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Preface

Numerical treatment of two-phase incompressible flow problems

In the past few decades there has been tremendous progress in the develop-
ment and analysis of numerical methods for one-phase incompressible Stokes
and Navier-Stokes equations. There is an extensive literature on space- and
time discretization methods, iterative solvers and other numerical issues, e.g.,
implementation aspects, related to this problem class. This literature com-
prises a huge number of papers and many monographs. The research activities
resulted in output ranging from new fundamental mathematical insights to
software packages that can be used for the simulation of incompressible flow
problems. Nowadays open source and commercial software packages are avail-
able that perform satisfactory when used as black or gray box solvers for a
fairly large class of incompressible one-phase flow problems. Although very big
progress has been made, there are still important topics which require further
research. For example, in the field of development and analysis of numerical
methods for the simulation of turbulent flows, non-Newtonian flows and flows
coupled with chemistry the state of the art is not satisfactory, yet.

The work that has been done on numerical methods for one-phase incom-
pressible Navier-Stokes equations forms a solid basis for an extension to the
class of two-phase incompressible flow problems. In the past decade research
on this topic has started. Until now most research results in this field have
been published in the engineering literature. There are only few papers that
have appeared in the numerical mathematics literature and address rigorous
mathematical analysis of methods for two-phase flow problems. This book is
meant to give an overview of, and introduction to this field of (analysis of)
numerical methods for incompressible two-phase flow problems. We do not
know of any other monograph devoted to this topic. In our opinion, time is
ripe for substantial progress in the field of numerical analysis of methods for
two-phase incompressible flows. There are several important issues relevant
for the simulation of two-phase flows that are non-existent in one-phase in-
compressible flow problems. We briefly address a few of these:
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Numerical treatment of the unknown interface. Even in the simplest case of
immiscible fluids, i.e. no phase transition or evaporation phenomena, the nu-
merical treatment of the unknown interface is a difficult task. Several numer-
ical techniques are used, ranging from interface tracking, based on an explicit
parametrization of the interface, to (VOF or level set) interface capturing
methods, which are based on some indicator function. Until now many prob-
lems related to e.g. the coupling between the interface evolution and fluid
dynamics, mass conservation, accuracy of discretizations and treatment of
topological singularities (droplet collision) are largely unsolved. Only very
few rigorous mathematical analyses related to these problems are known.
Numerical approximation of surface tension forces. The surface tension force
is localized on the interface and in many two-phase systems it determines the
flow behavior to a large extent. In case of topological singularities it is not
obvious how this force should be modeled. An accurate numerical approxi-
mation of this force is often of major importance for a successful simulation,
since an insufficient treatment leads to numerical oscillations at the interface
(so-called spurious velocities). Only few approximation methods are known
and analyses of these methods are very scarce.
Simulation of mass and heat transport from one phase into the other. The
transport of a dissolved species from one phase into the other is usually mod-
eled by convection-diffusion equations in the two phases that are coupled by a
certain condition at the interface. If the species can attach to the interface this
gives rise to (open) modeling problems. In general the concentration of the
species is discontinuous across the interface. In that case one has to determine
numerically a solution of a transport problem that is discontinuous across an
evolving unknown interface. This topic has hardly been investigated in the
literature. In certain systems it may be important to model a dependence of
the surface tension on the concentration of the dissolved species or on the
fluid temperature at the interface. If this is the case it results in a compli-
cated strongly nonlinear coupling between the two-phase fluid dynamics and
the mass or heat transport. The problem of how to handle numerically this
coupling has hardly been addressed.
Simulation of surfactants, which are transported on the interface. It may hap-
pen that in the two-phase system there is a species (called tenside or sur-
factant) which adheres to the interface and is transported on the interface
due to convection and molecular diffusion. An interesting modeling problem
is how adsorption and desorption effects can be described. This surfactant
transport results in a convection-diffusion equation on the interface only. As
in the case of mass or heat transport discussed above there may be a depen-
dence of the surface tension on the surfactant concentration. First studies of
numerical methods for solving such surfactant transport equations, coupled
with two-phase fluid dynamics, have appeared only recently.
Further interesting issues, which however will not be treated in this mono-
graph, are the modeling and numerical treatment of evaporation, phase tran-
sition, topological singularities and reaction processes at the interface.
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In this monograph we address topics, such as the four mentioned above, that
are important in the numerical simulation of two-phase incompressible flow
problems. We give a fairly complete treatment of such flow problems in the
sense that we derive models, discuss appropriate weak formulations, introduce
and analyze discretization methods, investigate iterative solvers and finally
pay attention to implementation aspects and present results of numerical ex-
periments. On the other hand we restricted ourselves to incompressible flows
and do not consider important phenomena like phase transition and topo-
logical singularities. Also concerning the class of methods we made a severe
restriction: we only treat discretizations based on finite elements. Within the
problem and method classes considered in this book we tried to give a fairly
complete overview. We do not present an overview of work that lies outside
this problem class, e.g., flow problems with phase transition or compressible
two-phase flows, or outside this method class, e.g., finite difference discretiza-
tions of two-phase flows.

Contents of this monograph

We start with an introductory chapter in which the basic models for one-
and two-phase incompressible flows, for mass transport between the phases
and for surfactant transport are derived. The book consists of five parts. We
outline the main topics treated in these parts.

Part I. We first consider the incompressible Stokes and Navier-Stokes equa-
tions that model a one-phase flow. We treat numerical methods for these
one-phase flows that are also used as basic building blocks in the simula-
tion of two-phase flows, which is studied in Part II. The space discretizations
that we consider are based on finite element methods. Therefore one needs
suitable variational (weak) formulations. For this we collect some results on
function spaces and variational formulations for (Navier-) Stokes equations
known from the standard literature. We explain Hood-Taylor finite element
discretization methods on multilevel tetrahedral triangulations and popular
time discretization methods for Navier-Stokes equations. The topic of efficient
iterative solvers is addressed. We give an introduction to multigrid methods
and discuss certain Schur complement preconditioners for saddle point prob-
lems. In this part as well as in the other parts, for a specific method (or
approach) we often address three aspects: 1. We try to give a clear descrip-
tion of the method. 2. A mathematical analysis of certain important aspects
(e.g. discretization error, rate of convergence), often for a simplified model
problem, is presented. 3. The method is implemented and results of numerical
experiments, which illustrate certain phenomena, are presented.
Part II. We consider the fluid-dynamics in a two-phase incompressible flow
problem with surface tension. The issue of interface representation is treated
and a weak formulation of a two-phase Navier-Stokes equation with a localized
surface tension force is given. Finite element discretization methods are de-
veloped and analyzed. In particular a special method for the discretization of
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the surface tension force and so-called extended finite element spaces (XFEM)
for the pressure approximation are studied. Time discretization schemes are
derived and finally iterative solvers are considered.
Part III. We address the numerical simulation of mass transport between
the two phases. An appropriate weak formulation is derived. Based on this,
finite element space discretization methods and time discretization schemes
are discussed. We distinguish between problems with a stationary and with
a non-stationary interface. An important issue is the numerical treatment of
the discontinuity in the solution across the interface.
Part IV. In this part the convection-diffusion problem which models transport
of surfactants is treated. Suitable weak formulations are discussed. Finite ele-
ment methods based on both interface tracking and interface capturing tech-
niques are presented.
Part V. This is an appendix consisting of two chapters. In the first chapter
we collect some elementary results from differential geometry. In the second
chapter we give some main results on variational problems in Hilbert spaces
(e.g. Lax-Milgram lemma) and on Schur complement preconditioning of sad-
dle point problems in Hilbert spaces.

Among the many numerical approaches treated in this monograph there are
some that deserve special attention because these turned out to be particu-
larly useful for the efficient simulation of our two-phase flow problems or we
consider them to be promising for future applications. Therefore we emphasize
these already in this preface:

• The finite element spaces that we use are based on a hierarchy of nested
tetrahedral triangulations. The nested hierarchy allows very easy and effi-
cient local refinement and coarsening routines. A (strong) local refinement
close to the (evolving) interface in general enhances efficiency significantly.
Furthermore, due to the nested hierarchy the use of efficient multigrid
solvers is relatively easy.

• In our applications the surface tension is an important driving force. An
accurate discretization of this force is essential for reliable simulation re-
sults. We use a Laplace-Beltrami approach in which the second derivative
(curvature) in the surface tension functional can be avoided by partial in-
tegration. This technique is based on the representation of the curvature
as a Laplace-Beltrami operator applied to the identity. We introduce and
analyze an accurate variant of this method. In this method we use a hybrid
version of the level set method in the sense that the level set equation is
used to describe the evolution of the (implicitly given) interface but for
the evaluation of the discrete surface tension functional we need an explicit
reconstruction of the interface.

• In the class of two-phase flow problems that we consider there are several
quantities which in general are discontinuous across the interface, namely
viscosity, density, pressure and, if mass transport is considered, the concen-
tration of a dissolved species. The (approximate) interface is not aligned
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with the triangulation and thus we have unknowns (pressure, concentra-
tion) that are discontinuous within certain elements. For an accurate ap-
proximation of these unknowns we use the extended finite element method
(XFEM), which has been used in the literature for other applications (e.g.
crack propagation in continuum mechanics).

• If mass transport is considered then, due to the so-called Henry interface
condition, the ratio of the unknown concentrations on the two sides of
the interface has to be equal to a given constant. In general this (Henry)
constant is not equal to one, which implies a discontinuity. To satisfy this
interface condition we combine the XFEM approach with a technique due
to Nitsche, in which the bilinear form that represents the partial differential
equation is modified such that the jump relation is automatically satisfied
in a certain weak sense.

• For one-phase flows and two-phase flows with a stationary interface we use
the method of lines (“first space, then time”) or the Rothe approach (“first
time, then space”) to obtain a fully discrete problem. For two-phase flow
problems with a non-stationary interface the method of lines approach is
not appropriate. The Rothe method is still useful but also space-time finite
element methods are very suitable. We use the latter method class for the
mass transport and for the surfactant transport equation.

• For the spatial discretization of the surfactant transport equation on the
interface we introduce and analyze a new interface finite element method.
The main idea of this method is the use of the trace of a standard outer
finite element space (used for discretization of the flow variables) for dis-
cretization on the reconstructed approximate interface.

• In the time discretization we use implicit schemes in which the flow vari-
ables and the level set function are fully coupled. In each time step a
nonlinear problem for these unknowns has to be solved. Due to the sur-
face tension term there is a strongly nonlinear coupling between the flow
variables and level set unknowns. We treat efficient iterative decoupling
strategies.

• After discretization, decoupling and linearization one obtains large sparse
linear systems with a saddle point structure. We use block preconditioners
for the efficient solution of these linear systems. Special Schur complement
preconditioners are presented.

Readership

We intended to make a monograph that is of interest for MSc and PhD
students with a specialization in Numerical Analysis or Computational
Engineering who want to get acquainted with numerical methods for two-
phase incompressible flows. Basic knowledge of the numerical treatment of
one-phase flow problems is assumed. Some of the topics presented may also
be of interest for researchers already working in the field of numerical simu-
lation of two-phase flows.
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Further material

Most of the methods treated in this monograph have been implemented in a
software package called DROPS, which has been developed at the Chair for
Numerical Mathematics at RWTH Aachen. All numerical experiments, the
results of which are given in this book, were performed with this package. More
background information on DROPS and on publications from our research
group is available on the website

www.igpm.rwth-aachen.de/DROPS/

The DROPS package is open source software under the GNU Lesser General
Public License.
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1

Introduction

In this introductory chapter we describe the models of one- and two-phase
flow problems that we consider, namely:

1) Navier-Stokes equations for one-phase flow (NS1),
2) Navier-Stokes equations for two-phase flow (NS2),
3) NS2 combined with transport of a dissolved species (NS2+T),
4) NS2 combined with transport of a surfactant on the interface (NS2+S).

These models are presented in Sect. 1.1 and consist of systems of coupled
partial differential equations. To obtain a well-posed problem one has to add
appropriate initial- and boundary conditions. This topic is briefly addressed in
Sect. 1.2. An illustration of the type of two-phase flows that we are interested
in is given in Sect. 1.3, where we present results of some numerical simulations.
In Sect. 1.4 we give a schematic overview of the numerical methods that will
be treated.

1.1 One- and two-phase flow models in strong
formulation

In this section we give the partial differential equations corresponding to the
models 1)-4). For ease of presentation these partial differential equations are
given in the strong formulation. The numerical methods, in particular the
finite element methods for spatial discretization, are based on the weak for-
mulation of these partial differential equations. These weak formulations are
given further on. In Sect. 1.2 we address the issue of initial and boundary
conditions used in our models.

We always assume that the physical domain Ω ⊂ R
3 is an open bounded

domain. This domain will also be the computational domain. We consider the
flow problems for a fixed time interval denoted by [0, T ].
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1.1.1 Navier-Stokes equations for one-phase flow

We derive the Navier-Stokes equations for modeling a laminar fluid flow. We
assume the fluid to be incompressible, viscous, Newtonian and pure (i. e., no
mixture of different components). Moreover we assume isothermal conditions
and therefore neglect variations of density and dynamic viscosity due to tem-
perature changes. Hence, dynamic viscosity and, due to incompressibility, also
the density are constant (and positive).

The Eulerian coordinates of a point in Ω are denoted by x = (x1, x2, x3).
We take a fixed t0 ∈ (0, T ) and consider a time interval (t0 − δ, t0 + δ), with
δ > 0 sufficiently small such that for t ∈ (t0−δ, t0+δ) the quantities introduced
below are well-defined. Let X denote a particle (also called “material point”)
in Ω at t = t0, with Eulerian coordinates ξ ∈ R

3. Let Xξ(t) denote the
Eulerian coordinates of the particle X at time t. The mapping

t→ Xξ(t), t ∈ (t0 − δ, t0 + δ),

describes the trajectory of the particle X. The particles are transported by a
velocity field, which is denoted by u = u(x, t) =

(
u1(x, t), u2(x, t), u3(x, t)

)
∈

R
3. Hence

d

dt
Xξ(t) = u(Xξ(t), t). (1.1)

For the given X, the solution of the system of ordinary differential equations

d

dt
Xξ(t) = u

(
Xξ(t), t

)
, t ∈ (t0 − δ, t0 + δ), Xξ(t0) = ξ,

yields the trajectory of the particle X.
Physical processes can be modeled in different coordinate systems. For

flow problems, the two most important ones are (x, t) (“Eulerian”) and (ξ, t)
(“Lagrangian”):

• Euler coordinates (x, t): one takes an arbitrary fixed point x in space and
considers the velocity u(x, t) at x. If time evolves different particles pass
through x.

• Lagrange (or “material”) coordinates (ξ, t): one takes an arbitrary fixed
particle (material point) and considers its motion. If time evolves one thus
follows the trajectory of a fixed particle.

Related to the Lagrangian coordinates we define the so-called material deriva-
tive of a (sufficiently smooth) function f(x, t) on the trajectory of X:

ḟ(Xξ(t), t) :=
d

dt
f(Xξ(t), t).

If f is defined in a neighborhood of the trajectory we obtain from the chain
rule and (1.1):

ḟ =
∂f

∂t
+ u · ∇f. (1.2)
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The derivation of partial differential equations that model the flow problem
is based on conservation laws applied on a (small) subdomain, called a material
volume, W0 ⊂ Ω. We derive these partial differential equations in Eulerian
coordinates. Given W0, define

W (t) := {Xξ(t) : ξ ∈W0 } .

W (t) describes the position of the particles at time t, which were located in
W0 at time t = t0. We need the following fundamental identity, which holds
for a scalar sufficiently smooth function f = f(x, t):

Reynolds’ transport theorem:

d

dt

∫

W (t)

f(x, t) dx =
∫

W (t)

ḟ(x, t) + f div u(x, t) dx

=
∫

W (t)

∂f

∂t
(x, t) + div(fu)(x, t) dx,

with ḟ :=
∂f

∂t
+ u · ∇f the material derivative.

(1.3)

First we consider the conservation of mass principle. Let ρ(x, t) be the density
of the fluid. If we take f = ρ in (1.3) this yields

0 =
d

dt

∫

W (t)

ρ dx =
∫

W (t)

∂ρ

∂t
+ div(ρu) dx,

which holds in particular for t = t0 and for an arbitrary material volume
W (t0) = W0 in Ω. Since also t0 ∈ (0, T ) is arbitrary, we obtain the partial
differential equation

∂ρ

∂t
+ div(ρu) = 0 in Ω × (0, T ).

Due to the assumption ρ = const this simplifies to

div u = 0 in Ω × (0, T ), (1.4)

which is often called mass conservation equation or continuity equation.
We now consider conservation of momentum. The momentum of mass

contained in W (t) is given by

M(t) =
∫

W (t)

ρu dx.

Due to Newton’s law the change of momentum M(t) is equal to the force
F (t) acting on W (t). This force is decomposed in a volume force F1(t) and a
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boundary force F2(t). We restrict ourselves to the case where the only volume
force acting on the volume W (t) is gravity:

F1(t) =
∫

W (t)

ρg dx,

where g ∈ R
3 is the vector of gravitational acceleration. The boundary force

F2(t) is used to describe internal forces, i.e., forces that a fluid exerts on itself.
These include pressure and the viscous drag that a fluid element W (t) gets
from the adjacent fluid. These internal forces are contact forces: they act on
the boundary ∂W (t) of the fluid element W (t). Let 	t denote this internal force
vector, also called traction vector. Then we have

F2(t) =
∫

∂W (t)

	t ds.

Cauchy derived fundamental principles of continuum mechanics and in par-
ticular he derived the following law (often called Cauchy’s theorem):

	t is a linear function of n,

where n = n(x, t) ∈ R
3 is the outer unit normal on ∂W (t). For more expla-

nation on this we refer to introductions to continuum mechanics, for exam-
ple [130]. Thus it follows that there is a matrix σ = σ(x, t) ∈ R

3×3, called the
stress tensor, such that the boundary force can be represented as

F2(t) =
∫

∂W (t)

σn ds. (1.5)

Using these force representations in Newton’s law and applying Stokes’ theo-
rem for F2(t) we get

d

dt
M(t) = F1(t) + F2(t) (1.6)

=
∫

W (t)

ρg + divσ dx.

For a matrix A(x) ∈ R
3, x ∈ R

3, its divergence is defined by

div A(x) =

⎛

⎝
div(a11 a12 a13)
div(a21 a22 a23)
div(a31 a32 a33)

⎞

⎠ ∈ R
3.

Using the transport theorem (1.3) in the left-hand side of (1.6) with f = ρ ui,
i = 1, 2, 3, we obtain

∫

W (t)

∂ρ ui
∂t

+ div(ρ ui u) dx =
∫

W (t)

ρ gi + divσi dx, i = 1, 2, 3,
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with σi the i-th row of σ and gi the i-th component of g. In vector notation,
with u⊗ u = (uiuj)1≤i,j≤3,

∫

W (t)

∂ρu
∂t

+ div(ρu⊗ u) dx =
∫

W (t)

ρg + divσ dx, (1.7)

which holds in particular for t = t0 and for an arbitrary material volume
W (t0) = W0 in Ω. Since t0 ∈ (0, T ) is arbitrary, we obtain the partial differ-
ential equations

∂ρu
∂t

+ div(ρu⊗ u) = ρg + divσ in Ω × (0, T ).

Note that div(ρu ⊗ u) = ρ(u · ∇)u + ρu div u and due to the continuity
equation (1.4), the last summand vanishes, yielding the so-called momentum
equation

ρ
∂u
∂t

+ ρ (u · ∇)u = ρg + divσ. (1.8)

For viscous Newtonian fluids one assumes that the stress tensor σ is of the
form

σ = −pI + L(D), (1.9)

where p is the pressure,

D(u) = ∇u + (∇u)T

is the deformation tensor, ∇u :=
(
∇u1 ∇u2 ∇u3

)
, and L is assumed to be a

linear mapping. Based on this structural model for the stress tensor and using
the additional assumptions that the medium is isotropic (i.e. its properties
are the same in all space directions) and the action of the stress tensor is
independent of the specific frame of reference (“invariance under a change in
observer”) it can be shown ([130, 107]) that the stress tensor must have the
form

σ = −pI + λdiv u I + μD(u). (1.10)

Further physical considerations lead to relations for the parameters μ, λ, e.g.,
μ > 0 (for a viscous fluid), λ ≥ − 2

3μ or even λ = − 2
3μ. For the case of an

incompressible fluid, i.e., div u = 0, the relation for the stress tensor simplifies
to

σ = −pI + μD(u), (1.11)

with μ > 0 the dynamic viscosity. Hence, we obtain the fundamental Navier-
Stokes equations for incompressible flow:

ρ
(∂u
∂t

+ (u · ∇)u
)

= −∇p+ div(μD(u)) + ρg in Ω

div u = 0 in Ω.
(1.12)
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These equations are considered for t ∈ [0, T ]. Initial and boundary conditions
corresponding to these Navier-Stokes equations are discussed in Sect. 1.2.

Remark 1.1.1 Using the assumption that μ is a strictly positive constant
and the relation divu = 0 we get

div(μD(u)) = μΔu = μ

⎛

⎝
Δu1

Δu2

Δu3

⎞

⎠ .

1.1.2 Navier-Stokes equations for two-phase flow

We now consider two-phase flows, i. e., Ω contains two different immiscible
incompressible phases (liquid-liquid or liquid-gas) which may move in time
and have different material properties ρi and μi, i = 1, 2. For each point
in time, t ∈ [0, T ], Ω is partitioned into two open subdomains Ω1(t) and
Ω2(t), Ω = Ω1(t) ∪ Ω2(t), Ω1(t) ∩Ω2(t) = ∅, each of them containing one of
the phases, respectively. These phases are separated from each other by the
interface Γ (t) = Ω1(t) ∩ Ω2(t), cf. Fig. 1.1. As mentioned before, we assume
isothermal conditions and both phases to be pure substances. Furthermore,
we do not consider reaction, mass transfer or phase transition.

Ω1

Ω2

Γ

Fig. 1.1. 2D illustration of a domain Ω consisting of two phases Ω1 and Ω2 and
interface Γ .

In each of the phases conservation of mass and momentum has to hold,
yielding separate Navier-Stokes equations in the two domains Ωi, i = 1, 2:

⎧
⎨

⎩
ρi(

∂u
∂t

+ (u · ∇)u) = divσi + ρig

div u = 0
in Ωi, i = 1, 2, (1.13)
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with σi = −pI + μi
(
∇u + (∇u)T

)
. We now derive coupling conditions at the

interface. As the phases are viscous and no phase transition takes place, the
velocity can be assumed to be continuous at the interface:

[u] = 0 on Γ. (1.14)

Here for x ∈ Γ and a function f defined in a neighborhood of Γ we define the
jump across Γ by

[f ](x) = [f ]Γ (x) := lim
h↓0

(
f
(
x− hnΓ (x)

)
− f

(
x+ hnΓ (x)

))
, (1.15)

where nΓ (x) denotes the unit normal on Γ at x, pointing from Ω1 to Ω2.

Remark 1.1.2 In the definition of the jump across the interface in (1.15)
the normal is pointing from Ω1 into Ω2 and the jump is defined as the value
close to the interface in Ω1 minus the value close to the interface in Ω2. In the
literature sometimes the other sign convention (value in Ω2 minus value in Ω1)
is used, leading to another sign in the interface condition (1.19) derived below.
We choose this sign convention, since it is consistent with the standard form
of the classical Laplace-Young pressure jump relation [p]Γ = τκn, discussed
in Remark 1.1.5.

Consider a fluid volume W = W1∪W2 as illustrated in Fig. 1.2 which contains
a part γ of the interface Γ .

Γ

γ

W1

W2

x

Fig. 1.2. 2D illustration of a neighborhood W = W1 ∪ W2 for an interface point
x ∈ Γ .

At the interface acts a surface tension force which is due to the fact that
on both sides of Γ there are different molecules that have different attractive
forces. The surface tension force acting on the interface segment γ can be
modeled by (cf. [225, 47, 219] and Sect. 1.1.5)

F3(t) = −τ
∫

γ(t)

κnΓ ds. (1.16)

The parameter τ is the surface tension coefficient, which is a material property
of the two-phase system. To simplify the presentation we assume τ to be
constant. For many two-phase systems this is a reasonable assumption. The
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case of a variable surface tension coefficient τ is discussed in Remark 1.1.3.
The scalar function κ(x), x ∈ Γ , is the mean curvature, cf. Chap. 14, for which

κ(x) = div nΓ (x), x ∈ Γ,

holds. Note that if at x ∈ Γ the subdomain Ω1 is locally convex, then κ
is positive. This additional force term F3(t) has to be taken into account
if we consider conservation of momentum, cf. Sect. 1.1.1. For a fluid volume
W = W1 ∪W2 as in Fig. 1.2, instead of (1.5), (1.6) we now have

d

dt
M(t) = F1(t) + F2(t) + F3(t) (1.17)

=
∫

W (t)

ρg dx+
∫

∂W (t)

σn ds− τ
∫

γ(t)

κnΓ ds.

Since the stress tensor σ is not necessarily smooth across Γ we split ∂W into
∂W1 and ∂W2

∫

∂W (t)

σn ds =
∫

∂W1(t)

σ1n1 ds+
∫

∂W2(t)

σ2n2 ds−
∫

γ(t)

[σ]nΓ ds,

and apply the Stokes’ theorem on W1 and W2 separately. Note that ni is the
outward normal on ∂Wi and nΓ the normal at Γ , pointing from Ω1 in Ω2.
Thus we obtain, cf. (1.7),
∫

W (t)

ρ
(∂u
∂t

+ (u · ∇) · u
)
dx =

∫

W1(t)

divσ1 dx+
∫

W2(t)

divσ2 dx

+
∫

W (t)

ρg dx−
∫

γ(t)

[σ]nΓ ds− τ
∫

γ(t)

κnΓ ds.

This yields,

∑

i=1,2

∫

Wi(t)

ρi
(∂u
∂t

+ (u · ∇) · u
)
− divσi − ρi g dx = −

∫

γ(t)

τκnΓ + [σ]nΓ ds.

Due to momentum conservation in Wi, i = 1, 2, the left-hand side equals zero,
cf. (1.13). Since W (t) can be varied we thus obtain the coupling condition:

[σnΓ ] = [σ]nΓ = −τκnΓ on Γ. (1.18)

Finally, in view of the immiscibility assumption we introduce the normal ve-
locity VΓ = VΓ (x, t) ∈ R, which denotes the size of the velocity of the interface
Γ at x ∈ Γ (t) in normal direction, i.e., the movement of Γ in normal direction
is given by VΓn. The immiscibility assumption is modeled by the condition
that the normal velocity of the interface should equal the normal component
of the flow field at the interface, i.e. VΓ = u · nΓ at the interface. Summariz-
ing, the latter condition, the equations in (1.13) and the coupling conditions
in (1.14) and (1.18) lead to the following standard model for two-phase flows:
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⎧
⎨

⎩
ρi(

∂u
∂t

+ (u · ∇)u) = divσi + ρig

div u = 0
in Ωi, i = 1, 2, (1.19)

[σnΓ ] = −τκnΓ , [u] = 0 on Γ, (1.20)
VΓ = u · nΓ on Γ. (1.21)

We recall the Newtonian stress tensor model: σi = −pI + μi
(
∇u + (∇u)T

)
.

The density and viscosity, ρi and μi, i = 1, 2, are assumed to be constant in
each phase.

Remark 1.1.3 In certain cases, for example in systems with significant sur-
factants (“surface active agents”) one has to take a variable surface tension
coefficient τ into account, cf. Sect. 1.1.5. In that case the surface tension force
in (1.16) has to be replaced by its generalization

F3(t) = −
∫

γ

τκnΓ −∇Γ τ ds, (1.22)

where ∇Γ = P∇, with P = I − nΓnTΓ , is the tangential derivative. The
interface condition in (1.18) then generalizes to

[σnΓ ] = −τκnΓ +∇Γ τ. (1.23)

In the remainder we often write n instead of nΓ .

1.1.3 Two-phase flow with transport of a dissolved species

We consider a two-phase flow problem as described above. We assume that
one or both phases contain a dissolved species that is transported due to
convection and molecular diffusion and does not adhere to the interface. The
concentration of this species is denoted by c(x, t). This flow problem can be
modeled by the equations (1.19)-(1.21) for the flow variables and a convection-
diffusion equation for the concentration c. At the interface we need interface
conditions for c. The first interface condition comes from mass conservation,
which implies flux continuity. The second condition results from a constitutive
equation known as Henry’s law, which states that the solubility of a gas in
a liquid at a particular temperature is proportional to the pressure of that
gas above the liquid. In mathematical terms this relation (at constant tem-
perature) can be formulated as p = kH c where p is the partial pressure of the
solute in the gas above the solution, c is the concentration of the solute and
kH is known as the Henry’s law constant and depends on the solute, the sol-
vent and the temperature. The same solute in different solvents (at the same
temperature) corresponds to different Henry constants, reflecting the different
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solubility properties of the two solvents. From this it can be deduced, that in
a two-phase system with a solute, assuming instantaneous local equilibrium
at the interface, there is a constant ratio between the concentrations of the so-
lute on the two sides of the interface. Thus one obtains the following standard
model:

Two-phase flow model (1.19)− (1.21) combined with:
∂c

∂t
+ u · ∇c = div(Di∇c) in Ωi, i = 1, 2, (1.24)

[Di∇c · n]Γ = 0 on Γ,

c1 = CHc2 on Γ.

The diffusion coefficient Di is piecewise constant. In the interface condition we
use the notation ci for c|Ωi

restricted to the interface. The constant CH > 0 is
given (Henry’s constant). The Henry interface condition can also be written
as [Ĉc] = 0, with Ĉ = 1 in Ω1, Ĉ = CH in Ω2. The model has to be combined
with suitable initial and boundary conditions, cf. Sect. 1.2. In the formulation
in (1.24) there is a coupling between fluid dynamics and mass transport only
in one direction, in the sense that the velocity is used in the mass transport
equation, but the concentration c does not influence the fluid dynamics. In
certain systems it may be appropriate to consider a dependence of the surface
tension coefficient on c, i.e. τ = τ(c). In that case there is a coupling in two
directions between fluid dynamics and mass transport.

1.1.4 Two-phase flow with transport of a surfactant on the
interface

We consider a two-phase flow problem as described above in Sect. 1.1.2. We
assume that there is a species (called tenside or surfactant) which adheres to
the interface and is transported at the interface due to convection (movement
of the interface) and due to diffusion (molecular diffusion on the interface). For
simplicity we assume that there are no adsorption and desorption effects (i.e.
no sources or sinks). The concentration of this surfactant is denoted by S(x, t),
x ∈ Γ (t). A partial differential equation for this quantity can be derived from
the conservation of mass principle (on subsets γ(t) of the moving interface
Γ (t)). For t0 ∈ (0, T ), let γ0 be a connected bounded subset of Γ (t0) and
γ(t) = {Xξ(t) : ξ ∈ γ0 } ⊂ Γ (t), t ∈ (t0 − δ, t0 + δ), with δ > 0 sufficiently
small. The conservation of mass property yields

d

dt

∫

γ(t)

S ds = −
∫

∂γ(t)

q · n ds̃,

with n the unit normal to ∂γ(t) lying in a tangent plane and pointing out of
γ(t).
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Γ

γ

n

Fig. 1.3. Interface Γ and subset γ ⊂ Γ , with vector n which is normal to ∂γ and
tangential to Γ .

We restrict to the case of a diffusive flux q := −DΓ∇ΓS. Recall that the
tangential derivative is defined by ∇Γ := P∇ with P = I − nnT . Note that
the normal n = nΓ differs from the normal n. Using integration by parts on
the manifold γ(t) we obtain

∫

∂γ(t)

q · n ds̃ =
∫

γ(t)

divΓ q ds.

A variant of the transport theorem in (1.3), cf. (14.21b) and Remark 14.2.3,
yields

d

dt

∫

γ(t)

S ds =
∫

γ(t)

Ṡ + S divΓu ds

and thus we obtain
∫

γ(t)

Ṡ + S divΓu + divΓ q ds = 0,

which holds in particular for γ(t0) = γ0 arbitrary. Hence we obtain the fol-
lowing model for transport of surfactants:

Two-phase flow model (1.19)− (1.21) combined with:

Ṡ + S divΓu = divΓ (DΓ∇ΓS) on Γ. (1.25)

If the diffusion coefficient DΓ is constant on Γ we can reformulate the diffu-
sion part as divΓ (DΓ∇ΓS) = DΓΔΓS. Using the definition of the material
derivative the convection-diffusion equation in (1.25) can be written as

∂S

∂t
+ u · ∇S + S divΓu = DΓΔΓS on Γ.

In this formulation, for the partial derivatives ∂
∂t and u ·∇ to be well-defined,

one assumes that S is smoothly extended in a small neighborhood of Γ . For
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this surfactant transport equation no boundary conditions are needed if the
interface Γ is a surface without boundary. In case of a stationary interface,
i.e. u · n = 0 on Γ , we have Pu = u and thus u · ∇S + S divΓu = u · ∇ΓS +
S divΓu = divΓ (uS). Hence, we obtain the (simplified) diffusion equation
∂S
∂t + divΓ (uS)−DΓΔΓS = 0.

In the formulation in (1.25) there is a coupling between fluid dynamics
and surfactant transport only in one direction, in the sense that the velocity
is used in the surfactant transport equation, but the surfactant concentration
S does not influence the fluid dynamics. In many systems with surfactants,
there is a dependence of the surface tension coefficient on S, i.e. τ = τ(S).
In that case there is a coupling in two directions between fluid dynamics and
surfactant transport.

1.1.5 Modeling of interfacial phenomena

The notion of interfacial transport phenomena usually refers to mass, mo-
mentum and energy transfer within a neighborhood of an interface, including
the thermodynamics of the interface. Physico-chemical interfacial phenomena
play a crucial role in high-tech applications like, for example, lab-on-a-chip
systems, multiphase reactors in chemical engineering and micro process engi-
neering. We refer to the (chemical) engineering literature for a treatment of
these topics, e.g. [40], in which particle-stabilized foams and emulsions and
new materials derived from such systems are studied. The understanding of
most of these interfacial phenomena is still very poor. In particular there is a
strong lack of (validated) mathematical models that describe interfacial pro-
cesses appropriately. Research on modeling of interfacial transport phenomena
is a very active and rapidly growing field. We do not treat modeling aspects
in this monograph. In this section we only give a very brief introduction into
basics related to the modeling of interfacial processes in two-phase incom-
pressible immiscible flows. An extensive treatment of this topic and many
references are given in [225].

Dividing surface and clean interface

There are continuum models in which an interface is represented as a three-
dimensional region of very small thickness. One of the first models of this type
was introduced by Korteweg [158]. The so-called phase field (or diffusive inter-
face) models, treated in Sect. 6.2.4, belong to this class. More often models are
used in which the interface is modeled by a (non-physical) two-dimensional
dividing surface. This approach was first proposed by Gibbs. In such a sharp
interface model for incompressible flows it is assumed that the dividing sur-
face separates two homogeneous phases which both have a constant density.
The effect of the interfacial region is taken into account by introducing so-
called excess quantities (e.g., mass and energy) which are assigned to the
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dividing surface. We explain this by considering the excess mass density, de-
noted by ρΓ . For a given time t let W (t) be a material volume, illustrated in
Fig. 1.4, which contains two phases and an interfacial region of finite thickness.
This interfacial region, denoted by RI , is bounded by the surfaces Γ1 and Γ2

and is such that outside of RI we have homogeneous phases, i.e., in the two
subvolumes W (t) \RI , denoted by Ri, we have constant densities ρi, i = 1, 2.
We choose a dividing surface Γ and assume the three surfaces to be parallel.
The dividing surface is assumed to be transported with the flow velocity field
u(x, t), x ∈ Γ = Γ (t). In the interfacial region RI we have a mixture of the
two phases. The density of this mixture (total mass per volume) is denoted
by ρI . Note that in general this density is not constant in RI . This density
function can be naturally extended outside RI by ρI = ρi in Ri, i = 1, 2.

Γ1

Γ2

Γ

γ
RI

R2

R1

γ

RI

n

n

Γ

Ω1

Ω2

Fig. 1.4. Illustration of cylinder RI in 2D (left) and 3D (right).

The mass conservation property is modeled by

d

dt

∫

W (t)

ρI dx = 0. (1.26)

Let ρ be the piecewise constant function with constant values ρ1, ρ2 in the two
subvolumes of W (t) separated by the dividing surface Γ , which are denoted
by Wi(t), i = 1, 2. From (1.26) we obtain

d

dt

(∫

W (t)

ρ dx+
∫

RI

(ρI − ρ) dx
)

= 0. (1.27)

For a sharp interface model, with a dividing surface Γ and a piecewise constant
density ρ, to be a good approximation of the model with an interfacial region
and density ρI , we introduce a surface mass density ρΓ . Mass conservation in
the sharp interface model then takes the form

d

dt

(∫

W (t)

ρ dx+
∫

γ(t)

ρΓ ds
)

= 0, (1.28)
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with γ(t) := Γ ∩ W (t) the part of the dividing surface contained in W (t).
Comparing (1.27) with (1.28) we see that we obtain the following relation
between ρΓ and ρI − ρ:

∫

γ(t)

ρΓ ds =
∫

RI

(ρI − ρ) dx. (1.29)

To elaborate this further we assume that the shape of the material volume
is such that the line segment ∂RI ∩ ∂W (t) in Fig. 1.4 (a manifold in the 3D
case) is orthogonal to Γ . Then we have (for the 3D case)

∫

RI

(ρI − ρ) dx =
∫

γ(t)

∫ λ+

λ−
(ρI − ρ)(1 − κ1λ)(1 − κ2λ) dλ ds,

where λ is the signed distance to the dividing surface Γ . The thickness λ+−λ−
of the local region RI can be assumed to be very small, and therefore it is
reasonable to assume |κiλ| � 1 for λ ∈ [λ−, λ+]. This reasoning suggests that
we may identify

ρΓ =
∫ λ+

λ−
(ρI − ρ) dλ, (1.30)

which shows that the surface mass density ρΓ can be interpreted as an excess
quantity. Note that ρΓ in (1.30) is not necessarily constant or positive on Γ .
In the sharp interface model there still is some freedom with respect to the
choice of the location of the dividing surface. Different choices imply different
excess quantities ρΓ . The most popular choice is as follows. For t = 0 it is
assumed that Γ can be taken such that

∫ λ+

λ−
(ρI−ρ) dλ = 0, hence ρΓ (x, 0) = 0

for x ∈ Γ (0). For t > 0 the dividing surface is transported by the velocity field
u. From (1.28), Reynolds’ transport theorem, the interface transport formula
(14.21b) and ρ̇ = 0 in Wi(t) we obtain

2∑

i=1

∫

Wi(t)

ρ div u dx+
∫

γ(t)

ρ̇Γ + ρΓdivΓu ds = 0.

The first term vanishes due to the assumption of incompressibility, i.e. div u =
0, in Wi(t). Note that in general div u = 0 in Wi(t) does not imply divΓu = 0.
For the excess mass density ρΓ we thus obtain the equation

ρ̇Γ + ρΓdivΓu = 0 on Γ = Γ (t).

This equation and the initial condition ρΓ (x, 0) = 0 are fulfilled if we take
ρΓ ≡ 0. This derivation motivates the so-called clean interface assumption:
in the sharp interface model the excess mass density corresponding to the
dividing surface is equal to zero. Then the mass conservation equation (1.28)
can be simplified to d

dt

∫
W (t) ρ dx = 0, which is consistent with the continuity

equations div u = 0 in Ωi, which are used in the sharp interface model (1.19).
This clean interface assumption is a standard one in sharp interface models
without tensides.
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Surface tension as a contact force

In (1.16) we introduced surface tension as a force acting in a direction orthog-
onal to the (sharp) interface Γ . This orthogonality property holds only if we
assume that the surface tension coefficient τ is constant, cf. Remark 1.1.3. We
summarize some basic facts related to surface tension and from that derive
the forces given in (1.16) and (1.22).

Surface tension is an excess force resulting from the fact that on both
sides of Γ these are different phases with different molecular forces. Consider
a two-phase system in equilibrium, with an interface Γ . Let γ be a (small)
connected subset of Γ with boundary ∂γ and a normal, denoted by n, which
is orthogonal to ∂γ and tangential to Γ , cf. Fig. 1.3. Surface tension is defined
as a force per unit of length on ∂γ in the direction n.

This surface tension force is given by Fs = τ n, with τ the surface tension
coefficient. Note that τ is the magnitude of the surface tension force. The SI
unit of τ is Newton per meter. From this definition of Fs it follows that the
surface tension force is a contact force within the interface Γ . Note, however,
that this force is not an intrinsic property of Γ but induced by the two phases
on both sides of Γ .

Remark 1.1.4 An equivalent definition of surface tension can be given in
terms of energy. Considering the different molecular forces in the two phases
it follows that the creation of more interface area is energetically costly and
thus the two-phase system will try to (locally) minimize interface area. The
amount of work needed to (locally) increase an interface area by an amount δA
is given by τ δA, with the same surface tension coefficient τ as in the definition
used above. In this characterization the surface tension coefficient measures
energy per unit of area and the SI unit is joule per square meter.

Let W be a fluid volume which is intersected by the interface Γ and define
the interface segment γ = W ∩ Γ . Surface tension exerts a contact force Fs
on ∂γ. Using the partial integration rule (14.18) the total contact force Fs on
∂γ can be rewritten as a force on Γ :

∫

∂γ

τn ds̃ = −
∫

γ

τκn ds+
∫

γ

∇Γ τ ds. (1.31)

Thus for the case of a constant surface tension coefficient τ we obtain the
force as in (1.16) and for the general case the one in (1.22).

Remark 1.1.5 Using the surface tension force representation Fs = τn intro-
duced above we derive the classical Laplace-Young law, which for a two-phase
system in equilibrium and with a spherical interface relates the pressure dif-
ference to the mean curvature. We consider a ball with center at the origin
and radius R, the boundary of which is the interface of a two-phase system
at equilibrium. The constant pressures within and outside the ball are given
by p1 and p2, respectively. Note that [p] = p1 − p2 > 0. We use spherical
coordinates:
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(x1, x2, x3) = r
(
sin θ cosφ, sin θ sinφ, cos θ

)
, r ≥ 0, θ ∈ [0, π], φ ∈ [0, 2π).

We consider the upper half of the interface, i.e. the hemisphere given by
S =

{
(r, θ, φ) : r = R, θ ∈ [0, 1

2π], φ ∈ [0, 2π)
}
. There are (only) two forces

exerted on S, namely a pressure difference force acting at each point of S
and a surface tension force on ∂S. The former is in normal direction and
has size [p], the latter has direction (0, 0,−1)T and size τ , cf. Fig. 1.5. The
x3-component of the pressure force is given by cos θ[p]. The resulting total
force in x3 direction must be equal to zero, i.e.

2πRτ = [p]
∫

S

cos θ ds = [p]
∫ 2π

0

∫ 1
2π

0

cos θ sin θR2 dθdφ = [p]πR2

must hold. From this we obtain the Laplace-Young law [p] = 2τ
R = τκ, with

κ = 2
R the mean curvature of the sphere with radius R.

∂S fs

fp

θ

ϕ

Fig. 1.5. Pressure force fp and surface tension foce fs.

Variable surface tension coefficient: Langmuir model

It is generally accepted and experimentally verified that in many two-phase
systems a surfactant changes the properties of the interface and through this
can have a significant impact on the fluid dynamics of the system. One very
important effect is that a surfactant can cause a change of the surface tension
forces. In a system with a clean interface the surface tension coefficient τ is
usually assumed to be constant, whereas in a system with surfactants the
surface tension coefficient is often considered to be dependent on the local
concentration of the surfactant, i.e, τ = τ(S). A relatively simple and very
popular model for τ(S) is due to Langmuir (also called Langmuir-Szyszkowski
model in the literature). We briefly address the main ideas underlying this
model. Consider a system consisting of one bulk phase and its surface Γ . In
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the bulk phase a component is dissolved which is adsorbed at the surface.
We assume that there is no fluid dynamics and that at a given surface point
x ∈ Γ the surface surfactant concentration is locally constant. This surface
concentration is denoted by S(t) = S(x, t). Also the bulk concentration of
the dissolved component is assumed to be locally constant, and is denoted by
Sb(t) = Sb(x, t). There is a maximal surface coverage denoted by S∞. A very
simple model for describing the ad- and desorption is given by

dS

dt
= kadSb(t)

(
1− S(t)

S∞

)
− kdes

S(t)
S∞

,

with positive constants kad, kdes. In equilibrium we have dS
dt = 0. Let Se =

limt→∞ Sb(t) be the equilibrium local bulk concentration. For the equilibrium
local surface concentration, denoted by S, we obtain S = kad

kdes
Se(S∞−S) and

thus
S = S∞

Se
kq + Se

, with kq :=
kdes

kad
. (1.32)

Hence we have a simple relation between the equilibrium states S (on Γ )
and Se (in the bulk phase). A relation between S, Se and the surface tension
energy τ is obtained from the Gibbs adsorption equation (or Gibbs isotherm),
which is often used to relate the changes in concentration of a component in
contact with a surface with changes in the surface tension. For S  Se, which
is the case for most surfactants, and assuming a constant temperature T , this
Gibbs adsorption equation is given by

dτ

d lnSe
= −RTS,

with R the gas constant. Using d lnSe = S−1
e dSe and the result in (1.32) we

obtain
dτ

dSe
=
−RTS∞
kq + Se

,

and thus
τ = τ0 −RTS∞ ln(1 + Se/kq).

From (1.32) we get 1 + Se/kq = (1− S/S∞)−1 and thus we get the following
relation between the surface tension coefficient τ and the surfactant concen-
tration S:

τ = τ0 +RTS∞ ln(1 − S/S∞), (1.33)

which is the Langmuir model. Here τ0 is the constant surface tension coeffi-
cient for the system with a clean interface. Note that τ = τ(S) is a decreasing
function of S, i.e., surface tension decreases if the concentration of the sur-
factant increases. In a realistic two-phase flow system with surfactant the
concentration S will not be constant on the interface and based on this model
one obtains a varying surface tension coefficient with a relatively small value
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in those parts of the interface where the surfactant concentration is relatively
high.

Other models for τ = τ(S) are derived in the literature, e.g. the Frumkin
isotherm τ(S) = τ0+RTS∞

(
ln(1−S/S∞)−K

(
S
S∞

)2
)
, where K is a measure

for the interactions among the adsorbed surfactant particles with K < 0
(K > 0) if there are significant cohesive (repulsive) forces.

Surface viscosity: Boussinesq-Scriven model

If surfactants are present which cause a variable surface tension coefficient
τ = τ(S) this results in an effective elasticity of the interface. For certain two-
phase flow systems, e.g. with suspended (nano)particles that reside on the
interface, it is known that significant other effects also occur. Due to new
high-tech applications (e.g., particle-stabilized emulsion, new materials) such
systems with colloidal particles at liquid interfaces have attracted a strongly
growing interest in the past decade. For modeling the rheological properties
of such particle-laden interfaces one often introduces an effective surface vis-
cosity, [168, 170]. The standard mathematical description of this is by means
of the so-called Boussinesq-Scriven model which we now introduce, cf. also
[225, 45, 219]. First we recall that for the bulk fluid, based on the Cauchy stress
principle and assuming the Newtonian stress tensor form σ = −pI+L(D(u)),
with a linear operator L, one can derive the stress tensor representation as in
(1.10), i.e.,

σ = −pI + λdiv u I + μD(u). (1.34)

The Boussinesq-Scriven model starts from the (rheological) assumption that
the interface behaves like a two-dimensional Newtonian fluid. Recall that sur-
face tension can be characterized as a contact force of the form

∫
∂γ τn ds̃,

cf. (1.31). In analogy with the approach for a Newtonian fluid in the bulk
phase, we start from the structural assumption that on each (small) con-
nected surface segment γ ⊂ Γ , cf. Fig. 1.3, there is a contact force on ∂γ of
the form

σΓn, with σΓ = τP + L(DΓ (u)), DΓ (u) := P
(
∇Γu + (∇Γu)T

)
P,

with L a linear operator. Recall that P = I−nnT is the orthogonal projection
onto Γ . This projection is used, since σΓn = σΓPn should represent only
contact forces that are tangential to the surface. Note that for L = 0 this
contact force reduces to the surface tension contact force σΓn = τPn = τn.
Using the same principles (isotropy, independence of the frame of reference)
as in the derivation of (1.34) it can be shown, cf. [225, 15], that the interface
stress tensor σΓ must have the following form:

σΓ = τP + λ̃Γ divΓ uP + μΓDΓ (u), (1.35)

with parameters λ̃Γ , μΓ . This is the interface analogon of the bulk stress tensor
representation in (1.34). Note that in general divΓ u �= 0, even if div u = 0
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holds. In case of viscous behavior of the interface one takes μΓ > 0. For certain
cases one can derive conditions on the parameter λ̃Γ , for example λ̃Γ > −μΓ
([225] Sect. 4.9.5). Therefore the interface stress tensor is also written in the
form

σΓ = τP + (λΓ − μΓ ) divΓ uP + μΓDΓ (u), (1.36)

and one often assumes λΓ = λ̃Γ +μΓ > 0. The parameters μΓ and λΓ , which
we assume to be constants, are referred to as the interface shear viscosity
and interface dilatational viscosity, respectively. In the momentum balance
we need the interface force as a force on the interface segment γ. Using the
formula

∫
γ divΓ GP ds =

∫
∂γ Gn ds̃, cf. (14.19), we obtain from (1.36) the

interfacial force

F3 =
∫

∂γ

σΓn ds̃

=
∫

γ

divΓ
(
τP) + (λΓ − μΓ ) divΓ

(
divΓ uP

)
+ μΓ divΓ

(
DΓ (u)

)
ds.

Using this interface force F3 and following the derivation in Sect. 1.1.2 we
obtain a generalization of the interface condition in (1.20):

[σnΓ ] = divΓ
(
τP) + (λΓ − μΓ ) divΓ

(
divΓ uP

)
+ μΓ divΓ

(
DΓ (u)

)
(1.37)

on Γ . This is the Boussinesq-Scriven model. For λΓ = μΓ = 0 this model
reduces to the one in (1.23) (or (1.20), if τ is constant) since

divΓ (τP) = τ divΓ P +∇Γ τ = −τκn +∇Γ τ,

cf. (14.10). The generalized formulation (1.37) is used to model viscous effects
in the interface.

1.2 Initial and boundary conditions

In this section we describe initial and boundary conditions that can be used
in the models 1)-4) to make the problem well-posed.

For the NS1 model one needs suitable initial and boundary conditions only
for the velocity u. The initial condition is u(x, 0) = u0(x) with a given func-
tion u0, which usually comes from the underlying physical problem. For the
boundary conditions we distinguish between essential and natural boundary
conditions. Let ∂Ω be subdivided into two parts ∂Ω = ∂ΩD ∪ ∂ΩN with
∂ΩD ∩ ∂ΩN = ∅. We use essential boundary conditions on ∂ΩD that are
of Dirichlet type. In applications these describe inflow conditions or con-
ditions at walls (e.g., no-slip). Such Dirichlet conditions are of the form
u(x, t) = uD(x, t) for x ∈ ∂ΩD, with a given function uD. If, for exam-
ple, ∂ΩD corresponds to a fixed wall, then a no-slip boundary condition is
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given by u(x, t) = 0 for x ∈ ∂ΩD. On ∂ΩN we prescribe natural boundary
conditions, which are often used to describe outflow conditions. These natural
boundary conditions are of the form

σnΩ = −pextnΩ, on ∂ΩN , (1.38)

with nΩ the outward pointing normal on ∂ΩN and pext a given function
(external pressure). For the case pext = 0 we thus obtain a homogeneous
natural boundary condition.

Similar initial and boundary conditions can be used for the two-phase flow
model NS2. In addition we then need the initial configuration, i.e., Γ (0) must
be given.

In the model NS2+T in (1.24) one needs in addition initial and boundary
conditions for the concentration c. The initial condition is c(x, 0) = c0(x) with
a given initial concentration c0. For the boundary conditions the standard
ones, namely a Dirichlet (i.e., c given on part of ∂Ω) and a Neumann ( ∂c

∂nΩ

given on part of the boundary) condition can be used.
In model NS2+S in (1.25) one has to prescribe an initial concentration

S(x, 0) = S0(x), x ∈ Γ , for the surfactant. If Γ is a surface without boundary
(droplet) no boundary conditions for S are needed.

1.3 Examples of two-phase flow simulations

In this section we give some simulation results for a two-phase system with a
single droplet rising due to buoyancy forces where at the same time transport
of some surface active agent (surfactant) on the interface is taking place.
This application example is meant to give the reader a first impression of
some features of two-phase flow systems and the challenges one is facing when
treating such flows numerically.

Before giving details on this numerical simulation, we briefly address the
importance of two-phase systems in chemical engineering. One example of such
a system is a falling film which is used for cooling by heat transfer from a thin
liquid layer to the gaseous phase (liquid-gas system). Another example is an
extraction column where mass transport takes place between liquid bubbles
and a surrounding liquid (liquid-liquid system). For the design of such bubble
column reactors it is desirable to have a model that gives a detailed description
of the transport phenomena between the bubbles and the surrounding fluid.
Rather than considering the whole column reactor with swarms of bubbles, in
a first step only a single droplet is investigated. Even for this simplified case
the transport mechanisms are not well understood up to now. One interesting
and important phenomenon is the formation of a so-called stagnant cap in
the downstream part of the droplet. In this stagnant cap region the velocity
is much smaller than in the region where the vortices occur, cf. Fig. 1.6. The
formation of such stagnant caps has been observed in experiments. In Fig. 1.7
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Fig. 1.6. Sketch of flow pattern inside and outside single droplet without (left) and
with (right) stagnant cap.

a velocity distribution in a cross-section of a levitated toluene droplet is shown,
measured by a fast nuclear magnetic resonance (NMR) technique (from [11]).

Fig. 1.7. NMR image of measured velocity field in toluene droplet.

There is (experimental) evidence that such regions with very low veloc-
ity are caused by surface active substances (surfactants) which adhere to the
interface and due to the surrounding flow pattern are transported to the down-
stream part of the droplet. An interesting (modeling) question in this context
is how this surfactant concentration affects the surface tension coefficient, i. e.,
to find an adequate model for τ = τ(S). Furthermore one would like to under-
stand how the variable surface tension coefficient τ(S) influences the velocity
inside the droplet, in particular whether it induces a stagnant cap. It is very
hard (for most systems even impossible) to measure in an experiment the
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surfactant concentration on the interface or to determine the values of the
variable surface tension coefficient. Hence, numerical simulations like the one
presented here play a key role for providing more insight.

1.3.1 Numerical simulation of a rising droplet

We present results of a numerical experiment with a single n-butanol droplet
inside a rectangular tank Ω = [0, 12 · 10−3] × [0, 30 · 10−3] × [0, 12 · 10−3]m3

filled with water, cf. Fig. 1.8. The material properties of this two-phase system
are given in Table 1.1. Initially at rest (u0 = 0m/s) the bubble starts to rise
in y-direction due to buoyancy effects, with y = x2 and x = (x1, x2, x3).

quantity (unit) n-butanol water

ρ (kg/m3) 845.4 986.5

μ (kg/ms) 3.281 · 10−3 1.388 · 10−3

τ (N/m) 1.63 · 10−3

Table 1.1. Material properties of the system n-butanol/water.

For the initial triangulation T0 the domain Ω is subdivided into 4× 10× 4
sub-cubes each consisting of 6 tetrahedra. Then the grid is refined four times
in the vicinity of the interface Γ . As time evolves the grid is adapted to the
moving interface. Figure 1.9 shows the droplet and a part of the adaptive mesh
for two different time steps. A movie of this numerical simulation is given on
the website [90].

For a butanol droplet with radius 1mm, in Fig. 1.10 the y-coordinate of
the droplet’s barycenter xd is shown as a function of time, where

xd(t) = meas3(Ω1(t))−1

∫

Ω1(t)

xdx.

The average velocity ud(t) of the drop is given by

ud(t) = meas3(Ω1(t))−1

∫

Ω1(t)

u(x, t) dx.

Note that x′d(t) = ud(t) and, due to incompressibility and immiscibility,
meas3(Ω1(t)) = meas3(Ω1(0)). For a butanol droplet with radius 1mm
Fig. 1.11 shows the rise velocity, which is the second coordinate of the av-
erage velocity ud(t). After a certain time the rise velocity becomes almost
constant and the bubble reaches a terminal rise velocity denoted by ur. For
the radius rd = 1mm we obtain ur = 53mm/s. For technical applications the
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Ω2

Ω1

Fig. 1.8. 2D sketch of
the rising bubble exam-
ple.

Fig. 1.9. Interface and part of the grid for a rising
bubble with radius rd = 1 mm at times t = 0.2 s
(left) and t = 0.4 s (right).
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Fig. 1.10. y-coordinate of barycenter
of a rising butanol droplet with radius
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Fig. 1.11. Rise velocity of a butanol
droplet with radius 1 mm as a function
of time t.

value of the terminal rise velocity is an important quantity, e. g., to predict
the duration of a bubble’s residence time inside a column reactor.

We computed the terminal rise velocities ur of rising butanol droplets
for different drop radii rd. For larger droplets with rd ≥ 1.5mm a coarser
mesh was used (3 times local refinement instead of 4 times as for the smaller
droplets) because of memory limitations. A validation of the simulation results
by means of comparison with experimental data is given in [35]. In Fig. 1.12,
which is taken from [35], the terminal rise velocity ur is plotted versus the
bubble radius rd and a comparison of experimental and simulation results is
shown. For a discussion of these results we refer to [35].
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Fig. 1.12. Terminal rise velocities ur for different droplet radii rd. Experimental
data (open circles), DROPS simulation results (filled circles) and curve fitted to
experimental data (solid line).

The droplet shapes of rising butanol droplets for different radii rd are
shown in Fig. 1.13. The droplet shape is almost spherical for rd = 0.5mm and
becomes more and more flattened for larger radii. The corresponding velocity
field u − ud (which is the velocity with respect to a reference frame moving
with droplet speed ud) is visualized on a slice in the middle of the domain.
Toroidal vortices can be observed inside the droplets. For rd = 2mm we also
observe a small vortex structure in the wake of the bubble. These numerical
results are not able to reproduce a stagnant cap flow pattern as in Fig. 1.6,
since the surface tension coefficient τ was assumed to be constant. In the next
section we simulate surfactant transport for a rising butanol droplet.

1.3.2 Numerical simulation of a droplet with surfactant transport

We again consider the problem of a rising butanol droplet from the previ-
ous section, but now include surfactant transport on Γ . The model NS2+S
consists of the two-phase flow problem (1.19)–(1.21) combined with the sur-
factant transport equation (1.25). The experimental setup and the numerical
parameters are chosen as described in Sect. 1.3.1. We take a droplet radius
rd = 1mm. The initial constant surfactant concentration is chosen as S0 = 1
and the surfactant diffusion coefficient is set to DΓ = 10−5.

As time evolves, the droplet starts to rise and changes its shape. The flow
field u at the interface induces a surfactant transport from the top to the
bottom of the droplet. Figure 1.14 shows the droplet’s shape and surfactant
concentration for t = 0, 0.1, 0.2, 0.4 s, respectively. The surfactant is collected
at the lower part of the droplet while the surfactant concentration at the upper
part becomes relatively small. Figure 1.15 shows the surfactant concentration
as a function of the vertical coordinate y, with y = x2 and x = (x1, x2, x3),
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rd = 0.5 mm rd = 1 mm

rd = 1.5 mm rd = 2 mm

Fig. 1.13. Shape of n-butanol droplets for different radii rd and velocity field u−ud

visualized on slice.

for each of the respective times. Hence, each snapshot of the rising droplet
in Fig. 1.14 corresponds to one of the graphs in 1.14. For example, the con-
stant surfactant concentration of the initial droplet (t = 0 s) is represented in
Fig. 1.15 as a straight vertical line of height 2mm, which corresponds to the
initial droplet diameter. The droplet’s shape as well as the surfactant profile
relative to the droplet becomes almost stationary for t ≥ 0.2 s, with S ≈ 3.2
at the bottom and S ≈ 0.015 at the top of the droplet, i. e., only 1.5% of the
initial surfactant concentration.

The next step would be to consider a variable surface tension coefficient τ
depending on the surfactant concentration S. At the top of the droplet this
would be τ ≈ 1.63mN/m as for the pure n-butanol/water system, while at
the bottom the surface tension coefficient would be decreased as an effect
of the high surfactant concentration. We do not consider this issue here. In
Sect. 11.5.3 we give results of a numerical experiment in which the surface
tension coefficient depends on the concentration of a dissolved species close
to the interface, i.e. τ = τ(c). In that experiment, the variable surface tension
induces a stagnant cap as in the right picture in Fig. 1.6.
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t = 0 s t = 0.1 s

t = 0.2 s t = 0.4 s

Fig. 1.14. Shape and surfactant concentration S (color-coded) of n-butanol droplet
for different time steps t = 0, 0.1, 0.2, 0.4 s.

1.4 Overview of numerical methods

In the following chapters many numerical methods for the simulation of the
models introduced in Sect. 1.1 are treated. In this section we give an overview
of important methods. for spatial discretization only finite element methods
will be considered. Besides different finite element methods we also discuss
algorithms for the construction of nested multilevel tetrahedral triangulations,
implicit time discretization methods and iterative solvers for the resulting
discrete problems. We list the main numerical methods:

• A level set method for interface capturing is used. We treat discretization
methods for the linear hyperbolic level set equation. Also a fast-marching
re-initialization algorithm is discussed.

• The construction of a multilevel hierarchy of nested tetrahedral triangula-
tions is treated. Local refinement and coarsening routines are explained.



1.4 Overview of numerical methods 27

0

0.005

 0.01

0.015

0.02

0.025

0.01 0.1 1 10

y 
(m

)

S

surfactant concentration vs. vertical position

t=0 s

t=0.1 s

t=0.2 s

t=0.4 s

Fig. 1.15. Surfactant concentration S as function of vertical coordinate y for t =
0, 0.1, 0.2, 0.4 s, respectively.

• Starting from suitable variational formulations of the models, for spa-
tial discretization we apply finite element techniques based on conforming
spaces. Special finite element spaces suitable for functions that are discon-
tinuous across the interface are introduced. We use the XFEM (“ex tended
f inite element method”) approach.

• For discretization of the surface tension force a special Laplace-Beltrami
method is analyzed.

• For the fluid dynamics problem we derive several implicit time integration
methods in which flow variables, surface tension forces and the level set
function are strongly coupled.

• After space and time discretization of the fluid dynamics problem one ob-
tains, in each time step, a nonlinear discrete problem in which the flow
and level set unknowns are strongly coupled. We analyze an iterative de-
coupling strategy.

• For the solution of large sparse linear systems preconditioned Krylov sub-
space methods are discussed. Also inexact Uzawa type solvers for saddle
point problems are analyzed. Several Schur complement preconditioners
are considered. Multigrid solvers/preconditioners are explained.

• For the discretization of the mass transport equation we consider a method
in which the XFEM technique is combined with a so-called Nitsche ap-
proach in order to satisfy the Henry interface condition.

• For the discretization of the surfactant convection-diffusion equation on
the interface a special Eulerian finite element technique is introduced.

• For the space and time discretization of the mass transport and surfactant
transport equations a space-time finite element approach appears to be
very natural. We treat such space-time finite element methods.

In Table 1.2 we give a compact overview of all important methods considered,
in the form of a matrix of methods. As can be seen from this table, we ar-
range the different methods according to two criteria, namely the models for
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which they are used (rows) and the computational method class they belong
to (columns). A downward pointing arrow in the table means that methods
from the row(s) above are used. To be more specific we briefly address the
methods shown in Table 1.2 in a row wise order.

Model NS1 (one-phase Navier-Stokes problem). We explain how a multilevel
hierarchy of nested tetrahedral meshes can be constructed, which allows sim-
ple local refinement and coarsening algorithms. These grid related methods
are also used in the numerical simulation of the other models. For spatial dis-
cretization we explain the standard Hood-Taylor P2-P1 finite element pair. We
briefly address quadrature rules to evaluate the integrals that occur in the dis-
crete variational formulation. Spatial discretization results in a large system
of nonlinear ordinary differential equations coupled with algebraic constraints
(due to div u = 0), i.e., a DAE system (Differential Algebraic Equation). For
this system we discuss several numerical time integration rules. A one-step
θ-scheme and a fractional-step θ-scheme are treated. Per time step such a
time integration rule results in a large nonlinear system of algebraic equa-
tions, in which velocity u and pressure p are coupled. For linearization of the
term (u · ∇)u a standard Picard iteration (with steplength optimization) is
applied. After linearization we have a large sparse linear system of algebraic
equations that is of saddle point type. Several efficient iterative solvers, like
for example preconditioned minimal residual (MINRES), inexact Uzawa and
multigrid methods are discussed.

Model NS2 (two-phase Navier-Stokes problem). For the interface represen-
tation (“interface capturing”) we use a level set approach. In this method one
uses a scalar level set function φ (which has no physical meaning) whose zero
level coincides (approximately, due to discretization errors) with the interface.
In the model (1.19)-(1.21) the immiscibility condition in (1.21) is then replaced
by a linear hyperbolic partial differential equation for φ. An important issue is
the discretization of the level set equation. For this we use piecewise quadratic
finite elements combined with streamline diffusion stabilization (SDFEM).
Another topic is the approximation of the zero level of this discretization φh
of φ (Γ � Γh). Related to the level set function we also need a re-initialization
method. We will reformulate the model NS2 such that the interface conditions
(1.20) are eliminated and replaced by a localized force term (at the interface)
in the momentum equation. A main issue is the discretization of this localized
surface tension force. For this we introduce and analyze a Laplace-Beltrami
technique. In this type of problems, due to surface tension, the pressure is
discontinuous across the interface. For an appropriate treatment of this dis-
continuity we introduce a special extended finite element space (XFEM). Due
to the pressure discontinuity and discontinuities in density and viscosity we
need special quadrature rules. Application of a time integration rule results
in a large nonlinear system of algebraic equations (per time step) in which
u, p and φ are coupled. We explain an iterative decoupling strategy to split
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the coupled problem for u, p, φ into two subproblems for (u, p) and φ, re-
spectively. If in the flow problem there are very large jumps in density and
viscosity across the interface (as, for example, in a liquid-gas system) then in
order to obtain efficient iterative solvers we propose special preconditioners
that are robust with respect to variation in the size of these jumps.

Model NS2+T (two-phase flow with mass transport). Due to the Henry inter-
face condition c1 = CHc2 (with CH �= 1) in (1.24), the concentration is discon-
tinuous across the interface. For the spatial discretization of the convection-
diffusion equation for the concentration c we use the XFEM technique. In
order to satisfy the Henry jump condition at the interface a technique due to
Nitsche is explained. For the time integration we distinguish two cases. If the
interface is stationary, a standard method of lines approach can be applied
in which the spatial finite element discretization is combined with a θ-scheme
for time discretization. In case of a non-stationary interface this approach is
not very satisfactory and we treat as alternatives a Rothe method (first time,
then space) and a space-time finite element technique. A simple method for
the decoupling of (u, p, φ) and c in each time step is discussed.

Model NS2+S (two-phase flow with surfactant transport). In this model we
have a convection-diffusion equation on the (evolving) interface Γ , cf. (1.25).
For the spatial discretization we use a special finite element space that is ob-
tained from suitable restriction of a standard finite element space used for
discretization of the flow variables on the tetrahedral triangulation. Again
for the time discretization we distinguish between a stationary and a non-
stationary interface. For the latter case a space-time finite element method is
discussed.

The methods addressed above are treated in this monograph and implemented
in the DROPS package [90]. We mention a few other research groups in Nu-
merical Analysis and Computational Engineering in which the numerical sim-
ulation of two-phase incompressible flow problems is an important research
topic: the groups around Bothe [9, 10], Griebel [73], Herrmann [138, 139],
Kuipers [80, 88], Lowengrub and Voigt [233, 234], Marchandise [173, 172],
Tobiska [115, 118], Tryggvason [243, 182], Weigand [216, 215].



30 1 Introduction

G
ri

d
s

sp
a
ti

a
l
d
is

c
re

ti
z
a
ti

o
n

ti
m

e
in

te
g
ra

ti
o
n

c
o
u
p
li
n
g
s/

li
n
e
a
ri

z
a
ti

o
n

it
e
ra

ti
v
e

so
lv

e
rs

N
S
1

m
u
lt
il
ev

el
te

tr
a
h
ed

ra
l

h
ie

ra
rc

h
y
;

lo
ca

l
re

fi
n
em

en
t

a
n
d

co
a
rs

en
in

g
;

H
o
o
d
-T

ay
lo

r
F
E

;
q
u
a
d
ra

tu
re

;
θ
-s

ch
em

e;
fr

a
ct

.-
st

ep
sc

h
em

e;
(u

,p
)

fu
ll
y

co
u
p
le

d
;

P
ic

a
rd

it
er

a
ti
o
n

fo
r

li
n
ea

ri
za

ti
o
n
;

in
ex

a
ct

U
za

w
a
;

G
M

R
E

S
,G

C
R

,
M

IN
R

E
S
;

S
ch

u
r

co
m

p
l.

p
re

co
n
d
.;

m
u
lt
ig

ri
d

m
et

h
o
d
;

↓
↓

↓
↓

↓

N
S
2

X
F
E

M
fo

r
p
;

g
en

er
a
li
ze

d
fi
x
ed

p
o
in

t
fo

r
sp

ec
ia

l
p
re

co
n
d
it
io

n
er

s

P
2
+

S
D

F
E

M
fo

r
φ
;

θ
-s

ch
em

e
d
ec

o
u
p
li
n
g

o
f

(l
a
rg

e
ju

m
p
s)

;

m
a
ss

co
n
se

rv
a
ti
o
n
;

(u
,p

)
↔

φ
;

re
-i
n
it
ia

li
za

ti
o
n

o
f

φ
;

Γ
�

Γ
h
;

d
is
cr

et
iz

a
ti
o
n

o
f
f Γ

;

sp
ec

ia
l
q
u
a
d
ra

tu
re

;

↓
↓

↓
↓

↓

N
S
2
+

T
N

it
sc

h
e

a
p
p
ro

a
ch

;
R

o
th

e
m

et
h
o
d
;

d
ec

o
u
p
li
n
g

o
f

X
F
E

M
fo

r
c;

sp
a
ce

-t
im

e
F
E

;
(u

,p
,φ

)
↔

c;

↓
↓

↓
↓

↓

N
S
2
+

S
E

u
le

ri
a
n

su
rf

a
ce

sp
a
ce

-t
im

e
F
E

;
d
ec

o
u
p
li
n
g

o
f

F
E

m
et

h
o
d
;

(u
,p

,φ
)
↔

S
;

T
a
b
le

1
.2

.
O

v
er

v
ie

w
o
f
n
u
m

er
ic

a
l
m

et
h
o
d
s.



Part I

One-phase incompressible flows



2

Mathematical models

2.1 Introduction

We recall the non-stationary Navier-Stokes equations for modeling a one-
phase incompressible flow problem:

ρ
(∂u
∂t

+ (u · ∇)u
)

+∇p− μΔu = ρg in Ω

div u = 0 in Ω,
(2.1)

with given constants ρ > 0, μ > 0. For simplicity we only consider homoge-
neous Dirichlet boundary conditions for the velocity (no-slip condition). Thus
the boundary and initial conditions are given by

u = 0 on ∂Ω, u(x, 0) = u0(x) for x ∈ Ω, (2.2)

with a given initial condition u0(x). In the discussion and analysis of numerical
methods for this problem we will also use the following two simpler systems
of partial differential equations. Firstly, the non-stationary Stokes equations

ρ
∂u
∂t

+∇p− μΔu = ρg in Ω

div u = 0 in Ω,
(2.3)

with the same initial and boundary conditions as in (2.2). Note that opposite
to the Navier-Stokes equations, the Stokes system is linear in the unknowns
u, p. Secondly, we consider the following type of stationary problem:

ξu + (w · ∇)u +∇p− μΔu = ρg in Ω

div u = 0 in Ω,
(2.4)

with a given constant ξ ≥ 0 and a given vector function w(x) ∈ R
3. For the

boundary condition we take the homogeneous Dirichlet condition u = 0. This
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linear system of partial differential equations is called an Oseen problem. This
type of problem occurs if in the non-stationary Navier-Stokes equation an
implicit time discretization method is used and the nonlinearity is linearized
via a fixed point strategy in which in the nonlinear term (u ·∇)u is linearized
by replacing the first u argument by an already computed approximation
uold =: w. For the case w = 0 this problem reduces to the so-called generalized
Stokes equations and for w = 0 and ξ = 0 we obtain the stationary Stokes
problem.

Formulation in dimensionless variables

For the derivation and analysis of numerical methods for the models presented
above it is convenient to consider these models in a non-dimensionalized form.
For this we introduce

L : typical length scale (related to size of Ω),
U : typical velocity size,

and dimensionless variables

x̄ =
1
L
x, t̄ =

U

L
t, ū(x̄, t̄) =

u(x, t)
U

, p̄(x̄, t̄) =
p(x, t)
ρU2

.

Furthermore, Ω̄ := 1
LΩ :=

{
x̄ ∈ R

3 : Lx̄ ∈ Ω
}
, and a non-dimensional source

term is defined as ḡ = L
U2 g. The partial differential equations in (2.1) can be

written in these dimensionless quantities as follows, where differential opera-
tors w.r.t. x̄i and t̄ are denoted with a − (for example: ∇̄):

∂ū
∂t̄

+ (ū · ∇̄)ū + ∇̄p̄− 1
Re

Δ̄ū = ḡ in Ω̄

divū = 0 in Ω̄,

with the dimensionless Reynolds number

Re =
ρLU

μ
.

For notational simplicity, in the remainder we drop the bar notation, and thus
obtain the following Navier-Stokes system in dimensionless variables:

Navier-Stokes

∂u
∂t
− 1
Re

Δu + (u · ∇)u +∇p = g in Ω

div u = 0 in Ω.
(2.5)
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We now list the above-mentioned related simpler models used in fluid dy-
namics. In this monograph we use these simpler models in the analysis of
numerical methods. The non-stationary Stokes equations (2.3) in dimension-
less formulation are as follows:

Stokes

∂u
∂t
− 1
Re

Δu +∇p = g in Ω

div u = 0 in Ω.
(2.6)

Hence, the Stokes equations can be seen as a limit case of the Navier-Stokes
equations if Re→ 0. In the remainder, if we refer to the (Navier-)Stokes prob-
lem we always mean the non-stationary (Navier-)Stokes equations. We now
present three time independent models. The Oseen system (2.4) in dimen-
sionless form is as follows:

Oseen

ξu− 1
Re

Δu + (w · ∇)u +∇p = g in Ω

div u = 0 in Ω.
(2.7)

where now ξ ≥ 0 is a dimensionless constant. Special cases of the Oseen
problem are the generalized Stokes and the stationary Stokes problems:

Generalized Stokes

ξu− 1
Re

Δu +∇p = g in Ω

div u = 0 in Ω,
(2.8)

Stationary Stokes

− 1
Re

Δu +∇p = g in Ω

div u = 0 in Ω.
(2.9)

2.2 Weak formulation

We will use finite element methods for the discretization of the (Navier-)Stokes
equations. These methods are based on the weak (or variational) formulation
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of the partial differential equations. In this section we discuss this weak for-
mulation.

2.2.1 Function spaces

We only recall some basic facts from the theory on Sobolev spaces. For a
detailed treatment of this subject we refer to the literature, e.g. [8].

One main motivation for using Sobolev spaces is that these are Banach
spaces. Some of these are Hilbert spaces. In our treatment of elliptic boundary
value problems we only need these Hilbert spaces and thus we restrict ourselves
to the presentation of this subset of Sobolev Hilbert spaces.

First we introduce the concept of weak derivatives. Let Ω ⊂ R
d be an

open, bounded and connected domain, and take u ∈ C1(Ω), φ ∈ C∞
0 (Ω),

wh
in
th
Ω

an

ho

Re

Ba

D
su

th
ere C∞
0 (Ω) consists of all functions in C∞(Ω) that have a compact support

Ω (and thus, since Ω is open, such functions are identically zero close to
e boundary). Since φ vanishes identically outside some compact subset of
, one obtains by partial integration in the variable xj :

∫

Ω

∂u(x)
∂xj

φ(x) dx = −
∫

Ω

u(x)
∂φ(x)
∂xj

dx

d thus
∫

Ω

Dαu(x)φ(x) dx = −
∫

Ω

u(x)Dαφ(x) dx, |α| = 1,

lds. Here Dαu with α = (α1, . . . , αd), |α| = α1 + . . .+ αd denotes

Dαu =
∂|α|

∂xα1
1 . . . ∂xαd

d

.

peated application of this result yields the fundamental Green’s formula
∫

Ω

Dαu(x)φ(x) dx = (−1)|α|
∫

Ω

u(x)Dαφ(x) dx,

for all φ ∈ C∞
0 (Ω), u ∈ Ck(Ω), k = 1, 2, . . . and |α| ≤ k.

(2.10)

sed on this formula we introduce the notion of a weak derivative:

efinition 2.2.1 Consider u ∈ L2(Ω) and |α| > 0. If there exists v ∈ L2(Ω)
ch that
∫

Ω

v(x)φ(x) dx = (−1)|α|
∫

Ω

u(x)Dαφ(x) dx for all φ ∈ C∞
0 (Ω), (2.11)

en v is called the αth weak derivative of u and is denoted by Dαu := v.
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Such weak derivatives are often introduced in the more general setting of so-
called distributions. For our purposes, however, the definition above suffices.
If for u ∈ L2(Ω) the αth weak derivative exists then it is unique (in the usual
Lebesgue sense). If u ∈ Ck(Ω) then for 0 < |α| ≤ k the αth weak derivative
and the classical αth derivative coincide. The Sobolev space Hm(Ω), m =
1, 2, . . . , consists of all functions in L2(Ω) for which all αth weak derivatives
with |α| ≤ m exist:

Hm(Ω) :=
{
u ∈ L2(Ω) : Dαu exists for all 0 < |α| ≤ m

}
. (2.12)

For m = 0 we define H0(Ω) := L2(Ω). In Hm(Ω) a natural inner product
and corresponding norm are defined by

(u, v)m :=
∑

|α|≤m
(Dαu,Dαv)L2 , ‖u‖m := (u, u)

1
2
m, u, v ∈ Hm(Ω).

(2.13)
It is easy to verify, that (·, ·)m defines an inner product on Hm(Ω). We now
formulate a main result:

Theorem 2.2.2 The space
(
Hm(Ω) , (·, ·)m

)
is a Hilbert space.

Similar constructions can be applied if we replace the Hilbert space L2(Ω)
by the Banach space Lp(Ω), 1 ≤ p < ∞ of measurable functions for which
‖u‖p := (

∫
Ω
|u(x)|p dx)1/p is bounded. This results in Sobolev spaces which

are usually denoted by Hm
p (Ω). For notational simplicity we deleted the index

p = 2 in our presentation. For p �= 2 the Sobolev space Hm
p (Ω) is a Banach

space but not a Hilbert space.
One can also define these Sobolev spaces using a different technique,

namely based on the concept of completion. Consider the function space

Zm := {u ∈ C∞(Ω) : ‖u‖m <∞} .

The completion of this space with respect to ‖ · ‖m yields the Sobolev space
Hm(Ω):

Hm(Ω) = completion of (Zm , (·, ·)m).

A compact notation is Hm(Ω) = Zm
‖·‖m . Note that C∞(Ω) ⊂ Zm. Under

very mild assumptions on the domain Ω we even have

Hm(Ω) = C∞(Ω)
‖·‖m

.

Another space that plays an important role in the weak formulation of the
partial differential equations is the following subspace of H1(Ω):

H1
0 (Ω) := C∞

0 (Ω)
‖·‖1

. (2.14)
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An important issue is the smoothness in the classical sense of functions
from a Sobolev space. In this respect the following Sobolev embedding result
is relevant:

Hm(Ω) ↪→ Ck(Ω) if m− d

2
> k (d such that Ω ⊂ R

d). (2.15)

The symbol ↪→ is used to denote that the embedding between the two spaces
is continuous, i.e. if m and k satisfy the condition in (2.15) then there exists
a constant c such that

‖u‖Ck(Ω) ≤ c‖u‖m for all u ∈ Hm(Ω).

A basic result is the so-called Poincaré-Friedrichs inequality:

‖u‖L2 ≤ C

√ ∑

|α|=1

‖Dαu‖2L2 for all u ∈ H1
0 (Ω). (2.16)

Based on this we have the following norm equivalence:

|u|1 ≤ ‖u‖1 ≤ C|u|1 for all u ∈ H1
0 (Ω), |u|21 :=

∑

|α|=1

‖Dαu‖2L2, (2.17)

i.e., | · |1 and ‖ · ‖1 are equivalent norms on H1
0 (Ω).

In the weak formulation of elliptic boundary value problems one has to
treat boundary conditions. For this the next result will be needed.

There exists a unique bounded linear operator

γ : H1(Ω) → L2(∂Ω), ‖γ(u)‖L2(∂Ω) ≤ c‖u‖1, (2.18)

with the property that for all u ∈ C1(Ω) the equality γ(u) = u|∂Ω holds.
The operator γ is called the trace operator. For u ∈ H1(Ω) the function
γ(u) ∈ L2(∂Ω) represents the boundary “values” of u and is called the trace
of u. For γ(u) one often uses the notation u|∂Ω. For example, for u ∈ H1(Ω),
the identity u|∂Ω = 0 means that γ(u) = 0 in the L2(∂Ω) sense. Using the
trace operator one can give another natural characterization of the space
H1

0 (Ω):
H1

0 (Ω) =
{
u ∈ H1(Ω) : u|∂Ω = 0

}
.

The dual space of H1
0 (Ω), i.e. the space of all bounded linear functionals

H1
0 (Ω) → R is denoted by

H−1(Ω) := H1
0 (Ω)′,

with norm

‖f‖−1 := sup
v∈H1

0 (Ω)

f(v)
‖v‖1

, f ∈ H−1(Ω).
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Finally, we collect a few results on Green’s formulas that hold in Sobolev
spaces. For notational simplicity the function arguments x are deleted in
the integrals, and in boundary integrals like, for example,

∫
∂Ω γ(u) γ(v) ds

we delete the trace operator γ. The following identities hold, with n =
(n1, . . . , nd) the outward unit normal on ∂Ω and Hm := Hm(Ω):

∫

Ω

u
∂v

∂xi
dx = −

∫

Ω

∂u

∂xi
v dx +

∫

∂Ω

uvni ds, u, v ∈ H1, 1 ≤ i ≤ d

∫

Ω

Δuv dx = −
∫

Ω

∇u · ∇v dx+
∫

∂Ω

∇u · nv ds, u ∈ H2, v ∈ H1

∫

Ω

u div v dx = −
∫

Ω

∇u · v dx+
∫

∂Ω

uv · n ds, u ∈ H1,v ∈ (H1)d.

The Sobolev spaces turn out to be the appropriate ones for the weak formula-
tion of many partial differential equations. For the weak formulation of time
dependent partial differential equations one needs in addition the concept of
V -valued functions, where V is a given Banach space (for example L2(Ω),
or a Sobolev space). We now introduce this concept. For proofs and more
information we refer to the literature, e.g. [256, 261].

Let V be a Banach space with norm denoted by ‖ · ‖V . The space
L2(0, T ;V ) consists of all functions u : (0, T )→ V for which

‖u‖L2(0,T ;V ) :=
(∫ T

0

‖u(t)‖2V dt
) 1

2
<∞

holds. The space L2(0, T ;V ) is a Banach space. It is a Hilbert space if V is a
Hilbert space. This definition applied to the dual space V ′ results in the space
L2(0, T ;V ′) of functional valued functions u : (0, T )→ V ′ with

‖u‖L2(0,T ;V ′) :=
( ∫ T

0

‖u(t)‖2V ′ dt
) 1

2
<∞.

Recall that ‖u(t)‖V ′ := supv∈V
|u(t)(v)|
‖v‖V

. There is a linear bijective isometric
mapping j : L2(0, T ;V )′ → L2(0, T ;V ′), hence these spaces can be identified
with each other. One often writes

L2(0, T ;V )′ = L2(0, T ;V ′).

2.2.2 Oseen problem in weak formulation

In this section we treat the weak formulation of the Oseen problem in di-
mensionless form (2.7). For notational simplicity we only treat the three-
dimensional case, i.e. Ω ⊂ R

3. We consider this problem with homogeneous
Dirichlet boundary conditions u = 0 on ∂Ω. The Reynolds number Re > 0
and the problem parameter ξ ≥ 0 are given constants. Furthermore we assume
that the velocity field w satisfies w ∈ H1(Ω)3 and ‖w‖L∞(Ω) <∞.
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We introduce the spaces

V := H1
0 (Ω)3, Q := L2

0(Ω) =
{
q ∈ L2(Ω) :

∫

Ω

q dx = 0
}
, (2.19)

and the bilinear forms

m(u,v) = (u,v)L2 =
∫

Ω

u · v dx (2.20a)

a(u,v) =
1
Re

∫

Ω

∇u · ∇v dx =
1
Re

3∑

i=1

∫

Ω

∇ui · ∇vi dx (2.20b)

c(u,v) = c(w;u,v) =
∫

Ω

(w · ∇u) · v dx =
∑

1≤i,j≤3

∫

Ω

wi
∂uj
∂xi

vj dx (2.20c)

b(v, q) = −
∫

Ω

q div v dx. (2.20d)

The weak formulation of (2.7) is as follows:

Find u ∈ V and p ∈ Q such that

ξm(u,v) + a(u,v) + c(u,v) + b(v, p) = (g,v)L2 for all v ∈ V,
b(u, q) = 0 for all q ∈ Q.

(2.21)

We now turn to the analysis of this weak formulation. First we show that
if the problem in strong formulation (2.7) has a sufficiently smooth solution
(u, p), then this pair is also a solution of (2.21). We start with the observation
that the bilinear forms m(·, ·), a(·, ·), c(·, ·) are continuous on V×V and that
b(·, ·) is continuous on V ×Q.

Lemma 2.2.3 Assume u ∈ C2(Ω)3 with u = 0 on ∂Ω and p ∈ C1(Ω) with∫
Ω p dx = 0 is a solution pair of (2.7). Then this pair also solves (2.21).

Proof. From the assumptions on u and p it follows that u ∈ V, p ∈ Q. If
we multiply the first equation in (2.7) by φ ∈ C∞

0 (Ω)3, integrate over Ω and
apply partial integration (for each of the three components) we obtain

ξ

∫

Ω

uφ dx+
1
Re

∫

Ω

∇u·∇φ dx+
∫

Ω

(w·∇u)·φ dx−
∫

Ω

p divφ dx =
∫

Ω

g·φdx.

Hence,
ξm(u,φ) + a(u,φ) + c(u,φ) + b(φ, p) = (g,φ)L2 (2.22)

for all φ ∈ C∞
0 (Ω)3. Using the continuity of the bilinear forms and of v →

(g,v)L2 on V, and the density of C∞
0 (Ω)3 in V it follows that the identity in

(2.22) even holds for all φ ∈ V. Thus the first variational equation in (2.21)
holds. Multiplication of the second equation in (2.7) by an arbitrary q ∈ Q
and integrating over Ω results in the second variational identity in (2.21). �



2.2 Weak formulation 41

One very important property of the weak formulation (2.21) is that, opposite
to the strong formulation in (2.21), under very mild assumptions it has a
unique solution. The mathematical analysis of variational problems like the
one in (2.21) is based on an abstract theory for saddle point problems as
presented in the Appendix, Sect. 15.3. Theorem 15.3.1 can be applied to prove
the well-posedness of the weak formulation of the Oseen problem (2.21). In
the application of Theorem 15.3.1 we use the spaces V = V, M = Q and the
bilinear forms

â(u,v) = ξm(u,v) + a(u,v) + c(u,v) on V ×V, (2.23a)

b̂(u, q) = b(u, q) on V×Q. (2.23b)

A rather deep result from the theory on Sobolev spaces is the following:

∃ β > 0 : sup
v∈H1

0 (Ω)d

∫
Ω q div v dx
‖v‖1

≥ β ‖q‖L2 ∀ q ∈ L2
0(Ω). (2.24)

A proof of this is given in [183, 91]. From this result we immediately obtain
that for the bilinear form b(·, ·) on V×Q the inf-sup condition in (15.17a) is
satisfied. Using this the following theorem can be proved:

Theorem 2.2.4 Consider the weak formulation of the Oseen problem in
(2.21). Assume that ξ and w are such that ξ− 1

2 div w ≥ 0 on Ω. Then this
problem is well-posed.

Proof. We apply Theorem 15.3.1 with the spaces V = V, M = Q, the bilinear
forms defined in (2.23) and the functionals f1(v) := (g,v), f2 = 0. These
bilinear forms and functionals are continuous. The inf-sup condition (15.17a)
is satisfied due to property (2.24). We finally check the ellipticity condition
(15.17b). For u,v ∈ V we have u|∂Ω = v|∂Ω = 0 and thus using partial
integration we obtain

∫

Ω

(w · ∇u) · v dx =
∑

1≤i,j≤3

∫

Ω

wi
∂uj
∂xi

vj dx

= −
∫

Ω

div w(u · v) dx −
∫

Ω

(w · ∇v) · u dx.

Hence, for u = v we have
∫

Ω

(w · ∇u) · u dx = −1
2

∫

Ω

div w(u · u) dx.

This yields, using the assumption ξ − 1
2 div w ≥ 0,
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â(u,u) = ξ

∫

Ω

u · u dx+
1
Re

∫

Ω

∇u · ∇u dx+
∫

Ω

(w · ∇u) · u dx

=
∫

Ω

(
ξ − 1

2
div w

)
u · u dx+

1
Re

∫

Ω

∇u · ∇u dx

≥ 1
Re

∫

Ω

∇u · ∇u dx ≥ c ‖u‖21,

with a constant c > 0. In the last inequality we used the norm equivalence
(2.17). �
We comment on the assumption ξ − 1

2 div w ≥ 0 on Ω in Theorem 2.2.4. If
we consider a stationary Stokes problem then we have ξ = 0, w = 0 and thus
this assumption is satisfied. For a generalized Stokes equation, which results
from implicit time discretization of an non-stationary Stokes problem we have
w = 0, ξ > 0 and thus the assumption holds. Hence we conclude:

The stationary (generalized) Stokes equations in weak formulation, i.e.
(2.21) with ξ ≥ 0, w = 0, have a unique solution pair (u, p) ∈ V ×Q.

In the general case of an Oseen equation, which results after implicit time
integration and linearization of a Navier-Stokes problem, it is reasonable to
expect that | divw|, in which w is an approximation of the solution u (that
satisfies div u = 0), is small compared to ξ ∼ 1

Δt (Δt: time step in time
discretization). Hence it is plausible that the condition ξ − 1

2 div w ≥ 0 is
satisfied.

2.2.3 Time dependent (Navier-)Stokes equations in weak
formulation

In this section we treat the weak formulation of the non-stationary Stokes
problem (2.6) and of the non-stationary Navier-Stokes problem (2.5). For
both problems we restrict ourselves to the case with homogeneous Dirichlet
boundary conditions, i.e., u = 0 on ∂Ω.

Compared to the weak formulation of the Oseen problem in Sect. 2.2.2 we
now in addition have to address the issue of an appropriate treatment of the
time derivative ∂u

∂t . For the weak formulation of many time dependent partial
differential equations the Hilbert space L2(0, T ;V ) with a suitable Sobolev
space V , cf. Sect. 2.2.1, turns out to be appropriate. For u : (0, T ) → V one
then needs a suitable weak derivative u′ = du

dt . This can be defined by means
of the very general and powerful concept of distributional derivatives, in which
derivatives of linear mappings L : C∞

0 (0, T ) → V are defined, cf. [256, 261].
We will not use this (rather abstract) approach but introduce u′ by means of
weak derivatives as already presented in Definition 2.2.1. This (compared to
the distributional concept) less general definition is sufficient for our purposes.
We first present a weak variational formulation of a time dependent problem
in an abstract setting and then apply this to derive weak formulations of the
non-stationary Stokes- and Navier-Stokes equations.
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An abstract variational formulation of a time dependent problem

Let V,H be Hilbert spaces such that V ↪→ H ↪→ V ′ forms a Gelfand triple,
which means that H is identified with its dual, H ≡ H ′, the embedding
V ↪→ H is continuous and V is dense in H . The scalar products in V and H
are denoted by (·, ·)V and (·, ·)H , respectively. In our applications we use, for
example, the Gelfand triple H1

0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω).
We recall the definition of a weak derivative for a function g ∈ L2(0, T )

as given in Definition 2.2.1: if for such a function g there exists h ∈ L2(0, T )
such that

∫ T

0

h(t)φ(t) dt = −
∫ T

0

g(t)φ′(t) dt for all φ ∈ C∞
0 (0, T ), (2.25)

then h =: g′ is the weak derivative of g.
We now introduce a weak time derivative for u ∈ L2(0, T ;V ). It is possi-

ble to define a weak derivative of u in the same space L2(0, T ;V ). However,
for the time dependent problems that we consider it turns out to be more
appropriate to define a weak derivative in the space L2(0, T ;V ′). Using the
Gelfand property V ↪→ H ≡ H ′ ↪→ V ′ this can be done as follows. Take
t ∈ [0, T ]. The element u(t) ∈ V can be identified with an element of V ′,
through v → (u(t), v)H , v ∈ V . This identification of u(t) with an element of
V ′ leads to the following natural definition of a weak time derivative of u in
L2(0, T ;V ′).

Definition 2.2.5 Consider u ∈ L2(0, T ;V ). If there exists a w ∈ L2(0, T ;V ′)
such that ∫ T

0

w(t)(v)φ(t) dt = −
∫ T

0

(u(t), v)Hφ′(t) dt, (2.26)

for all v ∈ V and all φ ∈ C∞
0 (0, T ), then w is called the weak (time) derivative

of u and we write u′ = w.

One can show, that if such a weak derivative exists, then it is unique. Further-
more, assume that u : [0, T ] → H is smooth enough such that the classical
(Fréchet) derivative exists in H . Denote this Fréchet derivative by u′(t). Then

∫ T

0

(u′(t), v)H φ(t) dt = −
∫ T

0

(u(t), v)Hφ′(t) dt

holds for all v ∈ V and all φ ∈ C∞
0 (0, T ), and thus u′(t) identified with

the functional v → (u′(t), v)H is the weak derivative in the sense of Defini-
tion 2.2.5.

Lemma 2.2.6 Assume that u ∈ L2(0, T ;V ) has a weak derivative u′ ∈
L2(0, T ;V ′). For arbitrary v ∈ V define the function gv : t → (u(t), v)H .
Then gv ∈ L2(0, T ) and gv has a weak derivative g′v(t) = d

dt(u(t), v)H in the
sense of (2.25). Furthermore,
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d

dt
(u(t), v)H = u′(t)(v) for all v ∈ V (2.27)

holds for almost all t ∈ (0, T ).

Proof. Take v ∈ V . Note that due to the Gelfand property ‖w‖H ≤ c‖w‖V
for all w ∈ V holds. From

∫ T

0

gv(t)2 dt ≤
∫ T

0

‖u(t)‖2H‖v‖2H dt ≤ c4
∫ T

0

‖u(t)‖2V dt ‖v‖2V

and u ∈ L2(0, T ;V ) it follows that gv ∈ L2(0, T ). For hv(t) := u′(t)(v) we
have ∫ T

0

hv(t)2 dt ≤
∫ T

0

‖u′(t)‖2V ′ dt‖v‖2V <∞

and thus hv ∈ L2(0, T ). Using the property (2.26) we get

∫ T

0

hv(t)φ(t) dt =
∫ T

0

u′(t)(v)φ(t) dt

= −
∫ T

0

(u(t), v)Hφ′(t) dt = −
∫ T

0

gv(t)φ′(t) dt

for all φ ∈ C∞
0 (0, T ). Thus hv = g′v, i.e., u′(t)(v) = d

dt(u(t), v)H holds. �

Using the above notion of a weak derivative for functions u ∈ L2(0, T ;V ) we
introduce the following space

W 1(0, T ;V ) :=
{
v ∈ L2(0, T ;V ) : v′ ∈ L2(0, T ;V ′) exists

}
.

We mention two important properties of this space. For proofs and fur-
ther properties we refer to the literature, e.g. [256, 261]. Firstly, the space
W 1(0, T ;V ) is a Hilbert space w.r.t. the norm (and corresponding scalar prod-
uct)

‖u‖W 1(0,T ;V ) :=
(
‖u‖2L2(0,T ;V ) + ‖u′‖2L2(0,T ;V ′)

) 1
2 .

Secondly, there is a continuous embedding

W 1(0, T ;V ) ↪→ C([0, T ];H), (2.28)

where C([0, T ];H) is the Banach space of all continuous functions u : [0, T ]→
H with norm ‖u‖C([0,T ];H) := max0≤t≤T ‖u(t)‖H . An important corollary of
this embedding property is that for u ∈ W 1(0, T ;V ) the values u(t), t ∈ [0, T ],
are well-defined in H .

Based on these preparations, we can introduce an abstract variational time
dependent problem. Let â : V × V → R be a bilinear form.
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For b(t) ∈ V ′, t ∈ (0, T ), u0 ∈ H we define the problem:

Find u ∈ W 1(0, T ;V ) such that

d

dt
(u(t), v)H + â(u(t), v) = b(t)(v) for all v ∈ V, t ∈ (0, T ),

u(0) = u0.
(2.29)

Due to Lemma 2.2.6 the term d
dt(u(t), v)H in (2.29) is well-defined. A main

theorem is the following, cf. [256, 261] for a proof.

Theorem 2.2.7 Take u0 ∈ H, b ∈ L2(0, T ;V ′) and assume that the bilin-
ear form â(·, ·) is continuous and elliptic on V × V . Then the variational
problem (2.29) is well-posed, i.e. it has a unique solution u and the linear
mapping (b, u0)→ u is continuous from L2(0, T ;V ′)×H into W 1(0, T ;V ).

We summarize the essential ingredients for this abstract time dependent weak
formulation to be well-posed:

• One uses a Gelfand triple of spaces V ↪→ H ↪→ V ′ and uses the corre-
sponding space W 1(0, T ;V ). The weak derivative u′ ∈ L2(0, T ;V ′) is as in
Definition 2.2.5.

• The data are from appropriate spaces: b ∈ L2(0, T ;V ′), u0 ∈ H .
• The bilinear form â(·, ·) is continuous and elliptic on V × V .

Below we use these abstract results for the derivation of appropriate weak
formulations of the time dependent (Navier-)Stokes equations.

Remark 2.2.8 A proof of Theorem 2.2.7 is given in e.g. Theorem 26.1 in
[256], Theorem 23.A in [261]. There it is also shown that the result still holds
if the ellipticity condition â(v, v) ≥ γV ‖v‖2V for all v ∈ V (γV > 0) is replaced
by the weaker so-called Garding inequality:

â(v, v) ≥ γV ‖v‖2V − γH‖v‖2H for all v ∈ V,

with constants γV > 0 and γH independent of v.

Application to non-stationary Stokes equations

First we introduce suitable function spaces. Let

N(Ω) := {v ∈ C∞
0 (Ω)3 | div v = 0 }

and

Hdiv := N(Ω)
‖·‖L2

(closure of N(Ω) in L2(Ω)3 ) (2.30)

Vdiv := N(Ω)
‖·‖1

(closure of N(Ω) in H1
0 (Ω)3 ). (2.31)
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The spaces
(
Hdiv, ‖ · ‖L2

)
,
(
Vdiv, ‖ · ‖1

)
are Hilbert spaces. From ‖v‖L2 ≤

c‖v‖1 for all v ∈ N(Ω) and a density argument it follows that there is a
continuous embedding Vdiv ↪→ Hdiv. Using N(Ω) ⊂ Vdiv ⊂ Hdiv and the
fact that Hdiv is the closure of N(Ω) w.r.t. ‖ ·‖L2 it follows that Vdiv is dense
in Hdiv. Thus we have a Gelfand triple

Vdiv ↪→ Hdiv ≡ H′
div ↪→ V′

div. (2.32)

The space Vdiv can also be characterized as, cf. [235],

Vdiv =
{
v ∈ H1

0 (Ω)3 : div v = 0
}
.

We take the bilinear form a(·, ·) as in (2.20b). It is continuous and elliptic on
H1

0 (Ω)3, thus also on the subspace Vdiv of H1
0 (Ω)3.

We introduce the following weak formulation of the non-stationary Stokes
equations (2.6):

Determine u ∈W 1(0, T ;Vdiv) such that

d

dt
(u(t),v)L2 + a(u(t),v) = (g,v)L2 for all v ∈ Vdiv,

u(0) = u0

(2.33)

We first show that a smooth solution (u, p) of (2.6) is also a solution of this
weak formulation:

Lemma 2.2.9 Let (u, p) be a solution of (2.6). Define u(t) := u(·, t) and
assume that u ∈ C1

(
[0, T ];C2(Ω)3

)
, and u(0) = u0. Then u satisfies (2.33).

Proof. From u ∈ C1
(
[0, T ];C2(Ω)3

)
and div u = 0 it follows that u ∈

W 1(0, T ;Vdiv). We multiply the first equation in (2.6) by v ∈ Vdiv and inte-
grate over Ω. Note that

∫
Ω ∇p · v dx = −

∫
Ω p divv dx = 0, due to v ∈ Vdiv.

Using partial integration for the term 1
Re

∫
Ω Δu · v dx we then obtain

(
du(t)
dt

,v)L2 + a(u(t),v) = (g,v)L2 for all v ∈ Vdiv,

and thus (2.33) holds. �

As in Sect. 2.2.2, opposite to the strong formulation, the weak formulation has
the nice property that well-posedness can be shown to hold under (very) mild
assumptions on the data. To be more precise, the following theorem holds:

Theorem 2.2.10 Assume g ∈ L2(0, T ;V′
div) and u0 ∈ Hdiv. Then the

weak formulation (2.33) is well-posed.
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Proof. We have a Gelfand triple Vdiv ↪→ Hdiv ≡ H′
div ↪→ V′

div and the bilin-
ear form a(·, ·) is continuous and elliptic on Vdiv. Application of Theorem 2.2.7
yields the desired result. �

The weak formulation in (2.33) has no pressure variable. This is due to the fact
that the space Vdiv contains only functions that satisfy the incompressibility
condition divu = 0. For numerical purposes this weak formulation is less
convenient due to the fact that in general it is hard to construct appropriate
finite element subspaces of Vdiv. It turns out to be more convenient to have a
weak formulation using V = H1

0 (Ω)3 (instead of Vdiv). This can be achieved
by introducing a suitable Lagrange-multiplier variable. In an abstract Hilbert
space setting this is explained in Sect. 15.3, cf. Theorem 15.3.4. As in the
strong formulation in (2.6), one can enforce the incompressibility condition
by using a pressure variable p ∈ Q = L2

0(Ω). The weak formulation in (2.33)
can be used to derive a suitable weak formulation for (u, p) ∈ V × Q, which
is as follows:

Determine u ∈W 1(0, T ;V), p ∈ L2(0, T ;Q) such that

d

dt
(u(t),v)L2 + a(u(t),v) + b(v, p(t)) = (g,v)L2 for all v ∈ V,

b(u(t), q) = 0 for all q ∈ Q, (2.34)
u(0) = u0.

Theorem 2.2.11 For g ∈ L2(0, T ;L2(Ω)3) and u0 ∈ Vdiv the weak for-
mulation (2.34) has a unique solution (u, p). The solution u also solves the
problem (2.33).

Proof. A complete proof is given in [106] Proposition 6.38. We outline the
main ideas of that proof. Assume that (2.34) has a solution (u, p) ∈ W 1(0, T ;
V) × L2(0, T ;Q). From the second equation in (2.34) we obtain div u = 0 in
L2(Ω). From this and from u ∈ L2(0, T ;V) it follows that u ∈ L2(0, T ;Vdiv)
holds. Note that V′ ⊂ V′

div and thus from u′ ∈ L2(0, T ;V′) it follows that
u′ ∈ L2(0, T ;V′

div). Hence we have u ∈ W 1(0, T ;Vdiv). From the first equa-
tion in (2.34) with arbitrary v ∈ Vdiv (thus b(v, p(t)) = 0) it follows that
d
dt (u(t),v)L2 + a(u(t),v) = (g,v)L2 for all v ∈ Vdiv. We conclude that u is a
solution of (2.33). Furthermore, due to Theorem 2.2.10, we have uniqueness
of the solution (u, p). We now address existence of a solution (u, p) of (2.34).
Let u be the unique solution of (2.33), which exists due to Theorem 2.2.10.
From div u = 0 is follows that u satisfies the second equation in (2.34). For the
solution u we have u′ ∈ L2(0, T ;V′

div). One can show (using the assumptions
on the data, cf. [106]), that u′ ∈ L2(0, T ;V′) holds. Hence, u ∈ W 1(0, T ;V)
and moreover,



48 2 Mathematical models

�(t)(v) :=
d

dt
(u(t),v)L2 + a(u(t),v) − (g,v)L2

satisfies

� ∈ L2(0, T ;V′), �(t)(v) = 0 for all t ∈ [0, T ], v ∈ Vdiv.

From a rather deep result (originally due to De Rham [77]), cf. Theorem 2.3
in [121], it follows that there exists p(t) ∈ L2

0(Ω) = Q such that

(p(t), div v)L2 = �(t)(v) for all v ∈ V.

And thus for t ∈ [0, T ] we have

d

dt
(u(t),v)L2 + a(u(t),v) + b(v, p(t)) = (g,v)L2 for all v ∈ V,

i.e., the first equation in (2.34) holds, too. Using the inf-sup property (2.24)
we obtain

‖p(t)‖L2 ≤ c sup
v∈V

(p(t), div v)L2

‖v‖1
= c sup

v∈V

�(t)(v)
‖v‖1

= c ‖�(t)‖V′ .

Using � ∈ L2(0, T,V′) it follows that p ∈ L2(0, T ;Q) holds. Thus (u, p) is a
solution of (2.34). �

Note that in Theorem 2.2.11 the assumptions on the data g and u0 are some-
what stronger than in Theorem 2.2.10.

Application to non-stationary Navier-Stokes equations

We now turn to the weak formulation of the non-stationary Navier-Stokes
equations (in dimensionless formulation)

∂u
∂t
− 1
Re

Δu + (u · ∇)u +∇p = f in Ω

div u = 0 in Ω,
(2.35)

with a homogeneous Dirichlet boundary condition, u = 0 on ∂Ω, and an
initial condition u(x, 0) = u0(x) on Ω. The Reynolds number Re is a given
strictly positive constant. The weak formulation of this problem takes a form
very similar to that of the Stokes equations discussed above. The analysis of
well-posedness of this weak formulation, however, is much more complicated
as for the Stokes case. Due to the nonlinearity of the Navier-Stokes equations
the weak formulation cannot be analyzed in the abstract framework of (2.29)
and Theorem 2.2.7. Below we will only present a few main results. For proofs
we refer to the literature, e.g. Chap. III in [235].
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First we introduce a slight generalization of the weak derivative as defined
in Definition 2.2.5 (still not using the concept of distributions). For a function
g ∈ L2(0, T ) a weak derivative h = g′ ∈ L1(0, T ) (instead of ∈ L2(0, T ) !) is
still well-defined by the condition in (2.25). This is due to the fact that for
φ ∈ C∞

0 (0, T ), h ∈ L1(0, T ) we have
∣
∣
∣
∣
∣

∫ T

0

h(t)φ(t) dt

∣
∣
∣
∣
∣
≤ ‖φ‖∞,[0,T ]

∫ T

0

|h(t)| dt = ‖φ‖∞,[0,T ]‖h‖L1 <∞.

Similarly, for u ∈ L2(0, T ;V ) (V a Hilbert space) we have a well-defined
weak derivative u′ ∈ L1(0, T ;V ′) if in Definition 2.2.5 we replace “w ∈
L2(0, T ;V ′)” by “w ∈ L1(0, T ;V ′)”. For this weak derivative the iden-
tity d

dt (u(t), v)H = u′(t)(v) as in (2.27) still holds. Instead of the space
W 1(0, T ;V ) =

{
v ∈ L2(0, T ;V ) : v′ ∈ L2(0, T ;V ′) exists

}
, with V a Hilbert

space, we need the larger space

W 1
∗ (0, T ;V ) :=

{
v ∈ L2(0, T ;V ) : v′ ∈ L1(0, T ;V ′) exists

}
,

which is a Banach space for ‖u‖W 1∗ (0,T ;V ) :=
(
‖u‖2L2(0,T ;V ) + ‖u′‖2L1(0,T ;V ′)

) 1
2 .

For the weak formulation of the Navier-Stokes equations we use the same
Gelfand triple (2.32) as for the Stokes problem with spaces Hdiv, Vdiv as in
(2.30)-(2.31). We use the same bilinear forms a(·, ·), b(·, ·) as for the Stokes
problem and the trilinear form c(w;u,v) as defined in (2.20c). The following
weak formulation of (2.35) is similar to the weak Stokes problem (2.33) :

Determine u ∈W 1
∗ (0, T ;Vdiv) such that

d

dt
(u(t),v)L2 + a(u(t),v) + c(u(t);u(t),v) = (g,v)L2 ∀v ∈ Vdiv,

u(0) = u0.
(2.36)

We comment on some properties of this weak formulation:

• For g ∈ L2(0, T ;Vdiv), u0 ∈ Hdiv, there exists a solution u of the weak
formulation (2.36). This solution has sufficient regularity such that the
initial condition u(0) = u0 is well-defined.

• Uniqueness of this solution is an open problem. Uniqueness of u can be
shown to hold in special cases, for example:
- If the boundary ∂Ω is sufficiently smooth, u0 ∈Vdiv, g∈L∞(0, T ;Hdiv)

then u(t) is unique on a time interval [0, T ∗] with T ∗ sufficiently small.
- If the Reynolds number Re is sufficiently small, u0 and g are sufficiently

smooth and these data are sufficiently small (in appropriate norms)
then u(t) is unique for all t ∈ [0, T ].

- If the weak solution u is sufficiently smooth (u ∈ L∞(0, T ;Hdiv) ∩
L8(0, T ;L4(Ω)) ) then u is unique. It is not known, however, whether
in general this smoothness property holds.
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There is an extensive literature on this topic of uniqueness of a weak solu-
tion in the three-dimensional case (i.e. Ω ⊂ R

3). Many other special cases
are known in the literature. The general case, however, is still unsolved.

• If one considers the weak formulation (2.36) in the two-dimensional case
(i.e. Ω ⊂ R

2) then existence and uniqueness have been proved.

Along the same lines as in Lemma 2.2.9 one can show that if the strong
formulation (2.35) has a solution (u, p) that is sufficiently smooth (u ∈
C1

(
[0, T ];C2(Ω)3

)
) then u is also a solution of (2.36).

In the weak formulation (2.36) the incompressibility condition is fulfilled since
it holds for all functions in the space W 1

∗ (0, T ;Vdiv). As for the Stokes prob-
lem, a weak formulation in the larger velocity space W 1

∗ (0, T ;V) can be de-
rived in which the incompressibility condition is enforced by using a pressure
variable. This weak formulation is as follows:

Determine u ∈ W 1
∗ (0, T ;V), p ∈ L2(0, T ;Q) such that for all v ∈ V, q ∈ Q:

d

dt
(u(t),v)L2 + a(u(t),v) + c(u(t);u(t),v) + b(v, p(t)) = (g,v)L2 ,

b(u(t), q) = 0, (2.37)
u(0) = u0.

As in the proof of Theorem 2.2.11 one can show that if (u, p) is a solution of
(2.37) then u is a solution of (2.36). It can be shown that if the solution u
of (2.37) is assumed to be sufficiently smooth then a pressure p ∈ L2(0, T ;Q)
exists such that the pair (u, p) is a solution of (2.37). For a treatment of this
topic and a discussion of other similar weak formulations of the Navier-Stokes
equations we refer to the literature, e.g. [235, 165].
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Finite element discretization

In this chapter we treat finite element methods for the discretization of the
variational Oseen problem (2.21) and for the spatial discretization of the varia-
tional formulation of the non-stationary Stokes- and Navier-Stokes equations.
We restrict ourselves to the class of Hood-Taylor finite elements on tetrahe-
dral grids. In order to perform local grid refinement/coarsening in an efficient
way, which is very important in two-phase flow applications, and to be able
to use fast multigrid iterative solution methods we will apply such finite el-
ement methods not on one grid but on a hierarchy of nested triangulations.
The construction of such a multilevel grid hierarchy is discussed in Sect. 3.1.
In Sect. 3.2 the Hood-Taylor finite element spaces are treated. We present
a numerical example in Sect. 3.3, where the approximation order of such a
Hood-Taylor finite element space is investigated.

3.1 Multilevel tetrahedral grid hierarchy

3.1.1 Multilevel triangulation

We first introduce some notions.

Definition 3.1.1 (Triangulation) A finite collection T of tetrahedra T ⊂ Ω
is called a triangulation of Ω (or Ω) if the following holds:

1.
⋃
T∈T T = Ω,

2. int(S) ∩ int(T ) = ∅ for all S, T ∈ T with S �= T .

Here int(U) denotes the interior of the set U ⊂ Ω.

Definition 3.1.2 (Consistency) A triangulation T is called consistent if
the intersection of any two tetrahedra in T is either empty, a common face, a
common edge or a common vertex.
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Definition 3.1.3 (Stability) A sequence of triangulations (T0, T1, T2, . . .) is
called stable if all angles of all tetrahedra in this sequence are uniformly
bounded away from zero.

This notion of stability is important in view of the approximation quality of
finite element spaces which are based on these triangulations. It is known that
a deterioration of the approximation quality may occur if the underlying trian-
gulations contain (many) tetrahedra with very small angles. This undesirable
effect is avoided if the triangulations are stable.

Definition 3.1.4 (Refinement) For a given tetrahedron T a triangulation
K(T ) of T is called a refinement of T if |K(T )| ≥ 2 and any vertex of any
tetrahedron T ′ ∈ K(T ) is either a vertex or an edge midpoint of T . In this
case T ′ is called a child of T and T is called the parent of T ′.

A refinement K(T ) of T is called regular if |K(T )| = 8, otherwise it is
called irregular.

A triangulation Tk+1 is called refinement of a triangulation Tk �= Tk+1 if
for every T ∈ Tk either T ∈ Tk+1 or K(T ) ⊂ Tk+1 for some refinement K(T )
of T .

Definition 3.1.5 (Multilevel triangulation) A sequence of consistent tri-
angulations M = (T0, . . . , TJ) is called a multilevel triangulation of Ω if the
following holds:

1. For 0 ≤ k < J : Tk+1 is a refinement of Tk.
2. For 0 ≤ k < J : if T ∈ Tk ∩ Tk+1, then T ∈ TJ .

The tetrahedra T ∈ TJ are called the leaves of M. Note that T is a leaf iff T
has no children in M.

A tetrahedron T ∈ M is called regular if T ∈ T0 or T resulted from a
regular refinement of its parent. Otherwise T is called irregular.

A multilevel triangulation M is called regular if all irregular T ∈ M are
leaves (i. e., have no children in M).
T0 is called the coarsest or initial triangulation, TJ is called the finest

triangulation.

Remark 3.1.6 Let M be a multilevel triangulation and Vk (0 ≤ k ≤ J)
be the corresponding finite element spaces of continuous functions p ∈ C(Ω)
such that p|T ∈ Pq for all T ∈ Tk (q ≥ 1). The refinement property 1 in
Definition 3.1.5 implies nestedness of these finite element spaces: Vk ⊂ Vk+1.

Definition 3.1.7 (Hierarchical decomposition of M) Consider a multi-
level triangulation M = (T0, . . . , TJ ) of Ω. For every tetrahedron T ∈ M a
unique level number �(T ) is defined by

�(T ) := min { k : T ∈ Tk } .
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The set Gk ⊂ Tk,
Gk := {T ∈ Tk : �(T ) = k }

is called the hierarchical surplus on level k, k = 0, 1, . . . , J . Note that

G0 = T0, Gk = Tk \ Tk−1 for k = 1, . . . , J.

The sequence H = (G0, . . . ,GJ ) is called the hierarchical decomposition of M.
Note that the multilevel triangulation M can be uniquely reconstructed from
its hierarchical decomposition due to refinement property 2 in Definition 3.1.5.

Remark 3.1.8 The hierarchical decomposition induces simple data struc-
tures in a canonical way. The tetrahedra of each hierarchical surplus Gk are
stored in a separate list. Thus every tetrahedron T ∈ M is stored exactly
once since T has a unique level number �(T ). By introducing unique level
numbers also for vertices, edges and faces, these sub-simplices can be stored
in the same manner: For a sub-simplex S the level number �(S) is defined as
the level of its first appearance. In the implementation some of these objects
are linked to others by pointers, for example, a tetrahedron is linked to its
vertices, edges, faces, children and parent.

3.1.2 A multilevel refinement method

In this section we describe a refinement and coarsening algorithm which is
essentially the method presented in [37, 38]. This method is based on sim-
ilar ideas as the refinement algorithms in [21, 26]. We restrict ourselves to
tetrahedral meshes. However, the method can easily be modified such that
it is applicable to other element types such as, for example, hexahedra and
pyramids. Although this method is usually called a refinement method, it is
also applicable for coarsening triangulations. The hierarchical structure of M
is essential for the coarsening strategy. In general, if only one (i.e. a one-level)
triangulation is given it is relatively easy to apply a local refinement method
to it, but a local coarsening algorithm is much harder to develop. The hier-
archical structure, however, makes it possible to treat local coarsening in a
similar manner as local refinement.

The refinement strategy is based on a set of regular and irregular refine-
ment rules (also called red and green rules, due to [21]), which are described
in the following two sections. The regular and irregular rules are local in the
sense that they are applied to a single tetrahedron. These rules are applied
in a (global) refinement algorithm that describes how the local rules can be
combined to ensure consistency and stability, cf. Definitions 3.1.2 and 3.1.3.

The regular refinement rule

Let T be a given tetrahedron. For the construction of a regular refinement of
T it is natural to connect midpoints of the edges of T by subdividing each
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of the faces into four congruent triangles. This yields four sub-tetrahedra at
the corners of T (all similar to T ) and an octahedron in the center. This
octahedron is further subdivided into four sub-tetrahedra with equal volume
(cf. Fig. 3.1). For this subdivision there are three different possibilities (each
corresponding to one of three possible interior diagonals). This octahedron
subdivision has to be chosen carefully in order to satisfy the stability condi-
tion. In [262] it is shown that always (i.e. in a repeated refinement procedure)
selecting the longest diagonal will in general lead to non-stable triangulations.
A stable tetrahedral regular refinement strategy, based on an idea from [112],
is presented in [37, 39]. We recall this method.

Fig. 3.1. Regular refinement.

Let T = [x(1), x(2), x(3), x(4)] be a tetrahedron with ordered vertices x(1),
x(2), x(3), x(4) and

x(ij) :=
1
2
(x(i) + x(j)), 1 ≤ i < j ≤ 4,

the midpoint of the edge between x(i) and x(j). The regular refinement
K(T ) := {T1, . . . , T8} of T is constructed by the (red) rule

T1 := [x(1), x(12), x(13), x(14)], T5 := [x(12), x(13), x(14), x(24)],
T2 := [x(12), x(2), x(23), x(24)], T6 := [x(12), x(13), x(23), x(24)],
T3 := [x(13), x(23), x(3), x(34)], T7 := [x(13), x(14), x(24), x(34)],
T4 := [x(14), x(24), x(34), x(4)], T8 := [x(13), x(23), x(24), x(34)].

(3.1)

T1, . . . , T4 are the sub-tetrahedra at the corners of T , and T5, . . . , T8 form the
octahedron in the middle of T . In [39] it is shown that for any T the repeated
application of this rule produces a sequence of consistent triangulations of T
which is stable. For a given T all tetrahedra that are generated in such a re-
cursive refinement process are elements from at most three different similarity
classes. This guarantees stability of the resulting triangulations.
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Irregular refinement rules

Let T be a given consistent triangulation. We select a subset S of tetrahedra
from T and assume that the regular refinement rule is applied to each of the
tetrahedra from S. In general the resulting triangulation T ′ will not be con-
sistent. The irregular (or green) rules are used to make this new triangulation
consistent. For this we introduce the notion of an edge refinement pattern.
Let E1, . . . , E6 be the ordered edges of T ∈ T . We define the 6-tuple

R(T ) = (r1, . . . , r6) ∈ {0, 1}6

by:

• ri = 1 if Ei is an edge of a tetrahedron S ∈ S (i. e., edge Ei is refined and
has two sub-edges in T ′) and

• ri = 0 otherwise (i. e., edge Ei is not refined).

For T ∈ S we have R(T ) = (1, . . . , 1). For T ∈ T \S the case R(T ) = (0, . . . , 0)
corresponds to the situation that the tetrahedron T does not contain any
vertices from T ′ at the midpoints of its edges. For each of the 26 − 1 possible
patterns R �= (0, . . . , 0) there exists a corresponding refinement K(T ) of T (i.e.
a rule of the form as in (3.1)) for which the vertices of the children coincide
with vertices of T or with the vertices at the midpoints on the edges Ei with
ri = 1. This refinement, however, is not always unique. This is illustrated in
Fig. 3.2.

Fig. 3.2. Non-unique face refinement.

To obtain a consistent triangulation in which the subdivisions of adjacent
faces of neighboring tetrahedra match special care is needed. One way to
ensure consistency is by introducing a so-called consistent vertex numbering:

Definition 3.1.9 (Consistent vertex numbering) Let T1 and T2 be two
adjacent tetrahedra with a common face F = T1∩T2 and local vertex ordering

Tl = [x(1)
l , x

(2)
l , x

(3)
l , x

(4)
l ], l = 1, 2.

The pair (T1, T2) has a consistent vertex numbering, if the ordering of the
vertices of F induced by the vertex ordering of T1 coincides with the one
induced by the vertex ordering of T2. A consistent triangulation T has a
consistent vertex numbering if every two neighboring tetrahedra have this
property.
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Remark 3.1.10 A consistent vertex numbering can be constructed in a sim-
ple way. Consider an (initial) triangulation T̃ with an arbitrary numbering of
its vertices. This global numbering induces a canonical local vertex ordering
which is a consistent vertex numbering of T̃ . Furthermore, each refinement
rule can be defined such that the consistent vertex numbering property of the
parent is inherited by its children by prescribing suitable local vertex order-
ings of the children. (3.1) is an example of such a rule. Using such a strategy
a consistent triangulation T̃ ′ that is obtained by refinement of T̃ according
to these rules also has a consistent vertex numbering.

Assume that the given triangulation T has a consistent vertex numbering. For
a face with a pattern as in Fig. 3.2 one can then define a unique face refine-
ment by connecting the vertex with the smallest number with the midpoint
of the opposite edge. For each edge refinement pattern R ∈ {0, 1}6 we then
have a unique rule. We emphasize that if for a given tetrahedron T the edge
refinement pattern R(T ) is known, then for the application of the regular or
irregular rules to this tetrahedron no information from neighboring tetrahedra
is needed. Clearly, for parallelization this is a very nice property.

Multilevel refinement algorithm

Above we discussed how consistency of a triangulation can be achieved by
the choice of suitable irregular refinement rules based on the consistent ver-
tex numbering property. We will now explain how the regular and irregular
rules can be combined in a repeated refinement procedure to obtain a stable
sequence of consistent triangulations. The crucial point is to allow only the re-
finement of regular tetrahedra, i. e., children of irregularly refined tetrahedra,
also called green children, are never refined. If such a green child T is marked
for refinement, instead of refining T the irregular refinement of the parent
will be replaced by a regular one. As the application of the regular rule (3.1)
creates tetrahedra of at most 3 similarity classes (cf. [112, 39]), the tetrahedra
created by a refinement procedure according to this strategy belong to an
a-priori bounded number of similarity classes. Hence the obtained sequence
of triangulations is stable.

We explain the idea of the so called red-green refinement strategy by a
simple 2D example. We use triangles instead of tetrahedra and first illustrate
the action of a one-level refinement method. Consider the triangulation T1 as
depicted in Fig. 3.3.

In T1 two triangles are marked (by shading) for refinement. A one-level
refinement algorithm (like the one described in [21]) only uses the finest trian-
gulation T1 as input. It first applies the regular refinement rule (the so called
“red refinement”) to marked regular triangles and to the parents of green
children, which are either marked or neighbors of marked triangles — green
children are never refined because of stability reasons. This red refinement
yields an inconsistent triangulation (cf. Fig. 3.4 in the middle). Thus in the
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T0 T1

Fig. 3.3. Initial multilevel triangulation with some leaf tetrahedra marked for re-
finement (indicated by shading).

next step appropriate irregular refinement rules are applied to avoid hanging
nodes (“green closure”). The output of the one-level refinement algorithm is
the new triangulation T2 (cf. Fig. 3.4 on the right).

greenred

T1

T2

Fig. 3.4. One-level red/green refinement.

The new triangulation T2 is consistent, but not a refinement of T1 in the
sense of Definition 3.1.4. Due to this, the corresponding FE spaces are not
nested. Another disadvantage of this one-level approach is the fact that it is
not obvious how to treat (local) coarsening of the triangulation.

We now turn to a multilevel refinement strategy. In such methods both
input and output are multilevel triangulations (cf. Definition 3.1.5). In general
such an algorithm not only affects the finest triangulation like in the case of the
one-level method, but the whole multilevel triangulation. This is illustrated
in the example below.

For the description of the multilevel refinement algorithm we introduce
the notions of status and mark of a tetrahedron. Let M = (T0, . . . , TJ) be
a multilevel triangulation that has been constructed by applying the regular
and irregular refinement rules and let H = (G0, . . . ,GJ ) be the corresponding
hierarchical decomposition. Every tetrahedron T ∈ H is either a leaf of M
(i.e., T ∈ TJ) or it has been refined. The label status is used to describe this
property of T :

For T ∈ H : status(T ) =

⎧
⎪⎨

⎪⎩

NoRef if T is a leaf of M,

RegRef if T is regularly refined in M,

IrregRef if T is irregularly refined in M.

The label IrregRef also contains the number of the irregular refinement rule
(one out of 63) that has been used to refine T , i.e., the binary representation
of status(T ) coincides with the edge refinement pattern R(T ) of T .

In adaptive refinement an error estimator (or indicator) is used to mark
certain elements of TJ for further refinement or for deletion. For this the label
mark is used:
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For T ∈ H : mark(T ) =

⎧
⎪⎨

⎪⎩

Ref if T ∈ TJ is marked for refinement,
Del if T ∈ TJ is marked for deletion,
status(T ) otherwise.

Hence, mark(T ) ∈ {Ref,Del,NoRef,RegRef, IrregRef}. We describe a multi-
level refinement algorithm known in the literature. The basic form of this
method was introduced by Bastian [25] and developed further in the UG-
group [26, 27, 245]. We use the presentation as in [37, 38], which is shown in
Algorithm 3.1.11.

Algorithm 3.1.11 (Multilevel refinement)

Algorithm Refinement(G0, . . . ,GJ )
for k = J, . . . , 0 do // phase I

DetermineMarks(Gk); (1)
MarksForClosure(Gk); (2)

for k = 0, . . . , J do if Gk �= ∅ then // phase II
if k > 0 then MarksForClosure(Gk); (3)
if k < J then Unrefine(Gk); (4)
Refine(Gk); (5)

if GJ = ∅ then J := J − 1; (6)
else if GJ+1 �= ∅ then J := J + 1; (7)

The input of the algorithm Refinement consists of a hierarchical decom-
position

H = (G0, . . . ,GJ)

in which all refined tetrahedra T are labeled by mark(T ) = status(T ) according
to their status and the unrefined T ∈ TJ (i.e. the leaves) have mark(T ) ∈
{NoRef,Ref,Del}. The output is again a hierarchical decomposition, where all
tetrahedra are marked according to their status.

The main idea underlying the algorithm Refinement is illustrated using
the multilevel triangulation M = (T0, T1) shown in Fig. 3.3. The hierarchical
decomposition H and the corresponding marks are shown in Fig. 3.5.

Note that for the two shaded triangles in G1 we have status(T ) �= mark(T ).
For all other triangles status(T ) = mark(T ) holds. In phase I of the algo-
rithm (top–down: (1),(2)) only marks are changed. In DetermineMarks some
tetrahedra are labeled with new marks, which are of the type RegRef (for
red refinement) or NoRef (for coarsening). The green closure marks are set
in MarksForClosure, where appropriate irregular refinement marks are deter-
mined from the edge refinement patterns to avoid hanging nodes.

Once phase I has been completed the marks have been changed such that
mark(T ) ∈ {NoRef,RegRef, IrregRef} holds for all T ∈ H, cf. Fig. 3.6. All green
children in G̃1 have mark(T ) = NoRef, as they are not refined because of
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G1

G0

mark(T ) = NoRef

mark(T ) = RegRef

mark(T ) = IrregRef

mark(T ) = Ref

Fig. 3.5. Input hierarchical decomposition.

G̃1

G̃0

Fig. 3.6. Phase I: new marks, result-
ing in G̃1 and G̃0.

G2
new

G1
new

G0
new

Fig. 3.7. Phase II: Output hierarchi-
cal decomposition (Gnew

0 ,Gnew

1 ,Gnew

2 ).

stability reasons. Instead the corresponding irregular refined parents in G̃0 are
labeled by mark(T ) = RegRef.

