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Finite element discretization of two-phase
flow model

7.1 Introduction

In this chapter we treat finite element methods for the two-phase flow model
in (6.59). We use a nested family of multilevel triangulations {Th} as explained
in Sect. 3.1. In our applications these grids will be locally refined in a (small)
neighborhood of the interface. In Sect. 7.2 we discuss a finite element method
for discretization of the level set equation. In Sect. 7.3 it is explained how
for a resulting approximation φh of the level set function φ a corresponding
approximation Γh (= approximate zero level of φh) of the interface Γ can be
constructed. Other important issues related to the level set function, such as
re-initialization, are treated in Sect. 7.4. Results of experiments with numeri-
cal methods applied to the level set equation are given in Sect. 7.5. In Sect. 7.6
a method for discretization of the surface tension force fΓ is presented. An
error analysis of this method is given in Sect. 7.7 and results of numerical ex-
periments with this method are presented in Sect. 7.8. In Sect. 7.9 we treat a
special finite element space for the discretization of the pressure variable. Re-
sults of numerical experiments with this space are given in Sect. 7.10. Finally,
in Sect. 7.11 we apply the methods treated in this chapter for the discretization
of the two-phase flow model (6.59).

7.2 Discretization of the level set equation

The level set equation is of linear hyperbolic type. It is well-known that stan-
dard conforming finite element discretization methods are in general not very
suitable for such partial differential equations, since these methods can be un-
stable. There is extensive literature on finite element techniques for hyperbolic
problems. We do not give an overview here, but refer to monographs in which
this topic is treated, e.g., [108, 211, 206]. One popular strategy is to combine
standard finite element spaces with a stabilization technique. A fundamental
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stabilization method, that is very often used in practice, is the streamline-
diffusion finite element method (SDFEM). We will apply this method for the
discretization of the level set equation. In Sect. 7.2.1 we explain the basic
idea of the technique using a simple 1D problem. In Sect. 7.2.2 we apply this
method for the discretization of the level set equation.

7.2.1 Introduction to stabilization

We consider the very simple one-dimensional (hyperbolic) problem

bu′(x) + u(x) = f(x), x ∈ I := (0, 1), b > 0 a given constant,
u(0) = 0.

(7.1)

For the weak formulation we introduce the Hilbert spaces

H1 =
{
v ∈ H1(I) : v(0) = 0

}
, H2 = L2(I).

The norm on H1 is ‖v‖2
1 = ‖v‖2

L2 + ‖v′‖2
L2. We define the bilinear form

k(u, v) =
∫ 1

0

bu′v + uv dx

on H1 ×H2.

Theorem 7.2.1 Take f ∈ L2(I). There exists a unique u ∈ H1 such that

k(u, v) = (f, v)L2 for all v ∈ H2. (7.2)

Moreover, ‖u‖1 ≤ c‖f‖L2 holds with c independent of f .

Proof. The proof is based on an application of Theorem 15.1.1. The bilinear
form k(·, ·) is continuous on H1 ×H2:

|k(u, v)| ≤ b‖u′‖L2‖v‖L2 + ‖u‖L2‖v‖L2 ≤
√

2max{1, b}‖u‖1‖v‖L2 ,

for u ∈ H1, v ∈ H2. For u ∈ H1 we have

sup
v∈H2

k(u, v)
‖v‖L2

= sup
v∈H2

(bu′ + u, v)L2

‖v‖L2
= ‖bu′ + u‖L2

=
(
b2‖u′‖2

L2 + ‖u‖2
L2 + 2b(u′, u)L2

) 1
2 .

Using u(0) = 0 we get (u′, u)L2 = u(1)2 − (u, u′)L2 and thus (u′, u)L2 ≥ 0.
Hence we get

sup
v∈H2

k(u, v)
‖v‖L2

≥ min{1, b}‖u‖1 for all u ∈ H1,
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i.e., the inf-sup condition for k(·, ·) is satisfied. We now prove that if v ∈ H2

is such that k(u, v) = 0 for all u ∈ H1, this implies v = 0. Take v ∈ H2

with k(u, v) = 0 for all u ∈ H1. This implies b
∫ 1

0 u
′v dx = −

∫ 1

0 uv dx for all
u ∈ C∞

0 (I) and thus v ∈ H1(I) with v′ = 1
bv (weak derivative). Using this we

obtain

−
∫ 1

0

uv dx = b

∫ 1

0

u′v dx = bu(1)v(1) − b

∫ 1

0

uv′ dx

= bu(1)v(1) −
∫ 1

0

uv dx for all u ∈ H1,

and thus u(1)v(1) = 0 for all u ∈ H1. This implies v(1) = 0. Using this and
bv′ − v = 0 yields

‖v‖2
L2 = (v, v)L2 + (bv′ − v, v)L2

= b(v′, v)L2 =
b

2
(
v(1)2 − v(0)2

)
= − b

2
v(0)2 ≤ 0.

This implies v = 0. Application of Theorem 15.1.1 yields existence and unique-
ness of a solution u ∈ H1 and ‖u‖1 ≤ c ‖f‖L2, which completes the proof. �

Remark 7.2.2 The analysis in the proof above is essentially the same as
that used in the proof of Proposition 6.3.1 to show that the operator I + C :
Ww → L2(Ω) is bijective. This operator corresponds to the bilinear form
(φ, v) → (φ + w · ∇φ, v)L2 on Ww × L2(Ω), which is the higher dimensional
generalization of the bilinear form k(·, ·) used in the proof above.

For the discretization of the well-posed variational problem (7.2) we use a
Galerkin method with a standard finite element space. To simplify the no-
tation we use a uniform grid and consider only linear finite elements. Let
h = 1

n , xi = ih, 0 ≤ i ≤ n, and

Xh =
{
v ∈ C(I) : v(0) = 0, v|[xi,xi+1] ∈ P1 for 0 ≤ i ≤ n− 1

}
.

Note that Xh ⊂ H1 and Xh ⊂ H2. The discretization is as follows:

determine uh ∈ Xh such that k(uh, vh) = (f, vh)L2 for all vh ∈ Xh. (7.3)

For the error analysis of this method we apply Céa’s lemma 15.1.3. It remains
to verify the discrete inf-sup condition:

∃ εh > 0 : sup
vh∈Xh

k(uh, vh)
‖vh‖L2

≥ εh ‖uh‖1 for all uh ∈ Xh. (7.4)

Related to this we give the following lemma:

Lemma 7.2.3 The inf-sup property (7.4) holds with εh = c h, c > 0 indepen-
dent of h.
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Proof. For uh ∈ Xh we have (u′h, uh)L2 = 1
2uh(1)2 ≥ 0 and thus

sup
vh∈Xh

k(uh, vh)
‖vh‖L2

≥ k(uh, uh)
‖uh‖L2

=
b(u′h, uh)L2 + ‖uh‖2

L2

‖uh‖L2
≥ ‖uh‖L2 .

Now apply an inverse inequality, ‖v′h‖L2 ≤ ch−1‖vh‖L2 for all vh ∈ Xh, re-
sulting in ‖uh‖L2 ≥ 1

2‖uh‖L2 + ch‖u′h‖L2 ≥ ch ‖uh‖1 with a constant c > 0
independent of h. �

It can be shown that the result in this lemma is sharp in the sense that
the best (i.e. largest) inf-sup constant εh in (7.4) in general satisfies εh ≤ c h.
This indicates that the standard linear finite element method is unstable in
the sense that the inf-sup constant deteriorates for h ↓ 0. This instability can
be observed in numerical experiments with the discretization (7.3) for this
simple 1D problem.

We will show how a satisfactory discretization with the space Xh of linear
finite elements can be obtained by using the concept of stabilization.

If u ∈ H1 satisfies (7.2), then

∫ 1

0

(bu′ + u)bv′ dx = (f, bv′)L2 for all v ∈ H1 (7.5)

also holds. We add this equation δ-times, with δ a parameter in [0, 1], to the
one in (7.2). Thus the solution u ∈ H1 of (7.2) also satisfies

kδ(u, v) = fδ(v) for all v ∈ H1, with (7.6a)
kδ(u, v) := (bu′ + u, δbv′ + v)L2 , fδ(v) := (f, δbv′ + v)L2 . (7.6b)

Note that for δ = 0 we have the original bilinear form and that δ = 1 results
in a problem with a symmetric bilinear form . For δ �= 1 the bilinear form
kδ(·, ·) is not symmetric. For all δ ∈ [0, 1] we have fδ ∈ H ′

1. The stabilizing
effect for δ > 0 is seen from the ellipticity estimate:

kδ(u, u) = δb2
∫ 1

0

(u′)2 dx+
∫ 1

0

u2 dx+ b(δ + 1)
∫ 1

0

u′u dx

≥ δb2|u|21 + ‖u‖2
L2 for all u ∈ H1.

(7.7)

Note that for δ > 0 the norm |u|1 occurs in this stability estimate. The discrete
problem is as follows:

determine uh ∈ Xh such that kδ(uh, vh) = fδ(vh) for all vh ∈ Xh. (7.8)

The discrete solution uh depends on δ. Using the stability estimate (7.7),
approximation properties of the finite element space Xh and a variant of Céa’s
lemma the following (sharp) result on the discretization error can be proved:



7.2 Discretization of the level set equation 201

Proposition 7.2.4 Let u ∈ H1 and uh ∈ Xh be the solutions of (7.2) and
(7.8), respectively, and assume that u ∈ H2(I). For all δ ∈ [0, 1] the error
bound

b
√
δ|u− uh|1 + ‖u− uh‖L2 ≤ Ch

[
h+ b

√
δ + b min{1, h

b
√
δ
}
]
‖u′′‖L2 (7.9)

holds with a constant C independent of h, δ, b and u.

The term between square brackets in (7.9) is minimal for h ≤ b if we take

δ = δopt =
h

b
. (7.10)

We consider three cases:
δ = 0 (no stabilization): Then we get ‖u − uh‖L2 ≤ ch‖u′′‖L2. We can not
control the discretization error in the stronger H1-norm.
δ = 1 (full stabilization): Then we obtain

|u− uh|1 ≤ ch‖u′′‖L2 , ‖u− uh‖L2 ≤ ch‖u′′‖L2 .

δ = δopt (optimal value): This results in

|u− uh|1 ≤ ch‖u′′‖L2, ‖u− uh‖L2 ≤ ch
3
2 ‖u′′‖L2 . (7.11)

Hence, in the latter case the bound for the norm | · |1 is the same as for
δ = 1, but we have an improvement in the L2-error bound. The best stability
property, in the sense of (7.7), is for the case δ = 1. A somewhat weaker
stability property but a better approximation property is obtained for δ =
δopt. For δ = δopt we have a good compromise between sufficient stability and
high approximation quality.

The concept of stabilization as explained in this section is a very general one.
It can be applied in higher dimensions, using finite elements of degree larger
than one and also if instead of a hyperbolic equation one has to discretize a
convection-diffusion problem in which convection is dominating. An extensive
analysis of stabilization techniques is given in [211].

7.2.2 Discretization of the level set equation by the streamline
diffusion finite element method

In this section we treat a stabilization approach, the so-called streamline dif-
fusion stabilization method (SDFEM), for the discretization (in space) of the
level set equation (6.59c). This method is based on the same approach as
presented for a relatively simple one-dimensional hyperbolic problem in the
previous section.

We introduce the finite element space of continuous piecewise polynomial
functions. Let V(∂Ωin) be the set of vertices on the inflow boundary ∂Ωin :=
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{ x ∈ ∂Ω : u · nΩ < 0 }. Given the Dirichlet boundary data φD on ∂Ωin we
define, for k ≥ 1, the (affine) finite element space

Vh(φD) :=
{
v ∈ C(Ω) : v|T ∈ Pk ∀ T ∈ Th, v(x) = φD(x) ∀ x ∈ V(∂Ωin)

}
.

The choice of the boundary data φD will be addressed in Remark 7.5.1. We
use the notation Vh = Vh(0). The latter space is independent of t, whereas
Vh(φD) depends on t if the boundary data φD are time dependent. Note that
Vh(φD) = Vh holds if φD = 0 or ∂Ωin = ∅. As we will see later on, for the
quality of the curvature approximation of the interface it is important to use
finite elements of degree at least two for the approximation of the level set
function. As explained in Sect. 7.2.1, cf. (7.6), for the spatial discretization of
the level set equation (6.59c) we use test functions v̂h ∈ L2(Ω) of the form

v̂h|T := vh + δTu · ∇vh, T ∈ Th, vh ∈ Vh. (7.12)

The streamline diffusion finite element discretization of the level set equation
is as follows:

Let φ0,h ∈ Vh(φD) be an approximation of the initial condition φ0 = φ(0).
Determine φh(t) ∈ Vh(φD) with φh(0) = φ0,h and such that

∑

T∈Th

(
∂φh

∂t
+ u · ∇φh, vh + δTu · ∇vh)L2(T ) = 0 for all vh ∈ Vh, (7.13)

and t ∈ [0, T ].

Note that compared to the standard Galerkin finite element discretization
(δT = 0 for all T ) in (7.13) we have added a stabilizing term of the form
(u ·∇φh,u ·∇vh)L2 , which is the variational form of a diffusion acting only in
the direction u. This explains the name of this finite element method. Based
on a theoretical error bound and numerical experiments for model problems
the parameter δT is often taken as

δT = c
hT

max {ε0, ‖u‖∞,T }
(7.14)

with a given small ε0 > 0 and c = O(1). This streamline diffusion discretiza-
tion is consistent in the following sense.

Lemma 7.2.5 Let φ(t) be a solution of (6.59c). Then φ satisfies

∑

T∈Th

(
∂φ

∂t
+ u · ∇φ, vh + δTu · ∇vh)L2(T ) = 0 for all vh ∈ Vh,

for all t ∈ [0, T ].

Proof. This immediately follows from the fact that for the test functions v̂h

as in (7.12) we have v̂h ∈ L2(Ω). �
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Matrix-vector representation

For the matrix-vector formulation of the semidiscrete problem (7.13) we use
the standard nodal basis in Vh, which is denoted by {ξi}i=1,...,NVh

. Hence,
for all i we have ξi(x) = 0 for all x ∈ V(∂Ωin). The vector representation of
vh ∈ Vh(φD) is given by

vh =
NVh∑

i=1

vi ξi + bh, vi ∈ R, (7.15)

with bh = bh(x, t) ∈ Vh(φD) such that bh(x, t) = φD(x, t) for all x ∈ V(∂Ωin)
and bh(xi, t) = 0 at all other vertices xi, i = 1, . . . , NVh

. We define the matrices
E = E(u) ∈ R

NVh
×NVh and H = H(u) ∈ R

NVh
×NVh :

Eij :=
∑

T∈Th

(
ξj , ξi + δTu · ∇ξi

)
L2(T )

(stabilized mass matrix),

Hij :=
∑

T∈Th

(
u · ∇ξj , ξi + δTu · ∇ξi

)
L2(T )

(stabilized convection),

bi =
∑

T∈Th

(∂bh
∂t

+ u · ∇bh, ξi + δTu · ∇ξi
)
L2(T )

(boundary data),

for 1 ≤ i, j ≤ NVh
. Thus, using

φh(t) =
NVh∑

i=1

φi(t)ξi + bh, 	φ(t) :=
(
φ1(t), . . . , φNVh

(t)
)
,

and 	φ0 the vector representation of the initial value φ0,h − bh(·, 0) ∈ Vh we
can reformulate (7.13) in matrix-vector notation:

Find 	φ(t) ∈ R
NVh with 	φ(0) = 	φ0 and for all t ∈ [0, T ]

E(u)
dφ

dt
(t) + H(u)	φ(t) = −b(t). (7.16)

Note that in general the velocity field u depends on t and thus the matrices
E(u) and H(u) are time dependent. In practice, the velocity field u will be
replaced by a finite element approximation uh.

Time discretization

The discretization in (7.13), or in (7.16), can be combined with standard time
discretization techniques (method of lines). If the velocity u depends on t then
for the method of lines approach the formulation in (7.16) is more natural,
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since in (7.13) the test functions v̂h then depend on t. The θ-schema applied
to (7.16) results in

	φ n+1 − 	φ n

Δt
= −θE(	un+1)−1

(
H(	un+1)	φ n+1 + b(tn+1)

)

− (1 − θ)E(	un)−1
(
H(	un)	φ n + b(tn)

)
.

This can be reformulated in a computationally more favorable form using a
new variable

	wk = −E(	uk)−1
(
H(	uk)	φ k + b(tk)

)
,

which satisfies (for θ �= 0)

θ	wn+1 =
	φ n+1 − 	φ n

Δt
− (1 − θ)	wn,

resulting in

E(	un+1)
	φ n+1 − 	φ n

Δt
= −θ

(
H(	un+1)	φ n+1 + b(tn+1)

)

+ (1 − θ)E(	un+1)	wn.

(7.17)

Discretization error bound

A discretization error analysis of the fully discrete problem (7.17) for the
general case of a time-dependent velocity field u is not known, yet. For the case
of a stationary and divergence free velocity field u = u(x) an error analysis
has recently been given in [59]. We outline the main result of that analysis. We
assume that the Dirichlet data φD are also independent of t. Instead of a local
stability parameter δ = δT we assume quasi-uniformity of the triangulation
and use one global parameter δ = h‖u‖−1

L∞(Ω). For a stationary velocity field u
the matrices E(u) and H(u) are independent of t and the scheme (7.17) is the
matrix-vector representation of the following discrete problem, cf. (7.13): let
φ0

h := φ0,h ∈ Vh(φD) be an approximation of the initial condition φ0 = φ(0);
for n ≥ 0 determine φn

h ∈ Vh(φD) such that

(φn+1
h − φn

h

Δt
+ u · ∇

(
θφn+1

h + (1 − θ)φn
h

)
, vh + δu · ∇vh

)
L2 = 0, (7.18)

for all vh ∈ Vh. In [59] an analysis for θ ∈ (0, 1] is presented. Here we restrict
to the Crank-Nicolson method, i.e., θ = 1

2 . In the analysis it is assumed that
the solution φ is sufficiently smooth, such that higher order derivatives are
bounded. Let NΔt = T , i.e. φN

h is the numerical approximation of φ(·, T ).
The following error bound can be shown to hold:

‖φN
h − φ(·, T )‖L2 +

√
δ
∥
∥u · ∇

(
φN

h − φ(·, T )
)∥∥

L2 ≤ cT (hk+ 1
2 +Δt2), (7.19)
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with a constant c that depends on the smoothness of the data φD and of the
solution φ but not on T, h, Δt. In [59] this result is proved for the case of
homogeneous inflow data φD = 0, but the analysis can easily be extended to
the inhomogeneous case φD �= 0, cf. [169]. As in the analysis presented for the
simple hyperbolic problem in Sect. 7.2, the bound in (7.19) reflects that due
to the stabilization not only the L2-norm of the error but also its derivative
in streamline direction can be controlled. The estimate (7.19) is similar to the
one given in (7.11). The term Δt2 in the error bound is of optimal order. The
term hk+ 1

2 is optimal for the error in the streamline derivative (recall: δ ∼ h)
and suboptimal (by a factor

√
h) for the L2-norm of the error.

7.3 Construction of an approximate interface Γh

As we will see further on, at several places (e.g., in the discretization of the
surface tension force functional fΓ (v)) we will need an approximation Γh(t) of
the interface Γ (t). In this section we discuss a simple method for constructing
such an approximation.

Assume that for a fixed t ∈ [0, T ] we have a finite element approximation
φh(·, t) ∈ Vh = X

2
h of the level set function φ(x, t). To simplify the notation,

in the remainder of this section we write φ(x, t) =: φ(x), φh(x, t) =: φh(x).
In Sect. 7.4.1 we address the issue of re-initialization of the level set function,
which is introduced to assure that φ (or φh) remains, in a neighborhood of the
interface, close to a signed distance function. Thus φ and its approximation
φh ∈ Vh can be assumed to be close to a signed distance function. Let Γ̃h be
the zero level of φh and

T Γ
h :=

{
T ∈ Th : meas2(T ∩ Γ̃h) > 0

}
(7.20)

the collection of tetrahedra which contain the approximate interface Γ̃h. Let
T Γ

h′ be the collection of tetrahedra obtained by one further regular refinement
of all T ∈ T Γ

h (subdivision of each tetrahedron in 8 child tetrahedra, cf.
Fig. 3.1). Furthermore, I(φh) is the continuous piecewise linear function on
T Γ

h′ which interpolates φh at all vertices of all tetrahedra in T Γ
h′ . Note that

the degrees of freedom of the P1 finite element functions on T Γ
h′ (located at

the vertices) coincide with the degrees of freedom of the P2 finite element
functions on T Γ

h (located at the vertices and midpoints of edges).

The approximation Γh of the interface Γ is defined by

Γh := {x ∈ Ω : I(φh)(x) = 0 } . (7.21)

Hence, Γh consists of piecewise planar segments ΓT ⊂ Γh, where

ΓT := T ∩ Γh (7.22)
for T ∈ T Γ

h′ .
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The interface mesh size parameter hΓ is the maximal diameter of these
segments. Thus hΓ is approximately the maximal diameter of the tetrahedra
in T Γ

h′ , i.e., 2hΓ is approximately the maximal diameter of the tetrahedra in
Th that are close to the interface. In our applications we use local refinement
close to the interface, which implies hΓ � h. In Fig. 7.1 we illustrate this
construction for the two-dimensional case. An illustration for a 3D case is
given in Fig. 7.5. Note that in general the segments of Γh are not aligned with
the faces of the tetrahedral triangulation T Γ

h′ .

T Γ
h

T Γ
h

Γ
Γh

Fig. 7.1. Construction of approximate interface for 2D case.

Each of the planar segments ΓT of Γh is either a triangle or a quadrilateral,
depending on the sign pattern of φh on the corresponding T ∈ T Γ

h′ , cf. Fig. 7.2.
By construction the vertices of a planar segment ΓT are located on those edges
of T along which φh changes its sign. If there are two positive and two negative
values of φh on the vertices of T , then the corresponding interface segment ΓT

is a quadrilateral. In all other cases ΓT is a triangle. The quadrilaterals can
(formally) be divided into two triangles. Thus Γh consists of a set of triangular
faces, which is denoted by Fh.

+

+

−

− −

+
+ +

Fig. 7.2. Sign pattern of φh on T ∈ T Γ
h′ and corresponding interface segment

ΓT = T ∩ Γ (in gray): either a triangle or a quadrilateral.

Special cases may occur if some of the values of φh on the vertices of T
are equal to zero (or below a given tolerance). Let 0 ≤ n0 ≤ 4 be the number
of these (close to) zero values. In the following we discuss the shape of ΓT in
all the cases n0 = 0, 1, 2, 3, 4.
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• n0 = 0 is not a special case, the situation is as depicted in Fig. 7.2 which
was discussed in the foregoing paragraph.

• For n0 = 1, 2 we distinguish two cases: If the other 4− n0 non-zero values
have the same sign, then ΓT is a point (n0 = 1) or a line segment (n0 = 2)
and can be ignored as meas2(ΓT ) = 0. Otherwise the non-zero values are
of different sign yielding 3 − n0 edges with a change of sign, as a simple
case differentiation shows. Thus ΓT has 3 vertices, hence ΓT is a triangle.

• In the case n0 = 3 the interface segment ΓT is equal to a face of T . Then
one has to take care that this face is not counted twice when computing a
surface integral on Γh using an assembling strategy over T ∈ T Γ

h′ .
• If n0 = 4 then either the intersection of T ∈ T Γ

h′ with Γh is empty (cf.
for example the left upper triangle in Fig. 7.1) or there is a degeneration,
namely ΓT = T , i.e. the interface segment is three-dimensional. Of course,
the latter makes not much sense. Such a situation typically indicates that
the grid is too coarse to represent the interface properly, cf. Fig. 7.3.

Fig. 7.3. 2D examples for interface degeneration such that the interface reconstruc-
tion fails. Left: curvature κ too large compared to grid resolution (|κ| ≥ 2

h
). Right:

distance d between interfaces too small compared to grid resolution (d ≤ h).

If a situation as on the right in Fig. 7.3 occurs, then in the interface recon-
struction special measures have to be taken to handle the (almost) topological
singularity.

For an example in which Γ is a sphere, the resulting polygonal approxi-
mations Γh for h = 1

5 and h = 1
10 are shown in Fig. 7.4. A detail of such a

polygonal interface approximation is shown in Fig. 7.5.

7.3.1 Error in approximation of Γ by Γh

We assume a fixed sufficiently smooth interface Γ , which is the zero level of
φ, and a mesh size hΓ that is sufficiently small such that degenerations as
in Fig. 7.3 do not occur. We analyze the quality of Γh as an approximation
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Fig. 7.4. Approximate interface Γh for an example with a sphere, on a coarse grid
(left) and after one refinement (right).

