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Mathematical model

6.1 Introduction

We recall the Navier-Stokes model (1.19)-(1.21) for two-phase incompressible
flows: {

ρi

(
∂u
∂t + (u · ∇)u

)
= −∇p+ ρig + div(μiD(u))

div u = 0
in Ωi, (6.1)

[σn]Γ = −τκn, [u] = 0 on Γ, (6.2)
VΓ = u · n on Γ. (6.3)

We recall the definition of the stress tensor σ := −pI+ μD(u) and the defor-
mation tensor D(u) := ∇u+∇uT . For the velocity we use Dirichlet boundary
conditions u = uD on ∂ΩD and natural boundary conditions on ∂Ω \ ∂ΩD.
The initial condition for the velocity is u(x, 0) = u0(x), x ∈ (Ω1 ∪ Ω2)(0),
with a given function u0 : Ω → R

3. Furthermore, we assume that the initial
interface Γ (0) is given. Note that the model (6.1)-(6.3) is not in dimensionless
form.

Remark 6.1.1 We address the formulation of the two-phase flow model
(6.1)-(6.3) in dimensionless variables. In this model we have two Navier-Stokes
equations in the two subdomains Ωi, i = 1, 2. Therefore it is an option to con-
sider a subdomain dependent scaling. For the dimensionless variables we use
the same notation as in the derivation of the one-phase dimensionless Navier-
Stokes equation in Sect. 2.1: x̄, t̄, ū, p̄. It does not make sense to use different
spatial scales in the two subdomains. Hence we choose one typical length scale,
denoted by L. We want to maintain the continuity property [u]Γ = 0 also in
the transformed variables and thus we choose one typical velocity size U . In
the pressure rescaling we allow a subdomain dependent rescaling with ρ̃i > 0
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a given constant in Ωi (with unit kg/m3). The corresponding piecewise con-
stant function on Ω is denoted by ρ̃. Based on this, the dimensionless variables
are given by

x̄ =
1
L
x, t̄ =

U

L
t, ū(x̄, t̄) =

u(x, t)
U

, p̄i(x̄, t̄) =
p(x, t)
ρ̃iU2

, i = 1, 2.

Furthermore, Ω̄ := 1
LΩ :=

{
x̄ ∈ R

3 : Lx̄ ∈ Ω
}

and ḡ := L
U2 g. The partial

differential equations in (6.1) can be written in these dimensionless quantities
as follows, where differential operators w.r.t. x̄i and t̄ are denoted with a −

(for example: ∇̄):

ρi

ρ̃i

(∂ū
∂t̄

+ (ū · ∇̄)ū
)

= −∇̄p̄+
ρi

ρ̃i
ḡ + div

( 1
Rei

D̄(ū)
)

= div(σ̄) +
ρi

ρ̃i
ḡ in Ω̄i,

div ū = 0 in Ω̄i,

(6.4)

with the dimensionless Reynolds numbers Rei = ρ̃iLU
μi

, i = 1, 2, and

σ̄ = −p̄I +
1
Rei

(∇̄ū + ∇̄ūT
)
.

Considering this rescaled problem it is tempting to choose ρ̃i = ρi, since this
leads to a simplification. In particular one then has a constant 1 in front of
the material derivative. However, it is also necessary to rescale the interface
conditions in (6.2)-(6.3). The conditions [u] = 0, VΓ = u · n transform to

[ū] = 0, V̄Γ = ū · n̄, (6.5)

with n̄(x̄) = n(x). The momentum balance condition [σn] = −τκn takes the
form

[ρ̃U2σ̄n̄] = − τ

L
κ̄n̄,

with κ̄ = divΓ n̄, the curvature in transformed variables. To be able to write
this momentum balance condition in the usual form [σ̄n̄] = α κ̄n̄, α ∈ R, the
scaling function ρ̃ has to be taken constant across Γ , and thus ρ̃1 = ρ̃2 = ρ̃.
Therefore, in the transformation to dimensionless variables one normally takes
a constant density scaling factor (e.g., ρ̃ = 1

2 (ρ1+ρ2)) and then the momentum
interface condition is given by

[σ̄n̄] = − 1
We

κ̄n̄, We :=
ρ̃U2L

τ
. (6.6)

The dimensionless so-called Weber number is a measure for the relative size
of inertial and surface tension forces. The model in dimensionless variables
is given by (6.4), (6.5), (6.6). Note that similar to (6.1), in (6.4) one has a
piecewise constant density ρ/ρ̃ and a piecewise constant viscosity 1/Rei. This
is an important difference compared to the dimensionless one-phase Navier-
Stokes problem in (2.5).
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We discuss a weak formulation of the Navier-Stokes equations and the inter-
face conditions in (6.1)-(6.2). We consider the model in physical dimensions
since there is no significant advantage if one instead uses the model in dimen-
sionless variables (6.4), (6.5), (6.6).

We use the Sobolev spaces

V := H1(Ω)3,
V0 := {v ∈ V : v = 0 on ∂ΩD } ,
VD := {v ∈ V : v = uD on ∂ΩD } ,

Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0
}
,

and define the bilinear forms

m : V × V → R : m(u,v) :=
∫

Ω

ρuv dx,

a : V × V → R : a(u,v) :=
1
2

∫
Ω

μ tr
(
D(u)D(v)

)
dx, (6.7)

=
1
2

∫
Ω

μ
3∑

i,j=1

(
D(u)

)
ij

(
D(v)

)
ij
dx

b : V ×Q→ R : b(v, q) := −
∫

Ω

q div v dx,

and the trilinear form

c : V × V × V → R : c(u;v,w) :=
∫

Ω

ρ(u · ∇v)w dx.

For the weak formulation of the interface condition [σn]Γ = −τκn in (6.2)
we introduce the linear functional

fΓ : V → R : fΓ (v) := −
∫

Γ

τκn · v ds. (6.8)

If the curvature κ is bounded on Γ we have

|fΓ (v)| ≤ c ‖κ‖L∞(Γ )‖v‖L2(Γ ) ≤ c̃‖v‖1 for all v ∈ V,

where in the last inequality we used a trace theorem on Γ . Hence we get that
fΓ is a bounded linear functional on V, i.e., fΓ ∈ V′.

Remark 6.1.2 We restrict ourselves to the model with a constant sur-
face tension coefficient τ . More general models with an interface momen-
tum balance of the form [σn] = divΓ (σΓ ) are discussed in Sect. 7.6.1.
For such an interface condition the surface tension functional generalizes to
fΓ (v) =

∫
Γ divΓ (σΓ ) · v ds.
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A weak formulation of the Navier-Stokes equations and the coupling condi-
tions in (6.2) is as follows:

Find u(t) = u(·, t) ∈ VD, p(t) = p(·, t) ∈ Q such that for almost all
t ∈ [0, T ]

m(
∂u
∂t
,v) + c(u;u,v)

+a(u,v) + b(v, p) = (ρg,v)L2 + fΓ (v) for all v ∈ V0, (6.9)

b(u, q) = 0 for all q ∈ Q, (6.10)

and initial condition u(0) = u0 in Ω.

The time derivative has to be taken in a suitable weak sense, cf. below. Note
that in this model we have the weak formulation of one Navier-Stokes equation
in the whole domain Ω. The localized force term fΓ originates from the first
interface coupling condition in (6.2). Also note that in general the bilinear
forms m(·, ·), a(·, ·) and the trilinear form c( · ; ·, ·) depend on t, due to the
fact that we have Ωi = Ωi(t) and thus the density and viscosity coefficients
(which are piecewise constant in Ωi) are time dependent.

The surface tension functional fΓ will play an important role in the re-
mainder of this monograph, both in the analysis of the models considered
and in the numerical methods that will be treated. This functional has other
useful representations, for example those given in Lemma 14.1.2.

Remark 6.1.3 The idea to replace the first interface coupling condition in
(6.2) by a localized force term in the momentum equation was introduced
in [47]. In the (engineering) literature this is known as the CSF (“Contin-
uum Surface Force”) approach. In [47] and in most other papers in which
such a localized surface tension force is used, this force at the interface is
approximated by some volume force (hence, continuum surface force). We
briefly explain the main idea, for details we refer to [47, 64]. Take x ∈ Γ
and let U ⊂ Ω be a (small) neighborhood of x. Define γ := Γ ∩ U . Let
g : γ → R

3 be a smooth vector function (“force at the interface”), for exam-
ple g(x) = τκ(x)nΓ (x), and g̃ : U → R

3 a suitable smooth extension of g.
Furthermore, let dΓ be the signed distance function: dΓ (x) = dist(Γ, x) for
x ∈ U ∩Ω2, dΓ (x) = −dist(Γ, x) for x ∈ U ∩Ω1. For the “force acting on γ”
we have: ∫

γ

g(s) ds = lim
ε↓0

∫
U

δε(dΓ (x))g̃(x) dx,

with a one-dimensional smoothed Dirac delta function δε, i.e. for ξ > 0 we
have limε↓0

∫ ξ

−ξ δε(s)h(s) ds = h(0) for smooth functions h. Then in the spirit
of the derivation of the Navier-Stokes equations in the strong formulation (as
in (6.1)), based on conservation laws and forces on “arbitrary” neighborhoods
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U , the volume force at x ∈ γ is taken as δε(dΓ (x))g̃(x). In this approach one
has freedom in choosing the extension g̃ of g and in choosing the regularization
of the Dirac delta function. It is shown in [241, 104] that the latter issue is
nontrivial: seemingly natural regularizations, which work well in 1D, may lead
to large errors in higher dimensions. In [64] an extension g̃ of g based on the
level set method is introduced, cf. Remark 6.2.4 below. All Dirac delta function
regularizations lead to functions δε with unbounded derivatives for ε ↓ 0, and
thus such a regularization requires a high mesh resolution close to Γ .

In the weak formulation (6.9) this regularization (and extension) issue does
not occur. The localized surface tension force is represented as a well-defined
functional fΓ ∈ V′ (provided the curvature is bounded). In this sense the
weak formulation is better suited for describing surface tension forces than
the strong formulation.

The following lemma indicates that (6.9)-(6.10) is a correct weak formulation
for the Navier-Stokes problems in the two subdomains with coupling condi-
tions as in (6.2).

Lemma 6.1.4 Assume that (6.1)-(6.2) has a solution (u, p) with u|∂ΩD
=

uD,
∫

Ω p dx = 0, Γ (t) is sufficiently smooth and u, p are sufficiently smooth:

u ∈ C1
(
0, T ;C2(Ωi)3

)
, p ∈ C

(
0, T ;C1(Ωi)

)
, i = 1, 2.

Then (u, p) solves (6.9)-(6.10).