In the second phase (bottom–up: (3)-(5)) the actual refinement (coarsening
is not needed in our example) is constructed: A call of Unrefine(Gk) deletes
all tetrahedra, faces, edges and vertices on level k + 1, which are not needed
anymore due to changed marks. In the subroutine Refine(Gk) all T ∈ Gk
with mark(T ) �= status(T ) are refined according to mark(T ) and new objects
(tetrahedra, faces, edges, vertices) on level k + 1 are created. A subsequent
call to MarksForClosure in (3) computes the appropriate refinement marks
for the new created tetrahedra in the next sweep of the for-loop.

In the output hierarchical decomposition

Hnew = (Gnew

0 ,Gnew

1 ,Gnew

2 )
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we have mark(T ) = status(T ) for all T ∈ Hnew, cf. Fig. 3.7. The output multi-
level triangulation Mnew = (T new

0 , T new

1 , T new

2 ) is regular (cf. Definition 3.1.5)
and is given by

T new

0 = Gnew

0 , T new

1 = Gnew

1 , T new

2 = Gnew

2 ∪
{
T ∈ Gnew

1 : mark(T ) = NoRef
}
.

Note that T new

0 = T0, T
new

1 �= T1 (!) and that the new finest triangulation
T new

2 is the same as the triangulation T2 in Fig. 3.4 resulting from the one-
level algorithm.

A more detailed discussion of the subroutines in algorithm Refinement is
given in [37, 38, 125].

The multilevel method is more complicated than the one-level algorithm,
but also offers important advantages: Property 1 of Definition 3.1.5 assures
the nestedness of the corresponding finite element spaces, cf. Remark 3.1.6.
The multilevel structure also allows to treat local refinement and coarsening
in a similar way.

Remark 3.1.12 A version of the algorithm that is suitable for parallel im-
plementations has been developed and is described in [125, 127]. It is based
on a formal description of the distributed geometric data which is very suit-
able for parallelization. This formal description was introduced in [125] and is
called an admissible hierarchical decomposition. It is proved that the applica-
tion of the multilevel refinement algorithm to an input admissible hierarchical
decomposition again yields an admissible hierarchical decomposition. To ob-
tain satisfactory parallel efficiency this parallel refinement algorithm should
be combined with a suitable load balancing strategy. Both the parallel refine-
ment algorithm and a load balancing strategy have been implemented and are
components of a parallel version of the DROPS package, cf. [90].

3.2 Hood-Taylor finite element spaces

In this section we treat the main topics related to the popular class of so-
called Hood-Taylor finite elements for the (spatial) discretization of one phase
incompressible flow problems. We introduce these spaces for the d-dimensional
case, d ≤ 3. In our applications we are particularly interested in d = 3.

3.2.1 Simplicial finite element spaces

Let Ω be a domain in R
d and Th = {T } a subdivision (or triangulation) of Ω

in a finite number of simplices T . This triangulation is called consistent if the
following holds:

1. ∪T∈Th
T = Ω,

2. intT1 ∩ intT2 = ∅ for all T1, T2 ∈ Th, T1 �= T2 ,
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3. any (d − 1)−dimensional subsimplex of any T1 ∈ Th is either a subset of
∂Ω or a subsimplex of another T2 ∈ Th.

This definition generalizes the one given in Definition 3.1.2 for the case d = 3.
Let {Th} be a family of triangulations and hT := diam(T ) for T ∈ Th. The

index parameter h of Th is taken such that

h = max { hT : T ∈ Th } .

Furthermore, for T ∈ Th we define

ρT := sup {diam(B) : B is a ball contained in T } .

A family of consistent triangulations {Th} is called regular if

1. The parameter h approaches zero: inf { h : Th ∈ {Th} } = 0,
2. ∃ σ : hT

ρT
≤ σ for all T ∈ Th and all Th ∈ {Th}.

For d = 3 a sequence of consistent tetrahedral triangulations satisfies con-
dition 2 iff the sequence is stable (Definition 3.1.3).

The space of polynomials in R
d of degree less than or equal k ≥ 0 is

denoted by Pk, i.e., p ∈ Pk is of the form

p(x) =
∑

|α|≤k
γαx

α1
1 xα2

2 . . . xαd

d , γα ∈ R.

The dimension of Pk is

dimPk =
(
d+ k
k

)
. (3.2)

The spaces of simplicial finite elements are given by

X
0
h :=

{
v ∈ L2(Ω) : v|T ∈ P0 for all T ∈ Th

}
, (3.3a)

X
k
h :=

{
v ∈ C(Ω) : v|T ∈ Pk for all T ∈ Th

}
, k ≥ 1. (3.3b)

These spaces consist of piecewise polynomials which, for k ≥ 1, are continuous
on Ω.

Remark 3.2.1 One can show that X
k
h ⊂ H1(Ω) holds for all k ≥ 1.

We will also need simplicial finite element spaces with functions that are zero
on ∂Ω:

X
k
h,0 := X

k
h ∩H1

0 (Ω), k ≥ 1. (3.4)

The values of v|T ∈ Pk can be determined by using suitable interpolation
points in the simplex T . For this it is convenient to use barycentric coordinates:

Definition 3.2.2 Let T be a non-degenerate d-simplex and aj ∈ R
d, j =

1, . . . , d+ 1 its vertices. Then T can be described by
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T =

⎧
⎨

⎩

d+1∑

j=1

λjaj : 0 ≤ λj ≤ 1 ∀ j,
d+1∑

j=1

λj = 1

⎫
⎬

⎭
. (3.5)

To every x ∈ T there corresponds a unique (n+ 1)-tuple (λ1, . . . , λn+1) as in
(3.5). These λj , 1 ≤ j ≤ d+1, are called the barycentric coordinates of x ∈ T .
The mapping x→ (λ1, . . . , λd+1) is affine.

Using these barycentric coordinates we define the set

Lk(T ) :=

⎧
⎨

⎩

d+1∑

j=1

λjaj : λj ∈ {0,
1
k
, . . . ,

k − 1
k

, 1} ∀ j,
d+1∑

j=1

λj = 1

⎫
⎬

⎭
,

which is called the principal lattice of order k (in T ). Examples for d = 3 and
k = 1, 2 are given in Fig. 3.8.

Fig. 3.8. Principal lattice, d = 3, k = 1 (left) and k = 2 (right).

This principal lattice consists of
(
d+ k
k

)
points (cf. (3.2)) and these can be

used to determine a unique polynomial p ∈ Pk:
Lemma 3.2.3 Let T be a non-degenerated d-simplex. Then any polynomial
p ∈ Pk is uniquely determined by its values on the principal lattice Lk(T ).

Using this lattice, for u ∈ C(Ω) we define a corresponding function Ik
X
u ∈

L2(Ω) by piecewise polynomial interpolation on each simplex T ∈ Th:

∀ T ∈ Th : (Ik
X
u)|T ∈ Pk such that (Ik

X
u)(xj) = u(xj) ∀ xj ∈ Lk(T ). (3.6)

The piecewise polynomial function Ik
X
u is continuous on Ω:

Lemma 3.2.4 For k ≥ 1 and u ∈ C(Ω) we have Ik
X
u ∈ X

k
h.

Proof. We consider the case d = 3, k = 2, cf. Fig. 3.8 (right). By definition
we have I2

X
u ∈ P2, thus we only have to show that I2

X
u is continuous across

triangular faces between adjacent tetrahedra T1, T2. Define pi := (I2
X
u)|Ti

, i =
1, 2. At the six interpolation points xj , j = 1, . . . , 6, on the face T1 ∩ T2 we
have p1(xj) = p2(xj) = u(xj). The functions (pi)|T1∩T2 are two-dimensional
polynomials of degree 2, which are uniquely determined by the six values
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pi(xj). We conclude that p1 = p2 on T1∩T2 and thus I2
X
u is continuous across

T1 ∩ T2. Similar arguments can be applied to prove the result for the general
case. �

Using the embedding result Hm(Ω) ↪→ C(Ω) for m > d
2 , cf. (2.15), we obtain

the following corollary.

Corollary 3.2.5 For k ≥ 1,m ≥ 2 we have:

Ik
X
u ∈ X

k
h for all u ∈ Hm(Ω),

Ik
X
u ∈ X

k
h,0 for all u ∈ Hm(Ω) ∩H1

0 (Ω).

Using interpolation error bounds one can derive the following main result.

Theorem 3.2.6 Let {Th} be a regular family of triangulations of Ω con-
sisting of d-simplices and let X

k
h be the corresponding finite element space

as in (3.3b). For 2 ≤ m ≤ k + 1 and t ∈ {0, 1} the following holds:

‖u− Ik
X
u‖t ≤ Chm−t|u|m for all u ∈ Hm(Ω). (3.7)

Recall that ‖ · ‖t and | · |m are the norm on Ht(Ω) and the semi-norm on
Hm(Ω), respectively, and that ‖ · ‖0 = ‖ · ‖L2 . A proof of this result can be
found in many textbooks on finite element methods, e.g. [70, 48, 53, 106]. As
a direct consequence of this interpolation error bound we obtain the following
approximation error bound.

Theorem 3.2.7 Let {Th} be a regular family of triangulations of Ω con-
sisting of d-simplices and let X

k
h, X

k
h,0 be the corresponding finite element

space as in (3.3b), (3.4). For 2 ≤ m ≤ k + 1 and t ∈ {0, 1} the following
holds:

inf
vh∈X

k
h

‖u− vh‖t ≤ Chm−t|u|m for all u ∈ Hm(Ω), (3.8a)

inf
vh∈X

k
h,0

‖u− vh‖t ≤ Chm−t|u|m for all u ∈ Hm(Ω) ∩H1
0 (Ω). (3.8b)

A function u ∈ H1(Ω) is not necessarily continuous and therefore it may be
that the nodal interpolation Ik

X
u is not well-defined. Other quasi-interpolation

operators (e.g. so-called Clement interpolation) have been developed that are
well-defined for u ∈ H1(Ω). Using these one can prove the approximation
result

inf
vh∈X

k
h

‖u− vh‖L2 ≤ Ch|u|1 for all u ∈ H1(Ω), k ≥ 0. (3.9)
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3.2.2 Hood-Taylor finite element discretization of the Oseen
problem

In this section we use the simplicial finite element spaces X
k
h introduced above

for the discretization of the variational Oseen problem in (2.21). We apply the
abstract results on the Galerkin discretization of saddle point problems given
in the Appendix, Sect. 15.3, to the variational Oseen problem (2.21). Let Vh

and Qh be finite dimensional subspaces of V = H1
0 (Ω)3 and Q = L2

0(Ω),
respectively. Then the Galerkin discretization of the Oseen problem (2.21) is
as follows:

Find uh ∈ Vh and ph ∈ Qh, such that

ξm(uh,vh) + a(uh,vh) + c(uh,vh) + b(vh, ph) = (g,vh)L2 ∀ vh ∈ Vh

b(uh, qh) = 0 ∀ qh ∈ Qh. (3.10)

This is of the form (15.20) with bilinear forms

â(u,v) = ξm(u,v) + a(u,v) + c(u,v) on V ×V,

b̂(u, q) = b(u, q) on V ×Q.
(3.11)

The right-hand sides are given by f1(v) = (g,v)L2 , f2 = 0. We recall the
definitions of the bilinear forms:

m(u,v) =
∫

Ω

u · v dx, a(u,v) =
1
Re

∫

Ω

∇u · ∇v dx,

c(u,v) = c(w;u,v) =
∫

Ω

(w · ∇u) · v dx, b(u, q) = −
∫

Ω

q div u dx.

The bilinear form b̂(·, ·) satisfies the inf-sup condition (15.21a) in Theo-
rem 15.3.5, cf. (2.24) in Sect. 2.2.2. We make the assumption ξ − 1

2 div w ≥ 0
on Ω, also used in Theorem 2.2.4. Then the bilinear form â(·, ·) satisfies the
ellipticity condition (15.21b) in Theorem 15.3.5. In view of the discrete inf-sup
condition (15.21c) we introduce the following definition.

Definition 3.2.8 The pair (Vh, Qh) is called stable if there exists a constant
β̂ > 0 independent of h such that

sup
vh∈Vh

b̂(vh, qh)
‖vh‖1

≥ β̂ ‖qh‖L2 for all qh ∈ Qh. (3.12)

�
In the literature this is also often called the LBB stability condition of the
finite element pair (Vh, Qh) (due to Ladyzenskaya, Babuska, Brezzi).
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LBB-stable pairs of finite element spaces

We now turn to the question which pairs of finite element spaces can be used
for the Galerkin discretization of the Oseen problem. In view of the simplicial
finite element spaces introduced in Sect. 3.2.1 we consider the following so-
called Hood-Taylor pair:

(
(Xkh,0)

d , X
k−1
h ∩ L2

0(Ω)
)
, k ≥ 1. (3.13)

The following remark shows that the issue of LBB-stability needs a careful
analysis.

Remark 3.2.9 Take d = 2, Ω = (0, 1)2 and a uniform triangulation Th
of Ω that is defined as follows. For N ∈ N and h := 1

N+1 the domain
Ω is subdivided in squares with sides of length h and vertices in the set
{ (ih, jh) : 0 ≤ i, j ≤ N + 1 }. The triangulation Th is obtained by subdivid-
ing every square in two triangles by inserting a diagonal from (ih, jh) to
((i+ 1)h, (j + 1)h). For the pair (Vh, Qh) we take

(Vh, Qh) :=
(
(X1

h,0)
2 , X

0
h ∩ L2

0(Ω)
)
.

The space Vh has dimension 2N2 and dim(Qh) = 2(N + 1)2 − 1. From
dim(Vh) < dim(Qh) and Remark 15.3.6 it follows that the condition (3.12)
does not hold.
The same argument applies to the three dimensional case with a uniform trian-
gulation of (0, 1)3 consisting of tetrahedra (every cube is subdivided in 6 tetra-
hedra). In this case we have dim(Vh) = 3N3 and dim(Qh) = 6(N + 1)3 − 1.

This remark implies that in general for k = 1 the Hood-Taylor pair in (3.13)
is not LBB stable. However, for k ≥ 2 this pair is stable:

Theorem 3.2.10 Let {Th} be a regular family of triangulations consisting
of simplices. We assume that every T ∈ Th has at least one vertex in the
interior of Ω. Then the Hood-Taylor pair of finite element spaces with k ≥ 2
is LBB stable.

For a proof of this important result we refer to the literature, [41, 42, 54].
Using this stability property of the Hood-Taylor finite element spaces the
following discretization error bound can be derived.

Theorem 3.2.11 Let {Th} be a regular family of triangulations as in The-
orem 3.2.10. Consider the discrete Oseen problem (3.10) with Hood-Taylor
finite element spaces as in (3.13), k ≥ 2. Suppose that ξ − 1

2 div w ≥ 0
holds and that the continuous solution (u, p) lies in Hm(Ω)3 × Hm−1(Ω)
with m ≥ 2. For 2 ≤ m ≤ k + 1 the following holds:

‖u− uh‖1 + ‖p− ph‖L2 ≤ C hm−1
(
|u|m + |p|m−1

)
,

with a constant C independent of h and of (u, p).
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Proof. We consider the bilinear forms â(·, ·) and b̂(·, ·) as in (3.11) and ap-
ply Theorem 15.3.5. Due to the inf-sup property (2.24) and the assumption
ξ − 1

2 div w ≥ 0 the conditions (15.21a) and (15.21b) are satisfied (cf. The-
orem 2.2.4). Due to the LBB stability of the Hood-Taylor pair (3.13) with
k ≥ 2 the discrete inf-sup condition (15.21c) is fulfilled with a constant βh
independent of h. For the approximation error corresponding to the Hood-
Taylor finite element spaces the results in Theorem 3.2.7 and in (3.9) can be
used:

inf
vh∈X

k
h,0

‖u− vh‖1 ≤ Chm−1|u|m,

inf
qh∈X

k−1
h

‖p− qh‖L2 ≤ Chm−1|p|m−1.

This completes the proof. �

Note that in this theorem sufficient regularity of the Oseen problem is required,
namely that the solution (u, p) lies in the space Hm(Ω)3 × Hm−1(Ω) with
m ≥ 2. For a discussion of this regularity issue we refer to the literature. If
this regularity assumption holds both for the Oseen problem (2.21) and for
the corresponding adjoint problem, i.e. a problem as in (2.21) with w replaced
by −w, then a discretization error bound

‖u− uh‖L2 ≤ C hm
(
|u|m + |p|m−1

)
(3.14)

can be shown to hold, with C independent of h and of (u, p).

Remark 3.2.12 For the (generalized) Stokes equations we have w = 0 and
thus the problem is symmetric, i.e. the adjoint problem equals the original
one. It is known ([160, 63, 75]) that for this case the regularity property
(u, p) ∈ Hm(Ω)3 × Hm−1(Ω), with m ≥ 2, is satisfied for m = 2 if Ω is
convex and for the general case m ≥ 2 if ∂Ω is sufficiently smooth.

3.2.3 Matrix-vector representation of the discrete problem

Consider the variational discrete Oseen problem (3.10) with Hood-Taylor fi-
nite element spaces, (Vh, Qh) =

(
(Xkh,0)

3 , X
k−1
h ∩ L2

0(Ω)
)
, k ≥ 2. For com-

puting the unique discrete solution (uh, ph) we introduce the nodal basis
functions in the simplicial finite element space X

k
h, which are defined as

follows. The union of all lattice points in Lk(T ), T ∈ Th, form the set of
grid points (xi)1≤i≤K . Note that dim(Xkh) = K. To each of these grid points
there corresponds a nodal finite element function φi ∈ X

k
h with the property

φi(xi) = 1, φi(xj) = 0 for all j �= i. The set of functions (φi)1≤i≤K forms the
nodal basis of X

k
h. In case of X

k
h,0 only the nodal functions corresponding to

grid points in the interior ofΩ are used. In case of vector functions. i.e. (Xkh,0)
d

with d > 1, to each grid point there correspond d of such nodal functions,
namely one for each of the d components in the vector function. Let {ξi}1≤i≤N
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and {ψi}1≤i≤K be such nodal bases of the finite element spaces Vh = (Xkh,0)
3

and X
k−1
h , respectively. Hence, dim(Xkh,0)

3 = N, dim(Xk−1
h ) = K. Consider

the representations

uh =
N∑

j=1

ujξj , 	u := (u1, . . . , uN) (3.15)

ph =
K∑

j=1

pjψj , 	p := (p1, . . . , pK). (3.16)

Using this the discrete Oseen problem (3.10) can be reformulated as follows:

Determine 	u ∈ R
N , 	p ∈ R

K with (ph, 1)L2 = 0 such that
(
ξM + A + C BT

B 0

)(
	u
	p

)
=

(
	f
0

)
, (3.17)

where

M ∈ R
N×N , Mij =

∫

Ω

ξi · ξj dx (3.18a)

A ∈ R
N×N , Aij =

1
Re

∫

Ω

∇ξi · ∇ξj dx (3.18b)

C = C(w) ∈ R
N×N , Cij =

∫

Ω

(w · ∇ξj) · ξi dx (3.18c)

B ∈ R
K×N , Bij = −

∫

Ω

ψi div ξj dx (3.18d)

	f ∈ R
N , 	fi =

∫

Ω

g · ξi dx. (3.18e)

M,A,C are called mass matrix, diffusion matrix and convection matrix,
respectively. Matrices with a block structure as in (3.17) are called saddle point
matrices. Iterative solution methods for linear systems with such matrices will
be treated in Chap. 5.

3.2.4 Hood-Taylor semi-discretization of the non-stationary
(Navier-)Stokes problem

We recall the weak formulation of the non-stationary Stokes equations given
(2.34): Find u ∈ W 1(0, T ;V) and p ∈ L2(0, T ;Q), such that u(0) = u0 and

d

dt
m(u(t),v) + a(u(t),v) + b(v, p(t)) = (g,v)L2 ∀ v ∈ V,

b(u(t), q) = 0 ∀ q ∈ Q,
(3.19)
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for almost all t ∈ [0, T ]. For the spatial discretization of this problem we use
the Galerkin approach with a stable Hood-Taylor pair from (3.13):

(Vh, Qh) =
(
(Xkh,0)

3 , X
k−1
h ∩ L2

0(Ω)
)
, k ≥ 2.

Let u0,h ∈ Vh be an approximation of the initial condition u0. The Galerkin
semi-discretization reads: Find uh(t) ∈ Vh, with uh(0) = u0,h, and ph(t) ∈
Qh such that:

d

dt
m(uh(t),vh) + a(uh(t),vh) + b(vh, ph(t)) = (g,vh)L2 ∀ vh ∈ Vh,

b(uh(t), qh) = 0 ∀ qh ∈ Qh,
(3.20)

for all t ∈ [0, T ]. Let {ξi}1≤i≤N and {ψi}1≤i≤K be the standard nodal bases
of the finite element spaces Vh, X

k−1
h and consider the representations

uh(t) =
N∑

j=1

uj(t)ξj , 	u(t) := (u1(t), . . . , uN(t)) (3.21a)

u0,h =
N∑

j=1

u0,jξj , 	u0 := (u0,1, . . . , u0,N) (3.21b)

ph(t) =
K∑

j=1

pj(t)ψj , 	p(t) := (p1(t), . . . , pK(t)). (3.21c)

Using this the Galerkin discretization can be rewritten as

Determine 	u(t) ∈ R
N , 	p(t) ∈ R

K with 	u(0) = 	u0 and (ph(t), 1)L2 = 0 such
that

M
d	u
dt

(t) + A	u(t) + BT 	p(t) = 	f

B	u(t) = 0,
(3.22)

for all t ∈ [0, T ],

with M,A,B and 	f as in (3.18).
Thus we obtain a system of differential algebraic equations (DAEs) for

the unknown vector functions 	u(t), 	p(t). Time discretization methods for this
system are discussed in Chap. 4.

Lemma 3.2.13 The problem in (3.20), or equivalently (3.22), has a unique
solution.

Proof. A proof is given in Sect. 4.2, Remark 4.2.1. �

We derive a bound for the discretization error of the semi-discrete Stokes
problem in (3.20).
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Theorem 3.2.14 Let (u, p) and (uh, ph) be the solution of (3.19) and
(3.20), respectively. Assume that (u, p) is sufficiently smooth: u ∈
C1([0, T ];Hm(Ω)3), p ∈ C1([0, T ];Hm−1(Ω)) and that 2 ≤ m ≤ k + 1,
with k ≥ 2. Furthermore, we assume that for the discretization of the sta-
tionary Stokes problem with Hood-Taylor finite elements the error bound
(3.14) holds (cf. Remark 3.2.12). Then the following holds for t ∈ [0, T ]:

‖u(t)− uh(t)‖L2 ≤ e−c0t‖u0 − u0,h‖L2 + chmEt(u, p), (3.23)

|u(t)− uh(t)|1 ≤ |u0 − u0,h|1 + c
(
1 + h

√
t
)
hm−1Et(u, p), (3.24)

( ∫ t

0

‖p(τ)− ph(τ)‖2L2 dτ
) 1

2 ≤ c|u0 − u0,h|1 + c
√
t hm−1Et(u, p), (3.25)

with constants c0 > 0, c independent of h and t and

Et(u, p) :=
1∑

=0

max
0≤τ≤t

(∣
∣u()(τ)

∣
∣
m

+
∣
∣p()(τ)

∣
∣
m−1

)
.

Proof. Take w ∈ Vdiv := {v ∈ V : div v = 0 } , r ∈ Q and define �(v) :=
a(w,v) + b(v, r), v ∈ V. Then � ∈ V′ and (w, r) is the unique solution of the
stationary Stokes problem

a(w,v) + b(v, r) = �(v) for all v ∈ V,

b(w, q) = 0 for all q ∈ Q.
Let (wh, rh) ∈ Vh ×Qh be the unique solution of the Galerkin discretization
of this problem. The mapping S : (w, r) → (wh, rh) is linear on Vdiv×Q and
for w and r sufficiently smooth we have

‖w−wh‖1 + ‖r − rh‖L2 ≤ chm−1
(
|w|m + |r|m−1

)
, (3.26)

‖w−wh‖L2 ≤ chm
(
|w|m + |r|m−1

)
, (3.27)

with constants c independent of h and of (w, r). Let (u, p) and (uh, ph) be as
defined in the theorem. Define, for t ∈ [0, T ], (wh(t), rh(t)) := S(u(t), p(t))
and

eh(t) := u(t)− uh(t) =
(
u(t)−wh(t)

)
+

(
wh(t)− uh(t)

)
=: ρh(t) + θh(t),

p(t)− ph(t) =
(
p(t)− rh(t)

)
+

(
rh(t)− ph(t)

)
=: ξh(t) + ηh(t).

Note that θh(t) ∈ Vh, ηh(t) ∈ Qh and (w′
h(t), r

′
h(t)) = d

dtS(u(t), p(t)) =
S(u′(t), p′(t)). Due to (3.26), (3.27) we have

‖ρh(t)‖1 ≤ chm−1Et(u, p), (3.28)
‖ρh(t)‖L2 ≤ chmEt(u, p), (3.29)
‖ρ′h(t)‖L2 ≤ chmEt(u, p), (3.30)

‖ξh(t)‖L2 ≤ chm−1Et(u, p). (3.31)
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Subtraction of the variational equations for (u, p) and (uh, ph) results in

(e′h(t),vh)L2 + a(eh(t),vh) + b(vh, p(t)− ph(t)) = 0 for all vh ∈ Vh.

Using the definitions we obtain

a(ρh(t),vh) + b(vh, p(t)− ph(t)) = b(vh, ηh(t)) for all vh ∈ Vh.

Using this and the splitting eh(t) = ρh(t) + θh(t) we get

(θ′h(t),vh)L2 + a(θh(t),vh) + b(vh, ηh(t)) = −(ρ′h(t),vh)L2 (3.32)

for all vh ∈ Vh. Based on this fundamental relation the following bounds can
be derived:

‖θh(t)‖L2 ≤ e−c0t‖θh(0)‖L2 + chmEt(u, p), (3.33)

|θh(t)|1 ≤ |θh(0)|1 + c
√
t hmEt(u, p), (3.34)

(∫ t

0

|θh(τ)|21 dτ
) 1

2 ≤ c‖θh(0)‖L2 + c
√
t hmEt(u, p), (3.35)

( ∫ t

0

‖θ′h(τ)‖2L2 dτ
) 1

2 ≤ c|θh(0)|1 + c
√
t hmEt(u, p), (3.36)

with constants c0 > 0 and c independent of h and t. We now prove these
inequalities. In (3.32) we take vh = θh(t) and use that b(θh(t), ηh(t)) = 0,
resulting in

1
2
d

dt
‖θh(t)‖2L2 +

1
Re
|θh(t)|21 ≤ ‖ρ′h(t)‖L2‖θh(t)‖L2 . (3.37)

Using the Poincaré-Friedrichs inequality ‖θh(t)‖L2 ≤ c|θh(t)|1 we obtain from
this

1
2
d

dt
‖θh(t)‖2L2 +

1
2

1
Re
|θh(t)|21 ≤ c‖ρ′h(t)‖2L2 .

Integration over [0, t] results in
∫ t

0

|θh(τ)|21 dτ ≤ c‖θh(0)‖2L2 + c

∫ t

0

‖ρ′h(τ)‖2L2 dτ

≤ c‖θh(0)‖2L2 + c th2mEt(u, p)2,

which proves (3.35). From (3.37) we also obtain

‖θh(t)‖L2
d

dt
‖θh(t)‖L2 + c0‖θh(t)‖2L2 ≤ ‖ρ′h(t)‖L2‖θh(t)‖L2 ,

with c0 > 0, and hence

d

dt
‖θh(t)‖L2 + c0‖θh(t)‖L2 ≤ ‖ρ′h(t)‖L2 .
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Multiplication by ec0t and integration over [0, t] yields

‖θh(t)‖L2 ≤ e−c0t‖θh(0)‖L2 +
∫ t

0

e−c0(t−τ)‖ρ′h(τ)‖L2 dτ

≤ e−c0t‖θh(0)‖L2 + chmEt(u, p)
∫ t

0

e−c0(t−τ) dτ

≤ e−c0t‖θh(0)‖L2 + chmEt(u, p),

with c0 > 0 and c independent of h and t. Thus (3.33) holds. In (3.32) we now
substitute vh = θ′h(t). Using b(θ′h(t), ηh(t)) = 0 we get

‖θ′h(t)‖2L2 +
1
2

1
Re

d

dt
|θh(t)|21 ≤ ‖ρ′h(t)‖L2‖θ′h(t)‖L2

≤ 1
2
‖ρ′h(t)‖2L2 +

1
2
‖θ′h(t)‖2L2 ,

and thus
‖θ′h(t)‖2L2 +

1
Re

d

dt
|θh(t)|21 ≤ ‖ρ′h(t)‖2L2 .

Integrating this results in
∫ t

0

‖θ′h(τ)‖2L2 dτ +
1
Re
|θh(t)|21 ≤

1
Re
|θh(0)|21 + c th2mEt(u, p)2,

which proves the results in (3.34) and (3.36).
Using (3.33)-(3.36) we derive the bounds stated in the theorem. Note that

‖θh(0)‖L2 ≤ ‖eh(0)‖L2 + ‖ρh(0)‖L2 ≤ ‖eh(0)‖L2 + chmEt(u, p) holds, and
thus, using (3.29) and (3.33) we get

‖eh(t)‖L2 ≤ ‖θh(t)‖L2 + ‖ρh(t)‖L2 ≤ e−c0t‖eh(0)‖L2 + chmEt(u, p),

hence, the result in (3.23) holds. Similarly, from |θh(0)|1 ≤ |eh(0)|1 +
chm−1Et(u, p) and (3.28), (3.34) we obtain

|eh(t)|1 ≤ |θh(t)|1 + |ρh(t)|1 ≤ |eh(0)|1 + c
√
thmEt(u, p) + chm−1Et(u, p)

= |eh(0)|1 + chm−1
(
1 +

√
th
)
Et(u, p),

which proves the result in (3.24). For the pressure error bound we use the
LBB stability property of the Hood-Taylor pair, which implies

‖ηh(t)‖L2 ≤ c sup
vh∈Vh

b(vh, ηh(t))
‖vh‖1

.

Using the fundamental relation (3.32) this implies

‖ηh(t)‖L2 ≤ c sup
vh∈Vh

(θ′h(t),vh)L2 + a(θh(t),vh) + (ρ′h(t),vh)L2

‖vh‖1
≤ c

(
‖θ′h(t)‖L2 + |θh(t)|1 + ‖ρ′h(t)‖L2

)
,
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and thus using (3.35), (3.36), (3.30) we get

( ∫ t

0

‖ηh(τ)‖2L2 dτ
) 1

2 ≤ c|θh(0)|1 + c
√
thmEt(u, p).

Finally, using (3.31) yields

(∫ t

0

‖p(τ)− ph(τ)‖2L2 dτ
) 1

2 ≤
( ∫ t

0

‖ηh(τ)‖2L2 dτ
) 1

2
+
√
t max
0≤τ≤t

‖ξh(τ)‖L2

≤ c|eh(0)|1 + c
√
thm−1Et(u, p),

and thus the pressure error bound (3.25) holds. �

Remark 3.2.15 The error bounds in this theorem show an optimal behavior
w.r.t. the rate of convergence for h ↓ 0. If we use the Hood-Taylor pair with
index k ≥ 2 (i.e., degree k polynomials for velocity and degree k − 1 for
pressure) and assume that the solution pair (u, p) is sufficiently smooth (m =
k+1) then Theorem 3.2.14 yields an hk+1 bound for the velocity L2-error and
an hk bound both for the velocity H1-error and the pressure L2-error. From
the result in (3.23) we see that in the L2-norm the discretization error in the
initial condition is exponentially damped for increasing t. The term Et(u, p)
quantifies the smoothness of the solution pair (u, p) on [0, t]. Furthermore
note that in (3.24), (3.25) apart from a constant c (independent of t) and
the smoothness measure Et(u, p) there are additional terms h

√
t and

√
t,

respectively, which grow as functions of t. Such a t-dependent factor does not
occur in (3.23).

The same semi-discretization approach can be applied to the weak formulation
of the Navier-Stokes problem (2.37). The semi-discrete Navier-Stokes problem
is as follows: Find uh(t) ∈ Vh, ph(t) ∈ Qh such that u(0) = u0,h and for all
vh ∈ Vh and all qh ∈ Qh:

d

dt
m(uh(t),vh) + a(uh(t),vh) + c(uh(t);uh(t),vh) + b(vh, ph(t)) = (g,vh)L2

b(uh(t), qh) = 0,

for all t ∈ [0, T ]. Using the representations as in (3.21) this Galerkin discretiza-
tion can be rewritten as

Determine 	u(t) ∈ R
N , 	p(t) ∈ R

K with with 	u(0) = 	u0 and (ph(t), 1)L2 = 0
such that

M
d	u
dt

(t) + A	u(t) + N(	u(t))	u(t) + BT 	p(t) = 	f

B	u(t) = 0,
(3.38)

for all t ∈ [0, T ].
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The nonlinear operator N is given by

N(	u) = N(uh) ∈ R
N×N , N(	u)ij =

∫

Ω

(uh · ∇ξj) · ξi dx.

We obtain a nonlinear system of differential algebraic equations (DAEs) for
the unknown vector functions 	u(t), 	p(t). For a discretization error analysis of
this problem we refer to the literature [141, 142].

3.3 Numerical experiments

After the theoretical analysis in Sect. 3.2 we now present a numerical study
of the convergence behavior of the Hood-Taylor pair for k = 2, cf. Theo-
rem 3.2.11. We consider two numerical experiments, namely the flow in a
rectangular tube (Sect. 3.3.1) and the flow in a curved channel (Sect. 3.3.2).

3.3.1 Flow in a rectangular tube

Let Ω = (0, L)×(0, 1)2 be a rectangular tube of length L > 0. Consider (3.10)
with ξ = 0,w = 0 (i. e., the stationary Stokes case) where we prescribe the
boundary conditions (u, p)|x1=0 = (u, p)|x1=L (periodic boundary conditions
in x1-direction) and u = 0 on the remaining boundaries. The right-hand side
is set to g = (1, 0, 0), which can be interpreted as gravity force in x1-direction.
Then the analytic solution is given by u(x) = (Re s(x2, x3), 0, 0) and p = 0,
where s is the solution of the 2D Poisson problem

−Δs = 1 on (0, 1)2,

with homogeneous Dirichlet boundary conditions. By Fourier analysis, s can
be expressed in terms of the Fourier series

s(x2, x3) =
16
π4

∞∑

i,j=1

α2i−1,2j−1s2i−1,2j−1(x2, x3), (x2, x3) ∈ (0, 1)2, (3.39)

with αi,j = 1
ij(i2+j2) and si,j(x2, x3) = sin(iπx2) sin(jπx3). In Fig. 3.9 we give

a plot of s.
The initial triangulation T0 is constructed by subdividing Ω into 4× 1× 1

sub-cubes each consisting of 6 tetrahedra. Then T0 is successively uniformly
refined 5 times by applying the regular refinement rule yielding T1, . . . , T5. In
our experiments we used L = 4 and Re = 1. In Fig. 3.10 the discrete velocity
uh is illustrated for the triangulation T3.

The discrete pressure ph is equal to zero (up to machine accuracy).Table 3.1
shows the dimension of the finite element spaces Vh and Qh and the conver-
gence of uh to u w.r.t. the L2 and H1 norm for different refinement levels. We
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Fig. 3.9. Solution s of the Poisson
equation on the unit square.

Fig. 3.10. Velocity uh visualized on
slice x1 = L/2.

# ref. dimVh dimQh ‖u − uh‖L2 order ‖u − uh‖1 order

0 24 16 9.63 E-3 — 7.17 E-2 —
1 432 72 2.06 E-3 2.22 1.89 E-2 1.92
2 4 704 400 2.18 E-4 3.24 4.01 E-3 2.24
3 43 200 2 592 2.49 E-5 3.13 9.40 E-4 2.09
4 369 024 18 496 3.02 E-6 3.04 2.30 E-4 2.03
5 3 048 192 139 392 3.01 E-7 3.33 5.75 E-5 2.00

Table 3.1. Dimension of the finite element spaces and convergence behavior w.r.t.
L2 and H1 norm for different refinement levels.

observe third order convergence w.r.t. the L2 norm and second order conver-
gence w.r.t. the H1 norm. These are the optimal rates which can be expected
in view of Theorem 3.2.11 and the L2 bound (3.14), as u and p are sufficiently
smooth.

Note the (very) high dimension of the velocity space on level 5, due to
the fact that the number of tetrahedra grows with a factor of 8 in each re-
finement. Furthermore it is clear that the dimension of the pressure space is
much smaller than that of the velocity space.

3.3.2 Flow in a curved channel

Let Ω =
{
x ∈ R

3 : 0 < x1 < L,−a(x1) < x2 < a(x1), 0 < x3 < 1
}

be a chan-
nel of length L > 0 with a : [0, L]→ (0,∞) defining the shape in x2-direction,
cf. Fig. 3.11. In our experiment we set L = 4 and a(x1) = e−αx1 , α = 1/4.
Consider (3.10) with ξ = 0,w = 0 (i. e., the stationary Stokes case). We take
the pair (u, p) given by
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u1(x) =
1−

(
x2

a(x1)

)2

a(x1)
, u2(x) =

u1(x)x2 a
′(x1)

a(x1)
, u3(x) = 0,

p =
1
2
x2

2αe
αx1(−α2 + 6e2αx1) + αeαx1 − 2

3α
e3αx1 .

The velocity field u is divergence free. We take the right-hand side f :=
(− 1

2x
2
2α

2eαx1(α2 − 36e2αx1),−9x3
2α

3e3αx1 , 0) such that the pair (u, p) is a
solution of (3.10). In our experiment we use boundary conditions (u, p)|x3=0 =
(u, p)|x3=1 (periodic boundary conditions in x3-direction) and Dirichlet bound-
ary conditions for u on the remaining part of the boundary.

Fig. 3.11. Grid and pressure ph visu-
alized on slice x3 = 0.5.

Fig. 3.12. Velocity uh visualized on
slice x3 = 0.5.

For the discretization of Ω we first introduce the auxiliary domain Ω̂ =
(0, L)× (−1, 1)× (0, 1), which is discretized by 4× 1× 1 subcubes each subdi-
vided into 6 tetrahedra. The resulting initial triangulation T̂0 is then succes-
sively uniformly refined 5 times applying the regular refinement rule yielding
T̂1, . . . , T̂5. Using the mapping F : R

3 → R
3, F (x) = (x1, a(x1)x2, x3) the ver-

tices of T̂ are mapped to the physical domain Ω. For each level � = 0, . . . , 5,
this induces corresponding triangulations T of polygonal domains Ω approx-
imating Ω. The mapping is such that all vertices on the boundary of the
triangulation lie on the respective boundaries of Ω. At the x2 = ±a(x1) part
of the boundary, however, the boundary faces of the triangulation do not co-
incide with the curved boundary. A 2D slice of the triangulation T3 and the
corresponding pressure solution ph is shown in Fig. 3.11. The velocity field uh
is depicted in Fig. 3.12.

Table 3.2 shows the dimension of the finite element spaces Vh and Qh and
the convergence of uh to u w.r.t. L2 and H1 norm for different refinement
levels. For small grid sizes the convergence order of the velocity error w.r.t.
the H1 norm tends to 1.5. This suboptimal behavior is due to the fact that a
part of ∂Ω is curved and is approximated by a piecewise polygonal approxi-
mation. It is known, cf. [228], that due to this boundary approximation, with
quadratic finite elements in general one has only a suboptimal O(h1.5) error
behavior (w.r.t. the H1 norm). The optimal order of 2 (cf. experiment in the
previous section) can be achieved by using so-called isoparametric elements
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# ref. dimVh dimQh ‖u − uh‖L2 order ‖u − uh‖1 order ‖p − ph‖L2 order

0 42 10 1.45 E-1 — 8.39 E-1 — 3.09 E+0 —
1 540 54 9.76 E-3 3.89 9.02 E-2 3.22 6.18 E-1 2.74
2 5 208 340 9.50 E-4 3.36 1.43 E-2 2.66 1.48 E-1 2.05
3 45 360 2 376 2.19 E-4 2.12 3.43 E-3 2.06 3.65 E-2 2.02
4 377 952 17 680 5.96 E-5 1.88 1.15 E-3 1.58 9.07 E-3 2.01
5 3 084 480 136 224 1.57 E-5 1.92 4.11 E-4 1.48 2.27 E-3 2.00

Table 3.2. Dimension of the finite element spaces and convergence behavior w.r.t.
L2 and H1 norm for different refinement levels.

which are defined on curved tetrahedra by applying a non-affine transforma-
tion to the reference tetrahedron. A short discussion on this topic can be found
in Sect. 3.4.

3.4 Discussion and additional references

In this monograph we restrict to finite element discretization approaches for
the incompressible Navier-Stokes equations. Other important discretization
methods, which are particularly popular among engineers, are based on finite
volume techniques. For an introduction to these methods we refer to [252,
108, 248].

We treated only the (very popular) Hood-Taylor finite element spaces.
These spaces are members of the family of conforming finite element spaces,
which means that the spaces (Vh, Qh) used for discretization are subspaces of
the spaces in which the weak formulation is well-posed. In our setting we have
Vh ⊂ H1

0 (Ω)3, Qh ⊂ L2
0(Ω). Below we briefly address a few issues related to

other finite element techniques for (Navier-)Stokes equations.

Other LBB stable pairs of conforming spaces. There are other conforming finite
element spaces that are used for the discretization of (Navier-)Stokes equa-
tions. We mention two well-known techniques. For this we need the barycen-
tric coordinates defined in Definition 3.2.2. Let bT (x) := Π4

i=1λi(x) be the
product of the barycentric coordinates for x ∈ T . This “bubble function” is a
polynomial of degree 4 in T that is zero on ∂T . It is extended by zero values
outside T . Define

B4 :=
{
v ∈ C(Ω) : v|T ∈ span(bT ) for all T ∈ Th

}
.

The “mini-element” is defined as the pair of spaces (Vh, Qh) with

Vh = (X1
h,0 ⊕B4)3, Qh = X

1
h ∩ L2

0(Ω),

i.e., for the velocity we use the space of continuous piecewise linears extended
by the space of bubble functions, and for the pressure we use the space of
continuous piecewise linears. An advantage of this pair compared to the P2−P1
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Hood-Taylor pair is that the mini-element allows a simpler data structure: for
the bubble functions one has one unknown per velocity component in each
tetrahedron and all other unknowns for velocity and pressure are located at
the vertices of the tetrahedra. The mini-element is one order less accurate
than the P2 − P1 Hood-Taylor pair.

In the Crouzeix-Raviart pair of spaces one uses discontinuous pressure
approximations. For the velocity one uses continuous piecewise polynomials,
enriched (in order to guarantee stability) with bubble functions. More pre-
cisely:

Vh =
{
v ∈ C(Ω)3 : v|T ∈ (X2

h,0 ⊕B4)3 for all T ∈ Th
}

Qh =
{
q ∈ L2

0(Ω) : q|T ∈ P1 for all T ∈ Th
}
.

Similar Crouzeix-Raviart pairs are defined using higher order polynomials.
Both the mini-element and the Crouzeix-Raviart pair are LBB-stable and
conforming spaces. The enrichment of the velocity space using the bubble
functions is important for the LBB stability property to hold. An extensive
treatment of these spaces is given in e.g. [121, 206].

LBB stable nonconforming spaces. In the nonconforming case one uses a finite
element pair (Vh, Qh) with Vh � V or Qh � Q. An example from this class
of finite element methods is the lowest order nonconforming Crouzeix-Raviart
pair. We explain this pair. For a tetrahedron T the set of its 4 faces is denoted
F = {F}. The barycenter (center of gravity) of a triangle F is denoted by CF .
We introduce the space of piecewise linear functions:

VCR
h := {vh ∈ L2(Ω)3 | ∀ T ∈ Th : (vh)|T ∈ P1, [vh]F (CF ) = 0 ∀F ∈ F ,

vh(CF ) = 0 ∀F ⊂ ∂Ω }.

Here [vh]F denotes the jump of vh across the face F . Due to the fact that
functions from VCR

h are not necessarily continuous across the faces of a tetra-
hedron, this space is nonconforming: VCR

h � V. If for the pressure one uses
the (conforming) space X

0
h of piecewise constants, then the pair (VCR

h ,X0
h)

is LBB stable. A detailed treatment of this and other nonconforming pairs is
given in [55, 74].

Unstable pairs: stabilization. Instead of using an LBB stable pair of finite el-
ement spaces for discretization of a saddle point problem, one can also use
an unstable pair and apply the technique of stabilization. We outline a popu-
lar technique introduced in [146]. Let (Vh, Qh) be a pair of conforming finite
element spaces, not necessarily LBB stable. To simplify the presentation we as-
sume that the pressure space Qh contains only continuous pressure functions.
We consider the stationary Stokes problem in weak formulation: determine
(u, p) ∈ V ×Q = H1

0 (Ω)3 × L2
0(Ω) such that

a(u,v) + b(v, p)− b(u, q) = (g,v)L2 for all (v, q) ∈ V ×Q. (3.40)
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The stabilized discretization reads as follows: determine (uh, ph) ∈ Vh ×Qh
such that

a(uh,vh)+b(vh, ph)−b(uh, qh)+δsh(uh, ph;vh, qh) = (g,vh)L2 +δgh(vh, qh)

for all (vh, qh) ∈ Vh ×Qh, with the stabilization terms

sh(uh, ph;vh, qh)

:=
∑

T∈Th

h3
T

∫

T

(
− 1
Re

Δuh +∇ph) ·
(
− 1
Re

Δvh +∇qh
)

+ div uh div vh dx,

gh(vh, qh) :=
∑

T∈Th

h3
T

∫

T

g ·
(
− 1
Re

Δvh +∇qh
)
dx,

and a stabilization parameter δ > 0. Due to the stabilization term it can be
shown that the bilinear form

(uh, ph;vh, qh) → a(uh,vh) + b(vh, ph)− b(uh, qh) + δsh(uh, ph;vh, qh)

satisfies a discrete inf-sup condition (in suitable norms) on Vh × Qh with a
strictly positive inf-sup constant independent of h. This inf-sup property then
leads to (optimal) discretization error bounds. Note that in such a method one
has to choose an “appropriate” value for the stabilization parameter δ. In the
literature this stabilization technique is known as a Galerkin/Least-Squares
method (GaLS). To explain this name, we consider the Stokes problem in the
formal operator form (

A BT

B 0

)(
u
p

)
=

(
g
0

)
.

In the stabilization we add a term of the least-squares form

〈
(
A BT

B 0

)(
uh
ph

)
−

(
g
0

)
,

(
A BT

B 0

)(
vh
qh

)
〉
.

The discretization method is consistent in the sense that if in the stabilization
term (uh, ph) is replaced by the solution (u, p) of the continuous problem
(3.40) then the stabilization term is equal to zero. Due to this one still has
the important Galerkin orthogonality property. We will use a variant of this
method for the discretization of the level set equation in Sect. 7.2. For more
explanation and other stabilization techniques we refer to the literature, e.g.
[106, 110, 206, 239].

Spectral and hp-finite element methods In this monograph we restrict ourselves
to the class of h-finite element methods. This means that in the finite element
spaces we use polynomials of a fixed low degree (e.g. the P2-P1 Hood-Taylor
pair) and a desired accuracy of the discretization is obtained by taking a
mesh size that is sufficiently small (“h-refinement”). An alternative is to use a
fixed mesh size h and then use polynomials of (very) high degree to obtain an
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accurate discretization (“p-refinement”). This leads to the class of so-called
spectral methods, cf. [206]. If one uses a hybrid approach in the sense that in
the discretization both the mesh size and the polynomial degree (per element
T in the triangulation) are varied this leads to a hp-finite element method,
cf. [217].

Discontinuous Galerkin techniques. In the past few years the discontinuous
Galerkin method (DG) has received much attention. In this approach one
uses finite element spaces consisting of piecewise polynomials without inter-
element continuity requirement, i.e. instead of the space X

k
h, k ≥ 1, in (3.3b)

one uses

X
k
h,DG :=

{
v : Ω → R : v|T ∈ Pk for all T ∈ Th

}
.

In order to enforce smoothness across the faces of the elements T , the bilinear
form is modified by adding suitable jump terms of the discrete test and trial
functions across the element faces. The DG approach can be combined with
stabilization techniques and due to the nice locality property (no continuity
requirement across the faces in the finite element space) its use in an hp-finite
element setting is very natural. Discontinuous Galerkin methods turn out to
be particularly suitable for hyperbolic and convection-dominated problems.
For further information we refer to the literature, e.g. [108, 16, 140].

Isoparametric finite elements. A further issue that is relevant in the context
of finite element methods is how to treat curved boundaries. The effect of an
inaccurate boundary approximation is seen in the numerical experiment in
Sect. 3.3.2. For an accurate boundary approximation so-called isoparamtric
finite elements are very useful. For a treatment of this standard finite element
technique we refer to the literature, e.g. [70, 53, 48].

Mass conservation property. In an incompressible flow problem in weak for-
mulation the mass conservation property is described by

∫

Ω

q div u dx = 0 for all q ∈ L2
0(Ω).

Hence, div u = 0 holds on Ω, in L2-sense. In the discrete problem, with finite
element spaces Vh and Qh for velocity and pressure, respectively, one obtains
the variational equation

∫

Ω

qh div uh dx = 0 for all qh ∈ Qh, (3.41)

for the discrete velocity solution uh ∈ Vh. Such a function uh is also called
discretely divergence-free. In general this does not imply div uh = 0 in Ω
(in L2-sense) due to Qh �= L2

0(Ω). This leads to the issue of how well mass
is conserved in the finite element discretization. We briefly address two ap-
proaches that apply to the Hood-Taylor finite element method and result in
discretizations with good mass conservation properties.
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The first method is from [237] and is based on an extension of the pressure
finite element space by piecewise constants. Let X

k
h and X

k
h,0 be the polynomial

finite element spaces introduced in Sect. 3.2. For the velocity discretization we
use the same space as in the Hood-Taylor method , i.e., Vh = (Xkh,0)

d, k ≥ 2.
For the pressure we extend the Hood-Taylor pressure space by the space of
piecewise constants, i.e., we take Qh = (Xk−1

h ∪ X
0
h) ∩ L2

0(Ω). In [237] it is
proved that for k = 2, d = 2, the pair (Vh, Qh) is LBB-stable. In the discrete
variational equation (3.41) corresponding to this finite element pair one can
take, for T ∈ Th, the function qh(x) = 1 + c if x ∈ T , qh(x) = c otherwise,
with a constant c such that

∫
Ω qh dx = 0 holds. This results in

0 =
∫

T

div uh dx+ c

∫

Ω

div uh dx

=
∫

T

div uh dx+ c

∫

∂Ω

uh · n ds =
∫

T

div uh dx,

where in the last identity we used that uh = 0 on ∂Ω. Hence we obtain a
local mass-conservation property in the sense that

∫
T div uh dx = 0 holds for

all T ∈ Th.
The second method is based on the so-called Scott-Vogelius finite element

pair [218]. In this pair, for the velocity one uses the same space as in the
Hood-Taylor method, i.e., Vh = (Xkh,0)

d, k ≥ 2, and for the pressure one uses
piecewise polynomials of degree k− 1 that are not necessarily continuous, i.e.

Qh =
{
v ∈ L2

0(Ω) : v|T ∈ Pk−1 for all T ∈ Th
}
.

In [218] it is proved that for d = 2 the pair (Vh, Qh) with k ≥ 4 is LBB-stable
provided the mesh does not contain any so-called nearly-singular vertices.
Further analyses of this pair can be found in [263, 264, 265]. We outline two
stability results for d = 3. For this we need special tetrahedral grids. Starting
from a regular tetrahedral triangulation Th a so-called Hsieh-Clough-Tocher
triangulation is obtained by subdiving each tetrahedron T ∈ Th into 4 subte-
trahedra by connecting the barycenter of T to the four vertices of T . If each
tetrahedron of this Hsieh-Clough-Tocher triangulation is further refined into 3
subtetrahedra by connecting the barycenter of T to each of the four barycen-
ters of the four tetrahedra adjacent to T one obtains a so-called Powell-Sabin
triangulation. In [263] it is proved that on Hsieh-Clough-Tocher triangulations
the Scott-Vogelius pair (Vh, Qh) is LBB-stable for k ≥ 3. In [265] it is proved
that on Powell-Sabin triangulations the pair (Vh, Qh) is LBB-stable for k = 2.
For the Scott-Vogelius pair (Vh, Qh) one can take qh = div uh + c in (3.41),
with a constant c such that

∫
Ω
qh dx = 0 holds. Then one obtains

∫

Ω

(div uh)2 dx = 0,

and thus the discrete velocity is divergence-free, i.e., a discrete mass con-
servation property divuh = 0 in Ω (in L2-sense) holds. A relation between
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the Scott-Vogelius pair and the Hood-Taylor pair is derived in [62]. There
it is shown that if the Hood-Taylor discretization is applied to the Navier-
Stokes equation with grad-div stabilization, i. e., one adds a (consistent) term
γ(div uh, div vh)L2 to the disrete momentum equation, then the resulting dis-
crete velocity uh tends to uSVh if γ →∞. Here uSVh denotes the divergence-free
discrete velocity solution obtained by using the Scott-Vogelius pair Hence, for
the Hood-Taylor pair the mass conservation property can be improved (sig-
nificantly) if grad-div stabilization is used.

Type of triangulations. In this monograph we restrict ourselves to finite ele-
ments on tetrahedral triangulations. Finite element techniques, however, can
also be applied using a subdivision of the three-dimensional domain into,
for example, hexahedra or prisms. One can even use subdivisions consisting
of combinations of tetrahedra, hexahedra and prisms. An important class are
the tensor product finite elements (in the 2D case, these are also called quadri-
lateral finite elements). For a treatment of these we refer to standard finite
element literature.



4

Time integration

4.1 Introduction

Let I := [0, te], f : I → R
N , F : R

N → R
N and u0 ∈ R

N . Consider an initial
value problem: determine u(t) ∈ R

N such that

du

dt
+ F (u) = f(t) for t ∈ I, u(0) = u0. (4.1)

As we will see further on, the Stokes- and Navier-Stokes systems of DAEs
in (3.22) and (3.38) take this form if one eliminates the pressure variable
by restricting to the subspace of (discrete) divergence free velocities. Re-
lated to existence and uniqueness of a solution of (4.1) we give a stan-
dard result from the literature (Picard-Lindelöf theorem). For b > 0 define
Gb :=

{
v ∈ R

N : ‖v − u0‖ ≤ b
}

with ‖ · ‖ any given norm on R
N . Assume

that for a > 0 the function f : [0, a]→ R
N is continuous and that F satisfies

the Lipschitz condition:

‖F (v)− F (w)‖ ≤ L‖v − w‖ for all v, w ∈ Gb. (4.2)

Then the initial value problem in (4.1) has a unique solution u(t) for t ∈ [0, α]
with α := min{a, bL−1}. In the remainder we assume that f and F satisfy
these conditions (for suitable a, b, L) and that te ≤ α, i.e., (4.1) has a unique
solution.

We discuss a few discretization methods for the general problem (4.1). In our
applications the systems are very stiff and thus we need implicit methods. A
classical and still very popular method is the θ-scheme:

un+1 − un
Δt

+ θF (un+1) + (1− θ)F (un) = θf(tn+1) + (1 − θ)f(tn), (4.3)
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with θ ∈ [0, 1]. For θ = 1 this is the implicit Euler scheme and for θ = 1
2 this

method is known as the Crank-Nicolson method. Another popular method is
the BDF2 scheme:

3
2
un+1 − 2un +

1
2
un−1 +ΔtF (un+1) = Δtf(tn+1). (4.4)

Note that the θ-scheme is a one-step method, whereas the BDF2 method is a
linear two-step scheme. Another method that is used in our applications is the
following fractional-step θ-scheme. For a given θ ∈ (0, 1

2 ), the fractional-step
θ-scheme is based on a subdivision of each time interval [nΔt, (n + 1)Δt] in
three subintervals with endpoints (n+θ)Δt, (n+1−θ)Δt, (n+1)Δt. For given
un the approximations un+θ, un+1−θ, un+1 at these endpoints are defined by

un+θ − un
θΔt

+αF (un+θ) + (1− α)F (un) = f(tn) (4.5a)

un+1−θ − un+θ

(1− 2θ)Δt
+(1− α)F (un+1−θ) + αF (un+θ) = f(tn+1−θ) (4.5b)

un+1 − un+1−θ

θΔt
+αF (un+1) + (1 − α)F (un+1−θ) = f(tn+1−θ).(4.5c)

Standard measures for the quality of discretization methods for (stiff) ini-
tial value problems are consistency, stability, a smoothing property and the
amount of dissipativity. Below we treat these quality measures for the methods
that we consider.

Consistency

The implicit Euler method has a consistency order of 1. The Crank-Nicolson,
BDF2 and fractional-step θ-scheme, with θ = 1 ± 1

2

√
2, all have consistency

order 2. We derive this consistency result for the fractional-step θ-scheme.

Lemma 4.1.1 Assume an arbitrary f ∈ C2([0, te]) and λ ∈ R. Let u(t) be the
solution of dudt −λu = f , u(0) = u0. Let un+1 be the result of the fractional-step
θ-scheme (4.5) applied to this problem with un := u(tn). Then for θ = 1± 1

2

√
2

we have
|u(tn+1)− un+1| ≤ c (Δt)3, (4.6)

with a constant c independent of Δt and n.

Proof. We take θ = 1± 1
2

√
2. For the solution u(t) we have

u(t) = eλ(t−tn)u(tn) +
∫ t

tn

eλ(t−τ)f(τ) dτ, t ≥ tn.
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Hence, with z := λΔt,

u(tn+1) = ezu(tn) +
∫ tn+1

tn

eλ(tn+1−τ)f(τ) dτ .

A straightforward calculation, in which we use that 2θ2 − 4θ + 1 = 0 holds,
results in

un+1 = g(z)un +Δt
[
θ(1 + z)− (1− α)θ2z +O(z2)

]
f(tn)

+Δt
[
(1− θ)(1 + θz) + (1 − α)(3θ2 − 4θ + 1)z +O(z2)

]
f(tn+1−θ)

= g(z)un +Δt
(
θ(1 + z)f(tn) + (1− θ)(1 + θz)f(tn+1−θ)

)
+O(Δt3),

(4.7)

with

g(z) :=

(
1 + (1− α)θz

)2(1 + α(1 − 2θ)z
)

(
1− αθz

)2(1− (1 − α)(1 − 2θ)z
) . (4.8)

Taylor expansion results in

g(z) = 1 + z +
1
2
z2

[
1 + (1 − 2α)(2θ2 − 4θ + 1)

]
+O(z3) (z → 0).

For θ = 1± 1
2

√
2 we have 2θ2 − 4θ + 1 = 0 and thus

g(z) = ez +O(z3) (4.9)

holds. The quadrature rule
∫ 1

0 v(t) dt ≈ ξv(0) + (1− ξ)v(1− ξ) is exact for all
linear functions v iff ξ = 1± 1

2

√
2. Thus for θ = 1± 1

2

√
2 we have

∫ tn+1

tn

eλ(tn+1−τ)f(τ) dτ = Δt
(
θezf(tn) + (1− θ)eθzf(tn+1−θ)

)
+O(Δt3)

= Δt
(
θ(1 + z)f(tn) + (1− θ)(1 + θz)f(tn+1−θ)

)
+O(Δt3).

Using this in combination with (4.7), (4.9) we get

un+1 = ezu(tn) +Δt
(
θ(1 + z)f(tn) + (1 − θ)(1 + θz)f(tn+1−θ)

)
+O(Δt3)

= ezu(tn) +
∫ tn+1

tn

eλ(tn+1−τ)f(τ) dτ +O(Δt3)

= u(tn+1) +O(Δt3),

and thus the result is proved. �

A similar bound as in (4.6) can be derived for the case that F is a nonlinear
function which satisfies the Lipschitz condition in (4.2). Thus for θ = 1± 1

2

√
2

the fractional-step θ-scheme has consistency order 2.
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Remark 4.1.2 For the fractional-step θ-scheme to have consistency order 2
it is necessary to take the value θ = 1± 1

2

√
2 in the following sense. Consider

the special case λ = 0, u0 = 0, f(t) = t, n = 0. Then we have u(t1) = u(Δt) =
1
2 (Δt)2 and a simple computation yields u1 = (1− θ)2(Δt)2. Thus for (4.6) to
hold with a θ-value independent of Δt we need (1−θ)2 = 1

2 , i.e., θ = 1± 1
2

√
2.

Remark 4.1.3 Consider the following variant of the fractional-step θ-scheme,
with G(u, t) := F (u)− f(t):

un+θ − un
θΔt

+ αG(un+θ, tn+θ) + (1− α)G(un, tn) = 0

un+1−θ − un+θ

(1− 2θ)Δt
+ (1 − α)G(un+1−θ, tn+1−θ) + αG(un+θ, tn+θ) = 0

un+1 − un+1−θ

θΔt
+ αG(un+1, tn+1) + (1− α)G(un+1−θ , tn+1−θ) = 0.

This scheme is equal to three steps of the θ-scheme (4.3), where α or 1 − α
takes the role of θ in (4.3), and for the three substeps we use time steps θΔt,
(1 − 2θ)Δt and θΔt, respectively. For an accuracy analysis we consider the
same test problem as in Lemma 4.1.1 and take un := u(tn), θ = 1± 1

2

√
2. Along

the same lines as in the proof of Lemma 4.1.1 one can derive the following,
with z := λΔt:

un+1 = g(z)un + (1− α)Δt
[
θ(1 + z)f(tn) + (1− θ)(1 + θz)f(tn+1−θ)

]

+ αΔt
[
(1− θ)

(
1 + (1− θ)z

)
f(tn+θ) + θf(tn+1)

]
+O(Δt3).

For
∫ 1

0
v(t) dt the quadrature rules θv(0)+(1−θ)v(1−θ) and (1−θ)v(θ)+θv(1)

are exact for all linear functions. Hence, using the Taylor expansion ez =
1 + z +O(z2) we get

∫ tn+1

tn

eλ(tn+1−τ)f(τ) dτ

= (1− α)Δt
[
θ(1 + z)f(tn) + (1 − θ)(1 + θz)f(tn+1−θ)

]

+ αΔt
[
(1− θ)

(
1 + (1− θ)z

)
f(tn+θ) + θf(tn+1)

]
+O(Δt3).

Thus as in the proof of Lemma 4.1.1 we obtain

un+1 = ezu(tn) +
∫ tn+1

tn

eλ(tn+1−τ)f(τ) dτ +O(Δt3) = u(tn+1) +O(Δt3).

Hence, this variant has consistency order 2, too.

Stability

For an error analysis of time discretization methods for stiff problems stability
properties have to be considered. For a stability analysis, these methods are
applied to the test problem
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du

dt
= λu, λ ∈ C, Re(λ) ≤ 0. (4.10)

A solution of this test problem satisfies the growth relation

|u(tn+1)| = |eλΔt||u(tn)| = eRe(λ)Δt|u(tn)|. (4.11)

Due to Re(λ) ≤ 0 the growth factor satisfies 0 ≤ eRe(λ)Δt ≤ 1. For one-step
methods applied to this test problem one obtains |un+1| = g(λΔt)|un|, with
a so-called stability function g(z) which is an approximation of the growth
factor |ez| in (4.11). For the implicit Euler, Crank-Nicolson and fractional-
step θ-scheme (cf. (4.8)) the stability function is given by:

gEB(z) :=
∣
∣
∣
∣

1
1− z

∣
∣
∣
∣

gCN(z) :=
∣
∣∣
∣
1 + 1

2z

1− 1
2z

∣
∣∣
∣

gFS(z) :=

∣∣
∣
∣
∣

(
1 + (1− α)θz

)2(1 + α(1 − 2θ)z
)

(
1− αθz

)2(1− (1 − α)(1 − 2θ)z
)

∣∣
∣
∣
∣
.

The variant of the fractional-step θ-scheme discussed in Remark 4.1.3 also
has the stability function gFS . For the BDF2 method one obtains un =
c0

(
2+

√
1+2z

3−2z

)n
+ c1

(
2−

√
1+2z

3−2z

)n
, with z := λΔt and constants c0, c1 that

depend on the starting values u0, u1. The stability function of the BDF2
method is given by

gBDF (z) := max
{∣
∣
∣
∣
2 +

√
1 + 2z

3− 2z

∣
∣
∣
∣ ,

∣
∣
∣
∣
2−

√
1 + 2z

3− 2z

∣
∣
∣
∣

}
.

For a given method with stability function g the so-called stability region is
defined by

S := { z ∈ C : g(z) ≤ 1 } .
The method is said to be A-stable if

C
− := { z ∈ C : Re(z) ≤ 0 } ⊂ S

holds. From standard literature on time discretization methods for (stiff) ini-
tial value problems, cf. [134], it is known that the backward -Euler, Crank-
Nicolson method and BDF2 method are A-stable.

We consider the fractional-step θ-scheme with θ = 1 ± 1
2

√
2. Due to the

structure of the fractional-step θ-scheme it is natural to restrict to α ∈ [0, 1].
First the case θ = 1− 1

2

√
2 is treated.

Lemma 4.1.4 Take α ∈ [0, 1], θ = 1− 1
2

√
2. The fractional-step θ-scheme is

A-stable iff α ∈ [12 , 1].
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Proof. For α > 0 we have

lim
z→−∞

gFS(z) =
∣
∣∣
∣
1− α
α

∣
∣∣
∣ =

1− α
α

.

Since 1−α
α > 1 for α < 1

2 the method is not A-stable for α < 1
2 . We consider

α ≥ 1
2 . The denominator in the function gFS has no zero in C

− and thus gFS
is the norm of a function that is analytic on C

−. From the maximum principle
for analytic functions it follows that

max
z∈C−

gFS(z) = max
y∈R

gFS(iy).

Due to gFS(iy) = gFS(−iy) we can restrict to y ∈ [0,∞). Note that
gFS(0) = 1 and limy→∞ gFS(iy) = 1−α

α ≤ 1. A straightforward computation
yields that on [0,∞) the derivative of the function y → gFS(iy) is less than
or equal to 0. Hence maxy∈R gFS(iy) ≤ gFS(0) = 1. �

We now consider θ = 1 + 1
2

√
2, α ∈ [0, 1]. For α < 1 the denominator has a

zero at z0 = (1 − α)−1(1 − 2θ)−1 < 0. For the value z = z0 the nominator
is not equal to zero. Hence limz→z0 gFS(z) = ∞ and thus the method is not
A-stable. For α = 1 it can be shown with the same arguments as in the proof
of Lemma 4.1.4 that the method is A-stable. Below, for the fractional-step
θ-scheme we restrict to θ = 1− 1

2

√
2, α ∈ [12 , 1], or θ = 1 + 1

2

√
2, α = 1. For

these parameter values the method has consistency order 2 and is A-stable.

Smoothing property

A further criterion which is relevant for comparing these methods is the no-
tion of smoothing, which quantifies the amount of damping of the numerical
solutions of (4.10) with λ such that Re(λ) → −∞ (i.e. of “high” frequen-
cies). For Re(λ) → −∞ the growth factor eRe(λ)Δt, cf. (4.11), tends to zero.
The smoothing property measures how well this strong damping behavior for
Re(λ) → −∞ is reflected in the numerical scheme. The method has a smooth-
ing property if there exists a constant δ < 1 such that for the corresponding
stability function g we have

lim
Re(z)→−∞

g(z) ≤ δ. (4.12)

The size of δ is a measure for the strength of the smoothing: a small δ value
corresponds to a strong smoothing. A strong smoothing is a desirable property
of a numerical scheme. One easily verifies that for the backward Euler and
the BDF2 methods we have a maximal smoothing effect, namely with δ = 0.
For the Crank-Nicolson method there is no smoothing at all: δ = 1. For the
fractional-step θ-method we have a smoothing effect with δ = 1

α −1, and thus
the smoothing effect increases for larger α.
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Dissipativity

The last property that we consider is the amount of dissipativity of a method.
This is a measure for the quality of the numerical method when applied to
(4.10) with a periodic solution of the form u(t) = eixt, x ∈ R, i.e. with λ = ix.
Hence, in (4.11) we then have a growth factor eRe(λ)Δt = 1. In this case we
have to consider the corresponding stability functions g(z) with z = ix, x ∈ R.
The amount of dissipativity is measured by the deviation of

d(x) := g(ix), x ∈ R, (4.13)

from the optimal value 1. For the implicit Euler method we have

dEB(x) =
1√

1 + x2
,

and thus an increasing amount of dissipativity for larger x values. For the
Crank-Nicolson we have

dCN (x) = 1,

and thus no dissipativity. For the fractional-step θ-scheme the following holds.
For θ = 1 + 1

2

√
2, α = 1 we have dFS(x) = gFS(ix) =

(
1 + (1 − 2θ)x2)

1
2
(
1 +

θ2x2
)−1, which is monotonically decreasing with value 0 for x → ∞, thus

in this case there is a large amount of dissipativity for large x values. For
the case θ = 1 − 1

2

√
2, α ∈ [12 , 1] the dissipativity function depends on α:

dFS,α(x) := gFS(ix). We have limx→∞ dFS,α(x) = 1
α − 1. Inspection of the

function dFS,α yields that it is constant for α = 1
2 and strictly decreasing for

α ∈ (1
2 , 1]. Furthermore, we have dFS,α′(x) < dFS,α(x) if 1

2 ≤ α < α′ ≤ 1
and x > 0. Thus we have more dissipativity for larger values of α. For a
few cases the dissipativity function dFS,α is illustrated in Fig. 4.1. Due to
dFS(x) = dFS(−x) it suffices to show results for x ≥ 0.

Due to the fact that the stability function gFS is the norm of a rational
function we have

lim
Re(z)→−∞

gFS(z) = lim
x→∞

gFS(ix).

This property also holds for the stability functions of the other three methods.
Thus there is a conflict between good smoothing (limRe(z)→−∞ gFS(z) close
to zero, cf. (4.12)) and low dissipativity (gFS(ix) ≈ 1 for a large range of x
values). From the analysis above and Fig. 4.1 we see that for θ = 1 − 1

2

√
2

and α = 1
2 the fractional-step θ-scheme has the same properties as the Crank-

Nicolson method, namely no smoothing (δ = 1) and no dissipativity. For θ =
1+ 1

2

√
2, α = 1, the fractional-step θ-scheme has properties similar to those of

the implicit Euler method: optimal smoothing (δ = 0) and strong dissipativity.
A good compromise is found by taking θ = 1− 1

2

√
2 and α ∈ (0, 1

2 ). A popular
parameter choice, cf. [207, 244], is

θ := 1− 1
2

√
2, α :=

1− 2θ
1− θ = 2−

√
2. (4.14)
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Fig. 4.1. Dissipativity functions dF S,α for θ = 1 − 1
2

√
2, α ∈ { 1

2 , 2 −
√

2, 1}, and

θ = 1 + 1
2

√
2, α = 1 (top to bottom).

For these values (cf. Fig. 4.1) the method has “modest” dissipativity and it
has a “reasonable” smoothing property with δ = 1

α − 1 = 1
2

√
2. Further-

more, due to θα = (1 − 2θ)(1 − α) the systems in (4.5) for the unknowns
un+θ, un+1−θ, un+1, respectively, have the same form. In the remainder we
only consider the fractional-step θ-scheme with the parameter values as in
(4.14).

The dissipativity functions d(x) for the implicit Euler, Crank-Nicolson,
BDF2 and fractional-step θ-scheme (θ = 1− 1

2

√
2, α = 2−

√
2) are illustrated

in Fig. 4.2. In all four cases we have d(−x) = d(x) and therefore we show the
functions only for x ≥ 0.

In practice often the Crank-Nicolson method is used. A disadvantage of
this method, however, is that it has no smoothing property. The fractional-
step θ-schema is a method which has both a good smoothing property and
modest dissipativity.

In our applications we will use the implicit Euler method (a simple method
with a strong smoothing property), the Crank-Nicolson method and the
fractional-step θ-scheme. Note that the implicit Euler and the Crank-Nicolson
method are special cases of the θ-scheme.
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Fig. 4.2. Dissipativity functions dCN , dF S, dBDF and dEB (top to bottom).

4.2 The θ-scheme for the Navier-Stokes problem

The DAE system (3.38) is rewritten in the form

d	u
dt

(t) + M−1BT	p(t) = M−1 g(	u, t),

B 	u(t) = 0,
(4.15)

where
g(	u, t) := 	f −A	u(t)−N(	u(t))	u(t).

The Stokes DAE system (3.22) has a similar form, with g(	u, t) := 	f −A	u(t).
We eliminate the incompressibility constraint B	u(t) = 0 and the correspond-
ing Lagrange multiplier 	p(t) to replace the DAE system by an equivalent ODE
system. This can be achieved by applying the M-orthogonal projection P on
kerB:

P = I−M−1BT (BM−1BT )−1B.

The projection P is orthogonal w.r.t. the scalar product 〈· , ·〉M := 〈M · , ·〉,
and P 	v = 	v for all 	v ∈ kerB, furthermore PM−1BT = 0. Hence, instead of
a DAE system we obtain a system of ordinary differential equations:

A solution 	u(t) of (4.15) satisfies

d	u
dt

(t) = PM−1 g(	u, t). (4.16)

If for a given initial condition 	u(0) = 	u0, with Bu0 = 0, and t ∈ [0, te] (with te
sufficiently small) the problem in (4.16) has a unique solution, then this 	u is
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also a solution of (4.15). For a given velocity 	u(t) the corresponding pressure
	p is defined by the equation

BM−1BT	p(t) = BM−1 g(	u, t). (4.17)

The matrix BM−1BT is nonsingular (on the subspace of FE pressure func-
tions with (ph, 1)L2 = 0) due to the LBB stability of the pair of finite element
spaces used.

Remark 4.2.1 For the Stokes case we have that 	u → g(	u, t) is affine and
thus 	u→ BM−1 g(	u, t) is affine, too. Hence a Lipschitz condition as in (4.2)
is satisfied with a constant L independent of the radius b of the ball Gb. From
the Picard-Lindelöf theorem it then follows that for given 	u(0) = 	u0 the ODE
system (4.16) corresponding to the Stokes problem has a unique solution for
t ∈ [0, te] and te arbitrary. For the Navier-Stokes case a Lipschitz condition
as in (4.2) can be shown to hold only if te is sufficiently small. Hence in that
case existence and uniqueness of a solution is guaranteed only for a sufficiently
short time interval.

The θ-scheme (4.3) can be applied to the ODE system (4.16), which results
in

	un+1 − 	un
Δt

= θPM−1 g(	un+1, tn+1) + (1− θ)PM−1 g(	un, tn). (4.18)

We assume that, for a given 	u0, this recursion has a unique solution (which
holds for Δt sufficiently small). In addition we assume that B	u0 = 0 holds.
From (4.18) and BP = 0 it then follows that B	un = 0 holds for all n.
Based on (4.17) we introduce a pressure variable 	pk such that the correspond-
ing finite element pressure function ph satisfies (ph, 1)L2 = 0 and such that
BM−1BT 	pk = BM−1 g(	uk, tk) holds. Using the definition of the projection
P the recurrence relation in (4.18) can be rewritten as

	un+1 − 	un
Δt

+ M−1BT
(
θ	pn+1 + (1− θ)	pn

)

= θM−1 g(	un+1, tn+1) + (1− θ)M−1 g(	un, tn).

Thus for given 	un the pair 	un+1, 	̃p := θ	pn+1 + (1− θ)	pn is a solution of

�un+1−�un

Δt + M−1BT 	̃p = θM−1 g(	un+1, tn+1) + (1− θ)M−1 g(	un, tn), (4.19)

B 	un+1 = 0. (4.20)

For given 	un this saddle point problem has (for Δt sufficiently small) a unique
solution pair (	un+1, 	̃p) (on the subspace of pressure functions that satisfy
(ph, 1)L2 = 0). Thus instead of (4.18) for computing 	un+1 we can use the
equivalent formulation in (4.19)-(4.20) for computing 	un+1, 	̃p. An important
advantage of the latter formulation is that the projection P has been elimi-
nated. In the derivation it is essential that the mass matrix M does not depend
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on t. Summarizing, the θ-method for the Navier-Stokes DAE system takes the
form

M
	un+1 − 	un

Δt
+ θ[A	un+1 + N(	un+1)	un+1] + BT 	̃p

= θ	fn+1 − (1− θ)[A	un + N(	un)	un −	fn]
B	un+1 = 0.

(4.21)

The θ-schema applied to the Stokes problem results in a system as in (4.21),
with the two terms N(·) replaced by 0. In each time step a system of equations
for the unknowns 	un+1, 	̃p has to be solved. For the (Navier-)Stokes problem
this saddle point system is (non)linear. Iterative methods for solving this
system are treated in Chap. 5.

Remark 4.2.2 In the derivation above, we applied the method of lines ap-
proach, in which we first discretize the space variable and then the time vari-
able. In view of the time discretization for two-phase flow problems, treated in
Chap. 8, we comment on an alternative approach, often called Rothe’s method,
in which first the time variable and then the space variable is discretized. We
explain this for the Stokes case. Starting point is the time dependent Stokes
problem in which the pressure has been eliminated, i.e. a formulation as in
(2.33). This is a variational formulation of an ODE in the function space Vdiv.
To this problem one can apply the θ-scheme for discretization of the time vari-
able, resulting in the following problem: given u0 ∈ Vdiv, for n ≥ 0, determine
un+1 ∈ Vdiv such that

1
Δt

(un+1 − un,v)L2 + θa(un+1,v)

= θgn+1 − (1− θ)
[
a(un,v)− gn] for all v ∈ Vdiv.

(4.22)

This is a “projected” (due to Vdiv) stationary Stokes problem for the unknown
function un+1. Since finite element subspaces of Vdiv are in general difficult to
construct, we reformulate this problem as a saddle point problem in V×Q =
H1

0 (Ω)3 × L2
0(Ω). Define the bilinear form

â(u,v) =
1
Δt

(u,v)L2 + θa(u,v), u,v ∈ V, θ ∈ (0, 1].

This bilinear form is elliptic and continuous on V. We can apply the abstract
theory in Sect. 15.3, Theorems 15.3.1 and 15.3.4, from which it follows that
the problem (4.22) has a unique solution un+1 which can also be characterized
by the following Oseen problem: determine un+1 ∈ V and p ∈ Q such that

1
Δt

(un+1 − un,v)L2 + θa(un+1,v) + b(v, p)

= θgn+1 − (1− θ)
[
a(un,v)− gn] for all v ∈ V,

b(u, q) = 0 for all q ∈ Q.

(4.23)
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To this problem we can apply a Galerkin discretization with spaces Vh ⊂ V,
Qh ⊂ Q. Using standard nodal bases, we then obtain a fully discrete problem
as in (4.21), with N(·) = 0. The mass and stiffness matrices M and A and
the right-hand sides 	fn are the same in the two approaches. Hence, the two
methods yield the same results.

Although these two approaches turn out to be equivalent in case of an non-
stationary Stokes problem with Hood-Taylor finite element spaces for spatial
discretization and the θ-scheme for time discretization we comment on a subtle
difference between the methods that will become important if we treat two-
phase flow problems. For the method of lines the approach is as follows: we
start with a saddle point problem for (u, p), apply spatial Galerkin discretiza-
tion, eliminate ph, apply time discretization, introduce ph again. For Rothe’s
method: start with a saddle point problem for (u, p), eliminate p, apply time
discretization, introduce p again, apply spatial Galerkin discretization. We see
that in the former method we eliminate and re-introduce the spatially discrete
pressure variable ph, whereas in the latter this is done for the spatially contin-
uous variable p. If in a time step tn → tn+1 one wants to use different pressure
finite element spaces, then this pressure elimination and re-introduction can
be problematic for the method of lines approach, whereas this is not the case
for Rothe’s method.

4.3 Fractional-step θ-scheme for the Navier-Stokes
problem

Applying the fractional-step θ-scheme to the Navier-Stokes problem in ODE
form (4.16) and transforming it back to its original DAE form along the same
lines as in Sect. 4.2 results in

⎧
⎪⎨

⎪⎩

M�un+θ−�un

θΔt + α[A	un+θ + N(	un+θ)	un+θ] + BT 	̃p1

= 	fn − (1− α)[A	un + N(	un)	un]
B	un+θ = 0

(4.24)

⎧
⎪⎨

⎪⎩

M�un+1−θ−�un+θ

(1−2θ)Δt +(1−α)[A	un+1−θ+N(	un+1−θ)	un+1−θ]+BT 	̃p2

= 	fn+1−θ − α[A	un+θ + N(	un+θ)	un+θ]
B	un+1−θ = 0

(4.25)

⎧
⎪⎨

⎪⎩

M�un+1−�un+1−θ

θΔt +α[A	un+1 + N(	un+1)	un+1] + BT 	̃p3

=	fn+1−θ−(1−α)[A	un+1−θ+N(	un+1−θ)	un+1−θ]
B	un+1 = 0.

(4.26)
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If we take parameter values as in (4.14) then the nonlinear problems for the
pairs (	un+θ, 	̃p1), (	un+1−θ, 	̃p2), (	un+1, 	̃p3) in these three substeps have a sim-
ilar form. We obtain the fractional-step θ-scheme for the Stokes by replacing
all terms N(·) by 0.

Remark 4.3.1 If one uses the variant of the fractional-step θ-scheme as de-
scribed in Remark 4.1.3 then in each time interval [nΔt, (n + 1)Δt] three
successive substeps of the θ-scheme (4.21) (with different values for θ) are
applied.

4.4 Numerical experiments

To analyze the time discretization error for different time integration schemes,
we reconsider the test case of a rectangular tube described in Sect. 3.3.1.
Instead of a stationary Stokes problem we now consider the non-stationary
Stokes problem (2.34) on Ω × [0, T ] with T = 2 for different time step sizes
Δt. To obtain a time-dependent velocity and pressure field, we prescribe an
oscillating boundary condition u(0, x2, x3) = s(x2, x3)

(
1 + 0.25 sin(2πt)

)
at

the inflow boundary x1 = 0, with s defined in (3.39), an outflow boundary
condition σn = 0 for x1 = L and u = 0 on the remaining boundaries.

For spatial discretization we use the Hood-Taylor finite element pair for
k = 2 on a triangulation T which is constructed by subdividingΩ into 16×4×4
sub-cubes each consisting of 6 tetrahedra. For this fixed spatial discretization
different time integration schemes are analyzed for different time step sizes
Δt = T/nt where nt = 25, 50, 100, 200, 400, 800 denotes the number of time
steps applied to obtain the approximations 	unt , 	p nt to 	u(T ), 	p(T ), respec-
tively. As the exact solutions 	u(T ), 	p(T ) of the DAE system (3.22) are not
available we instead use reference solutions 	uref , 	p ref obtained by applying
2000 steps of the fractional-step θ-scheme with step size Δt = 10−3.

nt ‖�uref − �unt‖L2 order ‖�uref − �unt‖1 order ‖�p ref − �p nt‖L2 order

25 3.69 E-5 — 3.54 E-4 — 7.71 E-3 —
50 1.38 E-5 1.42 1.32 E-4 1.43 2.17 E-3 1.83

100 5.69 E-6 1.29 5.40 E-5 1.29 6.51 E-4 1.73
200 2.53 E-6 1.17 2.40 E-5 1.17 2.17 E-4 1.59
400 1.19 E-6 1.09 1.12 E-5 1.09 8.13 E-5 1.42
800 5.75 E-7 1.05 5.43 E-6 1.05 3.38 E-5 1.26

Table 4.1. Convergence behavior of the implicit Euler scheme w.r.t. time step size.

For a fixed spatial coordinate x = (2, 0.5, 0.5) in the center of the domain
Ω, the first velocity component u1(x, t) and pressure p(x, t) are shown as
a function of time t ∈ [0, 2] in Fig. 4.3. Also given are the results for the
implicit Euler scheme (θ = 1), the Crank-Nicolson scheme (θ = 0.5) and the
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Fig. 4.3. Velocity u1 (left) and pressure p (right) at point x = (2, 0.5, 0.5) ∈ Ω as
a function of time. Shown are the reference solution (solid line) and implicit Euler
(circles), Crank-Nicolson (squares) and fractional-step (crosses) solutions for 25 time
steps, respectively.

nt ‖�uref − �unt‖L2 order ‖�uref − �unt‖1 order ‖�p ref − �p nt‖L2 order

25 2.75 E-5 — 6.87 E-4 — 9.16 E-3 —
50 3.84 E-6 2.84 1.38 E-4 2.31 9.65 E-5 6.57

100 6.56 E-7 2.55 6.66 E-6 4.38 4.21 E-5 1.20
200 1.63 E-7 2.00 1.60 E-6 2.06 1.04 E-5 2.02
400 4.07 E-8 2.01 3.98 E-7 2.01 2.57 E-6 2.01
800 9.99 E-9 2.03 9.78 E-8 2.03 6.56 E-7 1.97

Table 4.2. Convergence behavior of the Crank-Nicolson scheme w.r.t. time step
size.

nt ‖�uref − �unt‖L2 order ‖�uref − �unt‖1 order ‖�p ref − �p nt‖L2 order

25 5.85 E-7 — 7.93 E-6 — 2.67 E-4 —
50 3.40 E-7 0.78 3.31 E-6 1.26 5.50 E-5 2.28

100 9.49 E-8 1.84 9.08 E-7 1.87 1.14 E-5 2.27
200 2.37 E-8 2.00 2.30 E-7 1.98 2.56 E-6 2.15
400 5.70 E-9 2.06 5.58 E-8 2.05 6.02 E-7 2.09
800 1.24 E-9 2.20 1.21 E-9 2.20 1.31 E-7 2.20

Table 4.3. Convergence behavior of the fractional-step θ-scheme w.r.t. time step
size.

fractional-step θ-scheme applying 25 steps with time step size Δt = 0.08. We
notice an oscillatory behavior of the Crank-Nicolson scheme in the first time
steps which is probably due to the fact that this method does not have a good
smoothing property, as explained in Sect. 4.1.

Tables 4.1–4.3 show the convergence w.r.t. time step size for the different
time discretization schemes. The numerical experiments confirm the first order
convergence of the implicit Euler scheme and second order convergence of the
Crank-Nicolson and the fractional-step θ-scheme.
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Comparing the second order schemes we observe that the errors for the
fractional-step scheme are smaller than those of the Crank-Nicolson scheme by
about a factor of 10. Note, however, that in the fractional-step scheme three
macro-steps are performed per time step, and thus for a fair comparison it
should be compared to a Crank-Nicolson scheme with a time step size divided
by 3. This would lead to Crank-Nicolson errors which are roughly 32 = 9 times
smaller than those in Table 4.2 and thus are of the same order of magnitude
as the errors in the fractional-step scheme given in Table 4.3.

4.5 Discussion and additional references

In this chapter we restricted ourselves to basic, but still very popular, time dis-
cretization methods for non-stationary (Navier-)Stokes equations. We briefly
discuss a few related aspects.

Error analyses of a fully (space and time) discrete problem as in (4.21) are
presented in [141, 142, 143]. In the literature there are only very few studies on
adaptive time stepping for solving non-stationary Navier-Stokes equations; a
recent paper is [154]. There are several variants of the fractional-step θ-scheme
for the Navier-Stokes equations based on different operator splittings. Some
of these are discussed in [122]. A popular variant is based on a semi-implict
treatment of the nonlinear term in the Navier-Stokes equations. In such a
method one replaces the term N(	un+θ)	un+θ in (4.24) by N(	un)	un+θ, and
similarly for the nonlinear terms in (4.25), (4.26), cf. [206]. Alternatively,
instead of replacing 	un+θ by 	un one can also replace it by a more accurate
extrapolation of 	un and 	un−1. Other semi-implicit methods are explained in
[206].

A class of methods that is particularly popular in the engineering litera-
ture are the so-called projection methods. These methods have a predictor-
corrector structure, in which in the predictor step, which does not involve
pressure, a new velocity field is determined and in the corrector step, which
involves a pressure variable, this new velocity field is “projected” onto the sub-
space of divergence free functions. To explain the main idea we consider a basic
variant of this method in semi-discrete form only, i.e. we discretize in time but
not in space, and formulate it in strong formulation. Let un ∈ V := H1

0 (Ω)3

be a given approximation of u(·, tn). We define ũn+1 ∈ V as the solution of

1
Δt

(
ũn+1 − un

)
− 1
Re

Δũn+1 + (un · ∇)ũn+1 = g(tn+1).
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The approximation ũn+1 ≈ u(·, tn+1) is projected onto the space of divergence
free functions by solving a saddle point problem: determine un+1 ∈ V and
q ∈ L2

0(Ω) such that

1
Δt

(
un+1 − ũn+1

)
+∇q = 0 in Ω

div un+1 = 0 in Ω

un+1 · n = 0 on ∂Ω.

An detailed study of this projection method and variants of it can be found
in [176].
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Iterative solvers

In this chapter we address the issue of iterative solvers for the large sparse
(nonlinear) systems of equations that arise after space and time discretization
(using an implicit time integration method) of the non-stationary Stokes and
Navier-Stokes equations.

5.1 Linearization method

Using an implicit time-stepping scheme for the Navier-Stokes problem we
obtain a nonlinear system of algebraic equations in each time step. As an
example, we consider the first step (4.24) in the fractional-step θ-scheme (note
that the other two steps have a similar form). The nonlinear system is as
follows: ⎧

⎪⎨

⎪⎩

(
1
θΔtM + αA

)
	un+θ + αN(	un+θ)	un+θ + BT 	̃p1

= 	fn +
(

1
θΔtM− (1− α)(A + N(	un)

)
	un

B	un+θ = 0.
(5.1)

This is a nonlinear system of the form

K(x)
(
x
y

)
=

(
b
c

)
, with K(x) =

(
αA + 1

θΔtM + αN(x) BT

B 0

)
. (5.2)

Systems arising in other time discretization methods have a very similar struc-
ture. If instead of a Navier-Stokes problem we consider a Stokes equation, the
resulting discrete problem has a structure as in (5.2) but without the term
N(x).

As a first step in solving the nonlinear system of equations in (5.2) a
linearization approach has to be applied. One possibility is to use a Newton
linearization. Here we consider a simpler method that is often used in practice
and in which the computation of Jacobians is avoided. This Richardson type
of method is as follows, cf. [244]:
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(
xk+1

yk+1

)
=

(
xk

yk

)
− ωk+1K(xk)−1

[
K(xk)

(
xk

yk

)
−

(
b
c

)]
. (5.3)

For a compact notation the correction is denoted by
(
Δxk

Δyk

)
:= K(xk)−1

[
K(xk)

(
xk

yk

)
−

(
b
c

)]
.

An optimality criterion for fixing the step length ωk+1 is given by the one
dimensional optimization problem

ωopt = arg min
ω

∥
∥∥
∥K(xk − ωΔxk)

(
xk − ωΔxk

yk − ωΔyk

)
−

(
b
c

)∥
∥∥
∥ . (5.4)

Here ‖ · ‖ denotes the Euclidean norm. This strategy is known as line search.
This approach, however, is not feasible in our applications as the optimization
problem in (5.4) is nonlinear in ω and computing the optimal ω-value would
require too much computational work. Therefore we modify the criterion in
(5.4) to obtain a computationally more feasible one:

ω̃opt = argmin
ω

∥∥
∥
∥K̃

(
xk − ωΔxk

yk − ωΔyk

)
−

(
b
c

)∥∥
∥
∥ (5.5)

with K̃ := K(xk − ωkΔxk), using the step length ωk from the previous iter-
ation (and ω0 := 1 at the beginning). This modified optimization problem is
linear in ω and its solution is given by

ω̃opt =

〈
K̃

(
Δxk

Δyk

)
, K̃

(
xk

yk

)
−

(
b
c

)〉

∥
∥
∥∥K̃

(
Δxk

Δyk

)∥
∥
∥∥

2 , (5.6)

where 〈·, ·〉 denotes the Euclidean scalar product. Note that the evaluation of
(5.6) only requires the construction of K̃ = K(xk − ωkΔxk) and the com-
putation of some matrix-vector multiplications and scalar products. This is
negligible effort compared to the most time consuming part in the iteration
(5.3), namely the solution of a linear problem with matrix K(xk). The method
in (5.3) with the choice ωk+1 = ω̃opt from (5.6) is called adaptive defect cor-
rection method.

In our applications we experienced that the step length control given by
(5.6) is more robust than using a fixed step length ωk+1 = ω. The method is
implemented in the following form.

Algorithm 5.1.1 (adaptive defect correction)
Set ω0 = 1. Repeat until desired accuracy:

1. Calculate the defect
(
d1

d2

)
=

((
αA + 1

θΔtM + αN(xk)
)
xk + BTyk − b

Bxk − c

)
.
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2. Solve the discrete Oseen system for the corrections Δxk and Δyk:

[αA +
1
θΔt

M + αN(xk)]Δxk + BTΔyk = d1

BΔxk = d2,

with accuracy tolk.
3. Step size control: Calculate the step length parameter

ωk+1 :=

〈
K̃

(
Δxk

Δyk

)
, K̃

(
xk

yk

)
−

(
b
c

)〉

∥∥
∥
∥K̃

(
Δxk

Δyk

)∥∥
∥
∥

2 (5.7)

with

K̃ :=
(
αA + 1

θΔtM + αN(xk − ωkΔxk) BT

B 0

)
.

4. Update xk, yk (
xk+1

yk+1

)
=

(
xk

yk

)
− ωk+1

(
Δxk

Δyk

)
.

The computational costs of this linearization method are dominated by the
arithmetic work needed for solving the linear system in step 2. The discrete
Oseen system in step 2 can be solved using iterative solvers that are treated
in Sect. 5.3.

Remark 5.1.2 If we take ωk = 1 for all k then the linearization takes the
simpler form

(
αA + 1

θΔtM + αN(xk) BT

B 0

)(
xk+1

yk+1

)
=

(
b
c

)
.

This fixed point method is also often used for linearization of the discrete
Navier-Stokes equations.

Note that in case of a Stokes problem a linearization method is not needed.
In the following sections we treat iterative solvers that can be used for solving
the large sparse linear systems that arise after discretization and linearization
of (Navier-)Stokes equations.

5.2 Iterative solvers for symmetric saddle
point problems

The discrete (generalized) Stokes problem has a matrix-vector representation
of the form
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K
(
x
y

)
:=

(
Ã BT

B 0

)(
x
y

)
=

(
f1
f2

)
,

Ã := αA + βM ∈ R
m×m, B ∈ R

n×m,

(5.8)

where either the parameters are α = 1, β = 0 (stationary Stokes) or α, β > 0
are determined by the time integration scheme used. In that case the param-
eter α is of order 1 and β is proportional to 1/Δt ∈ (0,∞). From a rescaling
argument it follows that for the analysis it is no restriction to assume α = 1.

The matrix Ã is symmetric positive definite. An important role is played
by the so-called Schur complement matrix

S = BÃ−1BT .

This matrix is symmetric positive semi-definite. To avoid technical details in
the analysis we assume that

rank(B) = n, (5.9)

i.e., the matrix B has full rank. Then the Schur complement S is symmetric
positive definite.

Remark 5.2.1 In our applications the assumption rank(B) = n usually does
not hold. Consider a Hood-Taylor finite element pair and a matrix B as in
(3.18d). Let e := (1, 1, . . . , 1)T ∈ R

n be the vector representation of the con-
stant finite element pressure function 1 ∈ X

k−1
h . Using the LBB stability of the

finite element spaces it follows that BTy = 0 iff y ∈ span(e). Hence rank(B) =
n− 1 holds. Let Mp be the mass matrix in the pressure finite element space
X
k−1
h . The pressure finite element subspace

{
ph ∈ X

k−1
h : (ph, 1)L2 = 0

}
cor-

responds to the subspace (Mpe)⊥ := {y ∈ R
n : 〈y,Mpe〉 = 0 }. The Schur

complement S is an isomorphism (Mpe)⊥ → e⊥. The results (and methods)
discussed below for the case rank(B) = n also apply (with minor modifica-
tions) to the case discussed in this remark with rank(B) = n − 1, provided
instead of S : R

n → R
n one considers S : (Mpe)⊥ → e⊥.

The matrix K is symmetric and strongly indefinite and has a saddle point
structure.

Lemma 5.2.2 The matrix K has m strictly positive and n strictly negative
eigenvalues.

Proof. From the factorization

K =
(
Ã 0
B I

)(
Ã−1 0

0 −S

)(
Ã BT

0 I

)

it follows that K is congruent to the matrix blockdiag(Ã−1,−S) which has
m strictly positive and n strictly negative eigenvalues. Now apply Sylvester’s
inertia theorem. �
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Remark 5.2.3 Consider the linear system

K
(
x
y

)
=

(
f1
f2

)
. (5.10)

Define the functional L : R
m × R

n → R by L(x,y) = 1
2 〈Ãx,x〉 + 〈Bx,y〉 −

〈f1,x〉 − 〈f2,y〉. It can be shown that (x∗,y∗) is a solution of the problem
(5.10) iff

L(x∗,y) ≤ L(x∗,y∗) ≤ L(x,y∗) for all x ∈ R
m, y ∈ R

n.

Due to this property the linear system is called a saddle-point problem. This
saddle point property is discussed in a general Hilbert space setting in Theo-
rem 15.3.3.

In Sect. 5.2.1 we treat the preconditioned MINRES method for solving a linear
system with a symmetric indefinite matrix. This method can be applied to the
system in (5.8). In Sect. 5.2.2 we discuss an alternative, namely the inexact
Uzawa method. In Sect. 5.4 we address the issue of preconditioning.

5.2.1 Preconditioned MINRES

In this section we treat the preconditioned MINRES method that can be used
for solving the saddle point system in (5.8).

First we recall some basic ideas underlying this method. For this we con-
sider a linear system

Ax = b, (5.11)

where A is a general regular symmetric n × n-matrix. Note the abuse of
notation: in this section A is not (necessarily) the same as the matrix A in
(5.8). We emphasize that A in (5.11) is allowed to be indefinite. The MINRES
method, introduced in [199], is based on the following residual minimization
problem:

{
Given x0 ∈ R

n, determine xk ∈ x0 +Kk(A; r0) such that

‖Axk − b‖ = min{ ‖Ax− b‖ | x ∈ x0 +Kk(A; r0) },
(5.12)

where r0 := b − Ax0 and Kk(A; r0) := span{r0,Ar0, . . . ,Ak−1r0} is the
Krylov subspace. Note that the Euclidean norm is used and that for any regu-
lar A this minimization problem has a unique solution xk, which is illustrated
in Fig. 5.1.

We have a projection: r0−rk is the orthogonal projection (with respect to
〈·, ·〉) of r0 on A(Kk(A; r0)) = span{Ar0,A2r0, . . . ,Akr0}. For the MINRES
algorithm for computing this xk we refer to the literature, e.g. [199, 124].
In the derivation of an efficient MINRES algorithm it is essential that A is
symmetric. The resulting method has low arithmetic costs per iteration, which
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r0 = b − Ax0

rk

r0 − rk

R

R = A(Kk(A; r0))

Fig. 5.1. Residual minimization.

are of the same order of magnitude as those in a CG iteration. Per iteration
one has to perform only one matrix-vector multiplication Ay, and one has to
compute a few inner products and a few vector additions.

This method can be combined with preconditioning. For this we assume
a symmetric positive definite preconditioner Q. Let Q

1
2 be the symmetric

positive definite matrix such that Q = Q
1
2 Q

1
2 . For the derivation of the

preconditioned MINRES method we consider the preconditioned system

Q− 1
2 AQ− 1

2 z = Q− 1
2 b, z = Q

1
2 x.

Note that Â := Q− 1
2 AQ− 1

2 is symmetric. Thus the MINRES algorithm can
be applied to this, resulting in the preconditioned MINRES method, denoted
by PMINRES. The residual minimization criterion in (5.12) applied to the
transformed system can be reformulated as follows:

⎧
⎨

⎩

Given x0 ∈ R
n, compute xk ∈ x0 +Kk(Q−1A;Q−1r0) such that

‖Q−1Axk −Q−1b‖Q
= min{ ‖Q−1Ax −Q−1b‖Q | x ∈ x0 +Kk(Q−1A;Q−1r0) },

with r0 = b −Ax0 and 〈·, ·〉Q = 〈Q·, ·〉. From this we see that now the pre-
conditioned residual Q−1(b−Ax) is minimized (in ‖ · ‖Q) over a transformed
Krylov subspace. An efficient implementation of the preconditioned MINRES
method can be derived in which one needs per iteration one evaluation of the
preconditioner, i.e. the computation of Q−1y for a given y, and one matrix-
vector product with A. Note that w = Q−1y ⇔ Qw = y holds, i.e. the
evaluation of the preconditioner may be realized by solving a linear system
with the matrix Q. The matrix Q

1
2 is not used in the algorithm. For Q = I the

PMINRES reduces to MINRES. A convergence result is given in the following
theorem.
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Theorem 5.2.4 Let A ∈ R
n×n be symmetric and Q ∈ R

n×n symmetric
positive definite. For xk, k ≥ 0, computed in the preconditioned MINRES
algorithm we define r̂k = Q−1(b−Axk). The following holds:

‖r̂k‖Q = min
pk∈Pk;pk(0)=1

‖pk(Q−1A)r̂0‖Q

≤ min
pk∈Pk;pk(0)=1

max
λ∈σ(Q−1A)

|pk(λ)| ‖r̂0‖Q.
(5.13)

Proof. Using the fact that the transformed residual Q−1(b−Ax) is minimized
with x ∈ x0 +Kk(Q−1A;Q−1r0) we get

‖r̂k‖Q = min
pk−1∈Pk−1

‖Q−1b−Q−1A
(
x0 + pk−1(Q−1A)r̂0

)
‖Q

= min
pk−1∈Pk−1

‖r̂0 −Q−1Apk−1(Q−1A)r̂0‖Q

= min
pk∈Pk;pk(0)=1

‖pk(Q−1A)r̂0‖Q.

Note that Q−1A is symmetric with respect to 〈·, ·〉Q. And thus

‖pk(Q−1A)r̂0‖Q ≤ ‖pk(Q−1A)‖Q‖r̂0‖Q = max
λ∈σ(Q−1A)

|pk(λ)| ‖r̂0‖Q

holds. �

For constructing a good preconditioner Q there are the following two main
criteria:

• for arbitrary z ∈ R
n one can determine Q−1z with “low” computational

costs, and
• Q is a good approximation of A in the sense that

m̂(k) := min
pk∈Pk;pk(0)=1

max
λ∈σ(Q−1A)

|pk(λ)|

has a “fast decrease” as a function of k.

By using Chebyshev polynomials and assumptions on the spectrum σ(Q−1A)
one can derive bounds for m̂(k). We present two results that are well-known
in the literature. Proofs are given in, for example, [124].

Theorem 5.2.5 Let A,Q and r̂k be as in Theorem 5.2.4. Assume that all
eigenvalues of Q−1A are positive. Then

‖r̂k‖Q
‖r̂0‖Q

≤ m̂(k) ≤ 2

(

1− 2
√
κ(Q−1A) + 1

)k

, k = 0, 1, . . .

holds.
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We note that in this bound the dependence on the condition number κ(Q−1A)
is the same as in well-known bounds for the preconditioned CG method. In
particular the bound decreases (i.e., the rate of convergence is expected to be
higher) for a decreasing condition number κ(Q−1A).

Theorem 5.2.6 Let A,Q and r̂k be as in Theorem 5.2.4. Assume that
σ(Q−1A) ⊂ [a, b] ∪ [c, d] with a < b < 0 < c < d and b− a = d− c. Then

‖r̂k‖Q
‖r̂0‖Q

≤ m̂(k) ≤ 2

⎛

⎝1− 2
√

ad
bc + 1

⎞

⎠

[k/2]

, k = 0, 1, . . . (5.14)

holds ([k/2] denotes the largest n ∈ N such that n ≤ k/2).

In the special case a = −d, b = −c the reduction factor in (5.14) takes the
form 1 − 2/(κ(Q−1A) + 1). Note that here the dependence on κ(Q−1A) is
different from the positive definite case in Theorem 5.2.5.

Preconditioned MINRES for saddle point systems

The PMINRES method can be applied to the symmetric system (5.8) which
has a special block structure. Based on this block structure we introduce a
preconditioner with a block diagonal structure

Q :=
(
QA 0
0 QS

)

QA ∈ R
m×m, QA = QT

A > 0, QS ∈ R
n×n, QS = QT

S > 0.
(5.15)

Here and in the remainder the notation A > C (A ≥ C), with symmetric
matrices A and C, means that A −C is symmetric positive (semi-)definite,
i.e., all eigenvalues of A−C are > 0 (≥ 0). Such matrix inequalities are called
spectral inequalities.

The preconditioned matrix is given by

K̂ = Q− 1
2 KQ− 1

2 =
(
Â B̂T

B̂ 0

)
,

Â := Q− 1
2

A ÃQ− 1
2

A , B̂ := Q− 1
2

S BQ− 1
2

A .

(5.16)

Theorem 5.2.4 yields that the rate of convergence of the preconditioned MIN-
RES method depends on σ(Q−1K) = σ(K̂). We now derive bounds for this
spectrum. First we consider a very special preconditioner, which in a certain
sense is optimal:

Lemma 5.2.7 For QA = Ã and QS = S we have

σ(K̂) ⊂ { 1
2
(1−

√
5) , 1 ,

1
2
(1 +

√
5) }.
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Proof. Note that in this case

K̂ =
(

I B̂T

B̂ 0

)
, B̂ = S− 1

2 BÃ− 1
2 .

Take μ ∈ σ(K̂) with corresponding eigenvector
(

v
w

)
�=

(
0
0

)
, i.e.,

(
I B̂T

B̂ 0

)(
v
w

)
= μ

(
v
w

)
. (5.17)

If w = 0 holds, then v �= 0, and from v = μv it follows that μ = 1. Now
assume w �= 0. From (5.17) we get B̂B̂Tw = μ(μ− 1)w. Note that B̂B̂T = I
and thus we conclude μ(μ− 1) = 1, hence μ = 1

2 (1±
√

5). �

Note that from the result in (5.13) it follows that the preconditioned MINRES
method with the preconditioner as in Lemma 5.2.7 yields (in exact arithmetic)
the exact solution in at most three iterations. In the evaluation of the pre-
conditioner, however, we have to solve linear systems with the matrix Ã and
with the matrix S exactly (up to rounding errors). In most applications (e.g.,
the Stokes problem) this is extremely costly. Hence this preconditioner is not
feasible.

Remark 5.2.8 In the applications that we consider the Schur complement
matrix S = BÃ−1BT is never computed explicitly. This is due to the fact that
the matrix Ã−1 is not sparse anymore: it contains much more nonzero entries
than the matrix Ã. Depending on the particular problem, the triangulation
and the finite element spaces used, the matrix Ã−1 has between O(m1.5) and
O(m2) nonzero entries, whereas the sparse matrix Ã has only O(m) nonzero
entries. For a given vector y the matrix-vector product Sy can be computed
by using Sy = B(Ã−1(BTy)). The exact computation of this (up to machine
accuracy), however, is still very costly, because it requires to solve a linear
system of the form Ãz = BTy up to machine accuracy. These observations
explain, why in our applications we often use approximate Schur complements.

Instead of the preconditioning approach in Lemma 5.2.7 we will use approxi-
mations QA of Ã and QS of S. The quality of these approximations is mea-
sured by using spectral inequalities. For given preconditioners QA and QS let
ΓA, ΓS , γA, γS > 0 be such that:

γAQA ≤ Ã ≤ ΓAQA,

γSQS ≤ S ≤ ΓSQS .
(5.18)

Using an analysis as in [212, 224] we obtain a result for the eigenvalues of the
preconditioned matrix:
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Theorem 5.2.9 For the matrix K̂ as in (5.16) with preconditioners that
satisfy (5.18) we have:

σ(K̂) ⊂
[

1
2
(
γA −

√
γ2
A + 4ΓSΓA

)
,

1
2
(γA −

√
γ2
A + 4γSγA

) ]

∪
[
γA ,

1
2
(
ΓA +

√
Γ 2
A + 4ΓSΓA

) ]
.

Proof. We use the following inequalities

γAI ≤ Â ≤ ΓAI (5.19a)
γAÃ−1 ≤ Q−1

A ≤ ΓAÃ−1 (5.19b)

γSI ≤ Q− 1
2

S SQ− 1
2

S ≤ ΓSI. (5.19c)

Note that B̂B̂T = Q− 1
2

S BQ−1
A BTQ− 1

2
S . Using (5.19b) and (5.19c) we get

γAγSI ≤ B̂B̂T ≤ ΓAΓSI. (5.20)

Take μ ∈ σ(K̂). Then μ �= 0 and there exists (v,w) �= (0, 0) such that

Âv + B̂Tw = μv

B̂v = μw.
(5.21)

From v = 0 it follows that w = 0, hence, v �= 0 must hold. From (5.21)
we obtain (Â + 1

μB̂
T B̂)v = μv and thus μ ∈ σ(Â + 1

μ B̂T B̂). Note that all

nonzero eigenvalues of B̂T B̂ are also eigenvalues of B̂B̂T . We first consider
the case μ > 0. Using (5.20) and (5.19a) we get

γAI ≤ Â +
1
μ
B̂T B̂ ≤ (ΓA +

1
μ
ΓSΓA)I,

and thus γA ≤ μ ≤ ΓA + 1
μΓSΓA holds. This yields

μ ∈
[
γA ,

1
2
(ΓA +

√
Γ 2
A + 4ΓSΓA)

]
.

We now consider the case μ < 0. From (5.20) and (5.19a) it follows that

Â +
1
μ
B̂T B̂ ≥ (γA +

1
μ
ΓSΓA)I,

and thus μ ≥ γA + 1
μΓSΓA. This yields μ ≥ 1

2 (γA −
√
γ2
A + 4ΓSΓA). Finally

we derive an upper bound for μ < 0. We introduce ν := −μ > 0. From (5.21)
it follows that for μ < 0, w �= 0 must hold. Furthermore, we have
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B̂(Â + νI)−1B̂Tw = νw,

and thus ν ∈ σ(B̂(Â+ νI)−1B̂T ). From I+ νÂ−1 ≤ (1 + ν
γA

)I and (5.19c) we
obtain

B̂(Â + νI)−1B̂T = B̂Â− 1
2 (I + νÂ−1)−1Â− 1

2 B̂T ≥ (1 +
ν

γA
)−1B̂Â−1B̂T

= (1 +
ν

γA
)−1Q− 1

2
S SQ− 1

2
S ≥ (1 +

ν

γA
)−1γSI.

We conclude that ν ≥ (1 + ν
γA

)−1γS holds. Hence, for μ = −ν we get μ ≤
1
2 (γA −

√
γ2
A + 4γSγA). �

Remark 5.2.10 Note that if γA = ΓA = γS = ΓS = 1, i.e., QA = Ã and
QS = S, we obtain σ(K̂) = { 1

2 (1−
√

5)} ∪ [ 1 , 1
2 (1 +

√
5) ], which is sharp (cf.

Lemma 5.2.7).

From the results in Theorem 5.2.9 and Theorem 5.2.4 it follows that one can
expect fast convergence of the preconditioned MINRES method if the spectral
constants γA, ΓA, γS and ΓS are close to 1, in other words, if we have good
preconditioners QA and QS of Ã and S, respectively. In particular, we have
robustness with respect to variation of parameters (for example, mesh size h
or parameters α, β in (5.8)) if these spectral constants are independent of the
parameters.

The (P)MINRES method treated above is a popular method from the class of
so-called Krylov subspace methods. The basic idea of the MINRES method
(and other Krylov subspace methods) is that one determines a certain “best”
approximation of the solution in the Krylov subspace, cf. (5.12). The error in
this approximation decreases due to the fact that the dimension of the Krylov
subspace increases if the iteration index k increases. The special saddle point
block structure of the matrix K is not used in the MINRES method. The block
structure is used in the block diagonal preconditioner in (5.15). In the next
section we discuss an iterative method that is based on a comletely different
idea, namely an approximate block LU-factorization of the matrix K.

5.2.2 Inexact Uzawa method

The matrix K has a block factorization

K =
(
Ã 0
B −I

)(
I Ã−1BT

0 S

)
, S = BÃ−1BT .

Solving the problem K
(
x
y

)
=

(
f1
f2

)
by block forward-backward substitution

yields the equivalent problem:
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1. Solve Ãz = f1. (5.22)
2. Solve Sy = Bz− f2. (5.23)

3. Solve Ãx = f1 −BTy. (5.24)

In the Uzawa method one applies an iterative solver (e.g., CG) to the Schur
complement system in step 2. Note that the matrix S in this system is sym-
metric positive definite. The Ã-systems that occur in each iteration of this
method and in the steps 1 and 3 are solved sufficiently accurate using some
fast Poisson solver.
We consider a simple variant of this method in which the solutions of the
Ã-systems are replaced by approximate ones. Let QA be a preconditioner
of Ã. We use this preconditioner in the steps 1 and 3 and also for the ap-
proximation of the Schur complement in step 2. For this we introduce the
notation

Ŝ := BQ−1
A BT (5.25)

for the approximate Schur complement. For solving linear systems with the
matrix Ŝ we use an (possibly nonlinear) iterative method denoted by Ψ : for
each w, Ψ(w) is an approximation to the solution z∗ of Ŝz = w. We assume
that

‖Ψ(w)− z∗‖Ŝ ≤ δ‖z∗‖Ŝ for all w (5.26)

holds with a given tolerance parameter 0 < δ < 1. The most important
example for Ψ is a (preconditioned) CG method. Let (xk,yk) be a given
approximation to the solution (x,y). Note that using the block factorization
of K we get

(
x
y

)
=

(
xk

yk

)
+

(
I −Ã−1BTS−1

0 S−1

)(
Ã−1 0

BÃ−1 −I

)[(
f1
f2

)
−K

(
xk

yk

)]
.

(5.27)
Using the approximations Ã−1 ≈ Q−1

A , S−1w ≈ Ŝ−1w ≈ Ψ(w) and the
notation rk1 := f1 − Ãxk −BTyk we obtain the (nonlinear) iterative method

xk+1 = xk + Q−1
A rk1 −Q−1

A BTΨ
(
B(Q−1

A rk1 + xk)− f2
)

yk+1 = yk + Ψ
(
B(Q−1

A rk1 + xk)− f2
)
.

(5.28)

Thus we obtain an inexact Uzawa method with the following algorithmic struc-
ture:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x0

y0

)
: starting vector; r0

1 := f1 − Ãx0 −BTy0

for k ≥ 0 :

w := xk + Q−1
A rk1

z := Ψ(Bw − f2
)

xk+1 := w −Q−1
A BT z

yk+1 := yk + z

rk+1
1 := rk1 − Ã(xk+1 − xk)−BT z.

(5.29)

We take Ψ(·) is as follows:

Ψ(Bw − f2) =
{

Result of � PCG iter. applied to Ŝv = Bw− f2
with initialization 0 and preconditioner QS .

(5.30)

This algorithm consists of an inner-outer iteration. In the algorithm we use
preconditioners QA of Ã and QS of Ŝ ≈ S. An analysis of this method is
given in [202] where it is shown that in the inner iteration (5.30) one should
use very small �-values (� = 1, 2), cf. Remark 5.2.16 below, and that this
inexact Uzawa method is an efficient solver for the saddle point problem (5.8)
provided

we have good preconditioners QA of Ã and QS of S. (5.31)

Remark 5.2.11 In [202] it is shown that the algorithm (5.29) can be imple-
mented in such a way that per outer iteration one needs �+ 1 evaluations of
the preconditioner Q−1

A , � evaluations of Q−1
S , �+ 1 matrix-vector multiplica-

tions with B, � matrix-vector multiplications with BT and one matrix-vector
multiplication with Ã.

We discuss the convergence analysis from [202]. We assume that for the pre-
conditioner QA we have

γAQA ≤ Ã ≤ QA. (5.32)

We make the scaling assumption Ã ≤ QA because it simplifies the analysis
and it is often satisfied in practice, for example it is fulfilled for a multigrid
preconditioner, cf. Sect. 5.4.2. This scaling assumption, however, is not essen-
tial neither for the algorithm nor for the convergence analysis.
In the analysis we use the following natural norms:

‖x‖Q := ‖Q
1
2
Ax‖ = 〈QAx,x〉 1

2 for x ∈ R
m,

‖y‖Ŝ := ‖Ŝ 1
2 y‖ = 〈Ŝy,y〉 1

2 for y ∈ R
n.
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For the error in algorithm (5.29) we use the notation

ek =
(
x
y

)
−

(
xk

yk

)
=:

(
ek1
ek2

)
.

Lemma 5.2.12 For w as in (5.29) and d2 := Bw− f2 we have the bound

〈Ŝ−1d2,d2〉
1
2 ≤ (1− γA)‖ek1‖Q + ‖ek2‖Ŝ .

Proof. Define ‖y‖Ŝ−1 = 〈Ŝ−1y,y〉 1
2 . Note that for the exact discrete solution

x we have Bx = f2. Using this and the definition of w we get

Bw− f2 = Bxk −Bx + BQ−1
A (Ãek1 + BTek2) = −B(I−Q−1

A Ã)ek1 + Ŝek2 .

Hence,

〈Ŝ−1d2,d2〉
1
2 = ‖d2‖Ŝ−1 ≤ ‖B(I−Q−1

A Ã)ek1‖Ŝ−1 + ‖Ŝek2‖Ŝ−1

≤ ‖Ŝ− 1
2 B(I−Q−1

A Ã)Q− 1
2

A ‖‖Q
1
2
Aek1‖+ ‖Ŝ 1

2 ek2‖.

Now note that

‖Ŝ− 1
2 B(I−Q−1

A Ã)Q− 1
2

A ‖ ≤ ‖Ŝ− 1
2 BQ− 1

2
A ‖‖Q

1
2
A(I−Q−1

A Ã)Q− 1
2

A ‖,

and

‖Ŝ− 1
2 BQ− 1

2
A ‖2 = ρ(Ŝ− 1

2 BQ−1
A BT Ŝ− 1

2 ) = ρ(I) = 1,

‖Q
1
2
A(I−Q−1

A Ã)Q− 1
2

A ‖ = ρ(I−Q− 1
2

A ÃQ− 1
2

A ) ≤ 1− γA.

This completes the proof. �

We now derive a main result on the error reduction in the inexact Uzawa
method.

Theorem 5.2.13 Consider the inexact Uzawa method (5.29) with Ψ such
that (5.26) holds. For the error ek = (ek1 , e

k
2) we have the bounds

‖ek+1
1 ‖Q ≤ (1− γA)‖ek1‖Q + ‖ek+1

2 ‖Ŝ , (5.33)

‖ek+1
2 ‖Ŝ ≤ (1− γA)(1 + δ)‖ek1‖Q + δ‖ek2‖Ŝ , (5.34)

with γA from (5.32) and δ from (5.26).

Proof. For the error component ek+1
1 we have the relations

ek+1
1 = x− xk+1 = x−w + Q−1

A BT z

= x− xk −Q−1
A (Ãek1 + BTek2 −BT z)

= (I−Q−1
A Ã)ek1 −Q−1

A BT (ek2 − z)

= (I−Q−1
A Ã)ek1 −Q−1

A BT ek+1
2 .
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Hence,

‖ek+1
1 ‖Q ≤ ‖I−Q− 1

2
A ÃQ− 1

2
A ‖‖ek1‖Q + ‖Q− 1

2
A BT Ŝ− 1

2 ‖‖ek+1
2 ‖Ŝ.

In combination with

‖I−Q− 1
2

A ÃQ− 1
2

A ‖ ≤ 1− γA, ‖Q− 1
2

A BT Ŝ− 1
2 ‖ = 1,

this proves the inequality in (5.33). For the error component ek+1
2 we obtain,

with d2 := Bw − f2,

ek+1
2 = y − yk+1 = ek2 − z = (ek2 − Ŝ−1d2) + (Ŝ−1d2 − z). (5.35)

For the first term we get

‖ek2 − Ŝ−1d2‖Ŝ = ‖ek2 − Ŝ−1B(xk + Q−1
A Ãek1 + Q−1

A BTek2)‖Ŝ
= ‖ek2 + Ŝ−1B(I−Q−1

A Ã)ek1 − Ŝ−1BQ−1
A BTek2‖Ŝ

= ‖Ŝ−1B(I−Q−1
A Ã)ek1‖Ŝ

≤ ‖Ŝ− 1
2 BQ− 1

2
A ‖‖I−Q− 1

2
A ÃQ− 1

2
A ‖‖ek1‖Q

≤ (1− γA)‖ek1‖Q. (5.36)

Furthermore, using (5.26) and Lemma 5.2.12 we also have

‖Ŝ−1d2 − z‖Ŝ = ‖Ŝ−1d2 − Ψ(d2)‖Ŝ ≤ δ ‖Ŝ−1d2‖Ŝ
= δ 〈Ŝ−1d2,d2〉

1
2 ≤ δ

(
(1− γA)‖ek1‖Q + ‖ek2‖Ŝ

)
.

(5.37)

Combination of the results in (5.35), (5.36), (5.37) proves the inequality in
(5.34). �

As a simple consequence of this theorem we obtain the following convergence
result:

Theorem 5.2.14 Define

μA := 1− γA, g(μA, δ) := 2μA + δ(1 + μA). (5.38)

Consider the inexact Uzawa method (5.29) with Ψ such that (5.26) holds.
For the error ek = (ek1 , e

k
2) we have the bounds

max
{
‖ek+1

1 ‖Q, ‖ek+1
2 ‖Ŝ

}
≤ g(μA, δ) max

{
‖ek1‖Q, ‖ek2‖Ŝ

}
, (5.39)

‖ek1‖Q + ‖ek2‖Ŝ ≤ 3
1
2

(g(μA, δ) +
√
g(μA, δ)2 − 4μAδ
2

)k
(‖e0

1‖Q + ‖e0
2‖Ŝ).

(5.40)
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Proof. Define the matrix

C =
(
μA(2 + δ) δ
μA(1 + δ) δ

)
.

Due to Theorem 5.2.13 we obtain
(
‖ek+1

1 ‖Q
‖ek+1

2 ‖Ŝ

)
≤ C

(
‖ek1‖Q
‖ek2‖Ŝ

)
,

where “≤” is meant entrywise. From ‖C‖∞ = g(μA, δ) we obtain the result
in (5.39). The eigenvalues of the matrix C are given by λ1,2 = 1

2g(μA, δ) ±
1
2

√
g(μA, δ)2 − 4μAδ. Thus we have

ρ(C) =
1
2

(
g(μA, δ) +

√
g(μA, δ)2 − 4μAδ

)
.

We have λ1 = λ2 iff μ = δ = 0. Hence there exists an eigenvector decomposi-
tion C = V diag(λ1, λ2)V−1 and

‖ek1‖Q + ‖ek2‖Ŝ ≤ ρ(C)k‖V‖1‖V−1‖1
(
‖e0

1‖Q + ‖e0
2‖Ŝ

)

holds. A MAPLE computation yields that for the condition number (in the
1-norm) of the eigenvector matrix we have the uniform bound

max
0≤μA,δ≤1

‖V‖1‖V−1‖1 ≤ 3
1
2
.

Hence the result in (5.40) holds. �

Corollary 5.2.15 Clearly, the bound for the contraction factor in (5.39) and
the bound for the asymptotic convergence factor in (5.40) depend only on
μA and δ and the bounds are monotonic functions of these parameters. Note
that for μA → 0 we obtain the contraction factor of the exact Uzawa method:
g(0, δ) = δ. We also have g(μA, δ) ≥ 1

2

(
g(μA, δ) +

√
g(μA, δ)2 − 4μAδ

)
and

g(μA, δ) < 1, iff 0 ≤ δ <
1− 2μA
1 + μA

, (5.41)

1
2
(
g(μA, δ) +

√
g(μA, δ)2 − 4μAδ

)
< 1, iff 0 ≤ δ < 1− 2μA. (5.42)

Hence, for μA < 1
2 and δ sufficiently small (as quantified in (5.41), (5.42)) we

have a convergent method.

Remark 5.2.16 We comment on the important special case where we take
for Q−1

A a symmetric multigrid V -cycle, cf. Sect. 5.4.2. Then μA is the con-
traction number (w.r.t. the norm ‖ · ‖A) of this multigrid method. It is
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known from numerical experiments (for our problem class) that in many
cases 0.1 ≤ μA ≤ 0.2 holds. The result in (5.42) shows that for μA ≈ 0.15
we have a convergent method if for the accuracy of the inner method we
take δ � 0.7. Clearly it is not efficient to use a very small value for δ. We
comment on the choice of this parameter δ ∈ (0, 0.7). As an example, we con-
sider the case μA = 0.1. For the contraction number in (5.39) we then have
g(0.1, δ) = 0.2 + 1.1δ. For a given accuracy eps � 1 that is required in the
inexact Uzawa method let k be such that

g(0.1, δ)k ≈ eps.

Then

k ≈ ln(eps)
ln(0.2 + 1.1δ)

(5.43)

holds. We use the ansatz (cf. (5.30)) δ = β with some β < 1, which implies
� = ln δ(lnβ)−1. Note that � (# of inner iterations) is a decreasing function
of δ and k (# of outer iterations) as in (5.43) is an increasing function of δ.
It is reasonable to assume, cf. Remark 5.2.11, that the arithmetic costs in k
iterations of the inexact Uzawa method are dominated by k(�+1) evaluations
of Q−1

A . Hence, one wants to minimize

k(�+ 1) ≈ ln(eps)
lnβ

ln δ + lnβ
ln(0.2 + 1.1δ)

=: kUzawaK(β, δ),

where kUzawa := ln(eps)/ lnβ is the number of iterations of the exact Uzawa
method (μA = 0). For different β values the function δ → K(β, δ) is given
in Fig. 5.2. We see that a close to optimal value for δ is obtained in a broad
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Fig. 5.2. Function δ → K(β, δ) for β = 0.5, 0.8, 0.95.

range, say (in this example) δ ∈ [0.1, 0.5]. We conclude that in order to max-
imize the efficiency of the inexact Uzawa method one should take a low ac-
curacy in the inner solver Ψ (for example, δ = 0.4, cf. (5.26)). Moreover, the
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efficiency is not very sensitive with respect to the precise choice of this inner
accuracy parameter δ. For other μA values (< 0.2) one observes similar effects.

5.3 Iterative Solvers for Oseen problems

The discrete Oseen problem has a matrix-vector representation of the form

K
(
x
y

)
:=

(
Ã BT

B 0

)(
x
y

)
=

(
f1
f2

)
, Ã := α

[
A + N(xold)

]
+βM, (5.44)

where the parameter β is proportional to 1/Δt, cf. (5.1). This linear system
has a saddle point structure but opposite to the discrete generalized Stokes
equation in (5.8) the system matrix K in this case is non-symmetric. For
this type of linear systems, methods similar to the ones used for the Stokes
problem in Sect. 5.2 have been developed. We briefly address two classes of
methods, namely preconditioned Krylov subspace solvers and inexact Uzawa
methods.

Preconditioned Krylov subspace methods

One can apply a Krylov subspace method directly to the saddle point sys-
tem (5.44) and combine this with a block preconditioner, i.e. a preconditioner
that uses the block structure of the saddle point matrix. For standard Krylov
subspace methods applicable to systems with a non-symmetric matrix like
GMRES or BiCGSTAB, and their preconditioned variants, we refer to the
literature, e.g. [213]. It is convenient to allow for a preconditioner that varies
per iteration. Such a variable preconditioner arises if for the preconditioning
of Ã or of the Schur complement one uses an inner Krylov subspace iteration.
Standard methods like GMRES or BiCGSTAB do not allow such variable pre-
conditioners. There are, however, Krylov subspace methods that can handle
variable preconditioners. Such methods are called flexible iterations. Exam-
ples are the GCR (Generalized Conjugate Residual) and GMRESR (recursive
GMRES) methods, cf. [213]. The main idea of GCR is briefly outlined in the
following.

Let (p0,p1, . . . ,pk−1) be a basis of the Krylov subspace Kk(K; r0) :=
span{r0,Kr0, . . . ,Kk−1r0} which is KTK-orthogonal, i.e. such that

〈Kpj ,Kpi〉 = 0 for all i �= j.

Due to this orthogonality property it is easy to compute the solution of a
residual minimization problem as in (5.12). The unique

(
xk

yk

)
=: zk ∈ z0 +Kk(K; r0) such that

∥
∥Kzk − f

∥
∥ is minimal (5.45)
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can be computed recursively by

zk = zk−1 +
〈rk−1,Kpk−1〉
〈Kpk−1,Kpk−1〉 pk−1,

with rk−1 := f −Kzk−1. Computing the KTK-orthogonal basis vectors turns
out to be computationally expensive. The next KTK-orthogonal basis vector
pk can be computed as a linear combination of the residual rk and all previ-
ous basis vectors p0, . . . ,pk−1. The resulting GCR method has the following
algorithmic structure:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0 :=
(
x0

y0

)
: starting vector; r0 :=

(
f1
f2

)
−Kz0; p0 = r0

for k ≥ 0 :

αk :=
〈rk,Kpk〉
〈Kpk,Kpk〉

zk+1 := zk + αkpk

rk+1 := rk − αkKpk

Compute βi,k := −〈Krk+1,Kpi〉
〈Kpi,Kpi〉 for i = 0, 1, . . . , k

pk+1 := rk+1 +
k∑

i=0

βi,kpi.