Fig. 7.5. Detail of the interface triangulation Γh. On the left, also the outer trian-
gulation T Γ

h′ is shown.

of Γ . For this we first introduce some notation and further assumptions. Let
U :=

{
x ∈ R

3 : dist(x, Γ ) < c
}

be a sufficiently small neighborhood of Γ . We
define T Γ

h as in (7.20), i.e., the collection of tetrahedra which intersect the
zero level Γ̃h of φh, and assume that T Γ

h ⊂ U . Let d be the signed distance
function

d : U → R, |d(x)| := dist(x, Γ ) for all x ∈ U.

Thus Γ is the zero level set of d. Note that nΓ = ∇d on Γ . We define n(x) :=
∇d(x) for x ∈ U . Thus n = nΓ on Γ and ‖n(x)‖ = 1 for all x ∈ U . Here
and in the remainder of this section ‖ · ‖ denotes the Euclidean norm on R

3.
We introduce a local orthogonal coordinate system by using the projection
p : U → Γ :

p(x) = x− d(x)n(x) for all x ∈ U.
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We assume that the decomposition x = p(x) + d(x)n(x) is unique for all
x ∈ U . Note that

n(x) = n
(
p(x)

)
for all x ∈ U.

The unit normal on Γh (pointing outward from Ω1) is denoted by nh. Using
these preliminaries we can derive the following approximation result.

Theorem 7.3.1 Assume that φ ∈ H2
∞(U) and that for c1, c0 > 0

c0 ≤ ‖∇φ(x)‖ ≤ c1 for all x ∈ U. (7.23)

Furthermore, we assume that the approximation φh ∈ Vh = X
2
h of φ satisfies

‖φh − φ‖L∞(U) + hΓ ‖φh − φ‖H1∞(U) ≤ chm
Γ ‖φ‖Hm∞(U), m = 1, 2. (7.24)

Then the following holds:

|d(x)| ≤ ch2
Γ for all x ∈ Γh, (7.25a)

‖n(x) − nh(x)‖ ≤ chΓ for all x ∈ Γh. (7.25b)

Proof. Let I be the linear interpolation operator corresponding to T Γ
h′ , used

in (7.21), and define the piecewise linear function φ̃h = Iφh. Recall that
Γh =

{
x ∈ R

3 : φ̃h(x) = 0
}
. Using standard properties of I and the error

bound in (7.24) one obtains

‖φ̃h − φ‖L∞(T Γ
h ) ≤ ‖I(φh − φ)‖L∞(T Γ

h ) + ‖Iφ− φ‖L∞(T Γ
h )

≤ ‖φh − φ‖L∞(U) + ch2
Γ ‖φ‖H2∞(U)

≤ c h2
Γ ‖φ‖H2∞(U).

Due to φ̃h(x) = 0 for x ∈ Γh this yields

|φ(x)| ≤ ch2
Γ for x ∈ Γh. (7.26)

Take x ∈ Γh and introduce the notation y = p(x) = x − d(x)n(x) = x −
d(x)n(y) ∈ Γ . For suitable s with |s| ≤ |d(x)| and ỹ = y + sn(y) we get

φ(x) = φ(x) − φ(y) = φ(y + d(x)n(y)) − φ(y)
= d(x)∇φ(y + sn(y)) · n(y) = d(x)∇φ(ỹ) · n(y)

= d(x)
(
(∇φ(ỹ) −∇φ(y)) · n(y) + ‖∇φ(y)‖

)
.

(7.27)

Due to (7.23) we have ‖∇φ(y)‖ ≥ c0. We assume that U is sufficiently small
such that ‖∇φ(ỹ) −∇φ(y)‖ ≤ ‖φ‖H2∞(U)|d(x)| ≤ 1

2c0 holds. Hence we obtain
from (7.27) that |φ(x)| ≥ 1

2 c0|d(x)| holds, and using (7.26) yields
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|d(x)| ≤ c|φ(x)| ≤ ch2
Γ , x ∈ Γh,

i.e., the result in (7.25a). We also have, using Assumption (7.24)

‖φ̃h − φ‖H1∞(T Γ
h ) ≤ ‖I(φh − φ)‖H1∞(T Γ

h ) + ‖Iφ− φ‖H1∞(T Γ
h )

≤ c ‖φh − φ‖H1∞(U) + chΓ ‖φ‖H2∞(U) ≤ chΓ ‖φ‖H2∞(U).

This implies
‖∇φ̃h(x)‖ = ‖∇φ(x)‖ + O(h), x ∈ Γh.

Using this, we obtain for x ∈ Γh (not on an edge) and y = p(x) ∈ Γ

‖n(x) − nh(x)‖ = ‖n(y) − nh(x)‖ =

∥
∥
∥
∥
∥

∇φ(y)
‖∇φ(y)‖ − ∇φ̃h(x)

‖∇φ̃h(x)‖

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥

∇φ(y)
‖∇φ(y)‖ − ∇φ(x)

‖∇φ(x)‖

∥
∥
∥
∥+

∥∥
∥
∥
∥

∇φ(x)
‖∇φ(x)‖ − ∇φ̃h(x)

‖∇φ̃h(x)‖

∥∥
∥
∥
∥
.

For the first term we obtain, from a Taylor expansion, Assumption (7.23) and
‖x− y‖ ≤ ch2

Γ : ∥∥
∥
∥

∇φ(y)
‖∇φ(y)‖ − ∇φ(x)

‖∇φ(x)‖

∥∥
∥
∥ ≤ ch2

Γ .

For the second term we get

∥
∥
∥
∥
∥

∇φ(x)
‖∇φ(x)‖ − ∇φ̃h(x)

‖∇φ̃h(x)‖

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥∥

∇φ−∇φ̃ ‖∇φ‖
‖∇φ̃‖

‖∇φ‖

∥
∥
∥
∥
∥∥

≤ c−1
0

∣
∣
∣
∣
‖∇φ(x)‖
‖∇φ̃h(x)‖

− 1
∣
∣
∣
∣ · ‖∇φ̃h(x)‖ + c−1

0 ‖∇φ̃h(x) −∇φ(x)‖ ≤ c hΓ ,

which completes the proof. �

The results in (7.25a) and (7.25b) give (satisfactory) quantitative results on
the approximation quality of Γh. The result in (7.25b) implies that the tangent
planes are close in a certain sense, and that “zigzag” effects in the approxi-
mation Γh do not occur. These bounds will play a crucial role in the analysis
of the surface tension force discretization in Sect. 7.7. We comment on the
assumptions in (7.23) and (7.24). Due to re-initialization, in a neighborhood
of the interface the level set function φ is close to a signed distance function
and thus ‖∇φ‖ ≈ 1 can be expected to hold. We claim that the assumption
on the discretization error bound in (7.24) is also reasonable. Due to the re-
initialization it is reasonable to assume that φ is (very) smooth. Hence, using
quadratic finite elements, an optimal order discretization method would have
an error bound of the form (7.24) with m = 3. We do not know whether the
SDFEM applied to the hyperbolic level set equation is of optimal order. In
(7.24), however, we only assume an h2

Γ error bound (instead of the optimal h3
Γ
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bound) to be satisfied. The only rigorous discretization error bounds for the
level set equation known to us are given in [59], cf. the discussion in Sect. 7.2.2,
in particular the result in (7.19). For quadratic finite elements and a suitable
time step Δt the latter result yields a bound ch

2 1
2

Γ . The discretization error,
however, is measured in a weaker norm as the one used in (7.24).

For a sufficiently smooth level set function φ and an approximation φh ∈ X
2
h

one could consider the case in which the approximation error bound in (7.24)
even holds for an m ∈ (2, 3]. Such a stronger assumption, however, would not
improve the bounds in (7.25). This is due to the fact that linear interpolation
is used in the construction of Γh. In the proof this is reflected by the terms
‖Iφ−φ‖L∞(T Γ

h ) and ‖Iφ− φ‖H1∞(T Γ
h ) for which the optimal error bounds are

of the form ch2
Γ and chΓ , respectively. Below we present a result which shows

that by using φh, instead of Iφh, a better normal approximation than the one
in (7.25b) can be obtained. This result will be crucial in the discretization of
the surface tension force treated in Sect. 7.6.

Lemma 7.3.2 Assume that φ ∈ H3(U) and that (7.23) holds. Furthermore,
we assume that φh ∈ X

2
h satisfies

‖φh − φ‖H1∞(U) ≤ chp
Γ , for a p ∈ (0, 2]. (7.28)

For x ∈ U define ñh(x) := ∇φh(x)
‖∇φh(x)‖ . The following holds:

‖n(x) − ñh(x)‖ ≤ chp
Γ for all x ∈ Γh. (7.29)

Proof. We use similar arguments as in the proof of Theorem 7.3.1. For x ∈ Γh

(not on an edge)

‖n(x) − ñh(x)‖ = ‖n(y) − ñh(x)‖ =
∥∥
∥

∇φ(y)
‖∇φ(y)‖ − ∇φh(x)

‖∇φh(x)‖

∥∥
∥

≤
∥
∥∥

∇φ(y)
‖∇φ(y)‖ − ∇φ(x)

‖∇φ(x)‖

∥
∥∥+

∥
∥∥

∇φ(x)
‖∇φ(x)‖ − ∇φh(x)

‖∇φh(x)‖

∥
∥∥.

Using a Taylor expansion and ‖x− y‖ ≤ ch2
Γ we obtain a bound ch2

Γ for the
first term. Since ‖∇φh(x) −∇φ(x)‖ ≤ chp

Γ , the second term can be bounded
by chp

Γ using the same arguments as in the proof of Theorem 7.3.1. �

Let Γ̃h be the zero level set of φh ∈ X
2
h. This zero level is difficult to compute;

therefore, in practice we use its piecewise planar approximation Γh. For x ∈
Γ̃h, the quantity ñh(x) is the unit outward normal on Γ̃h. Note that, for a
given φh ∈ X

2
h and x ∈ U it is easy to compute the quantity ñh(x). In the

sense as in Theorem 7.3.1 and Lemma 7.3.2, ñh(x) is a better approximation
to the normal n(x) than nh(x).
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7.4 Corrections of the level set function

During the evolution of the level set function φ or of its finite element ap-
proximation φh, which is driven by the velocity field u, the property of φ (φh)
being close to a signed distance function is lost. This has undesirable effects,
which can be avoided by using a re-initialization technique as explained in
Sect. 7.4.1. In general the (spatial and temporal) discretizations of the level
set equation are such that mass conservation is not guaranteed on the discrete
level (only for h, Δt ↓ 0). This issue of loss of mass is briefly addressed in
Sect. 7.4.2.

7.4.1 Re-initialization

Assume that the initial data φ0(x), x ∈ Ω, for the level set equation are such
that (locally, close to the initial interface) φ0 is a signed distance function
to Γ (0). Then in general during the evolution of the level set function φ
the property of φ being close to a (signed) distance function is lost, which
has undesirable effects. For example, an accurate spatial discretization of φ
becomes hard in regions where φ has a very strong variation, and the problem
of finding the zero level set of φ becomes ill conditioned in regions where
φ is very flat. Therefore, often level set methods are combined with a re-
initialization (also called “reparametrization”) technique.

Assume that for a given t0 ∈ [0, T ] an approximation φh(·) of the level set
function φ(·, t0) is known. Given this φh a re-initialization method results in
φ̃h such that:

1. The zero level of φ̃h is (approximately) equal to that of φh.
2. The function φ̃h is close to a signed distance function: ‖∇φ̃h‖ ≈ 1 (close

to the interface).

The function φ̃h is then used as re-initialization in the evolution of the level
set function: φ̃h is taken as “initial” data to solve the level set equation for
t ≥ t0.

Different re-initialization techniques are known in the literature, cf. [221,
222, 148, 266, 205]. A popular method is based on solving the Eikonal equation

‖∇ψ‖ = 1

by introducing a pseudo-time evolution as follows. Let φh be the given approx-
imation of the level set function, and consider the first order partial differential
equation for ψ = ψ(x, τ):

∂ψ

∂τ
= Sα(φh)(1 − ‖∇ψ‖), τ ≥ 0, x ∈ Ω, (7.30)

ψ(·, 0) = φh,

with
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Sα(ζ) =
ζ

√
ζ2 + α2

, ζ ∈ R,

where α is a regularization parameter (0 < α � 1). The function Sα is a
smoothed sign function. Due to Sα(0) = 0 the zero level set of ψ remains
equal to that of φh. A stationary solution ψ(x) = limτ→∞ ψ(x, τ) of (7.30)
solves the Eikonal equation and thus ψ is a signed distance function. The
equation (7.30) can be reformulated in the more convenient form

∂ψ

∂τ
+ w(ψ) · ∇ψ = Sα(φh) with w(ψ) := Sα(φh)

∇ψ
‖∇ψ‖ . (7.31)

In practice, the equation (7.31) is discretized in space and time and for suffi-
ciently large τf > 0 one can use the computed discrete solution φ̃h := ψh(·, τf )
as a re-initialization of φh. For a further discussion of this re-initialization
method we refer to the literature [231, 230, 240]. Using this technique one
faces the following difficulties. Firstly, the method contains control parame-
ters α and τf and there are no good practical criteria on how to select these.
Secondly, the partial differential equation (7.31) is nonlinear and hyperbolic;
accurate discretization of this type of partial differential equation is rather dif-
ficult. Finally, the invariance property of the zero level holds for the stationary
solution ψ(x, τ) of the continuous problem in (7.30), but after discretization it
is usually lost. It may well happen that the difference between the zero levels
of φh and ψh(·, τf ) is “large”.

Another technique for re-initialization is the Fast Marching Method (cf.
[157, 220]). In [148] a survey and comparison of different re-initialization meth-
ods is given, where (for a certain class of problems) the Fast Marching Method
turns out to be the most accurate and efficient one. In our level set method we
use a variant of the Fast Marching Method that is explained in detail below.

Fast Marching Method (FMM)

In our level set method we have a piecewise quadratic function φh ∈ Vh = X
2
h

for which a re-initialization should be determined. We first describe the FMM
applied to a piecewise linear function and then explain how this method is
applied to the piecewise quadratic φh.

Let ψh be a piecewise linear function on the tetrahedral triangulation Th.
The zero level of ψh is denoted by Γh. This zero level consists of planar
segments ΓT :

Γh =
⋃

T∈T Γ
h

ΓT , with ΓT := Γh ∩ T, (7.32)

and T Γ
h the collection of all tetrahedra that have a nonempty intersection

with Γh. The planar segment ΓT is either a triangle or a quadrilateral, cf.
Fig. 7.2. We introduce some notation. For T ∈ Th, V(T ) is the set of the
four vertices of T . More general, for a collection of tetrahedra S, the set of all
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vertices contained in S is denoted by V(S). We write V := V(Th). Furthermore,
for v ∈ V , T (v) is the set of all tetrahedra which have v as a vertex:

T (v) = {T ∈ Th : v ∈ V(T ) } .

We also need the recursively defined larger neighborhoods:

T 1(v) := T (v), T k+1(v) =
{
T ∈ Th : V(T ) ∩ V(T k(v)) �= ∅

}
, k ≥ 1.

Finally, for v ∈ V , N (v) is the collection of all neighboring vertices of v (i. e.,
for each w ∈ N (v) there is an edge in Th connecting v and w):

N (v) :=
( ⋃

T∈T (v)

V(T )
)
\ {v}.

As input for the FMM we need Th, the zero level set Γh and sign(ψh(v)), v ∈ V .
Thus only sign(ψh(v)) is needed, and not ψh(v) itself. The FMM consists of
two phases: The initialization phase, where the values at vertices close to the
interface are determined, and the extension phase, where the information is
propagated from the interface to the vertices in the far field.

Initialization phase. We define the set of vertices corresponding to T Γ
h :

VΓ := V(T Γ
h ) =

{
v ∈ V(T ) : T ∈ T Γ

h

}
. (7.33)

The aim of the initialization phase is to define a discrete (approximate) dis-
tance function d̂(v) for each v ∈ VΓ . To this end, we present two possible
strategies, a geometry-based approach and a weighted scaling approach.

We first consider the geometry-based approach. For v ∈ VΓ and T ∈
T (v) ∩ T Γ

h let ΓT be the planar segment as in (7.32). This segment is either
a triangle or a quadrilateral. In the latter case ΓT can be subdivided into two
triangles. If Δ is a triangle in R

3 and p ∈ R
3 then the distance between Δ

and p
d(p,Δ) := min

x∈Δ
‖p− x‖, (7.34)

can be computed using elementary geometry, for example as follows. If Δ =
conv{v1, v2, v3} and A = (v2−v1, v3−v1) one first solves the 3×2 least squares
problem ‖Az − (p− v1)‖ → min. This results in the orthogonal projection of
p on the plane that contains Δ. If this orthogonal projection is contained in
the triangle Δ then the residual of the least squares problem equals d(p,Δ).
Otherwise, d(p,Δ) = dist(p, ∂Δ), and thus the distance of p to the three edges
of Δ has to be determined.
Hence, for arbitrary v ∈ VΓ , T ∈ T Γ

h we can compute

dT (v) := d(v, ΓT ).

For a given k ≥ 1 the (approximate) distance between v and Γh is defined by
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d̂(v) := min
T∈T k(v)∩T Γ

h

dT (v) = min
x∈Γh∩T k(v)

‖v − x‖ for v ∈ VΓ . (7.35)

In practice we typically use k = 2. Properties of the geometry based initial-
ization are discussed in Remark 7.4.3.

Another approach is based on a scaling of the level set function at the
vertices v ∈ VΓ . One motivation for this approach comes from the following
observation. If one wants to guarantee that the approximated interface Γh

is not moved by re-initialization, then the only choice is d̂(v) = α−1φh(v)
for v ∈ VΓ with a suitable scalar α > 0. Achieving the (distance) property
‖∇d̂‖ ≈ 1 by scaling with a single scalar, however, is not possible in general.
Consider, for example, the case of a level set function φh which has a large
gradient ‖∇φh‖ ≈ 103 in one part of T Γ

h and a small gradient ∇φh‖ ≈ 10−3

in another part.
This leads to the idea to use a vertex-dependent scalar αv, i. e., to define

d̂(v) = α−1
v φh(v), v ∈ VΓ . (7.36)

We propose to use

αv :=

∑
T∈T (v)

∫
T
‖∇φh‖ dx

∑
T∈T (v)

∫
T 1 dx

, v ∈ VΓ , (7.37)

i. e., αv is an average of the gradients of φh on T (v). Compared to the
geometry-based approach described above there is no need to reconstruct
Γh from φh, allowing for a relatively simple implementation of the method.
A comparison of both methods in a numerical example is given in Sect. 7.5.2.
After completion of the initialization phase the values {

(
v, d̂(v)

)
: v ∈ VΓ }

determine an approximate distance grid function for the vertices v ∈ VΓ .

Extension phase. The second phase consists of a greedy algorithm in which
the approximate distance function d̂ is extended to neighbor vertices of VΓ

and then to neighbors of neighbors, etc. To explain this more precisely we
introduce two sets of vertices.

The first set V̂ ⊂ V contains the vertices where the values of the ap-
proximate distance function d̂ : V → R have already been computed. As
initialization we take V̂ := VΓ . We call V̂ the finalized set.

The second one is the set of so-called active vertices A ⊂ V \ V̂ , which
consists of vertices v /∈ V̂ that have a neighboring vertex in V̂ :

A :=
{
v ∈ V \ V̂ : N (v) ∩ V̂ �= ∅

}
. (7.38)

A is called the active set. After the initialization phase, the initial active set
A0 is given by

A0 := { v ∈ V \ VΓ : N (v) ∩ VΓ �= ∅ } . (7.39)

For v ∈ A we define an approximate distance function in a similar way
as in the initialization phase. Since its values may change if the finalized and
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active set are updated, we denote it by d̃ : A → R. We emphasize that d̃ has
tentative character in contrast to d̂, which will be the final outcome of the
algorithm. The construction of d̃ is described in the following.

Take v ∈ A and T ∈ T (v) with V(T )∩ V̂ �= ∅. Note that such a T exists if
A is nonempty. There are three possible cases, namely |V(T ) ∩ V̂| ∈ {1, 2, 3}.

• If |V(T ) ∩ V̂| = 1, say V(T ) ∩ V̂ = {w}, we define

d̃T (v) := d̂(w) + ‖v − w‖.

• For the other two cases, i. e., V(T ) ∩ V̂ = {wi}1≤i≤m with m = 2 or
m = 3, we use a distance function to the line segment W = conv(w1, w2)
(for m = 2) or the triangle W = conv(w1, w2, w3) (for m = 3), which is
denoted by d(v,W ). In the case m = 3, this is the distance function as in
(7.34). Let PW : R

3 →W be such that d(v,W ) = ‖v − PW v‖. We define

d̃T (v) := d̂(PW v) + ‖v − PW v‖ = d̂(PW v) + d(v,W ).

The value d̂(PW v) is determined by linear interpolation of the known val-
ues d̂(wj), 1 ≤ j ≤ m. This is well-defined since wj ∈ V̂ for 1 ≤ j ≤ m and
d̂ is already defined on V̂.

The tentative approximate distance function d̃ : A → R at active vertices
v ∈ A is defined by

d̃(v) := min
{
d̃T (v) : T ∈ T (v) with V(T ) ∩ V̂ �= ∅

}
. (7.40)

The complete re-initialization method is as follows:

Algorithm 7.4.1 (Fast Marching Method)

1. Initialization: VΓ as in (7.33), compute d̂(VΓ ) as in (7.35) (or (7.36)).
2. Initialize finalized set V̂ := VΓ and active set A := A0, cf. (7.39).
3. For the initial active set A0, compute d̃(A0) as in (7.39), (7.40).
4. While A �= ∅, repeat the following steps:

a) Determine vmin ∈ A such that d̃(vmin) = minv∈A d̃(v).

b) Update finalized set V̂ := V̂ ∪ {vmin} and define d̂(vmin) := d̃(vmin).
c) Update active set A := (A∪ Ñ ) \ {vmin} where Ñ := N (vmin) \ V̂ .
d) (Re)compute d̃(v) for v ∈ Ñ .

5. For all v ∈ V , set d̂(v) := sign(ψh(v)) · d̂(v).

After this re-initialization we have V̂ = V and a grid function d̂(v), v ∈ V ,
which uniquely determines a continuous piecewise linear approximate signed
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distance function. This function is defined to be the re-initialization of ψh, de-
noted by ψ̂h. The zero level set of ψ̂h is denoted by Γ̂h. Below, in Remark 7.4.3
we discuss important approximation properties of the re-initialization ψ̂h and
its zero level.

Remark 7.4.2 (Complexity) The number of (arithmetic) operations for
the initialization phase (steps 1–3 in Algorithm 7.4.1) is O(|VΓ | + |A0|). For
the extension phase (steps 4–5 in Algorithm 7.4.1) the sorting and updating
in the steps 4.a)-c) can be realized with O(log |A|) complexity using a heap
data structure for A. Step 4 is repeated NV := |V \ VΓ | times, and thus this
FMM has an overall complexity of the order O(NV logNV).

Remark 7.4.3 (Approximation properties) A detailed analysis of the
FMM in Algorithm 7.4.1 using the geometry-based initialization phase (7.35)
is given in [123]. We outline some main results. By construction each T ∈ T Γ

h

contains a segment of the new zero level Γ̂h and thus dist(Γh, Γ̂h) ≤ hΓ holds.
In practice, however, one typically observes dist(Γh, Γ̂h) � hΓ , which can be
explained by the results from [123]. We use notation and assumptions as in
Sect. 7.3.1. We assume that Γh approximates a smooth interface Γ and define
d to be the signed distance function to Γ . The approximation error is assumed
to be sufficiently small in the following sense:

|d(x)| ≤ ch2
Γ for all x ∈ Γh, (7.41a)

‖n(x) − nh(x)‖ ≤ chΓ for all x ∈ Γh. (7.41b)

In our setting these are reasonable assumptions, cf. Theorem 7.3.1. The ap-
proximate interface Γh is the zero level of the given piecewise linear function
ψh. Let dh be the signed distance function to Γh. After the initialization phase,
for v ∈ VΓ the re-initialization ψ̂h(v) is determined by the function d̂ in (7.35):
ψ̂h(v) = sign(ψh(v))d̂(v) for v ∈ VΓ . Note that d̂ in (7.35) depends on k ≥ 1.
It is obvious that for k sufficiently large we have

ψ̂h(v) = dh(v) for all v ∈ VΓ , (7.42)

i.e. at the vertices in VΓ we have determined the exact signed distance to Γh.
For the theoretical analysis we assume that (7.42) holds. Based on experience,
in computations we take k = 2. Note that a larger k value induces higher
computational costs for the re-initialization.
Based on the assumptions in (7.41), (7.42) one can derive the following results:

|d(x)| ≤ ch2
Γ for all x ∈ Γ̂h, (7.43a)

‖∇ψ̂h − n‖L∞(T Γ
h ) ≤ chΓ . (7.43b)

The result in (7.43a) shows that in the re-initialization the accuracy of the zero
level set as an approximation of Γ is maintained. Due to ‖n‖ = 1, we conclude
from (7.43b) that ‖∇ψ̂h(x)‖ = 1 + O(hΓ ) for x ∈ T Γ

h , i.e., ψ̂h is, at least in
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a neighborhood of its zero level, close to a signed distance function. These
approximation properties of the re-initialization are illustrated in a numerical
experiment in Sect. 7.5.2.

