

Lecture Notes in Computer Science 6585
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Stefano Ceri Marco Brambilla (Eds.)

Search Computing

Trends and Developments

13

Volume Editors

Stefano Ceri
Marco Brambilla
Politecnico di Milano
Dipartimento di Elettronica e Informazione
P.za L. Da Vinci, 32, 20133 Milano, Italy
E-mail: {stefano.ceri, marco.brambilla}@polimi.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-19667-6 e-ISBN 978-3-642-19668-3
DOI 10.1007/978-3-642-19668-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011922270

CR Subject Classification (1998): H.4, H.3, D.4, C.2.4, F.2, D.1.3

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Searching for information is perhaps the most important application of today’s
computing systems. In the new century, all the World’s citizens have become ac-
customed to thinking of the Web as the source for answering their information
needs, and search engines as their Web interface. Websites reporting a movie’s
plot, tomorrow’s weather in our next destination, the risks of a surgical proce-
dure, the fastest route to a friend’s house, the video of the last opera at La Scala
can all be found as result of a keyword search. If any Web page in the world
stores the answer to our information need, then we expect the search engine to
link that page and describe it through a snippet appearing in the first page of
the search results.

A few search engine companies are able to meet such expectations, and com-
pletely cover the search engine market. However, offering a link to a Web page
does not cover all information needs. Many problems cannot be solved by simple
keyword-based queries. The notion of “best page” for solving a given problem is
typically inadequate when the problem requires solutions spanning over multiple
pages. We are indeed accustomed to using a variety of Web resources to solve our
problems: while the search engine hints to useful information, the user’s brain is
the fundamental platform for information integration.

Problems such as “who is the best doctor to cure insomnia in a nearby hospi-
tal” can be solved by using the Web multiple times, searching for partial results.
Once a hospital’s website is located and the listing of its doctors is extracted, one
can find out that there is one doctor in the list who has published recent papers
on insomnia. While doing so, the user is performing information integration in
her brain; specifically, she is applying ranking while extracting hospitals based on
proximity and doctors based on their publications on insomnia, then matching
on the basis of doctor names. Of course, the best way to build the matching is to
use the search engine itself, by entering doctors’ names as keywords, extracted
from either the hospital search or the literature search, but then the search is
less focused and result interpretation is more difficult.

Complex queries are supported in certain domains, such as travels, hotel
booking, and book purchasing, by specialized, domain-specific search systems or
search engine integrators. It is important to assess how travel assistants solve
the problem: they offer a few predefined queries to build the itinerary, then of-
fer additional services (e.g., car rentals, hotels, local events, insurance) so as to
complete the plan around the itinerary. Thus, they perform specialized steps
of integration by substituting the user’s brain, and then let the user enrich the
solution incrementally and interactively, with customized interfaces. In other
words, they solve complex queries in the context of given domains, which are

VI Preface

supported by a substantial business; such specialized search systems dominate
over general purpose ones in their domain of expertise, and therefore attract
users.

The search computing project (SeCo), funded by the European Research
Council as an advanced IDEAS grant, aims at building concepts, algorithms,
tools, and technologies to support complex Web queries. The project is now en-
tering the third of a five-year lifespan (November 2008 – November 2013); it
proposes a new paradigm for solving complex queries based on combining data
extraction from distinct sources and data integration by means of specialized in-
tegration engines. Data extraction retrieves data from different sources, ordered
based on local rankings, and data integration merges such results into result
combinations, with an associated global ranking, such that combinations with
the highest ranking are produced as fast as possible; a result combination rep-
resents the solution of a complex search problem. Thus, the search computing
project has the ambitious goal of lowering the technological barrier required for
building complex search applications, thereby enabling the development of many
new applications which will cover relevant search needs.

Search computing covers many research directions, which are all required in
order to provide an overall solution to a complex search. The core of the project
is the technology for search service integration, which requires both theoretical
investigation and engineering of efficient technological solutions. The core the-
ory concerns the development of result integration methods that not only denote
“top-k optimality,” but also the need of dealing with proximity, approximation,
and uncertainty. Such a theory is supported by an open, extensible and scalable
architecture for computing queries over data services, designed so as to incor-
porate the project’s results by adding new operations, by encoding new join
methods, and by injecting new features dealing with incremental evaluation and
adaptivity.

A number of further research dimensions complement such core. Formulation
of a complex query and browsing over solutions is a complex cognitive task,
whose intrinsic difficulty has to be lowered as much as possible so as to meet
usability requirements. Therefore, we are investing a consistent effort in the de-
velopment of user-friendly interfaces which are targeted at assisting users in ex-
pressing their needs and then browsing on results. Solving a complex problem re-
quires supporting users in the interactive and incremental design of their queries,
thereby assisting search as a long-term process for exploring the solution space;
result differences can be better appreciated by visualizing results (e.g., through
maps or timelines). The project success also depends on the ability of registering
new sources and making them available for solving complex problems; therefore,
we have designed abstractions, architectural solutions, and model-driven design
tools for service registration and for application development, aiming at assist-
ing service publishing, application design, and query execution tuning. While the
current description of Web resources is very simple, so as to enable an equally
simple description of Web interactions, we aim at linking the service description

Preface VII

to ontological sources, so as to enable high-level expressive interfaces covering
the gap from high-level interactions to query expression.

While focusing on technological dimensions, we are also investigating crucial
aspects to the project success, such as the business models and user involvement
in the design process through user-centered design. We are additionally investi-
gating the use of search computing for scientific applications, such as supporting
bio-informatics research by enabling the access to genetic and proteomic data
sources.

This book reports the proceedings of the workshop “New Trends in Search
Computing,” held in Como and Milan during May 25–31, 2010, as the follow-up
of the workshop “Search Computing Challenges and Directions,” also published
by Springer in 2010 (LNCS 5950).

The workshop was divided into eight independent sessions, reflecting the
many research directions of the project. It was held during five consecutive days,
in Milan and Como, with about 60 participants equally divided between SeCo
researchers and international experts. Each workshop session had editors, chosen
within the SeCo research team, and external experts, who provided their tangible
contribution to the project with feedback, advice, and contributed chapters.
Session editors helped us in organizing the book’s design, by interacting with
the session experts and by shaping up each session and the corresponding book
part.

Each part of the book reports the result of a workshop session; it includes one
chapter describing the search computing approach to the problem, and one or
more additional chapters reflecting the contribution and viewpoints of experts
that participated in the workshop, broadening the spectrum of investigations
which are currently ongoing in search computing. In some cases, the part is closed
by a short chapter reporting different opinions that the workshop participants
discussed at panels which closed the corresponding session.

The book is the result of the collective effort of all the project participants
and has been reviewed by several experts. We would like to thank all of them
for their efforts.

January 2011 Marco Brambilla
Stefano Ceri

Organization

Reviewers

Carlo Batini Università degli Studi di Milano-Bicocca
Jordi Cabot INRIA - École des Mines de Nantes
Andrea Cal̀ı University of Oxford
Alex Komoroske Google, Inc.
Rodrigo Lopez European Bioinformatics Institute
Ioana Manolescu INRIA - Université de Paris Sud
Massimo Paolucci DOCOMO Euro-Labs
Alfonso Valencia Spanish National Cancer Research Centre
Roberto Verganti Politecnico di Milano
Gerhard Weikum Max Planck Institute for Informatics

Part Editors

Part 1: The Search Process Marco Brambilla and Stefano Ceri
Part 2: Interaction Design Tiziana Catarci and Maristella Matera
Part 3: Semantic Description Alessandro Campi and Davide Eynard
Part 4: Rank-Join Davide Martinenghi and Marco Tagliasacchi
Part 5: Query Processing Daniele Braga and Michael Grossniklaus
Part 6: Tools and Mashups Marco Brambilla and Alessandro Bozzon
Part 7: BioSeco Marco Masseroli
Part 8: Sustainable Exploitation Emanuele Della Valle

Sponsoring Institutions

The Search Computing (Seco) Project is funded by the European Research Coun-
cil (ERC), responding to the 2008 Call for “IDEAS Advanced Grants,” a program
dedicated to the support of investigation-driven frontier research. SeCo started
on November 1, 2008 and will last until October 31, 2013.

Table of Contents

Part 1: The Search Process

The New Frontier of Web Search Technology: Seven Challenges 3
Ricardo Baeza-Yates, Andrei Z. Broder, and Yoelle Maarek

Information Exploration in Search Computing . 10
Alessandro Bozzon, Marco Brambilla, Stefano Ceri, and
Piero Fraternali

Trends in Search Interaction . 26
Ricardo Baeza-Yates, Paolo Boldi, Alessandro Bozzon,
Marco Brambilla, Stefano Ceri, and Gabriella Pasi

Part 2: Interaction Design

Context and Action in Search Interfaces . 35
Alan Dix

Desktop, Tabletop or Mobile? . 46
Moira C. Norrie

Visualization of Multi-domain Ranked Data . 53
Alessandro Bozzon, Marco Brambilla, Tiziana Catarci,
Stefano Ceri, Piero Fraternali, and Maristella Matera

Part 3: Semantic Description

Semantic Resource Framework . 73
Marco Brambilla, Alessandro Campi, Stefano Ceri, and
Silvia Quarteroni

Automatic Normalization and Annotation for Discovering Semantic
Mappings . 85

Sonia Bergamaschi, Domenico Beneventano, Laura Po, and
Serena Sorrentino

Towards an Ontological Representation of Services in Search
Computing . 101

Fabian Suchanek, Alessandro Bozzon, Emanuele Della Valle,
Alessandro Campi, and Stefania Ronchi

XII Table of Contents

Part 4: Rank Join

The Rank Join Problem . 115
Neoklis Polyzotis

Proximity Rank Join in Search Computing . 121
Davide Martinenghi and Marco Tagliasacchi

Uncertainty in Rank Join . 128
Ihab F. Ilyas

Trends in Rank Join . 135
Ihab Ilyas, Davide Martinenghi, Neoklis Polyzotis, and
Marco Tagliasacchi

Part 5: Query Processing

Efficient Computation of Search Computing Queries 141
Daniele Braga, Michael Grossniklaus, Francesco Corcoglioniti, and
Salvatore Vadacca

Run-Time Adaptivity for Search Computing . 156
Daniele Braga, Michael Grossniklaus, and Norman W. Paton

Part 6: Tools and Mashups

Tools Supporting Search Computing Application Development 169
Marco Brambilla and Luca Tettamanti

Distributed User Interface Orchestration: On the Composition of
Multi-User (Search) Applications . 182

Florian Daniel, Stefano Soi, and Fabio Casati

On Development Practices for End Users . 192
Alessandro Bozzon, Marco Brambilla, Muhammad Imran,
Florian Daniel, and Fabio Casati

Part 7: Bio-SeCo

Bio-SeCo: Integration and Global Ranking of Biomedical Search
Results . 203

Marco Masseroli and Giorgio Ghisalberti

Workflows for Information Integration in the Life Sciences 215
Paolo Missier, Norman Paton, and Peter Li

Complex Search, Ranks, and Biological Discovery: A User’s
Perspective . 226

Paolo Romano and Luciano Milanesi

Table of Contents XIII

Part 8: Towards a Sustainable Exploitation

An Experience in Applying User Centered Design to Search
Computing . 239

Tommaso Buganza, Marta Corubolo, Emanuele Della Valle, and
Elena Pellizzoni

Analysis of Business Models for Search Computing 256
Tommaso Buganza, Marta Corubolo, Emanuele Della Valle, and
Elena Pellizzoni

Author Index . 273

Part 1

The Search Process

Search is a complex activity that can be modeled as a multi-step process, leading
users from generic information exploration purposes to identifying precise
information needs and finally to make access to the information they need. A complex
search process is typically characterized by multiple steps, spanning multiple sources
of information during long-term sessions; the process is characterized by a continuous
refinement of the search goal. During this activity, users combine information finding
with source exploration, they aggregate and compose results; occasionally they
alternate online interaction with manual note-taking. Such complex information
seeking behaviors challenge the search engine interfaces, because they require to
support all the stages of information acquisition, from the initial formulation of the
area of interest, to the discovery of the most relevant and authoritative sources, to the
establishment of relationships among the relevant information elements.

The first chapter of this part presents a vision of how current search engines
technology is challenged by understanding the user’s needs, either implicitly, trying to
guess unexpressed user’s intents as if the engine was reading the user’s mind, or
explicitly, by offering interactive tools that provide hints about the user’s intent.

The second chapter describes the exploratory capabilities offered by search
computing. It presents interaction options for selecting objects within a resource
framework and then shows how search computing users can progressively build
complex queries by progressively assembling them, driven by object properties and
inter-object connections.

Finally, the last chapter collects the research visions of the workshop’s participants
and focuses on issues such as helping the user, taking advantage of the wisdom of the
crowds, contextualization vs. personalization, and raising the level of interaction with
search systems.

The New Frontier of Web Search Technology:
Seven Challenges

Ricardo Baeza-Yates1, Andrei Z. Broder2, and Yoelle Maarek3

1 Yahoo! Research, Barcelona, Spain
2 Yahoo! Research, Santa-Clara, CA

3 Yahoo! Research Haifa, Israel

Abstract. The classic Web search experience, consisting of returning “ten blue
links” in response to a short user query, is powered today by a mature technology
where progress has become incremental and expensive. Furthermore, the “ten
blue links” represent only a fractional part of the total Web search experience:
today, what users expect and receive in response to a “web query” is a plethora
of multi-media information extracted and synthesized from numerous sources on
and off the Web. In consequence, we argue that the major technical challenges in
Web search are now driven by the quest to satisfy the implicit and explicit needs
of users, continuing a long evolutionary trend in commercial Web search engines
going back more than fifteen years, moving from relevant document selection
towards satisfactory task completion. We identify seven of these challenges and
discuss them in some detail.

1 The Evolution of Commercial Search Engines

Commercial Web search engines have gone through a significant evolution in the last
16 years. We have identified three major stages in their evolution according to the type
of data on which the technology has focused at the time:

– On-Page Data: First generation engines, like Excite, Lycos, or AltaVista in the
middle of the 90’s, used standard information retrieval models on crawled pages
and used the on-page textual data almost exclusively, thus supporting only a syntac-
tic match between queries and documents. The key paradigm was to parse HTML
pages, possibly assigning more weights to important sections such as titles and ab-
stracts, or author supplied keywords, and use usual tf x idf methods to compute
relevance of pages within the Web corpus seen as a flat collection. The main chal-
lenge was scale and speed with relevance taking a second seat.

– Web Graph Data: Around 1998 a new approach, made popular by Google and
eventually adopted by all engines, started to exploit off-page Web specific data.
Three types of off-page data were leveraged: (1) link (or connectivity) data, initially
simply in the form of in-degree (the number of links to a page), later through an
analysis of the entire Web graph. The use of this data was based on the idea that
“people vote with their links”, [13, 4]; (2) anchor text data, that is, how people refer
to a page on other pages, as a form of surrogated text abstraction of the target page.
Here the idea was that “people vote with their labels”[10]; and finally (3) “click-
through” data, that is, what results users clicked on as a form of implicit voting, the

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 3–9, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

4 R. Baeza-Yates, A.Z. Broder, and Y. Maarek

idea being that “people vote with their clicks” [12], something that DirectHit used
as early as 1997.

Simultaneously an infrastructure revolution took place based on distributed pro-
cessing over a huge numbers of commodity computers. This novel infrastructure
and its dedicated software enabled a “scale revolution” and allowed to crawl, in-
dex, store and serve more data than ever before, while respecting response time,
latency and freshness constraints.

– Usage Data: Finally the third stage, which we are still experiencing, attempts to
answer “the need” behind the query, that is, the unexpressed intent that drove the
user to make a particular query in the first place. This phenomenon is expressed
in multiple manners: First, the engine tries to guess what type of information best
answers the intent and to this end, multiple sources of data are integrated in the
result page, for example images, maps, videos, stock quotes, weather reports, cur-
rent prices, tweets, news, etc. Second, additional query assistance tools, deployed
both before and after the query is processed are becoming prevalent: for instance,
query spell correction à la did you mean or query completion after the user entered
only a few characters, are deployed on all major search engines. Similarly, results
exploration tools (e.g., narrowing search results by type, source, date, translation,
etc.) are becoming common place. This is achieved by focusing on yet another type
of data: usage data. While previously usage data had been aggregated at page level,
the attention has now moved from individual pages to individual users. Users’ be-
havior at every stage of their interaction with the search engine, and even their post-
interaction behavior (via browser toolbars, beacons, etc.) can be captured in very
detailed logs for an enormous number of queries. By studying users’ behavior af-
ter they make a particular query (e.g., query reformulations, clicks, browsing time),
one gains an understanding of users’ intent. In practice, efficient statistical methods
are and can be used to create adequate pre- and post-search assistance tools.

By monitoring users’ activities and gathering usage data at a very large scale, search
engines serve users at two levels: implicitly by trying to guess unexpressed intent, as if
the engine was reading the user’s mind and explicitly by offering interactive tools, which
not only make the search experience more attractive but also provide additional hints
regarding the user’s intent. We believe these two directions represent the new frontier of
Web search and are associated with a number of technical challenges. We list below a
few of these challenges and areas where progress is being made and more innovation is
to be expected. For readers interested in a detailed coverage of Web retrieval we suggest
the chapter by Baeza-Yates and Maarek in [3].

2 Ongoing and New Challenges

As discussed earlier, monitoring users’ activities on a very large scale allows to bet-
ter answer implicit and explicit information needs [5, 19] and more specifically query
intent. We have identified seven challenges that we believe represent opportunities for
further research and innovation, some already seeing incremental progress happening
on a regular basis and others demanding drastic departure from previous art. We have
ranked them below by their order of (possibly future) appearance in the Web.

The New Frontier of Web Search Technology: Seven Challenges 5

2.1 Query Assistance

Query assistance tools first appeared on the search engine results page, offering alternate
query forms in case the user was not satisfied with the returned results. These alternate
queries took two possible forms: first related queries, typically derived from the results
themselves, and soon after query spelling suggestion that leverages usage data [6]. The
novelty in the now famous “did you mean” feature for instance consisted in its learning
from usage data rather than using a fixed dictionary. Multiple techniques are used today
such as counting most frequent queries at a small edit distance of the original query1 or
looking at query reformulation as users tend to correct themselves if their original query
was misspelled [16]. Leveraging usage data via query-log analysis at a large scale gave
and is still giving excellent results. It is also one of the best examples of the “wisdom of
crowds” [21]. It took a longer time however for the attention to move to the core search
box and try helping users formulate their queries even before the query is issued. The
first major query assistance tool appeared in 2004 when Google offered “ Suggest”2, as
an experimental feature on Google Labs. Thanks to the scale revolution, it was suddenly
possible to use as completion dictionary a large query log, which gave the impression of
an uncontrolled vocabulary experience. At that stage the corpus was static, but progress
in infrastructure allowed Yahoo! Search to launch “Search Assist” in 2007 and the fol-
lowing year Google to launch Suggest on google.com and youtube.com. Nowadays,
most engines offer this feature and keep improving it, with better freshness, coverage,
locality, instant previews, etc. This represented a critical stage in helping users express
their intent, based on the conjecture that the odds are good that a previous user with
similar intent found a good query to express it.

2.2 Contextualization

Another trend in recent years has been the contextualization of the answer. We use
the term contextualization in a generic manner to cover (1) localization (geographical
and/or language contextualization), (2) personalization (user contextualization), (3) so-
cialization (that is, take in account the social context), and (4) query intention (intent
contextualization), among others. Considering that most users interact little and do not
explicitly authorize individual identification (by signing-in for instance), personalizing
is a difficult task, which impacts only a small percentage of users. In contrast, intent
contextualization relies on analyzing the usage data originating from users conducting
the same task. It is both more pragmatic (as it does not require signing-in or explicit
authorization), and more effective as it can applied to larger populations of users and
thus some limited form of the previous mentioned “wisdom of crowds” intuitions can
be applied. Most of all, privacy infringement risks are significantly reduced as no single
user is isolated, and techniques are applied to groups of people (small crowds). The ef-
fectiveness of these methods come from the fact that while users are all different in their
heterogeneous needs or facets, on each facet they are not that different from other users

1 A well known Google example shows that the correct spelling for the query “Britney
Spears” is more frequent by an order of magnitude than its immediate follower, see
http://www.google.com/jobs/britney.html

2 Now called autocomplete [22].

6 R. Baeza-Yates, A.Z. Broder, and Y. Maarek

and perform similar tasks, their uniqueness comes from the combination of these facets
and on when, how long and how well they conduct those tasks. The challenge here is
then to better detect query intent and better contextualize intention. Contextualizing the
results affects search results display and the overall user experience (e.g., geographical
contextualization may require displaying an interactive map within the search results
page) and hence triggers the next challenge: how to present different types of results.
Regarding the social aspect, for some search needs the social context is clearly relevant
as the Web is a communication media that is owned in a large extent by its users through
the Web 2.0 [18].

2.3 Universal Search

Another significant step in guessing the intent of the query is not to require from the
user to specify what type (e.g., image, video, map, etc.) or source of data (e.g., news,
blogs, encyclopedia, etc.) s/he is more interested in but simply guess for a given query
what types and sources should be shown. The goal here is to integrate rich and complex
data source in a semi-transparent manner. This concept was coined “universal search”
by Marissa Mayer in [14] and continues seeing a great deal of progress. It presents mul-
tiple challenges, as it requires “comparing apples and oranges”, and more specifically
deciding what sources should be probed, how many results from relevant sources should
be shown, where in the ranked list these results should be slotted if at all, etc. This area
becomes even more intriguing with real-time feeds such as tweets for which relevance
needs to be estimated in almost real-time. One open problem is the screen layout for
the different types of results if you want to move away from the classical sequential list
of ten results. This research area is now called “aggregated search” and naturally leads
to the next challenge.

2.4 Web of Objects

A more recent challenge consists of departing from the usual result triplet (title,snippet,
link) as a surrogate of a given Web page and returning instead the object that really satis-
fied her needs. A typical example when searching for an artist is to get as a result not an
heterogeneous list of links to his official site, images, videos, fan club, wikipedia entry,
lyrics pages, etc. but rather a composite object that integrates all the possible facets that
should be relevant to the user. The same goes for famous athletes (for whom the user
would like to get team information, recent stats, photos, etc.), restaurants (address, map,
opening hours, reviews,etc.), travel destinations (slideshows, weather, hotels, places to
see, etc.). The key idea behind the concept of Web of Objects is that the individual pages
that typically form the Web are exploded into individual objects that can be recomposed
into a synthetic page, which is then shown to users as a search result. Thus, in our pre-
vious athlete example, a user searching today for the Viking quarterback “Brett Favre”
will see on a Yahoo! Search, as top result, a synthetic concise “mini page” consisting
of various objects such as 2010-2011 stats displayed as a dashboard (with QB rating,
number of touch downs etc.), extracted from a given Web site), a profile generated from
another Web site, links to news, games logs, Scores and Schedules, etc., all extracted
from various sites as needed. More generally, integrating Web derived knowledge, well

The New Frontier of Web Search Technology: Seven Challenges 7

beyond entity extraction, towards building and representing interrelationships between
known entities, will enable users to search not only the“Web of Pages” but the “Web of
Objects” as detailed in [2, 7].

2.5 Post-Search Experience

As we focus on intent, we must address needs that go beyond simple information dis-
covery. We are still doing very little with results so far. We can “star” them [9], translate
the associated page via a single link on Google, or share video results in a social net-
work or via messenger or email in Bing. In addition, major search engines now offer
the ability to narrow search results according to various facets [15]. Some results can be
displayed in various microformats [17] using Yahoo! SearchMonkey [20] or Google’s
rich snippets [11] via common agreement between publishers and search engines. Ya-
hoo! Search Pad [8] goes one step further as it automatically gathers clicked results of
a same search session and allow users to annotate/edit/share such pads. Yet, it seems
that there is a great deal of opportunities for engines to offer additional tools that would
facilitate post-search experience, mostly for better exploration and manipulation (filter-
ing, extracting, etc.) of results so as to better satisfy the underlying query intent. This
challenge is also related to “universal search”.

2.6 Application Integration

A natural extension of the post-search experience would be to go further with result
manipulation and facilitate the integration of third party applications to enable a richer,
more diversified, and more satisfying user experience. Underlying intent might involve
a series of tasks, such as planning for a holiday, organizing a birthday celebration, etc.
where search results represent only raw data that need to be digested and processed to
satisfy the intent. This mostly unexplored area presents fascinating technical challenges.
A small but significant step in this direction was conducted by Yahoo! Search recently
via its “QuickApps” mechanism. Third-party applications are offered on the left trail
of the results page by partners such as Netflix, the popular US-based flat-rate movie
rental/online video streaming services, or OpenTable the online restaurant reservation
service. Such applications can be triggered for specific queries and pre-populated with
the needed parameters, once a “ movie intent” or “restaurant intent” are identified. This
application integration approach focuses on facilitating the task behind the query in
order to better satisfy users.

2.7 Implicit Search

Finally, the most intriguing of all challenges is “implicit search”, which aims at address-
ing users’ needs without requiring them to express a query. As search engines better
and better understand their users by monitoring their activities and building sophisti-
cated users models, and multiple contextual signals are accessible (via sensors, GPS,
cell information, etc.) one can envision scenarios in which the need can be identified by
a simple click or simply as a side effect of another action. A taste for implicit search is
offered today in book selling, like Amazon, or movie rental, such as NetFlix, services

8 R. Baeza-Yates, A.Z. Broder, and Y. Maarek

with their recommendation services. Another example is the recently launched Priority
Inbox in Gmail [1]. These are only preliminary steps in this direction. We believe that
with the fast penetration of smart phones and cloud computing where all devices can
be associated with a single user, search engines will have at their disposal a plurality
of signals that will make the difference in personalization and contextualization. One
can envision implicit search mechanisms being triggered within various applications as
mentioned above, or related content being pushed to users in appropriate contexts. How-
ever, most wild scenarios will remain unrealistic if privacy concerns are not addressed
and answered in a satisfying manner.

3 Conclusion

Web search has now become a mature technology with high penetration to the general
population in most developed countries. We believe that the focus of innovation should
move towards the “before” and “after” stages in web search with endless possibilities.
Numerous challenges are involved, including but definitely not limited to the seven
we have listed here, with multiple research and technology development opportunities.
Overall, all of them are focused in improving the overall search experience of the user.
Nevertheless, some of these new results will also improve user experience in general.

References

[1] Aberdeen, D.: Email overload? try priority inbox. The Official Gmail Blog (August 2010),
http://gmailblog.blogspot.com/2010/08/email-overload-try-
priority-inbox.html

[2] Baeza-Yates, R., Raghavan, P.: Chapter 2: Next generation web search. In: Ceri, S., Bram-
billa, M. (eds.) Search Computing. LNCS, vol. 5950, pp. 11–23. Springer, Heidelberg
(2010)

[3] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Har-
low (2010)

[4] Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Pro-
ceedings of the 7th International Conference on World Wide Web, Brisbane, Australia
(1998)

[5] Broder, A.: A taxonomy of web search. SIGIR Forum 36(2) (Fall 2002)
[6] Cucerzan, S., Brill, E.: Spelling correction as an iterative process that exploits the collec-

tive knowledge of web users. In: Proceedings of Empirical Methods in Natural Language
Processing, Barcelona, Spain (July 2004)

[7] Dalvi, N.N., Kumar, R., Pang, B., Ramakrishnan, R., Tomkins, A., Bohannon, P., Keerthi,
S., Merugu, S.: A web of concepts. In: PODS, pp. 1–12 (2009)

[8] Donato, D., Bonchi, F., Chi, T., Maarek, Y.: Do you want to take notes? identifying research
missions in yahoo! search pad. In: Proceedings of the 19th International Conference on
World Wide Web, Raleigh, North Carolina, USA, pp. 321–330 (2010)

[9] Dupont, C.: Stars make search more personal. The Official Google Blog, March 3 (2010),
http://googleblog.blogspot.com/2010/03/stars-make-search-
more-personal.html

[10] Eiron, N., McCurley, K.S.: Analysis of anchor text for web search. In: Proceedings of
the 26th Annual International ACM SIGIR Conference on Research and Development in
Informaion Retrieval, SIGIR 2003, pp. 459–460. ACM, New York (2003)

http://gmailblog.blogspot.com/2010/08/email-overload-try-priority-inbox.html
http://gmailblog.blogspot.com/2010/08/email-overload-try-priority-inbox.html
http://googleblog.blogspot.com/2010/03/stars-make-search-more-personal.html
http://googleblog.blogspot.com/2010/03/stars-make-search-more-personal.html

The New Frontier of Web Search Technology: Seven Challenges 9

[11] Goel, K., Guha, R., Hansson, O.: Introducing rich snippets. Google Webmaster Central
Blog (May 2009),
http://googlewebmastercentral.blogspot.com/2009/05/
introducing-rich-snippets.html

[12] Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD 2002, pp. 133–142. ACM, New York (2002)

[13] Kleinberg, J.: Authoritative sources in a hyperlinked environment. In: Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, pp. 668–677 (1998)

[14] Mayer, M.: Universal search: The best answer is still the best answer.The Official Google
Blog (May 2007),
http://googleblog.blogspot.com/2007/05/universal-search-
best-answer-is-still.html

[15] Mayer, M., Menzel, J.: More search options and other updates from our searchology event.
The Official Google Blog (May 2009),
http://googleblog.blogspot.com/2009/05/more-search-options-
and-other-updates.html

[16] Merrill, D.: http://www.youtube.com/watch?v=syKY8CrHkck#t=22m11s
at timestamp 22m11s

[17] Mika, P.: Microsearch: An interface for semantic search. In: Proceedings of the SemSearch
2008 Workshop on Semantic Search at the 5th European Semantic Web Conference,
Tenerife, Spain (June 2008),
http://sunsite.informatik.rwth-aachen.de/Publications/
CEUR-WS/Vol-334/

[18] Ramakrishnan, R., Tomkins, A.: Toward a peopleweb. IEEE Computer 40(8), 63–72 (2007)
[19] Rose, D.E., Levinson, D.: Understanding user goals in web search. In: WWW 2004: Pro-

ceedings of the 13th International Conference on World Wide Web, pp. 13–19. ACM,
New York (2004)

[20] Searchmonkey, http://developer.yahoo.com/searchmonkey/
[21] Surowiecki, J.: The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How

Collective Wisdom Shapes Business, Economies, Societies and Nations. Random House
(2004)

[22] Wright, J.: This week in search 10/16/10: Renaming google suggest. The Official Google
Blog (October 16, 2010)

http://googlewebmastercentral.blogspot.com/2009/05/introducing-rich-snippets.html
http://googlewebmastercentral.blogspot.com/2009/05/introducing-rich-snippets.html
http://googleblog.blogspot.com/2007/05/universal-search-best-answer-is-still.html
http://googleblog.blogspot.com/2007/05/universal-search-best-answer-is-still.html
http://googleblog.blogspot.com/2009/05/more-search-options-and-other-updates.html
http://googleblog.blogspot.com/2009/05/more-search-options-and-other-updates.html
http://www.youtube.com/watch?v=syKY8CrHkck#t=22m11s
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-334/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-334/
http://developer.yahoo.com/searchmonkey/

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 10–25, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Information Exploration in Search Computing

Alessandro Bozzon, Marco Brambilla, Stefano Ceri, and Piero Fraternali

Politecnico di Milano, Dipartimento di Elettronica ed Informazione,
V. Ponzio 34/5, 20133 Milano, Italy

{fistname.lastname}@polimi.it

Abstract. Search computing queries typically address search tasks that go be-
yond a single interaction. In this paper, we show a query paradigm that supports
multi-step, exploratory search over multiple Web data sources. Our paradigm
requires users to be aware of searching over “interconnected objects” with
given semantics, but each exploration step is simplified as much as possible, by
presenting to users at each step simple interfaces, offering some choices that
can be supported by the system; choices include moving “forward”, by adding
new objects to the search, or “backward”, by excluding some objects from the
search; and the selection and de-selection of displayed results in order to
dynamically manipulate the result set. For supporting exploration, we designed
a new architectural element, called query orchestrator, which connects the user
interface module with the execution engine; the orchestrator maintains the
history of the query session and caches query results for reuse at subsequent
interactions.

1 Introduction

Search engines, the most popular entry point to the Web, offer user interfaces that are
based on keywords. Although advanced search options allow users to combine key-
words into complex Boolean expressions, users are not familiar with such query para-
digms; therefore, the search engine responds by finding the most authoritative Web
pages based on few user keywords, according to page ranking algorithms. Such key-
word-based query paradigm is inadequate to express complex search computing que-
ries, especially queries spanning multiple domains of interest.

Therefore, in the Search Computing project we have designed a query language
able to express the structure of complex queries, organized as conjunctive expressions
over search and exact services [7][8]. The query language yields to a query interface
that is a predefined form, where users are asked to enter query constants, so that a pa-
rametric query becomes fully instantiated. Query processing consists of optimizing
and executing the query, producing results in the form of object combinations, with a
tabular representation highlighting their structure (flat schema) and ordering (highest
ranked tuples are shown in the top of the table).

To give users some flexibility in exploring the result, we have proposed the liquid
query paradigm [4][5], which allows users to interact with the search computing result
by asking the system to produce “more result combinations”, or “more results from a
specific service”, or “performing an expansion of the result” by adding a sub-query

 Information Exploration in Search Computing 11

which was already planned while configuring the query. This result exploration para-
digm empowered result browsing in the context of fixed query, and has proven to be
fully appropriate in the context of vertical search applications with a structured inter-
action pattern.

In this chapter we propose a query paradigm that extends liquid query by support-
ing extensibility at query formulation time. By means of such paradigm, the user is
supported in expressing fully exploratory queries, starting from an initial status with
no predefined query, and enabling a progressive, step-by-step construction of the
query itself. The new paradigm consists of exploring a network of connected re-
sources, where each resource corresponds to a clearly identified real-world concept
(an “hotel”, a “flight”, a “hospital”, a “doctor”), and the connections have predefined
semantics (“hotels” are close to “restaurants”, “doctors” care “diseases” and are lo-
cated at “hospitals”). Such network, called the “semantic resource framework”, is
built at service registration time, and is described in another chapter of this book [9].
The proposed exploration paradigm exploits query expansion and result tracking, giv-
ing the user the possibility to dynamically selecting and deselecting the object in-
stances of interest, and move “forward” (adding one node to the query) or “backward”
(deleting one node) in the resource graph. A novel query result presentation paradigm,
called atom view, supports exploration by visualizing instances of different objects in
separate lists, at the same time displaying the combinations they belong to and their
global rank. This view allows users to focus at each step on the new results, and there-
fore is most suitable for a progressive exploration. This presentation paradigm can be
easily applied to mobile search interfaces because it displays lists with simpler
schema with respect to the tabular view proposed in the original liquid query ap-
proach (i.e., one object at a time with respect to entire combinations).

Moving from keyword-based or form-based interaction to this new approach is a
big shift, which requires user’s awareness of the task being performed. We believe
that the proposed paradigm can support users in complex search processes, in the
spirit of past results of the exploratory search discipline [16][18][19][24][25][26]. The
supported search tasks go beyond the typical one-shot, memory-less interaction with a
search engine, and span over several steps, with the possibility of suspending and re-
suming the work (e.g., performing search processes that last several days). Given the
long living nature of the search tasks, many subtle problems arise about whether the
system should cache data (both at intra-query and inter-query levels) to grant good
performances. These issues are also addressed by our solution.

The new approach supports all the stages of information seeking, from the initial
formulation of the topic of interest, to the discovery of the most relevant and authori-
tative sources, to the establishment of relationships among the relevant information
elements.

The Chapter is organized as follows: Section 2 presents the general issues related
to exploratory search and then focuses on the few existing examples of graph explora-
tion. Section 3 presents the exploratory search paradigm in the context of the semantic
resource framework. Section 4 introduces the “atom view” and shows how query
formulation and result presentation may alternate on the atom view interface. Section
5 sketches the architecture supporting exploratory search, which is based on the inter-
play between a query orchestrator (introduced specifically for supporting the explora-
tory interaction paradigm) and the execution engine (extended for better integration
with the orchestrator).

12 A. Bozzon et al.

2 Background on Exploratory Search and Resource Graph
Browsing

The exploratory search discipline addresses the problem of providing the user with
tools and mechanisms for easily moving through an information space until he
reaches the information he was looking for. This requires supporting all the stages of
information acquisition, from the initial formulation of the area of interest, to the dis-
covery of the most relevant and authoritative sources, to the establishment of relation-
ships among the relevant information elements. All these steps can be performed in an
iterative way and should support the navigation of information along semantic con-
nections between data. Some connections could lead to dead ends, and thus require to
rollback the navigation history and take other paths towards the information need ful-
filment.

A very general view on the tasks and objectives of the user when exploring infor-
mation is provided by the information seeking funnel model proposed in [19], inspired
by the buying funnel or sales funnel in the commercial world, depicting the changing
attitude of people at different stages of the buying process, from all those who might
possibly be interested in a product or service to those who actually purchase it. An
approach similar to the one of potential purchasers appears also in information-
seeking users, who are driven to the bottom of the funnel towards information con-
sumption (see Fig. 1).

The first steps of the process include wandering (in which the user does not have
an information seeking-goal in mind) and exploring (in which the user has a general
goal but not a plan for how to achieve it). Subsequently, in the seeking phase the user
clarifies the open-ended information needs that must be satisfied, and finally in the
asking phase the user identifies an information need that corresponds to a closed-class
question. With respect to this model, search computing covers the last three phases:
from open-minded exploration (based on the structure of the Semantic Repository
Framework) to the request for information based on precise questions.

Fig. 1. The Information Funnel

This incremental approach is recognized by basically all the information seeking
models: Kuhlthau’s Information Search Process depicts information as a process of
construction on the part of the individual user through a step-by-step model [14].
Bates’ berrypicking model [3] assumes that users jump from source to source and
search technique to search technique as a means to build a satisfactory answer to a
query. Both models theorize that people search for information by making sense out

 Information Exploration in Search Computing 13

of multiple search stages. Similarly, orienteering assumes that the user navigates
information and gets more and more oriented while getting closer to the result of his
search.

A more precise formalization is given by the information foraging theory [18],
which assumes that information seekers behave like animals foraging on patches. In
this case, patches are information nuggets spread all over the Web and users move
around based on patch size and patch transfer effort: they try to intake as much
resources as they can, but there is an optimal time limit to be spent on a single patch
for maximizing the information ingestion.

Exploratory search can be studied also under the perspective of Interactive Infor-
mation Retrieval (IIR), which examines the global behaviour of an IR system from
the perspective of the user’s interaction [19]. In this field, a characterization of the it-
erative search process has been proposed by Norbert Fuhr [11], who presents a notion
of probabilistic result ranking adapted to the IIR context, where the fundamental as-
sumptions of classic probabilistic ranking are not verified, because the relevance of a
result seen by the user is influenced by the documents already seen in the same inter-
active session and result list browsing is not the only and prominent user’s task.
Fuhr’s interaction model considers an IIR session as the traversal of several system
states (situations), in which the user has to take a choice for progressing in the resolu-
tion of his information need; the cost model for analysing interaction alternatives
should considers the situations, choices and expected benefits in the user’s IR task.
An example of system supporting the interactive information retrieval paradigm is
ezDL (Easy Access to Digital Libraries), a front-end application for seeking across
different digital libraries, supporting long-lived search sessions though several search
tactics, stratagems and strategies, including multiple query perspectives, query his-
tory, and result organization tools.

Search computing acts as a facilitator in the exploration process, by increasing the
acquisition efficiency at the single patch level and reducing the effort for moving
from one patch to the other, thanks to the join paths that link data sources directly re-
lated to his initial query formulation and to the search expansion mechanisms that
permit the user to reach novel data sources loosely connected to the initial query.

The utility of search computing can be regarded also under another perspective,
related to the mind-set and goals with which users afford a search task.

On one side, the user’s information need may have a variable degree of precision: a
query may look for concrete factual information (e.g., which is the capital of a state)
or be rather indeterminate (e.g., getting information on a certain place). On another
(complementary) side, the information need can vary quite substantially in its inherent
complexity (e.g., finding only generic information about a place, or finding accurate
facts targeted to some specific goal, e.g., going to live in a new place).

Queries that are precise and simple are well served by keyword-based search
engines, which aim at presenting very quickly the most relevant document. As the
complexity and vagueness of the information need increases, the user tends to do
more than one query, to refine the input keywords, try alternative formulations, and
take note of partial intermediate results, in order to “assemble” the answer.

This is pictorially depicted in Fig. 2 by drawing a kind of borderline (the
“note-taking boundary”) delimiting a region beyond which one-shot keyword queries
are not sufficient to resolve an information need the users resorts to “note-taking” to
compose the response to his need.

14 A. Bozzon et al.

Fig. 2. The note-taking limit [2]

Search computing addresses information seeking tasks that lie just after the bound-
ary of the note-taking limit in exploratory search, where the complexity of the search
task and of the associated information is quite high, and the exploration of the options
plays an important role in finding the ideal solution.

In the first phases of the interaction, our approach relies on the visual exploration
of graphs of resources that can be eventually queried. On this side, we base our work
on existing graph exploration techniques, both in terms of general purpose studies and
associated with domain specific applications (for instance, [11] proposes visual explo-
ration of biological information).

Some approaches put more emphasis on the aggregation, clustering and dimension
reduction of multivariate data [23], so that complex graphs can be reduced in size
(both in terms of number of nodes and edges). This technique could help also in our
setting, in the event of large resource graphs. Other proposals apply visual transfor-
mations to the graphs for giving more emphasis to the items that are deemed more
relevant at the moment, e.g., through hyperbolic plan visualization [17]. Similarly, the
work in [22] tackles the problem of exploration of large conceptual schemas ex-
pressed in the Entity-Relationship notation, by proposing a technique based on graph
topology analysis for extracting a meaningful subset of the schema, which is then dis-
played in the bi-dimensional space using a force-directed placement algorithm.

Finally, some proposals offer domain-specific languages and tools that help gener-
ate automatically graph-based visualization and exploration starting from a generic
dataset [1].

3 Exploration of the Resource Graph

The search computing paradigm departs quite radically from the traditional keyword-
based query interaction typical of search engines. Users are aware of the conceptual
structure underlying the Search Computing repository, described in the semantic re-
source framework (SRF) [9], and sketched in Fig. 3.

 Information Exploration in Search Computing 15

The SRF is a high level description of the services that collectively constitute a
given "domain of discourse", i.e., a particular area of interest that can be the target of
SeCo queries (e.g. tourism information, real estate, scientific publications, etc.). Users
access the top-level view of SRF, which is a simple Entity-Relationship model, as
shown in Fig. 3 for the tourism domain. Such a view defines the application context,
characterized by the presence of named entities (service marts, e.g. Hotel, Restaurant,
etc.) and relationships (connection patterns, e.g. geographical nearness). This top-
level SRF view abstracts away from the complexity of mapping service interfaces to
data sources and of integrating the different names and formats used by each source to
represent its properties, and focuses on a simple, semantic view, which simplifies the
exploration of information and the definition of search queries by non-expert users.

Fig. 3. Objects and connections in the Semantic Resource Framework

Thanks to the SRF, users express their queries directly upon the concepts that are
known to the system, such as hotels, restaurants, or movie shows; moreover, users are
aware of the connections between the concepts, and therefore they can, e.g., select a
show and then relate it to several other concepts: the performing artist, the close-by
restaurants, the transportation and parking facilities, other shows being played in the
same night in town, and so on. The query is focused (and restricted) to known seman-
tic domains. This can be seen as a major limitation of the query interface, but on the
other hand it offers also greater power in organizing the exploration of the search
space as a continuous process.

The exploratory query interaction paradigm proceeds as follows. The user starts by
selecting one of the available objects, and submits an “object query” to extract a sub-
set of object instances. For example, a user could choose a “concert” object, and ask
for “jazz” concerts in a “club” in the “Village” area of “New York”, or choose a “res-
taurant” object, and ask for “vegetarian” restaurants in the “south end” of “the city”
in a given “price range”. Object queries are conjunctions of selection predicates: each
predicate is represented in the user interface as a widget for inputting the correspond-
ing selection parameters, e.g. a drop-down list for choosing a value among the
available restaurant types or city districts, or a slider bar for setting price ranges.
Queries results are ranked and the user interface also lets the user specify his ranking
preferences, e.g. “distance”, “quality”, “price range” or a combination of them.

16 A. Bozzon et al.

The output is a set of objects that satisfy the query, displayed in rank order; while
in this chapter we assume a specific representation of results (by using the atom view
visualization technique described in the next section), chapter [6] of this book
describes visualization mechanisms that take advantage of the properties of the
retrieved results, such as the presence of temporal or geo-referenced data types in the
object schema. Normally, the system presents a first batch of results, and users
browse them; if users are not satisfied, they can ask additional batches, until all
objects that satisfy the query are retrieved; showing only the top-ranked object
instances is a typical feature of search system.

At this point, the user can select the most relevant object instances and continue
with the exploration by choosing the next concept among the various ones that can be
connected to the selected objects; after that, (s)he submits another object query, possi-
bly by providing additional selection criteria; the system will then retrieve connected
object instances and form a “combination” with the objects retrieved at the preceding
steps. Result combinations at any given step of the search process are ranked according
to the global ranking criterion based upon the local rank criteria of previously selected
objects; if the user wants to preserve previous ranks, he can ask the system not to re-
rank object instances or whole combinations selected at previous steps.

Continuing in the above example, after selecting three or four “jazz clubs”, the user
is offered to add to his “night in the city” plan several additional options: restaurants,
exhibitions, movies, music shows, dancing places, and other amenities. If they select a
“restaurant”, the connection to “concert” maps concerts to the restaurant instances
that are close to the concert instances, as shown in Fig. 4. If they further select
“metro”, they are asked to indicate the starting point of their ride, and the search
obtains for every selected object instance at the previous interaction the best metro
station and ride, with the detail of trains, line changes, and expected time.

Fig. 4. Selection of two connected objects on the SRF

At any stage, users can “move forwards” in the exploration, by adding a new object
to the query, starting from the connections available in the SRF and from the objects
that have been previously extracted. Forward path exploration can be applied to all
previously extracted objects/combinations or to a subset only, manually “checked” by
the user. Users can also “move backwards” (backtrack) in the exploration, by exclud-
ing one of the objects from the query, or by “unchecking” some of their previous

 Information Exploration in Search Computing 17

manual selections of relevant object instances. For example, a user may decide that
the bus ride is too inconvenient, prefer to use a car instead, and then explore parking
opportunities for the selected restaurants. Fig. 5 shows how nodes of the SRF can be
added to and removed from a given query.

 (a) (b)

Fig. 5. Moving “forward” and “backward” on the SRF

At any stage of the exploration, users can store the status of their process, by sav-
ing the query that has been formulated so far as well as the results. Such saving, of
course, does not guarantee data validity, as obviously data may become obsolete;
however, it may save a pattern of process for reuse. Therefore, the same query can be
repeated for a different night, saving the exploration effort. Backtracking at the level
of individual conditions may help, e.g., in changing the choice of restaurant from
“vegetarian” to “Japanese” during reuse. Long-lived processes may be very useful for
more complex planning tasks, e.g. exploring the opportunities offered by the real es-
tate market, or planning a summer vacation.

4 Search Computing Information Exploration Interface

To support the exploration of the resource graph as described in Section 3, a set of
user interaction mechanisms must be designed. In our work, we investigated various
interface options and we put them at work on several case studies.

4.1 Results Visualization

Our first work on exploratory multi-domain search exploited a flat visualization of
result combinations in tabular format [4][5], as shown in Fig. 6. This approach proved
valuable for introducing the user to the concept of multi-domain result sets: every
combination was clearly identified by a corresponding row in the table and one or
more table columns represented each composing item. Combinations could be se-
lected and expanded by adding joins with a predefined set of entities. Such entities
and their connections were pre-selected at design time by a SeCo expert user, based
on their fitness to the specific application scenario.

This approach, though, exhibits some weaknesses in terms of readability and under-
standability of results: a table tends to quickly become very lengthy, due to the combi-
natorial nature of the items that match together; moreover, objects of the same type are

18 A. Bozzon et al.

Fig. 6. Tabular View Interface: each row represents a combination composed by one object per
type

scattered through different combinations, which hampers comparisons within the popu-
lation of objects of the same type; combinations are also often repetitive (especially
when some “good” object dominate others and thus joins with many other in top rank
combinations), thus requiring the user to scroll down the table in order to have a com-
prehensive view of the available objects. These observations prompted for the definition
of a novel user interaction interface (described in the next section), but also to various
research directions, including visualization of multi-domain contents (illustrated in [6]),
diversification of structured results, and so on.

To improve over the tabular representation, we implemented a novel result visualiza-
tion, called atom view, which forms the basis for the exploration of the resource graph
and the iterative expansion of the query. When the query is submitted, the search com-
puting engine calculates the result set in terms of combinations of extracted items, as for
the tabular interface. However, instead of showing the combinations as table rows, the
atom view adopts the visualization strategy shown in Fig. 7: items are shown in separate
lists, one for each entity involved in the query: in the example of Fig. 7 (central part),
the set of hotels is shown side by side with the list of events. The lists are completely
independent and show the top-k items retrieved by the query for each entity. In the atom
view the unified global ranking is displayed in a dedicated widget (Fig. 7, bottom part),
where the joined combinations of objects are represented (and ordered) by their global
ranking score: relative importance of combinations is represented by the ordering of
items, while absolute value of the ranking score is shown through appropriate visual
clues (like colour gradient or object size). The visualization of join relationships among
the objects in a combination is left to the user interaction: by moving the mouse over the
list of combinations, the user can select one and automatically highlight the items in the
various object lists that contribute to the combination; vice versa, he can select one
element from a list and thus highlight the combinations comprising it. The advantage of
this view is the good simultaneous visibility of the items extracted, of their combina-
tions and of the global ranking.

 Information Exploration in Search Computing 19

Fig. 7. Screenshot of the atom view interface as implemented in the current Search Computing
demonstrator (http://www.search-computing.com/demo/UI)

The modular structure of the atom view is well-suited to mobile devices (PDA,
smartphones, etc.), which demand for simple interfaces, with less information shown
on screen and quick links for navigating across pages. Indeed, one can think to an ex-
ploratory approach in which information is shown one entity at time, and exploration
is performed by selecting a set of entity instances and moving to another set of in-
stances connected to those ones. This would be implemented in a simple interface like
the one in Fig. 8, where distinct list of objects (Hotels in the example of Fig. 8.a) are
shown in separate screens, and it is up to the user to navigate across such screens to
explore the current result set.

(a) (b)

Fig. 8. Example of interaction in a mobile device

20 A. Bozzon et al.

4.2 Explorations of Results

The atom view is a good basis for achieving an interface organization capable of sup-
porting the exploration approach better; the envisioned interaction consists of three
steps, as shown in Fig. 9: the user submits some initial search criteria referred to a
single entity, which drive the retrieval of the instances of that entity only. Among
these instances, (s)he selects the ones (s)he is interested in and then proceeds to the
selection of the next entity to explore.

Fig. 9. Iterative approach for entity-by-entity exploration

The selection of the possible exploration directions starts from one of the entities cur-
rently part of the result schema. For each entity, the list of possible directions are shown,
grouped by the exploration semantics (e.g., space or temporal proximity, match of ob-
ject names, etc.), as visible in the left part of the interface of Fig. 10: for instance, given
a selection of hotels of interest, the user is shown the list of relevant resources grouped
by geographical nearness (restaurants, theatres, museums, events), temporal nearness
(movie show time, concert), name match (reviews). The user can choose one of the enti-
ties and therefore start the exploration loop again by submitting the search criteria (as
described in Section 4.1). The exploration path is shown pictorially in the form of
breadcrumb links on the top of the screen, forming a derivation tree, thus allowing the
user to see the steps explored so far in terms of selected objects. Exploration can be

Fig. 10. Selection of next entity to expand towards

 Information Exploration in Search Computing 21

backtracked by clicking on the breadcrumb links at the end of the tree (links to the
leaves of the tree); this action backtracks the corresponding query execution. Results are
not refreshed; therefore backtracking leads the user to a previously retrieved query re-
sult. Then, he may choose to change the selection of combinations or to refresh the re-
sults before trying a new exploration in a different direction.

The submission of search criteria at every step consists in filling in an input form
that asks for a set of parameters based on the input schema of the service invoked to
retrieve the entity instances. Such a form can be automatically inferred, and then can
be customized by a designer. For instance, Fig. 11 shows a sequence of input forms
for searching an Event entity.

Given a selected entity (service mart) in the SRF, the following steps are performed:

• Concept selection (Fig. 10): starting from the current exploration status, the
user decides to explore a new concept in the resource graph (e.g., an “event”
or a “restaurant”), according to the connection paths available from the cur-
rently explored information. The connections may be based on geographical
distance, temporal closeness, text similarity or other (possibly combined)
search criteria.

• Pattern selection in some cases, a given object can be selected according to
different input parameters and, correspondingly, the query can consist of alter-
native access patterns, each one with a different set of input attributes. In these
cases, the user can select the search modality (e.g., by “genre” or by “date”),
as shown in Fig. 11.a.

• Data source selection (Fig. 11.b): when multiple physical services implement
the same access pattern, the user can pick the one that (s)he wants to use in the
query.

Fig. 11. Query Submission Interface

22 A. Bozzon et al.

• Input of selection criteria (Fig. 11.c): once the search modality and data
source are chosen, suitable values for the set of input attributes of the corre-
sponding access pattern must be provided by users. The interface is kept as in-
tuitive and immediate as possible: all the enumerative attributes are submitted
by selection, and also some quantitative ones, when possible, are transformed
into pseudo-categorical ones: for instance, the date of the event can be chosen
by clicking on a very limited set of items (e.g., yesterday, today, tomorrow) in-
stead of being submitted as a full date. Notice that some input values for the
selection criteria inserted by the user may be inconsistent with the search ser-
vice selected in the previous step, because the service may not cover the sub-
domain specified by the user (e.g., the user may select a service working only
for US locations and then enter a European city as a search parameter). Ap-
propriate input validation will be applied.

5 Infrastructure for Supporting Explorative Queries

According to the exploratory vision presented in the previous sections, the search
computing framework must enable the user to perform step by step exploration of the
data. Furthermore, the user must be able to easily test and rollback exploration paths,
so that various options can be explored with the aim of selecting the best ones. To
grant this feature, a search computing system must also provide the possibility of
moving back and forward along the navigation history.

To support incremental expansion of search queries, navigation of the information
space, and back-forward navigation, a search computing system must manage queries
and result-sets as first class-citizens in the architecture: queries are objects amenable
to identification (to be uniquely identified), manipulation (to support forward-
expansions and backtracking), storage and inspection (to allow later reuse as pre-
defined explorations); likewise, result-sets need to be identified, inspected and stored
to enable their late reuse as search services in other queries.

These requirements have been taken into account for developing the search com-
puting reference architecture as a four-layered framework, comprising User Interface,
Query orchestration, Execution engine, and Semantic resource framework, plus two
auxiliary and shared components that manage the queries and the cached data respec-
tively (see Fig. 12).

Fig. 12. Overview of SeCo Architecture

 Information Exploration in Search Computing 23

The User Interface (UI) layer is the front-end of a search computing system and
provides to the end-users all the functionalities described in Section 4. Its internal ar-
chitecture follows the well-known MVC pattern and aims at translating the user inter-
action events into the appropriate result manipulations or query executions over the
search services.

The Query Orchestrator is the core component with respect to the management
of the exploration features of search computing. In particular, it supports query for-
mulation, evolution and storage. It also offers different ways to manipulate and store
search results. Each query is univocally identified in the orchestrator and can be re-
executed at any moment. Each result set produced by a query execution is also identi-
fiable and retrievable. These two aspects are the basis for allowing query history
navigation: to each step N we associate a query QN (comprised with the input parame-
ters needed for its computation), its result set RN, and the subset of results selected by
the user SRN. Once the user has reached a step N in his exploration, (s)he can move
back to steps N-1, …, N-k, and thus retrieve the old queries (QN-1, …, QN-k, available
in the Query Manager component), result sets (RN-1, …, RN-k), and selections queries
(SRN-1, …, SRN-k) respectively, that (s)he had already explored. If (s)he wants, (s)he
can:

• Refresh such results, thus defining a new step M in the navigation, for which
the associated query is still QN , but the result set is a new one RM (and the se-
lected results SRM are obviously reset);

• Submit new search criteria, thus defining a new step P in the navigation, for
which the associated query has the same structure of the old one, but with dif-
ferent input parameters, and thus is identified as a different one QP , together
with the new result set that is produced RP;

• Start new exploration paths by submitting some expansion query on other
search services, thus defining a new set of selected results SRM and performing
a new step S in the navigation, with a completely new query QS , which in turn
will produce a new resultset RS;

The Query Orchestrator acts as a controller that governs the flow of query executions
and query/result-set storage and reuse. In such a context, the cache manager controls
the distributed cache system exploited by the query orchestrator to maintain the cur-
rent stateful objects for all the active user sessions; the query manager manages the
current state of interaction for each active user session, keeping track of each user
actions’ history.

The Execution Engine (EE) is in charge of transforming each query into an ex-
ecutable execution plan and of executing it according to the requests of the query or-
chestrator, eventually providing it with the results. Further details about the EE are
reported in [7]. The Semantic Resource Framework (SRF) provides abstractions
and storage of search services, as described in [9].

6 Conclusions

In this Chapter we have described an evolution of the Liquid Query interface initially
implemented for the SeCo system [4][5] that goes in the direction of a more flexible
exploration of the resources, modular visualization of the result set and better support

24 A. Bozzon et al.

for the incremental search process. The implementation of the query expansion facili-
ties described in the Chapter is on-going: the implementation of result displayer with
the atom view is completed; preliminary explorations of the SRF with a “forward”
version of the orchestrator are supported, while the addition to atom views of the
various interactive query features is on-going.

We are experimenting with different allocations of data and functionality between
the client and server tier of the architecture. In parallel, research work is being done
on result set visualization, as explained in [6] This work will be integrated into the
user interface for exploratory search, by complementing the atom view visualization
with other mechanisms (maps, timelines, diagrams and charts), while preserving the
capability of the system to support the entity-by-entity exploration in addition to one-
shot querying and result visualization.

References

[1] Adar, E.: Guess: a language and interface for graph exploration. In: Proceedings of the
SIGCHI conference on Human Factors in computing systems (CHI 2006), pp. 791–800.
ACM, New York (2006)

[2] Aula, A., Russell, D.M.: Complex and Exploratory Web Search. In: Information Seeking
Support Systems Workshop (ISSS 2008), Chapel Hill, NC, USA, June 26-27 (2008)

[3] Bates, M.J.: The design of browsing and berry-picking techniques for online search
interface. Online Review 13, 407–424 (1989)

[4] Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid query: multi-domain
exploratory search on the web. In: WWW 2010: Proceedings of the 19th International
Conference on World Wide Web, pp. 161–170. ACM, New York (2010)

[5] Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Liquid Queries and Liquid
Results in Search Computing. In: Ceri, S., Brambilla, M. (eds.) Search Computing. LNCS,
vol. 5950, pp. 244–267. Springer, Heidelberg (2010)

[6] Bozzon, A., Brambilla, M., Catarci, T., Ceri, S., Fraternali, P., Matera, M.: Visualization
of Multi-Domain Ranked Data. In: Ceri, S., Brambilla, M. (eds.) Search Computing II.
LNCS, vol. 6585, pp. 53–69. Springer, Heidelberg (2011)

[7] Braga, D., Corcoglioniti, F., Grossniklaus, M., Vadacca, S.: Efficient Computation of
Search Computing Queries. In: Ceri, S., Brambilla, M. (eds.) Search Computing II.
LNCS, vol. 6585, pp. 141–155. Springer, Heidelberg (2011)

[8] Brambilla, M., Tettamanti, L.: Search Computing Tools and Processes. In: Ceri, S.,
Brambilla, M. (eds.) Search Computing II. LNCS, vol. 6585, pp. 169–181. Springer,
Heidelberg (2011)

[9] Brambilla, M., Campi, A., Ceri, S., Eynard, D., Ronchi, S.: Semantic Resource Frame-
work. In: Ceri, S., Brambilla, M. (eds.) Search Computing II. LNCS, vol. 6585, pp.
73–84. Springer, Heidelberg (2011)

[10] Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)
[11] ezDL, Easy Access to Digital Libraries, http://www.ezdl.de/project
[12] Fuhr, N.: A probability ranking principle for interactive information retrieval. Inf.

Retr. 11(3), 251–265 (2008)
[13] Huttenhower, C., Mehmood, S.O., Troyanskaya, O.G.: Graphle: Interactive exploration

of large, dense graphs. BMC Bioinformatics 10(417) (2009),
 doi:10.1186/1471-2105-10-417

 Information Exploration in Search Computing 25

[14] Kuhlthau, C.C.: Kuhlthau’s information search process. In: Fisher, K., Erdelez, S., Lynne,
E.F., McKechnie (eds.) Theories of information behavior, pp. 230–234. Information
Today, Medford (2005)

[15] Kumar, R., Tomkins, A.: A Characterization of Online Search Behaviour. Data
Engineering Bullettin 32(2) (June 2009)

[16] Marchionini, G.: Exploratory search: from finding to understanding. Commun.
ACM 49(4), 41–46 (2006)

[17] Munzner, T.: Exploring large graphs in 3D hyperbolic space. IEEE Computer Graphics
and Applications 18(4), 18–23 (1998)

[18] Pirolli, P., Stuart, K.C.: Information Foraging. Psychological Review 106(4), 643–675
(1999)

[19] Robins, D.: Interactive Information Retrieval: Context and Basic Notions. Informing Sci-
ence Journal 3(2), 57–62 (2000)

[20] Rose, D.: The information-seeking funnel. In: Marchionini, G., White, R. (eds.) National
Science Foundation workshop on Information-Seeking Support Systems (ISSS), Chapel
Hill, NC, June 26-27 (2008)

[21] Rose, D.E., Levinson, D.: Understanding user goals in Web search. In: WWW 2004, Pro-
ceedings of the 13th International Conference on World Wide Web, New York, NY,
USA, pp. 13–19 (2004)

[22] Tzitzikas, Y., Hainaut, J.-L.: How to tame a very large ER diagram (Using link analysis
and force-directed drawing algorithms). In: Delcambre, L.M.L., Kop, C., Mayr, H.C.,
Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 144–159. Springer,
Heidelberg (2005)

[23] Wattenberg, M.: Visual exploration of multivariate graphs. In: Proceedings of the
SIGCHI conference on Human Factors in computing systems (CHI 2006), pp. 811–819.
ACM, New York (2006)

[24] White, R.W., Muresan, G., Marchionini, G.: ACM SIGIR Workshop on Evaluating
Exploratory Search Systems, Seattle (2006)

[25] White, R.W., Drucker, S.M.: Investigating behavioural variability in web search. In: 16th
WWW Conf., Banff, Canada, pp. 21–30 (2007)

[26] White, R.W., Roth, R.A.: Exploratory Search. In: Marchionini, G. (ed.) Beyond the
Query–Response Paradigm. Synthesis Lectures on Information Concepts, Retrieval, and
Services Series, vol. 3. Morgan & Claypool, San Francisco (2009)

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 26–32, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Trends in Search Interaction

Ricardo Baeza-Yates1, Paolo Boldi2, Alessandro Bozzon3,
 Marco Brambilla3, Stefano Ceri3, and Gabriella Pasi4

1 Yahoo! Research
Avinguda Diagonal 177, 08018 Barcelona, Spain

rbaeza@acm.org
2 Università degli Studi di Milano, Dipartimento di Scienze dell’Informazione

Via Comelico 39/41, I-20135 Milano, Italy
boldi@dsi.unimi.it

3 Politecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32, I-20133 Milano, Italy

{firstname.lastname}@polimi.it
4 Università degli Studi di Milano Bicocca, DISCO

Viale Sarca 336, I-20126 Milano, Italy
pasi@disco.unimib.it

Abstract. This paper reports the main findings of a panel about trends in search
engine interaction, focused upon the use of search engines for performing com-
plex processes1. The discussion focuses on the different evolutionary path
followed by search engines with respect to other Web and information man-
agement solutions, making end users acquainted with the simplistic and never
changing keyword-based query paradigm. The analysis delves into the pros and
cons of personalization, contextualization, and exploration of Web information,
with special attention to the presentation and user interaction aspects. In the
end, we also wonder if the keyword-based query paradigm will ever change.

1 Introduction

The technology of search engines and the amount and quality of services they offer have
radically evolved in the last twenty years, in parallel with their ever-increasing market
value: not only they largely remain the main entry point to the Web for the vast majority
of users, but they are constantly trying to develop new features that are more loosely
related to search and should serve to enhance the Web-user experience; such functional-
ities (integrated Webmail, Web-editing of documents, personal calendars, image and
video hosting facilities, personalized information delivery, to cite only a few) are actu-
ally changing our way of thinking about computations and Web services in general. As
often observed, they are in a sense pointing back to the idea of centralized computation,
making browsers similar to old-days' terminals.

Notwithstanding this evolution, the basic service provided by search engines has
remained the same, and it is surprising to observe how the basic textual keyword-based

1 Panel Session, Workshop on “Search as a Process”, Politecnico di Milano, May 26 2010.

 Trends in Search Interaction 27

search interface has not substantially evolved or changed over time: alternative
proposals (using portals, employing other more sophisticated tools for information
hunting, etc.) did not (yet) take off, except possibly in some specialized niches.

Such a long-lasting success is most uncommon in computer science and should
suggest that the very concept of keyword-based search is extremely robust although it
not always matches users' expectations and satisfaction.

Of course, behind the scenes, search engines changed a lot. Companies such as
Google, Yahoo! and Microsoft have tremendously improved the search engine tech-
nology, in particular in scalable distributed systems and sophisticated query process-
ing and ranking techniques. While those innovations did not affect the way in which
users approach search through simple keyword-based interfaces, they are changing
the way in which results are presented, by trying to guess and satisfy better the user’s
needs. Let us make an attempt to understand more thoroughly in which directions
they are moving to reach this goal.

2 Helping the User

A general motto that is repeated constantly by engineers working in search is that one
“should help the user find what (s)he's looking for”. But not all users are the same,
and not all searches are the same, so helping the user really does not mean the same
thing for all searches and for all users. The “one size fits all” paradigm commonly
applied by search engines does not adhere to the complex and dynamic characteristics
of typical search tasks. In a complex search, the user knows what (s)he wants, and this
is the result of a complex task (s)he has in mind, while in exploratory search the user
does not have a precise idea of what (s)he wants [20], although the result may be
fairly simple. Hence, these two dimensions are somehow orthogonal. In the former
case, the system should understand that such a search mission is ongoing, and react by
offering diverse suggestions and help, possibly keeping track of what the user has
collected so far and trying to make sense of it. In the latter case, a more liberal (and
prudent) attitude should be adopted, avoiding to interfere too much with the user's
search, and act in a way that may sometimes be felt as unwanted or even intrusive.

Many recent works [3][7][9][10] focus on how one may understand whether a
complex search mission is underway, for example, by storing and using the amount of
knowledge collected from what other users did in the past (an obviously precious
source of information that is collected in search engine query logs). It is important to
observe that a complex search mission is probably a long-lasting one. Tasks are “long
lived” and occur across sessions – people start to plan their trip to Greece one day and
they continue the next day - therefore it would be useful for a search engine to re-
call/reconstruct previous interactions from the same user and to build personalized
histories. A personalized and collaborative search approach can be of help in this con-
text. A further difficulty is that users often “intertwine missions”, i.e., they switch
from a task to another (e.g., alternate work with leisure) - therefore systems should be
able to capture interest shifts (especially temporary ones): this ability has proven to be
difficult to achieve, although in many cases intertwined missions actually boil down
to simple diversions.

28 R. Baeza-Yates et al.

A subtle point to be considered here is that complex searches often present multi-
ple facets and may grow in different directions: therefore, reconstructing the state of a
search process may include detecting branches in that process and then associating
each branch with different results, as diversity and richness of results is not less im-
portant than appropriateness and completeness [16].

3 Wisdom of Crowds

An aspect that we already touched upon is the central role of collective past behavior
in understanding what a user is doing and in making an effort to be of help. Albeit
such activity is worth in general, using collective behavior to help understanding what
is going on is particularly important when the user is engaged in a complex search
activity. Gathering data about the decisions taken by a large group of individuals in
order to assist the user is one of the fundamental ideas behind the so-called wisdom of
crowds [18]: if the group is large enough, and if its members are sufficiently inde-
pendent from one another, their collective behavior contains at the same time suffi-
cient homogeneity and enough diversity to allow one to extract clear trends to cover
most of the possible user's intents and needs. In the Web, wisdom of crowds is an
alternative name of Web data mining, in particular Web usage mining.

Using collective information in Information Retrieval is not something new. The
basic ranking schemes used in the 1960’s use the collective wisdom of people writ-
ings (e.g. TF-IDF). Later, in the Web, links were used (e.g. in PageRank), that is the
collective wisdom of webmasters (that is not true today as any person can add links
thanks to the Web 2.0). Today, we can also use the collective wisdom of users, re-
flected in weblogs as clicked pages or in query logs as queries and clicked results.
Hence, the wisdom of crowds is crucial to rank many kinds of objects (e.g. docu-
ments) or to find subgroups of experts in social networks.

This form of large-group knowledge is also at the very heart of Web 2.0 [15], and
appears in many different forms (collaborative tagging, blog harvesting, query-log
mining etc.). Albeit important, though, one should always have a clear understanding
of the limits and possible pitfalls behind this idea; not only the information collected
may be biased due to the presence of spam [6], but also (and more simply) because
often, rephrasing Gresham's law, “bad information drives out good”. Even under op-
timistic assumptions, mediocrity tends to prevail, thus producing suggestions of low
or limited quality; and, in some cases, outdated or blatantly wrong data may outweigh
good ones.