(5.46)

Opposite to the MINRES method, in the GCR algorithm there is a sig-
nificant growth in the arithmetic costs per iteration if the iteration index k
increases. This is essentially due to the fact that in (5.45) a residual mini-
mization criterion is used. It is known, that for a nonsymmetric matrix in
general this leads to an “expensive” algorithm. Recall that the (cheap) MIN-
RES method is applicable to symmetric matrices only. As in the case of the
methods discussed in the previous section, the GCR method can be combined
with a preconditioner. Furthermore, different mathematically equivalent algo-
rithms of (preconditioned) GCR exist. Below we give a preconditioned GCR
algorithm that is often used in practice. We use the notation Qk (instead
of Q) for the preconditioner to indicate that the preconditioner may change
per iteration.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0 :=
(
x0

y0

)
: starting vector; r0 :=

(
f1
f2

)
−Kz0;

for k ≥ 0 :

sk+1 := Q−1
k rk

ṽk+1 := Ksk+1

sk+1 := sk+1 −
k∑

i=1

〈ṽk+1,vi〉 si

v̂k+1 := ṽk+1 −
k∑

i=1

〈ṽk+1,vi〉vi

sk+1 := sk+1/||v̂k+1||2
vk+1 := v̂k+1/||v̂k+1||2
zk+1 := zk + 〈rk,vk+1〉 sk+1

rk+1 := rk − 〈rk,vk+1〉vk+1.

(5.47)

For the case Qk = I (no preconditioning) one can verify that the algo-
rithms in (5.47) and (5.46) produce the same sequence of approximations
zk (in exact arithmetic). Relations between these two variants, for the case
Qk = I, are vk+1 = Kpk

‖Kpk‖ and sk+1 = pk

‖Kpk‖ .

As for the generalized Stokes problem, the issue of preconditioning, i.e., the
choice of Q−1

k in (5.47), is of great importance for the efficiency of such a
Krylov subspace method. The use of an appropriate preconditioner is often
much more important than the choice of the particular Krylov subspace method
(e.g. GMRESR or GCR).

Concerning suitable block preconditioners for the Oseen problem we start
with the block factorizations

(
Ã BT

B 0

)(
Ã BT

0 −S

)−1

=
(

I 0
BÃ−1 I

)
=: K̂r,

(
Ã 0
B −S

)−1 (
Ã BT

B 0

)
=

(
I Ã−1BT

0 I

)
=: K̂l, S := BÃ−1BT ,

(5.48)

where we assumed that rank(B) = n, and thus S is regular, cf. Remark 5.2.1.
The preconditioned matrices K̂r, K̂l result from “right” and “left” precondi-
tioning” of the matrix K with preconditioners

Qr :=
(
Ã BT

0 −S

)
, Ql :=

(
Ã 0
B −S

)
.

Note that (K̂p − I)2 = 0, p ∈ {r, l} and that both preconditioned matrices
have all eigenvalues equal to 1. If the GMRES method is applied to the left
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preconditioned system Q−1
l Kx = Q−1

l f then the preconditioned residual r̂k =
Q−1
l (f −Kxk) satisfies the optimality property

‖r̂k‖ = min
pk∈Pk;pk(0)=1

‖pk(Q−1
l K)r0‖ = min

pk∈Pk;pk(0)=1
‖pk(K̂l)r0‖.

For p2(z) = (z−1)2 we have p2(K̂l) = 0 and thus one obtains (in exact arith-
metic) the solution of a linear system Kx = b in (at most) two iterations. The
same holds for the GMRES method applied to the right preconditioned sys-
tem with matrix K̂r. Clearly the preconditioners Qr and Ql are not feasible.
In practice one often uses preconditioners of the form

Q :=
(
QA BT

0 −QS

)
, or Q :=

(
QA 0
B −QS

)
, (5.49)

with preconditioners QA of Ã and QS of the Schur complement S. For QA

one can use a multigrid preconditioner (resulting from a multigrid method for
each of the scalar diffusion-convection-reaction type of problems in the block-
diagonal matrix Ã) or some other preconditioned Krylov subspace method
(BiCGSTAB, for example), cf. Sect. 5.4. In the latter case the preconditioner
is nonlinear and changes per iteration, i.e. Q = Qk in (5.49). In such a sit-
uation one needs a flexible Krylov subspace method, like GCR. The issue of
Schur complement preconditioning in the non-symmetric case is much more
difficult as in the symmetric case. This topic is briefly addressed in Sect. 5.4.3.

For symmetric saddle point problems there is extensive theory with analyses of
the rate of convergence of iterative solvers and of the effect of preconditioning,
cf. [31]. An example of such an analysis is given in Sect. 5.2. For nonsymmetric
saddle point problems like the Oseen problem the state of the art concerning
theoretical analyses is still quite unsatisfactory. Although many algorithms
(iterative methods and preconditioners) have been developed there are only
very few significant theoretical results. Moreover, these results typically hold
for rather special cases. We do not present examples of such results here but
refer to the literature, for example the overview paper [31].

Inexact Uzawa method

For the discrete Oseen problem in (5.44) an inexact Uzawa method as in (5.29)
can be used. For the Oseen problem the Schur complement is nonsymmetric
and therefore one should not apply a preconditioned CG method in (5.30)
but for Ψ one can use, for example, a preconditioned GCR method. For the
preconditioner QA one can apply a multigrid method or a (preconditioned)
Krylov subspace iteration. More delicate is the choice of QS , which is briefly
addressed in Sect. 5.4.3.
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5.4 Preconditioners

5.4.1 Introduction

For efficient iterative solvers for the (generalized) Stokes and Oseen problems
it is essential to have good preconditioners QA and QS of Ã and S (or Ŝ),
respectively.

Consider a general nonsingular n× n-matrix A (not necessarily the same
as the matrix A in (5.8) or (5.44)). Assume a nonsingular matrix Q ≈ A,
which is called a preconditioner of A. For a preconditioner to be useful for
the acceleration of iterative methods one often requires that for all y ∈ R

n

x = Q−1y can be determined with “low” costs (cn flops), (5.50a)
and κ(Q−1A) < κ(A). (5.50b)

The concept of preconditioning is very general and it can be found at many
places in the literature. An overview of several preconditioning techniques for
discretized scalar elliptic partial differential equations is given in [57, 124, 213].
For example, a very popular approach is to use Q = LU ≈ A, where L is
a sparse lower triangular matrix and U a sparse upper triangular matrix
(“Incomplete LU factorization”).

A well-known technique is to use linear or nonlinear iterative methods
as preconditioners. We briefly explain this for the case of a linear iterative
method:

xk+1 = xk −W−1(Axk − b). (5.51)

The iteration matrix (which determines the error propagation) of this method
is given by C = I−W−1A. If one uses this iterative method for precondition-
ing then Q := W is taken as the preconditioner for A. If the method (5.51)
converges then W (and thus Q) is a reasonable approximation for A in the
sense that ρ(I−W−1A) < 1.
The iteration in (5.51) corresponds to an iterative method and thus W−1y
(y ∈ R

n) can be computed with acceptable arithmetic costs. Hence the con-
dition in (5.50a), with Q = W, is satisfied.
Related to the implementation of such a preconditioner we note the following.
In an iterative method the matrix W is usually not used in its implementation
(cf. symmetric Gauss-Seidel or the multigrid method in Sect. 5.4.2), i.e. the
iteration (5.51) is implemented without explicitly computing W. The vector
x = W−1y is the result of (5.51) with k = 0, x0 = 0, b = y. From this it
follows that the computation of x = Q−1y can be implemented by performing
one iteration of the iterative method applied to Az = y with starting vector 0.

A bound for κ(W−1A) (cf. (5.50b)) is presented in the following lemma.
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Lemma 5.4.1 We assume that A and W are symmetric positive definite
matrices and that the method in (5.51) is convergent, i.e. ρ(C) < 1 with
C := I−W−1A. Then the following holds:

κ(W−1A) ≤ 1 + ρ(C)
1− ρ(C)

. (5.52)

Proof. Because A and W are symmetric positive definite it follows that

σ(W−1A) = σ(W− 1
2 AW− 1

2 ) ⊂ (0,∞) .

Using ρ(I−W−1A) < 1 we obtain that σ(W−1A) ⊂ (0, 2). The eigenvalues
of W−1A are denoted by μi:

0 < μ1 ≤ μ2 ≤ . . . ≤ μn < 2 .

Hence ρ(C) = max{|1− μ1|, |1− μn|} holds and

κ(W−1A) =
μn
μ1

=
1 + (μn − 1)
1− (1− μ1)

≤ 1 + |1− μn|
1− |1− μ1|

.

Thus
κ(W−1A) ≤ 1 + ρ(C)

1− ρ(C)

holds. �

With respect to the bound in (5.52) we note that the function x → 1+x
1−x

increases monotonically on [0, 1) and thus we have a bound on κ(W−1A) that
decreases if ρ(C) decreases. This indicates that the higher the convergence rate
of the iterative method in (5.51), the better the quality of W as a preconditioner
for A. In Sect. 5.4.2 we will introduce multigrid methods, which are known
to have a very high rate of convergence when applied to linear systems with
a matrix of the form Ã as in (5.8) or (5.44). Such multigrid methods are
linear iterative methods as in (5.51), with a matrix W = WMG that is given
only implicitly. Using a multigrid method one then obtains a (very) good
preconditioner QA = WMG of Ã.

The above preconditioning approach can be generalized to nonlinear iter-
ative methods, for example Krylov subspace methods. For a given y ∈ R

n

the vector x = Ψ(y) ≈ A−1y is then determined by applying one or a
few iterations of the nonlinear method to the system Az = y with starting
vector 0.

5.4.2 Multigrid preconditioner

In this section we give an introduction to multigrid methods. A detailed treat-
ment can be found in, for example [51, 133, 132, 210, 251]. The remaining part
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of this section is organized as follows. First, in Subsection I, for a very sim-
ple one-dimensional diffusion problem we introduce the main idea underlying
multigrid solvers. Then this idea is generalized to d-dimensional (d = 2, 3)
elliptic boundary value problems (Subsection II). After that, in Subsection
III, we illustrate the efficiency of multigrid methods by presenting results of a
numerical experiment for the three-dimensional Poisson equation. Finally, in
Subsection IV we briefly address some theoretical convergence results.

The application of multigrid as a preconditioner QA in the generalized
Stokes and Oseen saddle point problems is discussed in Remark 5.4.26 below.

I. Multigrid for a one-dimensional model problem

We consider a very simple model problem to show the basic principle behind
the multigrid approach, namely the two-point boundary value model problem

{
−u′′(x) = f(x), x ∈ Ω := (0, 1).
u(0) = u(1) = 0 . (5.53)

We will use a finite element method for the discretization of this problem. This,
however, is not essential: other discretization methods (finite differences, finite
volumes) result in discrete problems that are very similar. The corresponding
multigrid methods have properties very similar to those in the case of a finite
element discretization.

For the finite element discretization we need the variational formulation
of this boundary value problem: find u ∈ H1

0 (Ω) such that
∫ 1

0

u′v′ dx =
∫ 1

0

fv dx for all v ∈ H1
0 (Ω).

For the discretization we introduce a sequence of nested uniform grids. For
� = 0, 1, 2, . . . , we define

h = 2−−1 (“mesh size”) , (5.54a)
n = h−1

 − 1 (“number of interior grid points”) , (5.54b)
ξ,i = ih , i = 0, 1, ..., n + 1 (“grid points”) , (5.54c)
Ωint
 = { ξ,i : 1 ≤ i ≤ n } (“interior grid”) , (5.54d)
Th�

= ∪{ [ξ,i, ξ,i+1] : 0 ≤ i ≤ n } (“triangulation”) . (5.54e)

The space of linear finite elements corresponding to the triangulation Th�
is

given by

V = X
1
h�,0 =

{
v ∈ C(Ω) : v|[ξ�,i,ξ�,i+1] ∈ P1 , i = 0, . . . , n, v(0) = v(1) = 0

}
.

The standard nodal basis in this space is denoted by (φi)1≤i≤n�
. These func-

tions satisfy φi(ξ,i) = 1, φi(ξ,j) = 0 for all j �= i. This basis induces an
isomorphism
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P : R
n� → V , Px =

n�∑

i=1

xiφi. (5.55)

The Galerkin discretization in the space V is as follows: determine u ∈ V
such that ∫ 1

0

u′v
′
 dx =

∫ 1

0

fv dx for all v ∈ V.

Using the representation u =
∑n�

j=1 xjφj this yields a linear system

Ax = b , (A)ij =
∫ 1

0

φ′iφ
′
j dx, (b)i =

∫ 1

0

fφi dx. (5.56)

The solution of this discrete problem is denoted by x∗
 . The solution of the

Galerkin discretization in the function space V is given by u = Px∗
 . A

simple computation shows that

A = h−1
 tridiag(−1, 2,−1) ∈ R

n�×n� .

Note that, apart from a scaling factor, the same matrix results from a stan-
dard discretization with finite differences of the problem (5.53).
Clearly, in practice one should not solve the problem in (5.56) using an it-
erative method (a Cholesky factorization A = LLT is stable and efficient).
However, we do apply a basic iterative method here, to illustrate a certain
“smoothing” property which plays an important role in multigrid methods.
We consider the damped Jacobi method

xk+1
 = xk −

1
2
ωh(Axk − b) with ω ∈ (0, 1] . (5.57)

The iteration matrix of this method, which describes the error propagation
ek+1
 = Cek , ek := x∗

 − xk , is given by

C = C(ω) = I− 1
2
ωhA .

In this simple model problem an orthogonal eigenvector basis of A, and thus
of C, too, is known. This basis is closely related to the “Fourier modes”:

wν(x) = sin(νπx), x ∈ [0, 1], ν = 1, 2, ... .

Note that wν satisfies the boundary conditions in (5.53) and that −(wν)′′(x) =
(νπ)2wν(x) holds, and thus wν is an eigenfunction of the problem in (5.53).
We introduce vectors zν ∈ R

n� , 1 ≤ ν ≤ n, which correspond to the Fourier
modes wν restricted to the interior grid Ωint

 :

zν :=
(
wν(ξ,1), wν(ξ,2), ..., wν(ξ,n�

)
)T

.

These vectors form an orthogonal basis of R
n� . For � = 2 we give an illustration

in Fig. 5.3.
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Fig. 5.3. Two discrete Fourier modes.

To a vector zν there corresponds a frequency ν. For ν < 1
2n the vector zν ,

or the corresponding finite element function Pzν , is called a “low frequency
mode”, and for ν ≥ 1

2n this vector (or the corresponding finite element
function, respectively) is called a “high frequency mode”. The vectors zν are
eigenvectors of the matrix A:

Azν =
4
h

sin2(ν
π

2
h)zν ,

and thus we have
Czν =

(
1− 2ω sin2(ν

π

2
h)

)
zν . (5.58)

From this we obtain

‖C‖2 = max1≤ν≤n�
|1− 2ω sin2(ν π2h)|

= 1− 2ω sin2(π2h) = 1− 1
2ωπ

2h2
 +O(h4

 ) .
(5.59)

From this we see that the damped Jacobi method is convergent (‖C‖2 < 1),
but that the rate of convergence will be very low for h small.

Note that the eigenvalues and the eigenvectors of C are functions of the
parameter νh ∈ [0, 1]:

λ,ν := 1− 2ω sin2(ν
π

2
h) =: gω(νh) , with (5.60a)

gω(y) = 1− 2ω sin2(
π

2
y), y ∈ [0, 1]. (5.60b)
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Hence, the size of the eigenvalues λ,ν can directly be obtained from the graph
of the function gω. In Fig. 5.4 we show the graph of the function gω for a few
values of ω.

-1

1

ω =

ω =

ω =

1
3

1
2

2
3

ω =1

1

Fig. 5.4. Graph of gω.

From the graphs in this figure we conclude that for a suitable choice of ω we
have |gω(y)| � 1 if y ∈ [12 , 1]. We choose ω = 2

3 (then |gω(1
2 )| = |gω(1)| holds).

Then we have |g 2
3
(y)| ≤ 1

3 for y ∈ [12 , 1]. Using this and the result in (5.60a)
we obtain

|λ,ν | ≤
1
3

for ν ≥ 1
2
n .

Hence:

the high frequency modes are strongly damped by the iteration matrix C.

From Fig. 5.4 it is also clear that the low rate of convergence of the damped
Jacobi method is caused by the low frequency modes (νh � 1).

Summarizing, we draw the conclusion that in this example the damped
Jacobi method will “smooth” the error. This elementary observation is of
great importance for the two-grid method introduced below. In the setting of
multigrid methods the damped Jacobi method is called a “smoother”. The
smoothing property of damped Jacobi is illustrated in Fig. 5.5. It is impor-
tant to note that the discussion above concerning smoothing is related to the
iteration matrix C, which means that the error will be made smoother by
the damped Jacobi method, but not (necessarily) the new iterand xk+1.



126 5 Iterative solvers
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Fig. 5.5. Smoothing property of damped Jacobi.

In multigrid methods we have to transform information from one grid to an-
other. For that purpose we introduce so-called prolongations and restrictions .
In a setting with nested finite element spaces these operators can be defined
in a very natural way. Due to the nestedness the identity operator

I : V−1 → V, Iv = v,

is well-defined. This identity operator represents linear interpolation as is
illustrated for � = 2 in Fig. 5.6. The matrix representation of this interpolation
operator is given by

p : R
n�−1 → R

n� , p := P−1
 P−1. (5.61)

A simple computation yields

V1

V2

I2

0 1
x

x

x

x

x

0 1
x

x

x

x

x
x

x

x

x

Fig. 5.6. Canonical prolongation.
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p =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

1
2 ∅
1
1
2

1
2
1
1
2

. . .
1
2
1

∅ 1
2

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

n�×n�−1

. (5.62)

We can also restrict a given grid function v on Ωint
 to a grid function on

Ωint
−1. An obvious approach is to use a restriction r based on simple injection:

(rinjv)(ξ) = v(ξ) if ξ ∈ Ωint
−1 .

When used in a multigrid method then often this restriction based on injection
is not satisfactory (cf. [133], Sect. 3.5). A better method is obtained if a natural
Galerkin property is satisfied. It can easily be verified (cf. also Lemma 5.4.3)
that with A, A−1 and p as defined in (5.56), (5.61) we have

rAp = A−1 iff r = pT . (5.63)

Thus the natural Galerkin condition rAp = A−1 implies the choice

r = pT (5.64)

for the restriction operator. In the remainder we use this restriction.

The two-grid method is based on the idea that a smooth error, which re-
sults from the application of one or a few damped Jacobi iterations, can be
approximated fairly well on a coarser grid. We now introduce this two-grid
method.

Consider Ax∗
 = b and let x be the result of one or a few damped Jacobi

iterations applied to a given starting vector x0
 . For the error e := x∗

 − x
we have

Ae = b −Ax =: d ( “residual” or “defect”). (5.65)

Based on the assumption that e is smooth it seems reasonable to use
an approximation e ≈ pẽ−1 with an appropriate vector (grid function)
ẽ−1 ∈ R

n�−1 . To determine the vector ẽ−1 we use the equation (5.65) and
the Galerkin property (5.63). This results in the equation

A−1ẽ−1 = rd

for the vector ẽ−1. Note that x∗ = x + e ≈ x + pẽ−1. Thus for the
new iterand we take x := x + pẽ−1. In a more compact formulation this
two-grid method is as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

procedure TGM(x,b)
if � = 0 then x0 := A−1

0 b0 else
begin

x := Jν (x,b) (∗ ν smoothing it., e.g. damped Jacobi ∗)
d−1 := r(b −Ax) (∗ restriction of defect ∗)
ẽ−1 := A−1

−1d−1 (∗ solve coarse grid problem ∗)
x := x + pẽ−1 (∗ add correction ∗)
TGM := x

end;

(5.66)

Often, after the coarse grid correction x := x+pẽ−1, one or a few smooth-
ing iterations are applied. Smoothing before/after the coarse grid correction is
called pre/post-smoothing. Besides the smoothing property a second property
which is of great importance for a multigrid method is the following:

The coarse grid system A−1ẽ−1 = d−1 is of the same form as Ax = b.

Thus for solving the problem A−1ẽ−1 = d−1 approximately we can ap-
ply the two-grid algorithm in (5.66) recursively. This results in the following
multigrid method for solving Ax∗

 = b:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

procedure MGM(x,b)
if � = 0 then x0 := A−1

0 b0 else
begin

x := Jν1 (x,b) (∗ presmoothing ∗)
d−1 := r(b −Ax)
e0
−1 := 0; for i = 1 to τ do ei−1 := MGM−1(ei−1

−1,d−1);
x := x + peτ−1

x := Jν2 (x,b) (∗ postsmoothing ∗)
MGM := x

end;

(5.67)

If one wants to solve the system on a given finest grid, say with level number
�, i.e. Ax

∗


= b, then we apply some iterations of MGM(x,b).
Based on efficiency considerations (explained below) we usually take τ = 1

(“V -cycle”) or τ = 2 (“W -cycle”) in the recursive call in (5.67). For the case
� = 3 the structure of one multigrid iteration with τ ∈ {1, 2} is illustrated in
Fig. 5.7.

II. Multigrid for scalar elliptic problems

We introduce multigrid methods which can be used for solving discretized
scalar elliptic boundary value problems. A model example from this problem
class is the Poisson equation
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Fig. 5.7. Structure of one multigrid iteration

−Δu = f in Ω ⊂ R
d,

u = 0 on ∂Ω.

We emphasize, however, that opposite to the CG method, the applicability of
multigrid methods is not restricted to symmetric problems. Multigrid methods
can also be used for solving problems which are non-symmetric (e.g., with a
convection term in the equation). If the problem is strongly non-symmetric
(e.g., the underlying equation has a dominating convection term) one usu-
ally has to modify the standard multigrid approach in the sense that special
smoothers and/or special prolongations and restrictions should be used. We
do not treat this topic here.

We will introduce the two-grid and multigrid method by generalizing the
approach presented for the 1D diffusion problem above to the higher (i.e.,
two and three) dimensional case. We consider a scalar elliptic boundary value
problem of the form

− div(a∇u) + b · ∇u+ cu = f in Ω,

u = 0 on ∂Ω.
(5.68)

This problem is considered in a domain Ω ⊂ R
d, d = 2 or 3. We assume that

the functions a, c and the vector function b are sufficiently smooth on Ω and

a(x) ≥ a0 > 0, c(x) − 1
2

div b(x) ≥ 0 for all x ∈ Ω. (5.69)

These assumptions guarantee that the problem is elliptic and well-posed. In
view of the finite element discretization we introduce the variational formula-
tion of this problem: Find u ∈ H1

0 (Ω) such that

k(u, v) = f(v) for all v ∈ H1
0 (Ω), (5.70)

with a bilinear form and right-hand side

k(u, v) =
∫

Ω

a∇u · ∇v + b · ∇uv + cuv dx , f(v) =
∫

Ω

fv dx.
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If (5.69) holds then this bilinear form is continuous and elliptic on H1
0 (Ω),

i.e. there exist constants γ > 0 and c such that

k(u, u) ≥ γ|u|21, k(u, v) ≤ c|u|1|v|1 for all u, v ∈ H1
0 (Ω).

Here we use |u|1 :=
( ∫

Ω ∇u · ∇u dx
) 1

2 , which is a norm on H1
0 (Ω). Exis-

tence of a unique solution of the variational problem (5.70) follows from the
Lax-Milgram Lemma 15.2.1. For the discretization of this problem we use
simplicial finite elements, cf. Sect. 3.2.1. Let {Th} be a regular family of trian-
gulations of Ω consisting of d-simplices and Vh a corresponding finite element
space. For simplicity we only consider linear finite elements:

Vh = X
1
h,0 =

{
v ∈ C(Ω) : v|T ∈ P1 for all T ∈ Th v|∂Ω = 0

}
.

The presentation and implementation of the multigrid method is greatly sim-
plified if we assume a given sequence of nested finite element spaces.

Assumption 5.4.2 In the remainder of this section we assume that we have
a sequence V, � = 0, 1, . . ., of simplicial finite element spaces which are nested:

V ⊂ V+1 for all �. (5.71)

This assumption holds for a multilevel tetrahedral grid hierarchy as explained
in Sect. 3.1, cf. Remark 3.1.6. This assumption is not necessary for a successful
application of multigrid methods. For a treatment of multigrid methods in case
of non-nestedness we refer to [242].

In V we use the standard nodal basis (φi)1≤i≤n�
. This basis induces an

isomorphism

P : R
n� → V , Px =

n�∑

i=1

xiφi.

The Galerkin discretization: Find u ∈ V such that

k(u, v) = f(v) for all v ∈ V, (5.72)

can be represented as a linear system

Ax = b , with (A)ij = k(φj , φi), (b)i = f(φi), 1 ≤ i, j ≤ n. (5.73)

The solution x∗
 of this linear system yields the Galerkin finite element solution

u = Px∗
 . Along the same lines as in the one-dimensional case we introduce

a multigrid method for solving this system of equations on an arbitrary level
� ≥ 0.
For the smoother we use a basic iterative method such as, for example, a
Richardson method

xk+1 = xk − ω(Axk − b),
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a damped Jacobi method

xk+1 = xk − ωD−1
 (Axk − b), (5.74)

or a Gauss-Seidel method

xk+1 = xk − (D − L)−1(Axk − b), (5.75)

where D−L is the lower triangular part of the matrix A. For such a method
we use the general notation

xk+1 = S(xk,b) = xk −W−1
 (Axk − b) , k = 0, 1, . . .

The corresponding iteration matrix is denoted by

S = I−W−1
 A.

For the prolongation we use the matrix representation of the identity I :
V−1 → V, i.e.,

p := P−1
 P−1. (5.76)

The choice of the restriction is based on the following elementary lemma:

Lemma 5.4.3 Let A, � ≥ 0, be the stiffness matrix defined in (5.73) and p
as in (5.76). Then for r : R

n� → R
n�−1 we have:

rAp = A−1 if and only if r = pT .

Proof. For the stiffness matrix matrix the identity

〈Ax,y〉 = k(Px, Py) for all x,y ∈ R
n�

holds. From this we get

rAp = A−1

⇔ 〈Apx, rT y〉 = 〈A−1x,y〉 for all x,y ∈ R
n�−1

⇔ k(P−1x, PrT y) = k(P−1x, P−1y) for all x,y ∈ R
n�−1 .

Using the ellipticity of k(·, ·) it now follows that

rAp = A−1

⇔ PrT y = P−1y for all y ∈ R
n�−1

⇔ rT y = P−1
 P−1y = py for all y ∈ R

n�−1

⇔ rT = p.

Thus the claim is proved. �
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This motivates that for the restriction we take:

r := pT . (5.77)

Using these components we can define a multigrid method with exactly the
same structure as in (5.67):

procedure MGM(x,b)
if � = 0 then x0 := A−1

0 b0 else
begin

x := Sν1 (x,b) (∗ presmoothing ∗)
d−1 := r(b −Ax)
e0
−1 := 0; for i = 1 to τ do ei−1 := MGM−1(ei−1

−1,d−1);
x := x + peτ−1

x := Sν2 (x,b) (∗ postsmoothing ∗)
MGM := x

end;

(5.78)

We briefly comment on some important issues related to this multigrid
method.

Smoothers

For many problems basic iterative methods provide good smoothers. In par-
ticular the Gauss-Seidel method is often a very effective smoother. Other
smoothers used in practice are the damped Jacobi method and the ILU
method, cf. [255].

Prolongation and restriction

If instead of a discretization with nested finite element spaces one uses a
finite difference or a finite volume method then one can not use the approach
in (5.76) to define a prolongation. However, for these cases other canonical
constructions for the prolongation operator exist. We refer to [133], [242] or
[251] for a treatment of this topic. A general technique for the construction
of a prolongation operator in case of non-nested finite element spaces is given
in [49].

Arithmetic costs per iteration

We discuss the arithmetic costs of one MGM iteration as defined in (5.78).
For this we introduce a unit of arithmetic work on level �:

WU := # flops needed for Ax − b computation. (5.79)
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We assume:

WU−1 � gWU with g < 1 independent of �. (5.80)

Note that if T is constructed through a uniform global grid refinement of T−1

(for d = 3: subdivision of each tetrahedron T ∈ T−1 into 8 smaller tetrahe-
dra by regular refinement) then (5.80) holds with g = (1

2 )d. Furthermore we
make the following assumptions concerning the arithmetic costs of each of the
substeps in the procedure MGM:

x := S(x,b) : costs � WU

d−1 := r(b −Ax)
}

total costs � 2WU
.

x := x + peτ−1

For the amount of work in one multigrid V -cycle (τ = 1) on level �, which is
denoted by VMG, we get, using ν := ν1 + ν2:

VMG � νWU  + 2WU  + VMG−1 = (ν + 2)WU  + VMG−1

� (ν + 2)
(
WU  +WU −1 + . . .+WU1

)
+ VMG0

� (ν + 2)
(
1 + g + . . .+ g−1

)
WU  + VMG0

� ν + 2
1− g WU .

(5.81)

In the last inequality we assumed that the costs for computing x0 = A−1
0 b0

(i.e., VMG0) are negligible compared to WU . The result in (5.81) shows that
the arithmetic costs for one V -cycle are proportional (also if � → ∞) to the
costs of a residual computation. For example, for g = 1

8 (uniform refinement
in 3D) the arithmetic costs of a V -cycle with ν1 = ν2 = 1 on level � are
comparable to 4 1

2 times the costs of a residual computation on level �.
For theW -cycle (τ = 2) the arithmetic costs on level � are denoted byWMG.
We have:

WMG � νWU  + 2WU  + 2WMG−1 = (ν + 2)WU  + 2WMG−1

� (ν + 2)
(
WU  + 2WU −1 + 22WU −2 + . . .+ 2−1WU1

)
+WMG0

� (ν + 2)
(
1 + 2g + (2g)2 + . . .+ (2g)−1

)
WU  +WMG0.

From this we see that to obtain a bound proportional to WU  we have to
assume

g <
1
2
.

Under this assumption we get for the W -cycle

WMG � ν + 2
1− 2g

WU 

(again we neglected WMG0). Similar bounds can be obtained for τ ≥ 3,
provided τg < 1 holds.
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III. Numerical experiment: Multigrid applied to a Poisson
equation

In this section we present results of a standard multigrid solver applied to the
model problem of the Poisson equation:

−Δu = f in Ω := (0, 1)3,
u = 0 on ∂Ω.

We take f(x1, x2, x3) = x2
1+e

x2x1+x2
3x2. For the discretization we start with a

uniform subdivision of Ω into cubes with edges of length h0 := 1
4 . Each cube

is subdivided into six tetrahedra. This yields the starting triangulation T0

of Ω. The triangulation T1 with mesh size h1 = 1
8 is constructed by regular

subdivision of each tetrahedron in T0 into 8 child tetrahedra. This uniform
refinement strategy is repeated, resulting in a family of triangulations (T)≥0

with corresponding mesh size h = 2−−2. For discretization of this problem
we use the space of linear finite elements on these triangulations. The resulting
linear system is denoted by Ax = b. We consider the problem of solving
this linear system on a fixed finest level � = �̄. Below we consider �̄ = 1, . . . , 5.
For �̄ = 5 the multilevel triangulation contains 14.380.416 tetrahedra and in
the linear system we have 2.048.383 unknowns.

We briefly discuss the components used in the multigrid method for solving
this linear system. For the prolongation and restriction we use the canoni-
cal ones as in (5.76), (5.77). For the smoother we use two different meth-
ods, namely a damped Jacobi method and a symmetric Gauss-Seidel method
(SGS). The damped Jacobi method is as in (5.74) with ω := 0.7. The sym-
metric Gauss-Seidel method consists of two substeps. In the first step we use
a Gauss-Seidel iteration as in (5.75). In the second step we apply this method
with a reversed ordering of the equations and the unknowns. The arithmetic
costs per iteration for such a symmetric Gauss-Seidel smoother are roughly
twice as high as for a damped Jacobi method. In the experiment we use the
same number of pre- and post-smoothing iterations, i.e. ν1 = ν2. The total
number of smoothing iterations per multigrid iteration is ν := ν1 + ν2. We
use a multigrid V -cycle. i.e., τ = 1 in the recursive call in (5.78). The coarsest
grid used in the multigrid method is T0, i.e. with a mesh size h0 = 1

4 . In
all experiments we use a starting vector x0 := 0. The rate of convergence is
measured by looking at relative residuals:

rk :=
‖Āx

k − b̄‖2
‖b̄‖2

.

In Fig. 5.8 (left) we show results for SGS with ν = 4. For �̄ = 1, . . . , 5 we
plotted the relative residuals rk for k = 1, . . . , 8. In Fig. 5.8 (right) we show
results for the SGS method with varying number of smoothing iterations,
namely ν = 2, 4, 6. For �̄ = 1, . . . , 5 we give the average residual reduction per
iteration r := (r8)

1
8 .
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Fig. 5.8. Convergence of multigrid V -cycle with SGS smoother. Left: rk, for k =

0, . . . , 8 and �̄ = 1, . . . , 5. Right: (r8)
1
8 for �̄ = 1, . . . , 5 and ν = 2, 4, 6.

These results show the very fast and essentially level independent rate
of convergence of this multigrid method. For a larger number of smoothing
iterations the convergence is faster. On the other hand, also the costs per
iteration then increase, cf. (5.81) (with g = 1

8 ). Usually, in practice the number
of smoothings per iteration is not taken very large. Typical values are ν = 2
or ν = 4. In the Fig. 5.9 we show similar results but now for the damped
Jacobi smoother (damping with ω = 0.7) instead of the SGS method.
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Fig. 5.9. Convergence of multigrid V -cycle with damped Jacobi smoother. Left: rk,

for k = 0, . . . , 8 and �̄ = 1, . . . , 5. Right: (r8)
1
8 for �̄ = 1, . . . , 5 and ν = 2, 4, 6.

For the method with damped Jacobi smoothing we also observe an essen-
tially level independent rate of convergence. Furthermore there is an increase
in the rate of convergence when the number ν of smoothing step gets larger.
Comparing the results of the multigrid method with Jacobi smoothing to
those with SGS smoothing we see that the latter method has a significantly
faster convergence. Note, however, that the arithmetic costs per iteration for
the latter method are higher (the ratio lies between 1.5 and 2).
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IV. Multigrid convergence analysis for scalar elliptic problems

We present a convergence analysis for the multigrid method introduced in Sub-
section II above. Our approach is based on the so-called approximation- and
smoothing property, introduced by Hackbusch in [133, 132]. For a discussion
of other analyses we refer to Remark 5.4.20.

One easily verifies that the two-grid method is a linear iterative method. The
iteration matrix of this method with ν1 presmoothing and ν2 postsmoothing
iterations on level � is given by

CTG, = CTG,(ν2, ν1) = Sν2 (I− pA−1
−1rA)Sν1 , (5.82)

with S = I−W−1
 A the iteration matrix of the smoother.

Theorem 5.4.4 The multigrid method (5.78) is a linear iterative method with
iteration matrix CMG, given by

CMG,0 = 0 (5.83a)
CMG, = Sν2

(
I− p(I−Cτ

MG,−1)A
−1
−1rA

)
Sν1 (5.83b)

= CTG, + Sν2 pCτ
MG,−1A

−1
−1rASν1 , � = 1, 2, . . . (5.83c)

Proof. The result in (5.83a) is trivial. The result in (5.83c) follows from (5.83b)
and the definition of CTG,. We now prove the result in (5.83b) by induction.
For � = 1 it follows from (5.83a) and (5.82). Assume that the result is correct
for �− 1. Then MGM−1(y−1, z−1) defines a linear iterative method and for
arbitrary y−1, z−1 ∈ R

n�−1 we have

MGM−1(y−1, z−1)−A−1
−1z−1 = CMG,−1(y−1 −A−1

−1z−1). (5.84)

We rewrite the algorithm (5.78) as follows:

x1 := Sν1 (xold
 ,b)

x2 := x1 + pMGMτ
−1

(
0, r(b −Ax1)

)

xnew
 := Sν2 (x2,b).

From this we get

xnew
 − x∗

 = xnew
 −A−1

 b = Sν2 (x2 − x∗
 )

= Sν2
(
x1 − x∗

 + pMGMτ
−1

(
0, r(b −Ax1))

)
.

Now we use the result (5.84) with y−1 = 0, z−1 := r(b − Ax1). This
yields

xnew
 − x∗

 = Sν2
(
x1 − x∗

 + p(A−1
−1z−1 −Cτ

MG,−1A
−1
−1z−1)

)

= Sν2
(
I− p(I−Cτ

MG,−1)A
−1
−1rA

)
(x1 − x∗

 )

= Sν2
(
I− p(I−Cτ

MG,−1)A
−1
−1rA

)
Sν1 (xold − x∗

 ).

This completes the proof. �
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The convergence analysis is based on the following splitting of the two-grid
iteration matrix, with ν2 = 0, i.e. no postsmoothing:

‖CTG,(0, ν1)‖2 = ‖(I− pA−1
−1rA)Sν1 ‖2

≤ ‖A−1
 − pA−1

−1r‖2 ‖ASν1 ‖2.
(5.85)

We will discuss suitable bounds for ‖A−1
 −pA−1

−1r‖2 (called approximation
property) and for ‖ASν1 ‖2 (called smoothing property). In the convergence
analysis we need the following:

Assumption 5.4.5 In the remainder of this section we assume that the fam-
ily of triangulations {Th�

} corresponding to the finite element spaces V,
� = 0, 1, . . ., is quasi-uniform and that h−1 ≤ ch with a constant c in-
dependent of �.

We give some results that will be used in the analysis further on. First we
recall an inverse inequality that is known from the analysis of finite element
methods:

|v|1 ≤ c h−1
 ‖v‖L2 for all v ∈ V,

with a constant c independent of �. For this result to hold we need Assump-
tion 5.4.5.
We now show that, apart from a scaling factor, the isomorphism P :
(Rn� , 〈·, ·〉)→ (V, (·, ·)L2) and its inverse are uniformly (w.r.t. �) bounded:

Lemma 5.4.6 There exist constants c1 > 0 and c2 independent of � such that

c1‖Px‖L2 ≤ h
1
2d

 ‖x‖2 ≤ c2‖Px‖L2 for all x ∈ R
n� . (5.86)

Proof. The definition of P yields Px =
∑n�

i=1 xiφi =: v ∈ V and v(ξi) = xi,
where ξi is the vertex in the triangulation which corresponds to the nodal basis
function φi. Note that

‖Px‖2L2 = ‖v‖2L2 =
∑

T∈T�

‖v‖2L2(T ).

Since v is linear on each simplex T in the triangulation T there are constants
c̃1 > 0 and c̃2 independent of h such that

c̃1‖v‖2L2(T ) ≤ |T |
∑

ξj∈V (T )

v(ξj)2 ≤ c̃2‖v‖2L2(T ),

where V (T ) denotes the set of vertices of the simplex T . Summation over all
T ∈ T, using v(ξj) = xj and |T | ∼ hd we obtain

ĉ1‖v‖2L2 ≤ hd

n�∑

i=1

x2
i ≤ ĉ2‖v‖2L2 ,

with constants ĉ1 > 0 and ĉ2 independent of h and thus we get the result in
(5.86). �
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The third preliminary result concerns the scaling of the stiffness matrix:

Lemma 5.4.7 Let A be the stiffness matrix as in (5.73). Assume that the
bilinear form is such that the usual conditions (5.69) are satisfied. Then there
exist constants c1 > 0 and c2 independent of � such that

c1h
d−2
 ≤ ‖A‖2 ≤ c2h

d−2
 .

Proof. First note that

‖A‖2 = max
x,y∈R

n�

〈Ax,y〉
‖x‖2‖y‖2

.

Using the result in Lemma 5.4.6, the continuity of the bilinear form and the
inverse inequality we get

max
x,y∈R

n�

〈Ax,y〉
‖x‖2‖y‖2

≤ chd max
v�,w�∈V�

k(v, w)
‖v‖L2‖w‖L2

≤ chd max
v�,w�∈V�

|v|1|w|1
‖v‖L2‖w‖L2

≤ c hd−2
 ,

and thus the upper bound is proved. The lower bound follows from

max
x,y∈R

n�

〈Ax,y〉
‖x‖2‖y‖2

≥ max
1≤i≤n�

〈Aei, ei〉 = k(φi, φi) ≥ c|φi|21 ≥ chd−2
 .

The last inequality can be shown by using for T ⊂ supp(φi) the affine trans-
formation from the unit simplex to T . �

Approximation property

We derive a bound for the first factor in the splitting (5.85). We start with two
important assumptions that are crucial for the analysis. The first one concerns
regularity of the continuous problem, the second one is a discretization error
bound.

Assumption 5.4.8 We assume that the continuous problem in (5.70) is H2-
regular, i.e. for f ∈ L2(Ω) the corresponding solution u satisfies

|u|2 ≤ c ‖f‖L2,

with a constant c independent of f . Furthermore we assume a finite element
discretization error bound for the Galerkin discretization (5.72):

‖u− u‖L2 ≤ ch2
 |u|2,

with c independent of u and of �. Here | · |2 denotes the semi-norm (second
derivatives only) on H2(Ω).
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In the analysis we will use the adjoint operator P ∗
 : V → R

n� which satisfies
(Px, v)L2 = 〈x, P ∗

 v〉 for all x ∈ R
n� , v ∈ V. As a direct consequence of

Lemma 5.4.6 we obtain

c1‖P ∗
 v‖2 ≤ h

1
2d

 ‖v‖L2 ≤ c2‖P ∗
 v‖2 for all v ∈ V, (5.87)

with constants c1 > 0 and c2 independent of �. We now formulate a main
result for the convergence analysis of multigrid methods:

Theorem 5.4.9 (Approximation property.) Consider A, p, r as
defined in (5.73), (5.76),(5.77). Assume that the variational problem (5.70)
is such that the usual conditions (5.69) are satisfied. Moreover, Assump-
tion 5.4.8 holds. Then there exists a constant CA independent of � such
that

‖A−1
 − pA−1

−1r‖2 ≤ CA‖A‖−1
2 for � = 1, 2, . . . (5.88)

Proof. Let b ∈ R
n� be given. The constants in the proof are independent of

b and of �. Consider the variational problems:

u ∈ H1
0 (Ω) : k(u, v) = ((P ∗

 )−1b, v)L2 for all v ∈ H1
0 (Ω),

u ∈ V : k(u, v) = ((P ∗
 )−1b, v)L2 for all v ∈ V,

u−1 ∈ V−1 : k(u−1, v−1) = ((P ∗
 )−1b, v−1)L2 for all v−1 ∈ V−1.

Then
A−1
 b = P−1

 u and A−1
−1rb = P−1

−1u−1

hold. Hence we obtain, using Lemma 5.4.6,

‖(A−1
 −pA−1

−1r)b‖2 = ‖P−1
 (u−u−1)‖2 ≤ c h

− 1
2 d

 ‖u−u−1‖L2 . (5.89)

Now we use the assumptions on the discretization error bound and on the
H2-regularity of the problem. This yields

‖u − u−1‖L2 ≤ ‖u − u‖L2 + ‖u−1 − u‖L2

≤ ch2
 |u|2 + +ch2

−1|u|2 ≤ ch2
‖(P ∗

 )−1b‖L2 .
(5.90)

We combine (5.89) with (5.90) and use (5.87), and get

‖(A−1
 − pA−1

−1r)b‖2 ≤ c h2−d
 ‖b‖2

and thus ‖A−1
 − pA−1

−1r‖2 ≤ c h2−d
 . The proof is completed if we use

Lemma 5.4.7. �

Note that in the proof of the approximation property we use the underlying
continuous problem.
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Smoothing property

We derive inequalities of the form

‖ASν ‖2 ≤ g(ν)‖A‖2

where g(ν) is a monotonically decreasing function with limν→∞ g(ν) = 0. This
function g does not depend on �. We restrict ourselves to the case that A is
symmetric positive definite.

We start with an elementary lemma:

Lemma 5.4.10 Let B ∈ R
m×m be a symmetric positive definite matrix with

σ(B) ⊂ (0, 1]. Then we have

‖B(I−B)ν‖2 ≤
1

2(ν + 1)
for ν = 1, 2, . . .

Proof. Note that

‖B(I−B)ν‖2 = max
x∈(0,1]

x(1 − x)ν =
1

ν + 1
( ν

ν + 1
)ν
.

A simple computation shows that ν →
(

ν
ν+1

)ν is decreasing on [1,∞). �

Below for a few basic iterative methods we derive the smoothing property for
the symmetric case, i.e., b = 0 in the bilinear form k(·, ·). We first consider
the Richardson method:

Theorem 5.4.11 Assume that in the bilinear form we have b = 0 and that
the usual conditions (5.69) are satisfied. Let A be the stiffness matrix in
(5.73). For all c0 ∈ (0, 1] the smoothing property

‖A(I−
c0

ρ(A)
A)ν‖2 ≤

1
2c0(ν + 1)

‖A‖2 , ν = 1, 2, . . .

holds.

Proof. Note that A is symmetric positive definite. Apply Lemma 5.4.10 with
B := ωA, ω := c0 ρ(A)−1. This yields

‖A(I− ωA)ν‖2 ≤ ω−1


1
2(ν + 1)

≤ 1
2c0(ν + 1)

ρ(A) =
1

2c0(ν + 1)
‖A‖2,

and thus the result is proved. �

A similar result can be shown for the damped Jacobi method:
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Theorem 5.4.12 Assume that in the bilinear form we have b = 0 and that
the usual conditions (5.69) are satisfied. Let A be the stiffness matrix in
(5.73) and D := diag(A). There exists a constant c0, independent of �, with
0 < c0 ≤ ρ(D−1

 A)−1, such that for all ω ∈ (0, c0] the smoothing property

‖A(I− ωD−1
 A)ν‖2 ≤

1
2ω(ν + 1)

‖A‖2 , ν = 1, 2, . . .

holds.

Proof. Define the symmetric positive definite matrix B̃ := D− 1
2

 AD
− 1

2
 . Note

that
(D)ii = (A)ii = k(φi, φi) ≥ c |φi|21 ≥ c hd−2

 , (5.91)

with c > 0 independent of � and i. Using this in combination with Lemma 5.4.7
we get

‖B̃‖2 ≤
‖A‖2
λmin(D)

≤ ĉ , ĉ independent of �.

Take c0 := ĉ−1 and note that ĉ ≥ ρ(D−1
 A) holds. For all ω ∈ (0, c0] we have

σ(ωB̃) ⊂ (0, 1]. Application of Lemma 5.4.10, with B = ωB̃, yields

‖A(I− ωD−1
 A)ν‖2 ≤ ω−1‖D

1
2
 ‖2‖ωB̃(I− ωB̃)ν‖2‖D

1
2
 ‖2

≤ ‖D‖2
2ω(ν + 1)

≤ 1
2ω(ν + 1)

‖A‖2,

and thus the result is proved. �

Remark 5.4.13 The value of the parameter ω used in Theorem 5.4.12 is
such that ωρ(D−1

 A) = ωρ(D− 1
2

 AD
− 1

2
 ) ≤ 1 holds. Note that

ρ(D− 1
2

 AD
− 1

2
 ) = max

x∈R
n�

〈Ax,x〉
〈Dx,x〉

≥ max
1≤i≤n�

〈Aei, ei〉
〈Deiei〉

= 1

and thus we have ω ≤ 1. This explains why in multigrid methods one usually
uses a damped Jacobi method as a smoother.

We finally consider the symmetric Gauss-Seidel method. If A = AT
 this

method has an iteration matrix

S = I−W−1
 A, W = (D − L)D−1

 (D − LT ) , (5.92)

where we use the decomposition A = D − L − LT with D a diagonal
matrix and L a strictly lower triangular matrix.
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Theorem 5.4.14 Assume that in the bilinear form we have b = 0 and that
the usual conditions (5.69) are satisfied. Let A be the stiffness matrix in
(5.73) and W as in (5.92). The smoothing property

‖A(I−W−1
 A)ν‖2 ≤

c

ν + 1
‖A‖2 , ν = 1, 2, . . .

holds with a constant c independent of ν and �.

Proof. Note that W = A + LD−1
 LT and thus W is symmetric positive

definite. Define the symmetric positive definite matrix B := W− 1
2

 AW
− 1

2
 .

From

0 < max
x∈R

n�

〈Bx,x〉
〈x,x〉 = max

x∈R
n�

〈Ax,x〉
〈Wx,x〉

= max
x∈R

n�

〈Ax,x〉
〈Ax,x〉 + 〈D−1

 LT x,LT x〉
≤ 1

it follows that σ(B) ⊂ (0, 1]. Application of Lemma 5.4.10 yields

‖A(I−W−1
 A)ν‖2 ≤ ‖W

1
2
 ‖

2
2 ‖B(I−B)ν‖2 ≤ ‖W‖2

1
2(ν + 1)

.

From (5.91) we have ‖D−1
 ‖2 ≤ c h2−d

 . Using the sparsity of A we obtain

‖L‖2‖LT ‖2 ≤ ‖L‖∞‖L‖1 ≤ c(max
i,j
|(A)ij |)2 ≤ c‖A‖22.

In combination with Lemma 5.4.7 we then get

‖W‖2 ≤ ‖A‖2 + ‖D−1
 ‖2‖L‖2‖L

T
 ‖2

≤ ‖A‖2 + c h2−d
 ‖A‖22 ≤ c‖A‖2,

(5.93)

and this completes the proof. �

For the symmetric positive definite case smoothing properties have also been
proved for other iterative methods. For example, in [255, 253] a smoothing
property is proved for a variant of the ILU method and in [56] it is shown that
the SPAI (sparse approximate inverse) preconditioner satisfies a smoothing
property.

Smoothing properties of the Richardson, damped Jacobi and Gauss-Seidel
methods can also be proved for the nonsymmetric case, i.e, b �= 0 in the
bilinear form k(·, ·). We do not treat this here, but refer to the literature, e.g.
[133, 132, 210].
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Multigrid contraction number

Based on the approximation and smoothing property we prove a bound for the
contraction number in the Euclidean norm of the multigrid algorithm (5.78)
with τ ≥ 2. We follow the analysis introduced in [133, 132].
Apart from the approximation and smoothing property that have been proved
above we also need the following stability bound for the iteration matrix of
the smoother:

∃ CS : ‖Sν ‖2 ≤ CS for all � and ν. (5.94)

Lemma 5.4.15 For the Richardson method as in Theorem 5.4.11 the inequal-
ity (5.94) holds with CS = 1.

Proof. Follows from

‖S‖2 = ‖I− c0
ρ(A)

A‖2 = max
λ∈σ(A�)

∣
∣1− c0

λ

ρ(A)

∣
∣ ≤ 1.

�

Lemma 5.4.16 For the damped Jacobi method as in Theorem 5.4.12 the in-
equality (5.94) holds.

Proof. Due to the choice of ω we have

‖S‖D = ‖D
1
2
 (I− ωD−1

 A)D
− 1

2
 ‖2 ≤ 1,

and thus

‖Sν‖2 ≤ ‖D
− 1

2
 (D

1
2
 SD

− 1
2

 )νD
1
2
 ‖2 ≤ κ(D

1
2
 ) ‖S‖νD ≤ κ(D

1
2
 ).

Now note that D is uniformly (w.r.t. �) well-conditioned. �

Similar results hold for the nonsymmetric case.
Using Lemma 5.4.6 it follows that for p = P−1

 P−1 we have

Cp,1‖x‖2 ≤ ‖px‖2 ≤ Cp,2‖x‖2 for all x ∈ R
n�−1 . (5.95)

with constants Cp,1 > 0 and Cp,2 independent of �.
We now formulate a main convergence result for the multigrid method.
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Theorem 5.4.17 Consider the multigrid method with iteration matrix
given in (5.83) and parameter values ν2 = 0, ν1 = ν > 0, τ ≥ 2. Assume
that there are constants CA, CS and a monotonically decreasing function
g(ν) with g(ν) → 0 for ν →∞ such that for all �:

‖A−1
 − pA−1

−1r‖2 ≤ CA‖A‖−1
2 (5.96a)

‖ASν ‖2 ≤ g(ν) ‖A‖2 , ν ≥ 1 (5.96b)
‖Sν ‖2 ≤ CS , ν ≥ 1. (5.96c)

For any ξ∗ ∈ (0, 1) there exists a ν∗ such that for all ν ≥ ν∗

‖CMG,‖2 ≤ ξ∗ , � = 0, 1, . . .

holds.

Proof. For the two-grid iteration matrix we have

‖CTG,‖2 ≤ ‖A−1
 − pA−1

−1r‖2‖ASν ‖2 ≤ CAg(ν).

Define ξ = ‖CMG.‖2. From (5.83) we obtain ξ0 = 0 and for � ≥ 1:

ξ ≤ CAg(ν) + ‖p‖2ξτ−1‖A−1
−1rASν ‖2

≤ CAg(ν) + Cp,2C
−1
p,1ξ

τ
−1‖pA−1

−1rASν ‖2
≤ CAg(ν) + Cp,2C

−1
p,1ξ

τ
−1

(
‖(I− pA−1

−1rA)Sν ‖2 + ‖Sν ‖2
)

≤ CAg(ν) + Cp,2C
−1
p,1ξ

τ
−1

(
CAg(ν) + CS

)
≤ CAg(ν) + C∗ξτ−1,

with C∗ := Cp,2C
−1
p,1(CAg(1)+CS). Elementary analysis shows that for τ ≥ 2

and any ξ∗ ∈ (0, 1) the sequence x0 = 0, xi = CAg(ν) + C∗xτi−1, i ≥ 1, is
bounded by ξ∗ for g(ν) sufficiently small. �

Remark 5.4.18 Consider A, p, r as defined in (5.73), (5.76),(5.77).
Assume that the variational problem (5.70) is such that the usual condi-
tions (5.69) are satisfied. Moreover, the problem (5.70) is such that Assump-
tion 5.4.8 is satisfied. In the multigrid method we use the Richardson or the
damped Jacobi method. Then the assumptions (5.96) are fulfilled and thus
for ν2 = 0 and ν1 sufficiently large the multigrid W -cycle has a contraction
number smaller than one independent of �.

Remark 5.4.19 Let CMG,(ν2, ν1) be the iteration matrix of the multigrid
method with ν1 pre- and ν2 postsmoothing iterations. With ν := ν1 + ν2 we
have

ρ
(
CMG,(ν2, ν1)

)
= ρ

(
CMG,(0, ν)

)
≤ ‖CMG,(0, ν)‖2.

Using Theorem 5.4.17 we thus get, for τ ≥ 2, a bound for the spectral radius
of the iteration matrix CMG,(ν2, ν1).
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Remark 5.4.20 The multigrid convergence analysis presented above as-
sumes sufficient regularity (namely H2-regularity) of the elliptic boundary
value problem. There have been developed convergence analyses in which this
regularity assumption is avoided and an h-independent convergence rate of
multigrid is proved. These analyses are based on so-called subspace decom-
position techniques. Two review papers on multigrid convergence proofs are
[260] and [257].

Convergence analysis for symmetric positive definite problems

The multigrid convergence analysis presented above applies to the general,
i.e. possibly non-symmetric, boundary value problem as in (5.68). The elliptic
problem with b = 0 (no convection) results in a stiffness matrix A that
is symmetric positive definite. This property allows a refined analysis which
proves that the contraction number of the multigrid method with τ ≥ 1 (the
V -cycle is included!) and ν1 = ν2 ≥ 1 pre- and postsmoothing iterations is
bounded by a constant smaller than one independent of �. The basic idea of
this analysis is due to [50] and is further simplified by [133, 132].

We outline a main result of this analysis. For this we make the following

Assumption 5.4.21 In the bilinear form k(·, ·) in (5.70) we have b = 0 and
the conditions (5.69) are satisfied.

Due to this the stiffness matrix A is symmetric positive definite and we can
define the energy scalar product and corresponding norm:

〈x,y〉A := 〈Ax,y〉 , ‖x‖A := 〈x,x〉
1
2
A x,y ∈ R

n� .

We only consider smoothers with an iteration matrix S = I−W−1
 A in which

W is symmetric positive definite. Important examples are the Richardson,
damped Jacobi and symmetric Gauss-Seidel smoothers:

Richardson method : W = c−1
0 ρ(A)I , c0 ∈ (0, 1], (5.97a)

Damped Jacobi : W = ω−1D, ω as in Theorem 5.4.12,(5.97b)
Symm. Gauss-Seidel : W = (D − L)D−1

 (D − LT ). (5.97c)

For symmetric matrices B,C ∈ R
m×m we use the notation B ≤ C iff

〈Bx,x〉 ≤ 〈Cx,x〉 for all x ∈ R
m, i.e., C − B is symmetric positive semi-

definite.

Lemma 5.4.22 For W as in (5.97) the following properties hold:

A ≤ W for all � (5.98a)
∃CW : ‖W‖2 ≤ CW ‖A‖2 for all �. (5.98b)
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Proof. For the Richardson method the result is trivial. For the damped Jacobi
method we have ω ∈ (0, ρ(D−1

 A)−1] and thus ωρ(D− 1
2

 AD
− 1

2
 ) ≤ 1. This

yields A ≤ ω−1D = W. The result in (5.98b) follows from ‖D‖2 ≤ ‖A‖2.
For the symmetric Gauss-Seidel method the results (5.98a) follows from W =
A + LD−1

 LT and the result in (5.98b) is proved in (5.93). �

We introduce the following modified approximation property:

∃ C̃A : ‖W
1
2


(
A−1
 − pA−1

−1r
)
W

1
2
 ‖2 ≤ C̃A for � = 1, 2, . . . (5.99)

We note that the standard approximation property (5.88) implies the result
(5.99) if we consider the smoothers in (5.97):

Lemma 5.4.23 Consider W as in (5.97) and assume that the approxima-
tion property (5.88) holds. Then (5.99) holds with C̃A = CWCA, where CW
is as in (5.98b).

Proof. Trivial. �

One easily verifies that for the smoothers in (5.97) the modified approximation
property (5.99) implies the standard approximation property (5.88) if κ(W)
is uniformly (w.r.t. �) bounded. The latter property holds for the Richardson
and the damped Jacobi method.

The following result is proved in [132].

Theorem 5.4.24 We take ν1 = ν2 = 1
2ν and consider the multigrid al-

gorithm with iteration matrix CMG, = CMG,(ν, τ) as in (5.83). Assume
that (5.98a) and (5.99) hold. For ν ≥ 2 and τ ≥ 1 the inequality

‖CMG,‖A ≤
C̃A

C̃A + ν

holds. The matrix A
1
2
 CMG,A

− 1
2

 is symmetric positive definite.

Corollary 5.4.25 Consider A, p, r as defined in (5.73), (5.76),(5.77). As-
sume that the variational problem (5.70) is such that b = 0 and that the usual
conditions (5.69) are satisfied. Moreover, the problem is such that Assump-
tion 5.4.8 is satisfied. In the multigrid method we use one of the smoothers
(5.97). Then the assumptions (5.98a) and (5.99) are satisfied and thus for
ν1 = ν2 ≥ 1 the multigrid V -cycle has a contraction number (w.r.t. ‖ · ‖A)
smaller than one independent of �. �

For the symmetric case (b = 0) it is shown in [190] that the multigrid rate
of convergence is robust with respect to the size of the reaction term. The
contraction number (w.r.t. ‖ · ‖A) of the multigrid method can be bounded
by a constant smaller than one independent of � and of c ∈ [0,∞), where c
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is the coefficient in (5.68) which determines the size of the reaction term.

We now discuss the use of a multigrid method as preconditioner for saddle
point problems resulting from generalized Stokes and Oseen problems.

Remark 5.4.26 We consider the matrix Ã in the saddle point system (5.8) or
(5.44). This matrix has a diagonal block-structure: Ã = blockdiag(Ã1, . . . , Ãd)
with identical blocks Ã1 = . . . = Ãd =: Ãblock. In a three-dimensional flow
problem we have d = 3. The diagonal block Ãblock is the stiffness matrix
corresponding to the Galerkin discretization, in the space X

k
h,0 of simplicial

finite elements, of a diffusion-convection-reaction problem of the form as in
(5.68). In case of a (generalized) Stokes problem there is no convection term.
The reaction term is scaled with the parameter β ∼ 1

Δt ∈ [0,∞). Without
loss of generality we can assume that α = 1. For β sufficiently large (i.e.,
the time step Δt sufficiently small) the matrix Ãblock is very similar to the
mass matrix in the space X

k
h,0, which is well-conditioned. In that case pre-

conditioning is not really an issue. The choice QA = β diag(M) then results
in a satisfactory preconditioner for Ã. In practice, however, it is usually not
clear whether “Δt sufficiently small” is satisfied. Therefore a preconditioner
that is good uniformly in β is desirable. Such a preconditioner for the matrix
Ã can be obtained using a multigrid method applied to the diagonal block
Ãblock. For simplicity we consider the symmetric case, i.e., the generalized
Stokes problem. Let CMG be the iteration matrix of a symmetric multigrid
method applied to the symmetric positive definite matrix Ãblock. The matrix
QMG is defined by CMG =: I −Q−1

MGÃblock, cf. Sect. 5.4.1. As explained in
Sect. 5.4.1, the matrix QMG, although not explicitly available, can be used
as a preconditioner for Ãblock: For given y the vector Q−1

MGy is the result
of one multigrid iteration with starting vector equal to zero applied to the
system Ablockz = y. From multigrid convergence analyses it follows that un-
der certain reasonable assumptions, for example those in Theorem 5.4.24, the
matrix QMG is symmetric positive definite and σ(I−Q−1

MGÃblock) ⊂ [0, ρMG]
holds with the contraction number ρMG < 1 independent of the mesh size
parameter h and independent of β. For the preconditioner QA of Ã we take

QA := blockdiag(QMG) (d blocks).

For this multigrid preconditioner we then have the following spectral inequal-
ities

(1− ρMG)QA ≤ Ã ≤ QA, ρMG < 1 independent of h and β, (5.100)

i.e., we obtain spectral inequalities as in (5.18), (5.32) with ΓA = 1 and
γA > 0 independent of h, β. In this sense the multigrid method yields an
optimal preconditioner.
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5.4.3 Preconditioners for the Schur complement

In this section we discuss the choice of an appropriate Schur complement
preconditioner QS . In the first part we give a detailed treatment for the case
of the stationary Stokes problem. After that we discuss a Schur complement
preconditioner for the generalized Stokes problem. Finally we address the issue
of Schur complement preconditioning for the Oseen problem.

Stationary Stokes problem

We consider the discrete problem resulting from the Galerkin discretization
of the stationary Stokes problem with Hood-Taylor finite element spaces. As
preliminaries for the analysis of the Schur complement preconditioner we recall
a few definitions and notations. The Hood-Taylor pair is given by

(Vh, Qh) =
(
(Xkh,0)

d , X
k−1
h ∩ L2

0(Ω)
)
, k ≥ 2.

Here we use the notation d for the dimension of the velocity vector (Ω ⊂ R
d).

For the bases in these spaces we use standard nodal basis functions. In the ve-
locity space Vh = (Xkh,0)

d the set of basis functions is denoted by (ξi)1≤i≤m.
The basis in the pressure space X

k−1
h is denoted by (ψi)1≤i≤n. The corre-

sponding isomorphisms are given by

Ph,1 : R
m → Vh, Ph,1x =

m∑

i=1

xiξi, (5.101)

Ph,2 : R
n → X

k−1
h , Ph,2y =

n∑

i=1

yiψi. (5.102)

The stiffness matrix for the Stokes problem is given by

K =
(
A BT

B 0

)
∈ R

(m+n)×(m+n), with

〈Ax, x̃〉 = a(Ph,1x, Ph,1x̃) =
∫

Ω

(∇Ph,1x) · (∇Ph,1x̃) dx ∀ x, x̃ ∈ R
m,

〈Bx,y〉 = b(Ph,1x, Ph,2y) = −
∫

Ω

Ph,2y div(Ph,1x) dx ∀ x ∈ R
m, y ∈ R

n.

The matrix A = blockdiag(A1, . . . ,Ad) is symmetric positive definite and
A1 = . . . = Ad =: Ablock is the stiffness matrix corresponding to the Galerkin
discretization of the Poisson equation in the space X

k
h,0 of simplicial finite

elements.
For the preconditioner QS of the Schur complement S we use the mass

matrix in the pressure space, which is defined by

〈Mpy, z〉 = (Ph,2y, Ph,2z)L2 for all y, z ∈ R
n. (5.103)
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This mass matrix is symmetric positive definite and diag(Mp)−1Mp is in
general well-conditioned. Therefore diag(Mp) is spectrally equivalent to Mp

and solving a linear system with matrix Mp to reasonable accuracy can be
realized efficiently by applying a preconditioned CG method with diag(Mp)
as preconditioner.

We recall the LBB stability property of the Hood-Taylor finite element
pair (Vh, Qh):

∃ β̂ > 0 : sup
vh∈Vh

b(vh, qh)
‖vh‖1

≥ β̂‖qh‖L2 for all qh ∈ Qh, (5.104)

with β̂ independent of h. Using this stability property we get the following
spectral inequalities for the preconditioner Mp:

Theorem 5.4.27 Let Mp be the pressure mass matrix defined in (5.103).
Assume that the stability property (5.104) holds. Then

β̂2 Mp ≤ S ≤ dMp on
(
Mp(1, . . . , 1)

)⊥ (5.105)

holds.

Proof. For y ∈ R
n we have:

max
x∈Rm

〈Bx,y〉
〈Ax,x〉 1

2
= max

x∈Rm

〈BA− 1
2 x,y〉

‖x‖ = max
x∈Rm

〈x,A− 1
2 BTy〉

‖x‖

= ‖A− 1
2 BTy‖ = 〈Sy,y〉 1

2 .

Hence, for arbitrary y ∈ R
n:

〈Sy,y〉 1
2 = max

uh∈Vh

b(uh, Ph,2y)
|uh|1

. (5.106)

Note that y ∈
(
Mp(1, . . . , 1)

)⊥ iff (Ph,2y, 1)L2 = 0. Using this, (5.106) and
the stability bound (5.104) we get

〈Sy,y〉 1
2 ≥ β̂ ‖Ph,2y‖L2 = β̂ 〈Mpy,y〉

1
2

for all y ∈
(
Mp(1, . . . , 1)

)⊥ and thus the first inequality in (5.105) holds. Note
that

|b(uh, Ph,2y)| ≤ ‖ div uh‖L2‖Ph,2y‖L2

≤
√
d |uh|1‖Ph,2y‖L2 =

√
d |uh|1〈Mpy,y〉

1
2

holds. Combining this with (5.106) proves the second inequality in (5.105).�

The result in Theorem 5.4.27 is a special case of the general abstract result
given in Remark 15.5.1.
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Corollary 5.4.28 Suppose that for solving a discrete Stokes problem with
stiffness matrix K we use a preconditioned MINRES method with a multigrid
preconditioner QA (for A) as in Remark 5.4.26 and a Schur complement
preconditioner QS = Mp (for S) as defined above. Then the inequalities
(5.18) hold with constants γA, ΓA, γS , ΓS that are independent of h. From
Theorem 5.2.9 it follows that the spectrum of the preconditioned matrix K̃ is
contained in a set [a, b] ∪ [c, d] with a < b < 0 < c < d, all independent of h.
From Theorem 5.2.6 we then conclude that the residual reduction factor can
be bounded by a constant smaller than one independent of h. �

Generalized Stokes problem

We briefly address the issue of Schur complement preconditioning for the
generalized Stokes case, i.e., with Ã = αA + βM, α, β > 0, with α = O(1)
and β ∼ 1

Δt . In Sect. 15.5 an abstract analysis related to Schur complement
preconditioning of a parameter dependent saddle point problem is presented.
In Sect. 15.5.3 this abstract analysis is applied to a continuous generalized
Stokes problem. In the continuous setting, the Schur complement operator
S : L2

0(Ω) → L2
0(Ω) is given by S = − div(−Δ + τI)−1∇, cf. (15.55). As

Schur complement preconditioner the operator S̃−1 = I − τΔ−1
N is proposed,

where Δ−1
N is the solution operator of a Neumann problem in the pressure

space H1(Ω) ∩ L2
0(Ω), cf. Theorem 15.5.14. The abstract analysis can also

be applied to the finite element discretization of such a generalized Stokes
problem, cf. [189]. This results in a discrete analogon of S̃−1 (denoted by
Q̃−1
S below) that was introduced by Cahouet and Chabard [61]. We briefly

explain this method. For more details and a convergence analysis we refer
to the literature [189]. For g ∈ L2(Ω) consider the Neumann problem: find
w ∈ H1(Ω) ∩ L2

0(Ω) such that

(∇w,∇φ)L2 = (g, φ)L2 for all φ ∈ H1(Ω) ∩ L2
0(Ω). (5.107)

Let Th be the stiffness matrix of the Galerkin discretization of this problem
in X

k−1
h ⊂ H1(Ω):

〈Thx,y〉 = (∇Ph,2x,∇Ph,2y)L2 for all x,y ∈ R
n,

with Ph,2 : R
n → X

k−1
h the finite element isomorphism as in (5.102). Note

that ker(Th) = span(e), with e := (1, 1, . . . , 1)T , and Th : (Mpe)⊥ → e⊥ is
bijective. We define Q̃−1

S : e⊥ → R
n by:

Q̃−1
S = αM−1

p + βT−1
h . (5.108)

Here Mp denotes the mass matrix in the pressure space as defined in (5.103).
Note, that for α = 1, β = 0 (which corresponds to the discrete stationary
Stokes equation) we get Q̃S = Mp. In [52, 189] it is shown that Q̃S is uniformly
in h and α, β spectrally equivalent to the Schur complement S = BÃ−1BT
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(on the subspace (Mpe)⊥). For the continuous case the corresponding spectral
equivalence result is stated in Theorem 15.5.14. For the evaluation of Q̃−1

S y
one has to solve (approximately) a linear system with the mass matrix Mp

and one with the stiffness matrix Th. For the mass matrix this is easy, cf. the
discussion for the stationary Stokes case above. For the stiffness matrix Th it
suffices to apply one or a few iterations of a standard multigrid method.

Oseen problem

The issue of Schur complement preconditioning in the nonsymmetric case is
much more difficult as in the symmetric case. In case of the Oseen problem an
“optimal” Schur complement preconditioner is not known, yet. For “small”
time steps Δt (i.e., β large) and “small” Reynolds numbers the matrix Ã =
α
[
A + N(xold)

]
+ βM in the Oseen problem is “close to” the matrix Ã =

αA + βM that arises in the generalized Stokes problem. In that case the
Schur complement preconditioner in (5.108) can be satisfactory for the Oseen
problem, too.

We briefly explain another Schur complement preconditioner that is effi-
cient for a much larger range of time steps and of Reynolds numbers than the
one in (5.108). This preconditioner is introduced in [99] and further developed
in [102, 100]. Define M1 := diag(M), with M the mass matrix in the veloc-
ity space. The so-called BFBt preconditioner (or least-squares commutator
preconditioner) is given by

Q−1
S = (BM−1

1 BT )−1 BM−1
1 ÃM−1

1 BT (BM−1
1 BT )−1. (5.109)

The expression for this preconditioner is rather complicated, but its imple-
mentation can be realized fairly efficiently. Since M1 is diagonal the ma-
trix BM−1

1 BT is still sparse. This matrix has properties similar to a discrete
Laplace operator in the pressure finite element space. For solving linear sys-
tems with the symmetric positive definite matrix BM−1

1 BT (approximately)
one can use a preconditioned CG method or a multigrid method. Note that
this matrix has dimension n× n and typically n� (n+m) holds.

Remark 5.4.29 For the BFBt preconditioner there is no rigorous theory
that shows that this is a good preconditioner for the Schur complement. A
motivation for the structure of this preconditioner and results of numerical
experiments that indicate the efficiency of this Schur complement precondi-
tioner are given in [100]. A simple heuristic explanation of this preconditioner
as follows. The Schur complement can be represented as

S = BÃ−1BT = (BM− 1
2

1 )(M
1
2
1 Ã−1M

1
2
1 )(BM− 1

2
1 )T

=: B̂M
1
2
1 Ã−1M

1
2
1 B̂T .

(5.110)

The matrix M
1
2
1 Ã−1M

1
2
1 is invertible. The matrix B (or B̂) is in general not

invertible, but we assume that rank(B) = n, or equivalently, rank(B̂) = n
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holds. The generalized inverse (or Moore-Penrose inverse) B̂† of B̂ is given by

B̂† = B̂T (B̂B̂T )−1 = M− 1
2

1 BT (BM−1
1 BT )−1.

If on the right-hand side in (5.110) we formally apply inversion and use this
generalized inverse we obtain

(
B̂†)TM− 1

2
1 ÃM− 1

2
1 B̂† = (BM−1

1 BT )−1BM−1
1 ÃM−1

1 BT (BM−1
1 BT )−1,

i.e., the preconditioner in (5.109).

5.5 Numerical experiments

We reconsider the example from Sect. 3.3.1, i. e., flow through a rectangular
tube Ω = (0, L)×(0, 1)2 with L = 4. The right-hand side is set to g = (g, 0, 0)
with g ∈ R. Note that the solution of the corresponding stationary Stokes
problem is given by uSt(x) := (Re·g ·s(x2, x3), 0, 0), cf. (3.39). We consider the
Navier-Stokes equation in dimensionless variables, with Re = 1. We prescribe
the boundary conditions u = uSt for x1 = 0, L and u = 0 on the remaining
boundaries. After spatial discretization and applying the implicit Euler scheme
for time discretization we obtain the following discrete problem,

⎧
⎪⎨

⎪⎩

(
1
ΔtM + A

)
	u + C(	w)	u + BT	p

= 	f + 1
ΔtM	uold,

B	u = 0.
(5.111)

In the numerical experiments we will study the iterative solution of the system
(5.111) with uold = uSt. In the following sections we consider three different
cases: the Stokes case (	w = 0), the Oseen case (	w = uold) and the Navier-
Stokes case (	w = 	u). The parameter g, which can be interpreted as some
artificial gravitational constant and influences the size of the velocity u (i.e.
the amount of convection), is varied in order to study the impact on the
convergence rates of the iterative solver. The inexact Uzawa method is used in
all of the three examples, using appropriate preconditioners QA and QS . The
starting vector is chosen as (	u0, 	p0) = (	uold, 0). The iteration is stopped after
a reduction of the Euclidean norm of the starting residual by a factor of 106,
i. e., ‖rk‖ ≤ 10−6‖r0‖. To measure the arithmetic costs, which are dominated
by the application of the preconditioners, the number of evaluations of Q−1

A

is counted. Note that the number of Q−1
S and Q−1

A evaluations are almost the
same, cf. Remark 5.2.11, so we will not report the numbers of Q−1

S evaluations
in the following.

5.5.1 Stokes case

Taking 	w = 0, the (discrete) convection term C(	w)	u in (5.111) vanishes,
yielding a generalized discrete Stokes problem. The preconditioners for the
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inexact Uzawa algorithm are chosen as follows. For QA one multigrid V -cycle
iteration is applied to A. The Schur complement is preconditioned by the
Cahouet-Chabard preconditioner QS given in (5.108), but with T−1

h replaced
by the application of one multigrid V -cycle iteration to Th. Setting g = 1,
computations are performed for time step sizes Δt = 1/10, 1/20, 1/40 and
mesh sizes h = 1/4, 1/8, 1/16. The number of unknowns of the correspond-
ing systems is given in Table 3.1 (cf. refinement levels 2, 3, 4, respectively).
Table 5.1 gives the number of Q−1

A evaluations for the different time step sizes
and mesh sizes.

Cahouet-Chabard BFBt
h = 1/4 h = 1/8 h = 1/16 h = 1/4 h = 1/8 h = 1/16

Δt = 1/10 44 47 46 36 58 89
Δt = 1/20 42 49 45 32 56 101
Δt = 1/40 35 40 45 27 50 86

Table 5.1. Stokes case: number of Q−1
A evaluations for different h, Δt.

These results indicate good robustness of the rate of convergence of the
iterative solver w. r. t. variation in h and Δt. Even though the BFBt pre-
conditioner (5.109) is originally designed for Oseen problems, it can also be
applied to the Stokes case. We repeated the computations, but this time used
the BFBt preconditioner as Schur complement preconditioner QS , where for
the solution of the arising systems a CG method is applied such that Eu-
clidean norm of the residual is reduced by a factor of 10. We observe that the
BFBt preconditioner is not robust w. r. t. variation of h, as the number of
Q−1
A evaluations increases significantly for smaller h, cf. Table 5.1.

Cahouet-Chabard BFBt
h = 1/4 h = 1/8 h = 1/16 h = 1/4 h = 1/8 h = 1/16

Δt = 1/10 86 100 98 36 58 108
Δt = 1/20 93 113 113 34 60 119
Δt = 1/40 88 120 112 28 54 89

Table 5.2. Stokes case, mixed boundary conditions: number of Q−1
A evaluations for

different h, Δt.

We repeat the computations for slightly different boundary conditions,
namely homogeneous natural boundary conditions σn = 0 for x1 = L (out-
flow boundary conditions) while on the remaining boundaries the boundary
conditions are chosen as in the previous case. The results are given in Ta-
ble 5.2. Note that for the Cahouet-Chabard preconditioner we still observe a
robust behavior, although the number of Q−1

A evaluations is almost doubled.
The BFBt preconditioner shows almost the same behavior as before. We
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conclude that for the Cahouet-Chabard preconditioner there is a significant
dependence of the preconditioning quality on the type of boundary conditions
used.

5.5.2 Oseen case

Choosing 	w = 	uold = (g · s(x2, x3), 0, 0) in (5.111), a discrete Oseen problem
is obtained, where the strength of the convective part can be controlled by
the parameter g. We compare the cases g = 1 and g = 103 for two different
choices for the Schur complement preconditioner QS , namely the Cahouet-
Chabard and the BFBt preconditioner also used in the previous section. The
matrix Ã and the Schur complement are both nonsymmetric. For the solu-
tion of the Schur complement system in (5.30), instead of a preconditioned CG
solver a preconditioned GCR iteration is used. For QA a Jacobi-preconditioned
BiCGStab iteration with initial vector equal to zero is applied, until the Eu-
clidean norm of the residual is reduced by a factor of 100. To obtain such a
residual reduction, the BiCGStab solver requires about 20 iterations for g = 1
and about 50 iterations for g = 103. Taking one multigrid V -cycle for QA (as
in the Stokes case) would be sufficient for the problem with mild convection
(g = 1) yielding similar results as in Table 5.1, but the method either fails
to converge or has very slow convergence for the convection-dominated case
(g = 103). The reason for this poor multigrid performance comes from the
fact that we used standard multigrid components (smoother, prolongation)
that are appropriate for diffusion dominated problems but not suitable for
problems with strong convection. This poor behavior can be avoided by using
modified components, cf. the discussion in Sect. 5.6.

Cahouet-Chabard BFBt
h = 1/4 h = 1/8 h = 1/16 h = 1/4 h = 1/8 h = 1/16

Δt = 1/10 43 40 38 25 43 81
Δt = 1/20 40 33 37 25 41 71
Δt = 1/40 39 36 42 23 36 63

Table 5.3. Oseen case, g = 1: number of Q−1
A evaluations for different h, Δt.

Cahouet-Chabard BFBt
h = 1/4 h = 1/8 h = 1/16 h = 1/4 h = 1/8 h = 1/16

Δt = 1/10 85 99 107 51 101 171
Δt = 1/20 76 87 107 45 88 166
Δt = 1/40 58 76 97 45 86 146

Table 5.4. Oseen case, g = 1000: number of Q−1
A evaluations for different h, Δt.
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Tables 5.3 and 5.4 show the number of Q−1
A evaluations for the two precon-

ditioners and two different choices of g. As expected, the convection-dominated
problem (g = 1000) results in higher computational costs. The numerical re-
sults indicate that again the BFBt preconditioner deteriorates for smaller
mesh sizes h. For the Cahouet-Chabard preconditioner and g = 1 we observe
robustness w. r. t. h as in the Stokes case, whereas for g = 1000 there is a
mild increase of the number of Q−1

A evaluations for decreasing h. For the case
g = 1000, h = 1/8, both Schur complement preconditioners lead to com-
parable overall computing times, whereas for a finer grid size h = 1/16 the
Cahouet-Chabard preconditioner outperforms the BFBt preconditioner.

5.5.3 Navier-Stokes case

We now turn to the Navier-Stokes case by setting 	w = 	u in (5.111). For a
fixed mesh size h = 1/16 and time step size Δt = 1/40, the parameter g is
varied within a range of 1 . . . 103. The adaptive defect correction method (cf.
Algorithm 5.1.1) is used for linearization of the nonlinear problem. The non-
linear iteration is stopped if ‖rk‖ ≤ 10−6‖r0‖ holds. The linearized problems
are of Oseen type and are solved as outlined in the previous section, reducing
the Euclidean norm of the residual by a factor of 10 in each linearization step.
Table 5.5 shows the number of fixed point iterations and the accumulated
number of Q−1

A evaluations for different values of g and for the two Schur
complement preconditioners.

g 1 10 100 1000

Cahouet-Chabard 4 (37) 4 (37) 6 (63) 10 (120)
BFBt 5 (63) 5 (75) 6 (84) 9 (174)

Table 5.5. Navier-Stokes case: number of fixed point iterations (and Q−1
A evalua-

tions) for h = 1/8, Δt = 1/10 and different values of g.

As expected, the number of fixed point iterations increases with increasing
g due to the stronger nonlinearity of the problem. Comparing both Schur
complement preconditioners, the Cahouet-Chabard preconditioner turns out
to be more efficient than the BFBt preconditioner for all choices of g. In
recent literature there have been developed (improved) variants of the BFBt
preconditioner that might perform better, cf. [103].

5.6 Discussion and additional references

There is an extensive literature on efficient iterative solvers for large sparse
(linear) systems. We only address some issues that are directly related to the
material treated in this chapter.
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In recent years there has been much progress concerning the analysis of
iterative methods and preconditioners for symmetric saddle point problems,
we refer to the overview paper [31], which contains many references on this
subject. Another interesting survey paper is [175]. In Sect. 5.4.3 we treated
the issue of Schur complement preconditioning. For the generalized Stokes
problem (which is symmetric) the Cahouet-Chabard preconditioner is an ef-
ficient one. For the (non-symmetric) Oseen problem, however, an “optimal”
Schur complement preconditioner, i.e. one with a good approximation quality
uniformly w.r.t. the mesh size, the time step and the Reynolds number, is not
known yet. Several Oseen Schur complement preconditioners, that perform
well in certain parameter ranges, have been studied in the literature. One
class of such methods consists of variants of the BFBt preconditioner (cf.
Sect. 5.4.3). This preconditioner belongs to the class of so-called approximate
commutator preconditioners , which consists of two subclasses namely of the
pressure convection-diffusion preconditioners (PCD) and of the least-squares
commutator methods (LSC). The BFBt preconditioner belongs to the lat-
ter subclass. An overview of the main ideas underlying these approximate
commutator preconditioners can be found in [102]. Recent work on these pre-
conditioners, resulting in improvements of the BFBt method is presented in
[101, 103].

Another approach for preconditioning the discrete Oseen problem is based
on the augmented Lagrangian technique (AL). This technique is based on a
rather general idea, and is used for other applications in [109]. We briefly
outline the main idea of the AL applied to the Oseen problem. Consider the
Oseen saddle point system

(
Ã BT

B 0

)(
x
y

)
=

(
b
0

)
, (5.112)

and assume that B has full row rank n. Let Mp be the mass matrix in the
pressure space. Note that Bx = 0 and thus the solution of (5.112) is also the
solution of the saddle point system

(
Ã + γBTM−1

p B BT

B 0

)(
x
y

)
=

(
b
0

)
, (5.113)

with a given parameter γ > 0. The Schur complement of the matrix in (5.112)
is given by S = BÃ−1BT , whereas the Schur complement of the matrix in
(5.113) is given by Ŝγ = B(Ã + γBTM−1

p B)−1BT . For the inverse of this
Schur complement we have the identity (cf. [32])

Ŝ−1
γ = S−1 + γM−1

p .

Hence, for γ sufficiently large the problem of Schur complement precondition-
ing for the matrix in (5.113) is easy to solve: one can take Mp as a precondi-
tioner for Ŝγ . There is, however, a price to pay, caused by the fact that for a
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block preconditioner of the matrix in (5.113) one needs, besides a precondi-
tioner for Ŝγ , also a preconditioner for the block Âγ := Ã + γBTM−1

p B. The
matrix BTM−1

p B has a large null space, and thus for γ large the matrix Âγ

is very ill conditioned and the problem of finding a good preconditioner for
Âγ is (much) more difficult than that of finding a good preconditioner for Ã.
Such augmented Lagrangian based preconditioners for the Oseen problem are
studied in [32, 33].

In Sect. 5.4.2 we treated the multigrid method as a preconditioner for Ã.
In that treatment we restricted ourselves to the diffusion-dominated case
(small Reynolds number), which corresponds to a matrix Ã that is “almost
symmetric”. In case of strong convection (large Reynolds number) the stan-
dard multigrid technique as explained in Sect. 5.4.2 in general does not work
properly. For convection-dominated problems, special efficient multigrid tech-
niques have been developed in the literature. Key ingredients are the use of
special (often called “robust”) smoothers and/or problem adapted prolonga-
tions and restrictions. We refer to the literature for more information, e.g.
[133, 191, 242]. Another multigrid approach that often is very efficient in case
of strong convection is the so-called algebraic multigrid method (AMG). A
treatment of this method can be found in, e.g., [159, 242]. In Sect. 5.4.2 we
only considered multigrid for scalar elliptic problems. In Remark 5.4.26 it is
explained how this method can be used for preconditioning the Ã block in the
saddle point system. Multigrid methods can also be applied directly, either
as solver or as preconditioner, to the whole saddle point system. An early
contribution in this field of so-called coupled multigrid is [254]; further studies
of this approach are [151, 150, 164, 251].

In this monograph we do not treat the topic of parallelization of iterative
solvers. In particular for three-dimensional two-phase flow problems (coupled
with mass or surfactant transport) in many cases it may be necessary to use
a parallel code in order to obtain acceptable computing times.

An issue that we did not address at all, but is important for an efficient
numerical simulation, is how to choose the tolerances in the iterative methods.
In the type of solvers that we use in our one- or two-phase flow simulations
there are many tolerance parameters that have to be set. Given the spatial
mesh size resolution, the time step Δt has to be chosen. Then, in case of a two-
phase flow problem, in each time step there is an iteration that decouples the
movement of the interface from the fluid dynamics unknowns (u, p), for which
one needs a stopping criterion. Then in the Navier-Stokes subproblem one has
a linearization (e.g. adaptive defect correction) and in each linearization step
a discrete Oseen problem is solved iteratively. If one uses in the preconditioner
an iterative method, then yet another appropriate stopping criterion is needed.
Thus there are many (say between 6 and 9) tolerance parameters that have to
chosen. Clearly, the stopping criteria are not independent. If, for example, one
wants to have a very high time discretization accuracy (very small time step)
then one needs a more accurate solution of the nonlinear discrete problem
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per time step. If all tolerance parameters are set such that one has very high
accuracy in all iterative methods, then this can easily result in a very inefficient
overall solver. If on the other hand one (or more) of the accuracies are “too
low” this can lead to inaccurate results or a breakdown of the simulation.
We consider this problem of parameter tuning to be very relevant and largely
unsolved. We are not aware of literature in which, for an interesting class of
CFD problems, this topic is systematically studied.



Part II

Two-phase incompressible flows



6

Mathematical model

6.1 Introduction

We recall the Navier-Stokes model (1.19)-(1.21) for two-phase incompressible
flows:

{
ρi

(
∂u
∂t + (u · ∇)u

)
= −∇p+ ρig + div(μiD(u))

div u = 0
in Ωi, (6.1)

[σn]Γ = −τκn, [u] = 0 on Γ, (6.2)
VΓ = u · n on Γ. (6.3)

We recall the definition of the stress tensor σ := −pI+ μD(u) and the defor-
mation tensor D(u) := ∇u+∇uT . For the velocity we use Dirichlet boundary
conditions u = uD on ∂ΩD and natural boundary conditions on ∂Ω \ ∂ΩD.
The initial condition for the velocity is u(x, 0) = u0(x), x ∈ (Ω1 ∪ Ω2)(0),
with a given function u0 : Ω → R

3. Furthermore, we assume that the initial
interface Γ (0) is given. Note that the model (6.1)-(6.3) is not in dimensionless
form.

Remark 6.1.1 We address the formulation of the two-phase flow model
(6.1)-(6.3) in dimensionless variables. In this model we have two Navier-Stokes
equations in the two subdomains Ωi, i = 1, 2. Therefore it is an option to con-
sider a subdomain dependent scaling. For the dimensionless variables we use
the same notation as in the derivation of the one-phase dimensionless Navier-
Stokes equation in Sect. 2.1: x̄, t̄, ū, p̄. It does not make sense to use different
spatial scales in the two subdomains. Hence we choose one typical length scale,
denoted by L. We want to maintain the continuity property [u]Γ = 0 also in
the transformed variables and thus we choose one typical velocity size U . In
the pressure rescaling we allow a subdomain dependent rescaling with ρ̃i > 0
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a given constant in Ωi (with unit kg/m3). The corresponding piecewise con-
stant function on Ω is denoted by ρ̃. Based on this, the dimensionless variables
are given by

x̄ =
1
L
x, t̄ =

U

L
t, ū(x̄, t̄) =

u(x, t)
U

, p̄i(x̄, t̄) =
p(x, t)
ρ̃iU2

, i = 1, 2.

Furthermore, Ω̄ := 1
LΩ :=

{
x̄ ∈ R

3 : Lx̄ ∈ Ω
}

and ḡ := L
U2 g. The partial

differential equations in (6.1) can be written in these dimensionless quantities
as follows, where differential operators w.r.t. x̄i and t̄ are denoted with a −

(for example: ∇̄):

ρi
ρ̃i

(∂ū
∂t̄

+ (ū · ∇̄)ū
)

= −∇̄p̄+
ρi
ρ̃i

ḡ + div
( 1
Rei

D̄(ū)
)

= div(σ̄) +
ρi
ρ̃i

ḡ in Ω̄i,

div ū = 0 in Ω̄i,

(6.4)

with the dimensionless Reynolds numbers Rei = ρ̃iLU
μi

, i = 1, 2, and

σ̄ = −p̄I +
1
Rei

(
∇̄ū + ∇̄ūT

)
.

Considering this rescaled problem it is tempting to choose ρ̃i = ρi, since this
leads to a simplification. In particular one then has a constant 1 in front of
the material derivative. However, it is also necessary to rescale the interface
conditions in (6.2)-(6.3). The conditions [u] = 0, VΓ = u · n transform to

[ū] = 0, V̄Γ = ū · n̄, (6.5)

with n̄(x̄) = n(x). The momentum balance condition [σn] = −τκn takes the
form

[ρ̃U2σ̄n̄] = − τ
L
κ̄n̄,

with κ̄ = divΓ n̄, the curvature in transformed variables. To be able to write
this momentum balance condition in the usual form [σ̄n̄] = α κ̄n̄, α ∈ R, the
scaling function ρ̃ has to be taken constant across Γ , and thus ρ̃1 = ρ̃2 = ρ̃.
Therefore, in the transformation to dimensionless variables one normally takes
a constant density scaling factor (e.g., ρ̃ = 1

2 (ρ1+ρ2)) and then the momentum
interface condition is given by

[σ̄n̄] = − 1
We

κ̄n̄, We :=
ρ̃U2L

τ
. (6.6)

The dimensionless so-called Weber number is a measure for the relative size
of inertial and surface tension forces. The model in dimensionless variables
is given by (6.4), (6.5), (6.6). Note that similar to (6.1), in (6.4) one has a
piecewise constant density ρ/ρ̃ and a piecewise constant viscosity 1/Rei. This
is an important difference compared to the dimensionless one-phase Navier-
Stokes problem in (2.5).
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We discuss a weak formulation of the Navier-Stokes equations and the inter-
face conditions in (6.1)-(6.2). We consider the model in physical dimensions
since there is no significant advantage if one instead uses the model in dimen-
sionless variables (6.4), (6.5), (6.6).

We use the Sobolev spaces

V := H1(Ω)3,
V0 := {v ∈ V : v = 0 on ∂ΩD } ,
VD := {v ∈ V : v = uD on ∂ΩD } ,

Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫

Ω

q dx = 0
}
,

and define the bilinear forms

m : V ×V→ R : m(u,v) :=
∫

Ω

ρuv dx,

a : V ×V→ R : a(u,v) :=
1
2

∫

Ω

μ tr
(
D(u)D(v)

)
dx, (6.7)

=
1
2

∫

Ω

μ
3∑

i,j=1

(
D(u)

)
ij

(
D(v)

)
ij
dx

b : V ×Q→ R : b(v, q) := −
∫

Ω

q div v dx,

and the trilinear form

c : V ×V ×V → R : c(u;v,w) :=
∫

Ω

ρ(u · ∇v)w dx.

For the weak formulation of the interface condition [σn]Γ = −τκn in (6.2)
we introduce the linear functional

fΓ : V→ R : fΓ (v) := −
∫

Γ

τκn · v ds. (6.8)

If the curvature κ is bounded on Γ we have

|fΓ (v)| ≤ c ‖κ‖L∞(Γ )‖v‖L2(Γ ) ≤ c̃‖v‖1 for all v ∈ V,

where in the last inequality we used a trace theorem on Γ . Hence we get that
fΓ is a bounded linear functional on V, i.e., fΓ ∈ V′.

Remark 6.1.2 We restrict ourselves to the model with a constant sur-
face tension coefficient τ . More general models with an interface momen-
tum balance of the form [σn] = divΓ (σΓ ) are discussed in Sect. 7.6.1.
For such an interface condition the surface tension functional generalizes to
fΓ (v) =

∫
Γ divΓ (σΓ ) · v ds.
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A weak formulation of the Navier-Stokes equations and the coupling condi-
tions in (6.2) is as follows:

Find u(t) = u(·, t) ∈ VD, p(t) = p(·, t) ∈ Q such that for almost all
t ∈ [0, T ]

m(
∂u
∂t
,v) + c(u;u,v)

+a(u,v) + b(v, p) = (ρg,v)L2 + fΓ (v) for all v ∈ V0, (6.9)

b(u, q) = 0 for all q ∈ Q, (6.10)

and initial condition u(0) = u0 in Ω.

The time derivative has to be taken in a suitable weak sense, cf. below. Note
that in this model we have the weak formulation of one Navier-Stokes equation
in the whole domain Ω. The localized force term fΓ originates from the first
interface coupling condition in (6.2). Also note that in general the bilinear
forms m(·, ·), a(·, ·) and the trilinear form c( · ; ·, ·) depend on t, due to the
fact that we have Ωi = Ωi(t) and thus the density and viscosity coefficients
(which are piecewise constant in Ωi) are time dependent.

The surface tension functional fΓ will play an important role in the re-
mainder of this monograph, both in the analysis of the models considered
and in the numerical methods that will be treated. This functional has other
useful representations, for example those given in Lemma 14.1.2.

Remark 6.1.3 The idea to replace the first interface coupling condition in
(6.2) by a localized force term in the momentum equation was introduced
in [47]. In the (engineering) literature this is known as the CSF (“Contin-
uum Surface Force”) approach. In [47] and in most other papers in which
such a localized surface tension force is used, this force at the interface is
approximated by some volume force (hence, continuum surface force). We
briefly explain the main idea, for details we refer to [47, 64]. Take x ∈ Γ
and let U ⊂ Ω be a (small) neighborhood of x. Define γ := Γ ∩ U . Let
g : γ → R

3 be a smooth vector function (“force at the interface”), for exam-
ple g(x) = τκ(x)nΓ (x), and g̃ : U → R

3 a suitable smooth extension of g.
Furthermore, let dΓ be the signed distance function: dΓ (x) = dist(Γ, x) for
x ∈ U ∩Ω2, dΓ (x) = −dist(Γ, x) for x ∈ U ∩Ω1. For the “force acting on γ”
we have: ∫

γ

g(s) ds = lim
ε↓0

∫

U

δε(dΓ (x))g̃(x) dx,

with a one-dimensional smoothed Dirac delta function δε, i.e. for ξ > 0 we
have limε↓0

∫ ξ
−ξ δε(s)h(s) ds = h(0) for smooth functions h. Then in the spirit

of the derivation of the Navier-Stokes equations in the strong formulation (as
in (6.1)), based on conservation laws and forces on “arbitrary” neighborhoods
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U , the volume force at x ∈ γ is taken as δε(dΓ (x))g̃(x). In this approach one
has freedom in choosing the extension g̃ of g and in choosing the regularization
of the Dirac delta function. It is shown in [241, 104] that the latter issue is
nontrivial: seemingly natural regularizations, which work well in 1D, may lead
to large errors in higher dimensions. In [64] an extension g̃ of g based on the
level set method is introduced, cf. Remark 6.2.4 below. All Dirac delta function
regularizations lead to functions δε with unbounded derivatives for ε ↓ 0, and
thus such a regularization requires a high mesh resolution close to Γ .

In the weak formulation (6.9) this regularization (and extension) issue does
not occur. The localized surface tension force is represented as a well-defined
functional fΓ ∈ V′ (provided the curvature is bounded). In this sense the
weak formulation is better suited for describing surface tension forces than
the strong formulation.

The following lemma indicates that (6.9)-(6.10) is a correct weak formulation
for the Navier-Stokes problems in the two subdomains with coupling condi-
tions as in (6.2).

Lemma 6.1.4 Assume that (6.1)-(6.2) has a solution (u, p) with u|∂ΩD
=

uD,
∫
Ω p dx = 0, Γ (t) is sufficiently smooth and u, p are sufficiently smooth:

u ∈ C1
(
0, T ;C2(Ωi)3

)
, p ∈ C

(
0, T ;C1(Ωi)

)
, i = 1, 2.

Then (u, p) solves (6.9)-(6.10).

Proof. Due to the smoothness assumption on u in the subdomains Ωi and
[u]Γ = 0 we have u ∈ VD. Furthermore, p(·, t) ∈ Q holds. From div u = 0 it
follows that (6.10) holds. We now consider the variational equation in (6.9):

∫

Ω

ρ
∂u
∂t

v dx+
∫

Ω

ρ(u · ∇u)v dx+
1
2

∫

Ω

μ tr
(
D(u)D(v)

)
dx

−
∫

Ω

p div v dx =
∫

Ω

ρg · v dx−
∫

Γ

τκn · v ds.
(6.11)

We need the following partial integration rules, which hold for functions q :
U → R and w,v : U → R

3 that are sufficiently smooth on U ⊂ Ω:

−
∫

U

q div w dx =
∫

U

∇q ·w dx−
∫

∂U

qw · n ds,

1
2

∫

U

tr
(
D(w)D(v)

)
dx = −

∫

U

(
div D(w)

)
· v dx+

∫

∂U

(
D(w)n

)
· v ds.

In the equation in (6.11) we take a test function v ∈ C∞
0 (Ω)3, split the

integrals over Ω into integrals over Ωi, i = 1, 2, and use the partial integration
rules (with U = Ωi). Thus (6.11) can be rewritten as
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2∑

i=1

∫

Ωi

(
ρi
(∂u
∂t

+ u · ∇u
)
− div

(
μiD(u)

)
+∇p

)
· v dx

=
2∑

i=1

∫

Ωi

ρig · v dx−
∫

Γ

[μD(u)n− pn]Γ · v ds−
∫

Γ

τκn · v ds.

(6.12)

Due to the interface condition [σn]Γ = −τκn the last two terms on the right-
hand side cancel. From (6.1) it then follows that (6.12) and thus (6.11) holds.
Since C∞

0 (Ω)3 is dense in V0 we conclude that (6.9) is satisfied. �

Remark 6.1.5 From the proof above one can infer why we use the bilinear
form a(·, ·) as in (6.7) and not the simpler one â(u,v) =

∫
Ω
μ∇u·∇v dx, which

is used in the weak formulation of the one-phase Navier-Stokes equations.
Partial integration on the subdomains applied to this bilinear form results in

2∑

i=1

∫

Ωi

μi∇u · ∇v dx = −
2∑

i=1

∫

Ωi

μiΔu · v dx+
∫

Γ

[μ(∇u)Tn]Γ · v ds,

and thus in (6.12) instead of the term
∫
Γ
[μD(u)n−pn]Γ ·v ds =

∫
Γ
[σn]Γ ·v ds

one would obtain
∫
Γ
[μ(∇u)Tn− pn]Γ · v ds, which is not consistent with the

interface condition [σn]Γ = −τκn in (6.2).

For the above variational Navier-Stokes problem with the surface tension func-
tional fΓ one can derive the following energy estimate.

Lemma 6.1.6 Consider the variational problem (6.9)-(6.10), with ρ con-
stant, say ρ = 1, with uD = 0 (homogeneous Dirichlet boundary condition)
and g = 0 (no external forces). Assume that for 0 ≤ t ≤ T the interface
Γ (t) is a sufficiently smooth compact manifold. Let (u, p) be a solution of
(6.9)-(6.10) with u ∈ L2(0, T ;V0). Then the following holds:

1
2
‖u(T )‖2L2 +

∫ T

0

a(u(t),u(t)) dt + τ meas2
(
Γ (T )

)

=
1
2
‖u0‖2L2 + τ meas2

(
Γ (0)

)
.

(6.13)

Proof. We take v = u in (6.9). Using partial integration, ρ = 1, u|∂Ω = 0 we
get c(u;u,u) = 0. Furthermore, due to div u = 0 we have b(u, p) = 0. Thus
we obtain ∫

Ω

∂u
∂t

u dx+ a(u,u) = −τ
∫

Γ

κn · u ds.

Integration over t ∈ [0, T ] and applying partial integration in t results in

1
2
‖u(T )‖2L2 +

∫ T

0

a(u(t),u(t)) dt =
1
2
‖u0‖2L2 − τ

∫ T

0

∫

Γ

κn · u ds dt. (6.14)

From (14.15) and Lemma 14.2.2 we obtain
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∫

Γ (t)

κn · u ds =
∫

Γ (t)

divΓ u ds =
d

dt

∫

Γ (t)

1 ds.

Using this yields

−τ
∫ T

0

∫

Γ

κn · u dsdt. = −τ
(
meas2 Γ (T )−meas2 Γ (0)

)
,

which, combined with (6.14), completes the proof. �

Remark 6.1.7 The result in this lemma has a physical interpretation: The
kinetic energy difference 1

2‖u(T )‖2L2 − 1
2‖u(0)‖2L2 is balanced by the sum of

kinetic energy dissipation
∫ T
0 a(u(t),u(t)) dt and the change in surface tension

energy τ
(
meas2 Γ (T )−meas2 Γ (0)

)
.

The question of well-posedness of the variational problem (6.9)-(6.10) com-
bined with the immiscibility condition VΓ = u ·n is a very difficult one. Below
we briefly address some known results.

First we consider a strongly simplified case, namely a Stokes problem with
a stationary interface Γ . In that case the term with the trilinear form c(·; ·, ·)
vanishes and the bilinear forms m(·, ·), a(·, ·) do not depend on t. We assume
∂ΩD = ∂Ω and uD = 0, i.e., a problem with homogeneous Dirichlet boundary
conditions on ∂Ω. We introduce the weighted L2-scalar product (v,w)L2,ρ :=
(ρv,w)L2 . In this simplified case the variational problem (6.9)-(6.10) reduces
to: determine u(t) = u(·, t) ∈ Vdiv = { v ∈ V0 : div v = 0 } with u(0) = u0

and

(
∂u
∂t
,v)L2,ρ + a(u(t),v) = (g,v)L2,ρ + fΓ (v) for all v ∈ Vdiv, (6.15)

for almost all t ∈ [0, T ]. This variational problem is very similar to the one-
phase Stokes problem in (2.33). Compared to (2.33), in (6.15) we have a
slightly different bilinear form a(·, ·) in which a weighting with the piecewise
constant viscosity μ is used, a modified L2-scalar product (namely (·, ·)L2,ρ)
and an additional functional fΓ on the right-hand side. The analysis of well-
posedness of the one-phase variational Stokes problem in (2.33), cf. Theo-
rem 2.2.10, can also be applied to the two-phase variational Stokes problem
in (6.15) (notation as in Sect. 2.2.3):

Theorem 6.1.8 Assume g ∈ L2(0, T ;V′
div), ‖κ‖L∞(Γ ) < ∞ and u0 ∈ Hdiv.

Then the variational problem (6.15) is well-posed.

Proof. Use the same arguments as in the proof of Theorem 2.2.10. Note that
the norms induced by the standard L2-scalar product and by (·, ·)L2,ρ are
equivalent. Furthermore, ‖κ‖L∞(Γ ) <∞ implies that fΓ ∈ V′ ⊂ V′

div. �

For the above result to hold, the weak derivative u′ = ∂u
∂t in (6.15) is defined

as explained in Sect. 2.2.3. For the unique solution u we have
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u ∈W 1(0, T ;Vdiv) =
{
v ∈ L2(0, T ;Vdiv) : v′ ∈ L2(0, T ;V′

div)
}
. (6.16)

Well-posedness results for the general Navier-Stokes case in (6.9)-(6.10) are
known in the literature, however, only for special cases. In [84] well-posedness
of a Navier-Stokes problem as in (6.9)-(6.10) combined with the interface
condition VΓ = u · n is analyzed. Instead of a bounded domain Ω, the case
Ω = R

3 is considered (with “boundary” condition lim|x|→∞ u(x, t) = 0). The
initial interface Γ (0) is assumed to be a closed manifold. The main result in
[84] can be summarized as follows. If the data Γ (0), u0 and g are sufficiently
smooth then for t ∈ [0, T ], with T sufficiently small, the two-phase Navier-
Stokes problem in a weak formulation similar to (6.9)-(6.10) and with the
interface condition VΓ = u ·n has a unique solution. The analysis is in Sobolev
spaces similar to the one in (6.16). The analysis is quite technical, the main
underlying idea, however, is rather easy to explain. We outline this idea. For
ξ ∈ Ω and a given velocity field u(x, t) we define the characteristic Xξ(τ):

{
d
dτXξ(τ) = u(Xξ(τ), τ), τ ≥ 0,
Xξ(0) = ξ.

(6.17)

Xξ(τ) can be interpreted as the path of an infinitely small particle with initial
position ξ. For u(x, t) sufficiently smooth (Lipschitz with respect to x) this
system of ODEs has a unique solution. The smoothness of Xξ depends on the
smoothness of u. To each (x, t) ∈ Ω × [0, T ], with T sufficiently small, there
corresponds a unique ξ ∈ Ω such that x = Xξ(t). Physically this means that
starting from (x, t) one follows the flow field backwards in time resulting in
(ξ, 0):

x = ξ +
∫ t

0

u(Xξ(τ), τ) dτ. (6.18)

This defines the coordinate transformation (x, t) = (Xξ(t), t) → (ξ, t) from
Eulerian coordinates (x, t) to Lagrangian coordinates (ξ, t). The problem (6.1)-
(6.3) can be transformed in Lagrangian coordinates (ξ, t) resulting in an non-
stationary Stokes type of problem with a stationary interface Γ (0). For this
transformed problem well-posedness (in suitable Sobolev spaces) is shown in
[85]. The length T of the time interval should be such that the coordinate
transformation (x, t) → (ξ, t) is well-defined and the Jacobian of this trans-
formation is bounded (in a suitable norm). This depends on norms of the data
g, u0 and the curvature of Γ (0).

In [232] a well-posedness result for the Navier-Stokes problem on arbitrary
time intervals [0, T ] is proved, using the same Euler → Lagrange coordinate
transformation. In that paper the case with a bounded domain Ω is treated.
We summarize its main result. For arbitrary T > 0 the Navier-Stokes problem
in a weak formulation similar to (6.9)-(6.10) and with the interface condition
VΓ = u · n has a unique solution (in suitable Sobolev spaces) if the data g,
u0 are sufficiently small and the initial interface Γ (0) is sufficiently close to a
sphere.
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The analyses addressed above are applicable only in cases with sufficiently
smooth data (initial and boundary data, source terms and initial interface).
They do not cover situations in which the smoothness of the interface dete-
riorates, for example in a problem with colliding droplets. In such cases it
may well happen that interface quantities like the curvature κ or the normal
velocity VΓ are not well-defined in the strong sense and suitable weak alter-
natives must be considered. Only few theoretical results that deal with well-
posedness issues for such less regular problems are known in the literature.
The analyses for less regular cases are based on alternative characterizations of
the interface. These interface representations induce corresponding numerical
techniques for the simulation of two-phase flow problems. In Sect. 6.2 we treat
the most important approaches for interface representation. In the remainder
of this monograph we then restrict ourselves to one of these, namely the level
set representation. A suitable weak formulation of the level set interface repre-
sentation combined with the weak formulation of the Navier-Stokes problem
in (6.9)-(6.10) leads to the weak model that we consider for our numerical
simulations. This model is presented in Sect. 6.3.

6.2 Interface representation

In this section we discuss the most important approaches for characterizing
the interface. These techniques play a role both in the theoretical analysis of
well-posedness and in numerical methods for simulating the two-phase flow
problem.

6.2.1 Explicit interface representation: interface tracking

If the interface is sufficiently smooth then its curvature and other interface
quantities like VΓ , nΓ are well-defined in the classical sense. For a velocity
field u ∈ V and a smooth interface Γ (t) the trace u|Γ and the immiscibility
condition VΓ = u·n in (6.3) are well-defined. The evolution of the interface can
be described by using the Lagrangian coordinates. Take a (virtual) particle
X on the interface at t = t0 with Eulerian coordinates ξ ∈ Γ (t0). For t ≥ t0,
let Xξ(t) be the Eulerian coordinates of this particle. The particles on the
interface are transported by the flow field, hence for Xξ(t) we have the ODE
system (6.17) and the interface Γ (t) can be characterized as follows, cf. (6.18):

x ∈ Γ (t) ⇔ x = ξ +
∫ t

t0

u(Xξ(τ), τ) dτ, ξ ∈ Γ (t0), t ≥ t0. (6.19)

This Lagrangian point of view is essential for the analyses of well-posedness
for two-phase flow problems with sufficient smoothness, as briefly addressed
above in Sect. 6.1 (cf. [84, 232]). The interface representation in (6.19) also
forms the basis for a class of numerical methods, known as interface tracking.
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In these methods a collection of markers is put on a given interface Γ (t0)
and then transported (numerically) by the flow field u to obtain the markers
on the interface Γ (t0 +Δt). The collection of markers on Γ (t0) could be the
set of vertices of a triangulation of Γ (t0). In such methods one usually has
to redistribute the markers after a certain number of time steps. In general
it is rather difficult to treat topology changes (e.g. collision of droplets) in a
systematic and accurate way. Usually in interface tracking methods for two
phase flows the Lagrangian approach is used only for the propagation of the
interface markers. The Navier-Stokes equations are solved on a fixed grid (i.e.,
an Eulerian approach), cf. Fig. 6.1.

ΓΓ

Fig. 6.1. Front tracking on an Eulerian grid for the flow problem. The interface Γ
is represented by connected marker points.

Thus one needs operators for the transfer of information between the (mov-
ing) interface and the underlying fixed grid. Such front tracking methods have
been successfully applied in the simulation of two-phase flows. An overview
and detailed treatment of this technique can be found in [246, 243, 182]. Hy-
brid variants of this technique have been developed, for example so-called
arbitrary Lagrangian-Eulerian (ALE) methods in which the interface (or sur-
face) is resolved by a mesh and this mesh is moved with the flow velocity
(Lagrangian interface tracking). In the interior flow domain a moving mesh
is used with a mesh velocity that generally differs from the flow velocity and
is taken such that strong mesh distortions are avoided. Such a mesh velocity
can be obtained, for example, as the solution of a linear elasticity equation
with a prescribed displacement on the boundary. Often the Navier-Stokes
equations are then formulated using a relative velocity, which is the differ-
ence between the flow and the mesh velocity. Such ALE methods are very
popular for the simulation of fluid structure interaction (FSI) problems, in
which typically the movement of the boundary of the fluid domain is rela-
tively small. ALE techniques have also been applied in the numerical sim-
ulation of one-phase flows with a free surface or of two-phase flows, e.g.
[23, 28, 29, 117, 118, 185]. The Lagrangian interface tracking method can
also be combined with a pure Lagrangian approach for the Navier-Stokes
equations, based on an interior mesh movement that is based on the flow
velocity field, cf. for example [152, 145].
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6.2.2 Volume tracking based on the characteristic function

Let χ1(·, t) : Ω → R be the characteristic function corresponding to the
subdomain Ω1(t), t ≥ 0, i.e., χ1(x, t) = 1 for x ∈ Ω1(t), χ1(x, t) = 0 otherwise.
In this section we treat methods based on the simple observation Γ (t) =
∂Ω1(t) = ∂supp(χ1(·, t)). The function χ1 characterizes the subdomain Ω1

and we track this function (and thus the boundary of its support) to follow
the evolution of the interface. We will derive a transport equation for χ1

induced by the immiscibility condition VΓ = u · n. For this we need some
additional notation. We introduce the space-time subdomain and interface:

ΩT := Ω × [0, T ] ⊂ R
4,

Ωi,T :=
{

(x, t) ∈ R
4 : x ∈ Ωi(t), 0 ≤ t ≤ T

}
, i = 1, 2,

ΓT :=
{

(x, t) ∈ R
4 : x ∈ Γ (t), 0 ≤ t ≤ T

}
.

The outward normal (not necessarily normalized) on ∂Ω1,T ∩ ΓT is given by

n̂ = n̂Γ (x, t) =
(

nΓ (x)
−VΓ (x)

)
∈ R

4, (x, t) ∈ ΓT .

The immiscibility condition VΓ = u · n on Γ can be written as:

n̂ ·
(
u
1

)
= 0 on ΓT . (6.20)

Lemma 6.2.1 Let χ1(·, t) be the characteristic function corresponding to
Ω1(t) and u ∈ L2(0, T ;V) with div u = 0. The condition in (6.20) holds
iff ∫

ΩT

χ1

(∂φ
∂t

+ u · ∇xφ
)
dx dt = 0 for all φ ∈ C∞

0 (ΩT ), (6.21)

i.e., in the sense of distributional derivatives,

∂χ1

∂t
+ u · ∇xχ1 = 0 in D′(ΩT ) := C∞

0 (ΩT )′. (6.22)

Proof. Using div u = 0 and the definition of distributional derivatives we have
∫

ΩT

χ1

(∂φ
∂t

+ u · ∇φ
)
dx dt = 0 for all φ ∈ C∞

0 (ΩT )

iff
∂χ1

∂t
+ div(uχ1) = 0 in D′(ΩT ),

iff
∂χ1

∂t
+ u · ∇xχ1 = 0 in D′(ΩT ),

thus the equivalence between (6.21) and (6.22) holds. For u ∈ L2(0, T ;V) its
trace on ΓT , denoted by u|ΓT

is well-defined. The boundary of Ω1,T can be
partitioned as ∂Ω1,T = (∂Ω1,T ∩ ∂ΩT ) ∪ (∂Ω1,T ∩ ΓT ). For φ ∈ C∞

0 (ΩT ) we
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have φ = 0 on ∂Ω1,T ∩ ∂ΩT . Using partial integration and χ1 = 1 on Ω1,T ,
χ1 = 0 on ΩT \Ω1,T we obtain

∫

ΩT

χ1

(∂φ
∂t

+ u · ∇xφ
)
dx dt =

∫

Ω1,T

∂φ

∂t
+ u · ∇xφ dx dt

=
∫

Ω1,T

(
u
1

)
· ∇x,tφ dx dt =

∫

ΓT

(
u|ΓT

1

)
· n̂φ dx dt.

In the last equality we used div u = 0. Since φ ∈ C∞
0 (ΩT ) is arbitrary it

follows that (6.21) holds if and only if
(
u|ΓT

1

)
· n̂ = 0 holds (in L2(ΓT ) sense).

�

From this lemma it follows that the immiscibility condition is satisfied if we
solve a (weak) transport equation for the characteristic function χ1. The equiv-
alence in this lemma holds in cases where the quantities that occur in the
immiscibility condition (6.20) are well-defined. If this is not the case (as for
example in a colliding droplet problem) then the result of this lemma offers a
possibility to generalize the immiscibility condition by considering a suitable
weak transport equation for the characteristic function of the subdomains.
This idea is the basis of the analysis of well-posedness presented in [81] (for
a two-phase Stokes problem) and [188] (for a two-phase Navier-Stokes prob-
lem).
If the velocity field u is sufficiently smooth, e.g. continuous in t and Lipschitz
continuous w.r.t. x, then a strong formulation of the transport equation in
the Lagrangian form

χ̇1 =
d

dt
χ1(Xξ(t), t) = 0,

with χ1(Xξ(0), 0) = 1 if ξ ∈ Ω1(0) and zero otherwise, is well-defined and
has a unique solution. For general flow problems, however, one wants to re-
lax the smoothness assumption on u and then for the transport equation
weaker solution concepts are needed. One such a concept, namely of so-called
renormalized solutions of transport equations, is introduced in the fundamen-
tal paper [89]. Using this, the following result can be proved (Proposition 3.3.
from [188]).

Proposition 6.2.2 Take u ∈ L2(0,∞;V) with div u = 0 and μ0 ∈ L∞(Ω).
Then there is a unique weak solution μ ∈ L∞(ΩT ) in the following sense:

∫ ∞

0

∫

Ω

μ
(∂φ
∂t

+ u · ∇xφ) dx dt =
∫

Ω

μ0φ(x, 0) dx ∀ φ ∈ C∞
0 (R4). (6.23)

Moreover, if μ0 is piecewise constant, i.e., μ0 ∈ {c1, . . . cM} a.e., with con-
stants ci, then μ ∈ {c1, . . . cM} a.e..

Remark 6.2.3 The concept of renormalized solutions allows unique weak
solutions of (6.23) even for velocity fields u with less regularity than u ∈
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L2(0,∞;V). Starting with the paper [89] there have appeared a lot of stud-
ies on well-posedness of the weak formulation (6.23). In [89] existence and
uniqueness of a weak (renormalized) solution is proved for velocity fields
u ∈ L1(0,∞;H1

p(R
d)d). Results with even less smooth velocity fields have

been derived. For example, in [12] well-posedness for velocity fields from the
class of functions of bounded variation (BV) is proved. For an overview and
further references we refer to [76].

A weak formulation of a transport equation as in Proposition 6.2.2 can be
combined with a standard weak formulation of a two-phase Stokes problem as
follows. We take an initial velocity field u0 ∈ V0 (i.e., homogeneous Dirich-
let boundary conditions on ∂Ω) with div u0 = 0. Let μ0 ∈ {μ1, μ2} be the
piecewise constant viscosity in the two initial subdomains: μ0(x) = μi > 0 for
x ∈ Ωi(0), i = 1, 2. In [81] it is proved that there exists at least one solution
(u, p, μ) with u ∈ L∞(0,∞;V0), u(·, 0) = u0, p ∈ L2(0,∞;Q), μ ∈ L∞(QT ),
μ(·, 0) = μ0 and μ ∈ {μ1, μ2} a.e. such that

1
2

∫

Ω

μ tr
(
D(u)D(v)

)
dx+ b(v, p) = 0 for all v ∈ V0, t ≥ 0,

b(u, q) = 0 for all q ∈ Q, t ≥ 0,
∂μ

∂t
+ u · ∇μ = 0 in the weak sense as in (6.23). (6.24)

Thus we have existence of a weak solution of a two-phase flow problem. We
briefly address some issues related to this result. In [188] a similar weak for-
mulation of a Navier-Stokes two-phase problem is considered and an existence
result is proved. The transport equation for the viscosity μ “replaces” the im-
miscibility condition, cf. Lemma 6.2.1. The analysis only yields existence of
a weak solution; uniqueness is still an open problem. This concept of weak
solutions allows singularities of the interface (e.g. collision of droplets) and
yields existence global in time for “general” initial data. If we define the sets
Ωi(t) := { x ∈ Ω : μ(t) = μi } , i = 1, 2, then, due to μ(·, t) ∈ {μ1, μ2} a.e.,
we have Ω1(t) ∪Ω2(t) = Ω. It is, however, in general not clear what the “in-
terface” should be. If we take Γ (t) := ∂Ω1(t), then Γ (t) can have a strictly
positive Lebesgue measure. This effect is called “interface flattening” (or in-
terface thickening). The fact that the interface can be “rough” and/or “flat”
may be related to the fact that in the weak formulation above we do not take
surface tension into account (which has a smoothing effect). It is, however, not
known whether the analysis can be extended to the case with surface tension.
An extensive treatment of several topics related to weak (or “generalized”)
solutions of two-phase flows with incompressible immiscible fluids which allow
singular interfaces is given in [1, 2]. In particular it is remarked in these papers
that if surface tension is taken into account, the existence of weak solutions (in
the sense as explained above) is still an open problem. In [2] an even weaker
concept of so-called measure-valued varifold solutions is introduced. Within
that framework existence of a solution can be shown to hold for a suitable
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weak formulation of a two-phase flow problem which allows for singularities
of the interface and takes surface tension into account.

The analysis of well-posedness addressed above relies on a weak formulation
of the transport equation for the viscosity μ, cf. (6.23). Since μ is piecewise
constant one can equivalently consider a transport equation for the character-
istic function χ1 corresponding to the subdomain Ω1. There is an important
class of numerical methods in which the treatment of the interface is based
on a weak formulation of the transport equation

∂χ1

∂t
+ u · ∇χ1 = 0. (6.25)

This is the class of VOF-methods (Volume of Fluid), which we now introduce.
The original idea of this approach goes back to [187]. Note that the equation
in (6.25) is not well-defined in the classical sense, since χ1 is discontinuous
across the interface Γ . Instead of using a weak formulation of (6.25) based
on distributional derivatives one can also (formally) eliminate the gradient
operator by integrating this transport equation. Take an arbitrary (small,
connected) fluid volume W ⊂ Ω. Integrating over W and formally applying
partial integration results in

∂

∂t

∫

W

χ1 dx+
∫

∂W

χ1u · n ds = 0. (6.26)

Here n denotes the outward unit normal on ∂W . This equation can be seen
as a weak formulation of (6.25) and has a clear physical interpretation: it
describes volume conservation. The change of volume of fluid 1 (i.e. the one in
Ω1) contained in W equals the volume flux (induced by the velocity field u)
across the boundary ∂W . Note that for an incompressible fluid conservation
of volume is equivalent to mass conservation. In VOF-methods one constructs
approximations of the characteristic function χ1 based on discretization of
the conservation law (6.26). We explain the main idea for a simple 2D case,
namely with Ω = (0, 1)2. Assume that Ω is partitioned in square cells Wij :=
[ih, (i+ 1)h]× [jh, (j + 1)h], 0 ≤ i, j ≤ m− 1 with mh = 1. We introduce the
color function (or area fraction in 2D, volume fraction in 3D):

Cij(t) := |Wij |−1

∫

Wij

χ1(x, t) dx = h−2

∫

Wij

χ1(x, t) dx.

We have 0 < Cij < 1 in cells Wij cut by the interface and Cij = 0 or 1 away
from it, cf. Fig. 6.2. Assume that for time t = tn (an approximation of) the
color function is known in all cells, i.e., we have known values Cnij ≈ Cij(tn),
0 ≤ i, j ≤ m − 1. The values for the next time level tn+1 = tn + Δt are
obtained by discretization of (6.26) using a standard finite volume approach:

Cn+1
ij = Cnij + h−2

∫ tn+1

tn

∫

∂Wij

χ̃1u · n ds dt, (6.27)
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where χ̃1 = χ̃1(x, tn) is a known approximation of the characteristic function
χ1, cf. below.

(a) interface

0.0 0.0 0.0

0.0 0.3 0.5

0.5 0.9 1.0

(b) color function (c) SLIC (d) PLIC

Fig. 6.2. Illustration of color function C and interface reconstruction: a) interface
Γ and cells Wij , b) values Cij of color function, c) SLIC approximation, d) PLIC
approximation.

In a VOF method one distinguishes the following two steps:

1. Reconstruction of the interface: given the values Cnij , 0 ≤ i, j ≤ m− 1,
of the color function, an approximate interface is computed. This then
determines the approximate characteristic function χ̃1(x, tn), used in
(6.27).

2. Color function advection step: given the function χ̃1(x, tn) the boundary
fluxes in (6.27) are approximated, resulting in the updated values Cn+1

ij ,
0 ≤ i, j ≤ m− 1.

The reconstruction is such that the consistency property

Cnij = h−2

∫

Wij

χ̃1(x, tn) dx

holds (volume conservation). Since the introduction of the VOF-method there
have been many papers in which interface reconstruction techniques have been
treated. The earliest algorithm, denoted by SLIC (“simple line interface calcu-
lation”) was introduced in the paper [187]. In this approach the reconstructed
interface consists of line segments that are parallel to one of the coordinate
axes, cf. Fig. 6.2. This method is only first order accurate, i.e. O(h), in the
accuracy of the reconstruction of the interface. Modifications of this tech-
nique can be found in [144, 69, 163]. More accurate (namely second order)
reconstruction methods use piecewise linear segments that are not necessarily
aligned with the coordinate axes. This technique is known as PLIC (“piece-
wise linear interface construction). Methods of this type are studied in, for
example, [204, 214, 17]. We do not treat such reconstruction methods here,
but refer to the above-mentioned literature.

We briefly address the advection step. The methods known in the literature
can be divided into two categories: unsplit schemes and operator split schemes.
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We only discuss the latter, for the former we refer to the literature, e.g. [204].
Consider one side of the boundary of Wij , say the line segment connecting
(ih, jh) with (ih, (j + 1)h), which is denoted by �. Let u∗ = (u∗1, u

∗
2) be an

approximate value of the velocity on � for t ∈ [tn, tn+1], for example the
velocity value at the center of �, i.e. at (ih, (j+0.5)h), at time t = tn+0.5Δt.
Assume (for ease of presentation) that u∗1 < 0. We consider the contribution
of the segment � to the boundary integral in (6.27):

− h−2

∫ tn+1

tn

∫



χ̃1u
∗
1 ds dt (6.28)

(we used that n = (−1, 0) on �). After the reconstruction step we have in each
cell Wij an approximation χ̃1(x, tn) of the characteristic function χ1(x, tn).
In (6.28) we need values for χ̃1(x, t), x ∈ �, t ∈ [tn, tn+1]. For this we take the
values of χ̃1(·, tn) transported by the flow field (u∗1, 0)T during the time t− tn,
i.e. we take

χ̃1(x, t) := χ̃1

(
x− (t− tn)

(
u∗1
0

)
, tn

)
, x ∈ �, t ∈ [tn, tn+1]. (6.29)

For this to be well-defined one has to satisfy the CFL-condition

Δt |u∗1| ≤ h. (6.30)

Introduce z := −(t− tn)u∗1. Using (6.29) we obtain

− h−2

∫ tn+1

tn

∫



χ̃1(s, t)u∗1 ds dt = h−2

∫ Δt|u∗
1 |

0

∫



χ̃1(s+
(
z
0

)
, tn) ds dz

= h−2
∣
∣supp { χ̃1(x, tn) : x ∈ [ih, ih+Δt|u∗1|]× [jh, (j + 1)h] }

∣
∣.

Hence, for the area flux across the side � we obtain h−2 times the area of
the support of the reconstructed characteristic function χ̃1(·, tn) in the cell
Wij between the vertical lines with x1-coordinates ih and ih + Δt|u∗1|. This
area flux leads to new intermediate values for the color function values in the
cells Wij and Wi−1,j . The same is done for all other vertical cell sides in the
grid. These area fluxes in the horizontal direction lead to intermediate values
Cn+1,∗
ij , 0 ≤ i, j ≤ m − 1. Based on these new values of the color function

the reconstruction step is repeated, resulting in a new characteristic function
χ̃1(·, tn), which is then used to compute area fluxes in the vertical direction
(i.e. across horizontal cell sides). Thus we obtain the final new values Cn+1

ij ,
0 ≤ i, j ≤ m− 1. Due to this two-step procedure (three-step in 3D), first the
fluxes in one direction and then those in the other direction, this approach is
called an operator split scheme.

We give some comments on the VOF technique. The method is very pop-
ular for the simulation of two-phase flows, in particular in the engineering
community. Most of these methods have very good mass-conservation proper-
ties. In principle topology changes (droplet collisions) can be handled easily.
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Usually the method is applied on (logically) rectangular grids; it is difficult to
apply an accurate VOF technique on unstructured triangular or tetrahedral
grids. In the method a CFL condition as in (6.30) must be satisfied, which
may lead to severe (undesirable) restrictions on the size of the time step. In
general it is difficult to obtain accurate approximations of intrinsic geometric
properties of the interface, such as curvature and normal direction.

6.2.3 Volume tracking based on the level set function

An important difference between the interface tracking approach in Sect. 6.2.1
and the volume tracking approach in Sect. 6.2.2 is that the former is based
on a Lagrangian ODE technique, cf. (6.19), and the latter on an Eulerian
PDE approach, cf. (6.25). The method presented in this section is also of
Eulerian PDE type. The approach discussed in the previous section is based on
(the weak formulation of) the transport equation (6.25) for the characteristic
function χ1. This function is discontinuous across the interface, which requires
a special numerical treatment of the transport equation. Furthermore, the
interface is not characterized by values of χ1 but by the boundary of its
support.

An alternative is to use instead of χ1 another indicator function. In the
level set approach a smooth initial function φ0(x), x ∈ Ω is chosen such that

φ0(x) < 0 ⇔ x ∈ Ω1(0), φ0(x) > 0 ⇔ x ∈ Ω2(0), φ0(x) = 0 ⇔ x ∈ Γ (0).

A popular choice is to take φ0 (approximately) equal to a signed distance
function to the initial interface, cf. Fig. 6.3.

Fig. 6.3. Initial level set function φ0 equals a signed distance function, 2D example.

A (virtual) particle X with Eulerian coordinates x ∈ Ω has a corresponding
indicator value φ0(x). Let Xξ(t), ξ ∈ Ω be the characteristics as defined in
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(6.17), assuming that the velocity field u(x, t) is sufficiently smooth. For t > 0
the level set function values φ(x, t) are defined by keeping the values constant
along characteristics, i.e.,

φ(Xξ(t), t) := φ0(ξ), ξ ∈ Ω, t ≥ 0.