Proof. Due to the smoothness assumption on u in the subdomains Ωi and
[u]Γ = 0 we have u ∈ VD. Furthermore, p(·, t) ∈ Q holds. From div u = 0 it
follows that (6.10) holds. We now consider the variational equation in (6.9):∫

Ω

ρ
∂u
∂t

v dx+
∫

Ω

ρ(u · ∇u)v dx+
1
2

∫
Ω

μ tr
(
D(u)D(v)

)
dx

−
∫

Ω

p div v dx =
∫

Ω

ρg · v dx−
∫

Γ

τκn · v ds.
(6.11)

We need the following partial integration rules, which hold for functions q :
U → R and w,v : U → R

3 that are sufficiently smooth on U ⊂ Ω:

−
∫

U

q div w dx =
∫

U

∇q · w dx−
∫

∂U

qw · n ds,
1
2

∫
U

tr
(
D(w)D(v)

)
dx = −

∫
U

(
div D(w)

) · v dx+
∫

∂U

(
D(w)n

) · v ds.
In the equation in (6.11) we take a test function v ∈ C∞

0 (Ω)3, split the
integrals over Ω into integrals over Ωi, i = 1, 2, and use the partial integration
rules (with U = Ωi). Thus (6.11) can be rewritten as
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2∑
i=1

∫
Ωi

(
ρi

(∂u
∂t

+ u · ∇u
) − div

(
μiD(u)

)
+ ∇p

)
· v dx

=
2∑

i=1

∫
Ωi

ρig · v dx−
∫

Γ

[μD(u)n − pn]Γ · v ds−
∫

Γ

τκn · v ds.
(6.12)

Due to the interface condition [σn]Γ = −τκn the last two terms on the right-
hand side cancel. From (6.1) it then follows that (6.12) and thus (6.11) holds.
Since C∞

0 (Ω)3 is dense in V0 we conclude that (6.9) is satisfied. �

Remark 6.1.5 From the proof above one can infer why we use the bilinear
form a(·, ·) as in (6.7) and not the simpler one â(u,v) =

∫
Ω
μ∇u·∇v dx, which

is used in the weak formulation of the one-phase Navier-Stokes equations.
Partial integration on the subdomains applied to this bilinear form results in

2∑
i=1

∫
Ωi

μi∇u · ∇v dx = −
2∑

i=1

∫
Ωi

μiΔu · v dx+
∫

Γ

[μ(∇u)T n]Γ · v ds,

and thus in (6.12) instead of the term
∫

Γ
[μD(u)n−pn]Γ ·v ds =

∫
Γ
[σn]Γ ·v ds

one would obtain
∫

Γ
[μ(∇u)T n− pn]Γ · v ds, which is not consistent with the

interface condition [σn]Γ = −τκn in (6.2).

For the above variational Navier-Stokes problem with the surface tension func-
tional fΓ one can derive the following energy estimate.

Lemma 6.1.6 Consider the variational problem (6.9)-(6.10), with ρ con-
stant, say ρ = 1, with uD = 0 (homogeneous Dirichlet boundary condition)
and g = 0 (no external forces). Assume that for 0 ≤ t ≤ T the interface
Γ (t) is a sufficiently smooth compact manifold. Let (u, p) be a solution of
(6.9)-(6.10) with u ∈ L2(0, T ;V0). Then the following holds:

1
2
‖u(T )‖2

L2 +
∫ T

0

a(u(t),u(t)) dt + τ meas2
(
Γ (T )

)
=

1
2
‖u0‖2

L2 + τ meas2
(
Γ (0)

)
.

(6.13)

Proof. We take v = u in (6.9). Using partial integration, ρ = 1, u|∂Ω = 0 we
get c(u;u,u) = 0. Furthermore, due to div u = 0 we have b(u, p) = 0. Thus
we obtain ∫

Ω

∂u
∂t

u dx+ a(u,u) = −τ
∫

Γ

κn · u ds.

Integration over t ∈ [0, T ] and applying partial integration in t results in

1
2
‖u(T )‖2

L2 +
∫ T

0

a(u(t),u(t)) dt =
1
2
‖u0‖2

L2 − τ

∫ T

0

∫
Γ

κn · u ds dt. (6.14)

From (14.15) and Lemma 14.2.2 we obtain
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Γ (t)

κn · u ds =
∫

Γ (t)

divΓ u ds =
d

dt

∫
Γ (t)

1 ds.

Using this yields

−τ
∫ T

0

∫
Γ

κn · u dsdt. = −τ( meas2 Γ (T ) − meas2 Γ (0)
)
,

which, combined with (6.14), completes the proof. �

Remark 6.1.7 The result in this lemma has a physical interpretation: The
kinetic energy difference 1

2‖u(T )‖2
L2 − 1

2‖u(0)‖2
L2 is balanced by the sum of

kinetic energy dissipation
∫ T

0 a(u(t),u(t)) dt and the change in surface tension
energy τ

(
meas2 Γ (T )− meas2 Γ (0)

)
.

The question of well-posedness of the variational problem (6.9)-(6.10) com-
bined with the immiscibility condition VΓ = u ·n is a very difficult one. Below
we briefly address some known results.

First we consider a strongly simplified case, namely a Stokes problem with
a stationary interface Γ . In that case the term with the trilinear form c(·; ·, ·)
vanishes and the bilinear forms m(·, ·), a(·, ·) do not depend on t. We assume
∂ΩD = ∂Ω and uD = 0, i.e., a problem with homogeneous Dirichlet boundary
conditions on ∂Ω. We introduce the weighted L2-scalar product (v,w)L2,ρ :=
(ρv,w)L2 . In this simplified case the variational problem (6.9)-(6.10) reduces
to: determine u(t) = u(·, t) ∈ Vdiv = { v ∈ V0 : div v = 0 } with u(0) = u0

and

(
∂u
∂t
,v)L2,ρ + a(u(t),v) = (g,v)L2,ρ + fΓ (v) for all v ∈ Vdiv, (6.15)

for almost all t ∈ [0, T ]. This variational problem is very similar to the one-
phase Stokes problem in (2.33). Compared to (2.33), in (6.15) we have a
slightly different bilinear form a(·, ·) in which a weighting with the piecewise
constant viscosity μ is used, a modified L2-scalar product (namely (·, ·)L2,ρ)
and an additional functional fΓ on the right-hand side. The analysis of well-
posedness of the one-phase variational Stokes problem in (2.33), cf. Theo-
rem 2.2.10, can also be applied to the two-phase variational Stokes problem
in (6.15) (notation as in Sect. 2.2.3):

Theorem 6.1.8 Assume g ∈ L2(0, T ;V′
div), ‖κ‖L∞(Γ ) < ∞ and u0 ∈ Hdiv.

Then the variational problem (6.15) is well-posed.

Proof. Use the same arguments as in the proof of Theorem 2.2.10. Note that
the norms induced by the standard L2-scalar product and by (·, ·)L2,ρ are
equivalent. Furthermore, ‖κ‖L∞(Γ ) <∞ implies that fΓ ∈ V′ ⊂ V′

div. �

For the above result to hold, the weak derivative u′ = ∂u
∂t in (6.15) is defined

as explained in Sect. 2.2.3. For the unique solution u we have
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u ∈W 1(0, T ;Vdiv) =
{
v ∈ L2(0, T ;Vdiv) : v′ ∈ L2(0, T ;V′

div)
}
. (6.16)

Well-posedness results for the general Navier-Stokes case in (6.9)-(6.10) are
known in the literature, however, only for special cases. In [84] well-posedness
of a Navier-Stokes problem as in (6.9)-(6.10) combined with the interface
condition VΓ = u · n is analyzed. Instead of a bounded domain Ω, the case
Ω = R

3 is considered (with “boundary” condition lim|x|→∞ u(x, t) = 0). The
initial interface Γ (0) is assumed to be a closed manifold. The main result in
[84] can be summarized as follows. If the data Γ (0), u0 and g are sufficiently
smooth then for t ∈ [0, T ], with T sufficiently small, the two-phase Navier-
Stokes problem in a weak formulation similar to (6.9)-(6.10) and with the
interface condition VΓ = u ·n has a unique solution. The analysis is in Sobolev
spaces similar to the one in (6.16). The analysis is quite technical, the main
underlying idea, however, is rather easy to explain. We outline this idea. For
ξ ∈ Ω and a given velocity field u(x, t) we define the characteristic Xξ(τ):{

d
dτXξ(τ) = u(Xξ(τ), τ), τ ≥ 0,
Xξ(0) = ξ.

(6.17)

Xξ(τ) can be interpreted as the path of an infinitely small particle with initial
position ξ. For u(x, t) sufficiently smooth (Lipschitz with respect to x) this
system of ODEs has a unique solution. The smoothness of Xξ depends on the
smoothness of u. To each (x, t) ∈ Ω × [0, T ], with T sufficiently small, there
corresponds a unique ξ ∈ Ω such that x = Xξ(t). Physically this means that
starting from (x, t) one follows the flow field backwards in time resulting in
(ξ, 0):

x = ξ +
∫ t

0

u(Xξ(τ), τ) dτ. (6.18)

This defines the coordinate transformation (x, t) = (Xξ(t), t) → (ξ, t) from
Eulerian coordinates (x, t) to Lagrangian coordinates (ξ, t). The problem (6.1)-
(6.3) can be transformed in Lagrangian coordinates (ξ, t) resulting in an non-
stationary Stokes type of problem with a stationary interface Γ (0). For this
transformed problem well-posedness (in suitable Sobolev spaces) is shown in
[85]. The length T of the time interval should be such that the coordinate
transformation (x, t) → (ξ, t) is well-defined and the Jacobian of this trans-
formation is bounded (in a suitable norm). This depends on norms of the data
g, u0 and the curvature of Γ (0).

In [232] a well-posedness result for the Navier-Stokes problem on arbitrary
time intervals [0, T ] is proved, using the same Euler → Lagrange coordinate
transformation. In that paper the case with a bounded domain Ω is treated.
We summarize its main result. For arbitrary T > 0 the Navier-Stokes problem
in a weak formulation similar to (6.9)-(6.10) and with the interface condition
VΓ = u · n has a unique solution (in suitable Sobolev spaces) if the data g,
u0 are sufficiently small and the initial interface Γ (0) is sufficiently close to a
sphere.
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The analyses addressed above are applicable only in cases with sufficiently
smooth data (initial and boundary data, source terms and initial interface).
They do not cover situations in which the smoothness of the interface dete-
riorates, for example in a problem with colliding droplets. In such cases it
may well happen that interface quantities like the curvature κ or the normal
velocity VΓ are not well-defined in the strong sense and suitable weak alter-
natives must be considered. Only few theoretical results that deal with well-
posedness issues for such less regular problems are known in the literature.
The analyses for less regular cases are based on alternative characterizations of
the interface. These interface representations induce corresponding numerical
techniques for the simulation of two-phase flow problems. In Sect. 6.2 we treat
the most important approaches for interface representation. In the remainder
of this monograph we then restrict ourselves to one of these, namely the level
set representation. A suitable weak formulation of the level set interface repre-
sentation combined with the weak formulation of the Navier-Stokes problem
in (6.9)-(6.10) leads to the weak model that we consider for our numerical
simulations. This model is presented in Sect. 6.3.

6.2 Interface representation

In this section we discuss the most important approaches for characterizing
the interface. These techniques play a role both in the theoretical analysis of
well-posedness and in numerical methods for simulating the two-phase flow
problem.