Some measure of trust or reliability of users may alleviate this problem; yet, even
in the presence of a perfectly dependable source of information, a further point cannot
be ignored: employing the wisdom of crowds to bias the results of a query is only
worth if the user shares the crowd’s values, else it may be more harmful than benefi-
cial. This is the case of the collaborative search approach [17], where like-minded
people actions are considered to leverage the search undertaken by an individual of
the considered community. Collaborative search is an example of context-aware
search, where the considered context is the user’s social context. An important aspect
of the problem is to understand user’s trusted fellows, because adding such informa-
tion to the result may be very relevant in convincing that result’s additions and

 Trends in Search Interaction 29

corrections are acceptable. Making a user satisfied requires some kind of sentiment
analysis [14] to determine what the user really wants; otherwise, departing from the
“neutral” result of a query (the one natively produced by the search engine algorithm)
could cause angriness or disaffection.

We remark that our observations should not be overstated; in most cases, using de-
fensive algorithms and leveraging on large unbiased datasets is enough to obtain use-
ful signals. Our main point was that helping users is quite difficult and may be risky,
and that in some cases helps may have gone too far without really improving their
precision and recall relative to the user’s query. Finally, introducing a bias in the re-
sults based on a “machine driven” and too user independent interpretation of the user's
preferences yields an ethical question: should the search engine present the answer a
user wants, or should it present the “bare truth”?

4 Contextualization and Personalization

Contextualization and personalization are an essential ingredient of modern search, as
suggested also in the previous section. The notion of context in the search task may be
referred to several components (search context, document context etc.), among which
a central role is played by user’s context.

As previously outlined, making a search outcome tailored to a specific user (or
group of users) is a difficult although challenging task: how to collect and represent
users’ preferences is one of the most important aspects, which has been extensively
investigated in the last years [11][13]. Personalization has been recently addressed not
only as a pool of techniques aimed to improve search by taking advantage of a single
user’s preferences, but also by exploiting the user social context, as previously out-
lined with reference to collaborative search [17][19].

One of the main issues in personalization is the construction of users’ profiles:
their definition is based either on the implicit monitoring of the user’s behavior (Web
logs, past queries, Web pages copied on the user’s desktop, etc.) or on explicit user
indications or on both. There are only a few things in the user’s profile that don’t
change, e.g., her/his birth date, being a fan of a given soccer team (or of a kind of mu-
sic), but the rest may change, e.g., the preferences for restaurants may change depend-
ing, for example, on the user's current location. For this reason profiles should be
defined as dynamic and adaptive pieces of knowledge, and possibly represented to
reflect the multi-dimensional and faceted nature of the multiple user’s interests. In
fact, as each of us shows multiple personalities (a.k.a. personas) when interacting
with a search engine, the user profile should be able to represent multiple user prefer-
ences, according to the context in which the search task is being executed.

User profiles do represent long term topical interests: it is therefore hard to associ-
ate a specific topical preference with random sessions, much in the same way it may
be difficult to guess one’s preferences based on limited human interactions with short
sentences. This is the reason why collecting and representing user’s actions should be
based on several techniques. Moreover, to better represent users’ preferences, the
user’s cognitive (i.e. topical) context should be enriched with the knowledge of
her/his geographic and social context. There is in fact a great convergence on the im-
portance of contextualization in space and time: for instance, if one is searching on

30 R. Baeza-Yates et al.

his/her mobile, most likely (s)he is not attaching a complex task (e.g., next summer’s
trip to Greece), but rather (s)he is trying to localize a close-by service. Then the
search answer (i.e. the user-tailored search process) should take the geographic con-
text into account.

The consideration of multiple preference dimensions gives rise to the interesting
problem of aggregation: how to aggregate the various contextual components to de-
fine the final ranking of the retrieved information items? Also the aggregation process
could be driven by user preferences [4].

Personalization and contextualization in fact typically concern not only the results
to be presented but also (and more importantly) their presentation and their order.
However, the general approach to ranking sees everyone agreeing on the fact that
total order is misleading, as users are only concerned by partial orders. Regarding
multi-dimensional search, for many users could be easier to work on one dimension at
a time; it could be then appropriate to build search protocols that suggest at each stage
the results which optimize one dimension; of course, in such scenarios the ordering of
dimensions chosen by the protocol becomes essential, but it could also be user-driven.

Another important issue is to go beyond the ranked list presentation of search re-
sults; a first step was mixing other results in the standard page result (e.g. universal
search in Google), but the problem of combining different types of results in a single
screen is mostly unsolved. Some recent and interesting approaches are aimed to help
users to visually identify bad and good results through two or three-dimensional pres-
entations of search results, by also taking into account the user’s preferences [1].

An important topic is the impact of personalizing the result. To do personalization
well we need enough data from the user as well as explicit consent, due to privacy
issues (e.g. login authentication that implicitly approves the terms and conditions of
the interaction); the overall percentage of users satisfying these two restrictions will
be low. This problem is usually faced when developing client-side applications [12].
Despite of these privacy issues, Google personalized search offers an example of cen-
tralized solution to the “one size fits all” approach.

On the other hand, contextualizing results (e.g. ranking and displaying the results)
according to the intent and context of the query without personalizing at an individual
level is another direction that may help groups of people doing the same task regard-
less of their identity. As log analysis shows, as users perform similar tasks in the
Web, this kind of contextualization could have a larger impact. In addition, as we do
not need to know the single user, we remove the privacy issues related to personaliza-
tion [2].

5 Raising the Complexity of the User Interface?

The final question concerns the interaction paradigm: will it always be bound to key-
word-based search, or should we expect that the interaction paradigm complexity
would rise, at least for complex search, so as to be more expressive? Query interfaces
should anyway be kept very simple, featuring interactions where users implicitly
choose dimensions as they become available, and where each dimension corresponds
to a real-world object, and objects are connected by a graph. This interaction seems to
be coherent with the emerging model of “objects-based search” presented by Yahoo

 Trends in Search Interaction 31

as an evolution of page-based search [2][5]. Interaction is obviously more compli-
cated, although the user does not need to know that (s)he is traversing a graph, (s)he is
just presented the valid options at each step. This form of interaction is already par-
tially implemented in the form of query suggestion or as the “find-similar” feature of
existing search engines.

Still, this seems a rather radical step for search engines at their current stage of de-
velopment. There is consensus that, while niche users will enjoy more expressive lan-
guages - optimistically one could think of a 10% of sophisticated users – the standard
user interface of search engines will not change. It is not in the search company’s
interest to train people in doing “better search”: with millions and millions of new
users per year, the average user skill is actually reducing, and search companies are
most interested in pleasing & capturing the tail of newcomers.

Moreover, recent studies show that the same user may at time act as “dummy” and
at time act as a very clever user [8]. Most people are satisfied of results that they get
in the “dummy” mode, so they have little incentives in making more efforts, as the
interface simplicity pays off. But a complex multi-domain search could still be en-
gaged with a simple keyword-based interface and simple ways of interaction, so there
is hope to see search computing queries at work below current interfaces, and not
necessarily with a more expressive interaction paradigm.

On a different direction, a rich trend of research is trying to understand natural-
language queries (maybe combined with speech recognition tools, and possibly with a
verbal output through a voice synthesizer). This is a promising line of study, espe-
cially if you think of its application to mobile-based search, but at the moment it
seems to be still immature for large-scale implementation.

Users are so satisfied of the simplicity of search engine interfaces that there must
be a huge incentive to convince them to go for a more complex kind of interaction;
such a situation may happen in the future, at least in some context, but at the moment
it appears to be out of reach. This sets the main challenge of search engine evolution:
going much beyond the current answering capability without changing the simple user
interface.

References

[1] Ahn, J.-W., Brusilovsky, P.: Adaptive Visualization of Search Results: Bringing User
Models to Visual Analytics. Information Visualization 8(3), 167–179 (2009)

[2] Baeza-Yates, R., Raghavan, P.: Next Generation Web Search. In: Ceri, S., Brambilla, M.
(eds.) Search Computing. LNCS, vol. 5950, pp. 11–23. Springer, Heidelberg (2010)

[3] Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., Vigna, S.: The query-flow
graph: model and applications. In: Proceeding of the 17th ACM Conference on Informa-
tion and Knowledge Management, Napa Valley, California, USA, October 26-30 (2008)

[4] da Costa Pereira, C., Dragoni, M., Pasi, G.: Multidimensional Relevance: A New Aggre-
gation Criterion. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.)
ECIR 2009. LNCS, vol. 5478, pp. 264–275. Springer, Heidelberg (2009)

[5] Dalvi, N.N., Kumar, R., Pang, B., Ramakrishnan, R., Tomkins, A., Bohannon, P.,
Keerthi, S., Merugu, S.: A Web of concepts. In: ACM Principles of Database Systems
(PODS), pp. 1–12 (2009)

32 R. Baeza-Yates et al.

[6] Davison, B., Najork, M., Converse, T.: SIGIR Worksheet Report: Adversarial Informa-
tion Retrieval on the Web, AIRWeb (2006)

[7] Donato, D., Bonchi, F., Chi, T., Maarek, Y.: Do you want to take notes?: identifying re-
search missions in Yahoo! search pad. In: Proceedings of the 19th International Confer-
ence on World Wide Web, Raleigh, North Carolina, USA, April 26-30 (2010)

[8] Goel, S., Broder, A.Z., Gabrilovich, E., Pang, B.: Anatomy of the long tail: ordinary peo-
ple with extraordinary tastes. In: Proceedings of WSDM 2010, pp. 201–210 (2010)

[9] He, D., Göker, A.: Detecting session boundaries from Web user logs. In: Proceedings of
the BCS-IRSG 22nd Annual Colloquium on Information Retrieval Research, Cambridge,
UK, pp. 57–66 (2000)

[10] Jones, R., Klinkner, K.L.: Beyond the session timeout: automatic hierarchical segmenta-
tion of search topics in query logs. In: Proceeding of the 17th ACM Conference on In-
formation and Knowledge Management, Napa Valley, California, USA, October 26-30
(2008)

[11] Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: A bibliography.
SIGIR Forum 37(2), 18–28 (2003)

[12] Kobsa, A.: Privacy-Enhanced Web Personalization. In: Brusilovsky, P., Kobsa, A., Nejdl,
W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 628–670. Springer, Heidelberg
(2007)

[13] Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized Search on the World
Wide Web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS,
vol. 4321, pp. 195–230. Springer, Heidelberg (2007)

[14] Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. Found. Trends Inf. Retr. 2, 1–
2 (2008)

[15] O’Reilly, T.: What Is Web 2.0: Design Patterns and Business Models for the Next Gen-
eration of Software (2010),
http://oreilly.com/web2/archive/what-is-web-20.html

[16] Rafiei, D., Bharat, K., Shukla, A.: Diversifying Web search results. In: Proceedings of the
19th International Conference on World Wide Web, Raleigh, North Carolina, USA, April
26-30 (2010)

[17] Smyth, B.: A Community-Based Approach to Personalizing Web Search (2007)
[18] Surowiecki, J.: The wisdom of crowds. Knopf Doubleday Publishing Group (2005)
[19] Teevan, J., Morris, M., Bush, S.: Discovering and using groups to improve personalized

search. In: Proceedings of the ACM International Conference on Web Search and Data
Mining, pp. 15–24 (2009)

[20] White, R.W., Kules, B., Drucker, S.M., Schraefel, M.C.: Supporting Exploratory Search,
Introduction. Communications of the ACM 49(4), 36–39 (2006)

Part 2

Interaction Design

One of the key aspects of search computing is to facilitate the user in performing
complex search tasks, so as to reduce entry barriers, fasten the process, and increase
the probability of success. A careful design of interaction is fundamental for
interpreting user’s queries, for contextualizing them in the user’s setting, and for
improving the presentation of results through visual helps which enable grasping the
differences between alternative solutions.
 Interaction design means, on one hand, to focus on the user’s activities so as to add
implicit semantics to what the user is explicitly performing, thereby giving meaning
to his/her actions. On the other hand, interaction design should reflect the
technological setting – be it mobile, desktop, or maybe a huge screen – and the choice
and presentation of information should be adapted to the setting. Finally, when
complex results include many ranking dimensions, for instance because they result
from ranking compositions, visualization tricks should be used to let the most
important dimensions emerge and be visualized with the most powerful and
immediate representation mechanism. These three dimensions do not exhaust the full
spectrum of research in interaction design, but certainly provide a good range of
research directions for the current stage of search computing.

The first chapter deals with the importance of inferring usage context from user
actions to further improve the user experience. Syntax-driven or context-sensitive
mechanisms enable the identification of context embedded within some user actions
(e.g., filling forms or bookmarking Web pages). Such contextual information,
possibly generalized over many instances of use or associated with a specific user
profile, can then be exploited to improve search effectiveness; in turn, search
complements human thinking and cognitive processes, and users adapt the focus of
their actions while performing search tasks.

The second chapter deals with the diversity of interaction and display tools and
hence the diversity of modalities of interaction with devices varying from tiny to
huge, henceforth also with the mechanisms to adapt and scale data visualizations to
such different requirements and the modalities for input and output (e.g.,
incorporating papers, using speech and other sounds, gestures, etc.).

The third chapter illustrates visualization design in search computing. The main
contribution is a visualization model for search computing results, whose data types
are used in the process of determining the best visualization patterns; the model
assumes the existence of multiple rankings, and chooses the best visual representation
for them. Rules for result visualization depend on the visualization model and specific
data types, and are applicable regardless of the semantics of result objects within the
application.

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 35–45, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Context and Action in Search Interfaces

Alan Dix1,2

1 Talis, Solihull Parkway Birmingham Business Park, Birmingham B37 7YB, UK
2 Lancaster University, School of Computing and Communications, Lancaster LA1 4WA UK

alan@hcibook.com

Abstract. While the web is often described in terms of access to information, it
is also a place where people do things from booking hotel rooms, to completing
their tax return. This paper outlines the ways in which search can form a part of
a more action-based view of web interaction. The simplest is that search can be
action that the user is performing to get information. However, search can also
be used more computationally within an intelligent system that infers appropri-
ate points to trigger interaction (loci of action) and constructs a model of the us-
ers context. The resulting picture is a rich interplay between user action and
computation, where each inform and influence the other, and where search can
form an intimate part both explicitly for the user and embedded within
computation.

Keywords: user interaction, context inference, data detector, intelligent user
interface.

1 Overview/Motivation

While the web is often described in terms of access to information, it is also a place
where people do things from booking hotel rooms, to completing their tax return [1].
Theories of embodiment stress that, as creatures in the world, our perception is not an
abstract gathering of information for processing, but an integral part of our being
acting beings [2]. This is equally true in the digital world of the web: we search for
information to do things whether on the web, in the world or both; for example, look-
ing at potential holiday destinations, which will later be booked online but visited
physically. Even information seeking is an interactive process as made clear in in-
formation foraging theory [3], where information we have allows us to make choices
of actions (including performing more searches) which lead to further information.
This exactly parallels the ecological understanding of perception, where we may turn
our head or move to see things better.

Search is thus an integral part of this acting view of human activity on the web,
both informing human actions and being one of those actions. If we regard web inter-
action as solely instrumental: where the user is the only actor and computational ele-
ments are tools or data, then that is the end of the story. However, if we allow the
computation to take a more active role as mediator or assistant, then we can see a
wider role.

36 A. Dix

For a human listener a request such as "where is the bus" might be interpreted
"when is the bus coming, is it late" if said at a bus stop, or "where is the bus stop" if
said in a shopping centre. If you know someone well then when they say "RDF" you
will know whether they mean "Resource Description Framework" or "Refuse Derived
Fuels". When human helpers hear a query or request they will use context in order to
work out the likely intention. This context may include the nature of the person as
well as the situation in which the request occurs. Similarly, context such as personal
profile information or the recent activity of a user can be used to interpret the user's
actions and information they have been viewing and use this to better respond to the
user's future actions and requests.

Furthermore, if you meet a visitor in your hometown and they mention they like
art, you may suggest a gallery or local attraction based on that, even without being
asked. If the person then showed interest you may then go on to suggest the best way
to get there, walking, by bus, again without being explicitly asked. That is the human
helper may notice loci for action, topics or things in the conversation or previous
activity that suggest that information or potential actions may be appropriate. In a
computational setting this locus may be a phrase in an email or web page being vis-
ited, or something in the output of a previous action, for example the destination town
after having booked a rail ticket.

As previously noted, search may be a potential action, which may have been sug-
gested based on a locus for action (e.g. searching for information on the destination
town), and that search may be influenced by context (e.g. if the user frequently looks
up art-related material). However, search can also be used computationally as part of
the algorithmic processes that infer potential loci for action and user context.

In the next section we will examine the cycle of digital interaction, seeing both the
role that loci-for action and context can play in this and also the way that search can
be an enabler and outcome of the cycle. In Section 3 and Section 4, we look in turn at
how loci for action and context can be inferred; in each case seeing how search can be
used computationally. Section 5 then looks at search as an action itself, but the way
in which the loci and context can influence the search process and in particular the
choice of search repository.

2 Cycles of Action and Context

Fig. 1 shows the cycle of user action and the role automated context can play in this
cycle. The user is engaged in a series of actions: on the web these would typically be
clicking a link, hitting a form button, typing in a url, or entering a search string. The
actions each create outputs; for example a page of search result, a web page, email
message, PDF or Word document (the term 'document' will be used generically to
refer to all these).

Sometimes the user may spontaneously invoke an action (e.g. typing a url), but
very often actions arise out of the results of previous actions (e.g. clicking a link,
reading an email message, opening a document); that is a loci of action, as introduced
in the previous section. In some cases the potential loci will be very explicit (link or
button); however, in others there may be something in the output document (e.g. a
person's name) that may be the trigger for the user's next action, but which is not

 Context and Action in Search Interfaces 37

obviously encoded as such. The user will typically have many choices for a potential
next action, and so there is a cycle where the user performs an action, obtains results
and may select some part of this output for the next action.

Both the detection of these more implicit loci for action and the execution of the
action may be influenced by automatically inferred context based on the user's previ-
ous interaction history both long term (building up a broad profile of the user's prefer-
ences) and shorter term (understanding the user's current topic of interest).

Fig. 1. Cycle of action and context

Search may be involved in different parts of this cycle:

1. the action being invoked may be a search, in which case the loci and/or
automatic context may be used to help select appropriate search services,
or influence ranking

2. search-based resources can be used together with context in determining
loci for action, whether in an web page, email message or document.

3. context inference may use search-based resources in order to enrich trace
data

3 Establishing Loci for Action

In some cases the document that the user is viewing may have explicitly encoded loci
for further action such as a hyperlink or button. In these cases the application or per-
son that produced the document being viewed determines the next action. However,

38 A. Dix

more interesting are implicit loci, such as names, or places mentioned in text, as these
may be used in ways not foreseen by the originator: one user may use a name as input
into Google Scholar, another for a Facebook search, and yet another as input into
IMDb. If one can determine which parts of the document constitute potential loci and
furthermore what kind of data each represents (e.g. person name, place name, tele-
phone number), then it is possible to guide the user towards suitable resources and
actions including the choice of appropriate search services.

3.1 Explicit Semantic Markup of Loci

One way in which these loci can be detected is when the document originator has
added explicit semantic mark-up. While still not widespread, various forms of mark-
up including micro-formats and RDFa are beginning to be used on the web; for ex-
ample, Figure 2 shows a fragment of the HTML of a LinkedIn profile page where
hCard microformat [4] encoding of vCard [5] is used to mark the words "Alan Dix" as
a name where "Alan" is the given name and "Dix" is the family name.

Fig. 2. hCard microformat on profile page at linkedin.com

Of course, the vast majority of web resources are not marked up in this way, in-
deed the main reason that the LinkedIn profile can be annotated like this is because it
is being generated from a database where the semantics of the name are already ex-
plicit. If, for example, the name were mentioned in the middle of an email message
from a friend it is unlikely that the writer of the email would explicitly mark-up the
content in this way!

3.2 Inferring Loci – Data Detectors

Happily it is possible to automatically detect this type of semantic value within text
using a form of local text mining known as data detectors. Data detectors have been
used sporadically since the late 1990s when a number of commercial and research
systems were developed including work at Intel [6], Apple [7], Georgia Tech (Cy-
berDesk) [8] and aQtive (onCue) [9]. Some of these worked by scanning the com-
plete text available to the user, others some selected portion; for example, onCue
worked by looking at the clipboard so that it could react whenever the user copied or
cut text. All of these early systems effectively used syntactic methods for recognition,
using some variant of BNF, regular expressions, or bespoke code to analyse the text
and work out what it represented from patterns of letter use, punctuation etc. For
example a UK postcode matches the regular expression below:

 Context and Action in Search Interfaces 39

/([A-Za-z][A-Za-z0-9]{1,3})[\t]*([0-9][A-Za-z]{2})/

Of course, as with any such system, this can lead to both false positives (e.g. "High
Court" is classified as a person name because of its length and capitalisation) and
false negatives (e.g. the poet name "e.e. cummings" is not recognised because of its
unusual capitalisation). Because of this, onCue was deliberately designed using prin-
ciples of 'appropriate intelligence', embedding the 'intelligent' algorithms within an
interaction framework that meant errors in the intelligence did not negatively impact
the user experience [9].

3.3 Using Search in Data Detectors

In even earlier work, the Microcosm hypermedia system developed at Southampton
University [10] added links dynamically at the server side using a similar form of text
mining. However, instead of syntactic rules Microcosm looked up the terms in the
source document and matched them against a database linking keywords/terms to
particular resources. This is a similar to the way terms link to their topics within
Wikipedia by keywords/phrases not full hyperlinks; except that in Microcosm there
was no need for any explicit mark-up by the page author, not even to say "this a
term". Note that this is effectively using search in order to deliver 'intelligent' results,
in the same way that Google 'suggest' does while typing search terms.

This form of search-based data detection and the more syntactic rules used by most
data detectors can be combined. The web-based bookmarking system Snip!t
(www.snipit.org) uses technology developed from onCue in order to perform data
detection over selected fragments of web pages; Figure 3 shows Snip!t suggesting
potential actions after recognising a post code in a selected web page fragment. Snip!t
uses some plain syntactic rules like onCue and the other early data detectors, but also
performs semantic searches in larger tables of data like Microcosm. These can be
used separately for different kinds of data, regular expressions for postcodes, lookup
for city names. However, most powerfully then two can be combined.

Fig. 3. Snip!t recognises a post code and suggest potential actions

40 A. Dix

An example of this can be seen in Figure 4, which shows a portion of the XML
description file for a person's name. Towards the top it declares "<keys>" and lists
"Female First Name" and " Male First Name". These are the names of data types
that have already been recognised using a lookup in a large table of male and fe-
male first names compiled from US census data. The rest of the XML description
then gives syntactic patterns for what could appear before or after this first name in
order to form a complete name. While not eliminating false positives and false
negatives, the use of lookup/search does increase the accuracy of the recogniser and
is also more efficient as the syntactic matching rule is only invoked if a suitable
lookup match is found.

<beforeafterrecogniser>
 <name>name1Recogniser</name>
 <title>Person Name recogniser</title>
 <keyed>
 <keys>Female First Name, Male First Name</keys>
 </keyed>
 <pattern>
 <pre_context>\W+</pre_context>
 <before>($RE_HONOURIFICS\s*)?</before>
 <key>$RE_CAPSNAME</key>
 <after>\s*$RE_MIDNAMES\s*$RE_LASTNAME</after>
 <post_context>\W+</post_context>
 </pattern>
 <match>
 <type>name</type>
 <description>Person name $$</description>
 </match>
</beforeafterrecogniser>

Fig. 4. Snip!t recogniser description file keyed from name lookup

4 Establishing Context

The techniques used to establish loci can also be used as a form of immediate inter-
action context. If you visit a web page that mentions Milan, it is likely that Milan
itself, Italy in general, or maybe research groups within Milan may be your topic of
interest. However, when looking at past activity other forms of inference can be
used.

Most obviously, the order of past actions can be used to suggest potential future
actions, for example, using hidden Markov models or other forms of sequence in-
ference. This can be a powerful technique, but is not strongly related to search
computing, so is not discussed further here, but more details can be found in [1].

More pertinently, the input of users can be analysed in a similar way to the
outputs of actions. These user inputs are often more likely to refer to data of imme-
diate personal importance and this can be used to yield more precise results. For
example, if the term "Tiziana" appears on a web page, it is possible to work out this
is a female first name, but it could refer to many Tiziana's. However, if you type

 Context and Action in Search Interfaces 41

"Tiziana" into an input field, then it is likely that the Tiziana in question is someone
you know and local resources, such as an address book, can be searched to deter-
mine that this is very likely to be "Tiziana Catarci".

Various projects, including those looking at the 'Semantic Desktop' [11,12] and
the TIM project [13,1], consider some form of personal ontology, where personal
constructs are linked together, for example explicitly recording that "Tiziana Ca-
tarci" 'works in' "University of Roma, La Sapenza", where each of the terms is a
semantic entity or relation in the ontology. This data may be mined from existing
sources such as address books, calendars and email messages, or entered explicitly
using a dedicated interface.

Based on similar knowledge to that embedded in these personal ontologies, an
experienced (human) personal assistant would be able to tell that if you had just
received an email from Tiziana and then asked for a flight and hotel to be booked,
then Rome is a likely potential location, and if so then the hotel needs to be close to
"La Sapienza". If a user has a rich digital personal ontology then it becomes possi-
ble for a computer to make similar inferences.

In the TIM project and related work we have looked at both rule-based inference
of relationships between form fields and also more 'fuzzy' inference using spreading
activation. In the case of more precise rules it is possible to infer that if a form has
both a name and address field, that the address is likely to be the one associated
with the person, and moreover, based on previous form entry, whether it should be
the home or business address [1].

Spreading activation is used to suggest potential linkage even where there has
been no previous exposure to the precise forms or applications [14]. For example,
if an email has been received from Vivi, then the entity representing Vivi is made
very 'active' in the ontology; then other entities in the ontology that have close asso-
ciations with Vivi (maybe a colleague Costas, or her institution 'University of
Athens') are also given some activation (see figure 5). In turn entities further and
further from Vivi inherit smaller amounts of activation from their neighbours. In
this way those entities in the ontology, which are closer to the initially activated
entity are most active and this can be used to rank potential candidates to complete
future parametrised actions.

This works fine so long as all the relationships are in the personal ontology, but
of course a human assistant would know, for example, that Athens is in Greece even
if this were not explicitly stated in an address book. Basic spreading activation is
limited to the knowledge available, but happily further information is available on
the web in both semantic-web linked-data sources [15] and also searchable deep-
web search services [16]. It is thus possible to fill the gaps in the locally stored
explicit knowledge with this globally stored, often 'common sense' knowledge, for
example, knowing (from the personal ontology schema) that 'Athens' is a place,
then if Athens is highly activated one can search resources such as the Geonames
online database to find information about Athens, which will include that it is the
capital of Greece. Initial studies have shown that this web-scale reasoning using
spreading activation is feasible and scalable [17].

42 A. Dix

Fig. 5. Spreading activation in a personal ontology

5 Suggesting and Influencing Search

As noted search may be one of the potential actions. If this is the result of a locus for
action from a data detector, then the semantics of the identified term can be used to
tune the search. For example, Snip!t suggests directory search services such as
ZoomInfo if the term is a person name, location-based search services such as recy-
cle-more.co.uk if the term is a post code, and search at acronymfinder.com if the term
appears to be an acronym. This already gives a high level of specificity, however,
there are some types of term for which there are many possible search services, or the
term may be ambiguous. In such case the slightly broader context given by spreading
activation may allow greater specificity.

So far this has not been implemented with Snip!t, but the author used somewhat
similar techniques during in research at aQtive in the late 1990s. The Open Directory
Project was used which has both a hierarchical category system and a large corpus of
web material hand-classified in the hierarchy. For any term the relative frequency of
the word in pages associated with leaf categories can be used to give an initial 'activa-
tion' of the leaf category, which can then be spread both up and down the category
hierarchy in order to generate a relevance measure of a term for a category, even if
there is no explicit mention of the term in the category. This is a constrained form of
spreading activation, as it is limited to a hierarchy, but otherwise very similar to
spreading activation on the personal ontology.

The outputs of this process were then used to classify unseen text; for example the
term "Chihuahua puppy" would be correctly classified with highest confidence as
Chihuahua the dog rather than Chihuahua the place in Mexico even if the term 'puppy'
never appeared in pages classified as "pet/dog/chihuahua", because pages in other
subcategories of the dog category did mention 'puppy'. This was then used to im-
prove the relevance results of searches of various kinds: web pages, images and
online shops. This information could also tune the choice of appropriate search re-
sources (e.g. zoominfo, or IMDb to lookup a name) [18].

 Context and Action in Search Interfaces 43

6 Discussion

We have seen a number of ways in which search computing interacts with a more
action and context focused view of user interaction on the web.

On the one hand search can be used to enhance user interaction by working to-
gether with more syntactic methods to allow data detectors to identify loci for actions
and more generally text mining to establish potential semantic entities. Similarly
when spreading activation is used for context inference, local data stores can be aug-
mented on the fly by external data sources including searches of deep web resources.
The appropriate points for augmentation can be identified based on 'chasing' already
loaded entities of high activation, and the appropriate deep web resources can be
indentified because the personal ontology establishes a clear type for the data.

In the above, search computing was used as a hidden part of the algorithms used to
suggest potential future actions, establish user context and based on this aid in the
completion of data for actions. However, search computing can also be the final point
of such actions; that is the above techniques may yield search as a final action of the
user. In these case the fact that loci of action can be identified and given a precise
type can help choose or rank appropriate search repositories and moreover this can
be tuned further by inferred user context.

More broadly it is interesting to note the way in which user interaction is not only
enabled by existing knowledge such as the personal ontology and search data, but is
also the source of such knowledge in terms of traces of interaction. It is easy to con-
ceptualise the role of algorithmics in user interaction in terms of the computation that
occurs between user actions, that is no more than a variation of a 1960s batch input-
output process. However, interactive computation [19] has different properties to
plain IO computation, and we need to re-conceptualise with a more systemic view
where the human activity is integral to the computation, as has been emphasised in
recent work on 'human computation' [20, 21].

Knowing that a human will interpret results may change our focus. Rather than
seeing algorithms as producing precisely the best the results, we focus more on expos-
ing alternatives and rationale. Similarly knowing that users are acting on outputs of
one phase of an algorithm may mean that user actions implicitly feed information
back into the automated analysis. For example, faced with the digits "0152410317" in
text, data detectors may offer multiple suggestions, not just the 'best' one say as a
phone number or a 10 digit ISBN; however if the user selects "phone using Skype"
this is a confirmation that it is the phone number not the ISBN.

When we view the computer in this more interactional role, search becomes a natu-
ral partner for more traditional algorithmics. In human cognition the relatively slow
process of sequential rational thought compliments the massively parallel associative
access to past memories. The vast quantities of data available on the web are proving
surprisingly powerful [22,23] as a computational resource, and in this paper we have
seen examples of how search acting as an associative store compliments more ex-
plicit, rule-based algorithms in a similar way to our own human thinking. Search is
therefore not only a way to provide information for the human user, but has the poten-
tial to allow the computer to act in a more humanly comprehensible way.

44 A. Dix

References

1. Dix, A., Lepouras, G., Katifori, A., Vassilakis, C., Catarci, T., Poggi, A., Ioannidis, Y.,
Mora, M., Daradimos, I., Md. Akim, N., Humayoun, S.R., Terella, F.: From the Web of
Data to a World of Action. Web Semantics: Science, Services and Agents on the World
Wide Web 8(4), 394–408 (2010), doi:10.1016/j.websem.2010.04.007.

2. Clark, A.: Being There: Putting Brain, Body and the World Together Again. MIT Press,
Cambridge (1998)

3. Pirolli, P.L.: Information foraging theory: adaptive interaction with information. Oxford
University Press, Oxford (2007)

4. Çelik, T., Suda B.: hCard 1.0., http://microformats.org/wiki/hcard
(accessed December 29, 2010)

5. Dawson, F., Howes, T.: vCard MIME Directory Profile. RFC 2426, IETF (1998),
http://www.ietf.org/rfc/rfc2426.txt

6. Pandit, M., Kalbag, S.: The selection recognition agent: Instant access to relevant informa-
tion and operations. In: Proc. of Intelligent User Interfaces (IUI 1997), pp. 47–52. ACM
Press, New York (1997)

7. Nardi, B., Miller, J., Wright, D.: Collaborative, Programmable Intelligent Agents. Com-
munications of the ACM 41(3), 96–104 (1998)

8. Wood, A., Dey, A., Abowd, G.: Cyberdesk: Automated Integration of Desktop and
Network Services. In: Proc. of the Conference on Human Factors in Computing Systems
(CHI 1997), pp. 552–553. ACM Press, New York (1997)

9. Dix, A., Beale, R., Wood, A.: Architectures to make Simple Visualisations using Simple
Systems. In: Proceedings of Advanced Visual Interfaces, AVI 2000, pp. 51–60. ACM
Press, New York (2000)

10. Hall, W., Davis, H., Hutchings, G.: Rethinking Hypermedia: The Microcosm Approach.
Kluwer Academic Publishers, Norwell (1996)

11. Semantic Desktop. semanticweb.org,
http://semanticweb.org/wiki/Semantic_Desktop (accessed October 2010)

12. Sauermann, L., van Elst, L., Dengel, A.: PIMO - a framework for representing personal in-
formation models. In: Pellegrini, T., Schaffert, S. (eds.) Proceedings of I-MEDIA 2007 and
I-SEMANTICS 2007 as part of TRIPLE-I 2007, pp. 270–277 (2007)

13. Catarci, T., Dix, A., Katifori, A., Lepouras, G., Poggi, A.: Task-Centred Information Man-
agement. In: Thanos, C., Borri, F., Candela, L. (eds.) Digital Libraries: Research and De-
velopment. LNCS, vol. 4877, pp. 197–206. Springer, Heidelberg (2007)

14. Katifori, A., Vassilakis, C., Dix, A.: Ontologies and the Brain: Using Spreading Activation
through Ontologies to Support Personal Interaction. Cognitive Systems Research 11, 25–
41 (2010)

15. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story So Far. International Jour-
nal on Semantic Web and Information Systems, Special Issue on Linked Data 5(3), 1–22
(2009)

16. Sherman, C., Price, G.: The Invisible Web: Finding Hidden Internet Resources Search En-
gines Can’t See. CyberAge Books (2001)

17. Dix, A., Katifori, A., Lepouras, G., Vassilakis, C., Shabir, N.: Spreading Activation Over
Ontology-Based Resources: From Personal Context To Web Scale Reasoning. Internatonal
Journal of Semantic Computing, Special Issue on Web Scale Reasoning: scalable, tolerant
and dynamic 4(1), 59–102 (2010)

 Context and Action in Search Interfaces 45

18. Dix, A., Karapetis, F., Kefalidou, G.: Concept Classification for Decentralised Search.
Working Paper, Lancaster University, November 11 (2005),
http://www.hcibook.com/alan/papers/Concept-Classification-
for-Decentralised-Search-2005/

19. Wegner, P., Goldin, D.: Computation beyond turing machines. Commun. ACM 46(4),
100–102 (2003), DOI= http://doi.acm.org/10.1145/641205.641235

20. von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA: Human-
Based Character Recognition via Web Security Measures. Science 321, 1465–1468 (2008)

21. Eagle, N.: txteagle: Mobile Crowdsourcing. In: Aykin, N. (ed.) IDGD 2009. LNCS,
vol. 5623, pp. 447–456. Springer, Heidelberg (2009)

22. Halevy, A., Norvig, P., Pereira, F.: The Unreasonable Effectiveness of Data. IEEE Intelli-
gent Systems 24(2), 8–12 (2009)

23. Finin, T., Syed, Z., Mulwad, V., Joshi, A.: Exploiting a Web of Semantic Data for Inter-
preting Tables. In: Proceedings of the WebSci 2010: Extending the Frontiers of Society
On-Line (2010)

Desktop, Tabletop or Mobile?

Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

norrie@inf.ethz.ch

Abstract. We discuss the ways in which search services need to adapt to
device and setting to cater for, not only the characteristics of the devices,
but also the different types of search typically carried out in different
settings. We then discuss the specific challenges of mobile settings before
going on to look at opportunities offered by new forms of large interactive
surfaces such as digital tabletops.

1 Introduction

Nowadays, users access search services from a range of devices in the workplace,
at home and on the move. The capabilities of these devices may vary in terms
of the input and output modalities supported as well as physical characteristics
such as screen size and resolution. Therefore, the search interface needs to be
adapted to the device.

Further, the types of search that users perform may depend on, not only the
features of the device, but also the setting. For example, a user at home organ-
ising a holiday will typically perform more complex, multi-step searches than a
tourist on the move. Consequently, the functionality offered by a search service
may be dependent on the setting as well as the device. This means that the adap-
tation of search services must take into account both functionality requirements
and interface design issues.

In this chapter, we will discuss the ways in which search services and their
interfaces need to adapt to device and setting, together with the challenges
that need to be addressed. We will start by examining the issue of how search
requirements differ according to setting, before going on to discuss the specific
challenges of mobile settings. Finally, we will look at the opportunities offered
by new forms of large interactive devices such as digital tabletops and large
multi-touch screens which are now becoming increasingly commonplace in the
workplace and also homes.

2 Search and Setting

The types of searches that users perform depends on the setting. To illustrate
this, consider the example of tourists. There are three phases that make up a
tourist experience–pre-visit, visit and post-visit. During the pre-visit phase, a

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 46–52, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Desktop, Tabletop or Mobile? 47

tourist may perform various kinds of complex, multi-step searches that involve
consulting online travel guides, maps, event calendars, activity sites, restaurant
guides and shared photo sites as well as hotel, flight and tour reservation systems.

The searches are often multi-step, not only in the sense that a single search can
be an iterative process, but also the fact that the planning process often involves
several distinct searches and extends over many sessions. It is not uncommon to
hear a colleague say that they spent many evenings over a period of several weeks
or even months to do the detailed planning of an extended road trip. Information
found in the searches will be compared and aggregated, and possibly later used
as input to future searches or stored as part of some general plan.

Searches carried out during the pre-visit phase are therefore likely to be car-
ried out in fixed settings such as the workplace or the home and using desktop
computers. We note that the term desktop computer may nowadays refer to a
range of devices including laptops, PCs with large or even multiple monitors
and multi-touch screens with integrated PCs. Users will often extract informa-
tion from search results, copying it into other documents or onto paper as a
means of recording and aggregating the final or intermediate results of their
searches. Sites discovered during the search process that are considered valuable
resources may be bookmarked and searches themselves may sometimes be saved
by bookmarking the corresponding URLs.

While research projects such as SeCo1 are carrying out valuable research on
supporting complex searches, unfortunately there are limited tools available to-
day to support the kinds of planning activities that involve multiple, complex
searches over a period of time. There have been various research projects ad-
dressing ways of providing lightweight means of recording and later retrieving
useful pieces of information found within Web documents, for example List.it [6],
but users still tend to rely on traditional means of copying pieces of information
into specially created, and separately managed, paper or digital documents. Fur-
ther, there is a lack of tools that provide users with simple means of comparing
and aggregating that information unless it is well-suited to being managed and
manipulated within a spreadsheet.

Once our tourist is on their visit, they may also want to perform various
searches such as the classic example of finding a particular category of restaurant
close to their current location. Nowadays, many tourists come equipped with
a mobile phone capable of supporting such searches either through access to
the Web or special mobile applications and downloaded data. A lot of research
projects have focussed on the issue of providing tourist guides that are location-
aware or more generally context-aware with early examples including Georgia
Tech’s Cyberguide [9] and the Lancaster GUIDE project [2]. This means that
the information returned to the user is filtered so that it is relevant to their
current context by automatically refining the search query. General mechanisms
for context-awareness can also support other forms of adaptation of, not only
content, but also structure and presentation, and provide a basis for adapting
Web sites to cater for the characteristics of different devices [3,4].

1 http://www.search-computing.it

48 M.C. Norrie

It is important to recognise some of the key features of mobile settings that
make context such an important factor in search. First of all, searches in mobile
settings tend to be much more directed and immediate than those involved in
the planning activities described above for the pre-visit phase. Our tourist is
hungry and wants to find a restaurant they can go to now for dinner, or they
want to find out the direction in which they should walk to reach their required
destination. They might be planning possible excursions for tomorrow, but are
unlikely to be planning their next full holiday. Searches therefore typically involve
a single search process and the results are directly acted upon rather than being
stored for later comparison and processing. Second, users are on the move and
therefore may be performing the search while watching out for traffic, listening
to announcements, talking to friends or even driving a car. They are therefore
easily distracted and the information bandwidth is low. This means that, in
contrast to desktop settings where users can comfortably browse and read a
lot of information returned by a search, users in a mobile setting may be less
interested in complete information and more interested in being provided with
a simple, short result.

In the post-visit phase, the tourist may still want to perform some searches
either to reminisce or to find out more about places visited. The search processes
may therefore again tend to be more directed than those during the pre-visit
planning phase since they are often based on a particular place, person or event.
However, similar to the pre-visit phase, these searches are often carried out in
the comfort of fixed settings such as the home and the user may enjoy searching
and browsing for extended periods of time. Further, they may wish to save the
results of their searches, possibly copying or linking information found into part
of an integrated record of their experience.

3 Search in Mobile Settings

Some of the characteristics and challenges of search in mobile settings were out-
lined above to highlight the fact that the information bandwidth is typically
much smaller than in workplace or home settings and searches therefore need to
be much more focussed in terms of the results returned. This is an issue both
of the content and presentation of results. The use of context, and specifically
location, is an important factor in increasing the relevance of the results and
reducing the number of possible results to be considered by the user. However,
the design of the interface also plays an important role in ensuring that the most
relevant information is presented to the user in a simple and direct manner. Con-
text could also be used to eliminate the need for input altogether by performing
implicit searches triggered purely by changes in context, although there are still
cases where users will want to take over control of the system to perform explicit
searches that may be entirely independent of their current context [1]. One ap-
proach to simplifying the input task is the use of various forms of gestures on
touch screens as proposed for example in [8].

Researchers have experimented with both different devices and modes of in-
teraction in mobile settings to alleviate the problems created by the fact that

Desktop, Tabletop or Mobile? 49

users are often involved in other activities and may have limited hand use due to
the fact that they are driving, carrying items or holding the hands of children.
Also, they may either be in very noisy environments or in environments such as
concerts where any sound would be frowned upon. Further challenges come from
limited sizes of screens and keyboards as well as the difficulty of reading screens
in sunlight. While each and every research project seems to have found a solution
for one or other problem, the most serious challenge for general search services
is the fact that the settings are constantly changing as users are on the move.
This means that while a system designed to use audio input and output may
offer a solution that leaves users hands-free and may be ideal in some settings, it
is problematic in noisy environments and useless in settings that require silence.
Other solutions designed to work well in indoor settings, may not work so well
in outdoor settings. Although the idea of context-aware applications is that they
can adapt to context, we have yet to see solutions that really can adapt to the
wide variety of contexts that a tourist might encounter in a typical day.

Practical issues that seem to have received less attention by researchers con-
cerned with search applications are those of cost, power and connectivity. Al-
though these are well known issues in research generally on mobile computing,
many researchers at the application level tend to assume total connectivity and
ignore issues related to cost and limited battery power. Surprisingly, although
many research projects address the tourist domain, they often ignore the fact
that tourists frequently travel abroad which, given current business models, tends
to mean significant increases in cost for any kind of communication and data
transfer. In terms of search, this means for example that saving search queries
by bookmarking URLs could have serious implications in terms of cost as re-
visiting results of a previous search could actually generate repeated network
access and data transfer. Also, although the world is becoming increasingly con-
nected, there are still places that we encounter on our travels that have no or
limited connectivity. Therefore, in mobile settings, the ability to extract and lo-
cally store information from search results could be even more important than in
desktop settings. In addition, users should be able to easily transfer information
extracted from search results in desktop settings to mobile devices for access on
the move.

Power is another limited resource, especially during travels when tourists
might have restricted or even no access to power supplies. The assumption there-
fore that tourists can continuously rely on their mobile phones to guide them
on their travels and provide them with all the information that they need, when
they need it, is not really valid. One advantage of paper maps and guidebooks
is that they require no power and therefore the information is truly persistent
[11]. To take advantage of this property of paper, along with others such as ease
of annotation, researchers have experimented with systems that can bridge the
paper-digital divide by augmenting rather than replacing paper documents with
digital search services [10]. One such project, EdFest [12], provided users with
a paper map, festival guide and bookmark that could be used in isolation or as
an interface to an application running on a mobile device that provided them

50 M.C. Norrie

with additional information about locations and events, navigation services and
search services. The system was developed using Anoto2 technology and users in-
teracted with the document using a digital pen and output was provided through
an audio channel using a text-to-speech engine.

EdFest is just one of many projects that have investigated the use of non
standard technologies for allowing users to interact with search services in a
mobile setting. Again, most of these solutions tend to be domain specific or
address only a few of the many challenges of providing users with access to
information and services while on the move.

4 Exploiting Large Interactive Surfaces in Search

Large interactive surfaces such as digital tables and multi-touch screens are cur-
rently attracting a lot of interest in research communities and products are be-
ginning to emerge in the marketplace. So far relatively little attention has been
paid to the opportunities that these offer for search services in terms of increased
screen real estate as well as more natural forms of interaction. In fact, most of
the research related to these devices has focussed on collaboration, even though
they have great potential for providing single users with better support for the
sorts of complex information tasks that they are involved in every day.

Consider again our tourist in the pre- and post-visit phases of their experience.
The search processes were embedded in complex and long-running activities that
involved copying, comparing and aggregating information found during searches.
On a physical desktop, a user might surround themselves with information, some
of it possibly on a computer screen, and some of it in papers piled on the desk.
Documents on the physical desktop can easily be moved around during the
processing for purposes of comparison and sorting. These documents remain in
the user view either as individual documents or document piles. Large interactive
surfaces that support multi-touch interaction or a combination of pen and touch
may provide much more natural ways of performing similar actions in the digital
world than is currently supported by desktop PCs with mouse and keyboard
interaction.

The increased screen real estate offered by large screens and digital tabletops
could also be hugely beneficial. The results of complex searches can contain a
lot of information to be viewed and compared and limited screen size can be
frustrating for users and have a significant effect on performance. At the same
time, increased real estate can make it much easier to provide users with an
overview of the entire workspace for the task at hand and keep track of different
searches as well as information extracted from the results of these searches.

It is interesting to note that although a lot of work has been done on the
adaptation of Web sites to mobile phones and other forms of small screen devices,
for example [13,5,7], adaptation to large screens and large interactive surfaces has
not really been considered. We have recently started to investigate the specific
challenges raised by adaptation to large screens in terms of both the technological
2 http://www.anoto.com

Desktop, Tabletop or Mobile? 51

solutions and design guidelines. The questions for the search service community
to address are therefore how they could make best use of increased screen size
in the interfaces to their search services and also how larger screens and more
natural forms of interaction could be used to embed these search services in an
environment designed to support the entire user task.

5 Conclusions

The scenario of the tourist, considering all three phases of their experience,
helps place search as part of complex information tasks and to see how search
requirements can vary according to the particular task and setting. The provision
of more advanced search services that are capable of addressing typical user needs
is a major step towards supporting the kinds of complex information tasks that
normal users carry out in everday activities such as planning their next vacation.
However, it is important that this be seen as a first step towards providing users
with tools to support the entire planning activity and information workflow,
taking into account the different settings involved.

While mobile settings have received a lot of attention, they are also extremely
challenging in terms of the variety of issues to be tackled and there are still many
open problems. At the same time, the more traditional fixed settings of offices
and homes are undergoing a radical transformation as the installation of various
forms of large interactive surfaces are becoming more commonplace: This should
be viewed as a great opportunity for researchers to consider how they can exploit
the increased screen real estate and more natural forms of interaction in complex
search tasks.

References

1. Ceri, S., Daniel, F., Facca, F.M., Matera, M.: Model-driven Engineering of Active
Context-awareness. World Wide Web Journal 10(4), 387–413 (2007)

2. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a
context-aware electronic tourist guide: some issues and experiences. In: CHI, pp.
17–24 (2000)

3. Grossniklaus, M., Norrie, M.C.: An Object-Oriented Version Model for Context-
Aware Data Management. In: Benatallah, B., Casati, F., Georgakopoulos, D., Bar-
tolini, C., Sadiq, W., Godart, C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 398–409.
Springer, Heidelberg (2007)

4. Grossniklaus, M., Norrie, M.C.: Supporting Different Patterns of Interaction
through Context-Aware Data Management. Journal of Web Engineering 7(3), 200–
219 (2008)

5. Hattori, G., Hoashi, K., Matsumoto, K., Sugaya, F.: Robust web page seg-
mentation for mobile terminal using content-distances and page layout informa-
tion. In: Proceedings of the 16th International Conference on World Wide Web,
WWW 2007, pp. 361–370. ACM, New York (2007)

6. Kleek, M.V., Bernstein, M.S., Panovich, K., Vargas, G.G., Karger, D.R., Schraefel,
M.M.C.: Note to self: Examining personal information keeping in a lightweight
note-taking tool. In: Olsen Jr., D.R., Arthur, R.B., Hinckley, K., Morris, M.R.,
Hudson, S.E., Greenberg, S. (eds.) CHI, pp. 1477–1480. ACM, New York (2009)

52 M.C. Norrie

7. Laakko, T., Hiltunen, T.: Adapting Web content to mobile user agents. IEEE
Internet Computing 9(2), 46–53 (2005)

8. Li, Y.: Gesture search: a tool for fast mobile data access. In: Proceedings of
the 23nd Annual ACM Symposium on User Interface Software and Technology,
UIST 2010, pp. 87–96. ACM, New York (2010)

9. Long, S., Kooper, R., Abowd, G.D., Atkeson, C.G.: Rapid prototyping of mobile
context-aware applications: the Cyberguide case study. In: Proceedings of the 2nd
International Conference on Mobile Computing and Networking, MobiCom 1996,
pp. 97–107. ACM, New York (1996)

10. Luff, P., Heath, C., Norrie, M., Signer, B., Herdman, P.: Only Touching the Su-
face: Creating Affinities Between Digital Content and Paper. In: Proc. Conf. on
Computer Supported Cooperative Work (CSCW 2004) (November 2004)

11. Norrie, M.: Paper on the move. In: Baresi, L., Dustdar, S., Gall, H.C., Matera, M.
(eds.) UMICS 2004. LNCS, vol. 3272, pp. 1–12. Springer, Heidelberg (2004)

12. Signer, B., Norrie, M.C., Grossniklaus, M., Belotti, R., Decurtins, C., Weibel, N.:
Paper-Based Mobile Access to Databases. In: Demo Proceedings of ACM Interna-
tional Conference on Management of Data (SIGMOD 2006) (2006)

13. Zhang, D.: Web content adaptation for mobile handheld devices. Commun.
ACM 50, 75–79 (2007)

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 53–69, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Visualization of Multi-domain Ranked Data

Alessandro Bozzon1, Marco Brambilla1, Tiziana Catarci2,
Stefano Ceri1, Piero Fraternali1, and Maristella Matera1

1 Dipartimento di Elettronica e Informazione – Politecnico di Milano
{bozzon,mbrambil,ceri,fraterna,matera}@elet.polimi.it
2 Dipartimento di Informatica e Sistemistica – Università “La Sapienza”, Roma

catarci@dis.uniroma1.it

Abstract. This chapter focuses on the visualization of multi-domain search re-
sults. We start by positioning the problem in the recent line of evolution of
search engine interfaces, which more and more are capable of mining semantic
concepts and associations from text data and presenting them in sophisticated
ways that depend on the type of the extracted data. The approach to visualiza-
tion proposed in search computing extends current practices in several ways:
the data to visualize are N-dimensional combinations of objects, with ranking
criteria associated both to individual objects and to sets of combinations; object’s
properties can be classified in several types, for which optimized visualization
families are preferred (e.g., timelines for temporal data, maps for geo-located in-
formation); combinations may exhibit any number of relevant properties to be
displayed, which need to fit to the bi-dimensional presentation space, by em-
phasizing the most important attributes and de-emphasizing or hiding the less
important ones. The visualization problem therefore amounts to deciding the
best mapping between the data of the result set and the visualization space.

1 Introduction

Information visualization exploits presentation metaphors and interaction strategies
for supporting perceptual inferences [1][15]. It is crucial for the success of any mod-
ern information-intensive application, particularly in multi-domain search, which
produces articulated results comprising different types of objects extracted from mul-
tiple data sources and subject to various ranking criteria. The relevant issues in search
computing interfaces are a mix of traditional search interface optimization concerns
(e.g., how to ensure simplicity and high performance) and of new problems, such as
how to exploit domain- and type-specific knowledge about data to achieve a “natural”
ranking and display (e.g., using timelines, maps, or different kinds of charts), how to
represent relationships among objects coming from different domains, how to convey
the data provenance.

The design of a search interface must take into account the conservative nature of
the visualization solutions so far adopted by search engines, which have scarcely
evolved over the last decade and tend to exhibit a strong stability in the features
offered to users, to preserve ease of use and efficacy for a wide audience of much

54 A. Bozzon et al.

differentiated adopters. As the tasks supported by search engines increase in complex-
ity, e.g., by providing concept and topic search [14][25], new features are introduced
in the search interface of mainstream search engines cautiously, by progressively
expanding the basic paradigm of keyword entry and vertical result list presentation.
However, various factors still differentiate multi-domain search systems from tradi-
tional search engines.

• Results are assembled from objects, not necessarily corresponding to docu-
ments. For example, an object may derive from a deep Web record, for which
there is no surface Web browsable page. This impacts the way in which feed-
back can be given to the user, because not always a document summary is the
best way to provide provenance clues. For instance, some objects may be best
presented showing a subset of their attributes and a link to the original informa-
tion source, if this is available.

• Results are not individual documents but combinations of objects. This
challenges the flat vertical list presentation approach, because not only prove-
nance and result ranking must be conveyed, but also the relationships that con-
nect objects in a result combination. Feedback on these relationships should be
added to the search interface, e.g., to show why a hotel and a conference venue
belong to the same combination.

• Results are typed. Unlike documents, which are unstructured, multi domain
search retrieves typed objects. Knowing the object type is both a challenge and
an opportunity: it is a challenge because exploiting the object type for differenti-
ating the representations can make the interface complex and unstable, breaking
the interaction style continuity that search engine users appreciate so much. It is
also an opportunity, because type information can suggest optimized ways to
present the results. For instance, if the interface recognizes geographical or tem-
poral data it can offer the user the option to display results in a map or timeline.

• Relationships have semantics. objects forming a combination may be associ-
ated for different reasons: they may be close in space or time; they may share
attribute values; they may be related in a hierarchy; they may be linked by a
domain-specific relationship. In those cases when the interface is aware of the
meaning of a relationship, it should represent it in an intuitive way.

• The result space can be highly dimensional. answers to multi-dimension queries
may require the display of a high number of data attributes and associations; the
interface should allow a compact visualization of the “most relevant” aspects of
the result set and the easy appraisal of the features that have been hidden in the ini-
tial presentation. Given that the page layout is bi-dimensional, suitable summari-
zation mechanisms are necessary to convey more than two data dimensions.

The initial design of data visualizations proposed for search computing were reported
in [3] and focused on exploring the primitives for the manipulation of the result set
and the refinement of the initial query, based on a very simple tabular representation
of combinations. In this chapter, we instead concentrate on result visualization, and
specifically on how to convey the relationships that link the objects in a combination,
how to exploit knowledge about the type of an object forming a combination, and
how to convey the ranking at both the individual data source and at the object

 Visualization of Multi-domain Ranked Data 55

combination level. We will in particular introduce one possible approach that
capitalizes on well-known principles for data visualizations, trying to maximize their
effectiveness for the specific characteristics of the search computing result sets.

This Chapter is organized as follows. Section 2 surveys a gallery of visualization
examples from mainstream search engines and discusses the contributions from data
visualization literature that can support the envisioned result presentation approach.
Section 3 introduces the Search computing visualization problem, which consists of
three parts: the data model of the result set, the existence of “expressive” types and
dependencies within such model, and the heuristic approach for mapping the result set
onto a visualization layout. Section 4 shows, without attempting an exhaustive ap-
proach, some of the visualizations that could be generated by applying heuristics.
Section 5 presents the conclusions pointing to our future work.

2 Related Work in Search Engine Interfaces and Visualization
Techniques

In this section we overview current search engine interfaces and the visualization
paradigms for specific data (including categorical, geographical and temporal data).

2.1 Evolution of Search Engine Result Presentation

In recent years, search results visualization has evolved to include multiple features,
which depend on the specific object being visualized, enriching the traditional result
sets made of ordered list of objects (document surrogates), as the one shown in Fig. 1.

Fig. 1. Basic search engine result set as an ordered list of documents

The result set can be structured in sub-lists, e.g., to highlight entries of different
pages within the same Web site, or result items of different nature (e.g., images re-
lated to a given Web documents), as in Fig. 2. The information content of result ele-
ments can be enriched if the type of the displayed information is known. For example,
Fig. 3 shows the use of a timeline for the visualization of temporal data.

56 A. Bozzon et al.

Fig. 2. A result set structured into a list of documents and a list of images

Fig. 3. Timeline visualization for a result set comprising temporally located documents

A special class of typed information is constituted by geo-referential data, which
permits the extraction of geographical concepts; a geographical concept is an object
associated with geographical coordinates and possibly categorized according to a
geographic ontology (e.g., GeoNames ontology classes [13]). Geographical concepts
are highlighted in the result set and typically positioned on a map. The identified
concept can also be associated with semantically correlated concepts; for example, a
town can be related to hotels, restaurants, and places of interest; a touristic place, a
hotel or a restaurant can be associated with reviews.

 Visualization of Multi-domain Ranked Data 57

The amount of structure extracted from documental data and the employed visuali-
zation primitives depends on the capacity of recognizing domain specific entities. The
examples shown so far revolve around the presentation of instances of a single entity.
New generation search engines are moving towards to the collection and integration
of heterogeneous data sources. Kosmix [25] is an example of general-purpose topic
discovery engine, which offers one-page information summaries about a topic. The
presented information is retrieved through calls to Web services that extract informa-
tion from deep Web data sources. The schema of each topic is a complex record type,
which not only comprises typed properties of the entity but also associations to other
entities representing related topics. For instance, the query “William Shakespeare”
returns an instance of the entity Writer, as shown in Fig. 4, characterized by informa-
tion deriving from multiple services (e.g., Biography.com, and Google) and also re-
lated to other related writer instances.

Fig. 4. An instance of the entity Writer in the Kosmix topic search engine

2.2 Related Work in Data Visualization

Data visualization has a long-standing tradition, which initially focused on the analy-
sis of alternative visualization techniques for various categories of data [1][4]. Classic
works like [27][23] offered guidance in selecting the most appropriate visualization
techniques for different types of data (e.g., 1-, 2-, 3-dimensional data, temporal and
multi-dimensional data, and tree and network data in [27]). Later works (e.g., [6])
explored the underlying conceptual structure of data-oriented visualization, highlight-
ing a common framework of data visualization strategies (e.g., the data
stages/transformation model in [6] and the classification based on data spatialization
and visual perception in [26]), giving a deeper rationale to the taxonomies of visuali-
zation techniques. For example, in the field of relational data visualization, the work
described in [29] proposes three families of 2D graphics that depend on the type of
data to be represented on the axes, i.e., ordinal–ordinal, when no dependency exists
among the different attributes (e.g., a table), ordinal–quantitative, where a quantita-
tive variable is dependent on the ordinal variable (e.g., a bar chart), or the ordinal and
quantitative data can be independent (e.g., a Gantt chart), and quantitative-
quantitative, used to represent the distribution of data as a function of one or both

58 A. Bozzon et al.

quantitative variables, also highlighting causal relationships between the two quantita-
tive variables (e.g., a map). Each family then contains variants depending on the com-
bination of the selected mark type (e.g., rectangle, circle, glyph, text, Gantt bar, line,
polygon, and image) and its visual and retinal properties that best suit the characteris-
tic properties of the single objects.

In [31] the author proposes a comprehensive taxonomy of glyph placement strate-
gies with respect to both data types and user’s task. The author in particular distin-
guishes between data-driven and structure-driven approaches: the former exploit data
properties to determine the object location in the visualization space; the latter exploit
some (implicit or explicit) relationships between data points, such as a temporal or-
dering or hierarchical relationships.

Whereas the abovementioned efforts are horizontal, spanning all possible catego-
ries of data, other works concentrate on the design, evaluation and comparison of
visualization techniques for specific data: categorical (e.g., [19][11]), temporal (e.g.,
[7][9]), geographical (e.g., [12][20][30]), multidimensional (e.g., [31]), and graph-
based data (e.g., [32]) are the most prominent sectors.

A huge amount of literature also concentrates on the presentation generation proc-
ess. The pioneer approach proposed by Mackinlay [22], and several other successive
works (e.g., [15]), exploit data characterization and propose rule-based approaches to
map data types to visual elements [5]. In other words, elements of a data model are
mapped to elements of a visual model [15]. The common aim characterizing such
works is to automatically derive “adequate” visualizations [5], where adequate means
complete, i.e., the user perceive from them all the information enclosed within the
original data, and correct, i.e., no unrequired information is conveyed. By capitalizing
on the principles introduced by the above-illustrated works, in the following sections
we illustrate how the characterization of the Search computing result set can guide the
definition of a visualization process.

3 Visualization Model and Process for Search Computing

3.1 Visualization Model

The result of a Search computing query is made of combinations, where each combi-
nation is a record of N object instances connected by join predicates and satisfying
selection conditions. Each object in a combination has a schema constituted by typed
attributes; a subset of the attributes defines the combination identifier, which is either
system-generated (object identifier) or provided by the real world context (e.g.,
event’s date and time). Objects may have repeating groups, where each repeating
group is a non-empty set of attributes with multiple values (such as actors of a given
movie, with name and gender). Object instances extracted by a query may be locally
ranked; in such a case one or more object’s attributes express the ranking, which is
either system-generated (rank position among the object instances) or provided by
the usage context (e.g., the rating of a hotel). Combinations have a global rank, ex-
pressed as a weighted sum of the local ranks of member objects, normalized in the
[0-1] range.

 Visualization of Multi-domain Ranked Data 59

Fig. 5. Tabular representation of a multi-domain result set

Fig. 5 describes the main elements of the results of the query “find the best combi-
nation of hotels, restaurants and events to spend a nice evening and night in given
city “, which composes of three objects: events, restaurants, and hotels. Fig. 5 can be
considered the default way of visualizing a multi-domain result set: the table-based
visualization lists all combinations, with their objects and attributes, in descending
global rank. However, alternative visualizations are possible, which might highlight
few primary visualization dimensions selected within a combination. Such result
presentations can take advantage of suitable visualizations, based upon the type of
some of the attributes of the result, e.g., maps for geographic locations, timelines for
temporal events, or Cartesian spaces for quantitative variables. With this respect, the
first step is to identify relevant data types that can guide the selection of suitable pri-
mary visualization dimensions.

3.2 Data Type Classification

Visualization of attribute values can be optimized according to their type. As usual,
attribute types are classified according to their scale type, as stated in the classic defi-
nition of measurement theory [25]:

• Interval: quantitative attributes measured relative to an arbitrary interval (e.g.,
Celsius degrees, latitude and longitude, date, GPA). In this class, two important
subclasses are further distinguished for visualization purposes:
o Geographic points and addresses: they admit domain specific operations

like the computation of distance, the visualization on maps, the determina-
tion of routes, etc.

o Time points: they admit the representation on time scales and calendars, at
different domain-specific granularity.

• Ratio: quantitative attributes measured as the ratio with a known magnitude unit
(e.g., most physical properties).

60 A. Bozzon et al.

• Nominal: categorical labels without notion of ordering (e.g., music genre). They
can be visualized by means of textual labels (for example within tables). In case
of a low number of categories, they can be represented through visual clues, for
example different shapes or colors.

• Ordinal: data values that admit order, but not size comparison (e.g., quality
levels).

Nominal data can be also associated with frequency (or relative frequency) values,
i.e., the number (percentage) of elements falling into categories. This may imply the
use of a combination of visual clues, such as the size of shapes or the opacity of the
colors representing categories, or the “construction” of graphics (e.g., bar charts),
where categories are labels over the horizontal axis, while frequencies correspond to
the vertical axis dimension. Nominal data can also be further distinguished into taxo-
nomical, when they admit subset relations (e.g., animal species). Tree based repre-
sentations (e.g., treeMap) can be adopted in this case [16].

3.3 Visualization Process

The process of generating the visualization aims at producing a representation that
maximizes the understandability of the result set, by considering the type and seman-
tics of data and the functions of multi-domain search. The visualization process,
schematically illustrated in Fig. 6, maps the result set onto a presentation space by

Fig. 6. Main steps in the result set visualization process

 Visualization of Multi-domain Ranked Data 61

considering the types of attributes that describe the properties of combinations, the
presentations functions to be implemented, and the visualization families that are best
usable for rendering the data dimensions.

The most important visualization dimensions, which need to be highlighted in the
visualization and that can guide the identification of the primary visualization space,
are determined; to this end, information about object identifiers, join and selection
conditions, and dependencies among the different data are exploited.

The output of the visualization process is a page layout (a view, in the terminology
of [6]), which assigns data to visualization elements, implementing all the needed
visualization functions. The generation process in Fig. 6 can occur at design time
(when the query is fixed and non modifiable), at run-time (when the user explores the
search space from scratch) and in a mixed mode (when the user starts with a known
query and then expands it, by joining in more search services).

In order to identify the primary visualization dimension, one can assume that an
ordering of data type exists and that it guides the selection of the primary attributes
determining the visualization space. Such ordering depends on the capacity of the data
types to “delimit” a visualization space where single objects and combinations in-
cluded in the result set can be conveniently positioned. For example, interval attributes
can be considered the best candidates for primary visualization, since they permit a
precise characterization of the position of objects within a bi-dimensional visualization
space, followed by ordinal, and nominal attributes, which instead can be adequately
represented by means of visual clues. Therefore, if a given object O has a
geo-referenced attribute, then its instances can be represented on a map by using that
attribute as a primary visualization; similarly, objects with attributes representing tem-
poral events can be placed on a timeline. Representing a combination then amounts to
finding suitable representations for the majority of its objects, by highlighting them
upon a given visualization space, and then relating together the object instances of a
combination through orthogonal visual mechanisms. Once placed on the visualization
space, an object is succinctly represented by some of its attributes (e.g., identifiers);
typically the local ranking of the object can also be visually represented (e.g., through
conventional shapes, or colors). Other attributes are omitted from the visualization, and
can be accessed through secondary visualization methods, such as pop-up windows.

In line with the classical approaches for the automatic generation of visualizations
[5], this construction can be formalized by heuristic rules, which take in input the
characterization of the N dimensions to visualize and emit as output the decision of
how to allocate them onto a bi-dimensional representation space, addressing the visu-
alization functions of multi-domain search. A very general scheme is the following:

1. Pick the most relevant dimensions, on the basis of a defined order among the
available data types and on the identification of the dimensions that best charac-
terize the majority of objects involved in combinations.

2. Identify the primary visualization space to use;
3. Allocate all dimensions that can be supported by the primary visualization

space;
4. Pick the remaining dimensions in order of significance and decide the secondary

widgets best suited to represent them;
5. Allocate all remaining dimensions that can be supported ergonomically by sec-

ondary widgets.

62 A. Bozzon et al.

At step 1, selected data types allow a domain-dependent effective visualization. The
order: geo location time/date other types can be used to exploit geographical in-
formation first, then temporal data, and then all the remaining uncharacterized types.
At step 2, the most appropriate visualization space is chosen. Guidelines from the
literature and best practices in data visualization (e.g., [9] for temporal data, [11] for
categorical data, [20] for geographical data) can be used. Also, one can exploit the
huge quantity of out-of-shelf components that are more and more offered by visualiza-
tion projects and providers of software components1. At step 4, the dimensions that are
not represented by the primary widget need to be considered, and visual clues for their
representation selected. Various techniques exist that descend from the classic identifi-
cation of visual variables by Bertin (position, size, shape, value, color, orientation, and
texture), possibly adapted to specific contexts (e.g., thematic cartography [12]).

The primary dimensions for data visualization can be further reduced by exploiting
dependencies between objects. For example, if a query includes a 1:M join between
two objects O1 and O2, such that a set of instances of O2 is mapped exactly to one
instance of O1, then the objects of O2 can be represented by using the primary visu-
alization chosen for O1. For instance, if O1 are hospitals and O2 are doctors, and
hospitals have a geo-localized attribute (their address), then it is possible to display
doctors on a map by placing them at the same attribute as their hospital.

4 Examples of Visual Representations of Query Results

To highlight the importance of dimension selection, this section presents several ex-
amples of visualizations that represent objects, their composition, and their local and
global rankings; every example can be generated by suitable applications of generic
visualization rules.

4.1 Visualization of Geo-referenced Objects

Fig. 7 presents a visualization example for the query “find the best combination of
hotels, restaurants and events to spend a nice evening and night in given city”. One
possible result set is the one illustrated in Fig. 7. The three objects to be displayed
have geographic coordinates; therefore, the primary dimension to adopt for their rep-
resentation is a map. This choice allows us positioning each object instance as a point
in the map, which will be conveniently selected so as to include objects in the context
(e.g., a portion of a city map). A combination is then a triple of positions on the map;
it can be visualized by any representation that puts the three objects together; in the
example, we enclose each triple within an area, which is highlighted by means of
colors. We then use darkest color for the best combination.

1 Among the best known examples, the OLIVE library [24] lists data visualization environ-

ments clustered according to Shneiderman’s classification scheme and the recent effort by
IBM [17] offers a community space for publishing visualization widgets and data sets (at the
time of writing, 70183 visualizations and 141459 data sets are enlisted).