Differentiating this with respect to t results in the transport equation

∂φ

∂t
+ u · ∇φ = 0 in Ω, t ≥ 0. (6.31)

This transport equation is of the same form as the one in (6.25). There are,
however, important differences. Firstly, if the velocity field u(x, t) is suffi-
ciently smooth (Lipschitz with respect to x) then the equation in (6.31) is
well-defined in its strong formulation, due to the fact that the initial condi-
tion φ0 is continuous. Due to the discontinuity in the characteristic function,
the equation (6.25) is not well-defined in its strong form. Secondly, the inter-
face Γ (t) can be characterized by values of the level set function at time t:

Γ (t) = { x ∈ Ω : φ(x, t) = 0 } .

As already mentioned above, this is not the case for the characteristic func-
tion. For the linear hyperbolic partial differential equation in (6.31), besides
the initial condition one needs suitable boundary conditions, for example,
a Dirichlet boundary condition φ(x, t) = φD(x) on the inflow boundary
∂Ωin := { x ∈ ∂Ω : u · nΩ < 0 }.
A suitable weak formulation of the level set equation, i.e., the transport equa-
tion (6.31) combined with continuous initial condition φ0 as defined above, is
used in the literature [119] for the analysis of well-posedness of a two-phase
flow problem. We outline the main result from [119]. The domain Ω is taken
as a d-dimensional torus (corresponding to a rectangular domain with pe-
riodic boundary conditions). For the transport of the interface the level set
equation is used with a continuous velocity field u ∈ C(Ω × [0, T ])d. For
general continuous u there is no uniqueness of a solution of the equation
(6.31) in its strong formulation. However, the concept of viscosity solutions
of transport equations with a continuous velocity field can be applied, cf.
[72]. This theory yields unique so-called sub- and supersolutions of (6.31),
which induce unique generalized evolutions Ω1(t), Ω2(t), t ∈ [0, T ], with
Ω1(0) = {x ∈ Ω : φ0(x) < 0 } , Ω2(0) = {x ∈ Ω : φ0(x) > 0 }. One defines
Γ (t) := Ω \ (Ω1(t)∪Ω2(t)). If u is sufficiently regular (Lipschitz with respect
to x) it can be shown that measd(Γ (t)) = 0 holds and Γ (t) describes the
interface in the usual strong sense. If, however, the velocity field u is (only)
continuous it is not known whether measd(Γ (t)) = 0 for t > 0 holds, i.e., it
might be that “interface flattening” occurs.
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For the two-phase flow problem a Stokes model of the form

∂u
∂t
− div(μ∇u) +∇p = g in Ω,

div u = 0 in Ω,

is considered. A weak formulation of this problem in the Sobolev space H1
p (Ω)

with p > 2(d + 1) is analyzed with a piecewise constant viscosity function
μ(x, t) = μi for x ∈ Ωi(t), i = 1, 2, and μ(x, t) = 1

2 (μ1 + μ2) for x ∈ Γ (t).
It is proved that for |μ1 − μ2| sufficiently small there exists for almost all
t ∈ [0, T ] a solution u with u ∈ C(Ω× [0, T ])d, u(·, t) ∈ H1

p (Ω)d of the Stokes
problem coupled with an appropriate weak formulation of the transport prob-
lem for the evolution of the level set function φ. We refer to [119] for the
precise results. Here we restrict ourselves to a few further comments related
to this analysis. The continuity property for the velocity field u is needed to
be able to apply the theory of viscosity solutions of transport equations as
in (6.31). This theory also requires the initial condition φ0 to be continuous.
Note that this holds for the level set function φ0 but not for the characteristic
function χ1 used in Sect. 6.2.2. For the solution u of the Stokes problem the
regularity u(·, t) ∈ H1

p (Ω)d with p > 2(d+ 1) (> 2) is proved, which due to a
Sobolev embedding result implies continuity of u. For the regularity property
u ∈ H1

p (Ω)d with p > 2(d+1) to hold one needs that the jump in the viscosity
|μ1 − μ2| is sufficiently small. The analysis only applies to the case without
surface tension and it only yields existence of a solution of the two-phase
Stokes problem; uniqueness is an open problem. The existence is global in
time (t ∈ [0, T ]) and allows singularities of the interface (colliding droplets).
However, “interface flattening” might occur, i.e., it is not clear whether the
interface remains sharp.

The level set equation (6.31) is not only used in the analysis of well-posedness
of a two-phase flow problem but also forms the basis of an important class of
numerical techniques for representing the interface. These level set methods
are used not only in two-phase flow simulations but also in many other ap-
plications with interfaces or free boundaries, cf. the overview paper [221] and
the monographs [222, 198]. We outline the main ideas. The linear hyperbolic
transport equation (6.31), or a weak variant of it, is considered with an ini-
tialization φ0(x) that is continuous, close to a signed distance function and
such that Γ (0) = { x ∈ Ω : φ0(x) = 0 } holds. The velocity u results from the
Navier-Stokes flow problem. The transport equation is discretized in space and
time using appropriate numerical methods. We will treat this issue in more de-
tail in Sect. 7.2. The accurate discretization of the level set equation is (much)
easier than that of the transport equation considered in the VOF method in
Sect. 6.2.2 because in the latter one has to approximate the discontinuous char-
acteristic function χ1 whereas in the level set method the solution φ is smooth
(close to the interface, for a sufficiently short time interval). During time evolu-
tion, in a neighborhood of the zero level it is monitored how much the discrete
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solution φh(x, t) deteriorates from a signed distance function. For this one can
use, for example, the quantity ‖∇φh(x, t)‖2 as an indicator. If the deteriora-
tion exceeds a given tolerance a re-initialization of the given level set function,
say φh(x, tn), is performed. In this re-initialization one determines a new level
set function φnew

h (x, tn) such that ‖∇φnew
h (x, tn)‖2 ≈ 1 (in a neighborhood

of the zero level) and {x ∈ Ω : φh(x, tn) = 0 } ≈ { x ∈ Ω : φnew
h (x, tn) = 0 }

holds, i.e. one determines a re-initialization φnew
h with (approximately) the

same zero level as the current level set function but which is much closer to
a signed distance function. This topic of re-initialization is addressed in more
detail in Sect. 7.4.1.

Remark 6.2.4 The level set method is often combined with the CSF ap-
proach explained in Remark 6.1.3. This idea was introduced in [64]. There
it is shown that (under certain smoothness assumptions) the following holds,
with notation as in Remark 6.1.3:

∫

γ

κnΓ ds = lim
ε↓0

∫

U

κ(φ)δε(φ(x))∇φdx, (6.32)

with the level set function φ and δε a one-dimensional smoothed Dirac delta
function. For the approximation of the curvature term κ(φ) one can use, cf.
(14.7),

κ(x) = div nΓ (x) = div
( ∇φ
|∇φ|

)
, x ∈ Γ,

and extend this relation to x ∈ U (|∇φ|2 := ∇φ · ∇φ). This leads to a volume
surface tension force term of the form

− τ div
( ∇φ
|∇φ|

)
δε(φ(x))∇φ (6.33)

in the strong formulation of the momentum equation, which acts in an ε-
neighborhood of the interface Γ . Clearly this approach induces an error due
to numerical regularization with the smoothed Dirac delta function.

6.2.4 Phase field representation

In the interface representations treated above the interface is either tracked
explicitly or “captured” implicitly as the discontinuity of a characteristic func-
tion or the zero level of an approximate signed distance function. In all three
cases one typically has a sharp interface. This sharp interface property may be
lost due to numerical effects, for example if one combines the level set method
with the CSF technique as described in Remark 6.2.4, in which the surface
tension force is approximated by a volume force using a smoothed Dirac delta
function. In that approach, although the interface is represented sharply as
the zero level of the level set function there is an interface smearing effect due
to the smoothing of the surface tension force. In the continuous model the
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sharp interface property may be lost if in cases with interface singularities an
interface flattening effect occurs. In the approach discussed in this section the
model is such that one always has a non sharp or diffusive interface. These
so-called phase field models are based on the observation that even for two
(macroscopically) immiscible fluids there is a very thin interfacial region in
which partial mixing of the two fluids occurs, cf. Sect. 1.1.5. In this sense, the
physical interface is not sharp but diffusive. The interfacial mixing region has
nonzero thickness but is extremely thin (about 100nm). Hence modeling it as
a sharp interface (as is done in the methods discussed above) seems reasonable.
There are, however, mechanisms, for example in droplet collision, that are rel-
evant and act on length scales comparable to that of interface thickness. For
an accurate modeling of these mechanisms a diffusive interface representation
may be more appropriate. Quantities that in the sharp interface formulation
are localized at the interface, such as surface tension or surfactant transport,
are distributed in a narrow interfacial region in a phase field model. The idea
of diffusive interface modeling is an old one and was already used in [208, 247].
An overview on diffusive interface methods is given in [13]. Below we describe
one popular phase field model for two-phase incompressible flows, namely the
Navier-Stokes equations combined with the Cahn-Hilliard equation for the
representation of the interface.

0

ρ

x

ρ1 ρ2

Fig. 6.4. Partial densities ρj , j = 1, 2, and diffusive interface (region between dashed
lines) in the phase field representation.

Throughout this section, let ρj = ρj(x), x ∈ Ω, j = 1, 2, denote the partial
density (or mass concentration) of the fluid j, i.e., for W ⊂ Ω the quantity∫
W
ρj(x) dx is the mass of the fluid j contained in W . Note that this notation

differs from the one previously used, where ρj denoted the (constant) density
of fluid j as a pure substance. The partial densities ρ1(x) and ρ2(x) are in
general not constant, i. e., there is a mixing region representing the diffusive
interface, cf. Fig. 6.4. The density of the mixture is denoted by ρ(x), x ∈ Ω, i.e.,∫
W
ρ(x) dx is the total mass of the fluid contained in W . Clearly ρ = ρ1 + ρ2

holds. We restrict ourselves to the case of matched densities, i.e. we assume
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ρ is constant in Ω. (6.34)

It is no restriction to take ρ = 1. We introduce a so-called order parameter

c := ρ1 − ρ2 = 2ρ1 − 1 ∈ [−1, 1].

This concentration (or density) difference has value −1 in regions filled by
fluid 2, value 1 in regions filled by fluid 1 and values in between in the mixing
region. It is assumed to be a smooth function of (x, t). Note that opposite to
the characteristic function χ1 and the level set function φ, which are used as
indicator functions in the approaches treated above, the order parameter c has
a physical meaning. A main issue is to derive an appropriate model for the
evolution of c. We outline the derivation of the Navier-Stokes/Cahn-Hilliard
model as given in [131]. It is based on a local dissipation inequality (corre-
sponding to the second law of thermodynamics) and basic concepts from con-
tinuum mechanics, such as mass and momentum conservation, cf. Sect. 1.1.1.
The mixture is considered as one incompressible Newtonian fluid. Its velocity
field is denoted by u(x, t). Due to the incompressibility assumption we have
div u = 0. Let W (t) a material volume that is advected by the velocity field u
and hj the mass flux of fluid j, measured relative to the gross motion of the
fluid. Due to incompressibility (ρ = 1) the relation h1 = −h2 holds. We define
the (relative) mass flux quantity h := h1−h2 = 2h1. From mass conservation
it follows that

d

dt

∫

W (t)

ρj dx+
∫

∂W (t)

hj · n ds = 0,

where n is the outward unit normal on W (t). Using Reynolds’ transport the-
orem and c = 2ρ1 − 1 this yields the mass conservation equation

ċ =
∂c

∂t
+ u · ∇c = − div h. (6.35)

We now turn to the conservation of momentum
∫
W (t)

ρu dx, cf. Sect. 1.1.1.
For simplicity we assume that there are no external forces like gravity. Based
on fundamental principles from continuum mechanics (Cauchy’s theorem) one
obtains from momentum conservation and using ρ = 1 the equation

ρu̇ =
∂u
∂t

+ (u · ∇)u = divσ, (6.36)

with a symmetric stress tensor σ that is associated with the macroscopic
motion of the fluid. For a one-phase incompressible Newtonian fluid one has
σ = −pI + μD(u), cf. (1.11). In [131] a stress tensor for the case of a fluid
mixture is derived using local energy inequalities that are based on the second
law of thermodynamics. The resulting stress tensor is given in (6.42) below.
We sketch the main idea, for more details we refer to [131, 3]. We consider a
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total energy eW (u, c) in a volume W which is the sum of a kinetic energy and
a free energy:

eW (u, c) =
∫

W

ρ
1
2
u · u + ψ(c,∇c) dx.

The free energy
∫
W ψ(c,∇c) dx is used to describe energy changes due to

mixing of the fluids. Since there is significant mixing only in a very thin
interfacial region, this energy is also called surface energy. Cahn and Hilliard
[60] proposed the following form for the mixing energy density

ψ(c,∇c) = ε
1
2
|∇c|2 + ε−1ψ0(c), (6.37)

with |∇c|2 = ∇c ·∇c, ε > 0 a small parameter and ψ0 a double well potential.
The latter means that ψ0 should have exactly two global minima, namely at
c = ±1 in our case. For this double well potential there are several possibilities
used in the literature, e.g.,

ψ0(c) = (1− c2)2, c ∈ R,

ψ0(c) =
θ

2
(
(1 + c) ln(1 + c) + (1− c) ln(1− c)

)
− θc

2
c2, 0 < θ < θc, |c| < 1,

ψ0(c) = −θc
2
c2 if c ∈ [−1, 1], ∞ otherwise,

cf. [3, 6] for a discussion of these and other double well potentials. Since both
fluids are assumed to be present, it follows that 0 < |Ω|−1

∫
Ω
ρ1 dx < 1 and

thus −1 < |Ω|−1
∫
Ω c dx < 1 holds. Hence, c(x) can not have a constant

value equal to −1 or 1, which corresponds to a minimum of ψ0. A “diffusive
interface” is represented by the region where c(x) varies between −1 + ξ and
1− ξ (with 0 < ξ � 1).

Remark 6.2.5 As an example, consider for given a > 0,

efree(c) :=
∫ a

−a
ε
1
2
c′(x)2 + ε−1(1− c(x)2)2 dx,

and minimization of this functional over the set V consisting of all piecewise
linear c = cδ with c(x) = −1 if x ≤ −δ, c(x) = 1 if x ≥ δ, c(x) = x

δ if
−δ ≤ x ≤ δ, and with δ ∈ (0, a) arbitrary. A straightforward computation
yields

min
cδ∈V

efree(cδ) = efree(cδ∗) =
8√
15
, for δ∗ =

1
4

√
15 ε.

Hence, in this example we have a transition region of width 2δ∗ = 1
2

√
15 ε

between the extrema ±1.

The macroscopic stresses in the mixture, modeled by contact forces σn that
act on ∂W (t), induce a corresponding energy exchange across ∂W (t) (force
times distance, per time unit), also called working, given by
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∫

∂W (t)

σn · u ds. (6.38)

A second energy transport is due to the microscopic diffusion (i.e. diffusive
effect within the mixture). This can be modeled as follows. Let μchem

j be the
chemical potential of fluid j and μchem := 1

2 (μchem
1 − μchem

2 ). Related to the
notation we remark that μchem should not be confused with μ = μ(x, t), which
we use to denote the viscosity of a fluid. Using h1 + h2 = 0 (as ρ is constant)
and h = 2h1 we obtain that

−
2∑

j=1

∫

∂W (t)

μchem
j hj · n ds = −

∫

∂W (t)

μchemh · n ds, (6.39)

which models the energy transported into W (t) due to microscopic diffusion.
The third energy exchange is related to so-called microforces. In [131] these
forces are introduced and it is assumed that the working of these forces accom-
panies changes in the concentration c. i.e., these forces cause the microscopic
mixing. These forces are modeled as contact forces and denoted by ξ. A cor-
responding scalar body force is given by

π := − div ξ, (6.40)

i.e., we have a microforce balance
∫
W (t) π dx+

∫
∂W (t) ξ · n ds = 0. The energy

exchange induced by these microforces is given by
∫

∂W (t)

ċ ξ · n ds. (6.41)

The three energies in (6.38), (6.39) and (6.41) are related to the total
energy eW (u, c) of the system, and based on the second law of thermodynamics
(increase of entropy) the following energy dissipation inequality is assumed to
hold:

d

dt
eW (u, c) ≤

∫

∂W (t)

σn · u ds+
∫

∂W (t)

ċ ξ · n ds−
∫

∂W (t)

μchemh · n ds.

Based on this, in [131] the following constitutive relations are derived:

σ = −pI + μD(u)− ε∇c∇cT ,
ξ = ε∇c,
h = −m(c)∇μchem,

π = μchem − ε−1ψ′
0(c).

(6.42)

The relations ξ = ε∇c and h = −m(c)∇μchem can be seen as generalized
Fick’s laws. For simplicity we assume the mobility constant m = m(c) > 0 to
be a constant. Using this and (6.40) we obtain
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μchem = ε−1ψ′
0(c)− εΔc.

Using the conservation laws (6.35), (6.36) and the generalized Fick’s law for
h in (6.42) we obtain the following Navier-Stokes/Cahn-Hilliard phase field
model.

∂u
∂t

+ (u · ∇)u = −∇p+ div
(
μ(c)D(u)

)
− ε div(∇c∇cT ), (6.43a)

div u = 0, (6.43b)
∂c

∂t
+ u · ∇c = mΔμchem, (6.43c)

μchem = ε−1ψ′
0(c)− εΔc. (6.43d)

For the general case in which m = m(c) is not constant, the term on the
right-hand side in (6.43c) has to be replaced by div(m(c)∇μchem). Suitable
initial and boundary conditions for the functions c and μchem are needed, for
example, homogeneous Neumann boundary conditions both for c and μchem

(∇c · n = ∇μchem · n = 0 on ∂Ω) and an initial condition c(x, 0) = c0(x) for
x ∈ Ω. A simple model for μ(c) is to use a convex combination between the
constant viscosities μ1, μ2 of the pure fluids:

μ(c) =
c+ 1

2
μ1 +

1− c
2

μ2.

The model (6.43) is a fundamental phase field model that occurs at many
places in the literature and forms the basis for many other phase field models.
Below we briefly address the following issues: theoretical results, generaliza-
tions, numerical methods, relation to other approaches.

Theoretical results. First we consider an alternative form of (6.43a) and an
energy conservation result. For general smooth scalar functions v the identity

div(∇v∇vT ) =
1
2
∇|∇v|2 +Δv∇v (6.44)

holds. Using this (with v = c), the definition of the free energy density ψ in
(6.37) and the expression in (6.43d) we obtain

∇ψ(c,∇c) = ε
1
2
∇|∇c|2 + ε−1ψ′

0(c)∇c

= ε div(∇c∇cT )− εΔc∇c+ ε−1ψ′
0(c)∇c

= ε div(∇c∇cT ) + μchem∇c.

From this we see that the Navier-Stokes equation in (6.43a) can be replaced
by
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∂u
∂t

+ (u · ∇)u = −∇p̃+ div
(
μ(c)D(u)

)
+ μchem∇c, (6.45)

where we introduced a new pressure variable p̃ := p + ψ(c,∇c). Using this
Navier-Stokes equation we derive the following lemma.

Lemma 6.2.6 Assume that for t ∈ [0, T ] the Navier-Stokes/Cahn-Hilliard
equations (6.43a)-(6.43d) have a sufficiently smooth solution (u, c, μchem) with
boundary conditions u|∂Ω = 0, ∇c · n = ∇μchem · n = 0 on ∂Ω. Then for the
total energy

eΩ(u, c) =
∫

Ω

1
2
u · u + ψ(c,∇c) dx =

1
2
‖u‖2L2 +

∫

Ω

ψ(c,∇c) dx

the following holds:

d

dt
eΩ

(
u(t), c(t)

)
= −a

(
(u(t),u(t)

)
−m‖∇μchem(t)‖2L2 , (6.46)

eΩ
(
u(T ), c(T )

)
+

∫ T

0

a
(
(u(t),u(t)

)
dt+m

∫ T

0

‖∇μchem(t)‖2L2 dt

= eΩ
(
u(0), c(0)

)
. (6.47)

Proof. First we consider the time derivative of the free energy part in the
total energy:

d

dt

∫

Ω

ψ(c,∇c) dx =
∫

Ω

ε
d

dt

1
2
|∇c|2 + ε−1ψ′

0(c)
∂c

∂t
dx

=
∫

Ω

−εΔc ∂c
∂t

+ ε−1ψ′
0(c)

∂c

∂t
dx =

∫

Ω

μchem ∂c

∂t
dx.

Thus
d

dt
eΩ

(
u(t), c(t)

)
=

∫

Ω

∂u
∂t
· u + μchem ∂c

∂t
dx (6.48)

holds. We multiply the Navier-Stokes equation (6.45) by u, integrate over Ω,
use that c(u;u,u) = b(p̃,u) = 0 and obtain

∫

Ω

∂u
∂t
· u dx = −a

(
(u(t),u(t)

)
+

∫

Ω

μchem∇c · u dx.

Using (6.43c) results in
∫

Ω

∂u
∂t
· u dx = −a

(
(u(t),u(t)

)
−

∫

Ω

μchem∂c

∂t
dx+m

∫

Ω

μchemΔμchem dx

= −a
(
(u(t),u(t)

)
−

∫

Ω

μchem∂c

∂t
dx−m‖∇μchem‖2L2 ,

and using this in (6.48) proves the result in (6.46). The result in (6.47) is a
direct consequence of the one in (6.46). �
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The result in this lemma can be compared with the one in Lemma 6.1.6.
The result in (6.47) has a physical interpretation: the energy difference
eΩ

(
u(T ), c(T )

)
− eΩ

(
u(0), c(0)

)
is balanced by the sum of the kinetic energy

dissipation
∫ T
0 a

(
(u(t),u(t)

)
dt and energy dissipation m

∫ T
0 ‖∇μchem(t)‖2L2 dt

that is related to the microscopic diffusion of the two phases close to the in-
terface.
In the phase field model that we consider the free energy

∫
Ω ψ(c,∇c) dx re-

places the interfacial energy τ
∫
Γ

1 ds that occurs in a sharp interface model.
For ε→ 0 this free energy tends to τ

∫
Γ

1 ds, in some suitable weak sense, cf.
the following remark.

Remark 6.2.7 We discuss a result from [179] on properties of the Cahn-
Hilliard free energy functional. We introduce a scaled version of this functional
and for simplicity we choose a specific form of ψ0, namely ψ0(c) = (1− c2)2.
The corresponding scaled (by ε) free energy is given by

ẽfree(c) = εefree(c) :=
∫

Ω

ε2|∇c|2 + (1− c2)2 dx.

We consider minimization of this functional over the set

Vα :=
{
c ∈ L1(Ω) : −1 ≤ c(x) ≤ 1 a.e. , |Ω|−1

∫

Ω

c dx = α

}
,

with −1 < α < 1. For ε = 0 the problem min { ẽfree(c) : c ∈ Vα } has infinitely
many solutions, namely all “piecewise constant” functions c, with c(x) = 1 for
x ∈ Ω1, and Ω1 ⊂ Ω an arbitrary measurable set with |Ω|−1|Ω1| = 1

2 (α+ 1),
c(x) = −1 for x ∈ Ω2 := Ω\Ω1. For such a function c we have |Ω|−1

∫
Ω c dx =

|Ω|−1(|Ω1|−|Ω2|) = 2|Ω|−1|Ω1|−1 = α, i.e., c ∈ Vα and ẽfree(c) = 0 (if ε = 0).
We define Γ := ∂Ω1 ∩Ω. Even if we restrict to cases in which this boundary
Γ is assumed to be sufficiently smooth it can have arbitrary area. We now
treat ε > 0 with ε ↓ 0 and show that then the situation is quite different. We
outline a main result from [179]. Consider the minimization problem

min { ẽfree(c) : c ∈ Vα } . (6.49)

Let (εn)n≥0 be a sequence of strictly positive numbers with limn→∞ εn = 0
and (uεn) a sequence of solutions of (6.49) with ε = εn. Then there ex-
ists a subsequence, which we also denote by (uεn), which tends to a limit
u0 in L1(Ω), i.e. limn→∞

∫
Ω

(uεn − u0) dx = 0. The limit function takes
only the extremum values 1 or −1 on Ω: u0 = ±1 a.e. on Ω. Define
Ω1 := { x ∈ Ω : u0(x) = 1 }, and Γ , Ω2 as above. Thus 1

2 (uεn + 1) tends
to the characteristic function corresponding to Ω1. To simplify the presenta-
tion we assume that Γ is smooth, say Lipschitz continuous (cf. [179] for the
general case). Note that u0 ∈ Vα and from |Ω|−1

∫
Ω
u0 dx = α it follows that

|Ω|−1
(
|Ω1| − (|Ω| − |Ω1|)

)
= α, and thus |Ω|−1|Ω1| = 1

2 (α + 1).
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The following holds:

lim
n→∞

ε−1
n ẽfree(uεn) = 2c0

∫

Γ

1 ds, c0 :=
∫ 1

−1

ψ0(c)
1
2 dc =

4
3
, (6.50)

∫

Γ

1 ds = min
{∫

F∩Ω
1 ds : F = ∂W, W ⊂ Ω,

|W |
|Ω| =

1
2
(α+ 1)

}
. (6.51)

We refer to [179] for more details. This means that the free energy efree(uεn) =∫
Ω ψ(uεn) dx converges to 2c0

∫
Γ 1 ds and that the interface Γ has minimal

area, in the sense as in (6.51). For these results to hold, it is essential that in
the free energy functional efree the “regularization term” with ∇c is included.

In the Navier-Stokes/Cahn-Hilliard model the chemical potential μchem can
be eliminated by substitution of (6.43d) into (6.43c). Furthermore, in the
Navier-Stokes problem the pressure can be eliminated by restricting to the
subspace of divergence-free velocity fields. This results in a strongly coupled
highly nonlinear system of PDEs for the unknowns u and c. For the analysis
it may be convenient not to eliminate μchem. For the Navier-Stokes/Cahn-
Hilliard model (6.43a)-(6.43d), with suitable initial and boundary conditions,
the state of the art concerning existence and uniqueness of solutions is much
better than for the models considered in Sects. 6.2.2 and 6.2.3. To a large ex-
tent this is due to the following two (related) facts. Firstly, if we substitute
(6.43d) into (6.43c) this results in a time-dependent convection-diffusion prob-
lem for the concentration c. The diffusion term −εmΔ2c that occurs in this
equation is not present in the pure convection equations (6.25) and (6.31) and
has a regularizing effect. Secondly, in this diffusive interface model we have
an energy estimate such that ‖∇μchem‖L2 can be controlled, cf. Lemma 6.2.6.
Such a term is not present in the energy estimate for a sharp interface model as
in Lemma 6.1.6. Recently, an extensive analysis of the model (6.43a)-(6.43d)
has been given in [3]. Results on existence and uniqueness of weak solutions
of this model are presented which are comparable to the results for the one-
phase Navier-Stokes model for an incompressible Newtonian fluid. For d = 2
existence and uniqueness of a weak solution (u, c, μchem) has been proved, pro-
vided the initial data for u and c are sufficiently regular. For d = 3 existence is
shown to hold, but (as for the one-phase Navier-Stokes equations) uniqueness
only in special cases, for example for t ∈ [0, T ] with T sufficiently small. We
refer to [3, 5] for precise statements and a discussion of further results.

Generalizations. Above we considered the case of matched densities, cf. (6.34).
In many two-phase systems the assumption ρ = constant is not reason-
able, since it implies that both pure fluids must have (approximately) the
same density. There are generalizations of the Navier-Stokes/Cahn-Hilliard
model (6.43a)-(6.43d) for the case that the two fluids have different (or “non-
matched”) densities, cf. e.g. [171, 3]. These models are much more complicated
as in the case of matched densities.
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One important difference is that instead of the equation div u = 0 one
obtains ∂ρ

∂t + div(ρu) = 0, which implies that in general div u = 0 does not
hold. Hence, although the two pure fluids are incompressible, the mixture
does not have this property; it is called quasi-incompressible. This compli-
cates the analysis because one can not eliminate the pressure unknown by
restricting to the space of divergence free velocity fields. Another difference is
that the pressure p enters the partial differential equation for c, which makes
the coupling between the Navier-Stokes and the Cahn-Hilliard equations even
less transparent. There are existence results for weak solutions of the diffuse
interface model for the case with non-matched densities only for some special
cases, cf. [4] for a discussion. A phase field model based on the Cahn-Hilliard
free energy functional for a three-(or more) phase flow problem, in which the
three fluids can have different densities, is derived in [156].

In the literature there are studies on phase field models with free energies
that differ from the Cahn-Hilliard form.

Numerical methods. In order to have a proper modeling of relevant physi-
cal phenomena, the parameter ε in the Navier-Stokes/Cahn-Hilliard model
(6.43a)-(6.43d) has to be taken extremely small. As a consequence the order
parameter c has very large gradients that must be resolved numerically. The
equation for c (after elimination of μchem) is of convection-diffusion type with
a fourth order diffusion term −εmΔ2. The numerical treatment of such bihar-
monic type of equations is known to be difficult. Furthermore there is a strong
nonlinear coupling between the Navier-Stokes (for (u, p)) and Cahn-Hilliard
(for (c, μchem)) equations. Hence, even for the case of matched densities the
Navier-Stokes/Cahn-Hilliard model has a very high numerical complexity. For
non-matched densities (which are physically much more relevant) there is a
further significant increase in the numerical complexity. Some early numeri-
cal results for a Navier-Stokes/Cahn-Hilliard model (6.43a)-(6.43d) of a two-
dimensional two-phase flow problem are presented in [149]. This model is also
simulated, again for a two-dimensional problem, in [155]. In both cases uniform
grids and finite difference or finite volume discretization methods are used.
Numerical simulations of a spatially three-dimensional Navier-Stokes/Cahn-
Hilliard model with matched densities are given in [20]. Recent work on nu-
merical simulations of two-phase flows based on phase field models is found
in [233, 234]. The numerical simulation of a spatially two-dimensional three-
phase system with matched densities is treated in [156].

It appears that up to now numerical simulations of two-phase flows based
on phase field interface representations are used and studied much less than
those based on interface tracking or interface capturing (with VOF or level
set) techniques.

Comparison to other approaches. One important difference between the diffu-
sive and the sharp interface approach was already mentioned above: the energy
estimates are different, cf. Lemma 6.1.6 and Lemma 6.2.6. This has strong
implications for the theoretical analysis. Furthermore, in the volume track-
ing techniques (VOF or level set) discussed above we have a pure transport
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equation for an indicator function (characteristic function or level set func-
tion), whereas as in the phase field method we have a convection-diffusion type
of equation for the concentration c. In the Navier-Stokes equation (6.43a) of
the phase field model a “localized force” term

− ε div(∇c∇cT ) (6.52)

occurs. We comment on this term and its relation to the surface tension forces
used in other approaches. First we consider the force term that occurs in
the strong formulation if one uses a level set CSF approach, as explained in
Remark 6.2.4. We assume a (highly) idealized situation in which the zero level
of c describes the interface Γ and the scaled order function c̃ := εc is a signed
distance function to Γ in a neighborhood Uε of Γ . Hence, ε|∇c| = |∇c̃| = 1
holds in Uε. Using φ = c̃ in (6.33) and δε(φ(z)) ≈ ε−1 for z sufficiently close
to Γ , we obtain

−τ div
( ∇φ
|∇φ|

)
δε(φ(z))∇φ ≈ −τε−1 div(∇c̃)∇c̃

= −τε−1ε2Δc∇c = −τε−1ε2 div(∇c∇cT ),

in a sufficiently small neighborhood of Γ . In the last equality we used the
relation (6.44) and ∇|∇c|2 = 0. This agrees with the localized force as in
(6.52) if we take ε (in Dirac delta function) and ε (in Cahn-Hilliard) such that
ε ∼ τε.

In the weak formulation the force term in the Cahn-Hilliard model (6.43a)
takes the form

f̃Ω(v) := −ε
∫

Ω

div(∇c∇cT )v dx, (6.53)

which we now compare with the functional fΓ (v) = −τ
∫
Γ κn · v ds in

(6.8) that is used for surface tension representation in the weak formula-
tion of a sharp interface representation. For this we use another formula, cf.
Lemma 14.1.2:

fΓ (v) = −τ
∫

Γ

tr(P∇v) ds, P = I− nnT .

We consider only test functions with divv = 0 (which is reasonable, since by
elimination of the pressure one can restrict to the subspace of divergence free
velocities). Then we have tr∇v = div v = 0 and thus we get

fΓ (v) = τ

∫

Γ

tr(nnT∇v) ds = τ

∫

Γ

nT∇v n ds, (6.54)

with n = nΓ . Using partial integration the volume force in (6.53) can be
reformulated as

f̃Ω(v) = ε

∫

Ω

tr(∇c∇cT∇v) dx = ε

∫

Ω

∇cT∇v∇c dx.
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As above we assume that c̃ = εc is a signed distance function to Γ in Uε. Note
that then ∇c̃(x) = n(x) for x ∈ Γ and ∇c̃(y) = n(x) for y ∈ Uε, x ∈ Γ and
y − x = αn(x) with α ∈ R. Assume that v is sufficiently smooth and that
|∇c̃(y)| � 1 for y /∈ Uε, cf. Fig. 6.4. Using a suitable coordinate transformation
one obtains

f̃Ω(v) = ε−1

∫

Ω

∇c̃T∇v∇c̃ dx ≈ ε−1

∫ ε

−ε

∫

Γ

∇c̃(s, 0)T∇v(s, r)∇c̃(s, 0) ds dr

≈ ε−1

∫ ε

−ε

∫

Γ

n(s, 0)T∇v(s, 0)n(s, 0) ds dr ≈ 2
∫

Γ

nT∇vn ds,

which is of the same form as the functional in (6.54).

6.3 Weak formulation

In the remainder of this monograph we restrict to the level set method for in-
terface representation. Our choice is motivated by the following requirements.
We want to develop a solver that can handle interface singularities (droplet
collision), too. Therefore an interface tracking approach based on the interface
condition VΓ = u ·n in (6.3) is less suitable. A representation of the interface
as a surface in R

3, which corresponds to a sharp interface model, is desir-
able since we want to use a model for mass transport between the phases, in
which a Henry condition at the interface occurs, and a model for surfactant
transport on the interface. It is not clear how (variants of) these models can
be combined with a phase field approach. Therefore, we decided not to use a
phase field method for interface representation. Comparing the VOF and level
set interface capturing methods we decided to use the latter, since the numer-
ical treatment of the transport equation for the level set function (which is
smooth) is easier than for the characteristic function (which is discontinuous)
and because the level set approach fits better in a finite element discretization
framework than the VOF approach. The latter is more natural in a finite vol-
ume discretization context. Furthermore, the task of interface reconstruction
is much easier using the discrete level set function instead of the discrete VOF
color function. A disadvantage of the level set method compared to VOF is
that it has a worse mass conservation property.

In this section we present a two-phase Navier-Stokes/level set model. We
start with the strong formulation. Then a weaker variational model is for-
mulated, which forms the basis of the finite element discretization method
treated in the next chapter.

The jumps in the coefficients ρ and μ can be described using the level set
function φ in combination with the Heaviside function H : R → R:

H(ζ) = 0 for ζ < 0, H(ζ) = 1 for ζ > 0.
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For ease one can set H(0) = 1
2 . We define

ρ(φ) := ρ1 + (ρ2 − ρ1)H(φ),
μ(φ) := μ1 + (μ2 − μ1)H(φ).

(6.55)

We reconsider the strong formulation of the two-phase flow problem in (6.1)-
(6.2). Instead of the Lagrangian interface propagation condition VΓ = u ·n in
(6.3) we use the level set function for the representation of the interface and
therefore add the level set equation (6.31) to the model. This results in the
following model for the two-phase problem in Ω × [0, T ]:

{
ρ(φ)

(
∂u
∂t + (u · ∇)u

)
= −∇p+ div(μ(φ)D(u)) + ρ(φ)g

div u = 0
in Ωi, i = 1, 2,

[σn]Γ = −τκn, [u]Γ = 0 on Γ, (6.56)

∂φ

∂t
+ u · ∇φ = 0 in Ω,

together with suitable initial and boundary conditions for u and φ, cf. Sect. 1.2.
For the level set function φ, the initial condition is φ(x, 0) = φ0(x), in which
φ0 is given and should be such that

{
x ∈ R

3 : φ0(x) = 0
}

= Γ (0). Moreover,
φ0 should be an (approximate) signed distance function to Γ (0). To make the
problem with the linear hyperbolic level set equation well-posed one needs
boundary conditions on the inflow boundary ∂Ωin := {x ∈ ∂Ω : u · nΩ < 0 }.
There are no natural (e.g., physics based) boundary conditions for φ at the
inflow boundary. We are only interested in values of φ close to the interface
(= zero level on φ) and φ is evolved according to ∂φ

∂t + u · ∇φ = 0 only for a
short time interval. After this short time a re-initialization of φ is applied, cf.
Sect. 7.4.1. Due to this the issue of the choice of the boundary condition for
the level set function on ∂Ωin is of minor importance.

Note that the model (6.56) is not in dimensionless form. A dimensionless
formulation can be derived in a similar way as in Remark 6.1.1.

As discussed in Sect. 6.2.3 a general weak formulation of the model (6.56)
for which well-posedness has been proved, is not known in the literature. As
basis for the finite element discretization we will use the weak formulation of
the Navier-Stokes problem given in (6.9)-(6.10) and combine it with a weak
formulation of the level set equation.

We address this weak formulation of the level set equation. We do not
apply the approach based on viscosity solutions of transport equations, briefly
discussed in Sect. 6.2.3, since this requires the velocity field to be continuous:
u ∈ C(Ω× [0, T ])3, which is not compatible with the usual weak formulations
of the Navier-Stokes equation.
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We also do not use a weak formulation as in Proposition 6.2.2 which is
based on the concept of renormalized solutions of transport equations. A dis-
advantage of this formulation is that it leads to a space-time variational prob-
lem. In our setting we want to have a variational formulation only in space, cf.
(6.9)-(6.10). We introduce a “space-only” variational formulation of the level
set equation as in [106], Sect. 6.3. We consider a transport equation of the form

∂φ

∂t
+ w · ∇φ = 0, (6.57)

with w ∈ H1(Ω)3, div w = 0 and (for simplicity) w|∂Ω = 0. Then ∂Ωin = ∅
and thus we do not need boundary conditions for φ. The initial condition is
given by φ(x, 0) = φ0(x). Note that opposite to u used in the level set equa-
tion in (6.56) the velocity field w is independent of t. We introduce a so-called
anisotropic Sobolev space, in which only derivatives in a particular direction,
namely the flow direction w, are considered. On C∞(Ω) we introduce the
norm (and corresponding scalar product) ‖u‖21,w := ‖u‖2L2 + ‖w · ∇u‖2L2 . Let
Ww be the completion of C∞(Ω) with respect to this norm. Then Ww is a
Hilbert space and this space can also be characterized as

Ww =
{
u ∈ L2(Ω) : w · ∇u ∈ L2(Ω)

}

(where the derivative is defined in a distributional sense). This appears to be
an appropriate space for a weak formulation of the transport equation (6.57):

Proposition 6.3.1 Take φ0 ∈ Ww. There exists a unique φ(t) = φ(·, t) ∈
C1

(
[0, T ];L2(Ω)

)
∩ C([0, T ];Ww) such that φ(0) = φ0 and

(
dφ

dt
, v)L2 + (w · ∇φ, v)L2 = 0 for all v ∈ L2(Ω), t ∈ [0, T ].

Proof. This result is given in Theorem 6.52 in [106]. Its proof is based on a
fundamental result known as the Hille-Yosida theorem. We only present some
key ingredients which indicate that Ww and L2(Ω) are the right spaces for
the variational formulation. For a complete proof we refer to [106] and the
references therein.

We outline the Hille-Yosida theorem. Let H be a Hilbert space and
C : D(C) ⊂ H → H a linear operator. This operator is called monotone
if (Cv, v)H ≥ 0 for all v ∈ D(C) holds, and maximal if I + C : D(C) → H
is bijective. The operator is maximal monotone if both properties hold. The
Hille-Yosida theorem essentially states that if C is maximal monotone then
an initial value problem of the form

du

dt
+ Cu = f, t ∈ [0, T ], u(0) = u0,

with f ∈ H and u0 ∈ D(C), has a unique solution u ∈ C1([0, T ];H) ∩
C
(
[0, T ];D(C)

)
. In our context we have H = L2(Ω) and C : Ww = D(C) →
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L2(Ω) is defined by (Cφ, v)H = (w · ∇φ, v)L2 =: c(φ, v). The operator C is
monotone, since:

(Cφ, φ)H =
∫

Ω

w · ∇φφdx = −
∫

Ω

φ
(
φdiv w + w · ∇φ

)
dx = −(Cφ, φ)H ,

and thus (Cφ, φ)H = 0 for all φ ∈ Ww. In order to show that C is also
maximal we consider the bilinear form id + c : Ww × L2(Ω) → R given
by id(φ, v) + c(φ, v) = (φ + w · ∇φ, v)L2 . This bilinear form is bounded on
Ww × L2(Ω). Now note that for φ ∈Ww we have

sup
v∈L2(Ω)

id(φ, v) + c(φ, v)
‖v‖L2

= sup
v∈L2(Ω)

(φ+ w · ∇φ, v)L2

‖v‖L2
= ‖φ+ w · ∇φ‖L2

=
(
‖φ‖2L2 + 2(φ,w · ∇φ)L2 + ‖w · ∇φ‖2L2

) 1
2

=
(
‖φ‖2L2 + ‖w · ∇φ‖2L2

) 1
2 = ‖φ‖1,w,

and thus the inf-sup property

inf
φ∈Ww

sup
v∈L2(Ω)

id(φ, v) + c(φ, v)
‖φ‖1,w‖v‖L2

≥ 1

holds. Furthermore, it can be shown that id(φ, v)+ c(φ, v) = 0 for all φ ∈Ww

implies v = 0. From the boundedness of the bilinear form id + c, the inf-sup
bound and the latter result it follows that I+C : Ww → L2(Ω) is bijective, cf.
Theorem 15.1.1. Hence, C is maximal monotone and the Hille-Yosida theorem
yields existence and uniqueness of φ ∈ C1

(
[0, T ];L2(Ω)

)
∩C([0, T ];Ww) such

that (dφdt , v)L2 + c(φ, v)L2 = 0 for all v ∈ L2(Ω). �

Motivated by this result we introduce a weak formulation of the level set
equation in (6.56). We want to allow u∂Ω �= ∅ and therefore use a subspace
Wu,D :=

{
w ∈Wu : w|∂Ωin

= φD
}

ofWu. The weak formulation is as follows:
find φ(·, t) ∈ Wu,D such that φ(·, 0) = φ0 and

(
∂φ

∂t
, v)L2 + (u · ∇φ, v)L2 = 0 for all v ∈ L2(Ω), t ∈ [0, T ]. (6.58)

Note that in this problem the velocity u depends on t and therefore Proposi-
tion 6.3.1 can not be applied. Related to this, the space Wu,D depends on u
and thus on t.

Summarizing, we obtain the following two-phase incompressible flow model:
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Find u(t) = u(·, t) ∈ VD, p(t) = p(·, t) ∈ Q, φ(t) = φ(·, t) ∈ Wu,D such
that for almost all t ∈ [0, T ]

m(
∂u
∂t
,v) + c(u;u,v)

+ a(u,v) + b(v, p) = (ρg,v)L2 + fΓ (v) for all v ∈ V0, (6.59a)

b(u, q) = 0 for all q ∈ Q, (6.59b)

(
∂φ

∂t
, v)L2 + (u · ∇φ, v)L2 = 0 for all v ∈ L2(Ω), (6.59c)

initial conditions u(0) = u0, φ(0) = φ0 in Ω.

Thus we have a Navier-Stokes equation (in weak form) in the whole domain
Ω coupled with a linear hyperbolic equation (in weak form) for the level set
function φ. The spaces used for velocity u and pressure p are the same as those
used in the weak formulation of a one-phase flow problem. In the two-phase
Navier-Stokes equation we have discontinuous viscosity and density coeffi-
cients. Furthermore, we have a source term fΓ which is (only) a functional
and which requires integration over the (unknown) interface Γ . This is a sharp
interface model : there is no regularization (“numerical diffusion”) caused by
a smoothed Dirac delta function, cf. Remark 6.2.4.

The issue of well-posedness of this weak formulation is largely unsolved.
Only under strong (unrealistic) smoothness assumptions on the data (includ-
ing the initial interface) well-posedness results for (6.59a)-(6.59b) are known
in the literature, cf. the discussion in Sect. 6.1. If the velocity field u(x, t) is
sufficiently smooth (Lipschitz w.r.t. x) then the strong formulation of the level
set equation is well-posed and thus also the weaker formulation in (6.59c). This
weak model, however, is supposed to be suitable for less regular problems, too.
Theoretical analysis that shows correctness of this claim is lacking.

In the next chapter we treat finite element methods for the discretization of
this model.



7

Finite element discretization of two-phase
flow model

7.1 Introduction

In this chapter we treat finite element methods for the two-phase flow model
in (6.59). We use a nested family of multilevel triangulations {Th} as explained
in Sect. 3.1. In our applications these grids will be locally refined in a (small)
neighborhood of the interface. In Sect. 7.2 we discuss a finite element method
for discretization of the level set equation. In Sect. 7.3 it is explained how
for a resulting approximation φh of the level set function φ a corresponding
approximation Γh (= approximate zero level of φh) of the interface Γ can be
constructed. Other important issues related to the level set function, such as
re-initialization, are treated in Sect. 7.4. Results of experiments with numeri-
cal methods applied to the level set equation are given in Sect. 7.5. In Sect. 7.6
a method for discretization of the surface tension force fΓ is presented. An
error analysis of this method is given in Sect. 7.7 and results of numerical ex-
periments with this method are presented in Sect. 7.8. In Sect. 7.9 we treat a
special finite element space for the discretization of the pressure variable. Re-
sults of numerical experiments with this space are given in Sect. 7.10. Finally,
in Sect. 7.11 we apply the methods treated in this chapter for the discretization
of the two-phase flow model (6.59).

7.2 Discretization of the level set equation

The level set equation is of linear hyperbolic type. It is well-known that stan-
dard conforming finite element discretization methods are in general not very
suitable for such partial differential equations, since these methods can be un-
stable. There is extensive literature on finite element techniques for hyperbolic
problems. We do not give an overview here, but refer to monographs in which
this topic is treated, e.g., [108, 211, 206]. One popular strategy is to combine
standard finite element spaces with a stabilization technique. A fundamental
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stabilization method, that is very often used in practice, is the streamline-
diffusion finite element method (SDFEM). We will apply this method for the
discretization of the level set equation. In Sect. 7.2.1 we explain the basic
idea of the technique using a simple 1D problem. In Sect. 7.2.2 we apply this
method for the discretization of the level set equation.

7.2.1 Introduction to stabilization

We consider the very simple one-dimensional (hyperbolic) problem

bu′(x) + u(x) = f(x), x ∈ I := (0, 1), b > 0 a given constant,
u(0) = 0.

(7.1)

For the weak formulation we introduce the Hilbert spaces

H1 =
{
v ∈ H1(I) : v(0) = 0

}
, H2 = L2(I).

The norm on H1 is ‖v‖21 = ‖v‖2L2 + ‖v′‖2L2. We define the bilinear form

k(u, v) =
∫ 1

0

bu′v + uv dx

on H1 ×H2.

Theorem 7.2.1 Take f ∈ L2(I). There exists a unique u ∈ H1 such that

k(u, v) = (f, v)L2 for all v ∈ H2. (7.2)

Moreover, ‖u‖1 ≤ c‖f‖L2 holds with c independent of f .

Proof. The proof is based on an application of Theorem 15.1.1. The bilinear
form k(·, ·) is continuous on H1 ×H2:

|k(u, v)| ≤ b‖u′‖L2‖v‖L2 + ‖u‖L2‖v‖L2 ≤
√

2max{1, b}‖u‖1‖v‖L2 ,

for u ∈ H1, v ∈ H2. For u ∈ H1 we have

sup
v∈H2

k(u, v)
‖v‖L2

= sup
v∈H2

(bu′ + u, v)L2

‖v‖L2
= ‖bu′ + u‖L2

=
(
b2‖u′‖2L2 + ‖u‖2L2 + 2b(u′, u)L2

) 1
2 .

Using u(0) = 0 we get (u′, u)L2 = u(1)2 − (u, u′)L2 and thus (u′, u)L2 ≥ 0.
Hence we get

sup
v∈H2

k(u, v)
‖v‖L2

≥ min{1, b}‖u‖1 for all u ∈ H1,
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i.e., the inf-sup condition for k(·, ·) is satisfied. We now prove that if v ∈ H2

is such that k(u, v) = 0 for all u ∈ H1, this implies v = 0. Take v ∈ H2

with k(u, v) = 0 for all u ∈ H1. This implies b
∫ 1

0 u
′v dx = −

∫ 1

0 uv dx for all
u ∈ C∞

0 (I) and thus v ∈ H1(I) with v′ = 1
bv (weak derivative). Using this we

obtain

−
∫ 1

0

uv dx = b

∫ 1

0

u′v dx = bu(1)v(1)− b
∫ 1

0

uv′ dx

= bu(1)v(1)−
∫ 1

0

uv dx for all u ∈ H1,

and thus u(1)v(1) = 0 for all u ∈ H1. This implies v(1) = 0. Using this and
bv′ − v = 0 yields

‖v‖2L2 = (v, v)L2 + (bv′ − v, v)L2

= b(v′, v)L2 =
b

2
(
v(1)2 − v(0)2

)
= − b

2
v(0)2 ≤ 0.

This implies v = 0. Application of Theorem 15.1.1 yields existence and unique-
ness of a solution u ∈ H1 and ‖u‖1 ≤ c ‖f‖L2, which completes the proof. �

Remark 7.2.2 The analysis in the proof above is essentially the same as
that used in the proof of Proposition 6.3.1 to show that the operator I + C :
Ww → L2(Ω) is bijective. This operator corresponds to the bilinear form
(φ, v) → (φ + w · ∇φ, v)L2 on Ww × L2(Ω), which is the higher dimensional
generalization of the bilinear form k(·, ·) used in the proof above.

For the discretization of the well-posed variational problem (7.2) we use a
Galerkin method with a standard finite element space. To simplify the no-
tation we use a uniform grid and consider only linear finite elements. Let
h = 1

n , xi = ih, 0 ≤ i ≤ n, and

Xh =
{
v ∈ C(I) : v(0) = 0, v|[xi,xi+1] ∈ P1 for 0 ≤ i ≤ n− 1

}
.

Note that Xh ⊂ H1 and Xh ⊂ H2. The discretization is as follows:

determine uh ∈ Xh such that k(uh, vh) = (f, vh)L2 for all vh ∈ Xh. (7.3)

For the error analysis of this method we apply Céa’s lemma 15.1.3. It remains
to verify the discrete inf-sup condition:

∃ εh > 0 : sup
vh∈Xh

k(uh, vh)
‖vh‖L2

≥ εh ‖uh‖1 for all uh ∈ Xh. (7.4)

Related to this we give the following lemma:

Lemma 7.2.3 The inf-sup property (7.4) holds with εh = c h, c > 0 indepen-
dent of h.
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Proof. For uh ∈ Xh we have (u′h, uh)L2 = 1
2uh(1)2 ≥ 0 and thus

sup
vh∈Xh

k(uh, vh)
‖vh‖L2

≥ k(uh, uh)
‖uh‖L2

=
b(u′h, uh)L2 + ‖uh‖2L2

‖uh‖L2
≥ ‖uh‖L2 .

Now apply an inverse inequality, ‖v′h‖L2 ≤ ch−1‖vh‖L2 for all vh ∈ Xh, re-
sulting in ‖uh‖L2 ≥ 1

2‖uh‖L2 + ch‖u′h‖L2 ≥ ch ‖uh‖1 with a constant c > 0
independent of h. �

It can be shown that the result in this lemma is sharp in the sense that
the best (i.e. largest) inf-sup constant εh in (7.4) in general satisfies εh ≤ c h.
This indicates that the standard linear finite element method is unstable in
the sense that the inf-sup constant deteriorates for h ↓ 0. This instability can
be observed in numerical experiments with the discretization (7.3) for this
simple 1D problem.

We will show how a satisfactory discretization with the space Xh of linear
finite elements can be obtained by using the concept of stabilization.

If u ∈ H1 satisfies (7.2), then

∫ 1

0

(bu′ + u)bv′ dx = (f, bv′)L2 for all v ∈ H1 (7.5)

also holds. We add this equation δ-times, with δ a parameter in [0, 1], to the
one in (7.2). Thus the solution u ∈ H1 of (7.2) also satisfies

kδ(u, v) = fδ(v) for all v ∈ H1, with (7.6a)
kδ(u, v) := (bu′ + u, δbv′ + v)L2 , fδ(v) := (f, δbv′ + v)L2 . (7.6b)

Note that for δ = 0 we have the original bilinear form and that δ = 1 results
in a problem with a symmetric bilinear form . For δ �= 1 the bilinear form
kδ(·, ·) is not symmetric. For all δ ∈ [0, 1] we have fδ ∈ H ′

1. The stabilizing
effect for δ > 0 is seen from the ellipticity estimate:

kδ(u, u) = δb2
∫ 1

0

(u′)2 dx+
∫ 1

0

u2 dx+ b(δ + 1)
∫ 1

0

u′u dx

≥ δb2|u|21 + ‖u‖2L2 for all u ∈ H1.

(7.7)

Note that for δ > 0 the norm |u|1 occurs in this stability estimate. The discrete
problem is as follows:

determine uh ∈ Xh such that kδ(uh, vh) = fδ(vh) for all vh ∈ Xh. (7.8)

The discrete solution uh depends on δ. Using the stability estimate (7.7),
approximation properties of the finite element space Xh and a variant of Céa’s
lemma the following (sharp) result on the discretization error can be proved:
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Proposition 7.2.4 Let u ∈ H1 and uh ∈ Xh be the solutions of (7.2) and
(7.8), respectively, and assume that u ∈ H2(I). For all δ ∈ [0, 1] the error
bound

b
√
δ|u− uh|1 + ‖u− uh‖L2 ≤ Ch

[
h+ b

√
δ + b min{1, h

b
√
δ
}
]
‖u′′‖L2 (7.9)

holds with a constant C independent of h, δ, b and u.

The term between square brackets in (7.9) is minimal for h ≤ b if we take

δ = δopt =
h

b
. (7.10)

We consider three cases:
δ = 0 (no stabilization): Then we get ‖u − uh‖L2 ≤ ch‖u′′‖L2. We can not
control the discretization error in the stronger H1-norm.
δ = 1 (full stabilization): Then we obtain

|u− uh|1 ≤ ch‖u′′‖L2 , ‖u− uh‖L2 ≤ ch‖u′′‖L2 .

δ = δopt (optimal value): This results in

|u− uh|1 ≤ ch‖u′′‖L2, ‖u− uh‖L2 ≤ ch
3
2 ‖u′′‖L2 . (7.11)

Hence, in the latter case the bound for the norm | · |1 is the same as for
δ = 1, but we have an improvement in the L2-error bound. The best stability
property, in the sense of (7.7), is for the case δ = 1. A somewhat weaker
stability property but a better approximation property is obtained for δ =
δopt. For δ = δopt we have a good compromise between sufficient stability and
high approximation quality.

The concept of stabilization as explained in this section is a very general one.
It can be applied in higher dimensions, using finite elements of degree larger
than one and also if instead of a hyperbolic equation one has to discretize a
convection-diffusion problem in which convection is dominating. An extensive
analysis of stabilization techniques is given in [211].

7.2.2 Discretization of the level set equation by the streamline
diffusion finite element method

In this section we treat a stabilization approach, the so-called streamline dif-
fusion stabilization method (SDFEM), for the discretization (in space) of the
level set equation (6.59c). This method is based on the same approach as
presented for a relatively simple one-dimensional hyperbolic problem in the
previous section.

We introduce the finite element space of continuous piecewise polynomial
functions. Let V(∂Ωin) be the set of vertices on the inflow boundary ∂Ωin :=
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{ x ∈ ∂Ω : u · nΩ < 0 }. Given the Dirichlet boundary data φD on ∂Ωin we
define, for k ≥ 1, the (affine) finite element space

Vh(φD) :=
{
v ∈ C(Ω) : v|T ∈ Pk ∀ T ∈ Th, v(x) = φD(x) ∀ x ∈ V(∂Ωin)

}
.

The choice of the boundary data φD will be addressed in Remark 7.5.1. We
use the notation Vh = Vh(0). The latter space is independent of t, whereas
Vh(φD) depends on t if the boundary data φD are time dependent. Note that
Vh(φD) = Vh holds if φD = 0 or ∂Ωin = ∅. As we will see later on, for the
quality of the curvature approximation of the interface it is important to use
finite elements of degree at least two for the approximation of the level set
function. As explained in Sect. 7.2.1, cf. (7.6), for the spatial discretization of
the level set equation (6.59c) we use test functions v̂h ∈ L2(Ω) of the form

v̂h|T := vh + δTu · ∇vh, T ∈ Th, vh ∈ Vh. (7.12)

The streamline diffusion finite element discretization of the level set equation
is as follows:

Let φ0,h ∈ Vh(φD) be an approximation of the initial condition φ0 = φ(0).
Determine φh(t) ∈ Vh(φD) with φh(0) = φ0,h and such that

∑

T∈Th

(
∂φh
∂t

+ u · ∇φh, vh + δTu · ∇vh)L2(T ) = 0 for all vh ∈ Vh, (7.13)

and t ∈ [0, T ].

Note that compared to the standard Galerkin finite element discretization
(δT = 0 for all T ) in (7.13) we have added a stabilizing term of the form
(u ·∇φh,u ·∇vh)L2 , which is the variational form of a diffusion acting only in
the direction u. This explains the name of this finite element method. Based
on a theoretical error bound and numerical experiments for model problems
the parameter δT is often taken as

δT = c
hT

max {ε0, ‖u‖∞,T }
(7.14)

with a given small ε0 > 0 and c = O(1). This streamline diffusion discretiza-
tion is consistent in the following sense.

Lemma 7.2.5 Let φ(t) be a solution of (6.59c). Then φ satisfies

∑

T∈Th

(
∂φ

∂t
+ u · ∇φ, vh + δTu · ∇vh)L2(T ) = 0 for all vh ∈ Vh,

for all t ∈ [0, T ].

Proof. This immediately follows from the fact that for the test functions v̂h
as in (7.12) we have v̂h ∈ L2(Ω). �
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Matrix-vector representation

For the matrix-vector formulation of the semidiscrete problem (7.13) we use
the standard nodal basis in Vh, which is denoted by {ξi}i=1,...,NVh

. Hence,
for all i we have ξi(x) = 0 for all x ∈ V(∂Ωin). The vector representation of
vh ∈ Vh(φD) is given by

vh =
NVh∑

i=1

vi ξi + bh, vi ∈ R, (7.15)

with bh = bh(x, t) ∈ Vh(φD) such that bh(x, t) = φD(x, t) for all x ∈ V(∂Ωin)
and bh(xi, t) = 0 at all other vertices xi, i = 1, . . . , NVh

. We define the matrices
E = E(u) ∈ R

NVh
×NVh and H = H(u) ∈ R

NVh
×NVh :

Eij :=
∑

T∈Th

(
ξj , ξi + δTu · ∇ξi

)
L2(T )

(stabilized mass matrix),

Hij :=
∑

T∈Th

(
u · ∇ξj , ξi + δTu · ∇ξi

)
L2(T )

(stabilized convection),

bi =
∑

T∈Th

(∂bh
∂t

+ u · ∇bh, ξi + δTu · ∇ξi
)
L2(T )

(boundary data),

for 1 ≤ i, j ≤ NVh
. Thus, using

φh(t) =
NVh∑

i=1

φi(t)ξi + bh, 	φ(t) :=
(
φ1(t), . . . , φNVh

(t)
)
,

and 	φ0 the vector representation of the initial value φ0,h − bh(·, 0) ∈ Vh we
can reformulate (7.13) in matrix-vector notation:

Find 	φ(t) ∈ R
NVh with 	φ(0) = 	φ0 and for all t ∈ [0, T ]

E(u)
dφ

dt
(t) + H(u)	φ(t) = −b(t). (7.16)

Note that in general the velocity field u depends on t and thus the matrices
E(u) and H(u) are time dependent. In practice, the velocity field u will be
replaced by a finite element approximation uh.

Time discretization

The discretization in (7.13), or in (7.16), can be combined with standard time
discretization techniques (method of lines). If the velocity u depends on t then
for the method of lines approach the formulation in (7.16) is more natural,
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since in (7.13) the test functions v̂h then depend on t. The θ-schema applied
to (7.16) results in

	φ n+1 − 	φ n

Δt
= −θE(	un+1)−1

(
H(	un+1)	φ n+1 + b(tn+1)

)

− (1− θ)E(	un)−1
(
H(	un)	φ n + b(tn)

)
.

This can be reformulated in a computationally more favorable form using a
new variable

	wk = −E(	uk)−1
(
H(	uk)	φ k + b(tk)

)
,

which satisfies (for θ �= 0)

θ	wn+1 =
	φ n+1 − 	φ n

Δt
− (1− θ)	wn,

resulting in

E(	un+1)
	φ n+1 − 	φ n

Δt
= −θ

(
H(	un+1)	φ n+1 + b(tn+1)

)

+ (1 − θ)E(	un+1)	wn.

(7.17)

Discretization error bound

A discretization error analysis of the fully discrete problem (7.17) for the
general case of a time-dependent velocity field u is not known, yet. For the case
of a stationary and divergence free velocity field u = u(x) an error analysis
has recently been given in [59]. We outline the main result of that analysis. We
assume that the Dirichlet data φD are also independent of t. Instead of a local
stability parameter δ = δT we assume quasi-uniformity of the triangulation
and use one global parameter δ = h‖u‖−1

L∞(Ω). For a stationary velocity field u
the matrices E(u) and H(u) are independent of t and the scheme (7.17) is the
matrix-vector representation of the following discrete problem, cf. (7.13): let
φ0
h := φ0,h ∈ Vh(φD) be an approximation of the initial condition φ0 = φ(0);

for n ≥ 0 determine φnh ∈ Vh(φD) such that

(φn+1
h − φnh
Δt

+ u · ∇
(
θφn+1

h + (1− θ)φnh
)
, vh + δu · ∇vh

)
L2 = 0, (7.18)

for all vh ∈ Vh. In [59] an analysis for θ ∈ (0, 1] is presented. Here we restrict
to the Crank-Nicolson method, i.e., θ = 1

2 . In the analysis it is assumed that
the solution φ is sufficiently smooth, such that higher order derivatives are
bounded. Let NΔt = T , i.e. φNh is the numerical approximation of φ(·, T ).
The following error bound can be shown to hold:

‖φNh − φ(·, T )‖L2 +
√
δ
∥
∥u · ∇

(
φNh − φ(·, T )

)∥∥
L2 ≤ cT (hk+

1
2 +Δt2), (7.19)
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with a constant c that depends on the smoothness of the data φD and of the
solution φ but not on T, h, Δt. In [59] this result is proved for the case of
homogeneous inflow data φD = 0, but the analysis can easily be extended to
the inhomogeneous case φD �= 0, cf. [169]. As in the analysis presented for the
simple hyperbolic problem in Sect. 7.2, the bound in (7.19) reflects that due
to the stabilization not only the L2-norm of the error but also its derivative
in streamline direction can be controlled. The estimate (7.19) is similar to the
one given in (7.11). The term Δt2 in the error bound is of optimal order. The
term hk+

1
2 is optimal for the error in the streamline derivative (recall: δ ∼ h)

and suboptimal (by a factor
√
h) for the L2-norm of the error.

7.3 Construction of an approximate interface Γh

As we will see further on, at several places (e.g., in the discretization of the
surface tension force functional fΓ (v)) we will need an approximation Γh(t) of
the interface Γ (t). In this section we discuss a simple method for constructing
such an approximation.

Assume that for a fixed t ∈ [0, T ] we have a finite element approximation
φh(·, t) ∈ Vh = X

2
h of the level set function φ(x, t). To simplify the notation,

in the remainder of this section we write φ(x, t) =: φ(x), φh(x, t) =: φh(x).
In Sect. 7.4.1 we address the issue of re-initialization of the level set function,
which is introduced to assure that φ (or φh) remains, in a neighborhood of the
interface, close to a signed distance function. Thus φ and its approximation
φh ∈ Vh can be assumed to be close to a signed distance function. Let Γ̃h be
the zero level of φh and

T Γh :=
{
T ∈ Th : meas2(T ∩ Γ̃h) > 0

}
(7.20)

the collection of tetrahedra which contain the approximate interface Γ̃h. Let
T Γh′ be the collection of tetrahedra obtained by one further regular refinement
of all T ∈ T Γh (subdivision of each tetrahedron in 8 child tetrahedra, cf.
Fig. 3.1). Furthermore, I(φh) is the continuous piecewise linear function on
T Γh′ which interpolates φh at all vertices of all tetrahedra in T Γh′ . Note that
the degrees of freedom of the P1 finite element functions on T Γh′ (located at
the vertices) coincide with the degrees of freedom of the P2 finite element
functions on T Γh (located at the vertices and midpoints of edges).

The approximation Γh of the interface Γ is defined by

Γh := {x ∈ Ω : I(φh)(x) = 0 } . (7.21)

Hence, Γh consists of piecewise planar segments ΓT ⊂ Γh, where

ΓT := T ∩ Γh (7.22)
for T ∈ T Γh′ .
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The interface mesh size parameter hΓ is the maximal diameter of these
segments. Thus hΓ is approximately the maximal diameter of the tetrahedra
in T Γh′ , i.e., 2hΓ is approximately the maximal diameter of the tetrahedra in
Th that are close to the interface. In our applications we use local refinement
close to the interface, which implies hΓ � h. In Fig. 7.1 we illustrate this
construction for the two-dimensional case. An illustration for a 3D case is
given in Fig. 7.5. Note that in general the segments of Γh are not aligned with
the faces of the tetrahedral triangulation T Γh′ .

T Γ
h

T Γ
h

Γ
Γh

Fig. 7.1. Construction of approximate interface for 2D case.

Each of the planar segments ΓT of Γh is either a triangle or a quadrilateral,
depending on the sign pattern of φh on the corresponding T ∈ T Γh′ , cf. Fig. 7.2.
By construction the vertices of a planar segment ΓT are located on those edges
of T along which φh changes its sign. If there are two positive and two negative
values of φh on the vertices of T , then the corresponding interface segment ΓT
is a quadrilateral. In all other cases ΓT is a triangle. The quadrilaterals can
(formally) be divided into two triangles. Thus Γh consists of a set of triangular
faces, which is denoted by Fh.

+

+

−

− −

+
+ +

Fig. 7.2. Sign pattern of φh on T ∈ T Γ
h′ and corresponding interface segment

ΓT = T ∩ Γ (in gray): either a triangle or a quadrilateral.

Special cases may occur if some of the values of φh on the vertices of T
are equal to zero (or below a given tolerance). Let 0 ≤ n0 ≤ 4 be the number
of these (close to) zero values. In the following we discuss the shape of ΓT in
all the cases n0 = 0, 1, 2, 3, 4.
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• n0 = 0 is not a special case, the situation is as depicted in Fig. 7.2 which
was discussed in the foregoing paragraph.

• For n0 = 1, 2 we distinguish two cases: If the other 4− n0 non-zero values
have the same sign, then ΓT is a point (n0 = 1) or a line segment (n0 = 2)
and can be ignored as meas2(ΓT ) = 0. Otherwise the non-zero values are
of different sign yielding 3 − n0 edges with a change of sign, as a simple
case differentiation shows. Thus ΓT has 3 vertices, hence ΓT is a triangle.

• In the case n0 = 3 the interface segment ΓT is equal to a face of T . Then
one has to take care that this face is not counted twice when computing a
surface integral on Γh using an assembling strategy over T ∈ T Γh′ .

• If n0 = 4 then either the intersection of T ∈ T Γh′ with Γh is empty (cf.
for example the left upper triangle in Fig. 7.1) or there is a degeneration,
namely ΓT = T , i.e. the interface segment is three-dimensional. Of course,
the latter makes not much sense. Such a situation typically indicates that
the grid is too coarse to represent the interface properly, cf. Fig. 7.3.

Fig. 7.3. 2D examples for interface degeneration such that the interface reconstruc-
tion fails. Left: curvature κ too large compared to grid resolution (|κ| ≥ 2

h
). Right:

distance d between interfaces too small compared to grid resolution (d ≤ h).

If a situation as on the right in Fig. 7.3 occurs, then in the interface recon-
struction special measures have to be taken to handle the (almost) topological
singularity.

For an example in which Γ is a sphere, the resulting polygonal approxi-
mations Γh for h = 1

5 and h = 1
10 are shown in Fig. 7.4. A detail of such a

polygonal interface approximation is shown in Fig. 7.5.

7.3.1 Error in approximation of Γ by Γh

We assume a fixed sufficiently smooth interface Γ , which is the zero level of
φ, and a mesh size hΓ that is sufficiently small such that degenerations as
in Fig. 7.3 do not occur. We analyze the quality of Γh as an approximation
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Fig. 7.4. Approximate interface Γh for an example with a sphere, on a coarse grid
(left) and after one refinement (right).

Fig. 7.5. Detail of the interface triangulation Γh. On the left, also the outer trian-
gulation T Γ

h′ is shown.

of Γ . For this we first introduce some notation and further assumptions. Let
U :=

{
x ∈ R

3 : dist(x, Γ ) < c
}

be a sufficiently small neighborhood of Γ . We
define T Γh as in (7.20), i.e., the collection of tetrahedra which intersect the
zero level Γ̃h of φh, and assume that T Γh ⊂ U . Let d be the signed distance
function

d : U → R, |d(x)| := dist(x, Γ ) for all x ∈ U.

Thus Γ is the zero level set of d. Note that nΓ = ∇d on Γ . We define n(x) :=
∇d(x) for x ∈ U . Thus n = nΓ on Γ and ‖n(x)‖ = 1 for all x ∈ U . Here
and in the remainder of this section ‖ · ‖ denotes the Euclidean norm on R

3.
We introduce a local orthogonal coordinate system by using the projection
p : U → Γ :

p(x) = x− d(x)n(x) for all x ∈ U.
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We assume that the decomposition x = p(x) + d(x)n(x) is unique for all
x ∈ U . Note that

n(x) = n
(
p(x)

)
for all x ∈ U.

The unit normal on Γh (pointing outward from Ω1) is denoted by nh. Using
these preliminaries we can derive the following approximation result.

Theorem 7.3.1 Assume that φ ∈ H2
∞(U) and that for c1, c0 > 0

c0 ≤ ‖∇φ(x)‖ ≤ c1 for all x ∈ U. (7.23)

Furthermore, we assume that the approximation φh ∈ Vh = X
2
h of φ satisfies

‖φh − φ‖L∞(U) + hΓ ‖φh − φ‖H1∞(U) ≤ chmΓ ‖φ‖Hm∞(U), m = 1, 2. (7.24)

Then the following holds:

|d(x)| ≤ ch2
Γ for all x ∈ Γh, (7.25a)

‖n(x)− nh(x)‖ ≤ chΓ for all x ∈ Γh. (7.25b)

Proof. Let I be the linear interpolation operator corresponding to T Γh′ , used
in (7.21), and define the piecewise linear function φ̃h = Iφh. Recall that
Γh =

{
x ∈ R

3 : φ̃h(x) = 0
}
. Using standard properties of I and the error

bound in (7.24) one obtains

‖φ̃h − φ‖L∞(T Γ
h ) ≤ ‖I(φh − φ)‖L∞(T Γ

h ) + ‖Iφ− φ‖L∞(T Γ
h )

≤ ‖φh − φ‖L∞(U) + ch2
Γ ‖φ‖H2∞(U)

≤ c h2
Γ ‖φ‖H2∞(U).

Due to φ̃h(x) = 0 for x ∈ Γh this yields

|φ(x)| ≤ ch2
Γ for x ∈ Γh. (7.26)

Take x ∈ Γh and introduce the notation y = p(x) = x − d(x)n(x) = x −
d(x)n(y) ∈ Γ . For suitable s with |s| ≤ |d(x)| and ỹ = y + sn(y) we get

φ(x) = φ(x)− φ(y) = φ(y + d(x)n(y)) − φ(y)
= d(x)∇φ(y + sn(y)) · n(y) = d(x)∇φ(ỹ) · n(y)

= d(x)
(
(∇φ(ỹ)−∇φ(y)) · n(y) + ‖∇φ(y)‖

)
.

(7.27)

Due to (7.23) we have ‖∇φ(y)‖ ≥ c0. We assume that U is sufficiently small
such that ‖∇φ(ỹ) −∇φ(y)‖ ≤ ‖φ‖H2∞(U)|d(x)| ≤ 1

2c0 holds. Hence we obtain
from (7.27) that |φ(x)| ≥ 1

2 c0|d(x)| holds, and using (7.26) yields
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|d(x)| ≤ c|φ(x)| ≤ ch2
Γ , x ∈ Γh,

i.e., the result in (7.25a). We also have, using Assumption (7.24)

‖φ̃h − φ‖H1∞(T Γ
h ) ≤ ‖I(φh − φ)‖H1∞(T Γ

h ) + ‖Iφ− φ‖H1∞(T Γ
h )

≤ c ‖φh − φ‖H1∞(U) + chΓ ‖φ‖H2∞(U) ≤ chΓ ‖φ‖H2∞(U).

This implies
‖∇φ̃h(x)‖ = ‖∇φ(x)‖ +O(h), x ∈ Γh.

Using this, we obtain for x ∈ Γh (not on an edge) and y = p(x) ∈ Γ

‖n(x)− nh(x)‖ = ‖n(y)− nh(x)‖ =

∥
∥
∥
∥
∥
∇φ(y)
‖∇φ(y)‖ −

∇φ̃h(x)
‖∇φ̃h(x)‖

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∇φ(y)
‖∇φ(y)‖ −

∇φ(x)
‖∇φ(x)‖

∥
∥
∥
∥ +

∥∥
∥
∥
∥
∇φ(x)
‖∇φ(x)‖ −

∇φ̃h(x)
‖∇φ̃h(x)‖

∥∥
∥
∥
∥
.

For the first term we obtain, from a Taylor expansion, Assumption (7.23) and
‖x− y‖ ≤ ch2

Γ : ∥∥
∥
∥
∇φ(y)
‖∇φ(y)‖ −

∇φ(x)
‖∇φ(x)‖

∥∥
∥
∥ ≤ ch2

Γ .

For the second term we get

∥
∥
∥
∥
∥
∇φ(x)
‖∇φ(x)‖ −

∇φ̃h(x)
‖∇φ̃h(x)‖

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥∥

∇φ−∇φ̃ ‖∇φ‖
‖∇φ̃‖

‖∇φ‖

∥
∥
∥
∥
∥∥

≤ c−1
0

∣
∣
∣
∣
‖∇φ(x)‖
‖∇φ̃h(x)‖

− 1
∣
∣
∣
∣ · ‖∇φ̃h(x)‖ + c−1

0 ‖∇φ̃h(x) −∇φ(x)‖ ≤ c hΓ ,

which completes the proof. �

The results in (7.25a) and (7.25b) give (satisfactory) quantitative results on
the approximation quality of Γh. The result in (7.25b) implies that the tangent
planes are close in a certain sense, and that “zigzag” effects in the approxi-
mation Γh do not occur. These bounds will play a crucial role in the analysis
of the surface tension force discretization in Sect. 7.7. We comment on the
assumptions in (7.23) and (7.24). Due to re-initialization, in a neighborhood
of the interface the level set function φ is close to a signed distance function
and thus ‖∇φ‖ ≈ 1 can be expected to hold. We claim that the assumption
on the discretization error bound in (7.24) is also reasonable. Due to the re-
initialization it is reasonable to assume that φ is (very) smooth. Hence, using
quadratic finite elements, an optimal order discretization method would have
an error bound of the form (7.24) with m = 3. We do not know whether the
SDFEM applied to the hyperbolic level set equation is of optimal order. In
(7.24), however, we only assume an h2

Γ error bound (instead of the optimal h3
Γ
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bound) to be satisfied. The only rigorous discretization error bounds for the
level set equation known to us are given in [59], cf. the discussion in Sect. 7.2.2,
in particular the result in (7.19). For quadratic finite elements and a suitable
time step Δt the latter result yields a bound ch

2 1
2
Γ . The discretization error,

however, is measured in a weaker norm as the one used in (7.24).

For a sufficiently smooth level set function φ and an approximation φh ∈ X
2
h

one could consider the case in which the approximation error bound in (7.24)
even holds for an m ∈ (2, 3]. Such a stronger assumption, however, would not
improve the bounds in (7.25). This is due to the fact that linear interpolation
is used in the construction of Γh. In the proof this is reflected by the terms
‖Iφ−φ‖L∞(T Γ

h ) and ‖Iφ− φ‖H1∞(T Γ
h ) for which the optimal error bounds are

of the form ch2
Γ and chΓ , respectively. Below we present a result which shows

that by using φh, instead of Iφh, a better normal approximation than the one
in (7.25b) can be obtained. This result will be crucial in the discretization of
the surface tension force treated in Sect. 7.6.

Lemma 7.3.2 Assume that φ ∈ H3(U) and that (7.23) holds. Furthermore,
we assume that φh ∈ X

2
h satisfies

‖φh − φ‖H1∞(U) ≤ chpΓ , for a p ∈ (0, 2]. (7.28)

For x ∈ U define ñh(x) := ∇φh(x)
‖∇φh(x)‖ . The following holds:

‖n(x)− ñh(x)‖ ≤ chpΓ for all x ∈ Γh. (7.29)

Proof. We use similar arguments as in the proof of Theorem 7.3.1. For x ∈ Γh
(not on an edge)

‖n(x)− ñh(x)‖ = ‖n(y)− ñh(x)‖ =
∥∥
∥
∇φ(y)
‖∇φ(y)‖ −

∇φh(x)
‖∇φh(x)‖

∥∥
∥

≤
∥
∥∥
∇φ(y)
‖∇φ(y)‖ −

∇φ(x)
‖∇φ(x)‖

∥
∥∥ +

∥
∥∥
∇φ(x)
‖∇φ(x)‖ −

∇φh(x)
‖∇φh(x)‖

∥
∥∥.

Using a Taylor expansion and ‖x− y‖ ≤ ch2
Γ we obtain a bound ch2

Γ for the
first term. Since ‖∇φh(x)−∇φ(x)‖ ≤ chpΓ , the second term can be bounded
by chpΓ using the same arguments as in the proof of Theorem 7.3.1. �

Let Γ̃h be the zero level set of φh ∈ X
2
h. This zero level is difficult to compute;

therefore, in practice we use its piecewise planar approximation Γh. For x ∈
Γ̃h, the quantity ñh(x) is the unit outward normal on Γ̃h. Note that, for a
given φh ∈ X

2
h and x ∈ U it is easy to compute the quantity ñh(x). In the

sense as in Theorem 7.3.1 and Lemma 7.3.2, ñh(x) is a better approximation
to the normal n(x) than nh(x).
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7.4 Corrections of the level set function

During the evolution of the level set function φ or of its finite element ap-
proximation φh, which is driven by the velocity field u, the property of φ (φh)
being close to a signed distance function is lost. This has undesirable effects,
which can be avoided by using a re-initialization technique as explained in
Sect. 7.4.1. In general the (spatial and temporal) discretizations of the level
set equation are such that mass conservation is not guaranteed on the discrete
level (only for h, Δt ↓ 0). This issue of loss of mass is briefly addressed in
Sect. 7.4.2.

7.4.1 Re-initialization

Assume that the initial data φ0(x), x ∈ Ω, for the level set equation are such
that (locally, close to the initial interface) φ0 is a signed distance function
to Γ (0). Then in general during the evolution of the level set function φ
the property of φ being close to a (signed) distance function is lost, which
has undesirable effects. For example, an accurate spatial discretization of φ
becomes hard in regions where φ has a very strong variation, and the problem
of finding the zero level set of φ becomes ill conditioned in regions where
φ is very flat. Therefore, often level set methods are combined with a re-
initialization (also called “reparametrization”) technique.

Assume that for a given t0 ∈ [0, T ] an approximation φh(·) of the level set
function φ(·, t0) is known. Given this φh a re-initialization method results in
φ̃h such that:

1. The zero level of φ̃h is (approximately) equal to that of φh.
2. The function φ̃h is close to a signed distance function: ‖∇φ̃h‖ ≈ 1 (close

to the interface).

The function φ̃h is then used as re-initialization in the evolution of the level
set function: φ̃h is taken as “initial” data to solve the level set equation for
t ≥ t0.

Different re-initialization techniques are known in the literature, cf. [221,
222, 148, 266, 205]. A popular method is based on solving the Eikonal equation

‖∇ψ‖ = 1

by introducing a pseudo-time evolution as follows. Let φh be the given approx-
imation of the level set function, and consider the first order partial differential
equation for ψ = ψ(x, τ):

∂ψ

∂τ
= Sα(φh)(1− ‖∇ψ‖), τ ≥ 0, x ∈ Ω, (7.30)

ψ(·, 0) = φh,

with
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Sα(ζ) =
ζ

√
ζ2 + α2

, ζ ∈ R,

where α is a regularization parameter (0 < α � 1). The function Sα is a
smoothed sign function. Due to Sα(0) = 0 the zero level set of ψ remains
equal to that of φh. A stationary solution ψ(x) = limτ→∞ ψ(x, τ) of (7.30)
solves the Eikonal equation and thus ψ is a signed distance function. The
equation (7.30) can be reformulated in the more convenient form

∂ψ

∂τ
+ w(ψ) · ∇ψ = Sα(φh) with w(ψ) := Sα(φh)

∇ψ
‖∇ψ‖ . (7.31)

In practice, the equation (7.31) is discretized in space and time and for suffi-
ciently large τf > 0 one can use the computed discrete solution φ̃h := ψh(·, τf )
as a re-initialization of φh. For a further discussion of this re-initialization
method we refer to the literature [231, 230, 240]. Using this technique one
faces the following difficulties. Firstly, the method contains control parame-
ters α and τf and there are no good practical criteria on how to select these.
Secondly, the partial differential equation (7.31) is nonlinear and hyperbolic;
accurate discretization of this type of partial differential equation is rather dif-
ficult. Finally, the invariance property of the zero level holds for the stationary
solution ψ(x, τ) of the continuous problem in (7.30), but after discretization it
is usually lost. It may well happen that the difference between the zero levels
of φh and ψh(·, τf ) is “large”.

Another technique for re-initialization is the Fast Marching Method (cf.
[157, 220]). In [148] a survey and comparison of different re-initialization meth-
ods is given, where (for a certain class of problems) the Fast Marching Method
turns out to be the most accurate and efficient one. In our level set method we
use a variant of the Fast Marching Method that is explained in detail below.

Fast Marching Method (FMM)

In our level set method we have a piecewise quadratic function φh ∈ Vh = X
2
h

for which a re-initialization should be determined. We first describe the FMM
applied to a piecewise linear function and then explain how this method is
applied to the piecewise quadratic φh.

Let ψh be a piecewise linear function on the tetrahedral triangulation Th.
The zero level of ψh is denoted by Γh. This zero level consists of planar
segments ΓT :

Γh =
⋃

T∈T Γ
h

ΓT , with ΓT := Γh ∩ T, (7.32)

and T Γh the collection of all tetrahedra that have a nonempty intersection
with Γh. The planar segment ΓT is either a triangle or a quadrilateral, cf.
Fig. 7.2. We introduce some notation. For T ∈ Th, V(T ) is the set of the
four vertices of T . More general, for a collection of tetrahedra S, the set of all
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vertices contained in S is denoted by V(S). We write V := V(Th). Furthermore,
for v ∈ V , T (v) is the set of all tetrahedra which have v as a vertex:

T (v) = {T ∈ Th : v ∈ V(T ) } .

We also need the recursively defined larger neighborhoods:

T 1(v) := T (v), T k+1(v) =
{
T ∈ Th : V(T ) ∩ V(T k(v)) �= ∅

}
, k ≥ 1.

Finally, for v ∈ V , N (v) is the collection of all neighboring vertices of v (i. e.,
for each w ∈ N (v) there is an edge in Th connecting v and w):

N (v) :=
( ⋃

T∈T (v)

V(T )
)
\ {v}.

As input for the FMM we need Th, the zero level set Γh and sign(ψh(v)), v ∈ V .
Thus only sign(ψh(v)) is needed, and not ψh(v) itself. The FMM consists of
two phases: The initialization phase, where the values at vertices close to the
interface are determined, and the extension phase, where the information is
propagated from the interface to the vertices in the far field.

Initialization phase. We define the set of vertices corresponding to T Γh :

VΓ := V(T Γh ) =
{
v ∈ V(T ) : T ∈ T Γh

}
. (7.33)

The aim of the initialization phase is to define a discrete (approximate) dis-
tance function d̂(v) for each v ∈ VΓ . To this end, we present two possible
strategies, a geometry-based approach and a weighted scaling approach.

We first consider the geometry-based approach. For v ∈ VΓ and T ∈
T (v) ∩ T Γh let ΓT be the planar segment as in (7.32). This segment is either
a triangle or a quadrilateral. In the latter case ΓT can be subdivided into two
triangles. If Δ is a triangle in R

3 and p ∈ R
3 then the distance between Δ

and p
d(p,Δ) := min

x∈Δ
‖p− x‖, (7.34)

can be computed using elementary geometry, for example as follows. If Δ =
conv{v1, v2, v3} and A = (v2−v1, v3−v1) one first solves the 3×2 least squares
problem ‖Az − (p− v1)‖ → min. This results in the orthogonal projection of
p on the plane that contains Δ. If this orthogonal projection is contained in
the triangle Δ then the residual of the least squares problem equals d(p,Δ).
Otherwise, d(p,Δ) = dist(p, ∂Δ), and thus the distance of p to the three edges
of Δ has to be determined.
Hence, for arbitrary v ∈ VΓ , T ∈ T Γh we can compute

dT (v) := d(v, ΓT ).

For a given k ≥ 1 the (approximate) distance between v and Γh is defined by
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d̂(v) := min
T∈T k(v)∩T Γ

h

dT (v) = min
x∈Γh∩T k(v)

‖v − x‖ for v ∈ VΓ . (7.35)

In practice we typically use k = 2. Properties of the geometry based initial-
ization are discussed in Remark 7.4.3.

Another approach is based on a scaling of the level set function at the
vertices v ∈ VΓ . One motivation for this approach comes from the following
observation. If one wants to guarantee that the approximated interface Γh
is not moved by re-initialization, then the only choice is d̂(v) = α−1φh(v)
for v ∈ VΓ with a suitable scalar α > 0. Achieving the (distance) property
‖∇d̂‖ ≈ 1 by scaling with a single scalar, however, is not possible in general.
Consider, for example, the case of a level set function φh which has a large
gradient ‖∇φh‖ ≈ 103 in one part of T Γh and a small gradient ∇φh‖ ≈ 10−3

in another part.
This leads to the idea to use a vertex-dependent scalar αv, i. e., to define

d̂(v) = α−1
v φh(v), v ∈ VΓ . (7.36)

We propose to use

αv :=

∑
T∈T (v)

∫
T
‖∇φh‖ dx

∑
T∈T (v)

∫
T 1 dx

, v ∈ VΓ , (7.37)

i. e., αv is an average of the gradients of φh on T (v). Compared to the
geometry-based approach described above there is no need to reconstruct
Γh from φh, allowing for a relatively simple implementation of the method.
A comparison of both methods in a numerical example is given in Sect. 7.5.2.
After completion of the initialization phase the values {

(
v, d̂(v)

)
: v ∈ VΓ }

determine an approximate distance grid function for the vertices v ∈ VΓ .

Extension phase. The second phase consists of a greedy algorithm in which
the approximate distance function d̂ is extended to neighbor vertices of VΓ
and then to neighbors of neighbors, etc. To explain this more precisely we
introduce two sets of vertices.

The first set V̂ ⊂ V contains the vertices where the values of the ap-
proximate distance function d̂ : V → R have already been computed. As
initialization we take V̂ := VΓ . We call V̂ the finalized set.

The second one is the set of so-called active vertices A ⊂ V \ V̂ , which
consists of vertices v /∈ V̂ that have a neighboring vertex in V̂ :

A :=
{
v ∈ V \ V̂ : N (v) ∩ V̂ �= ∅

}
. (7.38)

A is called the active set. After the initialization phase, the initial active set
A0 is given by

A0 := { v ∈ V \ VΓ : N (v) ∩ VΓ �= ∅ } . (7.39)

For v ∈ A we define an approximate distance function in a similar way
as in the initialization phase. Since its values may change if the finalized and
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active set are updated, we denote it by d̃ : A → R. We emphasize that d̃ has
tentative character in contrast to d̂, which will be the final outcome of the
algorithm. The construction of d̃ is described in the following.

Take v ∈ A and T ∈ T (v) with V(T )∩ V̂ �= ∅. Note that such a T exists if
A is nonempty. There are three possible cases, namely |V(T ) ∩ V̂| ∈ {1, 2, 3}.

• If |V(T ) ∩ V̂| = 1, say V(T ) ∩ V̂ = {w}, we define

d̃T (v) := d̂(w) + ‖v − w‖.

• For the other two cases, i. e., V(T ) ∩ V̂ = {wi}1≤i≤m with m = 2 or
m = 3, we use a distance function to the line segment W = conv(w1, w2)
(for m = 2) or the triangle W = conv(w1, w2, w3) (for m = 3), which is
denoted by d(v,W ). In the case m = 3, this is the distance function as in
(7.34). Let PW : R

3 →W be such that d(v,W ) = ‖v − PW v‖. We define

d̃T (v) := d̂(PW v) + ‖v − PW v‖ = d̂(PW v) + d(v,W ).

The value d̂(PW v) is determined by linear interpolation of the known val-
ues d̂(wj), 1 ≤ j ≤ m. This is well-defined since wj ∈ V̂ for 1 ≤ j ≤ m and
d̂ is already defined on V̂.

The tentative approximate distance function d̃ : A → R at active vertices
v ∈ A is defined by

d̃(v) := min
{
d̃T (v) : T ∈ T (v) with V(T ) ∩ V̂ �= ∅

}
. (7.40)

The complete re-initialization method is as follows:

Algorithm 7.4.1 (Fast Marching Method)

1. Initialization: VΓ as in (7.33), compute d̂(VΓ ) as in (7.35) (or (7.36)).
2. Initialize finalized set V̂ := VΓ and active set A := A0, cf. (7.39).
3. For the initial active set A0, compute d̃(A0) as in (7.39), (7.40).
4. While A �= ∅, repeat the following steps:

a) Determine vmin ∈ A such that d̃(vmin) = minv∈A d̃(v).

b) Update finalized set V̂ := V̂ ∪ {vmin} and define d̂(vmin) := d̃(vmin).
c) Update active set A := (A∪ Ñ ) \ {vmin} where Ñ := N (vmin) \ V̂ .
d) (Re)compute d̃(v) for v ∈ Ñ .

5. For all v ∈ V , set d̂(v) := sign(ψh(v)) · d̂(v).

After this re-initialization we have V̂ = V and a grid function d̂(v), v ∈ V ,
which uniquely determines a continuous piecewise linear approximate signed
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distance function. This function is defined to be the re-initialization of ψh, de-
noted by ψ̂h. The zero level set of ψ̂h is denoted by Γ̂h. Below, in Remark 7.4.3
we discuss important approximation properties of the re-initialization ψ̂h and
its zero level.

Remark 7.4.2 (Complexity) The number of (arithmetic) operations for
the initialization phase (steps 1–3 in Algorithm 7.4.1) is O(|VΓ | + |A0|). For
the extension phase (steps 4–5 in Algorithm 7.4.1) the sorting and updating
in the steps 4.a)-c) can be realized with O(log |A|) complexity using a heap
data structure for A. Step 4 is repeated NV := |V \ VΓ | times, and thus this
FMM has an overall complexity of the order O(NV logNV).

Remark 7.4.3 (Approximation properties) A detailed analysis of the
FMM in Algorithm 7.4.1 using the geometry-based initialization phase (7.35)
is given in [123]. We outline some main results. By construction each T ∈ T Γh
contains a segment of the new zero level Γ̂h and thus dist(Γh, Γ̂h) ≤ hΓ holds.
In practice, however, one typically observes dist(Γh, Γ̂h) � hΓ , which can be
explained by the results from [123]. We use notation and assumptions as in
Sect. 7.3.1. We assume that Γh approximates a smooth interface Γ and define
d to be the signed distance function to Γ . The approximation error is assumed
to be sufficiently small in the following sense:

|d(x)| ≤ ch2
Γ for all x ∈ Γh, (7.41a)

‖n(x)− nh(x)‖ ≤ chΓ for all x ∈ Γh. (7.41b)

In our setting these are reasonable assumptions, cf. Theorem 7.3.1. The ap-
proximate interface Γh is the zero level of the given piecewise linear function
ψh. Let dh be the signed distance function to Γh. After the initialization phase,
for v ∈ VΓ the re-initialization ψ̂h(v) is determined by the function d̂ in (7.35):
ψ̂h(v) = sign(ψh(v))d̂(v) for v ∈ VΓ . Note that d̂ in (7.35) depends on k ≥ 1.
It is obvious that for k sufficiently large we have

ψ̂h(v) = dh(v) for all v ∈ VΓ , (7.42)

i.e. at the vertices in VΓ we have determined the exact signed distance to Γh.
For the theoretical analysis we assume that (7.42) holds. Based on experience,
in computations we take k = 2. Note that a larger k value induces higher
computational costs for the re-initialization.
Based on the assumptions in (7.41), (7.42) one can derive the following results:

|d(x)| ≤ ch2
Γ for all x ∈ Γ̂h, (7.43a)

‖∇ψ̂h − n‖L∞(T Γ
h ) ≤ chΓ . (7.43b)

The result in (7.43a) shows that in the re-initialization the accuracy of the zero
level set as an approximation of Γ is maintained. Due to ‖n‖ = 1, we conclude
from (7.43b) that ‖∇ψ̂h(x)‖ = 1 + O(hΓ ) for x ∈ T Γh , i.e., ψ̂h is, at least in
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a neighborhood of its zero level, close to a signed distance function. These
approximation properties of the re-initialization are illustrated in a numerical
experiment in Sect. 7.5.2.

Application of FMM to a piecewise quadratic function

Let φh ∈ X
2
h be a piecewise quadratic function corresponding to the triangu-

lation Th. The regular refinement of Th is denoted by Th′ := {T ′ ∈ K(T ) : T ∈
Th} and I(φh) is the continuous piecewise linear function on Th′ that interpo-
lates φh at all vertices of all tetrahedra in Th′ . The approximate interface Γh
is the zero level of I(φh). We can apply the FMM given above to the function
I(φh), which results in the function Î(φh) that is piecewise linear on Th′ . The
values at the vertices of this function uniquely define a piecewise quadratic
function on Th, which is denoted by φ̂h =: FMM(φh) and is defined to be
the re-initialization of φh.

Remark 7.4.4 There is a need for re-initialization, only if the size of the
gradient of φh is “too small” or “too large”. One possibility to quantify this
is the following. For c > 1 define the subset

Vc :=
{
φh ∈ X

2
h : ‖∇φh‖L2(T ) < c|T | 12 ∀ T ∈ Th′

}

∩
{
φh ∈ X

2
h :

1
c
|T | 12 < ‖∇φh‖L2(T ) ∀ T ∈ Th′

}
.

In practice we take c ∈ [5, 10] and apply the FMM only if φh /∈ Vc. This
defines a re-initialization mapping ReInit : X

2
h → X

2
h:

ReInit(φh) =

{
φh if φh ∈ Vc,
φ̂h = FMM(φh) otherwise.

(7.44)

The FMM is such that ‖∇φ̂h‖ is close to one, in particular we have (for c
not too close to one) φ̂h ∈ Vc. Hence one can expect ReInit(ReInit(φh)) =
ReInit(φh) to hold for all φh ∈ X

2
h. Furthermore, one can check that the

re-initialization mapping ReInit is continuous on Vc.

7.4.2 Mass conservation

Due to immiscibility the mass of the phase contained in Ωi(t) is constant.
Using the incompressibility of the phases, it follows that the volume Vi(t) :=∫
Ωi(t)

1 dx is conserved, i.e. d
dtVi(t) = 0 for i = 1, 2. Due to Ω1(t)∪Ω2(t) = Ω

it suffices to consider i = 1 (or i = 2). For the level set function the quantity∫
Ωi(t)

φ(x, t) dx is conserved:

d

dt

∫

Ωi(t)

φ(x, t) dx = 0, i = 1, 2, (7.45)
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which follows from the Reynolds’ transport theorem and div u = 0. There
is, however, no natural relation between this conservation property and mass
conservation. The VOF method for interface capturing is based on a discretiza-
tion of a transport equation for the characteristic function corresponding to
Ω1 (denoted by χ1) and thus this method has a natural discrete mass conser-
vation property. Recall the transport equation for χ1:

∂

∂t

∫

W

χ1 dx +
∫

∂W

χ1u · n ds = 0, W ⊂ Ω,

cf. (6.26) (n is the outward unit normal on ∂W ). Applying a conservative
finite volume method to this problem results in a discretization χ̃1(x, tn) of
χ1(x, tn), for which

∫

Ω

χ̃1(x, tn)− χ̃1(x, tn−1) dx = 0, n = 1, . . .
T

Δt
,

holds. Hence the volume conservation property holds on the discrete level.
In general the (temporal and spatial) discretization of the level set equa-

tion do not guarantee a volume conservation property. Also the FMM for
re-initialization of the level set function is not volume-conserving. This is a
disadvantage of the level set method compared to the VOF method. Since for
Δt ↓ 0, h ↓ 0 the discrete level set function converges to the exact solution φ
of the level set equation, one may expect that the amount of change in volume
is reduced if the time step and mesh size are taken smaller. For the SDFEM
method combined with Crank-Nicolson time discretization this is analyzed in
[169]. The analysis is based on a discretization error bound

‖φNh − φ(·, T )‖L2 ≤ cT (hk+
1
2 +Δt2), (7.46)

for the finite element approximation φNh (x), cf. (7.19). Let V1(φNh ) be the
numerical approximation of the exact volume V1(T ) = V1(0) = V1, i.e.,
V1(φNh ) =

∫
ΩN

1,h
1 dx, with ΩN1,h :=

{
x ∈ Ω : φNh (x) < 0

}
. In [169] it is shown

that from the discretization error bound (7.46) and with Δt ∼ h
1
2k+

1
4 one can

derive the volume error estimate

|V1(φNh )− V1| ≤ chk.

This estimate shows how the volume error can be controlled by reducing the
mesh size.

In recent years there have appeared studies in which modifications of the
level set method are presented that have better volume conservation proper-
ties. Often these modifications are based on combining the level set approach
with a VOF technique. We do not treat this topic here, but refer to the liter-
ature, e.g. [229, 203, 87, 196].
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In the literature also the following very simple (but less satisfactory) strat-
egy, which guarantees volume conservation for the level set method, can be
found. Let V1(0) =

∫
Ω1(0) 1 dx be the volume of Ω1 at t = 0, that is assumed to

be known. For a given t > 0, let φh(x) ≈ φ(x, t) be a computed approximation
of the level set function and introduce

Ω1,h(t) := {x ∈ Ω : φh(x, t) < 0 } , V1(φh; t) :=
∫

Ω1,h(t)

1 dx.

We assume that the quantity V1(φh; t) can easily be determined (sufficiently
accurate). In our applications, where φh is piecewise quadratic on Th, we use
the interpolation I(φh), which is piecewise linear on the refined triangulation
Th′ and take

Ω1,h(t) :=
{
x ∈ Ω : I

(
φh(·, t)

)
(x) < 0

}
.

Then ∂Ω1,h(t) = Γh(t) and the integral
∫
Ω1,h(t)

1 dx can be determined exactly
(apart from rounding errors) using a simple quadrature rule on tetrahedra.
In general one has no volume conservation, i.e. there may be a significant
difference between V1(0) and V1(φh; t). Due to the fact that φh is close to a
signed distance function, a shift of the interface over a distance δ in outward
normal direction can be realized (approximately) if one subtracts δ from the
approximate level set function φh. For (exact!) volume conservation one has
to find δ ∈ R such that

V1(φh − δ; t)− V1(0) = 0

holds. In a method for computing a zero of this scalar function it is important
to keep the number of evaluations of V1(·; t) low. In our numerical simulations
we use the Anderson-Björck method [14] to solve this equation. Let δ∗ be a
solution of this problem. We then set φnew

h := φh − δ∗ and discard φh.
Note that this strategy only works if Ω1 consists of a single component. If

there are multiple components, volume must be preserved for each of them.
In this case the algorithm can be modified to shift φh only locally.

Clearly, using this simple strategy we have optimal volume conservation
for the discrete level set function. Nevertheless, this approach is not very
satisfactory since it introduces an additional discretization error source which
is very hard to control.

7.5 Numerical experiments with the level set equation

In this section we present results of two numerical experiments to illustrate
the performance of the discretization method for the level set equation and of
the fast marching re-initialization technique.
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7.5.1 Discretization using the SDFEM

We take Ω = [0, 1]3 and the ball Ω1 :=
{
x ∈ R

3 : ‖x− xM‖ < 0.2
}

with
center xM = (1

2 ,
1
4 ,

1
2 ). We use the stationary velocity field

û(x) = c(y) · (y2, −y1, 0)

where y := x− (1
2 ,

1
2 ,

1
2 ) and

c(y) =

{
4‖y‖(0.5− ‖y‖) if ‖y‖ ≤ 1

2 ,

0 otherwise.

Hence, û is a circular velocity field, cf. Fig. 7.6 for an illustration of û. Fur-
thermore, û = 0 on ∂Ω holds. We consider the time interval [0, Tend] and
define the velocity field

u(x, t) =

{
û(x) t ≤ 1

2Tend,

−û(x) t > 1
2Tend.

We consider the level set equation

∂φ

∂t
+ u · ∇φ = 0 in Ω, t ∈ [0, Tend],

with initial condition φ(x, 0) = d(x), where d is the signed distance function
to Γ (0) := ∂Ω1. In Fig. 7.7, for Tend = 20, an illustration of the computed zero
level of φ(x, t) at different times is shown. Clearly, φ(x, Tend) = d(x), x ∈ Ω,
holds. Thus the exact solution is known for t = Tend.

The initial tetrahedral triangulation is obtained by subdividing Ω into
8 subcubes, each of which is subdivided into six tetrahedra. Then repeated
global regular refinement is applied to this initial triangulation. This results
in nested triangulations Th�

with mesh size parameter h = (1
2 ). On each

triangulation we apply a method of lines discretization.
For the space discretization we use the SDFEM with quadratic finite

elements. Due to u = 0 on ∂Ω we do not need boundary conditions for φ.
Therefore we can use the finite space Vh := X

2
h of piecewise quadratic finite

elements, without any boundary conditions.

Remark 7.5.1 In other problems we usually have u �= 0 on ∂Ω. In that case,
in the weak formulation of the level set equation in (6.59c) we use a trial space
with Dirichlet boundary conditions on the inflow boundary ∂Ωin to make this
hyperbolic problem well-posed. We discuss a possible choice of these (artificial)
boundary conditions. Let φ0 = φ0(x), x ∈ Ω, be the initialization for the level
set function. The Dirichlet data for the level set function can be taken as
follows:

φD(x, t) = φ0(x)− u(x, 0) · ∇φ0(x) t, x ∈ ∂Ωin, t ∈ [0, t0]. (7.47)
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Fig. 7.6. Interface Γ (0). Also shown is the velocity field û on the slice x3 = 0.

t = 5

t = 15

t = 10

t = 20

Fig. 7.7. Computed interface at different times.



7.5 Numerical experiments with the level set equation 223

These data are used until t = t0, the point in time at which a re-initialization
is applied. The re-initialization results in a modified level set function φ̃h(x)
and for t ∈ (t0, t1] Dirichlet boundary data are defined as in (7.47) but with φ0

replaced by φ̃h and u(x, 0) replaced by u(x, t0), etc. Note that this Dirichlet
boundary condition is time dependent. We explain the heuristics leading to a
boundary condition as in (7.47). For this we assume the inflow boundary ∂Ωin
to be planar and u(x, 0), x ∈ ∂Ωin, to be normal to the inflow boundary, i.e.
u(x, 0) = −‖u(x, 0)‖n(x), with n the outward pointing unit normal on the
boundary. The initial data φ0 are extrapolated linearly by φ0(x + αn(x)) :=
φ0(x) + α∂φ0(x)

∂n = φ0(x) + αn(x) · ∇φ0(x), α ≥ 0. This defines initial data
in the inflow region, outside the domain Ω. The velocity field u has a natural
constant extension given by u(x + αn(x), 0) := u(x, 0), x ∈ ∂Ωin, α ≥ 0.
Solving the level set equation, which describes transport of the initial data by
the velocity field u, results in

φ(x, t) = φ0(x− tu(x, 0)) = φ0(x)− tu(x, 0) · ∇φ0(x), x ∈ ∂Ωin, t ≥ 0,

which is the boundary condition proposed in (7.47).

The streamline diffusion finite element method is as explained in Sect. 7.2.2:
Determine φh(t) ∈ Vh with φh(0) = dh and such that

∑

T∈Th

(
∂φh
∂t

+ u · ∇φh, vh + δTu · ∇vh)L2(T ) = 0 for all vh ∈ Vh,

and t ∈ [0, Tend]. Here dh is the nodal interpolation of the initial condition d
in the finite element space Vh. For the parameter δT in this method we take,
cf. (7.14),

δT = SD
hT

max{10−3, ‖u‖∞,T}
,

with a constant SD that is varied below. The resulting system of ordinary
differential equations (7.16) is discretized using the implicit Euler or Crank-
Nicolson method with a time step size Δt. Because in this experiment we
want to study the accuracy of the discretization method, we do not use re-
initialization of the level set function. In the Crank-Nicolson method we do not
apply any volume correction procedure. In the implicit Euler method, however,
the results without volume correction turn out to be very poor. Therefore we
applied the simple method described in Sect. 7.4.2 at t = 4, 8, . . . , 20. The
space and time discretization results in an approximation φnh ∈ Vh of φ(·, tn),
tn := nΔt. Let N be such that NΔt = Tend, i.e, φNh is an approximation of
φ(·, Tend) = d. The approximate zero level of φnh is constructed as explained
in Sect. 7.3 and is denoted by Γh(tn). This approximate interface consists of
a set

{
ΓT : T ∈ T Γh′

}
of planar segments ΓT = T ∩ Γh, T ∈ T Γh′ .

We now turn to a quantitative evaluation of the discretization method.
Since Γ (Tend) = Γ (0) and d is the signed distance function to the exact initial
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zero level Γ (0), as a measure for the quality of Γh(tn) ≈ Γ (0), n = 0, n = N ,
we introduce

‖d‖L2(Γh(tn)) :=

√√
√
√

∑

ΓT ⊂Γh(tn)

∫

ΓT

d(x)2 dx, n = 0, n = N. (7.48)

As a second error measure we use the global L2(Ω) error,

‖d− φnh‖L2(Ω) =

√ ∑

T∈Th

∫

T

|d(x) − φnh(x)|2 dx, n = 0, n = N, (7.49)

which can be determined accurately using suitable quadrature. Note that for
n = 0 we have φ0

h = dh and in these error quantities only the interpolation
error d − dh and the approximation of the zero level of the interpolant dh
plays a role. In Table 7.1 we give these quantities for n = 0 and different grid
sizes h.

� ‖d‖L2(Γh(0)) order

1 1.77 E-2 -
2 3.90 E-3 2.18
3 9.37 E-4 2.06
4 2.31 E-4 2.02
5 5.82 E-5 1.99

� ‖d − φ0
h‖L2(Ω) order

1 4.90 E-2 -
2 1.28 E-2 1.94
3 3.27 E-3 1.97
4 8.17 E-4 2.00
5 2.04 E-4 2.00

Table 7.1. Approximation errors for different mesh sizes h = h�.

These results are consistent with the expected h2
 convergence.

The quality of the space and time discretization is measured by these
quantities for n = N . We only consider the implicit Euler method, since for the
Crank-Nicolson method this test case is not representative, cf. Remark 7.5.2.
Results for Tend = 20 and several mesh and time step sizes are given in
Table 7.2 and Table 7.3. Note that for SD = 0 there is no stabilization in the
spatial finite element discretization.
A first (surprising) observation is that the method without stabilization
(SD = 0) produces very good results. One observes an O(Δt) error behavior if
the time step is reduced. For Δt = 2−6 one obtains close to optimal errors; for
example, for � = 3 we have ‖d‖L2(Γh(20)) = 1.07 E-3 and ‖d−φNh ‖L2(Ω) = 4.21
E-3, which have to be compared with the interpolation errors 9.37 E-4 and
3.27 E-3 of the initial data from Table 7.1. The performance of the method
with stabilization is worse. In case of the stabilization with SD = 1

2 we do not
observe an O(Δt) error reduction behavior. Furthermore, for Δt “small” the
error is dominated by the spatial discretization error and stagnates at a level
higher than the interpolation error level. An explanation of this behavior is a
topic for further research.
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� = 3 � = 4

Δt SD = 0 SD = 1
2 SD = 0 SD = 1

2

2−1 1.34 E-2 1.42 E-2 1.40 E-2 1.32 E-2
2−2 7.04 E-3 1.03 E-2 7.24 E-3 7.34 E-3
2−3 3.87 E-3 8.84 E-3 3.87 E-3 4.55 E-3
2−4 2.20 E-3 8.31 E-3 2.04 E-3 3.27 E-3
2−5 1.39 E-3 8.11 E-3 1.05 E-3 2.80 E-3
2−6 1.07 E-3 8.02 E-3 5.64 E-4 2.66 E-3

Table 7.2. Implicit Euler: error ‖d‖L2(Γh(20)) for different h = h� and Δt

� = 3 � = 4

Δt SD = 0 SD = 1
2 SD = 0 SD = 1

2

2−1 3.77 E-2 4.15 E-2 3.61 E-2 3.72 E-2
2−2 2.14 E-2 2.54 E-2 1.96 E-2 2.06 E-2
2−3 1.22 E-2 1.66 E-2 1.03 E-2 1.13 E-2
2−4 7.54 E-3 1.23 E-2 5.49 E-3 6.62 E-3
2−5 5.27 E-3 1.02 E-2 3.12 E-3 4.37 E-3
2−6 4.21 E-3 9.29 E-3 1.94 E-3 3.33 E-3

Table 7.3. Implicit Euler: error ‖d − φN
h ‖L2(Ω) for different h = h� and Δt

Remark 7.5.2 Consider a system of ODEs of the form y′(t) + F (t)y(t) =
0, y(0) = y0, t ∈ [0, Tend] with F (t) = A for t ∈ [0, 1

2Tend], F (t) = −A
for t ∈ (1

2Tend, Tend] and A ∈ R
n×n a given matrix. We apply the Crank-

Nicolson method with a time step size Δt = Tend/N and N even, resulting
in approximations yn of y(tn), n = 1, 2, . . . , N . One easily checks that, due to
the special symmetry in the problem and in the Crank-Nicolson method, we
have yN = y(0), i.e., the initial condition is exactly reproduced. In our test
example we have such a symmetry in the spatially discretized problem (for
the case SD = 0). Therefore, if we repeat the numerical experiment described
above using the Crank-Nicolson method instead of the implicit Euler method
we obtain ‖d‖L2(Γh(20)) = ‖d − φNh ‖L2(Ω) = 0 for the case SD = 0 and very
small errors for the case SD = 1

2 .

In order to compare the Crank-Nicolson method to the implicit Euler
method we performed an experiment in which only the time discretization
error is measured. On a fixed triangulation with mesh size h = 1

8 we applied
the SDFEM with SD = 0.1. We take Tend = 20 and on the time interval
[0, 10] the resulting system of ODEs is solved with a “small” time step 1

102−5

resulting in a reference solution at t = 10 denoted by φ̃h ≈ φ(·, 10). Note
that for t ∈ [0, 10] the droplet is transported with the velocity field û and
does not move back to the initial position. Hence the symmetry property
addressed in Remark 7.5.2 does not hold. The system of ODEs is solved using
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both the Crank-Nicolson and the implicit Euler method for time step sizes
Δt = 2−k, k = 0, . . . , 5. The computed result at t = 10 is denoted by φ

1
2N

h .

In the Tables 7.4 and 7.5 we give the errors ‖φ̃h − φ
1
2N

h ‖L2(Ω). These results
show the expected rate of convergence, namely O(Δt) for the Euler method
and O(Δt2) for the Crank-Nicolson method.

Δt 20 2−1 2−2 2−3 2−4 2−5

� = 3 2.88 E-2 1.54 E-2 7.85 E-3 3.93 E-3 1.96 E-3 9.65 E-4

Table 7.4. Implicit Euler: discretization error ‖φ̃h − φ
1
2 N

h ‖L2(Ω).

Δt 20 2−1 2−2 2−3 2−4 2−5

� = 3 1.42 E-3 3.87 E-4 9.82 E-5 2.82 E-5 6.14 E-6 1.53 E-6

Table 7.5. Crank-Nicolson: discretization error ‖φ̃h − φ
1
2 N

h ‖L2(Ω).

7.5.2 Re-initialization by the Fast Marching Method

In this section we present some quantitative results related to the quality
of the Fast Marching re-initialization method. More results are presented in
[123]. We consider the cubic domain Ω = (−1, 1)3 and the quadratic level set
function

φ(x) = ‖x‖2 − r2, x ∈ Ω, r = 0.6.

The zero level of φ, denoted by Γ , is given by the sphere centered at the
origin with radius r. On Γ we have ‖∇φ‖ = 2r = 1.2. The signed dis-
tance function to Γ is denoted by d(x). The domain Ω is subdivided into
8 subcubes, each subdivided into 6 tetrahedra. This defines the level � = 0
triangulation. The level � ≥ 1 triangulation Th�

is obtained by � local refine-
ments in the neighborhood {x ∈ Ω : |d(x)| ≤ 0.1 }. The level � triangulation
has local mesh size parameter hΓ, = (1

2 ). To the quadratic function φ on
a given triangulation Th = Th�

we apply the FMM as discussed at the end
of Sect. 7.4.1. As output of the initialization phase in the FMM one obtains
an approximate signed distance function, denoted by ψ̂h, which is piecewise
linear on T Γh′ (h′ = 1

2h; we use notation as in Sect. 7.4.1). The zero level of
ψ̂h, which is contained in T Γh′ , defines the new approximate interface denoted
by Γ̂h. Let F̂ denote the set of triangles forming Γ̂h, i. e., Γ̂h =

⋃
F∈F̂ F , and

P̂ =
{
v ∈ Γ̂h : v is vertex of triangle F ∈ F̂

}
the set of their vertices.

To measure the quality of this re-initialization we computed the quantities
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eh,∞ := max
v∈P̂

|d(v)− ψ̂h(v)| = max
v∈P̂

|d(v)|, (7.50a)

∇eh,∞ := max
T∈T Γ

h′

{
‖∇d(c)−∇ψ̂h(c)‖ : c barycenter of T

}
. (7.50b)

An important parameter in the geometry-based initialization phase is k,
cf. (7.35). Below we consider k = 1 and k = 2. The results are compared
to the scaling approach, cf. (7.36). In Tables 7.6 and 7.7 we present values of
eh,∞ and ∇eh,∞, respectively, for different levels � and the different initializa-
tion strategies. Using the geometry-based initialization phase, for k = 1 we do

� geom, k = 1 order geom, k = 2 order scale order

1 5.49 E-2 – 5.49 E-2 – 3.55 E-2 –
2 1.34 E-2 2.03 1.34 E-2 2.03 1.01 E-2 1.81
3 3.62 E-3 1.89 3.62 E-3 1.89 2.55 E-3 1.99
4 9.04 E-4 2.00 9.04 E-4 2.00 6.60 E-4 1.95
5 3.18 E-4 1.51 2.27 E-4 2.00 1.66 E-4 1.99
6 1.42 E-4 1.17 5.67 E-5 2.00 4.16 E-5 1.99

Table 7.6. Error measures eh,∞ for different initialization approaches and h = h�.

not observe second order convergence for eh,∞. Moreover, we see a stagnation
for ∇eh,∞, meaning that the re-initialized interface does not get smoother on
finer grids which renders the choice k = 1 unfeasible. Taking k = 2 instead,
we do get quadratic convergence for eh,∞ and linear convergence for ∇eh,∞,
showing that the choice k = 2 should be preferred. The same convergence
properties hold for the scaling approach which is less expensive in terms of
computational effort. The results confirm the theoretical error bounds dis-
cussed in Remark 7.4.3. We briefly comment on this. Take T ∈ T Γh′ and let
IT be the linear interpolation operator on T that interpolates at the vertices
of T . For x ∈ T we have (d− ψ̂h)(x) = IT (d− ψ̂h)(x) +O(h2

T ). The results in
the fifth column in Table 7.6 indicate |IT (d − ψ̂h)(x)| ≤ ch2

Γ uniformly in T

and x ∈ ΓT = Γ ∩ T . Hence for x ∈ Γ̂h, i.e. ψ̂h(x) = 0, we get |d(x)| ≤ ch2
Γ ,

which is the same as the bound in (7.43a). Since ∇d = n the results in the
fifth column in Table 7.7 are consistent with the error bound given in (7.43b).

7.6 Discretization of the surface tension functional

In this section we explain how the localized surface tension force term fΓ (v) in
(6.59a) can be approximated. We use the approach presented in [23, 93, 126].

Let Vh be the finite element space that is used for the discretization of the
velocity unknown. In our simulations we use for Vh the standard conform-
ing space of continuous piecewise quadratic functions. Applying the Galerkin
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� geom, k = 1 order geom, k = 2 order scale order

1 3.07 E-1 – 2.09 E-1 – 1.87 E-1 –
2 2.70 E-1 0.19 1.34 E-1 0.64 1.03 E-1 0.87
3 1.73 E-1 0.64 7.12 E-2 0.91 5.62 E-2 0.87
4 3.78 E-1 -1.13 3.69 E-2 0.95 2.79 E-2 1.01
5 4.69 E-1 -0.31 1.80 E-2 1.04 1.42 E-2 0.98
6 5.11 E-1 -0.12 8.95 E-3 1.01 7.04 E-3 1.01

Table 7.7. Error measures ∇eh,∞ for different initialization approaches and h = h�.

discretization to the variational (momentum) equation (6.59a) results in a
surface tension functional of the form

fΓ (vh) = −τ
∫

Γ

κvh · n ds, vh ∈ Vh. (7.51)

In many numerical simulations of two-phase flows, the discretization of the
curvature κ is a very delicate problem. This is related to the fact that κ
contains second derivatives. One way to express these second derivatives is
by means of the Laplace-Beltrami characterization of the mean curvature, cf.
(14.9):

−ΔΓ idΓ (x) = κ(x)n(x), x ∈ Γ. (7.52)

In the variational formulation we have the possibility to lower the order of
differentiation by shifting one of the derivatives to the test function, as is
shown in Lemma 14.1.2. Using this, we see that (7.51) can be rewritten as
follows:

fΓ (vh) = −τ
∫

Γ

∇Γ idΓ ·∇Γvh ds, vh ∈ Vh. (7.53)

In this variational setting it is natural to use the expression on the right-hand
side in (7.53) as a starting point for the discretization. This idea is used in,
for example, [93, 23, 116, 126, 147, 177]. In this discretization we use the
approximation Γh of Γ . Given this approximate interface Γh,

the localized force term fΓ (vh) is approximated by

fΓh
(vh) := −τ

∫

Γh

∇Γh
idΓh

·∇Γh
vh ds, vh ∈ Vh. (7.54)

In Sect. 7.7 we will derive a bound for the error quantity

‖fΓ − fΓh
‖V′

h
= sup

vh∈Vh

fΓ (vh)− fΓh
(vh)

‖vh‖1
, (7.55)

with fΓh
as in (7.54). Note that this quantity is essential in the analysis of

discretization errors in velocity and pressure, cf. Corollary 7.10.5 (Strang-
lemma).
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Remark 7.6.1 Assume that Γ is sufficiently smooth.Then

fΓ (v) = −τ
∫

Γ

κv · n ds (7.56)

is a bounded linear functional on V0 = H1
0 (Ω)3. From Lemma 14.1.2 it follows

that for this functional we have the equivalent representation

fΓ : v → −τ
∫

Γ

∇Γ idΓ ·∇Γv ds. (7.57)

Such an equivalence, however, does not hold for fΓh
. Because Γh is not suffi-

ciently smooth, a partial integration result as in Lemma 14.1.2 does not hold.
The linear functional

v→ −τ
∫

Γh

∇Γh
idΓh

·∇Γh
v ds

is not necessarily bounded on V0. Due to this, in (7.54) and (7.55) we only
consider vh ∈ Vh.

We also introduce a modified (improved) variant of the functional fΓh
.

Define the orthogonal projection

Ph(x) := I− nh(x)nh(x)T for x ∈ Γh, x not on an edge,

where nh is the unit normal on Γh (pointing outward from Ω1). The tangential
derivative along Γh can be written as ∇Γh

g = Ph∇g. Note that

∇Γh
idΓh

= Ph∇ idΓh
= (Phe1,Phe2,Phe3)T ,

with ei the i-th standard basis vector in R
3. Thus the functional fΓh

can be
written as

fΓh
(vh) = −τ

∫

Γh

Ph∇ idΓh
·∇Γh

vh ds

= −τ
3∑

i=1

∫

Γh

Phei · ∇Γh
vi ds, vi := (vh)i.

(7.58)

The discrete interface Γh is constructed as the zero level of Iφh, where φh is
a piecewise quadratic function, cf. Sect. 7.3. This piecewise quadratic function
contains better information about the curvature of Γ than its piecewise lin-
ear interpolation Iφh that is used for the construction of Γh. An improved
projection P̃h based on φh can be defined as follows:

ñh(x) :=
∇φh(x)
‖∇φh(x)‖

, P̃h(x) := I− ñh(x)ñh(x)T , x ∈ Γh. (7.59)

Hence an obvious modification is given by
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f̃Γh
(vh) = −τ

∫

Γh

P̃h∇ idΓh
·∇Γh

vh ds

= −τ
3∑

i=1

∫

Γh

P̃hei · ∇Γh
vi ds, vi := (vh)i

= −τ
∫

Γh

tr
(
P̃h∇Γh

vh
)
ds.

(7.60)

In Sect. 7.7 it is shown that this discretization of the surface tension force is
(significantly) better than the one in (7.54), namely with an error bound O(h)
instead of O(

√
h). This is confirmed by numerical experiments in Sect. 7.8.

7.6.1 Treatment of general surface tension tensors

In the previous section we restricted ourselves to the case of a constant surface
tension coefficient τ , i.e. with an interface condition of the form

[σnΓ ] = −τκnΓ = divΓ (τP).

We now consider the more general case with an interface condition of the form

[σnΓ ] = divΓ (σΓ ), (7.61)

and an interface stress tensor σΓ such that σΓ = σΓP holds. A variable
surface tension coefficient corresponds to σΓ = τP, resulting in divΓ (σΓ ) =
−τκnΓ +∇Γ τ , cf. Remark 1.1.3. In the Boussinesq-Scriven model treated in
Sect. 1.1.5 the interface stress tensor σΓ is as in (1.36). In the weak formu-
lation, instead of the surface tension functional fΓ (v) = −τ

∫
Γ κn · v ds we

then have the generalization

fΓ (v) =
∫

Γ

divΓ (σΓ ) · v ds.

We can rewrite this using the partial integration identity (14.17), resulting in
the general surface tension functional

fΓ (v) = −
∫

Γ

tr(σΓ∇Γv) ds = −
3∑

i=1

∫

Γ

(eTi σΓ )∇Γ vi ds, (7.62)

with v = (v1, v2, v3)T . We consider the case of a variable surface tension
coefficient, i.e., σΓ = τP. For the discretization of the corresponding surface
tension functional, as in the previous section we approximate Γ by Γh and P
by P̃h. Thus we obtain the following generalization of (7.60):
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f̃Γh
(vh) = −

∫

Γh

τ tr
(
P̃h∇Γh

v
)
ds = −

3∑

i=1

∫

Γh

τP̃hei · ∇Γh
vi ds. (7.63)

Comparing (7.60) (constant τ) and (7.63) (variable τ) we observe that the only
difference is that in case of a constant surface tension coefficient the term τ can
be taken out of the integral. Below, in Sect. 7.7, we present an error analysis
only for the case that τ is constant, in which the discretization (7.63) reduces
to (7.60). If τ is a smooth function then an error analysis for the generalization
(7.63) can be derived along the same lines as for the constant coefficient case
presented in Sect. 7.7. Results of numerical experiments with this discrete
variable surface tension functional are given in [184] and in Sect. 11.5.3.

7.7 Analysis of the Laplace-Beltrami discretization

In this section we derive a bound for

sup
vh∈Vh

fΓ (vh)− fΓh
(vh)

‖vh‖1
, (7.64)

where fΓh
is the discretization of the surface tension force as in (7.54). We also

derive a bound for this error measure with fΓh
replaced by f̃Γh

as in (7.60).
For Vh = V 3

h we take the finite element space of piecewise quadratics:

Vh =
{
v ∈ C(Ω) : v|T ∈ P2 for all T ∈ Th

}
. (7.65)

The choice of this finite element space is not essential in our analysis. The
results also hold if for Vh we take another conforming piecewise polynomial
finite element space.

7.7.1 Preliminaries

Properties of Γ and of Γh

We recall some notation and definitions from Sect. 7.3. The function d is the
signed distance function

d : U → R, |d(x)| := dist(x, Γ ) for all x ∈ U.

Thus Γ is the zero level set of d. We assume d < 0 on the interior of Γ (that
is, in Ω1) and d > 0 on the exterior. Note that nΓ = ∇d on Γ . We define
n(x) := ∇d(x) for all x ∈ U . Thus n = nΓ on Γ and ‖n(x)‖ = 1 for all x ∈ U .

The Hessian of d is denoted by H:

H(x) = ∇2d(x) ∈ R
3×3 for all x ∈ U. (7.66)
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The eigenvalues of H(x) are denoted by κ1(x), κ2(x) and 0. For x ∈ Γ the
eigenvalues κi(x), i = 1, 2, are the principal curvatures, and κ(x) = κ1(x) +
κ2(x) is the mean curvature, cf. Chap. 14.

In the analysis we always assume that the following (technical) assumption
is satisfied, namely that the neighborhood U of Γ is sufficiently small in the
following sense. We assume that U is a strip of width δ > 0 with

δ−1 > max
i=1,2

‖κi(x)‖L∞(Γ ). (7.67)

We define the orthogonal projection:

P(x) = I− n(x)n(x)T for x ∈ U. (7.68)

From ∇
(
n(x)Tn(x)

)
= 0 it follows that

(
∇n(x)

)
n(x) = ∇2d(x)n(x) = 0

holds for all x ∈ U . Hence we obtain the following:

P(x)H(x) = H(x)P(x) = H(x) for all x ∈ U.

We introduce assumptions on the approximate interface Γh. We emphasize,
that although we use the notation Γh, this interface must not necessarily be
constructed using the method explained in Sect. 7.3. Our analysis below is
presented in a more general setting. In Remark 7.7.3 we explain how the
concrete interface construction that is discussed in Sect. 7.3 fits in this more
general setting.

Let {Γh}h>0 be a family of polygonal approximations of Γ . We assume
that each Γh is contained in U and consists of a set Fh of triangular faces:

Γh =
⋃

F∈Fh

F. (7.69)

For F1, F2 ∈ Fh with F1 �= F2 we assume that F1 ∩ F2 is either empty or a
common edge or a common vertex. The parameter hΓ denotes the maximal
diameter of the triangles in Fh:

hΓ = max
F∈Fh

diam(F ).

By nh(x) we denote the outward pointing unit normal on Γh. This normal is
piecewise constant with possible discontinuities at the edges of the triangles
in Fh. We recall the discrete analogon of the orthogonal projection P:

Ph(x) := I− nh(x)nh(x)T for x ∈ Γh, x not on an edge.

The tangential derivative along Γh can be written as ∇Γh
g = Ph∇g.

Assumption 7.7.1 We need assumptions which guarantee that Γh is “suf-
ficiently close” to Γ . Related to this we assume that Γh ⊂ U and that the
following holds:
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|d(x)| ≤ ch2
Γ for all x ∈ Γh, (7.70a)

ess supx∈Γh
‖n(x)− nh(x)‖ ≤ min{c0, c hΓ }, with c0 <

√
2. (7.70b)

Here c, c0 denote generic constants independent of hΓ .

Remark 7.7.2 For a given x ∈ Γh, let θ be the angle between n(x) and
nh(x). Then cos θ = n(x)Tnh(x), sin θ = ‖Pnh(x)‖ and ‖n(x) − nh(x)‖2 =
2(1− cosθ). Elementary manipulations show that the condition (7.70b) holds
if and only if the following two conditions are satisfied:

ess infx∈Γh
n(x)Tnh(x) ≥ c > 0, (7.71a)

ess supx∈Γh
‖P(x)nh(x)‖ ≤ chΓ . (7.71b)

Remark 7.7.3 Related to these assumptions we note the following. In
Theorem 7.3.1 it is shown that under certain (reasonable) assumptions the
construction explained in Sect. 7.3 results in a family {Γh} that satisfies the
conditions (7.70).

Extensions

We introduce extensions that will be used in the analysis below. The tech-
niques that we use are from the paper [83]. For proofs of certain results we
will refer to that paper.

As in Sect. 7.3 we define a locally (in a neighborhood of Γ ) orthogonal
coordinate system by using the projection p : U → Γ :

p(x) = x− d(x)n(x) for all x ∈ U.

We assume that the decomposition x = p(x) + d(x)n(x) is unique for all
x ∈ U . Note that

n(x) = n
(
p(x)

)
for all x ∈ U.