6.2.1 Explicit interface representation: interface tracking

If the interface is sufficiently smooth then its curvature and other interface
quantities like VΓ , nΓ are well-defined in the classical sense. For a velocity
field u ∈ V and a smooth interface Γ (t) the trace u|Γ and the immiscibility
condition VΓ = u·n in (6.3) are well-defined. The evolution of the interface can
be described by using the Lagrangian coordinates. Take a (virtual) particle
X on the interface at t = t0 with Eulerian coordinates ξ ∈ Γ (t0). For t ≥ t0,
let Xξ(t) be the Eulerian coordinates of this particle. The particles on the
interface are transported by the flow field, hence for Xξ(t) we have the ODE
system (6.17) and the interface Γ (t) can be characterized as follows, cf. (6.18):

x ∈ Γ (t) ⇔ x = ξ +
∫ t

t0

u(Xξ(τ), τ) dτ, ξ ∈ Γ (t0), t ≥ t0. (6.19)

This Lagrangian point of view is essential for the analyses of well-posedness
for two-phase flow problems with sufficient smoothness, as briefly addressed
above in Sect. 6.1 (cf. [84, 232]). The interface representation in (6.19) also
forms the basis for a class of numerical methods, known as interface tracking.
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In these methods a collection of markers is put on a given interface Γ (t0)
and then transported (numerically) by the flow field u to obtain the markers
on the interface Γ (t0 +Δt). The collection of markers on Γ (t0) could be the
set of vertices of a triangulation of Γ (t0). In such methods one usually has
to redistribute the markers after a certain number of time steps. In general
it is rather difficult to treat topology changes (e.g. collision of droplets) in a
systematic and accurate way. Usually in interface tracking methods for two
phase flows the Lagrangian approach is used only for the propagation of the
interface markers. The Navier-Stokes equations are solved on a fixed grid (i.e.,
an Eulerian approach), cf. Fig. 6.1.

ΓΓ

Fig. 6.1. Front tracking on an Eulerian grid for the flow problem. The interface Γ
is represented by connected marker points.

Thus one needs operators for the transfer of information between the (mov-
ing) interface and the underlying fixed grid. Such front tracking methods have
been successfully applied in the simulation of two-phase flows. An overview
and detailed treatment of this technique can be found in [246, 243, 182]. Hy-
brid variants of this technique have been developed, for example so-called
arbitrary Lagrangian-Eulerian (ALE) methods in which the interface (or sur-
face) is resolved by a mesh and this mesh is moved with the flow velocity
(Lagrangian interface tracking). In the interior flow domain a moving mesh
is used with a mesh velocity that generally differs from the flow velocity and
is taken such that strong mesh distortions are avoided. Such a mesh velocity
can be obtained, for example, as the solution of a linear elasticity equation
with a prescribed displacement on the boundary. Often the Navier-Stokes
equations are then formulated using a relative velocity, which is the differ-
ence between the flow and the mesh velocity. Such ALE methods are very
popular for the simulation of fluid structure interaction (FSI) problems, in
which typically the movement of the boundary of the fluid domain is rela-
tively small. ALE techniques have also been applied in the numerical sim-
ulation of one-phase flows with a free surface or of two-phase flows, e.g.
[23, 28, 29, 117, 118, 185]. The Lagrangian interface tracking method can
also be combined with a pure Lagrangian approach for the Navier-Stokes
equations, based on an interior mesh movement that is based on the flow
velocity field, cf. for example [152, 145].
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6.2.2 Volume tracking based on the characteristic function

Let χ1(·, t) : Ω → R be the characteristic function corresponding to the
subdomain Ω1(t), t ≥ 0, i.e., χ1(x, t) = 1 for x ∈ Ω1(t), χ1(x, t) = 0 otherwise.
In this section we treat methods based on the simple observation Γ (t) =
∂Ω1(t) = ∂supp(χ1(·, t)). The function χ1 characterizes the subdomain Ω1

and we track this function (and thus the boundary of its support) to follow
the evolution of the interface. We will derive a transport equation for χ1

induced by the immiscibility condition VΓ = u · n. For this we need some
additional notation. We introduce the space-time subdomain and interface:

ΩT := Ω × [0, T ] ⊂ R
4,

Ωi,T :=
{

(x, t) ∈ R
4 : x ∈ Ωi(t), 0 ≤ t ≤ T

}
, i = 1, 2,

ΓT :=
{

(x, t) ∈ R
4 : x ∈ Γ (t), 0 ≤ t ≤ T

}
.

The outward normal (not necessarily normalized) on ∂Ω1,T ∩ ΓT is given by

n̂ = n̂Γ (x, t) =
(

nΓ (x)
−VΓ (x)

)
∈ R

4, (x, t) ∈ ΓT .

The immiscibility condition VΓ = u · n on Γ can be written as:

n̂ ·
(
u
1

)
= 0 on ΓT . (6.20)

Lemma 6.2.1 Let χ1(·, t) be the characteristic function corresponding to
Ω1(t) and u ∈ L2(0, T ;V) with div u = 0. The condition in (6.20) holds
iff ∫

ΩT

χ1

(∂φ
∂t

+ u · ∇xφ
)
dx dt = 0 for all φ ∈ C∞

0 (ΩT ), (6.21)

i.e., in the sense of distributional derivatives,

∂χ1

∂t
+ u · ∇xχ1 = 0 in D′(ΩT ) := C∞

0 (ΩT )′. (6.22)

Proof. Using div u = 0 and the definition of distributional derivatives we have∫
ΩT

χ1

(∂φ
∂t

+ u · ∇φ)
dx dt = 0 for all φ ∈ C∞

0 (ΩT )

iff
∂χ1

∂t
+ div(uχ1) = 0 in D′(ΩT ),

iff
∂χ1

∂t
+ u · ∇xχ1 = 0 in D′(ΩT ),

thus the equivalence between (6.21) and (6.22) holds. For u ∈ L2(0, T ;V) its
trace on ΓT , denoted by u|ΓT

is well-defined. The boundary of Ω1,T can be
partitioned as ∂Ω1,T = (∂Ω1,T ∩ ∂ΩT ) ∪ (∂Ω1,T ∩ ΓT ). For φ ∈ C∞

0 (ΩT ) we
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have φ = 0 on ∂Ω1,T ∩ ∂ΩT . Using partial integration and χ1 = 1 on Ω1,T ,
χ1 = 0 on ΩT \Ω1,T we obtain∫

ΩT

χ1

(∂φ
∂t

+ u · ∇xφ
)
dx dt =

∫
Ω1,T

∂φ

∂t
+ u · ∇xφ dx dt

=
∫

Ω1,T

(
u
1

)
· ∇x,tφ dx dt =

∫
ΓT

(
u|ΓT

1

)
· n̂φ dx dt.

In the last equality we used div u = 0. Since φ ∈ C∞
0 (ΩT ) is arbitrary it

follows that (6.21) holds if and only if
(
u|ΓT

1

)
· n̂ = 0 holds (in L2(ΓT ) sense).

�

From this lemma it follows that the immiscibility condition is satisfied if we
solve a (weak) transport equation for the characteristic function χ1. The equiv-
alence in this lemma holds in cases where the quantities that occur in the
immiscibility condition (6.20) are well-defined. If this is not the case (as for
example in a colliding droplet problem) then the result of this lemma offers a
possibility to generalize the immiscibility condition by considering a suitable
weak transport equation for the characteristic function of the subdomains.
This idea is the basis of the analysis of well-posedness presented in [81] (for
a two-phase Stokes problem) and [188] (for a two-phase Navier-Stokes prob-
lem).
If the velocity field u is sufficiently smooth, e.g. continuous in t and Lipschitz
continuous w.r.t. x, then a strong formulation of the transport equation in
the Lagrangian form

χ̇1 =
d

dt
χ1(Xξ(t), t) = 0,

with χ1(Xξ(0), 0) = 1 if ξ ∈ Ω1(0) and zero otherwise, is well-defined and
has a unique solution. For general flow problems, however, one wants to re-
lax the smoothness assumption on u and then for the transport equation
weaker solution concepts are needed. One such a concept, namely of so-called
renormalized solutions of transport equations, is introduced in the fundamen-
tal paper [89]. Using this, the following result can be proved (Proposition 3.3.
from [188]).

Proposition 6.2.2 Take u ∈ L2(0,∞;V) with div u = 0 and μ0 ∈ L∞(Ω).
Then there is a unique weak solution μ ∈ L∞(ΩT ) in the following sense:∫ ∞

0

∫
Ω

μ
(∂φ
∂t

+ u · ∇xφ) dx dt =
∫

Ω

μ0φ(x, 0) dx ∀ φ ∈ C∞
0 (R4). (6.23)

Moreover, if μ0 is piecewise constant, i.e., μ0 ∈ {c1, . . . cM} a.e., with con-
stants ci, then μ ∈ {c1, . . . cM} a.e..

Remark 6.2.3 The concept of renormalized solutions allows unique weak
solutions of (6.23) even for velocity fields u with less regularity than u ∈



6.2 Interface representation 173

L2(0,∞;V). Starting with the paper [89] there have appeared a lot of stud-
ies on well-posedness of the weak formulation (6.23). In [89] existence and
uniqueness of a weak (renormalized) solution is proved for velocity fields
u ∈ L1(0,∞;H1

p(Rd)d). Results with even less smooth velocity fields have
been derived. For example, in [12] well-posedness for velocity fields from the
class of functions of bounded variation (BV) is proved. For an overview and
further references we refer to [76].

A weak formulation of a transport equation as in Proposition 6.2.2 can be
combined with a standard weak formulation of a two-phase Stokes problem as
follows. We take an initial velocity field u0 ∈ V0 (i.e., homogeneous Dirich-
let boundary conditions on ∂Ω) with div u0 = 0. Let μ0 ∈ {μ1, μ2} be the
piecewise constant viscosity in the two initial subdomains: μ0(x) = μi > 0 for
x ∈ Ωi(0), i = 1, 2. In [81] it is proved that there exists at least one solution
(u, p, μ) with u ∈ L∞(0,∞;V0), u(·, 0) = u0, p ∈ L2(0,∞;Q), μ ∈ L∞(QT ),
μ(·, 0) = μ0 and μ ∈ {μ1, μ2} a.e. such that

1
2

∫
Ω

μ tr
(
D(u)D(v)

)
dx+ b(v, p) = 0 for all v ∈ V0, t ≥ 0,

b(u, q) = 0 for all q ∈ Q, t ≥ 0,
∂μ

∂t
+ u · ∇μ = 0 in the weak sense as in (6.23). (6.24)

Thus we have existence of a weak solution of a two-phase flow problem. We
briefly address some issues related to this result. In [188] a similar weak for-
mulation of a Navier-Stokes two-phase problem is considered and an existence
result is proved. The transport equation for the viscosity μ “replaces” the im-
miscibility condition, cf. Lemma 6.2.1. The analysis only yields existence of
a weak solution; uniqueness is still an open problem. This concept of weak
solutions allows singularities of the interface (e.g. collision of droplets) and
yields existence global in time for “general” initial data. If we define the sets
Ωi(t) := { x ∈ Ω : μ(t) = μi } , i = 1, 2, then, due to μ(·, t) ∈ {μ1, μ2} a.e.,
we have Ω1(t) ∪Ω2(t) = Ω. It is, however, in general not clear what the “in-
terface” should be. If we take Γ (t) := ∂Ω1(t), then Γ (t) can have a strictly
positive Lebesgue measure. This effect is called “interface flattening” (or in-
terface thickening). The fact that the interface can be “rough” and/or “flat”
may be related to the fact that in the weak formulation above we do not take
surface tension into account (which has a smoothing effect). It is, however, not
known whether the analysis can be extended to the case with surface tension.
An extensive treatment of several topics related to weak (or “generalized”)
solutions of two-phase flows with incompressible immiscible fluids which allow
singular interfaces is given in [1, 2]. In particular it is remarked in these papers
that if surface tension is taken into account, the existence of weak solutions (in
the sense as explained above) is still an open problem. In [2] an even weaker
concept of so-called measure-valued varifold solutions is introduced. Within
that framework existence of a solution can be shown to hold for a suitable
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weak formulation of a two-phase flow problem which allows for singularities
of the interface and takes surface tension into account.

