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Preface

These proceedings contain selected papers associated with the lectures presented
at BAIL 2010 (Boundary and Interior Layers – Computational and Asymptotic
Methods). This conference was held from 5 to 9 July 2010 at the University of
Zaragoza, Spain. The 64 participants came from many different countries, namely:
Argentina, China, France, Germany, India, Ireland, Italy, Russia, South Korea,
Spain, Sweden, the UK, and the USA. The BAIL series of conferences are the result
of an initiative by Professor John Miller, who organized the first three in Dublin
in 1980, 1982, and 1984. Subsequent conferences were then held in Novosibirsk
(1986), Shanghai (1988), Copper Mountain, Colorado (1992), Beijing (1994), Perth
(2002), Toulouse (2004), Göttingen (2006), and Limerick (2008). The next BAIL
Conference will be in Pohang, South Korea, in 2012.

Totally 61 lectures were presented at the BAIL 2010, of which 5 were ple-
nary lectures, 17 were given at the mini-symposia Finite Element Methods Using
Layer-Adapted Grids and Robust Methods for Time-Dependent Singularly Per-
turbed Problems, and 39 were contributions on other subjects. The main objective
of the BAIL conferences is to bring together researchers interested in boundary
and interior layers. This includes mathematicians and engineers who work on their
theoretical and numerical aspects, and also those researchers concerned with their
application to a variety of areas such as fluid dynamics, semiconductors, control
theory, chemical reactions, and porous media.

The lectures presented at the conference showed the diversity of investigations
related to these topics. The proceedings provide a unique overview of research into
various aspects of singularly perturbed problems and in particular the efficient res-
olution of boundary and interior layers using numerical methods. They also include
examples of applications of this class of problems.

All papers in the proceedings were subjected to a standardized refereeing pro-
cess. We would like to thank the authors for their cooperation in the publication
of their work in this volume of LNCSE and also the anonymous referees for their
work and dedication, without which it would have been impossible to produce this
publication.

Finally, we wish to thank the sponsors of the conference: the Spanish Govern-
ment’s project MTM2009-07637-E, the Government of Aragón, the University
of Zaragoza, and the Instituto Universitario de Matemáticas y Aplicaciones. Our
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thanks also go to the members of the Scientific Committee, the organizers of the
mini-symposia, all the attendees for their participation in the conference, and the
research group Numerical Methods for Partial Differential and Integral Equations
for its work in handling all organizational tasks.

January 2010 Carmelo Clavero
José Luis Gracia

Francisco Lisbona
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Modeling Acoustic Streaming On A Vibrating
Particle

Rajai S. Alassar

Abstract In this study, we present the details of a Legendre series truncation
method where the stream function and vorticity are expanded in terms of associ-
ated Legendre functions to calculate the secondary currents induced by a vibrating
spherical particle. The time-dependent differential equations which result from the
expansions are solved using a Crank-Nicolson numerical scheme.

1 Introduction

The phenomenon of secondary currents produced by the vibration of a particle in a
fluid has been observed for a long time. A good review on the subject can be found in
Kotas et al. [1], Lighthill [2], and Riley [3,4]. The importance of this phenomenon is
currently gaining momentum due to the hypothesis of Yoda et al. [5]. Current mod-
els of hearing state that a fish directionalizes sound via direct stimulation of macular
hair cells by acoustic particle velocity (Shellart and de Munck [6], Rogers et al. [7]).
Yoda et al. [5] hypothesize, instead, that the fish ear is an “auditory retina,” where
macular hair cells are stimulated by acoustically-induced flow velocities (i.e. sec-
ondary currents). The densely packed hair cells visualize the flow patterns due to
the acoustically induced flow in the complex three-dimensional geometry between
the otolith and the macula, much like a tuft visualization. The complex geometry
of fish otoliths may help to distinguish flow patterns for sound from different direc-
tions. By converting acoustic signals into spatial patterns sampled with extremely
high spatial resolution by the macular hair cells, directionalizing sound becomes a
pattern recognition problem, not unlike the visual patterns imaged by the retina.

In this paper, the secondary currents caused by the harmonic oscillation of an
infinite body of fluid past a spherical particle are calculated by a semi analytical
method. The stream function and vorticity are first expanded in terms of associated

R.S. Alassar
King Fahd University of Petroleum & Minerals, Department of Mathematics and Statistics,
Box # 1620, Dhahran 31261, Saudi Arabia
e-mail: alassar@kfupm.edu.sa
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2 R.S. Alassar

Legendre functions and the resulting time-dependent differential equations are then
solved using a Crank-Nicolson numerical scheme. Although no intention is made
here to describe the mechanism of fish hearing, the study offers an initial numerical
exploration into the relevance of the acoustically-induced flow to directionalization
of sound and characterizing the steady streaming region (practically the region that
would be sampled by the hair cells next to the sphere which is considered as a sim-
plified geometry of the fish otolith). It is important to mention here that a study on
the physics of steady streaming has been conducted by the present author, [8]. The
present paper, however, is different in that it presents the mathematics behind the
semi-analytical technique used. It shows how some interesting integrals of special
functions developed by the author are incorporated and made use of in the context
of steady streaming.

We consider a solid spherical particle of diameter 2a suspended in an unbounded
oscillating incompressible stream, Fig. 1. The unsteady but uniform free-stream
exhibits a sinusoidal oscillatory motion. The fluid motion is governed by the conser-
vation principles of momentum and mass which can be expressed by the following
equations:

�

�
@w
@t

C .w � r/w
�

D �rp C F C �r2w (1)

r � w D 0 (2)

Fig. 1 Sphere in oscillating
stream
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where � is the fluid density, t is time, w is the velocity vector, p is the pressure in
the fluid, F is the body force vector, and � is the dynamic viscosity.

2 Method of Solution

First, we recast the equations governing the flow process (1–2) in spherical coordi-
nates. The equations governing, in spherical coordinates, can be written in terms of
the dimensionless vorticity (�/ and the dimensionless stream function ( / as:

e3� sin � � C @2 

@�2
C @2 

@�2
� @ 

@�
� cot �

@ 

@�
D 0 (3)

e2�
@�

@t
C e��

sin �

�
@ 

@�
.
@�

@�
� �/� @ 

@�
.
@�

@�
� cot � �/

�
(4)

D 2

Re

�
@2�

@�2
C @2�

@�2
C @�

@�
C cot �

@�

@�
� �

sin2 �

�

where Re D 2aUo=� is the Reynolds number, Uo is the amplitude of the free-
stream velocity, and � is the coefficient of kinematic viscosity. The logarithmic
transformation � D ln.r=a/ is used, where r is the dimensional radial distance.
The variables , �, and t�(the star is dropped in 3–4) in the governing equations are
defined in terms of the usual dimensional quantities 0, � 0, and t as:  D  0=Uoa2,
� D � 0a=Uo, and t� D Uo t=a.

The oscillations of the free-stream velocity are given in the form U D U 0=Uo D
cos.S t/ where U 0 is the dimensional free-stream velocity, and S D a!=Uo is the
Strouhal number with ! being the frequency of oscillations.

The boundary conditions to be satisfied are the no slip and impermeability con-
ditions on the surface of the sphere and the free-stream conditions away from it.
These can be written as:

 D @ 

@�
D @ 

@�
D 0 at � D 0 (5)

@ 

@�
! e2� sin2 � cos.S t/ ; and @ 

@�
! e2� sin � cos � cos.S t/

or;  ! e2�

2
sin2 � cos.S t/

� ! 0 ;

9>>>=
>>>;
as � ! 1 (6)

In order to solve the governing equations subject to the boundary conditions, we
adopt a series truncation method based on expanding  and � using Associated
Legendre polynomials, Alassar et al. [9], as:

�
 

�

�
D

8̂
<̂
ˆ̂:

1P
nD1

fn.�; t/
1R
z
Pn.�/ d�

1P
nD1

gn.�; t/ P
1
n .z/

9>>=
>>;

(7)



4 R.S. Alassar

where Pn.z/ and P 1n .z/ are the Legendre and first associated Legendre polyno-
mials of order n respectively, and z D cos � . The integrals needed to undergo the
transformation of the differential equations onto the modes of the series (7) can be
obtained using an approach similar to that reported by Mavromatis and Alassar [10].

The Legendre function Pn.x/ , as known to physicists, usually arises in studies
of systems with three dimensional spherical symmetry. They satisfy the differen-
tial equation .1 � x2/y00 � 2xy0 C n.n C 1/y D 0, and the orthogonality relation
1R

�1
Pm.x/Pn.x/ dx D 0 for n ¤ m. The first associated Legendre function P 1n .x/

is a special case of the more general associated Legendre functions (not necessarily
polynomials) Pmn .x/ which are obtained from derivatives of the Legendre polyno-
mials according to Pmn .x/ D .�1/m.1�x2/m=2 dm Pn.x/

d zm . Notice thatPmn .x/ reduce
to Pn.x/ form D 0.

Substituting from (7) into (3–4) and integrating over z from �1 to 1, the following
expressions can be obtained by manipulation of the Legendre functions,

@2fn

@�2
� .nC 1=2/2 fn D n.nC 1/ e5=2� gn (8)

e2�
@gn

@t
D 2

Re

�
@2gn

@�2
C @gn

@�
� n.nC 1/ gn

�
C Sn (9)

where,

Sn D �e��=2
"

1P
iD1

1P
jD1

˛nij fi .
@gj

@�
� gj /C

1P
iD1

1P
jD1

ˇnij gj .
@fi

@�
C 1

2
fi /

#
(10)

˛nij D �.2nC 1/

s
j.j C 1/

n.nC 1/

�
n i j

�1 0 1
� �

n i j

0 0 0

�
(11)

ˇnij D .2nC 1/

s
j.j 2 � 1/.j C 2/

n.nC 1/ i.i C 1/

�
n i j

�1 �1 2
� �

n i j

0 0 0

�
(12)

and (
j1 j2 j3
m1 m2 m3

/ are the 3-j symbols.

The power of this technique is evident through the fact that the series expansions
resulted in the elimination of the independent variable (�/. The governing equations
are now written in the form of a set of differential equations with the dependent
variables being the coefficients (fn ; gn/ of the series. The resulting equations rep-
resent two sets of differential equations, with every set containing infinite number
of equations, as compared to the original two partial differential equations. How-
ever, we will solve only few of these equations and yet obtain a highly accurate
solution.
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In the process of obtaining (8–9), one encounters integrals such as
1R

�1
P kn .z/

P km.z/ d z;
1R

�1
P 1n .z/ P

1
i .z/ Pj .z/ d z,

1R
�1
P 1n .z/ P

1
i .z/ P

2
j .z/ d z, and others. These

integrals make it possible to eliminate the angular direction � . They are of the
general form:

1Z
�1
P
m1

j1
.z/ Pm2

j2
.z/ Pm3

j3
.z/ d z (13)

These integrals are very essential and can be obtained from the following relation:

1R
�1
P
m1

j1
.z/ Pm2

j2
.z/ Pm3

j3
.z/ d z D

q
.j2Cm2/Š.j1Cm1/Š
.j2�m2/Š.j1�m1/Š

�P
n

"
.�1/m1Cm2 .2nC 1/

 
j1 j2 n

0 0 0

!  
j1 j2 n

m1 m2 �m1 �m2

!

�
q
.n�m1�m2/Š
.nCm1Cm2/Š

1R
�1
P
m3

j3
.z/ Pm2Cm1

n .z/ d z

#

(14)
where jj1 � j2j � n � j1 C j2 , and

1R
�1

P
m1
j1
.z/ Pm2

j2
.z/ dz D .�1/m2 	

22.jm2�m1j/C1 
 . 12 C

j
m2�m1j

2 / 
 . 32 C

j
m2�m1j

2 /

q
.j1Cm1/Š.j2Cm2/Š

.j1�m1/Š.j2�m2/Š

�P
k

.�1/�m1Cm2.2k C 1/

 
j1 j2 k

0 0 0

!  
j1 j2 k

�m1 m2 m1 �m2

!

�.1C .�1/kCjm2�m1j/

q
.kCjm2�m1j/Š

.k�jm2�m1j/Š

�3F2

h
jm2�m1jCkC1

2
;

jm2�m1j�k

2
;

jm2�m1j

2
C 1I jm2 �m1j C1; 3Cjm2�m1j

2
I 1
i

(15)

where, jj1 � j2j � k � j1 C j2 , 
 is the Gamma function, and 3F2 is the general-
ized hypergeometric function. A detailed discussion on these integrals can be found
in Mavromatis and Alassar [10] who showed that the hypergeometric function in
(15) is always a finite series, and indeed is also Saalschutzian, i.e.

3F2

h jm2�m1jCkC1
2

; jm2�m1j�k
2

; jm2�m1j
2

C 1I jm2 �m1j C1; 3Cjm2�m1j
2

I 1
i

D
� .1=2/� .k=2/� .jm2�m1jC1/� .�k=2�1=2/

� ..jm2�m1j�k/=2C1=2/� .jm2�m1j=2/� ..jm2�m1jCk/=2C1/� .�jm2�m1j=2�1=2/
(16)

The 3-j symbols .
j1 j2 j3
m1 m2 m3

/ are transformation coefficients that appear in the

problem of adding angular momenta. They represent the probability amplitude that
three angular momenta j1; j2; and j3 with projectionsm1; m2; andm3 are coupled
to yield zero angular momentum. They are related to the famous Clebsch-Gordan
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coefficients (C). These symbols, however, possess simpler symmetry properties. The
relation between the 3-j symbols and the Clebsch-Gordan coefficients is given by:

.
j1 j2 j3
m1 m2 m3

/ D .�1/j3Cm3C2j1
1p

2j3 C 1
C
j3m3

j1�m1j2�m2
(17)

Many representations of the 3-j symbols are available. They may be represented by
the square 3�3 array of the Regge R-symbol, by algebraic sums, or in terms of the
generalized hypergeometric function of unit argument (3F2/. The following formula
should give a flavor of the many representations available:

C
c�

a˛bˇ
D ı�;˛Cˇ �.abc/

.aCb�c/Š.�bCcC˛/Š.�aCc�ˇ/Š
h
.aC˛/Š.b�ˇ/Š.cC�/Š.c��/Š.2cC1/Š

.a�˛/Š.bCˇ/Š
i 1

2

�3F2
2
4 �a � b C c;�a C ˛;�b � ˇ

�aC c � ˇ C 1;�b C c C ˛ C 1

ˇ̌
ˇ̌̌
ˇ1
3
5

(18)
where,

�.abc/ D
�
.a C b � c/Š.a � b C c/Š.�a C b C c/Š

.aC b C c C 1/Š

� 1
2

(19)

For detailed discussion, representations, properties, and tabulated values, the reader
is referred to Varshalovich et al. [11, pp. 235–411]. The 3-j symbols can also be
obtained through the famous software MATHEMATICA.