We use an extension operator defined as follows. For a (scalar) function v
defined on Γ we define

veΓ (x) := v
(
x− d(x)n(x)

)
= v

(
p(x)

)
for all x ∈ U,

i.e., v is extended along normals on Γ . We will also need extensions of functions
defined on Γh. This is done again by extending along normals n(x). For v
defined on Γh we define, for x ∈ Γh,

veΓh
(x+ αn(x)) := v(x) for all α ∈ R with x+ αn(x) ∈ U. (7.72)

The projection p and the extensions veΓ , veΓh
are illustrated in Fig. 7.8.

In the following two lemmas some properties of these extensions are given.
Proofs are elementary and can be found in [83]. In the remainder we assume
that Assumption 7.7.1 is satisfied.
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x̂1

x1 = p(x̂1)

n1

x̂2

x2 = p(x̂2)

n2

Γh

Γx̂1

x1 = p(x̂1)

n1

x̂2

x2 = p(x̂2)

n2

Γh

Γ

Fig. 7.8. Example of projection p and construction of extension operators. n1 and
n2 are straight lines perpendicular to Γ . For v defined on Γ we have ve

Γ ≡ v(x1)
on n1. For vh defined on Γh we have ve

Γh
≡ vh(x̂2) on n2.

Lemma 7.7.4 For v defined on Γ and sufficiently smooth the following holds:

∇Γh
veΓ (x) = Ph(x)

(
I− d(x)H(x)

)
P(x)∇Γ v(p(x)) a.e. on Γh. (7.73)

Proof. Given in Sect. 2.3 in [83]. �

In (7.73) (and also below) we have results “a.e. on Γh” because quantities
(derivatives, Ph, etc.) are not well-defined on the edges of the triangulation Γh.

Lemma 7.7.5 For x ∈ Γh (not on an edge) define

μ(x) =
[
Π2
i=1(1− d(x)κi(x))

]
n(x)Tnh(x), (7.74)

A(x) =
1

μ(x)
P(x)

[
I− d(x)H(x)

]
Ph(x)

[
I− d(x)H(x)

]
P(x). (7.75)

Let Ae
Γh

be the extension of A as in (7.72). The following identity holds for
functions v and ψ that are defined on Γh and are sufficiently smooth:

∫

Γh

∇Γh
v · ∇Γh

ψ ds =
∫

Γ

Ae
Γh
∇Γ veΓh

· ∇ΓψeΓh
ds. (7.76)

Proof. Given in Sect. 2.3 in [83]. �

Due to the assumptions in (7.71a) and (7.67) we have ess infx∈Γh
μ(x) > 0 and

thus A(x) is well defined and symmetric positive semi-definite.

A trace estimate

In the analysis of the discretization error in the next section we will need a
bound for ‖∇Γh

v‖L2(Γh) in terms of ‖v‖1 for v ∈ Vh (piecewise quadratics).
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A possible approach is to apply an inverse inequality combined with a trace
theorem, resulting in:

‖∇Γh
v‖L2(Γh) ≤ c h−1

min‖v‖L2(Γh) ≤ c h−1
min‖v‖1 for all v ∈ Vh. (7.77)

This, however, turns out to be too crude. In order to be able to derive a better
bound than the one in (7.77) we have to introduce some further assumptions
which relate the approximations Γh of Γ to the outer tetrahedral triangulation
Th that is used in the definition of the space Vh, cf. (7.65).
Assumption 7.7.6 Let {Th} be the family of tetrahedral triangulations that
is used in the finite element space Vh. We assume that to each interface tri-
angulation Γh = ∪F∈Fh

F there can be associated a set of tetrahedra Sh with
the following properties:

For each F ∈ Fh there is a corresponding SF ∈ Sh with F ⊂ SF . (7.78a)
For F1, F2 ∈ Fh with F1 �= F2 we have meas3(SF1 ∩ SF2) = 0. (7.78b)
The family {Sh}h>0 is shape-regular. (7.78c)
∃ c0 > 0 : c0h ≤ diam(SF ) ≤ ch for all F ∈ Fh, (quasi-uniformity). (7.78d)
For each SF ∈ Sh there is a tetrahedron T ∈ Th such that SF ⊂ T . (7.78e)

Note that the set of tetrahedra Sh has to be defined only close to the approxi-
mate interface Γh and that this set not necessarily forms a regular tetrahedral
triangulation of Ω. Furthermore, it is not assumed that the family {Γh}h>0

is shape-regular or quasi-uniform.
Remark 7.7.7 The construction in Sect. 7.3 is such that Assumption 7.7.6 is
satisfied. We briefly explain this. Let T Γh be the collection of tetrahedra that
have a nonempty intersection with the zero level of the piecewise quadratic
level set function and assume that (T Γh )h>0 is quasi-uniform. Let T Γh′ be the
triangulation obtained after one regular refinement of T Γh . Let Γh be as defined
in (7.21). All T ∈ T Γh′ for which ΓT = T ∩ Γh is a quadrilateral are further
subdivided into two subtetrahedra such that for T ∩ Γh is always a triangle.
The resulting triangulation is denoted by T̃ Γh′ . With this Γh and Sh = T̃ Γh′ the
conditions formulated in Assumption 7.7.6 are satisfied.

In the following lemma we derive elementary properties of a standard affine
mapping between a tetrahedron SF ∈ Sh and the reference unit tetrahedron,
which will be used in the proof of Theorem 7.7.9.
Lemma 7.7.8 Assume that the family {Γh}h>0 is such that Assumption 7.7.6
is satisfied. Take F ∈ Fh and the corresponding SF ∈ Sh. Let Ŝ be the ref-
erence unit tetrahedron and L(x) = Jx + b be an affine mapping such that
L(Ŝ) = SF . Define F̂ := L−1(F ). The following holds:

‖J‖2 meas3(Ŝ)
meas3(SF )

≤ c h−1, (7.79)
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‖J−1‖2 meas2(F )
meas2(F̂ )

≤ c, (7.80)

with constants c independent of F and h.

Proof. Let ρ(SF ) be the diameter of the maximal ball contained in SF and
similarly for ρ(Ŝ). From standard finite element theory we have

‖J‖ ≤ diam(SF )
ρ(Ŝ)

, ‖J−1‖ ≤ diam(Ŝ)
ρ(SF )

.

Using (7.78c) and (7.78d) we then get

‖J‖2 meas3(Ŝ)
meas3(SF )

≤ c
diam(SF )2

meas3(SF )
≤ c diam(SF )−1 ≤ c h−1,

and thus the result in (7.79) holds.
The vertices of F̂ = L−1(F ) are denoted by V̂i, i = 1, 2, 3. Let V̂1V̂2 be a

longest edge of F̂ and M̂ the point on this edge such that M̂V̂3 is perpendicular
to V̂1V̂2. Define Vi := L(V̂i), i = 1, 2, 3, and M := L(M̂). Then Vi, i = 1, 2, 3,
are the vertices of F and M lies on the edge V1V2. We then have

meas2(F̂ ) =
1
2
‖V̂1 − V̂2‖‖V̂3 − M̂‖ =

1
2
‖J−1(V1 − V2)‖‖J−1(V3 −M)‖

≥ 1
2
‖J‖−2‖V1 − V2‖‖V3 −M‖ ≥ c

ρ(Ŝ)2

diam(SF )2
meas2(F ),

with a constant c > 0. Thus we obtain

‖J−1‖2 meas2(F )
meas2(F̂ )

≤ c
diam(Ŝ)2

ρ(SF )2
diam(SF )2

ρ(Ŝ)2
≤ c,

which completes the proof. �

Theorem 7.7.9 Assume that the family {Γh}h>0 is such that Assump-
tion 7.7.6 is satisfied. The following holds:

‖∇Γh
v‖L2(Γh) ≤ c h−

1
2 ‖v‖1 for all v ∈ Vh.

Proof. Note that

‖∇Γh
v‖2L2(Γh) =

∑

F∈Fh

‖∇F v‖2L2(F ).

Take F ∈ Fh and let SF be the associated tetrahedron as explained above.
Let Ŝ be the reference unit tetrahedron and L : Ŝ → ST as in Lemma 7.7.8.
Define v̂ := v ◦ L. Using standard transformation rules and Lemma 7.7.8 we
get
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‖∇F v‖2L2(F ) = ‖Ph∇v‖2L2(F ) ≤ ‖∇v‖2L2(F ) =
∑

|α|=1

‖∂αv‖2L2(F )

≤ c ‖J−1‖2
∑

|α|=1

‖(∂αv̂) ◦ L−1‖2L2(F )

≤ c ‖J−1‖2 meas2(F )
meas2(F̂ )

∑

|α|=1

‖∂αv̂‖2
L2(F̂ )

≤ c
∑

|α|=1

‖∂αv̂‖2
L2(F̂ )

≤ c
∑

|α|=1

max
x∈F̂

∣
∣∂αv̂(x)

∣
∣2 ≤ c

∑

|α|=1

max
x∈Ŝ

∣
∣∂αv̂(x)

∣
∣2,

with a constant c independent of F . From (7.78e) it follows that v̂ is a poly-
nomial on Ŝ of maximal degree 2. On P∗

2 := { p ∈ P2 : p(0) = 0 } we have,
due to equivalence of norms:

∑

|α|=1

max
x∈Ŝ

∣
∣∂αv̂(x)

∣
∣2 ≤ c

∑

|α|=1

‖∂αv̂‖2
L2(Ŝ)

for all v̂ ∈ P∗
2 .

Because, for v̂ ∈ P2 and |α| = 1, ∂αv̂ is independent of v̂(0), the same in-
equality holds for all v̂ ∈ P2. Thus we get

‖∇F v‖2L2(F ) ≤ c
∑

|α|=1

‖∂αv̂‖2
L2(Ŝ)

≤ c ‖J‖2
∑

|α|=1

‖(∂αv) ◦ L‖2
L2(Ŝ)

= c ‖J‖2 meas3(Ŝ)
meas3(SF )

∑

|α|=1

‖∂αv‖2L2(SF ) ≤ c h−1‖∇v‖2L2(SF ) ,

with a constant c independent of F and h. Using (7.78b) we finally obtain

‖∇Γh
v‖2L2(Γh) ≤ c h−1

∑

F∈Fh

‖∇v‖2L2(SF )

≤ c h−1

∫

Ω

(∇v)2 dx ≤ c h−1‖v‖21 ,

which proves the result. �

Remark 7.7.10 The analysis above also applies if instead of piecewise
quadratics other piecewise polynomial finite element functions are used. Thus
Theorem 7.7.9 also holds if for Vh we take another piecewise polynomial finite
element space.

7.7.2 Error bounds for discrete surface tension functionals

In Sect. 7.6, for the surface tension functional

fΓ (vh) = −τ
∫

Γ

∇Γ idΓ ·∇Γvh ds = −τ
3∑

i=1

∫

Γ

∇Γ (idΓ )i · ∇Γ (vh)i ds
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we introduced the discretizations

fΓh
(vh) = −τ

3∑

i=1

∫

Γh

∇Γh
(idΓh

)i · ∇Γh
(vh)i ds, (7.81)

f̃Γh
(vh) = −τ

3∑

i=1

∫

Γh

P̃h∇(idΓh
)i · ∇Γh

(vh)i ds. (7.82)

In this section we derive error bounds for these discretizations. It suffices to
consider only one term in this sum, say the i-th. We write idΓ and v for the
scalar functions (idΓ )i and (vh)i, respectively, and idΓh

for (idΓh
)i. With this

notation we have

∇Γ idΓ = P∇ idΓ = Pei on Γ, ∇Γh
idΓh

= Ph∇ idΓh
= Phei on Γh,

P̃h∇ idΓh
= P̃hei on Γh,

where ei denotes the i-th basis vector in R
3. For the i-th term in these func-

tionals we introduce the notation (ignoring the scaling with −τ):

g(v) :=
∫

Γ

∇Γ idΓ ·∇Γ v ds,

gh(v) :=
∫

Γh

∇Γh
idΓh

·∇Γh
v ds,

g̃h(v) :=
∫

Γh

P̃h∇ idΓh
·∇Γh

v ds.

For the analysis it is convenient to introduce yet another functional:

ĝh(v) :=
∫

Γh

∇Γh
ideΓ ·∇Γh

v ds,

where ideΓ is the extension of idΓ . Note that due to the occurrence of idΓ
the functional ĝh(v) can not be used in practice. For the error g(v) − gh(v)
we write g(v) − gh(v) =

(
g(v) − ĝh(v)

)
+

(
ĝh(v) − gh(v)

)
, derive bounds for

|g(v) − ĝh(v)| and |ĝh(v) − gh(v)| and then apply a triangle inequality. The
same is done for the error g(v)− g̃h(v).

We start with the term |g(v) − ĝh(v)|. A bound for this is derived, based
on the following splitting:

g(v)− ĝh(v)

=
∫

Γ

∇Γ idΓ ·∇Γ v ds−
∫

Γh

∇Γh
ideΓ ·∇Γh

v ds

=
∫

Γ

∇Γ idΓ ·∇Γ v ds−
∫

Γ

Ae
Γh
∇Γ idΓ ·∇Γ veΓh

ds (cf. (7.76))

=
∫

Γ

∇Γ idΓ ·∇Γ (v − veΓh
) ds+

∫

Γ

(I−Ae
Γh

)∇Γ idΓ ·∇Γ veΓh
ds. (7.83)

In the lemma below we give bounds for the two terms in (7.83).
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Lemma 7.7.11 Let Assumption 7.7.1 be satisfied. The following holds for all
v ∈ Vh:

∣∣
∣
∣

∫

Γ

∇Γ idΓ ·∇Γ (v − veΓh
) ds

∣∣
∣
∣ ≤ c hΓ ‖v‖1,U , (7.84)

∣
∣
∣∣

∫

Γ

(I−Ae
Γh

)∇Γ idΓ ·∇Γ veΓh
ds

∣
∣
∣∣ ≤ c h2

Γ ‖∇Γh
v‖L2(Γh). (7.85)

Proof. (7.84)–(7.85) are proved in Lemmas 4.1 and 4.3 in [129]. �

Using this we obtain a bound for the error ‖g − ĝh‖V ′
h
:

Theorem 7.7.12 Let the Assumptions 7.7.1 and 7.7.6 be satisfied. The fol-
lowing holds:

sup
v∈Vh

|g(v)− ĝh(v)|
‖v‖1

≤ c hΓ . (7.86)

Proof. The result in Lemma 7.7.11 implies

|g(v)− ĝh(v)| ≤ c hΓ ‖v‖1,U + c h2
Γ ‖∇Γh

v‖L2(Γh) for all v ∈ Vh.

From Theorem 7.7.9 we obtain ‖∇Γh
v‖L2(Γh) ≤ ch

− 1
2

Γ ‖v‖1. Furthermore,
‖v‖1,U ≤‖v‖1 holds. Thus the result in (7.86) holds. �

We now derive a bound for |ĝh(v)− gh(v)|.

Lemma 7.7.13 Let the Assumption 7.7.1 be satisfied. The following holds:

|ĝh(v) − gh(v)| ≤ chΓ ‖∇Γh
v‖L2(Γh) for all v ∈ Vh. (7.87)

Proof. From Lemma 7.7.4 we get, for x ∈ Γh (not on an edge),

∇Γh
ideΓ (x) = Ph(x)

(
I− d(x)H(x)

)
P(x)∇Γ idΓ (p(x))

= Ph(x)
(
I− d(x)H(x)

)
P(x)ei.

We also have ∇Γh
idΓh

= Ph∇ idΓh
= Phei. Hence,

∣∣
∣
∣

∫

Γh

(
∇Γh

ideΓ −∇Γh
idΓh

)
· ∇Γh

v ds

∣∣
∣
∣ (7.88)

=
∣∣
∣
∣

∫

Γh

(
Ph(I− dH)Pei −Phei

)
· ∇Γh

v ds

∣∣
∣
∣

≤ c ess supx∈Γh
‖Ph(x)

(
I− d(x)H(x)

)
P(x) −Ph(x)‖ ‖∇Γh

v‖L2(Γh)

≤ c ess supx∈Γh

(
‖Ph(x)

(
I−P(x)

)
‖ (7.89)

+ |d(x)| ‖Ph(x)H(x)P(x)‖
)
‖∇Γh

v‖L2(Γh). (7.90)
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Note that |d(x)| ≤ c h2
Γ for x ∈ Γh, and

ess supx∈Γh
‖Ph(x)H(x)P(x)‖ ≤ ess supx∈Γh

‖H(x)‖ ≤ c.

For the term in (7.89) we have (dropping x in the notation):

‖Ph(I−P)‖ = ‖PhnnT ‖ = ‖Phn‖ = ‖Ph(n− nh)‖ ≤ ‖n− nh‖ ≤ chΓ .

In the last inequality we used Assumption 7.7.1. Using these results in (7.89)-
(7.90) and the definitions of ĝh, gh, we get

|ĝh(v) − gh(v)| ≤ chΓ ‖∇Γh
v‖L2(Γh),

and thus the result is proved. �

This leads to a bound for the error ‖ĝh − gh‖V ′
h
:

Theorem 7.7.14 Let the Assumptions 7.7.1 and 7.7.6 be satisfied. The fol-
lowing holds:

sup
v∈Vh

|ĝh(v) − gh(v)|
‖v‖1

≤ c
√
hΓ . (7.91)

Proof. The result follows from Lemma 7.7.13 and Theorem 7.7.9. �

As a direct consequence we obtain a discretization error bound for fΓh
:

Corollary 7.7.15 Let the Assumptions 7.7.1 and 7.7.6 be satisfied. For
the surface tension force discretization fΓh

as defined in (7.81) the following
holds:

sup
v∈Vh

|fΓ (vh)− fΓh
(vh)|

‖vh‖1
≤ τc

√
hΓ .

Proof. It suffices to consider a bound for ‖g − gh‖V ′
h
. From Theorem 7.7.12

and Theorem 7.7.14 it follows that

‖g − gh‖V ′
h
≤ ‖g − ĝh‖V ′

h
+ ‖ĝh − gh‖V ′

h
≤ chΓ + c

√
hΓ ≤ c

√
hΓ ,

which implies the error bound for fΓh
. �

An upper bound O(
√
hΓ ) as in Corollary 7.7.15 for the error in the approx-

imation of the localized force term may seem rather pessimistic, because Γh
is an O(h2

Γ ) accurate approximation of Γ . Numerical experiments in Sect. 7.8
and results in [115], however, indicate that the bound is sharp.

Along the same lines as presented above for fΓh
we now derive an error bound

for f̃Γh
. It suffices to consider |g(v)− g̃h(v)|. We use the triangle inequality

|g(v)− g̃h(v)| ≤ |g(v)− ĝh(v)| + |ĝh(v) − g̃h(v)|.

The first term on the right-hand side is treated in Theorem 7.7.12. The next
lemma gives a bound for the second term. In (7.92) we use the generalized
normal ñh from (7.59).
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Lemma 7.7.16 Let Assumption 7.7.1 be satisfied. Furthermore, we assume
that there exists p > 0 such that

‖n(x)− ñh(x)‖ ≤ c hpΓ , for x ∈ Γh. (7.92)

Then the following holds:

|ĝh(v) − g̃h(v)| ≤ ch
min{p,2}
Γ ‖∇Γh

v‖L2(Γh) for all v ∈ Vh.

Proof. We apply similar arguments as used in the proof of Lemma 7.7.13. We
have

∇Γh
ideΓ (x) = Ph(x)

(
I− d(x)H(x)

)
P(x)ei

and P̃h∇ idΓh
= P̃hei on Γh. Hence,

∣
∣∣
∣

∫

Γh

(
∇Γh

ideΓ −P̃h∇ idΓh

)
· ∇Γh

v ds

∣
∣∣
∣ (7.93)

=
∣
∣∣
∣

∫

Γh

(
Ph(I− dH)Pei −PhP̃hei

)
· ∇Γh

v ds

∣
∣∣
∣

≤ c ess supx∈Γh
‖Ph(x)

(
I− d(x)H(x)

)
P(x) −Ph(x)P̃h(x)‖ ‖∇Γh

v‖L2(Γh)

≤ c ess supx∈Γh

(
‖Ph(x)

(
P(x)− P̃h(x)

)
‖ (7.94)

+ |d(x)| ‖Ph(x)H(x)P(x)‖
)
‖∇Γh

v‖L2(Γh). (7.95)

As in the proof of Lemma 7.7.13 we have ess supx∈Γh
|d(x)|‖Ph(x)H(x)P(x)‖ ≤

ch2
Γ . For the term in (7.94) we get (dropping x in the notation):

‖Ph(P− P̃h)‖ ≤ ‖nnT − ñhñTh ‖

≤ ‖(n− ñh)nT ‖+ ‖ñh(n− ñh)T ‖ = 2‖n− ñh‖ ≤ c hpΓ .

Combination of these estimates proves the result. �

Remark 7.7.17 In Lemma 7.3.2 it is shown that for the approximate in-
terface construction explained in Sect. 7.3 the assumption in (7.92) holds for
p ∈ (0, 2] if φh is an O(hpΓ ) accurate (w.r.t ‖ · ‖H1∞) approximation of φ.
For a piecewise quadratic level set approximation the optimal approximation
quality is O(h2

Γ ), i.e., p = 2.

This leads to a bound for the error ‖ĝh − g̃h‖V ′
h
:

Theorem 7.7.18 Let the Assumptions 7.7.1, 7.7.6 and the one in (7.92) with
p ≥ 1 1

2 be satisfied. The following holds:

sup
v∈Vh

|ĝh(v)− g̃h(v)|
‖v‖1

≤ c hΓ . (7.96)
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Proof. The result follows from Lemma 7.7.16 and Theorem 7.7.9. �

As a direct consequence we obtain a discretization error bound for f̃Γh
:

Corollary 7.7.19 Let the assumptions as in Theorem 7.7.18 be satisfied.
For the surface tension force discretization f̃Γh

as defined in (7.82) the
following holds:

sup
v∈Vh

|fΓ (vh)− f̃Γh
(vh)|

‖vh‖1
≤ τc hΓ .

Proof. It suffices to consider a bound for ‖g − g̃h‖V ′
h
. From Theorem 7.7.12

and Theorem 7.7.18 it follows that

‖g − g̃h‖V ′
h
≤ ‖g − ĝh‖V ′

h
+ ‖ĝh − g̃h‖V ′

h
≤ chΓ ,

which implies the error bound for f̃Γh
. �

This significant improvement (O(hΓ ) compared to the O(
√
hΓ ) error bound

for the functional fΓh
) is confirmed by numerical experiments in the next

section.

7.8 Numerical experiments with the Laplace-Beltrami
discretization

In this section we present results of a numerical experiment which indicates
that the O(

√
h) bound in Corollary 7.7.15 is sharp. Furthermore, for the

improved approximation f̃Γh
the O(h) bound will be confirmed numerically.

We consider the domain Ω := [−1, 1]3 with Ω1 := {x ∈ Ω : ‖x‖ < R }. In
our experiments we take R = 1

2 .
For the discretization a uniform tetrahedral mesh T0 is used where the

vertices form a 6× 6× 6 lattice, hence h0 = 1
5 . This coarse mesh T0 is locally

refined in the vicinity of Γ = ∂Ω1. This repeated refinement process yields the
gradually refined meshes T1, T2, . . . with local (i. e., close to the interface) mesh
sizes hΓ = hi = 1

5 · 2−i, i = 1, 2, . . .. Part of the tetrahedral triangulation T4 is
shown in Fig. 7.9. The corresponding finite element spaces Vi := Vhi = (Vhi)3

consist of vector functions where each component is a continuous piecewise
quadratic function on Ti.

The interface Γ = ∂Ω1 is a sphere and thus the curvature κ = 2
R is

constant. If we discretize the flow problem using Vi as discrete velocity space,
we have to approximate the surface tension force

fΓ (v) = −2τ
R

∫

Γ

nΓ · v ds = −τ
∫

Γ

∇Γ idΓ ·∇Γv ds, v ∈ Vi. (7.97)
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Fig. 7.9. Lower half part of the 4 times refined mesh T4.

To simplify notation, we take a fixed i ≥ 0 and the corresponding local mesh
size parameter is denoted by h = hi. For the construction of an approximate
interface Γh we use the approach described in Sect. 7.3, starting with φ equal
to the exact signed distance function to Γ .

The discrete approximation of the surface tension force is

fΓh
(v) = −τ

∫

Γh

∇Γh
idΓh

·∇Γh
v ds, v ∈ Vi.

We are interested in, cf. Corollary 7.7.15,

‖fΓ − fΓh
‖V′

i
:= sup

v∈Vi

fΓ (v) − fΓh
(v)

‖v‖1
. (7.98)

The evaluation of fΓ (v), for v ∈ Vi, requires the computation of integrals
on curved triangles or quadrilaterals Γ ∩ T where T is a tetrahedron from
the triangulation Ti. We are not able to compute these exactly. Therefore, we
introduce an artificial force term which, in this model problem with a known
constant curvature, is computable and sufficiently close to fΓ .

Lemma 7.8.1 For v ∈ V = H1
0 (Ω)3 define

f̂Γh
(v) := −2τ

R

∫

Γh

nh · v ds,

where nh is the piecewise constant outward unit normal on Γh. Then the
following inequality holds:

‖fΓ − f̂Γh
‖V′ ≤ ch. (7.99)

Proof. Let Ω1,h ⊂ Ω be the domain enclosed by Γh, i. e., ∂Ω1,h = Γh. We
define D+

h := Ω1 \Ω1,h, D−
h := Ω1,h \Ω1 and Dh := D+

h ∪D
−
h . Due to Stokes’

Theorem, for v ∈ V we have
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|fΓ (v) − f̂Γh
(v)| = 2τ

R

∣
∣
∣
∣
∣

∫

Ω1

div v dx−
∫

Ω1,h

div v dx

∣
∣
∣
∣
∣

=
2τ
R

∣∣
∣
∣
∣

∫

D+
h

div v dx−
∫

D−
h

div v dx

∣∣
∣
∣
∣

≤ 2τ
R

∫

Dh

| div v| dx.

Using the Cauchy-Schwarz inequality, we get the estimate

|fΓ (v) − f̂Γh
(v)| ≤ c

√
meas3(Dh) ‖v‖1 for all v ∈ V,

which results in

‖fΓ − f̂Γh
‖V′ ≤ c

√
meas3(Dh). (7.100)

Note that for the piecewise planar approximation Γh of the interface Γ we
have meas3(Dh) = O(h2) and thus (7.99) holds. �

From Lemma 7.8.1 we obtain ‖fΓ − f̂Γh
‖V′

j
≤ c h with a constant c indepen-

dent of j. Thus we have

‖f̂Γh
− fΓh

‖V′
i
− ch ≤ ‖fΓ − fΓh

‖V′
i
≤ ‖f̂Γh

− fΓh
‖V′

i
+ ch. (7.101)

The quantity ‖f̂Γh
−fΓh

‖V′
i
can be determined as follows. Since Γh is piecewise

planar and v ∈ Vi is a piecewise quadratic function, both f̂Γh
(v) and fΓh

(v)
can be computed exactly (up to machine accuracy) using suitable quadrature
rules.

For the evaluation of the dual norm ‖ · ‖V′
i

we proceed as follows. Let
{ξj}j=1,...,N (with N := dimVi) be the standard nodal basis in Vi and JVi :
R
N → Vi the isomorphism JVix =

∑N
k=1 xkξk. Let Mh be the mass matrix

and Ah the discrete Laplacian:

(Mh)ij :=
∫

Ω

ξi · ξj dx,

(Ah)ij :=
∫

Ω

∇ξi · ∇ξj dx.
1 ≤ i, j ≤ N.

Define Ch = Ah+Mh. Note that for v = JVix ∈ Vi we have ‖v‖21 = 〈Chx,x〉.
Take e ∈ V′

i and define e ∈ R
N by ej := e(ξj), j = 1, . . . , N . Due to

‖e‖V′
i
= sup

v∈Vi

|e(v)|
‖v‖1

= sup
x∈RN

|
∑N

j=1 xje(ξj)|√
〈Chx,x〉

we obtain

‖e‖V′
i
= sup

x∈RN

〈x, e〉
√
〈Chx,x〉

= ‖C−1/2
h e‖ =

√
〈C−1

h e, e〉. (7.102)
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Thus for the computation of ‖e‖V′
i

we proceed in the following way:

1. Compute e =
(
e(ξj)

)N
j=1

.
2. Solve the linear system Ch z = e up to machine accuracy.
3. Compute ‖e‖V′

i
=

√
〈z, e〉.

We applied this strategy to e := f̂Γh
−fΓh

. The results are given in the second
column in Table 7.8. The numerical order of convergence in the third column
of this table clearly indicates an O(

√
h) behavior. Due to (7.101) this implies

the same O(
√
h) convergence behavior for ‖fΓ − fΓh

‖V′
i
. This indicates that

the O(
√
h) bound in Corollary 7.7.15 is sharp.

The same procedure can be applied with fΓh
replaced by the modified

(improved) approximate surface tension force

f̃Γh
(v) = −τ

3∑

i=1

∫

Γh

P̃hei · ∇Γh
(v)i ds,

as defined in (7.82). This yields the results in the fourth column in Table 7.8.
For this modification the numerical order of convergence is significantly better,
namely at least first order in h. From (7.101) it follows that for ‖fΓ − f̃Γh

‖V′
i

we can expect O(hp) with p ≥ 1.
Summarizing, we conclude that the results of these numerical experiments

confirm the theoreticalO(
√
h) error bound derived in the analysis in Sect. 7.7.2

and show that the modified approximation indeed leads to (much) better
results.

Results of numerical experiments for a Stokes two-phase flow problem
using both fΓh

and f̃Γh
are presented in Sect. 7.10.3.

i ‖f̂Γh − fΓh‖V′
i

order ‖f̂Γh − f̃Γh‖V′
i

order

0 1.79 E-1 – 1.32 E-1 –
1 1.40 E-1 0.35 4.43 E-2 1.57
2 1.03 E-1 0.45 1.46 E-2 1.61
3 7.22 E-2 0.51 5.06 E-3 1.52
4 5.02 E-2 0.53 1.78 E-3 1.51

Table 7.8. Error norms and numerical order of convergence for different refinement
levels.

7.9 XFEM discretization of the pressure

If surface tension forces are present the pressure is discontinuous across the
interface Γ . We show that standard finite element spaces have poor approx-
imation properties for such functions with a jump across Γ and introduce
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a so-called extended finite element space that is much better suited for dis-
cretization of the pressure variable. Most of the results presented in this section
are from [128, 209].

In Sect. 7.9.1 we show, by means of a simple example, that if one uses
standard finite element spaces for the discretization of a discontinuous func-
tion, then in general the approximation order (w.r.t. ‖·‖L2) is only O(

√
h). In

Sect. 7.9.2 we introduce extended finite element spaces, which are much better
suited for the approximation of discontinuous functions. Some implementation
issues related to XFEM are treated in Sect. 7.9.3. In Sect. 7.9.4 we present an
analysis of the XFEM method. In Sect. 7.10 results of numerical experiments
with this method are presented.

7.9.1 Approximation error for standard FE spaces

In this section we consider the approximation error

inf
qh∈Qh

‖qh − p∗‖L2

for a few standard finite element spaces Qh and explain why in general for a
function p∗ that is discontinuous across Γh one can expect no better bound
for this approximation error than c

√
h. This serves as a motivation for an

improved pressure finite element space as presented in Sect. 7.9.2. To explain
the effect underlying the

√
h behavior of the error bound we analyze a concrete

two-dimensional example as illustrated in Fig. 7.10. We take Ω = (0, 1)2 ⊂ R
2

and define

Ω1 := {x ∈ Ω : x1 ≤ 1− x2 } , Ω2 := Ω \Ω1.

The interface Γ separating both subdomains from each other is given by

Γ = { x ∈ Ω : x1 = 1− x2 } .

A family of 2D triangulations {Th}h>0 is constructed as follows. The start-
ing triangulation T0 consists of two triangles, namely the ones with vertices
{(0, 0), (0, 1), (1, 1)} and {(0, 0), (1, 0), (1, 1)}. Then a global regular refine-
ment strategy (connecting the midpoints of edges) is applied repeatedly. This
results in a nested sequence of triangulations Thk

, k = 1, 2, . . ., with mesh size
hk = 2−k. In Fig. 7.10 the triangulation Th2 is shown. The set of triangles that
contains the interface is given by (with h := hk)

T Γh := {T ∈ Th : meas1(T ∩ Γ ) > 0 } .

In Fig. 7.10 the elements in T Γh2
are colored gray.

For h = hk we consider the finite element spaces

Q0
h :=

{
p : Ω → R : p|T ∈ P0 for all T ∈ Th

}
(piecewise constants),

Q1,disc
h :=

{
p : Ω → R : p|T ∈ P1 for all T ∈ Th

}
(linear, discontinuous),

Q1
h :=

{
p ∈ C(Ω) : p|T ∈ P1 for all T ∈ Th

}
(linear, continuous).
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Γ
Γ

m

m4

m3

m2

m1

TU

TL

Fig. 7.10. Triangulation Th2 and a triangle T ∈ T Γ
hk

.

Note that
Qjh ⊂ Q1,disc

h for j = 0, 1. (7.103)

We take p∗ as follows: p∗(x) = cp > 0 for all x ∈ Ω1, p∗(x) = 0 for all x ∈ Ω2.
We study infqh∈Qh

‖qh − p∗‖L2 for Qh ∈ {Q0
h, Q

1,disc
h , Q1

h}. For Qh = Q1,disc
h

the identity

inf
qh∈Q1,disc

h

‖qh − p∗‖2L2 =
∑

T∈T Γ
h

min
q∈P1

‖q − p∗‖2L2(T )

holds. Take T ∈ T Γh . Using a quadrature rule on triangles that is exact for all
polynomials of degree two we get, cf. Fig. 7.10,

min
q∈P1

‖q − p∗‖2L2(T ) = min
q∈P1

( ∫

TL

(q − cp)2 dx dy +
∫

TU

q2 dx dy
)

=
h2

12
min
q∈P1

(
(q(m3)− cp)2 + (q(m4)− cp)2 + (q(m)− cp)2

+ q(m1)2 + q(m2)2 + q(m)2
)

≥ h2

12
min
q∈P1

(
(q(m)− cp)2 + q(m)2

)
=

1
24
c2ph

2.

Thus we have

inf
qh∈Q1,disc

h

‖qh − p∗‖L2 ≥
( ∑

T∈T Γ
h

1
24
c2ph

2
) 1

2
=

( 2
h

1
24
c2ph

2
) 1

2 =
1

2
√

3
cp
√
h.

Due to (7.103) this yields

inf
qh∈Qh

‖qh − p∗‖L2 ≥ 1
2
√

3
cp
√
h for Qh ∈ {Q0

h, Q
1,disc
h , Q1

h}.
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To derive an upper bound for the approximation error we choose a suitable
qh ∈ Qh. First consider Qh = Q0

h and take q0h ∈ Q0
h as follows: (q0h)|T = cp for

all T with meas1(T ∩Ω1) > 0, q0h = 0 otherwise. With this choice we get

‖q0h − p∗‖L2 =
( ∑

T∈T Γ
h

‖q0h − p∗‖2L2(T )

) 1
2

=
( ∑

T∈T Γ
h

c2p
1
4
h2

) 1
2 =

1√
2
cp
√
h.

For Qh ∈ {Q1,disc
h , Q1

h} we take q1h := Ih(p∗), where Ih is the nodal interpola-
tion operator (note: p∗ = cp on Γ ). Elementary computations yield

‖q1h − p∗‖L2 =
( 1
12
c2ph

) 1
2 =

1
2
√

3
cp
√
h.

Combination of these results yields

1
2
√

3
cp
√
h ≤ inf

qh∈Qh

‖qh − p∗‖L2 ≤ 1√
2
cp
√
h for Qh ∈ {Q0

h, Q
1,disc
h , Q1

h}.

If instead of piecewise constants or piecewise linears we consider polynomials
of higher degree, the approximation error still behaves like

√
h.

Similar examples, which have a
√
h approximation error behavior, can be

constructed using these finite element spaces on tetrahedral triangulations
in 3D.

7.9.2 Extended finite element method (XFEM)

The analysis in the previous section, which is confirmed by numerical ex-
periments in Sect. 7.10, leads to the conclusion that there is a need for an
improved finite element space for the discretization of the pressure. In this
section we introduce such a space which is based on an idea presented in
[181, 30]. In these papers a so-called extended finite element method (XFEM)
is introduced in the context of crack formations in structure mechanics which
has good approximation properties for interface type of problems. A recent
review on XFEM techniques is given in [113, 114]. XFEM belongs to the class
of partition of unity methods (PUM) [18, 19].

Here we apply the XFEM method to two-phase flow problems by con-
structing a suitable extended pressure finite element space. In this section we
explain the method. For k ≥ 1 fixed we introduce the standard finite element
space

Qh = Qkh = { q ∈ C(Ω) : q|T ∈ Pk for all T ∈ Th } .
We explain the construction of the XFEM space for k = 1. This technique
can easily be generalized to k ≥ 1. Define the index set J = {1, . . . , n}, where
n = dimQh is the number of degrees of freedom. Let B := {qj}j∈J be the
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nodal basis of Qh, i. e. qj(xi) = δi,j for i, j ∈ J where xi ∈ R
3 denotes the

vector of spatial coordinates of the i-th degree of freedom.
The idea of the XFEM method is to enrich the original finite element space

Qh by additional functions qXj for j ∈ J ′ where J ′ ⊂ J is a given index set.
An additional function qXj is constructed by multiplying the original nodal
basis function qj by a so called enrichment function Φj :

qXj (x) := qj(x)Φj(x). (7.104)

This enrichment yields the extended finite element space

QXh := Qh ⊕ span
{
qXj : j ∈ J ′ } .

This idea was introduced in [181] and further developed in [30] for different
kinds of discontinuities (kinks, jumps), which may also intersect or branch.
The choice of the enrichment function depends on the type of discontinuity.
For representing jumps the Heaviside function is proposed to construct ap-
propriate enrichment functions. Basis functions with kinks can be obtained
by using the distance function as enrichment function [180].

Γ

Fig. 7.11. Enrichment of P1 finite elements in a 2D example. Dots represent degrees
of freedom of original basis functions, circles indicate where additional functions are
added in the vicinity of the interface Γ .

The index set of basis functions “close to the interface” is given by

JΓ := { j ∈ J : meas2(Γ ∩ supp qj) > 0 } ,

cf. Fig. 7.11 for a 2D example.
Let φ : Ω → R be an indicator function such that φ is negative in Ω1 and

positive in Ω2. For example the level set function could be used for φ. Let H
be the Heaviside function and

HΓ (x) := H(φ(x)) =

{
0 x ∈ Ω1,

1 x ∈ Ω2.
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Since we are interested in functions with a jump across the interface we define
the enrichment function

ΦHj (x) := HΓ (x) −HΓ (xj), j ∈ JΓ , (7.105)

and a corresponding function

qXj := qjΦ
H
j , j ∈ JΓ .

The second term in the definition of ΦHj is constant and may be omitted
(as it doesn’t introduce new functions in the function space), but ensures
the nice property qXj (xi) = 0 for all i, i. e., qXj vanishes in all degrees of
freedom. As a consequence, we have qXj ≡ 0 in all T with T /∈ T Γh :=
{T ∈ Th : meas2(T ∩ Γ ) > 0 }. In the following we will use the notation
qΓj := qj Φ

H
j and the XFEM space is denoted by

QΓh := Qh ⊕ span
{
qΓj : j ∈ JΓ

}
. (7.106)

We emphasize that the extended finite element space QΓh depends on the
location of the interface Γ . In particular the dimension of QΓh may change if
the interface moves. The shape of the extended basis functions for the 1D case
is sketched in Fig. 7.12.

Γ

Ω2 Ω1

0

1

xi xj

qi qj

qΓ
j

qΓ
i

Fig. 7.12. Extended finite element basis functions qi, q
Γ
i (dashed) and qj , q

Γ
j (solid)

for 1D case.

Remark 7.9.1 In [30] the XFEM is applied to problems from linear elasticity
demonstrating the ability of the method to capture jumps and kinks. These
discontinuities also branch or intersect in some of the examples, in this case
more elaborate constructions of the enrichment functions are used.

In [66] the XFEM is also applied to a two-phase flow problem. In that
paper discontinuous material properties ρ and μ, but no surface tension forces
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are taken into account. Thus there is no jump in pressure, but the velocity
solution exhibits a kink (i.e., a discontinuity in the derivative) at the interface.
For the pressure and the level set function standard finite element spaces are
used. The velocity field is discretized with an extended finite element space
enriched by vXj (x) = vj(x) |d(x)| to capture the kinks at the interface. The
location of the interface is captured by a level set approach. The level set
function is used as an approximate signed distance function.

A similar idea of space enrichment in the context of two-phase flow simu-
lations is also suggested in [177].

The same finite element space QΓh is also used in the “unfitted finite ele-
ment method” that is introduced in [24] for a class of elliptic interface prob-
lems.

7.9.3 Modifications and implementation issues

In this section we discuss a few practical issues related to the application of
XFEM to non-stationary Navier-Stokes two-phase flow problems.

As QΓh depends on the location of the interface Γ , the space QΓh changes if
the interface moves. Thus the discretization of b(·, ·) has to be updated each
time when the level set function has changed. In a Navier-Stokes code solving
non-stationary two-phase flow problems this is nothing special since the mass
and stiffness matrices depend on discontinuous material properties like density
and viscosity and thus have to be updated as well. What is special about the
extended pressure finite element space is the fact that the dimension of QΓh
may vary, i. e., some extended pressure unknowns may appear or disappear
when the interface is moving. This has to be taken into account by a suitable
interpolation procedure for the extended pressure unknowns.

Let Γh be a piecewise planar approximation of the interface Γ as described
in Sect. 7.3. For practical reasons we do not consider QΓh but the space QΓh

h ,
which is the extended pressure finite element space described above but with
Γ replaced by its approximation Γh. We discuss how in the discretization of
a two-phase flow problem the construction of the discrete problem changes
if instead of (Vh, Qh) the pair (Vh, Q

Γh

h ) is used. For the velocity space Vh

we use the standard space of piecewise quadratics. The use of another finite
element space QΓh

h (instead of standard piecewise linears) influences only the
evaluation of b(·, ·).

For a basis function ξi ∈ Vh and j ∈ JΓ the evaluation of

b(ξi, q
Γh

j ) = −
∑

T ′∈Th′

∫

T ′
qΓh

j div ξi dx

requires the computation of integrals with discontinuous integrands, as the
extended pressure basis function qΓh

j has a jump across the interface. We sum
over T ′ ∈ Th′ (and not T ∈ Th) because Γh is defined as in (7.21), i. e., Γh
is piecewise planar corresponding to the refinement Th′ of Th. Let T ∈ Th
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be a tetrahedron with T ∩ supp qΓh
j �= ∅ and T ′ ∈ Th′ with T ′ ⊂ T a child

tetrahedron created by regular refinement of T . Define

T ′
i := T ′ ∩Ωi,h, i = 1, 2.

Using the definition of qΓh

j , cf. (7.104), (7.105), we get
∫

T ′
qΓh
j div ξi dx =

∫

T ′
2

qj div ξi dx−HΓ (xj)
∫

T ′
qj div ξi dx

=

{∫
T ′
2
qj div ξi dx if xj ∈ Ω1,h,

−
∫
T ′
1
qj div ξi dx if xj ∈ Ω2,h.

(7.107)

The integrands in the right-hand side of (7.107) are polynomial on the poly-
hedral subdomains T ′

1, T
′
2. For the computation of the integral over T ′

i we
distinguish two cases. The face T ′ ∩ Γh is either a triangle or a quadrilateral.
In the first case one of the sets T ′

1, T
′
2 is tetrahedral; without loss of generality

let T ′
1 be tetrahedral. Then integration over T ′

2 can be computed by
∫

T ′
2

G(x) dx =
∫

T ′
G(x) dx −

∫

T ′
1

G(x) dx.

In the second case both T ′
1, T

′
2 are non-tetrahedral, but can each be subdivided

into three sub-tetrahedra, cf. Fig. 7.13. In all cases the integration over T ′
i can

be reduced to integration on tetrahedra, for which standard quadrature rules
can be applied.

Fig. 7.13. Left: Parts of tetrahedron T ′ are non-tetrahedral, iff cutting face T ′∩Γh

is a quadrilateral. Right: Triangulation of the lower part into three tetrahedra.

Regarding stability, one has to treat carefully the situation where some ex-
tended basis functions qΓj have a (very) “small” support. In such situations
the resulting linear systems may become very ill-conditioned and the LBB-
stability of the (Vh, Q

Γ
h ) pair is questionable, cf. the numerical experiment

in Sect. 7.10.3. One obvious possibility to deal with this instability problem
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is to skip the extended basis functions with relatively “small” contributions.
What is meant by “small” will be specified now. In Sect. 7.9.4 we investigate
which elements from the “added” space span

{
qΓj : j ∈ JΓ

}
can be deleted

without loosing the optimal approximation quality of the extended finite ele-
ment space. This leads to the following criterion, in which parameters c̃ > 0
and α > 0 are used. For j ∈ JΓ we consider the following condition for the
corresponding extended basis function qΓj :

‖qΓj ‖l,T ≤ c̃ hαT ‖qj‖l,T for all T ∈ T Γh . (7.108)

Here l ∈ {0, 1} is the order of the Sobolev norm. We introduce the reduced
index set J̃Γ ⊂ JΓ by

J̃Γ :=
{
j ∈ JΓ : (7.108) does not hold for qΓj

}

and the reduced extended finite element space Q̃Γh

Q̃Γh := Qh ⊕ span
{
qΓj : j ∈ J̃Γ

}
. (7.109)

In other words, only extended basis functions qΓj are taken into account, for
which (7.108) does not hold. The criterion (7.108) quantifies what is meant
by “small contributions”. In this modified space Q̃Γh basis functions with very
small supports are avoided and an approximation property of the following
form can be shown to hold (Sect. 7.9.4):

inf
q∈Q̃Γ

h

‖p− q‖l,Ω1∪Ω2 ≤ c
(
hm−l + hα−l

)
‖p‖m,Ω1∪Ω2

for all p ∈ Hm(Ω1 ∪ Ω2) and integers l,m with 0 ≤ l < m ≤ 2. Thus we
maintain an optimal approximation error bound if in the criterion (7.108)
we take α = m. The choice of l and m depends on the norms in which the
discretization error in the (pressure) variable p is measured. In our applications
we use l = 0, m = 2, resulting in an optimal error bound O(h2) for piecewise
linear finite elements.

Numerical experiments, cf. Sect. 7.10.3, indicate that this reduction of the
extended finite element has a significant influence on the LBB-stability of the
(Vh, Q

Γ
h ) finite element pair.

Remark 7.9.2 Because ‖qj‖l,T ∼ ch
3
2−l
T for l = 0, 1, the condition (7.108)

can be replaced by

‖qΓj ‖l,T ≤ ĉh
α+ 3

2−l
T for all T ∈ T Γh . (7.110)

The constant ĉ may differ from c̃ used in (7.108).
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7.9.4 Analysis of XFEM

In this section we derive some properties of the XFEM method. We discuss the
following topics: approximation quality, conditioning of a basis in the XFEM
space and LBB-stability of the (Vh, Q

Γ
h ) pair.

Approximation error bounds

For the approximation error bounds we consider the XFEM space QΓh with
a given h-independent interface Γ . Note that in practice the space QΓh

h is
used; we do not consider this in the analysis, since it would lead to additional
technical complications induced by the h-dependence of the interface.

For an integer k ≥ 0 we define the space

Hk(Ω1 ∪Ω2) :=
{
p ∈ L2(Ω) : p|Ωi

∈ Hk(Ωi), i = 1, 2
}
,

with the norm ‖p‖2k,Ω1∪Ω2
:= ‖p‖2k,Ω1

+‖p‖2k,Ω2
. We need restriction operators

Ri : L2(Ω) → L2(Ω), i = 1, 2

Riv =

{
v|Ωi

on Ωi

0 on Ω \Ωi
(7.111)

(in L2 sense). The extended finite element space QΓh can also be characterized
by the following property: v ∈ QΓh if and only if there exist functions v1, v2 ∈
Qh such that v|Ωi = vi|Ωi , i = 1, 2. In other words:

QΓh

h = R1Qh ⊕R2Qh. (7.112)

We present an approximation error bound for the XFEM space:

Theorem 7.9.3 For integers l, m with 0 ≤ l < m ≤ 2 the following holds:

inf
q∈QΓ

h

‖p− q‖l,Ω1∪Ω2 ≤ c hm−l‖p‖m,Ω1∪Ω2 (7.113)

for all p ∈ Hm(Ω1 ∪Ω2).

Proof. We use extension operators Emi : Hm(Ωi) → Hm(Ω), i = 1, 2, with
(Emi w)|Ωi

= w and ‖Emi w‖m ≤ c‖w‖m,Ωi , cf. [256]. For m = 1, 2, let Imh :
Hm(Ω) → Qh be a (quasi-)interpolation operator such that ‖w − Imh w‖l ≤
c hm−l‖w‖m for all w ∈ Hm(Ω), 0 ≤ l < m ≤ 2 (for example, nodal inter-
polation if m = 2). Let m ∈ {1, 2} and p ∈ Hm(Ω1 ∪ Ω2) be given. Define
q∗ ∈ QΓh by

q∗ = R1I
m
h Em1 R1p+R2I

m
h Em2 R2p. (7.114)
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For this approximation we obtain

‖p− q∗‖2l,Ω1∪Ω2

=
2∑

i=1

‖p− q∗‖2l,Ωi
=

2∑

i=1

‖p− Imh Emi Rip‖2l,Ωi

=
2∑

i=1

‖Emi Rip− Imh Emi Rip‖2l,Ωi
≤

2∑

i=1

‖Emi Rip− Imh Emi Rip‖2l

≤ c h2(m−l)
2∑

i=1

‖Emi Rip‖2m ≤ c h2(m−l)
2∑

i=1

‖Rip‖2m,Ωi

= c h2(m−l)‖p‖2m,Ω1∪Ω2
,

which proves the result. �

Hence, the XFEM space has optimal approximation quality for piecewise
smooth functions p, for example infqh∈QΓ

h
‖qh − p‖L2 ≤ ch2 if p|Ωi

∈ H2(Ωi),
i = 1, 2. Similar approximation results are given in [135]. In [209] also a result
for the reduced XFEM space Q̃Γh is derived. In the analysis a global inverse in-
equality is used and therefore in the following theorem we use the assumption
that the family of triangulations is quasi-uniform.

Theorem 7.9.4 Assume that the family {Th}h>0 is quasi-uniform. For in-
tegers l, m with 0 ≤ l < m ≤ 2 the following holds, with Q̃Γh defined as in
(7.109):

inf
q∈Q̃Γ

h

‖p− q‖l,Ω1∪Ω2 ≤ c
(
hm−l + hα−l

)
‖p‖m,Ω1∪Ω2 (7.115)

for all p ∈ Hm(Ω1 ∪Ω2).

Proof. Theorem 4 in [209]. �

Properties of a basis in the XFEM space

In this section we derive properties of a basis in the space QΓh

h . Note that now
we consider QΓh

h (instead of QΓh ). We first introduce some further notation.
The restriction Ri, i = 1, 2, is as in (7.111), but with Ωi replaced by Ωi,h
(recall: Γh defines the interface between Ω1,h and Ω2,h). The nodal basis in
Qh is denoted by {qj}j∈J , J = {1, . . . , n}. We introduce subsets of J for
which the corresponding basis functions have a nonzero intersection with Γh:

J Γh
1 := { k ∈ J : xk ∈ Ω2,h and supp(qk) ∩ Γh �= ∅ }
J Γh

2 := { k ∈ J : xk ∈ Ω1,h and supp(qk) ∩ Γh �= ∅ } .
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Corresponding spaces are defined by

V Γh

i := span
{
Riqk : k ∈ J Γh

i

}
, i = 1, 2.

To avoid technical difficulties in the analysis, we make the (reasonable) as-
sumption that meas2(Γh ∩ ∂T ) = 0 for all T , i.e., the interface Γh does not
contain faces of the tetrahedra T ∈ Th. The extended finite element space QΓh
can be represented as

QΓh

h = Qh ⊕ V Γh
1 ⊕ V Γh

2 . (7.116)
We will analyze the stability of the basis

{qk}1≤k≤n ∪ {R1qk}k∈J Γh
1
∪ {R2qk}k∈J Γh

2
. (7.117)

We prove, cf. Theorem 7.9.7, that the diagonally scaled mass matrix is uni-
formly (w.r.t. h) well-conditioned. This holds independent of the size and the
shape of the support of the basis functions Riqk. This immediately implies a
similar result for the reduced XFEM space Q̃Γh

h .
We first derive a strengthened Cauchy-Schwarz inequality between the

spaces Qh and V Γh
1 ⊕ V Γh

2 . The collection of all vertices in the triangu-
lation Th is denoted by V := {xk : k ∈ J }. For each vertex x ∈ V let
T (x) be the set of all tetrahedra in Th that have x as a vertex. Define
TR = {T ∈ Th : T ∩ Γh = ∅ }. We introduce the assumption

T (x) ∩ TR �= ∅ for all x ∈ V . (7.118)

For h sufficiently small this assumption is satisfied.
Lemma 7.9.5 Assume that (7.118) holds. There exists a constant cCS < 1
independent of h such that

(v, w)L2 ≤ cCS‖v‖L2‖w‖L2 for all v ∈ Qh, w ∈ V Γh
1 ⊕ V Γh

2 .

Proof. We use the notation W = V Γh
1 ⊕ V Γh

2 . Let PW : L2(Ω) → W be
the L2-orthogonal projection on W . Let V(T ) denote the set of vertices of T .
Transformation to a unit tetrahedron yields the norm equivalence

c1‖v‖2L2(T ) ≤ |T |
∑

x∈V(T )

v(x)2 ≤ c2‖v‖2L2(T ) (7.119)

for all T ∈ Th, v ∈ Qh, with constants c1 > 0 and c2 independent of h.
Due to (7.118) we have that for each x ∈ V(T ) there exists a tetrahedron
T̂ ∈ T (x)∩TR with x ∈ V(T̂ ). Let TR be as defined above and T Γh := Th \ TR
the set of all tetrahedra that have a nonzero intersection with Γh. We obtain
for v ∈ Qh and T ∈ T Γh :

‖v‖2L2(T ) ≤ c |T |
∑

x∈V(T )

v(x)2

≤ c
∑

x∈V(T )

∑

T̂∈T (x)∩TR

|T̂ |
∑

y∈V(T̂ )

v(y)2

≤ c
∑

x∈V(T )

‖v‖2L2(T (x)∩TR).



7.9 XFEM discretization of the pressure 257

Hence,
‖v‖2L2(T Γ

h ) =
∑

T∈T Γ
h

‖v‖2L2(T ) ≤ c‖v‖2L2(TR), v ∈ Qh,

holds with a constant c independent of h. This yields ‖v‖2L2 = ‖v‖2
L2(T Γ

h
)
+

‖v‖2L2(TR) ≤ c‖v‖2L2(TR) with c independent of h. Using this and (PW v)|TR
= 0

we get, for v ∈ Qh,

‖v − PW v‖L2 ≥ ‖v − PW v‖L2(TR) = ‖v‖L2(TR) ≥ ĉ‖v‖L2,

with a constant ĉ > 0 independent of h. Thus we get

‖PW v‖2L2 = ‖v‖2L2 − ‖v − PW v‖2L2 ≤ (1− ĉ2)‖v‖2L2 =: c2CS‖v‖2L2

for all v ∈ Qh. Hence, for v ∈ Qh, w ∈ W ,

(v, w)L2 = (v, PWw)L2 = (PW v, w)L2 ≤ ‖PW v‖L2‖w‖L2

≤ cCS‖v‖L2‖w‖L2,

which completes the proof. �

The spaces V Γh
1 and V Γh

2 are (due to disjoint supports of functions from these
spaces) L2-orthogonal. Thus we conclude that in the decomposition

QΓh

h = Qh ⊕ V Γh
1 ⊕ V Γh

2

we have a strengthened Cauchy-Schwarz inequality betweenQh and V Γh
1 ⊕V Γh

2

and even orthogonality between V Γh
1 and V Γh

2 .
For v = w + w1 + w2 ∈ QΓh

h , with w ∈ Qh, wi ∈ V Γh

i , we have

‖v‖2L2 ≤ 2
(
‖w‖2L2 + ‖w1 + w2‖2L2

)
= 2

(
‖w‖2L2 + ‖w1‖2L2 + ‖w2‖2L2

)

and

‖v‖2L2 = ‖w‖2L2 + ‖w1 + w2‖2L2 + 2(w,w1 + w2)L2

≥ ‖w‖2L2 + ‖w1 + w2‖2L2 − 2cCS‖w‖L2‖w1 + w2‖L2

≥ (1− cCS)
(
‖w‖2L2 + ‖w1‖2L2 + ‖w2‖2L2

)
.

Hence we obtain

(1− cCS)
(
‖w‖2L2 + ‖w1‖2L2 + ‖w2‖2L2

)

≤ ‖v‖2L2 ≤ 2
(
‖w‖2L2 + ‖w1‖2L2 + ‖w2‖2L2

)
.

(7.120)

We now turn to the conditioning of the mass matrix. A function v ∈ QΓh

h is
represented in the basis {qk}1≤k≤n ∪ {R1qk}k∈J Γh

1
∪ {R2qk}k∈J Γh

2
as
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v =
n∑

k=1

αkqk +
2∑

i=1

∑

k∈J Γh
i

β
(i)
k Riqk =: w + w1 + w2, (7.121)

where w ∈ Qh, wi ∈ V Γh

i , i = 1, 2. It is well-known (cf. also (7.119)) that for
w =

∑n
k=1 αkqk we have

c1

n∑

k=1

α2
k‖qk‖2L2 ≤ ‖w‖2L2 ≤ c2

n∑

k=1

α2
k‖qk‖2L2, (7.122)

with constants c1 > 0 and c2 independent of h, i.e., the nodal basis {qk}1≤k≤n
of Qh is uniformly in h well-conditioned (w.r.t. ‖ · ‖L2). We prove a similar
result for the basis {Riqk}k∈J Γh

i

of V Γh

i .

Lemma 7.9.6 For wi =
∑

k∈J Γh
i

β
(i)
k Riqk, i = 1, 2, the following holds:

√
2− 1
2
√

2

∑

k∈J Γh
i

(
β

(i)
k

)2‖Riqk‖2L2 ≤ ‖wi‖2L2 ≤ 3
∑

k∈J Γh
i

(
β

(i)
k

)2‖Riqk‖2L2 . (7.123)

Proof. It suffices to consider i = 1. We write w1 =
∑

k∈J Γh
1
βkR1qk. For each

T ∈ T Γh = Th \ TR there are at most 3 k-values in J Γh
1 with (R1qk)|T �= 0

and thus

‖w1‖2L2 =
∑

T∈T Γ
h

∥
∥
∥

∑

k∈J Γh
1

βkR1qk

∥
∥
∥

2

L2(T )
≤

∑

T∈T Γ
h

( ∑

k∈J Γh
1

|βk|‖R1qk‖L2(T )

)2

≤ 3
∑

T∈T Γ
h

∑

k∈J Γh
1

|βk|2‖R1qk‖2L2(T ) = 3
∑

k∈J Γh
1

|βk|2‖R1qk‖2L2,

which proves the upper bound in (7.123). A proof of the lower bound is given
in Lemma 3 in [209]. �

Using the norm equivalences in (7.120), (7.122) and (7.123) we derive a spec-
tral result for the mass matrix using standard arguments. Let m = mh :=
n + |J Γh

1 | + |J Γh
2 | be the dimension of QΓh

h and J : R
m → QΓh

h the isomor-
phism defined by (7.121):

Jz = J
(
	α, 	β(1), 	β(2)

)
= v.

The mass matrix M ∈ R
m×m is given by

〈Mz, z〉 = (Jz, Jz)L2 for all z ∈ R
m.

Here 〈·, ·〉 denotes the Euclidean scalar product.
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Define diag(M) =: DM with

DM =

⎛

⎝
D ∅

D1

∅ D2

⎞

⎠ , Dk,k = ‖qk‖2L2, 1 ≤ k ≤ n,

(
Di

)
k,k

= ‖Riqk‖2L2, k ∈ J Γh
i .

Theorem 7.9.7 There are constants c1 > 0 and c2 independent of h such
that

c1〈DMz, z〉 ≤ 〈Mz, z〉 ≤ c2〈DMz, z〉 for all z ∈ R
m.

Proof. From (7.120), (7.122) and (7.123) we get

〈Mz, z〉 = ‖v‖2L2 ≤ 2
(
‖w‖2L2 + ‖w1‖2L2 + ‖w2‖2L2

)

≤ 2
(
c2

n∑

k=1

α2
k‖qk‖2L2 + 3

∑

k∈J Γh
1

(
β

(1)
k

)2‖R1qk‖2L2 + 3
∑

k∈J Γh
2

(
β

(2)
k

)2‖R2qk‖2L2

)

≤ c
(
〈D	α, 	α〉+ 〈D1

	β(1), 	β(1)〉+ 〈D2
	β(2), 	β(2)〉

)
= c〈DMz, z〉,

with a constant c independent of h. Similarly, due to

〈Mz, z〉 = ‖v‖2L2 ≥ (1 − cCS)
(
‖w‖2L2 + ‖w1‖2L2 + ‖w2‖2L2

)
,

and using the lower bounds in (7.122) and (7.123), we obtain 〈Mz, z〉 ≥
c〈DMz, z〉 with a constant c > 0 independent of h. �
The result in this theorem proves that the matrix D−1

M M has a spectral con-
dition number that is uniformly (w.r.t. h) bounded. Note that the constants
in the spectral condition number bounds are also independent of the sup-
ports of the basis functions Riqk, k ∈ J Γh

i . In other words, a simple scaling
is sufficient to control the stability (in L2) of the basis functions with “very
small” supports. Furthermore, we note that in the analysis we did not assume
quasi-uniformity of the family of triangulations.
Corollary 7.9.8 Since the reduced extended finite element space Q̃Γh

h is
spanned by a subset of the basis functions in (7.117), a similar L2-stability
result trivially holds for the basis in the space Q̃Γh

h .

Remark 7.9.9 There are two canonical splittings of the XFEM space QΓh

h ,
namely the ones in (7.116) and in (7.112):

QΓh

h = Qh ⊕ V Γh
1 ⊕ V Γh

2 , QΓh

h = R1Qh ⊕R2Qh,

where Ri is the restriction operator as in (7.111), but now with respect to Ωi,h.
In the analysis above we used the basis corresponding to the first splitting,
cf. (7.117):

{qk}1≤k≤n ∪ {R1qk}k∈J Γh
1
∪ {R2qk}k∈J Γh

2
. (7.124)
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Let Ji be the index set of all k such that supp(qk) ∩ Ωi,h �= ∅ and define
Vi := span { qk : k ∈ Ji }. Note that Vi ⊂ Qh and RiQh = RiVi holds. The
linear mapping J : V1 × V2 → QΓh

h

J(v1, v2) = R1v1 +R2v2 (7.125)

is bijective. The second splitting induces the basis

{R1qk}k∈J1 ∪ {R2qk}k∈J2 . (7.126)

Related to the representations in these two bases we note the following. Take
v ∈ QΓh

h and let vi ∈ Vi be such that v = R1v1 +R2v2. For the representation
in the basis (7.124) we have

v =
n∑

k=1

αkqk +
2∑

i=1

∑

k∈J Γh
i

β
(i)
k Riqk,

with

αk = v(xk), xk ∈ V , k = 1, . . . , n,

β
(i)
k = vi(xk)− v(xk), k ∈ J Γh

i .

For the representation in the basis (7.126) we have

v =
2∑

i=1

∑

k∈Ji

ξ
(i)
k Riqk, with ξ

(i)
k = vi(xk), k ∈ Ji.

LBB-stability

If the XFEM method is used for the discretization of the pressure variable
in a two-phase flow problem, then the space QΓh

h is combined with a finite
element space for the velocity discretization. In this context the question of
LBB-stability of the pair of spaces arises. As far as we know, this topic has not
been investigated in the literature, yet. In our applications, for the velocity
discretization we use the space Vh of piecewise quadratics. The Hood-Taylor
pair (Vh, Qh) is LBB-stable. If instead of Qh we use the extended space
QΓh

h it is not known, whether the pair (Vh, Q
Γh

h ) is LBB-stable. Related to
this we comment on results of a numerical experiment that are presented
in Sect. 7.10.3. In this experiment it is observed that for the reduced XFEM
space Q̃Γh

h the pair (Vh, Q̃
Γh

h ) has a (much) better LBB-stability property
than the pair (Vh, Q

Γh

h ). Hence, at least in the model problem considered in
Sect. 7.10.3, the concept of reduction of the original XFEM space appears to
be important in view of LBB-stability. There is no theoretical analysis that
explains this effect.
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7.9.5 Numerical experiment with XFEM

In this experiment, for a given piecewise smooth function we compute best
approximation errors for the spaces Qh, QΓh and Q̃Γh . The behavior of these
approximation errors confirms the results of the theoretical analyses treated
above.

We take Ω = (−1, 1)3 and a planar interface Γ = {(x, y, z) ∈ Ω : y + z =
0.05} and Ω1 = { (x, y, z) ∈ Ω : y + z < 0.05 }, Ω2 = Ω \ Ω1. Let u be given
by

u =

{
x2 + y2 + z2 in Ω1

3x2 + y2 + 2z2 + 2 in Ω2.

We use a uniform triangulation of Ω with tetrahedra, resulting in a fam-
ily {Thi}i≥0 with mesh size parameter h = hi = 2−i−1, i = 0, 1, 2, . . .. The
interface Γ and the triangulations are such that Γ is not aligned with the
triangulation. Let Qh be the space of continuous piecewise linear functions
on Th and QΓh , Q̃Γh the corresponding XFEM and reduced XFEM spaces,
respectively. In the criterion (7.110) that is used in the construction of the
space Q̃Γh the parameters l, α and ĉ have to be chosen. We consider approx-
imation errors in the L2-norm and therefore we take l = 0 and α = 2. We
present results for different values of the cut-off parameter ĉ. Note that for
ĉ = 0 we have Q̃Γh = QΓh (all discontinuous basis functions are kept) and for
a sufficiently large ĉ we have Q̃Γh = Qh (all discontinuous basis functions are
deleted). For Wh ∈ {Qh, QΓh , Q̃Γh } we compute the best approximation of u in
Wh, i.e. uh ∈Wh such that

‖u− uh‖L2 = inf
wh∈Wh

‖u− wh‖L2.

Results for the approximation error eh := ‖u− uh‖L2 are given in Table 7.9,
Table 7.10. In the latter table we use the construction of the reduced space
Q̃Γh based on the criterion (7.110) (l = 0, α = 2) with different constants
ĉ = 10, 1, 0.1. One-dimensional profiles of uh ∈ Qh and uh ∈ QΓh are shown
in Fig. 7.14.

# ref Wh = Qh order Wh = QΓ
h order

0 1.60 E+0 - 1.44 E-1 -
1 1.20 E+0 0.41 3.71 E-2 1.96
2 8.88 E-1 0.43 9.37 E-3 1.99
3 6.27 E-1 0.50 2.35 E-3 1.99
4 4.52 E-1 0.47 5.89 E-4 2.00

Table 7.9. Approximation errors eh for Qh and QΓ
h .

The observed numerical order of convergence is consistent with the theo-
retically predicted improvement from p = 0.5 to p = 2. Furthermore, a good
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ref# ĉ = 10 order ĉ = 1 order ĉ = 0.1 order

0 1.60 E+0 - 1.60 E+0 - 1.77 E-1 -
1 1.20 E+0 0.41 2.69 E-1 2.57 4.01 E-2 2.14
2 8.88 E-1 0.43 4.72 E-2 2.51 9.37 E-3 2.10
3 1.37 E-2 6.01 8.98 E-3 2.39 2.35 E-3 1.99
4 2.60 E-3 2.40 5.89 E-4 3.93 5.89 E-4 2.00

Table 7.10. Approximation errors eh for Q̃Γ
h .

approximation quality appears to be not very sensitive with respect to the
choice of the parameter ĉ.
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Fig. 7.14. 1D-profile of uh ∈ Qh (left), uh ∈ QΓ
h (right) at x = y = 0, h = 2−4.

The dimension of the space Q̃Γh depends on the value for ĉ. These dimen-
sions corresponding to the spaces used in Tables 7.9 and 7.10 are given in
Table 7.11.

# ref. ĉ = ∞ ĉ = 10 ĉ = 1 ĉ = 0.1 ĉ = 0

0 125 125 125 186 205
1 729 729 872 954 1017
2 4913 4913 5730 6001 6001
3 35937 39008 39103 40161 40161
4 274625 290878 291005 291005 291005

Table 7.11. Dimension of the space Q̃Γ
h .

Note that for not too small refinement levels i the dimension of the (modified)
XFEM space is only slightly larger than that of the standard finite element
space.
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7.10 Numerical experiments for a Stokes problem

Due to the Laplace-Young law, typically the pressure has a jump across the
interface, when surface tension forces are present (τ �= 0), cf. Remark 1.1.5
and Remark 7.10.1 below. In numerical simulations, this discontinuity and
inadequate approximation of the localized surface force term often lead to
strong unphysical oscillations of the velocity uh at the interface, so called
spurious velocities or spurious currents, cf. , e. g., [163, 111]. In this section
we consider the relatively simple, but nevertheless interesting, test problem
of a two-phase stationary Stokes problem (with μ1 = μ2 = μ in Ω) and
investigate the discretization quality of the Laplace-Beltrami surface tension
force approximation (Sect. 7.6) and of the extended finite element method for
approximation of the pressure variable (Sect. 7.9.2). We will see that using the
modified Laplace-Beltrami discretization f̃Γh

and the XFEM space results in a
significant reduction of the spurious velocities compared to the case where one
uses fΓh

and the standard FEM space Qh. We emphasize that these improved
methods are not restricted to this simplified problem but apply to the general
Navier-Stokes model as well.

7.10.1 A stationary Stokes test problem

For a given sufficiently smooth interface Γ , we introduce the following Stokes
problem. For V0 := H1

0 (Ω)3, Q := L2
0(Ω), find (u, p) ∈ V0 ×Q such that

a(u,v) + b(v, p) = (ρg,v)L2 + fΓ (v) for all v ∈ V0,

b(u, q) = 0 for all q ∈ Q,
(7.127)

where

a(u,v) :=
∫

Ω

μ∇u · ∇v dx, b(v, q) = −
∫

Ω

q div v dx,

fΓ (v) := −τ
∫

Γ

κn · v ds = −τ
∫

Γ

∇Γ idΓ ·∇Γv ds,

with a viscosity μ > 0 that is constant in Ω. Recall that fΓ ∈ V′
0. Well-

posedness of this variational problem follows from the same arguments as used
for the one-phase stationary Stokes problem in Sect. 2.2.2. Theorem 15.3.1 can
be applied and yields well-posedness of the variational problem (7.127). The
unique solution of this problem is denoted by (u∗, p∗) ∈ V0 ×Q.

Remark 7.10.1 Assume that the domain Ω is convex. Then the problem
(7.127) has a smooth velocity solution u∗ ∈ V0 ∩ H2(Ω)3 and a piece-
wise smooth pressure solution p with p|Ωi

∈ H1(Ωi), i = 1, 2, which has a
jump across Γ . These smoothness properties can be derived as follows. The
curvature κ is assumed to be a smooth function (on Γ ). Thus there exist
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p̂1 ∈ H1(Ω1) such that (p̂1)|Γ = κ (in the sense of traces). Define p̂ ∈ L2(Ω)
by p̂ = p̂1 in Ω1, p̂ = 0 on Ω2. Note that for all v ∈ V0,

fΓ (v) = −τ
∫

Γ

κnΓ · v ds = −τ
∫

Γ

p̂1nΓ · v ds

= −τ
∫

Ω1

p̂1 div v dx− τ
∫

Ω1

∇p̂1 · v dx

= −τ
∫

Ω

p̂ div v dx + τ

∫

Ω

g̃ · v dx,

with g̃ ∈ L2(Ω)3 given by g̃ = −∇p̂1 in Ω1, g̃ = 0 on Ω2. Thus if (u∗, p∗) is the
solution of (7.127) then (u∗, p∗ − τ p̂) satisfies the standard Stokes equations

a(u∗,v) + b(v, p∗ − τ p̂) = (ρg + τ g̃,v)L2 for all v ∈ V0,

b(u∗, q) = 0 for all q ∈ Q.
(7.128)

From regularity results on Stokes equations and the fact that Ω is convex
we conclude that u∗ ∈ H2(Ω)3 ∩ H1

0 (Ω)3 and p∗ − τ p̂ ∈ H1(Ω). Thus
[p∗ − τ p̂]Γ = 0 (a.e. on Γ ) holds, which implies

[p∗]Γ = τ [p̂]Γ = τκ,

i.e., p∗ has a jump across Γ of the size τκ.

Example 7.10.2 (Static Droplet) A simple example that is used in the
numerical experiments in Sect. 7.10.3 is the following. Let Ω := (−1, 1)3 and
Ω1 a sphere with center at the origin and radius r < 1. We take g = 0. In this
case the curvature is constant, κ = 2

r , and the solution of the Stokes problem
(7.127) is given by u∗ = 0, p∗ = τ 2

r + c0 on Ω1, p∗ = c0 on Ω2 with a constant
c0 such that

∫
Ω p

∗ dx = 0.

Discretization error bounds

We assume that a piecewise planar surface Γh is known, which is close to the
interface Γ in the sense of (7.70). The induced polyhedral approximations of
the subdomains are Ω1,h = int(Γh) (region in the interior of Γh) and Ω2,h =
Ω \Ω1,h. Furthermore, we define the piecewise constant approximation of the
density by ρh = ρi on Ωi,h. We assume that for vh ∈ Vh the integrals in

(ρhg,vh)L2 = ρ1

∫

Ω1,h

g · vh dx+ ρ2

∫

Ω2,h

g · vh dx

can be computed with high accuracy. This can be realized efficiently in our
implementation because if one applies the standard finite element assembling
strategy by using a loop over all tetrahedra T ∈ Th, then T ∩ Ωi,h is either
empty or T or a relatively simple polygonal subdomain (due to the construc-
tion of Γh). For more details we refer to Sect. 7.9.3.
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The discretization of (7.127) is as follows: determine (uh, ph) ∈ Vh ×Qh
such that

a(uh,vh) + b(vh, ph) = (ρhg,vh)L2 + fΓh
(vh) for all vh ∈ Vh,

b(uh, qh) = 0 for all qh ∈ Qh.
(7.129)

We do not restrict to a concrete pair of spaces (Vh, Qh). For these spaces
we (only) assume conformity Vh ⊂ V0, Qh ⊂ Q, and LBB-stability of the
pair (Vh, Qh). Approximations fΓh

(vh) of fΓ (vh) are discussed in Sect. 7.6.
Using standard finite element error analysis based on the Strang-lemma, cf.
Sect. 15.4, we obtain the following discretization error bound.

Theorem 7.10.3 Let (u∗, p∗), (uh, ph) be the solution of (7.127) and
(7.129), respectively. Then the error bound

μ‖uh − u∗‖1 + ‖ph − p∗‖L2 ≤ c
(
μ inf

vh∈Vh

‖vh − u∗‖1 + inf
qh∈Qh

‖qh − p∗‖L2

+ sup
vh∈Vh

|(ρg,vh)L2 − (ρhg,vh)L2 |
‖vh‖1

(7.130)

+ sup
vh∈Vh

|fΓ (vh)− fΓh
(vh)|

‖vh‖1

)

holds with a constant c independent of h, μ and ρ.

Remark 7.10.4 Assume Ω to be convex. Then the problem (7.128) is H2-
regular and from a standard duality argument (and a scaling argument) it
follows that

‖u∗ − uh‖L2 ≤ ch

(
‖u∗ − uh‖1 +

1
μ
‖p∗ − ph‖L2

)

holds, with a constant c independent of μ and h.

Corollary 7.10.5 Let (u∗, p∗), (uh, ph) be as in Theorem 7.10.3 and define

rh := sup
vh∈Vh

|(ρg,vh)L2 − (ρhg,vh)L2 |
‖vh‖1

+ sup
vh∈Vh

|fΓ (vh)− fΓh
(vh)|

‖vh‖1
.

The following holds:

‖uh − u∗‖1 ≤ c
(

inf
vh∈Vh

‖vh − u∗‖1 +
1
μ

inf
qh∈Qh

‖qh − p∗‖L2 +
1
μ
rh

)
,

‖uh − u∗‖L2 ≤ ch
(

inf
vh∈Vh

‖vh − u∗‖1 +
1
μ

inf
qh∈Qh

‖qh − p∗‖L2 +
1
μ
rh

)
,

‖ph − p∗‖L2 ≤ c
(
μ inf

vh∈Vh

‖vh − u∗‖1 + inf
qh∈Qh

‖qh − p∗‖L2 + rh

)
,

with constants c independent of h, μ and ρ. We observe that if μ � 1 then
in the velocity error we have an error amplification effect proportional to 1

μ .
This effect does not occur in the discretization error for the pressure.
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We comment on the terms occurring in the bound in (7.130). We start with the
velocity approximation error term μ infvh∈Vh

‖vh−u∗‖1. Assume a situation
in which the solution u∗ of (7.127) is smooth: u∗ ∈ H2(Ω)3. With standard
finite element spaces Vh for the velocity (e.g., P1 or P2) we then obtain

inf
vh∈Vh

‖vh − u∗‖1 ≤ ch.

If u∗ ∈ H3(Ω)3, then with quadratic finite elements the upper bound can be
improved to ch2.

Remark 7.10.6 Note that in Remark 7.10.1 the smoothness of u∗ was shown
under the assumption of equal viscosity in both phases, i. e., μ1 = μ2. If μ is
discontinuous across Γ , then the normal derivative of u∗ has a jump across
Γ , which means that the velocity field u∗ has a kink at Γ . If the grid is not
aligned to the interface, then the approximation of such functions in standard
finite element spaces Vh yields

inf
vh∈Vh

‖vh − u∗‖1 ≤ c
√
h.

In the case of large viscosity ratios maxi=1,2 μi/mini=1,2 μi (e. g., liquid-gas
systems) the construction of specially adapted finite element spaces enabling
first order convergence w.r.t. the H1-norm is required, cf. [66, 166]. However,
for liquid-liquid systems with small viscosity ratios the influence of this error
source turns out to be rather small compared to the pressure approximation
error (second term in (7.130)).

Related to the third term in (7.130) we note the following. Due to (7.70a) we
get |meas3(Ωi)−meas3(Ωi,h)| ≤ ch2

Γ , i = 1, 2, and using this we obtain

|(ρg,vh)L2 − (ρhg,vh)L2 | ≤
2∑

i=1

ρi

∣
∣
∣∣
∣

∫

Ωi

g · vh dx−
∫

Ωi,h

g · vh dx
∣
∣
∣∣
∣

≤ c(ρ1 + ρ2)hΓ ‖vh‖1,

and thus an O(hΓ ) bound for the third term in (7.130).
The remaining two terms in (7.130) are less easy to handle. In Sect. 7.7

we treated the fourth term. It is shown that the approximation method based
on the modified Laplace-Beltrami discretization f̃Γh

, cf. (7.60), results in a
O(hΓ ) bound for this term whereas the Laplace-Beltrami approximation with
fΓh

, cf. (7.54), only yields O(
√
hΓ ).

The second term in (7.130) is treated in Sect. 7.9. It is shown that standard
finite element spaces (e.g., P0 or P1) lead to a pressure discretization error
infqh∈Qh

‖qh − p∗‖L2 ∼
√
hΓ , and that for the extended finite element space

(or its reduced variant) one has an L2-error bound proportional to h2
Γ .
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Remark 7.10.7 Consider the problem as in Example 7.10.2. Then u∗ = 0,
g = 0 and the bound in (7.130) simplifies to

μ ‖uh‖1 + ‖ph − p∗‖L2

≤ c
(

inf
qh∈Qh

‖qh − p∗‖L2 + sup
vh∈Vh

|fΓ (vh)− fΓh
(vh)|

‖vh‖1

)
. (7.131)

In the following sections we consider the Galerkin discretization (7.129) of
the Stokes problem with g = 0 in the cube Ω = (−1, 1)3. We assume constant
viscosity μ = 1. We will consider different interfaces Γ . The discrete problem
is as follows: determine vh ∈ Vh, ph ∈ Qh such that

a(uh,vh) + b(vh, ph) = fSF,h(vh) for all vh ∈ Vh,

b(uh, qh) = 0 for all qh ∈ Qh,
(7.132)

where fSF,h ∈ V′
h are different approximations of fΓ . We choose a uniform

initial triangulation T0 of Ω where the vertices form a 5 × 5 × 5 lattice and
apply an adaptive refinement algorithm. Local refinement of the coarse mesh
T0 in the vicinity of Γ yields the gradually refined meshes T1, T2, T3, T4 with
local mesh sizes hΓ = hi = 2−i−1, i = 0, . . . , 4, at the interface. For the dis-
cretization of velocity we choose the standard finite element space of piecewise
quadratics:

Vh :=
{
v ∈ C(Ω)3 : v|T ∈ P2 for all T ∈ Th, v|∂Ω = 0

}
.

We consider different choices for the pressure finite element space, namely
piecewise constant or continuous piecewise linear elements, i. e., the spacesQ0

h,
Q1
h respectively, and the extended pressure spaceQΓh

h introduced in Sect. 7.9.2.
The discretization quality is quantified by computing norms of the errors

eu := u∗ − uh = −uh and ep := p∗ − ph.

7.10.2 Test case A: Pressure jump at a planar interface

This simple test case is designed to examine interpolation errors of finite
element spaces for the approximation of a discontinuous pressure variable.
We consider two different interfaces Γ1 and Γ2, which are both planes. Γ1 is
defined by

Γ1 = {x ∈ Ω : x3 = 0 } .
In this case the two subdomains are given by Ω1 := {x ∈ Ω : x3 < 0 } and
Ω2 := Ω \Ω1, cf. Fig. 7.15. Interface Γ2 is defined by

Γ2 = {x ∈ Ω : x2 + x3 = 1 } ,

and the corresponding subdomains are Ω1 := {x ∈ Ω : x2 + x3 < 0 } and
Ω2 := Ω \Ω1, cf. Fig. 7.17.
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Since for these planar interfaces Γ1, Γ2 the curvature is zero we introduce an
artificial surface force fASF given by

fASF(v) = −σ
∫

Γ

v · n ds, v ∈ V,

with a constant σ > 0. Note that fASF ∈ V′. The unique solution of (7.127),
with fΓ = fASF, is given by

u∗ = 0, p∗ =

{
C + σ in Ω1,

C in Ω2.

Here C is a constant such that
∫
Ω
p∗ dx = 0. In the experiments below we

use σ = 1. For both interfaces the interface approximation Γh is exact, i. e.,
Γh = Γ , allowing an exact discretization of the interfacial force, i. e., fASF,h =
fASF.

Due to g = 0, u∗ ∈ Vh and the fact that ‖fASF,h− fASF‖V′
h

= 0 the error
bound (7.130) simplifies to

μ‖eu‖1 + ‖ep‖L2 ≤ c inf
qh∈Qh

‖p∗ − qh‖L2. (7.133)

Thus the errors in velocity and pressure are solely controlled by the approxi-
mation quality of the finite element space Qh.

The number of velocity and pressure unknowns for the grids T0, . . . , T4

with different refinement levels are shown in Table 7.12. Note that dimQΓh

h >
dimQ1

h due to the extended basis functions and that dimQ0
h is even (much)

larger.

interface # ref. dimVh dimQ1
h dim QΓh

h dim Q0
h

0 1029 125 150 384
1 6801 455 536 1984

Γ = Γ1 2 31197 1657 1946 8384
3 131433 6235 7324 33984
4 537717 24093 28318 136384

0 1029 125 190 384
1 7749 543 768 2304

Γ = Γ2 2 42633 2313 3146 11556
3 200469 9607 12808 52088
4 871881 39229 51774 221796

Table 7.12. Dimensions of the finite element spaces for test case A.

We discuss the results obtained for the two cases Γ = Γ1 and Γ = Γ2 .

Interface at Γ = Γ1

For Γ = Γ1, the interface Γ is located at the element boundaries of tetrahedra
intersected by Γ , i. e., for each tetrahedron T intersecting Γ we have that
Γ ∩ T is equal to a face of T .
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In this special situation, the discontinuous pressure p∗ can be represented
exactly in the finite element space Q0

h of piecewise constants, thus the finite
element solution (uh, ph) ∈ Vh×Q0

h is equal to (u∗, p∗). This is confirmed by
the numerical results: the exact solution (u∗, p∗) fulfills the discrete equations
(up to rounding errors). The same holds for the extended finite element space
QΓh

h .
For the space of continuous piecewise linear finite elements we have

p∗ /∈ Q1
h. The grid T3 and the corresponding pressure solution are shown

in Figs. 7.15 and 7.16. The error norms for different grid refinement levels
are shown in Table 7.13. The L2-error of the pressure shows a decay of
O(h1/2). This confirms the theoretical results for the approximation error
minq∈Q1

h
‖p∗− qh‖L2 , cf. Sect. 7.9.1 and (7.133). The velocity error in the H1-

norm shows the same O(h1/2) behavior, whereas in the L2-norm the error
behaves like O(h3/2).

Fig. 7.15. Slice of grid at x1 = 0 after
3 refinements for Γ = Γ1.

Fig. 7.16. 1D-profile of pressure
jump at x1 = x2 = 0 for ph ∈ Q1

h.
3 refinements, Γ = Γ1.

# ref. ‖eu‖L2 order ‖eu‖1 order ‖ep‖L2 order

0 4.26 E-2 – 4.26 E-1 – 5.32 E-1 –
1 1.85 E-2 1.2 3.41 E-1 0.32 3.78 E-1 0.49
2 7.09 E-3 1.38 2.55 E-1 0.42 2.68 E-1 0.5
3 2.60 E-3 1.45 1.85 E-1 0.46 1.90 E-1 0.5
4 9.37 E-4 1.47 1.33 E-1 0.48 1.34 E-1 0.5

Table 7.13. Errors for the (Vh, Q1
h) finite element pair, Γ = Γ1.
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Interface at Γ = Γ2

We now consider the case Γ = Γ2. This problem corresponds to the 2D prob-
lem discussed in Sect. 7.9.1, cf. Fig. 7.10. Γ is chosen such that Γ ∩ F �= F
for all faces of the triangulations T0, T1, T2, T3. As a consequence, p∗ /∈ Q0

h

and p∗ /∈ Q1
h, but p∗ ∈ QΓh

h . We checked that the finite element solution
(uh, ph) ∈ Vh ×QΓh

h is indeed equal to (u∗, p∗) (up to machine accuracy).
We first discuss results for P1 finite elements. The grid T3, obtained af-

ter 3 times refinement, and the corresponding pressure solution for P1 finite
elements are shown in Figs. 7.17 and 7.18. The error norms for different grid
refinement levels are shown in Table 7.14. The same convergence orders as for
the case Γ = Γ1 are obtained, cf. Table 7.13.

Fig. 7.17. Slice of grid at x1 = 0 after
3 refinements for Γ = Γ2.

Fig. 7.18. 1D-profile of pressure
jump at x1 = x2 = 0 for ph ∈ Q1

h.
3 refinements, Γ = Γ2.

# ref. ‖eu‖L2 order ‖eu‖1 order ‖ep‖L2 order

0 2.53 E-2 – 2.56 E-1 – 5.44 E-1 –
1 1.24 E-2 1.02 2.25 E-1 0.18 3.99 E-1 0.45
2 5.03 E-3 1.31 1.75 E-1 0.36 2.88 E-1 0.47
3 1.89 E-3 1.41 1.29 E-1 0.44 2.06 E-1 0.48
4 6.88 E-4 1.46 9.35 E-2 0.47 1.46 E-1 0.49

Table 7.14. Errors for the (Vh, Q1
h) finite element pair, Γ = Γ2.

Results for the P0 finite elements are shown in Table 7.15. Compared to P1

finite elements, the errors are slightly larger but show similar convergence or-
ders, i. e.,O(h1/2) for the pressure L2-error and velocityH1-error, andO(h3/2)
for the velocity L2-error.



7.10 Numerical experiments for a Stokes problem 271

# ref. ‖eu‖L2 order ‖eu‖1 order ‖ep‖L2 order

0 3.98 E-2 – 3.49 E-1 – 7.30 E-1 –
1 1.64 E-2 1.28 2.75 E-1 0.35 4.89 E-1 0.58
2 6.14 E-3 1.41 2.04 E-1 0.43 3.35 E-1 0.54
3 2.22 E-3 1.47 1.48 E-1 0.46 2.34 E-1 0.52
4 7.92 E-4 1.49 1.06 E-1 0.48 1.65 E-1 0.51

Table 7.15. Errors for the (Vh, Q0
h) finite element pair, Γ = Γ2.

7.10.3 Test case B: Static droplet

In this test case (cf. Example 7.10.2) we consider a static droplet Ω1 ={
x ∈ R

3 : ‖x‖ ≤ r
}

in the cube Ω = (−1, 1)3 with r = 2/3. We assume
that surface tension is present, i. e., fSF = fΓ with τ = 1. This problem has
the unique solution

u∗ = 0, p∗ =

{
c0 + κ in Ω1,

c0 in Ω2.

Since κ = 2/r, the pressure jump is equal to [p∗]Γ = 3. A 2D variant of this
test case is presented in [111, 115, 226].

In this problem the errors in velocity and pressure are influenced by two
error sources, namely the approximation error of the discontinuous pressure
p∗ in Qh (as in test case A) and errors induced by the discretization of the
surface force fΓ , cf. (7.131).

The number of velocity and pressure unknowns for the grids T0, . . . , T4

with different refinement levels are shown in Table 7.16. Note that dimQΓh

h is
significantly larger than dimQ1

h, but that dimQΓh

h � dimVh.

# test case B

ref. dimVh dim Q1
h dim QΓh

h

0 1029 125 176
1 5523 337 533
2 30297 1475 2295
3 139029 6127 9413
4 569787 24373 37355

Table 7.16. Dimensions of the finite element spaces for test case B.

We consider test case B for two different approximations of the surface tension
functional fΓ , namely the Laplace-Beltrami discretization fΓh

as in (7.54) and
the modified Laplace-Beltrami discretization f̃Γh

as in (7.60). For the pressure
space we choose Qh = Q1

h and Qh = QΓh

h . We do not present results for the
space Q0

h because these are similar to those for Q1
h. Table 7.17 shows the decay
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of the pressure L2-norm for the four different experiments. We observe poor
O(h1/2) convergence in the cases where ph ∈ Q1

h or when the surface tension
force fΓ is discretized by fΓh

. For the L2 and H1-norm of the velocity error
the convergence orders are O(h3/2) and O(h1/2), respectively, which is similar
to the results in test case A.

We emphasize that only for the combination of the extended pressure finite
element space QΓh

h with the improved approximation f̃Γh
we achieve O(hα)

convergence with α ≥ 1 for the pressure L2-error. The velocity error in the
H1-norm shows a similar behavior (at least first order convergence), in the
L2-norm we even have second order convergence, cf. Table 7.18.

For the improved Laplace-Beltrami discretization f̃Γh
the corresponding

pressure solutions ph ∈ Q1
h and ph ∈ QΓh

h are shown in Fig. 7.19. For the stan-
dard pressure space Q1

h we observe oscillations of the pressure at the interface
inducing large spurious velocities in that region as shown in Fig. 7.20. For
the XFEM pressure space QΓh

h the pressure jump can be accurately resolved
leading to a very large reduction of spurious velocities. In Fig. 7.21, on the left
we illustrate these spurious velocities on the same scale as in Fig. 7.20 and on
the right multiplied by a factor 20.

# ‖ep‖L2 for ph ∈ Q1
h ‖ep‖L2 for ph ∈ QΓh

h

ref. fΓh order f̃Γh order fΓh order f̃Γh order

0 1.60 E+0 – 1.60 E+0 – 3.12 E-1 – 1.64 E-1 –
1 1.07 E+0 0.57 1.07 E+0 0.57 1.00 E-1 1.64 4.97 E-2 1.73
2 8.23 E-1 0.38 8.23 E-1 0.38 6.24 E-2 0.68 1.66 E-2 1.58
3 5.80 E-1 0.51 5.80 E-1 0.51 4.28 E-2 0.54 7.16 E-3 1.22
4 4.13 E-1 0.49 4.13 E-1 0.49 2.95 E-2 0.54 2.83 E-3 1.34

Table 7.17. Pressure errors for the (Vh, Q1
h) and (Vh, QΓ

h ) finite element pair and
different discretizations of fΓ .

# ref. ‖eu‖L2 order ‖eu‖1 order

0 7.16 E-3 – 1.10 E-1 –
1 1.57 E-3 2.19 4.26 E-2 1.37
2 3.25 E-4 2.28 1.70 E-2 1.33
3 8.57 E-5 1.92 7.43 E-3 1.19
4 1.75 E-5 2.29 2.40 E-3 1.63

Table 7.18. Errors and numerical order of convergence for the (Vh, QΓ
h ) finite

element pair and improved Laplace-Beltrami discretization f̃Γh .
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Fig. 7.19. Finite element pressure solution ph ∈ Q1
h (left) and ph ∈ QΓh

h (right),
visualized on slice at x3 = 0.

Fig. 7.20. Velocity uh for the case ph ∈ Q1
h, visualized on slice at x3 = 0.

μ-dependence of the errors

We repeated the computations of (uh, ph) ∈ Vh × QΓh

h for the improved
Laplace-Beltrami discretization f̃Γh

on the fixed grid T3 varying the vis-
cosity μ. The errors are given in Table 7.19. We clearly observe that the
velocity errors are proportional to μ−1 whereas the pressure error is indepen-
dent of μ. This confirms the bound in (7.131).
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Fig. 7.21. Velocity uh for the case ph ∈ Q
Γh
h (left) and magnified by a factor 20

(right), visualized on slice at x3 = 0.

μ ‖eu‖L2 ‖eu‖1 ‖ep‖L2

10 8.62 E-6 7.51 E-4 8.71 E-3
1 8.57 E-5 7.43 E-3 7.16 E-3

0.1 8.58 E-4 7.44 E-2 6.87 E-3
0.01 8.57 E-3 7.44 E-1 6.88 E-3
0.001 8.57 E-2 7.43 E+0 7.16 E-3

Table 7.19. Errors for the (Vh, QΓ
h ) finite element pair and improved Laplace-

Beltrami discretization f̃Γh on T3 for different viscosities μ.

Condition numbers of scaled mass matrix

We consider the XFEM space QΓh

h , h = hi = 2−i−1, i = 0, . . . , 4, used
in the static droplet example from above. For this space we determined the
mass matrix Mh. With Dh := diag(Mh) we computed the spectral condition
number of D−1

h Mh, i.e., cond(D−1
h Mh) = λmax(D−1

h Mh)/λmin(D−1
h Mh). For

h = hi, i = 0, . . . , 4, the results are given in Table 7.20.

i cond(D−1
h Mh)

0 16.16
1 11.24
2 12.08
3 12.93
4 12.98

Table 7.20. Spectral condition number of the scaled XFEM mass matrix.
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These results clearly show the uniform boundedness of the spectral condition
number of the scaled mass matrix, as proved in Theorem 7.9.7.

LBB-stability

In the theoretical analysis, in particular in Theorem 7.10.3, we assume that
the pair of spaces that is used is LBB-stable. The standard P2-P1 Hood-
Taylor pair (Vh, Q

1
h) is known to be LBB-stable. An obvious question is what

happens with stability if for the pressure instead of Q1
h we take the (larger)

space Q̃Γh . We do not have a satisfactory theoretical analysis of this stability
issue, yet. Here we present results of a numerical experiment for the static
droplet example from above. We consider this problem with the discretization
pair (Vh, Q̃

Γh

h ). The matrix representation of this discrete problem leads to a
symmetric saddle point problem of the form

Kh =
(
Ah BT

h

Bh 0

)
.

Recall that h = hi = 2−i−1, i = 0, . . . , 4. The Schur complement matrix is
given by Sh = BhA−1

h BT
h . The LBB-constant for the (Vh, Q̃

Γh

h ) pair with
h = hi is given by

CLBB(i) = inf
ph∈Q̃

Γh,∗
h

sup
v∈Vh

(div vh, ph)L2

‖∇vh‖L2‖ph‖L2
,

where Q̃Γh,∗
h contains all functions from Q̃Γh

h that are L2-orthogonal to the
constant. Let Mh be the mass matrix in Q̃Γh

h and m = mi = dim(Q̃Γh

h ).
Define R

m,∗ = {y ∈ R
m : 〈y,Mhe〉 = 0 }, with e := (1, 1, . . . , 1)T . The LBB

constant can also be represented as follows, cf. (5.106),

C2
LBB(i) = inf

y∈Rm,∗

〈Shy,y〉
〈Mhy,y〉

, (7.134)

and thus C2
LBB(i) is the smallest nonzero eigenvalue of M−1

h Sh. Due to the fact
that Mh is uniformly spectrally equivalent to its diagonal Dh we can instead
consider the smallest nonzero eigenvalue of D− 1

2
h ShD

− 1
2

h which is denoted
by λ∗min(D−1

h Sh). This eigenvalue can be approximated accurately using, for
example, an inverse power iteration. In each iteration of this method the
linear systems with matrix D− 1

2
h ShD

− 1
2

h can be solved using a CG method.
We implemented this and computed (with sufficiently high accuracy) this
smallest eigenvalue for several mesh sizes and for different values of the “cut-
off” parameter ĉ used in the definition of Q̃Γh

h , cf. (7.110). The resulting values
are presented in Table 7.21. Note that ĉ = ∞ corresponds to the space Qh =
Q1
h. The rather irregular behavior in the columns in Table 7.21 may be caused

by the fact that we compute the smallest nonzero eigenvalue of D−1
h Sh and not
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of M−1
h Sh. We observe that for the full extended space QΓh

h , which coincides
with Q̃Γh

h for ĉ = 10−4, the LBB quantity C2
LBB(i) strongly deteriorates if i

is increased. Hence, we conclude that with respect to LBB-stability it seems
to be important (at least in this experiment) to use the reduced XFEM space
Q̃Γh

h with a not too small parameter ĉ.

i ĉ = ∞ ĉ = 10 ĉ = 1 ĉ = 0.1 ĉ = 0.01 ĉ = 0.0001

0 9.53 E-2 9.53 E-2 9.53 E-2 4.65 E-2 1.43 E-2 1.43 E-2
1 2.53 E-2 2.53 E-2 2.53 E-2 2.53 E-2 1.53 E-2 6.49 E-3
2 3.22 E-2 3.22 E-2 3.22 E-2 2.97 E-2 1.07 E-2 1.97 E-4
3 2.58 E-2 2.58 E-2 2.58 E-2 2.16 E-2 3.17 E-3 3.37 E-5
4 9.17 E-2 9.17 E-2 5.91 E-2 1.12 E-3 1.60 E-3 1.32 E-5

Table 7.21. Estimates of smallest nonzero eigenvalue of preconditioned Schur com-
plement D−1

h Sh.

7.11 Finite element discretization of two-phase
flow problem

7.11.1 Spatial finite element discretization

In this section we combine the methods described in the previous sections to
obtain a semi-discretization of a two-phase flow model. We recall the model
given in (6.59): Find u(t) = u(·, t) ∈ VD, p(t) = p(·, t) ∈ Q, φ(t) = φ(·, t) ∈
Wu,D such that for almost all t ∈ [0, T ]

m(
∂u
∂t
,v) + a(u,v)

+ c(u;u,v) + b(v, p) = (ρg,v)L2 + fΓ (v) for all v ∈ V0,

b(u, q) = 0 for all q ∈ Q,

(
∂φ

∂t
, v)L2 + (u · ∇φ, v)L2 = 0 for all v ∈ L2(Ω),

(7.135)

together with initial conditions u(0) = u0, φ(0) = φ0 in Ω. The notation is as
in Sect. 6.3:

V := H1(Ω)3,
V0 := {v ∈ V : v = 0 on ∂ΩD } ,
VD := {v ∈ V : v = uD on ∂ΩD } ,

Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫

Ω

q dx = 0
}
,

Wu,D :=
{
w ∈ L2(Ω) : u · ∇w ∈ L2(Ω), w|∂Ωin

= φD
}
,
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and

m(u,v) :=
∫

Ω

ρuv dx,

a(u,v) :=
1
2

∫

Ω

μ tr
(
D(u)D(v)

)
dx,

b(v, q) := −
∫

Ω

q div v dx,

c(u;v,w) :=
∫

Ω

ρ(u · ∇v)w dx,

fΓ (v) := −τ
∫

Γ

κn · v ds.

For the spatial discretization of this model we use the following methods:

• We construct nested tetrahedral triangulations {Th} in the same way as
for the one-phase flow problem, cf. Sect. 3.1.

• We apply streamline diffusion discretization of the level set equation, cf.
Sect. 7.2.2, with piecewise quadratic finite elements. The space of piecewise
quadratics is denoted by Vh.

• A polyhedral approximation Γh of Γ is constructed, as described in
Sect. 7.3.

• For discretization of the velocity variable u we use the standard FE space
of piecewise quadratics. The spaces are denoted by Vh (vh = 0 on ∂ΩD)
and VD,h (vh =interpolation of uD on ∂ΩD).

• Discretization of fΓ by f̃Γh
as explained in Sect. 7.6.

• For the discretization of the pressure variable p we use the extended finite
element space Q̃Γh

h , cf. Sect. 7.9.2. Default we use the variant in which new
basis functions with “very small” support are deleted from the extended
space (Sect. 7.9.3).

For the Galerkin discretization of the problem in (7.135) we proceed in the
same way as for the one-phase Navier-Stokes equation. The semi-discretization
reads as follows: Find uh(t) ∈ VD,h, ph(t) ∈ Q̃Γh

h and φh(t) ∈ Vh(φD) such
that for t ∈ [0, T ]:

m(
∂uh
∂t

(t),vh) + a(uh(t),vh) + c(uh(t);uh(t),vh)

+ b(vh, ph(t)) = m(g,vh) + f̃Γh
(vh) ∀ vh ∈ Vh,

b(uh(t), qh) = 0 ∀ qh ∈ QΓh

h , (7.136)
∑

T∈Th

(
∂φh
∂t

(t) + uh(t) · ∇φh(t), vh + δTuh(t) · ∇vh)L2(T ) = 0 ∀ vh ∈ Vh.
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Clearly, this is a method of lines approach. The finite element spaces Vh

and Vh used for discretization of the velocity and of the level set function
can be considered to be independent of t. The level set function trial space
Vh(φD) depends on t if the inflow boundary data φD depend on t. If at a
certain time t = T0 > 0 the triangulation is adapted (local refinement and/or
coarsening), the computed discrete solutions at t = T0 are interpolated on the
new triangulations. Then the next time interval [T0, T1] can be treated by the
method of lines with fixed discretization spaces Vh and Vh, that differ from
those used on the previous interval [0, T0]. If in the two-phase flow problem the
interface is stationary then the pressure discretization space Q̃Γh

h can also be
considered to be independent of t. In the more interesting case in which there
is an evolving interface there is a strong dependence of Q̃Γh

h on t. In that case
a method of lines discretization as in (7.136) induces difficulties regarding
the time discretization and it is more natural to use a Rothe approach, cf.
Remark 4.2.2. We come back to this issue in Sect. 8.1.2.

Let {ξj}1≤j≤N , {ψj}1≤j≤K and {ξj}1≤j≤L be (nodal) bases of Vh, Q̃Γh

h and
Vh, respectively. We emphasize again, that in case of an evolving interface
we have Q̃Γh

h = Q̃Γh

h (t) and thus in particular K = K(t). The bases induce
corresponding representations of the finite element functions in vector form.
Functions uh(t) ∈ Vh, ph(t) ∈ Qh and φh(t) ∈ Vh can be represented as:

uh(t) =
N∑

j=1

uj(t)ξj , 	u(t) := (u1(t), . . . , uN(t)),

ph(t) =
K∑

j=1

pj(t)ψj , 	p(t) := (p1(t), . . . , pK(t)),

φh(t) =
L∑

j=1

φj(t)ξj + bh(t), 	φ(t) := (φ1(t), . . . , φL(t)),

with bh(t) ∈ Vh(φD) such that bh(t)(x) = φD(x, t) for all x ∈ V(∂Ωin) and
bh(t)(x) = 0 for all other vertices x, cf. (7.15). For φh ∈ Vh(φD) and uh ∈ Vh

(or VD,h) we introduce the following (mass and stiffness) matrices:
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M(φh) ∈ R
N×N , M(φh)ij =

∫

Ω

ρ(φh) ξi · ξj dx,

A(φh) ∈ R
N×N , A(φh)ij =

1
2

∫

Ω

μ(φh) tr
(
D(ξi)D(ξj)

)
dx,

B(φh) ∈ R
K×N , B(φh)ij = −

∫

Ω

ψi div ξj dx,

N(φh,uh) ∈ R
N×N , N(φh,uh)ij =

∫

Ω

ρ(φh) (uh · ∇ξj) · ξi dx,

E(uh) ∈ R
L×L, E(uh)ij =

∑

T∈Th

∫

T

ξj(ξi + δTuh · ∇ξi) dx,

H(uh) ∈ R
L×L, H(uh)ij =

∑

T∈Th

∫

T

(uh · ∇ξj)(ξi + δTuh · ∇ξi) dx.

We also need the following vectors:

	g(φh) ∈ R
N , 	g(φh)i =

∫

Ω

ρ(φh)g · ξi dx,

	fΓh
(φh) ∈ R

N , 	fΓh
(φh)i = f̃Γh

(ξi),

b(uh) ∈ R
L, b(uh)i =

∑

T∈Th

∫

T

(
∂bh
∂t

+ uh · ∇bh)(ξi + δTuh · ∇ξi) dx.

Below we write M(	φ(t)) := M(φh), and similarly for other matrices and
vectors. Using these notations we obtain the following equivalent formulation
of the coupled system of ordinary differential equations (7.136), where for
simplicity we assumed uD = 0: Find 	u(t) ∈ R

N , 	p(t) ∈ R
K and 	φ(t) ∈ R

L

such that for all t ∈ [0, T ]

M(	φ(t))
d	u
dt

(t) + A(	φ(t))	u(t) + N(	φ(t), 	u(t))	u(t) + B(	φ(t))T 	p(t)

= 	g(	φ(t)) +	fΓh
(	φ(t)), (7.137a)

B(	φ(t))	u(t) = 0, (7.137b)

E(	u(t))
d	φ

dt
(t) + H(	u(t))φ(t) = −b(	u(t)). (7.137c)

In addition we have initial conditions for 	u and 	φ.

7.11.2 Numerical experiment with a two-phase flow problem

In Sect. 1.3.1 we presented simulation results of a rising butanol droplet
in water, which is a system with a rather small surface tension coefficient
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τ = 1.63 ·10−3N/m. In this section we consider a similar rising droplet exam-
ple, but now for a toluene-water system, where the surface tension coefficient
is about 20 times larger. Hence, compared to the butanol-water system the
numerical simulation of the fluid dynamics in the toluene-water system is
(much) more challenging for the applied numerical methods. Below we com-
pare the numerical results obtained by applying the reduced XFEM pressure
space Q̃Γh

h and the standard FEM pressure space Q1
h of piecewise linears.

We use the standard two-phase model described in (7.135). Consider a
single toluene droplet with an initial spherical shape with radius r = 10−3m
inside a rectangular tank Ω = [0, 12 · 10−3] × [0, 30 · 10−3] × [0, 12 · 10−3]m3

filled with water, cf. Fig. 1.8. The material properties of this two-phase system
are given in Table 7.22. Note that the properties of water slightly differ from
those in Table 1.1 which is due to the fact that in the real experiment the
water was saturated with toluene at an equilibrium state to avoid any mass
transfer between the droplet and the ambient phase. Gravitation acts in neg-
ative x2-direction, i. e., g = (0,−9.81, 0)m/s2. Initially at rest (u0 = 0m/s)
the bubble starts to rise in x2-direction due to buoyancy effects.

quantity (unit) toluene water

ρ (kg/m3) 867.5 998.8

μ (kg/ms) 5.96 · 10−4 1.029 · 10−3

τ (N/m) 34.31 · 10−3

Table 7.22. Material properties of the system toluene/water.

For the initial triangulation T0 the domain Ω is subdivided into 4× 10× 4
sub-cubes each consisting of 6 tetrahedra. Then the grid is refined four times
in the vicinity of the interface Γ . As time evolves the grid is adapted to the
moving interface. The velocity space Vh consists of piecewise quadratics and
the pressure is either discretized using the reduced XFEM space Q̃Γh

h with
c̃ = 1 or the standard finite element space Q1

h consisting of piecewise lin-
ears. The surface tension force term is discretized using the modified Laplace-
Beltrami discretization f̃Γh

as in (7.60). The level set function is discretized by
piecewise quadratics and streamline-diffusion stabilization. A re-initialization
ReInit(φh) is performed as defined in (7.44) with c = 10. Mass conservation
is forced in each time step as described in Sect. 7.4.2. For time discretization
the decoupled implicit Euler scheme is applied with Δt = 5 · 10−4, cf. (8.23).

Figure 7.22 shows the initial shape of the droplet and the droplet shapes af-
ter 10 time steps for the casesQh = Q̃Γh

h and Qh = Q1
h, respectively. While the

interface is smooth using the extended pressure finite element space, it shows
many “spikes” in the case of the standard pressure space. These spikes are of
course non-physical and only caused by numerical oscillations at the interface,
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Fig. 7.22. Initial droplet shape (left) and after 10 time steps for the XFEM case
(middle) and the standard FEM case (right).

Fig. 7.23. Velocity field at interface for
the XFEM case.

Fig. 7.24. Velocity field at interface for
the standard FEM case.

so-called spurious velocities, which are shown in Fig. 7.24. The velocity field
for the XFEM case Qh = Q̃Γh

h is smooth showing the characteristic vortices,
cf. Fig. 7.23. Note that the scaling of the color coding in both figures is very
different, with a maximum velocity of 5 · 10−3m for the extended pressure
space compared to 5 · 10−1m for the standard pressure space. These results
clearly show, that for this realistic two-phase flow example the standard pres-
sure space Q1

h is not suitable, whereas the (reduced) extended pressure space
Q̃Γh

h yields satisfactory results.
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Time integration

For the two-phase flow problem, the time discretization is based on a general-
ization of the θ-scheme given in Sect. 4.2 for the one-phase flow Navier-Stokes
equations. This generalized method is not found in the literature and there-
fore we describe its derivation in detail. The need for a generalization has two
reasons. Firstly, opposite to the one-phase flow problem the mass matrix M is
no longer constant but may vary in time. Secondly, if in the discretization the
XFEM space is used then the matrix B is in general also time dependent (due
to the dynamics of the interface). In Sect. 8.1 below we present the derivation
of a generalized θ-schema. In Sect. 8.2 we give a variant of an implicit Euler
method in which there is in each time step a decoupling of the the unknowns
(	u, 	p) and 	φ.

8.1 A generalized θ-scheme

In this section we derive a generalized θ-scheme for the two-phase flow discrete
problem in (7.137). We distinguish two cases: In the first case we allow M to
be time dependent but assume that B does not depend on t. In the second
case we allow both M and B to be time dependent. The resulting schemes
turn out to be very similar.

8.1.1 Case I: B independent of time

We first consider the Navier-Stokes part in (7.137) and assume that the matrix
B does not depend on t. This holds if the pressure discretization space does
not depend on t, e.g. if we use Qh instead of Q̃Γh or if the interface is stationary.
For the derivation of a generalized θ-scheme we use the same approach as in
Sect. 4.2. We introduce the notation

G(	u, 	φ, 	g,	fΓh
) = 	g(	φ(t)) +	fΓh

(	φ(t)) −A(	φ(t))	u(t)−N(	φ(t), 	u(t))	u(t).
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Then the Navier-Stokes equations can be written as

M(	φ(t))
d	u
dt

(t) + BT 	p(t) = G(	u, 	φ, 	g,	fΓh
)

B	u(t) = 0,
(8.1)

or, equivalently,

d	u
dt

(t) + M(	φ(t))−1BT 	p(t) = M(	φ(t))−1G(	u, 	φ, 	g,	fΓh
)

B	u(t) = 0.
(8.2)

To obtain a system of ODEs we use the same approach as in Sect. 4.2 and
eliminate the algebraic equation B	u(t) = 0 and the (Lagrange multiplier)
	p(t). In the notation we suppress the dependence on 	φ, 	g and 	fΓh

and write
M(t) = M(	φ(t)), G(	u, t) = G(	u, 	φ, 	g,	fΓh

). From Bd�u
dt (t) = 0 (here we used

that B does not depend on t) and substitution of d�udt (t) from the first equation
we obtain

S(t)	p(t) = BM(t)−1G(	u, t), S(t) := BM(t)−1BT . (8.3)

The matrix BT has full rank and thus S(t) is invertible (on the subspace of
FE pressure functions with (ph, 1)L2 = 0). Using (8.3) we can eliminate 	p(t)
from the first equation in (8.2) resulting in

d	u
dt

(t) =
[
I−M(t)−1BTS(t)−1B

]
M(t)−1G(	u, t)

=: P(t)M(t)−1G(	u, t).
(8.4)

The projection P(t) = I −M(t)−1BTS(t)−1B satisfies BP(t) = 0. Hence, if
B	u(0) = 0 then the solution 	u(t) of the ordinary differential equation (8.4)
remains in the subspace Ker(B). To this system of ODEs the θ-scheme is
applied, resulting in the discretization

	un+1 − 	un
Δt

= θP(tn+1)M(tn+1)−1G(	un+1, tn+1)

+ (1− θ)P(tn)M(tn)−1G(	un, tn).
(8.5)

We assume that for each n this system has a unique solution 	un+1 (which
is the case for Δt sufficiently small). If B	u0 = 0 then B	un = 0 for all
n ≥ 1. For the implementation of this method it is convenient to elimi-
nate the projection P by introducing a suitable Lagrange multiplier. Define
	pk := S(tk)−1BM(tk)−1G(	uk, tk). Then (8.5) takes the form

	un+1 − 	un
Δt

= θM(tn+1)−1
(
G(	un+1, tn+1)−BT 	pn+1

)

+ (1− θ)M(tn)−1
(
G(	un, tn)−BT 	pn

)
.

(8.6)
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Assume that 	u0 is such that B	u0 = 0. The sequence (	un)n≥0 defined by the
θ-scheme (8.5) satisfies (8.6) and also B	un = 0 for all n. We use 	pk as a
Lagrange multiplier to enforce B	uk = 0 as follows. Given 	u0 with B	u0 = 0
let 	p0 be given by

	p0 = S(t0)−1BM(t0)−1G(	u0, t0), (8.7)

and for n ≥ 0 let 	un+1, 	pn+1 be such that

	un+1 − 	un
Δt

= θM(tn+1)−1
(
G(	un+1, tn+1)−BT 	pn+1

)

+ (1− θ)M(tn)−1
(
G(	un, tn)−BT 	pn

)

B	un+1 = 0

(8.8)

holds. Note that in this saddle point type system the projection P is not used.
Due to (8.6) this system has a solution. If we assume that for each n the saddle
point problem (8.8) has a unique solution (which is true for Δt sufficiently
small) then this yields the solution of the θ-scheme in (8.5).

For θ = 0 the method in (8.8) corresponds to the explicit Euler method
applied to (8.4), which is not very useful due to its poor stability properties.
We consider θ �= 0. In this case, in (8.8) inverses of both M(tn+1) and M(tn)
occur. The latter can be avoided by introducing an additional variable, leading
to a more convenient (but equivalent) formulation of (8.8). This is done as
follows. Define

	zk := M(tk)−1
(
G(	uk, tk)−BT	pk

)
, k ≥ 0,

i.e.,

M(t0)	z0 = G(	u0, t0)−BT	p0

θ	zk+1 =
	uk+1 − 	uk

Δt
− (1 − θ)	zk, k ≥ 0.

Using this, (8.8) can be reformulated as

M(tn+1)
	un+1 − 	un

Δt
+ θBT 	pn+1 = θG(	un+1, tn+1) + (1− θ)M(tn+1)	zn

B	un+1 = 0

θ	zn+1 =
	un+1 − 	un

Δt
− (1− θ)	zn,

for n ≥ 0 and a starting value 	z0 as defined above. Besides the fact that in
this reformulated version the matrix M(tn) is avoided it also has further ad-
vantages in view of implementation. The operator G(	un, tn) in (8.8) contains
matrices (e.g. A) and vectors (e.g. 	fΓh

) that have to be computed or stored
from the previous time step. This is not needed in the reformulated version.
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Application of the θ-scheme to the level set equation (7.137c) results in
the discretization given in (7.17).

Combining these results and inserting the notation for G we obtain,
for θ �= 0, the following coupled nonlinear system for (	un, 	pn, 	φ n) →
(	un+1, 	pn+1, 	φ n+1):

Given 	u0, 	φ 0, determine 	p0, 	z0 and 	w0 as follows:

G(	u0, 	φ 0, 	g,	fΓh
) = 	g(	φ 0) +	fΓh

(	φ 0)−A(	φ 0)	u0 −N(	φ 0, 	u0)	u0

BM(	φ 0)−1BT 	p0 = BM(	φ 0)−1G(	u0, 	φ 0, 	g,	fΓh
)

M(	φ 0)	z0 = G(	u0, 	φ 0, 	g,	fΓh
)−BT 	p0

E(	u0)	w0 = −H(	u0)	φ 0 − b(	u0).

(8.9)

For n ≥ 0:

M(	φ n+1)
	un+1

Δt
+ θ

[
A(	φ n+1) + N(	φ n+1, 	un+1)]	un+1 + θBT	pn+1

= M(	φ n+1)
	un

Δt
+ θ[	g(	φ n+1) +	fΓh

(	φ n+1)] + (1− θ)M(	φ n+1)	zn,

B	un+1 = 0, (8.10)

E(	un+1)
	φ n+1

Δt
+ θ

(
H(	un+1)	φ n+1 + b(	un+1)

)

= E(	un+1)
	φ n

Δt
+ (1− θ)E(	un+1)	wn,

θ	zn+1 =
	un+1 − 	un

Δt
− (1 − θ)	zn,

θ	wn+1 =
	φ n+1 − 	φ n

Δt
− (1− θ)	wn.

Remark 8.1.1 The derivation above shows that the scheme in (8.9)-(8.10) is
a reformulation of the θ-scheme applied to the system of ODEs in (8.4). The
latter is A-stable and first order accurate for θ ∈ (0, 1] and second order accu-
rate for θ = 1

2 . This θ-scheme (8.9)-(8.10) can be used to derive a fractional-
step θ-scheme, similar to the method for the one-phase Navier-Stokes problem
in Sect. 4.3, cf. Remark 4.3.1.

Special case: implicit Euler method

For the case θ = 1 the scheme takes a much simpler form. In particular the
sequences for 	zn and 	wn are avoided and one does not need a starting value
for the pressure 	p0, cf. (8.9). The resulting method is as follows:
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Given 	u0, 	φ 0, determine for n ≥ 0:

M(	φ n+1)
	un+1

Δt
+

[
A(	φ n+1) + N(	φ n+1 	un+1)

]
	un+1 + BT 	pn+1

= M(	φ n+1)
	un

Δt
+ 	g(	φ n+1) +	fΓh

(	φ n+1),

B	un+1 = 0,

E(	un+1)
	φ n+1

Δt
+ H(	un+1)	φ n+1 + b(	un+1) = E(	un+1)

	φ n

Δt
.

(8.11)

A variant of the θ-scheme

The θ-scheme presented above has many variants. We consider one particular
variant that is of interest for the following two reasons. Firstly, in this method
we will not need the sequence 	zn and secondly, this method can be generalized
to the case with a time dependent B, cf. Sect. 8.1.2. Instead of the θ-scheme
in (8.5) we now use the variant:

	un+1 − 	un
Δt

= P(tn+ 1
2
)M(tn+ 1

2
)−1

(
θG(	un+1, tn+1) + (1− θ)G(	un, tn)

)
.

(8.12)
This method has the same consistency order and stability properties as the
one in (8.5). We assume that for each n this system has a unique solution
	un+1 (which is the case for Δt sufficiently small). If B	u0 = 0 then B	un = 0
for all n ≥ 1. Again we introduce a suitable Lagrange multiplier, which is
slightly different from the one used above:

	̃pk+1 := S(tk+ 1
2
)−1BM(tk+ 1

2
)−1

(
θG(	uk+1, tk+1) + (1− θ)G(	uk, tk)

)
, k ≥ 0.

If M does not depend on t, then this multiplier is the same as the one used in
the θ-scheme for a one-phase Navier-Stokes equation, as described in Sect. 4.2.
Using this, (8.12) can be reformulated in the following equivalent form. Given
	u0 with B	u0 = 0, for n ≥ 0 let 	un+1, 	̃pn+1 be such that

M(tn+ 1
2
)
	un+1 − 	un

Δt
= θG(	un+1, tn+1)

+ (1− θ)G(	un, tn)−BT 	̃pn+1

B	un+1 = 0.

(8.13)

Note that this is slightly different from the method in (8.8). In particular the
pressure is needed only at the new time level n + 1. Furthermore, only one
mass matrix M(tn+ 1

2
) occurs. Due to this we can avoid the variable 	zk. In

principle, the same idea can be applied to avoid the help sequence 	wk in the
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discretization of the level set equation. This is left to the reader. In practice
it may be more convenient to use

M̂(tn+ 1
2
) :=

1
2
(
M(tn+1) + M(tn)

)

instead of M(tn+ 1
2
). The derivation above then still applies, provided in

P(tn+ 1
2
) the matrix M(tn+ 1

2
) is replaced by M̂(tn+ 1

2
). Thus, instead of (8.9)-

(8.10) we obtain, for θ �= 0, the following method:

Given 	φ 0, determine 	w0 as follows:

E(	u0)	w0 = −H(	u0)	φ 0 − b(	u0). (8.14)

Given 	u0, 	w0, for n ≥ 0:

M̂(	φ n+ 1
2 )
	un+1

Δt
+ θ

[
A(	φ n+1) + N(	φ n+1, 	un+1)]	un+1 + BT 	̃pn+1

= M̂(	φ n+ 1
2 )
	un

Δt
− (1− θ)

[
A(	φ n) + N(	φ n, 	un)]	un

+θ[	g(	φ n+1) +	fΓh
(	φ n+1)] + (1− θ)[	g(	φ n) +	fΓh

(	φ n)],

B	un+1 = 0,

E(	un+1)
	φ n+1

Δt
+ θ

(
H(	un+1)	φ n+1 + b(	un+1)

)

= E(	un+1)
	φ n

Δt
+ (1− θ)E(	un+1)	wn,

θ	wn+1 =
	φ n+1 − 	φ n

Δt
− (1− θ)	wn.

(8.15)

We use the notation M̂(	φ n+ 1
2 ) := 1

2

(
M(	φ n+1) + M(	φ n)

)
. Compared to

the scheme (8.9)-(8.10), in (8.14)-(8.15) we do not use the variable 	zk and
we do not have to determine 	p0: the scheme is of the form (	un, 	φ n, 	wn) →
(	un+1, 	̃pn+1, 	φ n+1, 	wn+1). For θ = 1 this method is very similar to the im-
plicit Euler scheme in (8.11). The only difference lies in the use of M̂(	φ n+ 1

2 )
instead of M(	φ n+1).

8.1.2 Case II: B may depend on time

In this section we allow both M and B to be time dependent. In our appli-
cation this time dependence occurs if we use XFEM finite element spaces for
pressure discretization. Then the function t→ B(t) is in general not smooth.
It can even happen that for certain t0 the dimension of B(t0) is different from
the dimension of B(t0 + ε) with ε > 0, arbitrarily small. Due to this, it is not
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clear how to derive a space-time discrete problem, based on the method of
lines. As already indicated in Remark 4.2.2, a Rothe approach may be more
appropriate in this situation. In this section, for the general case in which both
M and B may be time dependent, we derive a fully discrete problem based
on the Rothe technique. For the special case that B does not depend on t the
resulting method will turn out to be the same as the one in (8.14)-(8.15).

In the Rothe method, starting from the variational problem in (7.135) we
first apply a time discretization followed by a space discretization. It suffices to
consider the Navier-Stokes part in (7.135). For simplicity we only consider the
case with homogeneous Dirichlet boundary conditions for velocity, i.e., VD =
V0. Recall that Vdiv := {v ∈ V0 : div v = 0 }. We introduce the notation

γ(u,v, t) = γ(u,v, φ,g, fΓ ) := (ρg,v)L2 + fΓ (v) − a(u,v) − c(u;u,v),

which is the continuous analogon of the vector G(	u, 	φ, 	g,	fΓh
) used above.

The projected version of the Navier-Stokes equations in (7.135) is as follows,
cf. Sect. 2.2.3: find u(t) = u(·, t) ∈ Vdiv such that

m(
∂u
∂t
,v) = γ(u,v, t) for all v ∈ Vdiv. (8.16)

For the time discretization of this problem we consider the following variant
of the θ-scheme: Given u0 = u0 ∈ Vdiv, for n ≥ 0, un+1 ∈ Vdiv is determined
by

∫

Ω

ρ̂(tn+ 1
2
)
un+1 − un

Δt
v dx

= θγ(un+1,v, tn+1) + (1− θ)γ(un,v, tn) for all v ∈ Vdiv,

(8.17)

with
ρ̂(tn+ 1

2
) :=

1
2
[
ρ
(
φ(tn)

)
+ ρ

(
φ(tn+1)

)]
.

Instead of ρ̂(tn+ 1
2
) we could also use ρ

(
φ(tn+ 1

2
)
)
. We introduce a pressure

variable p ∈ L2
0(Ω), i.e. instead of (8.17) we consider the following problem:

determine un+1 ∈ V0, p ∈ L2
0(Ω) such that

∫

Ω

ρ̂(tn+ 1
2
)
un+1 − un

Δt
v dx + b(v, p)

= θγ(un+1,v, tn+1) + (1− θ)γ(un,v, tn) for all v ∈ V0,

b(un+1, q) = 0 for all q ∈ L2
0(Ω).

(8.18)

This is a nonlinear Oseen type of problem, which, for Δt sufficiently small,
has a unique solution (un+1, p). The velocity solution un+1 solves (8.17), too.
The method in (8.18) defines the time-discretization of the Navier-Stokes part
in (7.135). To obtain a fully discrete problem the saddle point problem can be
discretized by a Galerkin method in space. For this we use, for example, the
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pair (Vh, Q̃
Γ
h ), i.e., piecewise quadratics for velocity and the (reduced) XFEM

space for pressure. For the latter we use the space at the time t = tn+1, denoted
by Q̃Γh = Q̃Γh (tn+1). Given an approximation unh (not necessarily in Vh) of
un, the time step tn → tn+1 in (8.18) is then discretized in space as follows:
determine un+1

h ∈ Vh, ph ∈ Q̃Γh (tn+1) such that
∫

Ω

ρ̂(tn+ 1
2
)
un+1
h − unh
Δt

vh dx+ b(vh, ph)

= θγ(un+1
h ,vh, tn+1) + (1− θ)γ(unh ,v, tn) for all vh ∈ Vh,

b(un+1
h , qh) = 0 for all qh ∈ Q̃Γh (tn+1).

(8.19)

Again, in practice we use Γh(t) instead of Γ (t). Note that in the construction
of Q̃Γh

h (tn+1) we need Γh(tn+1) and thus this space is defined implicitly only.
In the numerical realization of this fully discrete problem we need an iterative
decoupling strategy between the level set equation (evolution of Γ (t)) and the
Navier-Stokes problem (8.19).
If we represent this fully discrete problem using the standard bases in Vh,
Q̃Γh

h (tn+1) we obtain the following method:

Given 	φ 0, determine 	w0 as follows:

E(	u0)	w0 = −H(	u0)	φ 0 − b(	u0). (8.20)

Given 	u0, 	w0, for n ≥ 0:

M̂(	φ n+ 1
2 )
	un+1

Δt
+ θ

[
A(	φ n+1) + N(	φ n+1, 	un+1)]	un+1 + B(	φ n+1)T 	pn+1

= M̂(	φ n+ 1
2 )
	un

Δt
− (1 − θ)

[
A(	φ n) + N(	φ n, 	un)]	un

+θ[	g(	φ n+1) +	fΓh
(	φ n+1)] + (1− θ)[	g(	φ n) +	fΓh

(	φ n)],

B(	φ n+1)	un+1 = 0, (8.21)

E(	un+1)
	φ n+1

Δt
+ θ

(
H(	un+1)	φ n+1 + b(	un+1)

)

= E(	un+1)
	φ n

Δt
+ (1− θ)E(	un+1)	wn,

θ	wn+1 =
	φ n+1 − 	φ n

Δt
− (1− θ)	wn.

Note that this is a generalization of the method in (8.14)-(8.15): the only
difference is that we use B(	φ n+1) instead of B. In the derivation above, there
is some freedom concerning the choice of the pressure discretization space. The
pressure p in (8.18) is an approximation of θp(tn+1)+(1−θ)p(tn), cf. Sect. 4.2.
Therefore, in the discretization, instead of replacing p by ph ∈ Q̃Γh (tn+1),
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as is done in (8.19), it may be better to replace p by θpn+1
h + (1 − θ)pnh ,

with pnh ∈ Q̃Γh (tn) the pressure discretization from the previous time step and
pn+1
h ∈ Q̃Γh (tn+1) the unknown Lagrange multiplier. In the formulation (8.21),

instead of B(	φ n+1)T 	pn+1 one then obtains

θB(	φ n+1)T 	pn+1 + (1 − θ)B(	φ n)T 	pn.

