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Abstract 
A new area, called Sustainability Science, is engaging large system scientists to address the challenges that face the 
future of human society on planet earth. In this paper, the methods and frameworks of diverse disciplines are reviewed 
and compared with those of the manufacturing community. The results show significant differences between 
disciplines, including the level of urgency expressed. Synthesizing these divergent viewpoints, this paper makes 
suggestions for needed research on “sustainable manufacturing”. The main message is that manufacturing needs to 
significantly increase the boundaries of its analysis to be able to understand its effect at the global scale. 
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1 INTRODUCTION 

Recent papers have identified an emerging area of research called 
sustainability science.   This new area of study looks at the complex 
interactions between the methods of society and eco-system 
services and human well-being, over long time scales and at global 
dimensions. The earliest manifestations of this new science involve 
the natural sciences (biology, ecology, etc.) on the one hand, and 
the social sciences (sociology, economics etc.) on the other, with 
systems modelers of many persuasions in the middle [1], [2], [3], 
[4]. Manufacturing, as one of the major sub-systems that connects 
eco-systems services to human well-being has an important role to 
play in this new emerging field [5],[6], [7], [8]. In this paper, we 
review various approaches to understanding the concept of 
sustainability and compare them to sustainability initiatives in the 
manufacturing sector. 

 

2 ALTERNATIVE VIEWS OF SUSTAINABILITY 

A major thesis of this paper is that until there is reasonable 
agreement on a working idea of what sustainability means, it will be 
difficult or impossible to measure progress or describe a way 
forward. In this section, brief summaries of alternative views of the 
concept of sustainability within recognized scientific disciplines are 
offered. The reviews include; 1) economics, 2) eco-system 
ecology/resilience, 3) resource accounting, and 4) the business 
approach called the triple bottom line (TBL).  

2.1 Economics 

Starting from the concept of sustainability as defined in the UN 
document “Our Common Future” [9], economists in collaboration 
with ecologist have put forth an operational scheme for estimating 
society’s sustainability [10]. In this paper, sustainability is defined as 
the requirement that our so-called inter-temporal social welfare 
must not decrease over time. The inter-temporal social welfare is 
calculated as the present discounted value of the flow of utility from 
consumption from the present to infinity. Under certain conditions, 
this is equivalent to the more transparent requirement that genuine 
wealth per capita must not decline. Hence the change in genuine 

wealth, called genuine investment, must be equal to or greater than 
zero. Genuine investment is the sum of the values of all capital 
stocks including manufactured capital, human capital and natural 
capital. The accounting is done in dollars which means that 
economic equivalents of these different types of capital must be 
obtained. The difficulties in establishing prices for components of 
natural capital are acknowledged, and a representative calculation 
is made for countries, regions, similar economic groups, and the 
world, and announced yearly in the World Bank’s publication The 
Little Green Data Book. Figure 1 gives the recent accounting for the 
World [11]. The results (given in percent of gross national income – 
GNI) indicate that the world’s manufactured capital assets grew at 
7.9 %, the human capital assets (represented by education 
expenditures) grew at 4.2 % and the natural capital assets declined 
at 5.0 %. The result is greater than zero (+7.2 %; note the rounding 
error) and so by this calculation the world is sustainable.  

 

 

Figure 1: Results from the 2010 Little Green Data Book produced 
by the World Bank indicate a positive genuine investment. 

This is the so-called weak form of sustainability which allows 
substitution between capital stocks. In other words, depletions in 
natural stocks can be compensated by additions to manufactured 
and human capital stocks. Substitutability, and its implied value 
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system and technical feasibility, is an issue for any aggregate 
measure of resources, and is not unique to economics. Economics, 
however, seems to take it to the farthest extreme by allowing for the 
compensation of lost eco-system services, with human engineered 
products and institutions. This is not only an extremely optimistic 
statement about human abilities, but also implies a vision of the 
future without nature, or at least with much less natural capital than 
we now enjoy. 

Because many people are uncomfortable with this vision and 
because the technical feasibility of substituting for ecosystem 
services on a global scale is in doubt, many people criticize the 
weak form of sustainability. See for example Daly and Daly and 
Farley [12], [13]. At the same time, the idea to aggregate resources 
in an attempt to measure some aspect of sustainability seems 
potentially worthwhile, and should be further explored [14]. In fact, 
the economists carry this approach much further than outlined here, 
by attempting to include the contributions to our economic 
productive base provided by human institutions [10]. See Dasgupta 
for a short, concise description of this calculation [15], and for more 
detail see [10], [16]. 