The analysis of well-posedness addressed above relies on a weak formulation
of the transport equation for the viscosity μ, cf. (6.23). Since μ is piecewise
constant one can equivalently consider a transport equation for the character-
istic function χ1 corresponding to the subdomain Ω1. There is an important
class of numerical methods in which the treatment of the interface is based
on a weak formulation of the transport equation

∂χ1

∂t
+ u · ∇χ1 = 0. (6.25)

This is the class of VOF-methods (Volume of Fluid), which we now introduce.
The original idea of this approach goes back to [187]. Note that the equation
in (6.25) is not well-defined in the classical sense, since χ1 is discontinuous
across the interface Γ . Instead of using a weak formulation of (6.25) based
on distributional derivatives one can also (formally) eliminate the gradient
operator by integrating this transport equation. Take an arbitrary (small,
connected) fluid volume W ⊂ Ω. Integrating over W and formally applying
partial integration results in

∂

∂t

∫
W

χ1 dx+
∫

∂W

χ1u · n ds = 0. (6.26)

Here n denotes the outward unit normal on ∂W . This equation can be seen
as a weak formulation of (6.25) and has a clear physical interpretation: it
describes volume conservation. The change of volume of fluid 1 (i.e. the one in
Ω1) contained in W equals the volume flux (induced by the velocity field u)
across the boundary ∂W . Note that for an incompressible fluid conservation
of volume is equivalent to mass conservation. In VOF-methods one constructs
approximations of the characteristic function χ1 based on discretization of
the conservation law (6.26). We explain the main idea for a simple 2D case,
namely with Ω = (0, 1)2. Assume that Ω is partitioned in square cells Wij :=
[ih, (i+ 1)h]× [jh, (j + 1)h], 0 ≤ i, j ≤ m− 1 with mh = 1. We introduce the
color function (or area fraction in 2D, volume fraction in 3D):

Cij(t) := |Wij |−1

∫
Wij

χ1(x, t) dx = h−2

∫
Wij

χ1(x, t) dx.

We have 0 < Cij < 1 in cells Wij cut by the interface and Cij = 0 or 1 away
from it, cf. Fig. 6.2. Assume that for time t = tn (an approximation of) the
color function is known in all cells, i.e., we have known values Cn

ij ≈ Cij(tn),
0 ≤ i, j ≤ m − 1. The values for the next time level tn+1 = tn + Δt are
obtained by discretization of (6.26) using a standard finite volume approach:

Cn+1
ij = Cn

ij + h−2

∫ tn+1

tn

∫
∂Wij

χ̃1u · n ds dt, (6.27)
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where χ̃1 = χ̃1(x, tn) is a known approximation of the characteristic function
χ1, cf. below.

(a) interface

0.0 0.0 0.0

0.0 0.3 0.5

0.5 0.9 1.0

(b) color function (c) SLIC (d) PLIC

Fig. 6.2. Illustration of color function C and interface reconstruction: a) interface
Γ and cells Wij , b) values Cij of color function, c) SLIC approximation, d) PLIC
approximation.

In a VOF method one distinguishes the following two steps:

1. Reconstruction of the interface: given the values Cn
ij , 0 ≤ i, j ≤ m− 1,

of the color function, an approximate interface is computed. This then
determines the approximate characteristic function χ̃1(x, tn), used in
(6.27).

2. Color function advection step: given the function χ̃1(x, tn) the boundary
fluxes in (6.27) are approximated, resulting in the updated values Cn+1

ij ,
0 ≤ i, j ≤ m− 1.

The reconstruction is such that the consistency property

Cn
ij = h−2

∫
Wij

χ̃1(x, tn) dx

holds (volume conservation). Since the introduction of the VOF-method there
have been many papers in which interface reconstruction techniques have been
treated. The earliest algorithm, denoted by SLIC (“simple line interface calcu-
lation”) was introduced in the paper [187]. In this approach the reconstructed
interface consists of line segments that are parallel to one of the coordinate
axes, cf. Fig. 6.2. This method is only first order accurate, i.e. O(h), in the
accuracy of the reconstruction of the interface. Modifications of this tech-
nique can be found in [144, 69, 163]. More accurate (namely second order)
reconstruction methods use piecewise linear segments that are not necessarily
aligned with the coordinate axes. This technique is known as PLIC (“piece-
wise linear interface construction). Methods of this type are studied in, for
example, [204, 214, 17]. We do not treat such reconstruction methods here,
but refer to the above-mentioned literature.

We briefly address the advection step. The methods known in the literature
can be divided into two categories: unsplit schemes and operator split schemes.
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We only discuss the latter, for the former we refer to the literature, e.g. [204].
Consider one side of the boundary of Wij , say the line segment connecting
(ih, jh) with (ih, (j + 1)h), which is denoted by �. Let u∗ = (u∗1, u

∗
2) be an

approximate value of the velocity on � for t ∈ [tn, tn+1], for example the
velocity value at the center of �, i.e. at (ih, (j+0.5)h), at time t = tn +0.5Δt.
Assume (for ease of presentation) that u∗1 < 0. We consider the contribution
of the segment � to the boundary integral in (6.27):

− h−2

∫ tn+1

tn

∫



χ̃1u
∗
1 ds dt (6.28)

(we used that n = (−1, 0) on �). After the reconstruction step we have in each
cell Wij an approximation χ̃1(x, tn) of the characteristic function χ1(x, tn).
In (6.28) we need values for χ̃1(x, t), x ∈ �, t ∈ [tn, tn+1]. For this we take the
values of χ̃1(·, tn) transported by the flow field (u∗1, 0)T during the time t− tn,
i.e. we take

χ̃1(x, t) := χ̃1

(
x− (t− tn)

(
u∗1
0

)
, tn

)
, x ∈ �, t ∈ [tn, tn+1]. (6.29)

For this to be well-defined one has to satisfy the CFL-condition

Δt |u∗1| ≤ h. (6.30)

Introduce z := −(t− tn)u∗1. Using (6.29) we obtain

− h−2

∫ tn+1

tn

∫



χ̃1(s, t)u∗1 ds dt = h−2

∫ Δt|u∗
1 |

0

∫



χ̃1(s+
(
z
0

)
, tn) ds dz

= h−2
∣∣supp { χ̃1(x, tn) : x ∈ [ih, ih+Δt|u∗1|] × [jh, (j + 1)h] } ∣∣.

Hence, for the area flux across the side � we obtain h−2 times the area of
the support of the reconstructed characteristic function χ̃1(·, tn) in the cell
Wij between the vertical lines with x1-coordinates ih and ih + Δt|u∗1|. This
area flux leads to new intermediate values for the color function values in the
cells Wij and Wi−1,j . The same is done for all other vertical cell sides in the
grid. These area fluxes in the horizontal direction lead to intermediate values
Cn+1,∗

ij , 0 ≤ i, j ≤ m − 1. Based on these new values of the color function
the reconstruction step is repeated, resulting in a new characteristic function
χ̃1(·, tn), which is then used to compute area fluxes in the vertical direction
(i.e. across horizontal cell sides). Thus we obtain the final new values Cn+1

ij ,
0 ≤ i, j ≤ m− 1. Due to this two-step procedure (three-step in 3D), first the
fluxes in one direction and then those in the other direction, this approach is
called an operator split scheme.

We give some comments on the VOF technique. The method is very pop-
ular for the simulation of two-phase flows, in particular in the engineering
community. Most of these methods have very good mass-conservation proper-
ties. In principle topology changes (droplet collisions) can be handled easily.
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Usually the method is applied on (logically) rectangular grids; it is difficult to
apply an accurate VOF technique on unstructured triangular or tetrahedral
grids. In the method a CFL condition as in (6.30) must be satisfied, which
may lead to severe (undesirable) restrictions on the size of the time step. In
general it is difficult to obtain accurate approximations of intrinsic geometric
properties of the interface, such as curvature and normal direction.

6.2.3 Volume tracking based on the level set function

An important difference between the interface tracking approach in Sect. 6.2.1
and the volume tracking approach in Sect. 6.2.2 is that the former is based
on a Lagrangian ODE technique, cf. (6.19), and the latter on an Eulerian
PDE approach, cf. (6.25). The method presented in this section is also of
Eulerian PDE type. The approach discussed in the previous section is based on
(the weak formulation of) the transport equation (6.25) for the characteristic
function χ1. This function is discontinuous across the interface, which requires
a special numerical treatment of the transport equation. Furthermore, the
interface is not characterized by values of χ1 but by the boundary of its
support.

An alternative is to use instead of χ1 another indicator function. In the
level set approach a smooth initial function φ0(x), x ∈ Ω is chosen such that

φ0(x) < 0 ⇔ x ∈ Ω1(0), φ0(x) > 0 ⇔ x ∈ Ω2(0), φ0(x) = 0 ⇔ x ∈ Γ (0).

A popular choice is to take φ0 (approximately) equal to a signed distance
function to the initial interface, cf. Fig. 6.3.

Fig. 6.3. Initial level set function φ0 equals a signed distance function, 2D example.

A (virtual) particle X with Eulerian coordinates x ∈ Ω has a corresponding
indicator value φ0(x). Let Xξ(t), ξ ∈ Ω be the characteristics as defined in
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(6.17), assuming that the velocity field u(x, t) is sufficiently smooth. For t > 0
the level set function values φ(x, t) are defined by keeping the values constant
along characteristics, i.e.,

φ(Xξ(t), t) := φ0(ξ), ξ ∈ Ω, t ≥ 0.

Differentiating this with respect to t results in the transport equation

∂φ

∂t
+ u · ∇φ = 0 in Ω, t ≥ 0. (6.31)

This transport equation is of the same form as the one in (6.25). There are,
however, important differences. Firstly, if the velocity field u(x, t) is suffi-
ciently smooth (Lipschitz with respect to x) then the equation in (6.31) is
well-defined in its strong formulation, due to the fact that the initial condi-
tion φ0 is continuous. Due to the discontinuity in the characteristic function,
the equation (6.25) is not well-defined in its strong form. Secondly, the inter-
face Γ (t) can be characterized by values of the level set function at time t:

Γ (t) = { x ∈ Ω : φ(x, t) = 0 } .