Application of FMM to a piecewise quadratic function

Let φh ∈ X
2
h be a piecewise quadratic function corresponding to the triangu-

lation Th. The regular refinement of Th is denoted by Th′ := {T ′ ∈ K(T ) : T ∈
Th} and I(φh) is the continuous piecewise linear function on Th′ that interpo-
lates φh at all vertices of all tetrahedra in Th′ . The approximate interface Γh

is the zero level of I(φh). We can apply the FMM given above to the function
I(φh), which results in the function Î(φh) that is piecewise linear on Th′ . The
values at the vertices of this function uniquely define a piecewise quadratic
function on Th, which is denoted by φ̂h =: FMM(φh) and is defined to be
the re-initialization of φh.

Remark 7.4.4 There is a need for re-initialization, only if the size of the
gradient of φh is “too small” or “too large”. One possibility to quantify this
is the following. For c > 1 define the subset

Vc :=
{
φh ∈ X

2
h : ‖∇φh‖L2(T ) < c|T | 12 ∀ T ∈ Th′

}

∩
{
φh ∈ X

2
h :

1
c
|T | 12 < ‖∇φh‖L2(T ) ∀ T ∈ Th′

}
.

In practice we take c ∈ [5, 10] and apply the FMM only if φh /∈ Vc. This
defines a re-initialization mapping ReInit : X

2
h → X

2
h:

ReInit(φh) =

{
φh if φh ∈ Vc,

φ̂h = FMM(φh) otherwise.
(7.44)

The FMM is such that ‖∇φ̂h‖ is close to one, in particular we have (for c
not too close to one) φ̂h ∈ Vc. Hence one can expect ReInit(ReInit(φh)) =
ReInit(φh) to hold for all φh ∈ X

2
h. Furthermore, one can check that the

re-initialization mapping ReInit is continuous on Vc.

7.4.2 Mass conservation

Due to immiscibility the mass of the phase contained in Ωi(t) is constant.
Using the incompressibility of the phases, it follows that the volume Vi(t) :=∫

Ωi(t)
1 dx is conserved, i.e. d

dtVi(t) = 0 for i = 1, 2. Due to Ω1(t)∪Ω2(t) = Ω

it suffices to consider i = 1 (or i = 2). For the level set function the quantity∫
Ωi(t)

φ(x, t) dx is conserved:

d

dt

∫

Ωi(t)

φ(x, t) dx = 0, i = 1, 2, (7.45)
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which follows from the Reynolds’ transport theorem and div u = 0. There
is, however, no natural relation between this conservation property and mass
conservation. The VOF method for interface capturing is based on a discretiza-
tion of a transport equation for the characteristic function corresponding to
Ω1 (denoted by χ1) and thus this method has a natural discrete mass conser-
vation property. Recall the transport equation for χ1:

∂

∂t

∫

W

χ1 dx +
∫

∂W

χ1u · n ds = 0, W ⊂ Ω,

cf. (6.26) (n is the outward unit normal on ∂W ). Applying a conservative
finite volume method to this problem results in a discretization χ̃1(x, tn) of
χ1(x, tn), for which

∫

Ω

χ̃1(x, tn) − χ̃1(x, tn−1) dx = 0, n = 1, . . .
T

Δt
,

holds. Hence the volume conservation property holds on the discrete level.
In general the (temporal and spatial) discretization of the level set equa-

tion do not guarantee a volume conservation property. Also the FMM for
re-initialization of the level set function is not volume-conserving. This is a
disadvantage of the level set method compared to the VOF method. Since for
Δt ↓ 0, h ↓ 0 the discrete level set function converges to the exact solution φ
of the level set equation, one may expect that the amount of change in volume
is reduced if the time step and mesh size are taken smaller. For the SDFEM
method combined with Crank-Nicolson time discretization this is analyzed in
[169]. The analysis is based on a discretization error bound

‖φN
h − φ(·, T )‖L2 ≤ cT (hk+ 1

2 +Δt2), (7.46)

for the finite element approximation φN
h (x), cf. (7.19). Let V1(φN

h ) be the
numerical approximation of the exact volume V1(T ) = V1(0) = V1, i.e.,
V1(φN

h ) =
∫

ΩN
1,h

1 dx, with ΩN
1,h :=

{
x ∈ Ω : φN

h (x) < 0
}
. In [169] it is shown

that from the discretization error bound (7.46) and with Δt ∼ h
1
2 k+ 1

4 one can
derive the volume error estimate

|V1(φN
h ) − V1| ≤ chk.

This estimate shows how the volume error can be controlled by reducing the
mesh size.

In recent years there have appeared studies in which modifications of the
level set method are presented that have better volume conservation proper-
ties. Often these modifications are based on combining the level set approach
with a VOF technique. We do not treat this topic here, but refer to the liter-
ature, e.g. [229, 203, 87, 196].
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In the literature also the following very simple (but less satisfactory) strat-
egy, which guarantees volume conservation for the level set method, can be
found. Let V1(0) =

∫
Ω1(0) 1 dx be the volume of Ω1 at t = 0, that is assumed to

be known. For a given t > 0, let φh(x) ≈ φ(x, t) be a computed approximation
of the level set function and introduce

Ω1,h(t) := {x ∈ Ω : φh(x, t) < 0 } , V1(φh; t) :=
∫

Ω1,h(t)

1 dx.

We assume that the quantity V1(φh; t) can easily be determined (sufficiently
accurate). In our applications, where φh is piecewise quadratic on Th, we use
the interpolation I(φh), which is piecewise linear on the refined triangulation
Th′ and take

Ω1,h(t) :=
{
x ∈ Ω : I

(
φh(·, t)

)
(x) < 0

}
.

Then ∂Ω1,h(t) = Γh(t) and the integral
∫

Ω1,h(t)
1 dx can be determined exactly

(apart from rounding errors) using a simple quadrature rule on tetrahedra.
In general one has no volume conservation, i.e. there may be a significant
difference between V1(0) and V1(φh; t). Due to the fact that φh is close to a
signed distance function, a shift of the interface over a distance δ in outward
normal direction can be realized (approximately) if one subtracts δ from the
approximate level set function φh. For (exact!) volume conservation one has
to find δ ∈ R such that

V1(φh − δ; t) − V1(0) = 0

holds. In a method for computing a zero of this scalar function it is important
to keep the number of evaluations of V1(·; t) low. In our numerical simulations
we use the Anderson-Björck method [14] to solve this equation. Let δ∗ be a
solution of this problem. We then set φnew

h := φh − δ∗ and discard φh.
Note that this strategy only works if Ω1 consists of a single component. If

there are multiple components, volume must be preserved for each of them.
In this case the algorithm can be modified to shift φh only locally.

Clearly, using this simple strategy we have optimal volume conservation
for the discrete level set function. Nevertheless, this approach is not very
satisfactory since it introduces an additional discretization error source which
is very hard to control.

7.5 Numerical experiments with the level set equation

In this section we present results of two numerical experiments to illustrate
the performance of the discretization method for the level set equation and of
the fast marching re-initialization technique.
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7.5.1 Discretization using the SDFEM

We take Ω = [0, 1]3 and the ball Ω1 :=
{
x ∈ R

3 : ‖x− xM‖ < 0.2
}

with
center xM = (1

2 ,
1
4 ,

1
2 ). We use the stationary velocity field

û(x) = c(y) · (y2, −y1, 0)

where y := x− (1
2 ,

1
2 ,

1
2 ) and

c(y) =

{
4‖y‖(0.5− ‖y‖) if ‖y‖ ≤ 1

2 ,

0 otherwise.

Hence, û is a circular velocity field, cf. Fig. 7.6 for an illustration of û. Fur-
thermore, û = 0 on ∂Ω holds. We consider the time interval [0, Tend] and
define the velocity field

u(x, t) =

{
û(x) t ≤ 1

2Tend,

−û(x) t > 1
2Tend.

We consider the level set equation

∂φ

∂t
+ u · ∇φ = 0 in Ω, t ∈ [0, Tend],

with initial condition φ(x, 0) = d(x), where d is the signed distance function
to Γ (0) := ∂Ω1. In Fig. 7.7, for Tend = 20, an illustration of the computed zero
level of φ(x, t) at different times is shown. Clearly, φ(x, Tend) = d(x), x ∈ Ω,
holds. Thus the exact solution is known for t = Tend.

The initial tetrahedral triangulation is obtained by subdividing Ω into
8 subcubes, each of which is subdivided into six tetrahedra. Then repeated
global regular refinement is applied to this initial triangulation. This results
in nested triangulations Th�

with mesh size parameter h
 = (1
2 )
. On each

triangulation we apply a method of lines discretization.
For the space discretization we use the SDFEM with quadratic finite

elements. Due to u = 0 on ∂Ω we do not need boundary conditions for φ.
Therefore we can use the finite space Vh := X

2
h of piecewise quadratic finite

elements, without any boundary conditions.

Remark 7.5.1 In other problems we usually have u �= 0 on ∂Ω. In that case,
in the weak formulation of the level set equation in (6.59c) we use a trial space
with Dirichlet boundary conditions on the inflow boundary ∂Ωin to make this
hyperbolic problem well-posed. We discuss a possible choice of these (artificial)
boundary conditions. Let φ0 = φ0(x), x ∈ Ω, be the initialization for the level
set function. The Dirichlet data for the level set function can be taken as
follows:

φD(x, t) = φ0(x) − u(x, 0) · ∇φ0(x) t, x ∈ ∂Ωin, t ∈ [0, t0]. (7.47)
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Fig. 7.6. Interface Γ (0). Also shown is the velocity field û on the slice x3 = 0.

t = 5

t = 15

t = 10

t = 20

Fig. 7.7. Computed interface at different times.
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These data are used until t = t0, the point in time at which a re-initialization
is applied. The re-initialization results in a modified level set function φ̃h(x)
and for t ∈ (t0, t1] Dirichlet boundary data are defined as in (7.47) but with φ0

replaced by φ̃h and u(x, 0) replaced by u(x, t0), etc. Note that this Dirichlet
boundary condition is time dependent. We explain the heuristics leading to a
boundary condition as in (7.47). For this we assume the inflow boundary ∂Ωin

to be planar and u(x, 0), x ∈ ∂Ωin, to be normal to the inflow boundary, i.e.
u(x, 0) = −‖u(x, 0)‖n(x), with n the outward pointing unit normal on the
boundary. The initial data φ0 are extrapolated linearly by φ0(x + αn(x)) :=
φ0(x) + α∂φ0(x)

∂n = φ0(x) + αn(x) · ∇φ0(x), α ≥ 0. This defines initial data
in the inflow region, outside the domain Ω. The velocity field u has a natural
constant extension given by u(x + αn(x), 0) := u(x, 0), x ∈ ∂Ωin, α ≥ 0.
Solving the level set equation, which describes transport of the initial data by
the velocity field u, results in

φ(x, t) = φ0(x− tu(x, 0)) = φ0(x) − tu(x, 0) · ∇φ0(x), x ∈ ∂Ωin, t ≥ 0,

which is the boundary condition proposed in (7.47).

The streamline diffusion finite element method is as explained in Sect. 7.2.2:
Determine φh(t) ∈ Vh with φh(0) = dh and such that

∑

T∈Th

(
∂φh

∂t
+ u · ∇φh, vh + δTu · ∇vh)L2(T ) = 0 for all vh ∈ Vh,

and t ∈ [0, Tend]. Here dh is the nodal interpolation of the initial condition d
in the finite element space Vh. For the parameter δT in this method we take,
cf. (7.14),

δT = SD
hT

max{10−3, ‖u‖∞,T}
,

with a constant SD that is varied below. The resulting system of ordinary
differential equations (7.16) is discretized using the implicit Euler or Crank-
Nicolson method with a time step size Δt. Because in this experiment we
want to study the accuracy of the discretization method, we do not use re-
initialization of the level set function. In the Crank-Nicolson method we do not
apply any volume correction procedure. In the implicit Euler method, however,
the results without volume correction turn out to be very poor. Therefore we
applied the simple method described in Sect. 7.4.2 at t = 4, 8, . . . , 20. The
space and time discretization results in an approximation φn

h ∈ Vh of φ(·, tn),
tn := nΔt. Let N be such that NΔt = Tend, i.e, φN

h is an approximation of
φ(·, Tend) = d. The approximate zero level of φn

h is constructed as explained
in Sect. 7.3 and is denoted by Γh(tn). This approximate interface consists of
a set

{
ΓT : T ∈ T Γ

h′
}

of planar segments ΓT = T ∩ Γh, T ∈ T Γ
h′ .

We now turn to a quantitative evaluation of the discretization method.
Since Γ (Tend) = Γ (0) and d is the signed distance function to the exact initial
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zero level Γ (0), as a measure for the quality of Γh(tn) ≈ Γ (0), n = 0, n = N ,
we introduce

‖d‖L2(Γh(tn)) :=

√√
√
√

∑

ΓT ⊂Γh(tn)

∫

ΓT

d(x)2 dx, n = 0, n = N. (7.48)

As a second error measure we use the global L2(Ω) error,

‖d− φn
h‖L2(Ω) =

√∑

T∈Th

∫

T

|d(x) − φn
h(x)|2 dx, n = 0, n = N, (7.49)

which can be determined accurately using suitable quadrature. Note that for
n = 0 we have φ0

h = dh and in these error quantities only the interpolation
error d − dh and the approximation of the zero level of the interpolant dh

plays a role. In Table 7.1 we give these quantities for n = 0 and different grid
sizes h
.

� ‖d‖L2(Γh(0)) order

1 1.77 E-2 -
2 3.90 E-3 2.18
3 9.37 E-4 2.06
4 2.31 E-4 2.02
5 5.82 E-5 1.99

� ‖d − φ0
h‖L2(Ω) order

1 4.90 E-2 -
2 1.28 E-2 1.94
3 3.27 E-3 1.97
4 8.17 E-4 2.00
5 2.04 E-4 2.00

Table 7.1. Approximation errors for different mesh sizes h = h�.

These results are consistent with the expected h2

 convergence.

The quality of the space and time discretization is measured by these
quantities for n = N . We only consider the implicit Euler method, since for the
Crank-Nicolson method this test case is not representative, cf. Remark 7.5.2.
Results for Tend = 20 and several mesh and time step sizes are given in
Table 7.2 and Table 7.3. Note that for SD = 0 there is no stabilization in the
spatial finite element discretization.
A first (surprising) observation is that the method without stabilization
(SD = 0) produces very good results. One observes an O(Δt) error behavior if
the time step is reduced. For Δt = 2−6 one obtains close to optimal errors; for
example, for � = 3 we have ‖d‖L2(Γh(20)) = 1.07 E-3 and ‖d−φN

h ‖L2(Ω) = 4.21
E-3, which have to be compared with the interpolation errors 9.37 E-4 and
3.27 E-3 of the initial data from Table 7.1. The performance of the method
with stabilization is worse. In case of the stabilization with SD = 1

2 we do not
observe an O(Δt) error reduction behavior. Furthermore, for Δt “small” the
error is dominated by the spatial discretization error and stagnates at a level
higher than the interpolation error level. An explanation of this behavior is a
topic for further research.
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� = 3 � = 4

Δt SD = 0 SD = 1
2

SD = 0 SD = 1
2

2−1 1.34 E-2 1.42 E-2 1.40 E-2 1.32 E-2
2−2 7.04 E-3 1.03 E-2 7.24 E-3 7.34 E-3
2−3 3.87 E-3 8.84 E-3 3.87 E-3 4.55 E-3
2−4 2.20 E-3 8.31 E-3 2.04 E-3 3.27 E-3
2−5 1.39 E-3 8.11 E-3 1.05 E-3 2.80 E-3
2−6 1.07 E-3 8.02 E-3 5.64 E-4 2.66 E-3

Table 7.2. Implicit Euler: error ‖d‖L2(Γh(20)) for different h = h� and Δt

� = 3 � = 4

Δt SD = 0 SD = 1
2

SD = 0 SD = 1
2

2−1 3.77 E-2 4.15 E-2 3.61 E-2 3.72 E-2
2−2 2.14 E-2 2.54 E-2 1.96 E-2 2.06 E-2
2−3 1.22 E-2 1.66 E-2 1.03 E-2 1.13 E-2
2−4 7.54 E-3 1.23 E-2 5.49 E-3 6.62 E-3
2−5 5.27 E-3 1.02 E-2 3.12 E-3 4.37 E-3
2−6 4.21 E-3 9.29 E-3 1.94 E-3 3.33 E-3

Table 7.3. Implicit Euler: error ‖d − φN
h ‖L2(Ω) for different h = h� and Δt

Remark 7.5.2 Consider a system of ODEs of the form y′(t) + F (t)y(t) =
0, y(0) = y0, t ∈ [0, Tend] with F (t) = A for t ∈ [0, 1

2Tend], F (t) = −A
for t ∈ (1

2Tend, Tend] and A ∈ R
n×n a given matrix. We apply the Crank-

Nicolson method with a time step size Δt = Tend/N and N even, resulting
in approximations yn of y(tn), n = 1, 2, . . . , N . One easily checks that, due to
the special symmetry in the problem and in the Crank-Nicolson method, we
have yN = y(0), i.e., the initial condition is exactly reproduced. In our test
example we have such a symmetry in the spatially discretized problem (for
the case SD = 0). Therefore, if we repeat the numerical experiment described
above using the Crank-Nicolson method instead of the implicit Euler method
we obtain ‖d‖L2(Γh(20)) = ‖d − φN

h ‖L2(Ω) = 0 for the case SD = 0 and very
small errors for the case SD = 1

2 .

In order to compare the Crank-Nicolson method to the implicit Euler
method we performed an experiment in which only the time discretization
error is measured. On a fixed triangulation with mesh size h = 1

8 we applied
the SDFEM with SD = 0.1. We take Tend = 20 and on the time interval
[0, 10] the resulting system of ODEs is solved with a “small” time step 1

102−5

resulting in a reference solution at t = 10 denoted by φ̃h ≈ φ(·, 10). Note
that for t ∈ [0, 10] the droplet is transported with the velocity field û and
does not move back to the initial position. Hence the symmetry property
addressed in Remark 7.5.2 does not hold. The system of ODEs is solved using
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both the Crank-Nicolson and the implicit Euler method for time step sizes
Δt = 2−k, k = 0, . . . , 5. The computed result at t = 10 is denoted by φ

1
2 N

h .

In the Tables 7.4 and 7.5 we give the errors ‖φ̃h − φ
1
2 N

h ‖L2(Ω). These results
show the expected rate of convergence, namely O(Δt) for the Euler method
and O(Δt2) for the Crank-Nicolson method.

Δt 20 2−1 2−2 2−3 2−4 2−5

� = 3 2.88 E-2 1.54 E-2 7.85 E-3 3.93 E-3 1.96 E-3 9.65 E-4

Table 7.4. Implicit Euler: discretization error ‖φ̃h − φ
1
2 N

h ‖L2(Ω).

Δt 20 2−1 2−2 2−3 2−4 2−5

� = 3 1.42 E-3 3.87 E-4 9.82 E-5 2.82 E-5 6.14 E-6 1.53 E-6

Table 7.5. Crank-Nicolson: discretization error ‖φ̃h − φ
1
2 N

h ‖L2(Ω).

7.5.2 Re-initialization by the Fast Marching Method

In this section we present some quantitative results related to the quality
of the Fast Marching re-initialization method. More results are presented in
[123]. We consider the cubic domain Ω = (−1, 1)3 and the quadratic level set
function

φ(x) = ‖x‖2 − r2, x ∈ Ω, r = 0.6.

The zero level of φ, denoted by Γ , is given by the sphere centered at the
origin with radius r. On Γ we have ‖∇φ‖ = 2r = 1.2. The signed dis-
tance function to Γ is denoted by d(x). The domain Ω is subdivided into
8 subcubes, each subdivided into 6 tetrahedra. This defines the level � = 0
triangulation. The level � ≥ 1 triangulation Th�

is obtained by � local refine-
ments in the neighborhood {x ∈ Ω : |d(x)| ≤ 0.1 }. The level � triangulation
has local mesh size parameter hΓ,
 = (1

2 )
. To the quadratic function φ on
a given triangulation Th = Th�

we apply the FMM as discussed at the end
of Sect. 7.4.1. As output of the initialization phase in the FMM one obtains
an approximate signed distance function, denoted by ψ̂h, which is piecewise
linear on T Γ

h′ (h′ = 1
2h; we use notation as in Sect. 7.4.1). The zero level of

ψ̂h, which is contained in T Γ
h′ , defines the new approximate interface denoted

by Γ̂h. Let F̂ denote the set of triangles forming Γ̂h, i. e., Γ̂h =
⋃

F∈F̂ F , and

P̂ =
{
v ∈ Γ̂h : v is vertex of triangle F ∈ F̂

}
the set of their vertices.

To measure the quality of this re-initialization we computed the quantities
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eh,∞ := max
v∈P̂

|d(v) − ψ̂h(v)| = max
v∈P̂

|d(v)|, (7.50a)

∇eh,∞ := max
T∈T Γ

h′

{
‖∇d(c) −∇ψ̂h(c)‖ : c barycenter of T

}
. (7.50b)

An important parameter in the geometry-based initialization phase is k,
cf. (7.35). Below we consider k = 1 and k = 2. The results are compared
to the scaling approach, cf. (7.36). In Tables 7.6 and 7.7 we present values of
eh,∞ and ∇eh,∞, respectively, for different levels � and the different initializa-
tion strategies. Using the geometry-based initialization phase, for k = 1 we do

� geom, k = 1 order geom, k = 2 order scale order

1 5.49 E-2 – 5.49 E-2 – 3.55 E-2 –
2 1.34 E-2 2.03 1.34 E-2 2.03 1.01 E-2 1.81
3 3.62 E-3 1.89 3.62 E-3 1.89 2.55 E-3 1.99
4 9.04 E-4 2.00 9.04 E-4 2.00 6.60 E-4 1.95
5 3.18 E-4 1.51 2.27 E-4 2.00 1.66 E-4 1.99
6 1.42 E-4 1.17 5.67 E-5 2.00 4.16 E-5 1.99

Table 7.6. Error measures eh,∞ for different initialization approaches and h = h�.

not observe second order convergence for eh,∞. Moreover, we see a stagnation
for ∇eh,∞, meaning that the re-initialized interface does not get smoother on
finer grids which renders the choice k = 1 unfeasible. Taking k = 2 instead,
we do get quadratic convergence for eh,∞ and linear convergence for ∇eh,∞,
showing that the choice k = 2 should be preferred. The same convergence
properties hold for the scaling approach which is less expensive in terms of
computational effort. The results confirm the theoretical error bounds dis-
cussed in Remark 7.4.3. We briefly comment on this. Take T ∈ T Γ

h′ and let
IT be the linear interpolation operator on T that interpolates at the vertices
of T . For x ∈ T we have (d− ψ̂h)(x) = IT (d− ψ̂h)(x) +O(h2

T ). The results in
the fifth column in Table 7.6 indicate |IT (d − ψ̂h)(x)| ≤ ch2

Γ uniformly in T

and x ∈ ΓT = Γ ∩ T . Hence for x ∈ Γ̂h, i.e. ψ̂h(x) = 0, we get |d(x)| ≤ ch2
Γ ,

which is the same as the bound in (7.43a). Since ∇d = n the results in the
fifth column in Table 7.7 are consistent with the error bound given in (7.43b).

7.6 Discretization of the surface tension functional

In this section we explain how the localized surface tension force term fΓ (v) in
(6.59a) can be approximated. We use the approach presented in [23, 93, 126].