2.2 Ecosystems Ecology 

Ecosystems ecology brings a very different perspective to the issue 
of sustainability, one that may not be familiar to manufacturing 
engineers. Overall, ecosystem ecologists do not see sustainability 
as an equilibrium state, but rather as a process that naturally 
includes phases of decline and recovery. The central question is, 
can the system accommodate change and still retain controls on 
function and structure [17]. This inquiry is closely aligned with the 
new study of resalience, see for example the website for the 
resalience alliance [18]. A cornerstone of this effort is a systems 
dynamic conceptualization called panarchy [19]. Panarchy is a 
stylized representation of the dynamics of an adaptive system 
based upon observations from ecosystems ecology. It is 
hypothesized that other adaptive systems (including ecological, 
social and economic systems) may go through similar transitions. It 
places a useful emphasis on dynamics and transitions, identifying 
four crucial stages in the prototypical transition: 1) growth, 2) 
conservation, 3) release, and 4) reorganization. The scheme is 
shown graphically in Figure 2. The authors identify two meta-
parameters that can indicate where one is in this scheme; 
“potential” equivalent to the “y” axis in Figure 2, and 
“connectedness” equivalent to the “x” axis. A third variable, out of 
the plane of Figure 2 (the “z” axis) is “resilience”. If a system is not 
resilient it may move off of the pattern shown in the figure to a new 
pattern or to a dead end or “trap”. The researchers have identified 
two important traps. One is the so called “Rigidity Trap”.  As 
described by Gunderson and Hollings, “Rigidity traps occur in 
social-ecological systems when institutions become highly 
connected, self-reinforcing and inflexible”. The other is the so called 
“Poverty trap”. As described in the resilience literature, “this is a 
situation in which connectedness and resilience are low and the 
potential for change is not realized” [19]. Ecosystem ecologists offer 
many examples of these behaviors in nature and speculate on the 
application of this framework to other systems. For example, in 
Gunderson and Holling, a testable hypothesis is proposed for 
applying the panarchy framework to industrial systems, for example 
the Bell telephone Co. in the U.S. For those who study business 
cycles, there seems to be some similarity with concepts such as the 
Kondratiev long wave, see [20], [5]. Overall the resilience literature 
is highly integrative bringing together scientists from different fields 
of study. Much of the earlier work however is mostly conceptual, 
such as the panarchy framework.  A recent paper identifies specific 
global limits for several ecological problems described in the next 
section [21]. 

 

Figure 2: Graphic representation of an adaptive cycle for a complex 
system. 

2.3 Resource Accounting 

Resource accounting is the physical equivalent of the economics 
approach to counting identified resources needed to maintain some 
aspect of sustainability. The accounting is done in physical units, 
rather than monetary units, and usually employs some version of a 
“sources” and “sinks” view of the planet. That is, human activities 
interact with the planet by extracting energy resources, materials, 
biological entities and other sources, process them, and then 
deposit the residuals back to the planet that acts as a sink capable 
of absorbing a certain amount of these wastes. This approach may 
be done with varying degrees of rigor depending largely on how 
well the system is defined and the tools employed. 
Thermodynamics would be among the most rigorous physical 
accounting approaches [22], [23], [24], [25]. While using physical 
units greatly limits the degree of aggregation one can usefully 
accomplish, large categories of natural capital type resources are 
commonly counted. Prominent examples include: Primary energy 
resources measured in units of energy; climate change gases, 
measured in CO2 equivalents; water use measured in weight or 
volume; acidification potential measured in hydrogen ion 
equivalents; material resources measured in weight, and biological 
extinction measured in rates of species loss. 

In fact, all scientific investigations of sustainability ultimately resort 
to some form of resource accounting to state a problem or measure 
progress. And it is the resource accounting arguments which 
ultimately make the strongest and clearest statements concerning 
the current unsustainable practices of humanity. Examples of 
unsustainable trends come from a variety of sources, of particular 
importance are the effects on global eco-system services 
addressed in the International Panel on Climate Change [26], and 
the Millennium Ecosystems Assessment [27], [28]. These reports 
and others point to a broad array of disturbing and potentially 
disastrous trends including climate change, ocean acidification, 
nitrogen and phosphorous overloading, freshwater depletion, 
biodiversity loss and land system change. See also [21]. 