The boundary conditions (5–6) are transferred on to the modes of the series (7)
by utilizing the same process by which the differential equations are treated with.
The boundary conditions can now be written as:

fn.0; t/ D @fn

@�
.0; t/ D 0 (20)

fn.�; t/ ! e3=2� cos.St/ ın1 ;
@fn.�; t/

@�
! 3

2
e3=2� cos.St/ ın1 as � ! 1

(21)

gn.�; t/ ! 0 as � ! 1 (22)

where ıij is the Kronecker delta.
Finally, an integral condition based on (8) to be satisfied by the functions gn can

be obtained after making use of the boundary conditions (20–22) as:

1Z
0

e.2�n/ �gn d� D 3

2
cos.St/ ın1 (23)

The solutions of the functions and � are advanced in time by first solving (9) using
a Crank-Nicolson finite-difference scheme similar to that used by Dennis et al. [12].
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Since the problem is solved numerically the conditions at 1 are applied at � D
�mwhere �mdefines the distance away from the sphere at which � has negligible
value. Equation (9), when written in difference form using the Crank-Nicolson finite
difference scheme and applied at every mesh point in the range from � D 0 to � D
�m, will result in a set of algebraic equations that forms a tridiagonal matrix problem
which is solved for each value of n between 1 and N iteratively. N designates the
number of terms taken in the series defined in (7). The boundary conditions gn.0; t/
which are needed to complete the integration procedure are obtained by writing the
integral condition defined in (19) as a numerical quadrature formula which then
relates the boundary value to values of the corresponding function at internal points
of the computational domain. This gives the extra condition needed to determine the
boundary values for gnand thus the formulation of the solution of (9) is complete.

A straightforward finite-difference solution for (8) results in an unstable solution
especially for large n. Therefore, the solution of these equations is obtained using
a step-by-step integration scheme modified from that used by Badr et al. [13]. The
method is based on splitting (8) into two first order differential equations one of
which is integrated by a stable method in the direction of increasing �while the
other is integrated in the backward direction from � D 1 to � D 0. The method
is well explained by Badr et al. [13] and can be easily modified to suit our problem
and need not be discussed further.

The whole iterative numerical scheme can be summarized as follows:
At time t , the known solution at time (t ��t/ is used as a starting solution. The

tridiagonal system resulting from (9) with the most recently available information
is solved to obtain the functions gn.�; t/. Secondly, we apply the integral condi-
tion (19) to obtain a better approximation for gn.0; t/. Then, (8) is solved using the
stable step-by-step numerical procedure mentioned above to obtain fn.�; t/. The
procedure is then repeated until convergence is reached. The condition set for con-
vergence is

ˇ̌
gmC1
n .�/ � gmn .�/

ˇ̌
< 10�10 where m denotes the iteration number.

Time is then incremented and the whole process is repeated.
Following the start of fluid motion, very small time steps were used since the time

variation of vorticity is quite fast. As time increases, the time step was gradually
increased. Smaller time steps were used for higher Strouhal numbers. The number
of points in the �direction used is 201 with a space step of 0.025. This makes �m D 5

which sets the outer boundary at a physical distance of approximately 148 times the
radius of the sphere. This is necessary to ensure that the conditions at infinity are
appropriately incorporated in the numerical solution. The effect of �m on the flow
field near the sphere was examined by comparing the results when using differ-
ent values of �m. The effect of the step size on the flow field near the sphere was
also examined by comparing the results when using different values. No significant
changes in the values of the drag or the surface vorticity were detected by reducing
the step size further than the given value. As there is no intrinsic way to determine
them, the total number of terms taken in the series was found by numerical experi-
ments. The number of terms taken in the series starts with only 3 terms. One more
term is added when the last term in the series exceeds 10�6. The total number of
terms is dependent on Reynolds and Strouhal numbers. More terms are needed for
high Reynolds and low Strouhal numbers.
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One last modification is taken here through defining a dimensionless time �
which is related to the previously defined dimensionless time t by

� D St=2	 (24)

Scaling time by the Strouhal number is appropriate in dealing with relatively high-
frequency flows. Consequently, each cycle has a period of unity with 400 divisions
and �� D 0:0025.

The accuracy of the method of solution was verified by Alassar et al. [9] through
comparisons with the forced and mixed convection cases available in the literature
such as Wong et al. [14], Sayegh and Gauvin [15], Dennis and Walker [16], and
others. The comparisons were satisfactory.

Figure 2 shows the secondary currents calculated by the present method for the
cases Re D 5; 50, and 200 with S D 	=4 and a photo from experiments by Kotas
et al. [1].

Fig. 2 Secondary currents for the cases Re D 5, 50, and 200 with S D 	=4200, and a photo from
experiments by Kotas et al. [1]
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Fig. 3 Variation of dn with S

An important characteristic length is the distance from the center of the sphere to
the center of the near (inner) recirculation region dn. Figure 3 shows the variation of
dn with Strouhal and Reynolds numbers. As S increases, the distance from the center
of the sphere to the center of the inner rotating region (stagnation point) becomes
smaller for all Re cases. Obviously, dn is smaller for higher Reynolds numbers.

Acknowledgements I would like to express my sincere appreciation to King Fahd University of
Petroleum & Minerals (KFUPM) for supporting this research.
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Performance of Stabilized Higher-Order
Methods for Nonstationary
Convection-Diffusion-Reaction Equations

Markus Bause

Abstract We study the performance properties of a class of stabilized higher-
order finite element approximations of convection-diffusion-reaction models with
nonlinear reaction mechanisms. Streamline upwind Petrov-Galerkin (SUPG) sta-
bilization together with anisotropic shock-capturing as an additional stabilization
in crosswind-direction is used. We show that these techniques reduce spurious
oscillations in crosswind-direction and increase the accuracy of simulations.

1 Introduction

Time-dependent convection-diffusion-reaction equations

@tu C b � ru � r � .aru/C r.u/ D f (1)

are often studied in various technical and environmental applications. Here, u D
u.x; t/ denotes the unknown where x 2 ˝ � Rd , with d 	 2, and t 2 .0; T / for
some T > 0. Further, a 2 L1.0; T IW 1;1.˝// is the diffusion coefficient, b 2
L1.0; T I W 1;1.˝// is the velocity field, r 2 C 1.RC

0 / is the parametrization of
the reaction rate and f 2 L2.0; T IL2.˝// is a prescribed right-hand side term. We
suppose that r � b.x; t/ D 0 and a.x; t/ 	 ˛ > 0 almost everywhere. Throughout
the paper we use standard notation.

The accurate numerical approximation of (1) is still a challenging task. In appli-
cations, the transport equation (1) is often convection- and/or reaction-dominated
and characteristic solutions have sharp layers. In these cases standard finite element
methods cannot be applied. Stabilized finite element approaches are required. For a
review of these techniques we refer to the recent work of John and Schmeyer [3].

M. Bause
Helmut Schmidt University, University of the Federal Armed Forces Hamburg, Department
of Mechanical Engineering, Holstenhofweg 85, 22043 Hamburg, Germany
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DOI 10.1007/978-3-642-19665-2_2, c� Springer-Verlag Berlin Heidelberg 2011
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Stabilization methods are well-understood for linear steady convection-diffusion-
reaction problems; cf., e.g., [3, 4]. However, there is still a considerable lack in
the analysis, design and application of these methods for unsteady nonlinear prob-
lems which is addressed here. Rigorous analyses are rare for the unsteady and
nonlinear case.

2 Discretization Scheme

Equipping (1) with initial and homogeneous Dirichlet boundary conditions and dis-
cretizing (1) in time by the �-scheme, with � 2 .0; 1, leads to a sequence of
stationary boundary value problems: Find fukgN

kD1 such that

˛kuk C �b.tk/ � ruk � �r � .a.tk/ruk/C � r.uk/ D Qf k in ˝ ; (2)

with Qf k D ˛kuk�1 C �f .tk/C .1 � �/f .tk�1/ � .1 � �/b.tk�1/ � ruk�1 C .1 �
�/r � .a.tk�1/ruk�1/ � .1 � �/r.uk�1/, ˛k D 1=.tk � tk�1/ and uk D 0 on @˝ ,
u0 D u.t0/.

In the sequel, we suppose that the solution u of (1) is non-negative and bounded
from above, i.e., 0 DW u0 � u � u1 almost everywhere in ˝ � .0; T /, which
is admissible from the sake of physical realism, for instance, if u denotes the
concentration of a chemical species. We make the assumption that

r 2 C 1.RC
0 / ; r.0/ D 0 ; r 0.s/ 	 r0 	 0 for s 	 0 ; s 2 R : (3)

To calculate approximations of fukgN
kD1, a standard hp-version of the finite ele-

ment method is assumed; cf. [1, 4, 7]. For a family of admissible and shape-regular
triangulations Th D fT g of the polyhedral domain˝ � Rd let

V
p

h
D X

p

h
\H 1

0 .˝/ with X
p

h
D fv 2 C.˝/ j vjT ı FT 2 PpT

.bT / 8T 2 Thg

denote the underlying finite element space of piecewise polynomials of local order
pT for all T 2 Th. Here, bT is the (open) unit simplex or the (open) unit hypercube
in Rd and Pn.bT /, with n 	 1, is the set of all polynomials of degree at most n onbT .
We assume that each T 2 Th is a smooth bijective image of bT , i.e., T D FT .bT /.
The vector p is defined by p D fpT j T 2 Thg. In our analysis the local inverse
inequalities

krwhkL2.T / � �invp
2
T h

�1
T kwkL2.T / 8wh 2 Xp

h
on T 2 Th (4)

are applied. Here, �inv depends on the shape-regularity parameter; cf. [7].
Skipping for brevity the indices in (2), the SUPG-stabilized approximation of (2)

is: Find uh 2 V p

h
such that

As.uh; vh/ D Ls.vh/ (5)
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for all vh 2 V p

h
, where

As.u; v/ D Alin.u; v/C �hbr.u/; vi C
X
T2Th

ıT hbLu; b � rviL2.T / ; (6)

Ls.v/ D h Qf ; vi C
X
T2Th

ıT h Qf ; b � rviL2.T / ; (7)

Alin.u; v/ D ˛hu; vi C �hb � ru; vi C �haru;rvi ; (8)

bLu D bLlinu C �br.u/ ; bLlinujT D ˛u C �b � ru � �r �˘T .aru/ : (9)

If in addition shock-capturing is applied, we get: Find uh 2 V p

h
such that

As.uh; vh/C Asc.uhI uh; vh/ D Ls.vh/ (10)

for all vh 2 V p

h
, where

Asc.wI u; v/ WD
X
T2Th

h�T .w/Dscru;rvi : (11)

Together, the last terms on the right-hand sides of (6) and (7), respectively, repre-
sent the SUPG-stabilization. The choice of the stabilization parameter ıT is given in
Remark 2 below. In (8) we changed r.�/ tobr.�/wherebr.u/ D r.u0/Cr 0.u0/.u�u0/
for u � u0,br.u/ D r.u/ for u0 � u � u1 andbr.u/ D r.u1/ C r 0.u1/.u � u1/
for u 	 u1. This modification is necessary to prove an error estimates when r 0
grows with juj. It is probably not necessary in practical computations but easy to
incorporate if desired. It holds that

jbr.u/�br.v/j � Lr ju � vj 8u; v 2 R ; (12)

with some constant Lr > 0. In (9), the mapping˘T W L2.˝/ 7! .PpT
.T //d is the

(elementwise) orthogonal projection onto .PpT
.T //d . In (11), we use an anisotropic

variant of shock-capturing (cf. [2]):

Dsc WD
8<
:

I � b ˝ b
jbj2 ; b ¤ 0

0 ; b D 0

; �T .w/ WD lT .w/R�
T .w/ 
 lT .w/RT .w/

jwjH1.T / C �
;

RT .w/ WD kbLw � f kL2.T / ; lT .w/ WD l0hT max

�
0; ˇ � 2kakL1.T /

hTR
�
T .w/

�
:

(13)

The non-negative limiter function �T .w/ aims to restrict the effect of shock-

capturing to subregions where the residualbLw�f is too large. The term
hTR

�

T
.w/

2kakL1.T /
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can be seen as a pseudo mesh Peclet number. The choice of l0; � and ˇ is given in
Sect. 3. We note that �T .uh/ depends nonlinearly on uh. Since r.�/ is assumed to be
nonlinear, the shock-capturing term (11) does not change the type of the discrete
problem. This is in contrast to linear convection-diffusion-reaction models that
become nonlinear by adding (11).

For the limiter function �T .�/ we suppose that

0 � �T .w/ � MT .hT / with lim
h!0

MT .h/ D 0 (14)

holds for w 2 V
p

h
and all T 2 Th. The shock-capturing approach discussed here is

covered by the class of methods satisfying (14); cf. [5, Example 3.2].
The existence and stability of a discrete solution uh 2 V p

h
of (10) is ensured. To

show this, the following norm is introduced:

jjjvjjj WD
0
@X
T2Th

�
kp
arvk2

L2.T /
C .˛ C r0/kvk2

L2.T /
C ıT kb � rvk2

L2.T /

	1A
1=2

:

Moreover, the following auxiliary estimates are needed.