In this method one needs a starting value for the pressure 	p0, which can be
determined as in (8.9). For θ = 1

2 another option is to use, instead of the
two spaces Q̃Γh (tn) and Q̃Γh (tn+1), the space Q̃Γh (tn+ 1

2
), which is the XFEM

space corresponding to the zero level of φ(tn)+φ(tn+1). This variant leads to
a method as (8.21) in which the matrices B(	φ n+1) are replaced by B(	φ n+ 1

2 ),
with 	φ n+ 1

2 := 1
2

(
	φ n + 	φ n+1

)
.

The θ-schemes treated above can be used to derive a fractional-step
θ-scheme, similar to the method for the one-phase Navier-Stokes problem in
Sect. 4.3, cf. Remark 4.3.1.

Concerning (error) analyses of the time discretization methods treated in
this section we note the following. For the (less interesting) case of a station-
ary interface the method of lines approach can be applied and the resulting
method (8.9)-(8.10) is a reformulation of the θ-scheme applied to a system of
ODEs. Therefore one may expect this method to have accuracy and stability
properties as discussed in Sect. 4.1 for the θ-scheme. For problems with an
evolving interface we derived, based on a Rothe approach, the method (8.20)-
(8.21). Its (accuracy and stability) properties concerning time discretization
are not clear. In Sect. 8.3 we present results of a numerical experiment with
this scheme. To our knowledge a systematic analysis of time discretization
methods for two-phase incompressible flow problems has not been performed,
yet.

For the case of an evolving interface it is natural to use space-time finite
elements for the discretization of the two-phase Navier-Stokes equations. In
such a setting a space-time XFEM space for the discretization of the pressure
can be used which avoids the problems caused the fact that the XFEM pres-
sure space Q̃Γh (t) used above is time dependent. We explain this space-time
XFEM space in Sect. 11.5.2. The application of this space-time approach to
the two-phase flow problem is not treated here.

8.2 An implicit Euler method with decoupling

We present a variant of an implicit Euler method which is particularly at-
tractive due to its simplicity. We present this method for the general case, i.e.
both M and B may be time dependent. We consider a semi-implicit variant
of the method in (8.17), in the sense that the u part is treated implicitly but
other time dependent parts are treated explicitly. More precisely, we propose
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the following variant: Given u0 = u0 ∈ Vdiv, for n ≥ 0, un+1 ∈ Vdiv is
determined by

∫

Ω

ρ(tn)
un+1 − un

Δt
v dx

= θγ(un+1,v, tn) + (1− θ)γ(un,v, tn) for all v ∈ Vdiv.

(8.22)

As above we can introduce a pressure variable p ∈ L2
0(Ω), resulting in the

Oseen problem: determine un+1 ∈ V0, p ∈ L2
0(Ω) such that

∫

Ω

ρ(tn)
un+1 − un

Δt
v dx + b(v, p)

= θγ(un+1,v, tn) + (1− θ)γ(un,v, tn) for all v ∈ V0,

b(un+1, q) = 0 for all q ∈ L2
0(Ω).

We discretize this saddle point problem using a Galerkin approach with spaces
Vh, Q̃Γh (tn) (and not Q̃Γh (tn+1)). The same semi-implicit treatment can be
applied to the level set equation and thus we get the following time integration
scheme for the coupled problem:

Given 	u0, 	φ 0, determine for n ≥ 0:

M(	φ n)
	un+1

Δt
+

[
A(	φ n) + N(	φ n, 	un+1)

]
	un+1 + B(	φ n)T 	pn+1

= M(	φ n)
	un

Δt
+ 	g(	φ n) +	fΓh

(	φ n),

B(	φ n)	un+1 = 0,

E(	un)
	φ n+1

Δt
+ H(	un)	φ n+1 + b(	un) = E(	un)

	φ n

Δt
.

(8.23)

This scheme is similar to the one in (8.11), but now the mass matrices M and
E are treated explicitly (i.e. evaluated at tn instead of tn+1). In the Navier-
Stokes equations the level set function is evaluated at tn, and in the level set
equation the velocity is evaluated at tn. Due to this, per time step there is a
decoupling between the Navier-Stokes and level set equation. Of course this
strong gain in simplicity is accompanied by a loss of accuracy.

8.3 Numerical experiments

In this section we present results of a numerical experiment with different
time integration schemes for a two-phase Stokes problem. As a test case we
consider a rising droplet Ω1(t) inside a cuboid domain Ω = (0, 1)2 × (0, 2).
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For t = 0 the droplet is spherical with center point xc = (0.5, 0.5, 0.5) and
radius 0.25, i. e., Ω1(0) = {x ∈ Ω : ‖x− xc‖ < 0.25 }. The initial conditions
are given by u(0) = 0 and φ(0) equal to the signed distance function for
Ω1(0). Homogeneous Dirichlet boundary conditions u = 0 are prescribed on
the whole boundary ∂Ω. The material parameters are chosen as follows: den-
sities ρ1 = 1, ρ2 = 10, dynamic viscosities μ1 = 2, μ2 = 1 and surface tension
coefficient τ = 0.1. The gravitational force g = (0, 0,−10) acts in negative
x3-direction, hence the droplet is rising in positive x3-direction due to buoy-
ancy effects. Figure 8.1 shows the position of the rising droplet for t = 0, 0.5, 1,
respectively.

Fig. 8.1. Rising droplet for t = 0, 0.5, 1 (from left to right). Shown is the is the
interface Γ (t) and the velocity u on a cut plane x2 = 0.5.

We used a time-independent triangulation (no adaptivity) obtained by a
uniform subdivision of Ω in 12×12×24 subcubes, each of which is subdivided
into 6 tetrahedra. For spatial discretization we use piecewise quadratics for
velocity and a reduced XFEM space for pressure, i.e. the pair Vh× Q̃Γh . Note
that the XFEM space Q̃Γh depends on time since the interface evolves in time.

We consider three time integration schemes, namely the decoupled implicit
Euler scheme in (8.23) and the Rothe θ-scheme (8.20)–(8.21) for θ = 1 and
θ = 1

2 , respectively. The different schemes are applied for time step sizes
Δt = 1

nt
with nt = 10, 20, 40, 80, 160. The mass conservation strategy de-

scribed in Sect. 7.4.2 is applied in each time step, but no reparametrization of
the level set function is performed, cf. Sect. 7.4.1. The computed approxima-
tions 	unt of u(1) are compared to a reference solution 	uref which is computed
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by the scheme (8.20)–(8.21) with θ = 1
2 and time step size Δt = 10−3. The

barycenter and the rise velocity of the droplet Ω1(t) are defined by

x̄(t) = |Ω1(t)|−1

∫

Ω1(t)

xdx, ū(t) = |Ω1(t)|−1

∫

Ω1(t)

u dx.

The third (=vertical) component of these quantities is plotted in Fig. 8.2 as a
function of time t. The results of the three time discretization schemes with
Δt = 0.1 are shown, as well as the results for the reference solution.
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Fig. 8.2. Vertical position of barycenter x̄3 (left) and vertical rise velocity ū3 (right)
as a function of time. Shown are the reference solution (solid line) and solutions
obtained by the decoupled implicit Euler scheme (squares), Rothe θ-scheme for
θ = 1 (circles) and Rothe theta-scheme for θ = 1

2 (crosses) for nt = 10 time steps.

Comparing the three methods we see that the best results are obtained
using the Rothe θ-scheme for θ = 1

2 . The implicit Euler scheme appears to
have a time lag for the position of the barycenter. Further experiments show
that this time lag is of the order of magnitude of Δt. This time lag effect
is probably due to the (too) strong decoupling that is used in this scheme.
Comparing the results for the rise velocity of the droplet, the Euler scheme
leads to an under-estimation whereas the Rothe θ-scheme for θ = 1 over-
estimates this value. Again the Rothe θ-scheme for θ = 1

2 shows a very good
match with the reference solution.
Tables 8.1–8.3 show the convergence rates for the the three time discretization
schemes.

The results show first order convergence, both in the L2- and H1-norm, for
the decoupled implicit Euler scheme and the Rothe θ-scheme with θ = 1. For
the Rothe θ-scheme with θ = 1

2 the observed order fluctuates between first
and second order. The reason for this behavior is not understood, yet, but
is probably related to the pressure XFEM space. When using the standard
piecewise linear finite element space for the pressure, second order convergence
is observed.
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nt ‖�uref − �unt‖L2 order ‖�uref − �unt‖1 order

10 1.57 E-2 — 2.48 E-1 —
20 7.65 E-3 1.04 1.27 E-1 0.96
40 3.79 E-3 1.01 6.67 E-2 0.93
80 1.88 E-3 1.01 3.23 E-2 1.05
160 9.34 E-4 1.01 1.66 E-2 0.96

Table 8.1. Convergence behavior of the decoupled implicit Euler scheme (8.23)
w.r.t. time step size.

nt ‖�uref − �unt‖L2 order ‖�uref − �unt‖1 order

10 1.33 E-2 — 1.77 E-1 —
20 6.90 E-3 0.95 9.59 E-2 0.88
40 3.53 E-3 0.96 5.02 E-2 0.93
80 1.81 E-3 0.97 2.61 E-2 0.94
160 9.19 E-4 0.98 1.34 E-2 0.97

Table 8.2. Convergence behavior of the Rothe θ-scheme (8.20)–(8.21) for θ = 1
w.r.t. time step size.

nt ‖�uref − �unt‖L2 order ‖�uref − �unt‖1 order

10 2.24 E-3 — 7.57 E-2 —
20 6.53 E-4 1.78 3.81 E-2 0.99
40 2.63 E-4 1.31 2.05 E-2 0.89
80 9.21 E-5 1.52 8.00 E-3 1.36
160 2.42 E-5 1.93 2.41 E-3 1.73

Table 8.3. Convergence behavior of the Rothe θ-scheme (8.20)–(8.21) for θ = 1
2

w.r.t. time step size.
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Iterative solvers

In this chapter we address the issue of iterative solvers for the coupled non-
linear system of equations that arises in each time step of the implicit time
integration methods treated in Chap. 8.

9.1 Decoupling and linearization

In a two-phase flow problem, besides the nonlinear system for the unknowns
	u, 	p, we also have, in each time step, the nonlinear coupling between the
flow variable 	u and the level set function 	φ. One usually applies an iterative
strategy in which per iteration the unknown 	u is decoupled from 	φ. To explain
this in more detail we consider a time step in the θ-scheme (8.10). Other time
integration methods can be treated in a very similar manner. The nonlinear
system for 	un+1, 	pn+1, 	φ n+1 in (8.10) is of the form
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
1
Δt

M + θA](	φ n+1)	un+1 + θN(	φ n+1, 	un+1)	un+1 + θBT 	pn+1

= θ[	g +	fΓh
](	φ n+1) + M(	φ n+1)

(	un

Δt
+ (1− θ)	zn

)

B	un+1 = 0

[ 1
ΔtE + θH](	un+1)	φ n+1 = E(	un+1)

( �φ n

Δt + (1− θ)	wn
)
− θb(	un+1).

If one uses the XFEM approach for pressure discretization then the matrix B
depends on the position of the interface and has to be replaced by B(	φ

n+1
),

cf. (8.20)-(8.21). The nonlinear coupling between 	un+1 and 	φ n+1 can be
treated by several decoupling strategies. We treat a few methods. For this
we first introduce some notation that simplifies the presentation. At t = tn
the values of 	un, 	wn, 	zn and 	φ n are known. The unknowns 	un+1, 	pn+1 and
	φ n+1 are denoted by x, y and φ, respectively. We also define

f1 :=
	un

Δt
+ (1− θ)	zn, f2 :=

	φ n

Δt
+ (1− θ)	wn.
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Using this notation the nonlinear system can be written as follows:

[ 1
ΔtM + θA](φ)x + θN(φ,x)x + θBTy = θ[	g +	fΓh

](φ) + M(φ)f1
Bx = 0

[ 1
ΔtE + θH](x)φ = E(x)f2 − θb(x).

(9.1)

The (x,y) unknowns can be decoupled from the level set unknown φ by a
simple block Gauss-Seidel approach in which the level set equation is solved
for the level set unknowns and the Navier-Stokes equations for the velocity
and pressure unknowns:

Decoupling by a block Gauss-Seidel iteration

This method is as follows: Initialize x and φ with the values from the previous
time step, i.e., x0 = 	un, φ0 = 	φ n. Iterate for k = 0, 1, . . .

• Compute the level set vector φk+1 from the linear system
[

1
ΔtE + θH

]
(xk)φk+1 = E(xk)f2 − θb(xk). (9.2)

• Solve the following equations for (xk+1,yk+1):
[

1
ΔtM + θA

]
(φk+1)xk+1 + θN(φk+1,xk+1)xk+1 + θBTyk+1

= θ
[
	g +	fΓh

]
(φk+1) + M(φk+1)f1

Bxk+1 = 0.

(9.3)

The nonlinear system (9.3) is very similar to the discrete Navier-Stokes equa-
tions of a one-phase flow problem. Note, however, that the matrices M, A, N
in (9.3) depend on the viscosity and density, which in case of a two-phase
problem are not constant in the whole domain. Furthermore, the matrix B is
different from the one-phase flow case if for the two-phase flow problem we use
the extended finite element space for pressure discretization. This nonlinear
system has, after rescaling of the first equation by a factor 1

θ , the form

(
1
θΔt

M + A)x + N(x)x + BTy = b

Bx = c,
(9.4)

and can be solved using the defect correction method explained in Sect. 5.1.

In the level set method one applies re-initialization after each or a few time
step(s). In our approach we also apply a volume correction technique, cf.
Sect. 7.4.2. Such corrections of the level set function may lead to inconsisten-
cies. To explain this more precisely, we introduce some notation related to the
re-initialization and volume correction methods. Given a (piecewise quadratic)
finite element function φh, we assume that we have a re-initialization operator
φh → ReInit(φh), cf. Remark 7.4.4. Let R be the vector representation of this
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operator, i.e. if φ is the vector representation of φh, then R(φ) is the vector
representation of ReInit(φh). Similarly, the vector representation of the mass
correction method in Sect. 7.4.2 is denoted by V(φ). The block Gauss-Seidel
method, based on the subproblems (9.2)-(9.3), is represented in a compact
form as follows: Take x0 = 	un, φ0 = 	φ

n
; iterate for k = 0, 1, . . .

Determine φk+1 such that F1(φk+1,xk) = 0. (9.5a)
Determine xk+1 such that F2(xk+1,φk+1) = 0. (9.5b)

In (9.5b) the (pressure) variable yk+1 from (9.3) is part of the operator
F2, since it plays no role in the coupling between the level set and Navier-
Stokes equations. Based on a stopping criterion this iteration is terminated
and as approximations for velocity and level set vectors at t = tn+1 one
takes: (	un+1, 	φ

n+1
) = (xk+1,φk+1). If after completion of this time step one

applies a re-initialization R(	φ
n+1

) and/or volume correction V(	φ
n+1

) this

results in a modification 	ψ
n+1

�= 	φ
n+1

and the pair (	un+1, 	ψ
n+1

) will in
general not satisfy the discrete Navier-Stokes equations in (9.5b). This incon-
sistency can be eliminated by solving (9.5b) once more with φk+1 replaced

by 	ψ
n+1

, resulting in a new velocity vector 	un+1. This, however, requires an
additional solve of the problem (9.5b) (which is expensive) and the corrected

pair (	un+1, 	ψ
n+1

) may now have a large residual F1(	ψ
n+1

, 	un+1) in the level
set equation (9.5a). Since the equation in (9.5a) describes the discrete evolu-
tion of the level set function and the re-initialization and volume corrections
result in modifications of the level set function, a natural alternative is to
incorporate the correction operators into the block Gauss-Seidel iteration. We
describe one particular strategy that is used in our simulations. After solving
the discrete level set equation in (9.5a) we first apply a re-initialization step
R(φk+1), then a volume correction V

(
R(φk+1))

)
and then use this level set

vector (instead of φk+1) in (9.5b). Hence, the block Gauss-Seidel iteration
now takes the following form:

Determine φk+1 such that F1(φk+1,xk) = 0, (9.6a)
Determine xk+1 such that F2

(
xk+1,V(R(φk+1))

)
= 0. (9.6b)

This method is consistent in the sense that the pair
(
xk+1,V(R(φk+1))

)

satisfies the discrete Navier-Stokes equations for all k. Furthermore, error
control is relatively easy since it can be based on the size of the residuals of
the equations (9.6). For k+1 sufficiently large, such that a stopping criterion
is satisfied, we take as approximations for velocity and the level set function at
t = tn+1: (	un+1, 	φ

n+1
) =

(
xk+1,V(R(φk+1)

)
. The method in (9.6) is feasible

in practice, since the volume correction operator V is inexpensive (compared
to other operations in the evaluation of F2) and for the re-initialization R one
“often” has R(φk+1) = φk+1, as the Fast Marching Method is applied only
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if the size of the gradient of the level set function represented by φk+1 is too
small or too large, cf. Remark 7.4.4. The iterations in (9.6a) and (9.6b) define
solution operators:

φk+1 =: S1(xk), xk+1 =: S2(φk+1), (9.7)

and the method (9.6) can be rewritten as

xk+1 = S2(S1(xk)), x0 = 	un. (9.8)

Let x∗ be a fixed point, i.e. x∗ = S2(S1(x∗)) and define φ∗ := S1(x∗). Due
to the perturbations introduced by the re-initialization R and volume correc-
tion V, the pair (x∗,φ∗) in general does not solve the coupled system (9.1).
However, (x∗,φ∗) is a solution of the level set equation in (9.1) and the Navier-
Stokes equations in (9.1) are solved by the pair (x,φ) =

(
x∗,V(R(φ∗))

)
.

Due to the fact that the operators F1 and F2 are highly nonlinear, the fixed
point method (9.8) can have a (very) slow convergence and acceleration is de-
sirable. Many convergence acceleration techniques are known, cf. [86]. Below
we discuss two strategies. The first one, treated in detail below, uses a special
structure in our coupled problem. It is based on a linearization of the surface
tension force term. This results in a modified nonlinear operator F̃2 instead
of F2 in (9.6b), with corresponding solution operator S̃2. Instead of the fixed
point method (9.8) we get a modified iteration

xk+1 = S̃2(S1(xk)), x0 = 	un, (9.9)

which, due to the choice of F̃2 has better contraction properties. The modifi-
cation is such that (9.9) has the same fixed point as (9.8).

The second convergence acceleration strategy is an application of the gen-
eral Broyden acceleration method for nonlinear problems.

Convergence acceleration by linearization of the surface
tension force

There is a strong coupling between the Navier-Stokes and level set equations
through the surface tension force term 	fΓh

(φ) in (9.1). A modification of the
block Gauss-Seidel method (9.6), which has better convergence properties,
can be obtained by a suitable linearization of this term. We explain the basic
idea behind this approach by restricting to a strongly simplified problem,
in which, however, the (coupling through the) surface tension force still has
essentially the same form as for the general class of two-phase flow problems
considered above. We take a non-stationary Stokes flow with constant viscosity
and density in the whole domain: μ1 = μ2 = 1, ρ1 = ρ2 = 1. For the surface
tension force discretization we use, instead of f̃Γh

, the simpler functional in
(7.54):

fΓh
(vh) := −τ

∫

Γh

∇Γh
idΓh

·∇Γh
vh ds, vh ∈ Vh.
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Discretization in time is done by the implicit Euler method. Since in this
simplified case the mass and stiffness matrices do not depend on φ and the
convection term N(φ,x) vanishes, the Navier-Stokes part of the coupled prob-
lem (9.1) simplifies to

Ãx + BTy = 	fΓh
(φ) + b,

Bx = 0,

with b = 	g + Mf1, Ã =
1
Δt

M + A.

(9.10)

Note that Ã is symmetric positive definite. In (9.10) the coupling with the
level set function is only through the surface tension force term 	fΓh

(φ). The
solution pair (x,φ) yields the velocity and level set functions at time t = tn+1:

x = 	un+1, φ = 	φ
n+1

. The i-th component of the surface tension force vector
is given by

	fΓh
(φ)i = −τ

∫

Γh(tn+1)

∇Γh(tn+1) idΓh(tn+1) ·∇Γh(tn+1)ξi ds, (9.11)

with ξi the i-th nodal basis function in Vh and Γh(tn+1) the interface ap-

proximation corresponding to φ = 	φ
n+1

. The latter is obtained through an
implicit Euler time discretization of the level set equation, which is the third
equation in (9.1) with θ = 1. We assume that there is no re-initialization or
volume correction. Denoting by Ph : R

m → Vh the finite element isomor-
phism Phv =

∑m
i=1 viξi, we have

Γh(tn+1) ≈
{
x+Δt(Ph	un+1)(x) : x ∈ Γh(tn)

}
=: Γh(	un+1) = Γh(x).

Note that the notation Γh(x) differs from Γ (tn+1). The former denotes the
approximation of Γ (tn+1) that is obtained by transporting the known in-
terface approximation Γ (tn) over a time Δt in the direction of the velocity
field x. Using the result in (9.11) and the approximation Γh(tn+1) ≈ Γh(x)
we can eliminate φ from (9.10) and instead consider the following very similar
problem

Ãx + BTy = f(x) + b,
Bx = 0,

(9.12)

with

f(x)i := −τ
∫

Γh(x)

∇Γh(x) idΓh(x) ·∇Γh(x)ξi ds, 1 ≤ i ≤ m. (9.13)
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The problem (9.12) is nonlinear due to the nonlinearity of f . An obvious
iterative method for solving this problem is given by: x0 := 	un, for k ≥ 0
solve

Ãxk+1 + BTyk+1 = f(xk) + b,

Bxk+1 = 0.
(9.14)

A better method is obtained if we replace idΓh(x) in (9.13) by a better approx-
imation than idΓh(xk), namely idΓh(xk+1). For a description of this modified
method we introduce some further notation. For v ∈ R

m we define the velocity
field

idΓh(v) : x→ x+Δt(Phv)(x), x ∈ Ω.
The restriction of this velocity field to Γh(tn) results in a shifted interface

Γh(v) :=
{

idΓh(v)(x) : x ∈ Γh(tn)
}
,

which is consistent with the notation Γh(x) introduced above. For v, w ∈ R
m

we have
idΓh(v) = idΓh(w) +ΔtPh(v −w),

i.e., v → idΓh(v) is an affine mapping. We introduce the generalization of
(9.13) given by

F(v,w)i := −τ
∫

Γh(v)

∇Γh(v) idΓh(w) ·∇Γh(v)ξi ds, 1 ≤ i ≤ m,

which is well-defined since idΓh(v), v ∈ R
m, is a velocity field on Ω. The affine

mapping w→ F(v,w) satisfies

F(v,w1) = F(v,w2)−ΔtLv(w1 −w2),

(Lv)ij := τ

∫

Γh(v)

∇Γh(v)ξj · ∇Γh(v)ξi ds, 1 ≤ i, j ≤ m.
(9.15)

The matrix Lv is symmetric positive semi-definite. As mentioned above, in-
stead of idΓh(xk) we use idΓh(xk+1) in the surface tension force term. This
results in the iterative method

Ãxk+1 + BTyk+1 = F(xk,xk+1) + b,

Bxk+1 = 0.

Using (9.15) we reformulate this method and thus obtain the following alter-
native iterative method for solving (9.12): take x0 := 	un, for k ≥ 0 solve

(
Ã +ΔtLxk

)
xk+1 + BTyk+1 = f(xk) +ΔtLxkxk + b,

Bxk+1 = 0.
(9.16)

In the following theorem we give convergence results for the two methods in
(9.14) and (9.16). We use the Euclidean norm ‖ · ‖ on R

m.
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Theorem 9.1.1 Let x be solution of (9.12). Assume that on the neighborhood
B = { x̂ ∈ R

m : ‖x̂− x‖ ≤ r }, with a given r > 0, we have

‖F(x1, z)− F(x2, z)‖ ≤ L1‖x1 − x2‖ for all x1,x2, z ∈ B,
‖Lx̂‖ ≤ L2 for all x̂ ∈ B.

Define ei = x− xi, i = 0, 1, 2, . . .. If xk ∈ B then the following holds:

‖ek+1‖ ≤
(
L1 +ΔtL2

)
‖Ã−1‖‖ek‖ for the method in (9.14), (9.17)

‖ek+1‖ ≤ L1‖(Ã +ΔtLxk)−1‖‖ek‖ for the method in (9.16). (9.18)

Proof. First we consider a saddle point problem of the form

Ce + BTy = d

Be = 0,

with a symmetric positive definite matrix C. A straightforward computation
yields

e = C− 1
2
(
I− B̂T (B̂B̂T )−1B̂

)
C− 1

2 d, B̂ := BC− 1
2 .

Hence, using ‖I− B̂T (B̂B̂T )−1B̂‖ = 1, we get

‖e‖ ≤ ‖C−1‖‖d‖.

We use the identity

f(x)− f(xk) = F(x,x) − F(xk,x) + F(xk,x)− F(xk,xk)

= F(x,x) − F(xk,x)−ΔtLxk(x− xk).
(9.19)

For the method in (9.14) we obtain

Ãek+1 + BT (y − yk+1) = f(x) − f(xk),

Bek+1 = 0.

Thus ‖ek+1‖ ≤ ‖Ã−1‖‖f(x)− f(xk)‖ holds. Using (9.19) we get

‖f(x) − f(xk)‖ ≤ (L1 +ΔtL2)‖x− xk‖

and thus the result (9.17) holds. For the method (9.16) we obtain
(
Ã +ΔtLxk

)
ek+1 + BT (y − yk+1) = f(x) − f(xk) +ΔtLxk(x− xk),

Bek+1 = 0.

From (9.19) it follows that

f(x) − f(xk) +ΔtLxk(x− xk) = F(x,x)− F(xk,x).
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Thus we get

‖ek+1‖ ≤ ‖(Ã +ΔtLxk)−1‖‖f(x)− f(xk) +ΔtLxk(x− xk)‖
= ‖(Ã +ΔtLxk)−1‖‖F(x,x)− F(xk,x)‖
≤ L1‖(Ã +ΔtLxk)−1‖‖x− xk‖.

Hence, the result (9.17) holds. �

From the result in this theorem we see that the linearization of the surface
tension force applied in the method (9.16) has two positive effects. Firstly,
the matrix Ã is further “stabilized” by adding the symmetric positive semi-
definite matrixΔtLxk . Secondly, instead of the sum of the Lipschitz constants
L1 +ΔtL2, only the constant L1 occurs in the error reduction bound. From
(9.15) it can be seen that the matrix Lxk corresponds to a discrete diffusion
type operator (which is ill conditioned). The error term Lxk(x−xk) is treated
explicitly (x replaced by xk) in the method (9.14), whereas it is treated im-
plicitly (x replaced by xk+1) in the method (9.16). Furthermore, from

‖(Ã +ΔtLxk)−1‖ ≤ ‖Ã−1‖ = ‖
( 1
Δt

M + A
)−1‖ ≤ Δt‖M−1‖

it follows that for Δt sufficiently small both methods converge.

Remark 9.1.2 The approach used in the iterative method (9.16) is very
similar to the semi-implicit time discretization of the curvature used in [23].
In that paper a space-time finite element discretization of the Navier-Stokes
equations with a free capillary surface Γ (t) is analyzed. An accurate and stable
method is obtained by a Laplace-Beltrami variational approximation of the
curvature, in which the tangential derivatives are evaluated on the surface
parametrization Xn+1 at the new time level t = tn+1, whereas the domain of
integration is Γh(tn), cf. Remark 3 in [23]. A similar semi-implicit method is
often used in the discretization of mean curvature flows, cf. [78].

We now address how the surface tension linearization approach, explained
and analyzed for the simplified Stokes problem (9.12), can be applied to the
general Navier-Stokes case. For discretization of the surface tension force we
use the improved functional in (7.60):

f̃Γh
(vh) = −τ

∫

Γh

P̃h∇ idΓh
·∇Γh

vh ds.

Let φ be a given level set vector and Γh(φ) the corresponding interface ap-
proximation. For linearization of the surface tension, instead of the matrix Lx̂

in (9.15) we now use

L(φ)ij = τ

∫

Γh(φ)

P̃h∇ξj · ∇Γh(φ)ξi ds.
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Note that due to P̃h the matrix L(φ) is in general non-symmetric. Instead of
(9.3) we use the following iteration, which is a generalization of (9.16). Solve
for (xk+1,yk+1):
[

1
ΔtM + θA + θΔtL

]
(φk+1)xk+1 + θN(φk+1,xk+1)xk+1 + θBTyk+1

= θ
[
	g +	fΓh

]
(φk+1) + θΔtL(φk+1)xk + M(φk+1)f1

Bxk+1 = 0.

(9.20)

The coupling of this with the level set iteration in (9.2) and with re-
initialization and volume correction results in a method of the form (cf. (9.6)):

Determine φk+1 such that F1(φk+1,xk) = 0. (9.21a)
Determine xk+1 such that F̃2

(
xk+1,V(R(φk+1))

)
= 0. (9.21b)

Here F̃2

(
xk+1,V(R(φk+1))

)
= 0 is a compact representation of the iteration

in (9.20), with φk+1 replaced by V(R(φk+1)). The iterations in (9.21) define
solution operators:

φk+1 =: S1(xk), xk+1 =: S̃2(φk+1),

and the method (9.21) can be represented as

xk+1 = S̃2(S1(xk)). (9.22)

For a fixed point of this iteration, say x∗, we have xk+1 = xk = x∗ and the
terms L(φk+1)xk+1 and L(φk+1)xk in (9.20) cancel. Hence, at the fixed point
F̃2 = F2 holds and x∗ is a fixed point of (9.8), too.

Remark 9.1.3 The method (9.6) and its improved version (9.21) are decou-
pling iterations for the scheme in (8.10). It is straightforward to derive similar
methods for other schemes treated in Chap. 8.

Convergence acceleration by a Broyden method

We apply the Broyden method, which is very easy to implement and turns out
to result in a significant improvement of efficiency. We explain this method
for the fixed point method in (9.22). The same approach can be applied to
(9.6) or other fixed point iterations.
A fixed point x∗, i.e. x∗ = S̃2(S1(x∗)) is a zero of S := I− S̃2 ◦ S1:

S(x∗) = 0. (9.23)

Note that an evaluation of S(x) requires (only) one evaluation of S̃2 ◦S1, i.e.,
one iteration of the method in (9.21). The method (9.22) is the fixed point
iteration for solving (I−S)(x∗) = x∗. One may expect faster convergence if a
Newton type of method is applied for solving the problem (9.23). Jacobians
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of S, however, are not available and therefore we consider a Broyden method,
which requires only evaluations of S(x). We briefly explain the so-called con-
travariant version of this method. For an extensive treatment and convergence
analysis we refer to [86]. Let x0 be given and J0 a given approximation of the
Jacobian dS

dx (x0) such that the system J0y = b can be solved with low costs.
In applications one often takes J0 = I. The Broyden method for computing
an approximate solution of (9.23) is defined as follows:

xk+1 = xk − J−1
k S(xk), k = 0, 1, 2, . . . ,

J−1
k := J−1

k−1

(
I− S(xk)ΔSTk

‖ΔSk‖2
)
, k = 1, 2, , . . . ,

with ‖ · ‖ the Euclidean norm and ΔSk := S(xk) − S(xk−1). We assume
ΔSk �= 0. The approximate Jacobian Jk is such that, for k ≥ 1,

J−1
k z = J−1

k−1z for all z with zTΔSk = 0,

J−1
k ΔSk = xk − xk−1.

The latter is the secant property S(xk) − S(xk−1) = Jk(xk − xk−1) of the
approximate Jacobian Jk. For the implementation of this method we introduce
the help sequence

vk,k = S(xk), vk,−1 =
(
I− S(x)ΔST

‖ΔS‖2
)
vk,, � = k, k − 1, . . . , 1. (9.24)

The update J−1
k S(xk) needed in the Broyden method satisfies

J−1
k S(xk) = J−1

k vk,k = J−1
k−1v

k,k−1 = . . . = J−1
0 vk,0.

Hence, for computing this update one has to determine S(xk) and recursively
the vectors vk,k−1, . . . ,vk,0. The latter can be realized with low costs if the
vectors S(x), ΔS, 1 ≤ � ≤ k, are stored, cf. (9.24). Finally a system J0y =
vk,0 has to be solved. In [86] it is shown that, under certain assumptions,
the rate of convergence of this method is superlinear. In our applications we
observed that (with J0 = I) this method leads to a significant convergence
acceleration of the fixed point iteration (9.22), with low additional arithmetic
costs.

9.1.1 Numerical experiment

In this section we consider the Stokes model of a curvature-driven flow and
use it as a starting point to compare the different convergence acceleration
schemes described in Sect. 9.1. A similar curvature-driven flow problem is
presented in [22].

Consider an initially ellipsoidal droplet Ω1 ⊂ Ω = (−1, 1)3 with center
point (0, 0, 0) and diameter 1.2 in x1-direction and diameter 0.8 in x2- and
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t = 0 t = 0.75 t = 1.25 t = 1.75

Fig. 9.1. Curvature-driven flow: droplet shape and velocity field for different times.

x3-direction, respectively. The droplet is initially at rest (u0 = 0). The ma-
terial properties are chosen as μ1 = 0.1, μ2 = 0.01, ρ1 = 10, ρ2 = 1. We
assume surface tension with τ = 1 and no gravity, i. e., g = 0. Due to its ellip-
soidal shape the droplet has a non-constant curvature and the droplet starts
to deform due to surface tension. The tips with relatively large curvature are
moving towards the center whereas the regions with small curvature are mov-
ing outwards, leading to an oscillation of the droplet shape, cf. Fig. 9.1. This
oscillation has a certain damping, leading to a spherical shape for t→∞.

Taking the discrete solution for t = 0.75 as initial condition for x and
φ, i. e., (x0, φ0) = (	u, 	φ)|t=0.75, one time step of the (coupled) implicit Euler
scheme is performed. The coupled system of equations is solved using the
block Gauss-Seidel iteration (9.5), reducing the residual below a tolerance of
10−8. The number of fixed point iterations and the total number of Stokes
solver iterations are reported in Table 9.1 for different time step sizes Δt
and for the case with or without convergence acceleration by the linearization
of the surface tension force (LinST) and/or the Broyden method. For small
time steps Δt < 10−2 all methods perform equally well. This is due to the
good starting values provided by the discrete solution for t = 0.75 which are
very close to the solution (x∗, φ∗) = (	u, 	φ)|t=0.75+Δt of the coupled system.
For t ≥ 10−2 the method without acceleration fails to converge within 250
fixed point iterations which was the maximum iteration number chosen in this
experiment. The accelerated methods increase the robustness of the solver. In
particular, for large time steps the linearization of the surface tension force
turns out to be essential.
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Δt no acceleration Broyden LinST LinST+Broyden

10−3 4 (18) 4 (20) 4 (20) 4 (17)
2 · 10−3 5 (23) 5 (23) 5 (28) 5 (29)
5 · 10−3 9 (48) 8 (42) 9 (45) 8 (41)

10−2 > 250 14 (79) 17 (70) 11 (56)
2 · 10−2 > 250 92 (352) 35 (140) 62 (150)
5 · 10−2 > 250 > 250 95 (471) 120 (481)

10−1 > 250 > 250 214 (1578) 66 (656)

Table 9.1. Number of fixed point iterations (and total number of Stokes solver
iterations) for different time step sizes and combination of convergence acceleration
schemes.

9.2 Iterative solvers for linear saddle point problems

The decoupling strategies result in saddle point problems of the form

K
(
x
y

)
:=

(
Ã BT

B 0

)(
x
y

)
=

(
f1
f2

)
, Ã := A + N(xold) + βM, (9.25)

that have a very similar structure as the ones in Sect. 5.3. We can apply
iterative solvers as explained in Chap. 5. If N = 0 then this saddle point
problem is symmetric and methods like preconditioned MINRES or inexact
Uzawa, cf. Sect. 5.2, are applicable. For the general discrete Oseen problem
some iterative methods (e.g., preconditioned GCR) are treated in Sect. 5.3.
A key issue in all these iterative solvers is an appropriate preconditioning
of Ã and of the Schur complement S = BÃ−1BT . The matrix Ã can be
preconditioned by a multigrid solver or by a preconditioned Krylov subspace
method. The problem of how to precondition the Schur complement can be
very difficult, in particular if in the two-phase flow problem we have (very)
large jumps in the viscosity and/or density values across the interface. Below
we discuss a few Schur complement preconditioning methods.

9.2.1 Schur complement preconditioners

In Sect. 5.4.3 we treated Schur complement preconditioners for one-phase flow
problems. We considered three problem classes: stationary Stokes-, generalized
Stokes and Oseen problems. For the first two classes “optimal” (i.e. robust
w.r.t. variation in the mesh size and in the time step) Schur complement
preconditioners are known, namely the mass matrix preconditioner in Theo-
rem 5.4.27 and the Cahouet-Chabard preconditioner in (5.108), respectively.
Fairly complete theoretical analyses are available which show the optimality
of these preconditioners. These analyses are essentially applications of the ab-
stract results in Sect. 15.5. For the case of the Oseen problem an “optimal”
(i.e. robust with respect to variation in the mesh size, the time step and in the
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convection/diffusion ratio) is not known, yet. We briefly addressed two pos-
sible preconditioners: if the Oseen problem is diffusion-dominated it makes
sense to use the same Cahouet-Chabard preconditioner as for the generalized
Stokes case, otherwise the so-called BFBt preconditioner might be a good
option.

In this section we treat the issue of Schur complement preconditioning for
the case of a two-phase flow problem. If the jumps in viscosity and density are
small, as is the case in many liquid-liquid systems, then the linear systems that
arise in the discrete linearized (Navier-)Stokes equations are similar to those
that occur in a one-phase flow problem. Hence, in that case the preconditioners
discussed above for the one-phase flow problem can be expected to perform
well. If on the other hand the jumps in density and/or viscosity are large (e.g.
in liquid-gas systems) then one needs suitably modified preconditioners. In
that case the problem of finding “optimal” Schur complement preconditioners
is largely unsolved. This problem is hard, since one then wants to have a
feasible preconditioner such that the preconditioned Schur complement is well-
conditioned independent of many parameters, namely the mesh size, the time
step, the convection/diffusion ratio, the density ratio and the viscosity ratio.
Below we present some first results on Schur complement preconditioning for
two-phase flow problems. As for the one-phase flow problem in Sect. 5.4.3
we consider three classes of problems with increasing complexity: stationary
Stokes- ((9.25) with N = 0 and β = 0), generalized Stokes ((9.25) with N = 0)
and Oseen problems (general case (9.25)).

Stationary Stokes problem

For the derivation of an appropriate Schur complete preconditioner for the dis-
crete stationary Stokes problem we first derive a preconditioner for the con-
tinuous Schur complement operator, cf. also Sect. 15.5.3. We consider the
following model problem of a stationary Stokes problem with a discontinu-
ous piecewise constant viscosity coefficient μ = μi in Ωi, i = 1, 2. We consider
the three-dimensional case, i.e. Ω ⊂ R

3. Without loss of generality we can
assume that Ω1 is the subdomain with the larger viscosity coefficient and by
suitable rescaling we can assume μ1 = 1, i.e we take

μ =
{

1 in Ω1

μ2 in Ω2, μ2 ∈ (0, 1].

The model Stokes problem that we consider reads: determine u and p such
that

− div(μ(x)∇u) +∇p = g in Ωi,
div u = 0 in Ωi,

[u] = 0, [(−pI + μ∇u)n] = g̃ on Γ = ∂Ω1 ∩ ∂Ω2,

u = 0 on ∂Ω.
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The function g̃ is assumed to be given and is used to model a localized surface
tension force. For the variational formulation of this problem it turns out to
be convenient to use the space

M :=
{
p ∈ L2(Ω) :

∫

Ω

μ−1p(x) dx = 0
}

(9.26)

instead of the standard pressure space L2
0(Ω). Note that p ∈ M iff p + c ∈

L2
0(Ω) with a constant c = c(p) given by c = μ2−1

|Ω|
∫
Ω2
p(x) dx. For the velocity

we use V = H1
0 (Ω)3 and on V we introduce the bilinear form

aμ(u,v) = (μ∇u,∇v)L2 =
3∑

i=1

∫

Ω

μ∇ui · ∇vi dx.

The variational problem is as follows: given f ∈ V′ find (u, p) ∈ V ×M such
that

aμ(u,v) + b(v, p) = f(v) for v ∈ V,
b(u, q) = 0 for q ∈M.

(9.27)

The functional f(v) := (g,v)L2 +
∫
Γ g̃ · v ds takes both the (exterior) force

g and the localized force g̃ into account. The bilinear form aμ(·, ·) defines a
scalar product on V. We use the norm induced by this scalar product:

‖u‖V := aμ(u,u)
1
2 for u ∈ V. (9.28)

On L2(Ω) (and thus also on M), besides the L2 scalar product we will also
use a weighted L2 scalar product:

(p, q)M :=
∫

Ω

μ−1 p q dx = (μ−1p, q)L2 for p, q ∈M, (9.29)

and ‖p‖M := (p, p)
1
2
M . The norms ‖ · ‖V and ‖ · ‖M , which both depend on μ,

are such that continuity and an inf-sup property can be shown to hold, with
constants independent of the value of the viscosity coefficient μ:

Theorem 9.2.1 The following holds:

|b(u, p)| ≤
√

3‖u‖V ‖p‖M for all u ∈ V, p ∈M.

There exists a constant γb > 0 independent of μ such that

sup
u∈V

b(u, p)
‖u‖V

≥ γb‖p‖M for all p ∈M.

Proof. A proof of these results is given in [193]. �
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Using standard arguments, cf. Sect. 15.5, one obtains the following robust
(i.e. uniformly w.r.t. variation in μ) preconditioner of the Schur comple-
ment. We identify L2(Ω) with its dual, i.e. in particular for g ∈ M ′ we have
g(p) = (g, p)L2 for all p ∈ M . The Schur complement mapping S : M → M
corresponding to the problem (9.27) and its induced norm on M are given by

‖p‖S = (Sp, p)
1
2
L2 = sup

v∈V

b(v, p)
‖v‖V

.

Corollary 9.2.2 Define Iμ : L2(Ω) → L2(Ω) by (Iμp, q)L2 = (p, q)M .
Then the following holds:

γ2
b (Iμp, p)L2 ≤ (Sp, p)L2 ≤ 3(Iμp, p)L2 for all p ∈M. (9.30)

Proof. Follows with the same arguments as in Remark 15.5.1. �

Hence, the (simple) operator Iμ, which is the scaled identity given by Iμp =
μ−1p, can be used as a preconditioner for the Schur complement S, and on
M the spectral condition number of I−1

μ S is bounded by 3γ−2
b , which is inde-

pendent of μ. In this sense Iμ is a robust preconditioner of S.
In [193] it is shown, that an analogon holds for the discrete case. We

briefly explain this discrete Schur complement preconditioner, more details
can be found in [193]. Assume that we use finite element subspaces Vh ⊂ V,
Mh ⊂ M . We consider the Galerkin discretization of the Stokes problem
(9.27): find (uh, ph) ∈ Vh ×Mh such that

aμ(uh,vh) + b(vh, ph) = f(vh) for vh ∈ Vh,
b(uh, qh) = 0 for qh ∈Mh.

(9.31)

The matrix representation of this discrete problem has a form as in (9.25), with
N = 0 and β = 0. The Schur complement matrix is given by S = BA−1BT . In
practice the finite element space Mh is constructed by taking a finite element
space, denoted by M+

h (e.g. M+
h = X

k−1
h or the P1-XFEM space), and then

adding the orthogonality condition:

Mh =
{
ph ∈M+

h : (ph, 1)M = 0
}
.

Let (ψi)1≤i≤K be the standard (nodal) basis in M+
h and Mμ the mass matrix

corresponding to (·, ·)M :

(Mμ)ij = (ψi, ψj)M =
∫

Ω

μ−1ψiψj dx, 1 ≤ i, j ≤ K. (9.32)

Hence, compared to the standard mass matrix in the pressure finite element
space, there is a scaling with μ−1. The vector representation of the subspace
Mh ⊂ M+

h of functions ph ∈ M+
h that satisfy the orthogonality condition
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(ph, 1)M = 0 is given by
(
Mμ(1, . . . , 1)

)⊥. On that space the Schur comple-
ment matrix S is nonsingular. In [193] it is proved that if the pair (Vh,Mh)
is LBB stable then the following holds:

β̂2〈Mμy,y〉 ≤ 〈Sy,y〉 ≤ 3〈Mμy,y〉 for all y ∈
(
Mμ(1, . . . , 1)

)⊥
, (9.33)

which is a discrete analogon of the result in (9.30). The constant β̂ > 0 is
the LBB constant for the pair (Vh,Mh). In the analysis (cf. Theorem 6 in
[193]), apart from the LBB-stability assumption we need a further technical
assumption, which is satisfied for standard finite element spaces, and we need
that the triangulations used in the finite element spaces are fitted to the
interface. For our applications the latter assumption is not realistic. It turns
out, however, that for our applications the scaled mass matrix Mμ yields a
good preconditioner for the Schur complement (in case of a Stokes problem)
even if this assumption is not satisfied.

Remark 9.2.3 In [192] it is shown that similar results hold if instead of M
one uses the standard pressure space L2

0(Ω) with norm ‖ · ‖M .

Generalized Stokes problem

We now treat the issue of Schur complement preconditioning of a problem
as in in (9.25), with N = 0. For the case of “small” jumps in viscosity and
density it makes sense to use the same preconditioners as in the one-phase
flow problem, thus in particular for the generalized Stokes problem this is the
Cahouet-Chabard preconditioner in (5.108). We introduce a generalization of
that preconditioner for the case of a generalized Stokes problem with discon-
tinuous viscosity and density coefficients. This preconditioner has a certain
robustness property with respect to the size of the jumps in the viscosity
and density coefficients. The results that we present are from [193, 189]. We
apply the general abstract analysis presented in Sect. 15.5. As for the station-
ary Stokes problem treated above we first derive the preconditioner for the
continuous Schur complement operator and then briefly address a discrete
analogon. We consider the following simplified generalized Stokes interface
problem: Find u and p such that

− div(μ(x)D(u)) + ξρ(x)u +∇p = g in Ωi, (9.34a)
div u = 0 in Ωi, i = 1, 2, (9.34b)

[u] = 0, [σn] = g̃ on Γ = ∂Ω1 ∩ ∂Ω2, (9.34c)
u = 0 on ∂Ω. (9.34d)

We use standard notations: σ = −pI + μD(u), D(u) = ∇u +∇uT .
The function g̃ is given and models surface tension effects. We assume

piecewise constant viscosity and density. Suitable scaling can be used to ensure
that viscosity and density are equal to one in Ω1. Hence, we assume
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μ =
{

1 in Ω1,
μ2 > 0 in Ω2,

ρ =
{

1 in Ω1,
ρ2 > 0 in Ω2.

(9.35)

The weak formulation leads to a saddle point problem of generalized Stokes
type: determine u ∈ V = H1

0 (Ω)3, p ∈ L2
0(Ω) such that

aμ(u,v) + ξcρ(u,v) + b(v, p) = f(v) for all v ∈ V,

b(u, q) = 0 for all q ∈ L2
0(Ω),

(9.36)

with

aμ(u,v) :=
1
2

∫

Ω

μ tr
(
D(u)D(v)

)
dx , cρ(u,v) := (ρu,v)L2 ,

b(v, p) := −(p, div v)L2 , f(v) := (g,v)L2 +
∫

Γ

g̃ · v ds.

We introduce the following Hilbert spaces:

H1 = { v ∈ V, with ‖v‖2H1
:=

1
2

∫

Ω

μ tr
(
(D(v)2

)
dx },

H2 = { v ∈ L2(Ω)3, with ‖v‖H2 := ‖ρ 1
2 v‖L2 }.

Due to Korn’s inequality ‖ · ‖H1 defines a norm on V. Related to this norm
we need the following uniform (w.r.t. μ) equivalence result. Assume that one
of the following conditions is satisfied:

meas(∂Ωi ∩ ∂Ω) > 0 for i = 1, 2, (9.37a)
meas(∂Ω2 ∩ ∂Ω) > 0 and μ2 ≥ C > 0. (9.37b)

Then there exists a constant c̃ > 0 independent of μ (but depending on C
from (9.37b)) such that

c̃‖μ 1
2∇v‖L2 ≤ ‖v‖H1 ≤ ‖μ

1
2∇v‖L2 for all v ∈ H1. (9.38)

This result follows from Lemma 5 in [193] (there, instead of condition (9.37b)
the condition “meas(∂Ω1 ∩∂Ω) > 0 and μ2 ≤ C” is used; the arguments in
the proof, however, still apply if the condition (9.37b) is used). Note that in
view of our applications (stationary droplet problem) the condition (9.37b) is
reasonable.
We use the same pressure spaceM as in the stationary Stokes problem treated
above:

M =
{
p ∈ L2(Ω) : (p, 1)M = 0, with ‖p‖2M := (μ−1p, p)L2

}
.

The scalar product corresponding to ‖·‖M is denoted by (·, ·)M . These bilinear
forms and spaces satisfy the Assumptions (15.27a)-(15.27d) that are the basis
of the general analysis presented in Sect. 15.5.
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Lemma 9.2.4 Assume that (9.37a) or (9.37b) is satisfied. The following
holds with constants Γb, γb > 0 independent of μ and ρ:

‖u‖2H1
= aμ(u,u), aμ(u,v) ≤ ‖u‖H1‖v‖H1 , u,v ∈ H1, (9.39a)

‖u‖2H2
= cρ(u,u), cρ(u,v) ≤ ‖u‖H2‖v‖H2 , u,v ∈ H2, (9.39b)

|b(u, p)| ≤ Γb‖u‖H1‖p‖M , u ∈ H1, p ∈M, (9.39c)

γb‖p‖M ≤ sup
u∈H1

b(u, p)
‖u‖H1

, p ∈M. (9.39d)

Proof. The results in (9.39a)-(9.39b) are direct consequences of ‖u‖2H1
=

aμ(u,u) and ‖u‖2H2
= cρ(u,u). The results in (9.39c)-(9.39d) follow from

(9.38) and Theorem 9.2.1. �

We apply the general abstract results derived in Sect. 15.5 with the spaces
H1, H2,M defined above, with â(·, ·) = aμ(·, ·), ĉ(·, ·) = cρ(·, ·), b̂(·, ·) = b(·, ·)
and with τ = ξ. The application is along the same lines as treated for
the generalized Stokes problem (without jumps in viscosity and density) in
Sect. 15.5.3.

We identify L2(Ω) with its dual and then have

H ′
1 = { f ∈ V′, with ‖f‖H′

1
= sup

v∈V

f(v)
‖v‖H1

},

H ′
2 = { v ∈ L2(Ω)3,with ‖v‖H′

2
= ‖ρ− 1

2 v‖L2 },

M ′ = { p ∈M, with ‖p‖M ′ = ‖μ 1
2 p‖L2 }.

The norm ‖ · ‖H2 is equivalent to the standard L2-norm. Hence, the space
W = { p ∈M : Bp = ∇p ∈ H ′

2 } is, apart from the different orthogonalization
condition (p, 1)M that is used in M , the same as the one for the generalized
Stokes problem in Sect. 15.5.3:

W = H1(Ω) ∩M, with norm ‖p‖W = ‖ρ− 1
2∇p‖L2. (9.40)

The Schur complement operator Sμ,ρ : M → M corresponding to the gener-
alized Stokes interface problem (9.36) is characterized by

(Sμ,ρp, p)
1
2
L2 = sup

v∈V

(p, div v)L2

(
aμ(v,v) + ξcρ(v,v)

) 1
2
, p ∈M. (9.41)

We take the preconditioner given in Theorem 15.5.10:

(S̃μ,ρp, p)
1
2
L2 = ‖p‖M+ξ−1W = inf

q∈W

(
‖p− q‖M + ξ−1‖ρ− 1

2∇q‖2L2

) 1
2 . (9.42)

This preconditioner can be characterized using a Neumann solution operator
by applying a similar approach as in Theorem 15.5.14. We can apply the
general analysis of Sect. 15.5 to derive a uniform spectral bound Sμ,ρ ≤ cS̃μ,ρ.
This is summarized in the following theorem.
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Theorem 9.2.5 Assume that one of the conditions (9.37a) or (9.37b) is
satisfied. Denote by −Δ−1

ρ : M → H1(Ω)∩M the solution operator of the
following Neumann interface problem: Given f ∈ M , find p = −Δ−1

ρ f ∈
H1(Ω) ∩M such that

(ρ−1∇p,∇q)L2 = (f, q)L2 , for all q ∈ H1(Ω) ∩M.

The scaled identity Iμ : L2(Ω) → L2(Ω) is defined by (Iμp, q)L2 = (p, q)M
for all p, q ∈ L2(Ω). Then

S̃−1
μ,ρ = I−1

μ − ξΔ−1
ρ (9.43)

holds, and for all p ∈M

(Sμ,ρp, p)L2 ≤ c(S̃μ,ρp, p)L2

holds, with a constant c independent of ξ, μ and ρ.

Proof. The proof is based on applying Theorem 15.5.6. A complete analysis
is given in [189]. �

The preconditioner S̃μ,ρ in (9.43) is a natural generalization of the Cahouet-
Chabard preconditioner derived in Sect. 15.5.3. In the case of jumps in viscos-
ity and/or density we now have a scaling (with μ−1) in the identity operator
Iμ and a scaling (with ρ−1) in the Neumann operator Δρ.

In Theorem 9.2.5 we have a spectral inequality Sμ,ρ ≤ cS̃μ,ρ that is uni-
form with respect to both the parameter ξ (∼ 1

Δt ) and the jumps in the
coefficients μ, ρ without using any regularity assumptions. To derive a spectral
inequality S̃μ,ρ ≤ cSμ,ρ we need (at least in our analysis) regularity results for
a stationary Stokes interface problem of the form

− div
(
μ(x)D(u)

)
+∇p = g in Ωi, (9.44a)
div u = 0 in Ωi, i = 1, 2, (9.44b)

[u] = 0, [σn] = g̃ on Γ, (9.44c)
u = 0 on Ω. (9.44d)

Similarly to the Stokes case in Sect. 15.5.3, verifying Assumption 15.5.7 is
based on regularity properties of this problem. This important issue is largely
unsolved. The following result is found in the literature (see [223]): If the
interface Γ = ∂Ω1 ∩ ∂Ω2 is sufficiently smooth and has no common points
with ∂Ω and g ∈ L2(Ω)3 then a solution (u, p) of (9.44a)–(9.44d) belongs to
H2(Ωi)3 ×H1(Ωi), i = 1, 2. However, in these results and in other analyses
known in the literature the dependence of constants in the a-priori estimates
on μ is not known. Due to this we are not able to prove a result S̃μ,ρ ≤ cSμ,ρ
that is uniform both with respect to ξ and the jumps in μ, ρ. Below we present
a result in which the spectral inequality is uniform with respect to ξ only.
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Theorem 9.2.6 Assume that one of the conditions (9.37a) or (9.37b) is
satisfied and that the domain Ω ⊂ R

3 is such that the Stokes problem
(15.53) is H2-regular. Let S̃μ,ρ be the preconditioner from (9.43). There
exists a constant c independent of ξ such that for all p ∈M

(S̃μ,ρp, p)L2 ≤ c(Sμ,ρp, p)L2

holds.

Proof. We refer to [189]. �

We briefly address a discrete analogon of the preconditioner S̃μ,ρ. Assume
that we use finite element subspaces Vh ⊂ V, Mh ⊂ M . We consider the
Galerkin discretization of the Stokes problem (9.36): find (uh, ph) ∈ Vh×Mh

such that

aμ(uh,vh) + ξcρ(uh,vh) + b(vh, ph) = f(vh) for vh ∈ Vh,
b(uh, qh) = 0 for qh ∈Mh.

(9.45)

The matrix representation of this discrete problem has a form as in (9.25),
with Ã = A + ξM. The Schur complement matrix is given by S = BÃ−1BT .
Let Mμ be the scaled mass matrix in the discrete pressure space as in (9.32),
i.e.

(Mμ)ij = (ψi, ψj)M =
∫

Ω

μ−1ψiψj dx, 1 ≤ i, j ≤ K.

We now distinguish two cases: Mh ⊂ H1(Ω) (e.g. Mh = X
1
h) and Mh �

H1(Ω) (e.g. XFEM pressure space). In the former case we can discretize the
Neumann problem used in Theorem 9.2.5 in the space Mh, resulting in a
discrete approximation of Δ−1

ρ . Let −Δ−1
ρ,h : Mh →Mh, −Δ−1

ρ,hfh = ph be the
solution operator of the following discrete Neumann problem: Find ph ∈ Mh

such that
(ρ−1∇ph,∇qh)L2 = (fh, qh)L2 for all qh ∈Mh.

Let A−1
ρ be the matrix representation of this solution operator. Then the

discrete analogon of S̃−1
μ,ρ in (9.43) is given by

Q−1
S = S̃−1

μ,ρ := M−1
μ + ξA−1

ρ . (9.46)

In [189] this preconditioner is used in numerical experiments with a Hood-
Taylor P2-P1 finite element pair and turns out to have very good robustness
properties w.r.t. variation in h, ξ, and the jumps in μ, ρ.

We now address the case Mh � H1(Ω). Due to this nonconformity, a
Galerkin discretization of the Neumann problem in the space Mh is not pos-
sible. Instead one can use the form of the Schur complement preconditioner
as in (15.50). The discrete analogon is given by

Q−1
S = S̃−1

μ,ρ := M−1
μ + ξ(BM−1BT )−1. (9.47)
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Analogous to Aρ, for the operator BM−1BT there is a weighting with the
density, namely through the weighted velocity mass matrix M, cf. the defini-
tion of M in Sect. 7.11.1.

Remark 9.2.7 In [189] it is shown that similar results hold if instead of M
one uses the standard pressure space L2

0(Ω) with norm ‖ · ‖M .

Oseen problem

We briefly address Schur complement preconditioning for the general Oseen
problem (9.25). If the Oseen problem is diffusion dominated, the modified
Cahouet-Chabard preconditioner treated above, cf. (9.46) or (9.47), is an ob-
vious possibility. For stronger convection the following alternative may be
better. In Sect. 5.4.3 we explained the BFBt Schur complement precondi-
tioner for a one-phase Oseen problem. Its definition is completely algebraic
(i.e., based on the given mass and stiffness matrices) and can immediately be
extended to the case of a two-phase Oseen problem. We recall the definition of
this preconditioner. Let M∗ be the velocity mass matrix (without a weighting
with ρ) and M1 := diag(M∗). The BFBt preconditioner, cf. (5.109), is given
by

Q−1
S = (BM−1

1 BT )−1 BM−1
1 ÃM−1

1 BT (BM−1
1 BT )−1. (9.48)

It turns out, that in the case of discretization with the XFEM method the
matrix BM−1

1 BT is in general extremely ill-conditioned due to large dif-
ferences in scaling of the basis functions. Hence, systems with this matrix
are very hard to solve. It is much better to use this preconditioner in a
different form, in which this poor scaling is avoided. For this we introduce
B̃ = M− 1

2
p,1 BM− 1

2
1 , with Mp the mass matrix in the pressure space (without

scaling) and Mp,1 := diag(Mp). Thus B̃ is a rescaled version of the discrete
divergence matrix B. The BFBt Schur complement preconditioner Q−1

S can
also be represented as

Q−1
S = M− 1

2
p,1 (B̃ B̃T )−1 B̃M− 1

2
1 ÃM− 1

2
1 B̃T (B̃ B̃T )−1 M− 1

2
p,1 . (9.49)

In this representation we have to solve linear systems with the matrix B̃ B̃T

instead of with BM−1
1 BT . Due to better scaling, systems with B̃ B̃T are much

easier to solve than those with BM−1
1 BT .

9.3 Numerical experiments

We reconsider the static droplet test case described in Sect. 7.10.3, where
a static droplet Ω1 =

{
x ∈ R

3 : ‖x‖ ≤ r
}

is located inside the cube Ω =
(−1, 1)3 with r = 2/3. Assuming g = 0 and τ = 1, i. e., no gravitational
force but only surface tension is acting, the solution of the stationary two-
phase Stokes problem is analytically known: the velocity vanishes in the whole
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domain, i. e., u∗ = 0, and the pressure is piecewise constant in the two phases
with a jump [p]Γ = τκ = 3 across the interface Γ , cf. Fig. 7.19.

For spatial discretization a coarse grid T0 consisting of 4× 4× 4 subcubes
each consisting of 6 tetrahedra is created. This coarse grid is successively
refined in the vicinity of the interface yielding a sequence of tetrahedral grids
Ti, i = 0, . . . , 3 with grid sizes hi = 2−i−1, i = 0, . . . , 3. See Fig. 7.9 for an
illustration of a very similar adaptive mesh. We use piecewise quadratic finite
elements for the velocity space Vh and either piecewise linears (Qh = Q1

h) or
the reduced XFEM discretization (Qh = Q̃Γh

h , cf. Sect. 7.9) for the pressure
space Qh.

The discretization leads to an algebraic saddle point system of the form

K
(
x
y

)
:=

(
Ã BT

B 0

)(
x
y

)
=

(
f1
f2

)
, Ã := A + ξM. (9.50)

In the following sections we will analyze the iterative solution of this system for
the stationary Stokes case (ξ = 0) and the generalized Stokes case (ξ > 0), cf.
Sects. 9.3.1 and 9.3.2, respectively. The inexact Uzawa method is used in both
cases for the iterative solution of (9.50) applying appropriate preconditioners
QA and QS. The starting vector is chosen as (	u0, 	p0) = (0, 0). The iteration is
stopped if a reduction of the Euclidean norm of the starting residual by a factor
of 106 is achieved, i. e., ‖rk‖ ≤ 10−6‖r0‖. To measure the arithmetic costs
which are dominated by the application of the preconditioners, the number
of evaluations of Q−1

A are counted. Note that the number of Q−1
S and Q−1

A

evaluations are almost the same, cf. Remark 5.2.11, so we will not report the
numbers of Q−1

S evaluations in the following.

9.3.1 Stationary Stokes case

We first consider the stationary Stokes case where Ã = A in (9.50). The
preconditioners are chosen as follows. The Schur complement is preconditioned
by Q−1

S = M−1
μ . For QA we compared a Krylov-based approach to a multigrid

approach, i. e., for Q−1
A we use an SSOR-preconditioned CG method with zero

initial guess reducing the Euclidean norm of the residual by a factor of 100
or, alternatively, apply 5 multigrid V-cycle iterations to Ã. Computations are
performed for different refinement levels and for fixed μ2 = 1, varying the
viscosity μ1 of the droplet. The number of Q−1

A evaluations are reported in
Table 9.2 for the standard FEM space Qh = Q1

h and in Tables 9.3 and 9.4 for
the reduced XFEM space Qh = Q̃Γh

h .
We first discuss the results for the standard pressure space Qh = Q1

h

given in Table 9.2. For the Krylov-based preconditioner QA the results are
robust w. r. t. variation in the grid size h. Furthermore, robustness w. r. t. the
viscosity ratio μ1/μ2 is observed for moderate ratios up to 1 : 100. There is
a slight increase of the number of Q−1

A evaluations for the “extreme” case
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Qh = Q1
h Krylov-based Q−1

A multigrid-based Q−1
A

h = 1/4 h = 1/8 h = 1/16 h = 1/4 h = 1/8 h = 1/16

μ1/μ2 = 1 36 34 36 42 38 36
μ1/μ2 = 10−1 40 41 46 44 51 46
μ1/μ2 = 10−2 40 40 47 77 79 97
μ1/μ2 = 10−3 68 64 69 294 413 480

Table 9.2. Stationary Stokes case, standard FEM pressure space: number of Q−1
A

evaluations for different grid sizes h and viscosity ratios μ1/μ2, using a multigrid or
Krylov-based preconditioner Q−1

A .

Qh = Q̃
Γh
h , Krylov-based Q−1

A multigrid-based Q−1
A

c̃ = 1 h = 1/4 h = 1/8 h = 1/16 h = 1/4 h = 1/8 h = 1/16

μ1/μ2 = 1 36 34 36 42 39 37
μ1/μ2 = 10−1 40 35 48 44 46 55
μ1/μ2 = 10−2 40 48 71 77 81 139
μ1/μ2 = 10−3 68 68 184 294 459 860

Table 9.3. Stationary Stokes case, XFEM pressure space, c̃ = 1: number of Q−1
A

evaluations for different grid sizes h and viscosity ratios μ1/μ2, using a multigrid or
Krylov-based preconditioner Q−1

A .

Qh = Q̃Γh
h , Krylov-based Q−1

A multigrid-based Q−1
A

c̃ = 0.1 h = 1/4 h = 1/8 h = 1/16 h = 1/4 h = 1/8 h = 1/16

μ1/μ2 = 1 38 34 37 43 42 43
μ1/μ2 = 10−1 41 46 64 45 56 79
μ1/μ2 = 10−2 51 80 131 100 144 197
μ1/μ2 = 10−3 119 206 266 351 511 1338

Table 9.4. Stationary Stokes case, XFEM pressure space, c̃ = 0.1: number of Q−1
A

evaluations for different grid sizes h and viscosity ratios μ1/μ2, using a multigrid or
Krylov-based preconditioner Q−1

A .

μ1/μ2 = 10−3, but compared to the case μ1/μ2 = 10−2 the numbers are less
than doubled.

Analyzing the results for the multigrid-based preconditioner QA we again
observe a moderate robustness w. r. t. variation in h, but a strong dependence
on μ1/μ2, especially for the “extreme” case μ1/μ2 = 10−3, which will be
discussed below.

We now turn to the XFEM case, i. e., Qh = Q̃Γh . The results for the
reduced XFEM space with c̃ = 1, cf. (7.108), are given in Table 9.3. For
h = 1/4, 1/8 the results are comparable to the standard FEM case, but for
h = 1/16 the effect of the smaller LBB constant becomes visible in terms of
larger iteration numbers. For smaller c̃ the LBB constant deteriorates even
more, which is confirmed by numerical experiments using a reduced XFEM
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space with c̃ = 0.1, cf. Table 9.4. For this case there is a strong dependence
of the number of Q−1

A iterations on the viscosity ratio μ1/μ2.

We draw the following conclusions:

• The results show that for large viscosity ratios the standard multigrid
method does not yield a satisfactory preconditioner QA. This can be traced
back to the fact that for discrete diffusion problems the multigrid method
is known to be robust w. r. t. variation in h, but not w. r. t. the size of the
jumps in the diffusion coefficient. The deterioration in the rate of conver-
gence for problems with large jumps is known from numerical experiments
in the literature but also reflected in theoretical analyses. For example, in
[258] it is shown that using a multigrid V-cycle as preconditioner QA for
the diffusion matrix A the condition number of the preconditioned system
can be bounded by

cond2(Q−1
A A) ≤ Cmin

{
h−1,

maxμi
minμi

}

with a constantC independent of h, μ. This bound predicts a worse precon-
ditioning quality for an increasing viscosity ratio, in particular for small h.
A significant improvement can be obtained if modified multigrid solvers are
used, for example, an algebraic multigrid method or a multigrid method
with so-called matrix dependent prolongation and restriction operators.

• From the reasonably constant Q−1
A -evaluation counts in Table 9.2, in case

of a Krylov-based Q−1
A , we conclude that Q−1

S = M−1
μ is a robust Schur

complement preconditioner if in the discretization we use the standard
FEM pressure space Qh.

• Consider the discretization with the XFEM pressure space Q̃Γh

h . The re-
sults in Table 9.3 and Table 9.4, for the case with a Krylov-based Q−1

A ,
indicate that the Schur complement preconditioner M−1

μ is still fairly ro-
bust, provided one does not take the value of the cut-off parameter c̃ too
small. A theoretical analysis that explains the dependence of the quality
of the Schur complement preconditioner on c̃ is not known.

Hence, even for this relatively simple stationary Stokes problem with a dis-
continuous viscosity coefficient, discretized with XFEM, the issue of robust
Schur complement preconditioning needs further analysis.

9.3.2 Generalized Stokes case

In this section we treat the generalized Stokes case with Ã = A+ ξM, ξ > 0,
in (9.50), stemming from some time discretization where ξ ∼ (Δt)−1. The
preconditioners are chosen as follows. The Schur complement is precondi-
tioned by QS given in (9.47), but replacing the velocity mass matrix M in
the Schur complement by its diagonal diag(M). For Q−1

A we use an SSOR-
preconditioned CG method with zero initial guess reducing the Euclidean
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norm of the residual by a factor of 100. Computations are performed for dif-
ferent refinement levels, different values of ξ and for fixed material properties
ρ2 = μ2 = 1 of the ambient phase, varying the viscosity μ1 and density ρ1 of
the droplet. The parameter ranges considered in the numerical experiments
are chosen as follows:

spatial discretization: h = 2−i for i = 2, 3, 4,
temporal discretization: ξ = (Δt)−1 = 10j for j = 0, 1, 2, 3,
droplet density: ρ1 = 10−kρ2 for k = 0, 1, 2, 3,
droplet viscosity: μ1 = 10−lμ2 for l = 0, 1, 2, 3.

We first consider the standard FEM case, i. e., Qh = Q1
h. For fixed dis-

cretization parameters h = 1/8, ξ = 100 and varying material parameters
μ1 = 10−iμ2, i = 0, 1, 2, 3 and ρ1 = 10−jρ2, j = 0, 1, 2, 3, the number of Q−1

A

evaluations are reported in Table 9.5. The obtained results indicate robust-
ness w. r. t. viscosity and density ratios in the whole range considered in the
experiments. Now we fix the droplet material properties μ1 = 10−2μ2 and
ρ1 = 10−3ρ2, varying the discretization parameters h = 1/4, 1/8, 1/16 and
ξ = 10j, j = 0, 1, 2, 3. The corresponding numbers of Q−1

A evaluations can
be found in the left part of Table 9.7. We observe only a mild dependence
of the iteration numbers on the values of h and ξ, where the iteration num-
bers increase for smaller grid sizes h and larger time step sizes Δt. Varying
all four parameters, the maximal iteration number observed was 72 for the
case h = 1/16, ξ = 1, ρ1 = 10−1ρ2, μ1 = 10−3μ2. Overall, for the considered
parameter range of h, ξ, ρ1, μ1 the iterative method turns out to be quite
robust.

h = 1/8, ξ = 102 ρ1/ρ2 = 1 ρ1/ρ2 = 10−1 ρ1/ρ2 = 10−2 ρ1/ρ2 = 10−3

μ1/μ2 = 1 19 19 19 19
μ1/μ2 = 10−1 19 20 23 23
μ1/μ2 = 10−2 29 25 26 26
μ1/μ2 = 10−3 39 43 42 39

Table 9.5. Generalized Stokes case, standard FEM pressure space: number of Q−1
A

evaluations for different density ratios ρ1/ρ2 and viscosity ratios μ1/μ2.

The experiments were repeated for the XFEM case, i. e., taking the re-
duced XFEM space Qh = Q̃Γh with c̃ = 1 as pressure space. Table 9.6 shows
the number of Q−1

A iterations for fixed discretization parameters h = 1/8,
ξ = 100, varying the material parameters ρ1, μ1 of the droplet. The results
are comparable to those obtained for the standard FEM pressure space, cf.
Table 9.5. Fixing ρ1 = 10−3ρ2, μ1 = 10−2μ2 and varying the discretization
parameters h, ξ, the obtained iteration numbers are reported in the right
part of Table 9.7. For the grid sizes h = 1/4, 1/8 the results are comparable
to the standard FEM case, cf. left part of Table 9.7. As in the stationary
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Stokes case, for the finest mesh with grid size h = 1/16 we see larger iteration
numbers which can again be explained by the deteriorating LBB constant of
the Vh × Q̃Γh finite element pair. Varying all four parameters, the maximal
iteration number observed was 163 for the “extreme” case h = 1/16, ξ = 1,
ρ1 = 10−2ρ2, μ1 = 10−3μ2. The result gets worse when we take a smaller c̃ in
the cut-off criterion (7.108).

h = 1/8, ξ = 102 ρ1/ρ2 = 1 ρ1/ρ2 = 10−1 ρ1/ρ2 = 10−2 ρ1/ρ2 = 10−3

μ1/μ2 = 1 19 22 19 19
μ1/μ2 = 10−1 24 22 26 26
μ1/μ2 = 10−2 29 30 32 32
μ1/μ2 = 10−3 41 42 41 48

Table 9.6. Generalized Stokes case, XFEM pressure space, c̃ = 1: number of Q−1
A

evaluations for different density ratios ρ1/ρ2 and viscosity ratios μ1/μ2.

μ1/μ2 = 10−2, Qh = Q1
h Qh = Q̃Γh

h , c̃ = 1

ρ1/ρ2 = 10−3 h = 1/4 h = 1/8 h = 1/16 h = 1/4 h = 1/8 h = 1/16

ξ = 1 34 39 41 34 48 66
ξ = 101 28 34 44 28 39 64
ξ = 102 27 26 33 27 32 55
ξ = 103 27 33 29 27 35 37

Table 9.7. Generalized Stokes case: number of Q−1
A evaluations for different grid

sizes h and values of ξ, applying a standard FEM or reduced XFEM discretization
for the pressure.

We repeated the experiments for the case that the material properties of
the ambient phase are chosen as μ2 = 10−3, ρ2 = 103, which are roughly
the material properties of water, allowing for a more realistic scenario than
μ2 = ρ2 = 1. It turns out that in this case we have a very robust behavior.
This is due to the fact that Ã = A + ξM is strongly dominated by the
μ-independent term ξM because of the large ratio ρ/μ of density to dynamic
viscosity. We illustrate the robustness by considering an important concrete
example. For fixed material properties μ1 = 10−2μ2, ρ1 = 10−3ρ2 (i. e., an air-
like fluid) the discretization parameters h, ξ are varied. This is in an interesting
case from the practical point of view, since the considered two-phase system is
close to that of an air bubble in water, where the jumps of density and dynamic
viscosity are rather large. The results are reported in Table 9.8 for the standard
FEM case (Qh = Q1

h) and the XFEM case (Qh = Q̃Γh

h , c̃ = 1). For both cases
the preconditioner shows robustness w. r. t. the discretization parameters h, ξ.
Comparing the FEM and XFEM case one observes an increase of the iteration
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numbers for small h. As before, this effect becomes stronger the smaller the
cut-off parameter c̃ is chosen.

“water-air” Qh = Q1
h Qh = Q̃Γh

h , c̃ = 1

h = 1/4 h = 1/8 h = 1/16 h = 1/4 h = 1/8 h = 1/16

ξ = 1 28 31 30 28 35 48
ξ = 101 23 27 26 23 30 42
ξ = 102 23 27 26 23 30 42
ξ = 103 23 27 26 23 30 42

Table 9.8. Generalized Stokes case, “water-air” system: number of Q−1
A evaluations

for different grid sizes h and values of ξ, applying a standard FEM or reduced XFEM
discretization for the pressure.



Part III

Mass transport



10

Mathematical model

10.1 Introduction

We consider the model for transport of a dissolved species as given in (1.24).
In (1.24) the unknown quantity (concentration) is denoted by c = c(x, t), the
velocity field by u and the diffusion coefficient by D. In this and the next
chapter we use a different notation for these quantities: the unknown function
(concentration) is denoted by u(x, t) (instead of c), the velocity field by w
(instead of u) and the diffusion coefficient by α. In this notation the mass
transport equation, in strong formulation, is as follows:

∂u

∂t
+ w · ∇u− div(α∇u) = f in Ωi(t), i = 1, 2, t ∈ [0, T ], (10.1a)

[α∇u · n]Γ = 0, (10.1b)
[βu]Γ = 0, (10.1c)
u(·, 0) = u0 in Ωi(t), i = 1, 2, (10.1d)
u(·, t) = 0 on ∂Ω, t ∈ [0, T ]. (10.1e)

We assume that Ω1 = Ω1(t), t ∈ [0, T ], is given, with ∂Ω1 sufficiently smooth
and ∂Ω1 ∩ ∂Ω = ∅, i.e. one phase is completely surrounded by the other one.
A typical example is a droplet surrounded by another fluid. n denotes the unit
normal at Γ pointing from Ω1 into Ω2. In (10.1a) we have standard parabolic
convection-diffusion equations, which are coupled by the interface conditions
in (10.1b) and (10.1c). The diffusion coefficient α = α(x, t) is assumed to be
piecewise constant:

α = αi > 0 in Ωi(t).

In general we have α1 �= α2. The interface condition in (10.1b) results from the
conservation of mass principle. The condition in (10.1c) is the so-called Henry
condition. In this condition the coefficient β = β(x, t) is strictly positive and
piecewise constant:

β = βi > 0 in Ωi(t).
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In general we have β1 �= β2, in which case the solution u is discontinuous
across the interface. We assume that for the function u0 in the initial condition
(10.1d) the conditions in (10.1b), (10.1c) are satisfied. For simplicity we only
consider homogeneous Dirichlet boundary conditions in (10.1e).

As noted above, the interface Γ = Γ (t) is assumed to be given and to be
sufficiently smooth. Also w = w(x, t) is assumed to be a given sufficiently
smooth velocity field. Clearly, in the setting of a two-phase flow problem
the interface and the velocity field result from the Navier-Stokes equations
which model the fluid dynamics. If in the two-phase flow system there is no
significant influence of the concentration u on fluid dynamics, it is reasonable
to assume that in the transport problem (10.1) the interface Γ and velocity
field w are given quantities. In certain other cases, for example if there is a
strong dependence of the surface tension coefficient τ on the concentration u,
this assumption can be unrealistic.

In this chapter we present suitable weak formulations of the mass trans-
port model (10.1). These formulations are used in the derivation of Galerkin
finite element discretizations in Chap. 11. Although the mass transport model
(10.1) consists of (relatively simple) convection-diffusion equations in the sub-
domains, its numerical treatment requires special finite element techniques,
since the diffusion coefficient is discontinuous across the interface (which is
not aligned with the triangulation) and the solution u has to satisfy a jump
condition across the interface.

In this chapter we distinguish the following two cases:

• Firstly, in Sect. 10.2 we treat the special case in which both the interface
and the velocity field are assumed to be stationary, i.e., independent of t.
A model example is a droplet at a stationary position is a stationary flow
field. For this case a weak formulation easily follows from results known
in the literature.

• The second, more general, and from a practical point point of view more
interesting, case of a non-stationary interface and a time-dependent veloc-
ity field is treated in Sect. 10.3. This general case requires a more elaborate
analysis.

The distinction of these two cases is also useful for the analysis of the finite
element methods treated in Chap. 11.

Remark 10.1.1 The discontinuity of u across the interface can be avoided
by introducing transformed quantities ũ := βu, α̃ := α/β, w̃ := w/β. Then
(10.1a)-(10.1c) can be reformulated as

β−1 ∂ũ

∂t
+ w̃ · ∇ũ− div(α̃∇ũ) = f in Ωi, i = 1, 2, t ∈ [0, T ], (10.2a)

[α̃∇ũ · n]Γ = 0, (10.2b)
[ũ]Γ = 0. (10.2c)
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In this formulation we have continuity of ũ across Γ but, compared to (10.1a),
a discontinuous subdomain dependent scaling factor β−1 in front of the time
derivative, which causes difficulties.

We will consider the model in the formulation (10.1a)-(10.1e), which com-
pared to (10.2) is closer to physics.

10.2 Weak formulation: stationary interface

In this section, based on results known in the literature on parabolic equations,
we derive a weak formulation for the transport problem in (10.1). For this
known theory to be applicable we have to assume that the interface and
the velocity field are stationary, i.e., Γ and w do not depend on t, cf. also
Remark 10.2.5. Due to the fact that the underlying problem is a two-phase
flow with two incompressible immiscible phases it is reasonable to make the
following assumptions about the velocity field w = w(x):

div w = 0 in Ωi, i = 1, 2, w ·n = 0 on Γ, ‖w‖L∞(Ω) ≤ c <∞. (10.3)

In the remainder of this section we assume that (10.3) holds.
For a weak formulation we introduce suitable Hilbert spaces. First we

define the space of functions for which all weak first derivatives exist on both
Ω1 and Ω2 and which in addition are zero (in trace sense) on ∂Ω. In the
literature this space is usually denoted by H1

0 (Ω1 ∪Ω2):

H1
0 (Ω1 ∪Ω2) :=

{
v ∈ L2(Ω) : v|Ωi

∈ H1(Ωi), i = 1, 2, v|∂Ω = 0
}
.

For v ∈ H1
0 (Ω1 ∪Ω2) we write vi := v|Ωi

, i = 1, 2. Furthermore

H := L2(Ω), V :=
{
v ∈ H1

0 (Ω1 ∪Ω2) : [βv]Γ = 0
}
. (10.4)

Note:
v ∈ V ⇔ βv ∈ H1

0 (Ω). (10.5)

On H we use the scalar product

(u, v)0 := (βu, v)L2 =
∫

Ω

βuv dx,

which clearly is equivalent to the standard scalar product on L2(Ω). The
corresponding norm is denoted by ‖ · ‖0. For u, v ∈ H1(Ωi) we define
(u, v)1,Ωi := βi

∫
Ωi
∇ui · ∇vi dx and furthermore

(u, v)1,Ω1∪Ω2 := (u, v)1,Ω1 + (u, v)1,Ω2 , u, v ∈ V.

The corresponding norm is denoted by | · |1,Ω1∪Ω2 . This norm is equivalent to

(
‖ · ‖20 + | · |21,Ω1∪Ω2

) 1
2 =: ‖ · ‖1,Ω1∪Ω2 .
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We emphasize that the norms ‖ · ‖0 and ‖ · ‖1,Ω1∪Ω2 depend on β. The space(
V, (·, ·)1,Ω1∪Ω2

)
is a Hilbert space. We obtain a Gelfand triple V ↪→ H ≡

H ′ ↪→ V ′, with dense and continuous embeddings ↪→. In the following the
same spaces L2(0, T ;V ), C([0, T ];H) as in Sect. 2.2.3 are used, cf. Sect. 2.2.1
for a definition.

The bilinear form

a(u, v) := (αu, v)1,Ω1∪Ω2 + (w · ∇u, v)0, u, v ∈ V, (10.6)

is continuous on V and using (10.3) we get, for u ∈ V ,

(w · ∇u, u)0

=
∑

i=1,2

βi

∫

Ωi

w · ∇ui ui dx

=
∫

Γ

w · n[βu2]Γ ds−
∑

i=1,2

βi

∫

Ωi

div w u2
i dx− (w · ∇u, u)0

= −(w · ∇u, u)0.

(10.7)

Hence, (w · ∇u, u)0 = 0 holds. This yields ellipticity of a(·, ·):

a(u, u) ≥ min
i=1,2

αi |u|21,Ω1∪Ω2
for all u ∈ V. (10.8)

Now consider the following weak formulation of (10.1a)-(10.1e). Given f ∈ V ′,
u0 ∈ H , determine u ∈ W 1(0, T ;V ) :=

{
v ∈ L2(0, T ;V ) : v′ ∈ L2(0, T ;V ′ }

such that

u(0) = u0,
d

dt
(u(t), v)0 + a(u, v) = f(v) for all v ∈ V. (10.9)

Here d
dt (u(t), v)0 = u′(v) corresponds to a weak derivative u′ ∈ L2(0, T ;V ′)

as explained in Lemma 2.2.6. Hence, due to (2.28) u ∈ C([0, T ];H) holds and
thus the initial condition u = u0 is well-defined. From Theorem 2.2.7 it follows
that the weak formulation (10.9) has a unique solution.

Remark 10.2.1 This existence and uniqueness result still holds (cf. [238,
106] and Remark 2.2.8) if instead of ellipticity of the bilinear form a(·, ·), cf.
(10.8), one has the weaker property

a(u, u) ≥ c0|u|21,Ω1∪Ω2
− c1‖u‖20 for all u ∈ V,

with constants c0 > 0 and c1 independent of u. Using |(w · ∇u, u)0| ≤
c|u|1,Ω1∪Ω2‖u‖0 it easily follows that this property holds without using the
first two assumptions in (10.3). We introduce these assumptions because they
simplify the presentation of the analysis for the continuous problem and we
need them in our analysis of the Nitsche-XFEM method in Sect. 11.2.
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The weak derivative u′ ∈ L2(0, T ;V ′) in (10.9), which satisfies u′(v) =
d
dt (u(t), v)0 for v ∈ V , can be replaced by a more regular one if we assume
some regularity of the data f and u0. Related to this regularity issue we first
consider the stationary problem: for f ∈ H ,

find u ∈ V such that a(u, v) = (f, v)0 for all v ∈ V. (10.10)

We assume that the unique solution u of this problem satisfies ui ∈ H2(Ωi),
i = 1, 2 and

‖u‖2,Ω1∪Ω2 :=
(
‖u‖21,Ω1∪Ω2

+ |u|22,Ω1∪Ω2

) 1
2 ≤ c ‖f‖0 (10.11)

holds, with a constant c independent of f . For the stationary problem it is no
restriction to assume β1 = β2, since the general case can be reduced to that by
a transformation as in (10.2). For the symmetric case w = 0, this regularity
result is given in [65]. For the general case such regularity results are derived
in Chap. 3 of [162] (cf. also [161]). Using this regularity assumption it follows
from Theorem II.3.2 in [236] that the following holds:

Theorem 10.2.2 Assume that (10.11) is satisfied. Take

f ∈ H, u0 ∈ Vreg :=
{
v ∈ V : vi ∈ H2(Ωi), i = 1, 2

}
. (10.12)

Then the unique solution u ∈ W 1(0, T ;V ) of (10.9) satisfies u ∈
C([0, T ];Vreg) and its weak derivative u′ =: dudt has the regularity property

du

dt
∈ L2(0, T ;V ) ∩ C([0, T ];H). (10.13)

Hence u satisfies, for almost all t ∈ (0, T ):

(
du

dt
, v)0 + a(u, v) = (f, v)0 for all v ∈ V. (10.14)

We now show that the variational problem (10.14) is indeed a correct weak
formulation of the problem (10.1a)-(10.1e).

Lemma 10.2.3 Take f ∈ H, u0 ∈ Vreg. Assume that (10.1a)-(10.1e) has a
solution u(x, t) which is sufficiently smooth such that for u : t → u(·, t) we
have u ∈ C([0, T ];Vreg) and du

dt ∈ L2(0, T ;H). This u solves the variational
problem (10.14).
Conversely, if u ∈ C([0, T ];Vreg) with u(0) = u0 solves the variational problem
(10.14) then u satisfies (10.1a) in a weak L2(Ωi) sense and (10.1b), (10.1c),
(10.1e) in trace sense.

Proof. Take u ∈ C([0, T ];Vreg) with du
dt ∈ L2(0, T ;H), and v ∈ V . Using

[βv]Γ = 0 and the notation {w}Γ := 1
2

(
(w1)|Γ + (w2)|Γ ) for the average of a

function w ∈ H1(Ω1 ∪Ω2) we get
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[α∇u · nβv]Γ = [α∇u · n]Γ {βv}Γ + {α∇u · n}Γ [βv]Γ = [α∇u · n]Γ {βv}Γ .

Using this we obtain

(
du

dt
, v)0 + a(u, v) = (

du

dt
, v)0 + (w · ∇u, v)0

−
∑

i=1,2

∫

Ωi

div(αi∇ui)βivi dx +
∫

Γ

[α∇u · nβv]Γ ds

=
∑

i=1,2

∫

Ωi

(dui
dt

+ w · ∇ui − div(αi∇ui)
)
βivi dx

+
∫

Γ

[α∇u · n]Γ {βv}Γ ds.

(10.15)

If u satisfies (10.1a), (10.1b) we thus obtain

(
du

dt
, v)0 + a(u, v) = (f, v)0 for all v ∈ V,

i.e., (10.14) holds. Conversely, if u ∈ C([0, T ];Vreg) with u(0) = u0 solves the
variational problem (10.14) we obtain for ui(t, x) := u(t)(x)|Ωi

∑

i=1,2

∫

Ωi

(∂ui
∂t

+ w · ∇ui − div(αi∇ui)− f
)
βivi dx

+
∫

Γ

[α∇u · n]Γ {βv}Γ ds = 0

for all v ∈ V . This implies that ∂ui

∂t + w · ∇ui − div(αi∇ui) = f in L2(Ωi)
sense and [α∇u ·n]Γ = 0 in trace sense. The properties in (10.1c) and (10.1e)
hold due to u ∈ V . �

For the result in (10.15) it is essential that we multiply the equation (10.1a)
by βv and not by v. This explains why in the scalar products (·, ·)0 and
(·, ·)1,Ω1∪Ω2 we use the weighting with the (piecewise constant) function β.

Remark 10.2.4 Using (10.5) the weighting with β in the scalar products
in (10.14) can be eliminated, resulting in the following equivalent variational
equation:

(
du

dt
, v)L2 + (α∇u,∇v)L2 + (w · ∇u, v)L2 = (f, v)L2 ∀ v ∈ H1

0 (Ω). (10.16)

In the finite element discretization in Chap. 11 we prefer the formulation in
(10.14), since it uses the same space V both as solution space and as test space.
In (10.16) we have V and H1

0 (Ω) as solution and test space, respectively.

Remark 10.2.5 With additional technical manipulations, the analysis pre-
sented in this section can be generalized such that it also covers the case of
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a time dependent (sufficiently smooth) velocity field w = w(x, t). Then the
bilinear form a(·, ·) in (10.6) depends on t, i.e., we have a(t;u, v). This bilinear
form is continuous and elliptic uniformly in t ∈ [0, T ] and an analysis as in
e.g. [256], Sect. 26, can be applied. This analysis does not apply to the case
of a non-stationary interface.

10.3 Weak formulation: non-stationary interface

In this section we derive a weak formulation of the transport problem (10.1)
for the general case that Γ = Γ (t) is time-dependent and the velocity field
w = w(x, t) may depend on t. We assume that Γ (t) is sufficiently smooth for
all t ∈ [0, T ]. In the analysis presented in the previous section it is essential
for the formulation of the parabolic mass transport problem in the space
L2(0, T ;V ) that the space V does not depend on t. If, however, the interface
is non-stationary, then H1

0 (Ω1 ∪Ω2), and thus also V , is time dependent. Due
to this, the analysis of the previous section is not applicable in case Γ = Γ (t).
Instead, a space-time variational formulation should be used. Although the
transport problem (10.1) is relatively simple, since it consists of two coupled
parabolic problems, we are not aware of any literature in which a rigorous
analysis of an appropriate weak formulation of this problem for the case of a
non-stationary interface is given. Below we present such an analysis.

For the velocity field we assume that for almost all t ∈ [0, T ]:

w(·, t) ∈ H1(Ω)3, ‖w(·, t)‖L∞(Ω) ≤ c <∞, div w = 0 in Ω.

Furthermore, we assume that the interface Γ (t) is transported by the velocity
field w.

We consider the 3D case, i.e. Ω ⊂ R
3. The analysis applies, with only

minor modifications to the general case Ω ⊂ R
d. For simplicity we assume

that Ω1(t) is connected and completely contained in Ω. i.e., ∂Ω1(t) ∩ ∂Ω = ∅,
Γ (t) = ∂Ω1(t). In the subsections below we first introduce suitable space-time
Sobolev spaces and derive some properties of these spaces (Sect. 10.3.1), then
we introduce a space-time weak formulation (Sect. 10.3.2) and finally prove
well-posedness of this weak formulation (Sect. 10.3.3).

10.3.1 Preliminaries

The spaces and techniques treated in this section can be found in papers on
parabolic problems in so-called noncylindrical domains, which means that the
spatial domain in which the problem is formulated depends on t. The first
extensive treatment of this topic is given in [167]. Below we use some results
from this paper.

The remainder of this section is somewhat technical. For the readers conve-
nience we outline the main results. We first introduce spaces on the space-time
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domain QT := Ω×(0, T ). The spaces Vβ andWβ introduced in (10.18), (10.22)
are generalizations of the spaces L2(0, T ;V ) and W 1(0, T ;V ) used for the sta-
tionary interface case in the previous section. These spaces Vβ , Wβ are used
in the space-time weak formulation presented in Sect. 10.3.2. Dense subspaces
of piecewise smooth functions Vβ ⊂ Vβ , cf. (10.20), andWβ ⊂Wβ , cf. (10.21),
are introduced. An important difference between these two subspaces is that
functions from Vβ are zero on the whole boundary of QT , whereas functions
from Wβ are in general zero only on ∂Ω × [0, T ]. An alternative definition of
the space Wβ , which is useful for the analysis of well-posedness in Sect. 10.3.3,
is derived in Proposition 10.3.2. For initial conditions to be well-defined we can
use the embedding property Wβ ↪→ C([0, T ];L2(Ω)) proved in Lemma 10.3.4.
In the analysis of well-posedness we need two partial integration identities
that hold in the space Wβ , namely the ones derived in Corollary 10.3.5 and
Lemma 10.3.6.

The (open) space-time cylinder is denoted by QT := Ω× (0, T ) ⊂ R
4, and the

space-time interface is given by Γ∗ := { (x, t) ∈ QT : x ∈ Γ (t), t ∈ (0, T ) }.
The space-time cylinder is split in subdomains

Qi := { (x, t) ∈ QT : x ∈ Ωi(t), t ∈ (0, T ) } , i = 1, 2.

For v ∈ L2(QT ) we define vi := v|Qi
. We introduce a scalar product in which,

on Qi, we take first derivatives with respect to all spatial variables, but no
derivative with respect to t:

‖u‖2H1,0(Qi)
:=

3∑

j=1

∥
∥ ∂u
∂xj

∥
∥2

L2(Qi)
+ ‖u‖2L2(Qi)

, u ∈ C1(Qi). (10.17)

The induced Hilbert space is given by

H1,0(Qi) :=C1(Qi)
‖·‖H1,0(Qi) =

{
u ∈ L2(Qi) :

∂u

∂xj
∈ L2(Qi), j = 1, 2, 3

}
.

From [167] it follows that under mild assumptions on Γ∗ there exist bounded
linear trace operators

γi : H1,0(Qi) → L2(Γ∗), i = 1, 2,

γΩ : H1,0(Q2)→ L2(∂Ω × (0, T )).

In the remainder we assume that such bounded linear trace operators exist.
Then for u ∈ L2(QT ) with ui ∈ H1,0(Qi), i = 1, 2, the operators u|∂Ω = γΩu
and [u] = [u]Γ∗ = γ1u − γ2u are well-defined. The first space that plays
an important role in the space-time weak formulation of the mass transport
equation is the following analogon of the space V in (10.4):

Vβ :=
{
u ∈ L2(QT ) : ui ∈ H1,0(Qi), i = 1, 2, u|∂Ω = 0, [βu]Γ∗ = 0

}
.

(10.18)
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This space is equipped with the norm

‖u‖2V :=
2∑

i=1

‖ui‖2H1,0(Qi)
, u ∈ Vβ .

This space can also be characterized as follows. Let

H1,0
0 (QT ) := C1

0 (QT )
‖·‖H1,0(QT )

,

with ‖ · ‖H1,0(QT ) as in (10.17) but with Qi replaced by QT , be the space-time
analogon of H1

0 (Ω) (i.e., no derivatives w.r.t. t). Then

v ∈ Vβ ⇔ βv ∈ H1,0
0 (QT ) (10.19)

holds. Using this we obtain as alternative characterization of Vβ :

Vβ = Vβ
‖·‖V

, with Vβ :=
{
β−1φ : φ ∈ C1

0 (QT )
}
. (10.20)

We introduce a subspace of Vβ of functions for which a suitable weak time
derivative is well-defined. This space is an analogon for the noncylindrical case
of the space W 1(0, T ;V ) introduced in Sect. 2.2.3. We need the dual space of
H1,0

0 (QT ), denoted by

H−1,0(QT ) := H1,0
0 (QT )′.

For u ∈ Vβ the distributional time derivative ∂u
∂t is the linear functional given

by
∂u

∂t
(φ) := −

∫

QT

u
∂φ

∂t
dx dt, φ ∈ C1

0 (QT ).

Define Wβ ⊂ Vβ by

Wβ :=
{
β−1ψ : ψ ∈ C1(QT ), ψ|∂Ω = 0

}
. (10.21)

Note that opposite to Vβ in (10.20), a function from Wβ is not necessarily
equal to zero on all of ∂QT .

Lemma 10.3.1 For ψ ∈ Wβ we have ∂ψ
∂t ∈ H−1,0(QT ).

Proof. Take ψ ∈ Wβ, φ ∈ C1
0 (QT ). Then ψi ∈ C1(Qi), i = 1, 2, and

∂ψ

∂t
(φ) = −

∫

QT

ψ
∂φ

∂t
dx dt

=
2∑

i=1

(
−

∫

Γ∗
γiψi φn4 ds dt+

∫

Qi

∂ψi
∂t

φ dx dt

)
,
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where n4 = n̂4 is the fourth component (i. e., the temporal direction) of the
unit normal n̂ at Γ∗. Using the bounds for the trace operators γi and Cauchy-
Schwarz inequalities we obtain

∣
∣∂ψ
∂t

(φ)
∣
∣ ≤ c‖φ‖H1,0(QT ).

Using a density argument it follows that ∂ψ
∂t ∈ H

1,0
0 (QT )′ = H−1,0(QT ) holds.

�

We introduce the closure of Wβ in Vβ w.r.t. the topology induced by ‖ · ‖2V +
‖ ∂∂t · ‖2H−1,0(QT ):

Wβ :=Wβ
‖·‖W

, with ‖v‖2W := ‖v‖2V + ‖∂v
∂t
‖2H−1,0(QT ). (10.22)

The space Wβ is contained in W̃β :=
{
v ∈ Vβ : ∂v

∂t ∈ H−1,0(QT )
}
. We claim

that Wβ = W̃β holds. This claim is formulated in the following proposition,
for which we only give a sketch of a proof, based on [7]. In the remainder we
use this proposition only in Lemma 10.3.10 and Theorem 10.3.11.

Proposition 10.3.2 Assume that for i = 1, 2, there are bounded C1 bijec-
tions Φi : Ωi(0) × (0, T ) → Qi such that Ωi(t) = {Φi(x̃, t) : x̃ ∈ Ωi(0) },
0 < t < T . For Wβ as in (10.22) the following holds:

Wβ =
{
v ∈ Vβ :

∂v

∂t
∈ H−1,0(QT )

}
. (10.23)

Proof. First we consider the case of a stationary interface, i.e., Γ (t) does not
depend on t and thus β(x, t) = β(x) (the subdomains Qi are cylindrical). We
write H = H1

0 (Ω). The spaces L2(0, T ;H) and L2(0, T ;H′) = L2(0, T ;H)′ can
be identified with H1,0

0 (QT ) and H−1,0(QT ), respectively. Define

X :=
{
u ∈ L2(0, T ;H) :

d(β−1u)
dt

∈ L2(0, T ;H′)
}
, (10.24)

with dw
dt = w′ the weak time derivative as in Sect. 2.2.3. On X we use the

norm

‖u‖2X = ‖u‖2L2(0,T ;H) + ‖d(β
−1u)
dt

‖2L2(0,T ;H′).

The space on the right-hand side in (10.23) is denoted by W̃β . The equivalence
v ∈ W̃β ⇔ βv ∈ X holds and ‖ · ‖W and ‖β · ‖X are equivalent norms on W̃β .
The scaling with β−1 in (10.24) is not essential for properties of the space X ,
since it can be incorporated as a weighting factor in the L2(Ω) scalar product.
From the literature, e.g. [256], it follows that C∞(0, T ;H) is dense in X . Using
the density of C∞

0 (Ω) in H it follows that W :=
{
ψ ∈ C1(QT ) : ψ|∂Ω = 0

}

is dense in X . Take v ∈ W̃β . Then βv ∈ X and there is a sequence (ψm) in
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W with limm→∞ ‖ψm − βv‖X = 0. This implies limm→∞ ‖β−1ψm − v‖W = 0
for the sequence (β−1ψm) from Wβ. Thus Wβ is dense in W̃β , i.e. Wβ =

Wβ
‖·‖W = W̃β holds, which proves the claim for the case of a stationary

interface.
We now treat the general case. Define the cylindrical subdomain Q̃i =

Ωi(0)× (0, T ), i = 1, 2. A function v ∈ Vβ can be represented in transformed
variables (x̃, t) by ṽ(x̃, t) := v(Φi(x̃, t), t), (x̃, t) ∈ Q̃i. Due to the smooth-
ness assumption on the bijection Φi, the Sobolev norm of the transformed
function ‖ṽ‖2V :=

∑2
i=1 ‖ṽi‖H1,0(Q̃i)

is equivalent to ‖v‖2V , cf. [8] Sect. 3.34.
Furthermore, ‖∂ṽ∂t ‖H−1,0(Q̃T ) is equivalent to ‖∂v∂t ‖H−1,0(QT ). Using these norm
equivalences and the density result for the special case of a stationary inter-
face (cylindrical subdomains) the density result for the general case can be
proved. �

In the variational formulation of the transport problem presented in
Sect. 10.3.2 below the spaces Vβ and Wβ play an important role. For the
analysis in Sect. 10.3.3 we need some further properties, which are derived in
the remainder of this section.

As mentioned above, we assume that the interface Γ (t) is transported by
the velocity field w(x, t). From this it follows that

n̂ ·
(
w
1

)
= 0 (10.25)

holds, with n̂ ∈ R
4 the unit normal at Γ∗, pointing outward from Q1. For this

normal the identity

n̂ = ν

(
nΓ

−w · nΓ

)
, ν :=

1
√

1 + (w · nΓ )2
(10.26)

holds, where nΓ ∈ R
3 is the unit normal at Γ .

Lemma 10.3.3 For all ψ ∈ Wβ the identity

∂ψ

∂t
(βψ) −

∫

QT

ψw · ∇(βψ) dx dt

=
1
2
‖βψ(·, T )‖2L2(Ω) −

1
2
‖βψ(·, 0)‖2L2(Ω)

(10.27)

holds.

Proof. Take ψ ∈ Wβ , φ ∈ Vβ. Then βφ ∈ C1
0 (QT ) holds. From partial inte-

gration and using (10.25) we obtain, with the notation n̂ =:
(
n̂x
n4

)
,
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∂ψ

∂t
(βφ)−

∫

QT

ψw · ∇(βφ) dx dt = −
∫

QT

ψ
∂(βφ)
∂t

+ ψw · ∇(βφ) dx dt

=
2∑

i=1

∫

Qi

(∂ψi
∂t

+ w · ∇ψi
)
βφdx dt −

∫

Γ∗
[ψ]βφ(n4 + n̂x ·w) ds dt (10.28)

=
2∑

i=1

∫

Qi

(∂ψi
∂t

+ w · ∇ψi
)
βφdx dt.

From a continuity argument it follows that

∂ψ

∂t
(βv)−

∫

QT

ψw · ∇(βv) dx dt =
2∑

i=1

∫

Qi

(∂ψi
∂t

+ w · ∇ψi
)
βv dx dt (10.29)

holds for all v ∈ Vβ . In particular it holds for v = ψ ∈ Wβ ⊂ Vβ . Taking v = ψ
in (10.29) and applying partial integration again we get

2∑

i=1

∫

Qi

(∂ψi
∂t

+ w · ∇ψi
)
βψ dxdt

=
∫

Ω

βψ(·, T )2 dx−
∫

Ω

βψ(·, 0)2 dx−
2∑

i=1

∫

Qi

(∂ψi
∂t

+ w · ∇ψi
)
βψ dxdt,

since the boundary integral
∫
Γ∗

vanishes, cf. (10.28). Using this in (10.29),
with v = ψ, the result is proved. �

In the next lemma we derive a generalization of the embedding property
W 1(0, T ;V ) ↪→ C([0, T ];H) given in (2.28).

Lemma 10.3.4 There is a continuous embedding Wβ ↪→ C([0, T ];L2(Ω)).

Proof. It suffices to prove

sup
t∈[0,T ]

‖ψ(·, t)‖L2(Ω) ≤ c‖ψ‖W for all ψ ∈ Wβ .

Take ψ ∈ Wβ . From Lemma 10.3.3 we have

∂ψ

∂t
(βψ)−

∫

QT

ψw · ∇(βψ) dx dt

=
1
2
‖βψ(·, T )‖2L2(Ω) −

1
2
‖βψ(·, 0)‖2L2(Ω).

(10.30)

We take t0 ∈ [12T, T ]. Let Wβ(Qt0) be as in (10.21), but with T replaced
by t0. Note that ψ ∈ Wβ = Wβ(QT ) implies ψ ∈ Wβ(Qt0). The identity
(10.30) holds with QT replaced by Qt0 . For the time derivative we then have
∂ψ
∂t ∈ H−1,0(Qt0) and
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∥∥∂ψ
∂t

∥∥
H−1,0(Qt0 )

≤
∥∥∂ψ
∂t

∥∥
H−1,0(QT )

(10.31)

holds. Let θ = θ(t) be a smooth function with θ(t) ∈ [0, 1] for all t, θ(0) = 0,
θ(t) = 1 for all t ∈ [12T, T ]. The result (10.30) holds with QT replaced by
Qt0 and, since θψ ∈ Wβ , with ψ replaced by θψ. Using this and θ(t0) = 1,
θ(0) = 0 we get, with c0 := 2 max{β−2

1 , β−2
2 },

‖ψ(·, t0)‖2L2(Ω) ≤ c0
1
2
‖βθ(t0)ψ(·, t0)‖2L2(Ω) − c0

1
2
‖βθ(0)ψ(·, 0)‖2L2(Ω)

= c0
∂(θψ)
∂t

(βθψ) − c0
∫

Qt0

θ2ψw · ∇(βψ) dx dt.

For the second term on the right-hand side we have
∣
∣
∫

Qt0

θ2ψw · ∇(βψ) dx dt
∣
∣ ≤ c‖ψ‖L2(Qt0 )‖∇(βψ)‖L2(Qt0 ) ≤ c‖ψ‖2V .

For the first term we get
∣
∣∂(θψ)
∂t

(βθψ)
∣
∣ ≤

∥
∥∂(θψ)

∂t

∥
∥
H−1,0(Qt0 )

‖θβψ‖H1,0(Qt0 )

≤ c
∥
∥∂(θψ)

∂t

∥
∥
H−1,0(Qt0 )

‖ψ‖V . (10.32)

We consider the term ‖∂(θψ)
∂t

∥
∥
H−1,0(Qt0 )

in (10.32). For φ ∈ C1
0 (Qt0) we have

∂(θψ)
∂t

(φ) = −
∫

Qt0

θψ
∂φ

∂t
dx dt = −

∫

Qt0

ψ
∂(θφ)
∂t

dx dt+
∫

Qt0

θ′ψφdxdt.

Hence, using θφ ∈ C1
0 (Qt0) we obtain

∣
∣∂(θψ)
∂t

(φ)
∣
∣ ≤

∥
∥∂ψ
∂t

∥
∥
H−1,0(Qt0 )

‖θφ‖H1,0(Qt0 ) + c‖ψ‖V ‖φ‖H1,0(Qt0 )

≤ c
(∥∥∂ψ
∂t

∥
∥
H−1,0(Qt0 )

+ ‖ψ‖V
)
‖φ‖H1,0(Qt0 ).

Using (10.31) this yields

‖∂(θψ)
∂t

∥
∥
H−1,0(Qt0 )

≤ c
(
‖∂ψ
∂t

∥
∥
H−1,0(QT )

+ ‖ψ‖V
)
.

Using this in (10.32) we obtain

∣∣∂(θψ)
∂t

(βθψ)
∣∣ ≤ c

(
‖∂ψ
∂t

∥∥2

H−1,0(QT )
+ ‖ψ‖2V

)
,

and combing these results yields

sup
t∈[ 12T,T ]

‖ψ(·, t)‖L2(Ω) ≤ c‖ψ‖W .

The same bound can be derived for t0 ∈ [0, 1
2T ] by replacing t0 by T − t0 and

applying the same arguments. �
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Corollary 10.3.5 The identity (10.27) holds for all ψ ∈ Wβ .

Proof. This follows from the density of Wβ in Wβ with respect to ‖ · ‖W ,
continuity of the bilinear forms on the left-hand side in (10.27) w.r.t. ‖ · ‖W
and the inequality ‖βψ(·, t)‖L2(Ω) ≤ c‖ψ‖W for all ψ ∈Wβ . �

Lemma 10.3.6 For all u, v ∈Wβ the following holds:

∂u

∂t
(βv) +

∂v

∂t
(βu) =

∫

Ω

(
βuv

)
|t=T dx −

∫

Ω

(
βuv

)
|t=0

dx−
∫

Γ∗
[βuv]n4 ds dt,

with n4 = n̂4 the fourth component of the unit normal at Γ∗.

Proof. Take ψ ∈ Wβ. Define

lψ(v) :=
∫

QT

∂(βψ)
∂t

v dx dt−
∫

Γ∗
[βψv]n4 ds, v ∈ Vβ .

From the definition of the distributional derivative and a density argument it
follows that ∂ψ

∂t (βv) = lψ(v) for all v ∈ Vβ . For φ ∈ Wβ we have

lψ(φ) = −lφ(ψ) +
∫

Ω

(
βψφ

)
|t=T dx−

∫

Ω

(
βψφ

)
|t=0

dx−
∫

Γ∗
[βψφ]n4 ds.

This yields

∂ψ

∂t
(βφ) +

∂φ

∂t
(βψ) =

∫

Ω

(
βψφ

)
|t=T dx−

∫

Ω

(
βψφ

)
|t=0

dx−
∫

Γ∗
[βψφ]n4 ds

for all ψ, φ ∈ Wβ. By a density argument this even holds for ψ, φ ∈ Wβ . �

10.3.2 Space-time weak formulation

In this section we introduce a weak formulation of the mass transport problem
(10.1). We restrict to the case with an initial condition u0 = 0. The case u0 �= 0
can be treated by a shift argument.

For u ∈Wβ , due to the result in Lemma 10.3.4 the function u(·, 0) ∈ L2(Ω)
is well-defined. We introduce the subspace of Wβ of functions with initial data
equal to zero:

Wβ,0 := {u ∈Wβ : u(·, 0) = 0 in Ω } .
The space (Wβ,0, ‖ · ‖W ) is a Hilbert space. We introduce the following space-
time weak formulation of the mass transport equation:

Determine u ∈ Wβ,0 such that

∂u

∂t
(v)−

∫

QT

uw·∇v dx dt+
2∑

i=1

∫

Qi

αi∇ui·∇v dx dt =
∫

QT

fv dx dt (10.33)

for all v ∈ H1,0
0 (QT ).
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Remark 10.3.7 The formulation in (10.33) generalizes the one for the sta-
tionary interface case given in (10.16). Due to the property (10.19) the test
space H1,0

0 (QT ) can be replaced by Vβ . For the trial and test space we then
have the nice embedding relation Wβ,0 ⊂ Vβ . Using the test space Vβ the
variational equation (10.33) takes the form

∂u

∂t
(βv)−

∫

QT

uw · ∇(βv) dx dt+
2∑

i=1

∫

Qi

αiβi∇ui · ∇vi dx dt =
∫

QT

βfv dx dt

for all v ∈ Vβ . This generalizes the problem in (10.14).

We show that this problem is consistent with the strong formulation in (10.1):

Lemma 10.3.8 Assume that the weak formulation (10.33) has a solution u ∈
Wβ,0 that is sufficiently smooth, namely u ∈ H1(Qi), ∂u

∂xj
∈ H1,0(Qi), for

j = 1, 2, 3 and i = 1, 2. Then u satisfies (10.1a)–(10.1e) (in L2-sense), with
u0 = 0.

Proof. Due to u ∈ Wβ,0 the properties (10.1c)–(10.1e), with u0 = 0, hold
for u. In (10.33) we take v = φ ∈ C1

0 (QT ). Using (10.19), partial integration
on the subdomains Qi and the property (10.25) we get

∂u

∂t
(φ)−

∫

QT

uw · ∇φdx dt =
2∑

i=1

∫

Qi

(∂ui
∂t

+ w · ∇ui
)
φdx dt,

and

2∑

i=1

∫

Qi

αi∇ui ·∇φdx dt = −
2∑

i=2

∫

Qi

div(αi∇ui)φdx dt+
∫

Γ∗
ν[α∇u ·n]Γφds,

with n ∈ R
3 the unit normal at Γ (t) and ν a suitable scaling parameter.

Hence, we obtain

2∑

i=1

∫

Qi

(
∂ui
∂t

+ w · ∇ui − div(αi∇ui)− f
)
φdx dt+

∫

Γ∗
ν[α∇u·n]Γφds dt=0

for all φ ∈ C1
0 (QT ). Thus (10.1a) and (10.1b) are satisfied. �

10.3.3 Well-posedness of the space-time weak formulation

In this section we prove that the space-time variational problem (10.33) has
a unique solution. We assume that the right-hand side f ∈ L2(QT ). For the
analysis we apply Theorem 15.1.1. As Hilbert spaces we use H1 = Wβ,0,
H2 = H1,0

0 (QT ). For notational convenience we write H = H1,0
0 (QT ), and
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thus ‖ · ‖H1,0
0 (QT ) = ‖ · ‖H1,0(QT ) = ‖ · ‖H . For the bilinear form on the left-

hand side in (10.33) we use the notation a : Wβ,0 ×H → R, and this bilinear
is split into two parts:

a(u, v) :=
∂u

∂t
(v)−

∫

QT

uw · ∇v dx dt +
2∑

i=1

∫

Qi

αi∇ui · ∇v dx dt

=: a1(u, v) + a2(u, v),

with the elliptic part

a2(u, v) =
2∑

i=1

∫

Qi

αi∇ui · ∇v dx dt.

Introduce f(v) :=
∫
QT

fv dx dt. Using this notation the weak formulation
takes the form:

determine u ∈Wβ,0 such that a(u, v) = f(v) for all v ∈ H. (10.34)

The bilinear form a(·, ·) is continuous on Wβ,0 ×H . The problem (10.34) is
well-posed iff the following two conditions are satisfied, cf. Theorem 15.1.1:

∃ ε > 0 : inf
u∈Wβ,0

sup
v∈H

a(u, v)
‖u‖W‖v‖H

≥ ε (”inf-sup condition”), (10.35a)

[ a(u, v) = 0 for all u ∈ Wβ,0] implies v = 0. (10.35b)

Lemma 10.3.9 The inf-sup condition (10.35a) is fulfilled.

Proof. Take u ∈ Wβ,0. Note that Wβ,0 ⊂ Wβ ⊂ Vβ and thus βu ∈ H , cf.
(10.19). Define gu := ∂u

∂t (·) ∈ H ′. Recall that ‖u‖2W = ‖u‖2V + ‖gu‖2H′ . For
v, w ∈ H we have a2(v, w) =

∫
QT

α∇v · ∇w dxdt, hence using a Friedrichs
inequality we conclude that t he bilinear form a2(·, ·) is continuous and elliptic
on H ×H :

∃ δ > 0 : δ ‖v‖2H ≤ a2(v, v) for all v ∈ H.
Let z ∈ H be such that

a2(z, v) = gu(v) for all v ∈ H.

Using

‖gu‖H′ = sup
v∈H

a2(z, v)
‖v‖H

≤ c‖z‖H

it follows that there is a constant ξ > 0 independent of u such that

ξ‖gu‖2H′ ≤ δ‖z‖2H ≤ gu(z) ≤ ‖gu‖H′‖z‖H. (10.36)
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Take v := z + μβu ∈ H , with a fixed, sufficiently large μ > 0. Using (10.36)
we obtain

‖v‖H ≤ ‖z‖H + μ‖βu‖H ≤ cμ(‖gu‖H′ + ‖u‖V ) ≤ 1
2
cμ‖u‖W . (10.37)

Substitution of this v ∈ H in the bilinear form yields

a(u, v) =
∂u

∂t
(z + μβu)−

∫

QT

uw · ∇(z + μβu) dxdt+ a2(u, z + μβu)

= gu(z) + μ

[
∂u

∂t
(βu)−

∫

QT

uw · ∇(βu) dx dt
]

−
∫

QT

uw · ∇z dx dt+ a2(u, z) + μa2(u, βu)

≥ gu(z)−
∫

QT

uw · ∇z dxdt + a2(u, z) + μa2(u, βu),

where in the last inequality we used Corollary 10.3.5 and u(x, 0) = 0, since
u ∈Wβ,0. Now note that

∣
∣
∫

QT

uw · ∇z dx dt+ a2(u, z)
∣
∣ ≤ c̃‖u‖V ‖z‖H

holds with c̃ independent of u. For the term a2(u, βu) we have

a2(u, βu) ≥ min{β−1
1 , β−1

2 } a2(βu, βu) ≥ min{β−1
1 , β−1

2 } δ‖βu‖2H
≥ δmin{β−1

1 , β−1
2 } min{β2

1 , β
2
2} ‖u‖2V =: ĉ‖u‖2V .

(10.38)

Hence, for μ sufficiently large, independent of u, we get

a(u, v) ≥ gu(z)− (c̃δ−
1
2 ‖u‖V )(δ

1
2 ‖z‖H) + μĉ‖u‖2V

≥ gu(z)−
1
2
δ‖z‖2H +

(
μĉ− 1

2
c̃2δ−1

)
‖u‖2V

≥ 1
2
gu(z) +

(
μĉ− 1

2
c̃2δ−1

)
‖u‖2V

≥ 1
2
ξ(‖gu‖2H′ + ‖u‖2V ) =

1
2
ξ‖u‖2W .

Combining this with (10.37) we obtain

a(u, v) ≥ ε ‖u‖W‖v‖H ,

with ε > 0 independent of u, which proves the inf-sup property. �

We now consider the second condition (10.35b). In the proof of the next lemma
we use Proposition 10.3.2.

Lemma 10.3.10 Condition (10.35b) is fulfilled.
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Proof. Let v ∈ H be such that a(u, v) = 0 for all u ∈Wβ,0. Define v̂ := 1
β v ∈

Vβ . Introduce, for u, v ∈ H1,0(Q1 ∪Q2),

d(u, v) :=
2∑

i=1

∫

Qi

−uiw · ∇vi + αi∇ui · ∇vi dx dt,

hence, ∂u
∂t (βv̂) + d(u, βv̂) = 0 for all u ∈ Wβ,0. For arbitrary u ∈ Vβ ⊂ Wβ,0

we have
∂u

∂t
(βv̂) =

∫

QT

∂(βu)
∂t

v̂ dx dt−
∫

Γ∗
[βuv̂]n4 ds = −∂v̂

∂t
(βu)−

∫

Γ∗
[βuv̂]n4 ds,

and thus
∂v̂

∂t
(βu) = −∂u

∂t
(βv̂)−

∫

Γ∗
[βuv̂]n4 ds = d(u, βv̂)−

∫

Γ∗
[βuv̂]n4 ds

= d(βu, v̂)−
∫

Γ∗
[βuv̂]n4 ds.

The linear functional w → d(w, v̂) −
∫
Γ∗

[wv̂]n4 ds is bounded on H . Thus it
follows that ∂v̂

∂t (·) ∈ H ′, i.e., v̂ ∈Wβ and, by a density argument,

∂v̂

∂t
(βu)− d(u, βv̂) +

∫

Γ∗
[βuv̂]n4 ds = 0 for all u ∈ Vβ . (10.39)

Using −d(u, βv̂) = ∂u
∂t (βv̂) for all u ∈Wβ,0 and Lemma 10.3.6 we get

0 =
∂v̂

∂t
(βu) +

∂u

∂t
(βv̂) +

∫

Γ∗
[βuv̂]n4 ds =

∫

Ω

(
βuv̂

)
t=T

dx for all u ∈ Wβ,0.

This implies v̂(·, T ) = 0. In equation (10.39) we take u = v̂ ∈ Wβ , apply
partial integration and use Corollary 10.3.5, resulting in

0 =
∂v̂

∂t
(βv̂)− d(v̂, βv̂) +

∫

Γ∗
[βv̂2]n4 ds

=
∂v̂

∂t
(βv̂)−

∫

QT

βv̂w · ∇v̂ dx dt+
∫

Γ∗
[βv̂2]n4 ds− a2(v̂, βv̂)

= −1
2
‖βv̂(·, 0)‖2L2(Ω) − a2(v̂, βv̂).

Using ellipticity of a2(·, β·), cf. (10.38), this implies v̂ = 0 and thus v = 0. �.

Theorem 10.3.11 For each f ∈ L2(QT ) the space-time variational prob-
lem (10.33) has a unique solution u ∈ Wβ,0 and ‖u‖W ≤ c‖f‖L2(QT ) holds
with a constant c independent of f .

Proof. This follows from Theorem 15.1.1 and the Lemmas 10.3.9 and 10.3.10.
�
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Finite element discretization

In this chapter we discuss a finite element discretization method for the mass
transport problem in (10.1). Compared to the usual convection-diffusion prob-
lems there are two issues that make this problem more complicated. Firstly,
one has to deal with the Henry interface condition in (10.1c) and secondly,
due to this condition the solution u is discontinuous across the interface. In
our applications, due to the level set technique for capturing the interface, the
triangulation is not fitted to Γ .

As in Chap. 10 we distinguish two cases. In the Sects. 11.1–11.4 we restrict
ourselves to the case of a stationary interface and velocity field, as in Sect. 10.2.
In Sect. 11.5 we address the finite element discretization for the general case
of the mass transport problem with a non-stationary interface and velocity
field.

We restrict ourselves to the diffusion dominated case. If the mass transport
problem is convection dominated one needs additional stabilization of the
finite element methods treated in this chapter. One possibility would be to
use the streamline-diffusion stabilization approach as explained in Sect. 7.2.2.
However, we do not treat such stabilized versions.

11.1 Nitsche-XFEM method

In this section we derive a special finite element method that is very suitable
for the discretization of the mass transport problem (10.1). For this derivation
and the error analysis (in the Sects. 11.2 and 11.3) we restrict ourselves to the
case in which both the interface Γ and the velocity filed w are assumed to be
independent of t. Generalization of this method to the case of a non-stationary
Γ and w is discussed in Sect. 11.5.

For a conforming finite element discretization of the variational problem
(10.14) one needs finite element functions φ that satisfy the interface condition
[βφ] = 0, which is very inconvenient, in particular if the interface Γ crosses the
elements. An alternative approach is to use a technique, due to Nitsche [186],
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in which the XFEM space is used and the interface condition [βu] = 0 is
enforced, in a weak sense, by modifying the bilinear form. An overview of
applications of Nitsche’s method to interface problems is given in [137].

We present the Nitsche-XFEM method for the 3D case, along the same lines
as in [135, 136]. Let {Th}h>0 be a regular family of tetrahedral triangulations
of Ω. A triangulation Th consists of tetrahedra T , with hT := diam(T ) and
h := max { hT : T ∈ Th }. For any tetrahedron T ∈ Th let Ti := T ∩ Ωi be
the part of T in Ωi. For any T with T ∩ Γ �= ∅ we define ΓT := T ∩ Γ . We
introduce the finite element space

QΓh :=
{
v ∈ H1

0 (Ω1 ∪Ω2) : v|Ti
is linear for all T ∈ Th, i = 1, 2

}
. (11.1)

In the variational formulation of the continuous problem (10.14) the space
V :=

{
v ∈ H1

0 (Ω1 ∪Ω2) : [βv]Γ = 0
}

is used. Note that QΓh ⊂ H1
0 (Ω1 ∪Ω2),

butQΓh �⊂ V , since the Henry interface condition [βvh] = 0 does not necessarily
hold for vh ∈ QΓh .

Remark 11.1.1 The space QΓh defined above is almost the same as the ex-
tended finite element space (XFEM) treated in Sect. 7.9.2, cf. (7.106) and
(7.116). The only difference is that in (11.1) we restrict to finite element
functions with homogeneous Dirichlet boundary conditions on ∂Ω, whereas
in Sect. 7.9.2 there are no essential boundary conditions in the XFEM space.
For implementation issues we refer to Sects. 7.9.2 and 7.9.3. In practice we
use this space with a (piecewise planar) approximation Γh of Γ . It follows
from Theorem 7.9.3 that this finite element space has optimal approximation
properties for functions u ∈ Hm(Ω1 ∪Ω2), m = 1, 2.

Define

(κi)|T =
|Ti|
|T | , T ∈ Th, i = 1, 2,

hence, κ1 + κ2 = 1. For v sufficiently smooth such that (vi)|Γ , i = 1, 2, are
well-defined, we define the weighted average

{v} := κ1(v1)|Γ + κ2(v2)|Γ . (11.2)

For the average and jump operators the following identity holds for all f, g
such that these operators are well-defined:

[fg] = {f}[g] + [f ]{g} − (κ1 − κ2)[f ][g]. (11.3)

Let (f, g)Γ :=
∫
Γ fg ds be the L2(Γ ) scalar product. We introduce the bilinear

form

ah(u, v) := (αu, v)1,Ω1∪Ω2 + (w · ∇u, v)0 − ([βu], {α∇v · n})Γ
− ({α∇u · n}, [βv])Γ + λh−1([βu], [βv])Γ ,

(11.4)
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with λ > 0 a parameter. This bilinear form is well-defined on the space QΓh
but also on

Wreg :=
{
v ∈ H1

0 (Ω1 ∪Ω2) : vi ∈ H2(Ωi), i = 1, 2
}
.

The spaceWreg is larger than the space Vreg in (10.12). The interface condition
[βv] = 0 is fulfilled for all v ∈ Vreg but not necessarily for v ∈ Wreg. Using
this bilinear form we define a method of lines discretization of (10.14).

Let û0 ∈ QΓh be an approximation of u0. For t ∈ [0, T ] let uh(t) ∈ QΓh be
such that uh(0) = û0 and

(
duh
dt

, vh)0 + ah(uh, vh) = (f, vh)0 for all vh ∈ QΓh . (11.5)

In practice one uses Γh instead of Γ . Using the (nodal) basis (qj)j∈J∪(qΓj )j∈JΓ

in QΓh , cf. (7.106), the function uh = uh(t) can be represented as

uh(t) =
∑

j∈J
uj(t)qj +

∑

j∈JΓ

uΓj (t)qΓj

and the problem (11.5) can be written as a system of coupled ordinary dif-
ferential equations for the time dependent coefficients uj(t), j ∈ J , and
uΓj (t), j ∈ JΓ . Note that since we assumed Γ to be stationary,m := |J |+|JΓ |
is independent of t. In general this does not hold for a non-stationary Γ . For
the matrix-vector representation of the system of ordinary differential equa-
tions we introduce some notation. Without loss of generality we assume that
JΓ = {1, . . . , |JΓ |}. Denoting the extended basis functions qΓj , j ∈ JΓ by
q|J |+j := qΓj and the corresponding coefficients by u|J |+j := uΓj , the mass
and stiffness matrix are given by

Mij = (qj , qi)0, Aij = ah(qj , qi), 1 ≤ i, j ≤ m.

Furthermore, 	bi = (f, qi)0, 1 ≤ i ≤ m, and 	u0 denotes the vector represen-
tation of the initial condition û0. For simplicity we assume f , and hence also
	b, to be independent of t. Then the system of ordinary differential equations
takes the form

M
d	u
dt

(t) + A	u(t) = 	b,

	u(0) = 	u0.
(11.6)

As an example, for the time discretization we consider the θ-scheme:

	u0 = 	u0,

1
Δt

M
(
	un+1 − 	un

)
+ θA	un+1 + (1− θ)A	un = 	b, n = 0, 1, . . . .

(11.7)
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Below we analyze the errors in these space and time discretization methods.
In Sect. 11.2 we analyze the spatial discretization error in the Nitsche method
(11.5). In Sect. 11.3 we analyze the error after space and time discretization. In
Sect. 11.4 we present results of a few numerical experiments with the Nitsche-
XFEM method.

Remark 11.1.2 We discuss an alternative equivalent representation of the
Nitsche-XFEM discretization in (11.5) which is better suitable for a general-
ization of the Nitsche-XFEM method to a space-time discretization, as dis-
cussed in Sect. 11.5.2. This formulation uses the subspaces Vi ⊂ Qh, i = 1, 2,
and the isomorphism between V1 × V2 and QΓh (or QΓh

h ) as explained in
Remark 7.9.9. We introduce some notation. In the bilinear form ah(·, ·) in
(11.4) the first two terms correspond to the bilinear form a(·, ·) of the contin-
uous problem, cf. (10.6), and the three interface terms come from the Nitsche
method. The bilinear form a(·, ·) is split according to the subdomains:

ai(u, v) :=
∫

Ωi

βiαi∇u · ∇v dx+
∫

Ωi

βiw · ∇uv dx, u, v ∈ H1(Ωi), i = 1, 2.

Note that βi, αi are constant on Ωi. For a pair of functions (w1, w2) the jump
and average are given by

[(w1, w2)] := (w1 − w2)|Γ , {(w1, w2)} := (κ1w1 + κ2w2)|Γ .

We define the Nitsche interface functional

NΓ
(
(u1, u2), (v1, v2)

)
:= −

∫

Γ

[(β1u1, β2u2)]{α1∇v1 · n, α2∇v2 · n} ds

−
∫

Γ

{α1∇u1 · n, α2∇u2 · n}[(β1v1, β2v2)] ds

+ λh−1

∫

Γ

[(β1u1, β2u2)][(β1v1, β2v2)], ui, vi ∈ Vi.

The Nitsche-XFEM method can be reformulated in the space V1 × V2 as
follows. Take (û1, û2) ∈ V1 × V2 such that R1û1 + R2û1 is an approxima-
tion of the initial condition u0. Determine (u1(t), u2(t)) ∈ V1 × V2 such that
(u1(0), u2(0)) = (û1, û2) and for t ∈ [0, T ]:

2∑

i=1

[
(βi

dui
dt
, vi)L2(Ωi) + ai(ui, vi)

]
+NΓ

(
(u1, u2), (v1, v2)

)

=
2∑

i=1

(βif, vi)L2(Ωi) for all (v1, v2) ∈ V1 × V2.