The most notable features of the resource accounting approach 
are; 1) that attention is directed predominantly to the natural 
environment, and 2) that much of the news is quite concerning if not 
alarming. This contrasts starkly with the much more optimistic view 
given by Arrow et al [10] and the seemingly non-committal view of 
Gunderson and Hollings [19]. In particular, an optimistic case can 
be made that humans can employ forward looking mechanisms and 
institutions to anticipate potential future disruptions, and plan 
accordingly [19]. At the same time, humans can game these very 
same mechanisms (as the recent financial crisis clearly illustrates) 
and fail to perceive potential precipitous decline. This potential 
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inability to adapt would be an example of the so-called “Rigidity 
Trap” described by Carpenter and Brock [17] and others. 

2.4 Triple Bottom Line 

The triple bottom line is a business response to the need for 
corporate performance measures that go beyond shareholder 
value, and include social responsibility and sustainability. The term 
is generally attributed to John Elkington writing in the California 
Business Review in 1994. Triple Bottom Line accounting includes 
not only corporate financial performance, but also an evaluation of 
potential impacts on people and planet. While it may appear to 
include some of the same topics as in the genuine wealth 
calculation mentioned earlier, the focus is on the firm and the 
accounting has not been standardized. In practice, it is more a 
portfolio approach, where the different spheres of activities are 
treated separately. While this method is indeed a step forward in 
terms of corporate acknowledgement of social and environmental 
issues, it is clearly a work in progress and whether it could actually 
have an impact on sustainability needs to be tested. The main 
problems are that the accounting is limited in scale, the methods 
may not be fully disclosed, and business as usual can often be 
dressed up to look like a new contribution to sustainability. Later 
examples will show this explicitly. 

2.5 Summary 

This brief synopsis of alternative views of sustainability is offered to 
illustrate the range of views on this topic and the uncertainty that 
faces the development of a science of sustainability. It seems that 
in a situation where we would all want clarity, it is not to be had. The 
problem resides not only in the vast complexity of the global 
environmental-social-economic system, and the weakness of the 
“unsustainable signal” as experienced by the average inhabitant of 
the planet, but also in the hugely ambitious agenda contained in the 
simple word “sustainable”. Even some of the most fundamental 
concepts are seen quite differently by the various disciplines 
engaged in this study. For example, consider the test question, 
would the addition of many more people to the planet improve or 
decrease the sustainability of human society? Those who see 
resources as limited will divide finite resources by a growing 
population and tend to answer in the negative. However a subset 
may say the opposite. The difference depends on whether one sees 
additional people as a potential resource, or primarily as consumers 
of the resources. An interesting contribution in this area is offered 
by the Harvard economist Michael Kremer who has shown that the 
rate of technological progress correlates very closely with 
population levels [29]. That is, the more people there are, the more 
new ideas and opportunities for development, and so the more we 
advance. This view is discussed in a popular book by Harford [30] 
to illustrate how contradictory the solution to sustainability might be. 
However to many, this view seems to deny any biophysical limits to 
growth.  In fact, it may sound like a Malthusian mistake with the 
opposite sign. Indeed, those who come to this problem from a 
natural resource accounting point of view, would probably cast 
humans first in the role of consumers, and secondly as those who 
could modify the consumption process. The alternative views 
presented here are in stark contrast. 

This result, that even a most basic question, such as the role of 
human beings in sustainability, has no simple uncontestable 
answer, is not unique. Other basic questions, often the foundation 
for action plans in “sustainable manufacturing” are equally complex. 
The result is this; there is plenty to study concerning manufacturing 
and the science of sustainability and the sooner these produce 
results, the sooner manufacturing will be able to clearly address the 
problem. 

3 THREE QUESTIONS ON SUSTAINABLE INDUSTRIAL 
PRACTICES 

Here we propose three questions concerning sustainable 
behaviors. The questions are intended to expose the limitations of 
simple notions concerning sustainability. 

Gulf Oil Spill in the U.S. 