Lemma 1. Suppose that assumption (3) and the condition

0 � ıT � 1

4
min

�
h2T

p4T�
2
invkakL1.˝/

I 1
˛

I ˛ C r0

L2r

�
(15)

are satisfied. Then, the semilinear form As in (6) satisfies

As.vh; vh/ 	 1

4
jjjvhjjj2 8vh 2 V p

h
: (16)

For u 2 H 1
0 .˝/ with .r � .aru//jT 2 L2.T / and vh 2 V p

h
it holds that

Alin.u; vh/C
X
T2Th

ıT hbLlinu; b � rvhi � Qs.u/jjjvhjjj ;

Qs.u/ WD jjjujjjC
0
@X
T2Th

min

�
1

ıT
I kbkL1.T /

˛T

�
kuk2

L2.T /
:

C
X
T2Th

�
ıT k � r � .˘T .aru/C ˛uk2

L2.T /

	1A
1=2

;

(17)

where ˛T WD infx2T a.x/.

The proof of Lemma 1 is given in [1, Lemma 2.1].
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Theorem 1. Let (3), (14) and (15) be satisfied. Suppose that the limiter function
�.w/ is continuous with respect to w. Then, the SUPG scheme with shock-capturing
stabilization (10) admits a solution uh 2 V p

h
satisfying

jjjuhjjj2 C
X
T2Th




p�T .uh/D1=2
sc ruh




2
L2.T /

� C jjj Qf jjj2� (18)

with the dual norm jjj Qf jjj� WD supvh2V p

h
nf0g L.vh/=jjjvhjjj.

Proof. To prove Theorem 1 we use a variant of Brouwer’s fixed point theorem; cf.
[9, II Lemma 1.4]. For this, let V p

h
be equipped with the inner product Œuh; vh D

hruh;rvhi. Let P W V p

h
7! V

p

h
be defined by

ŒP.uh/; vh D hrP.uh/;rvhi D Asc.uhI uh; vh/C As.uh; vh/� Ls.vh/ :

First, we note that

ŒP.uh/� P.vh/; P.uh/ � P.vh/ D kr.P.uh/� P.vh//k2L2.˝/

D Asc.uhI uh � vh; P.uh/� P.vh//

C
X
T2Th

.h�T .uh/ � �T .vh//Dscrvh;r.P.uh/ � P.vh///iT

CAlin.uh � vh; P.uh/� P.vh//C hbr.uh/�br.vh/; P.uh/� P.vh/i

C
X
T2Th

ıT hbLlin.uh � vh/; b � r.P.uh/� P.vh//iT

C
X
T2Th

ıT hbr.uh/ �br.vh/; b � r.P.uh/ � P.vh//iT :

Under the hypotheses of Theorem 1, using Lemma 1 and the Poincaré inequality we
get from this identity that

ŒP.uh/ � P.vh/; P.uh/� P.vh/ D kr.P.uh/ � P.vh//k2L2.˝/

� max
T2Th

fMT .hT /gCDsckr.uh � vh/k2L2.˝/
kr.P.uh/� P.vh//kL2.˝/

CCDsckvhkW 1;1.˝/k�.uh/ � �.vh/kL2.˝/kr.P.uh/� P.vh//kL2.˝/

C.Qs.uh � vh/C Lr jjjuh � vhjjj/jjjP.uh/� P.vh/jjj
CLrkuh � vhkL2.˝/kr.P.uh/ � P.vh//kL2.˝/ :

Recalling (14), using the Poincaré inequality and (4) we get that
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kr.P.uh/ � P.vh//kL2.˝/ � C.k�.uh/� �.vh/kL2.˝/ C kr.uh � vh/kL2.˝// ;

which proves the continuity of P , since �.�/ is assumed to be continuous.
Further, by Lemma 1 and the inequality of Cauchy-Young we get that

ŒP.vh/; vh D Asc.vhI vh; vh/C As.vh; vh/ �Ls.vh/
	 Asc.vhI vh; vh/C 1

4
jjjvhjjj2 � jjjf jjj�jjjvhjjj 	 1

8
jjjvhjjj2 � 2jjjf jjj2� :

(19)
From (19) we conclude that ŒP.vh/; vh > 0 for all vh 2 V

p

h
with krvhkL2.˝/ >

4a
�1=2
0 jjjf jjj�. Brouwer’s fixed point theorem (cf. [9, II Lemma 1.4]) now yields

the existence of at least one solution uh 2 V p

h
of P.uh/ D 0 and, therefore, of (10).

Estimate (18) follows from (19), using that P.uh/ D 0.

Remark 1. A (local) uniqueness result for the shock-capturing method is still open.
The application of Banach’s fixed point theorem would require Lipschitz continuity
of the parameters �T .�/. But such condition is seemingly too restrictive in practice.
Another possibility is to apply a uniqueness result for the Brouwer fixed point theo-
rem which could be proved similarly as a corresponding result for the Schauder fixed
point theorem; cf. [5] and the references therein. Unfortunately, the assumptions on
�T .�/ are too severe.

Remark 2. In [1] the quasi-optimal error estimate

jju � uhjjj2 � C
X
T2Th

h
2.lT �1/
T

p
2.kT �1/
T

kuk2
HkT .T /

; C > 0 ;

with lT D minfpT C 1; kT g is proved for the SUPG-stabilized finite element
approximation of (2) with and without additional shock-capturing stabilization. It
is supposed that the parameter ıT in (6), (7) is chosen of the order of magnitude

ıT � min

�
hT

pT kbkL1.T /

I h2T

p4T�
2
invkakL1.˝/

I 1

˛ C r0
I ˛ C r0

L2r

�
. Thus, the addi-

tional diffusion term (11) does not perturb the asymptotic convergence behaviour.
Our numerical studies will show that shock-capturing stabilization reduces at the
same time spurious oscillations in crosswind direction.

3 Numerical Studies

Now we study the numerical performance properties of the schemes. We show that
higher order finite element methods combined with SUPG and shock-capturing sta-
bilization are able to resolve interior layers and lead to accurate approximations of
solutions of problem (1). For the discretization in time we use the Crank-Nicholson
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method corresponding to � D 1=2 in (2). All computations were done with the
Toolbox ALBERTA [6] on triangular meshes.

Example 3.1. Our first numerical study is devoted to the quasi-stationary case. It
is a stationary nonlinear variant of the second example in [3, Sect. 7]. We consider
(2) for fixed k and � D 1 on˝D .0; 1/2 with ˛D 1:0, aD 10�6 and b.x/D .2; 3/>.

The reaction mechanism is governed by an Arrhenius law r.u/D kAre
bAr .u�1/

1CaAr .u�1/

with kAr D 50, bAr D 10 and aAr D 0:8. Studies for polynomial reaction rates are
given in [1,8]. The source Qf is chosen in such a way that u.x/D 16x1.1�x1/x2.1�
x2/ � �0:5C 	�1 arctan

�
2a�1=2.0:252 � .x1 � 0:5/2 � .x2 � 0:5/2/� is the exact

solution. It is characterized by an interior layer of thickness O.
p
a/. We study

solutions of (5) and (10). In (13), we put l0 D 0:2, � D 10�4, ˇ D 0:7.
In Table 1 we summarize the calculated errors for different Pp-elements for p 2

f2; 4g. Although the SUPG-scheme shows a slightly smaller error, we observe that
the errors of the either schemes are of the same order of magnitude, as claimed in
Remark 2. The larger errors of the shock-capturing approach are due to its additional
artificial crosswind-diffusion that however reduces spurious oscillations. In Table 1
we do not observe the optimal uniform convergence rates since u depends on the
diffusion parameter a. In such cases optimal convergence rates are observed for
very small step sizes only.

To study the effects of additional crosswind-diffusion more precisely, cross-
section plots of the solution at the outflow boundary without and with shock-
capturing stabilization are presented in Fig. 1. Significant over- and undershoots of
the SUPG-solution without shock-capturing in the neighborhood of the layer are

Table 1 Mesh size, number of degrees of freedom, errors in jjj � jjj and convergence rates for
the SUPG-scheme without (SUPG) and with (SC-CD) shock-capturing/crosswind diffusion and
h-refinement for Example 3.1

h d.o.f. p D 2; jjj � jjj d.o.f. p D 4; jjj � jjj
SUPG SC-CD SUPG SC-CD

8.839e-2 545 3.721e-2 – 3.726e-2 – 2113 2.444 – 2.453 –
4.419e-2 2113 2.456e-2 0.60 2.459e-2 0.60 8321 1.507 0.70 1.512 0.70
2.210e-2 8321 1.466e-2 0.74 1.468e-2 0.74 33025 6.475e-1 1.22 6.485e-1 1.22
1.105e-2 33025 6.469e-3 1.18 6.475e-3 1.18 131585 3.351e-1 0.95 3.350e-1 0.95
5.524e-3 131585 2.501e-3 1.37 2.504e-3 1.37 525313 1.346e-1 1.32 1.346e-1 1.32

Fig. 1 Cross-section plot for the SUPG-scheme without shock-capturing/crosswind diffusion
(p D 1, p D 4) and with shock-capturing/crosswind diffusion (p D 1, p D 3) for Example 3.1
with h D 2:21e-2; from left to right
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observed. This also holds for higher order finite element methods. The unphysi-
cal oscillations are clearly damped by higher order finite element approximations
along with SUPG and shock-capturing stabilization. No significant improvement
is obtained by shock-capturing stabilization if linear finite element methods are
applied. This was also observed in [3]. We note that the strong gradient of the SUPG
solution in the layer is preserved by the shock-capturing technique. This underlines
its proper construction.

Example 3.2. Now we study the performance properties of the schemes for
the nonstationary counterpart of Example 3.1; cf. [3, Sec. 7]. We consider (1) on
˝ D .0; 1/2. We put a D 10�6, b.x/ D .2; 3/> and r.u/ D u2. The given solution
with corresponding right-hand side f is u.x; t/ D 16 sin.	t/x1.1�x1/x2.1�x2/ �h
0:5 C 	�1 arctan

�
2a� 1

2 .0:252 � .x1 � 0:5/2� .x2 � 0:5/2/
	i

. Now the hump

changes its height in time. We use the time step size �t D 10�3. The final time
is T D 1:0. The finite element mesh size is h D 5:52e-3. In Table 2 we present
kehkL1.L2/ WD kehkL1.0;T IL2.˝//, eh WD u � uh, and var.t/ WD max.x;y/2˝
uh.x1; x2; t/ � min.x;y/2˝ uh.x1; x2; t/, where the maximum and minimum were
computed in the degrees of freedom of the mesh cells. The numbers kehkL1.L2/

give some indication of the accuracy of the methods whereas var.t/ measures the
size of the spurious oscillations. Here we use the variation of the discrete solution at
t D 0:5 (maximal height of the hump). The value for u is var.0:5/ D 0:997453575.
In Fig. 2 we further visualize the computed profiles of the solution for t D 0:5.

Similarly to the stationary case, a positive impact on the accuracy is obtained by
using higher order finite element methods together with SUPG and shock-capturing
stabilization. Oscillations close to the layer are completely eliminated. The profiles
of the numerical solutions show oscillations behind the hump in the direction of
convection. They are damped by higher order approaches. If fourth order finite ele-
ments are used, they vanish almost completely. In [3], all schemes show significant
oscillations behind the hump.

Table 2 Results with SUPG
and shock-capturing
stabilization for Example 3.2

p kehkL1.L2/ var.0:5/ p kehkL1.L2/ var.0:5/

1 2.8090e-2 1.2088 3 6.3204e-3 1.0319
2 1.3973e-2 1.1019 4 4.5312e-3 1.0203

Fig. 2 Profile of the computed solution at t D 0:5 without (p D 1, p D 4) and with shock-
capturing stabilization (p D 1, p D 4) for Example 3.2 with h D 5:52e-3; from left to right
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Numerical Approximation
of Convection-Diffusion Problems Through
the PSI Method and Characteristics Method

M. Benítez García, T. Chacón Rebollo, M. Gómez Mármol,
and G. Narbona-Reina

Abstract In this work we present some numerical methods for solving evolutive
convection-diffusion problems. In order to obtain a physically admissible solution
we search for monotone and accurate methods that are also non-linear due to the
Godunov’s theorem. We will center in Fluctuation Splitting methods, [8], in par-
ticular in PSI scheme, and characteristic type methods, where a new Lagrangian
method is proposed. Finally, a numerical test is presented to assess the performance
of the numerical methods described in the present work.

Keywords Convection-diffusion equation � Characteristics method � Fluctuation
splitting schemes � Galerkin discretization

1 Introduction

In this work we consider the following evolutive convection-diffusion problem:8̂̂
<̂
ˆ̂̂:

@�

@t
C v � grad� � ��� D f in ˝ � .0; T /;

� D 0 on 
 � .0; T /;
�.x; 0/ D �0.x/ in ˝;
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where ˝ is a bounded domain of Rd , d 	 2, with boundary 
 and T > 0. Also,
v W ˝ � .0; T / �! Rd is the convection vector field, f W ˝ � .0; T / �! R is the
source term, �0 W ˝ �! R is the initial data and � > 0 is the diffusion coefficient.
For simplicity we assume the transporting fluid to satisfy the no-slip condition so
equivalently, we consider that the velocity field vanishes on the boundary.

Linear convection-diffusion equations model a variety of important problems
from different fields of engineering and applied sciences. In many cases the dif-
fusive term is much smaller than the convective one, giving rise to the so-called
convection dominated problems. For convection-diffusion problems with dominant
convection, methods of characteristics and the Fluctuation Splitting (FS) methods,
for convective term discretization, are extensively used (see [6, 8, 11]).

Characteristics methods are based on time discretization of the material time
derivative. For space discretization, they has been combined with finite differences
[9], finite elements [4, 5, 10, 11], spectral finite elements [1], discontinuous finite
elements [2], and so on. When combined with finite elements they are also called
Lagrange-Galerkin methods. In particular, when the characteristic methods are for-
mulated in Lagrangian coordinates (respectively, Eulerian coordinates) they are
called Lagrangian methods (respectively, semi-Lagrangian methods). In the present
work we will consider the combination of Lagrangian and semi-Lagrangian methods
with a spatial discretization by using finite elements spaces.

One of the most successful nonlinear Fluctuation Splitting schemes is the PSI
method, introduced in [8]. The PSI method is specifically designed to be exact for
linear solutions of the pure transport equation. It is monotone and is particularly
accurate in zones of strong gradients or discontinuities of the solution. In the present
case, to approximate the equation in (1) we discretize the convection operator by
the PSI scheme, the time derivative by a Crank-Nicolson scheme and the diffusion
operator by the standard Galerkin method, using linear finite elements. In order to
perform the theoretical analysis, the PSI method is formulated as a nonlinear finite
element Petrov-Galerkin (see [6]), so the usual techniques are used to develop the
existence, convergence and error estimates theory.