As already mentioned above, this is not the case for the characteristic func-
tion. For the linear hyperbolic partial differential equation in (6.31), besides
the initial condition one needs suitable boundary conditions, for example,
a Dirichlet boundary condition φ(x, t) = φD(x) on the inflow boundary
∂Ωin := { x ∈ ∂Ω : u · nΩ < 0 }.
A suitable weak formulation of the level set equation, i.e., the transport equa-
tion (6.31) combined with continuous initial condition φ0 as defined above, is
used in the literature [119] for the analysis of well-posedness of a two-phase
flow problem. We outline the main result from [119]. The domain Ω is taken
as a d-dimensional torus (corresponding to a rectangular domain with pe-
riodic boundary conditions). For the transport of the interface the level set
equation is used with a continuous velocity field u ∈ C(Ω × [0, T ])d. For
general continuous u there is no uniqueness of a solution of the equation
(6.31) in its strong formulation. However, the concept of viscosity solutions
of transport equations with a continuous velocity field can be applied, cf.
[72]. This theory yields unique so-called sub- and supersolutions of (6.31),
which induce unique generalized evolutions Ω1(t), Ω2(t), t ∈ [0, T ], with
Ω1(0) = {x ∈ Ω : φ0(x) < 0 } , Ω2(0) = {x ∈ Ω : φ0(x) > 0 }. One defines
Γ (t) := Ω \ (Ω1(t)∪Ω2(t)). If u is sufficiently regular (Lipschitz with respect
to x) it can be shown that measd(Γ (t)) = 0 holds and Γ (t) describes the
interface in the usual strong sense. If, however, the velocity field u is (only)
continuous it is not known whether measd(Γ (t)) = 0 for t > 0 holds, i.e., it
might be that “interface flattening” occurs.
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For the two-phase flow problem a Stokes model of the form

∂u
∂t

− div(μ∇u) + ∇p = g in Ω,

div u = 0 in Ω,

is considered. A weak formulation of this problem in the Sobolev space H1
p (Ω)

with p > 2(d + 1) is analyzed with a piecewise constant viscosity function
μ(x, t) = μi for x ∈ Ωi(t), i = 1, 2, and μ(x, t) = 1

2 (μ1 + μ2) for x ∈ Γ (t).
It is proved that for |μ1 − μ2| sufficiently small there exists for almost all
t ∈ [0, T ] a solution u with u ∈ C(Ω× [0, T ])d, u(·, t) ∈ H1

p (Ω)d of the Stokes
problem coupled with an appropriate weak formulation of the transport prob-
lem for the evolution of the level set function φ. We refer to [119] for the
precise results. Here we restrict ourselves to a few further comments related
to this analysis. The continuity property for the velocity field u is needed to
be able to apply the theory of viscosity solutions of transport equations as
in (6.31). This theory also requires the initial condition φ0 to be continuous.
Note that this holds for the level set function φ0 but not for the characteristic
function χ1 used in Sect. 6.2.2. For the solution u of the Stokes problem the
regularity u(·, t) ∈ H1

p (Ω)d with p > 2(d+ 1) (> 2) is proved, which due to a
Sobolev embedding result implies continuity of u. For the regularity property
u ∈ H1

p (Ω)d with p > 2(d+1) to hold one needs that the jump in the viscosity
|μ1 − μ2| is sufficiently small. The analysis only applies to the case without
surface tension and it only yields existence of a solution of the two-phase
Stokes problem; uniqueness is an open problem. The existence is global in
time (t ∈ [0, T ]) and allows singularities of the interface (colliding droplets).
However, “interface flattening” might occur, i.e., it is not clear whether the
interface remains sharp.

The level set equation (6.31) is not only used in the analysis of well-posedness
of a two-phase flow problem but also forms the basis of an important class of
numerical techniques for representing the interface. These level set methods
are used not only in two-phase flow simulations but also in many other ap-
plications with interfaces or free boundaries, cf. the overview paper [221] and
the monographs [222, 198]. We outline the main ideas. The linear hyperbolic
transport equation (6.31), or a weak variant of it, is considered with an ini-
tialization φ0(x) that is continuous, close to a signed distance function and
such that Γ (0) = { x ∈ Ω : φ0(x) = 0 } holds. The velocity u results from the
Navier-Stokes flow problem. The transport equation is discretized in space and
time using appropriate numerical methods. We will treat this issue in more de-
tail in Sect. 7.2. The accurate discretization of the level set equation is (much)
easier than that of the transport equation considered in the VOF method in
Sect. 6.2.2 because in the latter one has to approximate the discontinuous char-
acteristic function χ1 whereas in the level set method the solution φ is smooth
(close to the interface, for a sufficiently short time interval). During time evolu-
tion, in a neighborhood of the zero level it is monitored how much the discrete
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solution φh(x, t) deteriorates from a signed distance function. For this one can
use, for example, the quantity ‖∇φh(x, t)‖2 as an indicator. If the deteriora-
tion exceeds a given tolerance a re-initialization of the given level set function,
say φh(x, tn), is performed. In this re-initialization one determines a new level
set function φnew

h (x, tn) such that ‖∇φnew
h (x, tn)‖2 ≈ 1 (in a neighborhood

of the zero level) and {x ∈ Ω : φh(x, tn) = 0 } ≈ { x ∈ Ω : φnew
h (x, tn) = 0 }

holds, i.e. one determines a re-initialization φnew
h with (approximately) the

same zero level as the current level set function but which is much closer to
a signed distance function. This topic of re-initialization is addressed in more
detail in Sect. 7.4.1.

Remark 6.2.4 The level set method is often combined with the CSF ap-
proach explained in Remark 6.1.3. This idea was introduced in [64]. There
it is shown that (under certain smoothness assumptions) the following holds,
with notation as in Remark 6.1.3:∫

γ

κnΓ ds = lim
ε↓0

∫
U

κ(φ)δε(φ(x))∇φdx, (6.32)

with the level set function φ and δε a one-dimensional smoothed Dirac delta
function. For the approximation of the curvature term κ(φ) one can use, cf.
(14.7),

κ(x) = div nΓ (x) = div
( ∇φ
|∇φ|

)
, x ∈ Γ,

and extend this relation to x ∈ U (|∇φ|2 := ∇φ · ∇φ). This leads to a volume
surface tension force term of the form

− τ div
( ∇φ
|∇φ|

)
δε(φ(x))∇φ (6.33)

in the strong formulation of the momentum equation, which acts in an ε-
neighborhood of the interface Γ . Clearly this approach induces an error due
to numerical regularization with the smoothed Dirac delta function.

6.2.4 Phase field representation

In the interface representations treated above the interface is either tracked
explicitly or “captured” implicitly as the discontinuity of a characteristic func-
tion or the zero level of an approximate signed distance function. In all three
cases one typically has a sharp interface. This sharp interface property may be
lost due to numerical effects, for example if one combines the level set method
with the CSF technique as described in Remark 6.2.4, in which the surface
tension force is approximated by a volume force using a smoothed Dirac delta
function. In that approach, although the interface is represented sharply as
the zero level of the level set function there is an interface smearing effect due
to the smoothing of the surface tension force. In the continuous model the
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sharp interface property may be lost if in cases with interface singularities an
interface flattening effect occurs. In the approach discussed in this section the
model is such that one always has a non sharp or diffusive interface. These
so-called phase field models are based on the observation that even for two
(macroscopically) immiscible fluids there is a very thin interfacial region in
which partial mixing of the two fluids occurs, cf. Sect. 1.1.5. In this sense, the
physical interface is not sharp but diffusive. The interfacial mixing region has
nonzero thickness but is extremely thin (about 100nm). Hence modeling it as
a sharp interface (as is done in the methods discussed above) seems reasonable.
There are, however, mechanisms, for example in droplet collision, that are rel-
evant and act on length scales comparable to that of interface thickness. For
an accurate modeling of these mechanisms a diffusive interface representation
may be more appropriate. Quantities that in the sharp interface formulation
are localized at the interface, such as surface tension or surfactant transport,
are distributed in a narrow interfacial region in a phase field model. The idea
of diffusive interface modeling is an old one and was already used in [208, 247].
An overview on diffusive interface methods is given in [13]. Below we describe
one popular phase field model for two-phase incompressible flows, namely the
Navier-Stokes equations combined with the Cahn-Hilliard equation for the
representation of the interface.

0

ρ

x

ρ1 ρ2

Fig. 6.4. Partial densities ρj , j = 1, 2, and diffusive interface (region between dashed
lines) in the phase field representation.

Throughout this section, let ρj = ρj(x), x ∈ Ω, j = 1, 2, denote the partial
density (or mass concentration) of the fluid j, i.e., for W ⊂ Ω the quantity∫

W
ρj(x) dx is the mass of the fluid j contained in W . Note that this notation

differs from the one previously used, where ρj denoted the (constant) density
of fluid j as a pure substance. The partial densities ρ1(x) and ρ2(x) are in
general not constant, i. e., there is a mixing region representing the diffusive
interface, cf. Fig. 6.4. The density of the mixture is denoted by ρ(x), x ∈ Ω, i.e.,∫

W
ρ(x) dx is the total mass of the fluid contained in W . Clearly ρ = ρ1 + ρ2

holds. We restrict ourselves to the case of matched densities, i.e. we assume
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ρ is constant in Ω. (6.34)

It is no restriction to take ρ = 1. We introduce a so-called order parameter

c := ρ1 − ρ2 = 2ρ1 − 1 ∈ [−1, 1].

This concentration (or density) difference has value −1 in regions filled by
fluid 2, value 1 in regions filled by fluid 1 and values in between in the mixing
region. It is assumed to be a smooth function of (x, t). Note that opposite to
the characteristic function χ1 and the level set function φ, which are used as
indicator functions in the approaches treated above, the order parameter c has
a physical meaning. A main issue is to derive an appropriate model for the
evolution of c. We outline the derivation of the Navier-Stokes/Cahn-Hilliard
model as given in [131]. It is based on a local dissipation inequality (corre-
sponding to the second law of thermodynamics) and basic concepts from con-
tinuum mechanics, such as mass and momentum conservation, cf. Sect. 1.1.1.
The mixture is considered as one incompressible Newtonian fluid. Its velocity
field is denoted by u(x, t). Due to the incompressibility assumption we have
div u = 0. Let W (t) a material volume that is advected by the velocity field u
and hj the mass flux of fluid j, measured relative to the gross motion of the
fluid. Due to incompressibility (ρ = 1) the relation h1 = −h2 holds. We define
the (relative) mass flux quantity h := h1−h2 = 2h1. From mass conservation
it follows that

d

dt

∫
W (t)

ρj dx+
∫

∂W (t)

hj · n ds = 0,

where n is the outward unit normal on W (t). Using Reynolds’ transport the-
orem and c = 2ρ1 − 1 this yields the mass conservation equation

ċ =
∂c

∂t
+ u · ∇c = − div h. (6.35)

We now turn to the conservation of momentum
∫

W (t)
ρu dx, cf. Sect. 1.1.1.

For simplicity we assume that there are no external forces like gravity. Based
on fundamental principles from continuum mechanics (Cauchy’s theorem) one
obtains from momentum conservation and using ρ = 1 the equation

ρu̇ =
∂u
∂t

+ (u · ∇)u = div σ, (6.36)

with a symmetric stress tensor σ that is associated with the macroscopic
motion of the fluid. For a one-phase incompressible Newtonian fluid one has
σ = −pI + μD(u), cf. (1.11). In [131] a stress tensor for the case of a fluid
mixture is derived using local energy inequalities that are based on the second
law of thermodynamics. The resulting stress tensor is given in (6.42) below.
We sketch the main idea, for more details we refer to [131, 3]. We consider a
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total energy eW (u, c) in a volume W which is the sum of a kinetic energy and
a free energy:

eW (u, c) =
∫

W

ρ
1
2
u · u + ψ(c,∇c) dx.