A simple question might be to ask how would one evaluate the 
performance of the company BP during the recent oil spill in the 
Gulf of Mexico? Indeed by any measure this was a lose-lose-lose 
proposition. The company lost economically, the environment lost 
(although we do not know the extent of the damage yet) and indeed 
many local people lost by losing income and potentially their 
livelihood, and having their environment damaged. This was the 
largest oil spill in U.S. history, and at about 200 million gallons likely 
the largest of its kind in world history. At the same time BP has 
been known for promoting renewal technologies and providing 
investment funds for many of these. Also some may have seen 
BP’s response as proactive. So how would you rate BP’s behavior? 
Are they sustainable?  

The easy answer to this question is “no”, but as this paper is being 
written the investigations into the roles of the various players is 
currently in progress, and the extent of the ecological damages may 
take years to understand. Hence, in this case we may look to the 
bigger picture proposed by both the ecosystem ecologist and the 
economists and ask a larger question - not how did BP perform, but 
how did (or will) the overall system perform? The answer to this 
question may lie more in how the institutions which control deep 
water drilling and are charged with guarding ecosystems, while at 
the same time providing energy resources, respond to this disaster. 
Similarly we may ask the question how do the consumers, who 
ultimately drive the need for deep water drilling, respond? Are they 
aware of the consequences of their actions or is the signal too weak 
to produce a response? We leave the question unanswered but use 
it as an example of how we have to expand our analysis framework 
to get ultimate answers to these questions. 

Solid State of Lighting 

Consider the question – should an improvement in the energy 
efficiency of lighting be considered a engineering contribution to 
sustainability? This topic is currently of great interest because of 
significant new improvements to solid state lighting and recent 
studies concerning the life cycle energy use of solid state lighting 
[31], [32]. Anyone who owns an LED flashlight already knows that 
this form of lighting is very efficient because the batteries last for a 
very long time. However, it is also true that solid state devices are 
made by semi-conductor type manufacturing process which can be 
very energy intensive. So the question is, when viewed over the 
product life cycle i.e. manufacturing and use, is solid state lighting 
more efficient than incandescent and/or florescent lighting? Recent 
LCA studies indicate that the answer to this question is yes, the 
solid state devices can provide an equivalent amount of illumination 
for a much smaller amount of energy – something like 3 to 5 times 
less energy depending upon the exact nature of the comparison 
[31]. This would seem then, one face value, to be a very significant 
improvement and certainly a candidate for being called a 
contribution to sustainability. 

But there is more to this story. A further study of this issue looked 
more into the nature of our demand for lighting, and explores the 
question – “just exactly how much lighting do we want?” That is, will 
we be happy with what we got, and continue to use the same 
amount of illumination and therefore save energy with solid state 
lighting, or will we take advantage of this efficiency improvement 
and actually increase our amount of illumination and thereby 
potentially offset some or all of our expected savings? [33].  This is 
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the kind of question that economists can address, using economic 
growth models and other models to connect our demand for 
illumination to other factors. As it turns out, the result to our 
question can be surmised roughly from available empirical data. 
That is, observations from over 300 years, for various geographic 
units, indicate that the demand for lighting per capita, , is directly 
proportional to per capita gross domestic product (gdp) divided by 
the cost of lighting CoL [33], as given in equation 1. 

CoL

gdp
~      (1) 

This result, and one that can be derived from it, giving the total 
power used on lighting, are shown in Figure 3 [33]. The data show 
two things; 1) the wealthier we are, the more lighting we want, and 
2) the lower the cost of lighting, the more lighting we want. Most 
notably, the graph shows no sign of saturation. We may saturate in 
the future, but that is a debatable point (and one that is discussed 
further in the reference [33]). The evidence so far however is not 
good for energy savings, and in fact the paper (using a more 
complex economic argument) predicts more energy use with solid 
state lighting not less. 

Efficiency data from an earlier paper puts this into perspective. 
Figure 4 shows historical improvements in the efficiency for two 
technologies: steam engines and lamps plotted on a “linearized” 
logistics curve [34]. Here we are interested in lamps. Current solid 
state lighting would appear roughly in the upper right hand corner of 
the figure. What becomes apparent from this figure is that while 
solid state lighting indeed represents a significant improvement in 
the energy efficiency of lighting, it is not, from a historical 
perspective, unique. That is, going from paraffin candles to Edition’s 
first lamp, or from tungsten filament incandescent lamps to sodium 
vapor lamps where also significant improvements in there own right. 