After the present section we introduce the PSI method applied to problem (1). In
Sect. 3 a second order full Lagrangian characteristic method is proposed. Finally, to
test the proposed methods, a numerical example is presented in Sect. 4 which has a
solution developing a steep layer and a velocity field which is not divergence-free.

2 The PSI Method

The PSI method is one of the most advantageous FS schemes. Their main design
idea is to split the element convective residual RT D R

T
v � grad� between the

nodes of the element that are downstream according to the velocity v. This distri-
bution is made through coefficients ˇTi such that ˇTi R

T is the residual contribution
of the element T to the node xi . For consistency these coefficients must satisfy:
0 � ˇTi � 1 and

P
i ˇ

T
i D 1. The way in which these constants are defined is
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what distinguishes the different FS schemes. For the particular PSI method these
coefficients are determined in order to exactly solve the stationary pure transport
equation.

We assume ˝ to be a polygonal or polyhedral domain and consider a trian-
gulation Th of ˝ by triangles in 2D and tetrahedra in 3D. We define the finite-
dimensional space of piecewise affine finite elements built on Th:

V 1h D ˚
'h 2 C 0.˝/ W 'hjT 2 P1 .T / , 8T 2 Th; vh D 0 on 


�
:

We use the PSI method just to discretize the convective part. For this aim the
test functions corresponding to this term are taken from a new space of piecewise
constant functions Wh directly related to the flux distribution coefficients ˇTi . We
introduce an interpolation operator˘�h

from V 1
h

onto the spaceWh, in particular we
have ˘�h

'h D P
i 'h.xi /ˇ

T
i .�h/ (see [6] for more details). Notice that it depends

on the unknown �h due to the non-linear nature of the PSI method.
We introduce the number of time steps, N , the time step �t D T=N , and the

mesh-points, tn D n�t for n D 0; 1=2; 1; : : : ; N . Next, we define the form an
h

W
V 1
h

� V 1
h

�! R for 0 � n � N as

anh.�h;  h/ D
Z
˝

.vn � grad�h/˘�h
 h C �

Z
˝

grad�h � grad h (2)

being vjT D 1

jT j
Z
T

v dx, 8T 2 Th. Here, the time discretization scheme we are

going to consider is a Crank-Nicholson-like scheme. It arises from approximating
the time derivative at t D tnC 1

2
, for 0 � n � N � 1, by a centered formula and

using a second order interpolation formula involving values at t D tn and t D tnC1
to approximate the rest of the terms at the same time t D tnC 1

2
.

Thus, we have the following discrete variational approximation of (1)

8̂̂
ˆ̂<
ˆ̂̂̂:

Given �0
�t;h

2 V 1
h
; find 1��t;h D f�n

�t;h
gNnD1 2 �V 1

h

�N
such thatZ

˝

�nC1
�t;h

� �n
�t;h

�t
 h dx C 1

2

�
anC1
h

.�nC1
�t;h

;  h/C anh.�
n
�t;h;  h/

	

D 1

2

Z
˝

�
f nC1 C f n


 h dx; 8 h 2 V 1h ; for n D 0; : : : ; N � 1:

(3)

In practice, to eliminate the nonlinearity of convective term we use the following
approximation

Z
˝

.vnC1 � grad�nC1
�t;h

/˘
�

nC1
�t;h

 h '
Z
˝

.vnC1 � grad�nC1
�t;h

/˘�n
�t;h

 h:

Notice that due to the use of the PSI method to discretize the convective term, the
approximate problem (3) is written under a Petrov-Galerkin formulation. Is just this
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writing what allows us to develop the theoretical analysis of the discrete problem by
using the tools of functional analysis adapted to this kind of formulation.

In [6] the PSI method combined with piecewise linear finite elements is presented
and analyzed for steady convection-diffusion equations. The authors perform a con-
vergence, error and maximum principle analysis. In particular, it is proved that the
scheme is first-order accurate in H 1 norm and well-balanced up to second order for
convection-dominated flows.

3 Characteristics Method

In this section we consider a second order characteristics scheme combined with
quadratic finite elements for discretization of (1). We denote by Xe the motion
corresponding to the velocity v and P its reference map, and define the material
description �m of a spatial field � by

�m.p; t/ D �.Xe.p; t/; t/: (4)

We recall that, according to the standard formalism of continuum mechanics, x D
X.p; t/ is the position at time t of the material point p, while the reference map
P.x; t/ yields the material point located at position x at time t . We assume that
Xe.p; 0/ D p, 8p 2 ˝ . We are going to write the problem (1) in Lagrangian
coordinates p. For this, we introduce the change of variable x D Xe.p; t/ and use
the chain rule, obtaining (see [3])

8̂
ˆ̂<
ˆ̂̂:

P�m detF � � Div
h
F�1F�Tr�m detF

i
D fm detF in ˝ � .0; T /;

�m D 0 on 
 � .0; T /;
�m.p; 0/ D �0.p/ in ˝;

(5)

beingF.�; t/ the Jacobian matrix of the deformationXe.�; t/. The time discretization
scheme we are going to consider is a Crank-Nicholson-like scheme. It arises from
approximating the material time derivative at t D tnC 1

2
, for 0 � n � N � 1, by a

centered formula and using a second order interpolation formula involving values at
t D tn and t D tnC1 to approximate the rest of the terms at the same time t D tnC 1

2
.

Regarding the space discretization we use the piecewise quadratic finite ele-
ments space. We consider the finite-dimensional spaces of piecewise quadratic finite
elements built on Th:

V 2h D ˚
'h 2 C 0.˝/ W 'hjT 2 P2 .T / , 8T 2 Th; 'h D 0 on 


�
:

Thus, we have the following discrete variational approximation of (5)
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8̂
ˆ̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

Given �0
m;�t;h

2 V 2
h
; find 2�m;�t;h D f�n

m;�t;h
gNnD1 2 �V 2

h

�N
such that

1

2

Z
˝

�
detF nC1 C detF n

 �nC1
m;�t;h

� �n
m;�t;h

�t
 h

C�

4

Z
˝

.ŒF �1F �T detF nC1 C ŒF �1F�T detF n/

.r�nC1
m;�t;h

C r�n
m;�t;h

/ � r h
D
Z
˝

detF nC1f nC1
m C detF nf nm
2

 h; 8 h 2 V 2h ; for n D 0; : : : ; N � 1:

(6)
Since usually the characteristic curves cannot be exactly computed, in practice, we
replace in (6) the exact characteristic curves and gradient tensors by accurate enough
approximations. More precisely, we use a second order Runge–Kutta approximation
of Xe. Moreover, in order to obtain an approximate solution of �n in Eulerian coor-
dinates, we are going to calculate the spatial description of material field �n

m;�t;h
.

More precisely, we calculate 1��t;h � b� as follows

�n�t;h.x/ WD �nm;�t;h.P
n
RK.x// 8x 2 ˝; 0 � n � N; (7)

being P nRK the second order Runge–Kutta approximation of P n.
Thus, we shall denote this Lagrangian method by .LG/2. Furthermore, we

shall denote by .SLG/12 the semi-Lagrangian scheme analogous to .LG/2, but re-
initializing the transformation to the identity at the beginning of each time step (see
[3] for more details).

In [3] the Lagrange Galerkin method (6) with a second order Runge–Kutta
approximation of Xe is analyzed for a more general problem. A l1.L2/ stabil-
ity inequality is stated and l1.L2/ error estimates of order O.�t2/ C O.h2/ are
obtained; these estimates are uniform in the hyperbolic limit. More precisely, for�t
small enough, the following estimate is obtained:

ˇ̌̌ˇ̌̌
6�m � �m;�t;h

ˇ̌̌ˇ̌̌
l1.L2.˝//

C p
�
ˇ̌̌ˇ̌̌
1SŒr�m � r�m;�t;h

ˇ̌̌ˇ̌̌
l2.L2.˝//

� J1.�t
2 C h2/;

(8)

where bSŒ  WD f nC1C ngN�1
nD0 for a sequenceb D f gNnD0. Here, J1 is bounded

in the hyperbolic limit. In particular, this result is also valid when � D 0. Fur-
thermore, stability and error estimates of order O.�t2/C O.h2/ are proved in the
l1.H 1/-norm. More precisely, the following estimate is obtained:

ˇ̌
ˇ
ˇ̌
ˇbR�t Œ�m � �m;�t;h

ˇ̌
ˇ
ˇ̌
ˇ
l2.L2.˝//

C p
�
ˇ̌
ˇ
ˇ̌
ˇ8r�m � r�m;�t;h

ˇ̌
ˇ
ˇ̌
ˇ
l1.L2.˝//

� J2.�t
2 C h2/;

(9)
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where 2R�t Œ  WD
�
 nC1 �  n

�t

�N�1

nD0
for a sequence b D f gNnD0. Here, J2 does

not depend on �. From these estimates and by using appropriate changes of variable,
analogous estimates in Eulerian coordinates are deduced.

4 Numerical Results

We consider the following example to compare the numerical results obtained with
semi-Lagrangian, (full) Lagrangian methods and the PSI method.

The spatial domain is ˝ D .0; 1/� .0; 1/, T D 1, and v D r ; � D �1; f D 0;

being D .1�cos.2	x1//.1�cos.2	x2// and �1 D 0.001. The initial data varies
between �0.0; 0/ D 0 and �0.1; 1/ D 1 according to the following expression:

�0.x1; x2/ D
8<
:

0 if � < 0;
1
2
.1 � cos.	�// if 0 � � � 1;

1 if 1 < �;
(10)

where � D x1 C x2 � 1=2. We impose Dirichlet boundary conditions given by the
initial data. In Fig. 1 we plot the velocity field and the initial data. This example has
been solved in [7] with a semi-Lagrangian method combined with a discontinuous
Galerkin discretization, and also with a standard Galerkin scheme. The Gibbs phe-
nomena is observed for both methods. The oscillations produced by the standard
Galerkin scheme are observed even far from the transition layer.

Here we solve this problem with the Lagrangian method .LG/2, the semi-
Lagrangian scheme .SLG/12 and with the PSI scheme given by (3).

In Figs. 2, 3 and 4 we represent the numerical solution contours at final time
T D 1 and the section x1 �! �N

�t;h
.x1; 1=2/, computed by using the .SLG/12,

.LG/2 and PSI methods, respectively. The semi-Lagrangian method presents

Fig. 1 Velocity field (left) and initial date (right)
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Fig. 2 Numerical solution contours at T D 1 (left) and the section x1 �! �N�t;h.x1; 1=2/ (right)
for the .SLG/12 scheme, h D 1=16, �t D 1=60

Fig. 3 Numerical solution contours at T D 1 (left) and the section x1 �! �N�t;h.x1; 1=2/ (right)
for the .LG/2 scheme, h D 1=16, �t D 1=60

Fig. 4 Numerical solution contours at T D 1 (left) and the section x1 �! �N�t;h.x1; 1=2/ (right)
for the .PSI/ scheme, h D 1=32, �t D 1=60
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oscillations near the transition layer, so Gibbs phenomena is observed, while the
Lagrangian method and the PSI scheme are accurate even in the steep layer around
the diagonal. These features can be observed on the plots of the sections.

So we can conclude that for obtaining a physically acceptable solution, both
.LG/2 and PSI can be used. In order to compare them, we can say that although
.LG/2 is less diffusive than PSI, it is also computationally more expensive (see [3]).
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On Novel Properties of Multimode Boundary
Conditions in Electromagnetism
and Their Consequences

J.M.L. Bernard

1 Introduction

In electromagnetism, a surface composed of a homogeneous planar substrate on a
perfectly reflecting plane can be modelled by boundary layer method as a plane
which satisfies surface boundary conditions with high order normal derivatives of
the field (Fig. 1):

NY
jD1

.
@

@z
� ikgj /utot jzD0 D 0 (1)

where u is some components of the fields.
It can be shown that, in case of a metamaterial substrate having both a permit-

tivity and a permeability with negative real parts, the roots of the characteristic
equation have exceptional positions in the complex plane, which implies particular
properties of the field for point source (dipole) illumination. The roots gi D sin �i
for left-handed multilayer metamaterials with � and � of negative real parts can be
in the domain Reg < 0 with Re.ik cos �i / < 0, which implies we go through the
branch-cut of the solution as we come from the common case where � and � are
with positive real parts. Thus, new general expressions are necessary (Fig. 2).

When �i 2 ˝
'
g , we notice for example the presence of some particular waves

with a eikR sin.�i C'/ term in the expression of the field that we don’t encounter for �
and � positive (for common material only leaky waves with eikR sin.�i �'/ for large
R are present). New exact closed form expressions of the field derived in [1], which
permit to exhibit these properties, are now presented.
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Fig. 1 geometry for the
radiation at M of a point
source at z D h

R(z)

R( –z)

M(x,y,z)

(x ,y ,+h)

j

(x ,y , –h)

Imb Imq1

Re(ikcosq1) = 0

ik(1 + sin(q1 –j)) ≤ 0 

–π/2 0

0

D

S

–π/2

π/2

Req1

Reb

     ≡         =0

π/2–π/2 + j

jW
jWW

g
g g

Fig. 2 definition of branch-cut Re.ik cos �i /

2 Formulation of the Problem

The problem can be reduced for a large class of multimode boundary conditions.
Following R.F. Harrington [2] in 1961 (see also Jones [3] in 1964), we can write
the electric fieldE and the magnetic fieldH satisfying the Maxwell equations, with
two scalar potentials E and H, following

E D �ikrot.Hbz/C .grad.div.://C k2/.Ebz/r
�0

�0
H D ikrot.Ebz/C .grad.div.://C k2/.Hbz/ (2)

where .�Ck2/E D 0 and .�Ck2/H D 0 outside the sources, with k D !
p
�0�0,

the constants �0 and �0 being respectively the permittivity and the permeability of
the medium above the plane.
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Thereafter, we denote .Einc;Hinc/ and .Es ,Hs/ the potentials corresponding to the

incident field and the scattered field, and write .E ,
q
�0

	0
H/.z/ D L.bzE ,bzH/.z/. We

then consider the class of multimode boundary conditions on an isotropic plane,

NY
jD1

.
@

@z
� ikgej /Ez;tot jzD0 D 0;

PY
jD1

.
@

@z
� ikghj /Hz;tot jzD0 D 0; (3)

which corresponds to the reflection coefficients for the principal polarizations TM
(components of electric field E in the plane of incidence) and TE (components of
magnetic field H in the plane of incidence), given by,

RTM .'/ D
NY
jD1

cos' � gej
cos' C gej

; RTE .'/ D
PY
jD1

cos' � ghj

cos' C ghj
; (4)

where ' is the angle of observation with the normalbz. This class of problem corre-
sponds to the reflection by a substrate with different layers composed of isotropic
media, or more generally, of uniaxial anisotropic media with principal axis along z.
From the symmetry at normal incidence, we notice that the condition

RTE .0/ D �RTM .0/ i.e.
NY
jD1

1 � gej
1C gej

D �
PY
jD1

1 � ghj

1C ghj
; (5)

is satisfied, which implies, for monomode conditions (N D P D 1), that g.e;h/1 D
1=g

.h;e/
1 .