(11.8)

In this formulation instead of the XFEM space QΓh we use the subspaces
Vi ⊂ Qh of the standard space Qh of linear finite elements. In (11.8) we do
not use integrals over Ω but only over Ωi, i = 1, 2. For the implementation
of this formulation in the space V1 × V2 it is natural to use the basis as in
(7.126).
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11.2 Analysis of the Nitsche-XFEM method

In this section we present an error analysis of the method of lines discretization
given in (11.5), which is based on the analyses presented in [135, 136]. We
assume that the velocity field w is such that the conditions in (10.3) are
satisfied. Related to the regular family of triangulations {Th} we formulate
the same assumptions as in [135, 136]:

Assumption 11.2.1 Consider a T ∈ Th with T ∩ Γ �= ∅. We assume that
the intersection of the interface Γ with ∂T is either a connected curve or a
face of T . For the first case, take a plane through three of the points of the
intersection of Γ and the edges of T and let ΓT,h be the intersection of T and
this plane. We assume that, in suitable local coordinates (ξ, η, θ), ΓT = Γ ∩T
can be parametrized by a function on ΓT,h:

ΓT = { (ξ, η, θ) : (ξ, η, 0) ∈ ΓT,h, θ = g(ξ, η) } .

The assumptions formulated in 11.2.1 are satisfied on sufficiently fine meshes.
We start the analysis with a consistency result:

Lemma 11.2.2 Let u = u(t) ∈ Vreg be the solution defined in Theo-
rem 10.2.2. Then u(t) satisfies

(
du

dt
, vh)0 + ah(u, vh) = (f, vh)0 for all vh ∈ QΓh , t ∈ [0, T ]. (11.9)

Proof. From Lemma 10.2.3 we have that u = u(t) satisfies [α∇u · n] =
0, [βu] = 0. Using this and (11.3) we obtain, for vh ∈ QΓh :

−
∑

i=1,2

∫

Ωi

div(αi∇ui)βvh dx+ (w · ∇u, vh)0

= −
∫

Γ

[α∇u · nβvh] ds+ (αu, vh)1,Ω1∪Ω2 + (w · ∇u, vh)0

= −({α∇u · n}, [βvh])Γ + (αu, vh)1,Ω1∪Ω2 + (w · ∇u, vh)0 = ah(u, vh).

Furthermore, u solves (10.1a) (in the sense as in Lemma 10.2.3). Multiplication
of (10.1a) by βvh and integration over Ω results in

(f, vh)0 = (
du

dt
, vh)0 + (w · ∇u, vh)0 −

∑

i=1,2

∫

Ωi

div(αi∇ui)βvh dx

= (
du

dt
, vh)0 + ah(u, vh),

and thus the consistency result holds. �
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For the error analysis we introduce suitable norms, as in [135]. Let T Γh denote
the set of all tetrahedra that are intersected by Γ . We define

‖v‖21/2,h,Γ :=
∑

T∈T Γ
h

h−1
T ‖v‖2L2(ΓT ), (11.10)

‖v‖2−1/2,h,Γ :=
∑

T∈T Γ
h

hT ‖v‖2L2(ΓT ), (11.11)

|||v|||2 := |v|21,Ω1∪Ω2
+ ‖{∇v · n}‖2−1/2,h,Γ + ‖[βv]‖21/2,h,Γ . (11.12)

Different from [135] we have a scaling with β in the terms |v|1,Ω1∪Ω2 and
‖[βv]‖1/2,h,Γ . The bilinear form ah(·, ·) has the following continuity and ellip-
ticity properties with respect to the norm ||| · |||.

Lemma 11.2.3 There exist constants c1, c2 > 0 such that for λ sufficiently
large (independent of h) the following holds:

|ah(u, v)| ≤ c1|||u||| |||v||| for all u, v ∈ QΓh +Wreg, (11.13)

ah(vh, vh) ≥ c2|||vh|||2 for all vh ∈ QΓh . (11.14)

Proof. First note that |(f, g)Γ | ≤ ‖f‖1/2,h,Γ‖g‖−1/2,h,Γ holds. Take u, v ∈
QΓh + Wreg. Using the Cauchy-Schwarz inequality and the definitions of the
norms we obtain

|ah(u, v)|
≤ c |u|1,Ω1∪Ω2 |v|1,Ω1∪Ω2 + c |u|1,Ω1∪Ω2‖v‖0
+ ‖[βu]‖1/2,h,Γ‖{α∇v · n}‖−1/2,h,Γ + ‖{α∇u · n}‖−1/2,h,Γ‖[βv]‖1/2,h,Γ
+ λ‖[βu]‖1/2,h,Γ‖[βv]‖1/2,h,Γ ≤ c |||u||||||v|||,

which proves the continuity. Using the assumptions (10.3) we obtain for vh ∈
QΓh , cf. (10.7), (w · ∇vh, vh)0 = 0. Hence, using hT ≤ h we get, with c0 =
mini=1,2 αi,

ah(vh, vh)

≥ |α 1
2 vh|21,Ω1∪Ω2

− 2|({α∇vh · n}, [βvh])Γ |+ λ‖[βvh]‖21/2,h,Γ
≥ c0|vh|21,Ω1∪Ω2

− 2‖{α∇vh · n}‖−1/2,h,Γ‖[βvh]‖1/2,h,Γ + λ‖[βvh]‖21/2,h,Γ
≥ c0|vh|21,Ω1∪Ω2

− δ‖{α∇vh · n}‖2−1/2,h,Γ + (λ − δ−1)‖[βvh]‖21/2,h,Γ (11.15)

for arbitrary δ > 0. The term ‖{α∇vh · n}‖−1/2,h,Γ can be estimated as
follows. For a given tetrahedron T and vh ∈ QΓh , ‖∇(vh)i(x)‖ (where ‖ · ‖ is
the Euclidean norm on R

3) is constant for x ∈ Ti, say equal to ĉi. Hence,
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hTκ
2
i ‖αi∇(vh)i · n‖2L2(ΓT ) ≤ hTκ

2
i |ΓT |α2

i ĉ
2
i ≤ chTκ

2
i

|ΓT |
|Ti|

‖β
1
2
i ∇(vh)i‖2L2(Ti)

= chT
|Ti||ΓT |
|T |2 ‖β

1
2
i ∇(vh)i‖2L2(Ti)

≤ c‖β
1
2
i ∇(vh)i‖2L2(Ti)

,

and thus

‖{α∇vh · n}‖2−1/2,h,Γ ≤ 2
2∑

i=1

κ2
i ‖αi∇(vh)i · n‖2−1/2,h,Γ

= 2
2∑

i=1

∑

T∈T Γ
h

hTκ
2
i ‖αi∇(vh)i · n‖2L2(ΓT )

≤ c

2∑

i=1

∑

T∈T Γ
h

‖β
1
2
i ∇(vh)i‖2L2(Ti)

≤ c
2∑

i=1

‖β
1
2
i ∇(vh)i‖2L2(Ωi)

= c |vh|21,Ω1∪Ω2
.

With this constant c and for λ ≥ c0
1+2c + 1+2c

c0
, taking δ = c0

1+2c in (11.15) we
get

ah(vh, vh)

≥ c0|vh|21,Ω1∪Ω2
− c0

1 + 2c
‖{α∇vh · n}‖2−1/2,h,Γ + (λ− 1 + 2c

c0
)‖[βvh]‖21/2,h,Γ

≥ c0|vh|21,Ω1∪Ω2
− 2c0

1 + 2c
‖{α∇vh · n}‖2−1/2,h,Γ +

c0
1 + 2c

‖{α∇vh · n}‖2−1/2,h,Γ

+
c0

1 + 2c
‖[βvh]‖21/2,h,Γ

≥ c0
1 + 2c

|vh|21,Ω1∪Ω2
+

c0
1 + 2c

‖{α∇vh · n}‖2−1/2,h,Γ +
c0

1 + 2c
‖[βvh]‖21/2,h,Γ

=
c0

1 + 2c
|||vh|||2,

and thus the ellipticity result in (11.14). �

Below, in Theorem 11.2.4, we derive an approximation error bound for the
XFEM space QΓh with respect to the norm ||| · |||. The analysis is essentially the
same as in [135, 136]. In Sect. 7.9.4, Theorem 7.9.3, we derived such a bound
in the (more standard) norms ‖ · ‖L2 and ‖ · ‖1. As in (7.114) we can define
an interpolation operator I∗h : Wreg → QΓh of the form:

I∗hv = R1I
2
hE2

1R1v +R2I
2
hE2

2R2v,

with Ri restriction operators,Riv := v|Ωi
, E2
i : H2(Ωi)→ H2(Ω) bounded ex-

tension operators (that preserve homogeneous Dirichlet boundary conditions
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on ∂Ω) and I2
h the standard nodal interpolation operator on H2(Ω)∩H1

0 (Ω).
For these operators the following error bounds hold:

‖E2
i v − I2

hE2
i v‖L2(T ) ≤ chmT ‖E2

i v‖Hm(T ), m = 1, 2, v ∈ Wreg,

‖E2
i v − I2

hE2
i v‖H1(T ) ≤ chT ‖E2

i v‖H2(T ), v ∈ Wreg,
(11.16)

with a constant c independent of v and of T ∈ Th. Furthermore, we will
use in the analysis below the following trace inequality that is known in the
literature:

‖w‖2L2(∂T ) ≤ c
(
h−1
T ‖w‖2L2(T ) + hT ‖w‖2H1(T )

)
, for all w ∈ H1(T ), (11.17)

with a constant c independent of w and of T ∈ Th. This result can be obtained
by using an affine transformation of T to the unit tetrahedron T̂ and applying
‖w‖2

L2(∂T̂ )
≤ c‖w‖L2(T̂ )‖w‖H1(T̂ ) for all w ∈ H1(T̂ ), cf. e.g. Theorem 1.6.6 in

[53].

Theorem 11.2.4 Let I∗h : Wreg → QΓh be the interpolation operator defined
above. There exists a constant c such that

|||v − I∗hv||| ≤ c h‖v‖2,Ω1∪Ω2 for all v ∈ Wreg (11.18)

holds.

Proof. Take T ∈ T Γh , i.e., ΓT := T ∩ Γ �= ∅. Due to Assumption 11.2.1
the intersection of ΓT with ∂T is either a connected curve or a face. In the
latter case it is trivial, that the estimate (11.17) also holds with ∂T replaced
by ΓT . We now show that also in the former case, the result (11.17) with ∂T
replaced by ΓT holds. We use the local coordinates z := (ξ, η, θ) as defined
in Assumption 11.2.1. Define the level set function φ(ξ, η, θ) = θ − g(ξ, η).
From Assumption 11.2.1 it follows that ΓT is the zero level of φ. Take a fixed
i ∈ {1, 2} and Ti := Ωi ∩ T . Let n(z) = (n1(z), n2(z), n3(z))T be the unit
outward pointing normal on ∂Ti. Note that ΓT ⊂ ∂Ti. For w ∈ H1(T ) the
following holds:

2
∫

Ti

w
∂w

∂θ
dz =

∫

Ti

divz

⎛

⎝
0
0
w2

⎞

⎠ dz =
∫

∂Ti

n ·

⎛

⎝
0
0
w2

⎞

⎠ ds =
∫

∂Ti

n3(s)w2(s) ds

=
∫

ΓT

n3(s)w2(s) ds+
∫

∂Ti\ΓT

n3(s)w2(s) ds. (11.19)

For z ∈ ΓT we have n(z) = ± ∇zφ(z)
‖∇zφ(z)‖ and from ∇zφ(z) =

(
−∇(ξ,η)g(ξ, η)

1

)

it follows that

n3(z) =
(
‖∇(ξ,η)g(ξ, η)‖2 + 1

)− 1
2 , z ∈ ΓT .
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From smoothness properties of Γ it follows that 1 ≤ n3(z)−1 ≤ c with c
independent of T . Using this and the identity in (11.19) we get, for arbitrary
w ∈ H1(T ):

∫

ΓT

w2 ds ≤ c

∫

ΓT

n3w
2 ds ≤ c‖w‖L2(Ti)‖w‖H1(Ti) + c

∫

∂Ti\ΓT

w2 ds

≤ c‖w‖L2(T )‖w‖H1(T ) + c

∫

∂T

w2 ds

≤ ch−1
T ‖w‖2L2(T ) + hT ‖w‖2H1(T ),

where in the last inequality we used (11.17). Thus we have shown that

‖w‖2L2(ΓT ) ≤ c
(
h−1
T ‖w‖2L2(T ) + hT ‖w‖2H1(T )

)
for all w ∈ H1(T ) (11.20)

holds, with c independent of w, T and of ΓT .
We take v ∈Wreg and write eh := v − I∗hv. We have

|||eh|||2 = |eh|21,Ω1∪Ω2
+ ‖{∇eh · n}‖2−1/2,h,Γ + ‖[βeh]‖21/2,h,Γ . (11.21)

For the first term it easily follows, as in the proof of Theorem 7.9.3, that

|eh|21,Ω1∪Ω2
≤ ch2‖v‖22,Ω1∪Ω2

holds. We now consider the third term on the right-hand side in (11.21):

‖[βeh]‖21/2,h,Γ =
∑

T∈T Γ
h

h−1
T ‖[βeh]‖2L2(ΓT ).

For T ∈ T Γh we have (with vi = Riv = v|Ωi
)

h−1
T ‖[βeh]‖2L2(ΓT ) ≤ c

2∑

i=1

h−1
T ‖Rieh‖2L2(ΓT ) = c

2∑

i=1

h−1
T ‖vi −RiI∗hv‖2L2(ΓT )

= c

2∑

i=1

h−1
T ‖E2

i vi − I2
hE2

i vi‖2L2(ΓT )

≤ c

2∑

i=1

(
h−2
T ‖E2

i vi − I2
hE2

i vi‖2L2(T ) + ‖E2
i vi− I2

hE2
i vi‖2H1(T )

)
,

where in the last inequality we used (11.20). Using the local error bounds for
the standard nodal interpolation operator I2

h given in (11.16) and summing
over T ∈ T Γh we obtain

‖[βeh]‖21/2,h,Γ ≤ c
∑

T∈T Γ
h

2∑

i=1

h2
T ‖E2

i vi‖2H2(T )

≤ ch2
2∑

i=1

‖E2
i vi‖H2(Ω) ≤ ch2‖v‖22,Ω1∪Ω2

.
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We finally apply similar arguments to derive a bound for the second term on
the right-hand side in (11.21):

‖{∇eh · n}‖2−1/2,h,Γ =
∑

T∈T Γ
h

hT ‖{∇eh · n}‖2L2(ΓT ).

For T ∈ T Γh we have, with wi := ∇(E2
i vi − I2

hE2
i vi) · n:

hT ‖{∇eh · n}‖2L2(ΓT ) ≤
2∑

i=1

hT ‖∇(vi −RiI2
hE2

i vi) · n‖2L2(ΓT )

=
2∑

i=1

hT ‖wi‖2L2(ΓT ) ≤ c

2∑

i=1

(
‖wi‖2L2(T ) + h2

T ‖wi‖2H1(T )

)

≤ c

2∑

i=1

(
‖E2
i vi − I2

hE2
i vi‖2H1(T ) + h2

T ‖E2
i vi‖2H2(T )

)

≤ c

2∑

i=1

h2
T ‖E2

i vi‖2H2(T ).

Summing over T ∈ T Γh we obtain

‖{∇eh · n}‖2−1/2,h,Γ ≤ c
∑

T∈T Γ
h

2∑

i=1

h2
T ‖E2

i vi‖2H2(T ) ≤ ch2‖v‖22,Ω1∪Ω2
,

which completes the proof. �
In the error analysis we use the elliptic projection Rh : Wreg + QΓh → QΓh ,
defined by

ah(Rhv, wh) = ah(v, wh) for all wh ∈ QΓh .
In the following two lemmas we derive error bounds for this projection.

Lemma 11.2.5 The following holds:

|||Rhv − v||| ≤ c h‖v‖2,Ω1∪Ω2 for all v ∈ Wreg.

Proof. For v ∈ Wreg define χh := Rhv − I∗hv ∈ QΓh . Using Lemma 11.2.3 and
Theorem 11.2.4 we get, with c2 > 0:

c2|||χh|||2 ≤ ah(χh, χh) = ah(Rhv − I∗hv, χh)
= ah(v − I∗hv, χh) ≤ c1|||v − I∗hv||||||χh||| ≤ ch‖v‖2,Ω1∪Ω2 |||χh|||.

Hence, |||χh||| ≤ c h‖v‖2,Ω1∪Ω2 holds and thus

|||Rhv − v||| ≤ |||χh|||+ |||v − I∗hv||| ≤ c h‖v‖2,Ω1∪Ω2

holds. �
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In the next lemma we derive an L2-norm error bound based on a standard du-
ality argument. For this we need an H2-regularity property for the stationary
problem.

Lemma 11.2.6 Assume that the H2-regularity property (10.11) is valid.
The following holds:

‖Rhv − v‖0 ≤ c h2‖v‖2,Ω1∪Ω2 for all v ∈ Wreg.

Proof. For v ∈ Wreg define eh := Rhv−v ∈ QΓh +Wreg. Introduce the bilinear
form

ã(u, v) = (αu, v)1,Ω1∪Ω2 − (w · ∇u, v)0, u, v ∈ H1
0 (Ω1 ∪Ω2).

Using w · n = 0 on Γ and div w = 0 we obtain by partial integration on the
subdomains Ωi, −(w · ∇u, v)0 = (w · ∇v, u)0 and thus ã(u, v) = a(v, u) for
u, v ∈ H1

0 (Ω1 ∪ Ω2). Let ũ ∈ V =
{
v ∈ H1

0 (Ω1 ∪Ω2) : [βv]Γ = 0
}

be the
unique solution of

ã(ũ, v) = (eh, v)0 for all v ∈ V.

This dual problem has the same regularity properties as the one in (10.10),
i.e., ũ ∈ H2(Ω1 ∪Ω2) and

‖ũ‖2,Ω1∪Ω2 ≤ c‖eh‖0,

with a constant c independent of eh. Using this regularity property, combined
with [βũ] = 0 (since ũ ∈ V ) it follows that ũ solves the following problem:

− div(α∇ũ)−w · ∇ũ = eh in Ωi, i = 1, 2, (in L2 sense), (11.22a)
[α∇ũ · n]Γ = 0, (11.22b)

[βũ]Γ = 0. (11.22c)

Multiplication of (11.22a) with βeh, integration over Ω and applying partial
integration on the subdomains Ωi we obtain, using (11.22b),(11.22c):

(eh, eh)0 = (αũ, eh)1,Ω1∪Ω2 − (w · ∇ũ, eh)0 −
∫

Γ

[α∇ũ · nβeh] ds

= (αeh, ũ)1,Ω1∪Ω2 + (w · ∇eh, ũ)0 − ([βeh], {α∇ũ · n})Γ
− ({α∇eh · n}, [βũ])Γ + λh−1([βeh], [βũ])Γ

= ah(eh, ũ).

Using this in combination with Lemma 11.2.5 and Theorem 11.2.4 we get

(eh, eh)0 = ah(eh, ũ) = ah(eh, ũ− I∗hũ) ≤ c1|||eh||||||ũ − I∗hũ|||
≤ c h2‖v‖2,Ω1∪Ω2‖ũ‖2,Ω1∪Ω2 ≤ c h2‖v‖2,Ω1∪Ω2‖eh‖0,

which completes the proof. �
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We now derive an error bound for the semi-discretization by the Nitsche-
XFEM method in (11.5). We require that the solution u = u(t) ∈ Vreg

as defined in Theorem 10.2.2 has sufficient regularity, in particular du
dt ∈

L1
(
0, T ;Wreg). The analysis uses standard arguments as in, for example, [238]

or the proof of Theorem 3.2.14.

Theorem 11.2.7 Assume that the regularity property (10.11) is valid. Let
u = u(t) ∈ Vreg be the solution as in Theorem 10.2.2 and uh = uh(t) ∈ QΓh
the solution of (11.5) with uh(0) = û0. The following holds for t ∈ [0, T ]:

‖uh(t)−u(t)‖0 ≤ ‖û0−Rhu0‖0 + c h2
{
‖u0‖2,Ω1∪Ω2 +

∫ t

0

∥∥
∥
∥
du

dt

∥∥
∥
∥

2,Ω1∪Ω2

dτ
}
.

Proof. Introduce the splitting uh(t)− u(t) = θ(t) + ρ(t), with θ := uh −Rhu,
ρ := Rhu− u. From Lemma 11.2.6 we have

‖ρ(t)‖0 ≤ ch2‖u(t)‖2,Ω1∪Ω2

≤ c h2
(
‖u0‖2,Ω1∪Ω2 +

∫ t

0

∥∥
∥
∥
du

dt

∥∥
∥
∥

2,Ω1∪Ω2

dτ
)
.

(11.23)

For θ = θ(t) ∈ QΓh we have, using Lemma 11.2.2:

‖θ‖0
d

dt
‖θ‖0 =

1
2
d

dt
‖θ‖20 =

(dθ
dt
, θ
)
0
≤

(dθ
dt
, θ
)
0

+ ah(θ, θ)

=
(duh
dt

, θ
)
0
+ ah(uh, θ)−

(dRhu
dt

, θ
)
0
− ah(Rhu, θ)

= (f, θ)0 − ah(u, θ)−
(dRhu
dt

, θ
)
0

=
(du
dt
, θ
)
0
−

(dRhu
dt

, θ
)
0

= (w −Rhw, θ
)
0
,

with w = du
dt . We assumed sufficient regularity, in particular w ∈Wreg. Using

Lemma 11.2.6 we get

(w −Rhw, θ
)
0
≤ c h2

∥
∥
∥
∥
du

dt

∥
∥
∥
∥

2,Ω1∪Ω2

‖θ‖0.

Thus we have
d

dt
‖θ‖0 ≤ c h2

∥
∥
∥
∥
du

dt

∥
∥
∥
∥

2,Ω1∪Ω2

.

Integration over [0, t] and using ‖θ(0)‖0 = ‖û0 − Rhu0‖0 proves the desired
result. �
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Related to the error term ‖û0−Rhu0‖0 in Theorem 11.2.7 we note the follow-
ing. If we assume u0 ∈Wreg and for the approximation of this initial condition
we take û0 := I∗hu0 ∈ QΓh , then we get

‖û0 −Rhu0‖0 = ‖I∗hu0 −Rhu0‖0
≤ ‖I∗hu0 − u0‖0 + ‖Rhu0 − u0‖0 ≤ ch2‖u0‖2,Ω1∪Ω2 .

(11.24)

Hence, we conclude that for the semi-discretization of the mass transport prob-
lem with the Nitsche-XFEM method we obtain an optimal L2-error bound,
namely of the form ch2.

11.3 Time discretization

The semi-discretization (11.5), resulting from the Nitsche-XFEM method, can
be combined with standard time discretization methods. For example, the
θ-scheme takes the following form. For n = 0, 1, . . . , N − 1, with NΔt = T ,
set u0

h := û0 ∈ QΓh , and determine un+1
h ∈ QΓh such that for all vh ∈ QΓh

(
un+1
h − unh
Δt

, vh

)

0

+ θah(un+1
h , vh) + (1− θ)ah(unh, vh) = (f, vh)0 (11.25)

holds. For simplicity we assume that f does not depend on t. The matrix
representation of this problem is given in (11.7). In practice very often either
θ = 0.5 (Crank-Nicolson) or θ = 1 (implicit Euler) is used. The error analysis
of this full (i.e. space and time) discretization method can be performed using
standard arguments, as in [238]. For completeness we derive an error bound
for the implicit Euler method. Again we require that the solution u = u(t) ∈
Vreg as defined in Theorem 10.2.2 has sufficient regularity, in particular du

dt ∈
L1

(
0, T ;Wreg

)
and d2u

dt2 ∈ L1
(
0, T ;L2(Ω)

)
. Furthermore, we again assume that

the stationary problem (10.10) has the regularity property (10.11).

Theorem 11.3.1 Let u = u(t) ∈ Vreg be the solution defined in Theo-
rem 10.2.2 and unh ∈ QΓh , n = 0, 1, . . . , N the solution of the θ-scheme
(11.25) for θ = 1. The following holds:

‖unh − u(tn)‖0 ≤ ‖û0 −Rhu0‖0

+ c h2
{
‖u0‖2,Ω1∪Ω2 +

∫ tn

0

∥
∥
∥∥
du

dt

∥
∥
∥∥

2,Ω1∪Ω2

dτ
}

+Δt

∫ tn

0

∥
∥
∥∥
d2u

dt2

∥
∥
∥∥

0

dτ.

Proof. We use the splitting unh−u(tn) =
(
unh−Rhu(tn)

)
+
(
Rhu(tn)−u(tn)

)
=:

θn+ρn. For ‖ρn‖0 = ‖ρ(tn)‖0 we have a bound as in (11.23). For the backward
difference quotient we introduce the notation ∂̄wn := (wn−wn−1)/Δt. Using
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the definition of unh in (11.25), the definition of the semi-discretization in (11.5)
and the consistency result in Lemma 11.2.2 we obtain

(∂̄θn, vh)0 + ah(θn, vh) =
1
Δt

(unh − un−1
h , vh)0 + ah(unh, vh)

− (∂̄Rhu(tn), vh)0 − ah(Rhu(tn), vh)
= (f, vh)0 − ah(u(tn), vh)− (∂̄Rhu(tn), vh)0

=
(du(tn)

dt
, vh

)
0
− (Rh∂̄u(tn), vh)0 =: (ωn, vh)0,

with

ωn =
du(tn)
dt

−Rh∂̄u(tn) =
[
(I −Rh)∂̄u(tn)

]
−
[
∂̄u(tn)−

du(tn)
dt

]
=: ωn1 −ωn2 .

Taking vh = θn ∈ QΓh and using ah(θn, θn) ≥ 0 we get

‖θn‖20 − (θn−1, θn) ≤ Δt‖ωn‖0‖θn‖0.

Hence,
‖θn‖0 ≤ ‖θn−1‖0 +Δt‖ωn‖0,

and

‖θn‖0 ≤ ‖θ0‖0 +Δt

n∑

j=1

‖ωj‖0

≤ ‖û0 −Rhu0‖0 +Δt

n∑

j=1

‖ωj1‖0 +Δt

n∑

j=1

‖ωj2‖0.
(11.26)

For ‖ωj1‖0 we obtain with Lemma 11.2.6

‖ωj1‖0 =

∥
∥∥
∥
∥

1
Δt

(I −Rh)
∫ tj

tj−1

du

dt
dτ

∥
∥∥
∥
∥

0

≤ 1
Δt

∫ tj

tj−1

∥
∥∥
∥(I −Rh)

du

dt

∥
∥∥
∥

0

dτ

≤ c
h2

Δt

∫ tj

tj−1

∥
∥
∥
∥
du

dt

∥
∥
∥
∥

2,Ω1∪Ω2

dτ,

and thus

Δt

n∑

j=1

‖ωj1‖0 ≤ ch2

∫ tn

0

∥
∥
∥
∥
du

dt

∥
∥
∥
∥

2,Ω1∪Ω2

dτ. (11.27)

For ωj2 we have

Δtωj2 = u(tj)− u(tj−1)−Δt
du(tj)
dt

= −
∫ tj

tj−1

(τ − tj−1)
∂2u(τ)
∂t2

dτ,

and thus
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Δt
n∑

j=1

‖ωj2‖0 ≤
n∑

j=1

∫ tj

tj−1

(τ − tj−1)
∥
∥
∥∥
∂2u

∂t2

∥
∥
∥∥

0

dτ ≤ Δt

∫ tn

0

∥
∥
∥∥
∂2u

∂t2

∥
∥
∥∥

0

dτ. (11.28)

Using the results from (11.27), (11.28) in (11.26) in combination with the
bound for ‖ρn‖0 from (11.23) we obtain the result. �
If in the initial condition we take û0 = I∗hu0 we can use the error bound in
(11.24) and thus for the full Nitsche-XFEM-Euler discretization we obtain an
optimal error bound of the form c(h2 +Δt).

Remark 11.3.2 We comment on the iterative solution of the linear system
that arises in each time step of the fully discrete problem (11.7). This system
is of the form

Âx = b, Â :=
1
Δt

M + θA. (11.29)

In Sect. 7.9.4 properties of the XFEM mass matrix M are derived, in par-
ticular the result in Theorem 7.9.7 implies that the diagonally scaled mass
matrix is well-conditioned. Hence, for “small” Δt (Δt < h2) a Krylov sub-
space method with a simple (e.g. Gauss-Seidel or ILU) preconditioner can be
expected to be an efficient iterative solver for the system (11.29). For “large”
time steps Δt one needs a solver that can deal efficiently with the poorly
conditioned matrix A. This topic has not been studied in the literature, yet.
For problems in which the mass transport problem is diffusion dominated,
an efficient preconditioner of A may be developed based on the following ob-
servation. Since diffusion is assumed to be dominant, instead of A we can
consider its symmetric part 1

2 (A + AT ). From the results in Lemma 11.2.3 it
follows that it suffices to develop a preconditioner that is spectrally equivalent
to the symmetric positive definite matrix that represents the (energy) scalar
product given in (11.12).

11.4 Numerical experiments

In Subsection 11.4.1 we present two three-dimensional test problems of the
form (10.1a)-(10.1e) on Ω = (0, 1)3 with different interfaces Γ . In the first
problem we take a simple planar interface. Thus we avoid errors due to numer-
ical interface approximation. In the second experiment we consider a cylin-
drical interface, which has to be approximated on the unfitted tetrahedral
meshes that we use. In both cases, the exact solution u is smooth, known and
satisfies the interface conditions (10.1b)-(10.1c). The velocity field w does not
depend on t and satisfies the assumptions (10.3).

11.4.1 Test problems

Case 1: Planar interface

The domain Ω = (0, 1)3 is subdivided into the two subdomains Ω1 :=
{ (x, y, z) ∈ Ω : z < 0.34113 } and Ω2 := Ω \ Ω1, which are separated by the
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interface Γ := { (x, y, z) ∈ Ω : z = 0.34113 }. The position of the interface is
chosen to avoid grid matching.

We choose the coefficients (α1, α2) = (1, 2), (β1, β2) = (2, 1) and a station-
ary velocity w := (y(1 − z), x, 0)T . Note that div w = 0 in Ω and w · n = 0
on Γ . The right-hand side f is taken such that the exact solution is given by

u(x, y, z, t) :=

{
e−t cos(πx) cos(2πy)az(z + b) for x in Ω1,

e−t cos(πx) cos(2πy)z(z − 1) for x in Ω2,
(11.30)

where the parameters a and b are determined from the interface conditions
(10.1b)-(10.1c). We take homogeneous Dirichlet boundary conditions on the
boundary parts z = 0 and z = 1 and homogeneous Neumann boundary con-
ditions on the remaining part of the boundary.

Case 2: Cylindrical interface

In this experiment, the domain Ω = (− 1
2 ,

1
2 )3 is subdivided into

Ω1 =
{

(x, y, z) ∈ Ω : x2 + y2 < R2
}
, Ω2 = Ω \Ω1,

with R = 0.1. We take a constant velocity field w = (0, 0, 1)T and coefficients
(α1, α2) = (1, 5), (β1, β2) = (2, 1). The velocity field satisfies div w = 0 in Ω
and w · n = 0 on Γ . The exact solution is given by

u(x, y, z, t) :=

{
e−t

(
α2(x2 + y2 −R2) + β2

)
in Ω1,

e−t
(
α1(x2 + y2 −R2) + β1

)
in Ω2.

(11.31)

We take homogeneous Neumann conditions on the boundary parts z = 0 and
z = 1. On the remaining part of the boundary the values of u are used as
inhomogeneous Dirichlet conditions.

11.4.2 Numerical results

We start with a brief discussion of some implementation issues related to the
Nitsche-XFEM discretization as in (11.5) (semi-discretization), (11.7) (full
discretization). For the finite element spaces and the bilinear form ah(·, ·) we
need an accurate approximation of the interface Γ . For the first test problem
this is easy. For the second one we use the approach discussed in Sect. 7.3,
which we briefly recall. Let d be the signed distance function to Γ , for which
it is easy to give an explicit formula using cylindrical coordinates. A piecewise
planar approximation Γh of Γ is determined by computing an approximation
of the zero level of d as follows. Corresponding to the given triangulation Th
we introduce one further regular refinement, denoted by T ′

h. Let I(d) be the
continuous piecewise linear function on T ′

h which interpolates d at the vertices
of each tetrahedron in T ′

h. Then Γh is defined as
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Γh := {x ∈ Ω : I(d)(x) = 0 } . (11.32)

Thus we obtain polygonal subdomains Ω1,h and Ω2,h as approximations for
Ω1 and Ω2. For a tetrahedron T ∈ Th with T∩Γh �= ∅, let T ′ ∈ T ′

h be one of the
8 regular children of T . We introduce the notations T ′

i := T ′ ∩Ωi,h, i = 1, 2,
and Γh,T ′ = T ′ ∩ Γh, the restrictions of the subdomains and interface to T ′.
Then T ′

i is either a tetrahedron or a prism, which can be subdivided into 3
subtetrahedra, cf. Fig 7.13. The planar segment Γh,T ′ is either a triangle or
a quadrilateral, which can be subdivided into 2 triangles. Thus integrals over
T ′
i or Γh,T ′ of smooth functions can be easily determined with high accuracy

using standard (Gauss) quadrature.
In the implementation of (11.7) the basis qj , j ∈ J , qΓh

j , j ∈ JΓ of QΓh

h , as
explained in Sect. 7.9.2 is used. Due to the discontinuity of the basis functions
qΓh

i across Γh, one has to be careful in computing quantities like (qΓh

i , ψh)0
and (qΓh

i , ψh)1,Ω1∪Ω2 , with ψh ∈ {qj, qΓh

j } using quadrature. The calculation
of these integrals is done elementwise by summing the contributions from all
tetrahedra in Th. Let xi, xj be two vertices of a tetrahedron T that inter-
sects the approximate interface, i.e., T ∩ Γh �= ∅; assume that xi ∈ Ω1,h. A
local integral on T is assembled over all 8 children T ′ of T as follows. Using
supp(qΓh

i ) ∩ T ′ = T ′
2 we obtain

∫

T ′
βqΓh

i ψhdx =
∫

T ′
2

β2 q
Γh
i ψhdx =

∫

T ′
2

β2 qi ψhdx. (11.33)

Since β2 is constant on T ′
2 and qi and ψh are linear functions on T ′

2 the latter
integral is easy to determine. The other volume integrals in ah(qΓi , ψh) can be
computed in a similar way. In our test problems a Gauss quadrature rule of
degree three on a tetrahedron is sufficient to compute the volume integrals in
the bilinear form ah(·, ·), with Γ replaced by Γh, exactly. The scalar product
(f, ψh)0 in the right-hand side of (11.5) is approximated with high accuracy
(using the same assembling process as described above) by a Gauss quadrature
rule of degree five on tetrahedra. The interfacial integrals over Γh (instead of
Γ ) in ah(qΓh

i , ψh) are approximated by summing the local integrals on each
planar segment Γh,T ′ of Γh using a Gauss quadrature rule of degree five on a
triangle. Below we present results for the two test problems.

Case 1: Planar interface

For the spatial discretization, we first create a uniform grid with mesh size
h = hi = 2−i−1, with i = 2, 3, 4. Starting from this uniform grid the elements
near the interface are refined two times further, i. e., the local mesh size close
to the interface is hΓ,i = 1

4hi. For the case i = 4 this results in a problem
with 1 293 754 tetrahedra and 226 087 unknowns. The approximation of the
initial value û0 is chosen as I∗h(u(·, 0)), with I∗h the interpolation operator as
in Theorem 11.2.4. For the parameter λ in the bilinear form ah(·, ·) we take
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the value λ = 100. This choice is based on numerical experiments. It turns out
that the error behavior is not very sensitive with respect to the choice of the
parameter value. The results are essentially the same for all 101 ≤ λ ≤ 103.

Fig. 11.1. Test 1: A slice of the tetrahedral mesh at x = 0.25, for the case i = 3.

The semi-discretization uh(t) is not known. We computed an accurate ap-
proximation of uh(t) using the implicit Euler time-stepping scheme with a
time step size Δt which is sufficiently small (in our experiments: Δt = 10−4)
such that the error due to the time discretization is negligible compared to
the space discretization error. The resulting reference solution is denoted by
u∗h(t). In Table 11.1, the errors ‖u∗h(T )− u(T )‖L2 at T = 0.15 are displayed.
These results are consistent with the theoretical bound O(h2) given in Theo-
rem 11.2.7.

i ‖u∗
h(T ) − u(T )‖L2 order

2 7.39 E-3 -
3 2.02 E-3 1.87
4 5.23 E-4 1.95

Table 11.1. Case 1: Spatial discretization error at T = 0.15.

The exact solution satisfies [βu]Γ = 0. In the Nitsche discretization this inter-
face condition is satisfied only approximately. For a stationary elliptic problem
it is shown in [135] that for the discretization uh the error in this interface
condition is bounded by ‖[βuh]‖L2(Γ ) ≤ ch

3
2 ‖u‖2,Ω1∪Ω2 . For the parabolic

case a theoretical bound for this error quantity is not known. We computed
the errors ‖[βu∗h]‖L2(Γ ) for our problem; the results are given in Table 11.2.
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As expected, the interface condition (10.1c) is satisfied only approximately.
The error ‖[βu∗h]‖L2(Γ ) seems to behave like O(h).

i ‖[βu∗
h(T )]‖L2(Γ ) order

2 1.57 E-4 -
3 7.98 E-5 0.97
4 3.90 E-5 1.03

Table 11.2. Case 1: Error in the Henry interface condition at T = 0.15.

The numerical solution for i = 3 at T = 0.15 on the cross section x = 0.25 is
shown in Fig. 11.2.

Fig. 11.2. Case 1: Numerical solution at T = 0.15 on the cross section x = 0.25.

Now we study the time discretization error bound for the implicit Euler
method in Theorem 11.3.1. We use the fixed mesh size h = h3 = 1

16 as
described above and compute a reference solution with Δt = 10−4 in the time
interval [0, T ], T = 0.2, which is denoted by u∗h(t). The Euler discretization,
i.e. (11.7) (or, equivalently, (11.25)) with θ = 1 and time step Δt = T

n results
in approximations unh(T ) of u∗h(T ). For the cases n = 5, 10, 20 the temporal
errors in the L2-norm, i.e. ‖unh(0.2)− u∗h(0.2)‖L2, are given in Table 11.3. We
observe the expected first order of convergence in Δt.

Case 2: Cylindrical interface

For the spatial discretization we proceed as in case 1. A difference is that we
now have an approximation Γh of Γ , cf. the explanation given above. We use
uniform grids with mesh size h = hi = 1

52−i, i = 1, 2, 3, and refine the elements
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n ‖un
h − u∗

h(0.2)‖L2 order

5 1.25 E-5 -
10 6.09 E-6 1.04
20 3.01 E-6 1.02

Table 11.3. Case 1: Time discretization error at T = 0.2.

near the interface (only) one time further, due to memory limitation. For the
case i = 3, the grid already contains 1 043 040 tetrahedra which leads to a
problem with 166 059 unknowns. The implicit Euler method with Δt = 10−4

is used to compute the reference solution u∗h(t) for t ∈ [0, 0.1]. The error
‖u∗h(T ) − u(T )‖L2 at T = 0.1 is given in Table 11.4. The error reduction is
in good agreement with the O(h2) error bound derived in Theorem 11.2.7.
The L2(Γh)-norm of the jump [βunh] at the approximated interface Γh again
appears to have a numerical convergence order 1, cf. Table 11.5.

i ‖u∗
h(T ) − u(T )‖L2 order

1 3.27 E-3 -
2 8.07 E-4 2.02
3 2.06 E-4 1.97

Table 11.4. Case 2: Spatial discretization error at T = 0.1.

i ‖[βun
h ]‖L2(Γh) order

1 1.03 E-3 -
2 5.01 E-4 1.04
3 2.20 E-4 1.19

Table 11.5. Case 2: Error in the Henry interface condition at T = 0.1.

Figure 11.3 shows the numerical solution on the cross section z = 0.5 at
T = 0.1.

11.5 Discretization in case of a non-stationary interface

In this section we treat the discretization of the mass transport problem with
a non-stationary interface. A first possibility, that is explained in Sect. 11.5.1,
is to apply a Rothe approach to the strong formulation in (10.1) and combine
this with a Nitsche-XFEM space discretization. This works well if one uses
the implicit Euler time discretization. It is, however, not clear how in this



11.5 Discretization in case of a non-stationary interface 365

Fig. 11.3. Test 2: Numerical solution at T = 0.1 on the cross section z = 0.

Rothe approach one can obtain a (Crank-Nicolson type) higher order time
discretization. It is more natural to base the discretization on the space-time
weak formulation derived in Sect. 10.3. This leads to space-time finite element
methods that are treated in Sect. 11.5.2.

11.5.1 Rothe’s method combined with Nitsche-XFEM

Assume that Γ = Γ (t) is known for t ∈ [0, T ] and an initialization u0(x) :=
u0(x), x ∈ Ω, is given. An implicit Euler time discretization applied to the
transport problem (10.1) results in the following sequence of stationary prob-
lems: For n ≥ 0, determine un+1 = un+1(x), x ∈ Ω1(tn+1) ∪ Ω2(tn+1) such
that, for i = 1, 2,

un+1

Δt
+ wn+1 · ∇un+1 − div(α∇un+1) = f +

un

Δt
in Ωi(tn+1),(11.34a)

[α∇un+1 · n]Γ (tn+1) = 0, (11.34b)

[βun+1]Γ (tn+1) = 0, (11.34c)

un+1 = 0 on ∂Ω. (11.34d)

We used the notation wn+1 := w(·, tn+1). For a fixed n we write Ωi(tn+1) =:
Ωi, Γ (tn+1) =: Γ , un+1 =: u, wn+1 =: w and σ := 1

Δt . Thus in each time
step we have a stationary problem of the form
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σu+ w · ∇u− div(α∇u) = g in Ωi, i = 1, 2,
[α∇u · n]Γ = 0,

[βu]Γ = 0,
u = 0 on ∂Ω.

For the discretization of the weak formulation of this problem one can use the
Nitsche-XFEM method, which now reads: Find uh ∈ QΓh such that

ah(uh, vh) = (g, vh)0 for all vh ∈ QΓh , (11.35)

with, cf. (11.4):

ah(u, v) := σ(u, v)0 + (αu, v)1,Ω1∪Ω2 + (w · ∇u, v)0 − ([βu], {α∇v · n})Γ
− ({α∇u · n}, [βv])Γ + λh−1([βu], [βv])Γ , u, v ∈ QΓh .

An analysis of the spatial discretization in (11.35) is given in [184]. There, in
the problem related norm ||| · |||, cf. (11.12), an error bound of the form

|||u− uh||| ≤ ch‖u‖2,Ω1∪Ω2

is proved. The constant c in this error bound depends on σ = 1
Δt . An error

analysis of the full, i.e. space and time, discretization is not known. In numer-
ical experiments on test problems this method has discretization errors in the
L2-norm that are of order h2 w.r.t. space discretization, cf. the results in the
following remark.

Remark 11.5.1 We present results of a numerical experiment with the
Rothe-Nitsche-XFEM method explained above. We consider the non-
stationary transport problem (10.1) in the unit cube Ω = (0, 1)3 and with
Ω1(0) a sphere of radius R = 0.2 centered at the barycenter of Ω. This sphere
is moving with a constant velocity w = (0, 1, 0)T , i.e. Ω1(t) = Ω1(0)+ tw. Let
d(x, t) be the distance from the point x ∈ Ω to the center of Ω1(t). We take
the piecewise quadratic solution

u(x, t) :=

{
α2

(
d(x, t)2 −R2

)
+ 0.1β2 in Ω1,

α1

(
d(x, t)2 −R2

)
+ 0.1β1 in Ω2,

(11.36)

with coefficients (α1, α2) := (1, 5), (β1, β2) := (2, 1). The values of u on ∂Ω
are used as inhomogeneous Dirichlet conditions. For a discussion of imple-
mentation aspects, in particular of the piecewise planar approximation Γh(t)
of Γ (t) we refer to Sect. 11.4.2. We discretize the problem first in time using
the implicit Euler method with the time step size Δt = 10−4. The resulting
convection-diffusion-reaction problem of the form (11.34) is discretized with
the Nitsche method (11.35). We first create a uniform grid with mesh size
h = hi = 2−i−1, i = 2, 3, 4, then locally refine the elements near the interface
two times further. After 1000 time steps, we obtain the approximation u1000

h of
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u(0.1). The errors ‖u1000
h −u(0.1)‖L2 for i = 2, 3, 4 are displayed in Table 11.6.

The results show second order convergence. Note that ‖u1000
h −u(0.1)‖L2 con-

tains both time and spatial discretization errors, but the time step is suffi-
ciently small such that the spatial discretization error is dominant.

i ‖u1000
h − u(0.1)‖L2 order

2 7.90 E-3 -
3 2.00 E-3 1.98
4 5.00 E-4 2.00

Table 11.6. Discretization error at T = 0.1.

Z
Y

X

Fig. 11.4. Numerical solution for h = 1/16 at T = 0.1 on the cross section x = 0.5.

Since the interface evolves the XFEM space QΓh

h (t) is in general time-
dependent. Hence a reference solution is not available and we cannot compute
the order of convergence for the time discretization.

It is not clear how the Euler time discretization (11.34) can be improved
based on a Crank-Nicolson time discretization, because in that case both
div(α∇un+1) and div(α∇un) occur in the differential equation. The func-
tion un+1 is discontinuous across Γ (tn+1), whereas un is discontinuous across
Γ (tn). It is not clear how to treat this discrepancy. This difficulty does not
occur if instead of the Rothe approach a space-time discretization method is
applied. This topic is discussed in the next section.
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11.5.2 Nitsche-XFEM space-time discretization

We first introduce the basic idea of a space-time finite element method for a
parabolic problem, cf. for example [153, 105, 238]. We then combine this ap-
proach with the Nitsche technique for handling the Henry interface condition
in case of a non-stationary interface.

We consider the model parabolic problem

∂u

∂t
−Δu = f in Ω, t ∈ [0, T ],

u(·, 0) = u0 in Ω,

u(·, t) = 0 on ∂Ω.

(11.37)

For simplicity we assume f to be independent of t. We use a partitioning of
the time domain 0 = t0 < t1 < . . . < tN = T , with a fixed time step size
Δt = T/N , i.e. tj = jΔt. This assumption of a fixed time step is made to
simplify the presentation, but is not essential for the method. Corresponding
to each time interval In := (tn−1, tn) we have a consistent triangulation Tn
of the domain Ω. This triangulation may vary with n. Let Vn be a finite
element space of continuous piecewise polynomial functions corresponding to
the triangulation Tn, with boundary values equal to zero. For 1 ≤ n ≤ N and
a nonnegative integer k we define, on each time slab Ω × In, a space-time
finite element space as follows:

Vkn :=

⎧
⎨

⎩
v : v(x, t) =

k∑

j=0

tjφj(x), φj ∈ Vn, (x, t) ∈ Ω × In

⎫
⎬

⎭
, (11.38)

for 1 ≤ n ≤ N . The corresponding space-time discretization of (11.37) reads:
Determine uh such that for all n = 1, 2, . . . , N , (uh)|Ω×In

∈ Vkn and

∫ tn

tn−1

(∂uh
∂t

, vh
)
L2 + (∇uh,∇vh)L2 dt+ ([uh]n−1, vn−1,+

h )L2

=
∫ tn

tn−1

(f, vh)L2 dt for all vh ∈ Vkn,
(11.39)

where (·, ·)L2 = (·, ·)L2(Ω),

[wh]n = wn,+h − wn,−h , w
n,+(−)
h = lim

s→0+(−)
wh(·, tn + s),

and u0,−
h ∈ Q0 an approximation of the initial data u0. For an analysis of this

discretization method we refer to the literature, e.g. [238].
We consider two important special cases, namely k = 0, k = 1. If k = 0

then vh ∈ Vkn does not depend on t. Define unh(x) := uh(x, t), t ∈ In. The
method (11.39) for determining unh ∈ Vn reduces to the implicit Euler scheme:
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1
Δt

(unh − un−1
h , vh)L2 + (∇unh,∇vh)L2 = (f, vh)L2 for all vh ∈ Vn.

We now consider k = 1. Then on Ω × In the function unh can be represented
as unh(x, t) = ûnh(x) + 1

Δt (t − tn−1)ũnh(x), with ûnh, ũ
n
h ∈ Vn. These unknown

functions are determined by the coupled system

(ûnh + ũnh, vh)L2 +Δt
(
∇ûnh +

1
2
∇ũnh,∇vh

)
L2 = (un−1,−

h , vh)L2 +Δt(f, vh)L2 ,

1
2
(ũnh, vh)L2 +Δt

(1
2
∇ûnh +

1
3
∇ũnh,∇vh

)
L2 =

1
2
Δt(f, vh)L2 ,

for all vh ∈ Vn, cf. [238].

Remark 11.5.2 Let ûn and ũn be the vector representations of ûnh and ũnh,
respectively, and un = ûn + ũn the vector representation of unh(·, tn). The
mass and stiffness matrices in Vn are denoted by M and A. Then the scheme
for k = 1 can be rewritten in matrix-vector form as follows:

M(ûn + ũn) +ΔtA(ûn +
1
2
ũn) = Mun−1 + b,

1
2
Mũn +ΔtA(

1
2
ûn +

1
3
ũn) =

1
2
b.

(11.40)

For a fixed triangulation, Tn = T for all n, this is a time discretization scheme
for the semi-discrete problem (in vector notation)

M
du
dt

+ Au = b, i.e.
du
dt

+ M−1Au = M−1b,

and un is an approximation of u(tn). The spectrum of M−1A is contained
in (0,∞). Using a transformation to the eigenvector basis of M−1A, for the
analysis of accuracy and stability of the scheme (11.40) we consider the simple
scalar model problem du

dt − λu = 0, with an arbitrary λ ∈ (−∞, 0). The
solution is given by u(t) = u(0)eλt. This model test problem is the same as
the one considered in Sect. 4.1, cf. (4.10). The scheme (11.40) applied to this
test problem is given by

ûn + ũn −Δtλ
(
ûn +

1
2
ũn

)
= un−1

1
2
ũn −Δtλ

(1
2
ûn +

1
3
ũn

)
= 0, un = ûn + ũn.

This can be rewritten as

un = gST (Δtλ)un−1, with gST (z) :=
1 + 1

3z

1− 2
3z + 1

6z
2
.

The stability function gST (z) (cf. Sect. 4.1) is a so-called Padé approximation
of ez. From Taylor expansion it follows that ez = gST (z) + O(z4), (z → 0),
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hence the method has consistency order 3. The method has the optimal
smoothing property limz→−∞ gST (z) = 0 and the stability property

|gST (z)| ≤ 1 for all z ∈ (−∞, 0].

This is an optimal stability property if one considers only real eigenvalues
λ ∈ (−∞, 0] in the test problem. For general complex z ∈ C, with Re(z) ≤ 0,
the inequality |g(z)| ≤ 1 does not necessarily hold, i.e., the method is not
A-stable.

In the finite element method introduced above both the trial and test functions
are continuous in space and discontinuous in time. This discontinuity is at the
interface between time slabs. Alternatively one can use trial functions that are
continuous in space and time combined with test functions that are continuous
in space and discontinuous in time. Another variant has been developed in
which trial and test functions are discontinuous in space and time. We do
not treat such alternative methods here. We only consider the continuous in
space and discontinuous in time variant explained above and show how an
XFEM space-time version can be derived. An XFEM space-time technique
for a class of spatially one-dimensional hyperbolic problems is presented in
[67, 68]. We combine the space-time method described above with the Nitsche
approach for handling the Henry interface condition, resulting in a rather
general finite element discretization technique applicable to the space-time
weak formulation of the mass transport problem given in Sect. 10.3.2.

We use notations as in Sect. 10.3 and introduce the XFEM method along
the same lines as in Sect. 7.9.2 but now with the space-time subdomains
Qi ⊂ R

4 instead of the spatial subdomains Ωi ⊂ R
3. We take a fixed time

slab Ω × In. Let Vn be the (simplicial) finite element space introduced above
and {qj}j∈J the nodal basis in this space. For k ≥ 1, let ξ0, . . . , ξk be the
Lagrange basis in Pk

(
[tn−1, tn]

)
, corresponding to equidistant node points,

which include the interval end points tn−1, tn. For k = 0 we choose the basis
function ξ0 := 1 of P0

(
[tn−1, tn]

)
. In practice one typically uses small values

of k (k ≤ 2), in which case the Lagrange basis is well-conditioned. To each qj ,
j ∈ J , there correspond k + 1 space-time functions

qj,(x, t) := qj(x)ξ(t), � = 0, . . . , k, (x, t) ∈ Ω × In,

and qj, = 0 otherwise. These form a basis of Vkn:

Vkn = span { qj, : j ∈ J , 0 ≤ � ≤ k } .

For example, for k = 0 we have

qj,0(x, t) = qj(x), (x, t) ∈ Ω × In,

and for k = 1:

qj,0(x, t) =
1
Δt

(tn − t)qj(x), qj,1(x, t) =
1
Δt

(t− tn−1)qj(x), (x, t) ∈ Ω × In.
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Using supp(ξ) = [tn−1, tn], we obtain supp(qj,) = supp(qj) × [tn−1, tn],
independent of �. The index set of basis functions “close to the interface”
is given by

JΓ∗ :=
{
j ∈ J : meas3

(
Γ∗ ∩ supp(qj,0)

)
> 0

}
,

cf. Fig. 11.5 for a 1D example. Let HΓ∗ be the Heaviside function correspond-

tn−1

tn

x

Fig. 11.5. Enrichment index set for 1D example. Dots represent degrees of freedom
of original basis functions, circles indicate where additional functions are added in
the vicinity of the interface Γ∗.

ing to Q2:

HΓ∗(x, t) :=

{
0 if (x, t) ∈ Q1,

1 if (x, t) ∈ Q2.

For each space-time node index (j, �), j ∈ JΓ∗ , 0 ≤ � ≤ k, a corresponding
enrichment function is given by

ΦHj,(x, t) :=

{
HΓ∗(x, t) if k = 0
HΓ∗(x, t)−HΓ∗(xj , t̂) if k > 0,

(11.41)

with t̂ ∈ In the Lagrange node for which ξ(t̂) = 1 holds. The additional
basis functions are defined as follows:

qΓ∗
j, := qj,Φ

H
j,, j ∈ JΓ∗ , 0 ≤ � ≤ k.

The term HΓ∗(xj , t̂) in the definition of ΦHj is constant and may be omitted
(as it doesn’t introduce new functions in the function space), but ensures
that qΓ∗

j,(xj , t̂) = 0 holds in all space-time grid points (xj , t̂) if k > 0. The
space-time XFEM space on the time slab Ω × In is given by

V Γ∗
kn := Vkn ⊕ span

{
qΓ∗
j, : j ∈ JΓ∗ , 0 ≤ � ≤ k

}
. (11.42)

Note that for v ∈ ⊕Nn=1V
Γ∗
kn we have vi := v|Qi

∈ H1,0(Qi) for i = 1, 2, and
v|∂Ω = 0. We use ⊕Nn=1V

Γ∗
kn for a space-time discretization of the variational

formulation (10.33). Similar to (11.39) the jumps between time slabs Ω×In−1
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and Ω × In are controlled by a term of the form ([uh]n−1, ·)L2 and as in
Sect. 11.1 the Henry interface condition [βu]Γ∗ = 0 is satisfied in a weak sense
by adding suitable interface jump terms to the bilinear form. We use the weak
formulation of the continuous problem as explained in Remark 10.3.7 and, for
the derivation of the method, assume that the solution u has the smoothness
property ui ∈ H1(Qi), i = 1, 2, which implies that the weak derivative ∂ui

∂t is
well-defined in the usual sense on Qi. Using partial integration, cf. (10.29), it
follows that the weak solution u ∈Wβ,0 ⊂ Vβ satisfies

2∑

i=1

∫

Qi

(∂ui
∂t

+ w · ∇ui
)
βivi + αiβi∇ui · ∇vi dx dt =

∫

QT

βfv dx dt (11.43)

for all v ∈ Vβ . In this problem formulation the Henry interface condition is
incorporated as an essential condition in the space Vβ . As in Sect. 11.1, in
the discrete problem we “eliminate” this condition from the trial and test
space and instead add interface terms to the bilinear form. We introduce the
notation Qni := Qi∩ (Ω× In) = { (x, t) ∈ Qi : t ∈ In }, i = 1, 2, QnT := Ω× In
and Γn∗ := { (x, t) ∈ Γ∗ : t ∈ In }. For a test function v ∈ V Γ∗

kn (extended by
zero outside of Ω×In) the integrals

∫
Qi

and
∫
QT

in (11.43) can be replaced by
integrals

∫
Qn

i
and

∫
Qn

T
, respectively. Taking such a test function and applying

partial integration results in

2∑

i=1

∫

Qn
i

αiβi∇ui · ∇vi dx dt = −
2∑

i=1

∫

Qn
i

div(αi∇ui)βivi dx dt

+
∫

Γn∗

ν[α∇u · nΓβv] ds,

with nΓ ∈ R
3 the unit normal at Γ and ν = (1 +w ·nΓ )−

1
2 . We introduce an

averaging operator across Γ∗ given by {v} := 1
2 (v1)|Γ∗ + 1

2 (v2)|Γ∗ .

Remark 11.5.3 Note that in the averaging we do not use a weighting. The
weighting used in the average introduced in (11.2) is essential for the analysis
presented in Sect. 11.2. In numerical experiments, however, we observe that in
general the results do not deteriorate significantly if instead of the weighted
average the standard unweighted one is used. For the introduction of the space-
time Nitsche method we restrict, for simplicity, to an unweighted average.

For u with [α∇u · nΓ ] = 0 we have [α∇u · nΓβv] = {α∇u · nΓ }[βv]. Thus
in view of consistency the interface term −

∫
Γn∗
ν{α∇u · nΓ }[βv] ds is added

to the space-time bilinear form. For symmetry reasons (not essential) we also
add −

∫
Γn∗
ν[βu]{α∇v · nΓ } ds, and for stability we add λh−1

∫
Γn∗

[βu][βv] ds,
with a parameter λ > 0. In order to present the discrete problem in a compact
form we introduce some further notation:
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ani (u, v) :=
∫

Qn
i

(∂ui
∂t

+ w · ∇ui
)
βivi + αiβi∇ui · ∇vi dx dt, i = 1, 2,

Nn
Γ∗(u, v) := −

∫

Γn∗

ν{α∇u · nΓ }[βv] ds−
∫

Γn∗

ν[βu]{α∇v · nΓ } ds

+ λh−1

∫

Γn∗

[βu][βv] ds.

The resulting space-time Nitsche-XFEM discretization reads as follows:

Determine uh such that for all n = 1, . . . , N , (uh)|Ω×In
∈ V Γ∗

kn and

2∑

i=1

ani (uh, vh) + ([uh]n−1, βvn−1,+
h )L2 +Nn

Γ∗(uh, vh) =
∫ tn

tn−1

(f, βvh)L2 dt

(11.44)
for all vh ∈ V Γ∗

kn .

Remark 11.5.4 Note that in this discretization the same space V Γ∗
kn is used

for the trial and test functions. This is similar to the space-time discretization
of the heat equation in (11.39), where one space Vkn is used both as trial
and test space on the time slab Ω × In. As discussed above, for the heat
equation there are alternative possibilities for the finite element spaces. One
popular choice is to use trial functions that are globally continuous in time.
An advantage of this choice is that the jump term [uh]n−1 vanishes, due to
continuity of uh. A well-posed discretization of the heat equation is obtained if
for k ≥ 1 we take trial functions uh ∈ C(Ω× [0, T ]) with (uh)|Ω×In

∈ Vkn and
test functions vh ∈ V(k−1)n. Note that in this variant the trial functions are
polynomials of degree k w.r.t. time whereas the test functions are polynomials
of degree k − 1 w.r.t. time. One easily verifies that the number of degrees of
freedom for such a trial function uh (on the time slab Ω × In) equals the
dimension of the test space V(k−1)n.

The reason for using a “discontinuous in time” trial and test space in the
XFEM method (11.44) is that it is not obvious how a well-posed variant with
a continuous in time trial space can be defined. We indicate which difficulty
arises. Consider k = 1 and a situation as in Fig. 11.5. The XFEM extension
yields 8 additional degrees of freedom in the trial function uh on the time slab
Ω × In, corresponding to the basis functions qΓ∗

j, , j ∈ JΓ∗ , � = 0, 1. These
additional XFEM basis function are by construction continuous on Q1 and
on Q2. Therefore a continuity condition for uh at t = tn−1 is automatically
satisfied by these additional basis functions. The XFEM test space, with k = 0,
i.e. V Γ∗

0,n, contains (only) 4 additional XFEM basis functions. Therefore there
is a mismatch between the degrees of freedom in the trial space and the
dimension of the test space.

The term ([uh]n−1, βvn−1,+
h )L2 controls the discontinuity at t = tn−1 and thus

one should take β = β(·, tn−1). The initial condition u0 is approximated by



374 11 Finite element discretization

u0,−
h ∈ QΓh (XFEM space corresponding to Γ (0)). An important difference

between this variational problem and the one in Sect. 11.1 is that for a non-
stationary interface the XFEM spaceQΓh used in Sect. 11.1 varies with t, due to
Γ = Γ (t), whereas the space V Γ∗

kn used on the time slab Ω×In in (11.44) does
not depend on t ∈ In. The formulation in (11.44) yields a general framework
for the development of concrete feasible methods. One issue is that in the
specification of the space V Γ∗

kn one has to choose a finite element space Vn (for
discretization of the spatial variable) and a value for k. Another important
numerical aspect, hidden in the general formulation in (11.44), is that one
needs space-time quadrature for computing mass and stiffness matrices. For
this quadrature one needs an approximation of Γn∗ , i.e. of Γ (t) for t ∈ In. The
accuracy of the quadrature depends on the quality of this approximation.

From the general formulation in (11.44) we derive a concrete feasible
method. For the approximation of Γ (t), t ∈ In, we take Γ (t) ≈ Γ (tn) =: Γn,
and thus Γn∗ is approximated by Γn × In. This results in a cylindrical ap-
proximation Ωi(tn) × In of the space-time subdomain Qni . In addition we
choose k = 0, i.e. the functions uh, vh do not depend on t ∈ In. Define
unh(x) := uh(x, t), t ∈ In. On the time slab Ω × In the space-time XFEM
space V Γ∗

0n is replaced by the time-independent XFEM space QΓn

h . The approx-
imate interface Γn is stationary in In and thus we take ν = 1. Furthermore,
w(x, t) and f(x, t) are replaced by w(x, tn) =: wn(x) and f(x, tn) =: fn(x),
respectively. Then the scheme (11.44) reads: Determine unh ∈ Q

Γn

h such that

1
Δt

(unh − un−1
h , βvh)L2(Ω) +

2∑

i=1

∫

Ωi(tn)

βiwn · ∇unh vh + αiβi∇unh · ∇vh dx

−
(
{α∇unh · nΓn}, [βvh]

)
L2(Γn)

−
(
[βunh], {α∇vh · nΓn}

)
L2(Γn)

(11.45)

+ λh−1
(
[βunh], [βvh]

)
L2(Γn)

= (fn, βvh)L2(Ω) for all vh ∈ QΓn

h .

This scheme is (almost) the same as the one resulting from the Rothe method
treated in Sect. 11.5.1, cf. (11.35). Since in our applications Γn = Γ (tn) is
usually not known, we replace it by a (piecewise planar) approximation.
The implementation of this method requires similar (quadrature) routines
as the ones used in the Nitsche-XFEM method, cf. Sect. 11.4.2. Related to
this quadrature we note the following. In the numerical evaluation of the term
(unh−un−1

h , βvh)L2(Ω) = (β(·, tn−1)unh−β(·, tn−1)un−1
h , vh)L2(Ω) discontinuities

both across Γn−1 (of β(·, tn−1) and un−1
h ) and across Γn (of unh and vh) have to

be taken into account. In the quadrature for the term (β(·, tn−1)un−1
h , vh)L2(Ω)

it may be reasonable to neglect the discontinuity across Γn−1, since, due to
the Henry condition, the jump [β(·, tn−1)un−1

h ]Γn−1 is relatively small.
Along the same lines a more accurate, and from an implementational point

of view (even) more challenging, method can be derived if we keep the interface
approximation Γ (t) ≈ Γn, t ∈ In, but instead of k = 0 use k = 1, resulting in
a space-time XFEM finite element space V Γn

1n .
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The discretization accuracy is also improved if a better approximation of
Γn∗ is used. Essentially this boils down to “interpolating” between the inter-
faces Γ (tn−1) and Γ (tn) (or their approximations). For the spatially 1D case
this is simple, because the interface is a point. In two- or three dimensions
it is not obvious how to obtain an accurate interpolation in an efficient way.
A relatively simple (but not very accurate) strategy is to use the piecewise
constant (in time) approximation Γ (tn−1) for t ∈ [tn−1, tn−1 + 1

2Δt], Γ (tn)
for t ∈ (tn−1 + 1

2Δt, tn].
A systematic investigation of these or other variants of the space-time

Nitsche-XFEM discretization is not available in the literature, yet.

11.5.3 Numerical experiment: mass transport coupled with fluid
dynamics

The three dimensional numerical simulation of two-phase fluid-dynamics cou-
pled with mass transport is a very challenging task. Only in the recent liter-
ature one can find a few publications in which results of such simulations are
presented, e.g. [44, 43, 197, 249, 200].

Combining the numerical methods for discretization of the mass transport
problem with the numerical methods for the simulation of the fluid dynamics
treated in Part II, one has all ingredients for the numerical simulation of a two-
phase flow problem in which fluid-dynamics is coupled with mass transport.
In [184] these methods are combined. In this section we present a few results
from [184] to illustrate the effects that mass transport and Marangoni effects
can have on the fluid dynamics.

For the fluid-dynamics we use the model (1.19)–(1.21), with a variable
surface tension coefficient τ :

⎧
⎨

⎩
ρi(

∂u
∂t

+ (u · ∇)u) = divσi + ρig

div u = 0
in Ωi, i = 1, 2,

[σnΓ ] = −τκnΓ +∇Γ τ, [u] = 0 on Γ,

VΓ = u · nΓ on Γ.

This is coupled with the level set equation

∂φ

∂t
+ u · ∇φ = 0 in Ω

for capturing the interface and with the model (1.24) for mass transport:

∂c

∂t
+ u · ∇c = div(αi∇c) in Ωi, i = 1, 2,

[α∇c · n]Γ = 0 on Γ,

[βc]Γ = 0 on Γ.
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We use homogeneous Dirichlet and Neumann boundary conditions on ∂Ω for
u and c, respectively. Suitable initial conditions for u, c and φ are given be-
low. For the numerical simulation of the fluid dynamics model we use the
methods discussed in Part II. We summarize a few key components. For dis-
cretization of velocity and pressure we use the P2-XFEM pair. The level set
equation is discretized using quadratic finite elements and streamline diffu-
sion stabilization. For the approximation of the interface we use the method
explained in Sect. 7.3. The variable surface tension force is discretized using
the discrete Laplace-Beltrami functional f̃Γh

, as explained in Sect. 7.6.1. For
time discretization the simple (but less accurate) implicit Euler method given
in Sect. 8.2 is applied. The mass transport equation is spatially discretized
using the Nitsche-XFEM method explained in this chapter. We use the Rothe
approach presented in Sect. 11.5.1.

In the experiment described below we consider a dependence of the sur-
face tension coefficient on the concentration c, i.e. τ = τ(c). Due to this, a
concentration gradient along the interface leads to a variable surface tension,
which induces so-called Marangoni convection. Hence, there is a strong cou-
pling between the fluid-dynamics and mass transport models. In the numerical
simulation we used, in each time step, a simple fixed point iterative strategy.
For given c the fluid dynamics part is solved and then the computed veloc-
ity field u is used in the mass transport problem, resulting in an update of
the concentration c. This is repeated until the update is smaller than a given
tolerance.

We performed simulations with the n-butanol - water - succinic acid sys-
tem, in which an n-butanol droplet is rising in water due to gravity. The
computational domain is Ω = [0, 0.02]× [0, 0.04]× [0, 0.02] m3. The dispersed
phase (droplet) and continuous phase are contained in the subdomains Ω1 and
Ω2, respectively. At t = 0, the droplet is at rest and has a spherical shape,
with a diameter of 2 · 10−3 m and centered at (0.01, 0.01, 0.01)m. This defines
the initial conditions for u and φ.

The size and the initial position of the droplet are chosen such that its
dynamics can be considered to be independent of wall effects. The right-hand
side function g is taken as g = (0,−g, 0), with g = 9.81 m/s2. The viscosity μ
and density ρ for each phase at 20◦C are given in Table 11.7.

butanol-water

μ [Pa · s] ρ [kg/m3]

Ω1 3.28 E-3 845

Ω2 1.39 E-3 987

Table 11.7. Material properties.
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The concentrations in Ω1 and Ω2 are denoted by c1 and c2, respectively.
At t = 0, the water phase contains a solute of succinic acid with initial con-
centration c2(0) > 0 while the dispersed phase is clean. The initial condition
for the concentration is

c(x, 0) =

{
0 in Ω1,

c2(0) in Ω2.

In general, this initial condition doesn’t satisfy the Henry condition.
The Henry interface condition for the system at 20◦C corresponds to the

weighting with β = (1, 1.2143). The diffusion coefficients for this system are
given by αr = (2.29 · 10−10, 5.83 · 10−10)m2/s, which are extremely small
values. For typical flow fields the mass transport equation is strongly convec-
tion dominated. On the meshes we use, the cell Peclet number is of the order
of magnitude 106. For such a case the Nitsche-XFEM space discretization
explained in Sects. 11.1, 11.5.1 is not stable. A suitable stabilization for the
Nitsche-XFEM method is not available, yet. Moreover, the very thin concen-
tration boundary layers require a very high resolution close to the interface,
which leads to high computational costs. As a first step towards an efficient
numerical simulation of this very demanding two-phase flow problem, we con-
sider a simplified case in which the instability and high boundary layer reso-
lution is avoided by taking artificial much larger diffusion coefficients, namely
αF = 105αr.

In [178], based on the experimental data for different systems, the surface
tension coefficient τ for the system that we consider is modeled by

τ = C0 + C1xC + C2x
2
C [10−3 N/m], (11.46)

with C0 := 1.625, C1 = −28.08, C2 = 222.8, and xC = c2|Γ is the restriction
to the interface of the concentration of the solute in the continuous phase.
Due to the limited solubility of succinic acid in water, which is 5.8% at 20◦C,
the model (11.46) for the surface tension coefficient τ is valid only for xC in
the interval [0, 0.058], cf. Fig. 11.6. In simulations with a constant τ , we take
τ = C0 = 1.625 · 10−3 N/m.

A multilevel tetrahedral triangulation is used for the spatial discretization.
For the initial triangulation, we partition the domain into 10× 20× 10 cubes
and then each of them is subdivided into six tetrahedra. The grid is then
refined three times further near the interface, which results in a smallest mesh
size of 2.5 · 10−4m. When the interface moves, the grid is adaptively refined
and coarsened. In Fig. 11.7 the grid is illustrated on the cross section x = 0.01
at t = 0 and t = 0.4 s.

In the simulations, we consider different initial concentrations, namely
c2(0) = 1%, 2.5% and 5%. We illustrate the following effects: occurrence of
concentration boundary layers and a significant influence of a variable surface
tension coefficient on both the rise velocity and the shape of the droplet.



378 11 Finite element discretization

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.01 0.02 0.03 0.04 0.05

S
ur

fa
ce

 te
ns

io
n 

co
ef

fic
ie

nt
 τ

 (
10

-3
 N

/m
) 

weight fraction xc ( x 100%) 

Surface tension coefficient

Fig. 11.6. Surface tension coefficient τ vs. xC ; model (11.46).

Fig. 11.7. Part of the grid on the cross section x = 0.01 at t = 0 (left) and t = 0.4
(right).

Concentration boundary layers

We take c2(0) = 1% and a variable τ as in (11.46). The concentrations inside
and outside the droplet at different times are displayed on the cross section
x = 0.01 in Fig. 11.8.

Due to β1 < β2, the Henry condition requires c1(x, t) > c2(x, t) for x ∈ Γ
and t > 0. For t = 0 we have 0 = c1(x, 0) < c2(x, 0) for x ∈ Γ , and thus the
initial condition does not satisfy the Henry condition. This inconsistency in
the initial condition causes a very small relaxation time in which there is a
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t=0.005 t=0.05

t=0.1 t=0.2

t=0.3 t=0.4

Fig. 11.8. Concentration distribution in the droplet region on the cross section
x = 0.01 for c2(0) = 1%.

rapid change in the solution, cf. the result at t = 0.005 in Fig. 11.8. At the
initial stage, the velocity in the droplet is very low and the mass transport is
mainly due to diffusion. At the interface the concentration satisfies the Henry
condition instantaneously, but in the middle of the droplet, the concentration
is still very low due to the small diffusivity. After a short time (t = 0.05 s), as
the droplet is accelerated, the role of the convection becomes larger. Then the
concentration profile in the droplet is almost linear, cf. Fig. 11.9. The maximal
and minimal values are attained at the lower and upper part of the droplet,
respectively. At the interface boundary layers appear. In the left picture in
Fig. 11.9 one observes the concentration boundary layers in the water phase,
which can also be seen (less clearly) in Fig. 11.8. Due to the interface condition
[α∇c · n]Γ = 0 the normal derivative at Γ must have the same sign in the
water phase and in the droplet. This explains the nonmonotonic concentration
profile in the droplet close to the interface, as can be observed in the right
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picture in Fig. 11.9. With the grids used in these experiments these boundary
layers in the droplet are not resolved sufficiently accurate.

Fig. 11.9. Concentration profile in the vicinity of the droplet along the symmetry
axis at t = 0.4 in the water phase (left) and in the droplet (right) for c2(0) = 1%.
Note that different scales are used for each picture and each axis.

The boundary layers become steeper, if for the diffusion coefficients one
takes smaller, i.e. more realistic values. The concentration difference becomes
larger until an almost constant vertical velocity is reached. The concentra-
tion in the water phase far away from the droplet remains almost constant
with a value approximately equal to c2(0). For the cases with larger initial
concentrations, c2(0) = 2.5% and c2(0) = 5%, we obtain similar behavior of
the concentration. However, the larger the initial concentration c2(0) is, the
steeper the slope of the steady state droplet concentration profile becomes.
Furthermore, the concentration profiles are very similar if instead of the vari-
able surface tension coefficient we use the constant value τ = C0.

Influence of variable surface tension coefficient on rise velocity

Although the variable surface tension coefficient appears to have little effect on
the concentration profile in the droplet it does have a significant effect on the
dynamics of the droplet. In Fig. 11.10, the vertical velocity of the droplet with
respect to different initial concentrations is plotted over time. Note that for
constant τ , the dynamics of the droplet are independent of the mass transport.
After the same initial phase, the droplet rise velocity with variable τ is lower
than the one with constant τ due to Marangoni effects. Note that the variable
surface tension c→ τ(c) is monotonically decreasing for c ∈ [0, 5.8%]. At the
lower part of the interface, the higher concentration results in a lower value
of the surface tension coefficient. Marangoni convection occurs, which retards
the motion of the droplet. The larger the initial concentration c2(0) is, the
stronger the Marangoni convection becomes. As a consequence, a lower value
of the terminal droplet velocity is obtained. This effect is also observed in
other literature, e.g. [200, 250].
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Fig. 11.10. Rise velocity of the droplet.

Influence of variable surface tension coefficient on shape
of the droplet

In case of a variable surface tension coefficient the droplet becomes flatter for
higher initial concentrations, which induces a lower rise velocity. In Fig. 11.11
we show, for a constant and for a variable surface tension coefficient, the shape
of the droplet and vector fields of the relative velocity vrel := v − vsed with
respect to the barycenter of the droplet (i. e., velocity in a Lagrangian reference
system attached to the droplet) at t = 0.4 s for the case c2(0) = 5%. Inspection
of the results shows that, for c2(0) = 5%, the vertical diameter changes from
1.57 mm (constant surface tension) to 1.30 mm (variable surface tension).

Fig. 11.11. Velocity field in Lagrangian reference system at steady state: constant
τ (left) and variable τ (right), c2(0) = 5%.
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Surfactant transport
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Mathematical model

We recall the model for transport of surfactants, derived in Sect. 1.1.4. In
Sect. 1.1.4 the concentration of the surfactant is denoted by S(x, t), the ve-
locity field by u and the diffusion coefficient by DΓ . For simplicity we assume
DΓ to be constant. By a rescaling we can take DΓ = 1. In this and the next
chapter we use a different notation for the unknown concentration and for the
velocity field, namely u = u(x, t) and w = w(x, t), respectively. With this no-
tation the convection-diffusion equation for the unknown concentration takes
the following form, cf. (1.25):

u̇+ u divΓw = divΓ∇Γu, (12.1)

where u̇ denotes the material derivative of u(x, t). Using the definitions of the
material derivative and of the Laplace-Beltrami operator this equation can be
written as

∂u

∂t
+ w · ∇u+ u divΓw −ΔΓu = 0. (12.2)

Remark 12.0.5 In (12.2) we do not model ad- or desorption effects. These
would lead to a source term f of the form f = f(uΩ), where uΩ denotes the
concentration of u in Ωi (i = 1 or i = 2) evaluated at the interface Γ . Suitable
models for f are hard to derive. In the remainder we restrict ourselves to
(12.2), i.e., we do not treat models that include ad- or desorption effects.

In this chapter we consider weak formulations of the convection-diffusion prob-
lem (12.2). These weak formulations form the basis for the finite element
methods treated in Chap. 13. We distinguish two cases, namely surfactant
transport on a stationary or on a non-stationary interface.

12.1 Surfactant transport on a stationary interface

In this section we assume that the interface Γ is stationary, sufficiently
smooth, bounded and ∂Γ = ∅, i.e. Γ does not have a boundary. Before we



386 12 Mathematical model

turn to the weak formulation of the convection-diffusion problem (12.2) we
first consider the so-called Laplace-Beltrami equation, which is an important
model problem that is often used in the literature. This equation models a
pure diffusion process on a given sufficiently smooth surface (in our case,
interface) Γ . It reads as follows: For a given f determine u such that

−ΔΓu = f on Γ.

Since −
∫
Γ
ΔΓu ds =

∫
Γ
∇Γu · ∇Γ 1 ds = 0 we introduce the assump-

tion
∫
Γ f ds = 0. A well-posed weak formulation is as follows: For given

f ∈ L2
0(Γ ) :=

{
v ∈ L2(Γ ) :

∫
Γ
v ds = 0

}
, determine u ∈ H1

∗ (Γ ), with
H1

∗ (Γ ) :=
{
v ∈ H1(Γ ) :

∫
Γ
v ds = 0

}
, such that

∫

Γ

∇Γu · ∇Γ v ds =
∫

Γ

fv ds for all v ∈ H1
∗ (Γ ). (12.3)

The bilinear form (u, v)→
∫
Γ ∇Γu∇Γ v ds is continuous and elliptic onH1

∗ (Γ )
and thus, using the Lax-Milgram lemma, it follows that this weak formulation
has a unique solution u. Furthermore, it can be shown that this solution has
the regularity property u ∈ H2(Γ ) and ‖u‖H2(Γ ) ≤ c‖f‖L2(Γ ), with a constant
c independent of f , cf. [92].

We now consider a weak formulation of the convection-diffusion problem in
(12.2). We use the results presented in the abstract Hilbert space setting in
Sect. 2.2.3, in particular Theorem 2.2.7. We apply the abstract results with
the Hilbert spaces V = H1

∗ (Γ ), H = L2
0(Γ ). In case of a stationary interface

we have w · n = 0 and thus w · ∇u = w · ∇Γu. Using this we can rewrite
(12.2) as

∂u

∂t
+ divΓ (wu)−ΔΓu = 0. (12.4)

We introduce the bilinear form

â(u, v) =
∫

Γ

∇Γu · ∇Γ v + divΓ (wu) v ds, u, v ∈ H1
∗ (Γ ).

A sufficiently smooth solution u of (12.4), if it exists, satisfies
∫
Γ
∂u
∂t v ds +

â(u, v) = 0 for all v ∈ H1
∗ (Γ ). We introduce the following weak formulation

of (12.4), cf. (2.29) in Sect. 2.2.3:

Find u ∈ W 1(0, T ;H1
∗(Γ )) such that

d

dt
(u(t), v)L2(Γ ) + â(u(t), v) = 0 for all v ∈ H1

∗ (Γ ), t ∈ (0, T ),

u(0) = u0.
(12.5)



12.2 Surfactant transport on a non-stationary interface 387

The space W 1(0, T ;H1
∗(Γ )) is as defined in Sect. 2.2.3, i.e. W 1(0, T ;H1

∗(Γ )) ={
v ∈ L2(0, T ;H1

∗(Γ )) : v′ ∈ L2(0, T ;H1
∗(Γ )′) exists

}
, where v′ denotes the

weak time derivative of v. This space has the following continuous embedding
property, cf. (2.28),

W 1(0, T ;H1
∗(Γ )) ↪→ C([0, T ];L2

0(Γ )). (12.6)

Based on Theorem 2.2.7 and Remark 2.2.7 we derive the following well-
posedness result:

Theorem 12.1.1 Assume w ∈ H1(Γ )3 and ‖ divw‖L∞(Γ ) ≤ c. For each
u0 ∈ L2

0(Γ ) there exists a unique solution u of (12.5) and the linear mapping
u0 → u is continuous from L2

0(Γ ) into W 1(0, T ;H1
∗(Γ )).

Proof. We apply Theorem 2.2.7 with the ellipticity condition replaced by the
Garding inequality, cf. Remark 2.2.8. Using the smoothness assumption on
the velocity field w it follows that â(·, ·) is continuous on H1

∗ (Γ ) × H1
∗ (Γ ).

Using the Green formula (14.15) and w · n = 0 we get
∫

Γ

divΓ (wu)u ds = −
∫

Γ

uw·∇Γu ds = −
∫

Γ

divΓ (wu)u ds+
∫

Γ

divΓw u2 ds,

and thus
∫
Γ

divΓ (wu)u ds = 1
2

∫
Γ

divΓ w u2 ds. Using this we obtain with
suitable constants γV > 0 and γH :

â(u, u) = ‖∇Γu‖2L2(Γ ) +
1
2

∫

Γ

divΓw u2 ds

≥ γV ‖u‖2H1∗(Γ ) − γH‖u‖2L2(Γ ) for all u ∈ H1
∗ (Γ ).

Hence â(·, ·) satisfies the Garding condition. �

In Chap. 13 we treat finite element discretizations of the variational problems
in (12.3) and (12.5).

12.2 Surfactant transport on a non-stationary interface

We now consider the case in which the interface may vary in time. We as-
sume that for all t ∈ [0, T ] the interface Γ (t) is sufficiently smooth. Precise
sufficient smoothness conditions on Γ (t) are formulated in Sect. 2 in [94]. Be-
low we consider two weak formulations of the convection-diffusion equation
(12.2). The first one, which is introduced in [94], is a variational problem in
space only, in which the test space depends on time. The second one is a
space-time variational problem. We introduce both, because as we will see in
Chap. 13, these two formulations induce different finite element discretization
approaches with their own merits.
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The first weak formulation is taken from [94]. The smoothness assumptions
on Γ (t) are such that the space-time interface

Γ∗ := ∪t∈[0,T ]Γ (t)× {t}

is a three-dimensional hypersurface in R
4. On this hypersurface one can de-

fine the corresponding Sobolev space of all functions for which all weak first
derivatives exist. As usual, this space is denoted by H1(Γ∗). On H1(Γ∗) the
norm equivalence

‖u‖2H1(Γ∗) ∼ ‖u‖2L2(Γ∗) + ‖∇Γu‖2L2(Γ∗) + ‖u̇‖2L2(Γ∗), u ∈ H1(Γ∗),

holds, with u̇ = ∂u
∂t +w · ∇u the material derivative. In the analysis below we

need a smoothness property of the velocity field w. In the remainder of this
section we assume

w ∈ H1(Γ∗)3, ‖divΓw‖L∞(Γ∗) <∞.

We introduce the following weak formulation of (12.2):

Find u ∈ H1(Γ∗) such that for almost all t ∈ (0, T ):
∫

Γ (t)

u̇v + uv divΓw +∇Γu · ∇Γ v ds = 0 ∀ v(·, t) ∈ H1
(
Γ (t)

)
,

u(·, 0) = u0.

(12.7)

Clearly, a strong solution of (12.2) is a solution of (12.7). The following result
is proved in [94].

Theorem 12.2.1 Assume u0 ∈ H1(Γ (0)). Then there exists a unique solu-
tion of the variational problem (12.7).

Proof. For a proof we refer to [94]. �
In the variational formulation (12.7) we use different trial and test spaces,
namely H1(Γ∗) and H1

(
Γ (t)

)
, respectively. Note, however, that for any v ∈

H1(Γ∗) we have v(·, t) ∈ H1
(
Γ (t)

)
for almost all t ∈ [0, T ]. This is due to the

fact that from
∫ T
0

∫
Γ (t)∇Γ v ·∇Γ v+v2 ds dt <∞ it follows (Fubini’s theorem)

that
∫
Γ (t)∇Γ v · ∇Γ v + v2 ds <∞ for almost all t ∈ [0, T ].

For a space-time variational formulation we introduce a test space consist-
ing of functions in L2(Γ∗) for which the weak spatial first derivatives exist,
i.e.

H1,0(Γ∗) :=
{
v ∈ L2(Γ∗) : ‖∇Γ v‖L2(Γ∗) <∞

}
,

which is a Hilbert space w.r.t. the norm

‖v‖2H1,0(Γ∗) = ‖v‖2L2(Γ∗) + ‖∇Γ v‖2L2(Γ∗).

The weak formulation is as follows:
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Find u ∈ H1(Γ∗) such that:

∫ T

0

∫

Γ (t)

u̇v + uv divΓw +∇Γu · ∇Γ v ds dt = 0 ∀ v ∈ H1,0(Γ∗),

u(·, 0) = u0.

(12.8)

This formulation is a well-posed problem:

Theorem 12.2.2 Assume u0 ∈ H1(Γ (0)). Then there exists a unique solu-
tion of the variational problem (12.8).

Proof. On H1(Γ∗)×H1,0(Γ∗) we introduce the bilinear form

a(u, v) :=
∫ T

0

∫

Γ (t)

u̇v + uv divΓw +∇Γu · ∇Γ v ds dt,

which is continuous. Let u ∈ H1(Γ∗) be the solution of (12.7). Integration of
the identity in (12.7) over t ∈ [0, T ] results in

a(u, v) = 0 for all v ∈ C∞(GT ).

Since C∞(GT ) is dense in H1,0(Γ∗) is follows that u is a solution of (12.8). We
now prove uniqueness, using a Gronwall argument. A corollary of the Gronwall
lemma is as follows (cf. lemma 29.3 in [256]): if f ∈ C([0, T ]), f(t) ≥ 0 for all
t ∈ [0, T ], and there exists a constant C such that

f(τ) ≤ C

∫ τ

0

f(t) dt for all τ ∈ [0, T ],

this implies that f(t) = 0 for all t ∈ [0, T ]. Let w ∈ H1(Γ∗) be a solution
of (12.8) with w(·, 0) = u0 = 0. Define f(t) :=

∫
Γ (t) w(s, t)2 ds. A variant of

the embedding property (12.6) yields that f is continuous on [0, T ]. Clearly
f(0) = 0, f ≥ 0 on [0, T ]. Take a τ ∈ (0, T ]. By the differentiation rule
(14.21b) we obtain

f(τ) = f(τ)− f(0) =
∫ τ

0

d

dt

∫

Γ (t)

w2 ds dt

=
∫ τ

0

∫

Γ (t)

2ẇw + w2divΓw ds dt.

We use (12.8) with a test function v given by v(·, t) = w(·, t) for t ≤ τ ,
v(·, t) = 0 otherwise. Then we obtain
∫ τ

0

∫

Γ (t)

ẇw ds dt = −
∫ τ

0

∫

Γ (t)

w2divΓw ds dt−
∫ τ

0

∫

Γ (t)

∇Γw · ∇Γw ds dt

≤ −
∫ τ

0

∫

Γ (t)

w2divΓw ds dt.
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Hence, we get

f(τ) ≤ ‖divΓw‖L∞(Γ∗)

∫ τ

0

f(t) dt.

Application of the Gronwall corollary yields f(t) =
∫
Γ (t) w(x, t)2 ds = 0 for

all t ∈ [0, T ]. Hence w = 0 a.e. on Γ∗, which implies uniqueness. �

We compare the weak formulations in (12.7) and (12.8). In both formulations
we use the same trial space H1(Γ∗). In (12.7) we have, for each t ∈ (0, T ), a
variational formulation and a corresponding test space on the interface Γ (t).
In (12.8) the variational formulation and the corresponding test space are on
the space-time domain Γ∗. This difference in the variational problems leads
to (very) different finite element discretization methods, treated in Chap. 13.
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Finite element methods for surfactant
transport equations

In this chapter we treat different finite element approaches for interfacial trans-
port problems as in (12.2). We first present a short overview of important
classes of methods and then, in the following sections, treat some of these
methods in more detail.

Recall that for the (numerical) treatment of the interface in Sect. 6.2 we
distinguished between Lagrangian interface tracking and Eulerian interface
capturing approaches. In the former the interface is explicitly represented (or
approximated using an interface triangulation) and then tracked along char-
acteristics. In the latter approach, instead of the interface, one tracks some
phase indicator function. In numerics this leads to, for example, the VOF
and level set techniques. These different (numerical) interface representation
methods induce different finite element approaches for solving partial differ-
ential equations on the interface. In the literature, for discretization of partial
differential equations on a surface (or interface) one can find finite element
methods based on Lagrangian interface tracking and methods based on Eu-
lerian interface capturing. The Lagrangian methods use finite element spaces
on regular (triangular) triangulations Γh that approximate the interface Γ .
These methods were first developed and analyzed for the case of a stationary
interface and only recently Lagrangian finite element methods for the case
of a non-stationary interface have been investigated. In Sect. 13.1 we discuss
these methods in more detail. Eulerian interface capturing methods use an
indicator function (e.g., level set function) to represent the interface and for
discretization of a partial differential equation on the interface one uses fi-
nite element spaces corresponding to the (tetrahedral) triangulation on which
this indicator function is discretized. Note that in general this triangulation is
independent of the location of the interface. As for the Lagrangian case, these
Eulerian methods were first developed for a stationary interface and after-
wards extended to problems with a non-stationary interface. Finite element
methods based on Eulerian interface capturing are treated in Sect. 13.2.
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13.1 Finite element methods based on Lagrangian
interface tracking

In this section we first discuss methods for the case of a stationary interface
Γ and then treat methods for non-stationary Γ .

Stationary interface

The paper [92] contains the first analysis of a finite element method for dis-
cretizing an elliptic equation (Laplace-Beltrami equation) on a stationary sur-
face. We outline the main ideas of this method and its analysis. To simplify
the presentation, we only consider the 3D case. Let Γ be a sufficiently smooth
two-dimensional surface without boundary, embedded in R

3. We consider the
Laplace-Beltrami equation (12.3) on Γ . The surface Γ is approximated by
a regular family {Γh} of triangulations. Each triangulation Γh is consistent
(no hanging nodes) and it is assumed that all vertices in the triangulation lie
on Γ . The space of scalar functions that are continuous on Γh and linear on
each triangle in the triangulation Γh is denoted by Vh. The discretization of
the Laplace-Beltrami equation is as follows:

determine uh ∈ Vh ∩H1
∗ (Γh) such that

∫

Γh

∇Γh
uh ·∇Γh

vh ds =
∫

Γh

fhvh ds for all vh ∈ Vh ∩H1
∗ (Γh). (13.1)

HereH1
∗ (Γh) =

{
v ∈ H1(Γh) :

∫
Γh
v ds = 0

}
,∇Γh

is the tangential derivative
corresponding to Γh and fh is a suitable extension of f , as explained below.
For the definition of this extension and the discretization error analysis we
need a suitable local coordinate system, which is the same as the one used
in the Sects. 7.3.1, 7.7.1. On a neighborhood U of Γ we introduce the signed
distance function d : U → R, |d(x)| := dist(x, Γ ) for all x ∈ U . Thus Γ is the
zero level set of d. We assume d < 0 on the interior of Γ and d > 0 on the
exterior. Note that nΓ = ∇d on Γ . We define n(x) := ∇d(x) for all x ∈ U .
Thus n = nΓ on Γ and ‖n(x)‖ = 1 for all x ∈ U . We assume Γh ⊂ U for all
Γh ∈ {Γh}. We introduce a locally orthogonal coordinate system by using the
projection p : U → Γ :

p(x) = x− d(x)n(x) for all x ∈ U.

We assume that the decomposition x = p(x) + d(x)n(x) is unique for all
x ∈ U . Note that

n(x) = n(p(x)) for all x ∈ U.
Using these ingredients one can define “suitable” extensions. For f ∈ L2(Γ )
we define its extension fe as follows:
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fe(x) := f(p(x)) for x ∈ U.

For an illustration of the projection p and the construction of the extension
fe we refer to Fig. 7.8.

Analogous to the right-hand side f in (12.3) its lifted version fh ∈ L2(Γh)
in (13.1) should have zero mean value. Therefore we define:

fh := fe − |Γh|−1

∫

Γh

fe ds (13.2)

with |Γh| :=
∫
Γh

1 ds. Using the Lax-Milgram lemma it follows that the dis-
crete problem (13.1) with fh as defined in (13.2) has a unique solution uh. For
the discretization error analysis one has to compare the discrete solution uh,
which is defined on Γh, with the solution u of the Laplace-Beltrami equation,
which is defined on Γ . This can be done by introducing a lift Uh of uh:

Uh(p(x)) := uh(x), x ∈ Γh. (13.3)

The following result is from [92].

Theorem 13.1.1 Let u be the solution of the Laplace-Beltrami equation
(12.3) and uh its discrete approximation as in (13.1), with fh as in (13.2).
Let Uh be the lift of uh given in (13.3). Then

‖u− Uh‖L2(Γ ) + h‖u− Uh‖H1(Γ ) ≤ c h2

holds, with a constant c independent of h.

Proof. A proof is given in Lemma 6, Lemma 7 in [92]. �

Given the interface triangulation Γh the discretization (13.1) is easy to im-
plement. The signed distance function d plays an important role in the error
analysis but is of minor importance for the implementation of the method. In
(13.1) it is used only in constructing the extension fh of f and thus it can be
avoided if a sufficiently accurate approximation fh of f can be constructed
using another technique.

The method described above has recently been extended from linear to
higher order finite elements in [82]. To obtain higher-order convergence it is
generally necessary to approximate Γ to higher order in addition to employing
higher-order finite element spaces. In the implementation of the higher-order
finite element method explicit knowledge of the signed distance function is
essential, cf. [82].

An adaptive finite element discretization method for the Laplace-Beltrami
equation, based on linear finite elements and suitable a-posteriori error esti-
mators is treated in [83].

In [95] the linear finite element method for the elliptic Laplace-Beltrami
equation on a stationary interface as described above is extended to a parabolic
problem, on a stationary interface Γ , of the form
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∫

Γ

∂u

∂t
v +∇Γu · ∇Γ v ds = 0 for all v ∈ H1(Γ ), t ∈ (0, T ],

with initial condition u(·, 0) = u0 on Γ . This problem can be discretized us-
ing a standard method of lines technique as follows. Let Vh be the space of
continuous linear finite elements on the triangulation Γh, as used in the dis-
cretization of the Laplace-Beltrami equation described above. Let {ψi}1≤i≤N
be the standard nodal basis in this space. For approximating the solution
u = u(x, t), (x, t) ∈ Γ × [0, T ], of the parabolic problem we use the ansatz
uh(x, t) =

∑N
j=1 uj(t)ψj(x), with (x, t) ∈ Γh× [0, T ]. As test functions we use

v = ψi, i = 1, . . . , N . If we write 	u = 	u(t) = (u1, . . . , uN )T we thus obtain the
semi-discrete problem

M
d	u
dt

(t) + S	u(t) = 0, t ∈ (0, T ], 	u(0) = 	u0, (13.4)

with 	u0 the vector representation of an approximation u0,h ∈ Vh of the initial
data u0. The mass and stiffness matrices are given by

Mij =
∫

Γh

ψiψj ds, Sij =
∫

Γh

∇Γh
ψi · ∇Γh

ψj ds, 1 ≤ i, j ≤ N.

The matrices M and S are symmetric positive definite and symmetric positive
semidefinite, respectively. Optimal error bounds for the semi-discrete problem
(13.4) are proved in [95]. A full space and time discrete problem is obtained by
combining the semi-discretization with standard time discretization methods.
Extensions of this method to other types of parabolic problems and to surfaces
with boundary (∂Γ �= ∅) are presented in [95].

Non-stationary interface

In [94] the Lagrangian finite element technique explained above is general-
ized to problems with a non-stationary (or “evolving”) interface. A similar
technique was first introduced for the special case of the mean curvature flow
problem in [93]. We explain the main ideas from [94].

The interface (or surface) Γ (t), with ∂Γ (t) = ∅, is assumed to be smoothly
evolving, with normal velocity w · nΓ . Starting point is the weak formulation
of the transport problem in (12.7). Let {Γh} be a regular family of consistent
triangulations of Γ (0). Define Γh(0) := Γh. The vertices of Γh(0) are denoted
by Xj(0), j = 1, . . . , N . We assume that Γh(0) interpolates Γ (0), i.e., all
vertices Xj(0) lie on Γ (0). A crucial point in this finite element method is
that it is purely Lagrangian, in the sense that the vertices are transported
with the flow field w, i.e., Ẋj(t) = w(Xj(t), t) for all j and t ∈ [0, T ]. This
grid movement induces corresponding interpolating triangulations Γh(t) of
Γ (t). Note that depending on the velocity field w and the deformation of
Γ (t), for t > 0 the triangulations Γh(t) may become (strongly) distorted. A
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possible remedy then is to retriangulate the interface Γ (t0) for a suitable t0.
This requires interpolation operations between Γh(t0) and this retriangulation.
Below we assume that T is sufficiently small such that for t ∈ [0, T ] the
triangulations Γh(t) remain sufficiently shape regular.

Corresponding to each vertex Xj(t) of Γh(t) there is a nodal basis function
ψj(·, t) : Γh(t) → R such that ψj(·, t) is continuous on Γh(t), linear on each
triangle in Γh(t) and ψj(Xi(t), t) equals one if i = j and zero otherwise. By
construction these nodal basis functions have the property

ψ̇j = 0 on Γh(t), j = 1, . . . , N. (13.5)

The space of continuous piecewise linears is given by

Vh(t) := span {ψj(·, t) : 1 ≤ j ≤ N } .

Let u0,h ∈ Vh(0) be an approximation of the initial data u0. The following is
a discretization of the problem (12.7):

Find uh(·, t) =
∑N
j=1 uj(t)ψj(·, t) ∈ Vh(t) such that for all t ∈ (0, T ):

∫

Γh(t)

u̇hvh + uhvh divΓh
w +∇Γh

uh · ∇Γh
vh ds = 0 ∀ vh ∈ Vh(t),

uh(·, 0) = u0,h.

(13.6)

In [94] an error analysis of this semi-discretization is presented. We outline a
main result. For uh(·, t) ∈ Vh(t), which is defined on Γh(t), let Uh(·, t) be its
lift to Γ (t), as in (13.3),

Uh(p(x), t) := uh(x, t), x ∈ Γh(t). (13.7)

Theorem 13.1.2 Let u be the solution of (12.7), which is assumed to be
sufficiently smooth, and uh the discrete solution from (13.6) with u0,h the
nodal interpolation of u0. Let Uh be the lift of uh as in (13.7). Then

sup
t∈[0,T ]

‖u(·, t)− Uh(·, t)‖2L2(Γ (t)) +
∫ T

0

‖∇Γ
(
u(·, t)− Uh(·, t)

)
‖2L2(Γ (t)) dt ≤ ch2

holds.

Proof. A proof is given in Theorem 6.2 in [94]. �

The error bound is optimal with respect to the norm
( ∫ T

0 ‖∇Γ · ‖2L2(Γ (t)) dt
) 1

2

but suboptimal with respect to the norm supt∈[0,T ] ‖u(·, t)− Uh(·, t)‖L2(Γ (t)).
Results of numerical experiments in [94] indicate an (optimal) error behavior
supt∈[0,T ] ‖u(·, t)−Uh(·, t)‖L2(Γ (t)) ∼ ch2. This optimal error bound is proved
in the paper [98].
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We now show that using the property (13.5) the discretization of the time
variable can be realized by a simple method. In (13.6) it suffices to restrict
the trial space to the set of basis functions vh = ψi, i = 1, . . . , N . For these
basis functions we have ψ̇i = 0 and thus, using the Reynolds formula (14.21b)
we get

∫

Γh(t)

u̇hψi + uhψi divΓh
w ds =

∫

Γh(t)

˙(uhψi) + uhψi divΓh
w ds

=
d

dt

∫

Γh(t)

uhψi ds.

Hence, instead of (13.6) we can determine uh(·, t) =
∑N

j=1 uj(t)ψj(·, t) ∈ Vh(t)
such that uh(·, 0) = u0,h and

d

dt

∫

Γh(t)

uhψi ds+
∫

Γh(t)

∇Γh
uh · ∇Γh

ψi ds = 0, for i = 1, . . . , N.

Define 	u = 	u(t) = (u1, . . . , uN)T and the time-dependent mass and stiffness
matrices M(t), S(t) by

M(t)ij =
∫

Γh(t)

ψj(s, t)ψi(s, t) ds, S(t)ij =
∫

Γh(t)

∇Γh
ψj(s, t) · ∇Γh

ψi(s, t) ds.

For the unknown coefficient vector 	u(t) we then obtain the system of ordinary
differential equations

d

dt

(
M(t)	u(t)

)
+ S(t)	u(t) = 0, t ∈ [0, T ].

For all t ∈ [0, T ] the matrices M(t) and S(t) are symmetric positive defi-
nite and symmetric positive semidefinite, respectively. A time discretization
is straightforward. The implicit Euler method, for example, leads to

M(tn+1)	un+1 +ΔtS(tn+1)	un+1 = M(tn)	un, n = 0, 1, . . . ,

with 	u0 the vector representation of uh,0. This method has a very simple struc-
ture. The main difficulty is hidden in the Lagrangian movement of the grid
points Xj(t) of Γh(t). As noted above, retriangulation procedures and corre-
sponding interpolation operators may be required if the triangulation Γh(t)
becomes too distorted. Clearly, this method is based on an interface track-
ing approach and thus it encounters severe difficulties in case of topological
singularities (e.g., droplet collision).

13.2 Finite element methods based on Eulerian interface
capturing

A general framework for the numerical treatment of partial differential equa-
tions on implicit surfaces based on finite difference methods was proposed
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in [36]. In that paper finite difference approximations on rectangular grids
independent of an implicit static surface are considered. In [259] these Eule-
rian finite difference techniques are extended to problems with moving inter-
faces. We do not treat these finite difference methods, but restrict ourselves
to Eulerian finite element discretizations.

13.2.1 An extension-based Eulerian finite element method

In [79] an Eulerian finite element method for discretizing the Laplace-Beltrami
equation on a stationary surface Γ is presented. We outline the main idea
of this method. Let the two-dimensional surface Γ be contained in a three-
dimensional domain Ω and φ : Ω → R be a level set function whose zero level
set is Γ . Assume that ∇φ �= 0 on Ω. Define the tangential derivative ∇φ as
follows:

n :=
∇φ
‖∇φ‖ , P := I− nnT , ∇φu := P∇u.

Note that on Γ this tangential derivative equals ∇Γ . Below, to avoid technical
difficulties due to the fact that ΔΓ c = 0 for a function c that is constant on
Γ , we consider the variant of the Laplace-Beltrami equation in which a zero
order term is added, i.e.: determine u ∈ H1(Γ ) such that

∫

Γ

∇Γu · ∇Γ v + uv ds =
∫

Γ

fv ds for all v ∈ H1(Γ ). (13.8)

Based on the level set function there is a natural extension of this Laplace-
Beltrami equation to the domain Ω. Instead of this variational problem on Γ
one considers the variational problem to find u ∈ H1

φ(Ω) such that
∫

Ω

(
∇φu · ∇φv+ uv

)
‖∇φ‖ dx =

∫

Ω

fev‖∇φ‖ dx for all v ∈ H1
φ(Ω), (13.9)

with fe an extension of the data f and a suitable Sobolev space H1
φ(Ω), cf.

below.

Remark 13.2.1 The derivation of the extended equation (13.9) from (13.8)
is essentially an application of the following co-area formula. Assume that
the level set function φ : Ω → R is Lipschitz continuous. Define φmin :=
min

{
φ(x) : x ∈ Ω

}
, φmax := max

{
φ(x) : x ∈ Ω

}
and let the level sets in

Ω, i.e. Γr := {x ∈ Ω : φ(x) = r } with r ∈ [φmin, φmax], be two-dimensional
hypersurfaces in R

3. Then the co-area formula
∫

Ω

g ‖∇φ‖ dx =
∫ ∞

−∞

∫

φ−1(r)

g dsdr =
∫ φmax

φmin

∫

Γr

g dsdr

holds for functions g that are integrable on Ω. Using a suitable extension
of f the problem (13.8) is not only considered on Γ = Γ0 but on all Γr,
r ∈ [φmin, φmax]. Integration over the level set values r then yields
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∫ φmax

φmin

∫

Γr

∇φu · ∇φv + uv dsdr =
∫ φmax

φmin

∫

Γr

fev dsdr,

for suitable test functions v (e.g. v ∈ C1(Ω)). Application of the co-area
formula results in the extended problem (13.9).

Note that due to the tangential derivative the problem (13.9) is degenerated
in the sense that there is no diffusion in the normal direction. This is also
reflected in the strong formulation of the equation corresponding to (13.9),
given by

− div
(
‖∇φ‖P∇u

)
+ ‖∇φ‖u = ‖∇φ‖fe in Ω,

and which has, due to Pn = 0, a singular diffusion tensor ‖∇φ‖P. Therefore,
instead of the standard Sobolev space H1(Ω) one has to use other function
spaces, which are φ-dependent, e.g. H1

φ(Ω) :=
{
v ∈ L2(Ω) : ∇φu ∈ L2(Ω)3

}
.

If the level sets of φ intersect the boundary ∂Ω one has to formulate appro-
priate artificial boundary conditions for u to make the problem well-posed.
Natural boundary conditions (leading to well-posedness) are automatically
satisfied if one uses a domain Ω of the form

Ω =
{
x ∈ R

3 : c0 < φ(x) < c1
}
, with c0 < 0 < c1. (13.10)

Appropriate function spaces, well-posedness and regularity properties are
studied in [79]. In [79, 58] it is proved that the restriction u|Γ of the solu-
tion u of (13.9) solves the Laplace-Beltrami problem (13.8) on Γ .

For the finite element discretization one starts with a triangulation of Ω, de-
noted by Th. A banded computational domain Dh is defined as follows. Let
I(φ) be the piecewise linear nodal interpolation of φ on the triangulation Th.
Define

Dh = {x ∈ Ω : |I(φ)(x)| < c0h } ,

with a sufficiently large constant c0 such that T ⊂ Dh for all tetrahedra T ∈ Th
that have a nonzero intersection with Γ . A local triangulation is defined by

T Γh := {T ∈ Th : T ∩Dh �= ∅ } .

Let V Γh be the space of continuous piecewise linear finite elements on the
local triangulation T Γh . The discrete problem is formulated on the h-banded
computational domain Dh:

determine uh ∈ V Γh such that for all vh ∈ V Γh
∫

Dh

(
∇φh

uh · ∇φh
vh + uhvh

)
‖∇I(φ)‖ dx =

∫

Dh

fevh‖∇I(φ)‖ dx (13.11)

holds.
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Here ∇φh
uh := Ph∇uh, with Ph = I − nhnTh , nh = ∇I(φ)/‖∇I(φ)‖. Note

that in this discretization one needs a suitable extension fe of the data f . An
optimal discretization error bound is given in the following theorem.

Theorem 13.2.2 Assume that the right-hand side f and the solution u of
(13.9) are sufficiently smooth. Let uh be the solution of (13.11). Then

‖u− uh‖H1(Γ ) ≤ ch

holds.

Proof. A proof is given in Theorem 4.2 in [79]. There the smoothness assump-
tions for f and u are specified. �

Discretization error bounds in the ‖ · ‖L2(Γ ) norm are not known. Numerical
experiments in [79] suggest a close to second order convergence in this norm.

Related to the implementation of the discrete problem (13.11) we note the
following. The boundary of the computational domain Dh is piecewise planar
(triangles or quadrilaterals), similar to the approximate interface Γh treated
in Sect. 7.3. This boundary cuts tetrahedra T ∈ T Γh and thus for computing
the entries of the stiffness matrix special quadrature techniques are needed,
which are very similar to those used in the implementation of the XFEM
method as discussed in Sect. 7.9.3, cf. Fig. 7.13.

The Eulerian finite element method (13.11) for the elliptic Laplace-Beltrami
equation on a stationary surface Γ has a canonical analogon (based on the
method of lines) for parabolic problems on a stationary surface. This method
is presented in [96]. In that paper for the computational domain, instead of
the h-narrow band Dh defined above, the whole domain Ω is used. For this
Eulerian finite element method for parabolic problems, no theoretical bounds
for the (semi-)discretization error are known.

A further generalization of this method to transport problems on non-
stationary interfaces (evolving surfaces) is given in [97]. We outline the main
idea. Consider the surfactant transport problem (12.2), or its weak formula-
tion in (12.7) and assume that the smooth interface Γ (t) is evolving with a
smooth velocity w. A first step is a suitable extension of this transport prob-
lem to a fixed domain Ω ⊂ R

3 which contains Γ (t), 0 ≤ t ≤ T . Assuming
w · n∂Ω = 0, this leads to a variational problem:

d

dt

∫

Ω

uv‖∇φ‖ dx+
∫

Ω

∇φu · ∇φv‖∇φ‖ dx =
∫

Ω

uv̇‖∇φ‖ dx (13.12)

for all v from a suitable set of test functions. This parabolic problem in Ω
can be shown to be a consistent extension of the surfactant transport problem
(12.2) on Γ . For an Eulerian discretization we introduce a time-independent
triangulation Th of Ω. Let Vh be the corresponding finite element space of
continuous piecewise linears. For vh ∈ Vh we have v̇h = w · ∇vh. We obtain
the following semi-discretization of (13.12):
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determine uh(·, t) ∈ Vh such that

d

dt

∫

Ω

uhvh‖∇φ‖ dx+
∫

Ω

∇φuh · ∇φvh‖∇φ‖ dx

=
∫

Ω

uhw · ∇vh‖∇φ‖ dx, for all vh ∈ Vh, t ∈ [0, T ].
(13.13)

Of course, this has to be supplemented by a suitable initial condition for
uh(·, 0). A discretization error analysis of this method is not known.

For the matrix-vector representation of this semi-discrete problem we
introduce the standard nodal basis in Vh, denoted by ψi, i = 1, . . . , N .
The semi-discrete solution is written as uh(·, t) =

∑N
j=1 uj(t)ψj . Define

	u = 	u(t) = (u1, . . . , uN)T and the time-dependent matrices

M(t)ij =
∫

Ω

ψj(x)ψi(x)‖∇φ(x, t)‖ dx,

S(t)ij =
∫

Ω

∇φψj(x) · ∇φψi(x)‖∇φ(x, t)‖ dx,

C(t)ij =
∫

Ω

ψj(x)w(x, t) · ∇ψi(x)‖∇φ(x, t)‖ dx.

For the unknown coefficient vector 	u(t) we then obtain the system of ordinary
differential equations

d

dt

(
M(t)	u(t)

)
+ S(t)	u(t) = C(t)	u(t), t ∈ [0, T ]. (13.14)

Note that in this spatial semi-discretization we have unknowns uj(t) corre-
sponding to all grid points in Ω and not (as in (13.11)) in a small h-banded
domain around Γ . The Eulerian nature of this method is reflected in the fact
that the domain of integration Ω and the basis functions ψi, ψj used in the
definition of the matrices M(t), S(t) and C(t) do not depend on t. Applica-
tion of a time discretization to (13.14) is straightforward. After an implicit
time-discretization one obtains, in each time step, a linear system. In the de-
velopment of an efficient iterative solver for this linear system one has to take
into account that the extended problem (13.12) has a strongly anisotropic
diffusion.

The Eulerian finite element methods treated above, cf. (13.11) and (13.13),
are based on an extension of the partial differential equation given on the
interface Γ to a larger three-dimensional domain Ω that contains Γ . For the
discretization one uses finite element spaces on a given time independent tri-
angulation Th of Ω (or a local triangulation T Γh ). In the subsections below
we treat an alternative Eulerian approach in which the extension procedure is
avoided. The main idea is to use the finite element spaces corresponding to Th
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and restrict these to the interface Γ (or its approximation Γh). For the case
of a stationary interface the method is explained in detail in Sect. 13.2.2. This
approach turns out to be extremely easy to implement if finite element meth-
ods for two-phase flow problems as treated in Chap. 7 are already available,
cf. Remark 13.2.6. Results of numerical experiments and a discretization error
analysis of this method are given in the Sects. 13.2.3 and 13.2.4, respectively.
The generalization of this Eulerian approach to the case of a non-stationary
interface is treated in Sect. 13.2.5 and results of numerical experiments with
this method are presented in Sect. 13.2.6.

13.2.2 Eulerian surface finite element method for a stationary
interface

In this section we present an Eulerian finite element discretization of the
Laplace-Beltrami problem (12.3) on a stationary interface Γ , with ∂Γ = ∅.
This method is introduced in [195]. The method, which we explain using the
Laplace-Beltrami problem, has a straightforward extension to the surfactant
transport equation, cf. Remark 13.2.8 below.

Let {Th}h>0 be a regular family of tetrahedral triangulations of a fixed
domain Ω ⊂ R

3 that contains Γ . Take Th ∈ {Th}h>0. We need an approxima-
tion Γh of Γ and assume that this approximate interface (or surface) has the
following properties. We assume that Γh is a C0,1 surface without boundary
and that Γh can be partitioned in planar segments, triangles or quadrilaterals,
consistent with the outer triangulation Th. This can be formally defined as
follows. For any tetrahedron SF ∈ Th such that meas2(SF ∩ Γh) > 0 define
F = SF ∩ Γh. We assume that each F is planar, i.e., either a triangle or a
quadrilateral. Thus, Γh can be decomposed as

Γh =
⋃

F∈Fh

F, (13.15)

where Fh is the set of all triangles or quadrilaterals F such that F = SF∩Γh for
some tetrahedron SF ∈ Th. Note that if F coincides with a face of an element
in Th then the corresponding SF is not unique. In this case, we choose one
arbitrary but fixed tetrahedron SF , which has F as a face.

Remark 13.2.3 The construction of Γh as described in Sect. 7.3 satisfies the
assumptions made above, cf. Fig. 7.5.

For discretization of the problem (12.3) we use a finite element space induced
by the continuous linear finite elements on Th. This is done as follows. We
define a subdomain that contains Γh:

ωh :=
⋃

F∈Fh

SF , (13.16)

and introduce the finite element space
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Vh :=
{
vh ∈ C(ωh) : vh|SF

∈ P1 for all F ∈ Fh
}
. (13.17)

This space induces the following space on Γh:

V Γh

h :=
{
ψh ∈ H1(Γh) : ∃ vh ∈ Vh : ψh = vh|Γh

}
. (13.18)

The spaces Vh and V Γh

h are called outer and surface finite element space,
respectively. The surface space is used for a Galerkin discretization of (12.3):

determine uh ∈ V Γh

h with
∫
Γh
uh ds = 0 such that

∫

Γh

∇Γh
uh · ∇Γh

ψh ds =
∫

Γh

fhψh ds for all ψh ∈ V Γh

h , (13.19)

with fh a suitable extension of f such that
∫
Γh
fh ds = 0, cf. (13.2). Due

to the Lax-Milgram lemma this problem has a unique solution uh. In the
discretization method (13.19) we restricted to linear finite elements. This
restriction is not essential; the method has a straightforward extension to
higher order finite elements.

In Sect. 13.2.3 we present results of numerical experiments that indicate
that the discretization method has optimal convergence rates. In Sect. 13.2.4
we present a discretization error analysis of this method showing that under
reasonable assumptions we indeed have optimal error bounds.

In the remarks below we give some comments related to this approach.

Remark 13.2.4 (Shape irregularity) The family {Th}h>0 of tetrahedral
triangulations of Ω is shape-regular but the family {Fh}h>0 of interface tri-
angulations is in general not shape-regular. In our numerical experiments, cf.
Sect. 13.2.3, Fh contains a significant number of strongly deteriorated trian-
gles that have very small angles. Moreover, neighboring triangles can have very
different areas, cf. Fig. 13.4 for an illustration. As we will prove in Sect. 13.2.4,
optimal discretization bounds hold if {Th}h>0 is shape-regular; for {Fh}h>0

shape-regularity is not required.

Remark 13.2.5 (Related finite element space) Each quadrilateral inFh
can be subdivided into two triangles. Let F̃h be the induced set consisting of
only triangles and such that ∪F∈F̃h

F = Γh. Define

WΓh

h :=
{
ψh ∈ C(Γh) : ψh|F ∈ P1 for all F ∈ F̃h

}
. (13.20)

The space WΓh

h is the space of continuous functions that are piecewise linear
on the triangles of Γh. This space, on a shape-regular interface triangulation, is
used in the Lagrangian finite element method discussed in Sect. 13.1. Clearly
V Γh

h ⊂ WΓh

h holds. In general, however, V Γh

h �= WΓh

h holds. This follows, for
example, from the fact that corresponding to a quadrilateral segment F one
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456
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Fig. 13.1. Example with V Γh
h �= W Γh

h .

has 3 degrees of freedom (representation of a linear function) in V Γh

h and
4 degrees of freedom (linear functions on the two triangles in which F is
subdivided) in WΓh

h . A 2D example with V Γh

h �= WΓh

h is given in Fig. 13.1.
In this example ωh consists of 10 triangles (shaded). The nodal basis func-

tions corresponding to these triangles are denoted by {ψi}1≤i≤10. The line
segments of the interface Γh (represented by dashed lines) intersect midpoints
of edges of the triangles. The space WΓh

h consists of piecewise linears on Γh
and is spanned by the 1D nodal basis functions at the intersection points
labeled by boldface 1, . . . ,10. Clearly dim(WΓh

h ) = 10. In this example we
have dim(V Γh

h ) = 9. For the piecewise linear function vh =
∑10

i=1 αiψi with
αi = −1 for i = 1, 2, 3 and αi = 1 for i = 4, . . . , 10 we have (vh)|Γh

= 0.

Remark 13.2.6 (Implementation) Let (vi)1≤i≤m be the collection of all
vertices of all tetrahedra in ωh and ψi the nodal linear finite element basis
function in the outer finite element space Vh corresponding to vi. Then V Γh

h is
spanned by the functions ψi|Γh

, 1 ≤ i ≤ m. These functions are not necessarily
linear independent, cf. Remark 13.2.5. In the implementation of this method
one has to compute integrals of the form

∫

F

∇Γh
ψj · ∇Γh

ψi ds,

∫

F

fhψi ds for F ∈ Fh. (13.21)

The domain F is either a triangle or a quadrilateral. The first integral can be
computed exactly. For the second one standard quadrature rules can be ap-
plied. The algorithmic components for computing these quantities are almost
exactly the same as the ones used in the computation of the discrete sur-
face tension functional f̃Γh

(or fΓh
) treated in Sect. 7.6. In other words, once

the implementation of this surface tension force discretization is available,
the quantities in (13.21) can be determined with only very little additional
implementation effort.

Remark 13.2.7 (Linear system) Let ψi, i = 1, . . . ,m, be the nodal basis
functions of Vh as in Remark 13.2.6. In general, the set {ψi|Γh

: 1 ≤ i ≤ m } is
not a basis, but only a generating system of the finite element space V Γh

h . This
follows already from the example vh =

∑10
i=1 αiψi at the end of Remark 13.2.5.
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Let uh =
∑m

i=1 uiψi|Γh
be the unique solution of the discrete problem (13.19)

and denote the vector of unknown coefficients by 	u = (u1, . . . , um)T . In general
the unique solution uh can have different representations 	u. The discretization
results in a linear system of the form

S	u = 	b, Sij =
∫

Γh

∇Γh
ψj · ∇Γh

ψi ds, 	bi =
∫

Γh

fhψi ds,

with the additional constraint (due to
∫
Γh
uh ds = 0) 〈M	u, e〉 = 0, where M

the mass matrix and e = (1, 1, . . . , 1)T . The stiffness matrix S is symmetric
positive semidefinite. Every solution u of this linear system yields the desired
unique discrete solution uh. Due to the fact that a nonstandard generating
system is used the question of conditioning of the stiffness and mass matrix
arises. This topic is studied in [194]. We consider an introductory example,
which illustrates some interesting properties and then briefly address some
general conditioning results. We consider a strongly simplified situation of a
one-dimensional interface Γ = [0, 1] embedded in R

2. The outer finite element
space is based on a uniform triangulation Th as illustrated in Fig. 13.2. The
number of vertices is denoted by m (m = 11 in Fig. 13.2) and h := 2

m−3 is
a measure for the mesh size of the triangulation. The interface Γ = [0, 1] is
located in the middle between the upper and lower line of the outer triangu-
lation.

v0 v2 v4 v6 v8 v10

v1 v3 v5 v7 v9

m1
m2 m4 m6 m8

m10
m3 m5 m7 m9

Fig. 13.2. Example with a uniform triangulation.

The nodal basis function corresponding to vi is denoted by ψi, i =
0, 1, . . . ,m − 1. We represent uh ∈ V Γh as uh =

∑m−1
i=0 uiψi|Γ . The vector

representation is given by 	u = (u0, u1, . . . , um−1)T ∈ R
m. The mass and stiff-

ness matrix are defined by

〈M	u, 	u〉 =
∫ 1

0

uh(x)2 dx, 〈S	u, 	u〉 =
∫ 1

0

u′h(x)
2 dx.

Let mi = vi−1+vi

2 ∈ Γ , i = 1, . . . ,m− 2 denote the mid-vertices of the edges
of the outer triangulation that are crossing Γ . Now note that
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∫ 1

0

uh(x)2 dx=
m−2∑

i=1

∫ mi+1

mi

uh(x)2 dx

∼h
m−2∑

i=1

(
uh(mi)2 + uh(mi+1)2

)
∼ h

m−1∑

i=1

uh(mi)2

=
h

4

m−1∑

i=1

(
uh(vi−1)+ uh(vi)

)2 =
h

4

m−1∑

i=1

(
ui−1+ui)

)2 =
h

4
〈L	u,L	u〉,

with

L =

⎛

⎜
⎜
⎜
⎝

1 1
1 1 ∅

∅ . . .
. . .
1 1

⎞

⎟
⎟
⎟
⎠
∈ R

(m−1)×m.

Thus the diagonally scaled mass matrix is spectrally equivalent to LTL. The
matrix LTL has one zero eigenvalue λ1 = 0, with corresponding eigenvector
(1,−1, 1,−1, . . .)T . The smallest nonzero eigenvalue is λ2 ∼ h2, and thus for
the effective condition number we obtain λmax

λ2
∼ h−2.

For the stiffness matrix we obtain the following:

∫ 1

0

u′h(x)
2 dx =

m−2∑

i=1

∫ mi+1

mi

u′h(x)
2 dx ∼ h

m−2∑

i=1

(uh(mi+1)− uh(mi)
mi+1 −mi

)2

∼ 1
h

m−2∑

i=1

(
(uh(vi) + uh(vi+1))− (uh(vi−1) + uh(vi))

)2

=
1
h

m−2∑

i=1

(
ui+1 − ui−1

)2
=

1
h
〈L̂	u, L̂	u〉,

with

L̂ =

⎛

⎜
⎜
⎜
⎝

−1 0 1 ∅
−1 0 1

. . . . . . . . .
∅ −1 0 1

⎞

⎟
⎟
⎟
⎠
∈ R

(m−2)×m.

Thus the diagonally scaled stiffness matrix is spectrally equivalent to L̂T L̂.
The matrix L̂T L̂ has two zero eigenvalues λ1 = λ2 = 0, with corresponding
eigenvectors (1,−1, 1,−1, . . .)T , (1, 1, . . . , 1)T . The smallest nonzero eigen-
value is λ3 ∼ h2, and thus for the effective condition number we obtain
λmax
λ3

∼ h−2. Summarizing, in this simple example, both the mass and stiff-
ness matrix are singular and for both matrices the effective condition number
behaves like h−2. The zero eigenvalue of M and one of the zero eigenvalues
of S are caused by the fact that we use a generating system of m functions
ψi|Γ , 0 ≤ i ≤ m − 1, to span the trace space V Γh of dimension m − 1. The
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second zero eigenvalue of S is caused by the singularity of the bilinear form:∫ 1

0 u
′
h(x)

2 ds = 0 if uh(x) = constant.
We now consider a case as illustrated in Fig. 13.3 in which there is one

vertex vk (k = 4 in Fig. 13.3) for which dist(vk, Γ ) = ε = δ h2 , with δ ∈ (0, 1]
and k such that m

k is a fixed number if the mesh is refined.

v0 v2

v4

v6 v8 v10

v1 v3 v5 v7 v9

m1
m2 m4 m6 m8

m10
m3 m5 m7 m9

Fig. 13.3. Degenerated case with a small distance.

For this case we obtain:

∫ 1

0

uh(x)2 dx ∼ h

m−1∑

i=1

uh(mi)2 ∼ h

k−1∑

i=1

(
ui−1 + ui

)2

+ h(δuk−1 + uk)2 + h(uk + δuk+1)2 + h

m−1∑

i=k+2

(
ui−1 + ui

)2

∼ h〈L̃	u, L̃	u〉,

with

L̃ =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

1 1
. . . . . . ∅

1 1
δ 1

1 δ
∅ 1 1

. . . . . .

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

∈ R
(m−1)×m.

Thus the diagonally scaled mass matrix is spectrally equivalent to L̃T L̃. A
straightforward (MATLAB) calculation yields that this matrix has one zero
eigenvalue λ1 = 0 and for δ ≤

√
h the first nonzero eigenvalue is of size

λ2 ∼ hδ2. Hence for the effective condition number of the scaled mass matrix
we obtain λmax

λ2
∼ h−1δ−2 and thus a strong growth in the effective condition

number for δ ↓ 0. This example indicates that the dependence of the effec-
tive spectral condition number on the distances of the vertices of the outer
triangulation to Γ is a delicate issue.
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We now briefly address results in a more general setting. In [194] one can
find results of numerical experiments in two- and three-dimensional examples
which indicate that in the 3D case both for the diagonally scaled mass and
stiffness matrix (effective) spectral condition numbers behave like O(h−2) and
in the 2D case the behavior of these condition numbers is O(h−3) and O(h−2),
respectively. Some of these experimental results for the 3D case are given in
Sect. 13.2.3. Here h denotes the mesh size of the outer triangulation, which
(in the analysis) is assumed to be quasi-uniform in a small neighborhood of
the interface. In [194] an analysis for the two-dimensional case is given which
proves these conditioning properties (up to an additional logarithmic term
| ln h|) under certain assumptions on the distribution of the vertices near the
interface.

Remark 13.2.8 For the case of a stationary interface (surface) the finite
element method explained above has an obvious generalization to parabolic
problems on the interface. We describe the application to the surfactant trans-
port equation. A further (less obvious) generalization of this Eulerian surface
finite element method to partial differential equations on a non-stationary
interface is treated in Sect. 13.2.5 below.

Recall the weak formulation of the surfactant transport problem in (12.5):
Find u ∈W 1(0, T ;H1

∗(Γ )) such that u(0) = u0 and, for all t ∈ (0, T ),

d

dt
(u(t), v)L2(Γ ) + (∇Γu,∇Γ v)L2(Γ ) + (divΓ (wu), v)L2(Γ ) = 0 ∀ v ∈ H1

∗ (Γ ).

Let V Γh

h be the surface finite element space from above and u0,h ∈ V Γh

h ∩
H1

∗ (Γh) an approximation of the function u0 in the initial condition. The semi-
discretization is as follows: For t ∈ [0, T ] determine uh(t) = uh(·, t) ∈ V Γh

h with
uh(0) = uh,0 and

(duh
dt

, vh
)
L2(Γh)

+ (∇Γh
uh,∇Γh

vh)L2(Γh) + (divΓh
(wuh), vh)L2(Γh) = 0

for all vh ∈ V Γh

h . This ordinary differential equation for uh(t) can be combined
with standard time discretization schemes.

13.2.3 Numerical experiments

In this section we present results of a few numerical experiments. As a test
problem we consider the Laplace-Beltrami equation

−ΔΓu = f on Γ,

with Γ = {x ∈ R
3 | ‖x‖2 = 1} and Ω = (−2, 2)3. This example is taken from

[79]. The source term f is taken such that the solution is given by

u(x) =
12
‖x‖3

(
3x2

1x2 − x3
2

)
, x = (x1, x2, x3) ∈ Ω.
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Using the representation of u in spherical coordinates one can verify that u is
an eigenfunction of −ΔΓ :

u(r, ϕ, θ) = 12 sin(3ϕ) sin3 θ, −ΔΓu = 12u =: f(r, ϕ, θ). (13.22)

The right-hand side f satisfies the compatibility condition
∫
Γ
f ds = 0, like-

wise does u. Note that u and f are constant along normals at Γ .
A family {Tl}l≥0 of tetrahedral triangulations of Ω is constructed as fol-

lows. We triangulate Ω by starting with a uniform subdivision into 48 tetra-
hedra with mesh size h0 = 2. Then we apply an adaptive red-green refinement
algorithm, cf. Sect. 3.1, in which in each refinement step the tetrahedra that
contain Γ are refined such that on level l = 1, 2, . . . , we have

hT ≤ 2−lh0 for all T ∈ Tl with T ∩ Γ �= ∅.