We return then to our original question, should an improvement in 
the energy efficiency of lighting be considered an engineering 
contribution to sustainability? Or does it look remarkably like 
business as usual? This seems as a core question for those who 
want to study manufacturing and sustainability. 

Remanufacturing and Energy 

The third question is, does remanufacturing save energy? In many 
references one can find comments that remanufacturing is the best 
option for end-of-life product. The obvious benefits are that 
remanufacturing can generally save some (usually large) portion of 
the invested energy used in both the materials production as well as 
the manufacturing. (The assumption is usually made that the 
 

 

 
  (a)   (b) 
 

Figure 3: a) Empirical data showing the correlation between 
illumination and GDP divided by the cost of lighting 

 b) Converts the data to show energy usage by 
illumination see [Tsao 2010]. 

 

Figure 4: Historical efficiency data for steam engines and lamps 
from Ausubel and Marchetti 1997. 

remanufactured product is a substitute for a new product.) But a 
recent study of remanufacturing of eight different products reveals 
that energy saving may not always be in favor of remanufacturing 
[35]. The result depends heavily on whether the product has an 
energy intensive use phase. That is, if the product has a power cord 
or an internal combustion engine attached to it, then the use phase 
of the life cycle will very likely dominate the energy use. Since it is a 
major product design trend to power-up previously “passive” 
products, the use phase is coming to dominate energy use for many 
products. Furthermore, since the first powered design will likely be 
inefficient, the ironic implication is that future energy efficiency 
improvements in the design could act to undermine 
remanufacturing. The study found that in 25 case studies, 8 showed 
clear energy savings for remanufacturing, 6 showed clear energy 
savings for buying new, and 11 cases were too close to call. The 
results depended heavily upon use phase energy efficiency trends 
and could change dramatically with time. For example, while it 
made sense from an energy savings point of view, to replace a 
damaged compressor and extend the life of a refrigerator in the 
1960’s, in the 1990’s it was better to buy a new refrigerator. 
Ultimately however, if products can move asymptotically to a steady 
highly efficient state, the case where remanufacturing saves energy 
could be restored. It remains to be seen if such a scenario obtains.  

 

4 RESEARCH QUESTIONS 

A review of the sustainability science literature shows considerable 
uncertainty in regards to a definition of sustainability, disagreement 
concerning the roles of major players in this problem, and the lack 
of a clear path forward. This contrasts sharply with many of the 
ideas put forth as “sustainable manufacturing”. These are primarily 
programs of self improvement (and to some extent self 
preservation) and technology development to address market 
opportunities. They appear to be based upon a much clearer vision 
of the mission, usually involving resource accounting arguments, 
(but addressed at a relatively small scale). A resource accounting 
framework provides a clearer enunciation of the problems, and a 
basis for measurement and hypothesis testing. At the same time 
however, it must be recognized that even if one accepts the 
resource accounting approach, this must be woven into a larger 
picture that addresses how these resource depletions at various 
scales might interact and ultimately how they provide for human 
needs. Furthermore one must study the problem at a sufficient 
scale so that actions at the manufacturing level can be followed to 
higher levels, ultimately to a global scale. One can even go farther 
in the analysis to anticipate the temporal pattern of these actions. It 
appears that even when we do good, the scale of our actions can 
lead to new effects not anticipated. For example, consider the 
substitution of MTBE for TEL, and HCFC’s for CFC’s. In each case 
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an improvement on a unit basis is accompanied by an expansion in 
use, and a realization of yet new problems. Note that at the time of 
its introduction, CFC’s could have been easily characterized as 
“green”, an improvement, or even “sustainable”. See Allenby’s 
comments in [36]. The problem is that the scale of human activity is 
so large that whatever we do it will affect the environment. The 
study of sustainable manufacturing needs to reorient itself so that 
this concept is at the center of the discussion.  

Several critical areas for sustainable manufacturing research are 
identified below. 

1. Scale – Manufacturing must expand the boundaries of analysis if 
it wants to understand its impact on sustainability. This does not 
mean just to distant components of manufacturing, but also to 
social and environmental effects. There are indeed many 
dimensions to this expansion, several of them are mentioned in the 
following points. See [37], [38], [39].  