 Visualization of Multi-domain Ranked Data 63

Fig. 7. Visualization of geo-referenced objects

Moreover, each object has a different icon, and the local ranking (representing the
relative ranking of the object instance within the selected objects) is represented by
the size of the icon. Such representation can show only a few combinations on the
same screen, therefore the visual result presents only three combinations (the top-
ranked) and a scrolling mechanism allows seeing the following combinations. The
other object attributes (e.g., name, stars and price for the hotels) can be displayed in
pop up windows, opened by pointing to given object with the mouse.

4.2 Geo-referenced Visualization with Object Dependencies

Object dependencies can be used to associate a visualization dimension to objects that
do not have properties with data types that effectively determine a visualization space.
Consider a query that searches for close hospitals to a given location, such that the
hospitals have specialists of a given disease (e.g., Parkinson); the specialists are
ranked, e.g., by the relevance of their published articles on the topic. Doctors have no
properties that allow their representation according to a quantitative visualization
space, but they are placed at hospitals, which have a specific location. Therefore,
doctors can be represented as icons, which are placed on a map at the same location as
their hospitals. Their local ranking can be represented through different icon sizes.

64 A. Bozzon et al.

Fig. 8. Geo-visualization with object dependencies

Fig. 8 highlights the dependency of doctors from hospitals; hospitals play the role
of aggregators. Being hospitals geo-referenced objects, than the map can be exploited
even though addresses do not characterize doctors. The map shows that hospital 1 has
two doctors with high rating; hospital 2, instead, has two doctors but with a lower
rating, and hospital 3 has three doctors with a lower rating. The hospital index is also
a representation of the global ranking, which is in this case globally associated with a
hospital, by aggregating the ratings of doctors, and by considering the user’s location.
Once the different combinations are displayed on the map, then pop-up windows can
show more attributes about hospitals and doctors.

4.3 Timeline Visualizations

While geographic maps are very effective for relating objects that are located in
space, timelines are effective for relating objects that are located in time. Fig. 9 pro-
vides a visualization example for a search about author’s productivity, both in terms
of publication indexes (e.g., the Hirsch Index) and of yearly production. Authors are
locally ranked by their publication index; the yearly productivity of an author is
measured by the number of published articles (divided in journal and conferences)
and books; the local ranking is a weighted sum of such measures. The global ranking,
which takes into account the publication indexes, the yearly production, and how
recent is the production (recent production is most highly ranked), presents the “most
productive recent years of high-ranked authors”.

 Visualization of Multi-domain Ranked Data 65

Fig. 9. Timeline representing scientists’ productivity over the years

This information is presented on a timeline, having on the time axis the year of
production, and presenting every author on the same line. Authors are listed in “or-
der” of their Hirsch ranking, and the visualization highlights the most productive pair
author-year, initially centered on that author and year; the author-year pair is high-
lighted (e.g., being encircled and colored). Author information, reported on the left of
the timeline, is the name and H index; yearly production has three icons representing
papers, articles and books, with the appropriate number below the icon, placed in the
timeline. The three combinations with higher global index are highlighted, and a
scroller allows moving to the subsequent combinations; scrolling the combinations
has the effect of moving along the timeline and the authors. This representation is
inspired by Envision [10].

The automatic generation of such representation uses the assumptions that yearly
productivity is related to time intervals (therefore it can be represented by a timeline),
and that each yearly productivity item functionally determines an author; therefore,
each author can be associated with a single timeline. Then, author’s local ranking is
the H-index, which is represented, while yearly productivity’s local ranking is a com-
bination of the number of publications, which are also represented; and the global
ranking is explicitly represented by highlighting. A similar representation could dis-
play the severity of hospitalizations of a family of chronically ill patients, with each
patient represented as a line in a timeline, hospitalizations reported as intervals on the
timeline, and severity of treatment reported as indicators close to the intervals. The
presence, type and duration of given treatments could be also reported graphically.

66 A. Bozzon et al.

Fig. 10. Representation of combinations ranked by ratio attributes

4.4 Representation in the Lack of Suitable Interval Dimensions

While in the above examples the objects to be displayed include interval dimensions
with an associated graphic representation, in the general case objects may lack such a
property. Then, their visualization may resort to other object properties, especially
when such properties are associated with the object’s rankings.

Assume a query about reaching a given location by combining trains and local
transportation (taxi or bus). Assume that each such transportation has a cost and dura-
tion, and assume that they can be ranked locally and globally by a suitable function of
their local and global costs and duration. Note that price and duration both belong to
“interval” attribute types according to the categorization of Section 3.2. Then, Price
and Time can be used as axes of a Cartesian space.

In the representation of Fig. 10, we highlight the global time and global duration in
the space, and then enclose the first, second, and third combinations according to the
global ranking (and let other combinations be accessible e.g., through a scroller). The
presence of two objects is represented by the fact that each location in the space is
associated with two objects, and by clicking on the object one can read the details
about the train and local trip, including its duration and cost.

Finally, assume the case when ranking is based on ordinal dimensions. Let’s con-
sider an example involving a vacation package where two ordinal dimensions de-
scribe the price-range of the package (e.g., in hundreds of Euro) and quality of the
hotels being used (from five to three stars), described in Fig. 11.

 Visualization of Multi-domain Ranked Data 67

Fig. 11. Example of ordinal-quantitative visualization

Assume then that the global ranking function takes into account both these features
and is based on a price-performance ratio. In such case, one of the dimensions (say,
the quality of hotels) is used as reference in order to organize the space in five col-
umns, and then the packages are presented as nodes in these columns, named by the
principal attraction (e.g., “Nile Cruise”), in price-range order. The global ranking is
presented by highlighting the three combinations that present the “best” price-
performance according to the global ranking. Fig. 11 also shows the presence of two
timelines, selected by the user in the query, and the effect of seasonal changes (e.g., of
prices and hence on global ranking) on the choice of top combinations. The system
may enable selecting trips (e.g., by country, availability during the year) so as to in-
spect the vacation packages of interest; once selected, the properties of the packages
can be described further by inspecting pop-ups associated with each node.

5 Conclusions and Future Work

This paper has presented the general method that we intend to use in generating visu-
alizations for multi-domain ranked data, and illustrated some representative examples
that are currently driving us in building the method. Building a generic visualization
tool, able to analyze the visualization data model and produce a suitable representa-
tion without being driven by other knowledge about the application domain, is a very
challenging task. While the first examples that we have constructed ad-hoc seem
promising and yielding to general rules of good applicability, the actual validation of
the approach requires a formalization of the data and visualization models, aimed at
identifying the most relevant properties that can guide the visualization process. Such
formalization will be inspired to some past works that have already identified collec-
tions of rules to guide the visualization process for relational structured data, but it
will take into account the peculiarity of the Search computing result set.

68 A. Bozzon et al.

We will also try to overcome some limitations of past approaches, such as the lack
of formal checking of the visualization correctness [4]. An extensive experimentation
with users will also allow us to assess the effectiveness of the produced visualizations,
and to investigate to which extent totally automatic processes for the visualization
generation should be preferred to participatory paradigms where the user is directly
involved, e.g., by means of preference expressions, to the construction of the visuali-
zation spaces.

References

[1] Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps (1983)
[2] Bostock, M., Heer, J.: Protovis: A Graphical Toolkit for Visualization. IEEE Trans.

Vis. Comput. Graph. 15(6), 1121–1128 (2009)
[3] Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Liquid Queries and

Liquid Results in Search Computing. In: Ceri, S., Brambilla, M. (eds.) Search
Computing. LNCS, vol. 5950, pp. 244–267. Springer, Heidelberg (2010)

[4] Catarci, T., Dix, A.J., Kimani, S., Santucci, G.: User-Centered Data Management. Mor-
gan & Claypool Publishers, San Francisco (2010)

[5] Catarci, T., Santucci, G., Costabile, M.F., Cruz, I.: Foundations of the DARE System for
Drawing Adequate Representations. In: Proc. of DANTE 1999 (1999)

[6] Chi, E.H.: A Taxonomy of Visualization Techniques Using the Data State Reference
Model. In: IEEE Symp. Information Visualization, Salt Lake City, UT, USA, pp. 69–75.
IEEE CS Press, Los Alamitos (2000)

[7] Daassi, C., Nigay, L., Fauvet, M.C.: A Taxonomy of Temporal Data Visualization Tech-
niques. Information-Interaction-Intelligence 5(2), 41–63 (2005)

[8] Elmqvist, N., Stasko, J., Tsigas, P., Meadow, D.: A Visual Canvas for Analysis of
Large-Scale Multivariate Data. Information Visualization 7(1), 18–33 (2008)

[9] Fernandes Silva, S., Catarci, T.: Visualization of Linear Time-Oriented Data: A Survey.
Journal of Applied System Studies 3(2) (2002)

[10] Fox, E.A., Hix, D., Nowell, L.T., Brueni, D.J., Wake, W.C., Heath, L.S., Rao, D.: Users,
User Interfaces, and Objects: Envision, a Digital Library. Journal of the American Society
for Information Science 44(8), 480–491 (1993)

[11] Friendly, M.: Visualizing Categorical Data. SAS Publishing (2000)
[12] Garlandini, S., Fabrikant, S.I.: Evaluating the Effectiveness and Efficiency of Visual

Variables for Geographic Information Visualization. In: Hornsby, K.S., Claramunt, C.,
Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 195–211. Springer,
Heidelberg (2009)

[13] GeoNames Ontology, http://www.geonames.org/ontology/
[14] Giunchiglia, F., Kharkevich, U., Zaihrayeu, I.: Concept Search. In: Aroyo, L., Traverso,

P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou,
M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 429–444. Springer, Heidelberg
(2009)

[15] Haber, E.M., Ioannidis, Y.E., Livny, M.: Foundations of Visual Metaphors for Schema
Display. J. Intell. Inf. Syst. 3(3/4), 263–298 (1994)

[16] Hearst, M.: Search User Interfaces. Cambridge University Press, Cambridge (2009),
ISBN 9780521113793

[17] IBM. Manyeyes (December 2010), http://www-958.ibm.com/software/data/cognos/manyeyes/

 Visualization of Multi-domain Ranked Data 69

[18] Johansson, S.: Visual Exploration of Categorical and Mixed Data Sets. In: Proceedings of
the ACM SIGKDD Workshop on Visual Analytics and Knowledge Discovery: Integrat-
ing Automated Analysis with Interactive Exploration, Paris, France, July 28-28, pp.
21–29 (2009)

[19] Johnson, B., Shneiderman, B.: Treemaps: A Space-Filling Approach to the Visualization
of Hierarchical Information Structures. In: Proceedings of the IEEE Information Visuali-
zation 1991, pp. 275–282. IEEE, Los Alamitos (1991)

[20] Maceachren, A.M.: An Evolving Cognitive-Semiotic Approach to Geographic
Visualization and Knowledge Construction. Cartography and Geographic Information
Systems 19, 197–200 (2001)

[21] Mackinlay, J.D.: Automatic Design of Graphical Presentations, Ph.D. Thesis, Department
of Computer Science, Stanford University (1986)

[22] Mackinlay, J.D., Hanrahan, P., Stolte, C.: Show Me: Automatic Presentation for Visual
Analysis. IEEE Trans. Vis. Comput. Graph 13(6), 1137–1144 (2007)

[23] North, C.: A Taxonomy of Information Visualization User-Interfaces (1998),
http://www.cs.umd.edu/~north/infoviz.html

[24] OLIVE: On-line Library of Information Visualization Environments, University of Mary-
land College Park (1999), http://otal.umd.edu/Olive/

[25] Rajaraman, A.: Kosmix: High Performance Topic Exploration Using the Deep Web. In:
Proceedings of the VLDB Endowment, August 2008, vol. 2(1), pp. 1524–1529 (2009)

[26] Rodrigues Jr., J.F., Traina, A.J.M., de Oliveira, M.C.F., Traina Jr., C.: Reviewing Data
Visualization: An Analytical Taxonomical Study. In: Proceedings of the Information
Visualization, IV 2006 (2006)

[27] Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Information
Visualizations. In: IEEE Symp. Visual Languages, pp. 336–343. IEEE CS Press, Los
Alamitos (1996)

[28] Stevens, S.S.: On the Theory of Scales of Measurement. Science 103(2684), 677–680
(1946),
http://web.duke.edu/philosophy/bio/Papers/
Stevens_Measurement.pdf

[29] Stolte, C., Tang, D., Hanrahan, P.: Polaris: A System for Query, Analysis, and Visualiza-
tion of Multidimensional Databases. Commun. ACM 51(11), 75–84 (2008)

[30] Takatsuka, M., Gahegan, M.: GeoVISTA Studio: A Codeless Visual Programming Envi-
ronment for Geoscientific Data Analysis and Visualization. Computational
Geoscience 28, 1131–1144 (2002)

[31] Ward, M.O.: A Taxonomy of Glyph Placement Strategies for Multidimensional Data
Visualization. Journal of Information Visualization 1(3/4)

[32] Wattenberg, M.: Visual Exploration of Multivariate Graphs. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems - CHI 2006, pp. 811–819.
ACM, New York (2006)

Part 3

Semantic Description

Knowing Web data sources and services in great detail is a fundamental aspect of
search computing: the ability of building queries depends on the ability of giving to
resources a rich semantic description, so as to characterize the application domain and
the search activities that can be performed in that domain. The current conceptual
description of Web resources uses a very simple Entity-Relationship model, so as to
enable an equally simple description of Web interactions. But we are considering how
to link ontological sources to service descriptions, as we expect that richer semantics
may cover the gap from informal interactions (such as dialogs or sentences in natural
language) to query expression. This part of the book describes the current flow of
research in semantic description of Web resources in the SeCo project. It starts by
presenting the current search computing model, and then traces its possible evolution,
by investigating how descriptions can be linked to ontologies and how the Entity-
Relationship model could be replaced by richer ontological models.
 The first chapter introduces the Semantic Resource Framework (SRF) as an
evolution of the original Service Mart model. It inherits the three-level description of
services (conceptual, logical and physical) but it gives to the conceptual level a
semantic interpretation, by mapping its concepts to those of the classic Entity-
Relationship model: real-world objects or facts are mapped to entities and their
connections are mapped to relationships. Connections between entities go beyond
pure attribute equality and may represent nearness in space, time, and costs; spatial
nearness between addresses or geographic locations is already exploited in many
search computing applications.
 The second chapter describes a method for automatic schema mapping, taking
advantage of semantic annotation and of service normalization. A method for
probabilistic lexical annotation relying on WordNet synsets and WSD (Word Sense
Disambiguation) techniques finds the probabilistically best lexical relationships
between local sources or services and a global ontological schema. The chapter
explores how such techniques could be applied in a context of the SRF model to link
general ontologies at service registration time.
 The third chapter investigates the use of a general ontology, such as Yago, as the
conceptual level of the Semantic Resource Framework, substituting for the current
Entity-Relationship model. The chapter motivates this approach by showing that it
solves practical problems in service registration and query mapping, and draws
interesting connections to ANGIE, an ongoing project for mapping ontological
queries to Web services.

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 73–84, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Semantic Resource Framework

Marco Brambilla, Alessandro Campi, Stefano Ceri, and Silvia Quarteroni

Politecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza L. Da Vinci, 32. 20133 Milano, Italy

{mbrambil,campi,ceri,quarteroni}@elet.polimi.it

Abstract. The Semantic Resource Framework (SRF) is a multi-level descrip-
tion of the data sources for search computing applications. It responds to
the need of having a structured representation of search services, amenable to
service exploration, selection, and invocation. The SRF aims at extending the
Service Mart model used so far in search computing to overcome some of its
limitations. The main new features include external attributes, which represent
the input to be provided by users for accessing objects; selector attributes, de-
scribing the possibility to map the same access pattern to different services
based on some condition; key attributes for objects; and a generalized notion of
nearness between objects. The high-level view presented by SRF is a very sim-
ple Entity-Relationship model with objects and binary connections, that can be
used for very different query tasks, ranging from custom search applications
(i.e. predefined queries) to exploratory search (i.e., exploration of its objects
and connections) to natural language interfaces (i.e., query dialogues). Such
high-level view should be considered as an initial step in the enrichment of the
service repository with additional semantic capabilities.

Keywords: service repository, ontology, semantic annotation, service
description, search services.

1 Introduction

Service registration is an essential aspect of the Search computing project; the process
is very critical because it must satisfy two conflicting requirements. On one side,
services must be described with enough details about their interfaces and deployment
so as to support their composition and invocation by means of fully automatic
processes. On the other side, the actual mapping of services to real-world objects and
facts must be exposed, so as to enable the construction of high-level user interfaces
covering the semantic gap between user interaction and service selection.

The service model used for registration must describe not only the object or fact
exposed by a service, but also the logic that a specific service performs while access-
ing an object, so that an interpretation system can select the specific service which
best matches the user’s requirements expressed in an informal or semi-formal way.
Moreover, the model must support processes that aim at recognizing, at service
registration time, when services describe the “same” objects or properties through
“different” notations (e.g., names or types), so as to support matching. The scope of
service registration in SeCo is therefore quite broad, as it must cover aspects ranging

74 M. Brambilla et al.

from performance indicators up to the semantic description of services and of their
parameters.

The Service Mart model adopted so far in SeCo for service description [6] uses a
multi-level modeling approach, consisting of conceptual, logical, and physical layers.
The conceptual level is a very simple model which characterizes real world entities,
called Service Marts (SM), structurally defined by means of attributes, and their rela-
tionships. The logical level describes the access to the conceptual entities in terms of
data retrieval patterns (called Access Patterns, AP) described by input and output
attributes. Finally, the physical level represents the mappings of these patterns to
concrete Web Service Interfaces (SI), which incorporate the details about the endpoint
and the protocol to be used for the invocation, together with some basic statistics on
the service behavior. These in turn may be used for granting agreed levels of quality
of service (QoS).

The motivation for a three-layered architecture is due to the following needs: (1)
abstracting the conceptual properties of objects from the large amount of services that
access them; (2) applying the separation of concerns principle to the service descrip-
tion task, by granting the independence of concept definitions, access methods, and
concrete service descriptions.

In particular, the Service Mart model accomplishes the abstraction objective by
forcing schema uniformity throughout layers; in this way, it supports a clear definition
of how services can be composed and joined. Unfortunately, schema uniformity be-
tween layers and service implementations does not always correspond to real-world
situations. For instance, the support of object access according to different criteria
may require different augmentations of the schema, so as to include additional attrib-
utes which describe the access to objects in different context of use. The purpose of
this paper is to extend the Service Mart model by making it more expressive and more
fitting to the search service description requirements.

The extensions introduced in this paper include: external attributes, which repre-
sent the input to be provided by users for accessing objects and as such need not to be
mapped to object properties; selector attributes, describing the possibility to map the
same access pattern to different services based on a condition; the definition of key
attributes for objects; and, for certain domains (such as geographic location), the
notion of nearness that can substitute for equality in the join of two services.

SRF is a first step in order to add more semantics to service registration; in the next
two chapters of the book, further semantic extensions are studied, consisting in the
annotation of services with ontological knowledge [3] and in the direct use of an onto-
logical model substituting the SRF [20]. These extensions are under consideration in
the project for future extensions.

Section 2 presents a state-of-the-art of the literature in the field. Section 3 briefly
summarizes Service Marts from [6] so as to make this paper self-contained. Then,
Section 4 introduces innovative aspects of the model (external, selector, and key at-
tributes), and Sections 5 introduces “nearness”, i.e. the possibility of accessing objects
or of connecting pairs of objects ranked by their “nearness” to other objects, which is
defined for given properties (e.g., spatial location, time, money). Section 6 presents a
high-level view of SRF that conforms to the Entity-Relationship model, and can be
seen as a first step towards adding semantics to service descriptions.

 Semantic Resource Framework 75

2 Related Work

The work described in this paper is the result of a research stream starting with [19],
where the authors propose a Web service management system that enables querying
multiple Web services in a transparent and integrated fashion and propose an algo-
rithm for arranging a query's Web service calls into a pipelined execution plan that
exploits parallelism among Web services. In this context, SRF is a proposal for in-
creasing the abstraction level and thus facilitating the choice of services and the defi-
nition of plans. In the following, we revise the proposals that address similar issues.

Our conceptual level description of services through service marts is in line with
[8], which describes the idea of the Web of concepts. In this work the term concept
refers to things of interest to users of the Web who are either searching for informa-
tion or trying to accomplish some task. The shift from a Web of pages to a Web of
objects is now a recognized trend [2] and several mainstream search engines are fol-
lowing the line by introducing new features in this direction. In [7] the authors pro-
pose a conceptual model that describes actors, activities and entities involved in a
service-oriented scenario through a glossary of terms.

Also the logical level several approaches exist for describing objects on the Web.
The most popular ones are based on Google Fusion Tables [11][13][14], a cloud-
based service for data management and integration. Fusion Tables enables users to
upload tabular data files and provides ways of visualizing the data (e.g., charts, maps,
and timelines) and the ability to filter and aggregate the data. It supports the integra-
tion of data from multiple sources by performing joins across tables that may belong
to different users. There are also several projects related to structured data at Google.
Google Public Data1 is an effort to import public government data and provide high-
quality and carefully chosen visualizations of data in response to search queries. The
Google Squared Service2 lets users specify categories of objects and explore attributes
of these entity sets. In this case, the data populating the tables is automatically ex-
tracted from various sources on the Web, and may not always be accurate.

At the physical level, the trend toward the Web of objects is well represented by the
Linked Data initiative, which has recently seen an increasing amount of shared informa-
tion, also thanks to initiatives like the W3C Linked Open Data (LOD) community pro-
ject3 and to the dedication of prominent Semantic Web researchers4. Outside this initia-
tive, the major search engines are providing facilities for accessing information sources
through APIs and query languages. The most known resource is YQL (Yahoo! Query
Language)5 is a language and a platform that lets Web applications query and filter data
from different sources across the Internet through SQL-like statements. Similarly,
Google Base API6 also allows one to upload structured data and to query it through the
Web. Another relevant aspect of concrete service description is the specification of rele-
vant information for quality of service (QoS) support. QoS has been thoroughly studied

1 http://www.google.com/publicdata/home
2 http://www.google.com/squared
3 http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData/
4 http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
5 http://developer.yahoo.com/yql/
6 http://code.google.com/apis/base/

76 M. Brambilla et al.

in the past (see e.g. [15], [17]). In line with these approaches, we keep track of service
performance for dynamic runtime optimization of execution plans.

Finally, several proposals, such as DAML-S [1], OWL-S [16], COSMO [18] and
WSMF [9][10], extend the description of services in a semantic direction, as we plan
to do in future work (see the next chapters [3][20] for an overview of the possible
research directions).

3 Service Marts

Service Marts are specific data patterns; their regular organization helps structuring
Search Computing applications. The most well known data modelling pattern is the
so-called “data mart” used in the context of data warehouses; a data mart is a simple
schema having one core entity, describing facts, surrounded by multiple entities, de-
scribing the dimensions of data analysis [5]. It facilitates the expression of operations
for data selection and aggregation (e.g. data cubes, rollup, drilldown). Analogously, a
“Web mart” [11] is a pattern introduced in the Web design community to characterize
the role played by data items in data-intensive Web applications. Service Marts are
instrumental in supporting the notion of “Web of objects” [10] that is gaining popular-
ity as a new way to think of the Web, going beyond the unstructured organization of
Web pages.

Figure 1 provides an overview of the approach, by presenting a sample concept
Movie, registered as a service mart, together with two associated access patterns and
service interfaces, with the respective attribute mappings (notice that mappings are
shown only for the first access pattern for clarity). The next subsections describe the
semantics and notation of each level.

Fig. 1. Example of descriptions for accessing Movie information through the Service Mart,
Access Pattern, and Service Inteface layers

3.1 Conceptual Level

At the conceptual level, the definition of a Service Mart includes the object’s name
and the collection of the object’s attributes. All attributes are typed; attributes can be

 Semantic Resource Framework 77

atomic (single valued) or part of a repeating group (multi-valued); each repeating
group is a non-empty set of attributes that collectively defines a property of the
Service Mart with multiple values (such as “genres” or “actors” of a given movie).
The model choice is to support structural complexity with only one level of nesting,
rather than arbitrary nesting. The conceptual description of the object “Movie” is:

 Movie(Title, Director, Year, Score, Language, Genres(Genre), Actors(Name, Sex))

3.2 Logical Level

At the logical level, Service Marts are associated with one or more access patterns
representing the signatures of service calls. Access patterns contain a subset of the
Service Mart’s attributes tagged with I (input), O (output), or R (ranking). Ranking
attributes may be visible in output. For ease of understanding, if the service call is
mapped to a parametric query, input attributes provide query parameters, output at-
tributes provide results, and ranking attributes are used for ordering result instances.

 Movie1(Title

O, DirectorO, ScoreRO, YearO, LanguageI, Genres.GenreI, Actors.NameO)

 Movie2(Title
I, DirectorO, LanguageO, Genres.GenreO, Actors.NameO, Actors.SexO)

Movie1 accesses movies by Language and Genre (i.e., “action movies in English”),

and results are ranked by Score (a new attribute). Movie2 accesses movies by
matching their Title to a string (e.g. “Ben Hur”). We expect few (zero, one, more)
un-ranked results.

3.3 Physical Level

At the physical level, each access pattern may be mapped to several service
implementations. Each implementation is characterized by a physical URI to be
called, a set of physical properties that are specific to the implementation, and a map-
ping between logical attributes and physical parameters. Services are divided into
exact services (producing a set of equivalent responses) and ranked services (search
systems producing a list of results ordered by priority, sometimes explicitly ranked,
typically not exhausted by the calling process).

3.4 Connection Patterns

Connection patterns are high-level abstractions of “real world relationships” that
provide a simple interface to users and hide implementation details. They are built by
means of attributes that share the same domains. At the conceptual level, they are
defined by a non-directed edge with a name, e.g.:

PlayingMovie(Movie,Theatre)

At the logical level they are defined by a (possibly directed) edge with name and

join condition:

PlayingMovie(Movie,Theatre): (Title=Movie.Title)

78 M. Brambilla et al.

The above edge represents a join operation between the two access patterns and
can either be directed or undirected. In the first case, information is “piped” from one
access pattern to another, along connection attributes which are in output in the first
service and in input in the second service. As an example, the connection between the
following access patterns is directed, following the information flow from
Movie1.TitleO to Theatre1.M.TitleI:

 Movie1(Title

O, DirectorO, ScoreRO, YearO, LanguageO, Genres.GenreI,Actors.NameO)

 Theatre1(Name
O, AddressO, Movie.TitleI, Movie.StartTimeO)

Undirected edges are present when join attributes are both in output from the ser-

vices, as shown by the following example; note that the Title attribute is labelled “O”
in both patterns.

 Movie1(Title

O, DirectorO, ScoreRO, YearO, LanguageO, Genres.GenreI,Actors.NameO)

 Theatre2(Name
O, AddressO, Movie.TitleO, Movie.StartTimeO)

4 Model Extensions

After experimentation, we realized that the basic Service Mart model of the world
encountered a number of limitations, and therefore some extensions were needed. We
start by extending the model with three orthogonal features: external, selector, and
key attributes. Each such feature is described next.

4.1 External Attributes

External attributes are “new” attributes appearing at the logical level, while not being
present at the conceptual level; they support object access and ranking. External at-
tributes are appended to access patterns, as illustrated by Figure 2. Attributes for
object access support multi-value and similarity access:

• The former case occurs when a query includes one or more values of a multi-
valued attribute (e.g., “internet access”, “parking”, and “wellness area” as re-
quired properties of a hotel); in such a case, the service call signature requires
providing one or more values in input, which the invoked service will use to
select object instances (the specific access predicate being used by the service,
e.g. “at least two” required properties for a hotel, is not of our concern).

• The latter occurs when a query finds the instances that most closely match a
given input (e.g. the movies whose title most closely matches the word
“apocalypse”); in such a case, the service call signature requires two attributes
for the same domain, one given in input and one extracted as output, and rank-
ing of selected object instances is based upon best matching.

External attributes for ranking allow services to explicitly describe how their result
instances are ranked. They may correspond to specific object attributes (e.g. “stars” or
“scores” for hotels) which provide an explicit ranking, or just represent the “position”
of the result instance in the result list, used by services returning opaque ranking.

 Semantic Resource Framework 79

Fig. 2. External attributes for access patterns

4.2 Selector Attributes

Selector attributes support the selection of specific service implementations; they may
be present at the conceptual level or be added at the logical level; in the latter case,
selector attributes must be labelled “I” (for input). Figure 3 shows “language” as a
selector attribute, present in the Service Mart used for accessing n movie services
(e.g. one for movies in “English” and one for movies in “Italian”).

Fig. 3. Selector attributes to choose a specific service implementation

4.3 Key Attributes

In the context of the SeCo project, object identity is used for supporting object cach-
ing (so as to avoid repeated queries to the same service) and query sessions (so as to
progressively build information relative to the “same” real world object). Both these
uses capitalize upon the specific choice of service implementation, performed by the
query compiler, and therefore properly belong to the physical level. The latter is also
the only level where object identity can be maintained, as it is not realistic that object
identity be maintained across different service implementations accessing distinct sets
of objects. Thus, we allow each service implementation to be optionally associated
with a local definition of “key attributes”, corresponding to one or more attributes
collectively forming the (primary) identifier of the object instances retrieved by the
service implementation. Such key attributes may be present at the conceptual or logi-
cal levels or may be added at the physical level. For example, depending on the
service interface, hotels may be identified by the pair “city, number” or by an “OID”
or “URI” generated by the service.

80 M. Brambilla et al.

5 Nearness Support in Accessing Resources

In the Service Mart model, connections of access patterns are based on value equality
(equi-joins). However, queries often call for value similarity and/or partial matching;
in this case, knowledge of the underlying semantics of attributes supports nearness
computation. This aspect is indeed crucial in Web search and intrinsically leads to the
concept of ranking based on join conditions. Furthermore, it provides a fundamental
rationale for the introduction of external attributes.

In SeCo, the most relevant domain for similarity support is the spatial domain,
which is used for geographic locations such as the “addresses” of resources. Indeed,
the spatial domain is the most common example of application of nearness support as
many types of queries are naturally geo-localized, i.e. their results can be visualized
upon maps. The trend of offering geo-localized results is common to most search
engines, such as Google or Yahoo!

Further domains providing value similarity are the temporal domain (describing
dates and times) and the economic domain (describing costs). Similarity computation
between lexical strings is also performed to compute term relatedness; this is
achieved via morphological operations such as stemming or via external vocabularies
such as WordNet [21]. String comparisons may be refined for specific application
domains (e.g., the Bio-SeCo application using GeneOntology [12], described in Part 7
of this book). Next, we illustrate similarity support in the spatial domain and focus on
providing results close to the current user’s location.

(a)

(b)

Fig. 4. Service interface for (a) a service natively providing the “Spatial Near” function; (b) an
ad-hoc service providing spatial nearness calculation

5.1 Nearness in Single Resources

Ranking by nearness is supported natively by many search services. For instance, the
“GoogleMovies” service (shown in Fig. 4(a)) outputs movie shows ranked by
distance from the location given as input7. In this case, it is sufficient to label the
service with the supported similarity semantics, a feature recognized by the SRF.

7 See e.g. http://www.google.it/movies?near=washington%square%new%york

 Semantic Resource Framework 81

Note that in Fig. 4(a), “UserAddress” (input location) is modelled as an external
attribute of the Theatre1 access pattern.

In addition, generic services exist which return the distance between two addresses,
provided either as geographic coordinates or as <country, city, street> triples. Such
services may be used to rank resources based on their distance from a specific loca-
tion. Fig. 4(b) represents an ad-hoc service, supported within the SeCo query engine,
which takes two coordinates as input and produces their distance as output.

Services for supporting value similarity are engineered starting from services sup-
porting value equality; a number of candidate locations, produced e.g. by location-
aware resource selection services, are used to feed the first input parameter of the
ad-hoc service, while the second input parameter is set to the user’s current location.
A sorter is then used to order candidate locations by distance. Caching of triples rep-
resenting two locations and their distance can be used to reduce calls to the ad-hoc
service, and the Search Computing engine supports execution strategies that limit the
size of the result set to avoid waiting too long for sorted results (note that sorting is a
blocking operation, i.e. an operation that can only be executed when its full input is
available).

Fig. 5. GoogleMovies service providing spatial nearness: modelling at the physical, logical and
conceptual levels

5.2 Accessing Pairs of Resources

The approach illustrated in Section 6.1 can be extended to connection patterns. Fig. 5
shows an example of use of the GoogleMovies service for supporting geographic
nearness as a connection pattern. The query searches for theatres (and their movies)
close to restaurants, selected (and ranked) in turn according to the user’s preference.
This is possible thanks to the match between external attributes “Address” and

82 M. Brambilla et al.

“UserAddress” in the Restaurant2 and Theatre1 access patterns. Note that the connection
at the conceptual level is now directed (because the nearness function is supported by
the “theatre” service) and labelled with the name of the SpatialNear function.

Alternatively, an ad-hoc service can be used to support geographic nearness, by us-
ing the scheme illustrated in Fig. 6. The ad-hoc “SpatialNear” service can only be
invoked once the services for “restaurants” and “theatres” have been called, as they
use address pairs as input. Note that in this case the connection at the conceptual
level, labelled with the name of the SpatialNear function, is not directed.

Fig. 6. SpatialNear ad-hoc service: modelling at the physical, logical and conceptual levels

6 Top-Level View of the Semantic Resource Framework

While the service mart model is ideal for registering individual services, as it clusters
several service descriptions within a hierarchical multi-level view, its evolution into
the SRF highlights fact that services collectively describe a given “domain of dis-
course”, i.e. a particular subset of reality which can be the target of SeCo queries.

The top-level view of SRF is a simple Entity-Relationship model, as described in
Figure 7; it defines the application context, characterized by the presence of named
entities (service marts) and relationships (connection patterns). Among the possible
semantic meanings of relationships, of course we rightfully include nearness as dis-
cussed in Section 5.2. This view abstracts away from the complexity of mapping ser-
vice interfaces to data sources and of integrating the different names and formats used
by each source to represent its properties, and focuses on a simple, semantic view.

Thanks to this view, the exploration of information and the definition of search que-
ries is simplified and made more efficient. The “focus” of the exploration can start with
a single object and then progressively add more objects, thereby building queries with a
fashion, as discussed in the first chapter of this book. Future work for supporting

 Semantic Resource Framework 83

keyword-based or natural language interfaces will also be based on high-level represen-
tations of the universe of discourse. Thus, this semantic view, although very simple at
this stage, is an important step in the direction of adding semantic power to service
descriptions.

Fig. 7. Example of high-level view offered by SRF

7 Conclusions

Search service management is one of the most critical aspects in search computing. In
this chapter, we discussed our current approach to search service conceptualization and
registration; the model extends our previous approach in many important directions,
such as the support of external, selector, and identifier attributes, and the support of
nearness for specific semantic domains, such as distance and time. Registration tools,
described in [5], support service registration according to this model and subsequently
let query designers specify the search query upon it.

We envision progressive extensions of the SRF for incorporating more semantics;
such extensions concern the use of semantic annotations, and the use of ontological
knowledge at the conceptual level of the model, thereby adding semantics to the current
Entity-Relationship description. These extensions, discussed in the next two chapters
[3][20], will further empower designers at registration time, and will facilitate the sup-
port of high-level queries.

References

[1] Ankolenkar, A., et al.: DAML-S: Web service description for the Semantic Web,
http://www.daml.org/services/daml-s/2001/10/daml-s.html

[2] Baeza-Yates, R., Raghavan, P.: Next Generation Web Search. In: Ceri, S., Brambilla, M.
(eds.) Search Computing. LNCS, vol. 5950, pp. 11–23. Springer, Heidelberg (2010),
doi:10.1007/978-3-642-12310-8_2

[3] Bergamaschi, S., Beneventano, D., Po, L., Sorrentino, S.: Automatic Schema Mapping
Through Normalization and Annotation. In: Ceri, S., Brambilla, M. (eds.) Search Com-
puting II. LNCS, vol. 6585, pp. 85–100. Springer, Heidelberg (2011)

84 M. Brambilla et al.

[4] Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of multi-domain queries on
the Web. In: Proc. VLDB, vol. 1(1), pp. 562–573 (August 2008)

[5] Brambilla, M., Tettamanti, L.: Search computing processes and tools. In: Ceri, S.,
Brambilla, M. (eds.) Search Computing II. LNCS, vol. 6585, pp. 169–181. Springer, Hei-
delberg (2011)

[6] Campi, A., Ceri, S., Maesani, A., Ronchi, S.: Designing service marts for engineering
search computing applications. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.)
ICWE 2010. LNCS, vol. 6189, pp. 50–65. Springer, Heidelberg (2010)

[7] Chakrabarti, K., Ganti, V., Han, J., Xin, D.: Ranking objects based on relationships. In:
Proc. of SIGMOD Int. Conf. on Management of Data, New York, USA, pp. 371–382
(2006)

[8] Dalvi, N., et al.: A Web of Concepts. In: PODS 2009, Providence, Rhode Island, USA,
June 29-July 2 (2009)

[9] Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. Electronic
Commerce Research and Applications 1(2), 113–137

[10] Fensel, D., Musen, M.: Special Issue on Semantic Web Technology. IEEE Intelligent
Systems (IEEE IS) 16(2)

[11] Google Fusion Tables, http://tables.googlelabs.com/
[12] Gene Ontology, http://www.geneontology.org/
[13] Gonzalez, H., Halevy, A., Jensen, C., Langen, A., Madhavan, J., Shapley, R., Shen, W.,

Goldberg-Kidon, J.: Google fusion tables: Web-centered data management and collabora-
tion. In: Proceedings of the 2010 International Conference on Management of Data,
SIGMOD 2010, Indianapolis, USA, June 06-10, pp. 175–180 (2010)

[14] Gonzalez, H., Halevy, A., Jensen, C., Langen, A., Madhavan, J., Shapley, R., Shen, W.:
Google Fusion Tables: Data Management, Integration, and Collaboration in the Cloud.
In: Proceedings of the ACM Symposium on Cloud Computing, SOCC (2010)

[15] Liangzhao, Z., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-aware middleware for Web services composition. IEEE Transactions on Software
Engineering 30(5), 311–327 (2004)

[16] Martin, D., Burstein, M., et al.: Bringing Semantics to Web Services with OWL-S. In:
World Wide Web, vol. 10(3), pp. 243–277 (September 2007)

[17] Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic Web services
selection. IEEE Internet Computing 8(5), 84–93 (2004)

[18] Quartel, D.S., Steen, M.W., Pokraev, S., Sinderen, M.J.: COSMO:A conceptual frame-
work for service modeling and refinement. Information Systems Frontiers 9(2-3),
225–244 (2007)

[19] Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over Web
services. In: VLDB 2006, VLDB Endowment, pp. 355–366 (2006)

[20] Suchanek, F., Bozzon, A., Della Valle, E., Campi, A., Ronchi, S.: Towards an Ontologi-
cal Representation in Search Computing. In: Ceri, S., Brambilla, M. (eds.) Search
Computing II. LNCS, vol. 6585, pp. 101–112. Springer, Heidelberg (2011)

[21] WordNet, http://wordnet.princeton.edu/
[22] Xi, W., Fox, E.A., Fan, W., Zhang, B., Chen, Z., Yan, J., Zhuang, D.: SimFusion: meas-

uring similarity using unified relationship matrix. In: Proc. of the 28th Int. ACM SIGIR
Conf. on Research and Development in Information Retrieval, New York, USA, pp.
130–137 (2005)

[23] Zaragoza, H., Rode, H., Mika, P., Atserias, J., Ciaramita, M., Attardi, G.: Ranking very
many typed entities on wikipedia. In: CIKM 2007: Proc. of the 16th ACM Conf. on
Information and Knowledge Management, pp. 118–1018. ACM, New York (2007)

Automatic Normalization and Annotation for
Discovering Semantic Mappings

Sonia Bergamaschi, Domenico Beneventano, Laura Po, and Serena Sorrentino

Department of Information Engineering
University of Modena and Reggio Emilia, Italy

name.surname@unimore.it

Abstract. Normalization and lexical annotation methods, developed in the
context of matching systems, have proven to be effective for the discovery of
lexical relationships among schemata. We will show how these methods are ap-
plicable and effective in the context of Semantic Resource Framework to mine
the semantics of a web service interface and to discover mappings between them.

Keywords: lexical relationships, probabilistic annotation, word sense
disambiguation, label normalization, semantic resource framework.

1 Introduction

This chapter will discuss the applicability of normalization and lexical annotation meth-
ods, developed in the field of schema matching, in the context of web service interfaces.
The lexical annotation of a schema element is the explicit assignment of its meanings
w.r.t. a lexical resource. Normalization (also called linguistic normalization [14]) is the
reduction of the label of a schema element to some standardized form that can be easily
recognized.

Starting from our previous works in the context of data integration [5,21,26], we
propose to apply normalization and annotation methods to mine the semantics of a
service, exposed through its interface and to discover connection patterns among web
services.

In Natural Language Processing, Word Sense Disambiguation (WSD) is the process
of identifying which sense of a word (i.e. meaning) is used in a sentence, when the
word has multiple meanings (polysemy). We describe our probabilistic lexical annota-
tion method, which automatically associates one or more meanings to schema elements
w.r.t. the lexical resource WordNet (WN) [13], by exploiting a Word Sense Disambigua-
tion (WSD) algorithm, called PWSD (Probabilistic Word Sense Disambiguation) [21].
The accuracy of lexical annotation is affected by labels which are non-dictionary words,
such as Compound Nouns (CNs), acronyms and abbreviations which are very frequent
on real-world schemata and web service interfaces. We addressed this problem by de-
vising a method to normalize schema labels which is able to semi-automatically expand
abbreviations and to properly lexically annotate CNs by creating new WN meanings.

Starting from the lexical annotation of schema elements, we can discover lexical
relationships between them, on the basis of the relationships defined in WN between

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 85–100, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

86 S. Bergamaschi et al.

Fig. 1. Example of discovered lexical relationships without (a) and with (b) normalization

their meanings (synsets in WN terminology). Traditional schema matching methods
based on string distance techniques [10] do not permit to automatically discover that
there exists, for example, a synonym relationship between the two schema elements
“amount” and “quantity”, as their labels share only few characters. Instead, by using
our method, we are able to: (1) automatically annotate these schema elements with the
corresponding WN meanings; (2) discover a synonym relationship among them, as they
share the same meaning in WN (i.e. the synset “how much there is or how many there
are of something that you can quantify”).

Moreover, our normalization method improves the quality of semantic mappings by
reducing the number of discovered false positive/false negative relationships.
Figure 1 shows two schemata that need to be mapped/integrated, and compares the rela-
tionships discovered with and without normalization. Let us consider, for example, the
two schema elements “CustomerName” and “CLIENTADDRESS”, respectively, in the
source “PurchaceOrder” and “PO”, shown in Figure 1(a). If we annotate separately the
terms “Customer” and “Name”, and “CLIENT” and “ADDRESS”, then we might as-
sume a SYN relationship between them, because the terms “Customer” and “CLIENT”
share the same WN meaning. In this way, a false positive relationship is discovered
because these two CNs represent “semantically distant” schema elements.

Furthermore, if we consider the two corresponding schema labels “amount” and
“QTY” (abbreviation for “quantity”), without abbreviation expansion we cannot dis-
cover that there exists a SYN relationship between the elements “amount” and “QTY”.

In this chapter, we describe the normalization and annotation methods w.r.t. a generic
object schema, which may be either a set of data sources or a set of web services
(section 2). In Section 3, an example of application of the methods on the Semantic
Resource Framework model is shown. Some related works are described in Section 4.
Finally, in Section 5, we make some concluding remarks.

Automatic Normalization and Annotation for Discovering Semantic Mappings 87

Fig. 2. Overview of the schema label Normalization and Annotation methods

2 Normalization and Annotation of a Conceptual Schema

To describe the normalization and annotation methods, we use a generic Conceptual
Modeling Language (CML), which contains common aspects of most semantic data
models, UML, ontology languages, such as OWL, and description logics [1].

In the sequel, we use S to denote a schema prescribed by the generic CML. Specifi-
cally, the language allows the representation of classes (unary predicates over individ-
uals), and attributes, which can be simple (binary predicates relating individuals with
values such as integers and strings) or complex (binary predicates relating individuals).

LetS={C1, C2,...,Cn}beafinite setof classes,whereeach class,C={A1, A2,...,An},
is described by a finite set of attributes. A simple attribute in the class Hotel, representing
an hotel reservation web site, may be name, while a complex attribute may be address;
address refers to a class Address in the same schema that combines the information of
street, number, city, zipcode, and country.

88 S. Bergamaschi et al.

Attributes may be subject to constraints such as, cardinality constraints. Such con-
straints do not influence our annotation and normalization methods and therefore are
not taken into account in our generic CML.

Classes are organized in a familiar is-a hierarchy. In the previous example, the class
Hotel may be defined as a sub-class of Service.

Normalization and annotation methods regard classes and attributes of a schema,
referred to as schema elements from now on. Each schema element has a name, referred
to as label from now on.

Definition 1 (Lexical Annotation). The lexical annotation of a schema element is the
explicit assignment of its meanings w.r.t. a lexical resource.

We define the lexical annotation as the connection of a schema element with its mean-
ings defined in a lexical resource. However from now on, we will also make reference
to the annotation of the label of a schema element.

The lexical resource we employ in our methods is WN. WN groups English words
into sets of synonyms, called synsets. Each synset represents a distinct concept and
is further clarified with a short defining gloss (i.e. a definition and optional example
sentences). WN records the various semantic relationships between these synonym sets.
These relationships vary based on the type of word; for the syntactical category of
nouns, they include:

– hypernyms: Y is a hypernym of X iff every X is a (kind of) Y (person is a hypernym
of student, because every student is a member of the larger category of persons);

– hyponyms: Y is a hyponym of X iff every Y is a (kind of) X (student is a hyponym
of person);

– holonym: Y is a holonym of X iff X is a part of Y (building is a holonym of win-
dow);

– meronym: Y is a meronym of X iff Y is a part of X (window is a meronym of
building).

We focus our work on the development of an automatic lexical annotation method able
to select the synsets that cover the meaning of a schema element.

Thanks to the WN network of relationships, after the application of the annotation
method we can discover lexical relationships among schema elements.

Lexical relationships are defined between classes and attributes, and are specified by
considering class/attribute labels. Formally, a lexical relationship can be defined as:

Definition 2 (Lexical relationship). Let t and s be two schema elements and t#i and
s#j annotations assigned to t and s respectively. A lexical relationship is defined as the
triple < ti, tj , R > where R defines the type of the relationship between ti and tj . The
types of lexical relationship are:

– SYN (Synonym-of): defined between two elements whose meanings are synonymous
(they correspond to a WN synonym set), formally

t SYN s iff ∃ t#i ≡ s#j

Automatic Normalization and Annotation for Discovering Semantic Mappings 89

– BT (Broader Term): defined between two elements where the meaning of the first is
more general than the meaning of the second (the opposite of BT is NT, Narrower
Term), (it corresponds to a WN hypernymy/hyponymy relationship)), formally

t BT s iff ∃ t#i hypernym of s#j

– RT (Related Term): defined between two elements whose meanings are related in
a meronymy hierarchy (it corresponds to a WN meronymy relationship, i.e. part-of
relationship), formally

t RT s iff ∃ t#i meronym of s#j

Let us suppose we want to automatically lexically annotate (annotate in the following)
the schema element “address”. In WN the noun “address” has eight different mean-
ings, including very similar ones such as “written directions for finding some location;
written on letters or packages that are to be delivered to that location” or “a sign in
front of a house or business carrying the conventional form by which its location is
described”. We might generate a single (forced) annotation for each word (as done by
many WSD approaches proposed in the literature). However, in many cases, choosing a
single annotation would be difficult even for a human annotator: generating more than
one probabilistic annotation comes to be a good solution that avoids loosing semantic
information.

Uncertainty is an intrinsic feature of automatic and semi-automatic annotation meth-
ods and provides a quantitative indication of the quality of the result. In our method,
uncertainty is qualified as probability values related to annotations w.r.t. WN.

The strength of a thesaurus like WN is the presence of a wide network of semantic
relationships among meanings. Its main weakness is that it does not cover different
domains of knowledge with the same level of detail and that many domain dependent
terms (called non-dictionary words) may not be present in it. Non-dictionary words
include CNs, abbreviations and acronyms (from now on, these last two will be referred
to simply as “abbreviations”). The result of automatic annotation is strongly affected
by the presence of these non-dictionary words in schemata, thus label normalization is
needed. With label normalization, we mean the process of abbreviation expansion and
CN annotation through the creation of new WN meanings.

Definition 3 (Abbreviation expansion). Let AB be an abbreviation (or short form), ab-
breviation expansion is the task of finding a relevant expansion (long form) for the given
abbreviation AB1.

Definition 4 (CN annotation). Let CN be a non-dictionary compound noun constituted
of more words (its constituents). The annotation of a CN is the task of creating a new
WN synset starting from the annotations of its constituents.

1 The long form that is extracted through abbreviation expansion may not be an entry in WN.
This issue remains an open problem. For the moment, we limit ourselves to examine long
forms which have an entry in WN (e.g. the long form “Number” for the abbreviation “Nbr”)
or that correspond to CNs (e.g. the long form “Purchase Order” for the abbreviation “PO”).

90 S. Bergamaschi et al.

In the following, we describe normalization, annotation and relationship discovery in
detail. In the end of this section, we show some results in term of performance of the
methods.

2.1 Normalization

As shown in Figure 2, the schema label normalization method [26] consists of three
steps: (1) schema label preprocessing, (2) abbreviation expansion and (3) CN anno-
tation. The input of schema label preprocessing is the set of schema element labels.
During this phase, we automatically select the labels to be normalized. The output
of this module are the tokenized labels classified into four groups (as shown in Fig-
ure 2): WN terms (i.e. labels having an entry in WN which do not need normalization,
e.g. “Airport”) abbreviations (e.g. “FLTNO”), CNs (e.g. “DepartureAirport”), and CNs
containing abbreviations (e.g. “ARRAirport”).

The abbreviation expansion step is applied on all the schema labels classified as ab-
breviations or CNs with abbreviations. During this step, each abbreviation is expanded
with the most relevant long form by using the knowledge provided by the schema
and abbreviation dictionaries. Our method exploits the online abbreviation dictionary
Abbreviations.com2, particularly useful for expanding domain standard abbreviations,
and a user-defined dictionary. Since real-world schemata often use application-specific
codes (e.g. “X09CCDE”) that will not appear in any public dictionary, the designer may
enrich the user-defined dictionary with such abbreviations. The user-defined dictionary
is initially bootstrapped with schema standard abbreviations and for our example by
using the OTA standard3.

The CN annotation is applied on all the schema labels classified as CNs or CNs with
expanded abbreviations. In particular, we focus on a category of CNs called endocen-
tric. Endocentric CNs consist of a head (i.e. the categorical part that contains the basic
meaning of the whole CN) and one or more modifiers, which restrict the meaning of the
head. An endocentric CN exhibits a modifier-head structure, where the head noun oc-
curs always after the modifiers. Endocentric CNs are often not included in dictionaries,
but they can be interpreted by using the knowledge about their constituents.

This step can be summed up into three sub-steps: (1) CN constituent disambiguation;
(2) CN interpretation via semantic relationships; and (3) creation of a new CN synset
in WN.

During the first sub-step the constituents of a CN are automatically annotated w.r.t.
WN by applying the PWSD algorithm [21] (described in the following) which assigns
a set of probabilistic annotations to each constituent. Then, starting from these annota-
tions we perform CN interpretation. The interpretation of a CN is the task of determin-
ing the semantic relationships holding among its constituents. In particular, we perform
automatic CN interpretation by using the set of nine semantic relationships defined by
Levi in [16]: CAUSE (“flu virus”), HAVE (“college town”), MAKE (“honey bee”), USE
(“water wheel”), BE (“chocolate bar”), IN (“mountain lodge”), FOR (“headache pills”),

2 http:\www.abbreviations.com
3 OpenTravel Alliance XML schema for the travel industry. Available online at
http://www.opentravel.org/

http:\www.abbreviations.com
http://www.opentravel.org/

Automatic Normalization and Annotation for Discovering Semantic Mappings 91

FROM (“bacon grease”), and ABOUT (“adventure story”). At the end, we establish a
new WN synset for the CN: first, we derive the gloss starting from the discovered Levi
relationship and by exploiting the glosses of the CN constituents; then, the new meaning
for the CN is inserted in the WN thesaurus by automatically creating a hypernym (and
the opposite hyponym) relationship between the new synset and the synset of the CN
head, and a generic (Related term) (which corresponds to the WN relationships member
meronym, part meronym, substance meronym) between the new synset and the synset
of the modifier.

However, the insertion of these two relationships is not sufficient; it is also necessary
to discover the relationships of the new inserted meaning w.r.t. the other WN synsets.
To this end, we use the WNEditor tool [4] to create/manage the new synset and to set
relationships between it and the existing WN ones. As the final goal of our method is
to produce a set of probabilistic annotations for each schema elements, we compute the
probability associated to the new synset as the product of the probability values of the
individual constituent annotations4.

2.2 Probabilistic Lexical Annotation

As shown in Figure 2, the output of the normalization method will be the input of the
annotation method. Lexical annotation is performed by PWSD, an automatic algorithm
that combines several WSD algorithms. In this way, the process is not affected by the
effectiveness of a single WSD algorithm in a particular context or application domain.
PWSD satisfies three important constraints: (1) it is an automatic technique (only a few
configuration settings are required), (2) it is flexible (i.e., it can combine any set of
WSD algorithms5), and (3) the output of the method does not commit to an exact synset
for a term under consideration, but to a set of possible senses that represent the term.
We use the Dempster-Shafer theory of evidence [24,20] to combine annotation outputs
obtained by the WSD algorithms. By using the Dempster-Shafer’s theory of evidence,
PWSD associates a probability value to each sense selected to disambiguate a term; this
value shows the uncertainty of the disambiguation process.

Given a schema element t, the PWSD algorithm associates a set of probabilistic
annotations to t:

PM(t) = {< t#i, P (t#i) >, ..., < t#n, P (t#n) >}
Eventually, to minimize the introduction of errors, probabilistic annotations with a prob-
ability value under a certain threshold can be filtered.

2.3 Probabilistic Lexical Relationship Discovery

Once we have obtained annotations for schema elements, we can use the probabil-
ity distributions over the set of possible meanings (i.e. the output of PWSD) to in-
fer probabilistic lexical relationships among the object and attribute terms. As stated

4 We assume that the probabilities being combined are independent. This assumption is not
usually hold, however, factoring out dependencies in WSD context is extremely difficult as
they are usually hidden [22].

5 At present, we combine five WSD algorithms.

92 S. Bergamaschi et al.

in Definition 2, the lexical relationships SYN (Synonym-of), BT (Broader Term)/ NT
(Narrower Term) and RT (Related Term) are defined on the basis of the semantic rela-
tionships defined in WN among the meanings of two schema elements. To each lexical
relationship, it is assigned a probability value that depends on the probability value of
the meanings under consideration for the schema elements and it is determined by the
formula of the joint probability.

More formally, given two schema elements t and s with the related probabilistic
annotations, PM(t) and PM(s), a probabilistic lexical relationship LexRel between
t and s with probability P , denoted by

< t, LexRel, s, P >

is defined iff

1. ∃ < t#i, P (t#i) >∈ PM(t), ∃ < s#j , P (s#j) >∈ PM(s) , and P = P (t#i) ∗
P (s#j)

2. and one of the following conditions holds
(a) t#i ≡ s#j and LexRel = SY N
(b) t#i hypernym of s#j and LexRel = BT
(c) t#i meronym of s#j and LexRel = RT

2.4 Experimental Evaluation

In [21], our normalization and annotation methods have been evaluated in order to
measure and qualify their performance. They have been integrated within the MOMIS
(Mediator EnvirOment for Multiple Information Sources) data integration system [5]6,
and have been evaluated on two test cases; the first is a set of three ontologies from
the benchmark OAEI 20087; the second is composed of two relational schemata of the
well-known Amalgam integration benchmark for bibliographic data8. Even if these data
sources represent different scenarios w.r.t. Semantic Resource Framework, our previous
evaluations can be used to give an idea about the quality of the results obtained by our
methods.

To assess the quality of our method, gold standards were created for each normal-
ization step as well as for the lexical annotation and the lexical relationship discovery
methods. The gold standards were manually generated by a human expert. Then, we
compared the gold standard with the result obtained by using our methods. For each
experimental phase, we determined: the true positives, i.e. correct results (TP), as well
as the false positives (FP) and the false negatives (FN).

Based on the cardinalities of the TP, FP, and FN sets, the following quality measures
are computed:

– Precision= |TP |
|TP |+|FP |

6 Seehttp://www.dbgroup.unimore.it for references about the MOMIS project.
7 101, 205 209 ontologies available at
http://oaei.ontologymatching.org/2008/benchmarks/

8 See http://dblab.cs.toronto.edu/~miller/amalgam/

http://www.dbgroup.unimore.it
http://oaei.ontologymatching.org/2008/benchmarks/
http://dblab.cs.toronto.edu/~miller/amalgam/

Automatic Normalization and Annotation for Discovering Semantic Mappings 93

Table 1. Average performance of the lexical annotation and lexical relationship discovery
methods with and without normalization

Precision Recall F-Measure
Lexical annotation without normalization 0.63 0.43 0.51
Lexical annotation with normalization 0.62 0.73 0.67
Discovered lexical relationships without normalization 0.49 0.29 0.36
Discovered lexical relationships with normalization 0.81 0.74 0.77

– Recall= |TP |
|FN |+|TP |

– F-Measure= 2 ∗ Precision∗Recall
Precision+Recall

Table 1 shows the average performance of lexical annotation and lexical relationship
discovery with and without the normalization method. The experimental results show
how the effectiveness of automatic lexical annotation and, as a consequence, the quality
of the discovered lexical relationships are improved by the normalization method.

3 Towards Annotated Services in SRF

In this section, we describe an application of our normalization and annotation methods
to the Semantic Resource Framework (SRF) described in a previous chapter of this
book [6]. SRF is a multi-level (conceptual, logical, and physical level) description of
data sources for searching computing applications. It extends the Service Mart model
presented in [8] by making such model more expressive and more fitting to the web
service description requirements. SRF represents a first step for adding more semantics
to web service description.

By using our method, it is possible to enrich the semantics of SRF descriptions by
annotating them w.r.t. the lexical resource WN.

Our normalization and annotation methods find application at the conceptual level of
a Service Mart. The conceptual level includes the object’s name and the collection of the
object’s attributes; all the attributes are typed: they can be atomic (single valued) or part
of a repeating group (multi-valued). Moreover, the discovered lexical relationships may
suggest useful information at the logical level to derive connection patterns between
Service Marts.

We can easily apply our method by considering the classes and the attributes of a
Service Mart [6], as the classes and attributes of a generic object schema as defined in
Section 2.

Let us suppose we have a flight booking Service Mart having the following concep-
tual description:

Booking(CustomerName, BookingNR, FlightNumber, Airline,

DepartureDatetime, DepartureAirport, ArrivalDatetime, ArrivalAirport)
(1)

For the service attribute names that do not have an entry in WN, we apply our
normalization method.

94 S. Bergamaschi et al.

Table 2. Annotations of some attributes of the “Booking” Service Mart (for the CNs the word
representing the head is underlined)

Attribute Lex. Annotation Prob.
Airline Airline#2 0.89

ArrivalAirport Airport
#1

FOR Arrival#2 0.9

DepartureAirport Airport
#1

FOR Departure#1 0.9

BookingNumber Booking#2 HAVE Number#4 0.8
FlightNumber Flight#9 HAVE Number#4 0.62

Flight#2 HAVE Number#4 0.67

Table 3. WordNet glosses

WN synset WN gloss
Airline#2 a commercial enterprise that provides scheduled flights

for passenger
Airport#1 an airfield equipped with control tower and hangers as

well as accommodations for passengers and cargo
Arrival#1 accomplishment of an objective
Arrival#2 the act of arriving at a certain place

Departure#1 act of departing
Booking#2 the act of reserving (a place or passage) or engaging the

services of (a person or group)
Number#4 a numeral or string of numerals that is used for identifi-

cation
Flight#2 an instance of traveling by air
Flight#9 a scheduled trip by plane between designated airports

3.1 Normalization

The normalization method is divided in three steps: preprocessing, abbreviation ex-
pansion, and CN annotation. In the first step, the method recognizes as non-dictionary
words the following labels:

CustomerName, BookingNR, FlightNumber, DepartureDatetime, DepartureAirport,
ArrivalDateTime, ArrivalAirport

As a consequence, these labels are first tokenized (e.g. “CustomerName” as “Customer”
and “Name”) and then classified as CNs (i.e. “CustomerName, FlightNumber, Depar-
tureDateTime, DepartureAirport, ArrivalDateTime, and ArrivalAirport”) and as CNs
containing abbreviations (i.e. “Booking NR”).

The second step of normalization is focused on expanding abbreviations: the method
automatically expands the previously identified CN containing abbreviations “Book-
ingNR” as “BookingNumber”.

Automatic Normalization and Annotation for Discovering Semantic Mappings 95

Table 4. The most relevant annotations of a subset of attributes of the “Flights” Service Mart

Attribute Lex. Annotation Prob.
Airport Airport#1 1.0

FlightStatus.FLTNO Flight#2 HAVE Number#4 0.89
FlightStatus.Airline Airline#2 0.89

FlightStatus.ARRAirport Airport#1 FOR Arrival#2 0.95

The last step of the normalization deals with the CNs. During this step the CNs are
interpreted. Let us consider the label “BookingNumber”;it is composed by two con-
stituents: “Booking” and “Number” which are automatically annotated by PWSD with,
respectively, the synset Booking#2 with probability 0.89, and with Number#4 with
probability 0.89, as shown in Tables 2 and 3. Then the HAVE semantic relationship is
automatically selected and a new WN meaning for the CN is created and inserted in the
WN noun hierarchy: we associate the new term “Booking Number” with a gloss given
by union of the glosses of “Booking” and “Number” connected by the relationship
HAVE (i.e. gloss of Booking#2 “HAVE” gloss of Number#4); moreover, we create
a hypernym/hyponym relationship between the new synset for “Booking Number” and
the synset of “Number”, and a Related Term relationship between the new synset and
the synset of the modifier “Booking”. The probability value associated to the new synset
will be the product of the probabilities of the individual annotations Booking#2 and
Number#4, i.e. 0.8.

Note that, on this example, only the attribute “Airline” is a WN term, whereas the
others are CNs not present.

3.2 Probabilistic Lexical Annotation

After normalization, we perform the probabilistic lexical annotation of all the labels
except for the CNs that have been annotated by the normalization method.

For annotating the attribute “Airline”, WSD1 selects Airline#2 with a probabil-
ity of 0.65, WSD2 provides Airline#2 with a probability of 0.7 and WSD3 selects
Airline#1 with a probability of 0.6. The Dempster-Shafer’s rule of combination ap-
plied on these outputs returns the following annotations:

PM(Airline) = {< Airline#1, 0.11 >, < Airline#2, 0.89 >}.

By applying a threshold of 0.2 , the annotation Airline#1 is discarded. In the end,
“Airline” is thus annotated by Airline#2 with a probability value of 0.89 (see Table 2).

3.3 Probabilistic Lexical Relationship Discovery

After lexical annotation, we can use the probability distributions over the set of possi-
ble meanings (i.e. the output of the PWSD) to infer probabilistic lexical relationships
among the attributes of the two Service Marts that share the same application domains.

Let us assume, for example, another Service Mart about the scheduled flights depart-
ing from an airport, to explain the relationship discovery task:

96 S. Bergamaschi et al.

Table 5. Lexical relationships between “Flights” and “Booking” Service Marts

“Booking” Lex. Rel. “Flights” Prob.
Airline SYN FlightStatus.AirLine 0.79

FlightNumber SYN FlightStatus.FLTNO 0.60
ArrivalAirport SYN FlightStatus.ARRAirport 0.85
ArrivalAirport NT Airport 0.9

DepartureAirport NT Airport 0.9
BookingNR RT FlightStatus.FLTNO 0.71

Flights(Airport, FlightStatus(FLTNO, Airline, ARRAirport,

ScheduledDPTDateTime, EstimatedDPTDateTime))
(2)

The normalization and annotation methods applied on the conceptual description of
“Flights” retrieve the annotations shown in Table 4. From the annotations of “Booking”
and “Flights”, we discover a set of lexical relationships between their attributes (as
shown in Table 5).

Let us consider for example, the attribute “ARRAirport” (expanded to “ArrivalAir-
port”) in “Flights”; it is split into its constituents, “Arrival” and “Airport”. The
constituents are disambiguated as Arrival#2 and Airport#1. Then, the semantic rela-
tionship “FOR” between the meanings of the head and the modifier is selected. When
we compare the annotation of Arrival Airport in “Booking” and the annotation of
FlightStatus.ARRAirport in “Flights”, we discover a SYN relationship as the two el-
ements share the same meaning (Airport#1 FOR Arrival#2.). On the other hand,
when we examine the annotations of Arrival Airport in the “Booking” description and
Airport in the “Flights” description, we discover an NT relationship as the new meaning
of Arrival Airport is an NT of Airport#1.

At the logical level of Service Marts, lexical relationships may suggest useful in-
formation to build a connection pattern between them. Every connection pattern has a
conceptual name and a logical specification, consisting of a sequence of simple com-
parison predicates between pairs of attributes or sub-attributes of the two services [8].

For example, the SYN relationships discovered between “Flights” and “Booking”
(showed in Table 5) might be used to determine a connection between these two Ser-
vice Marts. This connection could be exploited on previously defined access patterns
where the “Airline”, “FlightNumber”, and “ArrivalAirport” attributes are defined as out-
put parameters in the “Booking” access pattern, while “FlightStatus.AirLine”, “Flight-
Status.FLTNO”, and “FlightStatus.ARRAirport” are input parameters in the “Flights”
access pattern.

As a first example, let us suppose we want to define a simple connection between
“Flights” and “Booking”, checking just the existence of scheduled flights at the arrival
airport of a booking: in this case, the lexical relationship ArrivalAirport SYN FlightSta-
tus.ARRAirport (as shown on Table 5) helps in the identification of which attribute has
to be connected to “ArrivalAirport”.

Automatic Normalization and Annotation for Discovering Semantic Mappings 97

As a consequence, the following connection pattern can be define:

ExistsArrivalAirport(Booking,Flights):[(ArrivalAirport=ARRAirport)]

This means that “Flights” and “Booking” are connected via the connection pattern “Ex-
istsArrivalAirport”, which uses a join on arrival airports. The interpretation of joins
within connection patterns is existential: if the arrival airport in the “Booking” Service
Mart is equal to the ARRAirport of any scheduled flights in the “Flights” description,
the predicate is satisfied, and the two instances of “Booking” and “Flights” are com-
posed to form an instance of the result.

Suppose now, we want to define another connection between “Flights” and “Book-
ing” that controls the departure airport in addition to the arrival airport. In this case,
selecting the attribute to be connected to “DepartureAirport” is less intuitive. The set of
lexical relationships discovered comes to be an important help in this selection. In fact,
as shown in Table 5, we found the relationships DepartureAirport NT Airport that has
a hight probability value (i.e. 0.9). We can, thus, write the connection pattern:

ExistsLink(Booking,Flight):[(ArrivalAirport=ARRAirport) and
(DepartureAirport = Airport)]

4 Related Work

Works related to the issues discussed in this chapter are in the area of schema matching,
including probabilistic matching and WSD techniques.

The problem of linguistic normalization has received much attention in different ar-
eas such as machine translation, information extraction and information retrieval. As
observed, the presence of non-dictionary words in schema element labels (including
CNs and abbreviations) may affect the quality of schema elements matching and re-
quires additional techniques to deal with [11]. Surprisingly, current schema integration
systems either do not consider the problem of abbreviation expansion at all or solve
it in a non-scalable way by including a user-defined abbreviation dictionary or by us-
ing only simple string comparison techniques [17,2]. Dealing with short forms using a
user-defined dictionary only suffers from the lack of scalability: (a) the dictionary can-
not handle ad hoc abbreviations; (b) same abbreviations can have different expansions
depending on the domain, thus an intervention of a schema/domain expert is still re-
quired; and (c) the dictionary evolves over time and it is necessary to maintain the table
of abbreviations. Some works have tried to address the limitations of the user-defined
dictionary approach by using simple string comparison techniques (e.g. the Similarity
Flooding [18]). Syntactical methods are able to detect matches by comparing prefixes
and suffixes of literals, however, they are not able to bring to the surface the seman-
tics of abbreviations, thus, in contrast w.r.t. our method, they cannot detect a match
between synonyms like “QTY” (short form of quantity) and “amount”. Similarly to the
abbreviation expansion problem, few papers address the problem of CN interpretation
in schema matching area. The CN interpretation is manually executed or relies on a
set of manually created rules in most of the work [12,27]. Other schema and ontol-
ogy matching tools do not interpret nor normalize CNs but they treat the constituents

98 S. Bergamaschi et al.

of a CN in isolation [15,27,25]. This oversimplification leads to the discovery of false
positive relationships, thus worsens the matching results.

Several language-based methods have been experimented in the context of ontol-
ogy matching and data integration (H-MATCH [9], CUPID [17]). Some methods rely
on string-based techniques only. Other methods make use of external resources, such
as dictionaries, to find similarities between terms, but in most of the cases, without
performing any disambiguation on the terms. Unlike these methods, our approach is
based first of all on the lexical annotation of ontology/schema elements. It is only after
this phase that the similarity between elements is computed, thus overcoming the lim-
itation of methods that cannot recognize the meaning of the elements. To the best of
our knowledge, [3] is the first work that introduces WSD techniques in an integration
process. One of its main limitations is that it does not make use of normalization tech-
niques to process CNs, and this is reflected in a low coverage of the method. In the area
of NLP, where WSD is a challenging topic, combination methods have been shown to
be an effective way of improving WSD performance, in particular it has been showed
that combination systems outperform the behavior of the individual algorithms [7,22].