The free energy
∫

W ψ(c,∇c) dx is used to describe energy changes due to
mixing of the fluids. Since there is significant mixing only in a very thin
interfacial region, this energy is also called surface energy. Cahn and Hilliard
[60] proposed the following form for the mixing energy density

ψ(c,∇c) = ε
1
2
|∇c|2 + ε−1ψ0(c), (6.37)

with |∇c|2 = ∇c ·∇c, ε > 0 a small parameter and ψ0 a double well potential.
The latter means that ψ0 should have exactly two global minima, namely at
c = ±1 in our case. For this double well potential there are several possibilities
used in the literature, e.g.,

ψ0(c) = (1 − c2)2, c ∈ R,

ψ0(c) =
θ

2
(
(1 + c) ln(1 + c) + (1 − c) ln(1 − c)

) − θc

2
c2, 0 < θ < θc, |c| < 1,

ψ0(c) = −θc

2
c2 if c ∈ [−1, 1], ∞ otherwise,

cf. [3, 6] for a discussion of these and other double well potentials. Since both
fluids are assumed to be present, it follows that 0 < |Ω|−1

∫
Ω
ρ1 dx < 1 and

thus −1 < |Ω|−1
∫

Ω c dx < 1 holds. Hence, c(x) can not have a constant
value equal to −1 or 1, which corresponds to a minimum of ψ0. A “diffusive
interface” is represented by the region where c(x) varies between −1 + ξ and
1 − ξ (with 0 < ξ � 1).

Remark 6.2.5 As an example, consider for given a > 0,

efree(c) :=
∫ a

−a

ε
1
2
c′(x)2 + ε−1(1 − c(x)2)2 dx,

and minimization of this functional over the set V consisting of all piecewise
linear c = cδ with c(x) = −1 if x ≤ −δ, c(x) = 1 if x ≥ δ, c(x) = x

δ if
−δ ≤ x ≤ δ, and with δ ∈ (0, a) arbitrary. A straightforward computation
yields

min
cδ∈V

efree(cδ) = efree(cδ∗) =
8√
15
, for δ∗ =

1
4

√
15 ε.

Hence, in this example we have a transition region of width 2δ∗ = 1
2

√
15 ε

between the extrema ±1.

The macroscopic stresses in the mixture, modeled by contact forces σn that
act on ∂W (t), induce a corresponding energy exchange across ∂W (t) (force
times distance, per time unit), also called working, given by
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∂W (t)

σn · u ds. (6.38)

A second energy transport is due to the microscopic diffusion (i.e. diffusive
effect within the mixture). This can be modeled as follows. Let μchem

j be the
chemical potential of fluid j and μchem := 1

2 (μchem
1 − μchem

2 ). Related to the
notation we remark that μchem should not be confused with μ = μ(x, t), which
we use to denote the viscosity of a fluid. Using h1 + h2 = 0 (as ρ is constant)
and h = 2h1 we obtain that

−
2∑

j=1

∫
∂W (t)

μchem
j hj · n ds = −

∫
∂W (t)

μchemh · n ds, (6.39)

which models the energy transported into W (t) due to microscopic diffusion.
The third energy exchange is related to so-called microforces. In [131] these
forces are introduced and it is assumed that the working of these forces accom-
panies changes in the concentration c. i.e., these forces cause the microscopic
mixing. These forces are modeled as contact forces and denoted by ξ. A cor-
responding scalar body force is given by

π := − div ξ, (6.40)

i.e., we have a microforce balance
∫

W (t) π dx+
∫

∂W (t) ξ · n ds = 0. The energy
exchange induced by these microforces is given by∫

∂W (t)

ċ ξ · n ds. (6.41)

The three energies in (6.38), (6.39) and (6.41) are related to the total
energy eW (u, c) of the system, and based on the second law of thermodynamics
(increase of entropy) the following energy dissipation inequality is assumed to
hold:

d

dt
eW (u, c) ≤

∫
∂W (t)

σn · u ds+
∫

∂W (t)

ċ ξ · n ds−
∫

∂W (t)

μchemh · n ds.

Based on this, in [131] the following constitutive relations are derived:

σ = −pI + μD(u) − ε∇c∇cT ,
ξ = ε∇c,
h = −m(c)∇μchem,

π = μchem − ε−1ψ′
0(c).

(6.42)

The relations ξ = ε∇c and h = −m(c)∇μchem can be seen as generalized
Fick’s laws. For simplicity we assume the mobility constant m = m(c) > 0 to
be a constant. Using this and (6.40) we obtain
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μchem = ε−1ψ′
0(c) − εΔc.

Using the conservation laws (6.35), (6.36) and the generalized Fick’s law for
h in (6.42) we obtain the following Navier-Stokes/Cahn-Hilliard phase field
model.

∂u
∂t

+ (u · ∇)u = −∇p+ div
(
μ(c)D(u)

) − ε div(∇c∇cT ), (6.43a)

div u = 0, (6.43b)
∂c

∂t
+ u · ∇c = mΔμchem, (6.43c)

μchem = ε−1ψ′
0(c) − εΔc. (6.43d)

For the general case in which m = m(c) is not constant, the term on the
right-hand side in (6.43c) has to be replaced by div(m(c)∇μchem). Suitable
initial and boundary conditions for the functions c and μchem are needed, for
example, homogeneous Neumann boundary conditions both for c and μchem

(∇c · n = ∇μchem · n = 0 on ∂Ω) and an initial condition c(x, 0) = c0(x) for
x ∈ Ω. A simple model for μ(c) is to use a convex combination between the
constant viscosities μ1, μ2 of the pure fluids:

μ(c) =
c+ 1

2
μ1 +

1 − c

2
μ2.

The model (6.43) is a fundamental phase field model that occurs at many
places in the literature and forms the basis for many other phase field models.
Below we briefly address the following issues: theoretical results, generaliza-
tions, numerical methods, relation to other approaches.

Theoretical results. First we consider an alternative form of (6.43a) and an
energy conservation result. For general smooth scalar functions v the identity

div(∇v∇vT ) =
1
2
∇|∇v|2 +Δv∇v (6.44)

holds. Using this (with v = c), the definition of the free energy density ψ in
(6.37) and the expression in (6.43d) we obtain

∇ψ(c,∇c) = ε
1
2
∇|∇c|2 + ε−1ψ′

0(c)∇c
= ε div(∇c∇cT ) − εΔc∇c+ ε−1ψ′

0(c)∇c
= ε div(∇c∇cT ) + μchem∇c.

From this we see that the Navier-Stokes equation in (6.43a) can be replaced
by
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∂u
∂t

+ (u · ∇)u = −∇p̃+ div
(
μ(c)D(u)

)
+ μchem∇c, (6.45)

where we introduced a new pressure variable p̃ := p + ψ(c,∇c). Using this
Navier-Stokes equation we derive the following lemma.

Lemma 6.2.6 Assume that for t ∈ [0, T ] the Navier-Stokes/Cahn-Hilliard
equations (6.43a)-(6.43d) have a sufficiently smooth solution (u, c, μchem) with
boundary conditions u|∂Ω = 0, ∇c · n = ∇μchem · n = 0 on ∂Ω. Then for the
total energy

eΩ(u, c) =
∫

Ω

1
2
u · u + ψ(c,∇c) dx =

1
2
‖u‖2

L2 +
∫

Ω

ψ(c,∇c) dx

the following holds:

d

dt
eΩ

(
u(t), c(t)

)
= −a((u(t),u(t)

) −m‖∇μchem(t)‖2
L2 , (6.46)

eΩ

(
u(T ), c(T )

)
+

∫ T

0

a
(
(u(t),u(t)

)
dt+m

∫ T

0

‖∇μchem(t)‖2
L2 dt

= eΩ

(
u(0), c(0)

)
. (6.47)

Proof. First we consider the time derivative of the free energy part in the
total energy:

d

dt

∫
Ω

ψ(c,∇c) dx =
∫

Ω

ε
d

dt

1
2
|∇c|2 + ε−1ψ′

0(c)
∂c

∂t
dx

=
∫

Ω

−εΔc ∂c
∂t

+ ε−1ψ′
0(c)

∂c

∂t
dx =

∫
Ω

μchem ∂c

∂t
dx.

Thus
d

dt
eΩ

(
u(t), c(t)

)
=

∫
Ω

∂u
∂t

· u + μchem ∂c

∂t
dx (6.48)

holds. We multiply the Navier-Stokes equation (6.45) by u, integrate over Ω,
use that c(u;u,u) = b(p̃,u) = 0 and obtain∫

Ω

∂u
∂t

· u dx = −a((u(t),u(t)
)

+
∫

Ω

μchem∇c · u dx.

Using (6.43c) results in∫
Ω

∂u
∂t

· u dx = −a((u(t),u(t)
) − ∫

Ω

μchem∂c

∂t
dx+m

∫
Ω

μchemΔμchem dx

= −a((u(t),u(t)
) − ∫

Ω

μchem∂c

∂t
dx−m‖∇μchem‖2

L2 ,

and using this in (6.48) proves the result in (6.46). The result in (6.47) is a
direct consequence of the one in (6.46). �
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The result in this lemma can be compared with the one in Lemma 6.1.6.
The result in (6.47) has a physical interpretation: the energy difference
eΩ

(
u(T ), c(T )

)− eΩ

(
u(0), c(0)

)
is balanced by the sum of the kinetic energy

dissipation
∫ T

0 a
(
(u(t),u(t)

)
dt and energy dissipation m

∫ T

0 ‖∇μchem(t)‖2
L2 dt

that is related to the microscopic diffusion of the two phases close to the in-
terface.
In the phase field model that we consider the free energy

∫
Ω ψ(c,∇c) dx re-

places the interfacial energy τ
∫

Γ
1 ds that occurs in a sharp interface model.

For ε→ 0 this free energy tends to τ
∫

Γ
1 ds, in some suitable weak sense, cf.

the following remark.

Remark 6.2.7 We discuss a result from [179] on properties of the Cahn-
Hilliard free energy functional. We introduce a scaled version of this functional
and for simplicity we choose a specific form of ψ0, namely ψ0(c) = (1 − c2)2.
The corresponding scaled (by ε) free energy is given by

ẽfree(c) = εefree(c) :=
∫

Ω

ε2|∇c|2 + (1 − c2)2 dx.