Let Vh be the finite element space that is used for the discretization of the
velocity unknown. In our simulations we use for Vh the standard conform-
ing space of continuous piecewise quadratic functions. Applying the Galerkin
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� geom, k = 1 order geom, k = 2 order scale order

1 3.07 E-1 – 2.09 E-1 – 1.87 E-1 –
2 2.70 E-1 0.19 1.34 E-1 0.64 1.03 E-1 0.87
3 1.73 E-1 0.64 7.12 E-2 0.91 5.62 E-2 0.87
4 3.78 E-1 -1.13 3.69 E-2 0.95 2.79 E-2 1.01
5 4.69 E-1 -0.31 1.80 E-2 1.04 1.42 E-2 0.98
6 5.11 E-1 -0.12 8.95 E-3 1.01 7.04 E-3 1.01

Table 7.7. Error measures ∇eh,∞ for different initialization approaches and h = h�.

discretization to the variational (momentum) equation (6.59a) results in a
surface tension functional of the form

fΓ (vh) = −τ
∫

Γ

κvh · n ds, vh ∈ Vh. (7.51)

In many numerical simulations of two-phase flows, the discretization of the
curvature κ is a very delicate problem. This is related to the fact that κ
contains second derivatives. One way to express these second derivatives is
by means of the Laplace-Beltrami characterization of the mean curvature, cf.
(14.9):

−ΔΓ idΓ (x) = κ(x)n(x), x ∈ Γ. (7.52)

In the variational formulation we have the possibility to lower the order of
differentiation by shifting one of the derivatives to the test function, as is
shown in Lemma 14.1.2. Using this, we see that (7.51) can be rewritten as
follows:

fΓ (vh) = −τ
∫

Γ

∇Γ idΓ ·∇Γ vh ds, vh ∈ Vh. (7.53)

In this variational setting it is natural to use the expression on the right-hand
side in (7.53) as a starting point for the discretization. This idea is used in,
for example, [93, 23, 116, 126, 147, 177]. In this discretization we use the
approximation Γh of Γ . Given this approximate interface Γh,

the localized force term fΓ (vh) is approximated by

fΓh
(vh) := −τ

∫

Γh

∇Γh
idΓh

·∇Γh
vh ds, vh ∈ Vh. (7.54)

In Sect. 7.7 we will derive a bound for the error quantity

‖fΓ − fΓh
‖V′

h
= sup

vh∈Vh

fΓ (vh) − fΓh
(vh)

‖vh‖1
, (7.55)

with fΓh
as in (7.54). Note that this quantity is essential in the analysis of

discretization errors in velocity and pressure, cf. Corollary 7.10.5 (Strang-
lemma).
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Remark 7.6.1 Assume that Γ is sufficiently smooth.Then

fΓ (v) = −τ
∫

Γ

κv · n ds (7.56)

is a bounded linear functional on V0 = H1
0 (Ω)3. From Lemma 14.1.2 it follows

that for this functional we have the equivalent representation

fΓ : v → −τ
∫

Γ

∇Γ idΓ ·∇Γv ds. (7.57)

Such an equivalence, however, does not hold for fΓh
. Because Γh is not suffi-

ciently smooth, a partial integration result as in Lemma 14.1.2 does not hold.
The linear functional

v → −τ
∫

Γh

∇Γh
idΓh

·∇Γh
v ds

is not necessarily bounded on V0. Due to this, in (7.54) and (7.55) we only
consider vh ∈ Vh.

We also introduce a modified (improved) variant of the functional fΓh
.

Define the orthogonal projection

Ph(x) := I − nh(x)nh(x)T for x ∈ Γh, x not on an edge,

where nh is the unit normal on Γh (pointing outward from Ω1). The tangential
derivative along Γh can be written as ∇Γh

g = Ph∇g. Note that

∇Γh
idΓh

= Ph∇ idΓh
= (Phe1,Phe2,Phe3)T ,

with ei the i-th standard basis vector in R
3. Thus the functional fΓh

can be
written as

fΓh
(vh) = −τ

∫

Γh

Ph∇ idΓh
·∇Γh

vh ds

= −τ
3∑

i=1

∫

Γh

Phei · ∇Γh
vi ds, vi := (vh)i.

(7.58)

The discrete interface Γh is constructed as the zero level of Iφh, where φh is
a piecewise quadratic function, cf. Sect. 7.3. This piecewise quadratic function
contains better information about the curvature of Γ than its piecewise lin-
ear interpolation Iφh that is used for the construction of Γh. An improved
projection P̃h based on φh can be defined as follows:

ñh(x) :=
∇φh(x)
‖∇φh(x)‖ , P̃h(x) := I− ñh(x)ñh(x)T , x ∈ Γh. (7.59)

Hence an obvious modification is given by
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f̃Γh
(vh) = −τ

∫

Γh

P̃h∇ idΓh
·∇Γh

vh ds

= −τ
3∑

i=1

∫

Γh

P̃hei · ∇Γh
vi ds, vi := (vh)i

= −τ
∫

Γh

tr
(
P̃h∇Γh

vh

)
ds.

(7.60)

In Sect. 7.7 it is shown that this discretization of the surface tension force is
(significantly) better than the one in (7.54), namely with an error bound O(h)
instead of O(

√
h). This is confirmed by numerical experiments in Sect. 7.8.

7.6.1 Treatment of general surface tension tensors

In the previous section we restricted ourselves to the case of a constant surface
tension coefficient τ , i.e. with an interface condition of the form

[σnΓ ] = −τκnΓ = divΓ (τP).

We now consider the more general case with an interface condition of the form

[σnΓ ] = divΓ (σΓ ), (7.61)

and an interface stress tensor σΓ such that σΓ = σΓP holds. A variable
surface tension coefficient corresponds to σΓ = τP, resulting in divΓ (σΓ ) =
−τκnΓ + ∇Γ τ , cf. Remark 1.1.3. In the Boussinesq-Scriven model treated in
Sect. 1.1.5 the interface stress tensor σΓ is as in (1.36). In the weak formu-
lation, instead of the surface tension functional fΓ (v) = −τ

∫
Γ κn · v ds we

then have the generalization

fΓ (v) =
∫

Γ

divΓ (σΓ ) · v ds.

We can rewrite this using the partial integration identity (14.17), resulting in
the general surface tension functional

fΓ (v) = −
∫

Γ

tr(σΓ∇Γv) ds = −
3∑

i=1

∫

Γ

(eT
i σΓ )∇Γ vi ds, (7.62)

with v = (v1, v2, v3)T . We consider the case of a variable surface tension
coefficient, i.e., σΓ = τP. For the discretization of the corresponding surface
tension functional, as in the previous section we approximate Γ by Γh and P
by P̃h. Thus we obtain the following generalization of (7.60):
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f̃Γh
(vh) = −

∫

Γh

τ tr
(
P̃h∇Γh

v
)
ds = −

3∑

i=1

∫

Γh

τP̃hei · ∇Γh
vi ds. (7.63)

Comparing (7.60) (constant τ) and (7.63) (variable τ) we observe that the only
difference is that in case of a constant surface tension coefficient the term τ can
be taken out of the integral. Below, in Sect. 7.7, we present an error analysis
only for the case that τ is constant, in which the discretization (7.63) reduces
to (7.60). If τ is a smooth function then an error analysis for the generalization
(7.63) can be derived along the same lines as for the constant coefficient case
presented in Sect. 7.7. Results of numerical experiments with this discrete
variable surface tension functional are given in [184] and in Sect. 11.5.3.

7.7 Analysis of the Laplace-Beltrami discretization

In this section we derive a bound for

sup
vh∈Vh

fΓ (vh) − fΓh
(vh)

‖vh‖1
, (7.64)

where fΓh
is the discretization of the surface tension force as in (7.54). We also

derive a bound for this error measure with fΓh
replaced by f̃Γh

as in (7.60).
For Vh = V 3

h we take the finite element space of piecewise quadratics:

Vh =
{
v ∈ C(Ω) : v|T ∈ P2 for all T ∈ Th

}
. (7.65)

The choice of this finite element space is not essential in our analysis. The
results also hold if for Vh we take another conforming piecewise polynomial
finite element space.

7.7.1 Preliminaries

Properties of Γ and of Γh

We recall some notation and definitions from Sect. 7.3. The function d is the
signed distance function

d : U → R, |d(x)| := dist(x, Γ ) for all x ∈ U.

Thus Γ is the zero level set of d. We assume d < 0 on the interior of Γ (that
is, in Ω1) and d > 0 on the exterior. Note that nΓ = ∇d on Γ . We define
n(x) := ∇d(x) for all x ∈ U . Thus n = nΓ on Γ and ‖n(x)‖ = 1 for all x ∈ U .

The Hessian of d is denoted by H:

H(x) = ∇2d(x) ∈ R
3×3 for all x ∈ U. (7.66)
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The eigenvalues of H(x) are denoted by κ1(x), κ2(x) and 0. For x ∈ Γ the
eigenvalues κi(x), i = 1, 2, are the principal curvatures, and κ(x) = κ1(x) +
κ2(x) is the mean curvature, cf. Chap. 14.

In the analysis we always assume that the following (technical) assumption
is satisfied, namely that the neighborhood U of Γ is sufficiently small in the
following sense. We assume that U is a strip of width δ > 0 with

δ−1 > max
i=1,2

‖κi(x)‖L∞(Γ ). (7.67)

We define the orthogonal projection:

P(x) = I− n(x)n(x)T for x ∈ U. (7.68)

From ∇
(
n(x)T n(x)

)
= 0 it follows that

(
∇n(x)

)
n(x) = ∇2d(x)n(x) = 0

holds for all x ∈ U . Hence we obtain the following:

P(x)H(x) = H(x)P(x) = H(x) for all x ∈ U.

We introduce assumptions on the approximate interface Γh. We emphasize,
that although we use the notation Γh, this interface must not necessarily be
constructed using the method explained in Sect. 7.3. Our analysis below is
presented in a more general setting. In Remark 7.7.3 we explain how the
concrete interface construction that is discussed in Sect. 7.3 fits in this more
general setting.

Let {Γh}h>0 be a family of polygonal approximations of Γ . We assume
that each Γh is contained in U and consists of a set Fh of triangular faces:

Γh =
⋃

F∈Fh

F. (7.69)

For F1, F2 ∈ Fh with F1 �= F2 we assume that F1 ∩ F2 is either empty or a
common edge or a common vertex. The parameter hΓ denotes the maximal
diameter of the triangles in Fh:

hΓ = max
F∈Fh

diam(F ).

By nh(x) we denote the outward pointing unit normal on Γh. This normal is
piecewise constant with possible discontinuities at the edges of the triangles
in Fh. We recall the discrete analogon of the orthogonal projection P:

Ph(x) := I − nh(x)nh(x)T for x ∈ Γh, x not on an edge.

The tangential derivative along Γh can be written as ∇Γh
g = Ph∇g.

Assumption 7.7.1 We need assumptions which guarantee that Γh is “suf-
ficiently close” to Γ . Related to this we assume that Γh ⊂ U and that the
following holds:
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|d(x)| ≤ ch2
Γ for all x ∈ Γh, (7.70a)

ess supx∈Γh
‖n(x) − nh(x)‖ ≤ min{c0, c hΓ }, with c0 <

√
2. (7.70b)

Here c, c0 denote generic constants independent of hΓ .

Remark 7.7.2 For a given x ∈ Γh, let θ be the angle between n(x) and
nh(x). Then cos θ = n(x)T nh(x), sin θ = ‖Pnh(x)‖ and ‖n(x) − nh(x)‖2 =
2(1− cosθ). Elementary manipulations show that the condition (7.70b) holds
if and only if the following two conditions are satisfied:

ess infx∈Γh
n(x)T nh(x) ≥ c > 0, (7.71a)

ess supx∈Γh
‖P(x)nh(x)‖ ≤ chΓ . (7.71b)

Remark 7.7.3 Related to these assumptions we note the following. In
Theorem 7.3.1 it is shown that under certain (reasonable) assumptions the
construction explained in Sect. 7.3 results in a family {Γh} that satisfies the
conditions (7.70).

Extensions

We introduce extensions that will be used in the analysis below. The tech-
niques that we use are from the paper [83]. For proofs of certain results we
will refer to that paper.

As in Sect. 7.3 we define a locally (in a neighborhood of Γ ) orthogonal
coordinate system by using the projection p : U → Γ :

p(x) = x− d(x)n(x) for all x ∈ U.

We assume that the decomposition x = p(x) + d(x)n(x) is unique for all
x ∈ U . Note that

n(x) = n
(
p(x)

)
for all x ∈ U.

We use an extension operator defined as follows. For a (scalar) function v
defined on Γ we define

ve
Γ (x) := v

(
x− d(x)n(x)

)
= v
(
p(x)

)
for all x ∈ U,

i.e., v is extended along normals on Γ . We will also need extensions of functions
defined on Γh. This is done again by extending along normals n(x). For v
defined on Γh we define, for x ∈ Γh,

ve
Γh

(x+ αn(x)) := v(x) for all α ∈ R with x+ αn(x) ∈ U. (7.72)

The projection p and the extensions ve
Γ , ve

Γh
are illustrated in Fig. 7.8.

In the following two lemmas some properties of these extensions are given.
Proofs are elementary and can be found in [83]. In the remainder we assume
that Assumption 7.7.1 is satisfied.
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x̂1

x1 = p(x̂1)

n1

x̂2

x2 = p(x̂2)

n2

Γh

Γx̂1

x1 = p(x̂1)

n1

x̂2

x2 = p(x̂2)

n2

Γh

Γ

Fig. 7.8. Example of projection p and construction of extension operators. n1 and
n2 are straight lines perpendicular to Γ . For v defined on Γ we have ve

Γ ≡ v(x1)
on n1. For vh defined on Γh we have ve

Γh
≡ vh(x̂2) on n2.

Lemma 7.7.4 For v defined on Γ and sufficiently smooth the following holds:

∇Γh
ve

Γ (x) = Ph(x)
(
I − d(x)H(x)

)
P(x)∇Γ v(p(x)) a.e. on Γh. (7.73)

Proof. Given in Sect. 2.3 in [83]. �

In (7.73) (and also below) we have results “a.e. on Γh” because quantities
(derivatives, Ph, etc.) are not well-defined on the edges of the triangulation Γh.

Lemma 7.7.5 For x ∈ Γh (not on an edge) define

μ(x) =
[
Π2

i=1(1 − d(x)κi(x))
]
n(x)T nh(x), (7.74)

A(x) =
1

μ(x)
P(x)

[
I − d(x)H(x)

]
Ph(x)

[
I− d(x)H(x)

]
P(x). (7.75)

Let Ae
Γh

be the extension of A as in (7.72). The following identity holds for
functions v and ψ that are defined on Γh and are sufficiently smooth:

∫

Γh

∇Γh
v · ∇Γh

ψ ds =
∫

Γ

Ae
Γh
∇Γ v

e
Γh

· ∇Γψ
e
Γh
ds. (7.76)

Proof. Given in Sect. 2.3 in [83]. �

Due to the assumptions in (7.71a) and (7.67) we have ess infx∈Γh
μ(x) > 0 and

thus A(x) is well defined and symmetric positive semi-definite.

A trace estimate

In the analysis of the discretization error in the next section we will need a
bound for ‖∇Γh

v‖L2(Γh) in terms of ‖v‖1 for v ∈ Vh (piecewise quadratics).
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A possible approach is to apply an inverse inequality combined with a trace
theorem, resulting in:

‖∇Γh
v‖L2(Γh) ≤ c h−1

min‖v‖L2(Γh) ≤ c h−1
min‖v‖1 for all v ∈ Vh. (7.77)

This, however, turns out to be too crude. In order to be able to derive a better
bound than the one in (7.77) we have to introduce some further assumptions
which relate the approximations Γh of Γ to the outer tetrahedral triangulation
Th that is used in the definition of the space Vh, cf. (7.65).
Assumption 7.7.6 Let {Th} be the family of tetrahedral triangulations that
is used in the finite element space Vh. We assume that to each interface tri-
angulation Γh = ∪F∈Fh

F there can be associated a set of tetrahedra Sh with
the following properties:

For each F ∈ Fh there is a corresponding SF ∈ Sh with F ⊂ SF . (7.78a)
For F1, F2 ∈ Fh with F1 �= F2 we have meas3(SF1 ∩ SF2) = 0. (7.78b)
The family {Sh}h>0 is shape-regular. (7.78c)
∃ c0 > 0 : c0h ≤ diam(SF ) ≤ ch for all F ∈ Fh, (quasi-uniformity). (7.78d)
For each SF ∈ Sh there is a tetrahedron T ∈ Th such that SF ⊂ T . (7.78e)

Note that the set of tetrahedra Sh has to be defined only close to the approxi-
mate interface Γh and that this set not necessarily forms a regular tetrahedral
triangulation of Ω. Furthermore, it is not assumed that the family {Γh}h>0

is shape-regular or quasi-uniform.
Remark 7.7.7 The construction in Sect. 7.3 is such that Assumption 7.7.6 is
satisfied. We briefly explain this. Let T Γ

h be the collection of tetrahedra that
have a nonempty intersection with the zero level of the piecewise quadratic
level set function and assume that (T Γ

h )h>0 is quasi-uniform. Let T Γ
h′ be the

triangulation obtained after one regular refinement of T Γ
h . Let Γh be as defined

in (7.21). All T ∈ T Γ
h′ for which ΓT = T ∩ Γh is a quadrilateral are further

subdivided into two subtetrahedra such that for T ∩ Γh is always a triangle.
The resulting triangulation is denoted by T̃ Γ

h′ . With this Γh and Sh = T̃ Γ
h′ the

conditions formulated in Assumption 7.7.6 are satisfied.

In the following lemma we derive elementary properties of a standard affine
mapping between a tetrahedron SF ∈ Sh and the reference unit tetrahedron,
which will be used in the proof of Theorem 7.7.9.
Lemma 7.7.8 Assume that the family {Γh}h>0 is such that Assumption 7.7.6
is satisfied. Take F ∈ Fh and the corresponding SF ∈ Sh. Let Ŝ be the ref-
erence unit tetrahedron and L(x) = Jx + b be an affine mapping such that
L(Ŝ) = SF . Define F̂ := L−1(F ). The following holds:

‖J‖2 meas3(Ŝ)
meas3(SF )

≤ c h−1, (7.79)
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‖J−1‖2 meas2(F )
meas2(F̂ )

≤ c, (7.80)

with constants c independent of F and h.

Proof. Let ρ(SF ) be the diameter of the maximal ball contained in SF and
similarly for ρ(Ŝ). From standard finite element theory we have

‖J‖ ≤ diam(SF )
ρ(Ŝ)

, ‖J−1‖ ≤ diam(Ŝ)
ρ(SF )

.

Using (7.78c) and (7.78d) we then get

‖J‖2 meas3(Ŝ)
meas3(SF )

≤ c
diam(SF )2

meas3(SF )
≤ c diam(SF )−1 ≤ c h−1,

and thus the result in (7.79) holds.
The vertices of F̂ = L−1(F ) are denoted by V̂i, i = 1, 2, 3. Let V̂1V̂2 be a

longest edge of F̂ and M̂ the point on this edge such that M̂V̂3 is perpendicular
to V̂1V̂2. Define Vi := L(V̂i), i = 1, 2, 3, and M := L(M̂). Then Vi, i = 1, 2, 3,
are the vertices of F and M lies on the edge V1V2. We then have

meas2(F̂ ) =
1
2
‖V̂1 − V̂2‖‖V̂3 − M̂‖ =

1
2
‖J−1(V1 − V2)‖‖J−1(V3 −M)‖

≥ 1
2
‖J‖−2‖V1 − V2‖‖V3 −M‖ ≥ c

ρ(Ŝ)2

diam(SF )2
meas2(F ),

with a constant c > 0. Thus we obtain

‖J−1‖2 meas2(F )
meas2(F̂ )

≤ c
diam(Ŝ)2

ρ(SF )2
diam(SF )2

ρ(Ŝ)2
≤ c,

which completes the proof. �

Theorem 7.7.9 Assume that the family {Γh}h>0 is such that Assump-
tion 7.7.6 is satisfied. The following holds:

‖∇Γh
v‖L2(Γh) ≤ c h−

1
2 ‖v‖1 for all v ∈ Vh.

Proof. Note that

‖∇Γh
v‖2

L2(Γh) =
∑

F∈Fh

‖∇F v‖2
L2(F ).

Take F ∈ Fh and let SF be the associated tetrahedron as explained above.
Let Ŝ be the reference unit tetrahedron and L : Ŝ → ST as in Lemma 7.7.8.
Define v̂ := v ◦ L. Using standard transformation rules and Lemma 7.7.8 we
get
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‖∇F v‖2
L2(F ) = ‖Ph∇v‖2

L2(F ) ≤ ‖∇v‖2
L2(F ) =

∑

|α|=1

‖∂αv‖2
L2(F )

≤ c ‖J−1‖2
∑

|α|=1

‖(∂αv̂) ◦ L−1‖2
L2(F )

≤ c ‖J−1‖2 meas2(F )
meas2(F̂ )

∑

|α|=1

‖∂αv̂‖2
L2(F̂ )

≤ c
∑

|α|=1

‖∂αv̂‖2
L2(F̂ )

≤ c
∑

|α|=1

max
x∈F̂

∣
∣∂αv̂(x)

∣
∣2 ≤ c

∑

|α|=1

max
x∈Ŝ

∣
∣∂αv̂(x)

∣
∣2,

with a constant c independent of F . From (7.78e) it follows that v̂ is a poly-
nomial on Ŝ of maximal degree 2. On P∗

2 := { p ∈ P2 : p(0) = 0 } we have,
due to equivalence of norms:

∑

|α|=1

max
x∈Ŝ

∣
∣∂αv̂(x)

∣
∣2 ≤ c

∑

|α|=1

‖∂αv̂‖2
L2(Ŝ)

for all v̂ ∈ P∗
2 .

Because, for v̂ ∈ P2 and |α| = 1, ∂αv̂ is independent of v̂(0), the same in-
equality holds for all v̂ ∈ P2. Thus we get

‖∇F v‖2
L2(F ) ≤ c

∑

|α|=1

‖∂αv̂‖2
L2(Ŝ)

≤ c ‖J‖2
∑

|α|=1

‖(∂αv) ◦ L‖2
L2(Ŝ)

= c ‖J‖2 meas3(Ŝ)
meas3(SF )

∑

|α|=1

‖∂αv‖2
L2(SF ) ≤ c h−1‖∇v‖2

L2(SF ) ,

with a constant c independent of F and h. Using (7.78b) we finally obtain

‖∇Γh
v‖2

L2(Γh) ≤ c h−1
∑

F∈Fh

‖∇v‖2
L2(SF )

≤ c h−1

∫

Ω

(∇v)2 dx ≤ c h−1‖v‖2
1 ,

which proves the result. �

Remark 7.7.10 The analysis above also applies if instead of piecewise
quadratics other piecewise polynomial finite element functions are used. Thus
Theorem 7.7.9 also holds if for Vh we take another piecewise polynomial finite
element space.

7.7.2 Error bounds for discrete surface tension functionals

In Sect. 7.6, for the surface tension functional

fΓ (vh) = −τ
∫

Γ

∇Γ idΓ ·∇Γ vh ds = −τ
3∑

i=1

∫

Γ

∇Γ (idΓ )i · ∇Γ (vh)i ds
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we introduced the discretizations

fΓh
(vh) = −τ

3∑

i=1

∫

Γh

∇Γh
(idΓh

)i · ∇Γh
(vh)i ds, (7.81)

f̃Γh
(vh) = −τ

3∑

i=1

∫

Γh

P̃h∇(idΓh
)i · ∇Γh

(vh)i ds. (7.82)

In this section we derive error bounds for these discretizations. It suffices to
consider only one term in this sum, say the i-th. We write idΓ and v for the
scalar functions (idΓ )i and (vh)i, respectively, and idΓh

for (idΓh
)i. With this

notation we have

∇Γ idΓ = P∇ idΓ = Pei on Γ, ∇Γh
idΓh

= Ph∇ idΓh
= Phei on Γh,

P̃h∇ idΓh
= P̃hei on Γh,

where ei denotes the i-th basis vector in R
3. For the i-th term in these func-

tionals we introduce the notation (ignoring the scaling with −τ):

g(v) :=
∫

Γ

∇Γ idΓ ·∇Γ v ds,

gh(v) :=
∫

Γh

∇Γh
idΓh

·∇Γh
v ds,

g̃h(v) :=
∫

Γh

P̃h∇ idΓh
·∇Γh

v ds.

For the analysis it is convenient to introduce yet another functional:

ĝh(v) :=
∫

Γh

∇Γh
ide

Γ ·∇Γh
v ds,

where ide
Γ is the extension of idΓ . Note that due to the occurrence of idΓ

the functional ĝh(v) can not be used in practice. For the error g(v) − gh(v)
we write g(v) − gh(v) =

(
g(v) − ĝh(v)

)
+
(
ĝh(v) − gh(v)

)
, derive bounds for

|g(v) − ĝh(v)| and |ĝh(v) − gh(v)| and then apply a triangle inequality. The
same is done for the error g(v) − g̃h(v).