Modeling uncertainty in probabilistic schema matching has been an active area of re-
search for some years [19]. Our method takes inspiration from [23], where the concept
of probabilistic schema mapping is introduced and an algorithm for uncertain query an-
swering is presented. The authors start from initial probabilistic schema mappings, and
without dealing with the generation of probabilistic mappings, propose a probabilistic
query answering method. The paper describes the requirements of a data integration
system to support uncertainty: uncertain schema mappings, uncertain data and uncer-
tain queries.

5 Conclusion

Lexical annotation (i.e. the explicit assignment of meanings to a schema elements w.r.t.
a lexical reference) is an effective methodology in the discovery of lexical relationships
between schema elements. Normalization helps to improve the performance of lexical
annotation by increasing the number of annotable elements.

Starting from our previous works in the context of data integration, in this chap-
ter, we presented how normalization and annotation methods work on generic object
schema. Then, we shown how the methods might be applied in the context of search
computing in order to enrich the semantics of SRF. We provided an application exam-
ple showing the effectiveness of our methods: they can profitably be used in SRF to
annotate the conceptual level of a service and to identify connection patterns between
service descriptions belonging to the same application domain.

References

1. An, Y., Borgida, A., Mylopoulos, J.: Discovering the semantics of relational tables through
mappings. In: Spaccapietra, S. (ed.) Journal on Data Semantics VII. LNCS, vol. 4244, pp.
1–32. Springer, Heidelberg (2006)

2. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching with
COMA++. In: SIGMOD 2005, pp. 906–908. ACM, New York (2005)

Automatic Normalization and Annotation for Discovering Semantic Mappings 99

3. Banek, M., Vrdoljak, B., Tjoa, A.M.: Word sense disambiguation as the primary step of
ontology integration. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS,
vol. 5181, pp. 65–72. Springer, Heidelberg (2008)

4. Benassi, R., Bergamaschi, S., Fergnani, A., Miselli, D.: Extending a Lexicon Ontology for
Intelligent Information Integration. In: de Mántaras, R.L., Saitta, L. (eds.) ECAI, pp. 278–
282. IOS Press, Amsterdam (2004)

5. Bergamaschi, S., Castano, S., Beneventano, D., Vincini, M.: Semantic Integration of Hetero-
geneous Information Sources. Data & Knowledge Engineering, Special Issue on Intelligent
Information Integration 36(1), 215–249 (2001)

6. Brambilla, M., Campi, A., Ceri, S., Quarteroni, S.: Semantic Resource Framework. In:
Ceri, S., Brambilla, M. (eds.) Search Computing II. LNCS, vol. 6585, pp. 73–84. Springer,
Heidelberg (2011)

7. Brody, S., Navigli, R., Lapata, M.: Ensemble Methods for Unsupervised WSD. In: ACL. The
Association for Computer Linguistics (2006)

8. Campi, A., Ceri, S., Maesani, A., Ronchi, S.: Designing service marts for engineering
search computing applications. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.)
ICWE 2010. LNCS, vol. 6189, pp. 50–65. Springer, Heidelberg (2010)

9. Castano, S., Ferrara, A., Montanelli, S.: Matching ontologies in open networked systems:
Techniques and applications. J. Data Semantics V, 25–63 (2006)

10. Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of string distance metrics for
name-matching tasks. In: Kambhampati, S., Knoblock, C.A. (eds.) IIWeb, pp. 73–78 (2003)

11. Do, H.H.: Schema Matching and Mapping-based Data Integration: Architecture, Approaches
and Evaluation. VDM Verlag (2007)

12. Embley, D.W., Jackman, D., Xu, L.: Multifaceted Exploitation of Metadata for Attribute
Match Discovery in Information Integration. In: Workshop on Information Integration on the
Web, pp. 110–117 (2001)

13. Miller, G.A., et al.: WordNet: An on-line lexical database. International Journal of Lexicog-
raphy 3, 235–244 (1990)

14. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
15. Le, B.T., Dieng-Kuntz, R., Gandon, F.: On ontology matching problems - for building a

corporate semantic web in a multi-communities organization. In: ICEIS (4), pp. 236–243
(2004)

16. Levi, J.N.: The Syntax and Semantics of Complex Nominals. Academic Press, New York
(1978)

17. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In: VLDB,
pp. 49–58 (2001)

18. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching
Algorithm and Its Application to Schema Matching. In: ICDE, pp. 117–128 (2002)

19. Nagy, M., Vargas-Vera, M., Motta, E.: Dssim-ontology mapping with uncertainty. In:
Shvaiko, P., Euzenat, J., Noy, N.F., Stuckenschmidt, H., Benjamins, V.R., Uschold, M. (eds.)
Ontology Matching. CEUR Workshop Proceedings, vol. 225 (2006), CEUR-WS.org

20. Parsons, S., Hunter, A.: A review of uncertainty handling formalisms. In: Hunter, A., Par-
sons, S. (eds.) Applications of Uncertainty Formalisms. LNCS (LNAI), vol. 1455, pp. 8–37.
Springer, Heidelberg (1998)

21. Po, L., Sorrentino, S.: Automatic generation of probabilistic relationships for improving
schema matching. Information Systems 36(2), 192–208 (2011), Special Issue: Semantic In-
tegration of Data, Multimedia, and Services

22. Preiss, J.: Probabilistic word sense disambiguation. Computer Speech & Language 18(3),
319–337 (2004)

23. Sarma, A.D., Dong, X., Halevy, A.Y.: Bootstrapping pay-as-you-go data integration systems.
In: Wang, J.T.-L. (ed.) SIGMOD Conference, pp. 861–874. ACM, New York (2008)

100 S. Bergamaschi et al.

24. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton
(1976)

25. Shvaiko, P., Giunchiglia, F., Yatskevich, M.: Semantic matching with s-match. In: Semantic
Web Information Management: a Model-Based Perspective, vol. XX, pp. 183–202 (2010)

26. Sorrentino, S., Bergamaschi, S., Gawinecki, M., Po, L.: Schema normalization for improving
schema matching. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, J.P.M.
(eds.) ER 2009. LNCS, vol. 5829, pp. 280–293. Springer, Heidelberg (2009)

27. Su, X., Gulla, J.A.: Semantic enrichment for ontology mapping. In: Meziane, F., Métais, E.
(eds.) NLDB 2004. LNCS, vol. 3136, pp. 217–228. Springer, Heidelberg (2004)

Towards an Ontological Representation of
Services in Search Computing

Fabian Suchanek1, Alessandro Bozzon2, Emanuele Della Valle2,
Alessandro Campi2, and Stefania Ronchi2

1 INRIA Saclay, Paris, France
2 Politecnico di Milano, Dipartimento di Elettronica e Informazione,

P.za L. Da Vinci, 32. I-20133 Milano - Italy

Abstract. In the Search Computing project, Web services are modeled
by the Semantic Resource Framework (SRF). In this article, we argue
that the SRF could benefit from ontological concepts borrowed from the
Semantic Web. We first present the knowledge representation used in the
Semantic Web, notably in the YAGO ontology [14]. We show how this
model is used in the ANGIE system [12] to represent Web Services in
conjunction with YAGO. We draw parallels to the Service Mart [3] model
used in SeCo. We propose a symbiosis of the two models, discussing the
challenges and advantages that come with the integrated model.

1 Introduction

The Search Computing project (SeCo) [3] uses the Semantic Resource Frame-
work (SRF) to model Web services. The SRF is a multi-layer model. The higher
layers provide an abstract semantic description of the services, building on the
notions of Service Marts and Connection Patterns. The lower layers (service in-
terfaces and access patterns) are concerned with the physical properties of the
services. Ideally, every service belongs conceptually to a Service Mart. A Service
Mart is structurally defined by means of attributes. Two Service Marts can be
connected by a Connection Pattern. At the logical level, each Service Mart is
associated with one or more access patterns representing the signatures of the
service calls. Access patterns contain a subset of the attributes of the Service
Mart, which are tagged with either I (input), or O (output). Attributes can
also be tagged as R (ranking), to denote attributes that are used for ordering
result instances. Ranking is particularly important in SeCo, because it allows
mastering the combinatory explosion of multi-domain queries typical in Search
Computing.

By design, the creation of a SRF is a bottom-up process, whereby the real
world entities modeled by the Service Marts are typically created on the basis
of the Web services. In this article, we try to anticipate how SeCo can cope with
a large scale deployment scenario with a larger number of administrators and
services. We argue that, when the complexity of the knowledge represented in a
SeCo deployment increases, the SRF model might benefit from adapting ideas

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 101–112, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

102 F. Suchanek et al.

from the Semantic Web technologies. Therefore, we propose to substitute the
topmost level of the SRF (the service marts) with an ontology. We argue that
this will reduce the maintenance effort for a SRF with a large number of data
sources, and facilitate the interaction of SeCo with ontology-based systems.

In order to motivate why the SRF model used in SeCo may need to be ex-
tended with an ontological representation, we start with a example.

1.1 Motivation

The SRF model leaves room for modeling the same data source in different ways.
Assume for example the availability of two search services (Figure 1). The first,
ws1, exposes information about movies played in theaters located close to a given
location. The second service, ws2, queries a repository containing information
about movies. The access patterns of these two Web Services can be described
on the conceptual level of the SRF as two service marts MOVIE and THEATRE (see
Figure 2), where the attribute Movie of the service mart THEATRE is linked to
the attribute Title of the service mart MOVIE .

Now let’s assume the availability of a service ws3, which, given a place,
searches for all the actors that were born there and returns a description of
the actor, including the list of the movies he played in (Figure 3).

As we explained in the introduction, ideally, each service belongs to one Ser-
vice Mart. The service ws3 does not belong to any of the service marts that have
already been defined. Therefore, the SRF administrator is confronted with two
choices: extend the existing MOVIE service mart to accommodate the additional
parameters brought by ws3 (as in Figure 4(a)), or create a new ACTOR service
mart (as in Figure 4(b)). Since structured attributes can replicate the attributes
of other concepts, both options are valid and none of them is a priori better than
the other.

If there are multiple SRF administrators, different SRF administrators may
choose different (and potentially redundant or incompatible) modeling approaches.

Name
O

Latitude Longitude
I

Movie
OI

Distance
OR

Title
I O

Year
R

Actor Role
OOO

Title IN

WS1 WS2

Fig. 1. The Access Patterns for ws1 and ws2 on the logical level

THEATRE
Name Address Movie

MOVIE
Title Year Cast

Actor Role
Projection

Fig. 2. Two service marts for ws1 and ws2 on the conceptual level

Towards an Ontological Representation of Services in Search Computing 103

Actor
O
Birthdate

R
Birthplace

O
Movie Role

OOO I

Fig. 3. The Access Pattern for ws3

MOVIE
Title Year Cast

Actor Role Birthdate Birthplace

ACTOR
Name Birthdate Plays

Movie Role
Birthplace

(a) (b)

Fig. 4. Examples of alternative evolution of the service marts

In the case of a large scale deployment of a Search Computing system, with poten-
tially hundreds of services and dozens of administrators, these small incompati-
bilities may quickly add up, leaving the SRF model cluttered with redundancies
and inconsistencies. These inconsistencies can lead to major maintenance prob-
lems once the size of the SRF surpasses what a single human can assess.

1.2 Contribution

In this chapter, we propose an evolution of the SRF knowledge representation
model that will allow it to cope better with some of the maintenance challenges
described above. Our proposed model leverages the ontological model that is used
in the Semantic Web. It builds on ANGIE [12], a novel approach for Web service
description based on the YAGO Ontology [14]. We show that our proposed model
not only eases the problem of design alternatives, but also brings additional
benefits for the maintenance of the SRF. The new model does not come without
challenges of its own. Therefore, this chapter pursues a rather inspirational goal,
laying the ground for further investigation.

The chapter is structured as follows: Section 2 discusses the related work; in
Section 3, we present YAGO and ANGIE. In Section 4, we propose a merger of
the ANGIE knowledge representation model and the SeCo model. In Section 5
we elaborate on the properties of our proposed hybrid model. Finally Section 6
discusses potential future work and concludes.

2 Related Work

The combination of ontologies and services has been proposed before [10,12,13].
The ultimate goal of such an endeavor is to enable a higher degree of automation
for the tasks involved in the life-cycle of service based applications. These in-
clude (among others) the discovery and selection of services, their composition,
their execution and their monitoring. As proposed first in [13], ontologies can
be used to model four types of service semantics: data semantics (the semantics
pertaining to the data contained in the data source), functional semantics (the

104 F. Suchanek et al.

semantics pertaining to the functional capabilities of the service), non-functional
semantics (the semantics related to the non-functional aspects of the service,
such as security or reliability) and execution semantics (the semantics related to
the invocation, result processing and exception handling of the service).

Several ontology have been proposed to describe these semantics and annotate
services. The most well-known ones are OWL-S [2], WSMO [9], SAWSDL [7] and
WSMO Lite [16]. Some of them hypothesized the need to semantically describe
services at a level of detail that even requires to define a specific ontological lan-
guage, e.g., the Web Service Modeling Language [6]. All these existing approaches
have been perceived unsuited by practitioners in large scale deployments; mostly
because of the extra cost of annotating services.

To avoid this pitfall, we decided to look for a light weight approach possibly
based on a minimal ontological language. Therefore, we turn our interest to
ANGIE [12], a novel approach that is centered on YAGO Ontology [14]. ANGIE
leverages the “lightest” of the ontological languages, RDF. This model builds
only on typed resources and labeled links. ANGIE uses RDF to describe the input
and the output parameters of Web Services and to orchestrate their invocation
in order to dynamically extend YAGO with instances loaded from the Web. In
the remainder of the chapter we report our initial findings on how ideas from
the ANGIE model can ease the definition of new services in SeCo.

3 YAGO and ANGIE
3.1 YAGO

YAGO [14] is a large semantic knowledge base (an ontology). It contains 3 mil-
lions entities (such as movies, cities, universities and people) and 28 millions
facts about them (such as birth dates, appearances in movies, geographical loca-
tion etc.). YAGO was constructed automatically from Wikipedia and WordNet
[8]. In YAGO, knowledge is represented in the RDFS model [4]. This model
can be seen as a directed labeled multi-graph, in which nodes represent entities
and edges represent relationships between the entities. For example, the node
Apollo Theatre is linked to the node Shall we dance by an edge labeled shows
(see Figure 5). The labels of the edges are called relations. YAGO uses a set of
100 predefined relations. These include a variety of link types, such as bornIn,
locatedIn, directedMovie or isCapitalOf.

RDF knowledge bases distinguish between instances (such as Jennifer Lopez,
drawn thin) and concepts, i.e., groups of similar instances (such as actor or movie,
inbold). Instances and concepts are bothnodes in theRDF graph. For example, the
concept movie is a node in the RDF graph. An instance is linked to its concept by
the relation type. A concept is linked to a more general concept by the relation sub-
classOf. For example, the sub-conceptactor is linked to the super-conceptperson in
this way. Whenever an instance is an instance of a sub-concept, it is automatically
an instance of all of its super-concepts.

Relations are by themselves nodes in the RDF model. This makes it possible to
talk about properties of relations in the same way as about instances. For exam-
ple, to say that the domain of shows is the concept theatre, we can link the node of

Towards an Ontological Representation of Services in Search Computing 105

Fig. 5. An excerpt from an RDF ontology

shows to the node theatre by the relation hasDomain (not shown in the figure). For
illustration, we draw the relations as dashed arrows between the domain concept
and the range concept (as shown in Figure 5). Every instance of a sub-concept of
theatre (e.g., every instance of 3d-theatre) is also an instance of theatre. Thereby,
the relation shows applies automatically to all instances that live somewhere below
the concept theatre.

Different fromclassicaldatabasemodels,RDFmodels are inherently schemaless.
This means that any instance can be linked to any other instance with any relation,
as long as the domain and the range constraint of the relation are not violated.

3.2 ANGIE

ANGIE [12] is a system that uses Web services to extend YAGO. ANGIE requires
the manual registration of Web service and a manual mapping of the input and
the output of the services to the concepts of the ontology1. Once the Web services
have been registered, ANGIE allows answering queries on the knowledge base.
Whenever the data in the knowledge base is not sufficient to answer a query,
ANGIE calls the Web services to retrieve the required additional information.
ANGIE can automatically determine the Web services that have to be called to
answer the query and it can automatically combine different Web services should
that be necessary. This process is transparent to the user, so that the user has
the impression of browsing a huge knowledge graph – even though this graph
is extended on the fly behind the scenes with the data from the Web services.
While ANGIE can deal with arbitrarily-shaped Web services, it cannot deal with
ranking of the results.
1 Such a mapping captures in a very light-weight way the data semantics, since all data

types exchanged with the Web Service are mapped to ontological concepts. It also
captures part of the functional semantics, since ANGIE can only model Web Services
that provide information about a give topic or entity, and part of the execution
semantics, since it describes input and output, but cannot handle exceptions. No
formal description of the non-functional semantics is provided.

106 F. Suchanek et al.

ANGIE works on conjunctive SPARQL queries. These queries can be thought
of as RDF graphs that may have variables in the place of the nodes. For example,
a user may ask for all movies of the Apollo Theatre by the query depicted
in Figure 6. An answer to such a query is a subgraph of the ontology that is
isomorphic to the query. In the example, we can match the query on the ontology
depicted in Figure 5 with ?m =Shall we dance. Therefore, ?m =Shall we dance
is an answer to the query.

Web Service Orchestration. If a query cannot be matched on the ontology,
or if we want to retrieve more answers than the ontology knows, ANGIE can
resort to Web services. A Web service is represented just like a query: as an
RDF graph that can contain variables in the place of nodes. Each edge is either
an input edge or an output edge. Figure 6 shows a Web service at the top right,
which requires as input (solid) a variable ?a that must be an theatre and delivers
as output (dashed) a fact that the theatre shows some movie ?b and that ?b is
a movie. Before the Web service can be called, all variables in the input edges
have to be instantiated. When the Web service returns its results, these are
instantiations of the variables in the output edges.

When ANGIE receives a query, it tries to cover the query graph with (1) edges
from the ontology or (2) output edges of Web services. Consider the example in
Figure 6. We start with the query at the bottom. We cover the query with an
instantiation of the Web service (on the layer above). The Web service covers
the query edge (solid) with an output edge (dashed). It introduces an additional
output edge (that ?m is of type movie, dashed), which we did not ask for. It also
introduces an input edge (that the Apollo Theatre has to be a theatre, solid).
Now, the procedure is repeated: Every input edge has to covered again, either
by the output edge of another Web service or by an edge from the ontology.
In the example, the fact that the Apollo Theatre is a theatre is already in the
ontology. Therefore, we can cover this input edge (solid) with the edge from the
ontology (top layer, dashed). Now, every input edge and the query is covered.
If we call the Web services from top to bottom, we will receive answers to the
query. In our example, there is only one Web service, but if there are multiple
Web services, then the outputs of one service are “piped” into the inputs of
another service. ANGIE implements a sophisticated scheduling algorithm that
can compute such query covers efficiently and give preference to covers that
are likely to return more answers. This works even when the query covers are
recursive.

All data retrieved from the Web services is added to the ontology. Thereby,
future queries can make use of the knowledge that has already been computed.

Virtual Web Services. In some cases, the way the ontology models the data
and the way the Web services return the data may not coincide. Consider for
example the Web services depicted in Figure 7. While the first Web service can
return the actors for a given movie, the second service can return not only the
actors but also their roles. If the user asks only for the movies (as in the figure),
Web service 1 can be applied, but Web service 2 cannot, because none of its

Towards an Ontological Representation of Services in Search Computing 107

INPUT OUTPUT

LEGEND

Fig. 6. A user query, a Web service, and a query cover

Fig. 7. A virtual Web service

output edges matches the query. Even the edges from the ontology cannot be
applied, since the ontology models roles as a separate entity.

To bridge such mismatches, ANGIE supports virtual services. A virtual service
is a pseudo Web service that does not have a physical Internet service behind
it. “Calling a virtual service” means matching the input edges and then adding
the output edges to the query cover – without any physical Web service call. In
the example in Figure 7, the virtual service allows adding a playsIn fact, if there
are plays and has facts for a role.

With the virtual service, our query can be answered even with Web service
2: We first call Web service 2 to retrieve movies together with their roles. Then,

108 F. Suchanek et al.

we “call” the virtual Web service to transform the output into playsIn facts that
answer the query. Such a call does not involve any physical Web service call. It
is a pure data manipulation on the query edges, which allows us to bridge data
modelizations of different granularity.

4 Toward an Ontological Representation of the Access
Patterns

Inspired by the ANGIE approach, we propose to substitute the Service Mart
layer of the SRF model with the YAGO ontology. The role of Service Marts will
be taken over by the concepts and relations of the ontology – just like explained
in Section 3.2. Thereby, the conceptual layer of the SRF for the running example
will be the ontology depicted in Figure 5.

In addition, we propose to describe the access patterns in the way Web
Services are described in ANGIE: Each access pattern becomes a graph. The
edges are labeled with relationships from the ontology. The nodes can be either
constants from the ontology or variables. Each attribute of an access pattern
becomes an edge that is labeled with the corresponding relationship from the
ontology. This edge connects to a node with a variable. Structured attributes
become star-shaped patterns. As in ANGIE, nodes are labeled as input nodes
or output nodes. The type of a variable node is indicated by an outgoing type
edge to a concept node.

locatedAt

Theatre

?c

typetype

Location

?a
shows

type

Movie

?d

type

Distance

?b
dist

has

Role

?c

typetype

Movie

?a

type

Actor

?d
plays

type

Year

?b
producedIn

INPUT

OUTPUT

RANKED

LEGENDtype

Location

?a
dist

WS1 (Theatre)

WS2 (Movie)

type

String

?e

title

Fig. 8. RDF representation of two Access Patterns shown in Figure 3

Towards an Ontological Representation of Services in Search Computing 109

To cope with the notion of ranking (typical for SeCo), ANGIE’s representation
of Web services has to be extended so as to allow not only input nodes and output
nodes, but also ranking nodes. In every access pattern graph, there can be at
most one node that is labeled as a ranking node. Such a node has to be an output
node. In the illustrations, we represent a ranking node by a filled dashed frame.
Figure 8 shows how the access patterns ws1 and ws2 from the introduction can
be modeled; ws1, which belonged to the Service Mart Theater, requires as input
(solid) a variable ?a, a location, and produces as output (dashed) the theaters
?c, located at a distance ?b from the input location, and showing some movie
?d; the results of ws1 are also ordered according to the distances ?b. Likewise,
ws2, which belonged to the Service Mart Movie, requires as input a the title ?e
of movie ?a, and it produces as output the actors ?d that acted in the movies
with the role ?c; results are ordered according to the production year ?b.

Noteworthily, the novel RDF representation is isomorphic w.r.t. the original
one. This assures compatibility with the service description exploited by the
other levels of the architecture. Indeed, we remark that all of our proposed
changes happen purely at the level of service modeling. No changes to the Web
service composition algorithms or the ranking algorithms of SeCo are necessary.

5 Properties of the Proposed Model

We note that the proposed representation helps in coping with the issues men-
tioned in the introduction: as Figure 9 depicts, there is no ambiguity whether
the information brought by ws3 shall be stored within the service mart MOVIE or
ACTOR. The administrator just has to describe the access pattern as a query on
YAGO ontology: the access pattern selects instances of actors (?a type Actor)
based on their birthplace (?a bornIn ?b), ranked by the date of birth (?a
bornWhen ?e) and lists the movies they played in (?d type Movie; ?a plays
?c; ?d has ?c).

Given that every concept and property exists exactly once, there are fewer
possibilities for inconsistencies to appear in the ontological model.

In addition to the specific maintenance case that we developed through the
paper, the use of an ontological description for the conceptual level brings several
advantages: notably, the ontology can evolve independently from the registered
data sources. In the SRF model that we are proposing, the ontology models

bornIn

Actor

?a

type type

Location

?b

type

Role

?c
plays

type

Movie

?d
has

type

dateOfBirth

?e
bornWhen

Fig. 9. The Web service ws3 in the new model

110 F. Suchanek et al.

the world and the access patterns model the Web Services. An extension of
the ontology will not influence the access patterns. For instance, the subclass
Restaurant of Building can exist in the ontology even if no access pattern
refers to it. Vice versa, the addition or removal of an access pattern will not
influence the ontology (provided that all necessary relations and concepts are
present). Thereby, the roles of the ontology and the access patterns are clearly
defined and distinct.

Since the ontology allows for the creation of sub-concepts, more specific con-
cepts can be created without having to redo the work that has been done for the
super-concept. The attributes of the sub-concept are automatically consistent
with the attributes of the super-concept. By design, a Web service that delivers
an instance of the sub-concept can also be used to deliver an instance of the
super-concept. Furthermore, through the domains and ranges of relations, the
target type of a relation is explicitly defined. There is no need to replicate this
information with every link or every Web service. Target types are an inherent
part of the model.

Since relations are first-class citizens of the model, the joinability of attributes
follows directly from the definition of the relations and the access patterns. For
example, if a Web service returns movies, then the joinability with another Web
service that returns movies follows from the fact that both output variables are of
type movie. This also works across different levels in the concept hierarchy: If one
Web service returns 3d-movies and the other Web service returns silent movies,
these Web services are still joinable, since both concepts are sub-concepts of
movie. By factoring out this common information from the level of Web services
to the level of classes, the ontological model avoids redundancy.

The only maintenance task left to SRM administrators is the extension of
the ontology when the registration of a new Web Service requires adding new
concepts and relationships to YAGO. For instance, if the relationship bornIn
is not present in the ontology, but is brought in by a Web service, then this
relationship has to be added by the SRF administrator. This is not a trivial
task per se, but at least we can rely on established methodological approaches
(e.g., METHONTOLOGY [5], On-To-Knowledge [15], and DILIGENT [11]) for
ontology development and maintenance.

6 Conclusions and Future Work

In this article, we have discussed some of the maintenance challenges that SeCo
will face when more users, services and administrators start using the system
in parallel. We have argued that, for this task, the SeCo knowledge represen-
tation model would benefit from a more ontological design. We have proposed
and studied an ontological adaptation of the SeCo model, inspired by the model
used in the ANGIE system. We have shown that the new model mitigates some
of the maintenance challenges, thus contributing to SeCo’s fitness for going
mainstream.

We believe that, apart from easing some of the maintenance challenges, an on-
tological top layer of SeCo opens the door to a wide range of possible interactions

Towards an Ontological Representation of Services in Search Computing 111

between SeCo and existing ontologies. These include not only YAGO but also the
vast resources of the Linking Open Data Project (LOD) [1]. Whilst the LOD has
not been the focus of this article, we are confident that the shared knowledge rep-
resentation will ease knowledge exchange between the LOD and SeCo in the future
– e.g., by answering queries with data from the LOD in case a Web service is not
available.

We believe that there is much further research potential in the combination
of ANGIE and SeCo. For example, the orchestration algorithm of ANGIE can
only combine the outputs of one Web Service with the inputs of another Web
Service (i.e., it can only perform pipe joins, in SeCo terminology). Therefore,
some registered Web Service cannot be used directly. SeCo, in contrast, can
master the combinatory explosion that appears when results from multiple Web
Services are combined, because it uses rank aware parallel join operators.

On the other hand, ANGIE is very good at answering SPARQL queries. This
is an avenue on which SeCo could benefit. One possibility to combine the ad-
vantages of SeCo and ANGIE would be to register Web Services both in ANGIE
and in SeCo. Whenever a user issues a SPARQL query on YAGO, ANGIE could
orchestrate (virtual and real) Web Services normally whenever it can pipe the
output of one Web Service into the input of another Web Service. When ANGIE
faces the problem to perform parallel joins on the results of multiple Web Ser-
vices, it could delegate the execution of this part of the orchestration to SeCo.
This is just one example for the research possibilities that wait to be discovered
in further cross-fertilization of these approaches.

Acknowledgement

The work by Fabian Suchanek has been partially funded by the European Re-
search Council under the European Community’s Seventh Framework
Programme (FP7/2007-2013) / ERC grant Webdam, agreement 226513.
http://webdam.inria.fr/

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

2. Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S., Narayanan, S.,
Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: Owl-s:
Semantic markup for web services. Website (2004)

3. Ceri, S. (ed.): Search Computing. LNCS, vol. 5950. Springer, Heidelberg (2010)
4. World Wide Web Consortium. Rdf primer, w3c recommendation (2004),

http://www.w3.org/TR/rdf-primer/

5. Corcho, Ó., Fernández-López, M., Gómez-Pérez, A., López-Cima, A.: Building
legal ontologies with METHONTOLOGY and webODE. In: Benjamins, V.R.,
Casanovas, P., Breuker, J., Gangemi, A. (eds.) Law and the Semantic Web. LNCS
(LNAI), vol. 3369, pp. 142–157. Springer, Heidelberg (2005)

http://webdam.inria.fr/
http://www.w3.org/TR/rdf-primer/

112 F. Suchanek et al.

6. de Bruijn, J., Fensel, D., Kerrigan, M., Keller, U., Lausen, H., Scicluna, J.: Model-
ing Semantic Web Services: The Web Service Modeling Language. Springer, Berlin
(2008)

7. Farrell, J., Lausen, H.: Semantic annotations for wsdl and xml schema (August
2007)

8. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press,
Cambridge (1998)

9. Fensel, D., Holger Lausen, A.P., de Bruijn, J., Stollberg, M., Roman, D., Domingue,
J.: Enabling Semantic Web Services: The Web Service Modeling Ontology.
Springer, Berlin (2006)

10. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent Sys-
tems 16(2), 46–53 (2001)

11. Pinto, H.S., Staab, S., Tempich, C.: Diligent: Towards a fine-grained methodology
for distributed, loosely-controlled and evolving engineering of ontologies. In: de
Mántaras, R.L., Saitta, L. (eds.) ECAI, pp. 393–397. IOS Press, Amsterdam (2004)

12. Preda, N., Kasneci, G., Suchanek, F., Neumann, T., Yuan, W.: Active knowledge:
Dynamically enriching rdf knowledge bases by web services (angie). In: Interna-
tional Conference on Management of Data (SIGMOD 2010). ACM, New York
(2010)

13. Sivashanmugam, K., Verma, K., Sheth, A.P., Miller, J.A.: Adding semantics to
web services standards. In: Zhang, L.-J. (ed.) ICWS, pp. 395–401. CSREA Press
(2003)

14. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge.
In: 16th International World Wide Web Conference (WWW 2007). ACM Press,
New York (2007)

15. Sure, Y., Staab, S., Studer, R.: Methodology for development and employment
of ontology based knowledge management applications. SIGMOD Record 31(4),
18–23 (2002)

16. Vitvar, T., Kopecký, J., Viskova, J., Fensel, D.: Wsmo-lite annotations for web
services. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.)
ESWC 2008. LNCS, vol. 5021, pp. 674–689. Springer, Heidelberg (2008)

Part 4

Rank Join

The rank-join problem is the search for the top-k combinations of objects coming
from different, ranked data sources and matching according to a given join predicate.
Objects are assumed to be equipped with a score, or, in general, a score vector.
Building joins of ranked objects is the core operation of search computing, therefore
studying this problem is essential.

In the first chapter, the theoretical foundations of the rank-join problem are
presented. The desired optimality properties that should be featured by rank-join
algorithms are stated. After showing that optimality per se is generally unachievable,
the much-studied notion of instance-optimality is discussed, which represents a
relaxed but robust version of optimality. Rank-join algorithms are discussed
according to a pattern that consists of two main components: a pulling strategy that
indicates which data source to select for extraction of a new object, and a bounding
scheme providing a criterion for stopping the execution. Instance optimality can be
attained by resorting to tight bounding schemes, which however incur a heavy
computational cost. Trade-offs between instance-optimality and efficiency in
computing the bound are discussed.

In the second chapter, the problem is generalized to cases of objects also equipped
with feature vectors that can be used to compare the objects to one another so as to
join them on the basis of a notion of “proximity”. The problem becomes then
retrieving combinations of objects that have high scores, whose feature vectors are
close to one another and possibly to a given feature vector (the query). In this case,
too, the bounding scheme (and a tight version thereof) and the pulling strategy play a
crucial role to efficiently compute the solution.

In the third chapter, a further generalization of the problem regards rank-join in the
presence of uncertainty. In particular, uncertainty in the objects' scores may derive
from different levels of reliability of the data sources. It is thus very relevant to model
uncertainty in the scores. This can be done in different ways, among which using
ranges. The resulting ranking of the object combinations is not univocally determined
by the scores because of their uncertainty. This gives rise to new semantics of top-k
queries, which must take the probability of a possible ranking into account.

The fourth short chapter discusses the current open problems and trends in rank-join.

The Rank Join Problem

Neoklis Polyzotis

University of California - Santa Cruz

Abstract. In the rank join problem, we are given a set of relations and
a scoring function, and the goal is to return the K join results with the
highest scores. It is often the case in practice that the inputs may be
accessed in ranked order and the scoring function is monotonic. These
conditions allow for efficient algorithms that solve the rank join problem
without reading all of the input. In this chapter, we review recent efforts
in the development and analysis of such rank join algorithms. First, we
present some theoretical results that state the inherent complexity of the
rank join problem and essentially reveal that any rank join algorithm
has to trade off between I/O efficiency and computational efficiency. We
then review a specific rank join algorithm that adjusts this trade-off at
runtime, depending on the data and the scoring function, in order to
strike a balance between I/O overhead and computation.

1 Background and Basic Definitions

A relational ranking query (or a top-K join query) specifies a scoring function
over the results of a join and returns the K tuples with the highest scores. As
an example, the following query (written in an SQL-like language) retrieves the
top 10 hotels and restaurants located in the same city, giving priority to the
cheap hotels and the best restaurants with live music.

SELECT h.name, r.name
FROM Hotel h, Restaurant r
WHERE h.city = r.city
RANK BY 0.4/h.price + 0.4∗r.rating + 0.2∗r.hasMusic
LIMIT 10

Ranking queries have become increasingly popular in many application domains,
from multimedia retrieval [2] to uncertain databases [1], as they allow a user to
focus on the most relevant query results.

Rank join evaluation, i.e., computing the top K results of a relational join
according to a specific scoring function, form an integral component of rank-
ing query processing. Several recent studies have considered specialized rank
join algorithms [1,2,3,4,5,7,8,9], the integration of such operators in the query
optimizer [6], and the computation of statistics for query optimization [10]. In
what follows, we provide a formal definition of rank joins and some necessary
background in order to discuss the problem further.

Consider a natural join of relations R1, ...,Rn where each τi ∈ Ri is composed
of named attributes and base scores. The base scores are denoted as a vector

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 115–120, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

116 N. Polyzotis

b(τi) ∈ [0, 1]ei for some ei ≥ 0, and signify the importance of the tuple according
to criteria specified by the ranking query. Returning to the previous example,
we observe that Restaurant has two base scores, corresponding to the rating and
the music event respectively. Base scores are aggregated using a scoring function
S that computes the score of a join result τ as S(b(τ)). We may also use S(τ)
as a shorthand for the score of τ . Following common practice, we assume that
S is monotonic, i.e., S(x1, . . . , xe) ≤ S(y1, . . . , ye) if xi ≤ yi for all i.

Let τ be a join result such that τ = τ ′ � ρ for some intermediate results τ ′ and
ρ. We define S(τ ′) to be the value of S using the base scores of τ ′, and substituting
1 for any that are missing. The monotonicity of S implies that S(τ) ≤ S(τ ′) since
each base score of ρ is at most 1. Thus we call S(τ ′) the score bound of τ ′, since it
is an upper bound on the scores of join results derived from τ ′.

The rank join problem can now be stated as follows. We are given relations
R1, . . . , Rn and a monotonic scoring function S, such that each relation is ac-
cessed sequentially in decreasing order of S, and the goal is to compute the K
results of R1 � . . . � Rn with the highest score (1 ≤ K ≤ |R1 � . . . � Rn|). We
can efficiently implement the particular access model for several scoring func-
tions that are frequently used in practice, by relying on commonly available
access methods such as B-trees. In what follows, we use I = (R1, . . . , Rn,S, K)
to denote an instance of the rank join problem.

The previous definition requires that at least K join results exist, which guar-
antees that it is possible to fulfill a request for the top K results. In addition,
note that the solution to an instance of the problem may not be unique, due to
the existence of ties in the computed score values. However, the terminal score,
that is, the score of the K-th result, is uniquely determined for a given instance,
and is denoted as Sterm.

Given an algorithm A that solves the rank join problem, we use cost(A, I)
to denote the cost that A incurs on a specific problem instance I. A commonly
used cost metric is based on the idea of depth. The depth on an input relation
Ri is the number of tuples read sequentially from Ri before returning a solution.
We use depth(A, I, i) to denote this depth, and define sumDepths(A, I) as the
sum of depths on all inputs. Clearly, sumDepths is an interesting cost metric as
it indicates the amount of I/O performed by an algorithm.

2 Analysis of Rank Join Algorithms

Several recent studies have explored deterministic algorithms to solve the rank
join problem [1,2,3,4,5,7,8,9]. In this section, we review the main theoretical
results in the complexity and properties of these algorithms. The review is based
on the analysis presented in [9].

We begin by stating two desirable optimality properties for a rank join al-
gorithm. Given a class of algorithms B, a class of problem instances J , and
a cost metric cost , we say that a rank join algorithm A ∈ B is optimal if
cost(A, I) ≤ cost(A′, I) for all rank join algorithms A′ ∈ B and problem in-
stances I ∈ J . An optimal algorithm may not be feasible in specific settings,

Rank Join in Search Computing 117

which leads us to a relaxed form of optimality known as instance optimality.
We say that A is instance-optimal if there exist constants c1 and c2 such that
cost(A, I) ≤ c1 · cost(A′, I) + c2 for all A′ ∈ B and I ∈ J . The constant c1 is
called the optimality ratio.

Algorithm template PBRJ(R1, . . . , Rn,S, K)
Template parameters: pulling strategy P ; bounding scheme B
Input: relations R1, . . . , Rn; scoring function S; result size K
Output: set of K join results with highest score
Data structures: input buffers HR1, . . . ,HRn; output buffer O
1. t←∞
2. while |O| < K OR minω∈O S(ω) < t do
3. i← P.chooseInput()
4. ρi ← next unseen tuple of Ri

5. R← HR1 � . . .HRi−1 � {ρi} � HRi+1 � . . . � HRn

6. Add each member of R to O, retaining only the top K tuples
7. Add ρi to HRi

8. t← B.updateBound (ρi)
9. end while
10. return O

Fig. 1. PBRJ Template

Given these two properties, we can ask whether there exist (instance-)optimal
algorithms within a specific family B. To effectively perform this analysis for sev-
eral possible classes, we introduce the Pull-Bound Rank Join algorithm template
that can express any deterministic rank join algorithm. The PBRJ template,
shown in Figure 1, is instantiated by a deterministic pulling strategy P and a
deterministic bounding scheme B. On each loop iteration of PBRJ, the pulling
strategy P chooses a relation Ri to read, and the new tuple ρi is stored in an
input buffer HRi (typically a hash table). New join results are generated by join-
ing ρi with the tuples in the other input buffers HRj for j �= i. The generated
results are pushed to an output buffer O that holds the top K results seen so
far. After each tuple is processed, it is given to the bounding scheme B via the
method updateBound , which returns a new upper bound on the score of unseen
join results. The results are returned when the K-th buffered score is at least as
large as the bound t provided by the bounding scheme, since this indicates that
the buffered results cannot be improved by reading more tuples.

It is straightforward to see that PBRJ is correct if we require that P returns
the index of an un-exhausted relation, and that B returns a correct upper bound
on the scores of join results that use at least one unread tuple. Furthermore,
PBRJ can model any deterministic rank join algorithm by an appropriate choice
of P and B, and hence it makes a convenient vehicle for the analysis of rank join
algorithms.

The analysis in [9] considered two choices for the bounding scheme B, namely,
the corner bound, which is used in the HRJN [5] family of rank join algorithms,
and the feasible region bound, which was introduced in [9]. There were also two

118 N. Polyzotis

choices for P , namely, round-robin and corner-bound adaptive. The latter is
specific to the corner bound and prioritizes access to the inputs based on the
information maintained in this specific bounding scheme. The main results of
the analysis can be summarized as follows:

– Within the family of PBRJ instantiations with the corner bound, both
round-robin and adaptive pulling yield an instance-optimal algorithm. More-
over, the adaptive strategy becomes optimal under the absence of a specific
type of score-value ties related to Sterm.

– Within the same family, corner-bound adaptive is always no worse than
round-robin in terms of the per-input depth metric.

– No PBRJ instantiation that uses the corner-bound is instance optimal within
the extended family of all PBRJ instantiations.

– The instantiation of PBRJ with the feasible region bound and the round-
robin strategy yields an instance optimal rank join algorithm within the
family of all deterministic rank join algorithms.

The last two results indicate that the corner bound may yield an unpredictably
high sumDepths metric, whereas the feasible region bound enables a property
of robustness (again, with respect to sumDepths). The basic difference between
the two bounding schemes is that only the feasible region bound is tight, i.e.,
it computes a score value that can be actually achieved by the unseen data,
which in turn allows PBRJ to stop as early as possible without committing
mistakes. However, as shown in [9], robustness in terms of sumDepths comes
at a price in terms of computational complexity. Essentially, computing a tight
bound is provably hard–the corresponding decision problem is NP-Complete.
In other words, the rank join problem exhibits an inherent trade-off between
computational and I/O efficiency.

3 The Trade-Off between I/O Robustness and
Computational Efficiency

The previous theoretical results raise an interesting question: Can we design
a rank join algorithm that explores the trade-off between I/O robustness and
computational efficiency? In this section, we review some initial developments
in this direction, based on the results presented in [4].

We first repeat the formalization of I/O robustness as instance optimality
with respect to the sumDepths metric (see previous section). We say that a
rank join algorithm A is robust, if there exist constants c1 and c2 such that
sumDepths(A, I) ≤ c1 · sumDepths(A′, I) + c2 for any other algorithm A′ and
rank join instance I. As a starting point in our exploration of robust and efficient
rank join algorithms, we can examine the actual performance of PBRJ using
the feasible region bound. The experimental study presented in [4] shows that
PBRJ performs very badly in terms of total execution time, even though the
algorithm does less I/O due to instance optimality. There are two reasons for
this overall inefficiency: the costly computation of the feasible region bound, and

Rank Join in Search Computing 119

the “blind” access to inputs from the round-robin pulling strategy. Therefore,
one possible direction is to optimize PBRJ along these two dimensions. Indeed,
there exists an alternative (yet equivalent) definition of the feasible region bound
that performs far fewer computations than the original variant. Moreover, the
feasible region bound can be coupled with an adaptive pulling strategy, which
is the counterpart of the corner-bound adaptive strategy, that allows PBRJ to
prioritize access to its inputs. Overall, these modifications yield an instantiation
of PBRJ that remains instance optimal, does fewer pulls than the round-robin
strategy, and is more computationally efficient.

The previous improvements can reduce the overhead of the feasible region
bound, but they cannot lift the complexity barrier of computing a tight bound.
Hence, the next step is to consider alternative bounding schemes that can explore
the trade-off between tightness and computational efficiency. The study proposes
the adaptive feasible region bound that achieves precisely this property. The new
bounding scheme follows the same logic as the original feasible region bound, but
it performs its computations on quantized base scores. The level of quantization
determines directly the space complexity of the feasible region bound, and in
effect its time complexity. When the level of quantization is infinitely small, the
bound is essentially the same as the feasible region bound. This means that it
is provably tight but also potentially costly to compute. A coarser quantization
implies lower overhead, but it also means that the bound is no longer tight. An
interesting property is that the adaptive bound coincides with the corner bound
at the coarsest quantization. By utilizing this hybrid bounding scheme, PBRJ
can essentially regulate the overhead of bound computation, and can explore
adaptively the space between instance-optimality and computational efficiency.

Experimental results demonstrate that the instantiation of PBRJ with the
hybrid bounding scheme and the adaptive strategy really offers the best of both
worlds. The algorithm’s I/O performance is the same as an instance optimal
rank join algorithm for the class of inputs where the tight bound is cheap to
compute, and degrades gracefully in other cases. In overall efficiency, the new
algorithm outperforms other instantiations of PBRJ that correspond to existing
rank join algorithms, thus validating the idea of an adaptive trade-off between
I/O robustness and computational complexity.

References

1. Agrawal, P., Widom, J.: Confidence-aware join algorithms. In: International Con-
ference on Data Engineering, pp. 628–639 (2009)

2. Fagin, R.: Combining fuzzy information from multiple systems. J. Comput. Syst.
Sci. 58(1), 83–99 (1999)

3. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci. 66(4), 614–656 (2003)

4. Finger, J., Polyzotis, N.: Robust and efficient algorithms for rank join evaluation.
In: Proceedings of SIGMOD (2009)

5. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in rela-
tional databases. International Journal on Very Large Databases (VLDBJ) 13(3),
207–221 (2004)

120 N. Polyzotis

6. Li, C., Chang, K.C.C., Ilyas, I.F., Song, S.: RankSQL: query algebra and optimiza-
tion for relational top-k queries. In: Proceedings of ACM SIGMOD, pp. 131–142
(2005)

7. Mamoulis, N., Yiu, M.L., Cheng, K.H., Cheung, D.W.: Efficient top-k aggregation
of ranked inputs. ACM Transactions on Database Systems 32(3), 19 (2007)

8. Natsev, A., Chang, Y.C., Smith, J.R., Li, C.S., Vitter, J.S.: Supporting incremental
join queries on ranked inputs. In: Proceedings of VLDB, pp. 281–290 (2001)

9. Schnaitter, K., Polyzotis, N.: Evaluating rank joins with optimal cost. In: Pro-
ceedings of the 27th Symposium on Principles of Database Systems, pp. 43–52
(2008)

10. Schnaitter, K., Spiegel, J., Polyzotis, N.: Depth estimation for ranking query opti-
mization. In: Proceedings of VLDB, pp. 902–913 (2007)

Proximity Rank Join in Search Computing

Davide Martinenghi and Marco Tagliasacchi

Politecnico di Milano

Abstract. Rank join can be generalized to sets of relations whose ob-
jects are equipped with a score and a real-valued feature vector. Such
vectors can be used to compare the objects to one another so as to join
them based on a notion of “proximity”. The problem becomes then that
of retrieving combinations of objects that have high scores, whose feature
vectors are close to one another and possibly to a given feature vector
(the query). Traditional rank join algorithms may read more input than
needed when solving proximity rank join. Such weakness can be over-
come by designing new algorithms for which, as in classical rank join,
bounding scheme (and a tight version thereof) and pulling strategy play
a crucial role to efficiently compute the solution.

1 Introduction

Proximity rank join [9] is the problem of finding the best combinations of objects
with the highest aggregate score, in which objects are coming from different
services, and each object is equipped with both a score and a real-valued feature
vector. The score and the feature vector can be compared across different objects
in order to establish their respective quality and similarity. Indeed, the feature
space may represent, in a broad sense, the “geometry” of the objects and can thus
be used in the computation of the overall score of a combination. Contrast with
the traditional rank join problem [7], where the overall score of a combination
depends only on the scores of the single objects.

The proximity rank join problem can therefore capture many interesting
multi-domain scenarios relevant for Search Computing, namely all those in which
a vector of reals suitably represents aspects of an object that can be conveniently
compared. The fields in which proximity rank join problems naturally emerge
include information retrieval, bioinformatics, multimedia databases, and many
more. For instance, in the context of Web search, such problems include finding
sequences of events which are close both in space and in time, or news about
the same event extracted from different news services. The same pattern is also
applicable to classical information retrieval (finding two or more similar doc-
uments, each extracted from a different data source, most similar to a given
query, expressed as a collection of keywords) or multimedia retrieval (finding
two or more similar images from different archives most similar to a sample
image) or domain-specific search (discovering orthologous genes from a differ-
ent organisms given a target annotation profile). Therefore, proximity rank join

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 121–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

122 D. Martinenghi and M. Tagliasacchi

solves a class of important problems, present in many scientific fields, whose rel-
evance is growing with the increasing availability of services providing accesses
to independent data sources.

In all the mentioned cases, proximity plays a crucial role, as it captures the
mutual relationships between the objects in the feature space. Moreover, there is
an intrinsic notion of distance between objects whose definition varies depend-
ing on the scenario at hand. For instance, when comparing objects in which
the feature vector expresses their geo-localization, Euclidean distance might be
the most relevant criterion (or, alternative, walking distance on a map, if avail-
able). Instead, if textual documents or images are being compared, Euclidean
distance might be replaced by a cosine similarity measure. Different definitions
of distance will, in general, require different specialized algorithms in order to
properly address proximity rank join.

Typically, objects on the Web can be retrieved according to their distance,
in ascending order, from a given vector (the query). Alternatively, it is also
common to retrieve objects sorted by score in descending order. As was pointed
out in the previous chapter, exploiting the ordering allows pruning the search
for the best combinations early, without having to scan all the objects. Although
existing rank join algorithms may address proximity rank join, they are doomed
to behave sub-optimally, as they do not leverage the geometry of the problem.

The main contribution of this chapter is to describe proximity rank join in the
context of Search Computing. The problem will be presented as the search for the
best combinations of objects coming from different services, where each object is
equipped with both a score and a real feature vector. The aggregation function
assigning a score to a combination depends on the individual scores, on the prox-
imity of the individual vectors to a given vector (called query) and on their mutual
proximity, according to some notion of distance in the feature space.

2 Problem Definition

We consider a set of relations (services) R1, . . . , Rn where each tuple τi ∈ Ri

comprises, besides named attributes, a real-valued feature vector x(τi) ∈ Rd,
and a score σ(τi) ∈ R.

The two most common access kinds that arise in practice are distance-based
access, where the relations are accessed sequentially in increasing order of dis-
tance from a given feature vector, and score-based access, where the order is
decreasing in the score of the objects.

Let τ
(ri)
i = Ri[ri] indicate the ri-th tuple extracted from Ri according to the

available access kind, and Pi ⊆ Ri the ordered relation containing the tuples
already extracted from Ri. Also, let τ = τ1 × · · · × τn ∈ R1 × . . .×Rn denote an
element of the cross-product of the n relations, hereafter called combination.

Proximity rank join searches consist of a constant vector q ∈ Rd called query
together with a metric distance δ(x(τ),q) between vectors x(τ) and q, and a
monotonic aggregation function f defining the aggregate score S(τ) of a combi-
nation τ as

S(τ) = f (S(τ1), , . . . ,S(τn)) (1)

Proximity Rank Join in Search Computing 123

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

τ
(1)
1

τ
(2)
1 τ

(1)
2

τ
(2)
2

τ
(1)
3

τ
(2)
3

q

Fig. 1. Location of tuples with feature vectors in R2 represented as discs whose radius
is proportional to the score

where S(τi) = gi (σ(τi), δ(x(τi),q), δ(x(τi), µ(τ))), and µ(τ) ∈ Rd denotes the
centroid of a combination. The functions gi must behave in such a way that
the proximity weighted score S(τi) increases with the score and decreases with
the distance from the query vector q and from the combination centroid µ(τ).
In top combinations, then, the constituent tuples have high scores, are close to
the query vector, and are close to each other.

Example 1. A possible example of aggregation function, in which Euclidean dis-
tance is used between objects in the feature space, is the following:

S(τ)=
n∑

i=1

ws ln(σ(τi))−wq‖x(τi)−q‖2−wμ‖x(τi)−µ(τ)‖2 (2)

Weights (ws, wq and wμ) in the different components of the function allow
expressing different user preferences. Figure 2 shows an example with three re-
lations and the location of their tuples in R2 represented as discs whose radius
is proportional to the score (blue for R1, red for R2, green for R3). The three
circles in the figure have a radius equal to the distance of the last accessed tu-
ple from each relation. There are 2 · 2 · 2 = 8 combinations in total. The top-1
combination using (2) with ws = wq = wμ = 1 turns out to be τ

(2)
1 × τ

(1)
2 × τ

(1)
3 .

Proximity rank join is the problem of determining an ordered relation O con-
taining the top K combinations from R1 × . . .×Rn ordered by S (defined as in
(1)), where the elements of R1, . . . , Rn can be retrieved either by distance-based
access or by score-based access.

The proximity rank join problem can be tackled by adapting the Pull/Bound
Rank Join (PBRJ) template originally introduced for rank join in [11]. PBRJ
at each step decides which relation to access next (the deciding component is

124 D. Martinenghi and M. Tagliasacchi

called pulling strategy). After each step, if at least K combinations are formed,
PBRJ computes (according to a so-called bounding scheme) an upper bound on
the aggregate score of the unseen combinations. If such bound is exceeded by
the score of the current K-th best combination found, the algorithm terminates
and reports the K best combinations found as the actual top-K.

The adaptation of PBRJ to proximity regards both the computation of the
upper bound and the pulling strategy, as discussed in the next section.

The assessment of limitations and potential of proximity rank join algorithms
will refer, as customary in top-k query answering, to the notion of instance-
optimality [3] to characterize I/O efficiency. Roughly, an algorithm is instance-
optimal if its I/O cost for any input is within a constant factor of the cost of
any other algorithm on the same input.

3 Proximity Rank Join Algorithms

We now discuss how bounding schemes and pulling strategies conforming to the
PBRJ scheme can be used to address proximity rank join.

3.1 Bounding Scheme

Under distance-based access, an upper bound tc can be computed by keeping
track of the distance from the query q of the first and last accessed tuple from
each relation, i.e., δ(x(Ri[1]),q) and δ(x(Ri[pi]),q), respectively:

tc = max{t1, . . . , tn}, with ti = f
(S̄1, . . . ,Si, . . . , S̄n

)
(3)

where S̄j = gj

(
σmax

j , δ(x(Rj [1]),q), 0
)

is an upper bound on the proximity
weighted score that can be attained by a tuple τj ∈ Rj (σmax

j is the maxi-
mum score possible for Rj), and, similarly, Si = gi (σmax

i , δ(x(Ri[pi]),q), 0) by
an unseen tuple τi ∈ Ri−Pi. The case of score-based access is handled similarly.

The bound in (3) is a corner bound [11]. We say that a bounding scheme is
tight [11] if the upper bound can be the actual score of some combination using
at least an unseen tuple for the problem at hand (or for any problem coinciding
with it on the seen tuples).

Bound (3) is not tight (not even with only two relations), since a possible
combination whose aggregate score is equal to the bound might not exist. The
lack of tightness of the corner bound tc entails non-instance-optimality.

The problem of finding a tight bound can be cast as a maximization problem
subject to constraints due to the access mode, i.e., finding the feasible locations
of the unseen tuples that maximize the aggregate score. Solving such maximiza-
tion problem might be difficult, depending on the aggregation function and the
distance in use. Cases with Euclidean distance, such as the aggregation function
in (2), allow efficient solutions of the problem. In particular, thanks to the ge-
ometry of the problem, finding a tight bound for (2) requires solving a convex
quadratic program with linear constraints, which can be done using off-the-shelf

Proximity Rank Join in Search Computing 125

solvers. Cases with cosine similarity do not seem to admit efficient solutions,
unless approximations are allowed.

Further efficiency gains can be achieved by considering that the entire set of
(partially formed) combinations does not need to be fully explored each time
the bound needs to be found, as some of the partial combinations can be tagged
as dominated, in the sense that their score will never reach the upper bound.
Dominance can be checked by solving a feasibility linear program. Although
checking dominance is costly, a good heuristics consists of periodically checking
it after a fixed number of accesses so as to save time during the calculation of
the tight bound.

3.2 Pulling Strategy

A pulling strategy identifies the relation Ri from which the next tuple is re-
trieved. The simplest pulling strategy accesses the inputs in a round-robin fash-
ion (e.g., in the order R1, . . . , Rn). Tightness of the bounding scheme and a
round-robin strategy are sufficient to guarantee instance optimality.

Alternatively, one can adopt more refined strategies. A potential adaptive
given in [4] for 2 relations can be generalized as follows. Let pot i denote the
potential of relation Ri, defined as the upper bound on the aggregate score of
combinations that can be formed with unseen tuples from Ri. The potential
adaptive strategy requires then to access relation Ri such that pot i is maximal
(among pot1, . . . , potn), breaking ties in favor of the relation with the least depth
pi, then the relation with the least index i.

With a tight bound, the efficiency of a potential adaptive strategy is always
at least as good as that of a round robin strategy, and thus instance optimality
is also achieved.

4 Related Work

Proximity rank join is a significant extension of rank join, a class of problems that
has lately been receiving a great deal of attention [6,12,11,4,7]. A comprehensive
survey on the subject is found in [7].

The idea of using an upper bound comes from the threshold-based stopping
condition of the well-known threshold algorithm [3] (TA). TA addresses rank
aggregation, which is the problem of combining several ranked lists of objects to
produce a single consensus ranking.

The PBRJ template encompasses the well-known HRJN and HRJN ∗ oper-
ators [6]. As was discussed, some of the results on instance optimality in [11]
do not carry over to proximity rank join, due to the geometry of the problem
(absent in rank join).

In [4], the authors propose an efficient way for computing an approximation of
the tight bound, in order to find a good trade off between I/O cost and CPU cost.

We have considered a scenario in which the objects’ feature vectors are deter-
ministic. Others have addressed related problems with uncertainty [1].

126 D. Martinenghi and M. Tagliasacchi

Weighted proximity join is introduced in [14], however only for 1-dimensional
spaces. Similarity join is promoted to a first-class operator in [13].

The study of join predicates that depend on the spatial proximity among
the objects has been thoroughly investigated in the past literature [5,2,10,8].
Nevertheless, in such works, the authors assume that input relations are indexed
by structures of the R-tree family. This contrasts the presented setting, where
indexes are unavailable.

5 Conclusion

Proximity rank-join is the problem of finding the best combinations of hetero-
geneous objects that are close to a given target object (the query) and to each
other. We presented a general formulation of the problem and discussed instance
optimality properties and other desiderata.

Future lines of investigation involve instances of the problem with richer access
modes, e.g., random access, or even mixtures of both score- and distance-based
access. Further specific distances, useful for practical cases, need to be studied
or better understood, as is the case with cosine similarity, for which no efficient
and exact solution is known.

References

1. Beskales, G., Soliman, M.A., Ilyas, I.F.: Efficient search for the top-k probable
nearest neighbors in uncertain databases. PVLDB 1(1), 326–339 (2008)

2. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Algorithms
for processing k-closest-pair queries in spatial databases. Data Knowl. Eng. 49(1),
67–104 (2004)

3. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci. 66(4), 614–656 (2003)

4. Finger, J., Polyzotis, N.: Robust and efficient algorithms for rank join evaluation.
In: SIGMOD Conference, pp. 415–428 (2009)

5. Hjaltason, G.R., Samet, H.: Incremental distance join algorithms for spatial
databases. In: SIGMOD Conference, pp. 237–248 (1998)

6. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in rela-
tional databases. VLDB J. 13(3), 207–221 (2004)

7. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top- query processing tech-
niques in relational database systems. ACM Comput. Surv. 40(4) (2008)

8. Mamoulis, N., Theodoridis, Y., Papadias, D.: Spatial joins: Algorithms, cost models
and optimization techniques. In: Spatial Databases, pp. 155–184 (2005)

9. Martinenghi, D., Tagliasacchi, M.: Proximity rank join. PVLDB 3(1), 352–363
(2010)

10. Papadopoulos, A.N., Nanopoulos, A., Manolopoulos, Y.: Processing distance join
queries with constraints. Comput. J. 49(3), 281–296 (2006)

11. Schnaitter, K., Polyzotis, N.: Evaluating rank joins with optimal cost. In: PODS,
pp. 43–52 (2008)

Proximity Rank Join in Search Computing 127

12. Schnaitter, K., Spiegel, J., Polyzotis, N.: Depth estimation for ranking query opti-
mization. In: VLDB, pp. 902–913 (2007)

13. Silva, Y.N., Aref, W.G., Ali, M.H.: The similarity join database operator. In: ICDE
(2010)

14. Thonangi, R., He, H., Doan, A., Wang, H., Yang, J.: Weighted proximity best-joins
for information retrieval. In: ICDE, pp. 234–245 (2009)

Uncertainty in Rank Join

Ihab F. Ilyas

University of Waterloo

Abstract. At the core of the query processing engine of a search computing
system are operators that retrieve, filter, join and aggregate results from these Web
services. The main goal is to deliver relevant and multi-domain answers to user
queries. In these scenarios, users usually expect a ranked list of relevant answers
in contrast to the full answer set. Hence, ranking query results in the presence
of uncertainty is a fundamental query processing challenge in search computing
environments.

Rank-join is a basic relational operator that reports the top-k join results as
soon as possible, avoiding the expensive materialize-then-sort approach. Due to
the early-out and pipelined nature of rank-join, it acts as one of the major building
blocks in compiling execution plans for multi-domain queries (also knows as
liquid queries). In this chapter, we discuss the implication of data uncertainty on
the semantics and implementation of rank-join operators, and we survey some of
the recent techniques to address these challenges.

1 Introduction

In the search computing framework, uncertainty appears at multiple levels. For exam-
ple, on the data extraction level, lack of reliability of data sources, conflicting informa-
tion among different sources, partial matches among corresponding schemas, privacy
and annonamization constraints, and presentation formats are all common sources of
data uncertainty. Similarly, we expect to experience uncertainty at the level of source
availability under the Web services approach adopted by search computing. Other types
of uncertainty are at query formulation phase; since search computing allows for non-
exact match of the surface query and the matched Web services guided, for example, by
sources availability, due to run-time constraints, and more importantly because of the
exploration and interactive nature of query interfaces. Considering these sources of un-
certainty, deciding on the semantics of querying against the underlying uncertain data
becomes crucial in deciding on the soundness and the goodness of query results, as well
as in designing efficient query processing algorithms to implement these semantics.

Due to Web interactive and dynamic nature, Web scale search computing triggers the
need to rank large volumes of constantly-changing search results with respect to some
preference measures. Ranking acts as an effective and intuitive data exploration tool in
this scenario. Traditionally, ranking queries compute the top-k query results based on
a given scoring function. A join query augmented with ranking specifications (i.e., a
scoring function and a parameter k), usually referred to as “rank join query” [1,2,3],
reports the top-k join results based on the computed scores. The central idea of rank
join is to allow for early query termination by making use of sorted inputs and scoring
function monotonicity to upper bound the scores of non-materialized join results.

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 128–134, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Uncertainty in Rank Join 129

Example 1. Consider a Web user planning to spend a vacation in New Zealand. The
user would like to find a hotel with a good reputation and reasonable prices. For cred-
ibility, The user has decided to obtain hotel pricing and rating information from two
independent sources: www.vianet.travel, a source that provides pricing informa-
tion and online booking, and www.tvtrip.com, a source that provides hotel ratings
from travelers’ reviews. The search scenario is thus (1) extracting hotel records from
both sources; (2) matching records based on hotel name; and (3) ranking matched
results based on some function of price and rating. We refer to such process as extract-
match-rank.

Manual processing of the extract-match-rank task requires navigating through many
pages, while memorizing and ranking interesting matches, which is clearly infeasible.
The problem is far more complicated if matching across more sources is involved. An
automated extract-match-rank system can probably formulate the task in the following
SQL-like rank join query, which prefers hotels with low prices and high ratings, and
reports only the top-k hotels.
SELECT *
FROM vianet, tvtrip
WHERE vianet.HotelName ∼ tvtrip.HotelName
ORDER BY 500-vianet.Price+ 100* tvtrip.Rating
LIMIT k

Different modules of the search computing framework focus on the many challenges
raised in the aforementioned example:

– Data Extraction. Structured records need to be extracted from such sources to ap-
ply rank join techniques. Search computing applies various techniques for the dis-
covery, matching and invocation of the available Web services published for the
involved services to extract timely structured data records.

– Interleaving Extraction with Processing. Users do not tolerate long waiting times,
where expensive extraction must complete before query processing starts. More-
over, exhaustive extraction does not leverage early-out nature of ranking. We thus
need to interleave asynchronous data retrieval and extraction with query process-
ing, and avoid unnecessary extraction operations based on ranking requirements.
The run-time platform in search computing tries to address these problems by, for
example, exploiting the incremental invocation capabilities of the underlying Web
services to extract only the needed information to report the top-k results.

One remaining important challenge is to handling uncertainty in the extracted data
records, especially in the scores involved in the provided raking function. The scor-
ing models adopted by current rank join techniques assume that all scores are exact,
which yields a unique top-k answer (score ties are resolved using a tie-breaking crite-
rion). In situations where the underlying data do not conform to these assumptions, the
semantics and processing techniques of current rank join methods become inapplicable.

Possible approaches to rank-join multiple inputs with uncertain scores include the
following:

(1) Fall back to exact scores. For example, we use expected score values. While suit-
able in some settings, this approach can be quite unreliable due to the inability to reflect

130 I.F. Ilyas

variance of score ranges. Exact score representation of multiple ranges may coincide,
or become very close to each other, even though ranges are considerably different. For
example, assume 3 records, t1, t2, and t3 with uniform score ranges [0, 100], [40, 60],
and [30, 70], respectively. All expected scores are equal to 50, and hence all orderings
are equally likely. However, based on how score distributions overlap, the likelihood
of different orderings can be computed as nested integrals [4], which results in differ-
ent probabilities: Pr(〈t1, t2, t3〉) = .25, Pr(〈t1, t3, t2〉) = .2, Pr(〈t2, t1, t3〉) = .05,
Pr(〈t2, t3, t1〉) = .2, Pr(〈t3, t1, t2〉) = .05, and Pr(〈t3, t2, t1〉) = .25. That is, some
orderings are more likely than the others, even though score ranges are uniform with
equal expectations.

(2) Compute all, then rank. The problem of ranking with uncertain scores coming from a
single input has been addressed in [4]. However, when scores are computed online (e.g.,
by aggregating scores of joined Web sources), applying the techniques in [4] requires
computing all uncertain scores before ranking. Moreover, [4] assumes the independence
of the random variables representing tuples’ scores, which does not apply to join results’
scores that are intrinsically correlated.

In this chapter, we focus on the effect of data uncertainty on the semantics of ranking
queries, in particular, the rank join queries.

2 Uncertain Rank Join

We mainly summarize the latest contributions in designing uncertain rank join algo-
rithms in the context of uncertain mashups [5]. We briefly summarize the data model
used and an overall description of an uncertain rank join algorithm, URANKJOIN pro-
posed in [5] .

2.1 Uncertain Scoring Model

Without loss of generality, the score of tuple ti as a random variable with possible
values in the interval [loi, upi] ⊆ [0, 1]. The higher score values are preferred. Single-
valued scores are represented as score intervals with equal bounds. The score random
variable of tuple ti has a PDF Pi encoding the likelihood of possible scores of ti. The
random variables representing the scores of base tuples are assumed to be independent.
Uncertain score is the interval-based score representation described above.

The authors in [6] assume a similar model, where generating functions are used to
formulate and compute ranking queries efficiently on continuous score distributions.
The work in [5] mainly addresses consequences of assuming such model in the case of
joins.

Definition 1. [Score Dominance] We say that tuple ti dominates another tuple tj , de-
noted (ti
 tj), iff loi ≥ upj . �

When ti
 tj , ti is ranked on top of tj . However, when ti � tj and tj � ti, the
relative order of ti and tj needs to be defined using additional means and seman-
tics. Furthermore, for two different tuples ti and tj with equal single valued scores

Uncertainty in Rank Join 131

(i.e., loi = upi = loj = upj), a tie-breaker τ(ti, tj) that gives a deterministic relative
order is assumed. That is, τ(ti, tj) decides whether ti
 tj or tj
 ti. One example for
such tie-breaker is ordering based on unique tuples IDs.

It is straightforward to see that score dominance is non-reflexive (i.e., ti � ti), tran-
sitive (i.e., ((ti
 tj), (tj
 tk)) ⇒ (ti
 tk)), and asymmetric (i.e., (ti
 tj) ⇒
(tj � ti)). It follows that a partial order holds on tuples with uncertain scores [4].

Uncertain scores induce a space of tuple orderings. Specifically, given a relation
R = {t1, . . . , tn}, let ω be an ordering of R tuples, where ω[ti] is the rank of ti in ω.
ω is a valid ordering of R iff (ω[ti] < ω[tj]) ⇒ (ti
 tj) or (ti � tj ∧ tj � ti). The
valid orderings are equivalent to possible linearizations (topological sorts) of a partial
order. The number of possible orderings is exponentially large in general. The order-
ings space is generated by a probabilistic process that draws, for each tuple ti, a score
si ∈ [loi, upi] based on the density Pi. Ranking the drawn scores gives an ordering
whose probability is the joint probability of drawn scores. That is, the probability of an
ordering ω = 〈t1, t2, . . . tn〉 is computed as follows:

Pr(ω) =
∫ up1

lo1

∫ x1

lo2

...

∫ xn−1

lon

P(x1, x2, . . . , xn) dxn... dx1 (1)

where P(.) is the PDF of the joint distribution of P1, . . . , Pn. When the score random
variables are independent, we have P(x1, . . . , xn) = Πn

i=1Pi(xi).
Under this uncertain scoring model, multiple probabilistic ranking semantics have

been proposed in the literature. Example semantics include the following:

– Expected Scores: uncertain score intervals are translated into a single value com-
puted as the expected score value. Ranking is then carried out deterministically
(assuming a given tie breaker). For example in Figure 1, based on expected scores,
ω∗ = 〈t5, t1, t2, t3, t4, t6〉, assuming that the tie between t1 and t2 is resolved in
favor of t1.