2.Measuring Human Well-Being – The ultimate goal of sustainability 
is to maintain some level of human well being extending indefinitely 
into the future. While human well being is admittedly a complex 
topic, there are many credible studies that have explored this topic 
and proposed various measures. Examples range from the 
happiness index to the GINI coefficient of inequality, to the UN’s 
human development index (HDI), the index for sustainable 
economic welfare (ISEW) and the genuine progress indicator (GPI) 
[39], [16], [40], [41], [42] [43]. Additionally, some researchers are 
working on the development of a so-called Social Life Cycle 
Assessment [44]. While each of these can be challenged in some 
way, they all appear to offer more or additional sensitivity to the 
human condition compared to the usual default measure, which is 
the per capita gross domestic product (GDP) or some similar 
financial measure. In fact many of these human well being 
indicators show that while per capital GDP may be rising in many 
developed countries, measures of human well being are staying flat 
or even declining. These measures should be central to the 
sustainability discussion and need further and vigorous 
development. Even in their current state of development, 
application of these measures to the stake holders involved in 
manufacturing’s actions would be enlightening. The results should 
show both the benefits and disadvantages of manufacturing. 
Furthermore, they may provide important insights that would allow 
one to differentiate between various manufacturing activities. Given 
the global nature of manufacturing, one would have to address how 
these large geographical boundaries would be treated.  

3. Measuring Resources – Resource Accounting is based upon the 
widely held premise that there are certain types of resources that 
need to be maintained in order to provide for the sustainable 
development of human society. These identified resources 
generally correspond to certain natural capital stocks and eco-
system services or the accounting is done on the anthropogenic 
emissions or actions that degrade and threaten these services. 
While sustainability issues can exist at all scales for society, primary 
concern must be focused on those problems that exist at the global 
scale. Several publications attempt to list these major global scale 
challenges. See [45], and [21].   

Resource accounting approaches can use alternative accounting 
schemes. Two extreme cases would be highly aggregated 
measures (such as the genuine investment accounting scheme of 
the economists) or by considering individual levels of specific 
resources and emissions. Both methods have advantages and 
disadvantages. When using highly aggregated methods, one would 
need to acknowledge potential interactions or stay away from these 
in the accounting scheme. Highly aggregated measures would have 
significant advantage in modeling and developing conceptual 
frameworks for future evolutionary paths of society. On the other 

hand, identifying specific resource issues allows for a much more in 
depth analysis. These could address in greater detail potential limits 
of the global system and complex interactions between the various 
dimensions of the problem. 

In the aggregate resource accounting method, the issue of 
substitutability would need to be addressed in some detail. Note 
that the application of the genuine wealth calculation or some 
variation on this theme to manufacturing could result in the 
differentiation between the benefits provided to society by different 
products, for example infrastructure products versus consumer 
goods. While this is a very value laden issue, there is wide 
agreement in the psychological literature that all needs are not 
equal. That is, one could attempt to link product, to need, to 
sustainability. For engineers a particular attractive aggregate 
accounting scheme could be based upon the consequences of the 
second law of thermodynamics. These would include estimating 
exergy losses and entropy production at the global scale. See [22], 
[46], [24], [25], [23].  

Concerning accounting schemes that address individual global 
scale problems, a recent paper by Rockstrom et al identifies 9 
potential problems and makes a first estimate of quantified global 
limits for seven of them. That list includes; 1) climate change, 2) 
ocean acidification, 3) ozone depletion, 4) nitrogen and phosphorus 
cycle overloading, 5) global fresh water withdrawals, 6) land system 
change, 7) biological diversity, 8) atmospheric aerosol loading, and 
9) chemical pollution. The paper claims that three of these, climate 
change, nitrogen and phosphorus cycles overloading and biological 
diversity, have already transgressed the safe operating space for 
the global environment. The obvious challenge for manufacturing is 
to connect their effects on these problems from the manufacturing 
scale to the global scale. 

4. Mechanisms of Interdisciplinary Study – Increasing the scale of 
analysis will inevitably involve crossing interdisciplinary boundaries. 
How to do this gracefully and rigorously is an important challenge. 
In the review of sustainability science literature it seems that the 
ecologist and economists have started the process of successful 
interdisciplinary studies. This issue strongly affects the professional 
development of young academics. 