We consider minimization of this functional over the set

Vα :=
{
c ∈ L1(Ω) : −1 ≤ c(x) ≤ 1 a.e. , |Ω|−1

∫
Ω

c dx = α

}
,

with −1 < α < 1. For ε = 0 the problem min { ẽfree(c) : c ∈ Vα } has infinitely
many solutions, namely all “piecewise constant” functions c, with c(x) = 1 for
x ∈ Ω1, and Ω1 ⊂ Ω an arbitrary measurable set with |Ω|−1|Ω1| = 1

2 (α+ 1),
c(x) = −1 for x ∈ Ω2 := Ω\Ω1. For such a function c we have |Ω|−1

∫
Ω c dx =

|Ω|−1(|Ω1|−|Ω2|) = 2|Ω|−1|Ω1|−1 = α, i.e., c ∈ Vα and ẽfree(c) = 0 (if ε = 0).
We define Γ := ∂Ω1 ∩Ω. Even if we restrict to cases in which this boundary
Γ is assumed to be sufficiently smooth it can have arbitrary area. We now
treat ε > 0 with ε ↓ 0 and show that then the situation is quite different. We
outline a main result from [179]. Consider the minimization problem

min { ẽfree(c) : c ∈ Vα } . (6.49)

Let (εn)n≥0 be a sequence of strictly positive numbers with limn→∞ εn = 0
and (uεn) a sequence of solutions of (6.49) with ε = εn. Then there ex-
ists a subsequence, which we also denote by (uεn), which tends to a limit
u0 in L1(Ω), i.e. limn→∞

∫
Ω

(uεn − u0) dx = 0. The limit function takes
only the extremum values 1 or −1 on Ω: u0 = ±1 a.e. on Ω. Define
Ω1 := { x ∈ Ω : u0(x) = 1 }, and Γ , Ω2 as above. Thus 1

2 (uεn + 1) tends
to the characteristic function corresponding to Ω1. To simplify the presenta-
tion we assume that Γ is smooth, say Lipschitz continuous (cf. [179] for the
general case). Note that u0 ∈ Vα and from |Ω|−1

∫
Ω
u0 dx = α it follows that

|Ω|−1
(|Ω1| − (|Ω| − |Ω1|)

)
= α, and thus |Ω|−1|Ω1| = 1

2 (α + 1).
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The following holds:

lim
n→∞ ε−1

n ẽfree(uεn) = 2c0
∫

Γ

1 ds, c0 :=
∫ 1

−1

ψ0(c)
1
2 dc =

4
3
, (6.50)∫

Γ

1 ds = min
{∫

F∩Ω

1 ds : F = ∂W, W ⊂ Ω,
|W |
|Ω| =

1
2
(α+ 1)

}
. (6.51)

We refer to [179] for more details. This means that the free energy efree(uεn) =∫
Ω ψ(uεn) dx converges to 2c0

∫
Γ 1 ds and that the interface Γ has minimal

area, in the sense as in (6.51). For these results to hold, it is essential that in
the free energy functional efree the “regularization term” with ∇c is included.

In the Navier-Stokes/Cahn-Hilliard model the chemical potential μchem can
be eliminated by substitution of (6.43d) into (6.43c). Furthermore, in the
Navier-Stokes problem the pressure can be eliminated by restricting to the
subspace of divergence-free velocity fields. This results in a strongly coupled
highly nonlinear system of PDEs for the unknowns u and c. For the analysis
it may be convenient not to eliminate μchem. For the Navier-Stokes/Cahn-
Hilliard model (6.43a)-(6.43d), with suitable initial and boundary conditions,
the state of the art concerning existence and uniqueness of solutions is much
better than for the models considered in Sects. 6.2.2 and 6.2.3. To a large ex-
tent this is due to the following two (related) facts. Firstly, if we substitute
(6.43d) into (6.43c) this results in a time-dependent convection-diffusion prob-
lem for the concentration c. The diffusion term −εmΔ2c that occurs in this
equation is not present in the pure convection equations (6.25) and (6.31) and
has a regularizing effect. Secondly, in this diffusive interface model we have
an energy estimate such that ‖∇μchem‖L2 can be controlled, cf. Lemma 6.2.6.
Such a term is not present in the energy estimate for a sharp interface model as
in Lemma 6.1.6. Recently, an extensive analysis of the model (6.43a)-(6.43d)
has been given in [3]. Results on existence and uniqueness of weak solutions
of this model are presented which are comparable to the results for the one-
phase Navier-Stokes model for an incompressible Newtonian fluid. For d = 2
existence and uniqueness of a weak solution (u, c, μchem) has been proved, pro-
vided the initial data for u and c are sufficiently regular. For d = 3 existence is
shown to hold, but (as for the one-phase Navier-Stokes equations) uniqueness
only in special cases, for example for t ∈ [0, T ] with T sufficiently small. We
refer to [3, 5] for precise statements and a discussion of further results.

Generalizations. Above we considered the case of matched densities, cf. (6.34).
In many two-phase systems the assumption ρ = constant is not reason-
able, since it implies that both pure fluids must have (approximately) the
same density. There are generalizations of the Navier-Stokes/Cahn-Hilliard
model (6.43a)-(6.43d) for the case that the two fluids have different (or “non-
matched”) densities, cf. e.g. [171, 3]. These models are much more complicated
as in the case of matched densities.
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One important difference is that instead of the equation div u = 0 one
obtains ∂ρ

∂t + div(ρu) = 0, which implies that in general div u = 0 does not
hold. Hence, although the two pure fluids are incompressible, the mixture
does not have this property; it is called quasi-incompressible. This compli-
cates the analysis because one can not eliminate the pressure unknown by
restricting to the space of divergence free velocity fields. Another difference is
that the pressure p enters the partial differential equation for c, which makes
the coupling between the Navier-Stokes and the Cahn-Hilliard equations even
less transparent. There are existence results for weak solutions of the diffuse
interface model for the case with non-matched densities only for some special
cases, cf. [4] for a discussion. A phase field model based on the Cahn-Hilliard
free energy functional for a three-(or more) phase flow problem, in which the
three fluids can have different densities, is derived in [156].

In the literature there are studies on phase field models with free energies
that differ from the Cahn-Hilliard form.

Numerical methods. In order to have a proper modeling of relevant physi-
cal phenomena, the parameter ε in the Navier-Stokes/Cahn-Hilliard model
(6.43a)-(6.43d) has to be taken extremely small. As a consequence the order
parameter c has very large gradients that must be resolved numerically. The
equation for c (after elimination of μchem) is of convection-diffusion type with
a fourth order diffusion term −εmΔ2. The numerical treatment of such bihar-
monic type of equations is known to be difficult. Furthermore there is a strong
nonlinear coupling between the Navier-Stokes (for (u, p)) and Cahn-Hilliard
(for (c, μchem)) equations. Hence, even for the case of matched densities the
Navier-Stokes/Cahn-Hilliard model has a very high numerical complexity. For
non-matched densities (which are physically much more relevant) there is a
further significant increase in the numerical complexity. Some early numeri-
cal results for a Navier-Stokes/Cahn-Hilliard model (6.43a)-(6.43d) of a two-
dimensional two-phase flow problem are presented in [149]. This model is also
simulated, again for a two-dimensional problem, in [155]. In both cases uniform
grids and finite difference or finite volume discretization methods are used.
Numerical simulations of a spatially three-dimensional Navier-Stokes/Cahn-
Hilliard model with matched densities are given in [20]. Recent work on nu-
merical simulations of two-phase flows based on phase field models is found
in [233, 234]. The numerical simulation of a spatially two-dimensional three-
phase system with matched densities is treated in [156].

It appears that up to now numerical simulations of two-phase flows based
on phase field interface representations are used and studied much less than
those based on interface tracking or interface capturing (with VOF or level
set) techniques.

Comparison to other approaches. One important difference between the diffu-
sive and the sharp interface approach was already mentioned above: the energy
estimates are different, cf. Lemma 6.1.6 and Lemma 6.2.6. This has strong
implications for the theoretical analysis. Furthermore, in the volume track-
ing techniques (VOF or level set) discussed above we have a pure transport
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equation for an indicator function (characteristic function or level set func-
tion), whereas as in the phase field method we have a convection-diffusion type
of equation for the concentration c. In the Navier-Stokes equation (6.43a) of
the phase field model a “localized force” term

− ε div(∇c∇cT ) (6.52)

occurs. We comment on this term and its relation to the surface tension forces
used in other approaches. First we consider the force term that occurs in
the strong formulation if one uses a level set CSF approach, as explained in
Remark 6.2.4. We assume a (highly) idealized situation in which the zero level
of c describes the interface Γ and the scaled order function c̃ := εc is a signed
distance function to Γ in a neighborhood Uε of Γ . Hence, ε|∇c| = |∇c̃| = 1
holds in Uε. Using φ = c̃ in (6.33) and δε(φ(z)) ≈ ε−1 for z sufficiently close
to Γ , we obtain

−τ div
( ∇φ
|∇φ|

)
δε(φ(z))∇φ ≈ −τε−1 div(∇c̃)∇c̃

= −τε−1ε2Δc∇c = −τε−1ε2 div(∇c∇cT ),

in a sufficiently small neighborhood of Γ . In the last equality we used the
relation (6.44) and ∇|∇c|2 = 0. This agrees with the localized force as in
(6.52) if we take ε (in Dirac delta function) and ε (in Cahn-Hilliard) such that
ε ∼ τε.

In the weak formulation the force term in the Cahn-Hilliard model (6.43a)
takes the form

f̃Ω(v) := −ε
∫

Ω

div(∇c∇cT )v dx, (6.53)

which we now compare with the functional fΓ (v) = −τ ∫
Γ κn · v ds in

(6.8) that is used for surface tension representation in the weak formula-
tion of a sharp interface representation. For this we use another formula, cf.
Lemma 14.1.2:

fΓ (v) = −τ
∫

Γ

tr(P∇v) ds, P = I − nnT .

We consider only test functions with divv = 0 (which is reasonable, since by
elimination of the pressure one can restrict to the subspace of divergence free
velocities). Then we have tr∇v = div v = 0 and thus we get

fΓ (v) = τ

∫
Γ

tr(nnT∇v) ds = τ

∫
Γ

nT∇v n ds, (6.54)

with n = nΓ . Using partial integration the volume force in (6.53) can be
reformulated as

f̃Ω(v) = ε

∫
Ω

tr(∇c∇cT∇v) dx = ε

∫
Ω

∇cT∇v∇c dx.
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As above we assume that c̃ = εc is a signed distance function to Γ in Uε. Note
that then ∇c̃(x) = n(x) for x ∈ Γ and ∇c̃(y) = n(x) for y ∈ Uε, x ∈ Γ and
y − x = αn(x) with α ∈ R. Assume that v is sufficiently smooth and that
|∇c̃(y)| � 1 for y /∈ Uε, cf. Fig. 6.4. Using a suitable coordinate transformation
one obtains

f̃Ω(v) = ε−1

∫
Ω

∇c̃T∇v∇c̃ dx ≈ ε−1

∫ ε

−ε

∫
Γ

∇c̃(s, 0)T∇v(s, r)∇c̃(s, 0) ds dr

≈ ε−1

∫ ε

−ε

∫
Γ

n(s, 0)T∇v(s, 0)n(s, 0) ds dr ≈ 2
∫

Γ

nT∇vn ds,

which is of the same form as the functional in (6.54).