We start with the term |g(v) − ĝh(v)|. A bound for this is derived, based
on the following splitting:

g(v) − ĝh(v)

=
∫

Γ

∇Γ idΓ ·∇Γ v ds−
∫

Γh

∇Γh
ide

Γ ·∇Γh
v ds

=
∫

Γ

∇Γ idΓ ·∇Γ v ds−
∫

Γ

Ae
Γh

∇Γ idΓ ·∇Γ v
e
Γh
ds (cf. (7.76))

=
∫

Γ

∇Γ idΓ ·∇Γ (v − ve
Γh

) ds+
∫

Γ

(I − Ae
Γh

)∇Γ idΓ ·∇Γ v
e
Γh
ds. (7.83)

In the lemma below we give bounds for the two terms in (7.83).
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Lemma 7.7.11 Let Assumption 7.7.1 be satisfied. The following holds for all
v ∈ Vh:

∣∣
∣
∣

∫

Γ

∇Γ idΓ ·∇Γ (v − ve
Γh

) ds
∣∣
∣
∣ ≤ c hΓ ‖v‖1,U , (7.84)

∣
∣
∣∣

∫

Γ

(I − Ae
Γh

)∇Γ idΓ ·∇Γ v
e
Γh
ds

∣
∣
∣∣ ≤ c h2

Γ ‖∇Γh
v‖L2(Γh). (7.85)

Proof. (7.84)–(7.85) are proved in Lemmas 4.1 and 4.3 in [129]. �

Using this we obtain a bound for the error ‖g − ĝh‖V ′
h
:

Theorem 7.7.12 Let the Assumptions 7.7.1 and 7.7.6 be satisfied. The fol-
lowing holds:

sup
v∈Vh

|g(v) − ĝh(v)|
‖v‖1

≤ c hΓ . (7.86)

Proof. The result in Lemma 7.7.11 implies

|g(v) − ĝh(v)| ≤ c hΓ ‖v‖1,U + c h2
Γ ‖∇Γh

v‖L2(Γh) for all v ∈ Vh.

From Theorem 7.7.9 we obtain ‖∇Γh
v‖L2(Γh) ≤ ch

− 1
2

Γ ‖v‖1. Furthermore,
‖v‖1,U ≤‖v‖1 holds. Thus the result in (7.86) holds. �

We now derive a bound for |ĝh(v) − gh(v)|.

Lemma 7.7.13 Let the Assumption 7.7.1 be satisfied. The following holds:

|ĝh(v) − gh(v)| ≤ chΓ ‖∇Γh
v‖L2(Γh) for all v ∈ Vh. (7.87)

Proof. From Lemma 7.7.4 we get, for x ∈ Γh (not on an edge),

∇Γh
ide

Γ (x) = Ph(x)
(
I − d(x)H(x)

)
P(x)∇Γ idΓ (p(x))

= Ph(x)
(
I − d(x)H(x)

)
P(x)ei.

We also have ∇Γh
idΓh

= Ph∇ idΓh
= Phei. Hence,

∣∣
∣
∣

∫

Γh

(
∇Γh

ide
Γ −∇Γh

idΓh

)
· ∇Γh

v ds

∣∣
∣
∣ (7.88)

=
∣∣
∣
∣

∫

Γh

(
Ph(I − dH)Pei − Phei

)
· ∇Γh

v ds

∣∣
∣
∣

≤ c ess supx∈Γh
‖Ph(x)

(
I− d(x)H(x)

)
P(x) − Ph(x)‖ ‖∇Γh

v‖L2(Γh)

≤ c ess supx∈Γh

(
‖Ph(x)

(
I− P(x)

)
‖ (7.89)

+ |d(x)| ‖Ph(x)H(x)P(x)‖
)
‖∇Γh

v‖L2(Γh). (7.90)
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Note that |d(x)| ≤ c h2
Γ for x ∈ Γh, and

ess supx∈Γh
‖Ph(x)H(x)P(x)‖ ≤ ess supx∈Γh

‖H(x)‖ ≤ c.

For the term in (7.89) we have (dropping x in the notation):

‖Ph(I − P)‖ = ‖PhnnT ‖ = ‖Phn‖ = ‖Ph(n − nh)‖ ≤ ‖n− nh‖ ≤ chΓ .

In the last inequality we used Assumption 7.7.1. Using these results in (7.89)-
(7.90) and the definitions of ĝh, gh, we get

|ĝh(v) − gh(v)| ≤ chΓ ‖∇Γh
v‖L2(Γh),

and thus the result is proved. �

This leads to a bound for the error ‖ĝh − gh‖V ′
h
:

Theorem 7.7.14 Let the Assumptions 7.7.1 and 7.7.6 be satisfied. The fol-
lowing holds:

sup
v∈Vh

|ĝh(v) − gh(v)|
‖v‖1

≤ c
√
hΓ . (7.91)

Proof. The result follows from Lemma 7.7.13 and Theorem 7.7.9. �

As a direct consequence we obtain a discretization error bound for fΓh
:

Corollary 7.7.15 Let the Assumptions 7.7.1 and 7.7.6 be satisfied. For
the surface tension force discretization fΓh

as defined in (7.81) the following
holds:

sup
v∈Vh

|fΓ (vh) − fΓh
(vh)|

‖vh‖1
≤ τc

√
hΓ .

Proof. It suffices to consider a bound for ‖g − gh‖V ′
h
. From Theorem 7.7.12

and Theorem 7.7.14 it follows that

‖g − gh‖V ′
h
≤ ‖g − ĝh‖V ′

h
+ ‖ĝh − gh‖V ′

h
≤ chΓ + c

√
hΓ ≤ c

√
hΓ ,

which implies the error bound for fΓh
. �

An upper bound O(
√
hΓ ) as in Corollary 7.7.15 for the error in the approx-

imation of the localized force term may seem rather pessimistic, because Γh

is an O(h2
Γ ) accurate approximation of Γ . Numerical experiments in Sect. 7.8

and results in [115], however, indicate that the bound is sharp.

Along the same lines as presented above for fΓh
we now derive an error bound

for f̃Γh
. It suffices to consider |g(v) − g̃h(v)|. We use the triangle inequality

|g(v) − g̃h(v)| ≤ |g(v) − ĝh(v)| + |ĝh(v) − g̃h(v)|.

The first term on the right-hand side is treated in Theorem 7.7.12. The next
lemma gives a bound for the second term. In (7.92) we use the generalized
normal ñh from (7.59).
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Lemma 7.7.16 Let Assumption 7.7.1 be satisfied. Furthermore, we assume
that there exists p > 0 such that

‖n(x) − ñh(x)‖ ≤ c hp
Γ , for x ∈ Γh. (7.92)

Then the following holds:

|ĝh(v) − g̃h(v)| ≤ ch
min{p,2}
Γ ‖∇Γh

v‖L2(Γh) for all v ∈ Vh.

Proof. We apply similar arguments as used in the proof of Lemma 7.7.13. We
have

∇Γh
ide

Γ (x) = Ph(x)
(
I − d(x)H(x)

)
P(x)ei

and P̃h∇ idΓh
= P̃hei on Γh. Hence,

∣
∣∣
∣

∫

Γh

(
∇Γh

ide
Γ −P̃h∇ idΓh

)
· ∇Γh

v ds

∣
∣∣
∣ (7.93)

=
∣
∣∣
∣

∫

Γh

(
Ph(I − dH)Pei − PhP̃hei

)
· ∇Γh

v ds

∣
∣∣
∣

≤ c ess supx∈Γh
‖Ph(x)

(
I− d(x)H(x)

)
P(x) − Ph(x)P̃h(x)‖ ‖∇Γh

v‖L2(Γh)

≤ c ess supx∈Γh

(
‖Ph(x)

(
P(x) − P̃h(x)

)
‖ (7.94)

+ |d(x)| ‖Ph(x)H(x)P(x)‖
)
‖∇Γh

v‖L2(Γh). (7.95)

As in the proof of Lemma 7.7.13 we have ess supx∈Γh
|d(x)|‖Ph(x)H(x)P(x)‖ ≤

ch2
Γ . For the term in (7.94) we get (dropping x in the notation):

‖Ph(P − P̃h)‖ ≤ ‖nnT − ñhñT
h ‖

≤ ‖(n− ñh)nT ‖ + ‖ñh(n − ñh)T ‖ = 2‖n− ñh‖ ≤ c hp
Γ .

Combination of these estimates proves the result. �

Remark 7.7.17 In Lemma 7.3.2 it is shown that for the approximate in-
terface construction explained in Sect. 7.3 the assumption in (7.92) holds for
p ∈ (0, 2] if φh is an O(hp

Γ ) accurate (w.r.t ‖ · ‖H1∞) approximation of φ.
For a piecewise quadratic level set approximation the optimal approximation
quality is O(h2

Γ ), i.e., p = 2.

This leads to a bound for the error ‖ĝh − g̃h‖V ′
h
:

Theorem 7.7.18 Let the Assumptions 7.7.1, 7.7.6 and the one in (7.92) with
p ≥ 1 1

2 be satisfied. The following holds:

sup
v∈Vh

|ĝh(v) − g̃h(v)|
‖v‖1

≤ c hΓ . (7.96)
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Proof. The result follows from Lemma 7.7.16 and Theorem 7.7.9. �

As a direct consequence we obtain a discretization error bound for f̃Γh
:

Corollary 7.7.19 Let the assumptions as in Theorem 7.7.18 be satisfied.
For the surface tension force discretization f̃Γh

as defined in (7.82) the
following holds:

sup
v∈Vh

|fΓ (vh) − f̃Γh
(vh)|

‖vh‖1
≤ τc hΓ .

Proof. It suffices to consider a bound for ‖g − g̃h‖V ′
h
. From Theorem 7.7.12

and Theorem 7.7.18 it follows that

‖g − g̃h‖V ′
h
≤ ‖g − ĝh‖V ′

h
+ ‖ĝh − g̃h‖V ′

h
≤ chΓ ,

which implies the error bound for f̃Γh
. �

This significant improvement (O(hΓ ) compared to the O(
√
hΓ ) error bound

for the functional fΓh
) is confirmed by numerical experiments in the next

section.

7.8 Numerical experiments with the Laplace-Beltrami
discretization

In this section we present results of a numerical experiment which indicates
that the O(

√
h) bound in Corollary 7.7.15 is sharp. Furthermore, for the

improved approximation f̃Γh
the O(h) bound will be confirmed numerically.

We consider the domain Ω := [−1, 1]3 with Ω1 := {x ∈ Ω : ‖x‖ < R }. In
our experiments we take R = 1

2 .
For the discretization a uniform tetrahedral mesh T0 is used where the

vertices form a 6× 6× 6 lattice, hence h0 = 1
5 . This coarse mesh T0 is locally

refined in the vicinity of Γ = ∂Ω1. This repeated refinement process yields the
gradually refined meshes T1, T2, . . . with local (i. e., close to the interface) mesh
sizes hΓ = hi = 1

5 · 2−i, i = 1, 2, . . .. Part of the tetrahedral triangulation T4 is
shown in Fig. 7.9. The corresponding finite element spaces Vi := Vhi = (Vhi)3

consist of vector functions where each component is a continuous piecewise
quadratic function on Ti.

The interface Γ = ∂Ω1 is a sphere and thus the curvature κ = 2
R is

constant. If we discretize the flow problem using Vi as discrete velocity space,
we have to approximate the surface tension force

fΓ (v) = −2τ
R

∫

Γ

nΓ · v ds = −τ
∫

Γ

∇Γ idΓ ·∇Γ v ds, v ∈ Vi. (7.97)
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Fig. 7.9. Lower half part of the 4 times refined mesh T4.

To simplify notation, we take a fixed i ≥ 0 and the corresponding local mesh
size parameter is denoted by h = hi. For the construction of an approximate
interface Γh we use the approach described in Sect. 7.3, starting with φ equal
to the exact signed distance function to Γ .

The discrete approximation of the surface tension force is

fΓh
(v) = −τ

∫

Γh

∇Γh
idΓh

·∇Γh
v ds, v ∈ Vi.

We are interested in, cf. Corollary 7.7.15,

‖fΓ − fΓh
‖V′

i
:= sup

v∈Vi

fΓ (v) − fΓh
(v)

‖v‖1
. (7.98)

The evaluation of fΓ (v), for v ∈ Vi, requires the computation of integrals
on curved triangles or quadrilaterals Γ ∩ T where T is a tetrahedron from
the triangulation Ti. We are not able to compute these exactly. Therefore, we
introduce an artificial force term which, in this model problem with a known
constant curvature, is computable and sufficiently close to fΓ .

Lemma 7.8.1 For v ∈ V = H1
0 (Ω)3 define

f̂Γh
(v) := −2τ

R

∫

Γh

nh · v ds,

where nh is the piecewise constant outward unit normal on Γh. Then the
following inequality holds:

‖fΓ − f̂Γh
‖V′ ≤ ch. (7.99)

Proof. Let Ω1,h ⊂ Ω be the domain enclosed by Γh, i. e., ∂Ω1,h = Γh. We
define D+

h := Ω1 \Ω1,h, D−
h := Ω1,h \Ω1 and Dh := D+

h ∪D−
h . Due to Stokes’

Theorem, for v ∈ V we have
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|fΓ (v) − f̂Γh
(v)| =

2τ
R

∣
∣
∣
∣
∣

∫

Ω1

div v dx−
∫

Ω1,h

div v dx

∣
∣
∣
∣
∣

=
2τ
R

∣∣
∣
∣
∣

∫

D+
h

div v dx−
∫

D−
h

div v dx

∣∣
∣
∣
∣

≤ 2τ
R

∫

Dh

| div v| dx.

Using the Cauchy-Schwarz inequality, we get the estimate

|fΓ (v) − f̂Γh
(v)| ≤ c

√
meas3(Dh) ‖v‖1 for all v ∈ V,

which results in

‖fΓ − f̂Γh
‖V′ ≤ c

√
meas3(Dh). (7.100)

Note that for the piecewise planar approximation Γh of the interface Γ we
have meas3(Dh) = O(h2) and thus (7.99) holds. �

From Lemma 7.8.1 we obtain ‖fΓ − f̂Γh
‖V′

j
≤ c h with a constant c indepen-

dent of j. Thus we have

‖f̂Γh
− fΓh

‖V′
i
− ch ≤ ‖fΓ − fΓh

‖V′
i
≤ ‖f̂Γh

− fΓh
‖V′

i
+ ch. (7.101)

The quantity ‖f̂Γh
−fΓh

‖V′
i
can be determined as follows. Since Γh is piecewise

planar and v ∈ Vi is a piecewise quadratic function, both f̂Γh
(v) and fΓh

(v)
can be computed exactly (up to machine accuracy) using suitable quadrature
rules.

For the evaluation of the dual norm ‖ · ‖V′
i

we proceed as follows. Let
{ξj}j=1,...,N (with N := dimVi) be the standard nodal basis in Vi and JVi :
R

N → Vi the isomorphism JVix =
∑N

k=1 xkξk. Let Mh be the mass matrix
and Ah the discrete Laplacian:

(Mh)ij :=
∫

Ω

ξi · ξj dx,

(Ah)ij :=
∫

Ω

∇ξi · ∇ξj dx.

1 ≤ i, j ≤ N.

Define Ch = Ah+Mh. Note that for v = JVix ∈ Vi we have ‖v‖2
1 = 〈Chx,x〉.

Take e ∈ V′
i and define e ∈ R

N by ej := e(ξj), j = 1, . . . , N . Due to

‖e‖V′
i
= sup

v∈Vi

|e(v)|
‖v‖1

= sup
x∈RN

|
∑N

j=1 xje(ξj)|√
〈Chx,x〉

we obtain

‖e‖V′
i
= sup

x∈RN

〈x, e〉
√
〈Chx,x〉

= ‖C−1/2
h e‖ =

√
〈C−1

h e, e〉. (7.102)
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Thus for the computation of ‖e‖V′
i

we proceed in the following way:

1. Compute e =
(
e(ξj)

)N
j=1

.
2. Solve the linear system Ch z = e up to machine accuracy.
3. Compute ‖e‖V′

i
=
√
〈z, e〉.

We applied this strategy to e := f̂Γh
−fΓh

. The results are given in the second
column in Table 7.8. The numerical order of convergence in the third column
of this table clearly indicates an O(

√
h) behavior. Due to (7.101) this implies

the same O(
√
h) convergence behavior for ‖fΓ − fΓh

‖V′
i
. This indicates that

the O(
√
h) bound in Corollary 7.7.15 is sharp.

The same procedure can be applied with fΓh
replaced by the modified

(improved) approximate surface tension force

f̃Γh
(v) = −τ

3∑

i=1

∫

Γh

P̃hei · ∇Γh
(v)i ds,

as defined in (7.82). This yields the results in the fourth column in Table 7.8.
For this modification the numerical order of convergence is significantly better,
namely at least first order in h. From (7.101) it follows that for ‖fΓ − f̃Γh

‖V′
i

we can expect O(hp) with p ≥ 1.
Summarizing, we conclude that the results of these numerical experiments

confirm the theoreticalO(
√
h) error bound derived in the analysis in Sect. 7.7.2

and show that the modified approximation indeed leads to (much) better
results.

Results of numerical experiments for a Stokes two-phase flow problem
using both fΓh

and f̃Γh
are presented in Sect. 7.10.3.

i ‖f̂Γh − fΓh‖V′
i

order ‖f̂Γh − f̃Γh‖V′
i

order

0 1.79 E-1 – 1.32 E-1 –
1 1.40 E-1 0.35 4.43 E-2 1.57
2 1.03 E-1 0.45 1.46 E-2 1.61
3 7.22 E-2 0.51 5.06 E-3 1.52
4 5.02 E-2 0.53 1.78 E-3 1.51

Table 7.8. Error norms and numerical order of convergence for different refinement
levels.

7.9 XFEM discretization of the pressure

If surface tension forces are present the pressure is discontinuous across the
interface Γ . We show that standard finite element spaces have poor approx-
imation properties for such functions with a jump across Γ and introduce
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a so-called extended finite element space that is much better suited for dis-
cretization of the pressure variable. Most of the results presented in this section
are from [128, 209].

In Sect. 7.9.1 we show, by means of a simple example, that if one uses
standard finite element spaces for the discretization of a discontinuous func-
tion, then in general the approximation order (w.r.t. ‖·‖L2) is only O(

√
h). In

Sect. 7.9.2 we introduce extended finite element spaces, which are much better
suited for the approximation of discontinuous functions. Some implementation
issues related to XFEM are treated in Sect. 7.9.3. In Sect. 7.9.4 we present an
analysis of the XFEM method. In Sect. 7.10 results of numerical experiments
with this method are presented.

7.9.1 Approximation error for standard FE spaces

In this section we consider the approximation error

inf
qh∈Qh

‖qh − p∗‖L2

for a few standard finite element spaces Qh and explain why in general for a
function p∗ that is discontinuous across Γh one can expect no better bound
for this approximation error than c

√
h. This serves as a motivation for an

improved pressure finite element space as presented in Sect. 7.9.2. To explain
the effect underlying the

√
h behavior of the error bound we analyze a concrete

two-dimensional example as illustrated in Fig. 7.10. We take Ω = (0, 1)2 ⊂ R
2

and define

Ω1 := {x ∈ Ω : x1 ≤ 1 − x2 } , Ω2 := Ω \Ω1.

The interface Γ separating both subdomains from each other is given by

Γ = { x ∈ Ω : x1 = 1 − x2 } .

A family of 2D triangulations {Th}h>0 is constructed as follows. The start-
ing triangulation T0 consists of two triangles, namely the ones with vertices
{(0, 0), (0, 1), (1, 1)} and {(0, 0), (1, 0), (1, 1)}. Then a global regular refine-
ment strategy (connecting the midpoints of edges) is applied repeatedly. This
results in a nested sequence of triangulations Thk

, k = 1, 2, . . ., with mesh size
hk = 2−k. In Fig. 7.10 the triangulation Th2 is shown. The set of triangles that
contains the interface is given by (with h := hk)

T Γ
h := {T ∈ Th : meas1(T ∩ Γ ) > 0 } .

In Fig. 7.10 the elements in T Γ
h2

are colored gray.
For h = hk we consider the finite element spaces

Q0
h :=

{
p : Ω → R : p|T ∈ P0 for all T ∈ Th

}
(piecewise constants),

Q1,disc
h :=

{
p : Ω → R : p|T ∈ P1 for all T ∈ Th

}
(linear, discontinuous),

Q1
h :=

{
p ∈ C(Ω) : p|T ∈ P1 for all T ∈ Th

}
(linear, continuous).
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Γ
Γ

m

m4

m3

m2

m1

TU

TL

Fig. 7.10. Triangulation Th2 and a triangle T ∈ T Γ
hk

.

Note that
Qj

h ⊂ Q1,disc
h for j = 0, 1. (7.103)

We take p∗ as follows: p∗(x) = cp > 0 for all x ∈ Ω1, p∗(x) = 0 for all x ∈ Ω2.
We study infqh∈Qh

‖qh − p∗‖L2 for Qh ∈ {Q0
h, Q

1,disc
h , Q1

h}. For Qh = Q1,disc
h

the identity

inf
qh∈Q1,disc

h

‖qh − p∗‖2
L2 =

∑

T∈T Γ
h

min
q∈P1

‖q − p∗‖2
L2(T )

holds. Take T ∈ T Γ
h . Using a quadrature rule on triangles that is exact for all

polynomials of degree two we get, cf. Fig. 7.10,

min
q∈P1

‖q − p∗‖2
L2(T ) = min

q∈P1

( ∫

TL

(q − cp)2 dx dy +
∫

TU

q2 dx dy
)

=
h2

12
min
q∈P1

(
(q(m3) − cp)2 + (q(m4) − cp)2 + (q(m) − cp)2

+ q(m1)2 + q(m2)2 + q(m)2
)

≥ h2

12
min
q∈P1

(
(q(m) − cp)2 + q(m)2

)
=

1
24
c2ph

2.

Thus we have

inf
qh∈Q1,disc

h

‖qh − p∗‖L2 ≥
( ∑

T∈T Γ
h

1
24
c2ph

2
) 1

2
=
( 2
h

1
24
c2ph

2
) 1

2 =
1

2
√

3
cp
√
h.

Due to (7.103) this yields

inf
qh∈Qh

‖qh − p∗‖L2 ≥ 1
2
√

3
cp
√
h for Qh ∈ {Q0

h, Q
1,disc
h , Q1

h}.
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To derive an upper bound for the approximation error we choose a suitable
qh ∈ Qh. First consider Qh = Q0

h and take q0h ∈ Q0
h as follows: (q0h)|T = cp for

all T with meas1(T ∩Ω1) > 0, q0h = 0 otherwise. With this choice we get

‖q0h − p∗‖L2 =
( ∑

T∈T Γ
h

‖q0h − p∗‖2
L2(T )

) 1
2

=
( ∑

T∈T Γ
h

c2p
1
4
h2
) 1

2 =
1√
2
cp
√
h.

For Qh ∈ {Q1,disc
h , Q1

h} we take q1h := Ih(p∗), where Ih is the nodal interpola-
tion operator (note: p∗ = cp on Γ ). Elementary computations yield

‖q1h − p∗‖L2 =
( 1
12
c2ph
) 1

2 =
1

2
√

3
cp
√
h.

Combination of these results yields

1
2
√

3
cp
√
h ≤ inf

qh∈Qh

‖qh − p∗‖L2 ≤ 1√
2
cp
√
h for Qh ∈ {Q0

h, Q
1,disc
h , Q1

h}.

If instead of piecewise constants or piecewise linears we consider polynomials
of higher degree, the approximation error still behaves like

√
h.

Similar examples, which have a
√
h approximation error behavior, can be

constructed using these finite element spaces on tetrahedral triangulations
in 3D.

7.9.2 Extended finite element method (XFEM)

The analysis in the previous section, which is confirmed by numerical ex-
periments in Sect. 7.10, leads to the conclusion that there is a need for an
improved finite element space for the discretization of the pressure. In this
section we introduce such a space which is based on an idea presented in
[181, 30]. In these papers a so-called extended finite element method (XFEM)
is introduced in the context of crack formations in structure mechanics which
has good approximation properties for interface type of problems. A recent
review on XFEM techniques is given in [113, 114]. XFEM belongs to the class
of partition of unity methods (PUM) [18, 19].

Here we apply the XFEM method to two-phase flow problems by con-
structing a suitable extended pressure finite element space. In this section we
explain the method. For k ≥ 1 fixed we introduce the standard finite element
space

Qh = Qk
h = { q ∈ C(Ω) : q|T ∈ Pk for all T ∈ Th } .

We explain the construction of the XFEM space for k = 1. This technique
can easily be generalized to k ≥ 1. Define the index set J = {1, . . . , n}, where
n = dimQh is the number of degrees of freedom. Let B := {qj}j∈J be the
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nodal basis of Qh, i. e. qj(xi) = δi,j for i, j ∈ J where xi ∈ R
3 denotes the

vector of spatial coordinates of the i-th degree of freedom.
The idea of the XFEM method is to enrich the original finite element space

Qh by additional functions qX
j for j ∈ J ′ where J ′ ⊂ J is a given index set.