– Expected Ranks [7]: The expected rank of a tuple is computed across all possible
orderings (worlds). Tuples are then ordered w.r.t their expected ranks resolving ties
deterministically. In Figure 1, based on expected ranks, ω∗ = 〈t5, t2, t1, t3, t4, t6〉.

– Most Probable Ordering [4]: the ω∗ is defined as argmaxω∈ΩPr(ω), where
Pr(ω) is computed using Equ 1. For example in Figure 1, ω∗ is the ordering
ω1 = 〈t5, t1, t2, t3, t4, t6〉.

Example 2. Figure 1 shows a relation R with uniform uncertain scores. The relation R
has 7 possible orderings {ω1, . . . , ω7}. The probabilities of ωi’s are computed by eval-
uating Equ 1 using Monte-Carlo integration, while assuming independence of score
densities. E[t] and ER[t], shown in Figure 1, are the expected score value and the ex-
pected rank of the tuple [7], respectively.

2.2 URANKJOIN

We assume a monotone user-defined scoring function F to be the source of the scores
of join results (i.e., F(x1, . . . , xn) ≥ F(x́1, . . . , x́n) whenever xi ≥ x́i for every i).
Typical scoring functions, such as summation, multiplication, min, max, and average,
are monotone functions.

132 I.F. Ilyas

t
5

t
1

t
2
 t

3

t
3
 t

4

t
4

t
6

t
3

t
6

t
2

t
4

t
6

t
1

t
3
 t

4

t
4

t
6

t
3

t
6

t
2

t
1

t
3
 t

4

t
4

t
6

t
3

t
6

0.418 0.02 0.063 0.24 0.01 0.24 0.01

1

2

3

4

5

6

1
 2

3

4
 5

6
 7

t
2
 t

5

t1 [.6 , .6]

t2 [.4 , .8]

t3 [.3 , .5]

t4 [.2 , .35]

t5 [.7 , .7]

t6 [.1 , .1]

R

ID Score

.6 2.5

.6 2.316

.4 3.981

.275 4.965

.7 1.251

.1 6

E[t] ER[t]

Fig. 1. Orderings space for tuples with uniform scores

URANKJOIN [5] returns a total order, ω∗, of the set tuples that have less than k other
dominating tuples (we call this set Jk). The total order is computed according to one
of the possible ordering semantics (e.g., one the semantics mentioned in Section 2.1).
Note that computing Jk does not require knowledge of the density functions Pi’s of
base or join tuples, since Jk is based on score dominance only. However, computing
ω∗ requires knowledge of Pi’s.

Example 3. In Figure 2, URANKJOIN({R, S} with a scoring function F = (R.a1 +
S.a1)/2, 3), where the join condition is equality of attribute ‘jk’, returns a total or-
der of join tuples in J3 = {(r1, s2), (r3, s1), (r2, s2)}, since all join tuples in J3
are dominated by less than 3 join tuples, and all join tuples not in J3 (only (r4, s3)
in this example) are dominated by at least 3 tuples. Based on the monotonicity of
F , the lo and up scores of join tuples are given by applying F to the lo and up
scores of the corresponding base tuples. For example, the score of (r1, s2) is given
by [F(.7, .3),F(.8, .4)] = [.7+.3

2 , .8+.4
2] = [.5, .6].

A common interface to most rank join algorithms, is to assume input relations sorted on
per-relation scores, while output (join) relation is generated incrementally in join scores
order. URANKJOIN uses a generic rank join algorithm (such as HRJN [1] as a building
block to compute Jk incrementally.

URANKJOIN assumes two sorted inputs (e.g., indexes) Li
lo and Li

up, for each in-
put relation Ri, giving relation tuples ordered on lo and up scores, respectively. By

(r2,s2)

(r3,s1) (r2,s2)

(r2,s2) (r3,s1)

1 [.7,.8]

1 [.4,.8]

2 [.3,.3]

3 [.1,.3]

2 [.6,.7]

1 [.3,.4]

3 [.2,.4]

r1
r2
r3
r4

s1
s2
s3

jk jka1 a1

R
S

URankJoin({R,S},(R.a1+S.a1)/2,3)

r1,s2
r3,s1
r2,s2
r4,s3

F

(r1,s2)

(r3,s1)

(r1,s2)

[.5,.6]

[.45,.5]

[.35,.6]

[.15,.35]

Possible Orderings
Space

Top-3 Join
Results

1 2

3 1

2 2

4 3

F

[.5,.6]

[.45,.5]

[.35,.6]

[.15,.35]

3

2 2

3 1 2 2

2 2 3 1

1 1

1 2

3 1

1 2

Fig. 2. Example

Uncertainty in Rank Join 133

processing the lo and up inputs simultaneously, URANKJOIN incrementally computes
Jk. This is done by using two instances of HRJN, denoted HRJNlo and HRJNup

where HRJNlo rank-joins tuples on their overall lo scores to find exactly k join results,
while HRJNup rank-joins tuples on their overall up scores to find all join results with
up scores above the kth largest score reported by HRJNlo. The execution of HRJNlo

and HRJNup is interleaved. Tuples in Jk are reported in up scores order to allow for
incremental ranking.

A URANKJOIN operator is a logical operator that accepts two inputs each has two
sorted access paths, corresponding to the lo and up score orders of the two input re-
lations. The operator produces two output tuple streams corresponding to sorted join
results based on lo and up scores.

Example 4. Figure 3 gives an example logical URANKJOIN query plan. The shown
plan rank-joins three relations R, S, and T with uncertain scores x, y, and z, respec-
tively. The bottom URANKJOIN operator uses indexes on the lo and up scores in Re-
lations R and S as its input access paths, while the top URANKJOIN operator uses
indexes on Relation T and the output of the bottom URANKJOIN operator as its in-
put access paths. The ULIMIT operator consumes both lo and up inputs from the top
URANKJOIN operator.

ULIMIT
(k)

URankJoin
R.JK=S.JK

IdxScan
R.xup

IdxScan
R.xlo

IdxScan
T.zlo

URankJoin
T.JK=S.JK

loup

IdxScan
S.yup

IdxScan
S.ylo

lo1 up1 lo2 up2

IdxScan
T.zup

lo1 lo2up1 up2

Fig. 3. A logical URANKJOIN query plan

3 Conclusion

Uncertainty is a distinguishing characteristic in common search computing scenarios.
In this chapter, we briefly discussed the challenges of ranking query results assembled
by joining multiple sources in the presence of score uncertainty. We surveyed some of
the proposed probabilistic ranking semantics and briefly described the state-of-the art
uncertain rank join algorithm URANKJOIN.

134 I.F. Ilyas

References

1. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational
databases. VLDB Journal 13(3), 207–221 (2004)

2. Natsev, A., Chang, Y.-C., Smith, J.R., Li, C.-S., Vitter, J.S.: Supporting incremental join
queries on ranked inputs. In: Proceedings of the 27th International Conference on Very Large
Data Bases, pp. 281–290 (2001)

3. Schnaitter, K., Polyzotis, N.: Evaluating rank joins with optimal cost. In: PODS, pp. 43–52
(2008)

4. Soliman, M.A., Ilyas, I.F.: Ranking with uncertain scores. In: ICDE, pp. 317–328 (2009)
5. Soliman, M.A., Ilyas, I.F., Saleeb, M.: Building ranked mashups of unstructured sources with

uncertain information. PVLDB 3(1), 826–837 (2010)
6. Li, J., Deshpande, A.: Ranking continuous probabilistic datasets. PVLDB 3(1), 638–649

(2010)
7. Cormode, G., Li, F., Yi, K.: Semantics of ranking queries for probabilistic data and expected

ranks. In: ICDE, pp. 305–316 (2009)

Trends in Rank Join

Ihab Ilyas1, Davide Martinenghi2, Neoklis Polyzotis3, and Marco Tagliasacchi2

1 University of Waterloo
2 Politecnico di Milano

3 University of California - Santa Cruz

Abstract. This chapter reports the main findings of a panel that was
moderated by Davide Martinenghi in which Ihab Ilyas, Neoklis Polyzotis,
and Marco Tagliasacchi shared their thoughts with the attendees of the
Second SeCo Workshop regarding current and future issues related to
what was presented during the session on rank join. The topics touched
upon during the discussion regarded relevance for Search Computing,
pertinence of optimization, multi-way joins, approximate answers, and
uncertainty.

1 Relevance of Rank Join for Search Computing

Rank join [3] is recognized as a well-established optimization problem that is
relevant for top-k query scenarios. As such, its importance in Search Computing
is apparent [4]. Its relevance is even higher when the objects returned by data
sources on the Web are equipped with scores, although rank join might even find
application when scores are opaque.

2 To Optimize or Not to Optimize?

A nowadays common opinion is that there are cases and contexts in which op-
timization is unnecessary and not worth the effort, so one should not blindly
start spending energies and resources on uncalled-for optimization – to this end,
Knuth’s famous quote about early optimization immediately comes to mind1.
Yet, rank join is certainly one of those problems for which optimization still
makes a lot of sense. It is often worthwhile to spend a little extra CPU time to
save time-consuming accesses to remote data sources whose cost is usually orders
of magnitude higher than that used for optimization. Several claims providing
evidence in this direction were contributed in the previous chapters as well as in
the literature on rank join [2,1,5].

1 “Premature optimization is the root of all evil”, in Knuth, Donald. Structured Pro-
gramming with go to Statements, ACM Journal Computing Surveys, Vol 6, No. 4,
Dec. 1974. p.268.

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 135–137, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

136 I. Ilyas et al.

3 Multi-domain Queries

Handling complex queries that aggregate results coming from several relations,
possibly more than two, is one of the main objectives of Search Computing. In
this respect, the construction of an n-ary rank join operator that coordinates
the accesses to each single data source and combines the results seems the most
promising approach to address this issue.

4 Exact vs. Approximate Answers

In some application scenarios, finding the exact top-k results for a query may be
prohibitively expensive or even impossible without exploring the entire search
space. In such cases, a softened top-k semantics seems more appropriate. Such
alternative semantics, sometimes referred to as “good-k” [6], usually provides
less guarantees (the good-k results are only guaranteed to be in some top-k′

set, with k′ greater than k) but requires a smaller amount of computation to
obtain some results. The question arises then whether good-k is enough for
practical purposes. All things considered, a good-k semantics seems to be a
satisfactory approximation of top-k when computing the exact top-k answers
is too expensive. Moreover, determining the exact top-k results is often not
particularly meaningful, as both the scores and the aggregation function are
imprecise. In addition, it is usually possible to show how far approximate answers
are from the actual top-k answers and to present this indication to the user who
issued the query.

5 Uncertainty in Rank Join

The role of uncertainty [7] in Search Computing as regards rank join is a sig-
nificant issue that will have an impact on how research on this topic should
be continued. A promising line of research is to consider uncertainty in the ag-
gregation function, which reflects the uncertainty the user him/herself has in
the model (s)he wants to use to pose a top-k query. Uncertainty might even
be brought to an extreme by dismissing the aggregation function completely.
In such a case, research on skylines may be the answer. Yet, it can be debated
whether the search space reduction power of skylines may be of help in crucial,
market-oriented applications. Indeed, it can be observed that, in such cases, all
objects (competitors) naturally place themselves on the skyline in order to avoid
being excluded by the market itself.

References

1. Finger, J., Polyzotis, N.: Robust and efficient algorithms for rank join evaluation.
In: SIGMOD Conference, pp. 415–428 (2009)

2. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational
databases. VLDB, 754–765 (2004)

Rank Join in Search Computing 137

3. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top- query processing techniques
in relational database systems. ACM Comput. Surv. 40(4) (2008)

4. Ilyas, I.F., Martinenghi, D., Tagliasacchi, M.: Rank-join algorithms for search com-
puting. In: SeCO Workshop, pp. 211–224 (2009)

5. Martinenghi, D., Tagliasacchi, M.: Proximity rank join. PVLDB 3(1), 352–363
(2010)

6. Martinenghi, D., Tagliasacchi, M.: Top-k pipe join. In: ICDE Workshops, pp. 16–19
(2010)

7. Soliman, M.A., Ilyas, I.F., Ben-David, S.: Supporting ranking queries on uncertain
and incomplete data. VLDB J. 19(4), 477–501 (2010)

Part 5

Query Processing

While rank-join theory fuels search computing with methods and algorithms, such
fuel requires engines to be capable of applying methods and algorithms and
transforming them into efficient computations over Web sources. Efficient query
processing is foundational in any data-driven computation, and search computing
makes no exception. This part discusses the role of query processing in search
computing as a collection of abstractions, models, and techniques for the analysis and
execution of multi-domain queries on the Web, together with the functionalities, the
internal structure, and the planned improvements to the existing prototype.

The first chapter overviews the search computing query processor. At the highest
level of abstraction, one language fits for all, and this is SeCoQL, an SQL variant
chosen as the most compact and readable conjunctive formulation for both experts
and developers, easily generated by the UI modules and easily parsed by the
underlying modules. Queries are then expressed at the logical level in the form of
acyclic invocation workflows after a compile-time analysis that decides a cost-driven
scheduling of service invocations. At the physical level, queries are then translated
into an executable specification that distinguishes between the data flow and the
control flow, provides support for parallelism, accounts for stateless and stateful
computation tasks, and supports backwards and forward control.

The second chapter presents a study on how run-time adaptivity can be achieved in
the context of search computing. Proposals for adaptive join processing can be
classified as plan preserving, where adaptation takes place over an essentially stable
representation of a query, or plan changing, where adaptation changes the query plan,
and thus adaptation involves stopping the execution, re-optimizing the plan, and
resuming execution. Plan changing proposals must take account of the (partial) work
done at the point when re-optimization takes place. After a general overview of the
available methods, several options for both plan preserving and plan changing
adaptation in search computing are considered.

Efficient Computation
of Search Computing Queries

Daniele Braga, Michael Grossniklaus,
Francesco Corcoglioniti, and Salvatore Vadacca

Dipartimento di Elettronica e Informazione, Politecnico di Milano
P.za L. Da Vinci, I-20133 Milano, Italy

{braga,grossniklaus,corcoglioniti,vadacca}@elet.polimi.it

Abstract. This chapter gives a high-level overview of how query pro-
cessing is carried out in SeCo. At the highest level of abstraction, queries
are expressed in a conjunctive declarative query language over service
interfaces, named SeCoQL, chosen to be a compact and readable formu-
lation to serve both experts users and system developers. Queries are then
expressed at a logical level in the form of acyclic invocation workflows,
after a compile-time analysis that decides a cost-driven scheduling of
service invocations. At a lower, physical level queries are then translated
into executable specifications that distinguish between the data flow and
the control flow, support parallelism, account for stateless and state-
ful computation tasks, and support backward and forward control. The
query engine is implemented as an interpreter of these physical plans. A
workbench and testing environment is also available in the form of a tool,
to monitor the processing of complex queries by inspecting all phases of
their analysis and execution, at all levels of abstraction.

1 Introduction

The query processor deals with the problem of scheduling service calls, taking
into account their invocation constraints, pursuing some optimization objectives
at compile-time, and then dealing at run-time with their actual possibly unex-
pected behavior during the execution.

The chapter presents all the abstractions and assumptions used by the query
planner and by the execution engine, in the way they are currently supported by
the implementation. These concepts are here addressed in top-down order, and
the chapter concludes with a short description of the implementation of the query
engine and of the characteristics of the query workbench that is available as a
demo of the system. The core concepts, abstractions, and system components
related to query processing are the following.

– Multi-domain queries: independently of the higher-level languages and
representations in which queries are formulated at the user interface level,
any query is, from the engine’s perspective, the specification of a collec-
tion of services to be invoked and a set of conjunctive conditions over their

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 141–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

142 D. Braga et al.

results. SeCoQL, the declarative textual language chosen to represent ab-
stract queries at this stage, serves well as matching point between different
components, is easily generated by the UI modules and easily parsed by the
underlying modules, and is compact and readable enough to be convenient
also for expert users and developers.

– Logical plans: a compile-time analysis of the SeCoQL query performs a
cost-driven optimization of the scheduling of service invocations. The input
of this stage is a SeCoQL query in which the Service Interfaces to be invoked
have already been chosen by higher layers, and the join types (pipe vs paral-
lel) are therefore already fixed. The planner exploits the remaining available
degrees of freedom to decide the topology, the number and sequence of ser-
vice invocations, and the join strategies. The output is a logical plan, i.e., a
specification of a workflow with quantitative estimates of the size of partial
results and of the number of invocations to be performed on each service in
order to produce these results.

– Physical plans: logical plans are then translated into query plans that are
directly executable by the query engine. These plans are expressed in Panta
Rhei, a unit-based language with support for parallelism, stateless and state-
ful execution, and backwards and forward control. Panta Rhei was designed
to bridge the gap from the compile-time analysis performed by the query
planner at the logical level to the run-time enactment of the query. It was
designed with the objective of providing a clear specification of the engine
behavior and also enabling runtime adaptivity in the form of reactions to
events that do not match the expectations of the user or the assumptions
made by the system at compile-time. Distribution, parallelization, and repli-
cation issues have also been considered.

– Query Execution: the query engine is implemented as an interpreter of
Panta Rhei plans. The execution of a query is based on the simple assump-
tion that any query consists of either (a) a simple invocation of a service
interface, or (b) the combination of the results of two subqueries. In the for-
mer case, the engine supports the invocation of service interfaces that wrap
data sources of many different kinds. As for the latter case, the results of
the sub-queries can only be joined in series (pipe join) or in parallel (parallel
join), and the interleaving of invocations performed on the sub-queries is
handled by interpreting the signals sent by operators dedicated to this task,
called strategy units. Also, the execution of a query can be monitored in all
its stages by means of a workbench tool; a preview of this tool is shown in
a demo video on the project website [1].

Figure 1 shows the conceptual architecture of the project and places the three
query representation formats in the data flow between modules, from the User
Interface (UI), in the upper part of the architecture, down to the invocation of
actual services. The rest of the chapter is organized in four sections, dealing with
the four items mentioned above.

The SeCo Query Processor 143

Fig. 1. Query representation formats in the SeCo framework

2 Background on Multi-domain Queries

We recall here the notion of multi-domain query by means of a classical running
example: a query that searches for a good and recent American action movie in
a theater not too far from the user’s home and with a good Mexican restaurant
nearby. The query involves three Service Marts (Movie, Theater, and Restau-
rant), and specifically three Service Invocations that implement three specific
Access Patterns of these Marts, having the following schemata, where super-
scripts I, O, and R respectively identify parameters in input, in output, and in
output with ranking.

– Movie(Genres.genreI , MCountryI , TitleO , DirectorO, ScoreR, YearO,
LanguageO, Actor.nameO)

– Theater(UAddressI , TNameO, TAddressO, TPhoneO, DistanceR,
Showings.titleO , Showings.showingtimeO)

– Restaurant(UAddressI , Category.nameI , RNameO, RAddressO,
RPhoneO, MapUrlO, DistanceO , RatingR)

Note that these Access Patterns are all relative to data sources that return
ranked results. Movies are returned in order of the scores assigned by users,
theaters are returned in distance order from the user address that is specified in

144 D. Braga et al.

input, and restaurants are returned in rating order. Reataurants are indeed also
retrieved based on a distance range from the address specified in input, but in
the case of this access pattern the distance condition only acts as a filter and
produces a readable value of distance (the DistanceO attribute), while the actual
order in which the results are returned is that of the restaurant rating.

Join conditions on attributes can be denoted by means of connection pat-
terns [2] between service marts, such as Shows and Watch&Eat, whose definition
in terms of equality between attributes is given below.

– Shows(Movie M,Theater T): [(M.Title=T.Showings.title)]
– Watch&Eat(Theater T,Restaurant R): [(T.TAddress=R.UAddress)]

Note that the former connection pattern checks equality between an atomic
value (M.Title) and a set of values (T.Showings.title) taken from a multi-valued
attribute, thus expressing the containment of the former in the latter.

SeCoQL has a declarative SQL-like syntax, in which the query result is de-
fined as the concatenation of the tuples qualifying from the services listed in
the FROM clause by means of the evaluation of the predicates listed in the WHERE

clause and projected according to the list of attributes of the SELECT clause.
More precisely, every service mentioned and associated to an alias in the FROM

clause represents one call to a specific Service Interface, and there may be more
than one call to the same Interface in the same query, in which case two dif-
ferent aliases are required. SeCoQL supports the specification of join conditions
by means of connection patterns, but in the normal form of the language they
are always expanded into their explicit form of conjunction of equalities over at-
tributes. The query of the running example may have the following formulation
in SeCoQL.

SELECT M.Title, T.TAddress, R.RName, R.RPhone, R.RAddress,

T.Showings.showingtime

FROM Movie AS M, Theater AS T, Restaurant AS R

WHERE Shows(M,T) AND Watch&Eat(T,R) AND

M.Genres.Genre = ’Action’ AND

M.Country = ’USA’ AND

R.Category = ’Mexican’ AND

T.UAddress = $INPUT

LIMIT 50 TUPLES AND 35 CALLS AND 60 SECONDS

Open parameters represent unbound variables whose values are assigned by the
execution environment at runtime. All other input variables in the query must
either have values specified in the conditions (as it is the case for Genre = “Action”
in the example) or get their value from an output attribute (as it is the case for
TAddress passed from Theater to Restaurant). In the example, there is only one
open parameter, $INPUT, that represents the geographic point chosen by the user
in order to center the search for theaters. For readability concerns, we restrict
open parameters to be specified with identifiers whose first character is a $.

The SeCo Query Processor 145

The LIMIT clause, that is fully optional, fixes the query limitations in terms of
three limit conditions: number of combinations in the result (keyword TUPLES),
number of calls to services during query execution (keyword CALLS), and number
of seconds after which the execution is halted by time-out (keyword SECONDS).
Query execution terminates as soon as one of the limit conditions is reached.

Based on the access patterns of the service interfaces used in the query, it is
already possible at this stage to fix the join types that will be used in the query
plan. The planner instantiates pipe joins whenever attributes that are in output
from a service are used as input for other services, and instead parallel joins
whenever the attributes involved in a join condition are both output attributes.
In the example, the join between Movie and Theater can only occur in parallel,
and Restaurant must always be invoked after Theater, in order to feed the pipe
join with TAddress values, but there are no precedence constraints on the mutual
position of Movie and Restaurant in the plan.

The computation of a fully determined topology for the query plans is the
main responsibility of the Query Planner, that transforms the SeCoQL query
into a physical plan that specifies a workflow of invocations. Also, based on some
relevant profile figures taken from the service mart repository, the “optimization”
of the query takes place, in a two-step approach (Logical and Physical planss),
as described next, so as to estimate the amount of service calls to be overall
performed in order to produce a target number of results.

3 Logical Query Plans

The optimization problem considered in the generation of logical plans, and ad-
dressed in this section, is the following: given a SeCoQL query, find the query
plan topology that minimizes the expected execution cost according to a given
cost metric in order to obtain k answers. The process of generating a plan starts
from the conjunctive query expressed in SeCoQL and ends with a fully instanti-
ated invocation schedule. The choice between alternatives is guided by heuristics.

3.1 Cost Metrics

A cost metric is a function that associates a cost to each query plan. We mainly
consider two cost metrics: (a) the execution time metric, which measures the
(expected) time elapsed from query submission time to the production of the
k-th answer, and (b) the sum cost metric, which computes the cost of a plan
for producing k answers as the sum of the costs of each operator used in the
plan. In the former, the time required for producing k tuples takes into account
the number of invocations of each unit and the expected elapsed time for the
execution of that unit in order to obtain a given number of results, and the cost
must account for the slowest path flowing tuples from the input to the output of
the plan. For the latter, examples of costs for a service invocation are the cost
of computing joins or the cost charged by the service. A special case of the sum
cost metric is the request-response cost metric, which consists of considering only

146 D. Braga et al.

the cost of service invocations required to execute the plan, omitting to consider
operation execution costs. This metric is particularly relevant when the transfer
of data over the network is the dominating cost factor.

Other cost metrics of interest, though so far not considered in detail in the
project are the bottleneck cost metric, which gives the execution time of the
slowest service in the plan and is relevant in contexts of pipelined execution
of continuous queries, and the time-to-screen cost metric, which measures the
time required to present the user with the first result. The former metric is
suitable to contexts with homogeneous services that respond to invocations with
“continuous” streams of results. In these cases, the time spent to initialize and
load the pipelines is negligible w.r.t. the time spent in stable regime of execution,
during which the overall throughput is limited by the throughput of the “slowest”
service. This metric is hardly applicable in our context, where search services
rarely produce all their tuples and the execution is normally limited to reaching
k answers rather than being run as continuous queries. The latter metric is
potentially more relevant to the project, as it is suitable for settings in which
the user expects a prompt interaction, and would enable an optimization based
on estimates of the time that users are ready to spend waiting for the first results,
before quitting the task.

3.2 Heuristic Planning: Topology and Join Strategies

The optimization method adopted to determine the less costly plan explores
the combinatorial solution space of all possible translations of the declarative
query into fully instantiated invocation schedules. The exploration is organized
by means of an incremental construction of the query plans, that takes place
in two phases, imposing a discipline in the order in which alternative plans are
generated and considered. A detailed description of the approach and of the
background for optimization is given in our previous work [3,4]. The graphical
notation used in the figures is also taken from these previous works, to which
the interested reader is directed.

The first phase in the incremental construction of a logical plan is the selection
of a topology for the logical query plan that is compatible with the given choice
of service interfaces. This phase fixes the order of invocation of the services, as
well as the data flow and the details of join operations. Even if at this stage all
access patterns have been fixed, and therefore the nature of joins (pipe vs paral-
lel) is fully determined, there may still be alternative topologies compatible with
the precedence constraints that they enforce on the invocation order. The second
phase in the construction is the choice of the number of fetches to be performed
over all chunked services. This phase allows to fully determine the execution
schedule and the join strategies, and therefore to compute its cost according to
a given metric. For each phase, there are alternative heuristics for effectively
building efficient plans. Once more, the reader is directed to [3] for details. The
default heuristics currently adopted are “parallel is better” for the topology and

The SeCo Query Processor 147

“square is better” for the fetching ratios, that are respectively meant to minimize
the time-to-screen of the first results and to maximize the diversification of
results.

In the running example, there are two alternatives. Textually, these topologies
can be denoted as “(M//T)|R” and “M//(T|R)”, where “//” and “|” stand for
parallel and pipe join, respectively. The two logical plans that implement the
alternative topologies are shown in Fig. 2.

Restaurant

Movie

Theatre

OUTIN

(a) Topology (M//T)|R

Restaurant

Movie

Theatre

OUTIN

(b) Topology M//(T|R)

Fig. 2. Alternative query plan topologies

4 Physical Query Plans

Physical plans are expressed in Panta Rhei and are interpreted by the query
engine. The design of Panta Rhei follows a well-defined set of design principles.
Plans need to be composable, i.e., complex plans can be formed from simpler
sub-plans. They must lend themselves to parallelization, to leverage concurrency
as much as possible, and must be distributable over a number of computing
nodes. We start by introducing the underlying data and control models, and then
describe the topology of the plans, that are graphs with nodes that represent
physical operators (or units) and edges that represent the data and control flow
in the plan. We then define all types of edges and units in detail. Finally, we
describe how physical plans can be composed by giving a minimal set of recursive
rewriting rules to define the concept of a well-formed plan.

4.1 Data and Control Model

The data model of the execution engine is based on the Service Mart frame-
work [2] which associates each service with a flat relational schema extended
with a controlled use of multi-valued attributes. The schema of the tuples of the
results is simply a subset of the schema obtained by concatenating the schemes
of all the services that are involved in a query. Some of the attributes are ini-
tialized with the constants specified by the user. Result tuples are progressively
composed by using service results as the query evaluation progresses.

The control model of the execution engine addresses the fact that, in Search
Computing, plans need to be highly configurable at compile-time and, to a cer-
tain extent, capable of adaptation at run-time. The requirement for configura-
bility stems from the fact that search services may have very different and time

148 D. Braga et al.

QEP

(a) (b)

Fig. 3. (a) Query execution plans (QEPs) and (b) their components

varying computational complexity, execution time, or monetary cost. Adapta-
tion is motivated by the fact that the properties of the search services and the
data distribution encountered at run-time may be significantly different from the
assumptions made by the query planner and the optimizer at compile-time, that
are necessarily based on statistics derived from previous observations. Moreover,
plans which want to guarantee optimality (top-k) must adapt their behavior to
the actual ranking values that are progressively read from service results.

Data Flow. The data flow of a physical plan consists of data edges that form a
directed acyclic graph. Every data edge carries tuples whose schema is obtained
as the concatenation of all the schemas of the services invoked by antecedent
nodes of that edge. Data messages contain chunk identifiers and chunks of tuples.

Control Flow. The control flow of a physical plan comprises command edges
and feedback edges to support both forward and backward scheduling. Command
edges transport command messages that can be further distinguished into fetch
messages and join messages.

– A fetch message specifies which tuple of which chunk carried by a data
edge should be used as input to the query execution plan for performing

The SeCo Query Processor 149

the nth fetch operation, where a fetch operation is next defined. We use the
shorthand “3@A2” to denote that the third fetch is done with tuple 2 from
chunk A.

– A join message defines which pair of chunks from two data edges in input
to a join operator should be joined. Join messages are used to implement
different exploration strategies in parallel and pipe joins.

Feedback edges transport feedback messages containing information about the
execution of a physical plan. Feedback messages are transmitted after the plan
has processed the commands given in input and serve primarily as acknowledge-
ments. Feedback messages can be further classified into statistics messages and
exception messages. Statistics messages contain data such as the cardinality of
the computed result, the window of encountered ranking scores, the distribution
of monitored attributes (e.g., join attributes), and the EOF marker if no more
results can be obtained from a plan. Exception messages are transmitted by a
plan in the case it observes an abnormal behavior.

The control flow is, therefore, bidirectional: the forward control flow transports
instructions to a plan indicating how the tuples in input must be considered by
the plan, the backward control flow reports as feedback statistical data charac-
terizing the plan execution. As a consequence, the execution engine can support
a purely forward scheduling of plans, as well as a mixed forward and backward
scheduling of plans. In the former case, the query optimizer determines the entire
execution strategy and configures the engine accordingly. In the latter case, the
query execution strategy is dynamically determined based on selected attributes
that are monitored by the execution engine.

4.2 Query Execution Plans

A query execution plan (QEP) is a well-formed and executable physical query
plan, modeled as a graph, that accepts in input chunks of tuples and control
messages, denoted by means of incoming data flow edges and control flow edges
respectively, and produces in output chunks of result tuples and feedback mes-
sages, denoted by means of outgoing data flow edges and control flow edges
respectively. Graphically, a QEP is represented as shown in Fig. 3(a). The in-
coming data edge transmits chunks of tuples in input to the QEP, while the
outgoing data edge transmits chunks of tuples to a downstream QEP or to the
stop node. The incoming control edge carry messages that regulare how the tu-
ples in input should be processed within the QEP. The outgoing control edge
transmits feedback data about the execution of the QEP.

We next discuss the nodes that can appear within QEPs, listed in 3(b), then
we give simple compositional rules which explain how well-formed query plans
can be generated.

Each node in the plan represents a processing units of one of the following
kinds; the behavior of nodes is determined by its input and its state.

150 D. Braga et al.

– Start/Stop nodes: The start node injects the constant values specified by
the query into the query execution plan along the data flow edge. Addition-
ally, it transmits the start command along the control flow edge. There is
only one start node per query. The stop node collects the results of a query
execution plan and makes them available to clients of the execution engine.
Additionally, it acts as a sink for all feedbacks. There is only one stop node
per query.

– Service invocation nodes: The exact service invocation node completes
the tuples in input by invoking an exact service. Exact services produce a
finite set of tuples that represent the exact (and thus complete) response to
the service call query given the input parameters. The output tuples are not
ranked. The search service invocation node completes the tuples in input by
invoking a search service. Search Services exhibit a behavior similar to Web
search engines: results are unbound, ranked and chunked, and normally there
is no interest in obtaining a complete result, but only in obtaining the first
chunks. Both types of service nodes return one chunk of tuples in output for
every invocation.

– Strategy nodes: A parallel strategy node controls two QEPs that are sched-
uled in a parallel join, while a pipe strategy node controls two QEPs that are
scheduled in a pipe configuration. Both these unit are assigned a “budget”,
i.e., a number of invocations that they are allowed to “spend”. Spending the
budget means breaking it down and passing it to the controlled QEPs to be
consumed by considering the commands received in input and distributing
the invocation commands to the connected sub-plans accordingly. Option-
ally, these units also receive feedback from the controlled QEPs, that they
may use to tune the spending of the remaining invocation budget.

– Joiners: The joiner node is always controlled by a parallel strategy node.
It receives chunks of tuples on its two different incoming data edges, and
evaluates the join predicate in order to join them into new chunks of tuples,
according to the join messages received from the strategy node. The joiner
per se is a stateless unit whose role is limited to the evaluation of a simple
predicate, but coupled with the strategy unit it provides the flexibility to
implement many different logical join operations at the physical level.

– Data flow modifiers: A selection node filters chunks of tuples according
to a selection predicate. Since the selection unit does not re-chunk the tu-
ples, the chunk size can decrease in the order of the selectivity of the given
predicate. A projection node shrinks the schema of the result to the specified
list of attributes only. The chunker node intercepts chunks of tuples flowing
along a data edge and recombines them sequentially into chunks of a given
size until it finds the EOF marker. A continuous sort node sorts data on a
per chunk basis as they flow along a data edge, whereas a blocking sort node
caches all chunks flowing along a data edge until it receives the EOF marker
and then sorts the tuples across all chunks. Both sort nodes are configured
with a sort function. While a continuous sort node produces a same-sized
output chunk for every input chunk, a blocking sort node is additionally
configured with an output chunk size.

The SeCo Query Processor 151

Parallel and pipe joins are implemented in a QEP by different stategy nodes,
whose parameter setting is determined according to the service interface specifi-
cations (their chunk sizes, average response times, and invocation costs).
Figure 4 shows the plan configuration for pipe and parallel joins between two
generic QEPs.

QEP QEP

QEP

QEP

Fig. 4. QEPs for pipe and parallel joins

4.3 Plan Composition

The following set of production rules defines how QEPs can be recursively com-
posed to form more complex plans. The axiom plan consists of a single QEP
having a start node as predecessor and a stop node as successor. Rules indi-
cate that the pipe or parallel composition of two QEPs gives a QEP, and that
a QEP can be composed with any unary modifier operator (i.e., units with a
single input and output data and control flow) yielding a QEP. Plans obtained
by arbitrary applications of these rules to the axiom are called well-formed and
have associated well-defined semantics.

QEP := (1)

QEP := (2)
QEP := QEP ��pipe QEP (3)

QEP := QEP ��parallel QEP (4)

QEP := QEP ∪ { , A
Z , A

Z , } (5)

An example of a QEP composed using all five rules is shown in Fig. 5. Based on
Rule 3, the outer-most QEP can be deconstructed into two sub-plans that are
combined using a pipe join. The first sub-plan can then be further decomposed
based on Rule 4 into two sub-plans that are combined using a parallel join. Ap-
plying Rule 1, each of these sub-plans can be substituted by a search service (S1
and S2). The second sub-plan of the pipe join can be decomposed into a query
execution plan followed by a modifier (selection) based on Rule 5. Finally, this
last query execution plan can be substituted by an exact service (S3) according
to Rule 2.

152 D. Braga et al.

If we instantiate S1, S2, S3 as Movie, Theater and Restaurant respectively,
ignoring the application of Rule 5, we also have the Panta Rhei plan for the
running example.

S2

S1

S3

Fig. 5. Nested QEPs

5 The Experimental Workbench

A prototype of an execution engine implementing the functionalities provided by
Panta Rhei is currently used for internal tests of the Search Computing frame-
work. The engine is built on top of the Service Mart invocation and wrapping
environment shown in Fig. 1, which exposes heterogeneous services, such as Web
services, custom services, and relational databases, whose description is out of
the scope of this paper.

The system provides both synchronous and asynchronous search mechanisms.
End users of the engine can either wait for search results to be produced or be
notified of their production. In the first case, the execution engine is directly
connected to a user interface, whereas, in the latter case, the execution engine
itself is bundled as a service. Fine-grained control is also provided, to allow for
interaction with the search process, in order to dynamically orchestrate it, for
example to react to the results being produced.

The engine is implemented as a multi-threaded environment that uses a thread
pool to support both inter and intra-query parallelism. To support inter-query
parallelism, queries can share computation and storage resources as well as reuse
cached partial results of already executed invocations, if still valid. Intra-query
parallelism is achieved by spawning multiple instantiations of replicable units to
distribute the workload of computationally complex and time consuming tasks,
such as invocations of services with high latency.

A scheduling algorithm activates the various units, assigning them to threads
to handle incoming control messages, according to the priority of the search
process. The control flow is implemented by means of message queues, and, in the

The SeCo Query Processor 153

Fig. 6. The architecture of the engine and planner implementation

case of replicable units, messages can be delivered to multiple unit instances, even
out-of-order. The data flow is implemented by means of buffers shared between
units, according to a producer/consumer paradigm. The implementation of join
strategies is fully decoupled from the implementation of the strategy units. This
allows new strategies to be plugged in with no impact on the implementation of
the units themselves.

Also, we adopt a two-level caching mechanism. On the one hand, we take
advantage of the cache implemented at the service level, so as to avoid repeated
invocations with the same input. On the other hand, we also cache partial query
results at the engine level, which impacts on the performance of multiple execu-
tions of the same process and also of the same sub-plan shared between different
search processes or reused by the same query in a later execution.

Figure 6 shows the modules of the query engine and the query planner in the
context of the overall software architecture of the system. The invocation of the
execution of a query via the Engine API causes the instantiation of a Controller
for the incoming query. The controller is assigned to the current search session
and is given access to both (a) the Cache Manager, that handles the session-based

154 D. Braga et al.

cache and connects to the inter-session caching system, and possibly (b) to the
Persistency Manager, that is in charge of the materialization of query results
into a persistent data storage, whenever queries are registered as permanent
data sources that need to be periodically updated. The interpretation of a query
by the controller follows a simple recursive scheme that is based on the internal
structure of the query into QEPs and sub-QEPs. The main functionality of the
Controller is to instantiate the threads corresponding to the units in the QEP
currently under evaluation, and in turn activate an execution context for any sub-
QEP possibly contained into the current QEP. Invocation units are interpreted
performing a supervised access to the corresponding Web Service (through an
adaptor that connects to the Service Repository) or resorting to Local Functions
in some special cases in which the invocation units represent access to locally
available computation resources (as it may be the case, e.g., for the transcoding
of two geo-referenced locations and the computation of their distance).

Queries can be submitted to the API in the form of already instantiated
executable query plans, and in this case they are immediately interpreted, or
in the form of SeCoQL statements. In the latter case, they are passed to the
Query Analyzer to undergo the transformations described in Sections 3 and be
converted in Panta Rhei plans as defined in Section 4.

A demo that consists in a walk through the abstractions presented here is
available on the project website [1]. A snapshot of the workbench is shown in
Fig. 7. In the shown panel the tool allows the user to control the query results
as they are progressively produced and the execution timeline that tracks the
activation of the different units.

Fig. 7. A snapshot of the Query Processor Workbench

The SeCo Query Processor 155

6 Conclusion

In this chapter, we have given a high-level overview of how query processing is
carried out in SeCo, addressing the formulation and execution of multi-domain
queries at different levels of abstraction, from the expression in SeCoQL, a
declarative query language over service interfaces, down to the interpretation
of physical query plans by means of a query engine that support parallelism and
distribution. We also described the implementation of the query engine as the
interpreter of these physical plans, as it is demonstrated in the demo available
on the project website [1].

References

1. The Search Computing Project: Demonstrator of the Execution Engine (June 2010),
http://www.search-computing.org/demo/qp

2. Campi, A., Ceri, S., Gottlob, G., Maesani, A., Ronchi, S.: Service marts. In: Ceri,
S., Brambilla, M. (eds.) Search Computing. LNCS, vol. 5950, pp. 163–187. Springer,
Heidelberg (2010)

3. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of Multi-domain
Queries on the Web. PVLDB 1(1), 562–573 (2008)

4. Braga, D., Ceri, S., Grossniklaus, M.: Join Methods and Query Optimization. In:
Ceri, S., Brambilla, M. (eds.) Search Computing. LNCS, vol. 5950, pp. 188–210.
Springer, Heidelberg (2010)

http://www.search-computing.org/demo/qp

Run-Time Adaptivity for Search Computing

Daniele Braga1, Michael Grossniklaus1, and Norman W. Paton2

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano
{braga,grossniklaus}@elet.polimi.it

2 School of Computer Science, University of Manchester
npaton@manchester.ac.uk

Abstract. In Search Computing, queries act over internet resources,
and combine access to standard web services with exact results and to
ranked search services. Such resources often provide limited statistical
information that can be used to inform static query optimization, and
correlations between the values and ranks associated with different re-
sources may only become clear at query runtime. As a result, search
computing seems likely to benefit from adaptive query processing, where
information obtained during query evaluation is used to change the way
in which a query is executing. This chapter provides a perspective on how
run-time adaptivity can be achieved in the context of Search Computing.

1 Introduction

In contrast to traditional data sources, such as databases and digital libraries,
service-based data sources like web services and search engines are more challeng-
ing to characterize in terms of average response time, expected result size, data dis-
tribution, and similar features that are typically used to perform query planning
and optimization according to consolidated techniques. A traditional optimiza-
tion approach alone is therefore expected to be less effective in a setting where
most data is accessed via service invocations and by means of search engines.

Nevertheless, as these data sources are central to Search Computing, it is
crucial to have a query processing paradigm that is (a) sophisticated enough
to compute an “off-line optimal” query plan at compile-time, and (b) flexible
enough to adapt that plan at run-time, in response to deviations from the as-
sumptions made at compile-time on the expected behaviors.

More specifically, a query execution plan embodies the decisions made at
compile-time by the query optimizer that generated it. These decisions broadly
consist of

1. the order of evaluation of operators, whenever alternative schedules can be
considered equivalent;

2. the choice of alternative algorithms and auxiliary data structures to im-
plement the evaluation of operators (as can be the case for different join
strategies and different levels of caching);

3. the level of partitioned parallelism, so as to control if the same operation can
be performed in parallel by different computational units on different data
fragments; and

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 156–166, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Run-Time Adaptivity for Search Computing 157

4. the allocation of plan fragments to available computational resources, so as
to balance the computational load and avoid loss of performance due to
bottlenecks.

An adaptive query processor may revise any of the above decisions at query
run-time, in the light of feedback received, e.g., on actual rather than predicted
selectivities, on the presence of delays and idle computational units, or on the
correlation between rankings from different searches.

Proposals for adaptive query processing can be classified as plan preserving,
where adaptation takes place by tuning the strategy used to execute an es-
sentially stable representation of a query, or plan changing, where adaptation
changes the query plan, and thus involves stopping the execution, re-optimizing
the plan, and resuming execution. Plan changing proposals, in particular, must
take account of the (partial) work done at the point when re-optimization takes
place.

This chapter will discuss the plan preserving and plan changing opportunities
for adaptation in Search Computing. Section 2 outlines the key features of plan
changing and plan preserving approaches to adaptation, and discusses how these
are affected by ranked data. Section 3 outlines opportunities for plan changing
adaptivity in the context of the Panta Rhei execution model, described in the
previous chapter. Section 4 concludes the chapter with an outlook on future
work.

2 Run-Time Adaptive Query Processing

This section details techniques that have been developed to exploit both plan
preserving and plan changing adaptation, with specific reference to adaptation
for rank-aware queries. In this section, an approach is considered to be plan
preserving if the query optimizer is not invoked at query runtime to identify a
new plan, and plan changing where the optimizer is invoked at query runtime to
generate a plan that may then be used to complete query execution.

2.1 Plan Preserving Adaptation

Planpreservingqueryadaptationmodifies somepropertyof query executionat run-
time in response to informationabouttheenvironment inwhichaquery is executing
(e.g.machine loads)or some informationaboutthequery(e.g. operator selectivity),

Table 1. Plan preserving adaptations

Proposal Property Adapted

Eddies [1] Route followed by tuples between operators
Flux [2] Distribution policy in partitioned parallelism
DITN [3] Presence of redundant fragments
Scrambling [4] Query schedule

158 D. Braga, M. Grossniklaus, and N.W. Paton

while leaving the basic structure of the plan unchanged. Table 1 lists several plan
preserving approaches along with the property that is adapted. To take these in
turn:

Eddies [1]: Unlike classical query plans, in which the order of operator execu-
tion is reflected in the structure of the plan, in this proposal an eddy operator
is introduced that routes data to the operators that actually evaluate the
query. The eddy then monitors these operators, for example to ascertain their
selectivities, and changes the order in which tuples are routed to operators
on the basis of this feedback. This has the effect, for example, of changing
the join order at runtime.

Flux [2]: In partitioned parallelism, a single operator may be assigned to mul-
tiple computational nodes, and a distribution policy indicates what fraction
of the data should be directed to each node. In this proposal, the distribu-
tion policy may be revised at query runtime, with a view to managing load
imbalance, and a protocol is provided for moving operator state to reflect
changes in distribution.

DITN [3]: In the Data in the Network (DITN) proposal, it is assumed that
queries are being evaluated on non-dedicated (e.g. scavaged) resources, and
thus that the resources have unpredictable loads and that there may be
surplus resource available. In parallel query scheduling, where there is a
delay in completing a query fragment, a redundant copy is run on different
nodes, and the first of the copies to produce results is preferred over the
other.

Scrambling [4]: In query scrambling, adaptations seek to accommodate delays
in sources generating tuples. One of the adaptations changes the order in
which query fragments are scheduled, by identifying runnable fragments that
are then executed and their results materialized.

Although there is considerable diversity in plan preserving techniques, there are a
number of recurring themes; the designers of plan preserving adaptive strategies
must:

– Identify the problem to be addressed – this is typically much more specific
than improve query response time, as the adaptation to be made is gener-
ally targeted at a particular problem. For example, the detection of load
imbalance may result in a change in workload allocation.

– Identify the monitoring information that is required both to diagnose the
problem and to parameterize the adaptation. For the most part, monitoring
information is that required to parameterize a query cost model [5], but
the monitoring information can be also used to select responses as well as
to analyse progress (e.g. for learning the properties of different scheduling
algorithms [6]).

– Define the adaptation that is to take place, identifying: (i) any constraints
on when the adaptation can safely be applied (e.g. moments of symmetry in
eddies [1]); (ii) any additional state that is required to support the adaptation
(e.g. State Modules that support efficient query processing by eddies [7]); and

Run-Time Adaptivity for Search Computing 159

(iii) any changes or additions to query compilation or optimization that are
required to support adaptation (e.g. a specialized data distribution policy is
used by DITN [3]).

– Integrate the adaptation into the query processor; this may be as an adaptive
operator (e.g. [1,2]) or a controller that is notified by the query (e.g. [4]).

Overall, the plan preserving approach has been applied in a wide range of con-
texts to carry out a diverse collection of plan changes. In principle, several different
plan preserving approaches can be in play at the same time, although in practice
controlling the interplay between different adaptations may be challenging.

2.2 Plan Changing Adaptation

In defining plan changing approaches as those in which the optimizer is called at
runtime, we note that some adaptive strategies generate multiple plans before
query execution, and then may swap between these at runtime (e.g. [8,9]), and
thus might be felt to fall within a gap in our classification. Henceforth in this
section, however, we consider proposals in which the adaptation involves stopping
the plan, re-optimizing the plan and resuming execution.

Because plan changing proposals may make substantial changes to the way
in which a query is being evaluated, they must take account of the work done
on the evaluation of a query at the point when re-optimization takes place. As
such, the designers of plan changing adaptive strategies must:

– Identify the monitoring information that is required both to establish that it
may be useful to consider adapting and to inform the construction of a new
plan by the optimizer. For example, adaptation may only take place when
changes to statistics have been detected beyond some threshold (e.g. [10]),
or where the statistics have moved outside the range for which the current
plan was optimal when compiled (e.g. [11]).

– Identify when the plan can safely be stopped to support adaptation, and
characterize the work done to date so that the new plan does not unnecessar-
ily repeat work. For example, coarse grained techniques may reuse complete
results of operator evaluation (e.g. [11]), whereas fine grained techniques are
able to reuse partial results from operators (e.g. [12,13]). Such fine grained
techniques must be able to characterize precisely how the partial result of
an operator relates to the data consumed, and thus what work remains to
be done [13].

– Modify the optimizer so that it takes account of updated statistical data and
the state computed by the current plan in exploring new strategies. In doing
this, the previous plan reconsidered with the updated statistics may serve as
an upper bound to the cost function to guide the new search for optimality.

– Integrate the adaptation into the query processor; this may be as an adaptive
operator (e.g. [11]) or a controller (e.g. [13]).

In designing a strategy following the above steps, it may be considered to be a
good thing if as many as possible of the following non functional requirements
can be satisfied:

160 D. Braga, M. Grossniklaus, and N.W. Paton

– Queries can be stopped for re-optimization at many points in their eval-
uation; coarse grained techniques are typically only able to reuse work at
materialization points when operators have completed execution, whereas
fine grained techniques may support a more agile reuse of cached temporary
results.

– Auxiliary or repeated work after re-optimization is minimized; some strate-
gies consider discarding work in order to enable adaptation before operators
have completed (e.g. [11]), and some use stitch-up plans to complete operator
evaluation (e.g. [14]).

– A wide variety of operators can be used; some strategies support fine-grained
reoptimization by restricting the collection of operators that can participate
in adaptive plans (e.g. [12]). A particularly relevant case is that of rank-aware
operators, that typically build on thresholds derived from the data already
processed and make assumptions on the data that is still to be processed.
Rank-aware operators are addressed in the next section.

Another reason for deciding to change the plan could be explicit or implicit
feedback from the user. In all settings in which query sessions are interactive
and executions can be manually stopped and resumed directly by the users, or
users can evaluate the quality of the results obtained to date, there is potential
for reoptimization. This is a relevant scenario for Search Computing, as described
in detail in Chapter [15] of the present collection, dedicated to the study of the
“Search as a Process” paradigm for Search Computing.

2.3 Adaptive Query Processing for Ranked Data

Where query processing includes ranking, standard query processing operators
are supplemented with rank-aware operators [16]. For example, a rank-aware
join operator consumes ranked inputs from its operands where each input tuple
has a rank score, applies a ranking function to the rank scores of matching input
tuples to compute rank scores for matching tuples, and returns matching tuples
in order of their scores.

Adaptivity is potentially important for queries that include ranking; the rea-
sons for adapting in non-ranked queries carry forward to rank-aware queries,
where additional challenges result from difficulties in predicting the relation-
ships between ranked inputs. For example, are highly ranked tuples more or less
likely to match than randomly selected tuples?

Adaptive rank-aware query optimization has been investigated by Ilyas et
al. [17], where their plan preserving approach is described in most detail. The
focus is on adaptations involving a rank-aware symmetric hash join [16]. In this
algorithm, when a tuple is read from an operand, it is: (i) stored in the hash
table for its operand indexed by join attributes; (ii) probed against the hash
table for the other operand, and the rank score is calculated for each matching
tuple, which is inserted into a rank queue. A result tuple r can be returned from
the rank queue when it is known from the properties of the ranking function and
the scores of the tuples read from the ranked inputs that no result tuple with a
higher score than that of r can be generated from as-yet-unread input tuples.

Run-Time Adaptivity for Search Computing 161

In the adaptive query processing strategy, runtime monitoring either detects
delays or unexpected correlations between scores. When these are detected, the
optimizer is rerun to construct a new plan, and the state associated with each
operator in the new plan is either copied from the previous plan or reconstructed
from scratch. In essence, state can be copied from a node n in the original plan
P to a node n′ in the new plan P ′ when n and n′ have the same leaves. This
ability to reuse some operator state means that work need not be redone during
evaluation, but individual adaptations may still be expensive because operator
state that did not exist before adaptation must be computed to generate the
state that would have existed if P ′ had been run from the beginning.

3 Adaptation in Search Computing

Adaptive query processing is relevant to Search Computing

(a) because the actual behavior of data sources can diverge from the expected
one in many ways (e.g., unexpected delays, or unpredictable cardinality of
the results of exact services), but also

(b) because some computations intrinsically need to react and adapt to run-time
evidence, as is the case for the generation of results with top-k guarantees in
the presence of unpredictable score information for search services, and also

(c) because of the intervention of the end user in the query execution process,
which requires the ability to reuse the results available to date and to reshape
them to enable the continuation of the search session.

Panta Rhei is the unit-based language used for the specification of physical
query plans in Search Computing. We briefly summarize its features so as to
make this chapter self-contained. A physical query plan consists of a directed
graph of nodes, corresponding to processing units, and edges, forming the data
and control flows. Results are progressively created by joining and pruning the
data returned by invoking data sources. The most important processing nodes
in Panta Rhei are service invocation units, for extracting ranked data from data
sources, and strategy units, that are used to control and synchronize the behavior
of invocation units that are in parallel and pipe joins.

Join units are rank-preserving according to either top-k or good-k join strate-
gies. Joins that are regulated by a top-k strategy produce results according to
an ordering imposed by a score aggregation function which is a weighted sum of
partial scores. Joins that are regulated by a good-k strategy produce results in
an order that is as consistent with the ordering given by the aggregation func-
tion as can be formed with the best tuples from each source. The actual order in
which tuples are output in the latter case is given by combining the best results
from each single source as soon as possible, and the more the partial rankings
are correlated with the aggregate one the better the good-k results will approxi-
mate top-k results. Also, top-k joins are blocking, because a tuple can be output
only when it is guaranteed to have a ranking that is at least as high as any that
can possibly be formed with data that has yet to be extracted. Good-k joins,

162 D. Braga, M. Grossniklaus, and N.W. Paton

instead, are non-blocking by construction, and therefore their output tuples are
produced as soon as they are available.

In a physical plan, operators are assigned a budget that expresses the number
of service invocations that they are allowed to “spend”. More details of Panta
Rhei can be found in the previous chapter [18] of this collection.

We can classify the actions performed in order to achieve run-time adaptivity
not only as plan-preserving or plan-changing, but also according to the events
that trigger the actions. In particular, we distinguish between user-generated
and system-generated actions.

User-generated actions reflect reactions to unsatisfactory results, further clas-
sified as:

– more all commands, given when the execution halts and the tuples presented
in the results are too few with respect to the user’s expectations;

– more one commands, given when the results associated with one specific
source are unsatisfactory, either because they are too few, or because the
user believes that there may be additional relevant results which have not yet
been extracted, characterized by a lower local ranking but higher capability
of forming interesting combinations when joined with results from other
services;

– changes to the score weights in the goal function, because the current result
does not reflect the user’s preference, as it over-emphasizes or de-emphasizes
one of the services that instead is considered as most relevant for the user;

– lowering of the level of guarantees that are expected on the result, because
a top-k enabled execution leads to marginal results or excessively delays the
output of the first combinations, and a good-k approach seems preferable;

– raising of the level of guarantees that are expected on the result, when a
good join execution produces results that cannot be sufficiently trusted, and
top-k join strategies should instead be used.

System-generated actions, instead, can be triggered by events and anomalies
that are monitored and detected automatically.

3.1 Plan-Preserving Adaptations in Search Computing

In the following cases, plan adaptation occurs in the context of the same plan,
whose execution continues after adaptation by reusing the current results.

A. More One and More all Directives. These commands are typically per-
formed by the user when results are perceived as insufficient, and they call for
adding more results, either selectively from one service, or globally. It is important
to note that Panta Rhei physical plans are intentionally built with the objective
of giving few tuples in the result, because users are normally interested only in the
top tuples of ranked results. Therefore, allowing within Panta Rhei the structures
for a seamless continuation of the execution of a query plan is an important choice,
with consequences on the architecture and on the implementation.

Run-Time Adaptivity for Search Computing 163

B. Change of Weights in the Score Aggregation Function. The change of
weights affects top-k strategies, as it changes the threshold values used to assess
that a given combination belongs to the top-k results. A change of weights may
be followed by a total change of the result which is displayed to the user, but
such a change occurs without recomputing the query: a different result set can
be selected from the buffered query results by means of a recomputation of
threshold values. Such result set may be too small, and in such case the user can
continue query execution by means of more one and more all directives.

C. Budget Redistribution. In Panta Rhei, controller units spend their budget
of invocations relative to the units they are responsible for, thus implementing
the “forward” control logic as decided by compile-time planning and optimiza-
tion. Then, at run-time, suspend and resume signals are propagated “backward”
in order to re-synchronize execution when anomalies are detected, such as delays
in one of the controlled units. Therefore, forward controls determine producer-
consumer relationships according to the query plan, and backward controls op-
tionally condition those producer-consumer relationships that deviate too much
from the optimal plan determined at query optimization time.

The simplest form of system-controlled plan adaptation is a run-time bud-
get redistribution, that consists in moving budget to those operations that have
exhausted their budget when execution halts before producing a result with
the estimated number of tuples. Redistribution within the same query does not
change the global load associated with query execution, and therefore its rela-
tionships to other, concurrent query executions. While backward control occurs
in the context of the control signals between the units, and is therefore part of
the normal adaptive behavior of plan, budget redistribution is properly classified
as an adaptation of the plan that occurs on the initiative of a monitoring system
module.

D. Service Replacement without Replanning. If a service is unavailable
at execution time, the system may detect this fact and autonomously decide to
resort to a different service; if the new service has the same signature (or, in
SeCo terms, is associated with the same access pattern) then the service can be
replaced without changing the plan. Of course the invocation of the new service
can have very different delay, cost and output tuples compared to the original
service, but such differences can be dealt with by backward controls and budget
redistributions.

If the service becomes unavailable during query execution, results presented to
the user prior to adaptation are correct, but incomparable with results presented
to user after the adaptation, because the first invocation of the replacing service
produces ranked results starting from a rank value that has no relationship with
the last invocation of the replaced service.

E. Changing Guarantees During Execution. The last plan-preserving
adaptation action that we consider here occurs when the user decides to raise or

164 D. Braga, M. Grossniklaus, and N.W. Paton

lower the level of guarantees of the joins of a running plan, e.g. because the user
decides to accept all good results in a situation in which the system produces
too few top-k results. This is a borderline case, because the plan topology does
not change, but the controller of join operations changes substantially.

When the level of guarantee is raised (from good to top), a total change of
the result which is displayed to the user is needed, but such a change occurs
without recomputing the query: a subset of tuples in top-k order can be selected
from the buffered query results by means of the computation of threshold values.
Such a result set may be too small, and in such case the user can continue query
execution by means of more one and more all directives.

When the level of guarantee is lowered, the system initially presents to the
user all the result tuples which are buffered in the order in which they were
extracted and generated. Such a result set, although larger than the previous
result set, may still be too small, and also in such case the user can continue
query execution by means of more one and more all directives.

3.2 Plan-Changing Adaptation in Search Computing

In this subsection we sketch some preliminary cases of plan-changing adaptivity.
Supporting this form of adaptation is much more complex, as the new plan can
be substantially different from the old plan; the new plan (or a portion of it)
needs to be installed as a replacement of the old plan. Moreover, results presented
to the users prior to adaptation may be incomparable with results presented to
user after adaptation, because the execution of the new plan may restart tuple
production for some services participating in the plan.

A. Service Replacement with Replanning. If a service is unavailable at
execution time, the system may have to resort to a different service with a
different signature. This normally causes a change in the plan, as the service
signatures dictate the type (pipe vs parallel) of join that connects the service
execution unit to the other units; such changes, however, may be known in
advance and rapidly installed with minimum perturbation of the rest of the
plan. Of course the new plan can have very different performance, and thus
may benefit from reoptimization. If a service becomes unavailable during query
execution, results presented to the users prior to adaptation are correct, but
incomparable with results presented to user after the adaptation.

B. Selection of Equivalent Alternative Plans. Case A is a particular case of
Case B, which occurs when a complete plan is substituted by another equivalent
plan. Such a situation may occur when the actual availability and performance
of services suggests a radical strategy change. Technically, alternative plans can
be determined at execution time by marking certain services as unavailable and
then seeing if an alternative plan exists; then, such plan should be installed and
executed.

Run-Time Adaptivity for Search Computing 165

4 Conclusion

In this paper, we considered query adaptation, first by reviewing its general
properties, and classifying adaptation into the broad classes of plan-preserving
and plan-changing. Such a classification can be applied to explore opportunities
for adaptive query processing in Panta Rhei, the SeCo execution engine. We
have shown that relevant cases of adaptations may be due to explicit user inter-
actions: users adapt to the progressive presentation of results by issuing simple
commands, which may have a great impact upon the result computation strate-
gies. Most cases of plan-preserving adaptation are rather straightforward and
will be supported by the first releases of the query engine, while plan-changing
adaptation is only sketched in this paper and will be the subject of future work.

References

1. Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Processing. In:
SIGMOD Conference, pp. 261–272 (2000)

2. Shah, M.A., Hellerstein, J.M., Chandrasekaran, S., Franklin, M.J.: Flux: An Adap-
tive Partitioning Operator for Continuous Query Systems. In: ICDE, pp. 25–36
(2003)

3. Raman, V., Han, W., Narang, I.: Parallel querying with non-dedicated computers.
In: Proc. VLDB, pp. 61–72 (2005)

4. Urhan, T., Franklin, M.J., Amsaleg, L.: Cost Based Query Scrambling for Initial
Delays. In: SIGMOD Conference, pp. 130–141 (1998)

5. Gounaris, A., Paton, N., Fernandes, A., Sakellariou, R.: Self-monitoring query ex-
ecution for adaptive query processing. Data Knowl. Eng. 51(3), 325–348 (2004)

6. Sutherland, T.M., Zhu, Y., Ding, L., Rundensteiner, E.A.: An adaptive multi-
objective scheduling selection framework for continuous query processing. In:
IDEAS, pp. 445–454 (2005)

7. Raman, V., Deshpande, A., Hellerstein, J.M.: Using State Modules for Adaptive
Query Processing. In: Proc. ICDE, pp. 353–364 (2003)

8. Babu, S., Bizarro, P., DeWitt, D.: Proactive Re-Optimization. In: Proc. ACM
SIGMOD, pp. 107–118 (2005)

9. Bizarro, P., Babu, S., DeWitt, D.J., Widom, J.: Content-based routing: Different
plans for different data. In: VLDB, pp. 757–768 (2005)

10. Kabra, N., DeWitt, D.J.: Efficient Mid-Query Re-Optimization of Sub-Optimal
Query Execution Plans. In: SIGMOD Conference, pp. 106–117 (1998)

11. Markl, V., Raman, V., Simmen, D.E., Lohman, G.M., Pirahesh, H.: Robust Query
Processing through Progressive Optimization. In: SIGMOD Conference, pp. 659–
670 (2004)

12. Li, Q., Shao, M., Markl, V., Beyer, K., Colby, L., Lohman, G.: Adaptively Re-
ordering Joins during Query Execution. In: Proc. ICDE, pp. 26–35 (2007)

13. Eurviriyanukul, K., Paton, N.W., Fernandes, A.A.A., Lynden, S.J.: Adaptive Join
Processing in Pipelined Plans. In: Proc. EDBT, pp. 183–194 (2010)

14. Ives, Z., Halevy, A., Weld, D.: Adapting to Source Properties in Data Integration
Queries. In: Proc. SIGMOD, pp. 395–406 (2004)

15. Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Exploring the Web with
Search Computing. In: Ceri, S., Brambilla, M. (eds.) Search Computing II. LNCS,
vol. 6585, pp. 10–25. Springer, Heidelberg (2011)

166 D. Braga, M. Grossniklaus, and N.W. Paton

16. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in rela-
tional databases. VLDB J. 13(3), 207–221 (2004)

17. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter, J.S.:
Adaptive Rank-Aware Query Optimization in Relational Databases. ACM Trans.
Database Syst. 31(4), 1257–1304 (2006)

18. Braga, D., Corcoglioniti, F., Grossniklaus, M., Vadacca, S.: Efficient Computation
of Search Computing Queries. In: Ceri, S., Brambilla, M. (eds.) Search Computing
II. LNCS, vol. 6585, pp. 141–155. Springer, Heidelberg (2011)

Part 6

Tools and Mashups

Developing and configuring modern information systems requires new models,
methods, and tools, with the objective of implementing systems which are easier to
build, that better incorporate user’s requirements, and are more reusable. In this
context, an important role can be played by mashup editors, which lower the
complexity of expressing search computing queries through visual compositions of
modules.

The first chapter reports on the tools developed to support the complex search
computing application lifecycle. We present a toolsuite structured as an online
development platform, in which developers can selectively access tools based on their
role. Service registration tools consist of a set of facilities for allowing normalization
of service interfaces and their registration as service marts. Query configuration tools
allow designers to compose applications consisting of sets of connected service marts.
Query plan refinement tools consist of a visual modeling environment that allows
search computing experts to edit query plans specified according to the Panta Rhei
notation. The tools produce a complete application configuration that is automatically
deployed and made available to final users. The availability of the tool suite as an
online mashup-like platform aims at increasing search computing application design
productivity, reducing the time to deployment, and avoiding the burden of
downloading and installing software.

The second chapter presents an overview of the most recent approaches to mashup-
based development, that consider distributed mashup, dealing with the configuration
both of the client (i.e., the user interface behavior) and the server (i.e., the
composition of services), based on the same paradigm. The chapter is based upon
several projects ongoing in Trento University.

Finally, a discussion chapter addresses the fitting of end-user oriented design
interfaces to different classes of users, dwelling into the distinction of declarative and
imperative mashups, on the kind of skill expected by mashup users, on the need of
tailoring the design tool to a specific sector, and on the possible interactions and
cross-fertilizations between the mashup approaches and the SeCo project.

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 169–181, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Tools Supporting Search Computing
Application Development

Marco Brambilla and Luca Tettamanti

Politecnico di Milano, Dipartimento di Elettronica ed Informazione,
V. Ponzio 34/5, 20133 Milano, Italy

{fistname.lastname}@polimi.it

Abstract. Search computing provides a solution to the problem of multi-
domain, exploratory search. To manage the complex set of subsystems and con-
figurable options, the proper set of development and configuration tools is
needed. In this chapter we describe the development process phases envisioned
for designing search computing applications and also a unified tool suite that
aggregates a set of design and configuration tools. The tools cover the phases of
service registration, service annotation, and application configuration. The latter
in turn is organized in query specification, query plan refinement, and definition
of user interface options.

Keywords: Search computing, tools, software engineering, mashup,
development process.

1 Introduction

Search computing provides a powerful solution to the problem of multi-domain,
exploratory search. However, to cope with such a complex problem, several tech-
niques and algorithms need to be devised to solve the diverse sub-problems, including
query specification, query planning and optimization, query execution, service
invocation, user interface rendering, and so on. This leads to a complex software ar-
chitecture [3], incorporating a large set of subsystems. As a consequence, building
and configuring search computing applications may become a non-trivial task for a
designer. To ease his work, the proper set of development, configuration and monitor-
ing tools are needed. The tools should support all the development phases necessary
to support all the aspects of a multi-domain search application, according to sensible
development process guidelines.

The basic development process envisioned for designing search computing
applications has been already presented in [1] and a model-driven description of the
concepts involved in the development process (together with the transformations they
undergo) has been given in [6].

The contributions of this chapter are: (1) the identification of the possible applica-
tion design scenarios; (2) a refined description of the development process, with a
precise definition of the sub-phases involved in each design task, with special

170 M. Brambilla and L. Tettamanti

attention to service registration; and (3) the presentation of the tool set that has been
developed for supporting the designer in all the development phases.

The development process is structured into the following phases: service registra-
tion, service annotation, and application configuration; the latter in turn is composed
by query specification, query plan refinement, and user interface definition.

Besides the design and configuration tools, also monitoring tools are crucial for
checking the behavior and the performances of the designed search computing applica-
tions. These tools are out of the scope of this chapter. Instead, some examples of moni-
toring tools for the search computing execution engine can be found in [4].

This chapter is organized as follows: Section 2 discusses the development scenarios
for search computing applications and summarizes the main roles and processes for
SeCo application development; Section 3 details the service registration phases and
tools and Section 4 details the application configuration phases and tools; Section 5
provides an overview of the toolsuite architecture; and Section 6 concludes the chapter.

2 Background and Related Approaches

Our work on configuration tools stands in the middle between two classes of tool
solutions: mashups and MDD (Model Driven Development) tools. We do not aim at
covering the entire background of these two topics here (detailed background discus-
sions are provided in [7] about mashups and in [1] about web development tools and
modeling approaches); instead, we report on the evolutions of the field and on our
positioning with respect to the recent trends.

Model Driven Development (MDD) aims to raise the level of abstraction for
software development by providing more powerful concepts for capturing and reusing
development knowledge. MDD approaches are gaining a foothold in industrial prac-
tice, thanks to two main trends: the increased support and adoption of universal mod-
eling languages such as UML, and the birth and growth of domain specific languages
(DSL) that provide design constructs and notations for focused application domains.
The former is being facilitated by the Object Management Group (OMG), which leads
the standards development effort (MDA/MOF/UML, …) for MDD. Leading software
tool vendors such as IBM and Microsoft, as well as many smaller vendors and open
source projects, are developing technologies to support MDD. In particular, we are
recently witnessing a convergence of different domains toward MDD practices. For
instance, the BPM (Business process management) field is becoming more and more
aware of the advantages of MDD: IBM has been recently pushing MDD approaches
to BPM within its WebSphere platform [9].

Our approach fully exploits MDD philosophy, by providing a set of tools for the
configuration of Search Computing systems completely based on conceptual models
[1]. In particular, a detailed model-driven description of our approach, in terms of
models and their transformations has been given in [6].

Mashups natively adopt interaction paradigms much closer to the end users. An
early survey of the potential and limitations of mashups is provided in [13].