Following the boundary conditions on the field, we can then choose to search the
two scalar potentials Es and Hs , satisfying the Helmholtz equation as z > 0, regular
and vanishing as z ! 1 when j arg.ik/j < 	=2, which satisfy

NY
iD1
.
@

@z
� ikgej /Es.z/ D

NY
jD1

.
@

@z
C ikgej /Einc.�z/

PY
jD1

.
@

@z
� ikghj /Hs.z/ D

PY
jD1

.
@

@z
C ikghj /Hinc.�z/ (6)

A compact expression of Einc and Hinc, first necessary, is presented.

3 An Expression of Potentials .Es, Hs/ for Arbitrary Source

3.1 The Determination of .E inc, Hinc/

Let us consider the incident field .E;H/ at r of coordinates .x; y; z/, radiated by
arbitrary bounded sources J and M [3],
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E D rot.G �M/C i

!�0
.grad.div.://C k2/.G � J /

r
�0

�0
H D �

r
�0

�0
rot.G � J /C i

k
.grad.div.://C k2/.G �M/ (7)

where G D � e�ik
p

�2
Cz2

4

p
�2Cz2

with � D p
x2 C y2, and � is the convolution prod-

uct. and we search the scalar potentials Einc and Hinc, satisfying the Helmholtz
equation as ˙z > 0 and vanishing at infinity when j arg.ik/j < 	=2 as ˙z ! 1.

After some particular calculation given in [1], we derive an original expression
of .Einc,Hinc/.

Proposition 1. A definite expression of the potentials Einc and Hinc in the region
˙z > 0, for the field radiated by arbitrary bounded sources J andM in the domain
�z > 0, j arg.ik/j � 	=2 is given by

.Einc;Hinc/ D bz
8	k2

.

r
�0

�0
.grad.div.J //C k2J; ik rot.J //C

C .�ik rot.M/; grad.div.M//C k2M// � W; (8)

where

W.r/ D .eikjzjE1.ik.jr jCjzj//C e�ikjzj.E1.ik.jr j�jzj//C 2 ln�// (9)

with jr j D p
�2 C z2, � D p

x2 C y2 at r.x; y; z/, E1 being the exponetial
integral [4].

3.2 Expression of the Potentials .Es, Hs/ for a Multimode Plane

We have obtained an expression for the potentials .Einc;Hinc/ attached to the radi-
ation of arbitrary sources, and we can now present the scalar potentials Es and Hs

given in [1]

Proposition 2. The potentials Es.r/ and Hs.r/ at r.x; y; z/, for arbitrary bounded
sources J and M above the multimode plane, j arg.ik/j � 	=2, verify as z 	 0,

Es.z/ D Einc.�z/ C ..
bz
!�0

grad.div.J //C k2J

8	k
C bz
k

.�ik rot.M//

8	k
/ �

�
X

	D�1;1

NX
jD1

aej

.gej � �/ .V	 C �Kge
j
//.�z/



On Novel Properties of Multimode Boundary Conditions 33

D Einc.�z/ C ..
bz
!�0

grad.div.J //C k2J

8	k
C bz
k

.�ik rot.M//

8	k
/ �

�
X

	D�1;1
..

NY
jD1

� C gej

� � gej
� 1/V	 C

NX
jD1

�aejKge
j

.gej � �/
//.�z/ (10)

and

Hs.z/ D Hinc.�z/C ..
bz
!�0

.ik rot.J //

8	k
C bz
k

.grad.div.M//C k2M/

8	k
/�

�
X

	D�1;1

PX
jD1

ahj

.ghj � �/
.V	 C �Kgh

j
//.�z/

D �Hinc.�z/C ..
bz
!�0

.ik rot.J //

8	k
C bz
k

.grad.div.M//C k2M/

8	k
/�

�
X

	D�1;1
..

PY
jD1

� C ghj

� � ghj
C 1/V	 C

PX
jD1

�ahjKgh
j

.ghj � �/ //.�z/ (11)

where V	, Kg and the ae;hj satisfy

V	.z/ D e�	ikz.E1.ik.jr j��z//C .1 � �/ ln �/; Kg.z/ D e�ikgzJg.z/
N;PY
jD1

cosˇ � ge;hj
cosˇ C g

e;h
j

D 1C
N;PX
jD1

a
e;h
j

1

cosˇ C g
e;h
j

;
a
e;h
j

2g
e;h
j

D �
N;PY
i¤j

g
e;h
j C g

e;h
i

g
e;h
j � g

e;h
i

with
NY
jD1

� C gej

� � gej
D �

PY
jD1

� C ghj

� � ghj
(12)

This is a very compact form for arbitrary J andM (sources above the plane), where
the special functions to calculate are only J

g
e;h
j

and @�Jge;h
j

in complex plane.

4 A Correct Definition of the Expression of Jg for Arbitrary g

in Complex Plane, and Numerical Results

Proposition 3. A correct definition of Jg for arbitrary g D sin �1 derived in [1] is
given by

Jg.�;�z/ D �
Z 1

�ib
e�a cosh tdt D i

Z i1

b

e�a cos˛d˛ (13)
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Fig. 3 Diagram of Ig D eikgzJg.� D R sin';�z D �R cos'/ for kR D 1

where a D �ikR.�z/ sin ' cos �1, � D sign.Re.ik cos �1// (Re.a/ D 0 being
considered as a limit case), b satisfies

e�ib D c˙ D ikR.�z/

a
.1˙ sin �1/.1˙ cos'/; (14)

and � D R.�z/ sin'; z D R.�z/ cos'. Different novel expansions, taking account
of the cut in complex plane are given in [1].

We then give the absolute value of J as ' varies for kR D 1 (Fig. 3) and kR D 3

(Fig. 4), for different choices of g with Reg D �:3 and Img varying from �:5 to
C:5:, as we go through the cut. We notice the particular change of behaviour when
we go through the branch cut of Jg ; Re.ik cos �i / D 0 with g D sin �i , in the
region Reg < 0.

5 Conclusion

The high order impedance boundary conditions on metamaterials with negative per-
mittivity � and permeability � imply exceptional new behaviour as we go through
the branch cut in the expression of the field. New exact closed form expres-
sions of the scattered potentials for arbitrary bounded sources J and M above
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Fig. 4 Diagram of Ig D eikgzJg.� D R sin';�z D �R cos '/ for kR D 3, where dashed line
with diamond an impedance mode g D �0:3 � 0:5i (below the cut), dashed line with cross an
impedance mode g D �0:3 � 0:1i (below the cut), dashed line with square an impedance mode
g D �0:3 C 0:1i (above the cut), dashed line with circle an impedance mode g D �0:3 C 0:5i

(above the cut)

the imperfectly conducting plane are presented. Numerical results show the rapid
change of behaviour as we cross the branch-cut of the solution.
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Uniform Quadratic Convergence of Monotone
Iterates for Semilinear Singularly Perturbed
Elliptic Problems

Igor Boglaev

1 Introduction

In this paper we give a numerical treatment for a semilinear singularly perturbed
elliptic problem. Let ! be a bounded connected domain in R� , � 	 1, with a
boundary @!. Consider the elliptic problem

� �2
�X
D1

@2U

@x2
C f .x; U / D 0; x 2 !; U.x/ D g.x/; x 2 @!; (1)

where � is a small positive parameter, the functions f and g are smooth in their
respective domains, and f satisfies the constraint

fu 	 c� D const > 0; .x; U / 2 ! � .�1;1/: (2)

For �  1, the problem is singularly perturbed and characterized by boundary
layers (regions with rapid change of solutions) near the boundary @!.

In the study of numerical methods for nonlinear singularly perturbed problems,
the two major points to be developed are: (a) constructing robust difference schemes
(this means that unlike classical schemes, the error does not increase to infinity, but
rather remains bounded, as the small parameter approaches zero); (b) obtaining reli-
able and efficient computing algorithms for solving nonlinear discrete problems.
For solving these nonlinear discrete systems, the iterative approach presented in
this paper is based on the method of upper and lower solutions and associated
monotone iterates. By using upper and lower solutions as two initial iterations,
one can construct two monotone sequences which converge monotonically from
above and below, respectively, to a solution of the problem. Since the initial itera-
tion in the monotone iterative method is either an upper or lower solution, which can
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be constructed directly from the difference equation without any knowledge of the
exact solution, this method simplifies the search for the initial iteration as is often
required in Newton’s method.

In [2], we investigate uniform convergence properties of the monotone itera-
tive method from [1] applied to solving the semilinear problem (1). This monotone
method possesses linear convergence rate. In this paper, we extend the accelerated
monotone iterative method from [4] to the case when an ordered pair of upper and
lower solutions is calculated inside the accelerated monotone iterative method, and
investigate uniform convergence properties of the modified accelerated monotone
iterative method.

The structure of the paper as follows. In Sect. 2, we introduce a nonlinear dif-
ference scheme for the numerical solution of (1). The monotone iterative method
is presented in Sect. 3. Section 4 deals with quadratic convergence of the monotone
iterates. An analysis of uniform convergence of the monotone iterates to the solu-
tion of the nonlinear difference scheme is given in Sect. 5. In Sect. 6, we investigate
uniform convergence of the monotone iterates method to the exact solution of (1).
The final Sect. 7 presents results of numerical experiments where iteration counts
are compared with the monotone iterative method from [2], which converges with
linear rate.

2 A Nonlinear Difference Scheme

On !, we introduce a computational mesh !h, and for a mesh function u.p/,
p 2 !h, consider the nonlinear difference scheme in the canonical form [5]

Lu.p/C f .p; u/ D 0; p 2 !h; u.p/ D g.p/; p 2 @!h; (3)

Lu.p/ D d.p/u.p/�
X

p
0 2� 0

.p/

e.p; p
0

/u.p
0

/;

where �
0

.p/ D �.p/n fpg, �.p/ is a stencil of the scheme at an interior mesh point
p 2 !h and @!h is the boundary of !h. We make the following assumptions on the
coefficients of the difference operator L:

d.p/ > 0; e.p; p
0

/ > 0; d.p/�
X

p
0 2� 0

.p/

e.p; p
0

/ 	 0; p 2 !h: (4)

We introduce the linear version of problem (3)

.L C c/w.p/ D f0.p/; p 2 !h; (5)

w.p/ D g.p/; p 2 @!h; c.p/ 	 0; p 2 !h:
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We now formulate the maximum principle for the difference operator L C c and
give an estimate of the solution to (5).

Lemma 1. Let the coefficients of the difference operator L from (5) satisfy (4) and
the mesh !h be connected.

(i) If a mesh function w.p/ satisfies the conditions

.L C c/w.p/ 	 0 .� 0/; p 2 !h; w.p/ 	 0 .� 0/; p 2 @!h;
then w.p/ 	 0 .� 0/, p 2 !h.

(ii) If c.p/ 	 c�, then the following estimate of the solution to (5) holds true

kwk!h � max Œkgk@!h ; kf0=ck!h  ; (6)

where kgk@!h 
 maxp2@!h jg.p/j, kf0k!h 
 maxp2!h jf0.p/j.
The proof of the lemma can be found in [5].

3 Monotone Iterative Method

We say that u1.p/ is an upper solution if it satisfies

Lu1.p/C f .p; u1/ 	 0; p 2 !h; u1.p/ 	 g.p/; p 2 @!h:
Similarly, u�1.p/ is a lower solution if it satisfies the reversed inequalities.

Initial upper and lower solutions u.0/˛ .p/ (˛ D 1 and ˛ D �1 correspond
to, respectively, the upper and lower cases) are calculated by solving the linear
problems

.L C c�/z.0/˛ .p/ D ˛jR.p; s/j; p 2 !h; z.0/˛ .p/ D 0; p 2 @!h; (7)

R.p; s/ 
 Ls.p/C f .p; s/; u.0/˛ .p/ D s.p/C z.0/˛ ; p 2 !h;
where s.p/ is defined on !h and satisfies the boundary condition s.p/ D g.p/ on
@!h. For n 	 1, we calculate upper and lower solutions by using the recurrence
formulae

.L C c.n�1/.p//z.n/˛ .p/ D �R.p; u.n�1/
˛ /; p 2 !h; (8)

z.n/˛ .p/ D 0; p 2 @!h; R.p; u.n�1/
˛ / 
 Lu.n�1/

˛ .p/C f .p; u.n�1/
˛ /;

u.n/˛ .p/ D u.n�1/
˛ .p/C z.n/˛ .p/; p 2 !h;

The mesh function c.n�1/ is given by

c.n�1/.p/ D max
u

ffu.p; u/; u
.n�1/
�1 .p/ � u � u.n�1/

1 .p/g; p 2 !h: (9)

where below in Theorem 1, we prove that u.n�1/
�1 .p/ � u.n�1/

1 .p/, p 2 !h.
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The following theorem gives the monotone property of the iterative method
(7)–(9).