An additional function qX
j is constructed by multiplying the original nodal

basis function qj by a so called enrichment function Φj :

qX
j (x) := qj(x)Φj(x). (7.104)

This enrichment yields the extended finite element space

QX
h := Qh ⊕ span

{
qX
j : j ∈ J ′ } .

This idea was introduced in [181] and further developed in [30] for different
kinds of discontinuities (kinks, jumps), which may also intersect or branch.
The choice of the enrichment function depends on the type of discontinuity.
For representing jumps the Heaviside function is proposed to construct ap-
propriate enrichment functions. Basis functions with kinks can be obtained
by using the distance function as enrichment function [180].

Γ

Fig. 7.11. Enrichment of P1 finite elements in a 2D example. Dots represent degrees
of freedom of original basis functions, circles indicate where additional functions are
added in the vicinity of the interface Γ .

The index set of basis functions “close to the interface” is given by

JΓ := { j ∈ J : meas2(Γ ∩ supp qj) > 0 } ,

cf. Fig. 7.11 for a 2D example.
Let φ : Ω → R be an indicator function such that φ is negative in Ω1 and

positive in Ω2. For example the level set function could be used for φ. Let H
be the Heaviside function and

HΓ (x) := H(φ(x)) =

{
0 x ∈ Ω1,

1 x ∈ Ω2.
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Since we are interested in functions with a jump across the interface we define
the enrichment function

ΦH
j (x) := HΓ (x) −HΓ (xj), j ∈ JΓ , (7.105)

and a corresponding function

qX
j := qjΦ

H
j , j ∈ JΓ .

The second term in the definition of ΦH
j is constant and may be omitted

(as it doesn’t introduce new functions in the function space), but ensures
the nice property qX

j (xi) = 0 for all i, i. e., qX
j vanishes in all degrees of

freedom. As a consequence, we have qX
j ≡ 0 in all T with T /∈ T Γ

h :=
{T ∈ Th : meas2(T ∩ Γ ) > 0 }. In the following we will use the notation
qΓ
j := qj Φ

H
j and the XFEM space is denoted by

QΓ
h := Qh ⊕ span

{
qΓ
j : j ∈ JΓ

}
. (7.106)

We emphasize that the extended finite element space QΓ
h depends on the

location of the interface Γ . In particular the dimension of QΓ
h may change if

the interface moves. The shape of the extended basis functions for the 1D case
is sketched in Fig. 7.12.

Γ

Ω2 Ω1

0

1

xi xj

qi qj

qΓ
j

qΓ
i

Fig. 7.12. Extended finite element basis functions qi, q
Γ
i (dashed) and qj , q

Γ
j (solid)

for 1D case.

Remark 7.9.1 In [30] the XFEM is applied to problems from linear elasticity
demonstrating the ability of the method to capture jumps and kinks. These
discontinuities also branch or intersect in some of the examples, in this case
more elaborate constructions of the enrichment functions are used.

In [66] the XFEM is also applied to a two-phase flow problem. In that
paper discontinuous material properties ρ and μ, but no surface tension forces
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are taken into account. Thus there is no jump in pressure, but the velocity
solution exhibits a kink (i.e., a discontinuity in the derivative) at the interface.
For the pressure and the level set function standard finite element spaces are
used. The velocity field is discretized with an extended finite element space
enriched by vX

j (x) = vj(x) |d(x)| to capture the kinks at the interface. The
location of the interface is captured by a level set approach. The level set
function is used as an approximate signed distance function.

A similar idea of space enrichment in the context of two-phase flow simu-
lations is also suggested in [177].

The same finite element space QΓ
h is also used in the “unfitted finite ele-

ment method” that is introduced in [24] for a class of elliptic interface prob-
lems.

7.9.3 Modifications and implementation issues

In this section we discuss a few practical issues related to the application of
XFEM to non-stationary Navier-Stokes two-phase flow problems.

As QΓ
h depends on the location of the interface Γ , the space QΓ

h changes if
the interface moves. Thus the discretization of b(·, ·) has to be updated each
time when the level set function has changed. In a Navier-Stokes code solving
non-stationary two-phase flow problems this is nothing special since the mass
and stiffness matrices depend on discontinuous material properties like density
and viscosity and thus have to be updated as well. What is special about the
extended pressure finite element space is the fact that the dimension of QΓ

h

may vary, i. e., some extended pressure unknowns may appear or disappear
when the interface is moving. This has to be taken into account by a suitable
interpolation procedure for the extended pressure unknowns.

Let Γh be a piecewise planar approximation of the interface Γ as described
in Sect. 7.3. For practical reasons we do not consider QΓ

h but the space QΓh

h ,
which is the extended pressure finite element space described above but with
Γ replaced by its approximation Γh. We discuss how in the discretization of
a two-phase flow problem the construction of the discrete problem changes
if instead of (Vh, Qh) the pair (Vh, Q

Γh

h ) is used. For the velocity space Vh

we use the standard space of piecewise quadratics. The use of another finite
element space QΓh

h (instead of standard piecewise linears) influences only the
evaluation of b(·, ·).

For a basis function ξi ∈ Vh and j ∈ JΓ the evaluation of

b(ξi, q
Γh

j ) = −
∑

T ′∈Th′

∫

T ′
qΓh

j div ξi dx

requires the computation of integrals with discontinuous integrands, as the
extended pressure basis function qΓh

j has a jump across the interface. We sum
over T ′ ∈ Th′ (and not T ∈ Th) because Γh is defined as in (7.21), i. e., Γh

is piecewise planar corresponding to the refinement Th′ of Th. Let T ∈ Th
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be a tetrahedron with T ∩ supp qΓh
j �= ∅ and T ′ ∈ Th′ with T ′ ⊂ T a child

tetrahedron created by regular refinement of T . Define

T ′
i := T ′ ∩Ωi,h, i = 1, 2.

Using the definition of qΓh

j , cf. (7.104), (7.105), we get
∫

T ′
qΓh
j div ξi dx =

∫

T ′
2

qj div ξi dx−HΓ (xj)
∫

T ′
qj div ξi dx

=

{∫
T ′
2
qj div ξi dx if xj ∈ Ω1,h,

−
∫

T ′
1
qj div ξi dx if xj ∈ Ω2,h.

(7.107)

The integrands in the right-hand side of (7.107) are polynomial on the poly-
hedral subdomains T ′

1, T
′
2. For the computation of the integral over T ′

i we
distinguish two cases. The face T ′ ∩ Γh is either a triangle or a quadrilateral.
In the first case one of the sets T ′

1, T
′
2 is tetrahedral; without loss of generality

let T ′
1 be tetrahedral. Then integration over T ′

2 can be computed by
∫

T ′
2

G(x) dx =
∫

T ′
G(x) dx −

∫

T ′
1

G(x) dx.

In the second case both T ′
1, T

′
2 are non-tetrahedral, but can each be subdivided

into three sub-tetrahedra, cf. Fig. 7.13. In all cases the integration over T ′
i can

be reduced to integration on tetrahedra, for which standard quadrature rules
can be applied.

Fig. 7.13. Left: Parts of tetrahedron T ′ are non-tetrahedral, iff cutting face T ′∩Γh

is a quadrilateral. Right: Triangulation of the lower part into three tetrahedra.

Regarding stability, one has to treat carefully the situation where some ex-
tended basis functions qΓ

j have a (very) “small” support. In such situations
the resulting linear systems may become very ill-conditioned and the LBB-
stability of the (Vh, Q

Γ
h ) pair is questionable, cf. the numerical experiment

in Sect. 7.10.3. One obvious possibility to deal with this instability problem
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is to skip the extended basis functions with relatively “small” contributions.
What is meant by “small” will be specified now. In Sect. 7.9.4 we investigate
which elements from the “added” space span

{
qΓ
j : j ∈ JΓ

}
can be deleted

without loosing the optimal approximation quality of the extended finite ele-
ment space. This leads to the following criterion, in which parameters c̃ > 0
and α > 0 are used. For j ∈ JΓ we consider the following condition for the
corresponding extended basis function qΓ

j :

‖qΓ
j ‖l,T ≤ c̃ hα

T ‖qj‖l,T for all T ∈ T Γ
h . (7.108)

Here l ∈ {0, 1} is the order of the Sobolev norm. We introduce the reduced
index set J̃Γ ⊂ JΓ by

J̃Γ :=
{
j ∈ JΓ : (7.108) does not hold for qΓ

j

}

and the reduced extended finite element space Q̃Γ
h

Q̃Γ
h := Qh ⊕ span

{
qΓ
j : j ∈ J̃Γ

}
. (7.109)

In other words, only extended basis functions qΓ
j are taken into account, for

which (7.108) does not hold. The criterion (7.108) quantifies what is meant
by “small contributions”. In this modified space Q̃Γ

h basis functions with very
small supports are avoided and an approximation property of the following
form can be shown to hold (Sect. 7.9.4):

inf
q∈Q̃Γ

h

‖p− q‖l,Ω1∪Ω2 ≤ c
(
hm−l + hα−l

)
‖p‖m,Ω1∪Ω2

for all p ∈ Hm(Ω1 ∪ Ω2) and integers l,m with 0 ≤ l < m ≤ 2. Thus we
maintain an optimal approximation error bound if in the criterion (7.108)
we take α = m. The choice of l and m depends on the norms in which the
discretization error in the (pressure) variable p is measured. In our applications
we use l = 0, m = 2, resulting in an optimal error bound O(h2) for piecewise
linear finite elements.

Numerical experiments, cf. Sect. 7.10.3, indicate that this reduction of the
extended finite element has a significant influence on the LBB-stability of the
(Vh, Q

Γ
h ) finite element pair.

Remark 7.9.2 Because ‖qj‖l,T ∼ ch
3
2−l

T for l = 0, 1, the condition (7.108)
can be replaced by

‖qΓ
j ‖l,T ≤ ĉh

α+ 3
2−l

T for all T ∈ T Γ
h . (7.110)

The constant ĉ may differ from c̃ used in (7.108).
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7.9.4 Analysis of XFEM

In this section we derive some properties of the XFEM method. We discuss the
following topics: approximation quality, conditioning of a basis in the XFEM
space and LBB-stability of the (Vh, Q

Γ
h ) pair.

Approximation error bounds

For the approximation error bounds we consider the XFEM space QΓ
h with

a given h-independent interface Γ . Note that in practice the space QΓh

h is
used; we do not consider this in the analysis, since it would lead to additional
technical complications induced by the h-dependence of the interface.

For an integer k ≥ 0 we define the space

Hk(Ω1 ∪Ω2) :=
{
p ∈ L2(Ω) : p|Ωi

∈ Hk(Ωi), i = 1, 2
}
,

with the norm ‖p‖2
k,Ω1∪Ω2

:= ‖p‖2
k,Ω1

+‖p‖2
k,Ω2

. We need restriction operators
Ri : L2(Ω) → L2(Ω), i = 1, 2

Riv =

{
v|Ωi

on Ωi

0 on Ω \Ωi

(7.111)

(in L2 sense). The extended finite element space QΓ
h can also be characterized

by the following property: v ∈ QΓ
h if and only if there exist functions v1, v2 ∈

Qh such that v|Ωi = vi|Ωi , i = 1, 2. In other words:

QΓh

h = R1Qh ⊕R2Qh. (7.112)

We present an approximation error bound for the XFEM space:

Theorem 7.9.3 For integers l, m with 0 ≤ l < m ≤ 2 the following holds:

inf
q∈QΓ

h

‖p− q‖l,Ω1∪Ω2 ≤ c hm−l‖p‖m,Ω1∪Ω2 (7.113)

for all p ∈ Hm(Ω1 ∪Ω2).

Proof. We use extension operators Em
i : Hm(Ωi) → Hm(Ω), i = 1, 2, with

(Em
i w)|Ωi

= w and ‖Em
i w‖m ≤ c‖w‖m,Ωi , cf. [256]. For m = 1, 2, let Im

h :
Hm(Ω) → Qh be a (quasi-)interpolation operator such that ‖w − Im

h w‖l ≤
c hm−l‖w‖m for all w ∈ Hm(Ω), 0 ≤ l < m ≤ 2 (for example, nodal inter-
polation if m = 2). Let m ∈ {1, 2} and p ∈ Hm(Ω1 ∪ Ω2) be given. Define
q∗ ∈ QΓ

h by
q∗ = R1I

m
h Em

1 R1p+R2I
m
h Em

2 R2p. (7.114)
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For this approximation we obtain

‖p− q∗‖2
l,Ω1∪Ω2

=
2∑

i=1

‖p− q∗‖2
l,Ωi

=
2∑

i=1

‖p− Im
h Em

i Rip‖2
l,Ωi

=
2∑

i=1

‖Em
i Rip− Im

h Em
i Rip‖2

l,Ωi
≤

2∑

i=1

‖Em
i Rip− Im

h Em
i Rip‖2

l

≤ c h2(m−l)
2∑

i=1

‖Em
i Rip‖2

m ≤ c h2(m−l)
2∑

i=1

‖Rip‖2
m,Ωi

= c h2(m−l)‖p‖2
m,Ω1∪Ω2

,

which proves the result. �

Hence, the XFEM space has optimal approximation quality for piecewise
smooth functions p, for example infqh∈QΓ

h
‖qh − p‖L2 ≤ ch2 if p|Ωi

∈ H2(Ωi),
i = 1, 2. Similar approximation results are given in [135]. In [209] also a result
for the reduced XFEM space Q̃Γ

h is derived. In the analysis a global inverse in-
equality is used and therefore in the following theorem we use the assumption
that the family of triangulations is quasi-uniform.

Theorem 7.9.4 Assume that the family {Th}h>0 is quasi-uniform. For in-
tegers l, m with 0 ≤ l < m ≤ 2 the following holds, with Q̃Γ

h defined as in
(7.109):

inf
q∈Q̃Γ

h

‖p− q‖l,Ω1∪Ω2 ≤ c
(
hm−l + hα−l

)
‖p‖m,Ω1∪Ω2 (7.115)

for all p ∈ Hm(Ω1 ∪Ω2).

Proof. Theorem 4 in [209]. �

Properties of a basis in the XFEM space

In this section we derive properties of a basis in the space QΓh

h . Note that now
we consider QΓh

h (instead of QΓ
h ). We first introduce some further notation.

The restriction Ri, i = 1, 2, is as in (7.111), but with Ωi replaced by Ωi,h

(recall: Γh defines the interface between Ω1,h and Ω2,h). The nodal basis in
Qh is denoted by {qj}j∈J , J = {1, . . . , n}. We introduce subsets of J for
which the corresponding basis functions have a nonzero intersection with Γh:

J Γh
1 := { k ∈ J : xk ∈ Ω2,h and supp(qk) ∩ Γh �= ∅ }

J Γh
2 := { k ∈ J : xk ∈ Ω1,h and supp(qk) ∩ Γh �= ∅ } .
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Corresponding spaces are defined by

V Γh

i := span
{
Riqk : k ∈ J Γh

i

}
, i = 1, 2.

To avoid technical difficulties in the analysis, we make the (reasonable) as-
sumption that meas2(Γh ∩ ∂T ) = 0 for all T , i.e., the interface Γh does not
contain faces of the tetrahedra T ∈ Th. The extended finite element space QΓ

h

can be represented as
QΓh

h = Qh ⊕ V Γh
1 ⊕ V Γh

2 . (7.116)
We will analyze the stability of the basis

{qk}1≤k≤n ∪ {R1qk}k∈J Γh
1

∪ {R2qk}k∈J Γh
2
. (7.117)

We prove, cf. Theorem 7.9.7, that the diagonally scaled mass matrix is uni-
formly (w.r.t. h) well-conditioned. This holds independent of the size and the
shape of the support of the basis functions Riqk. This immediately implies a
similar result for the reduced XFEM space Q̃Γh

h .
We first derive a strengthened Cauchy-Schwarz inequality between the

spaces Qh and V Γh
1 ⊕ V Γh

2 . The collection of all vertices in the triangu-
lation Th is denoted by V := {xk : k ∈ J }. For each vertex x ∈ V let
T (x) be the set of all tetrahedra in Th that have x as a vertex. Define
TR = {T ∈ Th : T ∩ Γh = ∅ }. We introduce the assumption

T (x) ∩ TR �= ∅ for all x ∈ V . (7.118)

For h sufficiently small this assumption is satisfied.
Lemma 7.9.5 Assume that (7.118) holds. There exists a constant cCS < 1
independent of h such that

(v, w)L2 ≤ cCS‖v‖L2‖w‖L2 for all v ∈ Qh, w ∈ V Γh
1 ⊕ V Γh

2 .

Proof. We use the notation W = V Γh
1 ⊕ V Γh

2 . Let PW : L2(Ω) → W be
the L2-orthogonal projection on W . Let V(T ) denote the set of vertices of T .
Transformation to a unit tetrahedron yields the norm equivalence

c1‖v‖2
L2(T ) ≤ |T |

∑

x∈V(T )

v(x)2 ≤ c2‖v‖2
L2(T ) (7.119)

for all T ∈ Th, v ∈ Qh, with constants c1 > 0 and c2 independent of h.
Due to (7.118) we have that for each x ∈ V(T ) there exists a tetrahedron
T̂ ∈ T (x)∩TR with x ∈ V(T̂ ). Let TR be as defined above and T Γ

h := Th \ TR

the set of all tetrahedra that have a nonzero intersection with Γh. We obtain
for v ∈ Qh and T ∈ T Γ

h :

‖v‖2
L2(T ) ≤ c |T |

∑

x∈V(T )

v(x)2

≤ c
∑

x∈V(T )

∑

T̂∈T (x)∩TR

|T̂ |
∑

y∈V(T̂ )

v(y)2

≤ c
∑

x∈V(T )

‖v‖2
L2(T (x)∩TR).
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Hence,
‖v‖2

L2(T Γ
h ) =

∑

T∈T Γ
h

‖v‖2
L2(T ) ≤ c‖v‖2

L2(TR), v ∈ Qh,

holds with a constant c independent of h. This yields ‖v‖2
L2 = ‖v‖2

L2(T Γ
h

)
+

‖v‖2
L2(TR) ≤ c‖v‖2

L2(TR) with c independent of h. Using this and (PW v)|TR
= 0

we get, for v ∈ Qh,

‖v − PW v‖L2 ≥ ‖v − PW v‖L2(TR) = ‖v‖L2(TR) ≥ ĉ‖v‖L2,

with a constant ĉ > 0 independent of h. Thus we get

‖PW v‖2
L2 = ‖v‖2

L2 − ‖v − PW v‖2
L2 ≤ (1 − ĉ2)‖v‖2

L2 =: c2CS‖v‖2
L2

for all v ∈ Qh. Hence, for v ∈ Qh, w ∈ W ,

(v, w)L2 = (v, PWw)L2 = (PW v, w)L2 ≤ ‖PW v‖L2‖w‖L2

≤ cCS‖v‖L2‖w‖L2,

which completes the proof. �

The spaces V Γh
1 and V Γh

2 are (due to disjoint supports of functions from these
spaces) L2-orthogonal. Thus we conclude that in the decomposition

QΓh

h = Qh ⊕ V Γh
1 ⊕ V Γh

2

we have a strengthened Cauchy-Schwarz inequality betweenQh and V Γh
1 ⊕V Γh

2

and even orthogonality between V Γh
1 and V Γh

2 .
For v = w + w1 + w2 ∈ QΓh

h , with w ∈ Qh, wi ∈ V Γh

i , we have

‖v‖2
L2 ≤ 2

(
‖w‖2

L2 + ‖w1 + w2‖2
L2

)
= 2
(
‖w‖2

L2 + ‖w1‖2
L2 + ‖w2‖2

L2

)

and

‖v‖2
L2 = ‖w‖2

L2 + ‖w1 + w2‖2
L2 + 2(w,w1 + w2)L2

≥ ‖w‖2
L2 + ‖w1 + w2‖2

L2 − 2cCS‖w‖L2‖w1 + w2‖L2

≥ (1 − cCS)
(
‖w‖2

L2 + ‖w1‖2
L2 + ‖w2‖2

L2

)
.

Hence we obtain

(1 − cCS)
(
‖w‖2

L2 + ‖w1‖2
L2 + ‖w2‖2

L2

)

≤ ‖v‖2
L2 ≤ 2

(
‖w‖2

L2 + ‖w1‖2
L2 + ‖w2‖2

L2

)
.

(7.120)

We now turn to the conditioning of the mass matrix. A function v ∈ QΓh

h is
represented in the basis {qk}1≤k≤n ∪ {R1qk}k∈J Γh

1
∪ {R2qk}k∈J Γh

2
as
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v =
n∑

k=1

αkqk +
2∑

i=1

∑

k∈J Γh
i

β
(i)
k Riqk =: w + w1 + w2, (7.121)

where w ∈ Qh, wi ∈ V Γh

i , i = 1, 2. It is well-known (cf. also (7.119)) that for
w =

∑n
k=1 αkqk we have

c1

n∑

k=1

α2
k‖qk‖2

L2 ≤ ‖w‖2
L2 ≤ c2

n∑

k=1

α2
k‖qk‖2

L2, (7.122)

with constants c1 > 0 and c2 independent of h, i.e., the nodal basis {qk}1≤k≤n

of Qh is uniformly in h well-conditioned (w.r.t. ‖ · ‖L2). We prove a similar
result for the basis {Riqk}k∈J Γh

i

of V Γh

i .

Lemma 7.9.6 For wi =
∑

k∈J Γh
i

β
(i)
k Riqk, i = 1, 2, the following holds:

√
2 − 1
2
√

2

∑

k∈J Γh
i

(
β

(i)
k

)2‖Riqk‖2
L2 ≤ ‖wi‖2

L2 ≤ 3
∑

k∈J Γh
i

(
β

(i)
k

)2‖Riqk‖2
L2 . (7.123)

Proof. It suffices to consider i = 1. We write w1 =
∑

k∈J Γh
1
βkR1qk. For each

T ∈ T Γ
h = Th \ TR there are at most 3 k-values in J Γh

1 with (R1qk)|T �= 0
and thus

‖w1‖2
L2 =

∑

T∈T Γ
h

∥
∥
∥
∑

k∈J Γh
1

βkR1qk

∥
∥
∥

2

L2(T )
≤
∑

T∈T Γ
h

( ∑

k∈J Γh
1

|βk|‖R1qk‖L2(T )

)2

≤ 3
∑

T∈T Γ
h

∑

k∈J Γh
1

|βk|2‖R1qk‖2
L2(T ) = 3

∑

k∈J Γh
1

|βk|2‖R1qk‖2
L2,

which proves the upper bound in (7.123). A proof of the lower bound is given
in Lemma 3 in [209]. �

Using the norm equivalences in (7.120), (7.122) and (7.123) we derive a spec-
tral result for the mass matrix using standard arguments. Let m = mh :=
n + |J Γh

1 | + |J Γh
2 | be the dimension of QΓh

h and J : R
m → QΓh

h the isomor-
phism defined by (7.121):

Jz = J
(
	α, 	β(1), 	β(2)

)
= v.

The mass matrix M ∈ R
m×m is given by

〈Mz, z〉 = (Jz, Jz)L2 for all z ∈ R
m.

Here 〈·, ·〉 denotes the Euclidean scalar product.
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Define diag(M) =: DM with

DM =

⎛

⎝
D ∅

D1

∅ D2

⎞

⎠ , Dk,k = ‖qk‖2
L2, 1 ≤ k ≤ n,

(
Di

)
k,k

= ‖Riqk‖2
L2, k ∈ J Γh

i .

Theorem 7.9.7 There are constants c1 > 0 and c2 independent of h such
that

c1〈DMz, z〉 ≤ 〈Mz, z〉 ≤ c2〈DMz, z〉 for all z ∈ R
m.

Proof. From (7.120), (7.122) and (7.123) we get

〈Mz, z〉 = ‖v‖2
L2 ≤ 2

(
‖w‖2

L2 + ‖w1‖2
L2 + ‖w2‖2

L2

)

≤ 2
(
c2

n∑

k=1

α2
k‖qk‖2

L2 + 3
∑

k∈J Γh
1

(
β

(1)
k

)2‖R1qk‖2
L2 + 3

∑

k∈J Γh
2

(
β

(2)
k

)2‖R2qk‖2
L2

)

≤ c
(
〈D	α, 	α〉 + 〈D1

	β(1), 	β(1)〉 + 〈D2
	β(2), 	β(2)〉

)
= c〈DMz, z〉,

with a constant c independent of h. Similarly, due to

〈Mz, z〉 = ‖v‖2
L2 ≥ (1 − cCS)

(
‖w‖2

L2 + ‖w1‖2
L2 + ‖w2‖2

L2

)
,

and using the lower bounds in (7.122) and (7.123), we obtain 〈Mz, z〉 ≥
c〈DMz, z〉 with a constant c > 0 independent of h. �
The result in this theorem proves that the matrix D−1

M M has a spectral con-
dition number that is uniformly (w.r.t. h) bounded. Note that the constants
in the spectral condition number bounds are also independent of the sup-
ports of the basis functions Riqk, k ∈ J Γh

i . In other words, a simple scaling
is sufficient to control the stability (in L2) of the basis functions with “very
small” supports. Furthermore, we note that in the analysis we did not assume
quasi-uniformity of the family of triangulations.
Corollary 7.9.8 Since the reduced extended finite element space Q̃Γh

h is
spanned by a subset of the basis functions in (7.117), a similar L2-stability
result trivially holds for the basis in the space Q̃Γh

h .