The family {Tl}l≥0 is consistent and shape-regular. The interface Γ is the zero
level of φ(x) := ‖x‖2 − 1. Let I be the standard nodal interpolation operator
on Tl. The discrete interface is given by Γhl

:= { x ∈ Ω : I(φ)(x) = 0 }. Let
{ψi}1≤i≤m be the nodal basis functions corresponding to the vertices of the
tetrahedra in ωh, cf. (13.16). The restrictions of these functions to Γh span
the finite element space V Γh . The entries

∫
Γh
∇Γh

ψi · ∇Γh
ψj ds of the stiffness

matrix are computed within machine accuracy. For the right-hand side of
the Galerkin discretization (13.19) we need an extension fh of f . In order to
be consistent with the theoretical analysis in the next section we take the
constant extension of f along the normals at Γ , i.e., we take fh(r, ϕ, θ) =
f(1, ϕ, θ)+ ch, with f(r, ϕ, θ) as in (13.22) and ch such that

∫
Γh
fh ds = 0. For

the computation of the integrals
∫
F fhψh ds with F ∈ Fh we use a quadrature-

rule that is exact up to order five. The computed solution uh is normalized
such that

∫
Γh
uh ds = 0.

The discretization errors in the L2(Γh) norm are given in Table 13.1. The
extension ue of u is given by ue(r, ϕ, θ) := u(1, ϕ, θ), cf. (13.22).

level l ‖ue − uh‖L2(Γh) factor

1 4.42 E-1 –
2 1.15 E-1 3.85
3 2.30 E-2 3.88
4 7.30 E-3 4.06
5 1.87 E-3 3.91
6 4.63 E-4 4.03
7 1.16 E-4 4.00

Table 13.1. Discretization errors and error reduction.

These results clearly indicate an h2 error behavior, which will be confirmed
by the theoretical analysis in Sect. 13.2.4. To illustrate the fact that in this



13.2 Finite element methods based on Eulerian interface capturing 409

approach the triangulation of the approximate manifold Γh is strongly shape-
irregular we show a part of this triangulation in Fig. 13.4. The discrete solution
is visualized in Fig. 13.5.

Fig. 13.4. Details of the induced triangulation of Γh.

Fig. 13.5. Level lines of the discrete solution uh.

To demonstrate the flexibility of the method with respect to the shape of Γ
we repeat the previous experiment but now with a torus instead of the unit
sphere. We take Γ =

{
x ∈ Ω : r2 = x2

3 + (
√
x2

1 + x2
2 −R)2

}
, with R = 1,

r = 0.6, and Ω = (−2, 2)3. In the coordinate system (ρ, ϕ, θ), with

x = R

⎛

⎝
cosϕ
sinϕ

0

⎞

⎠ + ρ

⎛

⎝
cosϕ cos θ
sinϕ cos θ

sin θ

⎞

⎠ ,

the ρ-direction is normal to Γ , ∂x∂ρ ⊥ Γ for x ∈ Γ . Thus, the following solution
u and corresponding right-hand side f are constant in the normal direction:
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u(x) = sin(3ϕ) cos(3θ + ϕ),

f(x) = r−2(9 sin(3ϕ) cos(3θ + ϕ))

− (R+ r cos(θ)−2(−10 sin(3ϕ) cos(3θ + ϕ)− 6 cos(3ϕ) sin(3θ + ϕ))

− (r(R + r cos(θ))−1(3 sin(θ) sin(3ϕ) sin(3θ + ϕ)).
(13.23)

Both u and f satisfy the zero mean compatibility condition. The discretization
errors in the L2(Γh)-norm are given in Table 13.2. The extension ue of u is
given by ue(ρ, ϕ, θ) := u(r, ϕ, θ), cf. (13.23). Again, we observe a h2 error
behavior. The discrete solution is visualized in Fig. 13.6.

level l ‖ue − uh‖L2(Γh) factor

1 1.70 E+0 –
2 5.30 E-1 3.21
3 1.40 E-1 3.77
4 3.63 E-2 3.86
5 9.32 E-3 3.90
6 2.30 E-3 4.05
7 5.71 E-4 4.02

Table 13.2. Torus: Discretization errors and error reduction.

Fig. 13.6. Torus: Level lines of the discrete solution uh.

Numerical results on conditioning

For the example with the unit sphere we computed the spectrum of the scaled
mass and stiffness matrices. The mass matrix M and stiffness matrix S have
entries
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Mij =
∫

Γh

ψiψj ds, Sij =
∫

Γh

∇Γh
ψi · ∇Γh

ψj ds, 1 ≤ i, j ≤ m.

Define DM := diag(M), DS := diag(S) and the scaled matrices

M̃ := D− 1
2

M MD− 1
2

M , S̃ := D− 1
2

S SD− 1
2

S .

For different refinement levels we computed the largest and smallest eigenval-
ues of M̃ and S̃. We use an ordering λ1 ≤ λ2 ≤ . . . ≤ λm. The results are
given in Table 13.3 and Table 13.4.

level l m factor λ1 λ2 λm λm/λ2 factor

1 112 - 3.8 E-17 2.61 E-2 2.86 109 -
2 472 4.2 4.0 E-17 5.80 E-3 2.83 488 4.5
3 1922 4.1 0 1.20 E-3 2.83 2358 4.8
4 7646 4.0 0 2.90 E-4 2.83 9759 4.1

Table 13.3. Eigenvalues of scaled mass matrix M̃.

level l m factor λ1 λ2 λ3 λm λm/λ3 factor

1 112 - 0 0 5.50 E-2 2.17 39.5 -
2 472 4.2 0 0 1.30 E-2 2.26 174 4.4
3 1922 4.1 0 0 2.80 E-3 2.47 882 5.0
4 7646 4.0 0 0 6.90 E-4 2.61 3783 4.3

Table 13.4. Eigenvalues of scaled stiffness matrix S̃.

These results show that for the scaled mass matrix there is one eigenvalue
very close to or equal to zero and for the effective condition number we have
λm

λ2
∼ m ∼ h−2

l . For the scaled stiffness matrix we observe that there are
two eigenvalues close to or equal to zero and an effective condition number
λm

λ3
∼ m ∼ h−2

l . In Fig. 13.7 for both matrices the eigenvalues λk are shown
for k ≥ kmin, with kmin = 2 for the scaled mass matrix and kmin = 3 for the
scaled stiffness matrix. These results indicate a relation of the form

log(λk) ≈ log(λm) + log
( k
m

)
, k = kmin, . . . ,m,

and log(λm) = O(1). Hence, in particular

λkmin ≈ c
kmin

m
, λm = O(1),

which is consistent with the results in the Tables 13.3 and 13.4.
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Fig. 13.7. Eigenvalue distributions for scaled mass matrix M̃ (left) and for scaled
stiffness matrix S̃ (right) for the 3D example.

13.2.4 Discretization error analysis

In this section for the discrete problem (13.19) we derive discretization error
bounds, both in the H1- and the L2-norm on Γh. These results are from [195].
We first collect some preliminaries, then derive approximation error bounds
and finally present discretization error bounds.

Preliminaries

We will need a Poincaré type inequality that is given in the following lemma.

Lemma 13.2.9 Consider a bounded domain Ω ⊂ R
n and a subdomain S ⊂

Ω. Assume that Ω is such that the following Poincaré inequality is valid:

‖f‖L2(Ω) ≤ CΩ ‖∇f‖L2(Ω) for all f ∈ H1(Ω) with
∫

Ω

f dx = 0. (13.24)

Then for any f ∈ H1(Ω) the following estimate holds:

‖f‖2L2(Ω) ≤
|Ω|
|S|

(
2‖f‖2L2(S) + 3C2

Ω‖∇f‖2L2(Ω)

)
. (13.25)

Proof. We introduce the projectors Πk : H1(Ω) → R, k = 1, 2,

Π1f := |Ω|−1

∫

Ω

f dx, Π2f := |S|−1

∫

S

f dx.

Since ‖(I − Π1)f‖2L2(Ω) = ‖f‖2L2(Ω) − |Ω||Π1f |2, the Poincaré inequality
(13.24) can be rewritten in the equivalent form

‖f‖2L2(Ω) ≤ |Ω||Π1f |2 + C2
Ω‖∇f‖2L2(Ω) for all f ∈ H1(Ω). (13.26)
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For any f ∈ H1(Ω), with Π1f = 0, using the Cauchy-Schwarz and Poincaré
inequalities we get

|Π2f | = |S|−1

∣
∣
∣
∣

∫

S

f dx

∣
∣
∣
∣ ≤ |S|

− 1
2 ‖f‖L2(S)

≤ |S|− 1
2 ‖f‖L2(Ω) ≤ CΩ|S|−

1
2 ‖∇f‖L2(Ω).

(13.27)

Define M := CΩ |S|−
1
2 . Note that for f ∈ H1(Ω) we have Π1(I −Π1)f = 0

and thus from (13.27) we obtain

|(Π2 −Π1)f | = |Π2(I −Π1)f | ≤M‖∇(I −Π1)f‖L2(Ω) = M‖∇f‖L2(Ω).

Hence, for any f ∈ H1(Ω) we have

|Π1f |2 ≤ 2|Π2f |2 + 2|(Π2 −Π1)f |2

≤ 2|Π2f |2 + 2M2‖∇f‖2L2(Ω)

≤ 2|S|−1‖f‖2L2(S) + 2M2‖∇f‖2L2(Ω). (13.28)

Estimates (13.26) and (13.28) imply:

‖f‖2L2(Ω) ≤ max{|Ω|, C2
ΩM

−2}
(
|Π1f |2 +M2‖∇f‖2L2(Ω)

)

= |Ω|
(
|Π1f |2 +M2‖∇f‖2L2(Ω)

)

≤ |Ω|
(
2|S|−1‖f‖2L2(S) + 3M2‖∇f‖2L2(Ω)

)

= |Ω||S|−1
(
2‖f‖2L2(S) + 3C2

Ω‖∇f‖2L2(Ω)

)
,

which proves the inequality in (13.25). �

Remark 13.2.10 In the analysis below we shall apply Lemma 13.2.9 for the
case of a convex domain Ω. For convex domains the following upper bound is
well-known [201] for the Poincaré constant:

CΩ ≤
diam(Ω)

π
. (13.29)

We define a neighborhood of Γ :

U =
{
x ∈ R

3 : dist(x, Γ ) < c
}
,

with c sufficiently small and assume that Γh ⊂ U . Let d : U → R be the
signed distance function. Its Hessian is denoted by H(x) = D2d(x), and has
eigenvalues denoted by κ1(x), κ2(x), and 0. On U we use normals, projections
and extensions that are the same as the ones used previously, for example in
the Sects. 7.7 and 13.1:
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n(x) = ∇d(x),
P(x) = I− n(x)n(x)T ,
p(x) = x− d(x)n(x),
ve(x) = v(p(x)) (for v defined on Γ ).

We assume that the decomposition x = p(x) + d(x)n(x) is unique for all
x ∈ U . Note that n(x) = n(p(x)) for all x ∈ U . We define a discrete analogon
of the orthogonal projection P:

Ph(x) := I− nh(x)nh(x)T for x ∈ Γh, x not on an edge.

Here nh(x) denotes the (outward pointing) normal at x ∈ Γh. The tangential
derivative along Γh can be written as ∇Γh

g(x) = Ph(x)∇g(x) for x ∈ Γh (not
on an edge).

In the analysis we use techniques from [83, 92], for example, the formula

∇ve(x) = (I− d(x)H(x))∇Γ v(p(x)) a.e. on U (13.30)

(cf. Sect. 2.3 in [83]), which implies

∇Γh
ve(x) = Ph(x)

(
I− d(x)H(x)

)
∇Γ v(p(x)) a.e. on Γh. (13.31)

Furthermore, for v sufficiently smooth and |ν| = 2, the inequality

|Dνve(x)| ≤ c
( ∑

|ν|=2

|Dν
Γ v(p(x))| + ‖∇Γ v(p(x))‖

)
a.e. on U (13.32)

holds, cf. Lemma 3 in [92]. We define an h-neighborhood of Γ :

Uh =
{
x ∈ R

3 : dist(x, Γ ) < c1h
}
,

and assume that h is sufficiently small, such that ωh ⊂ Uh ⊂ U and

5c1h <
(

max
i=1,2

‖κi‖L∞(Γ )

)−1

. (13.33)

From (2.5) in [83] we have the following formula for the principal curvatures
κi:

κi(x) =
κi(p(x))

1 + d(x)κi(p(x))
for x ∈ U. (13.34)

Hence, from (13.33) and (13.34) it follows that

‖d‖L∞(Uh) max
i=1,2

‖κi‖L∞(Uh) ≤
1
4

(13.35)

holds. In the remainder we assume that

ess supx∈Γh
|d(x)| ≤ c0h

2, (13.36)
ess supx∈Γh

‖n(x)− nh(x)‖ ≤ c̃0h (13.37)

holds. These are reasonable assumptions, cf. Theorem 7.3.1.
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Lemma 13.2.11 There are constants c1 > 0 and c2 independent of h such
that for all u ∈ H2(Γ ) the following inequalities hold:

c1‖ue‖L2(Uh) ≤
√
h‖u‖L2(Γ ) ≤ c2‖ue‖L2(Uh), (13.38a)

c1‖∇ue‖L2(Uh) ≤
√
h‖∇Γu‖L2(Γ ) ≤ c2‖∇ue‖L2(Uh), (13.38b)

‖Dνue‖L2(Uh) ≤ c2
√
h‖u‖H2(Γ ), |ν| = 2. (13.38c)

Proof. Define

μ(x) :=
(
1− d(x)κ1(x)

)(
1− d(x)κ2(x)

)
, x ∈ Uh.

From (2.20), (2.23) in [83] we have

μ(x)dx = dr ds(p(x)), x ∈ U,

where dx is the volume measure in Uh, ds the surface measure on Γ , and r
the local coordinate at x ∈ Γ in the direction n(p(x)) = n(x). Using (13.35)
we get

9
16
≤ μ(x) ≤ 25

16
for all x ∈ Uh. (13.39)

Using the local coordinate representation x = (p(x), r), for x ∈ U , we have

∫

Uh

ue(x)2μ(x) dx =
∫ c1h

−c1h

∫

Γ

[ue(p(x), r)]2 ds(p(x))dr

=
∫ c1h

−c1h

∫

Γ

[u(p(x), 0)]2 ds(p(x)) dr = 2c1h‖u‖2L2(Γ ).

Combining this with (13.39) yields the result in (13.38a).
From (13.30) we have that ue ∈ H1(Uh). Note that

∫

Uh

[∇ue(x)]2 μ(x) dx =
∫ c1h

−c1h

∫

Γ

[
(I− d(x)H(x))∇Γ u(p(x), 0)

]2
ds(p(x)) dr.

Using this in combination with ‖d(x)H(x)‖ ≤ 1
4 for all x ∈ Uh (cf. (13.35)) and

the bounds in (13.39) we obtain the result in (13.38b). Finally, using similar
arguments and the bound in (13.32) one can derive the bound in (13.38c). �

Approximation error bounds

Let Ih : C(ωh)→ Vh be the nodal interpolation operator. We use the approx-
imation property of the linear finite element space Vh: For v ∈ H2(ωh)

‖v − Ihv‖Hk(ωh) ≤ C h2−k‖v‖H2(ωh), k = 0, 1. (13.40)

A consequence of this approximation result is given in the following lemma.
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Lemma 13.2.12 For u ∈ H2(Γ ) and k = 0, 1 we have

‖ue − Ihue‖Hk(ωh) ≤ C h
5
2−k‖u‖H2(Γ ). (13.41)

Proof. From (13.40) and (13.38b) we obtain

‖ue − Ihue‖Hk(ωh) ≤ C h2−k‖ue‖H2(ωh) ≤ C h2−k‖ue‖H2(Uh)

≤ C h
5
2−k‖u‖H2(Γ ),

which proves the result. �

The following two lemmas play a crucial role in the analysis. In both lemmas
we use a “pull back” strategy based on Lemma 13.2.9. For this we introduce
a special local coordinate system as follows. For a subdomain ω ⊂ R

3 let ρ(ω)
be the diameter of the largest ball that is contained in ω. Take an arbitrary
planar segment F of Γh, i.e., F ∈ Fh. Let SF ∈ Th be the tetrahedron such
that Γh∩SF = F . There exists a planar extension F e of F such that F e ⊂ U ,
F e is convex, p(SF ) ⊂ p(F e), and

diam(F e) � ρ(F e) � h. (13.42)

The existence of such a planar extension is discussed in Remark 8 in [195].
This extension F e is used to define a coordinate system in the neighborhood
NF := {x ∈ U : p(x) ∈ p(F e) }. Note that SF ⊂ NF . Every x ∈ NF has a
unique decomposition of the form

x = s+ d̃(x)n(x), with s ∈ F e, d̃(x) := ±‖s− x‖. (13.43)

The sign of d̃(x) is determined by taking into account on which side of the
plane F e the point x lies. Note that d̃ is a signed distance, along the normal
n(x), to the planar segment F e. The representation in this coordinate system
is denoted by Φ, i.e., Φ(x) = (s(x), d̃(x)). This coordinate system is illustrated,
for the 2D case, in Fig. 13.8.

For x ∈ F e we thus have Φ(x) = (s(x), 0). Due to the shape-regularity
of Th there exists, in the Φ-coordinate system, a cylinder BF that has the
following properties:

BF = F eb × [d0, d1] ⊂ SF , F eb ⊂ F e, |F eb | � h2, d1 − d0 � h. (13.44)

This coordinate system and the cylinder BF ⊂ SF are used in the analysis
below.

Lemma 13.2.13 Let vh be a linear function on NF and u ∈ H2(Γ ). There
exists a constant c independent of vh, u, and F such that the following in-
equality holds:

‖∇Γh
(ue − vh)‖L2(F e) ≤ ch−

1
2 ‖∇(ue − vh)‖L2(SF ) + h‖u‖H2(p(F e)). (13.45)

Here ∇Γh
denotes the projection of the gradient on F e.
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A

B
P

Q

FSF
s

x = (s(x), d̃(x))

d̃

Γ

PQ : p(SF )

AB : F e

Fig. 13.8. 2D illustration of coordinate system.

Proof. Using Lemma 13.2.9, (13.29), and (13.32) we obtain

‖∇Γh
(ue − vh)‖2L2(F e) ≤ c‖∇Γh

(ue − vh)‖2L2(F e
b ) + ch2‖∇2

Γh
ue‖2L2(F e)

≤ c‖∇Γh
(ue − vh)‖2L2(F e

b
) + ch2‖u‖2H2(p(F e)). (13.46)

We consider the first term in (13.46). We write∇vh =: cF and use the notation
x = (s(x), d̃(x)) =: (s, y) in the Φ-coordinate system. From (13.30) we have

∇Γu(p(x)) = ∇ue(s, y) + d(x)H(x)∇Γ u(p(x)).

Using this and (13.31) we obtain

‖∇Γh
(ue − vh)‖2L2(F e

b )

= ‖∇Γh
ue −PhcF ‖2L2(F e

b )

≤ 2‖Ph(∇Γu) ◦ p−PhcF ‖2L2(F e
b ) + 2‖PhdH(∇Γu) ◦ p‖2L2(F e

b )

≤ c‖(∇Γu) ◦ p− cF ‖2L2(F e
b ) + ch2‖u‖2H1(p(SF ))

= c

∫

F e
b

‖∇Γu(p(s, 0))− cF ‖2 ds+ ch2‖u‖2H1(p(SF ))

≤ ch−1

∫ d1

d0

∫

F e
b

‖∇Γu(p(s, 0))− cF ‖2 ds dy + ch2‖u‖2H1(p(SF ))

≤ ch−1

∫ d1

d0

∫

F e
b

‖∇ue(p(s, y))− cF ‖2 ds dy + ch2‖u‖2H1(p(SF ))

≤ ch−1‖∇(ue − vh)‖2L2(BF ) + ch2‖u‖2H1(p(SF ))

≤ ch−1‖∇(ue − vh)‖2L2(SF ) + ch2‖u‖2H1(p(SF )).

Combining this with the result in (13.46) completes the proof. �
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Lemma 13.2.14 There are constants ci independent of h such that for all
u ∈ H2(Γ ) and all vh ∈ Vh the following inequality holds:

‖ue − vh‖L2(Γh) ≤ c1h
− 1

2 ‖ue − vh‖L2(ωh) + c2h
1
2 ‖ue − vh‖H1(ωh)

+ c3h
2‖u‖H2(Γ ).

(13.47)

Proof. We consider an arbitrary planar segment F ∈ Γh. Let F e be its exten-
sion as defined above. Take vh ∈ Vh. The extension of vh to a linear function
on F e is denoted by vh, too. Using Lemma 13.2.9 and (13.29) we get:

‖ue − vh‖2L2(F ) ≤ ‖ue − vh‖2L2(F e) =
∫

F e

(ue(s, 0)− vh(s, 0))2 ds

≤ c

∫

F e
b

(ue(s, 0)− vh(s, 0))2 ds

+ ch2

∫

F e

‖∇Γh

(
ue(s, 0)− vh(s, 0)

)
‖2 ds.

(13.48)

We consider the first term on the right-hand side of (13.48). For a linear
function g and 0 ≤ δ0 < δ1 we have g(δi)2 ≤ 6

δ1−δ0
∫ δ1
δ0
g(t)2 dt for i = 0, 1,

and g(0) = g(δ0) δ1
δ1−δ0 −g(δ1)

δ0
δ1−δ0 . Hence, |g(0)| ≤ 2δ1

δ1−δ0 maxi=0,1 |g(δi)| and
thus

g(0)2 ≤ 24
(

δ1
δ1 − δ0

)2 1
δ1 − δ0

∫ δ1

δ0

g(t)2 dt (13.49)

holds. Without loss of generality we can assume that d0, d1 from (13.44) satisfy
0 ≤ d0 < d1. Furthermore, we have di

d1−d0 ≤ c for i = 1, 2, with c independent
of h. Using this and (13.49) applied to the linear function y → c+ vh(s, y) we
obtain

∫

F e
b

(ue(s, 0)− vh(s, 0))2 ds ≤ ch−1

∫

F e
b

∫ d1

d0

(ue(s, 0)− vh(s, y))2 dy ds

= ch−1

∫

F e
b

∫ d1

d0

(ue(s, y)− vh(s, y))2 dy ds = ch−1‖ue − vh‖2L2(BF )

≤ ch−1‖ue − vh‖2L2(SF ).

For the second term on the right-hand side of (13.48) we apply Lemma 13.2.13,
and thus we get

‖ue−vh‖2L2(F ) ≤ ch−1‖ue−vh‖2L2(SF )+ch‖∇(ue−vh)‖2L2(SF )+ch
4‖u‖2H2(p(F e)).

Summation over all F ∈ Fh gives (13.47). �
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Lemma 13.2.15 There are constants c1, c2 independent of h such that for
all u ∈ H2(Γ ) and all vh ∈ Vh the following inequality holds:

‖ue − vh‖H1(Γh) ≤ c1h
− 1

2 ‖ue − vh‖H1(ωh) + c2h‖u‖H2(Γ ). (13.50)

Proof. Take u ∈ H2(Γ ) and vh ∈ Vh. By definition of the H1-norm on Γh we
get

‖ue − vh‖2H1(Γh) = ‖ue − vh‖2L2(Γh) + ‖∇Γh
(ue − vh)‖2L2(Γh).

For the first term on the right-hand side we can apply Lemma 13.2.14, and
use

h−
1
2 ‖ue − vh‖L2(ωh) + c2h

1
2 ‖ue − vh‖H1(ωh) ≤ ch−

1
2 ‖ue − vh‖H1(ωh).

We now consider the second term

‖∇Γh

(
ue − vh

)
‖2L2(Γh) =

∑

F∈Fh

‖∇Γh

(
ue − vh

)
‖2L2(F ).

Take a F ∈ Fh and extend vh linearly outside F . This extension is denoted
by vh, too. Using Lemma 13.2.13 we get

‖∇Γh

(
ue − vh

)
‖2L2(F ) ≤ ‖∇Γh

(
ue − vh

)
‖2L2(F e)

≤ ch−1‖∇(ue − vh)‖2L2(SF ) + h2‖u‖2H2(p(F e)).

Summation over F ∈ Fh yields

‖∇Γh
(ue − vh)‖2L2(Γh) ≤ c h−1‖ue − vh‖2H1(ωh) + ch2‖u‖2H2(Γ ),

and thus the proof is completed. �

As a direct consequence of the previous two lemmas we obtain the following
main theorem.

Theorem 13.2.16 For each u ∈ H2(Γ ) the following hold:

inf
vh∈V Γ

h

‖ue − vh‖L2(Γh) ≤ ‖ue − (Ihue)|Γh
‖L2(Γh) ≤ C h2‖u‖H2(Γ ), (13.51)

inf
vh∈V Γ

h

‖ue − vh‖H1(Γh) ≤ ‖ue − (Ihue)|Γh
‖H1(Γh) ≤ C h‖u‖H2(Γ ), (13.52)

with a constant C independent of u and h.

Proof. Combine the results in the Lemmas 13.2.14 and 13.2.15 with the result
in Lemma 13.2.12. �
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Finite element discretization error bounds

Using the approximation error bounds derived in Theorem 13.2.16 fairly stan-
dard arguments lead to optimal discretization error bounds. Below we present
two main results (from [195]).

For x ∈ Γh define

μh(x) = (1− d(x)κ1(x))(1 − d(x)κ2(x))n(x)Tnh(x).

The integral transformation formula

μh(x)dsh(x) = ds(p(x)), x ∈ Γh (13.53)

holds, where dsh(x) and ds(p(x)) are the surface measures on Γh and Γ ,
respectively, cf. (2.20) in [83]. From

‖n(x)− nh(x)‖2 = 2
(
1− n(x)Tnh(x)

)
,

the assumption in (13.37) and |d(x)| ≤ ch2, |κi(x)| ≤ c we obtain

ess supx∈Γh
|1− μh(x)| ≤ ch2, (13.54)

with a constant c independent of h.

Theorem 13.2.17 Let u ∈ H2(Γ ) be the solution of (12.3), uh ∈ V Γh the
solution of (13.19), with fh = fe − cf , where cf is such that

∫
Γh
fh ds = 0.

The following discretization error bound holds:

‖∇Γh
(ue − uh)‖L2(Γh) ≤ c h ‖f‖L2(Γ ), (13.55)

with a constant c independent of f and h.

Proof. We only present the main idea of the proof given in [195]. It uses the
relation

∫

Γ

∇Γu · ∇Γ v ds =
∫

Γh

Ah∇Γh
ue · ∇Γh

ve dsh for all v ∈ H1(Γ ),

with a matrix Ah that is close to the identity, in the sense that

‖Ph(I−Ah)‖ ≤ ch2 (13.56)

can be shown to hold. Define

cf := |Γh|−1

∫

Γh

fe dsh, δf := (1− μh)fe − cf .

The following perturbed Galerkin orthogonality property holds: for arbitrary
ψh ∈ V Γh we have
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∫

Γh

∇Γh
(ue − uh) · ∇Γh

ψh dsh

=
∫

Γh

(I−Ah)∇Γh
ue · ∇Γh

ψh dsh −
∫

Γh

δfψh dsh

=
∫

Γh

Ph(I−Ah)∇Γh
ue · ∇Γh

ψh dsh −
∫

Γh

δfψh dsh.

(13.57)

Using
‖δf‖L2(Γh) ≤ ch2‖f‖L2(Γ )

and (13.56) the terms on the right-hand side can be shown to be “small”.
The proof uses a standard error analysis, based on the approximation error
bounds derived in Theorem 13.2.16 and in which instead of the usual Galerkin
orthogonality property of the finite element solution the relation (13.57) is
used. �

Remark 13.2.18 We indicate how the error bound (13.55) in H1(Γh) yields
a similar bound in H1(Γ ). For this we need the extension of functions defined
on Γh along the normals n on Γ : For v ∈ C(Γh) we define, for x ∈ Γh,

ve,h(x+ αn(x)) := v(x) for all α ∈ R, with x+ αn(x) ∈ U. (13.58)

The following holds (cf. [83], Lemma 3.3 in [129]):

‖∇Γ ve,h‖L2(Γ ) ≤ c‖∇Γh
v‖L2(Γh) for all v ∈ H1(Γh) ∩C(Γh).

Using this for the error v = ue − uh and noting that (ue)e,h = u on Γ the
bound (13.55) yields

‖∇Γ (u − ue,hh )‖L2(Γ ) ≤ ch‖f‖L2(Γ ),

i.e., an optimal error bound in H1(Γ ).

We now present an L2-norm discretization error bound.

Theorem 13.2.19 Let u and uh be as in Theorem 13.2.17. The error
bound

‖ue − uh‖L2(Γh) ≤ c h2 ‖f‖L2(Γ ) (13.59)

holds, with a constant c independent of f and h.

Proof. We only sketch the main points. A detailed proof is given in [195]. A
perturbed duality argument is used. Denote eh := (ue − uh)|Γh

and let elh
be the lift of eh on Γ , as in (13.58), and ce := |Γ |−1

∫
Γ
elh ds. Consider the

problem: Find w ∈ H1(Γ ), with
∫
Γ w ds = 0, such that

∫

Γ

∇Γw · ∇Γ v ds =
∫

Γ

(elh − ce)v ds for all v ∈ H1(Γ ). (13.60)
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The solution w satisfies w ∈ H2(Γ ) and ‖w‖H2(Γ ) ≤ c‖elh‖L2(Γ )/R, with
‖elh‖L2(Γ )/R := ‖elh − ce‖L2(Γ ). Using (13.60), the H2-regularity bound, the
approximation properties in Theorem 13.2.16, the discretization error bound
in Theorem 13.2.17 and perturbation arguments, we obtain

‖elh‖L2(Γ )/R ≤ ch2‖f‖L2(Γ ).

A further perturbation argument yields

‖eh‖L2(Γh) ≤ c‖elh‖L2(Γ ) ≤ c
(
‖elh‖L2(Γ )/R + |ce|

)
≤ ch2‖f‖L2(Γ ),

and thus the result holds. �

13.2.5 Eulerian space-time surface finite element method
for a non-stationary interface

In this section we explain how the surface finite element approach intro-
duced in Sect. 13.2.2, cf. (13.19), can be generalized to problems with a non-
stationary interface. This generalization is based on a natural idea, similar
to the one used in Sect. 11.5.2 for the derivation of the space-time XFEM
method, namely to use a space-time variational approach and suitable space-
time finite element spaces. We explain the method for the surfactant transport
equation, but it can also be applied (with obvious modifications) to other ellip-
tic or parabolic equations on the interface that are formulated in a space-time
variational form.

Let QT = Ω × (0, T ) ⊂ R
4 be the space-time cylinder. The space-time

interface Γ∗ = ∪t∈(0,T )Γ (t)× {t} ⊂ QT is assumed to be a three-dimensional
hypersurface. The interface Γ (t) is transported by the (smooth) velocity field
w(x, t). We recall the weak space-time variational formulation of the surfac-
tant transport equation (12.8): Find u ∈ H1(Γ∗) with u(·, 0) = u0 such that

(u̇+ u divΓ w, v)L2(Γ∗) + (∇Γu,∇Γ v)L2(Γ∗) = 0 ∀ v ∈ H1,0(Γ∗). (13.61)

For the discretization of this problem we use the same trace technique as
in Sect. 13.2.2: First we introduce standard space-time finite element spaces
on the cylinder QT (outer domain) and then we use the restriction of these
spaces to Γ∗ for a Galerkin discretization of (13.61). The basic idea of the
space-time finite element method is explained in Sect. 11.5.2; we use notation
as in that section. As noted in Sect. 11.5.2 there are different variants of space-
time methods, e.g., one can use trial functions that are continuous w.r.t. time
or trial functions that may be discontinuous in time. In Sect. 11.5.2 we used
the latter variant, cf. Remark 11.5.4. Here we choose the former variant since
it leads to a somewhat simplified presentation due to the fact that the jump
terms between time slabs vanish. This choice, however, is not essential for the
method presented below.
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We use a partitioning of the time interval 0 = t0 < . . . < tN = T . Corre-
sponding to each time interval In = [tn−1, tn) we assume a consistent trian-
gulation Tn of the spatial domain Ω. To simplify the presentation we assume
uniform time steps Δt = T/N , and a triangulation independent of n, denoted
by Th. These assumptions are not essential. The time slabs are denoted by
Sn = Ω× In, 1 ≤ n ≤ N . Let Vh be a given finite element space of continuous
piecewise polynomial (e.g., piecewise linear) functions corresponding to the
triangulation Th. We introduce the space of piecewise space-time polynomials

V ST
k :=

⎧
⎨

⎩
v(x, t) =

k∑

j=0

tjφj(x) : φj ∈ Vh

⎫
⎬

⎭
, k ≥ 0. (13.62)

The test functions are allowed to be discontinuous between time slabs. Hence
we introduce

Wk :=
{
v : QT → R : v|Sn

∈ V ST
k for 1 ≤ n ≤ N

}
, k ≥ 0.

Note that v ∈ Wk implies v|Γ∗ ∈ H1,0(Γ∗). The corresponding trace space
is denoted by WΓ∗

k :=
{
v|Γ∗ : v ∈Wk

}
. Using this test space there is no

global coupling in time direction and thus a time marching procedure can be
applied. This discrete time marching is obtained by choosing test functions
that are equal to zero except on one time slab. To make this more precise we
need some further notation. Let Γn∗ be the part of the space-time interface
Γ∗ that is contained in the time slab Sn, i.e. Γn∗ = ∪t∈InΓ (t)× {t}. The test
space WΓ∗

k is a direct sum of spaces corresponding to the time intervals In,
1 ≤ n ≤ N :

WΓ∗
k =

N⊕

n=1

V
Γn
∗

k , with V
Γn
∗

k :=
{
v|Γn∗ : v ∈ V ST

k

}
.

We now turn to the trial functions. As mentioned above, we consider trial
functions that are continuous with respect to t. By this we mean continuity
on the space-time interface Γ∗. To enforce this continuity, in our method we
need a well-defined local extension of functions from the finite element trace
space, which we now introduce. Let V Γ (tn)

h be the finite element trace space
corresponding to Γ (tn), i.e. vh ∈ V

Γ (tn)
h iff there exists wh ∈ Vh such that

vh = (wh)|Γ (tn). Clearly, this wh is not unique. For a given n, 1 ≤ n ≤ N , let
ωn ⊂ Ω be the union of all tetrahedra which have a nonzero intersection with
Γ (t) for some t ∈ In,

ωn = ∪{T ∈ Th : meas2(T ∩ Γ (t)) > 0 for a t ∈ In } , (13.63)

and Vh(ωn) :=
{
v|ωn

: v ∈ Vh
}

the space of outer finite element functions
restricted to the subdomain ωn. We assume a well-defined extension operator

En : V Γ (tn−1)
h → Vh(ωn). (13.64)
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A natural choice for this operator (which we use in our experiments in
Sect. 13.2.6) is as follows. Let ω∗

n ⊂ ωn be the subdomain consisting of all
tetrahedra which have a nonzero intersection with Γ (tn−1), i.e.,

ω∗
n = ∪{T ∈ Th : meas2(T ∩ Γ (tn−1)) > 0 } . (13.65)

In general, i.e. except for special situations with exceptional geometric con-
stellations, for each vh ∈ V Γ (tn−1) there is a unique wh ∈ Vh(ω∗

n) such that
vh = (wh)|Γ (tn−1). The extension Envh is defined by extending this unique wh
by zero values at all vertices not in ω∗

h.
Taking test functions vh ∈ V

Γn
∗

k−1 we obtain the following time marching

procedure, with u0
h ∈ V

Γ (0)
h an approximation of the initial data u0. For

n = 1, . . . , N : Determine uh = unh ∈ V
Γn
∗

k such that

Enuh(·, tn−1) = Enu
n−1
h (·, tn−1) on ωn, (13.66)

and

(u̇h + uh divΓ w, vh)L2(Γn∗ ) + (∇Γuh,∇Γ vh)L2(Γn∗ ) = 0 (13.67)

for all vh ∈ V Γ
n
∗

k−1. The role of the extension operator En in (13.66) will become
clear from the analysis below.

A systematic theoretical error analysis of this discretization method is not
known, yet. Some analysis and results of numerical experiments with this
method can be found in [123], cf. also Sect. 13.2.6 below. Note that for both
the trial and test functions the trace space V Γ

n
∗

m , of space-time polynomials
v ∈ V ST

m restricted to Γn∗ , is used. The degree m with respect to time is taken
one larger for the trial function space than for the test function space, since
the trial function must satisfy the condition (13.66).

For the implementation and analysis of the discretization (13.66)-(13.67)
it is convenient to reformulate the problem in a slightly different form, based
on rewriting the first term in (13.67) as follows:

(u̇h + uh divΓ w, vh)L2(Γn∗ )

=
∫ tn

tn−1

∫

Γ (t)

u̇hvh + uhvh divΓ w ds dt

=
∫ tn

tn−1

∫

Γ (t)

˙(uhvh) + uhvh divΓ w − uhv̇h ds dt

=
∫ tn

tn−1

d

dt

∫

Γ (t)

uhvh ds dt− (uh, v̇h)L2(Γn∗ )

= (uh, vh)L2(Γ (tn)) − (uh, vh)L2(Γ (tn−1)) − (uh, v̇h)L2(Γn∗ ).

This leads to the following space-time Galerkin discretization of the surfactant
transport problem (13.61).
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For n = 1, . . . , N , determine uh = unh ∈ V
Γn
∗

k such that

Enuh(·, tn−1) = Enu
n−1
h (·, tn−1) on ωn, (13.68)

and

(uh, vh)L2(Γ (tn)) − (uh, v̇h)L2(Γn∗ ) + (∇Γuh,∇Γ vh)L2(Γn∗ )

= (un−1
h , vh)L2(Γ (tn−1)) for all vh ∈ V Γ

n
∗

k−1.
(13.69)

This formulation has two advantages compared to the one in (13.67). Firstly,
in (13.67) the time derivative ∂

∂t is applied to a trial function uh, whereas
in (13.69) it is applied to a test function vh. The trial functions uh and test
functions vh are of degree k and k− 1, respectively, with respect to time. Due
to this the quadrature w.r.t. time can be simpler for the term (uh, v̇h)L2(Γn∗ )

than for the term (u̇h, vh)L2(Γn∗ ), cf. Remark 13.2.21 below. A second (minor)
advantage is that in (13.69) the space-time term (uh divΓ w, vh)L2(Γn∗ ) does
not occur.

A further reformulation is obtained by “inserting” the continuity con-
dition (13.68) into a suitable representation of the trial function uh. For
k ≥ 1, let �0, . . . , �k ∈ Pk be the Lagrange basis on [tn−1, tn], corresponding
to equidistant nodes. The function �0 corresponds to the node tn−1, hence
�0(tn−1) = 1, �0(tn) = 0, �j(tn−1) = 0 for all 1 ≤ j ≤ k. We also in-
troduce �(t) := t−tn−1

Δt . The space Vk as in (13.62) can be represented as

Vk =
{∑k

j=0 �jφj : φj ∈ Vh
}
. Using this it follows that

Vk = { �0φ0 + �ψ : φ0 ∈ Vh, ψ ∈ Vk−1 } , k ≥ 1.

Hence, a trial function uh ∈ V Γ
n
∗

k can be represented as the restriction to Γn∗
of a function

uh(x, t) = �0(t)φ0(x) + �(t)ψ(x, t), ψ ∈ Vk−1. (13.70)

Since Γn∗ ⊂ In×ωn, it follows that (uh)|Γn∗ is known if both ψ|Γn∗ and (φ0)|ωn

are known. Inserting t = tn−1 in (13.70) we see that φ0(x), x ∈ ωn, is deter-
mined by the continuity condition (13.68). This identification of (φ0)|ωn

by
means of the continuity condition relies on the fact that in (13.68) we pre-
scribe values on ωn (not only on Γ (tn−1)). This explains why we introduced
the extension operator En.

For a given function �0φ0 on Γn∗ , the function ψ ∈ V Γ
n
∗

k−1 can be determined

using the equation (13.69): Let ψ ∈ V Γ
n
∗

k−1 be such that

(ψ, vh)L2(Γ (tn)) − (�ψ, v̇h)L2(Γn∗ ) + (�∇Γψ,∇Γ vh)L2(Γn∗ )

= (un−1
h , vh)L2(Γ (tn−1)) + (�0φ0, v̇h)L2(Γn∗ ) − (�0∇Γφ0,∇Γ vh)L2(Γn∗ )

(13.71)
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for all vh ∈ V Γ
n
∗

k−1. Note that in this variational problem the trial and test space
are the same. The bilinear form used in this variational formulation is denoted
by

a(w,w) = (w, v)L2(Γ (tn)) − (�w, v̇)L2(Γn∗ ) + (�∇Γw,∇Γ v)L2(Γn∗ ), (13.72)

and can be shown to be elliptic on V Γ
n
∗

k−1, provided a mild condition on Δt is
satisfied:

Lemma 13.2.20 Assume that Δt‖ divΓ w‖L∞(Γ∗) ≤ c0. Then

a(v, v) ≥ 1− c0
2Δt

‖v‖2L2(Γn∗ ) for all v ∈ V Γ
n
∗

k−1

holds.

Proof. Note that ˙(�v2) = 1
Δtv

2 + 2�vv̇ holds. Using this we get

(�v, v̇)L2(Γn∗ )

=
∫ tn

tn−1

∫

Γ (t)

�vv̇ ds dt =
1
2

∫ tn

tn−1

∫

Γ (t)

˙(�v2) ds dt− 1
2Δt

‖v‖2L2(Γn∗ )

=
1
2

∫ tn

tn−1

∫

Γ (t)

˙(�v2) + �v2 divΓ w ds dt

− 1
2
(�v divΓ w, v)L2(Γn∗ ) −

1
2Δt

‖v‖2L2(Γn∗ )

=
1
2

∫ tn

tn−1

d

dt

∫

Γ (t)

�v2 ds dt− 1
2
(�v divΓ w, v)L2(Γn∗ ) −

1
2Δt

‖v‖2L2(Γn∗ )

≤ 1
2
‖v‖2L2(Γ (tn)) −

1
2Δt

‖v‖2L2(Γn∗ )

(
1−Δt‖ divΓ w‖L∞(Γ∗)

)
.

Hence,

a(v, v) = (v, v)L2(Γ (tn)) − (�v, v̇)L2(Γn∗ ) + (�∇Γ v,∇Γ v)L2(Γn∗ )

≥ ‖v‖2L2(Γ (tn)) −
1
2
‖v‖2L2(Γ (tn)) +

1− c0
2Δt

‖v‖2L2(Γn∗ )

≥ 1− c0
2Δt

‖v‖2L2(Γn∗ ),

and thus the result holds. �

We assume that Δt is sufficiently small such that for c0 as in Lemma 13.2.20
we have c0 < 1. The function φ0 is determined by the continuity condition
(13.68). Due to ellipticity of a(·, ·), a unique ψ is determined by (13.71) and
thus (uh)|Γn∗ is known. Summarizing, we obtain the following well-defined
space-time discretization method for the surfactant transport equation:
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Take u0
h ∈ V

Γ (0)
h . For 1 ≤ n ≤ N , determine ψ ∈ V Γ

n
∗

k−1 such that

a(ψ, vh) = (un−1
h , vh)L2(Γ (tn−1)) + (�0Enun−1

h , v̇h)L2(Γn∗ )

− (�0∇ΓEnun−1
h ,∇Γ vh)L2(Γn∗ ) for all vh ∈ V Γ

n
∗

k−1.
(13.73)

The discrete approximation at t = tn is given by unh := ψ(·, tn)|Γ (tn).

This method is a natural extension to problems with a non-stationary inter-
face of the Eulerian interface method treated in the Sects. 13.2.2-13.2.4. A
discretization error analysis of this generalization is not known, yet.

For the implementation of a space-time method as in (13.73) an important
issue is the use of suitable quadrature routines, which we briefly address. A
detailed study is given in [123]. Integrals over the space-time interface part Γn∗
occur for which numerical integration is required. Clearly, if the approximation
order of the space Vk, cf. (13.62), is increased more accurate quadrature is
required. Here we restrict to the simplest case k = 1, for which the trapezoidal
quadrature rule for approximation of the time integral seems to be sufficiently
accurate. We apply the trapezoidal rule to the time integrals in (·, ·)L2(Γn∗ ) that
occur in (13.73), i.e.:

− (�ψ, v̇h)L2(Γn∗ ) + (�∇Γψ,∇Γ vh)L2(Γn∗ )

≈ −Δt
2

(ψ, v̇h)L2(Γ (tn)) +
Δt

2
(∇Γψ,∇Γ vh)L2(Γ (tn)),

and

(�0Enun−1
h , v̇h)L2(Γn∗ ) − (�0∇ΓEnun−1

h ,∇Γ vh)L2(Γn∗ )

≈ Δt

2
(un−1
h , v̇h)L2(Γ (tn−1)) −

Δt

2
(∇Γun−1

h ,∇Γ vh)L2(Γ (tn−1)).

Note that in the quadrature approximation the extension operator En is not
needed. For k = 1 the test functions vh are constant with respect to t and
thus v̇ = w · ∇vh. This results in the following Crank-Nicolson type discrete
problem: Determine unh ∈ V

Γ (tn)
h such that

(unh, vh)L2(Γ (tn)) −
Δt

2
(unh,w · ∇vh)L2(Γ (tn)) +

Δt

2
(∇Γunh,∇Γ vh)L2(Γ (tn))

= (un−1
h , vh)L2(Γ (tn−1)) +

Δt

2
(un−1
h ,w · ∇vh)L2(Γ (tn−1)) (13.74)

− Δt

2
(∇Γun−1

h ,∇Γ vh)L2(Γ (tn−1)) for all vh ∈ V Γ (tn)
h .

In practice, the discrete problem (13.74) is used with the exact interface Γ (tj)
replaced by a (piecewise planar) approximation Γh(tj). Well-posedness of the
variational problem (13.74) is studied in [123].
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Remark 13.2.21 If instead of (13.69) one uses the equivalent formulation
in (13.67), one has to apply quadrature to (u̇h, vh)L2(Γn∗ ). Consider the time
derivative of the unknown part �ψ of uh, cf. (13.70), i.e. ∂

∂t (�ψ) = 1
Δtψ (since,

for k = 1, ψ is constant in t). Using the trapezoidal rule as approximation of
the time integral in (ψ, vh)L2(Γn∗ ) results in terms

∫

Γ (tn−1)

ψvh ds,

∫

Γ (tn)

ψvh ds.

Hence, one has to evaluate ψ ∈ V Γ
n
∗

0 both on the “old” interface Γ (tn−1) and
on the “new” interface Γ (tn). This is avoided if the formulation (13.69) is
used, cf. (13.74).

Remark 13.2.22 A less nice property of the space-time method in (13.73) is
that it depends on the extension operator En. The following variant does not
need such an operator. We restrict to the case k = 1. The method introduced
above is based on the representation uh = �0φ0 + �ψ, with φ0, ψ ∈ Vh(ωn).
Hence t → uh(x, t) is linear for all x ∈ ωn. The function φ0 is determined
by the continuity condition (13.68), and the function ψ by the variational
problem (13.73). We introduce a variant in which trial functions uh are used
such that t → uh(x, t) is linear only for x ∈ ω∗

n, with ω∗
n ⊂ ωn as in (13.65).

The nodal basis functions, corresponding to nodes xj in ωn, are denoted by
ξj , i.e., Vh(ωn) = span { ξj : xj ∈ ωn }. This induces a splitting

Vh(ωn) = span { ξj : xj ∈ ω∗
n } ⊕ span { ξj : xj ∈ ωn \ ω∗

n } =: V ∗
h ⊕ V rh .

The corresponding splitting of ψ ∈ Vh(ωn) is denoted by ψ = ψ∗ + ψr, with
ψ∗ ∈ V ∗

h , ψr ∈ V rh . We consider trial functions of the form

uh = �0φ0 + �ψ∗ + ψr, φ0 ∈ V ∗
h , ψ = ψ∗ + ψr ∈ Vh(ωn).

The function φ0 can be determined from the data un−1
h (x), x ∈ Γ (tn−1), with-

out using an extension operator. The function ψ is determined by a variational
problem similar to the one in (13.73).

13.2.6 Numerical experiments

We present results of some numerical experiments with the method treated
in the previous section. The outer domain, given by Ω = (−2, 2)3, contains a
spherical non-stationary interface

Γ (t) = ∂B1(0) + tw, w = (0, 0, 10)T , t ∈ [0, T ], T = 0.05,

with ∂B1(0) the sphere with radius 1 centered at the origin. On this interface
we consider the surfactant transport equation
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u̇+ u divΓ w −ΔΓu = 0 on Γ (t),

u(x, 0) = −13
8

√
35/π

‖x‖2
12 + ‖x‖2 (3x2

1x2 − x3
2) on Γ (0).

The signed distance function to Γ (t) is denoted by φ(x, t). Hence, Γ (t) is the
zero level of φ(·, t). A family of uniform tetrahedral triangulations Thl

of Ω
is used, with mesh size parameter hl = h02−(l+1), h0 := 4, 2 ≤ l ≤ 5. On a
triangulation Th the exact interface Γ (t) is approximated by a piecewise planar
approximation Γh(t) as explained in Sect. 7.3, i.e. Γh(t) is obtained as the zero
level of the piecewise linear interpolation of the level set function φ(x, t) on
the refined grid T 1

2h
. For the space-time finite element discretization of the

surfactant equation on Γh(t) we consider the lowest order case, i.e. k = 1, and
use the trapezoidal rule for approximating the time integrals. This results in
the discrete problem (13.74), with Γ (tj) replaced by Γh(tj).

First we consider, for a fixed mesh size h = hl, the rate of convergence
with respect to Δt = T/N . It appears that for Δt ↓ 0, i.e. N → ∞, the dis-
crete approximation uNh (·, T ) converges towards a limit solution. A reference
solution that approximates this limit solution is computed with N = 210 and
denoted by uref

h (·, T ). Note that this reference solution depends on h = hl. For
l = 2, 3, 4, we computed the discrete solution uNhl

(·, T ) for different time steps
Δt = T/N , N < 1024, and determined the corresponding error measure

eΔtl := ‖uNhl
(·, T )− uref

hl
(·, T )‖L2(Γhl

(T )).

The results are shown in Fig. 13.9.
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Fig. 13.9. Error eΔt
l as a function of Δt, for l = 2, 3, 4.
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The results show a O(Δt2) convergence behavior. To give an indication of
the space-time error behavior we computed a reference solution on level l = 5
and with N = 1024, denoted by uref(·, T ). For different Δt and l = 2, 3, 4,
the discrete solution uNhl

(·, T ) is determined and compared to this reference
solution. This comparison is done by lifting the discrete solution uNhl

(·, T ) from
Γhl

(T ) to Γh5(T ), resulting in ûNhl
(·, T ) and computing the error measure

êΔtl := ‖ûNhl
(·, T )− uref(·, T )‖L2(Γh5 (T )).

This lift can be determined in a natural way, since uNhl
(·, T ) is the restriction

of a finite element function, say whl
, from the outer finite element space Vhl

.
For the lift we take the restriction of this whl

to Γh5(T ). Results are given
in Table 13.5. From the results it turns out that we should take Δt � h to
balance the spatial and time discretization errors.

l hl Δt êΔt
l

2 2.50 E-1 1.25 E-2 1.80 E-1
3 1.25 E-1 6.25 E-3 4.42 E-2
4 6.25 E-2 3.13 E-3 1.01 E-2

Table 13.5. Discretization error êΔt
l .

These results indicate that for the space-time Crank-Nicolson type of
method applied to this test problem with a non-stationary interface we can
achieve second order convergence both with respect to h and Δt.
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Appendix A: Results from differential
geometry

14.1 Results for a stationary surface

We assume Γ ⊂ R
d to be an oriented C2-hypersurface, i.e., for x∗ ∈ Γ there

exists an open set Ux∗ ⊂ R
d with x∗ ∈ Ux∗ and a scalar function ψ ∈ C2(Ux∗)

such that

Ux∗ ∩Γ = {x ∈ Ux∗ : ψ(x) = 0 } , and ∇ψ(x) �= 0 for all x ∈ Ux∗ ∩Γ. (14.1)

Moreover, for such a hypersurface Γ there exists an open neighborhood U ⊃ Γ
and a vector function n ∈ C1(U)d such that ‖n(x)‖2 = 1 and for all x ∈ Γ the
vector n(x) is orthogonal to the tangent plane at x (i.e., the plane orthogonal
to ∇ψ(x)).

For f ∈ C1(U) we define the tangential derivative

∇Γ f(x) :=
(
I− n(x)n(x)T

)
∇f(x) =: P(x)∇f(x), x ∈ Γ,

with the orthogonal projection P(x) = I− n(x)n(x)T . The values of ∇Γ f(x)
depend only on values f(x), x ∈ Γ . For f ∈ C1(U)d the tangential divergence
is defined as follows. We use the notation ∇i = ∂

∂xi
.

divΓ f := ∇TΓ f =
d∑

i=1

(P∇)ifi =
d∑

i=1

∇ifi −
d∑

i=1

ninT (∇fi)

= div f − nT∇f n.

Recall that ∇f :=
(
∇f1 . . .∇fd

)
. Hence,

divΓ f(x) = div f(x) − n(x)T∇f(x)n(x), x ∈ Γ. (14.2)
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It can be shown that the value of divΓ f(x), x ∈ Γ , depends only on values
f(x), x ∈ Γ . Another useful representation is

divΓ f(x) = tr
(
∇Γ f(x)

)
.

Using these definitions we derive some elementary and useful results. For a
detailed treatment we refer to the literature, e.g. [78, 15]. From n(x)Tn(x) = 1
we obtain ∇

(
n(x)Tn(x)

)
= 0, which implies
(
∇n(x)

)
n(x) = 0, x ∈ U. (14.3)

Using this and f = n in (14.2) yields

divΓ n(x) = div n(x), x ∈ Γ. (14.4)

Let φ ∈ C1(U). Using (14.2), (14.3), (14.4) we get

divΓ
(
φ(x)n(x)

)
= φ(x) divΓ n(x), x ∈ Γ. (14.5)

The matrix H(x) := P(x)∇n(x) = ∇Γn(x) ∈ R
d×d, x ∈ Γ , is symmetric,

cf. Remark 14.1.1, and its entries depend only on values of n(x), x ∈ Γ .
From (14.3) it follows that H has an eigenvalue 0. The other real eigenvalues
κ1(x), . . . , κd−1(x) are called principal curvatures at x ∈ Γ and

κ(x) :=
d−1∑

i=1

κi(x) = trH(x), x ∈ Γ, (14.6)

is called the mean curvature at x (in the literature also another definition
κ(x) = 1

d−1

∑d−1
i=1 κi(x) is used).

Remark 14.1.1 In the special case that ψ in (14.1) is a signed distance func-
tion d : U → R, one can choose n = ∇d. Then (14.3) implies that the Hessian
H̃ := ∇2d, which is symmetric, satisfies H̃n(x) = 0. Hence n(x)T H̃ = 0 and
thus H(x) = P(x)∇n(x) = P(x)H̃(x) = H̃(x) holds, i.e., H is symmetric and
the κi(x) are the eigenvalues of the Hessian ∇2d(x), x ∈ Γ .

From trH(x) = div n(x) and (14.4) it follows that

κ(x) = div n(x) = divΓ n(x), x ∈ Γ, (14.7)

holds. For idΓ (x) := x = (x1, . . . , xd)T we have ∇(idΓ )j = ej (j-th basis
vector in R

d) and thus, using (14.5) we get for 1 ≤ j ≤ d,

divΓ ∇Γ (idΓ )j = divΓ (Pej) = − divΓ (nnj) = −nj divΓ n = −κnj. (14.8)

With ΔΓ := divΓ ∇Γ and ΔΓ idΓ =
(
ΔΓ (idΓ )1, . . . , ΔΓ (idΓ )d

)T we thus
obtain the following Laplace-Beltrami characterization of the mean curvature:
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−ΔΓ idΓ (x) = κ(x)n(x), x ∈ Γ. (14.9)

From (14.8) we also obtain

divΓ P = −

⎛

⎝
divΓ (n1n)
divΓ (n2n)
divΓ (n3n)

⎞

⎠ = −κn. (14.10)

We now in addition assume that Γ is the boundary of an open bounded set
Ω1 ⊂ R

d, hence Γ has no boundary. The following partial integration rule is
known in the literature, e.g. [120]. For g ∈ C1(U) and 1 ≤ i ≤ d we have

∫

Γ

(∇Γ )ig ds =
∫

Γ

g κ ni ds. (14.11)

Note that no minus sign occurs. Applying this with g replaced by f(∇Γ )ig
results in

∫

Γ

(∇Γ )if (∇Γ )ig + f(∇Γ )2i g ds =
∫

Γ

f (∇Γ )ig κ ni ds.

Summing over i = 1, . . . , d and with
∑d

i=1(∇Γ )igni = nT∇Γ g = nTP∇g = 0
we obtain the Green’s formula

∫

Γ

∇Γ f · ∇Γ g ds = −
∫

Γ

f ΔΓ g ds. (14.12)

For vector functions f ,g (sufficiently smooth) this yields
∫

Γ

∇Γ f · ∇Γg ds = −
∫

Γ

f ·ΔΓg ds, (14.13)

with ∇Γ f · ∇Γg :=
∑d

i=1∇Γ fi · ∇Γ gi, ΔΓg :=
(
ΔΓ g1, . . . , ΔΓ gd

)T . Using
these results we obtain the following integral identities involving the curvature.

Lemma 14.1.2 Assume that Γ is sufficiently smooth. For f ∈ H1(U)d the
following holds:

∫

Γ

κn · f ds =
∫

Γ

∇Γ f · ∇Γ idΓ ds (14.14a)

=
∫

Γ

tr
(
P∇f) ds. (14.14b)
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Proof. We take f ∈ C1(U)d. Using g = idΓ in (14.13) and the result in (14.9)
we obtain the result in (14.14a). Let ei be the i-th basis vector in R

d. From
∇Γ (idΓ )i = P∇(idΓ )i = Pei and P2 = P = PT it follows that

∇Γ f · ∇Γ idΓ =
d∑

i=1

∇Γ fi · ∇Γ (idΓ )i =
d∑

i=1

(P∇fi) · (Pei)

=
d∑

i=1

(P∇fi) · ei = tr(P∇f),

and thus the result in (14.14b) holds. From a density argument it follows that
these results also hold for f ∈ H1(U)d. �

From (14.11) with g replaced by fig, i = 1, . . . , d, and summation of i we
obtain ∫

Γ

g divΓ f + f · ∇Γ g ds =
∫

Γ

κ f · n g ds, (14.15)

and thus, due to Pn = 0,
∫

Γ

g divΓ (Pf) ds = −
∫

Γ

f · ∇Γ g ds,
∫

Γ

divΓ (Pf) ds = 0. (14.16)

From the first result in (14.16) it follows that for G ∈ R
3×3

∫

Γ

divΓ (GP) · g ds = −
∫

Γ

tr(G∇Γg) ds (14.17)

holds. We finally discuss a generalization of the partial integration rule in
(14.11) for a smooth hypersurface with boundary. Let γ ⊂ Γ be a hypersurface
with boundary ∂γ. The unit outer normal to ∂γ that is tangential to Γ is
denoted by μ = (μ1, . . . , μd). The following holds:

∫

γ

(∇Γ )ig ds =
∫

γ

g κ ni ds+
∫

∂γ

g μi ds̃, 1 ≤ i ≤ d,

with ds̃ the surface measure on ∂γ. As immediate corollaries of this we obtain
∫

γ

∇Γ g ds =
∫

γ

g κn ds+
∫

∂γ

gμ ds̃, (14.18)

and, for all (smooth) tangential vector functions g, i.e., with g(x) · n(x) = 0
for all x ∈ γ, ∫

γ

divΓ g ds =
∫

∂γ

g · μ ds̃.

The latter implies ∫

γ

divΓ (GP) ds =
∫

∂γ

Gμ ds̃, (14.19)

for G ∈ R
3×3.
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14.2 Results for an evolving surface

Below we derive some useful identities for moving hypersurfaces Γ (t). For
each t ∈ [0, T ] we assume that Γ (t) has the properties formulated above
(compact, oriented C2-hypersurface). We assume that the evolution t→ Γ (t)
is sufficiently smooth, cf. [78] for more details. Let u(x, t) be a C1 vector field
with which Γ (t) is transported, i.e. d

dtΓ (t) = u(Γ (t), t) holds for t ∈ [0, T ]
and Γ (0) is given. Let V (x, t) be the normal velocity of Γ (t) at x ∈ Γ (t):
V = u · n.

Remark 14.2.1 If Γ (t) is characterized as the zero level of the signed dis-
tance function d(·, t) : U → R, with d < 0 in U ∩ Ω1 then for the normal
velocity we have V (x, t) = −∂d

∂t (x, t) for x ∈ Γ (t).

We recall the fundamental Reynolds’ transport theorem:

d

dt

∫

Ω1(t)

f(x, t) dx =
∫

Ω1(t)

ḟ + f div u dx

=
∫

Ω1(t)

∂f

∂t
+ u · ∇f + f div u dx.

(14.20)

Lemma 14.2.2 Assume that g(x, t) is continuously differentiable w.r.t. both
x and t in a neighborhood of ∪0<t<TΓ (t). Assume Γ (t) = ∂Ω1(t) with
Ω1(t) ⊂ R

d open and bounded. The following holds, where we use the ma-
terial derivative ġ = ∂g

∂t + u · ∇g:

d

dt

∫

Ω1(t)

g dx =
∫

Ω1(t)

∂g

∂t
dx+

∫

Γ (t)

gV ds, (14.21a)

d

dt

∫

Γ (t)

g ds =
∫

Γ (t)

ġ + g divΓ u ds (14.21b)

=
∫

Γ (t)

∂g

∂t
+ V

(
n · ∇g + κ g

)
ds. (14.21c)

=
∫

Γ (t)

∂g

∂t
+ V n · ∇g + g divΓ (V n) ds. (14.21d)

Proof. The result in (14.21a) follows from (14.20) and
∫

Ω1(t)

u · ∇g + g div u dx =
∫

Ω1(t)

div(gu) ds =
∫

Γ (t)

gu · n ds.

Note that (14.21b) is an analogon for Γ (t) of the first result in (14.20). For a
proof of (14.21b) we refer to the literature, e.g. [78, 46]. Using (14.15) we get
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∫

Γ (t)

ġ + g divΓ u ds =
∫

Γ (t)

∂g

∂t
+ u · ∇g − u · ∇Γ g + V κ g ds

=
∫

Γ (t)

∂g

∂t
+ u · (I−P)∇g + V κ g ds

=
∫

Γ (t)

∂g

∂t
+ V n · ∇g + V κ g ds,

which proves the result (14.21c). From

divΓ (V n) = V divΓ n = V κ

it follows that (14.21c) equals (14.21d). �

Let w := V n be the normal velocity field, which completely determines the
evolution of Γ (t). Introduce the material derivative corresponding to this flow
field w:

g̈ :=
∂g

∂t
+ w · ∇g.

Then (14.21d) can be written as

d

dt

∫

Γ (t)

g ds =
∫

Γ (t)

g̈ + g divΓ w ds,

which is the analogon for Γ (t) of the Reynolds theorem in (14.20) but now
corresponding to the normal velocity field w instead of u.

Remark 14.2.3 We note that for the result in (14.21b) to hold, it is not
necessary to assume that Γ (t) is the boundary of a domain Ω1(t). In [46] it is
shown that the result also holds, for t ∈ (t0 − δ, t0 + δ) with δ > 0 sufficiently
small, if Γ (t0) is a compact C2-hypersurface in Ω (and thus ∂Γ (t0) may be
nonempty) and the velocity field u is C1 on Ω × [t0 − δ, t0 + δ].
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Appendix B: Variational formulations
in Hilbert spaces

In this appendix we collect some results on the well-posedness of variational
problems in Hilbert spaces. These results are known in the literature. For most
of the proofs we refer to the literature.

15.1 Variational problems and Galerkin discretization

We start with a remark on notation: In this appendix, for elements from
a Hilbert space we use boldface notation (e.g., u), elements from the dual
space (i.e., bounded linear functionals) are denoted by f, g, etc., and for linear
operators between spaces we use capitals (e.g., L).

Let H1 and H2 be Hilbert spaces. A bilinear form k : H1 × H2 → R is
continuous if there is a constant M such that for all x ∈ H1, y ∈ H2:

|k(x,y)| ≤M‖x‖H1‖y‖H2 . (15.1)

For a continuous bilinear form k : H1 × H2 → R we define its norm by
‖k‖ = sup { |k(x,y)| : ‖x‖H1 = 1, ‖y‖H2 = 1 }. A fundamental result is given
in the following theorem:
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Theorem 15.1.1 Let H1, H2 be Hilbert spaces and k : H1 ×H2 → R be
a continuous bilinear form. For f ∈ H ′

2 consider the variational problem:

find u ∈ H1 such that k(u,v) = f(v) for all v ∈ H2. (15.2)

The following two statements are equivalent:

1. For arbitrary f ∈ H ′
2 the problem (15.2) has a unique solution u ∈ H1

and ‖u‖H1 ≤ c‖f‖H′
2

holds with a constant c independent of f .
2. The conditions (15.3) and (15.4) hold:

∃ ε > 0 : sup
v∈H2

k(u,v)
‖v‖H2

≥ ε‖u‖H1 for all u ∈ H1, (15.3)

∀ v ∈ H2, v �= 0, ∃ u ∈ H1 : k(u,v) �= 0. (15.4)

Moreover, for the constants c and ε one can take c = 1
ε .

A proof of this result can be found in e.g. [106].

Remark 15.1.2 The condition (15.4) can also be formulated as follows:
[
v ∈ H2 such that k(u,v) = 0 for all u ∈ H1

]
⇒ v = 0.

The condition (15.3) is equivalent to

∃ ε > 0 : inf
u∈H1\{0}

sup
v∈H2

k(u,v)
‖u‖H1‖v‖H2

≥ ε, (15.5)

and is often called the inf-sup condition. In the finite dimensional case with
dim(H1) = dim(H2) <∞ this condition implies the result in (15.4) and thus
is necessary and sufficient for existence and uniqueness.

The Galerkin discretization of the problem (15.2) is based on the following
simple idea. We assume finite dimensional subspaces H1,h ⊂ H1, H2,h ⊂ H2

(note: in concrete cases the index h will correspond to some mesh size param-
eter) and consider the finite dimensional variational problem

find uh ∈ H1,h such that k(uh,vh) = f(vh) for all vh ∈ H2,h. (15.6)

This problem is called a Galerkin discretization of (15.2) (in H1,h×H2,h). We
now discuss the well-posedness of this Galerkin-discretization. First note that
the continuity of k : H1,h×H2,h → R follows from (15.1). From Theorem 15.1.1
it follows that we need the conditions (15.3) and (15.4) with Hi replaced by
Hi,h, i = 1, 2. However, because Hi,h is finite dimensional we only need (15.3)
since this implies (15.4). Thus we formulate the following (discrete) inf-sup
condition in the space H1,h ×H2,h:

∃ εh > 0 : sup
vh∈H2,h

k(uh,vh)
‖vh‖H2

≥ εh ‖uh‖H1 for all uh ∈ H1,h. (15.7)
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We prove a fundamental result in which the discretization error ‖u−uh‖H1 is
bounded by an approximation error infvh∈H1,h

‖u − vh‖H1 . In the literature
this result is often called “Céa’s lemma”.

Theorem 15.1.3 (Céa’s lemma.) Let H1, H2 be Hilbert spaces and
k : H1 ×H2 → R be a bilinear form. Assume that (15.1), (15.3), (15.4),
(15.7) hold. Then the variational problem (15.2) and its Galerkin discretiza-
tion (15.6) have unique solutions u and uh, respectively. Furthermore, the
inequality

‖u− uh‖H1 ≤
(
1 +

M

εh

)
inf

vh∈H1,h

‖u− vh‖H1 (15.8)

holds.

Proof. The existence and uniqueness of u and uh follow from Theorem 15.1.1
and the fact that in the finite dimensional case (15.3) implies (15.4). From
(15.2) and (15.6) it follows that

k(u− uh,vh) = 0 for all vh ∈ H2,h. (15.9)

For arbitrary vh ∈ H1,h we have, due to (15.7), (15.9), (15.1):

‖vh − uh‖H1 ≤
1
εh

sup
wh∈H2,h

k(vh − uh,wh)
‖wh‖H2

=
1
εh

sup
wh∈H2,h

k(vh − u,wh)
‖wh‖H2

≤ M

εh
‖vh − u‖H1 .

From this and the triangle inequality

‖u− uh‖H1 ≤ ‖u− vh‖H1 + ‖vh − uh‖H1 for all vh ∈ H1,h

the result follows. �

15.2 Application to elliptic problems

In this section we apply the results from Sect. 15.1 in the special case H1 =
H2 =: H and with a bilinear form k : H × H → R that is assumed to be
H-elliptic, i.e., there exists a constant γ > 0 such

k(u,u) ≥ γ‖u‖2H for all u ∈ H.

From this property it follows that the conditions (15.3), (15.4) and (15.7)
are satisfied with ε = εh = γ. Thus, as an immediate consequence of Theo-
rem 15.1.1 we obtain the following famous result, often called “Lax-Milgram
lemma”.
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Theorem 15.2.1 (Lax-Milgram lemma) Let H be a Hilbert space and
k : H ×H → R a continuous H-elliptic bilinear form with ellipticity con-
stant γ. Then for every f ∈ H ′ there exists a unique u ∈ H such that

k(u,v) = f(v) for all v ∈ H. (15.10)

Furthermore, the inequality ‖u‖H ≤ 1
γ ‖f‖H′ holds.

If the bilinear form is in addition symmetric, i.e., k(u,v) = k(v,u) for all
u,v ∈ H , then there is a natural correspondence between the variational
problem (15.10) and a minimization problem:

Theorem 15.2.2 Let H be a Hilbert space and k : H ×H → R a continuous
H-elliptic symmetric bilinear form. For f ∈ H ′ let u ∈ H be the unique
solution of the variational problem (15.10). Then u is the unique minimizer
of the functional

J(v) :=
1
2
k(v,v) − f(v). (15.11)

Proof. From the Lax-Milgram lemma it follows that the variational problem
(15.10) has a unique solution u ∈ H . For arbitrary z ∈ H , z �= 0, we have,
with ellipticity constant γ > 0:

J(u + z) =
1
2
k(u + z,u + z)− f(u + z)

=
1
2
k(u,u)− f(u) + k(u, z)− f(z) +

1
2
k(z, z)

= J(u) +
1
2
k(z, z) ≥ J(u) +

1
2
γ‖z‖2H > J(u).

This proves the desired result. �

In the elliptic case one can improve the discretization error bound in Céa’s
lemma. First we give a result in which the term 1 + M

εh
= 1 + M

γ is replaced
by M

γ .

Theorem 15.2.3 Consider the problem (15.10) and its Galerkin discretiza-
tion in the subspace Hh ⊂ H. Assume that the conditions as in Theorem 15.2.1
are satisfied. Then the variational problem (15.10) and its Galerkin discretiza-
tion have unique solutions u and uh, respectively. Furthermore, the inequality

‖u− uh‖H ≤
M

γ
inf

vh∈Hh

‖u− vh‖H (15.12)

holds.

Proof. Theorem 15.2.1 can be applied both to (15.10) and its Galerkin dis-
cretization. Thus we conclude that unique solutions u of (15.10) and uh of
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the Galerkin discretization exist. Using k(u−uh,vh) = 0 for all vh ∈ Hh and
the ellipticity and continuity properties, we get for arbitrary vh ∈ Hh:

‖u− uh‖2H ≤
1
γ
k(u− uh,u− uh) =

1
γ
k(u− uh,u− vh)

≤ M

γ
‖u− uh‖H‖u− vh‖H .

Hence the inequality in (15.12) holds. �

An improvement of the bound in (15.12) can be obtained if k(·, ·) is sym-
metric:

Theorem 15.2.4 Assume that the conditions as in Theorem 15.2.3 are sat-
isfied. If in addition the bilinear form k(·, ·) is symmetric, the inequality

‖u− uh‖H ≤

√
M

γ
inf

vh∈Hh

‖u− vh‖H (15.13)

holds.

Proof. Introduce the norm |||v||| := k(v,v)
1
2 on H . Note that

√
γ‖v‖H ≤ |||v||| ≤

√
M‖v‖H for all v ∈ H.

The space (H, ||| · |||) is a Hilbert space and due to |||v|||2 = k(v,v), k(u,v) ≤
|||u||||||v||| the bilinear form has ellipticity constant and continuity constant w.r.t.
the norm ||| · ||| both equal to 1. Application of Theorem 15.2.3 in the space
(H, ||| · |||) yields

|||u− uh||| ≤ inf
vh∈Hh

|||u− vh|||,

and thus we obtain

‖u− uh‖H ≤
1
√
γ
|||u− uh||| ≤

1
√
γ

inf
vh∈Hh

|||u− vh|||

≤

√
M

γ
inf

vh∈Hh

‖u− vh‖H ,

which completes the proof. �

15.3 Application to saddle point problems

We introduce an abstract saddle point problem. Let V and M be Hilbert
spaces and

â : V × V → R, b̂ : V ×M → R,
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be continuous bilinear forms. For f1 ∈ V ′, f2 ∈ M ′ we define the following
variational problem: find (φ,λ) ∈ V ×M such that

â(φ,ψ) + b̂(ψ,λ) = f1(ψ) for all ψ ∈ V (15.14a)

b̂(φ,μ) = f2(μ) for all μ ∈M. (15.14b)

This variational problem can be put in the general framework of Sect. 15.1
as follows. Define H := V ×M and

k : H ×H → R, k(u,v) := â(φ,ψ) + b̂(φ,μ) + b̂(ψ,λ),
with u := (φ,λ), v := (ψ,μ).

(15.15)

On H we use the product norm ‖u‖2H = ‖φ‖2V + ‖λ‖2M , for u = (φ,λ) ∈ H .
If we define f ∈ H ′ = V ′ ×M ′ by f(φ,λ) = f1(ψ) + f2(μ) then the problem
(15.14) can be reformulated in the setting of Theorem 15.1.1 as follows:

find u ∈ H such that k(u,v) = f(v) for all v ∈ H. (15.16)

Based on Theorem 15.1.1 the following well-posedness result for the saddle
point problem can be derived, cf. [55, 121], in which the conditions (15.3)
and (15.4) on the bilinear form k(·, ·) are replaced by conditions on â(·, ·) and
b̂(·, ·).

Theorem 15.3.1 For arbitrary f1 ∈ V ′, f2 ∈ M ′ consider the variational
problem (15.14). Assume that the bilinear forms â(·, ·) and b̂(·, ·) are con-
tinuous and satisfy the following two conditions:

∃ β > 0 : sup
ψ∈V

b̂(ψ,λ)
‖ψ‖V

≥ β ‖λ‖M ∀ λ ∈M (inf-sup), (15.17a)

∃ γ > 0 : â(φ,φ) ≥ γ ‖φ‖2V ∀ φ ∈ V (V-ellipt.). (15.17b)

Then the problem (15.14) has a unique solution (φ,λ). Moreover, the sta-
bility bound

(
‖φ‖2V + ‖λ‖2M

) 1
2 ≤ (β + 2‖â‖)2

γβ2

(
‖f1‖2V ′ + ‖f2‖2M ′

) 1
2

holds. Hence the problem (15.14) is well-posed.

Remark 15.3.2 The inf-sup condition in (15.17a) is not only sufficient but
also necessary for well-posedness of the saddle point problem (15.14). The
condition on â(·, ·) in (15.17b) is sufficient but not necessary. It turns out that
the following two conditions for â(·, ·) together are necessary and sufficient:

∃ δ > 0 : sup
ψ∈V0

â(φ,ψ)
‖ψ‖V

≥ δ ‖φ‖V for all φ ∈ V0,

∀ ψ ∈ V0, ψ �= 0, ∃ φ ∈ V0 : â(φ,ψ) �= 0,
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with V0 :=
{
φ ∈ V : b̂(φ,λ) = 0 for all λ ∈M

}
.

If â(·, ·) is in addition assumed to be symmetric, then as in Theorem 15.2.2
there is a natural correspondence between the variational problem (15.14) and
extrema of a functional:

Theorem 15.3.3 Assume that the bilinear forms â(·, ·) and b̂(·, ·) are con-
tinuous and satisfy the conditions (15.17). In addition we assume that â(·, ·)
is symmetric. For arbitrary f1 ∈ V ′, f2 ∈M ′ let (φ,λ) be the unique solution
of (15.14). Define the functional L : V ×M → R by

L(ψ,μ) =
1
2
â(ψ,ψ) + b̂(ψ,μ)− f1(ψ)− f2(μ).

Then (φ,λ) is also the unique element in V ×M for which

L(φ,μ) ≤ L(φ,λ) ≤ L(ψ,λ) for all ψ ∈ V, μ ∈M (15.18)

holds.

For a proof of this result we refer to the literature, e.g. [121]. The property
in (15.18) explains why this type of variational equations are called “saddle
point” problems.

The unknown λ in (15.14) can be eliminated, resulting in an equivalent for-
mulation in which only the unknown φ occurs. For this we introduce the
following notation, for f2 ∈M ′:

Vf2 :=
{
φ ∈ V : b̂(φ,μ) = f2(μ) for all μ ∈M

}
.

We consider the variational problem: determine φ ∈ Vf2 such that

â(φ,ψ) = f1(ψ) for all ψ ∈ V0. (15.19)

The equivalence of this problem and the saddle point problem (15.14) is given
in the following theorem.

Theorem 15.3.4 Let the assumptions as in Theorem 15.3.1 be satisfied. Let
(φ,λ) be the unique solution of problem (15.14). Then φ is the unique solution
of the variational problem (15.19).

Proof. For φ we have b̂(φ,μ) = f2(μ) for all μ ∈ M , hence φ ∈ Vf2 . From
(15.14a) and b̂(ψ,λ) = 0 for all ψ ∈ V0 it follows that

â(φ,ψ) = f1(ψ) for all ψ ∈ V0,

and thus ψ solves the problem (15.19). Uniqueness of this solution follows
using the ellipticity property (15.17b). �
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Now we consider the Galerkin discretization of the saddle point problem for-
mulated in (15.14). We introduce finite dimensional subspaces Vh and Mh:

Vh ⊂ V, Mh ⊂M.

The Galerkin discretization of the problem (15.14) is as follows: find (φh,λh) ∈
Vh ×Mh such that

â(φh,ψh) + b̂(ψh,λh) = f1(ψh) for all ψh ∈ Vh (15.20a)

b̂(φh,μh) = f2(μh) for all μh ∈Mh. (15.20b)

For the discretization error we have the following result, cf. [55, 121, 106].

Theorem 15.3.5 Consider the variational problem (15.14) and its
Galerkin discretization (15.20), with continuous bilinear forms â(·, ·) and
b̂(·, ·) that satisfy:

∃ β > 0 : supψ∈V
b̂(ψ,λ)
‖ψ‖V

≥ β ‖λ‖M ∀ λ ∈M, (15.21a)

∃ γ > 0 : â(φ,φ) ≥ γ ‖φ‖2V ∀ φ ∈ V, (15.21b)

∃ βh > 0 : supψh∈Vh

b̂(ψh,λh)
‖ψh‖V

≥ βh ‖λh‖M ∀ λh ∈Mh. (15.21c)

Then the problem (15.14) and its Galerkin discretization have unique so-
lutions (φ,λ) and (φh,λh), respectively. Furthermore the inequality

‖φ− φh‖V + ‖λ− λh‖M ≤ C
(

inf
ψh∈Vh

‖φ−ψh‖V + inf
μh∈Mh

‖λ− μh‖M
)

holds, with C =
√

2
(
1 + γ−1β−2

h (2‖â‖+ ‖b̂‖)3
)
.

Remark 15.3.6 The condition (15.21c) implies dim(Vh) ≥ dim(Mh). This
can be shown by the following argument. Let (ψj)1≤j≤m be a basis of Vh and
(λi)1≤i≤k a basis of Mh. Define the matrix B ∈ R

k×m by

Bij = b̂(ψj ,λi).

From (15.21c) it follows that for every λh ∈Mh, λh �= 0, there exists ψh ∈ Vh
such that b̂(ψh,λh) �= 0. Thus for every y ∈ R

k, y �= 0, there exists x ∈ R
m

such that yTBx �= 0, i.e., xTBTy �= 0. This implies that all columns of BT ,
and thus all rows of B, are independent. A necessary condition for this is
k ≤ m. �
The first two conditions (15.21a) and (15.21b) are introduced in view of well-
posedness of the given variational saddle point problem (15.14), cf. (15.17).
The third condition (15.21c), which is called discrete inf-sup condition, is
essential for the stability of the Galerkin discretization. Note that the constant
C in the discretization error bound in Theorem 15.3.5 depends on βh and that
C →∞ if βh ↓ 0. The discrete inf-sup condition clearly depends on the specific
pair of spaces (Vh,Mh) that is chosen.
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15.4 A Strang lemma for saddle point problems

In this section we address the error analysis for the case that in the Galerkin
discretization of a saddle point problem one uses a perturbed functional f̃1 in
the right-hand side. For the elliptic case this situation has first been analyzed
by Strang in [227] and the error bound that he derived is often called the
“first Strang lemma”, cf. [71], Theorem 26.1. Here we present an analogon for
the saddle point problem.

We consider the saddle point problem (15.14) with f2 = 0, i.e.: find (φ,λ) ∈
V ×M such that

â(φ,ψ) + b̂(ψ,λ) = f1(ψ) for all ψ ∈ V (15.22a)

b̂(φ,μ) = 0 for all μ ∈M. (15.22b)

In the Galerkin discretization of this problem we use a perturbation f̃1 ∈ V ′
h

of f1, i.e.: find (φ̃h, λ̃h) ∈ Vh ×Mh such that

â(φ̃h,ψh) + b̂(ψh, λ̃h) = f̃1(ψh) for all ψh ∈ Vh (15.23a)

b̂(φ̃h,μh) = 0 for all μh ∈Mh. (15.23b)

For the perturbed problem the following generalization of Theorem 15.3.5
holds.

Theorem 15.4.1 Let the assumptions of Theorem 15.3.5 be satisfied. Then
the problem (15.22) and its perturbed Galerkin discretization (15.23) have
unique solutions (φ,λ) and (φ̃h, λ̃h), respectively. Furthermore the inequality

‖φ− φ̃h‖V + ‖λ− λ̃h‖M ≤ C
(

inf
ψh∈Vh

‖φ−ψh‖V + inf
μh∈Mh

‖λ− μh‖M
)

+ C̃‖f1 − f̃1‖V ′
h

holds, with C as in Theorem 15.3.5 and C̃ = γ−1 + β−1
h

(‖â‖
γ + 1

)
.

Proof. Let (φh,λh) be the solution of the Galerkin discretization (15.20) with
f2 = 0. We introduce the notation eh := φh− φ̃h ∈ Vh, δh := λh − λ̃h ∈Mh.
From the triangle inequality and the result in Theorem 15.3.5 we get

‖φ− φ̃h‖V + ‖λ− λ̃h‖M ≤ ‖φ− φh‖V + ‖λ− λh‖M + ‖eh‖V + ‖δh‖M
≤ C

(
inf

ψh∈Vh

‖φ−ψh‖V + inf
μh∈Mh

‖λ− μh‖M
)

+ ‖eh‖V + ‖δh‖M .

It remains to prove that

‖eh‖V + ‖δh‖M ≤ C̃‖f1 − f̃1‖V ′
h

(15.24)
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holds. Note that b̂(eh,μh) = 0 for all μh ∈ Mh. Taking ψh = eh in (15.20a)
and in (15.23a) results in â(φh, eh) = f1(eh) and â(φ̃h, eh) = f̃1(eh), respec-
tively. Hence,

â(eh, eh) = f1(eh)− f̃1(eh)

holds. Ellipticity of â(·, ·) implies ‖eh‖2V ≤ γ−1â(eh, eh) = γ−1(f1 − f̃1)(eh)
and thus

‖eh‖V ≤
1
γ
‖f1 − f̃1‖V ′

h
. (15.25)

From (15.20a) and (15.23a) it follows that

b̂(ψh, δh) = −â(eh,ψh) + (f1 − f̃1)(ψh) for all ψh ∈ Vh.

In combination with the discrete inf-sup property of b̂(·, ·) this yields

‖δh‖M ≤ β−1
h sup

ψh∈Vh

b̂(ψh, δh)
‖ψh‖V

≤ β−1
h

(
‖â‖‖eh‖V + ‖f1 − f̃1‖V ′

h

)
. (15.26)

The results in (15.25) and (15.26) imply that the estimate (15.24) holds with
C̃ = γ−1 + β−1

h

(‖â‖
γ + 1

)
. �

In view of our applications we formulate an easy corollary of this result in
which the dependence of the discretization error bound on a scaling of the
bilinear form â(·, ·) is shown.

Corollary 15.4.2 Take μ > 0 and consider the variational problem: find
(φ,λ) ∈ V ×M such that

μ â(φ,ψ) + b̂(ψ,λ) = f1(ψ) for all ψ ∈ V
b̂(φ,μ) = 0 for all μ ∈M.

For f̃1 ∈ V ′
h the perturbed Galerkin discretization is given by: find (φ̃h, λ̃h) ∈

Vh ×Mh such that

μ â(φ̃h,ψh) + b̂(ψh, λ̃h) = f̃1(ψh) for all ψh ∈ Vh
b̂(φ̃h,μh) = 0 for all μh ∈Mh.

Let the assumptions as in Theorem 15.4.1 hold. From a scaling argument it
follows that these problems have unique solutions and the error bound

μ‖φ− φ̃h‖V + ‖λ− λ̃h‖M ≤ C
(
μ inf
ψh∈Vh

‖φ−ψh‖V + inf
μh∈Mh

‖λ− μh‖M
)

+ C̃‖f1 − f̃1‖V ′
h

holds, with the same constants C and C̃ as in Theorem 15.4.1.
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15.5 Schur complement preconditioning for parameter
dependent saddle point problems

In this section we present an abstract analysis of a Schur complement opera-
tor in Hilbert spaces. The results are from [189] and are not available in the
standard literature on saddle point problems. Similar results are presented in
[175]. Based on this framework one can derive Schur complement precondition-
ers for generalized Stokes equations that are robust with respect to variation
of the parameter ξ = 1

Δt , cf. (15.51) below. In Sect. 15.5.1 we present some
preliminaries. In Sect. 15.5.2 we derive a Schur complement preconditioner.
For part of the proofs we refer to [189]. In Sect. 15.5.3 we apply the abstract
results to a concrete generalized Stokes equation.

15.5.1 Preliminaries

Let H1 ⊂ H2 and M be Hilbert spaces such that the identity I : H1 → H2 is
a continuous dense embedding, i.e., H1 is dense in H2 and ‖φ‖H2 ≤ c‖φ‖H1

for all φ ∈ H1. Assume bilinear forms â : H1×H1 → R, ĉ : H2×H2 → R and
b̂ : H1×M . Related to these bilinear forms we make the following assumptions.
â(·, ·) and ĉ(·, ·) are symmetric and the following ellipticity, continuity and
inf-sup conditions hold with strictly positive constants γa, γb, γc:

γa‖φ‖2H1
≤ â(φ,φ), â(φ,ψ) ≤ Γa‖φ‖H1‖ψ‖H1 , φ,ψ ∈ H1, (15.27a)

γc‖φ‖2H2
≤ ĉ(φ,φ), ĉ(φ,ψ) ≤ Γc‖φ‖H2‖ψ‖H2 , φ,ψ ∈ H2,(15.27b)

b̂(φ,λ) ≤ Γb‖φ‖H1‖λ‖M , φ ∈ H1,λ ∈M, (15.27c)

γb‖λ‖M ≤ sup
φ∈H1

b̂(φ,λ)
‖φ‖H1

, λ ∈M. (15.27d)

For the analysis given below it is convenient to introduce corresponding linear
mappings

A : H1 → H ′
1, 〈Aφ,ψ〉 = â(φ,ψ) for all φ,ψ ∈ H1,

C : H2 → H ′
2, 〈C φ,ψ〉 = ĉ(φ,ψ) for all φ,ψ ∈ H2,

B : M → H ′
1, 〈B λ,ψ〉 = b̂(ψ,λ) for all λ ∈M, ψ ∈ H1.

To express the dependence of the duality pairing on the spaces used, we will
also write, for example, 〈C φ,ψ〉 = 〈C φ,ψ〉H′

2×H2 . To simplify the notation
we write 〈·, ·〉 if it is clear from the context which spaces are used in the duality
pairing. The assumptions on the bilinear forms imply that

γa‖φ‖H1 ≤ ‖Aφ‖H′
1
≤ Γa‖φ‖H1 for all φ ∈ H1, (15.28a)

γc‖φ‖H2 ≤ ‖Cφ‖H′
2
≤ Γc‖φ‖H2 for all φ ∈ H2, (15.28b)

γb‖λ‖M ≤ ‖Bλ‖H′
1
≤ Γb‖λ‖M for all λ ∈M. (15.28c)
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We also introduce the adjoint B′ of B given by

B′ : H1 →M ′, 〈B′ψ,λ〉M ′×M = 〈B λ,ψ〉H′
1×H1 for all λ ∈M, ψ ∈ H1.

Note that due to the symmetry of â(·, ·) the operator A : H1 → H ′
1 is self-

adjoint: 〈Aφ,ψ〉H′
1×H1 = 〈Aψ,φ〉H′

1×H1 for all φ,ψ ∈ H1. The operator
C : H2 → H ′

2 is selfadjoint, too.

Consider the following parameter dependent variant of the saddle point prob-
lem in (15.14). Given τ ≥ 0 and f1 ∈ H ′

1, find (φ,λ) ∈ H1 ×M such that

â(φ,ψ) + τ ĉ(φ,ψ) + b̂(ψ,λ) = f1(ψ) for all ψ ∈ H1

b̂(φ,μ) = 0 for all μ ∈M.
(15.29)

The problem (15.29) can be rewritten in operator formulation: find (φ,λ) ∈
H1 ×M such that {

Aφ+ τCφ +Bλ = f1
B′φ = 0. (15.30)

From Theorem 15.3.1, with V = H1 and â(·, ·) replaced by â(·, ·) + τ ĉ(·, ·),
it follows that this problem has a unique solution. The Schur complement
operator

S : M →M ′, S := B′(A+ τC)−1B

of this system is a selfadjoint positive definite operator. It defines a scalar
product (and corresponding norm) on M :

‖λ‖S := 〈S λ,λ〉 1
2 = sup

φ∈H1

〈Bλ,φ〉
〈(A+ τC)φ,φ〉 1

2
, λ ∈M. (15.31)

Remark 15.5.1 Consider the simple special case τ = 0. Let IM : M → M ′

be the Riesz isomorphism. From the properties of A and B it follows that

γbΓ
− 1

2
a ‖λ‖M ≤ ‖λ‖S ≤ γ

− 1
2

a Γb‖λ‖M for all λ ∈M,

holds. Hence, IM is spectrally equivalent to S:

c0〈IMλ,λ〉 ≤ 〈Sλ,λ〉 ≤ c1〈IMλ,λ〉 for all λ ∈M,

with spectral constants c0 = γ2
bΓ

−1
a , c1 = γ−1

a Γ 2
b .

In the analysis we use the concept of sums and intersections of vector spaces
(cf. [34]). The idea of applying this concept in the analysis of Schur comple-
ment preconditioners is introduced in [174].

Let X,Y be compatible normed spaces, i.e., both X and Y are subspaces
of some larger topological vector space Z. Then we can form their sum X+Y
and intersection X ∩ Y . The sum X + Y consists of all z ∈ Z such that
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z = x+y with x ∈ X,y ∈ Y . The spaces X∩Y and X+Y are normed vector
spaces with norms

‖x‖X∩Y =
(
‖x‖2X + ‖x‖2Y

) 1
2 for x ∈ X ∩ Y, (15.32)

‖z‖X+Y = inf
z=x+y

(
‖x‖2X + ‖y‖2Y

) 1
2 for x ∈ X, y ∈ Y. (15.33)

If X and Y are complete then both X ∩ Y and X + Y are complete (Lemma
2.3.1 in [34]). A few properties that we will need further on are given in the
following lemma. The space of bounded linear mappings T : X → Y is denoted
by L(X,Y ).

Lemma 15.5.2 Let X1, X2 and Y1, Y2 be pairs of compatible normed vector
spaces and let T be a linear mapping on X1 +X2 such that T ∈ L(X1, Y1) ∩
L(X2, Y2). Then T : X1 +X2 → Y1 + Y2 is bounded and

‖T ‖X1+X2→Y1+Y2 ≤
(
‖T ‖2X1→Y1

+ ‖T ‖2X2→Y2

) 1
2 (15.34)

holds. If X1 and X2 are Hilbert spaces such that X1 ∩X2 is dense in both X1

and X2, then (X1 ∩X2)′ = X ′
1 +X ′

2 holds and

‖g‖(X1∩X2)′ = ‖g‖X′
1+X

′
2

for all g ∈ (X1 ∩X2)′. (15.35)

In the remainder we assume τ > 0. By τH2 we denote the space H2 with
the scaled scalar product τ(·, ·)H2 . Using the previous lemma we obtain the
following equivalence result for the Schur complement norm in (15.31).

Theorem 15.5.3 For all λ ∈M we have

min{γa, γc}‖λ‖2S ≤ ‖Bλ‖2H′
1+τ

−1H′
2
≤ max{Γa, Γc}‖λ‖2S . (15.36)

Proof. For λ ∈M we have

‖Bλ‖(H1∩τH2)′ = sup
φ∈H1

〈Bλ,φ〉
(
‖φ‖2H1

+ τ‖φ‖2H2
)

1
2
. (15.37)

Due to the properties of A and C and the definition of ‖ · ‖S we get

min{γa, γc}‖λ‖2S ≤ ‖Bλ‖2(H1∩τH2)′ ≤ max{Γa, Γc}‖λ‖2S for all λ ∈M.

Now we apply the result in (15.35) to the case X1 = H1, X2 = τH2. Note that
H1 ∩ τH2 = H1 (this should be understood as equality of sets) and that the
intersection is dense in τH2. Hence, we get

‖Bλ‖(H1∩τH2)′ = ‖Bλ‖H′
1+τ

−1H′
2

and thus the result is proved. �
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We introduce a subspace W of M :

W =

{

λ ∈M : sup
φ∈H1

〈Bλ,φ〉
‖φ‖H2

<∞
}

= {λ ∈M : Bλ ∈ H ′
2 } . (15.38)

(Recall that H1 is dense in H2). We define the following functional on W :

‖λ‖W := sup
φ∈H2

〈Bλ,φ〉
〈Cφ,φ〉 1

2
. (15.39)

The lemma below summarizes useful properties of W .

Lemma 15.5.4 The following holds:

The identity I : W →M is a continuous embedding. (15.40a)
B(W ) is a closed subspace of H ′

2. (15.40b)
‖ · ‖W defines a norm and (W, ‖ · ‖W ) is a Hilbert space. (15.40c)

Let B′
W : H2 → W ′ be the adjoint of B : W → H ′

2, i.e., 〈B′
Wψ,λ〉W ′×W =

〈Bλ,ψ〉H′
2×H2 for all ψ ∈ H2, λ ∈W . Define

SW : W →W ′, SW := B′
WC

−1B. (15.41)

The following holds:

(λ,μ)W = 〈SWλ,μ〉W ′×W for all λ,μ ∈ W. (15.42)

Proof. Given in [189]. �
The Schur complement operator SW in (15.41) has a simpler form than the
Schur complement S since SW does not involve A or τ . A relation between S
and the operator SW will be derived in Sect. 15.5.2.

The space B(M) is a closed subspace of H ′
1. In our analysis we will need

the orthogonal projection

P : H ′
1 → B(M), (Pg, q)H′

1
= (g, q)H′

1
for all q ∈ B(M).

The following lemma gives another characterization of this projection.

Lemma 15.5.5 Let I1 : H1 → H ′
1 be the Riesz isomorphism, i.e., 〈I1φ,ψ〉 =

(φ,ψ)H1 for all φ,ψ ∈ H1. For f ∈ H ′
1 let (φ,λ) ∈ H1 ×M be the unique

solution of

I1φ+Bλ = f

B′φ = 0.

Define the solution operator S1 : H ′
1 →M by f → λ. Then P = B S1 holds.

Proof. For arbitrary f ∈ H ′
1 we have B S1f = Bλ ∈ B(M) and for any

μ ∈M :

(f −Bλ, Bμ)H′
1

= 〈I−1
1 (f −Bλ), Bμ〉H1×H′

1
= 〈φ, Bμ〉H1×H′

1

= 〈B′φ,μ〉M ′×M = 0,

and thus the result holds. �
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15.5.2 Schur complement preconditioner

The space W is a subspace of M and thus the sum norm (15.33) on the space
M + τ−1W is given by

‖λ‖M+τ−1W = inf
μ∈W

(
‖λ− μ‖2M + τ−1‖μ‖2W

) 1
2 . (15.43)

From Theorem 15.5.3 it follows that ‖λ‖S is uniformly (w.r.t. τ) equiva-
lent to ‖Bλ‖H′

1+τ
−1H′

2
. Using this, we now show that (under a certain as-

sumption) ‖λ‖S is uniformly equivalent to ‖λ‖M+τ−1W . We first consider
‖λ‖S ≤ c‖λ‖M+τ−1W and then ‖λ‖M+τ−1W ≤ c‖λ‖S. We then show that
‖λ‖M+τ−1W satisfies ‖λ‖2M+τ−1W = 〈S̃λ,λ〉 with a feasible preconditioner S̃
of S.

Lemma 15.5.6 Define Γs = Γ 2
b +Γc

min{γa,γc} . For all λ ∈M we have

‖λ‖2S ≤ Γs‖λ‖2M+τ−1W .

Proof. From Theorem 15.5.3 we get

‖λ‖2S ≤
1

min{γa, γc}
‖Bλ‖2H′

1+τ
−1H′

2
.

From (15.28b), (15.28c) and the definition of ‖ · ‖W we have

‖B‖M→H′
1
≤ Γb, ‖B‖W→H′

2
≤ Γ

1
2
c ,

and thus from (15.34) we obtain

‖Bλ‖H′
1+τ

−1H′
2
≤ (Γ 2

b + Γc)
1
2 ‖λ‖M+τ−1W ,

which completes the proof. �

For the inequality ‖λ‖M+τ−1W ≤ c‖λ‖S , with a constant c independent of
τ , we present an analysis which requires an assumption on the orthogonal
projection P : H ′

1 → B(M).
This crucial assumption is as follows.

Assumption 15.5.7 Assume that P : H ′
2 → H ′

2 and that there exists a
constant cP ≥ 1 such that

‖P f‖H′
2
≤ cP ‖f‖H′

2
for all f ∈ H ′

2. (15.44)

In [189] a slightly weaker, but more technical, assumption is used.

Lemma 15.5.8 Let Assumption 15.5.7 hold. Define γs :=
γ2

bγc

c2P (γ2
b+γc) max{Γa,Γc}.

For all λ ∈M we have

γs‖λ‖2M+τ−1W ≤ ‖λ‖2S. (15.45)
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Proof. We outline the main arguments. For a complete proof we refer to [189].
From the definition of the norm ‖ · ‖W and properties of B we get

‖B−1‖B(M)→M ≤ γ−1
b , ‖B−1‖B(W )→W ≤ γ

− 1
2

c ,

and thus

‖B−1g‖M+τ−1W ≤ (γ−2
b + γ−1

c )
1
2 ‖g‖B(M)+τ−1B(W ) for all g ∈ B(M).

Hence,

γ2
bγc

γ2
b + γc

‖λ‖2M+τ−1W ≤ ‖Bλ‖2B(M)+τ−1B(W ) for all λ ∈M.

Using Assumption 15.5.7 one can show that

‖Bλ‖2B(M)+τ−1B(W ) ≤ c2P ‖Bλ‖2H′
1+τ

−1H′
2

for all λ ∈M

holds. From Theorem 15.5.3 we have

‖Bλ‖2H′
1+τ

−1H′
2
≤ max{Γa, Γc}‖λ‖2S.

Hence the result in (15.45) holds. �

The results in these two lemmas imply the following main result.

Corollary 15.5.9 Suppose Assumption 15.5.7 holds. The following in-
equalities hold for any λ ∈M :

γs‖λ‖2M+τ−1W ≤ ‖λ‖2S ≤ Γs‖λ‖2M+τ−1W . (15.46)

It is not obvious how to use ‖λ‖M+τ−1W to construct a feasible preconditioner
for the Schur complement S. We now address this issue.
Let IM : M →M ′ be the Riesz isomorphism. Because the identity I : W →M
is a continuous embedding we have IM (W ) ⊂W ′. The mapping IM : W → W ′

is denoted by IW (note that in general this is not the Riesz-isomorphism inW ).

Theorem 15.5.10 Define S̃ : M →M ′ by

S̃ = IM − IM (IW + τ−1SW )−1IM ,

with SW defined in (15.41). Then S̃ is selfadjoint and positive definite and

‖λ‖2M+τ−1W = 〈S̃λ,λ〉M ′×M for all λ ∈M. (15.47)
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Proof. By assumption the operator C−1 : H ′
2 → H ′

2 is selfadjoint, therefore
SW and S̃ are selfadjoint as well.

With the help of elementary variational analysis we see that the infimum
on the right-hand side in (15.43) is attained for μ̃ ∈W that satisfies

(μ̃− λ, ξ)M + τ−1(μ̃, ξ)W = 0 for all ξ ∈ W.

This can be reformulated in operator notation, using the definition of the
W -scalar product and (15.42):

〈IM (μ̃− λ) + τ−1SW μ̃, ξ〉W ′×W = 0 for all ξ ∈W. (15.48)

Note that IMλ ∈M ′ ⊂W ′ holds. The solution μ̃ ∈ W of (15.48) is given by

(IW + τ−1SW )μ̃ = IMλ,

and thus μ̃ = (IW + τ−1SW )−1IMλ. A straightforward computation yields

‖λ‖2M+τ−1W = ‖λ− μ̃‖2M + τ−1‖μ̃‖2W = (λ− μ̃,λ)M = 〈IM (λ− μ̃),λ〉.

Substituting μ̃ = (IW + τ−1SW )−1IMλ, we obtain (15.47). From (15.47) it
follows that S̃ is positive definite. �

As a direct consequence of the results in Corollary 15.5.9 and Theorem 15.5.10
we obtain the following main result.

Corollary 15.5.11 Suppose Assumption 15.5.7 holds. The following in-
equalities hold for any λ ∈M :

γs〈S̃λ,λ〉 ≤ 〈Sλ,λ〉 ≤ Γs〈S̃λ,λ〉. (15.49)

In the setting of preconditioning one is interested in the inverse of the pre-
conditioner. By a straightforward computation one can check that the inverse
S̃−1 : M ′ →M of S̃ is given by

S̃−1 := I−1
M + τS−1

W = I−1
M + τ

(
B′
WC

−1B
)−1

, (15.50)

with B′
W the adjoint of B : W → H ′

2, cf. Lemma 15.5.4. In (15.50)
S−1
W : W ′ → W is considered as mapping M ′ → M . As a final result in

this section we give a simple criterion which is a useful sufficient condition for
Assumption 15.5.7 to hold.

Lemma 15.5.12 Let S1 : H ′
1 → M be the solution operator from

Lemma 15.5.5. Assume that there is a subspace W̃ ⊂ M with norm ‖ · ‖W̃
such that both S1 : H ′

2 → W̃ and B : W̃ → H ′
2 are bounded, i.e.,

‖S1f‖W̃ ≤ c1‖f‖H′
2
∀ f ∈ H ′

2 , ‖Bλ‖H′
2
≤ c2‖λ‖W̃ ∀ λ ∈ W̃ .

Then Assumption 15.5.7 is fulfilled with cP = c1c2.
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Proof. The proof immediately follows from P = B S1 and

‖Pf‖H′
2

= ‖B S1f‖H′
2
≤ c2‖S1f‖W̃ ≤ c2c1‖f‖H′

2
for all f ∈ H ′

2.

�

15.5.3 Application to a generalized Stokes equation

We apply the abstract results presented in the previous section to a generalized
Stokes equation of the form

ξu−Δu +∇p = g in Ω,
div u = 0 in Ω,

(15.51)

in a bounded connected domain Ω ⊂ R
3, and with homogeneous Dirichlet

boundary conditions for u. For the weak formulation we use spaces

H1 := H1
0 (Ω)3 =: H, H2 := L2(Ω)3 =: L2, M = L2

0(Ω),

with scalar products

(u,v)H1 := (∇u,∇v)L2 , (u,v)H2 := (u,v)L2 , (p, q)M := (p, q)L2 .

The bilinear forms are defined by

â(u,v) := (∇u,∇v)L2 , ĉ(u,v) := (u,v)L2 , b̂(v, p) := −(p, div v)L2 .

With τ := ξ ≥ 0, the weak formulation is as follows: Find (u, p) ∈ H ×M
such that

{
â(u,v) + τ ĉ(u,v) + b̂(v, p) = (g,v)L2 for all v ∈ H

b̂(u, q) = 0 for all q ∈M.
(15.52)

Recall the inf-sup inequality:

sup
v∈H

(div v, p)L2

‖∇v‖L2
≥ γb‖p‖L2 for all p ∈M,

with γb > 0. Using this one easily verifies that the conditions in (15.27a)–
(15.27d) are satisfied with γa = Γa = γc = Γc = 1, Γb =

√
3, γb > 0 the con-

stant from the inf-sup inequality. For the operators A,B,B′, C corresponding
to the bilinear forms we use the (usual) notation

A =: −Δ, B := ∇, B′ =: − div, C =: I.

The result in Theorem 15.5.3 takes the form

(S p, p)L2 = ‖∇p‖2H−1+τ−1L2 for all p ∈ L2
0(Ω) .
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We now consider Assumption 15.5.7 and use the criterion in Lemma 15.5.12.
Note that −Δ is the Riesz isomorphism H = H1

0 (Ω)3 →
(
H1

0 (Ω)3
)′ =: H−1.

Thus for f ∈ H−1 the solution p = S1f , with S1 from Lemma 15.5.5, satisfies
the weak formulation of the stationary Stokes problem:

−Δu +∇p = f in Ω,

div u = 0 in Ω,

u|∂Ω = 0.
(15.53)

In the following lemma it is shown that H2-regularity of this Stokes problem
implies that Assumption 15.5.7 holds.

Lemma 15.5.13 Assume that the domain Ω is such that the Stokes problem
(15.53) is H2-regular, i.e., there is a constant cR such that for any f ∈ L2(Ω)
the solution (u, p) is an element of H2(Ω)3 ×H1(Ω) and satisfies

‖u‖H2(Ω) + ‖∇p‖L2 ≤ cR‖f‖L2. (15.54)

Then Assumption 15.5.7 is satisfied with cP = cR. Furthermore, we have
W = H1(Ω) ∩ L2

0(Ω) and ‖p‖W = ‖∇p‖L2.

Proof. We apply Lemma 15.5.12 with W̃ := H1(Ω)∩L2
0(Ω) and norm ‖p‖2

W̃
=

(∇p,∇p)L2 . Due to the regularity assumption we have ‖S1f‖W̃ = ‖∇p‖L2 ≤
cR‖f‖L2. Furthermore, for p ∈ W̃ we have ‖Bp‖H′

2
= ‖∇p‖L2 = ‖p‖W̃ . Thus

the assumptions in Lemma 15.5.12 hold with c1 = cR, c2 = 1. It follows that
Assumption 15.5.7 is fulfilled.

The definition (15.38) of W takes the form W :=
{
p ∈ L2

0 : ∇p ∈ L2
}
.

Thus W = H1(Ω) ∩L2
0(Ω) = W̃ . Finally by the definition of the W -norm we

have for p ∈ W̃ :

‖p‖W := sup
v∈H2

〈Bp, v〉
〈Cv, v〉 1

2
= sup

v∈L2

(∇p,v)L2

‖v‖L2
= ‖∇p‖L2.

�

Now consider the Schur complement of the generalized Stokes problem:

S = B′(A+ τC)−1B = − div(−Δ+ τI)−1∇. (15.55)

We identify L2
0(Ω) with its dual. Then S : L2

0(Ω) → L2
0(Ω) and 〈·, ·〉M ′×M =

(·, ·)L2 .
If the stationary Stokes problem is H2-regular the abstract theory in

Sect. 15.5.2 can be applied, and we have a uniform equivalence result given in
Corollary 15.5.11. This yields the following main result of this section.
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Theorem 15.5.14 Assume that the domain Ω ⊂ R
3 is such that the Stokes

problem (15.53) is H2-regular. Denote by −Δ−1
N : L2

0(Ω) → H1(Ω)∩L2
0(Ω)

the solution operator of the following Neumann pressure problem: Given
f ∈ L2

0(Ω) find p ∈ H1(Ω) ∩ L2
0(Ω) such that

(∇p,∇q)L2 = (f, q)L2 , for all q ∈ H1(Ω) ∩ L2
0(Ω).

Define S̃−1 = I − τΔ−1
N . Then S̃−1 : L2

0(Ω) → L2
0(Ω) is selfadjoint and

positive definite, and for all p ∈ L2
0(Ω) and all τ ≥ 0 the following holds:

γs(S̃p, p)L2 ≤ (Sp, p)L2 ≤ Γs(S̃p, p)L2

with γs = γ2
b

c2R(γ2
b+1)

, Γs = 4.

Proof. We apply Corollary 15.5.11. In the setting here we have W = H1
0 (Ω)∩

L2
0(Ω), M = L2

0(Ω) = M ′. The mapping S̃ : M →M is defined by, cf. (15.50),
S̃−1 = I−1

L2 +τS−1
W = I+τ

(
B′
WC

−1B
)−1. For f ∈M we have w = S−1

W f ∈ W
iff

〈B′
WC

−1Bw, q〉W ′×W = (f, q)L2 ∀q ∈W
⇔ 〈Bq,C−1Bw〉L2×L2 = (f, q)L2 ∀q ∈ W
⇔ 〈∇q, I−1

L2 ∇w〉L2×L2 = (f, q)L2 ∀q ∈ W
⇔ (∇w,∇q)L2 = (f, q)L2 ∀q ∈ W,

and thus S−1
W is equal to the Neumann solution operator −Δ−1

N . Hence
S̃−1 = I + τS−1

W = I − τΔ−1
N . The values for the spectral bounds follow

from Corollary 15.5.11 and from γa = Γa = γc = Γc = 1, Γb =
√

3 and
cP = cR. �
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mains. Arch. Rat. Mech. Anal., 5:280–292, 1960.

202. J. Peters, V. Reichelt, and A. Reusken. Fast iterative solvers for discrete Stokes
equations. SIAM J. Sci. Comput., 27(2):646–666, 2005.

203. S. Pijl, A. Segal, C. Vuik, and P. Wesseling. A mass-conserving level-set method
for modelling of multi-phase flows. Int. J. Numer. Meth. Fluids, 47:339–361,
2005.

204. J. Pilliod and E. Puckett. Second-order accurate Volume-Of-Fluid algorithms
for tracking material interfaces. J. Comp. Phys., 199:465–502, 2004.

205. J. Qian, Y.-T. Zhang, and H.-K. Zhao. Fast sweeping methods for Eikonal
equations on triangular meshes. SIAM J. Numer. Anal., 45(1):83–107, 2007.

206. A. Quarteroni and A. Valli. Numerical Approximation of Partial Differen-
tial Equations, volume 23 of Springer Series in Computational Mathematics.
Springer-Verlag, Berlin, Heidelberg, 1994.

207. R. Rannacher. On the numerical solution of the incompressible Navier-Stokes
equations. Z. Angew. Math. Mech., 73(9):203–216, 1993.

208. L. Rayleigh. On the theory of surface forces - II. compressible fluids. Phil.
Mag., 30:209–220, 1892.

209. A. Reusken. Analysis of an extended pressure finite element space for two-phase
incompressible flows. Comput. Vis. Sci., 11:293–305, 2008.

210. A. Reusken. Introduction to multigrid methods for elliptic boundary value
problems. In J. Grotendorst, N. Attig, and S. Bügel, editors, Simulation Meth-
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A-stable, 87
Adaptivity

time integration, 97
triangulation, 57

Adsorption, 17
ALE method, 170
Algebraic multigrid method, 157
Anisotropic Sobolev space, 193
Average, 331, 372

velocity, 22
weighted, 346, 348

Barycenter, 22, 294
Barycentric coordinates, 62
BDF2 scheme, 84
BFBt preconditioner, 151

numerical experiment, 152
two-phase, 317

Bilinear form
continuous, 130, 439
elliptic, 130, 441
Nitsche-XFEM, 346, 348
Stokes, 40

two-phase, 163
symmetric, 442

Block Gauss-Seidel, 298
Boundary condition

Dirichlet, 19
essential, 19
natural, 20
Neumann, 20
no-slip, 19

Boundary force, 4

Boussinesq-Scriven model, 18
Broyden method, 305

numerical experiment, 306
Bubble column reactor, 20
Bubble function, 76
Bulk concentration, 17

equilibrium, 17

Céa’s lemma, 441
Cahn-Hilliard equation, 181
Cahouet-Chabard preconditioner, 150

numerical experiment, 152, 320
two-phase, 316

Cauchy’s theorem, 4
Characteristic, 168
Characteristic function, 171
Child, 52
Clean interface assumption, 14
Clement interpolation, 63
Co-area formula, 397
Color function, 174
Concentration

bulk, 17
equilibrium, 17
solute, 9
surface, 17

Conservation
of mass, 3, 10, 182, 327

sharp interface, 13
of momentum, 3

Consistency
time integration, 84
triangulation, 51
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Consistency order, 84
Consistent vertex numbering, 55
Contact force, 4, 15
Continuous bilinear form, 439
Continuum surface force, 164
Convection matrix, 67

stabilized, 203
Coordinates

barycentric, 62
dimensionless, 34, 162
Eulerian, 2, 168
Lagrangian, 2, 168
spherical, 15
transformation Euler→Lagrange, 168

Crank-Nicolson method, 84
CSF, 164

with level set, 180
Curvature

mean, 8, 232, 434
Laplace-Beltrami characterization,

435
principal, 232, 414, 434

DAE, 68
Damped Jacobi method, 123

smoothing property, 140
Defect correction method, 100
Deformation tensor, 5
Density, 3

excess mass density, 13
matched, 181
of mixture, 181
partial, 181
surface mass density, 13

Desorption, 17
Differential algebraic equation, 68
Differential geometry, 433
Diffusion coefficient

mass transport, 10, 327
surfactant transport, 11, 385

Diffusion matrix, 67
pressure space, 150

Diffusive flux, 11
Diffusive interface model, 12, 181
Dimensionless formulation

Navier-Stokes, 34
two-phase, 162

Oseen, 35
Stokes, 35

generalized, 35
stationary, 35

Dimensionless variable
coordinates, 34, 162
pressure, 34, 162
time, 34, 162
velocity, 34, 162

Dirichlet boundary condition, 19
Dissipativity

time integration, 89
Distribution, 37
Distributional time derivative, 335
Dividing surface, 12
Domain, 1
Double well potential, 183
DROPS, XII
Dual space, 38
Dynamic viscosity, 5

Edge refinement pattern, 55
Effective surface viscosity, 18
Eikonal equation, 212
Elliptic bilinear form, 441
Energy norm, 145
Energy scalar product, 145
Enrichment function, 249

space-time XFEM, 371
Equilibrium

bulk concentration, 17
solute concentration, 10
surface concentration, 17

Essential boundary condition, 19
Eulerian coordinates, 2
Excess mass density, 13
Extended finite element method, see

also XFEM space
Extension, 233, 392

planar, 416
External pressure, 20
Extraction column, 20

Falling film, 20
Fast marching method, 216

approximation quality, 217
complexity, 217
numerical experiment, 226

Fick’s law, 184
Finite element

hp-method, 79
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conforming, 76
Crouzeix-Raviart, 77
discontinuous Galerkin, 79
extended, 248
Hood-Taylor, 65
isoparametric, 79
LBB stability, 64
LBB stabilization, 77
mass conservation, 79
mini-, 76
nested spaces, 52, 130
nodal basis, 66

space-time, 370
nonconforming, 77
on interface, 402
Scott-Vogelius, 80
simplicial, 61
spectral method, 79
stable pair, 64

Finite volume, 76
Fixed point iteration, 305

convergence acceleration, 300, 305
numerical experiment, 306

numerical experiment, 155
Force

boundary, 4
contact, 4, 15
surface tension, 7
volume, 4

Fourier modes, 123
Fréchet derivative, 43
Fractional-step theta-scheme, 84

Navier-Stokes, 94
Free energy, 183
Frumkin isotherm, 18

Galerkin discretization, 64, 68, 72, 440
saddle point problem, 446
surfactant transport, 402

space-time, 424
Galerkin/Least-Squares, 78
Garding inequality, 45
Gauss-Seidel method, 131

symmetric, 134
smoothing property, 141

GCR method, 117
preconditioned, 117

Gelfand triple, 43
Generalized inverse, 152

Generalized Stokes equation, 34
dimensionless formulation, 35

Gibbs adsorption equation, 17
Gibbs isotherm, see Gibbs adsorption

equation
Grad-div stabilization, 81
Gravitational acceleration, 4
Green closure, 57
Green’s formula, 36, 39

hypersurface, 435

Heaviside function, 191
Henry condition, 10, 327
Henry’s constant, 10
Henry’s law, 9
Hierarchical decomposition, 53

admissible, 60
Hierarchical surplus, 53
Hille-Yosida theorem, 193
Hood-Taylor pair, 65
Hypersurface, 433

Green’s formula, 435
material derivative, 438
Reynolds transport theorem, 438

Immiscibility assumption, 8
Immiscibility condition, 8, 171
Implicit Euler, 84, 286

with decoupling, 291
Incompressibility condition, 47
Inf-sup condition, 41, 440

discrete, 64, 66, 78, 440
numerical experiment, 275

Inflow, 19
Initial condition, 19
Inner product, see scalar product
Interface, 6, see also hypersurface

approximation, 205
average, 331, 372

weighted, 346, 348
clean, 14
coupling condition, 7, 8
diffusive, 181, 183
dilatational viscosity, 19
flattening, 173, 178
jump, 7, 348
mesh size, 206
model, 12

Boussinesq-Scriven, 18
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diffusive, 12, 181
Langmuir, 17
sharp, 12

normal, 7
normal velocity, 8
particle-laden, 18
reconstruction, 205

VOF, 175
representation, 169
sharp, 180

mass conservation, 13
shear viscosity, 19
space-time, 171, 334, 388
tracking, 169
transport phenomena, 12

Interpolation
Clement, 63
error bound, 63
nodal, 62
polynomial, 62

Inverse inequality, 137
Isotherm

Frumkin, 18
Gibbs, 17

Isotropic medium, 5

Jacobi method
damped, 123

smoothing property, 140
Jump, 7, 348

numerical experiment, 267, 271

Kinetic energy, 167
Krylov subspace, 103, 116

Lagrange multiplier, 47, 91, 284
Lagrangian coordinates, 2
Langmuir model, 17
Laplace-Beltrami, 228, 435

equation, 386
numerical experiment, 407, 428

numerical experiment, 242, 271
Laplace-Young law, 15, 263

numerical experiment, 271
Lax-Milgram lemma, 442
LBB condition, see inf-sup condition
LBB stability, 64

numerical experiment, 275
Leaf, 52

Level set
equation, 178

weak formulation, 194
function, 178
mass conservation, 218
numerical experiment, 221
re-initialization, 212
theta-scheme, 204

Lift, 393
Localized force term, 164

Marangoni convection, 376
numerical experiment, 375

Mass conservation, 218
Mass flux, 182
Mass matrix, 67

pressure space, 148
numerical experiment, 274

scaled, 311
stabilized, 203
surface FEM, 410

condition number, 407
numerical experiment, 410

Mass transport equation, 10, 327
numerical experiment, 375
weak formulation, 330

space-time, 340
Matched density, 181
Material derivative, 2

hypersurface, 438
Material point, see particle
Material volume, 3
Mean curvature, 8, 232, 434

Laplace-Beltrami characterization,
435

Mesh size, 61
interface, 206

Method of lines, 93
MINRES method, 103

preconditioned, 104
Mixing energy density, 183
Momentum equation, 5
Moore-Penrose inverse, 152
Multigrid

approximation property, 137, 139
contraction number, 143
Fourier analysis, 124
optimality, 144
prolongation, 126, 131
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restriction, 126, 132
smoothing property, 125, 137, 140
V-cycle, 128
W-cycle, 128

Multigrid method, 122, 132
algebraic, 157
for saddle point system, 157

Multigrid preconditioner, 119, 121, 147
numerical experiment, 318

Multilevel refinement, 53
Multilevel triangulation, 52

regular, 52

Natural boundary condition, 20
Navier-Stokes, 5, 33

Cahn-Hilliard, 185
dimensionless formulation, 34

two-phase, 162
theta-scheme, 91

fractional-step, 94
two-phase, 8, 164, 192

dimensionless, 162
weak formulation, 164, 194

weak formulation, 48
Neumann boundary condition, 20
Newton’s law, 3
Newtonian fluid, 5
Nitsche-XFEM method, 345

bilinear form, 346, 348
numerical experiment, 359
with Rothe’s method, 365

numerical experiment, 366
with space-time FEM, 373
with theta-scheme, 357

NMR, 21
No-slip boundary condition, 19
Nodal basis, 66

space-time, 370
Nodal interpolation, 62
Norm

energy, 145
equivalence, 38
Sobolev, 37

Normal, 39
space-time, 171, 337

Normal velocity, 8
Numerical experiment

condition number
for surface FEM, 410

for XFEM, 274
curvature-driven flow, 306
curved channel, 74
Laplace-Beltrami discretization, 242,

271
Laplace-Beltrami equation, 407

space-time, 428
LBB stability, 275
level set, 221
mass transport, 375
multigrid, 134
Nitsche-XFEM, 359
pressure jump, 267
re-initialization, 226
rectangular tube, 73
rising butanol droplet, 22

with mass transport, 375
with surfactant, 24

rising toluene droplet, 279
Rothe-Nitsche-XFEM, 366
Schur complement preconditioner,

152, 320
static droplet, 271
surfactant, 24
surfactant transport, 407

space-time, 428
time integration, 95

two-phase, 292
XFEM, 261, 267, 271, 279

Operator splitting, 97
Order parameter, 182
Oseen equation, 34

dimensionless formulation, 35
weak formulation, 39

Outer FEM space, 402

Parent, 52
Partial density, 181
Partial integration, 165
Particle, 2

trajectory, 2
Particle-laden interface, 18
Partition of unity method (PUM), 248
Phase, 6
Phase field

Cahn-Hilliard, 185
model, 185
representation, 180
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Picard-Lindelöf theorem, 83
PLIC, 175
Poincaré-Friedrichs inequality, 38
Poisson equation, 128
Polynomial, 61

interpolation, 62
Preconditioner, 120

approximate commutator, 156
augmented Lagrangian, 156
BFBt, 151

two-phase, 317
block, 116, 118
Cahouet-Chabard, 150

two-phase, 316
multigrid, 119, 121, 147
numerical experiment, 318
Schur complement, 148, 308, 455, 458

numerical experiment, 152, 320
variable, 116

Pressure, 5
dimensionless, 34, 162
external, 20
space, 163

Principal curvature, 232, 414, 434
Principal lattice, 62
Projection

on kerB, 91
tangential, 229

improved, 229
Projection method, 97

Re-initialization, 212
numerical experiment, 226

Refinement, 52
adaptive, 57
green, 55
irregular, 52, 55
multilevel, 53, 57
pattern, 55
red, 53
red-green, 56
regular, 52, 54
rule, 55

irregular, 55
regular, 53

triangulation, 52
Reparametrization, 212
Reynolds number, 34

two-phase, 162

Reynolds transport theorem, 3, 437
hypersurface, 438

Richardson method, 130
smoothing property, 140

Rise velocity, 22, 294
numerical experiment, 22
terminal, 22
variable surface tension, 380

Rothe’s method, 93, 289
with Nitsche-XFEM, 365

numerical experiment, 366

Saddle point matrix, 67
Saddle point problem, 103, 443

Galerkin discretization, 446
Strang lemma, 447

Scalar product
energy, 145
Sobolev, 37

Schur complement, 102
approximate, 107, 110
operator, 450
preconditioner, 148, 455, 458

numerical experiment, 152, 320
SDFEM, 201
Sharp interface model, 12, 195

mass conservation, 13
Signed distance function, 208, 231, 392
SLIC, 175
Smoother, 125

damped Jacobi, 125, 131
Gauss-Seidel, 131
Richardson, 130
symmetric Gauss-Seidel, 134

Smoothing property
damped Jacobi, 140
multigrid, 125
Richardson, 140
symmetric Gauss-Seidel, 141
time integration, 88

Sobolev embedding, 38
space-time, 338

Sobolev space, 36
anisotropic, 193
for level set, 193
for velocity, 163
inner product, 37
norm, 37

Space-time cylinder, 171, 334, 422
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Space-time FEM
with Nitsche-XFEM method, 373
XFEM space, 371

Space-time interface, 171, 334, 388, 422
Space-time normal, 171, 337
Spectral inequality, 106
Spherical coordinates, 15
Spurious velocities, 263, 281
Stability

finite element pair, 64
LBB, 64
time integration, 86
triangulation, 52
XFEM basis, 259

numerical experiment, 274
Stability function, 87
Stability region, 87
Stabilization, 200

grad-div, 81
LBB, 77
streamline diffusion, 202

Stagnant cap, 20
Static droplet, 264, 317

numerical experiment, 271
Stationary Stokes equation, 34

dimensionless formulation, 35
Stokes equation, 33

dimensionless formulation, 35
generalized, 34

dimensionless, 35
stationary, 34

dimensionless, 35
weak formulation, 45

Strang lemma, 447
Streamline diffusion (SDFEM), 202
Stress tensor, 5
Surface, see hypersurface

concentration, 17
coverage, 17
dividing, 12
mass density, 13
viscosity, 18

Surface concentration
equilibrium, 17

Surface FEM space, 402
basis, 403
condition number, 407

numerical experiment, 410
numerical experiment, 407

space-time, 423
numerical experiment, 428

Surface tension
coefficient, 7
contact force, 15
discretization, 227

numerical experiment, 242, 271
energy, 167
energy characterization, 15
force, 7
functional, 228
linearization, 300

numerical experiment, 306
variable coefficient, 230

rise velocity, 380
Surfactant, 9

concentration, 17
numerical experiment, 24

Surfactant transport equation, 11, 385
Eulerian FEM, 396

extension-based, 397
Eulerian surface FEM, 401

space-time, 422
Galerkin discretization, 402

space time, 424
Lagrangian FEM, 392
numerical experiment, 407
space-time

numerical experiment, 428
weak formulation, 386, 388, 389

Symmetric bilinear form, 442

Tangential derivative, 9, 397, 433
Tangential divergence, 433
Tangential projection, 229

improved, 229
Terminal rise velocity, 22
Tetrahedron

child, 52
irregular, 52
leaf, 52
level, 52
mark, 57
parent, 52
regular, 52
status, 57

Theta-scheme, 83
for Nitsche-XFEM, 357
fractional step, 84
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Navier-Stokes, 94
generalized, 283
level set, 204
Navier-Stokes, 91

Time
dimensionless, 34, 162
weak derivative, 43

Time integration
adaptive, 97
consistency, 84
dissipativity, 89
mass transport, 357, 365
numerical experiment, 95
one-phase, 83
smoothing property, 88
stability, 86
two-phase, 283

numerical experiment, 292
Time interval, 1, 423
Time slab, 370, 423
Trace operator, 38
Traction vector, 4
Trajectory, 2
Transport equation

for characteristic function, 172
for level set function, 178
renormalized solution, 172
viscosity solution, 178

Triangulation, 51
adaptive, 57
coarsest, 52
consistent, 51, 60
finest, 52
Hsieh-Clough-Tocher, 80
initial, 52
multilevel, 52

regular, 52
Powell-Sabin, 80
refinement, 52
regular, 61
stable, 52
tetrahedral, 61

Two-grid method, 127
Two-phase flow

discretization, 276
model, see Navier-Stokes, two-phase

Uzawa method, 110
inexact, 110, 119

Variational problem, 440
Velocity, 2

average, 22
dimensionless, 34, 162
rise, 22, 294
space, 163

Viscosity
dynamic, 5
interface dilatational viscosity, 19
interface shear viscosity, 19
surface, 18

Volume conservation, 174
Volume force, 4
Volume of fluid (VOF), 174
Volume tracking, 171

Wall, 19
Weak derivative, 36, 43

time, 43
Weak formulation

level set equation, 194
mass transport equation, 330

space-time, 340
Navier-Stokes equation, 48

two-phase, 164, 194
Oseen equation, 39
Stokes equation, 45
surfactant transport equation, 386,

388, 389
Weber number, 162
Weighted average, 346, 348

XFEM space, 248, 250
approximation property, 254
basis, 256

stability, 259
LBB stability, 260
numerical experiment, 261, 271, 279
reduced, 253

approximation property, 255
space-time, 371

enrichment function, 371
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