2 Traumatic Brain Injury Models

Piglets have also been used in several laboratories as a model species for traumatic

brain injury. A device, termed the scaled cortical impact device, has been developed

to standardize percussion injuries produced in piglets. This device was used suc-

cessfully to demonstrate that structural abnormalities detected with MRI following

the injury follow a specific time course that varies with age, with animals tested at

ages ranging from 5 days to 4 months (Duhaime et al. 2000, 2003; Durham et al.

2000; Grate et al. 2003). In a fluid percussion injury model, SPECT was shown to

reliably detect hypoperfusion at 2 h post injury (McGoron et al. 2008) and the

hemoglobin-based oxygen carrying solution HBOC-201 reduced the number of

degenerated neurons observed histologically after 6 h. As with the models for

hypoxia–ischemia, traumatic brain injury models in piglets show translational

value at time points shortly after the hypoxic–ischemic event, but data on long-

term effects are lacking. Follow up studies would add considerable value to this

model.
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5 Experimental and Practical Implications for Biomedical

Research

Size matters! Many nonrodent model animal species are larger than mice or rats.

This has a number of implications for animal housing and managing and handling

(Holtz 2010). Moreover, the breeding, rearing and housing conditions may affect

the experimental unit, in particular when working with farm animals (Festing 2006)

such as pigs. A systematic overview of the experimental units is provided in Fig. 4.

Experiments with large animals can be logistically challenging, in particular if the

experimental unit/test site is the pen, barn, or farm.

On the other hand the size of pigs may provide advantages above smaller, rodent

species, if parts of the animal are designated as an experimental unit (e.g., skin

patches in dermatological studies), or when tissue samples of small brain structures

must be collected or experimentally manipulated. Sampling can be more precise,

and the samples can be larger, i.e., pooling of samples from different individuals in

order to obtain sufficient material for analysis is not necessary.

When designing a cognitive behavioral task for pigs, several criteria should be

kept in mind depending upon the specific research questions. It is important to

consider that the task should, ideally, be suitable for unimpaired animals of all ages,

suitable for repeated testing, and allow a detailed analysis of behaviors from

different domains, i.e., cognition, sensation, locomotion, motivation (Wainwright

and Colombo 2006). The task should tap ethologically relevant behaviors in a

stress-free environment. Standardization and automation to a level comparable to

the current state of the art in rodents are also desirable. Complexity and sensitivity

are needed to be able to capture subtle differences in cognitive abilities (Friess et al.

2007; Hagl et al. 2005; Laughlin et al. 1999).

We previously outlined a classification of the tests applied so far in the field of

cognitive biobehavioral research in pigs (see Sect. 2). These criteria provide a

framework for assessing the advantages and disadvantages of different types of

tests. Tests within a specific category all show several (dys)advantages which make

them more or less suitable for answering specific experimental questions. The

classical conditioning tasks overall do not fulfill a number of the criteria mentioned

above and are therefore not recommended unless for very specific questions. Most

operant tasks (e.g., lever pressing, discrimination tasks) for pigs score high on

validity and can easily be automated but might lack the opportunity to support a

detailed assessment of natural, ethologically relevant behavior. However, increas-

ing or decreasing the complexity of a task is generally feasible and therefore an

advantage for this type of test. Spatial tasks such as mazes, spatial arenas and the

pig holeboard, do score well against the list of criteria. Most of them not only allow

for a detailed behavioral analysis, but also for the investigation of developmental

effects. Adjusting the complexity of a task is, as with most operant tasks not

difficult. Tests within the category of recognition tasks (e.g., object recognition,
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Fig. 4 Experimental units in animal research. Panel A: From 10 farms per housing condition,

three were randomly selected to participate in the study. Note that the pigs within farm are

automatically assigned to the housing condition of the particular farm. Panel B: In research on

the effects of prenatal stress on the offspring, all piglets of a litter can only be assigned to one of the

stress conditions (first group consisting of 3 animals each from litters 8, 4, and 3; second group

consisting of three animals each from litters 6, 9, and 2, and third group consisting of 3 animals

each from litters 7, 5, and 1). In the example, three litters (out of nine different litters) were

randomly assigned to one of three experimental conditions. Within litter, three piglets were

randomly selected and used in the study. Panel C: Individual animals are randomly assigned to

one of three experimental conditions. Panel D: Randomly assigned skin areas are treated with

different (doses of) putative therapeutics or allergens
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certain Y-mazes and social tasks) do also allow for most of the criteria mentioned

above, although these kinds of tasks can be useful to answer very specific questions.

One of the practical issues to consider is cost. The size of an apparatus for pigs

exceeds the normal rodent-apparatus size by several times (see, for example,

Fig. 3), and costs are much higher than in rodent research (although lower com-

pared to primate research). When able to measure multiple variables and to test

differing hypotheses within one apparatus the cost and space demands could be

reduced.

6 Conclusions

Pigs are established model animals in biomedical research and the first choice

animal species in the areas xenotransplantation, cardiovascular, and dermatological

research. The use of pigs in preclinical safety research, in particular toxicity testing,

is rapidly increasing. Pigs are mainly used in research that traditionally has been

performed using dogs and nonhuman primates and they may provide an appropriate

substitute for these species. Up to now pigs are less represented in neurobehavioral

and CNS research in general.

Several types of tasks appear to be suitable for cognitive studies in the pig.

However, caution should be taken when choosing or designing tasks because

some gaps in our knowledge of pig behavior and pig sensorimotor abilities need

still to be closed. Too little is known about sensory capacities of the pig in general

and there is a lack of replicated experimental findings and a lack of studies to

optimize experimental approaches using pigs as subjects. The pig is expected to

be a model species with putatively higher translational ability than the commonly

used rodent species. Therefore pigs should be considered as valuable species for

this type of biomedical research. Of course, valid and solid test systems are a

precondition for reliable research (van der Staay 2006; van der Staay et al. 2009a).

Meanwhile, biomedical researchers using pigs to study behavior and brain func-

tions should be aware of the gaps in knowledge when choosing and designing

their experiments.

The size and complexity of the brain of pigs offers opportunities for neuroimag-

ing research that exceed those with rodent species. First studies with psycho-active

drugs in pigs support the notion that the pharmacological homology between pigs

and (nonhuman) primates may be greater than between rodent species and humans.

New techniques enable development of genetically modified pigs in a time frame

that does not exceed the time required to develop transgenic or knockout rodents.

Pigs may be especially suited to perform perinatal research and stroke research.

Pigs, especially minipigs have a great, and not yet fully explored, potential

in CNS research. Further applications of this model species needs to be explored.

In particular, tests to assess the consequences of experimental manipulations of the

CNS of pigs on behavior need to be developed and validated.
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