Remark 7.9.9 There are two canonical splittings of the XFEM space QΓh

h ,
namely the ones in (7.116) and in (7.112):

QΓh

h = Qh ⊕ V Γh
1 ⊕ V Γh

2 , QΓh

h = R1Qh ⊕R2Qh,

where Ri is the restriction operator as in (7.111), but now with respect to Ωi,h.
In the analysis above we used the basis corresponding to the first splitting,
cf. (7.117):

{qk}1≤k≤n ∪ {R1qk}k∈J Γh
1

∪ {R2qk}k∈J Γh
2
. (7.124)
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Let Ji be the index set of all k such that supp(qk) ∩ Ωi,h �= ∅ and define
Vi := span { qk : k ∈ Ji }. Note that Vi ⊂ Qh and RiQh = RiVi holds. The
linear mapping J : V1 × V2 → QΓh

h

J(v1, v2) = R1v1 +R2v2 (7.125)

is bijective. The second splitting induces the basis

{R1qk}k∈J1 ∪ {R2qk}k∈J2 . (7.126)

Related to the representations in these two bases we note the following. Take
v ∈ QΓh

h and let vi ∈ Vi be such that v = R1v1 +R2v2. For the representation
in the basis (7.124) we have

v =
n∑

k=1

αkqk +
2∑

i=1

∑

k∈J Γh
i

β
(i)
k Riqk,

with

αk = v(xk), xk ∈ V , k = 1, . . . , n,

β
(i)
k = vi(xk) − v(xk), k ∈ J Γh

i .

For the representation in the basis (7.126) we have

v =
2∑

i=1

∑

k∈Ji

ξ
(i)
k Riqk, with ξ

(i)
k = vi(xk), k ∈ Ji.

LBB-stability

If the XFEM method is used for the discretization of the pressure variable
in a two-phase flow problem, then the space QΓh

h is combined with a finite
element space for the velocity discretization. In this context the question of
LBB-stability of the pair of spaces arises. As far as we know, this topic has not
been investigated in the literature, yet. In our applications, for the velocity
discretization we use the space Vh of piecewise quadratics. The Hood-Taylor
pair (Vh, Qh) is LBB-stable. If instead of Qh we use the extended space
QΓh

h it is not known, whether the pair (Vh, Q
Γh

h ) is LBB-stable. Related to
this we comment on results of a numerical experiment that are presented
in Sect. 7.10.3. In this experiment it is observed that for the reduced XFEM
space Q̃Γh

h the pair (Vh, Q̃
Γh

h ) has a (much) better LBB-stability property
than the pair (Vh, Q

Γh

h ). Hence, at least in the model problem considered in
Sect. 7.10.3, the concept of reduction of the original XFEM space appears to
be important in view of LBB-stability. There is no theoretical analysis that
explains this effect.



7.9 XFEM discretization of the pressure 261

7.9.5 Numerical experiment with XFEM

In this experiment, for a given piecewise smooth function we compute best
approximation errors for the spaces Qh, QΓ

h and Q̃Γ
h . The behavior of these

approximation errors confirms the results of the theoretical analyses treated
above.

We take Ω = (−1, 1)3 and a planar interface Γ = {(x, y, z) ∈ Ω : y + z =
0.05} and Ω1 = { (x, y, z) ∈ Ω : y + z < 0.05 }, Ω2 = Ω \ Ω1. Let u be given
by

u =

{
x2 + y2 + z2 in Ω1

3x2 + y2 + 2z2 + 2 in Ω2.

We use a uniform triangulation of Ω with tetrahedra, resulting in a fam-
ily {Thi}i≥0 with mesh size parameter h = hi = 2−i−1, i = 0, 1, 2, . . .. The
interface Γ and the triangulations are such that Γ is not aligned with the
triangulation. Let Qh be the space of continuous piecewise linear functions
on Th and QΓ

h , Q̃Γ
h the corresponding XFEM and reduced XFEM spaces,

respectively. In the criterion (7.110) that is used in the construction of the
space Q̃Γ

h the parameters l, α and ĉ have to be chosen. We consider approx-
imation errors in the L2-norm and therefore we take l = 0 and α = 2. We
present results for different values of the cut-off parameter ĉ. Note that for
ĉ = 0 we have Q̃Γ

h = QΓ
h (all discontinuous basis functions are kept) and for

a sufficiently large ĉ we have Q̃Γ
h = Qh (all discontinuous basis functions are

deleted). For Wh ∈ {Qh, Q
Γ
h , Q̃

Γ
h } we compute the best approximation of u in

Wh, i.e. uh ∈Wh such that

‖u− uh‖L2 = inf
wh∈Wh

‖u− wh‖L2.

Results for the approximation error eh := ‖u− uh‖L2 are given in Table 7.9,
Table 7.10. In the latter table we use the construction of the reduced space
Q̃Γ

h based on the criterion (7.110) (l = 0, α = 2) with different constants
ĉ = 10, 1, 0.1. One-dimensional profiles of uh ∈ Qh and uh ∈ QΓ

h are shown
in Fig. 7.14.

# ref Wh = Qh order Wh = QΓ
h order

0 1.60 E+0 - 1.44 E-1 -
1 1.20 E+0 0.41 3.71 E-2 1.96
2 8.88 E-1 0.43 9.37 E-3 1.99
3 6.27 E-1 0.50 2.35 E-3 1.99
4 4.52 E-1 0.47 5.89 E-4 2.00

Table 7.9. Approximation errors eh for Qh and QΓ
h .

The observed numerical order of convergence is consistent with the theo-
retically predicted improvement from p = 0.5 to p = 2. Furthermore, a good
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ref# ĉ = 10 order ĉ = 1 order ĉ = 0.1 order

0 1.60 E+0 - 1.60 E+0 - 1.77 E-1 -
1 1.20 E+0 0.41 2.69 E-1 2.57 4.01 E-2 2.14
2 8.88 E-1 0.43 4.72 E-2 2.51 9.37 E-3 2.10
3 1.37 E-2 6.01 8.98 E-3 2.39 2.35 E-3 1.99
4 2.60 E-3 2.40 5.89 E-4 3.93 5.89 E-4 2.00

Table 7.10. Approximation errors eh for Q̃Γ
h .

approximation quality appears to be not very sensitive with respect to the
choice of the parameter ĉ.
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Fig. 7.14. 1D-profile of uh ∈ Qh (left), uh ∈ QΓ
h (right) at x = y = 0, h = 2−4.

The dimension of the space Q̃Γ
h depends on the value for ĉ. These dimen-

sions corresponding to the spaces used in Tables 7.9 and 7.10 are given in
Table 7.11.

# ref. ĉ = ∞ ĉ = 10 ĉ = 1 ĉ = 0.1 ĉ = 0

0 125 125 125 186 205
1 729 729 872 954 1017
2 4913 4913 5730 6001 6001
3 35937 39008 39103 40161 40161
4 274625 290878 291005 291005 291005

Table 7.11. Dimension of the space Q̃Γ
h .

Note that for not too small refinement levels i the dimension of the (modified)
XFEM space is only slightly larger than that of the standard finite element
space.
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7.10 Numerical experiments for a Stokes problem

Due to the Laplace-Young law, typically the pressure has a jump across the
interface, when surface tension forces are present (τ �= 0), cf. Remark 1.1.5
and Remark 7.10.1 below. In numerical simulations, this discontinuity and
inadequate approximation of the localized surface force term often lead to
strong unphysical oscillations of the velocity uh at the interface, so called
spurious velocities or spurious currents, cf. , e. g., [163, 111]. In this section
we consider the relatively simple, but nevertheless interesting, test problem
of a two-phase stationary Stokes problem (with μ1 = μ2 = μ in Ω) and
investigate the discretization quality of the Laplace-Beltrami surface tension
force approximation (Sect. 7.6) and of the extended finite element method for
approximation of the pressure variable (Sect. 7.9.2). We will see that using the
modified Laplace-Beltrami discretization f̃Γh

and the XFEM space results in a
significant reduction of the spurious velocities compared to the case where one
uses fΓh

and the standard FEM space Qh. We emphasize that these improved
methods are not restricted to this simplified problem but apply to the general
Navier-Stokes model as well.

7.10.1 A stationary Stokes test problem

For a given sufficiently smooth interface Γ , we introduce the following Stokes
problem. For V0 := H1

0 (Ω)3, Q := L2
0(Ω), find (u, p) ∈ V0 ×Q such that

a(u,v) + b(v, p) = (ρg,v)L2 + fΓ (v) for all v ∈ V0,

b(u, q) = 0 for all q ∈ Q,
(7.127)

where

a(u,v) :=
∫

Ω

μ∇u · ∇v dx, b(v, q) = −
∫

Ω

q div v dx,

fΓ (v) := −τ
∫

Γ

κn · v ds = −τ
∫

Γ

∇Γ idΓ ·∇Γ v ds,

with a viscosity μ > 0 that is constant in Ω. Recall that fΓ ∈ V′
0. Well-

posedness of this variational problem follows from the same arguments as used
for the one-phase stationary Stokes problem in Sect. 2.2.2. Theorem 15.3.1 can
be applied and yields well-posedness of the variational problem (7.127). The
unique solution of this problem is denoted by (u∗, p∗) ∈ V0 ×Q.

Remark 7.10.1 Assume that the domain Ω is convex. Then the problem
(7.127) has a smooth velocity solution u∗ ∈ V0 ∩ H2(Ω)3 and a piece-
wise smooth pressure solution p with p|Ωi

∈ H1(Ωi), i = 1, 2, which has a
jump across Γ . These smoothness properties can be derived as follows. The
curvature κ is assumed to be a smooth function (on Γ ). Thus there exist
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p̂1 ∈ H1(Ω1) such that (p̂1)|Γ = κ (in the sense of traces). Define p̂ ∈ L2(Ω)
by p̂ = p̂1 in Ω1, p̂ = 0 on Ω2. Note that for all v ∈ V0,

fΓ (v) = −τ
∫

Γ

κnΓ · v ds = −τ
∫

Γ

p̂1nΓ · v ds

= −τ
∫

Ω1

p̂1 div v dx − τ

∫

Ω1

∇p̂1 · v dx

= −τ
∫

Ω

p̂ div v dx + τ

∫

Ω

g̃ · v dx,

with g̃ ∈ L2(Ω)3 given by g̃ = −∇p̂1 in Ω1, g̃ = 0 on Ω2. Thus if (u∗, p∗) is the
solution of (7.127) then (u∗, p∗ − τ p̂) satisfies the standard Stokes equations

a(u∗,v) + b(v, p∗ − τ p̂) = (ρg + τ g̃,v)L2 for all v ∈ V0,

b(u∗, q) = 0 for all q ∈ Q.
(7.128)

From regularity results on Stokes equations and the fact that Ω is convex
we conclude that u∗ ∈ H2(Ω)3 ∩ H1

0 (Ω)3 and p∗ − τ p̂ ∈ H1(Ω). Thus
[p∗ − τ p̂]Γ = 0 (a.e. on Γ ) holds, which implies

[p∗]Γ = τ [p̂]Γ = τκ,

i.e., p∗ has a jump across Γ of the size τκ.

Example 7.10.2 (Static Droplet) A simple example that is used in the
numerical experiments in Sect. 7.10.3 is the following. Let Ω := (−1, 1)3 and
Ω1 a sphere with center at the origin and radius r < 1. We take g = 0. In this
case the curvature is constant, κ = 2

r , and the solution of the Stokes problem
(7.127) is given by u∗ = 0, p∗ = τ 2

r + c0 on Ω1, p∗ = c0 on Ω2 with a constant
c0 such that

∫
Ω p

∗ dx = 0.

Discretization error bounds

We assume that a piecewise planar surface Γh is known, which is close to the
interface Γ in the sense of (7.70). The induced polyhedral approximations of
the subdomains are Ω1,h = int(Γh) (region in the interior of Γh) and Ω2,h =
Ω \Ω1,h. Furthermore, we define the piecewise constant approximation of the
density by ρh = ρi on Ωi,h. We assume that for vh ∈ Vh the integrals in

(ρhg,vh)L2 = ρ1

∫

Ω1,h

g · vh dx+ ρ2

∫

Ω2,h

g · vh dx

can be computed with high accuracy. This can be realized efficiently in our
implementation because if one applies the standard finite element assembling
strategy by using a loop over all tetrahedra T ∈ Th, then T ∩ Ωi,h is either
empty or T or a relatively simple polygonal subdomain (due to the construc-
tion of Γh). For more details we refer to Sect. 7.9.3.
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The discretization of (7.127) is as follows: determine (uh, ph) ∈ Vh ×Qh

such that

a(uh,vh) + b(vh, ph) = (ρhg,vh)L2 + fΓh
(vh) for all vh ∈ Vh,

b(uh, qh) = 0 for all qh ∈ Qh.
(7.129)

We do not restrict to a concrete pair of spaces (Vh, Qh). For these spaces
we (only) assume conformity Vh ⊂ V0, Qh ⊂ Q, and LBB-stability of the
pair (Vh, Qh). Approximations fΓh

(vh) of fΓ (vh) are discussed in Sect. 7.6.
Using standard finite element error analysis based on the Strang-lemma, cf.
Sect. 15.4, we obtain the following discretization error bound.

Theorem 7.10.3 Let (u∗, p∗), (uh, ph) be the solution of (7.127) and
(7.129), respectively. Then the error bound

μ‖uh − u∗‖1 + ‖ph − p∗‖L2 ≤ c
(
μ inf

vh∈Vh

‖vh − u∗‖1 + inf
qh∈Qh

‖qh − p∗‖L2

+ sup
vh∈Vh

|(ρg,vh)L2 − (ρhg,vh)L2 |
‖vh‖1

(7.130)

+ sup
vh∈Vh

|fΓ (vh) − fΓh
(vh)|

‖vh‖1

)

holds with a constant c independent of h, μ and ρ.

Remark 7.10.4 Assume Ω to be convex. Then the problem (7.128) is H2-
regular and from a standard duality argument (and a scaling argument) it
follows that

‖u∗ − uh‖L2 ≤ ch

(
‖u∗ − uh‖1 +

1
μ
‖p∗ − ph‖L2

)

holds, with a constant c independent of μ and h.

Corollary 7.10.5 Let (u∗, p∗), (uh, ph) be as in Theorem 7.10.3 and define

rh := sup
vh∈Vh

|(ρg,vh)L2 − (ρhg,vh)L2 |
‖vh‖1

+ sup
vh∈Vh

|fΓ (vh) − fΓh
(vh)|

‖vh‖1
.

The following holds:

‖uh − u∗‖1 ≤ c
(

inf
vh∈Vh

‖vh − u∗‖1 +
1
μ

inf
qh∈Qh

‖qh − p∗‖L2 +
1
μ
rh

)
,

‖uh − u∗‖L2 ≤ ch
(

inf
vh∈Vh

‖vh − u∗‖1 +
1
μ

inf
qh∈Qh

‖qh − p∗‖L2 +
1
μ
rh

)
,

‖ph − p∗‖L2 ≤ c
(
μ inf

vh∈Vh

‖vh − u∗‖1 + inf
qh∈Qh

‖qh − p∗‖L2 + rh

)
,

with constants c independent of h, μ and ρ. We observe that if μ � 1 then
in the velocity error we have an error amplification effect proportional to 1

μ .
This effect does not occur in the discretization error for the pressure.
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We comment on the terms occurring in the bound in (7.130). We start with the
velocity approximation error term μ infvh∈Vh

‖vh −u∗‖1. Assume a situation
in which the solution u∗ of (7.127) is smooth: u∗ ∈ H2(Ω)3. With standard
finite element spaces Vh for the velocity (e.g., P1 or P2) we then obtain

inf
vh∈Vh

‖vh − u∗‖1 ≤ ch.

If u∗ ∈ H3(Ω)3, then with quadratic finite elements the upper bound can be
improved to ch2.

Remark 7.10.6 Note that in Remark 7.10.1 the smoothness of u∗ was shown
under the assumption of equal viscosity in both phases, i. e., μ1 = μ2. If μ is
discontinuous across Γ , then the normal derivative of u∗ has a jump across
Γ , which means that the velocity field u∗ has a kink at Γ . If the grid is not
aligned to the interface, then the approximation of such functions in standard
finite element spaces Vh yields

inf
vh∈Vh

‖vh − u∗‖1 ≤ c
√
h.

In the case of large viscosity ratios maxi=1,2 μi/mini=1,2 μi (e. g., liquid-gas
systems) the construction of specially adapted finite element spaces enabling
first order convergence w.r.t. the H1-norm is required, cf. [66, 166]. However,
for liquid-liquid systems with small viscosity ratios the influence of this error
source turns out to be rather small compared to the pressure approximation
error (second term in (7.130)).

Related to the third term in (7.130) we note the following. Due to (7.70a) we
get |meas3(Ωi) − meas3(Ωi,h)| ≤ ch2

Γ , i = 1, 2, and using this we obtain

|(ρg,vh)L2 − (ρhg,vh)L2 | ≤
2∑

i=1

ρi

∣
∣
∣∣
∣

∫

Ωi

g · vh dx−
∫

Ωi,h

g · vh dx

∣
∣
∣∣
∣

≤ c(ρ1 + ρ2)hΓ ‖vh‖1,

and thus an O(hΓ ) bound for the third term in (7.130).
The remaining two terms in (7.130) are less easy to handle. In Sect. 7.7

we treated the fourth term. It is shown that the approximation method based
on the modified Laplace-Beltrami discretization f̃Γh

, cf. (7.60), results in a
O(hΓ ) bound for this term whereas the Laplace-Beltrami approximation with
fΓh

, cf. (7.54), only yields O(
√
hΓ ).

The second term in (7.130) is treated in Sect. 7.9. It is shown that standard
finite element spaces (e.g., P0 or P1) lead to a pressure discretization error
infqh∈Qh

‖qh − p∗‖L2 ∼
√
hΓ , and that for the extended finite element space

(or its reduced variant) one has an L2-error bound proportional to h2
Γ .
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Remark 7.10.7 Consider the problem as in Example 7.10.2. Then u∗ = 0,
g = 0 and the bound in (7.130) simplifies to

μ ‖uh‖1 + ‖ph − p∗‖L2

≤ c
(

inf
qh∈Qh

‖qh − p∗‖L2 + sup
vh∈Vh

|fΓ (vh) − fΓh
(vh)|

‖vh‖1

)
. (7.131)

In the following sections we consider the Galerkin discretization (7.129) of
the Stokes problem with g = 0 in the cube Ω = (−1, 1)3. We assume constant
viscosity μ = 1. We will consider different interfaces Γ . The discrete problem
is as follows: determine vh ∈ Vh, ph ∈ Qh such that

a(uh,vh) + b(vh, ph) = fSF,h(vh) for all vh ∈ Vh,

b(uh, qh) = 0 for all qh ∈ Qh,
(7.132)

where fSF,h ∈ V′
h are different approximations of fΓ . We choose a uniform

initial triangulation T0 of Ω where the vertices form a 5 × 5 × 5 lattice and
apply an adaptive refinement algorithm. Local refinement of the coarse mesh
T0 in the vicinity of Γ yields the gradually refined meshes T1, T2, T3, T4 with
local mesh sizes hΓ = hi = 2−i−1, i = 0, . . . , 4, at the interface. For the dis-
cretization of velocity we choose the standard finite element space of piecewise
quadratics:

Vh :=
{
v ∈ C(Ω)3 : v|T ∈ P2 for all T ∈ Th, v|∂Ω = 0

}
.

We consider different choices for the pressure finite element space, namely
piecewise constant or continuous piecewise linear elements, i. e., the spacesQ0

h,
Q1

h respectively, and the extended pressure spaceQΓh

h introduced in Sect. 7.9.2.
The discretization quality is quantified by computing norms of the errors

eu := u∗ − uh = −uh and ep := p∗ − ph.

7.10.2 Test case A: Pressure jump at a planar interface

This simple test case is designed to examine interpolation errors of finite
element spaces for the approximation of a discontinuous pressure variable.
We consider two different interfaces Γ1 and Γ2, which are both planes. Γ1 is
defined by

Γ1 = {x ∈ Ω : x3 = 0 } .
In this case the two subdomains are given by Ω1 := {x ∈ Ω : x3 < 0 } and
Ω2 := Ω \Ω1, cf. Fig. 7.15. Interface Γ2 is defined by

Γ2 = {x ∈ Ω : x2 + x3 = 1 } ,

and the corresponding subdomains are Ω1 := {x ∈ Ω : x2 + x3 < 0 } and
Ω2 := Ω \Ω1, cf. Fig. 7.17.
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Since for these planar interfaces Γ1, Γ2 the curvature is zero we introduce an
artificial surface force fASF given by

fASF(v) = −σ
∫

Γ

v · n ds, v ∈ V,

with a constant σ > 0. Note that fASF ∈ V′. The unique solution of (7.127),
with fΓ = fASF, is given by

u∗ = 0, p∗ =

{
C + σ in Ω1,

C in Ω2.

Here C is a constant such that
∫

Ω
p∗ dx = 0. In the experiments below we

use σ = 1. For both interfaces the interface approximation Γh is exact, i. e.,
Γh = Γ , allowing an exact discretization of the interfacial force, i. e., fASF,h =
fASF.

Due to g = 0, u∗ ∈ Vh and the fact that ‖fASF,h − fASF‖V′
h

= 0 the error
bound (7.130) simplifies to

μ‖eu‖1 + ‖ep‖L2 ≤ c inf
qh∈Qh

‖p∗ − qh‖L2. (7.133)

Thus the errors in velocity and pressure are solely controlled by the approxi-
mation quality of the finite element space Qh.

The number of velocity and pressure unknowns for the grids T0, . . . , T4

with different refinement levels are shown in Table 7.12. Note that dimQΓh

h >
dimQ1

h due to the extended basis functions and that dimQ0
h is even (much)

larger.

interface # ref. dimVh dimQ1
h dim QΓh

h dim Q0
h

0 1029 125 150 384
1 6801 455 536 1984

Γ = Γ1 2 31197 1657 1946 8384
3 131433 6235 7324 33984
4 537717 24093 28318 136384

0 1029 125 190 384
1 7749 543 768 2304

Γ = Γ2 2 42633 2313 3146 11556
3 200469 9607 12808 52088
4 871881 39229 51774 221796

Table 7.12. Dimensions of the finite element spaces for test case A.

We discuss the results obtained for the two cases Γ = Γ1 and Γ = Γ2 .

Interface at Γ = Γ1

For Γ = Γ1, the interface Γ is located at the element boundaries of tetrahedra
intersected by Γ , i. e., for each tetrahedron T intersecting Γ we have that
Γ ∩ T is equal to a face of T .
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In this special situation, the discontinuous pressure p∗ can be represented
exactly in the finite element space Q0

h of piecewise constants, thus the finite
element solution (uh, ph) ∈ Vh ×Q0

h is equal to (u∗, p∗). This is confirmed by
the numerical results: the exact solution (u∗, p∗) fulfills the discrete equations
(up to rounding errors). The same holds for the extended finite element space
QΓh

h .
For the space of continuous piecewise linear finite elements we have

p∗ /∈ Q1
h. The grid T3 and the corresponding pressure solution are shown

in Figs. 7.15 and 7.16. The error norms for different grid refinement levels
are shown in Table 7.13. The L2-error of the pressure shows a decay of
O(h1/2). This confirms the theoretical results for the approximation error
minq∈Q1

h
‖p∗− qh‖L2 , cf. Sect. 7.9.1 and (7.133). The velocity error in the H1-

norm shows the same O(h1/2) behavior, whereas in the L2-norm the error
behaves like O(h3/2).

Fig. 7.15. Slice of grid at x1 = 0 after
3 refinements for Γ = Γ1.

Fig. 7.16. 1D-profile of pressure
jump at x1 = x2 = 0 for ph ∈ Q1

h.
3 refinements, Γ = Γ1.