Theorem 1. Let assumptions (2) and (4) hold true and the computational mesh !h

be connected. Then the sequences fu.n/˛ g, ˛ D 1;�1, generated by (7)–(9), converge
monotonically to a unique solution u� of (3):

u.n/�1.p/ � u.nC1/
�1 .p/ � u�.p/ � u.nC1/

1 .p/ � u.n/1 .p/; p 2 !h; n 	 0: (10)

Proof. We show that u.0/1 defined by (7) is an upper solution. From the maximum

principle in Lemma 1, it follows that z.0/1 	 0 on !h. From (7), by the mean-value
theorem, we have

L.s.p/C z.0/1 .p//Cf .p; sC z.0/1 / D R.p; s/C jR.p; s/j C .fu.p; e
.0//� c�/z.0/1 ;

where s.p/ � e.0/.p/ � s.p/ C z.0/1 .p/. From (2) and z.0/1 	 0, we conclude that

u.0/1 is an upper solution. Similarly, we can prove that u.0/�1 is a lower solution. Thus,

u.0/1 and u.0/�1 are upper and lower solutions which satisfy (10) for n D 0.
We prove that

u.1/�1.p/ � u.1/1 .p/; p 2 !h: (11)

By (8) for n D 1,

.LCc.0//u.1/˛ .p/ D c.0/u.0/˛ .p/�f .p; u.0/˛ /; p 2 !h; u.1/˛ .p/ D g.p/; p 2 @!h;

Letting w.n/ D u.n/1 � u.n/�1 , from here, by the mean-value theorem, we have

.L C c.0//w.1/.p/ D .c.0/ � f .0/u .p//w.0/.p/; p 2 !h; w.1/.p/ D 0; p 2 @!h;

where f .0/u .p/ D fu.p; v.0/.p//, u.0/�1.p/ � v.0/.p/ � u.0/1 .p/. Taking into account
that w.0/.p/ 	 0, from here and (9) with n D 0, we conclude that

.L C c.0/.p//w.1/.p/ 	 0; p 2 !h; w.1/.p/ D 0; p 2 @!h:
From (2) and (9), by the maximum principle in Lemma 1, we prove (11).

From (8) and u.0/1 is an upper solution, we have

.L C c.0/.p//z.1/1 .p/ � 0; p 2 !h; z.1/1 .p/ D 0; p 2 @!h:

By Lemma 1, it follows that z.1/1 .p/ � 0, p 2 !h. Similarly, we can prove that

z.1/�1.p/ 	 0, p 2 !h. From here and (11), it follows that

u.0/�1.p/ � u.1/�1 � u.1/1 .p/ � u.0/1 .p/; p 2 !h:

Thus, we prove (10) for n D 1.
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Using the mean-value theorem and the equation for z.1/1 , we represent R.p; u.1/1 /

in the form

R.p; u.1/1 / D �.c.0/.p/ � f .1/u .p//z.1/1 .p/; p 2 !h;

where f .1/u .p/Dfu.p; e
.1//, u.1/1 .p/� e.1/.p/� u.0/1 . Since the mesh function z.1/1

is nonpositive on !h and taking into account (9), we conclude that R.p; u.1/1 /	 0,

p 2 !h. Similarly, we can prove that R.p; u.1/�1/ � 0, p 2 !h. From here and (11),

it follows that u.1/1 and u.1/�1 are upper and lower solutions.

By induction on n, we can prove that u.n/1 and u.n/�1 are upper and lower solutions,
and the monotone property in (10) holds.

For each p 2 !h, one can conclude from (10) that the monotonically decreasing
sequence fu.n/1 g is bounded below by any lower solution u.n/�1 , n 	 0. It follows from

(8) that lim z.n/1 .p/D 0, p 2 !h as n! 1, therefore, the sequence converges to u1.
With a similar argument, we prove that the monotonically decreasing sequence
fu.n/�1g converges to u�1. Now by linearity of the operator L and the continuity of
f , we conclude that u1 and u�1 are solutions to (3). By the maximum principle in
Lemma 1, under assumption (2) the nonlinear difference (3) has a unique solution
u�, hence, u1 D u�1 D u�.

4 Quadratic Convergent Rate of Monotone Sequences

Introduce the notation

c1 
 min
p2!h

Œmin
u

ffu.p; u/; u
.0/
�1.p/ � u � u.0/1 .p/g 	 c�; (12)

c2 
 max
p2!h

Œmax
u

fjfuu.p; u/j; u.0/�1.p/ � u � u.0/1 .p/g; (13)

where initial upper and lower solutions u.0/1 .p/ and u.0/�1.p/, respectively, are calcu-
lated in (7).

The following theorem gives the quadratic convergence of the monotone method
(7)–(9).

Theorem 2. Let the assumptions in Theorem 1 be satisfied. Then the following
estimate holds:

ku.n/1 � u.n/�1k
!h � c2

c1
ku.n�1/
1 � u.n�1/

�1 k2
!h ; (14)

where kuk
!h 
 max

p2!h ju.p/j.
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Proof. From (8), by the mean-value theorem, we conclude that

.L C c.n�1//w.n/.p/ D Œc.n�1/ � fu.p; v
.n�1//w.n�1/.p/; p 2 !h; (15)

u.n/1 .p/ D u.n/�1.p/; p 2 @!h:
where w.n/ 
 u.n/1 � u.n/�1 and u.n�1/

�1 .p/ � v.n�1/.p/ � u.n�1/
1 .p/. From (9), it

follows that

c.n�1/.p/ D fu.p; r
.n�1//; u.n�1/

�1 .p/ � r .n�1/.p/ � u.n�1/
1 .p/: (16)

Thus, we represent the right hand side of the difference equation from (15) in
the form Œfu.p; r

.n�1// � fu.p; v.n�1//w.n�1/.p/: Applying again the mean-value
theorem, we get

fu.p; r
.n�1// � fu.p; v

.n�1// D fuu.p; t
.n�1//.r .n�1/.p/ � v.n�1/.p//;

where t .n�1/.p/ lies between r .n�1/.p/ and v.n�1/.p/. Taking into account that
jr .n�1/.p/ � v.n�1/.p/j � w.n�1/.p/; c.n/.p/ 	 c1 and (13), by (6) applied to
problem (15), we prove (14).

5 Uniform Convergence to the Solution of (3)

In this section, we investigate uniform convergence of the monotone method
(7)–(9) to the solution of (3). Without loss of generality, we suppose that the
boundary condition in (3) is zero, that is, g.p/ D 0, p 2 @!h. This assumption can
always be obtained via a change of variables. Choosing s.p/ D 0, p 2 !h in (7),
we get the linear problems for u.0/˛ , ˛ D 1;�1,

.L C c�/u.0/˛ .p/ D ˛jf .p; 0/j; p 2 !h; u.0/˛ .p/ D 0; p 2 @!h: (17)

Theorem 3. Let the assumptions in Theorem 1 be satisfied. Then the monotone
iterative method (8), (9), (17) converges �-uniformly to the unique solution of the
nonlinear difference scheme (3).

Proof. We introduce the notation qn D ku.n/1 �u.n/�1k
!h , �n D c3qn and c3 D c2=c1,

where c1 and c2 from (12) and (13), respectively. Multiplying (14) by c3, we have
�nC1 � �2n; n 	 0: Since fu.n/1 g and fu.n/�1g converge to the solution u� of (3), then
for some n� the inequality �� 
 �n

�

< 1 holds. By induction, we show that

�n � �2
n�n

�

� ; n 	 n�: (18)
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It is true for n D n�. Assuming that it holds for n D l , we have

�lC1 � �2l � .�2
l�n

�

� /2 D �2
lC1�n

�

� ;

and prove (18). From (14) and (18), we conclude

qn � 1

c3
.c3qn

�

/2
n�n

�

; n 	 n�; c3qn
�

< 1: (19)

From (17), by (6), we get the estimate ku.0/˛ k
!h � kf .p; 0/k

!h=c�. It means that

u.0/˛ , ˛ D 1;�1, are �-uniformly bounded. From here, (12) and (13), it follows
that c1 and c2 are independent of �. From here and (14), we conclude that qn
is �-uniformly bounded for all n 	 0. Now taking into account that qn

�

in (19)
is �-uniformly bounded, from (19) it follows that the sequence fqng converges
�-uniformly to 0. Representing qn in the form qn D ku.n/1 � u� C u� � u.n/�1k

!h

and taking into account (10), we conclude the inequalities

ku.n/1 � u�k
!h � qn; ku.n/�1 � u�k

!h � qn:

From here and uniform convergence of fqng, it follows that the sequences fu.n/˛ g,
˛ D 1;�1, converge �-uniformly to the solution u� of the nonlinear difference
scheme (3).

6 Uniform Convergence to the Solution of (1)

In this section we assume that ! is the two dimensional rectangular domain

! D !x � !y D f0 < x < 1g � f0 < y < 1g: (20)

On ! we introduce the piecewise uniform mesh !h D !hx � !hy of Shishkin-type
[3]. The boundary layer thicknesses �x and �y are chosen as

�x D min
˚
0:25; .1=

p
c�/� lnNx

�
; �y D min

˚
0:25; .1=

p
c�/� lnNy

�
;

and mesh spacings hx�, hx , hy� and hy are defined by

hx� D 4�x

Nx
; hx D 2.1� 2�x/

Nx
; hy� D 4�y

Ny
; hy D 2.1� 2�y/

Ny
;

where Nx and Ny are number of mesh points in x- and y-directions, respectively.
The mesh !hx is constructed thus: in each of the subintervals Œ0; �x  and Œ1� �x ; 1
the fine mesh spacing is hx� while in the interval Œ�x ; 1 � �x the coarse mesh
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spacing is hx . The mesh !hy is defined similarly. For approximation of the differen-
tial operator, we use the classical difference operator which satisfies the assumptions
from (4). The difference scheme (3) based on the classical difference operator and
the piecewise uniform mesh converges�-uniformly to the solution of (1):

kU � uk
!h � CN�2 ln2N; N D min

˚
Nx; Ny

�
;

where constant C is independent of � and N (see [3] for details). From here and
Theorem 3, we conclude the following theorem.

Theorem 4. The monotone iterative method (8), (9), (17), based on the classic dif-
ference approximation and the piecewise uniform mesh, converges �-uniformly to
the unique solution of (1).

7 Numerical Experiments

In this section, we compare convergence properties of the monotone iterative
method (8), (9), (17) and monotone iterative method from [2]. The monotone iter-
ative method from [2] is constructed in the assumption that c� � fu � c�,
c� D const > 0. This method utilizes c� in (8) instead of c.n�1/.p/.

The test problem is the two dimensional elliptic problem (1) on the rectangular
domain (20) with f .x; y; U / D .U �3/=.4�U / and g.x; y/ D 0. The initial upper
and lower solutions are

u.0/1 .p/ D 3; p 2 !h; u.0/1 .p/ D 0; p 2 @!; u.0/�1.p/ D 0; p 2 !h:

Using these initial upper and lower solutions and fu D 1=.4� u/2, we get

c� D 1=16; c� D max
p2!h

Œmax
u

ffu.p; u/; u
.0/
�1.p/ � u � u.0/1 .p/g D 1;

where initial upper and lower solutions u.0/1 .p/ and u.0/�1.p/, respectively, are calcu-
lated in (7). Thus, in the monotone iterative method from [2], c� D 1 is in use. Since
fuu D 2=.4 � u/3 	 0 in u.0/�1 � u � u.0/1 , from here, (9) and (16), we conclude

that c.n/.p/ D fu.p; u
.n/
1 /. It means that only the sequence of upper solutions is

required for this test problem.
We choose the stopping test in the form

ku.nC1/
1 � u.n/1 k

!h � ı;

where ı D 10�5. In Table 1, for various values of � and N (N D Nx D Ny),
we present convergence iteration counts MI O, where M for the monotone iterative
method (8), (9), (17) and O for the monotone iterative method from [2]. From the
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Table 1 Convergence iteration counts for different values of � and N

�nN 32 64 128 256 512

10�1 5;15 5;15 5;15 5;15 5;15
10�2 5;15 5;15 5;15 4;15 4;15
� 10�3 5;15 5;15 4;15 4;15 4;15

Table 2 Convergence iteration counts for different values of � and ı

�nı 10�3 10�4 10�5 10�6

10�1 4;9 5;12 5;15 6;18
10�2 4;9 5;12 5;15 6;18
� 10�3 4;9 5;12 5;15 6;17

Table 3 The maximum error for different values of � and N

�nN 32 64 128 256

10�1 1:051 � 10�1 2:392 � 10�2 0:938 � 10�2 1:054 � 10�3

10�2 1:259 � 10�1 4:279 � 10�2 1:237 � 10�2 3:376 � 10�3

� 10�3 1:467 � 10�1 6:346 � 10�2 1:843 � 10�2 5:128 � 10�3

numerical data, it follows that for all values of � and N , the monotone iterative
method (8), (9), (17) converges faster than the corresponding monotone iterative
method from [2]. For N fixed and � � 10�3, the convergence iteration counts are
uniform with respect to �. These numerical experiments confirm our theoretical
results on uniform convergence of the monotone iterative method (8), (9), (17).

In Table 2, for various values of the small parameter �, the tolerance ı in the
stopping test and N D 64, we present convergence iteration counts for the mono-
tone iterative method (8), (9), (17) and for the monotone iterative method from [2].
In [2], we proved that the monotone iterative method under investigation converges
with the linear rate ku.nC1/

1 � u.n/1 k
!h � C�n, � D c�=c�, where constant C is

independent of � and N . From here, it follows that n2=n1 � log ı2= log ı1, where
n1 and n2 are convergence iteration counts for ı1 and ı2, respectively. The numer-
ical experiments from Table 2 confirm this theoretical result. From (19), under
the assumptions n� D 0 (�0 < 1) and c3 D O.1/, we conclude that n2=n1 �
log.log jı2j/= log.log jı1j/ for the monotone iterative method (8), (9), (17).
The numerical experiments from Table 2 confirm the theoretical observation that
ratio n2=n1 (ı2 < ı1) increases slightly as ı2=ı1 decreases.