 Tools Supporting Search Computing Application Development 171

Some major proposals in the field of end user mashups have been discontinued in
the last two years. Among them, we can mention Google MashupEditor, Microsoft
Popfly and IBM QEDWiki. In this segment only Yahoo Pipes [12] survives. This may
be read as a symptom of perceived weakness of this kind of approaches. However, we
think the issue is more related to the target user profile than to the approaches
themselves.

Other tools for enterprise mashup development and execution are currently more
widely adopted. Enterprise mashups are software applications that consume and com-
bine data and applications across the enterprise, gathering information from a variety
of sources, often performing logical or mathematical operations as well as presenting
data. The development paradigm and languages they use sit in between mashups and
service compositions, so as to be rich enough to automate integration of enterprise
processes and interfaces. The added complexity due to the increased richness in the
language is compensated by means of highly usable programming UIs, programming
and prototyping advices, and the facilitated reuse of programming logic.

IBM Mashup Center [8] is the unified IBM solution for enterprise mashup which
integrates IBM InfoSphere MashupHub and IBM Lotus Mashups together in a single
product that can be installed with a single click. Jackbe Presto [10] is a complete
platform for mashup development, covering all the phases from source wrapping, to
infrastructure setup and management, to application design and deployment (with also
an AppStore facility).

Some efforts are currently spent towards a unified vision and language for mash-
ups: the Open Mashup Alliance is proposing EMML (Enterprise Mashup Markup
Language) [11], an XML markup language for creating enterprise mashups. EMML
is an open language specification whose primary benefits are mashup design portabil-
ity and interoperability of mashup solutions. These benefits are expected to accelerate
the adoption of enterprise mashups by creating transferable skills for software
developers and reducing vendor lock-in.

Our work is in line with the trend towards enterprise mashup, because the target
user of our tools is currently a developer in charge of setting up search computing
solutions for specific industrial scenarios.

3 Development Process and Scenarios

3.1 Development Process

The design process for search computing applications can be split into two
macro-phases: service registration and application configuration. Service registration
comprises all the phases that aim at making third party search services available in a
search computing platform (i.e., registration and semantic annotation of Service
marts, Access patterns, Service interfaces, and Connection patterns), while
Application configuration covers the phases required to configure targeted queries
and applications (Query specification, Query generation, Query plan refinement, and
Interface configuration). More details on the development process can be found in [1].

172 M. Brambilla and L. Tettamanti

3.2 Needs and Scenarios

The way the development phases are actually executed depends on the search
requirements that need to be fulfilled. These needs can be classified in two main sce-
narios: open, interactive applications for information exploration; and customized,
vertical search applications. Table 1 summarizes the design phases and their roles
within the two scenarios, which basically differ only in application configuration
time, while they exploit the same tools and approaches both at service registration
time and application execution time:

- Interactive applications: this scenario addresses the need of flexibility and informa-
tion exploration of a user who wishes to exploit the entire set of resources available
in SeCo and wants to build dynamically his/her own exploration path through
several, incremental search steps. In this case, the configuration of the SeCo
framework simply consists in defining correctly the resource graph, i.e., the set of
searchable concepts and corresponding search services. Once this is done, the user
can browse the graph and query any search service in any combination he/she
wants. This can be done with exploration interfaces like the flexible Liquid Query
one presented in [2]. In this way, the user builds his/her own composition of search
services and immediately executes it, like in a mashup design approach;

- Custom applications: this is a more traditional scenario in which a developer de-
signs a customized search application (e.g., to be embedded in vertical portals or
enterprise sites), by configuring the search computing framework to work on some
predefined domains, through a selected set of search services. Then, end users will
search and browse the configured application. Information exploration can be still
performed, but only according to the initial choices of the application designer.

Table 1. Search computing design phases and roles within the scenarios

Scenarios
Design Phases Interactive application Custom application

Service registration
- Service mart definition
- Access pattern definition
- Connection pattern definition
- Service interface registration
- Semantic annotation

Registration process
and tools

Registration process
and tools

Application configuration
- Query specification
- Query generation
- Query plan refinement
- Interface configuration

No Configuration
Configuration process

and tools

Application execution
- Query submission
- Information exploration

Liquid Query (whole
information space)

Liquid Query
(on vertical domain)

 Tools Supporting Search Computing Application Development 173

4 Service Registration

Service registration is a complex task that comprises several substeps, corresponding
to the different abstraction levels that describe the resources: Service Mart (SM), Ac-
cess Pattern (AP), and Service Interface (SI), as defined in [5]: SMs characterize real
world entities (structurally defined by means of attributes, and their relationships) at
the conceptual level; APs describe the access to the conceptual entities in terms of
data retrieval patterns at the logical level; and SIs represent the mappings of these
patterns to concrete Web Service Interfaces at the physical level. Based on the differ-
ent situations, a top-down or bottom up registration approach can be adopted. Fig. 1
summarizes the different registration cases:

1. Registration of a service associated to a new real world entity: if the concept
describing that entity is not yet defined in the repository, all the levels (SM, AP,
SI) need to be registered. In this case a top-down registration is the best suited
solution;

2. Registration of a service with a new access pattern, but associated to an existing
concept: in this case, an intermediate approach is adopted: a new access pattern is
created and mapped to an existing service mart; then, the new service is registered
and mapped to the AP;

3. Registration of a new service perfectly homogeneous to an already registered one:
in this case, the new service can be registered and then mapped to an existing
Access Pattern of choice, with a bottom-up approach.

Fig. 1. Service Mart (a) and Access Pattern (b) rendering in the service registration tool

The following subsections describe each phase in details. The discussion will
follow the basic top-down scenario (case 1), and the other options will be mentioned
by difference with respect to the main case.

174 M. Brambilla and L. Tettamanti

Fig. 2. Overview of the toolsuite user interface

According to the search computing paradigm, the service registration task is
needed in all the scenarios and is assigned to a developer and domain expert role. To
ease this job, a set of editors have been devised within the search computing tool suite
to cover all the registration phases. An overview of the web interface of the toolsuite
is shown in Figure 2.

The interface of the web based application is organized into different functional
areas: the topmost portion is used for workspace control, tab control and other generic
(i.e. editor independent) commands. The left part (which is foldable) contains the re-
source tree which hosts whatever resources are relevant for the editor currently active.
The remaining part of the screen is split between a toolbar (editor specific) and the
main working area which is again controlled by the editor component currently active.

4.1 Service Mart Definition

The first step in the registration process is to identify which Service Mart can be
used to categorize the service that is going to be registered. In case no suitable
Service Mart is found the user shall take a top-down approach to the registration.
Service Marts - the highest level of abstraction in our model - represent “real
world” objects and are used to hide the underlying modalities of data access and
implementation details. The Service Mart is composed by a name, a human readable
description and the schema, i.e., a collection of attributes that define the represented
real word entity (see Fig. 3. for a sample rendering of a SM in the tool).

All these properties must be specified when a service mart is created. The attrib-
utes in the schema can be: simple attributes described by a name, an optional
description and a data type (which is used as a default type in the underlying
layers); or repeating groups, composed by a list of simple attributes (only a single
level of nesting is allowed).

 Tools Supporting Search Computing Application Development 175

Furthermore the user may modify the definition of a Service Mart to accommodate
new Access Patterns or services; the addition of a new attribute to the schema is
always allowed, removal instead is more delicate since the attribute might be refer-
enced in many Access Patterns connected to the current Service Mart; for this reason
the tool allows the deletion of an attribute if and only if it is unreferenced.

If an existing Service Mart can be adopted as conceptual description of the new
service, the user can start from the lower level, by selecting a suitable Access
Pattern (or by creating a new one if none is found) and defining a Service Interface.

Fig. 3. Service Mart and Access Pattern list rendering in the service registration tool

4.2 Access Pattern Definition

An Access Pattern represents the modality to access a given Service Mart; of course
multiple patterns may be defined for each Service Mart. Fig. 3. shows the rendering of
the list of Access Pattern for a Service Mart registered in the tool.

In the pure top-down approach, a new Access Pattern is created from the definition of
a Service Mart: starting from the schema of the Service Mart, the user can choose to
remove attributes that are not relevant for the pattern, add new ones that are not present
in the definition of the Mart (the so called external attributes1), and finally proceed to
tag each attribute as “input”, “output”, or “ranked” (see Fig. 4.a). One input attribute can
also be marked as the “selector”, i.e. an attribute whose value is used to select the most
appropriate Service Interface at run-time2. If needed, the user can also override the data
types indicated in the corresponding Service Mart. If a bottom-up approach is adopted,
the mapping between attributes of the SM and the AP must be specified explicitly, as
shown in Fig. 4.b.

1 External attributes are “new” attributes appearing at the logical level within the Access

Pattern definition, while not being present at the conceptual level; they support object access
and ranking.

2 Selector attributes support the selection of specific service implementations. A specific SI can
be selected on the basis of the value of the attribute, according to a guard condition. For
instance, different search services can be selected for the same concept (e.g., a theatre)
according to the user’s country.

176 M. Brambilla and L. Tettamanti

 (a) (b)

Fig. 4. Configuration of the Access Pattern inputs and outputs (a) and mapping view between
the Service Mart and Access Pattern levels (b)

4.3 Connection Pattern Definition

At this point the user can create a connection between the new Access Pattern and
other Access Patterns in the repository, as shown in Fig. 5; these links, called
Connection Patterns, will be used later to compose the queries on the system. The
connections are specified by the type of the join (either “pipe” or “parallel”), by the
couples of attributes involved in the join, and by a list of possible predicates that can
be applied to perform the join. For example a Connection Pattern may indicate that
the “address” of AP1 should be “near” or “equal” to the “address” of AP2.

Fig. 5. Tool UI, including a set of SMs connected through connection patterns

 Tools Supporting Search Computing Application Development 177

Abstract connection patterns can be defined and drawn also at the Service Mart
level, but they have no specific semantics: they only represent an aggregation of
actual connection patterns between corresponding APs.

Connection patterns can be defined beforehand with respect to the query definition,
because they represent the semantically significant exploration and navigation options
between the concepts.

4.4 Service Interface Registration

The Service Interface definition, describing the actual search services, is composed by
four basic blocks:

- the input/output schema, with the mappings towards the corresponding Access
Pattern. Each attribute is described by its name, data type, and the mapping toward
the corresponding attribute in the Access Pattern. Output attributes might be repeat-
ing groups. The schema must be compatible with the Pattern.

- the quality of service (QoS) properties, with a first list providing the expected
values of the parameters (used by the engine to efficiently plan the query execution
and schedule the service invocation) and a second one listing the properties that are
monitored at run-time. The QoS dimensions currently considered include: time to
live (maximum time the cached results can be considered up to date); average
chunk size; ERSPI (expected result size per invocation); service decay factor (the
number of expected useful results); service initialization time (time needed to
produce the first chunk of the answer); service fetch time (time to complete a fetch
of a chunk).

- the score function used to compute a global score for the tuples provided by the
service;

- the implementation details for the service invocation, with a classification of the
service based on the implementing technology (e.g., Sparql, Yql, SeCo, …).

4.5 Registration Updates

The tools allow finer grained modifications to the model; there are however several
constraints on the modifications that may be performed on the various resources. In
general the addition of new attributes at any level of the model is always allowed.
More in details, the creation of a new attribute in the SM is allowed unconditionally
(although the new attribute is not automatically used in the lower levels); a new
attribute in an AP will be either external or connected to an attribute in the corre-
sponding SM if such an attribute is available; in the SI the only constraint is that the
new attribute may be marked as input if and only if it can be mapped to an input
attribute of the AP; finally, unmapped output attributes are allowed (the attribute is
present in the physical implementation of the service, but is not relevant for the giv-
en pattern). Deletion – either of attributes or entire objects – is disallowed if the
item is referenced elsewhere in the model.

178 M. Brambilla and L. Tettamanti

Update rules are more complex but, like deletion, they are always allowed if the
element under modification is not referenced elsewhere and the outcome is com-
patible with the upper layers; even though strictly enforcing, these rules result in
tedious and error prone round trips between the various components to fix up all the
dependencies, so the tool is also able to propagate some modification automatically.
Among the notable update cases we can mention:

• the transformation of a single-value attribute into a repeating group: provided
that the attribute is never used as an input, this operation can be done top down
(starting from the SM) and the underlying resources are automatically trans-
formed;

• the transformation of a normal attribute into a selector: this operation requires
two steps: the creation of the selector itself and the definition of the predicates
for selecting the most appropriate service interface. Besides this, the operation
is not further constrained;

• the splitting of a composite attribute into its components or vice versa the inte-
gration of several attributes into a composed one: these operations are always
allowed if the involved attributes (both components or composite) are not re-
peating groups. Indeed, if they are, possible cardinality inconsistencies may
arise: therefore, consistency must be checked before composi-
tion/decomposition;

• hierarchies of attributes with semantic description/typing: inheritance can be
defined upon types (e.g., Geo-location is-a address, city is-a address), but then
consistency must be checked on all the usages of the attributes and on their
relationships.

5 Application Configuration

This phase consists in configuring a customized query and associated exploration
paths for a vertical domain.

5.1 Query Specification

The specification of the query consists in defining the information needs that one
wants to be covered by the vertical application. This concretely means to select
from the service repository a set of service marts and connection patterns that
describe the real world entities and their relationships that should be included in the
query. Furthermore, the designer can select a set of extra service marts usable by
the end user to expand the current query (e.g., to expand a query on movies by
means of a service that joins selected movies to their reviews and the theatres where
they are programmed to nearby restaurants). After that, a specific service
implementation can be selected for those service marts associated with multiple
sources, together with the way in which they can be invoked in the current query
(e.g., selecting the inputs requested to the user and the ones that are hidden).

 Tools Supporting Search Computing Application Development 179

Fig. 6. Tool user interface for query configuration

The query configuration tool enables the user to work on two orthogonal dimen-
sions: the definition of the components of the query (in terms of Service Marts) and
the refinement of these components (at first in terms of access patterns and then of
service interfaces); the tool also provides a set of filters for quickly narrowing down
the candidates access patterns and service interfaces.

5.2 Query Generation

This phase consists in building a logical query, specified in the SeCoQL syntax, start-
ing from the conceptual query, described as a graph. This step takes in input the query
definition and performs the translation automatically. The transformation is pretty
straightforward, since the SeCoQL query syntax is just a rewriting of the graphical
representation available in the tool. In the actual system, the output of the query con-
figuration is not provided to the planner as a SeCoQL specification; instead, a JSON
serialization of the query structure and objects is generated. This avoid a back and
forward transformation and parsing of the textual SeCoQL language.

5.3 Query Plan Refinement

This phase consists in manually refining the optimized query plan produced by the
SeCo platform starting from the query specification. In general, query plans are self-
tuned, and therefore this phase is usually not needed. However, an expert can decide
to manually override the optimal plans to comply with complex queries, or manually
select alternative data sources, or improve scalability through parallelism, or provide
customized choices not covered by the optimization.

The query plan refinement tool consists of a visual modeling environment that al-
lows SeCo experts to edit query plans specified according to the Panta Rhei notation.
This task can be performed by an expert search computing developer who needs to be
well aware of the Panta Rhei language, query plan strategies, and optimization issues.

5.4 User Interface Configuration

The GUI configuration activity requires customizing the structure of a generic
interface, by choosing: 1) optional selection predicates to restrict the objects retrieved
by the query (e.g., a maximum price target for events or flights); 2) default ranking
criteria for the results; 3) visual preferences on the display of the result set (e.g., sort-
ing, grouping, and clustering attributes or the size of the result list). Application

180 M. Brambilla and L. Tettamanti

configuration tools allow defining the interface of the query submission form and of
the result set, together with the default settings for the application and the allowed
Liquid Query operations.

6 Toolsuite Architecture

To support the complex SeCo lifecycle, we have designed a toolsuite that comprises a
variety of instruments, structured as an online development platform in which devel-
opers can login and, according to their role, access the right set of tools for building
SeCo applications. Developers can decide to work at a single model level (e.g., only
at the service mart level), or can define their own workspaces, that provide a coordi-
nated view of all the models of a complex project (e.g., the service mart, query plan,
and user interface models for a given application).

The availability of the tools as online applications aims at increasing SeCo applica-
tion design productivity, reducing the time to deployment, and avoiding the burden of
downloading and installing software. The tools produce a complete application con-
figuration that is automatically deployed and made available to final users.

Fig. 7 shows an overview of the architectural design of the application. It is devel-
oped using JavaScript and uses the ReST API to interact with the backend and is
structured according to the MVC pattern, supported by the JavaScriptMVC library;
the UI is rendered using YUI2 (common widgets) and WireIt (boxes and arrows, the
design canvas) along with a few custom-built widgets. The application provides a
generic framework for managing the models (both application specific – like the
workspaces – and the SeCo objects – like SM, AP, SI, etc.) which is used by a num-
ber of plugins that provide the design logic; the two components are loosely coupled
and the interaction is done only using notifications (i.e. the framework responds to
messages sent by the active plugin and in turn dispatches other notifications to

EditorManager

controller model

plugin

ResourceTree

EditorContainer

Toolbar <<abstract>>

SecoModel

Mart AccessPattern

QueryEditor

<<abstract>>

BaseEditor

<<not i f ies>>

<<not i f ies>>

< < u s e > >

Fig. 7. Architecture design overview of the toolsuite

 Tools Supporting Search Computing Application Development 181

inform the plugin of using actions or other events). This separation is also visible in the
UI: the toolbar and resource tree are provided by the framework (and are controlled via
a notification API), while the main design area is controlled by the plugin.

7 Conclusions

This chapter described the set of tools that have been devised for supporting the
design and configuration of search computing applications. Besides describing the
tools features, the chapter also highlighted the operations allowed on the resources
managed by the tools and described and overview of the architectural aspects.

References

[1] Bozzon, A., Brambilla, M., Ceri, S., Corcoglioniti, F., Gatti, N.: Building Search Com-
puting Applications. In: Ceri, S., Brambilla, M. (eds.) Search Computing. LNCS,
vol. 5950, pp. 268–290. Springer, Heidelberg (2010)

[2] Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Exploring the Web with Search Com-
puting. In: Ceri, S., Brambilla, M. (eds.) Search Computing II. LNCS, vol. 6585, pp.
10–25. Springer, Heidelberg (2011)

[3] Bozzon, A., Brambilla, M., Corcoglioniti, F., Vadacca, S.: A service-based Architecture
for Multi-domain Search on the Web. In: Maglio, P., Weske, M., Yang, J., Fantinato, M.
(eds.) ICSOC 2010. LNCS, vol. 6470, pp. 663–669. Springer, Heidelberg (2010)

[4] Braga, D., Corcoglioniti, F., Grossniklaus, M., Vadacca, S.: Efficient Computation of
Search Computing Queries. In: Ceri, S., Brambilla, M. (eds.) Search Computing II.
LNCS, vol. 6585, pp. 141–155. Springer, Heidelberg (2011)

[5] Brambilla, M., Campi, A., Ceri, S., Quarteroni, S.: Semantic Resource Framework. In:
Ceri, S., Brambilla, M. (eds.) Search Computing II. LNCS, vol. 6585, pp. 73–84.
Springer, Heidelberg (2011)

[6] Brambilla, M., Ceri, S., Tisi, M.: Search computing: A model-driven perspective. In:
Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 1–15. Springer, Heidel-
berg (2010)

[7] Daniel, F., Soi, S., Casati, F.: From Mashup Technologies to Universal Integration:
Search Computing the Imperative Way. In: Ceri, S., Brambilla, M. (eds.) Search Comput-
ing. LNCS, vol. 5950, pp. 72–93. Springer, Heidelberg (2010)

[8] IBM. IBM Mashup Center,
 http://www-01.ibm.com/software/info/mashup-center/

[9] IBM. IBM WebSphere, http://www-01.ibm.com/software/websphere/
[10] Jackbe. Presto, http://www.jackbe.com/Products/
[11] Open Mashup Alliance. EMML,

 http://www.openmashup.org/omadocs/v1.0/index.html
[12] Yahoo. Yahoo Pipes, http://pipes.yahoo.com
[13] Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development. IEEE

Internet Computing 12(5) (2008)

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 182–191, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Distributed User Interface Orchestration:
On the Composition of Multi-User (Search) Applications

Florian Daniel, Stefano Soi, and Fabio Casati

University of Trento, 38123 Povo (TN), Italy
{daniel,soi,casati}@disi.unitn.it

Abstract. While mashups may integrate into a new web application data,
application logic, and user interfaces sourced from the Web – a highly intricate
and complex task – they typically come in the form of simple applications (e.g.,
composed of only one web page) for individual users. In this chapter, we
introduce the idea of distributed user interface orchestration, a mashup-like
development paradigm that, in addition to the above features, also provides
support for the coordination of multiple users inside one shared application or
process. We describe the concepts and models underlying the approach and
introduce the MarcoFlow system, a platform for the assisted development of
distributed user interface orchestrations. As a concrete development example,
we show how the system can be profitably used for the development of an
advanced, collaborative search application.

1 Introduction

After workflow management (which supports the automation of business processes
and human tasks) and service orchestration (which focuses on web services at the
application layer), web mashups [1] feature a significant innovation: integration at
the UI level. Besides web services or data feeds, mashups indeed reuse pieces of UIs
(e.g., content extracted from web pages or JavaScript UI widgets) and integrate them
into new web pages or applications. While mashups therefore manifest the need for
reuse in UI development and for suitable UI component technologies, so far they
produced rather simple applications consisting of one web page only.

We argue that there is a huge spectrum of applications that demand for
development approaches that are similar to those of mashups but that go far beyond
single page applications and, in fact, support multiple pages, multiple actors, complex
navigation structures, and – more importantly – process-based application logic or
navigation flows. We call this type of applications distributed UI orchestrations [2],
as (i) both components and the application itself may be distributed over the Web and
operated by different actors, (ii) in addition to traditional web services we also
integrate novel JavaScript UI components, and (iii) services and UIs are orchestrated
in a homogeneous fashion.

Developing distributed UI orchestrations therefore raises the need for the
coordination of individual actors and the development of a distributed user interface
and service orchestration logic. Doing so requires:

 Distributed User Interface Orchestration 183

− Understanding how to componentize UIs and compose them;
− Defining a logic that is able to orchestrate both UIs and web services;
− Providing a language and tool for specifying distributed UI compositions; and
− Developing a runtime environment that is able to execute distributed UI and

service compositions.

In this chapter, we describe how the above challenges have been solved in the context
of the MarcoFlow project [2] and how the resulting approach can be leveraged for the
development of a distributed search computing application that requires the coordina-
tion of services, UIs, and people.

This chapter is organized as follows: Next, we describe the search application that
raises the need for distributed UI orchestration. In Section 3, we look at how existing
techniques and technologies may support the development of such kind of applica-
tion, while in Section 4 we introduce the distributed UI orchestration approach in
order to fill the gaps. In Section 5, we describe our current development prototype,
and in Section 6 we conclude the paper.

2 A Search Scenario

Let us consider the following collaborative search scenario illustrated in Figure 1, an
extension of the single-user scenario discussed in [3].

yes

no

Response approved?

Mail WS

Archive report

Search

1
5

7

8

12

1011

Send Auth.
Request

Hotel Search
WS

Send trip info
to secretary

Flight Search
WS

6c

2a 2b

3a
3b

4b4a

6a

6b

Send Reject
Response

9

13

14

15

Send Auth.
Response

Fig. 1. Trip authorization distributed application. The gray arrows indicate synchronization or
orchestration points; the number labels indicate their order in time.

This time we want to assist an employee that needs to request the authorization of a
business trip to his superior. The employee can enter the relevant information about
the trip (the origin and destination, and the start and end dates) and search for related
flights and accommodations. He/she can select his/her preferred choices from the list

184 F. Daniel, S. Soi, and F. Casati

of flights and hotels and send the request to the superior. The superior can inspect the
request, along with its details, and send a response (accept or redo) to the employee,
together with some optional comment. If the request is approved, the response will be
sent to the employee and the procedure will end with archiving and mailing opera-
tions. If the request is rejected the previous steps (all or a part of them) can be re-
peated until the authorization request is approved.

If we analyze the scenario, we see that the envisioned application (as a whole) is
distributed over the Web. The application includes, besides the process logic, two
mashup-like, web-based control consoles for the employee and the superior that are
themselves part of the orchestration and need to interact with the underlying process
logic. The UIs for the actors participating in the application are composed of UI com-
ponents, which can be components developed in-house (like the Trip Authorization
component) or sourced from the Web (like the Hotel Search and the Kayak Flights
Search component); service orchestrations are based on web services. In our case, the
latter two UI components serve only to render content, which still needs to be queried
from the Web via dedicated web services. The Trip Authorization component, instead,
collects data from the user (via its input fields) and from the other two UI components
(via suitable synchronization operations). Finally, the two applications for the em-
ployee and the superior are instantiated in different web browsers, contributing to the
distribution of the overall UI and raising the need for synchronization.

3 Distributed UI Orchestration

The key idea to approach the coordination of (i) UI components inside web pages, (ii)
web services providing data or application logic, and (iii) individual pages (as well as
the people interacting with them) is to split the coordination problem into two layers:
intra-page UI synchronization and distributed UI synchronization and web service
orchestration.

UIs are typically event-based (e.g., user clicks or key strokes), while service invo-
cations are coordinated via control flows. In [2] we show how to describe UI compo-
nents (as also introduced in [4]) in terms of standard WSDL descriptors, how to bind
them to JavaScript, and how to extend the standard BPEL language in order to sup-
port the two above composition layers. We call this extended language BPEL4UI.
Fig. 2 shows the simplified meta-model of the language and details all the new model-
ing constructs necessary to specify UI orchestrations (gray-shaded), omitting details
of the standard BPEL language, which are reused as is by BPEL4UI. The model in
Fig. 2 exclusively focuses on the composition aspects, while the events and operations
of UI components are defined in their WSDL descriptors [2].

In terms of standard BPEL [5], a UI orchestration is a process that is composed of
a set of associated activities (e.g., sequence, flow, if, assign, validate, or similar),
variables (to store intermediate processing results), message exchanges, correlation
sets (to correlate messages in conversations), and fault handlers. The services or UI
components integrated by a process are declared by means of so-called partner links,
while partner link types define the roles played by each of the services or UI compo-
nents in the conversation and the port types specifying the operations and messages
supported by each service or component.

Modeling UI-specific aspects requires instead introducing a set of new constructs
that are not yet supported by BPEL. The constructs, illustrated in Fig. 2, are: UI type

 Distributed User Interface Orchestration 185

(the partner link type for UI components), page (the web pages over which we dis-
tribute the UI of the application), place holder (the name of the place holders in which
we can render UI components), UI component (the partner link for UI components),
property (the constructor parameters of UI components), and actor (the human actors
we associate with web pages).

N

Fig. 2. Simplified BPEL4UI meta-model in UML. White classes correspond to standard BPEL
constructs; gray classes correspond to constructs for UI and user management.

It is important to note that although syntactically there is no difference between
web services and UI components (the new JavaScript binding introduced into WSDL
to map abstract operations to concrete JavaScript functions comes into play only at
runtime), it is important to distinguish between services and UI components as their
semantics and, hence, their usage in the model will be different. A detailed descrip-
tion of the new constructs and their usage can be found in [2], while in Figure 3 we
illustrate the BPEL4UI model of our example search application (shown in Figure
Fig. 1) as modeled in our extended Eclipse BPEL editor.

The BPEL4UI model is structured into four main blocks: one repeat-until and three
sequences (sub-types of the Activity entity in Fig. 2). The repeat-until block at the left
manages the flights and hotels search operations. The processing of the block starts
upon the reception of the relevant data about the trip from the employee’s console,
then it invokes the external search web services and, finally, sends the respective
results to the UI components rendering the flight and hotel offers. This block of op-
erations can be repeated an arbitrary number of times (e.g., in case the employee want
to input new search criteria or a trip request has been rejected and needs to be redone),
until the authorization is accepted. Once the search results are rendered in their UI
components, the employee can choose a flight and a hotel combination by clicking on
the respective choices. This allows the employee to compose his trip request summa-
rized in the Trip Authorization component. The two sequence blocks (Flight Selection
and Hotel Selection) in the middle of the model implement the operations that are
necessary to synchronize the Trip Authorization UI-component, which is then in
charge of storing the combination and computing the total cost of the trip. These
communications, involving only UI-components belonging to the same page, are

186 F. Daniel, S. Soi, and F. Casati

completely managed inside the employee’s web browser. Once all the trip data are
available, the Send Request button in the employee console is activated and can be
used to forward the authorization request to the superior. Receiving the authorization
request starts the right block in the model (Authorization Request and Response),
which waits for the trip request data and then forwards them to the Trip Authorization,
Hotel and Flight UI-components of the superior’s console. Now the superior can
inspect the request and send a response that is forwarded to the employee’s console. If
the superior approves the request, two web services are invoked, respectively for
archiving and mailing, and, finally, the process is terminated. If the response is a
reject, the whole block of operations can be repeated, allowing the employee to mod-
ify his request. The right block of service orchestration hence requires the coordina-
tion of the two actors, i.e., employee and superior, and the distributed orchestration of
UI components and web services. Doing so requires the help from the BPEL engine
and the setting of a suitable BPEL correlation set.

As for the layout of distributed UI orchestrations, defining web pages and associat-
ing UI partner links with placeholders requires implementing suitable HTML

Fig. 3. BPEL4UI modeling example for the Trip Authorization application

 Distributed User Interface Orchestration 187

templates that are able to host the UI components of the orchestration at runtime. For
the design of layout templates, we do not propose any new development instrument
and rather allow the developer to use his/her preferred development tool (from simple
text editors to model-driven design tools). The only requirement the templates must
satisfy is that they provide place holders in form of HTML DIV elements that can be
indexed via standard HTML identifiers following a predefined naming convention,
i.e., <div id=“marcoflow-left”>…</div>. For instance, all the activities with a “[UI]”
prefix in Figure 3 are associated to placeholders, in order to fill the two pages com-
posing our reference scenario.

As this discussion shows, the main methodological goals in implementing our UI
orchestration approach were (i) relying as much as possible on existing standards, (ii)
providing the developer with only few and simple new concepts, and (iii) implement-
ing a runtime architecture that associates each concern to the right level of abstraction
and software tool (e.g., UI synchronization is handled in the browser, while service
orchestration is delegated to the BPEL engine). These decisions, for instance, allow us
to reuse BPEL’s internal exception handling mechanisms to manage also exceptions
in distributed UI orchestrations.

4 The MarcoFlow Environment

Fig. 4 shows the (simplified) architecture of the MarcoFlow environment, which aids
the development and execution of distributed UI orchestrations. The architecture is
partitioned into design time, deployment time, and runtime components, according to
the three phases of the software development lifecycle supported by MarcoFlow.

The design part comprises theBPEL4UI editor that supports the full BPEL4UI lan-
guage as defined in [2]. The editor is an extended Eclipse BPEL editor with (i) a panel
for the specification of the pages in which UI components can be rendered and (ii) a
property panel that allows the developer to configure the web pages, to set the proper-
ties of UI partner links, and to associate them to place holders in the layout.

The deployment of a UI orchestration requires translating the BPEL4UI specifica-
tion into executable components: (i) a set of communication channels that mediate
between the UI components in the client browser and the BPEL engine; (ii) a stan-
dard BPEL specification containing the distributed UI synchronization and web ser-
vice orchestration logic; and (iii) a set of UI compositions (one for each page of the
application) containing the intra-page UI synchronizations. This task is achieved by
the BPEL4UI compiler, which also manages the deployment of the generated artifacts
in the respective runtime environments.

The execution of a UI orchestration requires the setup and coordination of three
independent runtime environments: (i) the interaction with users and intra-page UI
synchronization is managed in the client browser by an event-based JavaScript run-
time framework; (ii) a so-called UI engine server runs the web services implementing
the communication channels; and (iii) a standard BPEL engine manages the distrib-
uted UI synchronization and web service orchestration.

In order for the superior and the employee to manage their trip authorizations,
MarcoFlow also comes with a simple task manager (not detailed in Fig. 4), which
allows them to start new trip authorizations (the employee) and to participate in run-
ning instances of the application (the manager). Each new request requires a new

188 F. Daniel, S. Soi, and F. Casati

UI engine client (web browser)UI engine client (web browser)

BPEL4UI editor

Service
WSDLs

UI component
WSDLs

BPEL4UI Compiler

BPEL engine

UI engine server (web server)

UI engine client (web browser)

UI event bus

BPEL4UI

BPEL

UI2BPEL
communication

BPEL2UI
communication

JSON via
HTTP

XML via
SOAP

SOAP web
services

Application
developer

System
configuration

Design time
Deployment time

Runtime

JS via HTTP

Layout and UI
logic generator

BPEL generator

Comm. services
generator

AB
C

UI components

A B
C

UI component container

JSON via
HTTP

XML via
SOAP

XML via SOAP

Layout
configurator

UI partner link
configurator

HTML
templates

UI
composition

Layout and
UI logic

System components

Document flows

System/human communications

Automatically generated elements

Event
forwarder
Event

forwarder
Event

forwarders

Notification
handler

Notification
handler

Notification
handlers

Event
proxy

Event
proxy

Event
buffer

Event
proxy

Event
proxy

Event
proxy

Users

Fig. 4. From design time to runtime: overall system architecture of MarcoFlow

instantiation of the process. All running instances are shown to both actors in their
personalized lists. An instance terminates upon successful approval of the trip.

The MarcoFlow system shown in Fig. 4 is fully implemented and running. A pat-
ent application for parts of the system has been filed. A detailed demonstration of how
MarcoFlow can be used for the development of distributed UI orchestration is avail-
able at http://mashart.org/marcoflow/demo.htm.

5 Related Work

In most service orchestration approaches, such as BPEL [5], there is no support for
UI design. Many variations of BPEL have been developed, e.g., aiming at the
invocation of REST services [6] or at exposing BPEL processes as REST services [7].
IBM’s Sharable Code platform [8] follows a slightly different strategy in the

 Distributed User Interface Orchestration 189

composition of REST and SOAP services and also allows the integration of user inter-
faces for the Web; UIs are however not provided as components but as ad-hoc Ruby
on Rails HTML templates.

BPEL4People [9] is an extension of BPEL that introduces the concept of people
task as first-class citizen into the orchestration of web services. The extension is
tightly coupled with the WS-HumanTask [10] specification, which focuses on the
definition of human tasks, including their properties, behavior and operations used to
manipulate them. BPEL4People supports people activities in form of inline tasks
(defined in BPEL4People) or standalone human tasks accessible as web services. In
order to control the life cycle of service-enabled human tasks in an interoperable
manner, WS-HumanTask also comes with a suitable coordination protocol for human
tasks, which is supported by BPEL4People. The two specifications focus on the coor-
dination logic only and do not support the design of the UIs for task execution.

The systematic development of web interfaces and applications has typically been
addressed by the web engineering community by means of model-driven web design
approaches. Among the most notable and advanced model-driven web engineering
tools we find, for instance, WebRatio [11] and VisualWade [12]. The former is based
on a web-specific visual modeling language (WebML), the latter on an object-
oriented modeling notation (OO-H). Similar, but less advanced, modeling tools are
also available for web modeling languages/methods like Hera, OOHDM, and UWE.
These tools provide expert web programmers with modeling abstractions and auto-
mated code generation capabilities for complex web applications based on a hyper-
link-based navigation paradigm. WebML has also been extended toward web services
[13] and process-based web applications [14]; reuse is however limited to web ser-
vices and UIs are generated out of HTML templates for individual components.

A first approach to component-based UI development is represented by portals
and portlets [15], which explicitly distinguish between UI components (the portlets)
and composite applications (the portals). Portlets are full-fledged, pluggable Web
application components that generate document markup fragments (e.g., (X)HTML)
that can however only be reached through the URL of the portal page. A portal server
typically allows users to customize composite pages (e.g., to rearrange or show/hide
portlets) and provides single sign-on and role-based personalization, but there is no
possibility to specify process flows or web service interactions (the new WSRP [16]
specification only provides support for accessing remote portlets as web services).
Also JavaServer Faces [17] feature a component model for reusable UI components
and support the definition of navigation flows; the technology is however hardly reus-
able in non-Java based web applications, navigation flows do not support flow con-
trols, and there is no support for service orchestration and UI distribution.

Finally, the web mashup [1] phenomenon produced a set of so-called mashup
tools, which aim at assisting mashup development by means of easy-to-use graphical
user interfaces targeted also at non-professional programmers. For instance, Yahoo!
Pipes (http://pipes.yahoo.com) focuses on data integration via RSS or Atom feeds via
a data-flow composition language; UI integration is not supported. Microsoft Popfly
(http://www.popfly.ms; discontinued since August 2009) provided a graphical user
interface for the composition of both data access applications and UI components;
service orchestration was not supported. JackBe Presto (http://www.jackbe.com)
adopts a Pipes-like approach for data mashups and allows a portal-like aggregation of
UI widgets (so-called mashlets) visualizing the output of such mashups; there is no

190 F. Daniel, S. Soi, and F. Casati

synchronization of UI widgets or process logic.IBM QEDWiki (http://services.alpha-
works.ibm.com/qedwiki) provides a wiki-based (collaborative) mechanism to glue
together JavaScript or PHP-based widgets; service composition is not supported. Intel
Mash Maker (http://mashmaker.intel.com) features a browser plug-in which interprets
annotations inside web pages allowing the personalization of web pages with UI wid-
gets; service composition is outside the scope of Mash Maker.

In the mashArt [4] project, we worked on a so-called universal integration ap-
proach for UI components and data and application logic services. MashArt comes
with a simple editor and a lightweight runtime environment running in the client
browser and targets skilled web users. MashArt aims at simplicity: orchestration of
distributed (i.e., multi-browser) applications, multiple actors, and complex features
like transactions or exception handling are outside its scope. The CRUISe project [18]
has similarities with mashArt, especially regarding the componentization of UIs. Yet,
is does not support the seamless integration of UI components with service orchestra-
tion, i.e., there is no support for complex process logic. CRUISe rather focuses on
adaptivity and context-awareness. Finally, the ServFace project [19] aims at support-
ing even unskilled web users in composing web services that come with an annotated
WSDL description. Annotations are used to automatically generate form-like inter-
faces for the services, which can be placed onto one or more web pages and used to
graphically specify data flows among the form fields. The result is a simple, user-
driven web service orchestration. None of these projects, however, supports the
coordination of multiple different actors inside a same process, and none of the
approaches discussed supports the distribution of UIs over multiple browsers.

6 Conclusion and Future Works

In this chapter, we addressed the problem of designing and orchestrating component-
based web applications that are distributed over multiple web browsers and that
involve multiple different actors. We particularly discussed the case of a search com-
puting application that leverages on a collaborative search and browsing approach, an
application feature whose development with traditional techniques would be every-
thing but trivial. In fact, while the integration of UIs and web services is, for instance,
also supported by current mashup platforms, the coordination of the actors involved in
the application and the synchronization of their respective UIs would still require
manual intervention. The MarcoFlow platform introduced in this chapter, instead,
supports the seamless integration of services, UIs, and people in one and the same
development environment, sensibly speeding up the development of process-based,
mashup-like web applications.

The basic idea of MarcoFlow, i.e., the component-based development of applica-
tions is inspired by current web mashup practices, which in many cases aim at
enabling also the less skilled developer (or even unskilled end users) to compose own
applications. Given the complexity of the applications supported by MarcoFlow, it is
however important to note that MarcoFlow rather targets skilled developers (e.g.,
developers that are familiar with composite web service development in BPEL).

One of the challenges to be addressed in our future work is therefore lowering the
complexity of the design environment for distributed UI orchestrations, hiding
BPEL4UI behind an easier to learn, graphical modeling language. Also, we would
like to extend the approach toward streaming web services, for example to support the
design of continuous queries over sensor networks.

 Distributed User Interface Orchestration 191

References

1. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development and its
Differences with Traditional Integration. IEEE Internet Computing 12(5), 44–52 (2008)

2. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: From People to Services
to UI: Distributed Orchestration of User Interfaces. In: Hull, R., Mendling, J., Tai, S. (eds.)
BPM 2010. LNCS, vol. 6336, pp. 145–161. Springer, Heidelberg (2010)

3. Daniel, F., Soi, S., Casati, F.: From Mashup Technologies to Universal Integration: Search
Computing the Imperative Way. In: Ceri, S., Brambilla, M. (eds.) Search Computing.
LNCS, vol. 5950, pp. 72–93. Springer, Heidelberg (2010)

4. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition: Mod-
els, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano, S., Dayal, U.,
Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 428–443. Springer,
Heidelberg (2009)

5. OASIS. Web Services Business Process Execution Language Version 2.0 (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

6. Pautasso, C.: BPEL for REST. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 278–293. Springer, Heidelberg (2008)

7. van Lessen, T., Leymann, F., Mietzner, R., Nitzsche, J., Schleicher, D.: A Management
Framework for WS-BPEL. In: ECoWS 2008, Dublin, pp. 187–196 (2008)

8. Maximilien, E.M., Ranabahu, A., Gomadam, K.: An Online Platform for Web APIs and
Service Mashups. Internet Computing 12(5), 32–43 (2008)

9. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. WS-BPEL Extension for People
(BPEL4People), Version 1.0 (June 2007)

10. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. Web Services Human Task
(WS-HumanTask), Version 1.0 (June 2007)

11. Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web Applications
Design and Development with WebML and WebRatio 5.0. In: TOOLS 2008, pp. 392–411
(2008)

12. Gómez, J., Bia, A., Parraga, A.: Tool Support for Model-Driven Development of Web Ap-
plications. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z.
(eds.) WISE 2005. LNCS, vol. 3806, pp. 721–730. Springer, Heidelberg (2005)

13. Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: Model-Driven Design and
Deployment of Service-Enabled Web Applications. ACM Trans. Internet Technol. 5(3),
439–479 (2005)

14. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web Applica-
tions. ACM Trans. Softw. Eng. Methodol. 15(4), 360–409 (2006)

15. Sun Microsystems. JSR-000168 Portlet Specification (October 2003),
http://jcp.org/aboutJava/communityprocess/final/jsr168/

16. OASIS. Web Services for Remote Portlets (August 2003),
http://www.oasis-open.org/committees/wsrp

17. Oracle. JavaServer Faces Technology,
http://java.sun.com/javaee/javaserverfaces/

18. Pietschmann, S., Voigt, M., Rümpel, A., Meißner, K.: CRUISe: Composition of Rich User
Interface Services. In: Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009. LNCS,
vol. 5648, pp. 473–476. Springer, Heidelberg (2009)

19. Feldmann, M., Nestler, T., Jugel, U., Muthmann, K., Hübsch, G., Schill, A.: Overview of
an end user enabled model-driven development approach for interactive applications based
on annotated services. In: WEWST 2009, pp. 19–28 (2009)

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 192–200, 2011.
© Springer-Verlag Berlin Heidelberg 2011

On Development Practices for End Users

Alessandro Bozzon1, Marco Brambilla1,
Muhammad Imran2, Florian Daniel2, and Fabio Casati2

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione, 20133 Milano, Italy
{bozzon,mbrambil}@elet.polimi.it

2 University of Trento, Via Sommarive 14, 38123 Povo (TN), Italy
{imran,daniel,casati}@disi.unitn.it

Abstract. The paper discusses some trends in end user programming (EUP) and
takes inspiration from the discussions in a panel and in a vertical session on
research evaluation within the second Search Computing workshop. We discuss
the controversial successes and failures in this field and we elaborate on which
facilities could foster adoption of end user programming. We discuss various
dimensions of end user programming, including vertical versus horizontal
language definition, declarative versus imperative approaches. We exemplify
our discussion in the realistic scenario of research evaluation by comparing the
Search Computing and ResEval approaches.

Keywords: crowd programming, end user development, mashup, conceptual
modeling, declarative programming.

1 Introduction

In recent years, several research projects such as Search Computing, ResEval1, and
FAST2 spent substantial effort towards empowering end users (sometimes called
expert users, to distinguish them from generic, completely unskilled users), with tools
and methods for software development. However, the success of end user develop-
ment (EUD) and its potential adoption are still controversial. In this chapter we look
at this field from a search perspective and we elaborate on which paradigms and in-
gredients best aid end users in performing development tasks, and most notably for-
mulating complex search queries. We also discuss various dimensions of end user
programming, including vertical versus horizontal language definition, declarative
versus imperative approaches.

The chapter is organized as follows: Section 2 discusses the problem of identifying
the developer classes that could be addressed by EUD approaches; Section 3 presents
some practices that could foster the adoption of EUD and Section 4 discusses some

1 http://reseval.org - ResEval is a Web-based tool for evaluating the research impact of individ-

ual researchers and groups by integrating multiple scholarly data sources.
2 http://fast-fp7project.morfeo-project.org - FAST aims at the development of a new visual

programming environment for business processes based on semantic Web services.

 On Development Practices for End Users 193

relevant dimensions of Domain Specific Languages within EUD approaches. Section
5 shows a declarative approach (namely, Search Computing) and an imperative
approach (namely, ResEval) at work on a realistic scenario; and Section 6 draws some
conclusions.

2 Target User Classes

End user development comprises several alternative approaches, spanning from ma-
shup development, to software configuration, to simple programming tasks and
search. These approaches are often antithetic, but sometimes they can be combined
together to exploit the respective strength points.

For instance, while users are getting more and more used to configuring applica-
tions, also thanks to the pervasiveness of mobile and gaming software, mashup plat-
forms for the development of simple Web applications are also gaining popularity.
Yet, mashups were actually born as a hacking phenomenon, where very expert devel-
opers build applications by integrating reusable content and functionality sourced
from the Web (for instance, see www.programmableweb.com), and – despite the
numerous attempts – mashup development is still for skilled programmers only.

Actually, mashup tools initially targeting end users slowly moved towards the ex-
pert user, then to the developer, and finally to the expert developer. In fact, our ex-
perience on both model-driven web engineering [13] and mashup development [8] has
shown that there are basically only two target users in the real world:

• Developers, who want to see the source code and to write imperative code.
These users do not trust model-driven approaches, because they feel this can
reduce their freedom in application development;

• Non-developers, who want to ignore all the technical issues and have sim-
ple, possibly visual or parameter-based configuration environments for set-
ting up their applications.

The rest of the stratification of users into expert users, entry-level developers, devel-
oper/designer that can be theoretically defined does actually not exist. Recognizing
the distinction of only two major user classes, empowering non-developers becomes
more focused, but also non-trivial.

3 Enabling Practices and Techniques

Enabling end users to develop own applications or compose simple mashups or
queries means simplifying current development practices. A variety of options may
help simplifying the user development; we discuss the most important ones in the
following, in order to use them in the next section to analyze two approaches that
partly aim at supporting end users in composing complex queries.

Simple programming models. The first issue is to understand which programming
paradigms are best suited for end user programming. The solution to this issue can
take inspiration from existing experiences in orchestration and mashup languages
which are targeted at process automation and at relatively inexperienced users

194 A. Bozzon et al.

(although they have not been that successful in reaching out to non-IT experts, as yet).
The aim is to find programming abstractions that are simple enough to appeal to
domain experts and at the same time complex enough to implement enterprise proce-
dures and Web application logic.

For instance, some mashup approaches heavily rely on connections between com-
ponents (this is the case of Yahoo! Pipes3 and IBM Damia [1], for instance), and
therefore are inherently imperative; other solutions completely disregard this aspect
and only focus on the components and their pre- and post-conditions for automatically
matching them, according to a declarative philosophy like the one adopted in choreo-
graphies (for instance, see the proposal of the FAST European project [9]).

Domain-specific languages (DSLs). Simple programming models are not enough.
Typically, end users simply don’t understand what they can do with a given develop-
ment tool, a problem that is basically due to the fact that the development tools does
not speak the language of the user and, hence, programming constructs don’t have any
meaning to the user. Domain-specific languages aim at adding domain terminology to
the programming model, in order to give constructs domain meaning.

In some fields, such as database design, domain-specific languages are a consoli-
dated practice: declarative visual languages like the ER model are well accepted in the
field. Other, more imperative approaches, like WebML, address developers that are
willing to embrace conceptual modeling. Business people, on the other hand, are well
aware of workflow modeling practices and are able to work with formalisms like
BPMN, completely ignoring what happens behind the scenes both in terms of techno-
logical platform and of transformations applied to get to a running application. An-
other example in this category is Taverna4, a workflow management system well
known in the biosciences field. A more precise classification of DSLs is provided in
Section 4.

Intuitive interaction paradigms. User interfaces of development tools may not be a
complex theoretical issue, but acceptance of programming paradigms can be highly
influenced by this aspect too. The user interface comprises, for instance, the selection
of the right graphical or textual development metaphor so as to provide users with
intelligible constructs and instruments. It is worth investigating and abstracting the
different kinds of actions and interactions the user can have with a development envi-
ronment (e.g., selecting a component, writing an instruction, connecting two compo-
nents), to then identify the best mix of interactions that should be provided to the
developer.

Reuse of development knowledge. Finally, even if a tool speaks the language of the
user, it may still happen that the user doesn’t speak the language of the tool, meaning
that he/she still lacks the necessary basic development knowledge in order to use the
tool profitably. Such a problem is typically solved by asking more expert users (e.g.,
colleagues or developers) for help – if such are available. The challenge is how to
reuse or support the reuse of development knowledge from more expert users in an
automated fashion inside a tool, e.g., via recommendations of knowledge [12].

3 http://pipes.yahoo.com/pipes/
4 http://www.taverna.org.uk/

 On Development Practices for End Users 195

Recommendations can be provided based on several kinds of information, includ-
ing components, program specifications, program execution data, test cases, simula-
tion data, and possibly mockup versions of components and program fragments used
for rapid prototyping. Information may or may not be tagged with semantic annota-
tions. When present, the annotations can be used to provide better/more accurate
measures of similarity and relevance. In a general sense, the approach we envision is
an alternative to design patterns for exploiting the expertise of good developers, thus
allowing reuse of significant designs.

Programming, testing, and prototyping experiences of peers or of more experi-
enced developers may support the entire development lifecycle. If knowledge is har-
vested and summarized from peers (e.g., by analyzing their mashup definitions), this
opens the door to what we can call “implicit collaborative programming” or “crowd
programming”, where users, while going through a software engineering lifecycle for
implementing procedures of their own interest, create knowledge that can be shared
and leveraged by other domain experts for their own work.

4 Domain-Specific Languages: Assessment Dimensions

We have seen that Domain-Specific Languages (DSLs), i.e., design and/or develop-
ment languages that are designed to address the needs of a specific application do-
main, are important to provide the end user with familiar concepts, terminology and
metaphors. That is, DSLs are particularly useful because they are tailored to the re-
quirements of the domain, both in terms of semantics and expressive power (and thus
do not enforce end users to study more comprehensive general-purpose languages)
and of notation and syntax (and thus provide appropriate abstractions and primitives
based on the domain).

While a broad discussion on DSLs is outside the scope of this paper5, we wish to
highlight a few possible classifications of these languages, which can become handy
for EUD. In particular, we describe the dimensions of focus, style and notation.

The focus of a DSL can be either vertical or horizontal. Vertical DSLs aim at a
specific industry or field. Examples of vertical DSLs may include: configuration lan-
guages for home automation systems, modeling languages for biological experiments,
analysis languages for financial applications, and so on. On the other side, horizontal
DSLs have a broader applicability and their technical and broad nature allows for
concepts that apply across a large group of applications. Examples of horizontal DSLs
include SQL, Flex6, WebML7, and many others.

The style of a DSL can be either declarative or imperative. Declarative DSLs adopt
a specification paradigm that expresses the logic of a computation without describing
its control flow. In other words, the language defines what the program should ac-
complish, rather than describing how to accomplishing it. Imperative DSLs instead
specifically require defining an executable algorithm that states the steps and control
flow that needs to be followed to successfully complete a job.

5 See a thorough discussion on this topic here:

http://lostintentions.com/2009/08/15/a-look-into-domain-specific-languages/
6 http://www.adobe.com/products/flex/
7 http://www.webml.org/

196 A. Bozzon et al.

The notation of a DSL can be either graphical or textual. The graphical DSLs (al-
so known as Domain Specific Modeling Languages, DSML) imply that the outcomes
of the development are visual models and the development primitives are graphical
items such as blocks, arrows and edges, containers, symbols, and so on. The textual
DSLs comprise several categories, including XML-based notations, structured text
notations, textual configuration files, and so on.

Despite the various experiences in DSL design and application, there is no general
assessment on the preferences of the developers for one or the other kind of language
depending on the user profile. However, typically languages oriented to the end users
tend to be more visual and declarative, while the ones for developers are often textual
and imperative.

5 EUD in Practice: Two Examples for Research Evaluation

To exemplify how EUD can be supported in practice, we describe two approaches to
a domain-specific problem, namely research evaluation. Research evaluation has
received a lot of interest in the last years since everybody is producing research arti-
facts at his best, and in this race everyone wants to lead. Assessing the impact of
researchers and publications is highly demanded and important [1]. Yet, the very
problem of finding experts or high-profile people in some specific area is still a chal-
lenging endeavor: simply imagine you want to assess the independence of young
researchers or to evaluate the quality of a supervisor: different metrics should be
defined and used.

There are attempts of applications that aim to help assessment problems like the
above. Typically, they support citation-based metrics for the evaluation of research
impact. Examples are Web of Science8, Scopus9, Publish or Perish10, and similar.
However, all the currently available tools lack some key features, such as complete-
ness of data, data cleaning options, or comparison features, which imply that their
outputs are not always satisfying and reliable.

In the rest of this section we discuss the imperative approach proposed in ResEval
and the declarative approach proposed in Search Computing for addressing the issue,
and, finally, we provide a possible combination of the two for leveraging on the
respective strength points.

5.1 Research Evaluation in ResEval

ResEval is a research evaluation platform that is currently being developed at the
University of Trento. ResEval is a tool that is based on citation-based indicators like
h-index, g-index, noise ratio, and citation count. ResEval provides self-citation analy-
sis, the possibility to find top co-authors, and top citers of a researcher.

ResEval is mainly based on citation analysis, which is today’s de-facto standard
practice. Despite its widespread use, citation analysis does however not come without
controversy [6]. Everyone has his own, sometimes very subjective logic for assessing

8 http://scientific.thomson.com/products/wos/
9 http://www.scopus.com/home.url
10 http://www.harzing.com/

 On Development Practices for End Users 197

research impact. Also ResEval comes short if we want to assist sophisticated, user-
defined assessment metrics, since – as in all the other tools – the supported features
are pre-defined and custom metrics cannot be expressed. In order to support users in
defining their own research evaluation logic, we introduce a new ingredient that we
think will allow us to further lower the complexity of the mashup process: we propose
a domain-specific information mashup approach [7] through which users (possibly
with no programming skills) can define, execute, and visualize a metric’s combination
logic and its result.

Fig. 1. Mockup of a research evaluation mashup in ResEval

Specifically, ResEval is currently being extended with a mashup platform (an ad-
aptation and extension of the mashArt platform [8]), allowing users to combine both
UI components (widgets that can show charts and trends) and information from a
variety of (Web) sources. ResEval features a domain-specific language that con-
strains the concepts and the functionality of the platform for the sake of ease of use
[10], in order to have a mashup platform that can be used by non-programmers. The
focus of the proposed DSL is vertical (research evaluation), while its style is impera-
tive, and its notation is graphical so as to fine-tune the development metaphors to the
domain. Reuse of development knowledge mainly comes in the form of ready com-
ponents that can be composed into value-adding manners, while keeping large part of
the complexity inside the components.

For instance, Fig. 1 shows a simple mashup example where data sources, opera-
tors, filters, and UI components are used to compute a metric. Specifically, the
mashup fetches all data from Google Scholar (other sources like DBLP and Microsoft
Academic and unions thereof are also supported), filters out only those publications
by a given author, and applies a set of filter conditions (e.g., we exclude self-
citations). Then we compute the conventional h-index metric over to so cleaned list of
publications and render the result in a UI component so that the user can inspect the
output of the computation.

198 A. Bozzon et al.

5.2 Research Evaluation with Search Computing

Search Computing complies with all the EUD practices described in Section 3. In
particular, it provides simple programming models (based on visual registration of
search services and configuration of queries expressed on such services) defined on a
set of domain-specific languages that cover service registration, query design, and
query plan refinement (expressed using the Panta Rhei notation).

ConferencePaper

[IN] Title
[IN] Year

[OUT] ConfURI
[OUT] PaperURI
[OUT] PaperTitle

DBLP@l3s

User Inputs

Conference

[IN] ConfURI
[OUT] ConfTitles

DBLP@l3s

YearTitle
Conference

Impact Factor

[IN] Year
[IN] ConfTitle

[OUT] ConfFactor

CiteSeer

Authors

[IN] PaperURI
[OUT] AuthorNames
[OUT] AuthorURIs

DBLP@l3s

Papers of same
Conference

[IN] ConfURI
[OUT] PaperURI
[OUT] PaperTitle

DBLP@l3s

Journal Papers of
same Author

[IN] AuthorURI
[OUT] JournalTitle
[OUT] PaperURI
[OUT] PaperTitle
[OUT] Year

DBLP@l3s

Number of Citations

[IN] PaperTitle
[OUT] NumCitations

CiteSeer

Participations to EU
Research Projects

[IN] AuthorName
[OUT] ProjectTitle
[OUT] LeaderName
[OUT] MainContractor
[OUT] ProjectGoal

Cordis@EC

ConfURI
ConfTitle

ConfURI

PaperTitle

Author
Name

Author
URI

PaperURI

Author
(Optional)

Join based on exact match (URI)
Join based on label match (value)
User driven navigation (expand)
User Input X

Legend

param

param

Fig. 2. A liquid query template for a research products and venues search application

A set of graphical design tools has been devised to support developers in their
work. These tools also comprise support to design reuse (in terms of registered
services and queries), together with additional facilities for design validation (e.g.,
checking the correctness of the query against the properties of the registered services).
At the moment no recommendation features are provided, although some basic ones
are scheduled as future work. Generally speaking, Search Computing provides a set of
horizontal DSLs, being focused on search applications but applicable to any
industrial field. Most of them are declarative, except for Panta Rhei, which specifies
the query plans as an executable orchestration of search services and therefore is
imperative. The notations are graphical, except for SeCoQL and the Liquid Query
configuration language [3], which are textual notations.

Being a general-purpose approach (i.e., a horizontal DSL), search computing can
be easily applied to the research productivity field. To provide a better understanding
of our approach, consider a scenario in which a research evaluation application is

 On Development Practices for End Users 199

built at design time [4] and then consumed at runtime by a user through the Liquid
Query interface [1].

For instance, we assume the final application expects the user to search for a con-
ference paper and the systems to provide him the list of matching papers, the number
of citations for each paper, the authors, the and the details of conference where it was
presented, including its impact factor. Subsequently, the user can decide to extend the
results by navigating toward other papers published in the same conference, the jour-
nal papers of each author, and the European research projects the authors have been
responsible for. The declarative specification of such a query template can be dis-
played visually, as shown in Fig. 2, while the results are shown in the Atom View
interface [3] represented in Fig. 311.

Fig. 3. Structure of the query upon research products and venues

5.3 On the Combined Potentials of ResEval and Search Computing

The previous two sections show that advanced research evaluation scenarios can be
approached from at least two different perspectives. ResEval proposes an imperative
paradigm for the specification of custom data processing logic; it is particularly
strong in the flexibility with which evaluation logic can be expressed. Search Comput-
ing proposes a declarative paradigm for the specification of data integration logic; it
is particularly strong for its ease of use. Although the two instruments approach the
same problem from a different perspective, it is important to note that, rather than
representing alternatives, the two instruments complement each other and that, hence,
an integration of the two may be beneficial to both.

In particular, Search Computing allows for easy data integration, by natively pro-
viding join mechanisms on heterogeneous sources, and efficient data retrieval by
means of parallel and asynchronous invocation of services, with non-blocking behav-
ior with respect to the overall query plan.

On the other side, ResEval can contribute pre-defined complex ranking indexes for
the specific domain of research evaluation, and composition flexibility thanks to the
mashup-based development.

11 See the prototype and a video at: http://www.search-computing.org/demo/ui

200 A. Bozzon et al.

6 Conclusions

This chapter discussed the problem of end user development and investigated the
most important enabling features and classification dimensions. The Search Comput-
ing and ResEval approaches have been considered as representative examples. While
the future of EUD is still uncertain, we strongly believe that combinations of declara-
tive and imperative approaches can bring value to end users, who can be empowered
with basic development capabilities, at least in limited domain scenarios.

References

1. Altinel, M., Brown, P., Cline, S., Kartha, R., Louie, E., Markl, V., Mau, L., Ng, Y.-H.,
Simmen, D., Singh, A.: Damia – A Data Mashup Fabric for Intranet Applications. In: Pro-
ceedings of VLDB 2007, Vienna, Austria (2007)

2. Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid query: multi-domain
exploratory search on the Web. In: Proceedings of WWW 2010, pp. 161–170. ACM, New
York (2010)

3. Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Exploring the Web with Search
Computing. In: Ceri, S., Brambilla, M. (eds.) Search Computing II. LNCS, vol. 6585, pp.
10–25. Springer, Heidelberg (2011)

4. Brambilla, M., Tettamanti, L.: Search computing processes and tools. In: Ceri, S.,
Brambilla, M. (eds.) Search Computing II. LNCS, vol. 6585, pp. 169–181. Springer,
Heidelberg (2011)

5. Informatics Europe Report, Research evaluation for computer science (2008), http://
6. www.informatics-europe.org/docs/research_evaluation.pdf
7. Chapman, A.J.: Assessing research: citation count shortcomings. The Psychologist,

336–344 (1989)
8. Imran, M., Daniel, F., Casati, F., Marchese, M.: ResEval: A Mashup Platform for

Research Evaluation. In: Proceedings of ECSS 2010, Prague, Czech Republic (2010)
9. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition:

Models, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano, S., Dayal,
U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 428–443.
Springer, Heidelberg (2009)

10. Hoyer, V., Janner, T., Delchev, I., Fuchsloch, A., López, J., Ortega, S., Fernández, R.,
Möller, K.H., Rivera, I., Reyes, M., Fradinho, M.: The FAST Platform: An Open and Se-
mantically-Enriched Platform for Designing Multi-channel and Enterprise-Class Gadgets.
In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900,
pp. 316–330. Springer, Heidelberg (2009)

11. Soi, S., Baez, M.: Domain-specific Mashups: from all to all you need. In: Daniel, F.,
Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp. 384–395. Springer, Heidelberg
(2010)

12. Baez, M., Birukou, A., Casati, F., Marchese, M.: Addressing Information Overload in the
Scientific Community. IEEE Internet Computing 99 (2010) (prePrints)

13. Roy Chowdhury, S., Rodríguez, C., Daniel, F., Casati, F.: Wisdom-Aware Computing: On
the Interactive Recommendation of Composition Knowledge. In: Proceedings of WESOA
2010. Springer, Heidelberg (December 2010)

14. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kaufmann, San Francisco (2002)

Part 7

Bio-SeCo

In this session, the main search computing assets, namely data integration from
distributed resources and computation of their global ranking, are discussed in the
bio-medical context. This context is characterized by numerous heterogeneous data
and algorithmic resources, which often provide ordered data; their integration can be
instrumental to the answer of complex bio-medical questions.

The first chapter presents Bio-SeCo as a case study of the use of search computing
for describing well known bioinformatics resources as search services, and for
carrying out integrated analyses over the resulting services. In particular, data from
sequence comparisons and from gene expression results are integrated in a way that
takes account of the ranked results from the different types of data. In so doing, the
use of ranking as a first class citizen for data integration in the life sciences is
illustrated and open issues are identified for further investigation.

The second chapter focuses on the use of workflows in the Life Sciences to
integrate and analyze dispersed information, and their connection with search
computing. The chapter describes Taverna, a well established platform for designing
and executing workflows, which allows the automation of experimental methods
through the use and integration of a number of different life science services (such as
Web services). The benefits of making ranked data and partial/incremental results as
first class citizens in life science workflows, as well as the use of domain-specific
service collections and provenance traces as complements to the search computing
paradigm, are investigated and discussed.

Finally, the third chapter discusses the user needs concerning complex bio-medical
searches and bio-molecular knowledge discovery, highlighting potential issues and
benefits for search computing applications in the bio-medical field.

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 203–214, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Bio-SeCo: Integration and Global Ranking
of Biomedical Search Results

Marco Masseroli and Giorgio Ghisalberti

Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

{masseroli,ghisalberti}@elet.polimi.it

Abstract. This chapter presents how well known bioinformatics resources can
be described as search services in the search computing framework and how in-
tegrated analyses over such services can be carried out. An initial set of bioin-
formatics services has been described and registered in the search computing
framework and a bioinformatics search computing (Bio-SeCo) application us-
ing these services has been created. This current prototype application, the
available services which it uses, the queries which are supported, the kind of in-
teraction which is therefore made available to the users, and the future scenarios
are here described and discussed.

Keywords: search, bioinformatics, data integration, ranked data.

1 Introduction and Motivation

In the life sciences, questions are often complex and simultaneously regard several
different functional and structural aspects of an organism and its biomolecular entities
(e.g. the genes expressed in certain conditions, their mutations and their involvement
in pathological phenotypes or diseases, the proteins with their protein domains and 3D
structure, their participation in different biochemical pathways and biological proc-
esses, etc.). An example is the following: “Which genes encode proteins in different
organisms with high sequence similarity to a given protein and are significantly ex-
pressed in the same given tissue or condition?” Such questions can be addressed only
by exploring, comprehensively searching and globally evaluating the numerous avail-
able data and their relationships, which are of different types and often inherently
ordered or associated with ranked confidence values. Access to these data is being
increasingly provided, and more relevantly than in other fields, by web services,
which offer both generic and domain-specific search services, i.e. bioinformatics
services that provide results (often ranked) of user defined searches within data re-
positories. These services provide users with rapid and selective access to biomedical
data from potentially huge repositories. However, individual search tools are often
ineffective for use in applications in which the answer to a request involves combin-
ing results from more than one search engine. In particular, available search services
typically provide vertical search capabilities [1], in which they are focused on a single
domain. They seek individual items that meet the criteria specified in a request,
whereas in practice information relevant to a biomedical requirement may be spread

204 M. Masseroli and G. Ghisalberti

over several resources. Furthermore, it is often essential to combine multiple vertical
search services to create multi-domain searches, where the different domain searches
either refine or augment previous results. For example, if the user is interested in
knowing which genes both encode proteins with high sequence similarity to a given
protein and are significantly expressed in the same given biological condition or tis-
sue, current practice typically involves the integration of results from three different
searches (for similar proteins, protein encoding genes and gene expressions), where
the individual search results are themselves likely to be ranked by some criteria [2].
Such an integration task, taking account of the rankings, is termed a multi-domain
search, and may be carried out manually or by a custom program, but has not
typically been supported directly by data integration platforms.

Search computing [3] [4] and its information exploration paradigm based on se-
mantic resource framework (see this book, Part 3 – Chapter 1: Semantic Resource
Framework and Part 1 – Chapter 2: Information Exploration in Search Computing),
provide a platform for expressing requests over multiple search services, such that the
results of the integrated requests take account of the rankings of individual search
results. The several different types of biomedical data and their relationships, as well
as the numerous bioinformatics web services available, can be semantically repre-
sented through a resource framework such that depicted in Figure 1. Thus, by using
available web services for searching bioinformatics data and taking advantage of the
attributes they define for providing a ranking, search computing techniques can be
applied to efficiently explore available data and to search for globally ranked answers
to complex biomedical questions.

Fig. 1. Biomedical Semantic Resource Framework

For example, let us consider the above mentioned multi-domain case study
question: “Which genes encode proteins in different organisms with high sequence
similarity to a given protein and are significantly expressed in the same given tissue

 Bio-SeCo: Integration and Global Ranking of Biomedical Search Results 205

or condition?” It can be addressed by first looking for proteins with high sequence
similarity to a given protein. Then, the results of this first search can be expanded by
searching for the genes that encode the similar proteins found. Finally, the encoding
genes found are filtered by looking for only those genes that are significantly ex-
pressed in the same given biological tissue or condition (Figure 2).

Fig. 2. Exploring biomedical information by moving in the Semantic Resource Framework
through selected semantic connections

This chapter complements a previous exploration of the envisaged relevance of
search computing to the life science domain [2] by illustrating the application of the
implemented search computing platform and semantic resource framework in a bio-
medical use case.

The remainder of the chapter is as follows. Section 2 presents both the description
of bioinformatics search services that makes them usable for search computing and
the definition of requests that span multiple search services. Section 3 illustrates the
types of bioinformatics web services currently described and registered in the search
computing framework, where they are available to be used for search computing ap-
plications. Section 4 describes a prototype bioinformatics search computing (Bio-
SeCo) application able to answer an example of a biomedical question, which requires
integrating biological sequence and gene expression service results; we created such
Bio-SeCo application as a demonstrator of the capabilities of search computing tech-
nology to answer complex multi-domain biomedical questions. Section 5 discusses
future scenarios in the development of the prototypical Bio-SeCo application and in
the use of source computing in the life sciences. Some conclusions, in particular on
this last aspect, are presented in Section 6.

206 M. Masseroli and G. Ghisalberti

2 Bioinformatics Resource Representation for Search Computing

In order to be used in a search computing platform, a resource must be registered as a
search service in the search computing framework. As described in Chapter 9 of [4],
this is done by describing and making the resource available to search computing
through a standard format, called service mart. The latter describes that type of
resource, and defines the binding between the service mart and the operation to be
invoked on the service that provides access to the resource, with its input and output
parameters. A service mart is a conceptual abstraction that masks the different
implementation styles of services and is tailored to a specific need to expose search
services results. Such results are produced by interacting with concrete data sources,
which are made available through service interfaces, wrappers, or direct access to
extensional data collections (e.g. databases, excel files, and so on). A service mart
models a specific type of service by describing it and its properties; each service mart
definition includes a name (the service type name) and a collection of attributes (the
typical input and output attributes exposed by the services of that type). Service marts
have atomic attributes and repeating groups consisting of a non-empty set of
sub-attributes that collectively define a property of the service mart. Atomic attributes
are single-valued, while repeating groups are multi-valued.