# ref. ‖eu‖L2 order ‖eu‖1 order ‖ep‖L2 order

0 4.26 E-2 – 4.26 E-1 – 5.32 E-1 –
1 1.85 E-2 1.2 3.41 E-1 0.32 3.78 E-1 0.49
2 7.09 E-3 1.38 2.55 E-1 0.42 2.68 E-1 0.5
3 2.60 E-3 1.45 1.85 E-1 0.46 1.90 E-1 0.5
4 9.37 E-4 1.47 1.33 E-1 0.48 1.34 E-1 0.5

Table 7.13. Errors for the (Vh, Q1
h) finite element pair, Γ = Γ1.
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Interface at Γ = Γ2

We now consider the case Γ = Γ2. This problem corresponds to the 2D prob-
lem discussed in Sect. 7.9.1, cf. Fig. 7.10. Γ is chosen such that Γ ∩ F �= F
for all faces of the triangulations T0, T1, T2, T3. As a consequence, p∗ /∈ Q0

h

and p∗ /∈ Q1
h, but p∗ ∈ QΓh

h . We checked that the finite element solution
(uh, ph) ∈ Vh ×QΓh

h is indeed equal to (u∗, p∗) (up to machine accuracy).
We first discuss results for P1 finite elements. The grid T3, obtained af-

ter 3 times refinement, and the corresponding pressure solution for P1 finite
elements are shown in Figs. 7.17 and 7.18. The error norms for different grid
refinement levels are shown in Table 7.14. The same convergence orders as for
the case Γ = Γ1 are obtained, cf. Table 7.13.

Fig. 7.17. Slice of grid at x1 = 0 after
3 refinements for Γ = Γ2.

Fig. 7.18. 1D-profile of pressure
jump at x1 = x2 = 0 for ph ∈ Q1

h.
3 refinements, Γ = Γ2.

# ref. ‖eu‖L2 order ‖eu‖1 order ‖ep‖L2 order

0 2.53 E-2 – 2.56 E-1 – 5.44 E-1 –
1 1.24 E-2 1.02 2.25 E-1 0.18 3.99 E-1 0.45
2 5.03 E-3 1.31 1.75 E-1 0.36 2.88 E-1 0.47
3 1.89 E-3 1.41 1.29 E-1 0.44 2.06 E-1 0.48
4 6.88 E-4 1.46 9.35 E-2 0.47 1.46 E-1 0.49

Table 7.14. Errors for the (Vh, Q1
h) finite element pair, Γ = Γ2.

Results for the P0 finite elements are shown in Table 7.15. Compared to P1

finite elements, the errors are slightly larger but show similar convergence or-
ders, i. e., O(h1/2) for the pressure L2-error and velocityH1-error, and O(h3/2)
for the velocity L2-error.
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# ref. ‖eu‖L2 order ‖eu‖1 order ‖ep‖L2 order

0 3.98 E-2 – 3.49 E-1 – 7.30 E-1 –
1 1.64 E-2 1.28 2.75 E-1 0.35 4.89 E-1 0.58
2 6.14 E-3 1.41 2.04 E-1 0.43 3.35 E-1 0.54
3 2.22 E-3 1.47 1.48 E-1 0.46 2.34 E-1 0.52
4 7.92 E-4 1.49 1.06 E-1 0.48 1.65 E-1 0.51

Table 7.15. Errors for the (Vh, Q0
h) finite element pair, Γ = Γ2.

7.10.3 Test case B: Static droplet

In this test case (cf. Example 7.10.2) we consider a static droplet Ω1 ={
x ∈ R

3 : ‖x‖ ≤ r
}

in the cube Ω = (−1, 1)3 with r = 2/3. We assume
that surface tension is present, i. e., fSF = fΓ with τ = 1. This problem has
the unique solution

u∗ = 0, p∗ =

{
c0 + κ in Ω1,

c0 in Ω2.

Since κ = 2/r, the pressure jump is equal to [p∗]Γ = 3. A 2D variant of this
test case is presented in [111, 115, 226].

In this problem the errors in velocity and pressure are influenced by two
error sources, namely the approximation error of the discontinuous pressure
p∗ in Qh (as in test case A) and errors induced by the discretization of the
surface force fΓ , cf. (7.131).

The number of velocity and pressure unknowns for the grids T0, . . . , T4

with different refinement levels are shown in Table 7.16. Note that dimQΓh

h is
significantly larger than dimQ1

h, but that dimQΓh

h � dimVh.

# test case B

ref. dimVh dim Q1
h dim QΓh

h

0 1029 125 176
1 5523 337 533
2 30297 1475 2295
3 139029 6127 9413
4 569787 24373 37355

Table 7.16. Dimensions of the finite element spaces for test case B.

We consider test case B for two different approximations of the surface tension
functional fΓ , namely the Laplace-Beltrami discretization fΓh

as in (7.54) and
the modified Laplace-Beltrami discretization f̃Γh

as in (7.60). For the pressure
space we choose Qh = Q1

h and Qh = QΓh

h . We do not present results for the
space Q0

h because these are similar to those for Q1
h. Table 7.17 shows the decay
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of the pressure L2-norm for the four different experiments. We observe poor
O(h1/2) convergence in the cases where ph ∈ Q1

h or when the surface tension
force fΓ is discretized by fΓh

. For the L2 and H1-norm of the velocity error
the convergence orders are O(h3/2) and O(h1/2), respectively, which is similar
to the results in test case A.

We emphasize that only for the combination of the extended pressure finite
element space QΓh

h with the improved approximation f̃Γh
we achieve O(hα)

convergence with α ≥ 1 for the pressure L2-error. The velocity error in the
H1-norm shows a similar behavior (at least first order convergence), in the
L2-norm we even have second order convergence, cf. Table 7.18.

For the improved Laplace-Beltrami discretization f̃Γh
the corresponding

pressure solutions ph ∈ Q1
h and ph ∈ QΓh

h are shown in Fig. 7.19. For the stan-
dard pressure space Q1

h we observe oscillations of the pressure at the interface
inducing large spurious velocities in that region as shown in Fig. 7.20. For
the XFEM pressure space QΓh

h the pressure jump can be accurately resolved
leading to a very large reduction of spurious velocities. In Fig. 7.21, on the left
we illustrate these spurious velocities on the same scale as in Fig. 7.20 and on
the right multiplied by a factor 20.

# ‖ep‖L2 for ph ∈ Q1
h ‖ep‖L2 for ph ∈ QΓh

h

ref. fΓh order f̃Γh order fΓh order f̃Γh order

0 1.60 E+0 – 1.60 E+0 – 3.12 E-1 – 1.64 E-1 –
1 1.07 E+0 0.57 1.07 E+0 0.57 1.00 E-1 1.64 4.97 E-2 1.73
2 8.23 E-1 0.38 8.23 E-1 0.38 6.24 E-2 0.68 1.66 E-2 1.58
3 5.80 E-1 0.51 5.80 E-1 0.51 4.28 E-2 0.54 7.16 E-3 1.22
4 4.13 E-1 0.49 4.13 E-1 0.49 2.95 E-2 0.54 2.83 E-3 1.34

Table 7.17. Pressure errors for the (Vh, Q1
h) and (Vh, QΓ

h ) finite element pair and
different discretizations of fΓ .

# ref. ‖eu‖L2 order ‖eu‖1 order

0 7.16 E-3 – 1.10 E-1 –
1 1.57 E-3 2.19 4.26 E-2 1.37
2 3.25 E-4 2.28 1.70 E-2 1.33
3 8.57 E-5 1.92 7.43 E-3 1.19
4 1.75 E-5 2.29 2.40 E-3 1.63

Table 7.18. Errors and numerical order of convergence for the (Vh, QΓ
h ) finite

element pair and improved Laplace-Beltrami discretization f̃Γh .
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Fig. 7.19. Finite element pressure solution ph ∈ Q1
h (left) and ph ∈ QΓh

h (right),
visualized on slice at x3 = 0.

Fig. 7.20. Velocity uh for the case ph ∈ Q1
h, visualized on slice at x3 = 0.

μ-dependence of the errors

We repeated the computations of (uh, ph) ∈ Vh × QΓh

h for the improved
Laplace-Beltrami discretization f̃Γh

on the fixed grid T3 varying the vis-
cosity μ. The errors are given in Table 7.19. We clearly observe that the
velocity errors are proportional to μ−1 whereas the pressure error is indepen-
dent of μ. This confirms the bound in (7.131).
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Fig. 7.21. Velocity uh for the case ph ∈ Q
Γh
h (left) and magnified by a factor 20

(right), visualized on slice at x3 = 0.

μ ‖eu‖L2 ‖eu‖1 ‖ep‖L2

10 8.62 E-6 7.51 E-4 8.71 E-3
1 8.57 E-5 7.43 E-3 7.16 E-3

0.1 8.58 E-4 7.44 E-2 6.87 E-3
0.01 8.57 E-3 7.44 E-1 6.88 E-3
0.001 8.57 E-2 7.43 E+0 7.16 E-3

Table 7.19. Errors for the (Vh, QΓ
h ) finite element pair and improved Laplace-

Beltrami discretization f̃Γh on T3 for different viscosities μ.

Condition numbers of scaled mass matrix

We consider the XFEM space QΓh

h , h = hi = 2−i−1, i = 0, . . . , 4, used
in the static droplet example from above. For this space we determined the
mass matrix Mh. With Dh := diag(Mh) we computed the spectral condition
number of D−1

h Mh, i.e., cond(D−1
h Mh) = λmax(D−1

h Mh)/λmin(D−1
h Mh). For

h = hi, i = 0, . . . , 4, the results are given in Table 7.20.

i cond(D−1
h Mh)

0 16.16
1 11.24
2 12.08
3 12.93
4 12.98

Table 7.20. Spectral condition number of the scaled XFEM mass matrix.
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These results clearly show the uniform boundedness of the spectral condition
number of the scaled mass matrix, as proved in Theorem 7.9.7.

LBB-stability

In the theoretical analysis, in particular in Theorem 7.10.3, we assume that
the pair of spaces that is used is LBB-stable. The standard P2-P1 Hood-
Taylor pair (Vh, Q

1
h) is known to be LBB-stable. An obvious question is what

happens with stability if for the pressure instead of Q1
h we take the (larger)

space Q̃Γ
h . We do not have a satisfactory theoretical analysis of this stability

issue, yet. Here we present results of a numerical experiment for the static
droplet example from above. We consider this problem with the discretization
pair (Vh, Q̃

Γh

h ). The matrix representation of this discrete problem leads to a
symmetric saddle point problem of the form

Kh =
(
Ah BT

h

Bh 0

)
.

Recall that h = hi = 2−i−1, i = 0, . . . , 4. The Schur complement matrix is
given by Sh = BhA−1

h BT
h . The LBB-constant for the (Vh, Q̃

Γh

h ) pair with
h = hi is given by

CLBB(i) = inf
ph∈Q̃

Γh,∗
h

sup
v∈Vh

(div vh, ph)L2

‖∇vh‖L2‖ph‖L2
,

where Q̃Γh,∗
h contains all functions from Q̃Γh

h that are L2-orthogonal to the
constant. Let Mh be the mass matrix in Q̃Γh

h and m = mi = dim(Q̃Γh

h ).
Define R

m,∗ = {y ∈ R
m : 〈y,Mhe〉 = 0 }, with e := (1, 1, . . . , 1)T . The LBB

constant can also be represented as follows, cf. (5.106),

C2
LBB(i) = inf

y∈Rm,∗

〈Shy,y〉
〈Mhy,y〉

, (7.134)

and thus C2
LBB(i) is the smallest nonzero eigenvalue of M−1

h Sh. Due to the fact
that Mh is uniformly spectrally equivalent to its diagonal Dh we can instead
consider the smallest nonzero eigenvalue of D− 1

2
h ShD

− 1
2

h which is denoted
by λ∗min(D−1

h Sh). This eigenvalue can be approximated accurately using, for
example, an inverse power iteration. In each iteration of this method the
linear systems with matrix D− 1

2
h ShD

− 1
2

h can be solved using a CG method.
We implemented this and computed (with sufficiently high accuracy) this
smallest eigenvalue for several mesh sizes and for different values of the “cut-
off” parameter ĉ used in the definition of Q̃Γh

h , cf. (7.110). The resulting values
are presented in Table 7.21. Note that ĉ = ∞ corresponds to the space Qh =
Q1

h. The rather irregular behavior in the columns in Table 7.21 may be caused
by the fact that we compute the smallest nonzero eigenvalue of D−1

h Sh and not
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of M−1
h Sh. We observe that for the full extended space QΓh

h , which coincides
with Q̃Γh

h for ĉ = 10−4, the LBB quantity C2
LBB(i) strongly deteriorates if i

is increased. Hence, we conclude that with respect to LBB-stability it seems
to be important (at least in this experiment) to use the reduced XFEM space
Q̃Γh

h with a not too small parameter ĉ.

i ĉ = ∞ ĉ = 10 ĉ = 1 ĉ = 0.1 ĉ = 0.01 ĉ = 0.0001

0 9.53 E-2 9.53 E-2 9.53 E-2 4.65 E-2 1.43 E-2 1.43 E-2
1 2.53 E-2 2.53 E-2 2.53 E-2 2.53 E-2 1.53 E-2 6.49 E-3
2 3.22 E-2 3.22 E-2 3.22 E-2 2.97 E-2 1.07 E-2 1.97 E-4
3 2.58 E-2 2.58 E-2 2.58 E-2 2.16 E-2 3.17 E-3 3.37 E-5
4 9.17 E-2 9.17 E-2 5.91 E-2 1.12 E-3 1.60 E-3 1.32 E-5

Table 7.21. Estimates of smallest nonzero eigenvalue of preconditioned Schur com-
plement D−1

h Sh.

7.11 Finite element discretization of two-phase
flow problem

7.11.1 Spatial finite element discretization

In this section we combine the methods described in the previous sections to
obtain a semi-discretization of a two-phase flow model. We recall the model
given in (6.59): Find u(t) = u(·, t) ∈ VD, p(t) = p(·, t) ∈ Q, φ(t) = φ(·, t) ∈
Wu,D such that for almost all t ∈ [0, T ]

m(
∂u
∂t
,v) + a(u,v)

+ c(u;u,v) + b(v, p) = (ρg,v)L2 + fΓ (v) for all v ∈ V0,

b(u, q) = 0 for all q ∈ Q,

(
∂φ

∂t
, v)L2 + (u · ∇φ, v)L2 = 0 for all v ∈ L2(Ω),

(7.135)

together with initial conditions u(0) = u0, φ(0) = φ0 in Ω. The notation is as
in Sect. 6.3:

V := H1(Ω)3,
V0 := {v ∈ V : v = 0 on ∂ΩD } ,
VD := {v ∈ V : v = uD on ∂ΩD } ,

Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫

Ω

q dx = 0
}
,

Wu,D :=
{
w ∈ L2(Ω) : u · ∇w ∈ L2(Ω), w|∂Ωin

= φD

}
,
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and

m(u,v) :=
∫

Ω

ρuv dx,

a(u,v) :=
1
2

∫

Ω

μ tr
(
D(u)D(v)

)
dx,

b(v, q) := −
∫

Ω

q div v dx,

c(u;v,w) :=
∫

Ω

ρ(u · ∇v)w dx,

fΓ (v) := −τ
∫

Γ

κn · v ds.

For the spatial discretization of this model we use the following methods:

• We construct nested tetrahedral triangulations {Th} in the same way as
for the one-phase flow problem, cf. Sect. 3.1.

• We apply streamline diffusion discretization of the level set equation, cf.
Sect. 7.2.2, with piecewise quadratic finite elements. The space of piecewise
quadratics is denoted by Vh.

• A polyhedral approximation Γh of Γ is constructed, as described in
Sect. 7.3.

• For discretization of the velocity variable u we use the standard FE space
of piecewise quadratics. The spaces are denoted by Vh (vh = 0 on ∂ΩD)
and VD,h (vh =interpolation of uD on ∂ΩD).

• Discretization of fΓ by f̃Γh
as explained in Sect. 7.6.

• For the discretization of the pressure variable p we use the extended finite
element space Q̃Γh

h , cf. Sect. 7.9.2. Default we use the variant in which new
basis functions with “very small” support are deleted from the extended
space (Sect. 7.9.3).

For the Galerkin discretization of the problem in (7.135) we proceed in the
same way as for the one-phase Navier-Stokes equation. The semi-discretization
reads as follows: Find uh(t) ∈ VD,h, ph(t) ∈ Q̃Γh

h and φh(t) ∈ Vh(φD) such
that for t ∈ [0, T ]:

m(
∂uh

∂t
(t),vh) + a(uh(t),vh) + c(uh(t);uh(t),vh)

+ b(vh, ph(t)) = m(g,vh) + f̃Γh
(vh) ∀ vh ∈ Vh,

b(uh(t), qh) = 0 ∀ qh ∈ QΓh

h , (7.136)
∑

T∈Th

(
∂φh

∂t
(t) + uh(t) · ∇φh(t), vh + δTuh(t) · ∇vh)L2(T ) = 0 ∀ vh ∈ Vh.
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Clearly, this is a method of lines approach. The finite element spaces Vh

and Vh used for discretization of the velocity and of the level set function
can be considered to be independent of t. The level set function trial space
Vh(φD) depends on t if the inflow boundary data φD depend on t. If at a
certain time t = T0 > 0 the triangulation is adapted (local refinement and/or
coarsening), the computed discrete solutions at t = T0 are interpolated on the
new triangulations. Then the next time interval [T0, T1] can be treated by the
method of lines with fixed discretization spaces Vh and Vh, that differ from
those used on the previous interval [0, T0]. If in the two-phase flow problem the
interface is stationary then the pressure discretization space Q̃Γh

h can also be
considered to be independent of t. In the more interesting case in which there
is an evolving interface there is a strong dependence of Q̃Γh

h on t. In that case
a method of lines discretization as in (7.136) induces difficulties regarding
the time discretization and it is more natural to use a Rothe approach, cf.
Remark 4.2.2. We come back to this issue in Sect. 8.1.2.

Let {ξj}1≤j≤N , {ψj}1≤j≤K and {ξj}1≤j≤L be (nodal) bases of Vh, Q̃Γh

h and
Vh, respectively. We emphasize again, that in case of an evolving interface
we have Q̃Γh

h = Q̃Γh

h (t) and thus in particular K = K(t). The bases induce
corresponding representations of the finite element functions in vector form.
Functions uh(t) ∈ Vh, ph(t) ∈ Qh and φh(t) ∈ Vh can be represented as:

uh(t) =
N∑

j=1

uj(t)ξj , 	u(t) := (u1(t), . . . , uN(t)),

ph(t) =
K∑

j=1

pj(t)ψj , 	p(t) := (p1(t), . . . , pK(t)),

φh(t) =
L∑

j=1

φj(t)ξj + bh(t), 	φ(t) := (φ1(t), . . . , φL(t)),

with bh(t) ∈ Vh(φD) such that bh(t)(x) = φD(x, t) for all x ∈ V(∂Ωin) and
bh(t)(x) = 0 for all other vertices x, cf. (7.15). For φh ∈ Vh(φD) and uh ∈ Vh

(or VD,h) we introduce the following (mass and stiffness) matrices:
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M(φh) ∈ R
N×N , M(φh)ij =

∫

Ω

ρ(φh) ξi · ξj dx,

A(φh) ∈ R
N×N , A(φh)ij =

1
2

∫

Ω

μ(φh) tr
(
D(ξi)D(ξj)

)
dx,

B(φh) ∈ R
K×N , B(φh)ij = −

∫

Ω

ψi div ξj dx,

N(φh,uh) ∈ R
N×N , N(φh,uh)ij =

∫

Ω

ρ(φh) (uh · ∇ξj) · ξi dx,

E(uh) ∈ R
L×L, E(uh)ij =

∑

T∈Th

∫

T

ξj(ξi + δTuh · ∇ξi) dx,

H(uh) ∈ R
L×L, H(uh)ij =

∑

T∈Th

∫

T

(uh · ∇ξj)(ξi + δTuh · ∇ξi) dx.

We also need the following vectors:

	g(φh) ∈ R
N , 	g(φh)i =

∫

Ω

ρ(φh)g · ξi dx,

	fΓh
(φh) ∈ R

N , 	fΓh
(φh)i = f̃Γh

(ξi),

b(uh) ∈ R
L, b(uh)i =

∑

T∈Th

∫

T

(
∂bh
∂t

+ uh · ∇bh)(ξi + δT uh · ∇ξi) dx.

Below we write M(	φ(t)) := M(φh), and similarly for other matrices and
vectors. Using these notations we obtain the following equivalent formulation
of the coupled system of ordinary differential equations (7.136), where for
simplicity we assumed uD = 0: Find 	u(t) ∈ R

N , 	p(t) ∈ R
K and 	φ(t) ∈ R

L

such that for all t ∈ [0, T ]

M(	φ(t))
d	u
dt

(t) + A(	φ(t))	u(t) + N(	φ(t), 	u(t))	u(t) + B(	φ(t))T 	p(t)

= 	g(	φ(t)) +	fΓh
(	φ(t)), (7.137a)

B(	φ(t))	u(t) = 0, (7.137b)

E(	u(t))
d	φ

dt
(t) + H(	u(t))φ(t) = −b(	u(t)). (7.137c)

In addition we have initial conditions for 	u and 	φ.

7.11.2 Numerical experiment with a two-phase flow problem

In Sect. 1.3.1 we presented simulation results of a rising butanol droplet
in water, which is a system with a rather small surface tension coefficient
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τ = 1.63 ·10−3N/m. In this section we consider a similar rising droplet exam-
ple, but now for a toluene-water system, where the surface tension coefficient
is about 20 times larger. Hence, compared to the butanol-water system the
numerical simulation of the fluid dynamics in the toluene-water system is
(much) more challenging for the applied numerical methods. Below we com-
pare the numerical results obtained by applying the reduced XFEM pressure
space Q̃Γh

h and the standard FEM pressure space Q1
h of piecewise linears.

We use the standard two-phase model described in (7.135). Consider a
single toluene droplet with an initial spherical shape with radius r = 10−3m
inside a rectangular tank Ω = [0, 12 · 10−3] × [0, 30 · 10−3] × [0, 12 · 10−3]m3

filled with water, cf. Fig. 1.8. The material properties of this two-phase system
are given in Table 7.22. Note that the properties of water slightly differ from
those in Table 1.1 which is due to the fact that in the real experiment the
water was saturated with toluene at an equilibrium state to avoid any mass
transfer between the droplet and the ambient phase. Gravitation acts in neg-
ative x2-direction, i. e., g = (0,−9.81, 0)m/s2. Initially at rest (u0 = 0m/s)
the bubble starts to rise in x2-direction due to buoyancy effects.

quantity (unit) toluene water

ρ (kg/m3) 867.5 998.8

μ (kg/ms) 5.96 · 10−4 1.029 · 10−3

τ (N/m) 34.31 · 10−3

Table 7.22. Material properties of the system toluene/water.

For the initial triangulation T0 the domain Ω is subdivided into 4× 10× 4
sub-cubes each consisting of 6 tetrahedra. Then the grid is refined four times
in the vicinity of the interface Γ . As time evolves the grid is adapted to the
moving interface. The velocity space Vh consists of piecewise quadratics and
the pressure is either discretized using the reduced XFEM space Q̃Γh

h with
c̃ = 1 or the standard finite element space Q1

h consisting of piecewise lin-
ears. The surface tension force term is discretized using the modified Laplace-
Beltrami discretization f̃Γh

as in (7.60). The level set function is discretized by
piecewise quadratics and streamline-diffusion stabilization. A re-initialization
ReInit(φh) is performed as defined in (7.44) with c = 10. Mass conservation
is forced in each time step as described in Sect. 7.4.2. For time discretization
the decoupled implicit Euler scheme is applied with Δt = 5 · 10−4, cf. (8.23).

Figure 7.22 shows the initial shape of the droplet and the droplet shapes af-
ter 10 time steps for the casesQh = Q̃Γh

h and Qh = Q1
h, respectively. While the

interface is smooth using the extended pressure finite element space, it shows
many “spikes” in the case of the standard pressure space. These spikes are of
course non-physical and only caused by numerical oscillations at the interface,
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Fig. 7.22. Initial droplet shape (left) and after 10 time steps for the XFEM case
(middle) and the standard FEM case (right).

Fig. 7.23. Velocity field at interface for
the XFEM case.

Fig. 7.24. Velocity field at interface for
the standard FEM case.

so-called spurious velocities, which are shown in Fig. 7.24. The velocity field
for the XFEM case Qh = Q̃Γh

h is smooth showing the characteristic vortices,
cf. Fig. 7.23. Note that the scaling of the color coding in both figures is very
different, with a maximum velocity of 5 · 10−3m for the extended pressure
space compared to 5 · 10−1m for the standard pressure space. These results
clearly show, that for this realistic two-phase flow example the standard pres-
sure space Q1

h is not suitable, whereas the (reduced) extended pressure space
Q̃Γh

h yields satisfactory results.
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