By uN , we denote the numerical solution computed by the monotone iterative
method (8), (9), (17) and take u1024 as the reference solution. In Table 3, for various
values of � and N , we present the maximum error kuN � u1024k

!h . The numer-
ical results show that for � � 10�3, the maximum error is independent of � and
decreases with N .
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Finite Element Discretizations of Optimal
Control Flow Problems with Boundary Layers

M. Braack and B. Tews

Abstract We study the effect of different stabilized finite element methods to dis-
tributed control problems governed by singular perturbed Oseen equations. On the
one hand, the residual based stabilized finite element method SUPG/PSPG leads
to different optimality systems depending on the discretization approach: first dis-
cretize the state equation and then formulate the corresponding optimality system
or derive first the optimality system on the continuous level and then discretize it.
On the other hand, for symmetric stabilization as for instance the local projection
stabilization (LPS) both approaches lead to the same symmetric optimality system.
In particular, we address the question whether a possible commutation error in opti-
mal control problems with boundary layers discretized by stabilized finite element
methods may affect the accuracy significantly or not.

1 Optimal Control Problem of the Oseen System

Let ˝ � Rd ; d 2 f2; 3g be a bounded polyhedral domain with Lipschitz boundary
@˝ . The velocity v belongs to the vector Sobolev space H 1

0 .˝/
d and the pressure

p to the space L20.˝/ which stands for the L2-integrable functions over ˝ with
vanishing mean. By u we denote the vector of velocities and pressure, u D .v; p/.
Hence, u is sought in the Hilbert space X WD ŒH 1

0 .˝/
d � L20.˝/. Furthermore,

let Q � L2.˝/d a subspace and q 2 Q a control function. In order to express the
variational formulation of the state equation we introduce the bilinear forms

a.u; '/ WD .r � v; �/C .�v; �/C ..b � r/v; �/C .�rv;r�/ � .p;r � �/
b.q; �/ WD .q; �/;

M. Braack (B) and B. Tews
Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4,
D-24098 Kiel, Germany
e-mail: braack@math.uni-kiel.de, tews@math.uni-kiel.de

C. Clavero et al. (eds.), BAIL 2010 – Boundary and Interior Layers, Computational
and Asymptotic Methods, Lecture Notes in Computational Science and Engineering 81,
DOI 10.1007/978-3-642-19665-2_6, c� Springer-Verlag Berlin Heidelberg 2011

47

braack@math.uni-kiel.de
tews@math.uni-kiel.de


48 M. Braack and B. Tews

where �; � > 0 and b a divergence free vector field, r � b D 0. The optimal control
problem consists in determining q 2 Q such that a functional J becomes minimal:

J.u; q/ WD 1

2
kv � vdk20 C ˛

2
kqk20 ! min:

Here, vd is a target velocity field, and ˛ > 0 is a given positive constant. The state
constraint for u D .v; p/ 2 X in weak formulation reads:

a.u; '/C b.q; �/ D hf; �i 8' D .�; �/ 2 X: (1)

To derive necessary and, due to convexity, also sufficient first order optimality con-
ditions we define the Lagrange functional L W X � Q � X ! R with multiplier
z 2 X ,

L .u; q; z/ WD J.u; q/ � a.u; z/ � b.q; z/C hf; zi:

To minimize this unconstraint functional we built the Frechet-derivatives with
respect to the variables. The derivative with respect to the Lagrange multiplier leads
to the state equation (1). The derivative with respect to the state leads to the adjoint
equation,

@uL .u; q; z/. / 
 0 ) a. ; z/ D .v � vd ;  / 8 2 X: (2)

The derivative with respect to the control leads to the gradient equation.

@qL .u; q; z/.�/ 
 0 ) ˛.q; �/ D b.�; z/ 8� 2 Q: (3)

For every control q 2 Q and every right hand side f 2 L2.˝/d the equation
(1) possess a weak solution. Therefore, we can define a continuous linear solution
operator S W Q ! X , by u D Sq. Furthermore, we introduce the reduced cost
functional j W Q ! R by

j.q/ WD J.q; Sq/:

Lemma 1. Let z 2 X be the solution of the dual equation (2). It holds

j 0.q/.ıq/ D �b.ıq; z/C ˛.q; ıq/ 8q; ıq 2 Q: (4)

Proof. For u D Sq and arbitrary z 2 X it holds j.q/ D J.u; q/ D L .u; q; z/; and
therefore we obtain for the derivative

j 0.q/.ıq/ D @qL .u; q; z/.ıq/C @uL .u; q; z/.Sıq/ 8z 2 X: (5)

The assertion follows with (2). �
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2 Discretization of the Optimality System

In order to discretize the optimality system (1)–(3) we make use of conforming equal
order finite elements. Given a family of shape-regular, admissible decompositions
Th of ˝ into d -dimensional quadrilaterals (d D 2) or hexahedrals (d D 3), let hK
be the diameter of a cell K 2 Th. Assume that for each K 2 Th, there exists a
bilinear mapping FK W OK ! K which maps the reference element OK onto K . Set
Qr
h

WD f' 2 L2.˝/ W ' ıFK 2 Qr ; K 2 Thg with the spaceQr of all polynomials

on the reference OK with maximal degree r 	 1 in each coordinate direction. The
discrete state, dual and control spaces are given by:

Xh WD X \ ŒQr
h \ C.˝/dC1; Zh WD X \ ŒQl

h \ C.˝/dC1;
Qh WD Q \ ŒQm

h \ C.˝/d ;

with r; l 	 1 and m 	 0. For equal order interpolation the discrete inf-sup con-
dition is not fulfilled. Furthermore, in the convection dominated case there may
occur unphysical oscillations. Hence, we need to add a stabilization term s

p

h
to the

Galerkin formulation. The choice of this term and its effect to the discrete optimality
system will be shown later on. The discrete state equation reads: Find uh 2 Xh such
that

a.uh; '/C b.qh; �/C sh.uh; qh/.'/ D hfh; �i 8' D .�; �/ 2 Xh: (6)

The right-hand side may changed to fh which also may involve stabilization terms.
If the discrete state equation (6) is uniquely solvable, we can define the discrete
solution operator Sh W Q ! Xh analogously to the continuous case by uh D Shq.
The coercivity of j follows directly by definition of the functional jh:

Lemma 2. If (6) has a unique solution, then the second derivative of the discrete
reduced cost functional jh is coercive: j 00

h
.ıq; ıq/ D ˛kıqk20 C kShıqk20:

Many stabilization methods for the Oseen problem have the property to be additive
in the sense that it holds

sh.uh; qh/.'/ D sh.uh; 0/.'/C sh.0; qh/.'/: (7)

In the following we give two examples of such stabilizations leading to unique
solutions of (6) . It is useful to introduce the discrete bilinear forms

ah.u; '/ WD a.u; '/C sh.u; 0/.'/;

bh.q; '/ WD b.q; �/C sh.0; q/.'/:
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The optimality system for the discretize-optimize strategy becomes:

uh 2 Xh W ah.uh; '/C bh.qh; '/ D hfh; 'i 8' 2 Xh; (8)

zh 2 Xh W ah. ; zh/� .vh;  / D �.vd ;  / 8 2 Xh (9)

qh 2 Qh W bh.�; zh/� ˛.q; �/ D 0 8� 2 Qh: (10)

The optimality system for the optimize-discretize strategy becomes:

uh 2 Xh W ah.uh; '/C bh.qh; '/ D hfh; 'i 8' 2 Xh; (11)

zh 2 Xh W a. ; zh/C s�
h .zh; vd � vh/. / � .vh;  / D �.vd ;  / 8 2 Xh;

(12)

qh 2 Qh W b.�; zh/� ˛.q; �/ D 0 8� 2 Qh (13)

with a stabilization term s�
h

appropriate for the (strong formulation of the) adjoint
equation (2). Note that the discrete primal equations (8) and (11) are identical
independent of the type of stabilization scheme.

SUPG/PSPG-stabilization: The classical combination of pressure stabilized
Petrov-Galerkin (PSPG) [5] and streamline upwind Petrov-Galerkin (SUPG) [7]
which allows the splitting (7) read

ssdh .uh; qh/.'/ WD
X
K2Th

ıK.���vhC.b � r/vhC�vhCrphCqh; .b � r/�Cr�/K

C
X
K2Th

�K.r � vh;r � �/K ;

hfh; 'i WD hf; �i C
X
K2Th

ıK.f; .b � r/� C r�/K :

The parameters ıK and �K are cell-wise constants and usually chosen as

ıK D ı0
1
2

min

�
1
�
;
h2

K

�
; hKkbk0;1IK

�
; �K D �0hK : (14)

Related to this stabilization method is the following norm:

jjjujjj2sd WD �jvj21 C �kvk20C�kpk20 C
X
K2Th

ıKk.b � r/v C rpk20IKC�Kkr � vk20IK ;

with a sufficiently small parameter � > 0. For the choice (14) the discrete bilinear
form is inf-sup stable, i.e.

9ˇ > 0; s.t. inf
uh2Xh

sup
'2Xh

ah.uh; '/

jjjuhjjjsd jjj'jjjsd 	 ˇ; (15)

and therefore the discrete state equation (6) admits an unique solution uh 2 Xh.
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The SUPG method was investigated in [6] for optimal control with scalar
convection-diffusion-reaction problems.

Local projection stabilization: The main idea of local projection stabilization
(LPS) is to include fine grid fluctuations of the pressure and of the velocity gradient
in the stabilization term. For simplicity, we restrict here to the so called two-level
version of LPS [1, 3] in contrast to the one-level method [8]. Let T2h be the coarser
mesh obtained by a “global coarsening” of Th. The finer mesh Th contains 2d times
more elements than T2h. The elements of T2h will be denoted by “patches”. Let

	h W L2.˝/ ! Qr�1
2h ;

be theL2�projection operator on discontinuous finite elements characterized by the
property for v 2 L2.˝/:

.v � 	hv; �/ D 0 8� 2 Qr�1
2h :

Important is the fact that this projection acts locally on patches of elements, so that
the numerical effort for computing this projection is very low. The operator giving
the space fluctuations is denoted by

~h WD i � 	h;

with the identity mapping i . We use the same notations 	h; ~h for the mappings of
vector-valued functions, for instance, 	h W L2.˝/d ! ŒQr�1

2h
d .

The discrete primal equation of the optimal control problem with local projection
is as in (6) with a stabilization term independent of the control q:

s
lps

h
.u; 0/.'/ WD ..b � r/v; ı~hŒ.b � r/�/C .rp; ı~hr�/C .r � v; �~h.r � �//;

s
lps

h
.0; q/.'/ WD 0:

The parameters ı and � are patch-wise constant and depend (similar to PSPG and
SUPG) on the local Peclet number. Associated to this method is the semi-norm

jjjujjj2lps WD �jvj21 C �kvk20 C s
lps

h
.u; u/:

3 A-Priori Error Analysis

For an a priori analysis for LPS we refer to [2] where symmetric stabilization meth-
ods for optimal control problems with the Oseen system are analyzed. The local pro-
jection stabilization is a particular technique which fits into that framework so that
no difference in optimize-stabilize or stabilize-optimize occur, because the resulting
systems are completely identical. Moreover the following result was shown:



52 M. Braack and B. Tews

Theorem 1. Let .u; z; q/ 2 X�X�Q be the solution of the continuous optimization
problem (1)–(3) and .uh; zh; qh/ 2 Xh the solutions of the discrete optimization
problem (8)–(10) with LPS stabilization and m D r D l . Under the assumption
� < kbkK;1hK , and the regularity u; z 2 H rC1.˝/dC1 and q 2 H rC1.˝/d it
holds

jjq � qhjj20 C jjju � uhjjj2lps .
X
K2Th

h2rC1
K .jjujj2rC1 C jjzjj2rC1 C jjqjj2rC1/:

Here, we use the symbol . which means � up to a h-independent constant. Note
that this semi-norm does not include the L2-norm of p. However, an a priori esti-
mate of jjp � phjj with optimal order can be easily achieved as shown in [3]. For a
proof of the two following a priori estimates with SUPG/PSPG, see [4]:

Theorem 2. For the discretize-optimize strategy with SUPG/PSPG,�<kbkK;1hK ,
it holds the estimate

kq � qhk20 .
X
K2Th

n
h
2.mC1/
K kqk2mC1IK C h2rC1

K kpk2rC1IK C h2lC1K kzpk2lC1IK

Ch2rC1
K kvk2rC1IK C h2lC1K kzvk2lC1IK C ıKk.b � r/zv C rzpk0IK

o
:

Now, we first build up the optimality system on the continuous level and then
discretize each equation separately. That means that we can choose an adequate sta-
bilization term for the dual equation, which we denote by sz

h
. This term contains the

full residual of the dual equation and therefore depends on z and u. The optimality
system for the optimize-discretize- strategy is (11)–(13) with

sz
h
.zh; vd � vh/.'/ D

X
K2Th

�K.r � zv
h;r � �/C ıK .���zv

h � .b � r/zv
h

C�zv
h C rzp

h
C vd � vh;�b � r� C r�/:

Theorem 3. With the parameter choice of (14), � < kbkK;1hK , we obtain for the
optimize-discretize strategy with SUPG/PSPG the estimate

kq � qhk20 .
X
K2Th

n
h
2.mC1/
K kqk2mC1IK C ˛h2rC1

K kuk2rC1IK C ˛h2lC1K kzk2lC1IK
o
:

4 Numerical Experiment

In order to validate the analytical results presented so far, we consider a model
problem with analytical solution. The domain is ˝ D .0; 1/2 with the boundaries

i , 1 � i � 4, numbered counterclockwise. The boundary conditions are
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Fig. 1 Adjoint solutions with SUPG/PSPG: Q1 discretize-optimize (left), Q2 optimize-discretize
(middle) and Q2 discretize-optimize (right)

v1 D 0I �.rv2; n/ � pn2 D 0 on 
1 [ 
3;
v2 D 0I �.rv1; n/ � pn1 D 0 on 
2 [ 
4:

The exact primal state u D .v; p/ and adjoint state z D .zv; zp/ are

u.x; y/ D .g.y/; g.x/; 0/ ; z.x; y/ D .g.1 � y/; g.1 � x/; 0/;

with the viscosity-depending function g.x/ WD x � 1�ex=�

1�e1=� : The viscosity is set
to � D 0:0075 in order to enforce a sharp boundary layer. The constants in the
stabilization parameters are always chosen as �0 D ı0 D 0:2.