Each service mart is associated with one or more specific access patterns, which
abstract and logically describe the way in which data access can be effectively per-
formed. An access pattern is a signature of the service mart in which each attribute or
sub-attribute is characterized as either input (I) or output (O), depending on the role
that the attribute plays in the service call. Moreover, an output attribute is designated
as ranked (R) if the service produces its results in an order that depends on the value
of the attribute. Access patterns can include a subset of the associated service mart
attributes that are relevant for the specific data access; they can also have additional
specific attributes (i.e. external attributes, see Part 3 – Chapter 1) not included in their
service mart since they are not typical for the majority of services described by the
service mart.

Each service mart is associated with one or more service interfaces; each of them
maps an access pattern to a specific implementation and is represented as a triple
including a name, a given access pattern and a service.

Pair-wise coupling of service marts is defined through connection patterns, which
completely specify the connection semantics. Every pattern has a conceptual name
and a logical specification, consisting of a sequence of simple comparison predicates
between pairs of attributes or sub-attributes of the two connected services; such predi-
cates are interpreted as a conjunctive Boolean expression, and can therefore be
implemented by joining the results returned by the calling service implementations.

Through service marts, access patterns and connection patterns, existing resources
can hence be represented in a standard format; this enables to register, use and
combine existing bioinformatics resources in the search computing framework to
perform multi-domain searches that provide results globally ordered according to the
ranking of the retrieved single domain results.

 Bio-SeCo: Integration and Global Ranking of Biomedical Search Results 207

3 Bioinformatics Search Services Registered in the
Search Computing Framework

By using the above described standard formats for representing resources for search
computing, an initial set of bioinformatics search services has been described and
registered in the search computing framework. Three of the most common types of
search services in bioinformatics, i.e. for biomolecular sequence alignment and search
(in a databank of nucleotide or amino acid sequences), for protein ID look up (in a
gene or protein databank) and for gene expression result search (in a databank of
experimental gene expression results) have been considered. Their service marts and
some of their access patterns have been defined as follow, together with some service
interfaces for a few specific bioinformatics services of such types.

3.1 Services for Biomolecular Sequence Alignment and Search

The far most used algorithms for biomolecular sequence alignment and search in a
repository of biomolecular sequences are BLAST (Basic Local Alignment and Search
Tool) [5] and FASTA (FAST All) [6]. Numerous implementations of each of these
algorithms, in some cases optimized for specific purposes, exist and are publicly avail-
able as search services. They usually have many input and output attributes: the most
important can be described by the following sequenceAlignmentSearch service mart:

 sequenceAlignmentSearch(sequenceAlignmentProgram, searchedDatabase,
 querySequence, querySequenceID, querySequenceIDName,
 foundSequenceSymbol, foundSequenceID, foundSequenceIDName,
 foundSequenceDescription, foundSequenceOrganism, alignments(score,
 expectation, probability, matchQuerySequence, matchFoundSequence,
 matchPattern))

A couple of different access patterns have been defined to logically describe the ways to
access these biomolecular sequence alignment and search services and the data they
provide. They are sequenceAlignmentSearch_bySequence and sequenceAlignment-
Search_byID, that describe the two possible ways of expressing the input biomolecular
sequence, which is used as query sequence for searching similar sequences: by its
nucleotide or amino acid sequence, or by its ID in the searched databank (specified by
the two input attributes querySequenceIDI, and querySequenceIDNameI).

sequenceAlignmentSearch_bySequence(sequenceAlignmentProgramI,
 searchedDatabaseI, querySequenceI, foundSequenceSymbolO,
 foundSequenceIDO, foundSequenceIDNameO, foundSequenceDescriptionO,
 foundSequenceOrganismO, alignments.scoreR, alignments.expectationR,
 alignments.probabilityR, alignments.matchQuerySequenceO,
 alignments.matchFoundSequenceO, alignments.matchPatternO)

sequenceAlignmentSearch_byID(sequenceAlignmentProgramI, searchedDatabaseI,
 querySequenceIDI, querySequenceIDNameI, foundSequenceSymbolO,
 foundSequenceIDO, foundSequenceIDNameO, foundSequenceDescriptionO,
 foundSequenceOrganismO, alignments.scoreR, alignments.expectationR,
 alignments.probabilityR, alignments.matchQuerySequenceO,
 alignments.matchFoundSequenceO, alignments.matchPatternO)

208 M. Masseroli and G. Ghisalberti

The sequenceAlignmentProgram is the input attribute used to specify the sequence
alignment program (e.g. BLASTN, BLASTP) to use in order to search, in the
searchedDatabase database (e.g. UniProtKB), for the sequences similar to a specific
query sequence; the retrieved sequences are described through the foundSequence-
Symbol, foundSequenceID, foundSequenceIDName, foundSequenceDescription and
foundSequenceOrganism output attributes. In the first access pattern, the query se-
quence is specified by providing as input its actual sequence (through the querySe-
quence input attribute); in the second access pattern, the query sequence is specified
by providing its ID as input (through the two querySequenceID and querySequen-
ceIDName input attributes) in the database in which the search is performed (speci-
fied through the searchedDatabase input attribute). In all cases, alignments.score,
alignments.expectation and alignments.probability are the output attributes that can be
used for providing three different rankings of the retrieved sequences and their local
alignments with the query sequence (alignments.matchQuerySequence, align-
ments.matchFoundSequence, alignments.matchPattern), according to their similarity
with the query sequence.

Service interfaces for the BLAST implementations of the Washington University
(WU BLAST) (http://www.ebi.ac.uk/Tools/blast2/) and the US National Center for
Biotechnology Information (NCBI BLAST) (http://blast.ncbi.nlm.nih.gov/) have been
created as follow:

WU_BLAST_bySequence(“Washington University BLAST”,
sequenceAlignmentSearch_bySequence,
http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl)

NCBI_BLAST_bySequence(“National Center for Biotechnology Information
BLAST”, sequenceAlignmentSearch_bySequence,
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Put&QUERY=
<querySequence>&DATABASE=<searchedDatabase>&PROGRAM=
<sequenceAlignmentProgram>)

3.2 Services for Protein ID Look Up

Several bioinformatics web services are available to retrieve a variety of protein in-
formation from different databanks; in particular some of them provide the ID and the
symbol of the genes a given protein is associated with, either since the protein inter-
acts with the gene, or because the gene encodes for the protein. The access to this type
of information can be described for search computing by the following protein2gene
service mart and the protein2gene_byID access pattern, which represents a way of
defining the input protein whose associated genes are looked for: by its ID, or by its
symbol and organism.

protein2gene(proteinID, proteinIDName, geneID, geneIDName, geneSymbol,
organism, associationType(type), associationProvenance(database))

 Bio-SeCo: Integration and Global Ranking of Biomedical Search Results 209

protein2gene_byID(proteinIDI, proteinIDNameI, geneIDO, geneIDNameO,
geneSymbolO, organismO, taxonomyIDO, associationType.typeO,
associationProvenance.databaseO)

A few service interfaces to access our Genome Function INtegrated Discoverer
(GFINDer) (http://www.bioinformatics.polimi.it/GFINDer/) integrative Genomic and
Proteomic Data Warehouse (GPDW) [7] [8] have been created; an example is as follow.

GPDW_byID(“Genomic and Proteomic Data Warehouse”,
 protein2gene_byID, http://www.bioinformatics.polimi.it/GFINDer/)

3.3 Services for Gene Expression Result Search

A few repositories of gene expression experimental data exist, some of which are
publicly accessible through web interfaces and services. Among such repositories,
Array Express Gene Expression Atlas (http://www.ebi.ac.uk/gxa/) [9] and Gene Ex-
pression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) [10] are the most important
ones; their data access can be described for search computing with the following
geneExpressionSearch service mart and geneExpressionSearch_byGeneID access
pattern, which represent the inputs used to describe the gene and its expression data
that are looked for in the repository.

geneExpressionSearch(queryProperty, queryPropertyValue, queryOrganism,
queryRegulation, queryFactorTerm, queryFactorValue, foundGeneSymbol,
foundEnsemblGeneID, foundGeneSynonyms(geneSymbol),
 expressionFactorTerm, expressionFactorValue, expressionFactorOntologyID,
expressionRegulation, experimentNumber, bestExperimentPvalue,
 bestExperimentID)

geneExpressionSearch_byGeneProperty(queryPropertyI, queryPropertyValueI,
queryOrganismI, queryRegulationI, queryFactorTermI, queryFactorValueI,
foundGeneSymbolO, foundEnsemblGeneIDO, foundGeneSynonyms.geneSymbolO,
expressionFactorTermO, expressionFactorValueO,
expressionFactorOntologyIDO, expressionRegulationO, experimentNumberR,
bestExperimentPvalueR, bestExperimentIDO)

Some service interfaces to access the Array Express repository have been created; an
example is:

Array_Express_byGeneID(“Array Express Gene Expression Atlas”,
geneExpressionSearch_byGeneID,
http://www.ebi.ac.uk/gxa/api?geneIs=<queryEnsemblGeneID>&format=xml&
indent)

4 A Bioinformatics Search Computing (Bio-SeCo) Application

To demonstrate the effectiveness of Search Computing in addressing complex bio-
medical questions and searching for their globally ranked answers, we considered the

210 M. Masseroli and G. Ghisalberti

multi-domain case study question mentioned above (“Which genes encode proteins in
different organisms with high sequence similarity to a given protein and are signifi-
cantly expressed in the same given tissue or condition?”). We created a bioinformatics
search computing (Bio-SeCo) application that enables users to run online such multi-
domain biomedical query for different user selected proteins, gene expression regula-
tion types and biological tissues or conditions, and obtain globally ranked ordered
results.

The case study question can be decomposed into the following three single domain
sub-queries: “Which proteins in different organisms have high sequence similarity to
a given protein?”; “Which genes encode which proteins?”; and “Which genes are
significantly expressed in the same given tissue or condition?”. Each of these sub-
queries can be mapped to an available specific search service, i.e. a sequence similar-
ity search program such as BLAST, in one of its many implementations (e.g. WU
BLAST), a query service in a database of genomic and proteomic data such as our
GFINDer GPDW, and a search engine over a repository of gene expression data such
as Array Express Gene Expression Atlas, respectively. As above described, these
bioinformatics services have been registered and are now available in the search com-
puting framework; thus, in the search computing framework they can be composed to
automatically perform the multi-domain searches required to answer the considered
example question. As described in Chapter 9 of [4], the composition of the bioinfor-
matics services useful for computing the answer to the considered question can be
done by defining, between the service marts that model those services, the following
two pair-wise coupling connection patterns:

existsCodingGene_byProteinID(sequenceAlignmentSearch, protein2gene):
[(sequenceAlignmentSearch.foundSequenceID = protein2gene.proteinID
AND sequenceAlignmentSearch.foundSequenceIDName =

protein2gene.proteinIDName)]

existsExpressedGene_byGeneSymbol(protein2gene, geneExpressionSearch):
[(“Gene” = geneExpressionSearch.queryProperty
AND protein2gene.geneSymbol = geneExpressionSearch.queryPropertyValue
AND protein2gene.taxonomyID = geneExpressionSearch.queryOrganism)]

4.1 Query Submission

The example query can hence be expressed in the search computing framework ac-
cording to the semantic resource framework in Figure 1 and executed using a user
interface such as the one described in Part 1 – Chapter 2. To achieve this aim, in the
search computing platform we specified the three single domain sub-queries, in which
the example query can be decomposed as follows, and created an execution plan im-
plementing the two connection patterns above.

similarProteins(queryProteinIDName, queryProteinID, list_of(A, B, C, D))

codingGene(A, B, E, F)

expressedGene(“Gene”, E, F, queryExpressionRegulation, queryFactorValue, G,
H)

 Bio-SeCo: Integration and Global Ranking of Biomedical Search Results 211

with A: similarProteinID, B: similarProteinIDName, C: similarProteinSymbol,
D: similarityExpectation, E: codingGeneSymbol, F: organism,
G: experimentNumber, H: p-value.

Furthermore, we defined a suitable ranking composition function (see Part 6 of this
book – Rank Join) to aggregate the ranked results from the single domain searches
produced by the composed services and generate a unique global ranking. While rank-
ing attributes of the two composed services that provide ranked results (i.e. the
sequenceAlignmentSearch and geneExpressionSearch services), we respectively con-
sidered the attributes bestAlignmentExpectation and bestExperimentPvalue. Given the
dimensionless nature of the values in such attributes, we decided to define the ranking
composition function as the product of these ranking attributes. In addition, since in a
single search a geneExpressionSearch service can provide results for different values
of the expressionFactorValue attribute (e.g. for different types of a given biological
tissue or condition), we decided to generate such ranking composition for each value
retrieved for the expressionFactorValue attribute and order the obtained global rank-
ing in decreasing order of relevance. Finally, we created a web user interface to enter
search constraints as query parameter values, submit the query execution (Figure 3)
and present the global-ranked multi-domain search results obtained (Figure 4).
Through such interface freely available on line (http://www.search-computing.it/
UIDemoBio/) the user can interact with the prototypical Bio-SeCo application cre-
ated. He/she can both submit searches for his/her chosen search constrains and browse
the retrieved results, with the possibility to hide or to show retrieved attributes and/or
change the result visualization order according to any set of retrieved attributes.

Fig. 3. Bio-SeCo application user interface to enter search constraints as query parameter
values, choose the result visualization type and submit the query execution.

212 M. Masseroli and G. Ghisalberti

4.2 Query Results

In Figure 3 an example set of search constraints is shown: Protein ID name (se-
quenceAlignmentSearch querySequenceIDName) = “uniprot”, Protein ID (se-
quenceAlignmentSearch querySequenceID) = “O14543”, Gene expression regulation
(geneExpressionSearch queryRegulation) = “updown” and Biological tissue or condi-
tion (geneExpressionSearch queryFactorValue) = “brain”. In Figure 4 an excerpt of
the global ranked results obtained for the user specified search constraints in Figure 3
is depicted. The resulting genes (Socs3 in mouse, human and rat, Socs2 in human and
rat, and socs8 in zebrafish) represent the ordered list of genes that encode proteins
with high sequence similarity to the input O14543 protein (human Suppressor of
cytokine signaling 3) and are significantly differentially over or under expressed (up
regulated or down regulated) in the brain. Hence, according to the partial ranked
results provided on August 5th, 2010 by the WU BLAST, GPDW and Array Express
services registered in the search computing framework, they constitute the global
ranked answer to the considered example question, with the search constraints speci-
fied in Figure 3. The search computing framework automatically builds such results
by integrating the partial ranked results provided by each considered service, as
shown in Chapter 11 of [4]. As expected, the resulting genes include the gene that
encodes the input protein.

Fig. 4. Global ranked (Rank) results provided by the search computing to the example question
for the user input Protein ID = “O14543”, Protein ID name = “uniprot”, Gene expression regu-
lation = “updown” and Biological tissue = “brain”. Expectation: similarity expectation value of
the best BLAST alignment of the input protein sequence with the sequence of the protein with
the Protein ID, Protein Name and Protein Symbol shown; P-value: most statistical significance
p-value of the differential expression (Regulation) of the gene with the indicated Gene Symbol
in the Organism and biological tissue (Factor) shown, according to the experiments (Experi-
ment Number) considered.

 Bio-SeCo: Integration and Global Ranking of Biomedical Search Results 213

5 Future Scenarios

The created Bio-SeCo application fully enables the user to run the example multi-
domain biomedical query and demonstrates the capabilities of the search computing
technologies to be effectively applied to efficiently search for globally ranked answers
to complex biomedical questions. Yet, the described application is just a first prototype
that can and will be improved in the near future. Among others, in accordance with
planned developments of the search computing technology, future improvements will
concern ranking composition function, query expansion and web user interface. Differ-
ent types of ranking composition function will be defined, which will include weight
coefficients for each composed service. Values for such coefficients will be definable
and interactively modifiable by the user at query time, in order to allow customizing
global ranking calculation also in accordance with the retrieved results by each specific
individual search. According to the information exploration paradigm based on seman-
tic resource framework, expansion of global search results will be made possible in
order to both refine search results and explore additional search domains, not included
in the initial search but related according to the semantic resource network of domain
services registered in the search computing framework. For instance, for the considered
example query, interesting expansions could concern the search for similarity among
the promoters of the genes found significantly expressed in the same given biological
tissue or condition, or the search for co-occurrence in the same biomolecular pathways
of the proteins found with amino acid sequence similar to the one of a given protein. A
more advanced result visualization interface will allow interactively browsing and
expanding individual search results, highlighting global combinations of results with
particular relevance. Finally, the increasing number of bioinformatics services that will
be registered in the search computing framework will enable more possible combina-
tions of service compositions, with the consequent increasing capability of answering
more and even more complex biomedical questions.

6 Conclusions

This chapter has shown that mainstream bioinformatics resources can be described
and composed using search computing constructs in order to automatically answer
complex multi-domain biomedical queries, where global ranking of the integrated
retrieved results is automatically computed by the search computing platform based
on the rankings of the individual searches. The shown example and the implemented
application take into account only three bioinformatics services and just one composi-
tion of them. When more services are registered in the search computing platform,
they can be composed in different ways to answer a broader variety of complex bio-
medical queries and refine or augment query results. In so doing, search computing
can support exploratory search and curiosity driven browsing of life science data that
are difficult to perform otherwise, thus enabling ambitious data driven biological
knowledge discovery and verification. Further work, required to enable more than a
single mechanism for aggregating ordered data sets, will allow the use of multiple
global ranking mechanisms. This will enable users to customize the global rankings,
to reflect individual preferences on a search-by-search basis, and allow meeting the
variety of requirements of biomedical users.

214 M. Masseroli and G. Ghisalberti

References

1. Goble, C.A., Belhajjame, K., Tanoh, F., Bhagat, J., Wolstencroft, K., Stevens, R., Pettifer,
S., Nzuobontane, E., McWilliam, H., Laurent, T., Lopez, R.: BioCatalogue: a curated Web
Service registry for the Life Science community. ISMB/ECCB 2009. Technology Track:
TT40 (2009)

2. Masseroli, M., Paton, N.W., Spasić, I.: Search Computing and the Life Sciences. In:
Ceri, S., Brambilla, M. (eds.) Search Computing. LNCS, vol. 5950, pp. 291–306. Springer,
Heidelberg (2010)

3. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Mashing up search services. IEEE Internet
Comput. 12(5), 16–23 (2008)

4. Ceri, S., Brambilla, M. (eds.): Search Computing - Challenges and Directions. LNCS,
vol. 5950. Springer, Heidelberg (2010)

5. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic Local Alignment
Search Tool. J. Mol. Biol. 215(3), 403–410 (1990)

6. Pearson, W.R.: Using the FASTA program to search protein and DNA sequence databases.
Methods Mol. Biol. 24, 307–331 (1994)

7. Masseroli, M., Ceri, S., Campi, A.: Integration and mining of genomic annotations: Ex-
periences and perspectives in GFINDer data warehousing. In: Paton, N.W., Missier, P.,
Hedeler, C. (eds.) DILS 2009. LNCS, vol. 5647, pp. 88–95. Springer, Heidelberg (2009)

8. Masseroli, M., Ceri, S., Tettamanti, L., Campi, A., Sormani, S.: Integration of distributed
heterogeneous biomolecular data to support biological discovery. In: BITS 2009: Sixth
Annual Meeting Bioinformatics Italian Society, Liberodiscrivere edizioni, Genova, IT, pp.
113–114 (2009)

9. Parkinson, H., Sarkans, U., Shojatalab, M., Abeygunawardena, N., Contrino, S., Coulson,
R., Farne, A., Lara, G.G., Holloway, E., Kapushesky, M., Lilja, P., Mukherjee, G., Oezci-
men, A., Rayner, T., Rocca-Serra, P., Sharma, A., Sansone, S., Brazma, A.: ArrayExpress -
a public repository for microarray gene expression data at the EBI. Nucleic Acids
Res. 33(Database issue), D553–D555 (2005)

10. Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I.F.,
Soboleva, A., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Muert-
ter, R.N., Edgar, R.: NCBI GEO: archive for high-throughput functional genomic data.
Nucleic Acids Res. 37(Database issue), D885–D890 (2009)

Workflows for Information Integration in the
Life Sciences

Paolo Missier, Norman Paton, and Peter Li

School of Computer Science, University of Manchester
Oxford rd., Manchester, UK

{firstname.lastname}@cs.manchester.ac.uk

Abstract. The increasingly computationally- and data-intensive nature
of experimental science motivates recent interest in workflows, as a way
to specify complex data processing and integration pipelines in a fairly
intuitive way. Such workflows orchestrate the invocation of data retrieval
services in a way that resembles, to some extent, Search Computing query
plans. While the former are manually specified, however, the latter are
the result of an automated translation process. Using lessons learnt from
experience in workflow design, in this chapter we discuss some of the
requirements on service curation that make automated, on-demand data
integration processes possible and realistic.

1 Workflows for Computational Science and Information
Integration

In many disciplines of natural science, research advances increasingly rely upon
the automated acquisition, transformation and analysis of large-scale data. In this
chapter, we exemplify and discuss the use of workflow technology as a way to ad-
dress the needs of data analysis automation in science [1]. Our examples refer to
two emerging areas in the life sciences which has been the focus of data-intensive
research, namely next generation DNA sequencing (NGS) and systems biology.

NGS is having a profound impact on the expectations and the methods of
genomics research. First introduced around 2005, NGS makes it possible to se-
quence entire genomes in weeks, spurring ambitious new efforts like the 1000
Genomes Project [2]. While these projects underpin the study of the genetic
causes of human diseases, they come with new challenges at multiple levels.
Firstly, they push the limits of current data repositories. For example, the Short
Read Archive, the European repository that accepts data submissions from NGS
machines at the EMBL1, received 30TB of data in the first six months of op-
eration, making data submission rate the new bottleneck for advances in ge-
nomics2 [3]. At the same time, a secondary effect of these new whole-genome
sequencing studies is the exponential growth in the number of submissions to

1 European Molecular Biology Lab: http://www.ebi.ac.uk/ena/
2 The EMBL-Bank grows in size at the rate of 200% per annum.

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 215–225, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.ebi.ac.uk/ena/

216 P. Missier, N. Paton, and P. Li

SNP databases3[4]. In turn, advances in data production drive the need for the
development of highly automated pipelines for the analysis of NGS data, both
primary (sequence) and “downstream” (SNP analysis, for example).

While such experimental processes predictably involve a combination of data-
centric (data retrieval, format mappings) as well as compute-intensive tasks, their
exact nature and composition into a complete process tend to change rapidly, fol-
lowing data availability and other technological advances. In practice, the exper-
imental nature of the projects extends from data generation technology, to the
development of novel techniques for data analysis. In this setting, workflow tech-
nology addresses the scientists’ needs for rapid prototyping of innovative appli-
cations. Workflows embody high level programming models that let users specify
the coordinated execution, known as orchestration, of various types of executable
software components, or tasks, often implemented as Web services. Workflow lan-
guages tend to be higher level than traditional scripting languages, such as Perl,
resulting in more manageable specifications of complex data processing pipelines.
At the same time, their computational models are more understandable by do-
main experts with a limited knowledge of general-purpose programming. For these
experts, workflows are a way to maintain control over all phases of their computa-
tional experiment, from design, to execution, to analysis of the results. Workflow
systems offer additional advantages over general scripting environments, including
managing the scheduling of tasks and their deployment on HPC infrastructures,
such as clouds.

A variety of workflow systems for science have emerged over the past few years,
in response to these scientists’ needs. Their commonalities and differences have
been described at length in the literature [5,6]. In most cases, however, the fo-
cus is on workflows that accomplish compute-intensive tasks, such as large-scale
simulations [7]. Less emphasis is placed on a class of workflows whose main pur-
pose is to retrieve and integrate data from multiple sources, usually in order to
enable some more complex processing downstream. The importance and impact
of these resource-oriented workflows on the e-science data infrastructure is grow-
ing with the number and size of the available databases, as mentioned earlier. A
recent EBI statistic [3], for example, compares interactive Web page accesses to
programmatic (i.e., Web service-based) access to its 63 databases, reporting about
1 million automated data retrieval jobs / month in 2009 from services.

Resource-oriented workflows resemble less a scientific experiment, and more a
distributed query plan in which the nodes are service invocations, a characterisa-
tion that makes them particularly interesting in the context of Search Comput-
ing. In the rest of the chapter we use an example from the bioinformatics area
of systems biology, implemented using the Taverna workflow system [8], to dis-
cuss opportunities and limitations of using workflows as a form of on-the-fly data
integration.

3 Single Nucleotide Polymorphisms, or SNPs, are single-base mutations on a chromo-
some. About .5k new SNPs are detected for each genome that is sequenced, leading
to over 100 million submissions, by early 2010, to dbSNP, the SNP database at the
NCBI: http://www.ncbi.nlm.nih.gov/snp/.

http://www.ncbi.nlm.nih.gov/snp/.

Workflows for Information Integration in the Life Sciences 217

2 Example: Automating a Systems Biology Pipeline

The following example of a workflow-based systems biology study demonstrates
how workflow modelling can be used effectively for data integration. In the next
section we will discuss the opportunities and the limitations of this approach. In
bottom-up system biology studies, genome-scale models of biological systems,
found in existing databases of pathways, are used as a starting point for the
creation of quantitative models that support various types of simulations. A
typical study involves the following steps: (i) identify the pathway or portion
of a network that is to be modeled; (ii) associate the model with functions and
parameter values that represent its dynamic behavior, either from databases
or experimentation; and (iii) analyze and/or simulate the resulting model to
understand its properties [9]. Model construction is typically a manual process,
involving the association of a model with experimental data. While such an
approach can produce good quality models, it is hardly scaleable. The goal of
workflow-based modelling in this case is to automate the entire process, from
network data retrieval, to the result of a simulation. At a conceptual level, the
entire process consists of a sequence of the following four workflows, shown in
abstract form in Fig. 1 along with the databases involved.

wf1:
create

qualitative
model

wf2
parameterize

model

wf3
model

calibration

wf4
simulation

Yeast
consensus

model

KeyResults
DB

MeMO PRIDE

SABIO-RK

Experimental
Data

(e.g. protein
mass spectra)

SBML
model

annotated
SBML
model

COPASI WS

fitted
SBML
model

Fig. 1. Conceptual workflow view of systems biology modelling

1. The first workflow produces a small and manageable qualitative model that
is focused on a specific metabolic pathway using data from a consensus model
of yeast metabolism [10]. This model represents the components and their re-
lationships in a biological system. In a metabolic pathway, for example, the
nodes of this system represent metabolites and enzymes, whilst the edges be-
tween these components represent biochemical reactions. Importantly, the
model is expressed using the standard System Biology Markup Language
(SBML) syntax4. SBML provides a common and interoperable schema for

4 http://sbml.org

http://sbml.org

218 P. Missier, N. Paton, and P. Li

model representation that is shared through all phases of the study, and makes
its component workflows reusable within the systems biology community.

2. The qualitative SBML model is fed to a second parameterisation work-
flow, which uses information on reaction kinetics, found in the SABIO-RK
database,5 as well as primary experimental data stored in the Key Results
Database (KRDB)6, to produce a quantitative model, i.e., an annotated ver-
sion of the input model with additional details.

3. The quantitative model is then fitted to experimental data, and finally the
resulting calibrated model is analysed using a simulation algorithm offered
by the COPASI service [11] to predict how the concentrations of metabolites
vary over time.

3 Workflows and Search Computing

We now discuss the use of resource-oriented workflows with a view on Search
Computing (SeCo), using a specific workflow model, namely Taverna [8].

3.1 Workflow-Based Service Orchestration

Taverna is a language and computational model designed to support the au-
tomation of complex, service-based and data-intensive scientific processes. It is
best known for its application to the life sciences, where it has been used to sup-
port experimental investigation into a variety of research areas. In the example
above, we have used Taverna workflows to automate the otherwise time con-
suming, partially documented process of manual model design and refinement.
These workflows can be viewed as procedural specifications of data and service
integration pipelines. Integration of data is made possible by the adoption of
SBML, a de facto standard language for model description, as well as of the
MIRIAM guidelines for curating quantitative models of biological systems [12].
Integration of services is provided by the workflow programming model, whereby
service invocations, represented by tasks, are specified along with the intended
flow of data amongst them.

Fig. 2 shows a detail of the second workflow in the example pipeline7. The
data retrieval tasks are either invocations of Web service operations, i.e., on the
SABIO-RK service, or are scripts that encode ad hoc SQL queries, as suggested
in the figure. Data flows are specified as data dependencies from the output
of a task, to the input of another task. Workflow execution is entirely data-
driven8. Users can easily extend the collection of Web services that can be used
in a workflow. Specifically, given a generic WSDL interface (reachable through

5 http://sabio.villa-bosch.de/
6 http://code.google.com/p/keyresultsdb/
7 The complete workflow is reproduced in [9] as Fig.1, and the entire suite of workflows

is available from the myExperiment repository:
http://www.myexperiment.org/users/221/workflows

8 Additional details on the Taverna model and architecture can be found in [8].

http://sabio.villa-bosch.de/
http://code.google.com/p/keyresultsdb/
http://www.myexperiment.org/users/221/workflows

Workflows for Information Integration in the Life Sciences 219

Fig. 2. Detail of model parameterisation Taverna workflow

its URL), Taverna generates a set of tasks, each corresponding to one inter-
face operation, with input and output ports that correspond to the operation
parameters9. These tasks are immediately available for use in any workflow.

3.2 Providing Support for Integration Workflow Design

The service orchestration model just presented suggests that integration work-
flows like the ones used in our example can be viewed as specifications of dis-
tributed query plans, in which the elementary steps correspond to Web service
invocations. As such, they may be relevant in the context of Search Comput-
ing (SeCo). There are, however, major obvious differences between SeCo query
plans and workflows; namely, SeCo logical query plans incorporate notions of
chunking and can deal with ranked results returned by services, neither of which
is part of the Taverna model of computation. Nevertheless, one can still gain
insight into the potential complexity of automated SeCo query plan generation,
by looking at the typical manual workflow design process, where the primary
concern is to ensure consistency of the integration. As in the case of traditional
schema mapping, the design of an integration workflow too relies on a number
of elements:
9 A plugin for importing REST services is also avaiable. Tasks that represent REST

service invocations have an input port for each configurable parameter in the URL
template that represents the main access path to the service.

220 P. Missier, N. Paton, and P. Li

– knowledge of the data types and formats produced and consumed by each
of the involved services, as well as of the services’ functionality (intended
behaviour);

– knowledge of the schema and data access mechanisms (SQL, for example),
as in the task that retrieves SABIO compound names in Fig. 2;

– a collection of additional adapter tasks, required whenever format or other
types of transformations are needed to achieve integration.

Our running example, and specifically the second workflow, is a fortunate case of
integration in which the services’ signatures and behaviour are well specified, and
furthermore, they are designed by the service provider to work together, thus
simplifying their composition and removing the need for adapters. Additional
ad hoc local scripts were still needed, however, to supplement the service-based
data access operations. In the example, the designers use their knowledge of
each service’s functionality and of the type of each service port, to identify the
connections that are consistent with the data values and formats.

In general, however, workflow-based integration efforts are not immune from
the curse of heterogeneity that affects traditional data integration projects. This
results in complex integration workflows that often contain more adapters, which
are custom-made and hardly reusable scripts (colloquially known as “shims”),
than they do actual data retrieval steps. This is typically the case when the com-
position involves arbitrary services10. Indeed, the ability of the Taverna model
to turn any public, WSDL-based service into a set of tasks is both its strength
and its weakness, as this generality comes at the price of an increased burden
on the workflow designer to ensure the consistency of the service composition.

3.3 Restricting the Space of Target Services: Examples

These considerations suggest, unsurprisingly, that composition within a limited
and controlled space of services may be easier to accomplish, automate, and ver-
ify than when we are faced with an open space of arbitrary third party services
that exist “in the wild”. Assisted, or even automated workflow design comes
with a price, however, by either requiring a systematic curation effort to pro-
vide a knowledge-rich description of the services and datasets involved, or by
putting additional constraints onto the space of services and components that
are available to the users.

Notable examples of workflow systems that take these approaches include
Wings/Pegasus, Galaxy, Triana, and Kepler, amongst many others. We briefly
recall their main features in the rest of this section. These systems are all geared
primarily towards the design of complex, compute-intensive data pipelines (as
opposed to data retrieval and integration tasks) for the benefit of a specific user
community. As the space of available components is both limited and controlled
10 Examples of phenomenon can be easily found on the myExperiment web site. For a

rather extreme case, see workflow http://www.myexperiment.org/workflows/1212.

html, where 2 computational tasks (one script and one database lookup) are sur-
rounded by 33 adapters.

http://www.myexperiment.org/workflows/1212.html
http://www.myexperiment.org/workflows/1212.html

Workflows for Information Integration in the Life Sciences 221

as a consequence of this focus, better guidance (in the form of components
recommendations and type-checking, for example) can be provided to workflow
designers.

Wings/Pegasus. The Wings project [13] is an exploration into the trade-off
between component curation and automated workflow generation. Wings im-
plements a suite of AI-type algorithms that operate on a knowledge base of
annotated workflow templates, as well as of a curated catalog of components
and datasets, to generate complete Pegasus workflows [14] from high-level user
requirements. User requirements are expressed in the form of constraints over
the types and features of the components, and logic reasoning is used to incre-
mentally refine an initial workflow template into a ground (i.e., fully specified
and executable) workflow along with a set of configuration parameters. One of
the key to the success of this approach is its application to a well-curated and
confined area of computational science, namely in a library of components for
machine learning and data mining.

Galaxy. The Galaxy system11 is a rich, interactive environment for genomics
and metagenomics data analysis [15]. Its primary goal is to make in silico re-
search accessible to bioinformaticians, by letting them build complex data analy-
sis pipelines interactively, with the option to save them as workflows that can be
shared and reused, possibly with different inputs and parameters. With a strong
emphasis on reproducibility of scientific data analysis, Galaxy is characterised
by a controlled space of component tools which are exposed to the environment
through special configuration directives. Reproducibility is achieved by ensuring
that the tools remain available after execution, as well as by keeping a detailed
execution log that can be used for partial re-run of a workflow. As we have
observed earlier, control over the set of tools available to scientists is also bene-
ficial in reducing the need for ad hoc shims, which indeed are not part of Galaxy
workflows.

An analysis of Galaxy features that are missing from Taverna can be found
in [16]. Such analysis has been used to justify a recent integration effort, consist-
ing of a hybrid environment code-named Tavaxy, whereby Taverna and Galaxy
workflows can call each other. While this has remained a largely isolated effort
(possibly because the authors are not affiliated with either project), a more re-
cent interoperability effort has been initiated jointly by the Taverna development
group in Manchester, UK, and the Netherland Bioinformatics Centre (NBIC),
where both Galaxy and Taverna are routinely used. The goal of this project,
which at press time is at too early a stage too have been documented, is to en-
able two-way, programmatic invocation of workflows, thereby offering users the
advantages of both systems. These efforts suggest not only that these workflow
models share some portion of the bioinformatics research space, but also, in a
more technical sense, that building bridges across them is feasible and, hopefully,
will remove the need for organisations to choose one camp over another.

11 http://galaxy.psu.edu/

http://galaxy.psu.edu/

222 P. Missier, N. Paton, and P. Li

Triana. Originally designed to cater to a particular branch of physics (gravita-
tional wave [17]), the Triana workflow system [18] comes with a rich toolkit of
over 400 “native” components, which was subsequently expanded image manip-
ulation, data mining12, and other types of specialised application areas.

As anticipated, Triana offers a rich graphical workflow design environment
complete with type checking and other assistive features like on-the-fly creation
of tools, along with a facility for deploying tasks onto a variety of Grid computing
environments, and thus distributing the entire workflow computation.

Kepler. Designed for e-science applications, the Kepler workflow system [19] is
characterized by a decoupling of the workflow language syntax, from its seman-
tics. The same workflow can be interpreted differently by different directors, each
of which implements a different Model of Computation (MoC) for the language.
The strong structural constraints imposed by some of these directors on the
workflow topology actually facilitates their composition, as well as analysis (be-
haviour prediction) and optimisation. The COMAD MoD (Collection Oriented
Modelling and Design), for example, operates of data pipelines where each node,
or actor, can consume and produce exactly one input message [20]. Such mes-
sages are nested data collections, expressed as XML documents, and an actor’s
configuration includes path expressions (similar to XPath) that specify the por-
tions of the input document that the actor will update. Such update semantics
for actors can be captured formally, and in addition, the model lends itself well
to assistive workflow design. Indeed, once again we see an example of a controlled
space of workflow tasks, as actors are dedicated components that are specifically
developed for use in Kepler workflows.

3.4 Taverna in a Controlled and Annotated Service Space

In contrast to the approaches just surveyed, the generality of the Taverna ap-
proach to composition leaves the burden of workflow design entirely with its
author. To alleviate the problem, the strategy for supporting the designers is
centred around a home-grown service registry, called BioCatalogue13. The reg-
istry accepts direct contributions from the community, as well as ingesting ser-
vice descriptions from a variety of other registries, including BioMoby Central14,
DAS15, SeekDa16, and EMBRACE17. Services in BioCatalogue are described in
a variety of ways, reflecting the heterogeneity of annotations supplied natively by
the different providers. These include structured data, i.e., WSDL interface spec-
ifications, free text, user-supplied tags, as well as more formal ontology terms. A
recent account of BioCatalogue [21] describes four main annotation categories,
covering: (i) functional properties, which attempt to capture both the overall

12 http://www.datamininggrid.org/
13 http://www.biocatalogue.org.
14 http://www.biomoby.org/
15 www.biodas.org
16 www.seekda.com
17 www.embraceregistry.net

http://www.datamininggrid.org/
http://www.biocatalogue.org
http://www.biomoby.org/
www.biodas.org
www.seekda.com
www.embraceregistry.net

Workflows for Information Integration in the Life Sciences 223

scientific purpose of the service operations, as well as describing how operations
are to be combined into specific patterns in order to deliver some high-level ser-
vice functionality; (ii) operational properties, which specify for example condi-
tions on the service usage; (iii) service performance and health profiling obtained
through monitoring, and (iv) the provenance of the description, including who
provided the entry and its annotations.

While basic service description lookup functionality has been integrated into
the Tavernaworkflowdesign enironment, service annotations are not yet, however,
exploited to their full potential to actively support the design process. Our ongo-
ing research, specifically in the area of functional characterisation of services [22],
starts from the observation that the common approach of hand-crafting ontology-
based annotations may be at the same time too expensive, as it requires support
from skilled curators, and inadequate to drive the semi-automated composition
of services into a workflow. OWL-based annotations in particular are proving dif-
ficult to “get right”, to understand by non-experts, and to use effectively. The
main problem appears to be one of level of abstraction in service description. Sim-
ple models for the semantic annotatation of WSDL specifications like SAWSDL,
a W3C recommendation18, are limited to individual interface elements, and do
not provide any facilities for describing functions that are only delivered through
the grouping of operations into specific patterns (the System Biology SABIO-RK
service mentioned in Sec. 2 provides examples of such patterns). Providing sim-
ple functional descriptions that are easy to maintain and can drive the workflow
design process is one of the priorities for BioCatalogue.

The functional annotations approach is being tested on a small number of
restricted application domains with a “closed world” of services. These include,
amongst others, (i) the ongoing ChemTaverna effort19 to provide a set of generic
and chemistry-specific workflow components, that can be coupled together for
data analyses without the need for shims, and (ii) the EU-funded e-Lico project,20

which involves the automated generation of Taverna workflows that use a suite of
data mining services, starting from a process specification in the OWL Semantic
Web language.

4 Summary

As experimental science becomes increasingly data-intensive [1], computational
scientists are coming to appreciate process models that can be used to specify
complex data pipelines in a simple and intuitive way. In particular, workflow
systems that are based on a dataflow programming model have proven successful
in describing integration of data as an orchestration of data-retrieval services.
Such orchestrations are interesting in the context of Search Computing, as they
resemble, at least superficially, a distributed query plan whose nodes consist of
Web service invocations.
18 www.w3.org/2002/ws/sawsdl/
19 http://www.taverna.org.uk/introduction/related-projects/chemtaverna/
20 http://www.e-lico.eu/

www.w3.org/2002/ws/sawsdl/
http://www.taverna.org.uk/introduction/related-projects/chemtaverna/
http://www.e-lico.eu/

224 P. Missier, N. Paton, and P. Li

In this chapter we have shown an example of such orchestration, from the
area of System Biology, that has been implemented using the Taverna workflow
system. Motivated by the parallels between such workflows and SeCo queries, we
have then briefly discussed how the ability to automatically generate workflows
from higher-level specifications essentially hinges upon the curation effort that
can be afforded on the service collections involved, with “services in the wild”
at one extreme of the spectrum, and well-curated services with rich metadata
descriptions, at the other.

References

1. Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scien-
tific Discovery. Microsoft Research (2009)

2. Via, M., Gignoux, C., Burchard, E.G.: The 1000 Genomes Project: new opportu-
nities for research and social challenges. Genome medicine 2(1), 3 (2010)

3. Southan, C., Cameron, G.: Beyond the Tsunami: Developing the Infrastructure to
Deal with Life Sciences Data, Microsoft Corp., pp. 117–123

4. Koboldt, D.C., Ding, L., Mardis, E., Wilson, R.: Challenges of sequencing human
genomes. Briefings in bioinformatics (Epub ahead of print) (June 2010)

5. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-Science: An
overview of workflow system features and capabilities. Future Generation Com-
puter Systems 25(5), 528–540 (2009)

6. Taylor, I.J., Deelman, E., Gannon, D., Shields, M. (eds.): Workflows for e-science,
Scientific workflows for Grids. Springer, Heidelberg (2006)

7. Ludascher, B., Altintas, I., Bowers, S., Cummings, J.: Scientific Process Automa-
tion and Workflow Management. In: Computational Science. Chapman & Hall,
Boca Raton (2010)

8. Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, I., Williams,
A., Oinn, T., Goble, C.: Taverna, reloaded. In: Gertz, M., Hey, T., Ludaescher, B.
(eds.) SSDBM 2010. LNCS, vol. 6187, pp. 471–481. Springer, Heidelberg (2010)

9. Swainston, N., Jameson, D., Li, P., Spasic, I., Mendes, P., Paton, N.: Integrative
Information Management for Systems Biology. In: Lambrix, P., Kemp, G. (eds.)
DILS 2010. LNCS, vol. 6254, pp. 164–178. Springer, Heidelberg (2010)

10. Herrg̊ard, M.J., Swainston, N., Dobson, P.: A consensus yeast metabolic network
reconstruction obtained from a community approach to systems biology. Nature
Biotechnology 26(10), 1155–1160 (2008)

11. Dada, J.O., Mendes, P.: Design and Architecture of Web Services for Simulation of
Biochemical Systems. In: Paton, N.W., Missier, P., Hedeler, C. (eds.) DILS 2009.
LNCS, vol. 5647, pp. 182–195. Springer, Heidelberg (2009)

12. Novère, N.L., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-Vides, J.,
Crampin, E.J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro,
B., Snoep, J.L., Spence, H.D., Wanner, B.L.: Minimum information requested in
the annotation of biochemical models (MIRIAM). Nature Biotechnology 23(12),
1509–1515 (2005)

13. Gil, Y., Gonzalez-Calero, P., Kim, J., Moody, J., Ratnakar, V.: A Semantic Frame-
work for Automatic Generation of Computational Workflows Using Distributed
Data and Component Catalogs. Journal of Experimental and Theoretical Artifi-
cial Intelligence (to appear, 2010)

Workflows for Information Integration in the Life Sciences 225

14. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Berriman, B.G., Good, J., Laity, A.C., Jacob, J.C., Katz, D.S.: Pegasus:
A framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming 13(3), 219–237 (2005)

15. Nekrutenko, A.: Galaxy: a comprehensive approach for supporting accessible, re-
producible, and transparent computational research in the life sciences. Genome
Biology 11(8), R86 (2010)

16. Abouelhoda, M., Alaa, S., Ghanem, M.: Meta-workflows: pattern-based interop-
erability between Galaxy and Taverna. In: Proceedings of the 1st International
Workshop on Workflow Approaches to New Data-centric Science, Wands 2010, pp.
1–8. ACM, New York (2010)

17. Taylor, I.: Triana Generations. e-Science, 143 (2006)
18. Churches, D., Gombas, G., Harrison, A., Maassen, J., Robinson, C., Shields, M.,

Taylor, I., Wang, I.: Programming Scientific and Distributed Workflow with Triana
Services. Concurrency and Computation: Practice and Experience (Special Issue:
Workflow in Grid Systems) 18, 1021–1037 (2006)

19. Ludäscher, B., Altintas, I., Berkley, C.: Scientific Workflow Management and the
Kepler System. Concurrency and Computation: Practice and Experience 18, 1039–
1065 (2005)

20. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance Collection Support in the
Kepler Scientific Workflow System. In: Moreau, L., Foster, I. (eds.) IPAW 2006.
LNCS, vol. 4145, pp. 118–132. Springer, Heidelberg (2006)

21. Bhagat, J., Tanoh, F., Nzuobontane, E., Laurent, T., Orlowski, J., Roos, M., Wol-
stencroft, K., Aleksejevs, S., Stevens, R., Pettifer, S., Lopez, R., Goble, C.: Bio-
Catalogue: a universal catalogue of web services for the life sciences. Nucleic Acids
Research (May 2010)

22. Missier, P., Wolstencroft, K., Tanoh, F., Li, P., Bechhofer, S., Belhajjame, K.,
Goble, C.: Functional Units: Abstractions for Web Service Annotations. In: Procs.
IEEE 2010 Fourth International Workshop on Scientific Workflows (SWF 2010),
Miami, FL (2010)

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 226–235, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Complex Search, Ranks, and Biological Discovery:
A User’s Perspective

Paolo Romano1 and Luciano Milanesi2

1 National Cancer Research Institute, c/o Centro Biotecnologie Avanzate,
Largo Rosanna Benzi, 10, I-16132 Genova, Italy

paolo.romano@istge.it
2 Institute for Biomedical Technologies, National Research Council,

Via Fratelli Cervi 93, I-20090 Segrate (MI), Italy
luciano.milanesi@itb.cnr.it

Abstract. This chapter presents a users perspective regarding the potential ap-
plications of the Search Computing technology for biomedical discovery. Re-
cent research on human inherited diseases has increased the number of informa-
tion resources useful to bridge medicine and biology and to associate genotype
and phenotype. The application of the Search Computing technology is dis-
cussed in the frame of a number of techniques that can be applied in Life Sci-
ences for managing distributed biomedical data: Federated databases, Grids,
Cloud computing, Web Services, Workflow. Particular attention is then devoted
to challenges and opportunities deriving from the application of ranking and the
management of missing information. Finally, the definition of a standard score
function, that could be adopted by all service providers in order to merge all the
collected scores for the Search Computing, and the combined use of workflow
management systems and Search Computing, are discussed.

Keywords: Search Computing, Grid computing, workflow, web services,
Bioinformatics.

1 Introduction and Motivation

The recent advent of Next-Generation Sequencing technologies has produced an
impressive increase of data and information for Life Sciences research. Moreover, the
introduction of the new and rapidly expanding Systems Biology methodology has
created a scope for integrating and making sense of ‘-omics’ data, by relating it to
high-level physiological data and by using it to analyze and simulate pathways, cells,
tissues, organs and disease mechanisms. These data create an enormous amount of
different genomes information, including genes, proteins, and all related functional
properties and characteristics. At the same time, a number of new web tools and
databases is increasing the potentiality of the distributed management, processing,
analysis, and visualization of large quantities of bioinformatics data from genomics,
proteomics, transcriptomics, and system biology studies.

 Complex Search, Ranks, and Biological Discovery: A User’s Perspective 227

This huge amount of biomedical data, that is currently available through Internet,
makes the task of searching, retrieving and integrating information very difficult and
time-consuming. Data is often manually analyzed by accessing several bioinformatics
web servers and databases which are available on the Internet. The large amount of
data and the exponential accumulation of new information imply that biologists and
scientists need to deal with a growing stream of information generated by genomics,
proteomics and other data-intensive technologies.

Due to this need, it has become urgent to provide the bioinformatics research
communities with tools allowing them to manage large, complex, multimedia datasets
and to navigate through an increasingly intricate and potentially confusing
information landscape. A number of techniques can be applied to solve this urgent
problem, e.g. Federated databases, Grids, Cloud computing, Web Services,
Workflows, and Search Computing. In the following, some of the main distributed
systems used in Bioinformatics are introduced in order to discuss some challenges
and opportunities related to query processing for Search Computing.

2 Web Services and Workflow Management Systems in Life
Sciences

Among current ICT technologies, Workflow Management Systems (WMS) in con-
nection with Web Services (WS), seem to be the most promising ones. A workflow is
defined as “a computerized facilitation or automation of a business process, in whole
or part" (Workflow Management Coalition). The goal of workflows is the implemen-
tation of data analysis processes in standardized environments; their main advantages
relate to effectiveness, reproducibility, reusability of intermediate results, and trace-
ability. Web Services are software-oriented network services communicating by the
use of SOAP (Simple Object Architecture Protocol, a framework for the distribution
of XML structured information) over HTTP. They offer a good solution for auto-
mated retrieval of information and many WS have already been set up for the bio-
medical domain [1].

Some workflows management systems have already been proposed and are in-
creasingly being adopted in the biomedical domain. Their utilization of graphical and
user-friendly interfaces simplifies the access to, and use of, public in-silico data
analysis tools. Among available systems, Taverna Workbench is emerging as one of
the most known and appreciated ones by Bioinformatics communities [2]. It was
jointly developed at the University of Manchester and at the European Bioinformatics
Institute (EBI) in the frame of the myGrid project. It is able to build complex analysis
workflows by leveraging on access to both remote and local services. Workflows can
be enacted and results can be displayed in various formats. Its only requirement is the
availability of a Java Run-time Environment (JRE).

Taverna is complemented by myExperiment [3], a repository of workflows for
biomedical research that applies social network techniques, and by BioCatalogue, a
user-curated catalog of Web Services for biomedical research [4]. By using these
tools, it is possible to build new effective automated data analysis processes. The
Search Computing work should take that into account and try to co-operate by
offering its added value to this development framework.

228 P. Romano and L. Milanesi

As it is said, Taverna is maybe the best known and supported WMS for Life Sci-
ences, but various alternative systems also exist [2]. From the architectural point of
view, it is possible to distinguish libraries, standalone software, client/server systems,
and web servers. Libraries (or modules) are add-on for programming languages and
tools, allowing to implement workflows’ features into new software. Standalone sys-
tems usually accommodate in a single software all features that are needed to design,
implement and execute workflows on a workstation. Client/server systems divide all
needed functionalities between the client side, which is usually devoted to the work-
flow design and the visualization of results, and the server, where the actual enact-
ment of the workflow occurs.

What can make a WMS more interesting and appealing for a biomedical researcher
is its ability to cope with the great variety of Web Services that are available for bio-
logical information sources and analysis tools. From this point of view, capacity of
dealing with Web Services implemented by using, e.g., BioMart, SoapLab, and NCBI
EUtils, may be a great advantage. In this sense, Taverna appears to be more perform-
ing than its alternatives.

New methods based on WMS and WS may be useful for several distributed
communities, especially because of the advent of high-bandwidth computer networks.
This could support a new approach to distributed biomedical research as to increase
productivity and scientific quality of research carried out by minor laboratories.
Nevertheless the effectiveness of major bioinformatics service provision centers, like
the National Center for Biotechnology Information (NCBI) and the European
Bioinformatics Institute (EBI), would not be reduced.

3 Grid and Bioinformatics

Computation resources are fundamental to process Life Sciences data, yet many prob-
lems are associated to them. As a matter of fact, since the completion of the Genome
Project, the number of sequencies available for analysis is so vast that problems have
dramatically increased. Moreover, the amount of data continues to increase at light-
ning speed because high throughput expression analysis technologies provide re-
searches with a continuous flow of new information. In the meantime, the study of
comparative genomics and genetic variation by means of modern analysis methods,
aimed to identify in details the different sets of genes involved in diseases, amplifies
the computational load problem.

Grid technology is a very important step forward from the Web, which simply
allows the sharing of information on the Internet. This new distributed computing
paradigm aims at promoting the development and advancement of technologies that
provide seamless and scalable access to wide-area distributed resources. Computa-
tional Grids enable the sharing, selection, and aggregation of a wide variety of geo-
graphically distributed computational resources, such as supercomputers, compute
clusters, storage systems, data sources, and instruments. Indeed, the Grid presents
itself as a single, unified resource as to solve large-scale and data intensive computing
applications. Grid computing is an emerging solution to establish a flexible environ-
ment for dealing with data produced using new high throughput technology, giving
suitable solutions to researchers as to perform genome scale analysis.

 Complex Search, Ranks, and Biological Discovery: A User’s Perspective 229

In this context, the European Grid Infrastructure (EGI), that was developed and
deployed within the European 7th Framework Program, has implemented a “pan-
European” distributed computing model, where easy access to geographical comput-
ing and data management resources may be provided to large multi/inter-disciplinary
Virtual Organizations (VO) made of both developers and users.

Grid Computing is another technological and societal revolution in high-
performance distributed computing, much as the World Wide Web has been for the
last ten years as far as the availability and interpretation of global information is con-
cerned. The aim is to operate this widely distributed computing environment as a
uniform service which looks after resource management, exploitation, and security
independently from individual technological choices.

Bioinformatics is a discipline that aims to perform analysis of complex biological
systems producing huge amounts of data through a computer science approach. Sev-
eral applications in different fields of Bioinformatics have been developed for the
Grid infrastructure and tested in the framework of the BioinfoGRID project. These
applications can be seen as example cases which should drive the development of
Grid technology in Life Sciences.

The EGI fulfills both the computational and the management requirements, even if
this technology is still complex to use, in particular for non expert users, who encoun-
ter many problems during the computations of the challenges. In particular, problems
are related to the dynamic nature of the Grid, in which the status of resources changes
constantly and, therefore, transient problems can happen and provoke the failure of
jobs.

Although the monitoring and logging systems of the Grid put actually a lot of ef-
fort to limit these problems, consistency between the effective status of the system
and the provided information is very difficult to accomplish, due to the size of the
infrastructure and its geographical dispersed structure. Moreover, the virtual file sys-
tem implemented over the Grid, through the combination of the file catalogue and the
storage resources, has still a lot of inconsistencies because of temporary unavailable
resources which discontinue the accessibility to files.

The Grid is an effective system to cope with the increasing demand of computa-
tional power by bioinformatics, in particular in the field of proteomics. In case of
independent computations, the system scalability is very high, even when taking into
account the time needed for scheduling jobs and transferring data, which can be sup-
posed to be higher in the context of bigger challenges.

The computing power that has been made available on demand thanks to the recent
introduction of Cloud computing, shows a new concrete methodology to face chal-
lenges, which were thought to be impossible, in Life Sciences and in Medicine up to a
few years ago.

4 Some Issues with Scores and Rankings in Life Sciences

4.1 Missing Information

Life Sciences data currently available in biomedical databases are only a fraction of
all data that could be useful for new knowledge discoveries in biology. Although

230 P. Romano and L. Milanesi

apparently trivial, this information may radically change the perspective of the appli-
cation of Search Computing techniques in biology.

Many factors may affect this situation. As experimental research is often extremely
focused, it ends with deeply analyzing a limited phenomenon, instead of more com-
plex systems. As a consequence, it may produce highly detailed data on limited
knowledge domains, instead of coherent, uniformly spread information on wide
knowledge domains. There are cases when technological limitations do not allow to
collect all possible interesting information: this is the case, as an example, of the
three-dimensional structure of some proteins that are difficult to crystallize. It is also
clear that knowledge discovery in biology may often lead to new hypothesis that, in
turn, may lead to new information needs in an apparently never-ending cycle: an
exhaustive dataset for biological information is, presently, impossible to achieve or,
even, to imagine.

It is also known that biological databases are sparse, i.e. they miss a great part of
data. Although complete genomes have been more and more sequenced and made
available, the vast majority of them is still undetermined. Moreover, available ge-
nomes are virtual, since they do not relate to any actual living organism, but are de-
rived from cells taken from many individuals. This is extremely relevant in the case of
the human genome, for which only a very limited fraction of all polymorphisms and
gene variations have been identified. It has been estimated that the human body may
contain over two million proteins and some 20 to 30 thousands genes, but the Uni-
ProtKnowledgeBase only includes less than 100,000 records for human proteins,
some 20,000 of which annotated (UniProt release 2010_10, October 5, 2010, see
http://www.uniprot.org/).

This makes the Life Sciences domain very different from other knowledge do-
mains where one can assume that all needed information is available (e.g., as far as a
tourism reservation system is concerned, one can assume that all available hotels, as
well as all possible flights, museums, etc., and all desired information, are likely to be
listed).

Life science is, in other words, an “open world”. The “open world assumption”
(see http://en.wikipedia.org/wiki/Open_world_assumption) must therefore be taken
into account. It states that “the truth-value of a statement is independent of whether or
not it is known by any single observer or agent to be true”. Being the opposite of the
“closed world assumption”, holding that any statement that is not known to be true is
false, it leads us to the conclusion that we cannot assume that what is missing, and
therefore unknown, is also false. The clear consequence is that any kind of in-silico
analysis may not be exhaustive and definitive, since it can only relates to a subset of
data, e.g. an homology search may find the small fraction of all homologues that is
already recorded in current databases.

In a computer science context, this problem can be compared to making a left join
instead of an inner join in a SQL statement. With reference to the Search Computing
approach, its consequences are quite evident. If one has only a few information to
merge, it may be simple to overcome this problem; on the contrary, when one has
many information, coming from different tools and referring to various data sources,
each of which is limited in a different way, it may become very difficult, and some-
how misleading, to merge them, since only those few data, for which results can be
retrieved from all sources, will be highlighted.

 Complex Search, Ranks, and Biological Discovery: A User’s Perspective 231

It is therefore essential to find strategies for merging rankings when the vast major-
ity of information is missing. Some examples are the search of similarities of proteins
at different structure levels, since the three-dimensional information is rarely avail-
able; comparison of gene co-expression, due the very limited number of gene expres-
sion experiments that are currently available; protein-protein interactions, again due to
the few data available.

4.2 Composition of Scores

Scores provided by bioinformatics tools usually are the result of some mathematical
computations and are therefore defined either on the basis of special numerical
ranges, that may greatly differ from one algorithm to another, or as a statistical meas-
ure, like, a p value. Whichever those values are, they are neither defined to be com-
pared among them, nor merged anyway, their only aim being internal to the algorithm
and tool. Their comparison, or merging, may unavoidably lead to over- or
under-estimate some of them, unless they are first somehow normalized.

Scores may also have inverted rankings: a clear distinction must be made between
rankings giving higher values for best results and those that, vice versa, assign low
values for best results. The aggregation function must of course be different.

However, the assessment of scores’ relevance is often left to researchers, to whom
all computed results are shown. So it is essential to define, for each type and range of
scores, a threshold in order to separate those values that may be admitted to further
automated elaborations, e.g. score merging, and those that should be removed and not
taken into any further consideration.

In order to cope with heterogeneous ranges, a standard ranking metrics could be
usefully defined and adopted. As an example, some scores may be quite near (the
absolute value of the difference is small) but they may also have a very different
meaning; otherwise values may also be very far (the difference is great), but with a
similar meaning.

Various measures of similarity between two protein structures with different terti-
ary structures exist and they can be used for demonstration purposes in this context.
The Root Mean Square Deviation (RMSD) [5,6], that is the average distance between
the backbones of superimposed proteins; the Longest Continuous Segment (LCS); the
Global Distance Test (GDT) [7], a measure of similarity between two protein struc-
tures with identical amino acid sequences, but different tertiary structures; and the
Template Modeling Score (TM-score), that is intended as a more accurate measure of
the quality of full-length protein structures than previous ones and is independent
from protein lengths: these are all measures of similarity between three dimensional
protein structures.

Given this multiplicity of possible measures, provided by distinct servers (see e.g.
http://zhanglab.ccmb.med.umich.edu/TM-score/), one can imagine to scan a database
of structures for identifying the protein that best matches the structure of a given pro-
tein by merging and aligning results. In this context, the Search Computing could find
a useful application.

However, an RMSD value is expressed in length units, whereas the most com-
monly used unit in structural biology is the Angstrom (Å) which is equal to 10-10 m,
while the TM-score is in the range [0,1], where 1 indicates a perfect match [8]. Scores

232 P. Romano and L. Milanesi

below 0.20 correspond to unrelated proteins and should be discarded from any further
evaluation. Scores higher than 0.5 relate to proteins having a very similar fold [9]. A
score equal to 0.5 identifies proteins having a good probability of being in the same
structural family (37% in the same CATH Topology family, 13% in the same SCOP
Fold family) [10].

From the above example, it is clear that normalization of ranking may be a
problem in Life Sciences. Rankings may be linear or not, they may represent different
information, with different scales and to some extent different meaning.

5 Complex Searches and Bio-molecular Knowledge Discovery

A new type of software development environment for distributed data management in
Bioinformatics is evolving rapidly. It only needs a short developing time for achiev-
ing requirements of today’s most demanding applications. The advantages of techno-
logical improvements are usually followed by data management drawbacks, as it
happened in other research fields. In Life Sciences, the increase of experimental ana-
lytical capacities corresponds to an explosion of data throughput and to a real need for
new systems for data access, extraction, integration, and management. These re-
quirements need new architectures with improved reliability, stability, scalability and
security characteristics. In order to achieve high-level performances in Bioinformat-
ics, Search Computing needs to interact with analytical tools that are based on high
performance environments and versatile data types.

New data are continuously produced by many existing methods developed to solve
genetic problems, from genome annotation to systems biology. In this case, one of the
main difficulties is represented by the analysis of a big amount of data that need to be
integrated with publicly available data.

Data Mining techniques [11,12,13] may be used to extract new knowledge from
existing data. However, in order to use the most modern ICT technologies, biological
databases must be well engineered, consistent and harmonized with high data quality
standards. Without these premises, data mining and Search Computing procedures
could lead to inconsistent results when applied to biological databases. However,
many Life Sciences resources available in Internet, which are often heterogeneous
and fragmented, do not follow well defined standards for data sharing and accessing.

Typically, data warehouses are used in Bioinformatics in order to integrate hetero-
geneous databases by providing both uniform conceptual schemas, that resolve repre-
sentational heterogeneities, and querying capabilities, that aggregate and integrate
distributed data [14,15,16]. Research in this area has applied a variety of database and
knowledge-base techniques, including semantic data modeling, ontology definition,
query translation and query optimization.

Of course, users would like to retrieve as much information as possible, but, on the
other side, results of their searches must be very specific and well standardized, ready
to be used for further analysis. In particular, the need to filter results has become very
important due to big availability of data that can easily create the risk of an informa-
tion overflow. In this regard, search computing should offer a possibility to merge and
focus the main resulting information.

 Complex Search, Ranks, and Biological Discovery: A User’s Perspective 233

Another important open issue is the use of the experimental data that is generated
by the user directly from his local laboratory and its integration with the great amount
of available knowledge that, although retrievable through databases and in-silico
analysis tools, may not be ranked [17]. User needs, requirements, preferences, and
ways of reaching data may change depending both on preliminary and intermediate
results and on the quality of rankings. Driving prioritization is a very important part of
the searching procedure and typical quality indexes (like evidence and provenance)
are not always optimal for the actual needs in Bioinformatics and Life Sciences[18].

6 Conclusions

These conclusions have partially been derived from some points raised and discussed
at the Second Search Computing Workshop: Challenges and Directions, held in Como
on May 26-28, 2010.

6.1 A Standard Scoring System for Bioinformatics

Due to extreme variability of score systems and scores in Life Sciences, a proper
implementation of Search Computing techniques can only be achieved by an im-
proved scoring system, widely adopted and standardized, that can be easily used to
merge search results.

Such a scoring system should be aimed at merging scores, and, as such, it should be
normalized and made linear. It could be related to probability and its range should
therefore be from 0 to 1. It should also include a threshold value, under which the data
should be removed from any further elaboration. A minimum level for the inclusion of
data in the analysis should then be defined by researchers, separately for each data set.

In this context, the role of negative results should carefully be taken into account.
This is extremely important since in Life Sciences we often have contradictory data
from distinct databases, e.g. over- and under-expression of the same gene in the same
situation from distinct experiments.

6.2 Integration with Workflow Management Systems

As already stated, automated data analysis workflows promise to be among the most
powerful tools for tomorrow Life Science research, due to their flexibility, ability to
cope with huge amount of information and information sources, and user-friendliness.
During next years, the great majority of databases and analysis tools will be made
available through APIs and this will allow researchers to create analysis workflows on
almost every topic of interest in any domain. The development of specialized integra-
tion tools will further support this trend.

From this point of view, the Search Computing techniques could also be imple-
mented as APIs and support automated data elaboration, e.g. merging of ranked re-
sults from other elaborations.

SeCo and workflow management systems could effectively be interconnected: the
simplest way would be to offer some features from the SeCo environment as Web
Services. Taverna and other WMS are quite sound, stable and effective. It could be
easy for users to benefit from SeCo while working with these tools: one simple way

234 P. Romano and L. Milanesi

could be allowing researchers to provide the rankings to SeCo through Web Services
and ask it to return merged rankings and scores.

6.3 Search Computing as a Consensus Generation Tool

As already stated, there is a need for focalization of in-silico research, so that these
huge and complex data can be integrated and reduced to the actual needs of research-
ers. Also, the automation of analysis processes in the form of workflows can be the
basis for the achievement of the flexibility that is needed in current biomedical re-
search. From these considerations, it is possible to delineate one useful target for
Search Computing in Life Sciences: it could act as a specialized and effective data
filter and focuser.

 Indeed, this role could be achieved in a relatively simple and effective way by
developing specialized merging tools able to create consensus among alternative
elaborations in the same analysis domain. This is the case of the above examples of
measures of similarity between protein structures with different tertiary structures.
One could imagine to develop an interface aimed both at comparing methods and
measures for similarity among structures and at creating a consensus on the most
similar protein, from the point of view of its three dimensional structure. This could
be implemented by Web Services as well, so that workflow management systems can
access and exploit it.

Acknowledgements

This work has been supported by the FP7 SHIWA, INBIOMEDVision and by MIUR
FIRB: ITALBIONET (RBPR05ZK2Z), BIOPOPGEN (RBIN064YAT) projects.

References

1. Romano, P.: Automation of in-silico data analysis processes through workflow manage-
ment systems. Briefings in Bioinformatics 9, 57–68 (2008)

2. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna: a
tool for building and running workflows of services. Nucleic Acids Research 34 (Web
Server issue), W729–W732 (2006)

3. Bhagat, J., Tanoh, F., Nzuobontane, E., Laurent, T., Orlowski, J., Roos, M., Wolstencroft,
K., Aleksejevs, S., Stevens, R., Pettifer, S., Lopez, R., Goble, C.A.: BioCatalogue: a uni-
versal catalogue of web services for the life sciences. Nucleic Acids Research 38 (Web
Server issue), W689–W694 (2010)

4. Goble, C.A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman, D.,
Borkum, M., Bechhofer, S., Roos, M., Li, P., De Roure, D.: myExperiment: a repository
and social network for the sharing of bioinformatics workflows. Nucleic Acids Re-
search 38 (Web Server issue), W677–W682 (2010)

5. Armougom, F., Moretti, S., Keduas, V., Notredame, C.: The iRMSD: a local measure of
sequence alignment accuracy using structural information. Bioinformatics 22, e35–e39
(2006)

 Complex Search, Ranks, and Biological Discovery: A User’s Perspective 235

6. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystal-
lographica 32, 922–923 (1976)

7. Zemla, A.: LGA: A method for finding 3D similarities in protein structures. Nucleic Acids
Research 31, 3370–3374 (2003)

8. Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein structure
template quality. Proteins 57, 702–710 (2004)

9. Zhang, Y., Skolnick, J.: TM-align: a protein structure alignment algorithm based on the
TM-score. Nucleic Acids Research 33, 2302–2309 (2005)

10. Xu, J., Zhang, Y.: How significant is a protein structure similarity with TM-score=0.5?
Bioinformatics 26, 889–895 (2010)

11. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning:
data mining, inference and prediction. The Mathematical Intelligencer 27, 83–85 (2005)

12. Han, J., Kamber, M.: Data mining: concepts and techniques. The Morgan Kaufmann Series
in Data Management Systems. Morgan Kaufmann Publishers, San Francisco (2006)

13. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques,
Second Edition, 2nd edn. The Morgan Kaufmann Series in Data Management Systems.
Morgan Kaufmann Publishers, San Francisco (2005)

14. Mosca, E., Alfieri, R., Merelli, I., Viti, F., Calabria, A., Milanesi, L.: A multilevel data in-
tegration resource for breast cancer study. BMC Systems Biology 4, 76 (2010)

15. Mosca, E., Bertoli, G., Piscitelli, E., Vilardo, L., Reinbold, R.A., Zucchi, I., Milanesi, L.:
Identication of functionally related genes using data mining and data integration: a breast
cancer case study. BMC Bioinformatics 10(Suppl 12), 8 (2009)

16. D’Ursi, P., Chiappori, F., Merelli, I., Cozzi, P., Rovida, E., Milanesi, L.: Virtual screening
pipeline and ligand modelling for H5N1 neuraminidase. Biochem. Biophys. Res.
Commun. 383(4), 445–449 (2009)

17. Milanesi, L., Petrillo, M., Sepe, L., Boccia, A., D’Agostino, N., Passamano, M., Di Nardo,
S., Tasco, G., Casadio, R., Paolella, G.: Systematic analysis of human kinase genes: a large
number of genes and alternative splicing events result in functional and structural diver-
sity. BMC Bioinformatics 6(Suppl 4), S20 (2005)

18. Milanesi, L., Romano, P., Castellani, G., Remondini, D., Liò, P.: Trends in Biomedical
Complex Systems. BMC Bioinformatics 10(Suppl. 12), I1 (2009)

Part 8

Towards a Sustainable Exploitation

To what extent should a research project be driven by market considerations? Or in
other words, should basic research take the market into account? Different studies in
the innovation management literature debate on the origin of innovation, whether it is
technology push or demand pull, coming to the conclusion that both trajectories are
possible. While it is normally acknowledged that technology-pushed innovation has a
higher probability to be radical and disruptive, it is equally well known that the
progress in technology by itself does not guarantee economic success, when it does
not match with market needs. After two years of project, many technological and
technical decisions still have to be taken. Most of these decisions have a technological
answer and need technological research, but these answers will heavily affect the
future market potential of the system. In order to take the right decisions from now
on, it is necessary to shade some light on the potential use of technology.