5. Subdivisions by Topic Area – Several major themes emerge that 
both span the breath of the sustainability research area, but at the 
same time provide a focus which allows measurement and 
modeling. These area include: 

4.1 Energy resource use and efficiency  

The effect of energy efficiency on conservation and growth has 
been discussed since at least 1865 when Stanley Jevons published 
his book on coal. Since then it has been measured (the direct 
rebound effect), analyzed and debated primarily in the economics 
literature, and proposed as the driver of economic growth by Ayres. 
See [47], [48], [49], [50], [51]. This topic is among the most 
important that needs to be understood. Proposals to increase 
energy efficiency without an understanding about how society 
would use those advances could lead to surprisingly different 
results than expected, as illustrated in the earlier sections in this 
paper.  

4.2 Materials use and efficiency  

Materials connect manufacturing to the environment both as a 
source of raw materials and as a sink for the residues. And 
materials connect manufacturing to people by providing for their 
needs and quality of life. Current trends show a growing need for 
more materials as the world develops, the use of more elements in 
the periodic table (leading to complex mixtures) and increased 
needs for higher purity materials. Furthermore, materials are energy 
intensive and newer materials generally have even higher energy 
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requirements. While the materials with the largest use have been 
around for some time leaving only finite opportunities for energy 
and CO2 efficiency improvements, newer materials may present 
major opportunities. How materials are used, substituted and 
recycled is central to sustainable manufacturing. From the 
manufacturers point of view: how will materials use in future 
products be affected in light of potential restrictions, reporting 
requirements and standards, constrained supplies, fluctuations, and 
potential increases in prices and recycled content? See [52], [53], 
[54], [55]. 

4.3 Geography and supply chains  

The spatial arrangement of supply and demand presents a 
challenging and as yet largely unexplored area for sustainability 
research. In a recent book David Mackay analyzes the energy 
needs and the renewal energy resource potentials for England and 
comes to the conclusion that it cannot supply its own needs [56]. It 
must be engaged in some kind of trade to do so. This is a sobering 
and useful conclusion that highlights the problem; what does a 
sustainable world look like? Who trades with whom and for what 
reasons? For example, a recent study suggests that if the price for 
carbon goes to $100/tonne CO2, laptop and notebook computer 
manufacturing for the U.S. market should move back from China to 
the U.S. [57]. From the manufacturers point of view, how will supply 
chains be affected in terms of changing labor rates, shifting 
markets, materials availability and centers of manufacturing, and 
potentially increasing energy prices and carbon taxes imperfectly 
applied in different countries across the world? 

4.4 Measurements, Metrics and Tools  

The measurement of anthropogenic outputs and ecological and 
social responses are an area of considerable potential for 
sustainable manufacturing. Manufacturing engineers can develop 
these and this activity does not necessarily depend directly upon 
the definition of sustainability. Further manufacturing can contribute 
to the analysis of the data, and interpretation and use of it in 
models. While it is rewarding to see that LCA has grown in 
application, many tough problems remain concerning allocation, 
boundaries standardization and accuracy. At the same time tools 
that move beyond single product evaluations are a critical need for 
manufacturing. Indeed many modeling problems exist at many 
levels. 

4.5 Technology development, business practices and 
innovation  

Many people are banking on innovating our way out of the 
sustainability problem. This is a major paradigm for technology 
optimists. Given that we have only first begun this journey, as we 
focus our attention many new developments can be expected. 
Skeptics on the other hand will counter that new technologies have 
never really been evaluated from a global perspective before. The 
game is changing, and the hurdles to success may be much higher. 
New technology needs to be encouraged and guided by informed 
social and environmental analysis. For manufactures this will be 
similar to concurrent engineering and the quality movement. We 
must move away from pampered products that only perform well in 
a highly constrained environment. There will be many new 
opportunities here for manufacturing.  

The bottom line is that to connect manufacturing to the new Science 
of Sustainability, much larger boundaries of analysis need to be 
considered. While an evaluation at the level of the firm is a 
desirable goal, without a credible framework that connects the firm 
to the planet the local evaluation risks being meaningless.  
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