6.3 Weak formulation

In the remainder of this monograph we restrict to the level set method for in-
terface representation. Our choice is motivated by the following requirements.
We want to develop a solver that can handle interface singularities (droplet
collision), too. Therefore an interface tracking approach based on the interface
condition VΓ = u ·n in (6.3) is less suitable. A representation of the interface
as a surface in R

3, which corresponds to a sharp interface model, is desir-
able since we want to use a model for mass transport between the phases, in
which a Henry condition at the interface occurs, and a model for surfactant
transport on the interface. It is not clear how (variants of) these models can
be combined with a phase field approach. Therefore, we decided not to use a
phase field method for interface representation. Comparing the VOF and level
set interface capturing methods we decided to use the latter, since the numer-
ical treatment of the transport equation for the level set function (which is
smooth) is easier than for the characteristic function (which is discontinuous)
and because the level set approach fits better in a finite element discretization
framework than the VOF approach. The latter is more natural in a finite vol-
ume discretization context. Furthermore, the task of interface reconstruction
is much easier using the discrete level set function instead of the discrete VOF
color function. A disadvantage of the level set method compared to VOF is
that it has a worse mass conservation property.

In this section we present a two-phase Navier-Stokes/level set model. We
start with the strong formulation. Then a weaker variational model is for-
mulated, which forms the basis of the finite element discretization method
treated in the next chapter.

The jumps in the coefficients ρ and μ can be described using the level set
function φ in combination with the Heaviside function H : R → R:

H(ζ) = 0 for ζ < 0, H(ζ) = 1 for ζ > 0.
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For ease one can set H(0) = 1
2 . We define

ρ(φ) := ρ1 + (ρ2 − ρ1)H(φ),
μ(φ) := μ1 + (μ2 − μ1)H(φ).

(6.55)

We reconsider the strong formulation of the two-phase flow problem in (6.1)-
(6.2). Instead of the Lagrangian interface propagation condition VΓ = u ·n in
(6.3) we use the level set function for the representation of the interface and
therefore add the level set equation (6.31) to the model. This results in the
following model for the two-phase problem in Ω × [0, T ]:

{
ρ(φ)

(
∂u
∂t + (u · ∇)u

)
= −∇p+ div(μ(φ)D(u)) + ρ(φ)g

div u = 0
in Ωi, i = 1, 2,

[σn]Γ = −τκn, [u]Γ = 0 on Γ, (6.56)

∂φ

∂t
+ u · ∇φ = 0 in Ω,

together with suitable initial and boundary conditions for u and φ, cf. Sect. 1.2.
For the level set function φ, the initial condition is φ(x, 0) = φ0(x), in which
φ0 is given and should be such that

{
x ∈ R

3 : φ0(x) = 0
}

= Γ (0). Moreover,
φ0 should be an (approximate) signed distance function to Γ (0). To make the
problem with the linear hyperbolic level set equation well-posed one needs
boundary conditions on the inflow boundary ∂Ωin := {x ∈ ∂Ω : u · nΩ < 0 }.
There are no natural (e.g., physics based) boundary conditions for φ at the
inflow boundary. We are only interested in values of φ close to the interface
(= zero level on φ) and φ is evolved according to ∂φ

∂t + u · ∇φ = 0 only for a
short time interval. After this short time a re-initialization of φ is applied, cf.
Sect. 7.4.1. Due to this the issue of the choice of the boundary condition for
the level set function on ∂Ωin is of minor importance.

Note that the model (6.56) is not in dimensionless form. A dimensionless
formulation can be derived in a similar way as in Remark 6.1.1.

As discussed in Sect. 6.2.3 a general weak formulation of the model (6.56)
for which well-posedness has been proved, is not known in the literature. As
basis for the finite element discretization we will use the weak formulation of
the Navier-Stokes problem given in (6.9)-(6.10) and combine it with a weak
formulation of the level set equation.

We address this weak formulation of the level set equation. We do not
apply the approach based on viscosity solutions of transport equations, briefly
discussed in Sect. 6.2.3, since this requires the velocity field to be continuous:
u ∈ C(Ω× [0, T ])3, which is not compatible with the usual weak formulations
of the Navier-Stokes equation.
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We also do not use a weak formulation as in Proposition 6.2.2 which is
based on the concept of renormalized solutions of transport equations. A dis-
advantage of this formulation is that it leads to a space-time variational prob-
lem. In our setting we want to have a variational formulation only in space, cf.
(6.9)-(6.10). We introduce a “space-only” variational formulation of the level
set equation as in [106], Sect. 6.3. We consider a transport equation of the form

∂φ

∂t
+ w · ∇φ = 0, (6.57)

with w ∈ H1(Ω)3, div w = 0 and (for simplicity) w|∂Ω = 0. Then ∂Ωin = ∅
and thus we do not need boundary conditions for φ. The initial condition is
given by φ(x, 0) = φ0(x). Note that opposite to u used in the level set equa-
tion in (6.56) the velocity field w is independent of t. We introduce a so-called
anisotropic Sobolev space, in which only derivatives in a particular direction,
namely the flow direction w, are considered. On C∞(Ω) we introduce the
norm (and corresponding scalar product) ‖u‖2

1,w := ‖u‖2
L2 + ‖w · ∇u‖2

L2 . Let
Ww be the completion of C∞(Ω) with respect to this norm. Then Ww is a
Hilbert space and this space can also be characterized as

Ww =
{
u ∈ L2(Ω) : w · ∇u ∈ L2(Ω)

}
(where the derivative is defined in a distributional sense). This appears to be
an appropriate space for a weak formulation of the transport equation (6.57):

Proposition 6.3.1 Take φ0 ∈ Ww. There exists a unique φ(t) = φ(·, t) ∈
C1

(
[0, T ];L2(Ω)

) ∩ C([0, T ];Ww) such that φ(0) = φ0 and

(
dφ

dt
, v)L2 + (w · ∇φ, v)L2 = 0 for all v ∈ L2(Ω), t ∈ [0, T ].

Proof. This result is given in Theorem 6.52 in [106]. Its proof is based on a
fundamental result known as the Hille-Yosida theorem. We only present some
key ingredients which indicate that Ww and L2(Ω) are the right spaces for
the variational formulation. For a complete proof we refer to [106] and the
references therein.

We outline the Hille-Yosida theorem. Let H be a Hilbert space and
C : D(C) ⊂ H → H a linear operator. This operator is called monotone
if (Cv, v)H ≥ 0 for all v ∈ D(C) holds, and maximal if I + C : D(C) → H
is bijective. The operator is maximal monotone if both properties hold. The
Hille-Yosida theorem essentially states that if C is maximal monotone then
an initial value problem of the form

du

dt
+ Cu = f, t ∈ [0, T ], u(0) = u0,

with f ∈ H and u0 ∈ D(C), has a unique solution u ∈ C1([0, T ];H) ∩
C

(
[0, T ];D(C)

)
. In our context we have H = L2(Ω) and C : Ww = D(C) →
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L2(Ω) is defined by (Cφ, v)H = (w · ∇φ, v)L2 =: c(φ, v). The operator C is
monotone, since:

(Cφ, φ)H =
∫

Ω

w · ∇φφdx = −
∫

Ω

φ
(
φdiv w + w · ∇φ)

dx = −(Cφ, φ)H ,

and thus (Cφ, φ)H = 0 for all φ ∈ Ww. In order to show that C is also
maximal we consider the bilinear form id + c : Ww × L2(Ω) → R given
by id(φ, v) + c(φ, v) = (φ + w · ∇φ, v)L2 . This bilinear form is bounded on
Ww × L2(Ω). Now note that for φ ∈Ww we have

sup
v∈L2(Ω)

id(φ, v) + c(φ, v)
‖v‖L2

= sup
v∈L2(Ω)

(φ+ w · ∇φ, v)L2

‖v‖L2
= ‖φ+ w · ∇φ‖L2

=
(‖φ‖2

L2 + 2(φ,w · ∇φ)L2 + ‖w · ∇φ‖2
L2

) 1
2

=
(‖φ‖2

L2 + ‖w · ∇φ‖2
L2

) 1
2 = ‖φ‖1,w,

and thus the inf-sup property

inf
φ∈Ww

sup
v∈L2(Ω)

id(φ, v) + c(φ, v)
‖φ‖1,w‖v‖L2

≥ 1

holds. Furthermore, it can be shown that id(φ, v)+ c(φ, v) = 0 for all φ ∈Ww

implies v = 0. From the boundedness of the bilinear form id + c, the inf-sup
bound and the latter result it follows that I+C : Ww → L2(Ω) is bijective, cf.
Theorem 15.1.1. Hence, C is maximal monotone and the Hille-Yosida theorem
yields existence and uniqueness of φ ∈ C1

(
[0, T ];L2(Ω)

)∩C([0, T ];Ww) such
that (dφ

dt , v)L2 + c(φ, v)L2 = 0 for all v ∈ L2(Ω). �

Motivated by this result we introduce a weak formulation of the level set
equation in (6.56). We want to allow u∂Ω �= ∅ and therefore use a subspace
Wu,D :=

{
w ∈Wu : w|∂Ωin

= φD

}
ofWu. The weak formulation is as follows:

find φ(·, t) ∈ Wu,D such that φ(·, 0) = φ0 and

(
∂φ

∂t
, v)L2 + (u · ∇φ, v)L2 = 0 for all v ∈ L2(Ω), t ∈ [0, T ]. (6.58)

Note that in this problem the velocity u depends on t and therefore Proposi-
tion 6.3.1 can not be applied. Related to this, the space Wu,D depends on u
and thus on t.

Summarizing, we obtain the following two-phase incompressible flow model:
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Find u(t) = u(·, t) ∈ VD, p(t) = p(·, t) ∈ Q, φ(t) = φ(·, t) ∈ Wu,D such
that for almost all t ∈ [0, T ]

m(
∂u
∂t
,v) + c(u;u,v)

+ a(u,v) + b(v, p) = (ρg,v)L2 + fΓ (v) for all v ∈ V0, (6.59a)

b(u, q) = 0 for all q ∈ Q, (6.59b)

(
∂φ

∂t
, v)L2 + (u · ∇φ, v)L2 = 0 for all v ∈ L2(Ω), (6.59c)

initial conditions u(0) = u0, φ(0) = φ0 in Ω.

Thus we have a Navier-Stokes equation (in weak form) in the whole domain
Ω coupled with a linear hyperbolic equation (in weak form) for the level set
function φ. The spaces used for velocity u and pressure p are the same as those
used in the weak formulation of a one-phase flow problem. In the two-phase
Navier-Stokes equation we have discontinuous viscosity and density coeffi-
cients. Furthermore, we have a source term fΓ which is (only) a functional
and which requires integration over the (unknown) interface Γ . This is a sharp
interface model : there is no regularization (“numerical diffusion”) caused by
a smoothed Dirac delta function, cf. Remark 6.2.4.

The issue of well-posedness of this weak formulation is largely unsolved.
Only under strong (unrealistic) smoothness assumptions on the data (includ-
ing the initial interface) well-posedness results for (6.59a)-(6.59b) are known
in the literature, cf. the discussion in Sect. 6.1. If the velocity field u(x, t) is
sufficiently smooth (Lipschitz w.r.t. x) then the strong formulation of the level
set equation is well-posed and thus also the weaker formulation in (6.59c). This
weak model, however, is supposed to be suitable for less regular problems, too.
Theoretical analysis that shows correctness of this claim is lacking.

In the next chapter we treat finite element methods for the discretization of
this model.
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