Two main problems may affect brilliant technological solutions when they reach
the market: on one side, the risk of remaining unused because the path to solution
development is too hard. On the other side, the risk that despite being used by the
market, these services or products are not really exploited by those who introduced
the technology, but rather by someone else who is more able to capture the value of
the innovation. The two chapters of this part aim at shedding some light on these two
risks, trying to foresee a potential market exploitation of the SeCo project, in order to
drive some insights about how taking the very next decisions in term of research and
technology.

The first chapter introduces the basic idea of user centered design and shapes a
process for designing potential killer application services based on search computing
technologies. This process has been tested and validated in two different
environments and allowed to obtain a list of service requirements that the future
search computing technology must be able to fulfill, in order to be able to answer to
real market needs.

The second chapter is aimed at understanding the various ways in which the value
created with search computing applications can be appropriated by market players.
The value chain of search computing application development is shaped and the main
roles of involved characters are identified. Subsequently, the hypothesis of having
some of these roles managed by other companies in the market is taken into account.
Depending on how many and which roles are externalized, it is possible to draw some
archetypal business models, each one with specific strengths and weaknesses. These
last considerations are used to derive some recommendations for the continuation of
the project.

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 239–255, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Experience in Applying User Centered Design
to Search Computing

Tommaso Buganza1, Marta Corubolo2,
Emanuele Della Valle3, and Elena Pellizzoni1

1 Dipartimento di Ingegneria Gestionale, Politecnico, 20133 Milano, Italy
2 Dip. di Ind. Design, Art, Communication and Fashion, Politecnico, 20133 Milano, Italy

3 Dipartimento di Elettronica e Informazione, Politecnico, 20133 Milano, Italy
{name.surname}@polimi.it

Abstract. This chapter presents our experience in applying User Centered
Design methods to identify several design opportunities for future Search Com-
puting applications. The chapter starts introducing the definition of User Cen-
tered design, its principles and methodologies. It presents the five steps process
we followed in order to get user behavioral insights and design opportunities. It
illustrates each phase that composes the research process focusing on the visu-
alization of the user experience and on the design questions we were able to
identify by analyzing it. The core contribute of the chapter is in proposing an-
swers to the design questions in the conference travel context for two user pro-
files: the Fast&Furious and the Discover&Learn.

1 Introduction

Search Computing (SeCo) brings about a technology able to support users in accom-
plishing complex search, i.e., a combination of multiple domain data primarily based
on ranking and a sophisticated manipulation of the results that includes their expan-
sion through “liquid” reformulation of the original query.

In a technology-based project as SeCo, technology is usually the main driver of in-
novation. However, it cannot be sufficient to assure the success on the market. As Bill
Moggridge states in his famous book on "Designing Interaction" [2], “In the past,
those who built interactive systems tended to focus on the technology that makes
them possible rather than on the interfaces that allow people to use them. But a sys-
tem isn't complete without the people who use it. Like it or not, people – irritable,
demanding and often distracted people like ourselves – and their goals are the point of
our system, and we must design for them”.

The value and meaning that the end-users will attribute to SeCo technology are the
result of a combination between their expectations and their expertise, attitudes and
background. Trusting [1] that the best-designed products and services result from un-
derstanding the needs of the people who will use them, we analyzed the innovative
context that SeCo enables with a "User Centered design" approach.

The User Centered design process involves the end-user in an active and
collaborative way. Whenever possible it recommends [3] to put demonstrators of the
product/service under design in the hands of the user, and to proceed conducting

240 T. Buganza et al.

interviews, and observing the user in the natural habitat (at work, at home, etc.). The
goal is to extract the essence of what people do (or need to do), what they think (atti-
tudes) and what they feel (emotional aspects).

The major challenge we faced in applying a User Centered design approach to
SeCo was that, at the time this research was conducted, SeCo applications were proof-
of-concept and could not demonstrate the full potential of the SeCo technology. We
could not design experiments to observe new actions, new habits, and new praxis in
the resolution of problems enabled by SeCo. However, we were able to evoke
problems that SeCo technology can solve and analyze how people try to solve them
without it. As a result, we mapped the user experiences and identified unexpressed
motivations and behavior insights. This can be considered a starting level for SeCo
innovation from a user point of view, and a potential entry point for SeCo applications
to penetrate into the market.

The rest of the chapter is organized as follows. Section 2 describes the research
process we followed from a methodological point of view. Section 3, 4, and 5 report
the results obtained by performing the intermediate activities of our research process.
Section 6 is fully dedicated to the illustration of the central findings of our investiga-
tion, i.e., the map of the end-user experience. Finally, in Section 7 the potential impli-
cations of our findings for designing future SeCo applications are discussed.

2 Our Research Process

When embracing a user centered design research for SeCo enabled applications, we
refined and contextualized one of the possible methodological processes typical of
this discipline to SeCo. We constructed a 5 steps process (Fig. 1.) that starts from the
selection of a context of application, gathers data from the direct observation of the
end-user experience and leads to the identification of open gaps and design opportuni-
ties useful for future SeCo applications.

Fig. 1. The research process we followed

 An Experience in Applying User Centered Design to Search Computing 241

The main aim of the first step of our process was identifying specific contexts
of application suitable to involve the end-user and, at the same time, characterized
by SeCo complex search. As anticipated in Section 1, a user centered analysis re-
quires an active role of the users and a close observation of them in their daily life:
the selection of a specific context of application allows to specify a sample group
of users and avoids the gathering of generalized data which are not useful in the
design phase.

Once we defined a specific context of application, the second step was to map
an overview of the context we wanted to observe. We conducted this step on two
parallel levels. On the one hand, we investigated the demand of information ex-
pressed by the end-user (“what are the users looking for?”). On the other hand, we
focused on the actors operating on the system as sources of information (“which are
the answers of the system?”), on their roles and relations.

For capturing the information on the first level, we used a Conceptual Map [4], a
graphical tool for organizing and representing knowledge. A Conceptual Map in-
cludes concepts, usually expressed as keywords enclosed in circles and relation-
ships between them represented by a line linking two concepts. We used them to
categorize and build a graph that represents all the topics searched by the user and
their characteristics.

We studied the system of stakeholders with their mutual relations; we used an
Actors Map [5] to represent the results. An Actor Map provides a systemic view of
the service and its context. The map is built through the observation of the service
from a specific point of view that becomes the center of the whole representation.
In this research, we selected the point of view of the users of a SeCo application
and the map visualizes all the stakeholders starting from their relations with them.
The focus is on roles, grouping and relations. The grouping aspect of the technique
is used to organize the actors by their function.

The third step focuses on the selection of the investigation tools. As anticipated
in Section 1, a User Centered approach influences the identification of investigation
tools; it recommends focusing on those that allow for both a closer observation and
a collaborative involvement of a user. The diagram (Fig. 2.) lays out different
kinds of research tools. The horizontal scale characterizes design opportunities and
user needs, from explicit (left) to latent (right). The vertical scale indicates the dif-
ference in techniques from macro (top) to micro (bottom). Since our goal is the de-
sign of a SeCo application that has not even been thought yet, we could not place
the application in the hands of the user. We had to use methods that enable to
discover latent needs and desires that will help SeCo team to define potential oppor-
tunities. As we detail in Section 5, we adopted: video ethnography techniques on
the macro scale, where stop frame video is set up to watch a space or task to reveal
patterns of use; then, on the micro scale, we opted for observational techniques, and
went to wherever the design context exist to see what people really do, as opposed
to what they say they do [2].

242 T. Buganza et al.

Fig. 2. The space of all possible research tools

In the last step we ordered the quantitative and qualitative information gathered in
the previous step in a way that allows it to be shared with those that will take the fu-
ture design decision for SeCo applications.

This step’s crucial point concerns the interpretation of the gathered information,
connecting the dots of experience, finding implicit or innovative connections between
the different steps of the process using a tool able to visualize the experience with a
holistic approach, and maintaining at the same time the user's point of view. We chose
to use an “Experience Map” [5], a graphical tool for capturing the service journey of a
user. An Experience Map shows the users’ perspective from the beginning, middle
and end as they engage a service to achieve their goals. It shows the range of tangible
and quantitative interactions as well as the intangible ones, and qualitative motiva-
tions, frustrations and meanings.

The creation of an experience map led us to observe the search process from the
user's point of view. The value of the experience map is in the connection that the
researcher can do between resources, feelings and motivations, actions and tools, em-
phasizing points of pleasure and points of pains/barriers that a user may encounter
during the process. Finally, this led us to the definition of open gaps in the users’
experience, that can be assumed as design opportunities and that could be exploited
in the future phases of SeCo application design.

3 Selection of the Contexts of Application

As far as this research is concerned, we selected two different contexts of application:

• Conference Travel: facing the organization of a business journey in combina-
tion with a weekend of tourism and vacation.

 An Experience in Applying User Centered Design to Search Computing 243

• Real Estate: the search of an house that responds both to the end-user desires
of comfort and location/position and to his/her financial incomes.

Both of them involve the typical actions enabled by SeCo technology such as the
comparison and integration of multiple results (e.g., combine travel with accommoda-
tions and local transportation in the Conference Travel context, or houses with city
districts and information about local shops for the Real Estate one), the expansion of
the search, and the manipulation of the results. But, at the same time, they present
differences in their inner characteristics, for example:

• Time - the search of a house could last for months or years and probably it
will be a unique experience if compared to the organization of a conference
travel;

• Effort - the effort requested to the user is totally different: booking a hotel or
a flight can not be compared to buying a house, in terms of importance, per-
sonal significance, and money;

• Resources - internet is usually the primary resource used to organize a travel,
while in the real estate context professional advice and guidance have still a
central role.

The selection of two or more contexts of application highlights how different the mo-
tivations, triggers, and expectations are and, therefore, how different the experience
lived by a user is, too. Due to the limited space available to illustrate this work, in this
chapter we present only the findings of our research applied to the Conference travel
context.

4 Context Analysis

The context analysis was conducted in two steps. Initially, the observation focused on
the definition of the services offered to the users in order to construct their personal
solution. For this purpose we used a Conceptual Map. Then, the focus moved to the
owners of the information, to how this information is organized and presented to the
users, and to the relations between the stakeholders. An Actors Map was used to cap-
ture the results of this second part of the analysis, and, in particular, to visualize the
links between the stakeholders and the additional services that they present in order to
complete the offer.

4.1 Conceptual Map

In regard to the Conceptual Map for the Conference Travel context (Fig. 3.), we
started by listing/enumerating what the user could search while organizing a journey
(keywords enclosed in circles). For example a user could look for hotels and places to
stay, flights or trains to arrive to the destination, restaurants or pub where to have a
good lunch and so on.

244 T. Buganza et al.

F
ig

. 3
. C

on
ce

pt
ua

l M
ap

 f
or

 th
e

C
on

fe
re

nc
e

T
ra

ve
l c

on
te

xt

 An Experience in Applying User Centered Design to Search Computing 245

When the list was completed, we proceeded in two directions. On the one hand, we
looked back in order to group this concepts in categories expressed reflecting users'
needs. We obtained the bold faceted nodes directly connected to the center of the
map; e.g., transport for moving around, food for eating, and leisure for having fun or
knowing people. On the other hand, we went on focusing on the qualities of searched
information that could be interesting for the end-user. We added the small star shaped
graphs centered on a node named “what?” in the outer part of the map; e.g., when
looking for a hotel users would like to have detailed information about the price
(numbers), location (maps), pictures of the rooms (images), and clients reviews (rat-
ing); finally, when looking for information about transports, the end-user is once
again interested in prices and locations, but the presentation of any pictures is not
necessary.

4.2 Actors Map

The main stakeholders of the Conference Travel context were grouped and visualized
in an Actors Map (Fig. 4.).

Fig. 4. Actors Map for the Conference Travel context

The content of the Actors Map can be described as follows:

• User – it is the organizer of the travel. His/her specific point of view be-
comes the center of the whole representation.

• Search engines - they can be divided into:
o Generic, e.g., Google.
o Domain-specific, e.g., Expedia, Volagratis, and Edreams.

246 T. Buganza et al.

• Official web sites - owners of specific databases and information (e.g.,
tourism agencies, and chambers of commerce) or service providers
(rental services, hotels, and airlines).

• Local info - owners, producers or providers of local knowledge. This
category groups, for example, newspapers and magazines, event organ-
izers, transportation companies, shops, associations and other actors that
work on the local environment.

• User Generated Content (UGC) - various kinds of media contents, pub-
licly available, that are produced by end-users. This category can include
users’ reviews and travel experiences (like Tripadvisor), photo sharing
sites (like Flickr), social networks (like Facebook or Twitter), travel
blogs, and wikis.

• People - friends, colleagues or persons that can be sources of trusted in-
formation, because of their recent (travel) experiences or their deep
knowledge about the topic.

The overview on the end-user's demand of information and on the stakeholders sys-
tem allowed us to select and detail some areas of interest rather than others and to
refer the answers of the end-user to the complete scenario of the context of
application.

5 Definition of the Investigation Tools

As already said, the selection of investigation tools focused on methodologies that
could answer to the needs of both a closer and direct observation of an end-user and
of an analysis of SeCo complex search scenario, in order to analyze and discover la-
tent opportunities and needs (Fig. 2.).

In regard to the capability of the investigation tools to analyze a complex search
scenario, we created a sample problem exercise that could replicate the situations
that SeCo will generate in the future. The sample problem exercise can be defined as
a description of a situation that the users know since they lived it in the past and that
they probably will experience again in the future. It is written in a narrative form to
convey the users the right scenario environment. It is not a list of tasks to be done, but
a story in which “real users” search and combine data to build a solution. Participants
are asked to read it, to remember similar past situations and to show how they work in
the same context. That exercise is usually followed by a feedback session, in which
the researcher and the user evaluate the experience.

The aim of this tool is trying to prevent those generalizations usually produced by
classic interviews or by reports of personal experiences, through focusing on a real
situation conducted by a user in his/her own environment.

In the Conference Travel context (see Fig. 5.) we formulated the sample problem
exercise starting from the selected areas of interest of the Conceptual Map (i.e., trans-
portation, accommodation, event, food&leisure) and keeping in mind the peculiarities
of a complex search process enabled by SeCo technology.

 An Experience in Applying User Centered Design to Search Computing 247

In the next upcoming weeks a financial conference from the EIASM1 calendar
will take place abroad, and you would like to participate. You decide to search
the background of the invited speakers and their publications related to your
work. Since the days when the conference will take place are next to a week-
end, you will have some free days to visit the city. Many cultural events or
sport matches will take place during that period and you could attend them.
Due to a business commitment, you have limited flexibility in the choice of the
day and the time of the departure; you are not worried about the price since
your university will give you a reimbursement. The hotel where you will have
to stay during the days of the conference must be selected among the partnered
ones. On the contrary, for any extra day that you will spend there as a tourist,
you can choose another accommodation that meets your preferences and
means.

Fig. 5. Sample problem exercise for the Conference Travel context

We assumed an ethnographic approach in order to get closer to the user's experi-
ence and collect data from a firsthand source, and tried to step into users' shoes as to
start gathering and define the requirements. Ethnography is based on learning about a
context and people living in it, their system of values and beliefs, and the way they
make sense of their experiences. We selected different kinds of tools that could oper-
ate on various levels of investigation. The aim was to build an empathic connection to
the end-users, by engaging them through dialogue, discussions, games and informal
conversations, in order to include also the emotional level into the analysis. As to
support the sample problem exercise we used structured interviews (both guided and
informal), photos, video recordings, computer screen recordings and others generative
methods that bet on the engagement of the users. We asked them to play with cards,
make sketches, and create a process using some tools specifically designed for the
research project. Through these empathic involvements of the user, these methodolo-
gies try to explicit the motivations and the drivers that are then translated by the end-
user into actions and behaviors.

6 Visualization of the User Experience

The data extracted from the interviews, the sample problem exercise, the videos, and
the generative methods allowed us to build an Experience Map (Fig. 6). The “Experi-
ence Map”, which we tailored to SeCo, is composed by five parts: activities, actions,
data flow, sources of information, and mood path.

By activities we mean tasks that the majority of the users perform when trying to
find a solution to the complex search problem we proposed to them in the context of
the Conference Travel example problem.

1 EIASM: The European Institute for Advanced Studies in Management (EIASM) is the inter-

national network for management research and teaching that includes more than 40,000 man-
agement scientists from all over the world. http://www.eiasm.org

248 T. Buganza et al.

The process that led us to identify the list presented in the first column of Fig. 6 is
the following one:

1. We started from the four activities that described a user experience in general:
• attraction, i.e., the identification of needs and desires,
• preparation, i.e., the selection of tools and resources,
• interaction, i.e., the use of the system, and
• memory, i.e., the evaluation phase.

2. We tailored it to complex search processes by expanding:
• preparation into the selection of the various resources needed to manually

accomplish one of the complex search processes that SeCo technology can
automate; and

• interaction into several tasks typical of a complex search process such as
search query formulation, results’ comparison and choice, transaction, and
use.

3. Finally we contextualized them in the Conference Travel obtaining the list of
activities that constitute the leftmost column of the map.

Analyzing these activities carried out by the user, we can observe a recurring set of
actions that a user does while trying to organize his/her journey. This sequential
search is usually composed by an initial set of constraints, the selection of useful
sources of information (e.g., search of vertical search engine, official web site, friends
or colleagues, etc), the comparison of partial results and a definition of possible solu-
tions. This process of search is repeated for all the interest areas (transports, accom-
modation, events, food and leisure). The partial results defined for each area are then
compared and aggregated by hand, producing a huge amount of information that re-
circulate in the system.

In order to highlight these cycles, near and in relation to the list of activities, we
draw a line that captures the flow of data in a complex search process conducted by
the user. It shows and emphasizes the cycles and the recurring redefinition of the
search query that often brings the user back to an initial phase.

The third column shows the recurring actions that the user does in relation to specific
steps of the search process such as using a tool to take notes or to save the results, call-
ing friends or colleagues or wasting time looking for the right source of information.
They are of central importance and become meaningful actions in relation to positive
(satisfaction) or negative (frustration) moments that the user experienced.

The last column presents the source of information employed to satisfy the users’
demand of information. This column highlights:

• the typology of resource which was used to get the information (e.g.,
 search engines, friends, colleagues, professionals, newspapers, etc,);

• the ratio of employment of every resource;
• the use of more than one resource to get the same information.

The main sources of information used in the Conference Travel context were generic
and vertical search engines, official Web sites, local Web sites, friends and col-
leagues, Web communities, Web 2.0 review services, and people living in the city of
destination.

 An Experience in Applying User Centered Design to Search Computing 249

Fig. 6. Conference Travel Experience Map

250 T. Buganza et al.

The analysis on the user experience could highlight how the user makes use of dif-
ferent typologies of resources to get the same information. For example: even if the
solution is provided by a vertical search engine like Expedia that combines, for exam-
ple, flights and accommodation, the user often accesses the official Web site of the
airline company or of the hotel in order to check the validity of the information.

Moreover, the internet search, which is mainly based on generic and vertical search
engines, is employed to look for “technical” information like prices, timetables, and
maps; on the contrary, the search of those information which are related to subjective
and sentimental fields and to one’s very personal experiences (preferences and atti-
tudes) is carried on involving other users, like friends or colleagues. This investiga-
tion focuses on the Web 2.0 platforms and considers different layers of user generated
content, i.e., from an impersonal system of reviews to a community.

Finally, behind the activities description, we present a mood path that describes
the feeling perceived by the user; analyzing the information from the videos, the sam-
ple problem exercise and the generative methods, we were able to visualize the mo-
ments of satisfaction and dissatisfaction, surprise or frustration, confidence and
boredom.

Analyzing the Conference Travel mood path, our attention focused more on the
pains and barriers that the user found during the experience. Most of them referred to
the time consumption. Therefore the user feels frustrated and confused when he/she
does not know where to find the information he/she needs (e.g., looking for local
news on strikes), or becomes upset and bored when spending a lot of time reformulat-
ing and refining the search (e.g., controlling the solutions, finding new offers, or
combining the results in different ways).

7 Discussion of the Results

The Experience Map enables the visualisation of connections among search steps,
tools/services used, and feelings/moods. It highlights both the satisfaction points and
frustration moments perceived by the user. The satisfaction points can be considered
strength points of the current service system and, therefore, a SeCo application in the
same domain should maintain them. On the contrary, the frustration moments are the
weaknesses of the analysed experience. Those weaknesses, if referred to SeCo, can be
assumed as open gaps to be addressed in the upcoming SeCo application prototyping
phase.

We grouped the opportunities emerging from the open gaps into categories that de-
fine design questions. We formulated these opportunities as questions, because this
form helps to focus the attention on the solutions that can better answer the questions.

The answers to each of these design questions can be multiple, especially if, as in
the case of the analysis we conducted, a unique search experience cannot be observed.
The end-user goals, the effort and the time dedicated to the search, contribute and
influence the perception of the experience value. They identify different user pro-
files. Consider, for example, the activities of data comparison and integration; a solu-
tion dedicated to an end-user that attributes value to the exploratory search as a learn-
ing process will be quite different from a solution designed to answer an end-user
who is focused on the achievement of best combination of data in the shortest time.

 An Experience in Applying User Centered Design to Search Computing 251

The former would prefer an application that helps in managing complexity, whereas
the latter would prefer an application that reduces perceived complexity offering
straight away the best combination.

Let us, now, report step by step our findings for the Conference Travel scenario.
The analysis of the experience map presented in the previous section allowed us to
synthesize six open gaps that lead to the formulation of as many design questions
(Table 1.).

Table 1. Open gaps in Conference Travel analysis

Open Gaps Design Questions

The users are skeptic since they
do not completely trust the pro-
posed solution.

How to gain more users’ confidence?

The users build a comparison for
every combination of results and
they often do this “by hand”

How to make the comparison easier?

The users discuss the possible
solutions with other people, sav-
ing the results, exchanging info,
asking for advices.

How to facilitate exchange and exportation
of data and experiences?

The search is not carried on in a
unique session, but is divided in
different time intervals. Some
new info can also modify former
results, leading to a repetition of
the process.

How to deal with time intervals and search
query redefinition?

The users search local and global
information, often with the need
of their integration.

How to improve integration between local
and global search engines?

It is difficult for the users to
manage and integrate multiple
transactions on different Web
sites.

How to deal with the transaction phase?

As we explained in the beginning of this section, no generic answers to the design
questions can be provided, but only answers for specific user profiles are possible.
The analysis we conducted allowed us to identify two main use profiles:
Fast&Furious and Discovery&Learn.

These two profiles can be considered as opposite ways of the user to construct a
personal travel solution, in terms of effort, quantity and quality of the resources, time
dedicated to the search, goals of the user. Table 2 shows in the first row the main
characteristics of both approaches through a storyboard. The features of each kind of
complex search process and the design goals that should be taken into consideration
by SeCo are listed in the next two rows.

252 T. Buganza et al.

Table 2. End-users' approaches to search experience

 Fast & Furious Discover & Learn

Storyboard

“Due to her work, Giorgia
travels a lot during the year. In
this occasion she already
knows the destination and she
does not have time to explore
and find detailed info. She
wants the faster solution that
fits her needs. She is interested
to the information, like round
trip tickets, accommodation,
position of some P.O.I. related
to her work. She postpones the
choices on local transports,
food&leisure and events to the
arrival to the destination.”

“Giulia sees the search as a discovering
process that can enrich herself. The value
is not only in the solution that better fits
her needs, but also in the construction of
this process and in the selection of the
sources and the results. She is interested
in the culture and in the knowledge ex-
pressed by the local inhabitants, she is
curious about peoples’ experiences and
opinions. She expands the search to top-
ics not totally necessaries to the satisfac-
tion of the initial needs. She prefers to
plan the whole trip, looking for detailed
info about traditional events, typical
restaurants and leisure.”

Search features
> fast search
> preset best combinations

> exploratory search
> learning process

Design
goals

> remove the efforts
> gain confidence
> go straight to the solution

> decrease the efforts
> enable a personalized search process
> share experiences

Fast&Furious describes a user whose goal is mainly to get straight to the solution
that suites her needs at best. Since she has not time or she is not interested in search-
ing detailed information, she prefers to find a good and trustable combination of data.
This kind of search process, in opposition to Discover&Learn, does not require much
time and bets on presenting the best combinations of travel solutions. If we imagine,
for example, to design a SeCo application for this kind of user, we should consider
that reduction of effort perceived by the user and the acquisition of user's trust are the
keys for a successful user experience.

Discover&Learn describes a user that perceives search as a learning process
trough that she can enrich herself. Her goal is not only to find the solution to her ini-
tial needs, but to put efforts and time in constructing a search process that can lead her
to the discovery of resources, local knowledge and culture and to share experiences
and opinions. Differently from Fast&Furious, this approach is based on an explora-
tory search. If we image, for example, to design a SeCo application for this second
type of user, we should decrease the effort of the user without depriving her of the
control on the search process. In other words, we should enable her search process.

8 Conclusions

The experience we reported in this chapter allows us to drive some conclusions and to
indicate some of the features of a SeCo application in the Conference Travel context.

 An Experience in Applying User Centered Design to Search Computing 253

We believe that, for every context of application of SeCo, an user-centered analysis
should be performed since the open gaps and the design questions that can emerge
from it should be a starting point for designing a SeCo application in terms of features
and services that compose different end-users experiences.

As already said, in this analysis we take into consideration the whole experience of
the user: from the perception of needs and desires to the process evaluation. There-
fore, the open gaps, and consequently the design questions, embrace both the inner
characteristics enabled by SeCo technology and those not immediately related to it.
The former are the core competences and services enabled by SeCo technology (i.e.,
combination, integration, comparison, expansion and manipulation of data) and the
design phase should concentrate on them in terms of developing the main application
features. The latter are not peculiar only of SeCo technology, but they must be taken
into great consideration since they are expression of end-user's needs or desires and
will influence (positively or negatively) the perception of the experience (i.e., user-
generated content, real time search, and transaction).

Considering the open gaps highlighted during the analysis of the experience map in
the Conference Travel context, the answer to the presented questions will be quite
different for Fast&Furious and Discover&Learn, because the users' goals and the val-
ues, which they assign to the experience, are different. In Table 3. we present the an-
swers to the design questions that we recommend to integrate as features of a SeCo
application in the Conference Travel context. These features can potentially build a
user experience that could answer to the open gaps.

Table 3. Answer to the design questions related to Fast&Furious and Discover&Learn

Design Questions Fast & Furious Discover & Learn

How to gain more users confidence? Give guarantee to users Give control to users

How to make the comparison easier? Reduce complexity Manage complexity

How to facilitate exchange and ex-
portation of data and experiences?

Save and export Sharing platform

How to deal with time intervals and
query redefinition?

Create user profiles Organize your search ex-
perience

How to improve integration between
local and global info?

Real time search UGC and local info pro-
viders

How to deal with the transaction? Transaction included Included or not included

A SeCo application designed to respond to a Fast&Furious approach will be win-
ning if it reduces the complexity perceived by the user, offering guarantees for the
results. For instance, the application could manage a user profiles that remember the
search preferences and the behavioral patterns of an end-user, exploiting them during
future interactions of the user with the system. This design solution bets on the learn-
ing experience that a SeCo application can gather: the user gives confidence to a sys-
tem that will automatically present him/her a search process that he/she recognizes as
a winning one.

254 T. Buganza et al.

On the contrary, a successful SeCo application focused on the Discover&Learn ap-
proach should be able to manage the complexity of a search process in the Conference
Travel context, and, at the same time, to include those features and tools that could
facilitate the end-user in constructing a personal search process. This approach fo-
cuses on an exploratory search that gains value, for example, in the multiple sugges-
tions that the system could offer as alternatives of search. The automatic generation of
new ways and directions of search can help the end-user to discover unknown solu-
tions and travel opportunities, contributing to increase the value attributed by the user
to the learning process of a search. This can be translated into design features that, for
example, enable an expansion of the result through the presentation of similar key-
words or through the inclusion of search categories (i.e., films and recommended
readings, local news, etc.) usually not presented in a traditional travel Web site.

Moreover, this futuristic SeCo application could be designed to enable different
users with similar needs to exchange and share their results, widening the comparison
to different combination of travel solutions to those selected by various end-users.

As far as those design questions that are not related to the core characteristics of
SeCo technology are concerned, there could be two main directions of development.
On the one hand, the designers of future SeCo application can focus on the market
and, in particular, on those potential competitors in the travel context that are provid-
ing answers to the opens gaps trough their offers and services. For instance, the de-
sign question related to the integration of local knowledge and information could be
solved as done by the potential competitor Easyviaggio.com [6]. This website attrib-
utes value to the quality and authoritativeness of the information it delivers, operating
through the creation of a permanent editorial office in partnership with the AFP
(Agence France Presse). This office is in charge of keeping the traveler up to date on
the latest news.

On the other hand, the designers can explore solutions experimented and developed
in different contexts. For example, in responding to “the need of saving and sharing
the results and the chronology of search”, the designer could decide to propose a solu-
tion similar to Yahoo Search Pad [7]. This service allows to take notes while search-
ing; it assists the user in collecting, editing, organizing, saving, printing, and emailing
one’s own notes for immediate or future use.

To conclude, we trust that the research process, presented in this chapter, illustrates
a successful experience in applying a User-Centered analysis to the potential applica-
tion that can be developed using SeCo technology. We were able to map the user ex-
perience identifying unexpressed motivations and behaviour insights. The selection of
a specific context of application together with the direct observation of the user ex-
perience led us to identify several design opportunities. The examples and recom-
mendations presented in this last section are an initial set of the ideas that can drive a
multidisciplinary team in designing an innovative application in the Conference
Travel context using SeCo technology. The next step of this line of research should
focus on prototyping the Conference Travel application and place it in the hands of
the user in order to set a second and closer user-centered observation. From the results
of the analysis of such observation we will be able to get more specific design re-
quirements that can lead to a commercial product.

 An Experience in Applying User Centered Design to Search Computing 255

References

1. Design Council, UK, http://www.designcouncil.org.uk
2. Moggridge, B.: Designing interactions. MIT Press, Cambridge (2007)
3. Frog Design, http://www.frogdesign.com
4. Novak, J.D., Cañas, A.J.: The Theory Underlying Concept Maps and How to Construct and

Use Them. Technical report, Florida Institute for Human and Machine Cognition, Pensacola
FI (2008)

5. Morelli, N.: New representation techniques for designing in a systemic perspective. In:
Design Inquires, Stockholm (2007)

6. Easyviaggio, http://www.easyviaggio.com
7. Yahoo Search Pad,

http://help.yahoo.com/l/us/yahoo/search/searchpad

S. Ceri and M. Brambilla (Eds.): Search Computing II, LNCS 6585, pp. 256–271, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Analysis of Business Models for Search Computing

Tommaso Buganza1, Marta Corubolo2,
Emanuele Della Valle3, and Elena Pellizzoni1

1 Dipartimento di Ingegneria Gestionale, Politecnico, 20133 Milano, Italy
2 Dip. di Ind. Design, Art, Communication and Fashion, Politecnico, 20133 Milano, Italy

3 Dipartimento di Elettronica e Informazione, Politecnico, 20133 Milano, Italy
{name.surname}@polimi.it

Abstract. The SeCo project is dedicated to the support of investigation-driven
frontier research on search computing and its prime objective is not to develop a
commercial venture. Still, not considering the possible market exploitation of
such a project could be misleading also in terms of technology investigation. At
the half of the project, when many technology and research decisions still must
be taken, it is important to consider also the possible implications of such deci-
sions on possible future business models. The present chapter is aimed at under-
standing the possible future trajectories for the exploitation options of the SeCo
project. The chapter starts identifying roles and capabilities of a potential SeCo
value chain. The second step is defining some archetypal Business Models in-
vestigating the option of having some of the previous roles not managed inter-
nally but delegated to the external market. Finally the business models are
compared and recommendations for the following of the project are drawn.

Keywords: Search Computing, software engineering, development process,
advertising models, cloud computing, software architectures.

1 Competences and Roles of the SeCo Value Chain

Each company that sells a product or a service on a market must take into account the
environment in which it is operating. In particular, both the input markets and the
output ones should be taken into consideration. This means focusing on two dynam-
ics: the evolution of market needs (output) and the evolution of technologies (input).
Every firm must always keep in mind that needs and technologies change in the
course of time. This is especially true in high tech environments where firms are fo-
cused not only on delivering good services but also on continuously redesigning them
in order to deal with frequent changes and opportunities. Successful firms tend to use
iterative processes, which emphasize learning and adaptation rather than planning and
execution [1-4,10]. Researchers refer to these abilities to adapt the firms’ products
and processes as Dynamic Capabilities: ability to adapt, integrate, and reconfigure
internal and external organizational skills resources, and functional competences to
match the requirements of a changing environment. Only through these capabilities,
firms will be able to maintain a competitive advantage [8,9].

 Analysis of Business Models for Search Computing 257

In order to respond to shifts on both market needs (output) and technologies (in-
put), it is necessary to develop two kinds of dynamic capabilities: firstly, identifying
reading and interpreting the evolution of the market needs (Market Capabilities);
secondly, the firm has to be able to build specific competences as to manage and
develop the technologies market (Technological Capabilities).

The above considerations are valid for each firm operating in high tech industries
but they could not be enough for leveraging the technology developed within SeCo.
Indeed, this technology combines services offered by different stand-alone publishers.
These services are not just put side by side but they are combined to make complete
and customized solution. This architecture therefore introduces a new capability to be
developed and taken into account. To manage a SeCo based service it is necessary to
create a mart that is a container of already existing services adapted and preworked in
order to be mixable by the SeCo engine. Thus, managing the relationships with the
service owners, attract them in the mart, manage the property right and legal issues
and create a partnership agreement become a new and distinctive capability to be
developed in order to bring the SeCo technology on the market.

Moreover this capability must be dynamic too: Web-based services owners change
both the data that they publish and the interfaces they use to display them to meet
changing market needs and technologies. If the new approach is to integrate these
different services, it is also necessary to monitor their evolution. Thus, in order to
bring the SeCo technology to the market, the dynamic capabilities needed to manage
market and technology must be accompanied by “marting” capabilities to handle the
relationships with services owners. (Fig. 1).

Fig. 1. Capabilities to be developed in integrated web-based services

After having considered the capabilities needed to bring the SeCo Technology to
the market, we analyzed the value chain (in terms of processes and actors) needed to
sell a web-based service, and according to the logical steps we followed before, we
tried to understand if these ones must be different in the SeCo case.

We can summarize the value chain, from the development of the tool to the
publication of the application by identifying four key roles (Fig. 2).

258 T. Buganza et al.

First of all, the Tool Developer who develops the tool needed to create the applica-
tion on the web. Secondly, the Mart Manager who deals with mart data entry and
manages relationships with different service providers (legal issues, contracts, pri-
vacy, etc). The Mart Manager must also monitor the continuing evolution of the ser-
vices market in order to keep the mart updated and running.

Another key role is the Application Developer, who is responsible for taking and
mixing the data in the mart to create the final application.

Finally, the Application Publisher who is the actual deliverer of the application on
the web. This role handles the relationship with end users through a web site that can
offer different services.

Fig. 2. SeCo based Service Value Chain. . .

Analyzing this simplified value chain, we can find two key processes: the Run
Time and the Developing Stage. The two processes are different in typology and re-
petitiveness of the activities to be carried out. The Developing Stage is the process
that goes from the creation of the developing tools to the design of the final applica-
tion. This chain of activities is executed just once every application (even though
upgrading and maintenance may follow). The Run Time process is completely differ-
ent. It happens when the application published on a website is used by the end user.
For each application there are (hopefully) several Run Times. The two processes can
be considered logically sequential: the use of the application following its creation.

These two processes also involve different roles. In particularly, the Tool
Developer, the Mart Manager and the Application Developer are involved in the
Developing Stage, while the Run Time asks to the work of the Publisher and the Mart
Manager.

It is easy to connect the different roles in the SeCo value chain with the dynamic
capabilities described before. The development roles (Application and Tool Devel-
oper) will need to develop Technological Capabilities: it is impossible to create new
applications and tools without knowing the evolution of already existing technologies.

 Analysis of Business Models for Search Computing 259

In the same way the Application Publisher will need the support of Market Capabili-
ties: it is impossible to sell a service and to concept it without knowing the targeted
customer. Finally the Mart Manager, will heavily leverage on Marting capabilities to
engage, control and manage the Service Owners.

Until now we referred to roles and competences without specifying whether they
are embedded in a single actor or if many different actors must take care of each of
them and interact to create the service. Obviously both the options are possible and
many others configurations in between are feasible as well. This will lead to define
alternative business models that will be discussed and compared in the following
paragraphs.

2 How to Compare Alternative Business Models

Before describing and comparing different business models it is necessary to define
the dimensions along which they will be compared: value creation, value appropria-
tion, internally managed competences and support organization required.

Value creation
Value is what customers may pay for goods and services they receive. A firm is prof-
itable only if the value it creates is greater than the costs that it involves [4]. There are
two possible strategies for creating value: cost leadership and differentiation. Cost
leadership is the strategy to produce and sell the same products (or deliver the same
services) at a lower price than competitors. On the contrary, differentiation means
focusing on providing the highest quality products even at a higher cost [6].

For each configuration that we will analyze, it is necessary to define which value
creation strategy it must involve. It is possible to choose a cost leadership strategy and
to focus mainly on efficiency by simplifying and making the development and the
delivery of complex services cheaper. Otherwise it is possible to prioritize differentia-
tion by creating innovative and various services for the end user.

Value Appropriation
Value creation, however, is not enough to achieve the final success [5;7]. The value
appropriation dynamic is the second dimension along which we will compare the
different configurations. A firm has to develop the ability to restrict competitive
forces so as to be able to create profit. Firms that do not have the capabilities to main-
tain this competitive advantage are unable to appropriate the value they have created.
Instead, competitors and customers claim for it.

In the value chain of web services there are two processes as we described before:
Development Stage and Run Time. It is possible to make profit in both of them but in
different ways. The business model configurations that we will analyze may be more
suitable for one or both of them. The developing stage is performed only once for
each application, thus the obtainable profit must be completely obtained in a single
time shot. Furthermore, the possibility of competitors’ imitations of the solution
makes the value appropriation very delicate. The Run time process is completely
different. In this process, a small price can be asked because the high repeatability of
the process maintains the profits high. Here customers have a lower bargaining power

260 T. Buganza et al.

than in developing stage. But it is always possible that competitors are able to repli-
cate the run time process and to steal the value. Moreover the value is created during a
longer time span increasing the risk of competitors.

Internally managed competences
If the value creation and appropriation strategies deal with the benefit side of each
configuration, the decision of what role to play inside (outside) deals with the cost and
the time needed to actually develop the configuration. Thus a further dimension we
will use to compare different configurations is based on what capabilities each one of
them will require to manage (and in many cases to develop) internally. It is possible
to highlight three different approaches according to the different capabilities needed
(Fig. 3).

In the first approach the Tool Developer would manage all the Dynamic Capabili-
ties needed (Technological, Market and Marter). In this approach there would be the
total control of the processes from the development of the tool to the run time of the
application including the engagement and management of the Service Owners. In the
second approach, the Tool Developer would develop some Dynamic Capabilities
(Technological and Marter) leveraging on external partners to have Market Capabili-
ties (access to market and new service concept development). Finally, in the third
approach the Tool Developer would focus only on Technology Capabilities, leaving
to external partner(s) the development and management of Market and Marter
Capabilities.

Fig. 3. Capabilities to be developed in the different configurations

Support organization required
Finally the fourth dimension along which we will compare the configurations is the
(simplified) organizational chart needed to support them. In particular, we will com-
pare the organizational charts against the case in which competences are managed
internally, which would ask for the development of the following functions:

− Tool Development Function: it deals with the development and updating of the

tool. It includes expert developers with technological skills.
− Marketing Function: It manages the relationship with end users and it also defines

the concept of the service that they want. For these reasons, it includes mainly peo-
ple with market capabilities.

− Application Development Function: It is the function in which the development of
the application takes place. It includes mainly people with technological skills.

 Analysis of Business Models for Search Computing 261

− Run Time Function: It manages the run time and the mart. This business unit is the
one controlling the relationship with the Service Owners. It is necessary to develop
legal and negotiation competences and also technological skills to run it.

3 First Configuration: The Service Deliverer

The first possibility analyzed is to manage inside all the three capabilities. This means
that, in this configuration, the Tool Developer would directly deal with final users and
Service Owners.

Table 1. The Service Deliverer

CUSTOMER END USER

DIFFERENTIATION
STRATEGY

COST
STRATEGY VALUE

CREATION
X

RUN TIME DEVELOPING STAGE
VALUE

APPROPRIATION X

The target client is the end user. The main goal is to develop a killer application,
that means pursuing a Differentiation Strategy. The end user is attracted from new
web services mainly if they are better than the ones already existing on the web. The
developers are focused on a specific user and design the vertical application depend-
ing on his/her needs. In this configuration, the publishing of the application is man-
aged internally (selling and managing the runt time) too.

Managing the entire process is very complex. For this reason, it is likely to do only
one application for a very specific target. We cannot assume to create a factory of
services for any purpose, as wanting to manage the whole value chain implies to focus
the attention on specific services. The value is done in the several cycles of run time,
which are completely managed inside. Service Owners could be requested a fee for
the provision of their visibility, or end-customers could be requested it too for the
service benefit they receive. Besides, the role of publishers enables the management
of advertising on the site.

262 T. Buganza et al.

This business model is named: Service Deliverer. The Tool Developer creates the
tool and the mart and then designs and develops the vertical application. Finally it
also delivers the service on the web site, manages the run time and the continuous
improvement of the service and the mart. A single actor plays all the roles:

− Application Publisher,
− Application Developer,
− Mart Manager,
− Tool Developer.

An example of a similar Business Model can be given by online travel agencies like
Expedia (www.expedia.com). These sites summarize different kinds of information
from different sources to offer a one stop service to the customer. They aggregate
information on flights, hotels, tourist attractions, cars and they sell them to the end
customer. They develop the service, manage the relationship with the service Owners
(e.g. Hotels), manage the run time and sell to the customers.

The characteristics of the Business Model described are summarized in the
following table.

Table 2. Analysis of Service Deliver

SERVICE DELIVERER

NECESSARY
CONDICTIONS

Find a killer application for a market
Find a market
Build competence missing

OPPORTUNITIES
• Some market can be unsaturated (or without a big player)
• Discover and exploit Long Tails

THREADS

• Data availability
• How can we convince users to trust our application?
• Long Tail can be too small (or with small profit margins)
• Large specific investments
• Market access

Possible
ORGANIZATION
CHART

COMPETENCES
MISSING

• Learn to design killer applications SeCo-like
• Learn to manage Service Owners and legal issues

 Analysis of Business Models for Search Computing 263

In this business model the choice of the target market for the killer application is
fundamental. Indeed, according to industry dynamics the analysis will completely
change. For example, the presence of big players in a market can discourage the
publication of new applications. Only through a deep analysis of the competitive
environment it will be possible to understand the chance that the application will
have to succeed.

Before starting with this configuration, it is therefore essential to find the context
and the killer application to focus on. According to the market choice, it is neces-
sary to do a deeper analysis of the threats and the present opportunities. It is also
necessary to develop the missing competence.

That said, a potential SeCo spin-off would have a starting point focused on the
development of a tool and demonstration application. The capabilities associated
with these two activities are mainly technological. Skills for creating and managing
a relationship with End Users and Service Owners should be built from scratch in
terms of market capabilities (both for service concept and for service trading) and in
terms of Marting Capabilities (find and engage Service Owners and manage the
relationship: legal issues, Intellectual Properties, contracts…).

4 Second and Third Configurations: The Mart Provider and the
Service Developer

The second and third configurations share the same approach: to let external actors
manage the Market Capabilities maintaining a strong internal control on the Tech-
nological Capabilities and on the Marting ones. This approach may be declined into
two different Business Models: Service Developer and Mart Provider. The main
activity in both cases is the management of the mart, but in one case the develop-
ment of applications on the mart is managed internally too, while in the other one it
is delegated to external actors.

In these configurations, the main focus is on the creation and management of a
rich mart (many different services included and connected) that gives the possibility
to create different applications combining different services. The target customer
can be the Application Publisher or Developer. The former will ask for a complex
search application while the latter will ask for accessing directly to the mart and
develop its own applications. Compared to the previous business model, in this case
there is no need to focus on a single market: on the contrary, it is advisable to de-
velop a large number of applications. Indeed, the service is sold to the end user by
the Publisher and (even if the run time can still be managed internally) a part of the
customers’ fee will be appropriated by the Publisher. Therefore the value appropria-
tion will be as in the previous configuration (fees by End Users and Service
Owners), but also pay-per-use contracts with the customer or fixed fee for the mart
utilization. Moreover developing a large number of applications will allow the ex-
ploitation of scale economies, needed to justify the investments for establishing and
maintaining the mart.

264 T. Buganza et al.

Table 3. The Service Developer and the Marter Provider

CUSTOMER APPLICATION PUBLISHER/DEVELOPER

DIFFERENTIATION
STRATEGY

COST
STRATEGY VALUE

CREATION
 X

RUN TIME DEVELOPING S.
VALUE

APPROPRIATION X

In both Business Models the value creation is based on cost strategy. The Publisher
(or the Developer) will be attracted by the possibility of creating a complex solution
in a relatively easy way, without having neither to develop the core technologies nor
to select and manage the Service Owners. Still the two business Models differ in
terms of roles played.

 In the first one, the Service Provider, the Application Publisher requires an appli-
cation that can be done with the SeCo’s tool. In this business model, the following
roles are played internally:

− Tool Developer,
− Mart Manager,
− Application Developer.

To better understand the Business Model we can consider the case of Endemol
(www.endemol.com) even though it is not a web-based service. Endemol is one of the
leader firms in the creation of entertainment programs. This company develops standard
television formats and sells them to broadcasting companies on a global scale. The
broadcast companies manage the publishing of the shows but they buy format programs
already developed. In other words Endemol develops standard applications and sells
them to different Application Publishers.

The Service Provider Business model still asks for some market capabilities to be
developed. If it is true that the Publishing (and therefore the contact with the end users)
is managed by an external actor, still degree of market knowledge is needed to concept
the new services, if the Application Publisher is not completely able to do it alone (as in
the case of broadcast televisions). Nonetheless, focusing on the Mart, it is possible to
find a Second Business model that almost does not require any market capability. The
Mart Provider is focused on the mart and on Service Owners management. The covered
roles are the following:

 Analysis of Business Models for Search Computing 265

− Mart Manager,
− Tool developer.

In this Business Model, the role of the Application Developer is not even handled
internally. This implies that the external developers must learn how to develop appli-
cations on the SeCo platform and mart. In other words this will increase significantly
their cognitive barriers. Only when a community of these developers will be estab-
lished, the Application Publishers will have someone to ask for having the develop-
ment of complex research based services.

An example of this business model is Metaweb that developed Freebase
(www.freebase.com), a service that permits to build a website using entities. Each
entity is linked to different words that have the same meaning. In this way the devel-
oper of the site, choosing an entity, can link it not only to one source but to different
service owners. In order to create a good network (critical mass), they had to create a
community of developers committed to build the links between entities and words.

As mentioned above, involving these actors is not an easy task. The effort, both
economic and cognitive, that the developer must bear in order to learn how to develop
a new language is very high. It is necessary to find some way to reduce their costs and
raise the benefits.

The characteristics of these two business models are summarized in the table
below.

Table 4. Analysis of Service Developer and Marter Provider

SERVICE DEVELOPER

NECESSARY
CONDICTIONS

Owning a large Service Mart together with agreement with Service/Data Owner
Find an Application Publisher/ Application Developer

OPPORTUNITIES
• Exploit economy of scale (the business is serving multiple AP in the same domain)
• Hard to copy (with the same cost)

THREADS

• Low margin for each application
• Low profitability
• Difficulty to find an elevate number of APs that repay investments
• Large specific investments
• Data availability

Possible
ORGANIZATION
CHARTS

COMPETENCE
MISSING

• Learn to manage Service Owner and legal issues
• Support to design killer application SeCo-like
• (Support to develop the application)

266 T. Buganza et al.

These two Business Models are focused on managing the Mart, that is the main
distinctive element of the SeCo value chain. To develop them, it will be essential to
build the ability to manage different Service Owners. Relational, commercial, legal
(as to conclude data-used contracts), skills will have to be developed. Moreover it is
necessary to find the best way to interface with the data owners as to let them un-
derstand the potential value they may have once involved in the mart.

In both the Business Models there are some roles which are in external ac-
tors’hands and this leads to the problem of how to convince them to switch to an-
other technology. They must be advised, helped and guided. How can this be done?
In the Service Developer Business Model the main stakeholder to be involved
would be the Application Publisher. These actors must be educated about what is
possible to achieve with the SeCo technology and what kind of needs can be an-
swered with it. In many cases it would be useful to help them in unveiling some
needs that they are not able to express. The only way to do so is to build a staff
Organizational unit for Business Consultancy. This unit would be focused on find-
ing Application Providers with the “right problem to be solved”. The basic idea is
not far from the acquisition of Price Waterhouse Coopers operated by IBM. The
technological company did it also because it felt that the level of its offering was
not fully understood by the average of the potential customers. The consultancy
company was needed to help the customers to understand their own needs and the
potential benefits IBM could provide them.

The situation is even more difficult in the case of the Mart Provider Business
Model. Here the external roles are two: Application Developer and Application
Publisher. Unfortunately it is not possible to neglect the latter. Even though we can
expect that the Application Developers will try by themselves to find customers
with “the right problem to be solved”, it would be too much risky to rely completely
on them. Thus, to run the Business Model will request also in this case the estab-
lishment of a staff Organizational unit for Business Consultancy. Moreover, a sec-
ond class of external stakeholders should join the cause to make the Business Model
run: the Application Developers. These are software designers that will have to
overcome their cognitive barriers to learn how to build software on the SeCo mart.
This is a well known problem in the technological fields, and its possible solutions
are well known as well. Building easy to use environments (e.g. Microsoft .NET) or
even support kits (e.g. Apple SDK for iPhone and iPad OS) is a common answer to
the problem. Also supporting services, tutorials or even resident engineers can be
used. In other words, this Business Model does not require only the creation of a
staff Organizational Unit for Business Consultancy but also another one for Devel-
opers Support.

5 Fourth Configuration: The Platform Leader

The last possibility analyzed is to leave all but core Technological Capabilities to
external actors.

 Analysis of Business Models for Search Computing 267

Table 5. The Platform Leader

CUSTOMER
APPLICATION DEVELOPER/MART MANAGER

AND SERVICE OWNER

DIFFERENTIATION
STRATEGY

COST
STRATEGY VALUE

CREATION
 X

RUN TIME DEVELOPING STAGE
VALUE

APPROPRIATION X

In this configuration, all the external actors converge on the SeCo technology
platform to carry out their activities. The Application Publisher will ask for the devel-
opment of a complex search service based on SeCo technologies. The Application
Developer will write applications by picking and mixing the different services already
existing in the Mart. In the meantime, the Mart will be designed, maintained and im-
proved by the Mart Manager who will manage directly all the Service Owners. In this
case the Tool Developer would be a Platform Leader.

Once again the value creation strategy will be based on cost reduction. The whole
system must allow every actor to do its task efficiently. The Business Model will be
effective only if a huge number of stakeholders will adopt the technology. Only with a
huge number of actors involved, it is possible to create a network in which the net-
work externalities are big enough to provide value to each member. Indeed, it is nec-
essary that the tool should be used repeatedly to generate profits because, without
handling the run time process, the Platform Leader can get the value only during the
development stage. The developer may pay for the use of the tool but the publishers
and the service owners run independent run times.

Given the large number of external actors and the poor control on the value chain,
in this case more than in other ones, developing an efficient tool will not be enough. It
is crucial to reduce the costs and increase the benefits of all the different stakeholders
to move them toward the technological switch to SeCo.

This model is the one used by Yahoo! that developed a Development Kit to create
web-based applications. Yahoo! Query Language (developer.yahoo.com/yql) lets the
developer query, filter, and join data across Web services. Thanks to this tool the
developer can create applications that are faster and with fewer lines of code.

The characteristics of the Platform Leader Business Model are summarized in the
following table.

268 T. Buganza et al.

Table 6. Analysis of Platform Leader

PLATFORM LEADER

NECESSARY
CONDICTIONS

Find SeCo-like Application Developer
Find Application Publisher

OPPORTUNITIES • AP and AD want a technology that reduce the developing cost

THREADS

• Selling can be complex without a running prototype (trust)
• How can we convince developers to use tools?
• Big competitors
• Hard to explain SeCo technology

Possible
ORGANIZATION
CHART

COMPETENCE
MISSING

• Support to design killer application SeCo-like
• Support to manage Service Owner
• Support to developing the application

The Platform Leader Business Model is the hardest one to be implemented. It
strongly depends on a large number of different stakeholders that must converge on
identifying SeCo as a value added technology. A strong work to find this stakeholder,
educate them, help and support them is the only key to increase the possibility of
success of such a business model. In this case the staff organizational Units should be
three. As in the previous cases one Organizational unit should be developed for Busi-
ness Consultancy and one for Developers Support. Moreover in this case the Marter
Manager must be supported too. It is particularly difficult to support this actor first of
all because it needs both technical competences (to run the mart) and commer-
cial/legal competences to manage the relationships with the Service Owners. More-
over, unlike the previous cases, it is very difficult to find already existing examples in
tech based industries about how to support this role, because it is completely specific
to the SeCo environment (and perhaps its main innovation and value).

6 Discussion and Recommendations

The first point this chapter starts from is that having a good (or even e great) technol-
ogy is not enough to succeed on the market. The technological world is plenty of
companies that had great success exploiting ideas and technologies introduced by
others (e.g., Apple vs. Atari, MSFT and Intel vs. IBM, Sony vs. Nintendo). In many
cases the winning technology is not the “best” one and in many cases the market

 Analysis of Business Models for Search Computing 269

winner is not the first mover. This chapter is not focused on understanding neither the
market dynamics typical of technological industries nor their technology strategies. It
only starts from the consideration that a great technology which is not used by any
customer is useless.

For this reason the first two dimensions along which we compared alternative pos-
sible business models are related with the existence of a market. More specifically
they are the Value Creation strategy and the Value Appropriation one. On the con-
trary the remaining two dimensions used are related with the costs to sustain to man-
age the competences and the building of the right organizational form able to support
the Business Models.

Among the many roles that characterize the SeCo value chain (Fig.2) the Tool De-
veloper is the hardest to be alienated: the core knowledge of the system is embedded
in this role. Thus, the considered configurations may differ according to which other
roles are managed internally or externally. One may feel that the involvement of ex-
ternal actors is a preferable alternative because it avoids to develop and manage com-
petences internally. There are many cases of high-tech industries in which companies
rely on third parties to deliver value to the final customer. The personal computer
architecture is an example of this approach: a company develops the micro-processor,
another one develops the Operating System and many others develop a multitude of
applications. The case of the App Store by Apple is a similar recent example. The
Cupertino’s company is producing the tools (hardware and software) playing the role
of Tool Developer and is managing the Store to sell the applications to the market
playing the role of Application Publisher. Nonetheless the company relies on external
Application Developers to create the apps.

Even if involving external actors may seem a panacea, there is a high risk related to
this solution. Opening the system to external actors and allow them to run their busi-
ness on a platform, using existing tools and architectures, does not imply that they
will actually use them. First of all because they may lack some competences. A good
example of this can be provided by the cell phone industry before the arrival of the
smart phones. Apple competitors already opened their OSs to third parties and many
actors tried to take advantage of it by by developing java apps or ringtones. Still, the
diffusion of these softwares was poor if compared with the current diffusion of Apple
apps. This is because these companies had not neither reputation, nor brand nor access
to the market. If we consider the Apple case, the decision of managing directly the
App Store and forcing it as the sole channel to market, allowed the third parties to
leverage on their competences (concept and app development) providing them those
competences that they hardly would develop (access to market). Another reason why
third parties may not be willing to take advantage of an existing platform is because
they need to invest time and money to “learn” it. This is another typical dynamic in
multilayer platform based industries and companies know that they must pay a major
effort in reducing the cognitive barriers and increasing the developers productivity
(e.g. through APIs). In the Apple case this variable was managed by creating and
distributing a Software Development Kit very easy to use as to “make it easy to de-
velop for iPhone”. In other words allowing external actors to build their businesses on
a platform is not a sufficient condition to make them doing it. External actors must be
involved and helped. Their cognitive barriers must be reduced and they must be pro-
vided with those capabilities and assets they may lack.

270 T. Buganza et al.

The decision of managing inside or outside some roles leads to reduce some costs
but to increase some others. If a company wants to cover many roles in the value
chain it will have high costs for the development of internal competences and low
costs to support external actors, but of course the contrary is also true (Fig.4).

Fig. 4. Configurations development cost

The last point that should be taken into consideration to assess the Business Mod-
els is the starting point. The cost for developing any kind of Business Model is de-
pendent on the starting quantity and quality of competences. At the current stage the
SeCo Project encompasses mainly technological capabilities. Moving towards a Ser-
vice Provider Business Model would imply the development of new internal compe-
tences, while moving towards a Platform Leadership Business Model would mean
investing on the consultancy market.

The above considerations should be taken into account when planning the next
steps of the SeCo Project. It seems that a unique or best way to proceed does not cur-
rently exist and all the different configurations identified have strengths and weak-
nesses to be leveraged and avoided. Still, we can say that moving towards one direc-
tion (e.g. the Service Deliverer configuration) should imply the internal development
of brand new competences for the SeCo team (like the market or marter capabilities)
and the further development of some technological capabilities that are currently not
completely mastered by the team (e.g. the ones for running the Run Time). On the
other side the development of configurations more related to become a service enabler
(or even a platform leader) asks for the early involvement of the right partners, that
means finding them, engaging them and managing the relationships with them. Even
if an orientation for the project potential exploitation will be decided further along the
schedule, in our opinion the very next steps of the project should take into account the
implications of this decision in order to leave the different options really and not only
nominally open till the end of the project.

 Analysis of Business Models for Search Computing 271

References

1. Bhattacharya, S., Krishnan, V., Mahajan, V.: Managing New Product Definition in Highly
Dynamic Environments. Management Science 44 (11 Part 2), S50–S64 (1998)

2. Cusumano, M.A., Selby, R.: Microsoft Secrets. Free Press, New York (1995)
3. Iansiti, M., MacCormack, A.: Developing Products on Internet Time. Harvard Business

Review 75, 108–117 (1997)
4. MacCormack, A., Verganti, R., Iansiti, M.: Developing Products on Internet Time: The

Anatomy of a Flexible Development Process. Management Science 47(1), 133–150 (2001)
5. Mizk, N., Jacobson, R.: Trading Off Between Value Creation and Value Appropriation:

The Financial Implications of Shifts in Strategic Emphasis. Journal of Marketing 67, 63–
76 (2003)

6. Porter, M.E.: Competitive Advantage: Creating and Sustaining Superior. Performance. The
Free Press, New York (1985)

7. Teece, D.J.: Profiting from Technological Innovation: Implications for Integration, Col-
laboration, Licensing and Public Policy. Research Policy 15, 285–305 (1986)

8. Teece, D.J., Pisano, G.: The Dynamic Capabilities of Firms: an Introduction. Industrial and
Corporate Change 3(3), 537–556 (1994)

9. Teece, D.J., Pisano, G., Shuen, A.: Dynamic Capabilities Management and Strategic. Stra-
tegic Management Journal 18(7), 509–533 (1997)

10. Verganti, R.: Planned Flexibility: Linking Anticipation and Reaction in Product Develop-
ment Projects. J. Product Innovation Management 16(4), 363–376 (1999)

Author Index

Baeza-Yates, Ricardo 3, 26
Beneventano, Domenico 85
Bergamaschi, Sonia 85
Boldi, Paolo 26
Bozzon, Alessandro 10, 26, 53, 101, 192
Braga, Daniele 141, 156
Brambilla, Marco 10, 26, 53,

73, 169, 192
Broder, Andrei Z. 3
Buganza, Tommaso 239, 256

Campi, Alessandro 73, 101
Casati, Fabio 182, 192
Catarci, Tiziana 53
Ceri, Stefano 10, 26, 53, 73
Corcoglioniti, Francesco 141
Corubolo, Marta 239, 256

Daniel, Florian 182, 192
Della Valle, Emanuele 101, 239, 256
Dix, Alan 35

Fraternali, Piero 10, 53

Ghisalberti, Giorgio 203
Grossniklaus, Michael 141, 156

Ilyas, Ihab F. 128, 135
Imran, Muhammad 192

Li, Peter 215

Maarek, Yoelle 3
Martinenghi, Davide 121, 135
Masseroli, Marco 203
Matera, Maristella 53
Milanesi, Luciano 226
Missier, Paolo 215

Norrie, Moira C. 46

Pasi, Gabriella 26
Paton, Norman W. 156, 215
Pellizzoni, Elena 239, 256
Po, Laura 85
Polyzotis, Neoklis 115, 135

Quarteroni, Silvia 73

Romano, Paolo 226
Ronchi, Stefania 101

Soi, Stefano 182
Sorrentino, Serena 85
Suchanek, Fabian 101

Tagliasacchi, Marco 121, 135
Tettamanti, Luca 169

Vadacca, Salvatore 141

	Title Pages
	Preface
	Organization
	Table of Contents
	Part 1: The Search Process
	The New Frontier of Web Search Technology: Seven Challenges
	The Evolution of Commercial Search Engines
	Ongoing and New Challenges
	Query Assistance
	Contextualization
	Universal Search
	Web of Objects
	Post-Search Experience
	Application Integration
	Implicit Search

	Conclusion
	References

	Information Exploration in Search Computing
	Introduction
	Background on Exploratory Search and Resource Graph Browsing
	Exploration of the Resource Graph
	Search Computing Information Exploration Interface
	Results Visualization
	Explorations of Results

	Infrastructure for Supporting Explorative Queries
	Conclusions
	References

	Trends in Search Interaction
	Introduction
	Helping the User
	Wisdom of Crowds
	Contextualization and Personalization
	Raising the Complexity of the User Interface?
	References

	Part 2: Interaction Design
	Context and Action in Search Interfaces
	Overview/Motivation
	Cycles of Action and Context
	Establishing Loci for Action
	Explicit Semantic Markup of Loci
	Inferring Loci – Data Detectors
	Using Search in Data Detectors

	Establishing Context
	Suggesting and Influencing Search
	Discussion
	References

	Desktop, Tabletop or Mobile?
	Introduction
	Search and Setting
	Search in Mobile Settings
	Exploiting Large Interactive Surfaces in Search
	Conclusions
	References

	Visualization of Multi-domain Ranked Data
	Introduction
	Related Work in Search Engine Interfaces and Visualization Techniques
	Evolution of Search Engine Result Presentation
	Related Work in Data Visualization

	Visualization Model and Process for Search Computing
	Visualization Model
	Data Type Classification
	Visualization Process

	Examples of Visual Representations of Query Results
	Visualization of Geo-referenced Objects
	Geo-referenced Visualization with Object Dependencies
	Timeline Visualizations
	Representation in the Lack of Suitable Interval Dimensions

	Conclusions and Future Work
	References

	Part 3: Semantic Description
	Semantic Resource Framework
	Introduction
	Related Work
	Service Marts
	Conceptual Level
	Logical Level
	Physical Level
	Connection Patterns

	Model Extensions
	External Attributes
	Selector Attributes
	Key Attributes

	Nearness Support in Accessing Resources
	Nearness in Single Resources
	Accessing Pairs of Resources

	Top-Level View of the Semantic Resource Framework
	Conclusions
	References

	Automatic Normalization and Annotation for Discovering Semantic Mappings
	Introduction
	Normalization and Annotation of a Conceptual Schema
	Normalization
	Probabilistic Lexical Annotation
	Probabilistic Lexical Relationship Discovery
	Experimental Evaluation

	Towards Annotated Services in SRF
	Normalization
	Probabilistic Lexical Annotation
	Probabilistic Lexical Relationship Discovery

	Related Work
	Conclusion
	References

	Towards an Ontological Representation of Services in Search Computing
	Introduction
	Motivation
	Contribution

	Related Work
	YAGO and ANGIE
	YAGO
	ANGIE

	Toward an Ontological Representation of the Access Patterns
	Properties of the Proposed Model
	Conclusions and Future Work
	References

	Part 4: Rank Join
	The Rank Join Problem
	Background and Basic Definitions
	Analysis of Rank Join Algorithms
	The Trade-Off between I/O Robustness and Computational Efficiency
	References

	Proximity Rank Join in Search Computing
	Introduction
	Problem Definition
	Proximity Rank Join Algorithms
	Bounding Scheme
	Pulling Strategy

	Related Work
	Conclusion
	References

	Uncertainty in Rank Join
	Introduction
	Uncertain Rank Join
	Uncertain Scoring Model
	URankJoin

	Conclusion
	References

	Trends in Rank Join
	Relevance of Rank Join for Search Computing
	To Optimize or Not to Optimize?
	Multi-domain Queries
	Exact vs. Approximate Answers
	Uncertainty in Rank Join
	References

	Part 5: Query Processing
	Efficient Computation of Search Computing Queries
	Introduction
	Background on Multi-domain Queries
	Logical Query Plans
	Cost Metrics
	Heuristic Planning: Topology and Join Strategies

	Physical Query Plans
	Data and Control Model
	Query Execution Plans
	Plan Composition

	The Experimental Workbench
	Conclusion
	References

	Run-Time Adaptivity for Search Computing
	Introduction
	Run-Time Adaptive Query Processing
	Plan Preserving Adaptation
	Plan Changing Adaptation
	Adaptive Query Processing for Ranked Data

	Adaptation in Search Computing
	Plan-Preserving Adaptations in Search Computing
	Plan-Changing Adaptation in Search Computing

	Conclusion
	References

	Part 6: Tools and Mashups
	Tools Supporting Search Computing Application Development
	Introduction
	Background and Related Approaches
	Development Process and Scenarios
	Development Process
	Needs and Scenarios

	Service Registration
	Service Mart Definition
	Access Pattern Definition
	Connection Pattern Definition
	Service Interface Registration
	Registration Updates

	Application Configuration
	Query Specification
	Query Generation
	Query Plan Refinement
	User Interface Configuration

	Toolsuite Architecture
	Conclusions
	References

	Distributed User Interface Orchestration: On the Composition of Multi-User (Search) Applications
	Introduction
	A Search Scenario
	Distributed UI Orchestration
	The MarcoFlow Environment
	Related Work
	Conclusion and Future Works
	References

	On Development Practices for End Users
	Introduction
	Target User Classes
	Enabling Practices and Techniques
	Domain-Specific Languages: Assessment Dimensions
	EUD in Practice: Two Examples for Research Evaluation
	Research Evaluation in ResEval
	Research Evaluation with Search Computing
	On the Combined Potentials of ResEval and Search Computing

	Conclusions
	References

	Part 7: Bio-SeCo
	Bio-SeCo: Integration and Global Ranking of Biomedical Search Results
	Introduction and Motivation
	Bioinformatics Resource Representation for Search Computing
	Bioinformatics Search Services Registered in the Search Computing Framework
	Services for Biomolecular Sequence Alignment and Search
	Services for Protein ID Look Up
	Services for Gene Expression Result Search

	A Bioinformatics Search Computing (Bio-SeCo) Application
	Query Submission
	Query Results

	Future Scenarios
	Conclusions
	References

	Workflows for Information Integration in the Life Sciences
	Workflows for Computational Science and Information Integration
	Example: Automating a Systems Biology Pipeline
	Workflows and Search Computing
	Workflow-Based Service Orchestration
	Providing Support for Integration Workflow Design
	Restricting the Space of Target Services: Examples
	Taverna in a Controlled and Annotated Service Space

	Summary
	References

	Complex Search, Ranks, and Biological Discovery: A User’s Perspective
	Introduction and Motivation
	Web Services and Workflow Management Systems in Life Sciences
	Grid and Bioinformatics
	Some Issues with Scores and Rankings in Life Sciences
	Missing Information
	Composition of Scores

	Complex Searches and Bio-molecular Knowledge Discovery
	Conclusions
	Integration with Workflow Management Systems
	Search Computing as a Consensus Generation Tool

	References

	Part 8: Towards a Sustainable Exploitation
	An Experience in Applying User Centered Design to Search Computing
	Introduction
	Our Research Process
	Selection of the Contexts of Application
	Context Analysis
	Conceptual Map
	Actors Map

	Definition of the Investigation Tools
	Visualization of the User Experience
	Discussion of the Results
	Conclusions
	References

	Analysis of Business Models for Search Computing
	Competences and Roles of the SeCo Value Chain
	How to Compare Alternative Business Models
	First Configuration: The Service Deliverer
	Second and Third Configurations: The Mart Provider and the Service Developer
	Fourth Configuration: The Platform Leader
	Discussion and Recommendations
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