The obtained adjoint solution zh with SUPG/PSPG is shown in Fig. 1 in the com-
bination optimize-discretize and discretize-optimize with Q2 and with Q1 elements,
as well. The Q2 solution with discretize-optimize exhibit strong oscillations. We
expect that this has a significant influence on the control qh.

The obtained errors in the primal solution, in the adjoint solution, in the control
and in the target functional are listed in Table 1 for SUPG/PSPG. For Q1 ele-
ments no substantial difference between optimize-discretize and discretize-optimize
is observable. In the L2-norm all quantities show a convergence rate of about 3=2.
However, the situation is different for Q2 and SUPG/PSPG. Here, the optimize-
discretize strategy shows a convergence order in L2 in all quantities of about 5=2,
whereas with discretize-optimize jjz � zhjj0 and jjq � qhjj converge with an order of
less than 3=2. Obviously, the non-optimal stabilization of the adjoint state and the
hereby created non-physical oscillations leads to a decline of accuracy in the con-
trol. Hence, an higher order residual based stabilization scheme should not be used
in the combination discretize-optimize.

The obtained results for LPS (where discretize-optimize and optimize-discretize
are identical) are given in Table 2. With Q1 elements the convergence order in L2

is between 3=2 and 2. The error in the target functional j.q/ � j.qh/ is better than
2 on finer meshes. With Q2 elements the convergence order in L2 reaches order 3
on the finest mesh and in the functional the convergence order is even beyond 4.
Comparing the error j.q/ � j.qh/ for SUPG/PSPG in the DO setting and for LPS,
the error is better by more than 3 magnitudes on the same mesh (the finest one) and
the same finite element (bi-quadratics) when a symmetric stabilization is chosen.
We think that this is a remarkable result.
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Table 1 Errors and convergence orders obtained with SUPG/PSPG

h D ku � uhk kz � zhk kq � qhk j.q/� j.qh/

2�l k � k0 Order jjj � jjjsd Order k � k0 Order jjj � jjjsd Order k � k0 Order Value Order

SUPG/PSPG Q1 optimize-discretize
3 2.65e�1 9.58e�1 2.68e�1 9.76e�1 1.89e�1 2.91e�2
4 1.50e�1 0.82 7.77e�1 0.30 1.50e�1 0.83 7.77e�1 0.33 1.06e�1 0.83 2.06e�2 0.50
5 6.62e�2 1.18 7.44e�1 0.06 6.62e�2 1.18 7.43e�1 0.06 4.68e�2 1.18 1.03e�2 1.00
6 2.42e�2 1.45 5.30e�1 0.49 2.42e�2 1.45 5.29e�1 0.49 1.71e�2 1.45 4.24e�3 1.28
7 8.15e�3 1.57 2.96e�1 0.84 8.15e�3 1.57 2.96e�1 0.84 5.76e�3 1.57 1.59e�3 1.42

SUPG/PSPG Q1 discretize-optimize
3 2.67e�1 9.55e�1 2.70e�1 9.70e�1 1.52e�1 4.33e�2
4 1.50e�1 0.83 7.77e�1 0.30 1.51e�1 0.84 7.78e�1 0.32 7.85e�2 0.95 2.53e�2 0.78
5 6.61e�2 1.19 7.44e�1 0.06 6.65e�2 1.19 7.44e�1 0.06 2.86e�2 1.46 1.17e�2 1.12
6 2.42e�2 1.45 5.30e�1 0.49 2.43e�2 1.45 5.30e�1 0.49 6.62e�3 2.11 4.58e�3 1.35
7 8.11e�3 1.58 2.96e�1 0.84 8.16e�3 1.57 2.96e�1 0.84 1.52e�3 2.12 1.65e�3 1.47

SUPG/PSPG Q2 optimize-discretize
3 1.91e�1 7.52e�1 1.89e�1 7.47e�1 1.34e�1 6.59e�2
4 9.86e�2 0.96 9.67e�1 �0.36 9.77e�2 0.95 9.66e�1 �0.37 6.91e�1 0.95 3.22e�2 1.03
5 4.05e�2 1.29 6.27e�1 0.63 4.00e�2 1.29 6.26e�1 0.63 2.83e�2 1.29 1.17e�2 1.26
6 1.06e�2 1.93 2.32e�1 1.44 1.03e�2 1.95 2.31e�1 1.44 7.32e�3 1.95 2.62e�3 2.16
7 1.69e�3 2.65 5.68e�2 2.03 1.55e�3 2.74 5.68e�2 2.03 1.09e�3 2.75 2.54e�4 3.37

SUPG/PSPG Q2 discretize-optimize
3 1.89e�1 7.50e�1 2.20e�1 1.68e+0 9.01e�2 8.05e�2
4 9.74e�2 0.95 9.66e�1 �0.37 1.29e�1 0.77 1.62e+0 0.05 4.49e�2 1.01 3.83e�2 1.07
5 4.01e�2 1.28 6.26e�1 0.63 7.54e�2 0.78 1.52e+0 0.09 2.59e�2 0.80 1.35e�2 1.50
6 1.05e�2 1.93 2.32e�1 1.44 3.76e�2 1.00 1.20e+0 0.34 1.31e�2 0.98 3.00e�3 2.17
7 1.66e�3 2.66 5.58e�2 2.03 1.48e�2 1.35 7.86e�1 0.62 5.27e�3 1.32 3.18e�4 3.24

Table 2 Errors and convergence orders obtained with LPS

2�l ku � uhk kz � zhk kq � qhk j.q/� j.qh/

k � k0 Order k � k0 Order k � k0 Order Value Order

LPS Q1
3 2.70e�1 2.77e�1 1.96e�1 4.80e�3
4 1.58e�1 0.77 1.60e�1 0.79 1.13e�1 0.79 3.03e�3 0.66
5 7.20e�2 1.14 7.25e�2 1.15 5.12e�2 1.15 1.06e�3 1.52
6 2.48e�2 1.54 2.48e�2 1.54 1.76e�2 1.54 1.62e�4 2.71
7 6.46e�3 1.94 6.48e�3 1.94 4.58e�3 1.94 1.60e�5 3.35

LPS Q2
3 2.00e�1 2.04e�1 1.44e�1 1.80e�3
4 9.24e�2 1.12 9.31e�2 1.13 1.44e�1 1.13 1.13e�3 0.67
5 3.08e�2 1.59 3.09e�2 1.59 2.18e�2 1.59 1.35e�4 3.06
6 6.28e�3 2.29 6.29e�3 2.30 4.44e�3 2.30 6.72e�6 4.33
7 7.80e�4 3.01 7.81e�4 3.01 5.53e�4 3.01 2.28e�7 4.88
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Asymptotic Behavior of a Viscous Fluid
Near a Rough Boundary

J. Casado-Díaz, M. Luna-Laynez, and F.J. Suárez-Grau

Abstract The purpose of this paper is to study the asymptotic behavior of a vis-
cous fluid satisfying Navier’s condition on a slightly rough boundary. We consider
the case of a fluid contained in a domain that has height 1 and the case of a fluid
contained in a domain of small height ". In both cases we show that three different
behaviors are possible.

1 Introduction

For a viscous fluid in a three-dimensional domain with a rough boundary, it is known
that if the normal velocity vanishes on the boundary (slip condition), then the fluid
behaves as if the whole velocity vector vanishes on the boundary (adherence con-
dition). This gives a mathematical explanation of why it is usual for a viscous fluid
to impose the adherence condition. The above assertion was proved in [3] for a
boundary described by the equation (see Fig. 1 below)

x3 D �"‰
�x1
"
;
x2

"

	
8.x1; x2/ 2 !; (1)

with " > 0 devoted to converge to zero, ! a Lipschitz bounded open set of R2 and
‰ a smooth periodic function such that

Span.fr‰.z0/ W z0 2 R2g/ D R2: (2)

An extension to non-periodic boundaries was obtained in [1].
Our aim in Sect. 2 is to generalize the result given in [3] to the case of weak

rugosities of small period " and amplitude ı" described by (see Fig. 2 below)
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ε

ε

Fig. 1 Rough boundary in 2D described by (1).

de

Ge

Fig. 2 Rough boundary in 2D described by (3)

�" D
n
x D .x1; x2; x3/ 2 ! � R W x3 D �ı"‰

�x1
"
;
x2

"

	o
; (3)

where ! � R2 is a Lipschitz bounded open set, ‰ in W 2;1
loc

.R2/ is a periodic

function of period Z0 D .�1=2; 1=2/2 and ı" > 0 satisfies lim
"!0

ı"

"
D 0. Taking the

oscillating domain�" by

�" D
n
x D .x1; x2; x3/ 2 ! � R W �ı"‰

�x1
"
;
x2

"

	
< x3 < 1

o
; (4)

we show that if the limit of ı"="
3
2 tends to infinity and (2) holds, the slip and the

adherence boundary conditions are still asymptotically equivalent. However, this
result does not hold if the limit � of ı"="

3
2 belongs to .0;C1/. In this case we

do not have the adherence condition in the limit but the rugosity is large enough to
enlarge the friction coefficient in the limit. When ı"="

3
2 converges to zero, we prove

that the rugosity is so small that it has no effect on the limit problem. For a related
result we refer to [2, 4, 5].

In Sect. 3 we will generalize the results obtained in Sect. 2 to a thin domain of
small height ". Taking ! and ‰ as above, our aim is to study the behavior of the
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fluid near the rough periodic boundary of period r" and amplitude ı" defined by

� thin
" D

�
x D .x1; x2; x3/ 2 ! � R W x3 D �ı"‰

�
x1

r"
;
x2

r"

��
; (5)

with r"; ı" > 0 satisfying lim
"!0

r"

"
D 0; lim

"!0

ı"

r"
D 0. Defining�thin

" by

�thin
" D

�
x D .x1; x2; x3/ 2 ! � R W �ı"‰

�
x1

r"
;
x2

r"

�
< x3 < "

�
; (6)

we show analogous results to those presented in Sect. 2, but in this case the behavior

of the fluid near � thin depends on the limit of a
ı"

r"

r
"

r"
. That is, the behavior only

depend on the small height of the domain, and not only on the parameters describing
the rough boundary. When " goes to 1 we recover the previous case.

2 Asymptotic Behavior of a Viscous Fluid in a Rough Domain

From now on, the points x of R3 are supposed to be decomposed as x D .x0; x3/
with x0 2 R2, x3 2 R. We also use the notation x0 to denote a generic vector of R2.

Given a bounded connected Lipschitz open set ! � R2 and ‰ 2 W
2;1
loc

.R2/,
periodic of periodZ0 D .�1=2; 1=2/2, we define the domain�" by (4) and its rough
boundary�" by (3). Then, for f 2 L2.!�.�1; 1//3, we consider the Navier-Stokes
system in �",

8̂
ˆ̂̂<
ˆ̂̂̂
:

���u" C rp" C .u" � r/u" D f in �"; div u" D 0 in �";

u" D 0 on @�" n �";

u" � � D 0 on �";
@u"
@�

parallel to � on �":

(7)

Here, � > 0 corresponds to the viscosity of the fluid and � denotes the unitary
outside normal vector to �" on �". It is well known that (7) has at least a solution
.u"; p"/ 2 H 1.�"/

3 � L20.�"/ (L20.�"/ denotes the space of functions in L2.�"/
whose integral in �" is zero). Moreover, we can show the following estimates

ku"kH1.�"/3
C kp"kL2.�"/

� C; 8" > 0: (8)

Our problem is to describe the asymptotic behavior of the sequences u" and p"
when " tends to zero. This is given by the following theorem which is the main result
of this section.
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Theorem 2.1 We assume that .u"; p"/ is a solution of (7). Then, there exists .u; p/ 2
H 1.�/3 � L20.�/, such that, up to a subsequence,

u" * u in H 1.�/3; p" * p in L2.�/; where � D ! � .0; 1/: (9)

The pair .u; p/ satisfies the Navier-Stokes system

� ��u C rp C .u � r/u D f in �; div u D 0 in �; (10)

the adherence condition u D 0 on @� n � and the vertical component of the limit
velocity satisfies u3 D 0 on 
 , where � D ! � f0g. Moreover, denoting (this limit
exists at least for a subsequence)

� D lim
"!0

ı"

"
3
2

2 Œ0;C1; (11)

the tangential component of the limit velocity, u0, also satisfies the following bound-
ary condition on �

i) If � D 0, then
@3u0 D 0 on �: (12)

ii) If � 2 .0;C1/, then defining .b�i ;bq i /, i D 1; 2 as a solution of

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

���zb�i C rzbqi D 0 in R2 � .0;C1/;

divzb�i D 0 in R2 � .0;C1/;

b�i3.z0; 0/C @zi
‰.z0/ D 0; @z3

.b�i /0.z0; 0/ D 0;

b�i .:; z3/; bqi .:; z3/ periodic of period Z0;

Dzb�i 2 L2.Z0 � .0;C1//3�3; bqi 2 L2.Z0 � .0;C1//;

(13)

and R 2 R2�2 by Rij D �

Z
Z0�.0;C1/

Dzb�i W Dzb�j d z; 8 i; j 2 f1; 2g (14)

we have
� �@3u0 C �2Ru0 D 0 on �: (15)

iii) If � D C1, then defining

W D Span.f.r‰.z0/; 0/ W z0 2 Z0g/; (16)

we have
u0 2 W ? on �; @3u0 2 W: (17)

Remark 2.2 For � D 0, the rugosity of �" is very slight and the solution .u"; p"/
of (7) behaves as if �" coincides with the plane boundary � . For 0 < � < C1
(critical size), the boundary condition satisfied by the limit u of u" on the tangent
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space to � contains the new term �2Ru0. The effect of the rugosity of the wall �" is
not worthless in this case. Finally, for � D C1 the rugosity is so strong that the
limit u of u" does not only satisfies the condition u3 D 0 on � , but it is also such that
its tangent velocity on � , u0, is in W ?, for every z0 2 Z0. In particular, if the linear
space spanned by W has dimension 2 (this holds if and only if ‰ is not constant in
any straight line of R2, see [3–5]), we get that u satisfies the adherence condition
u D 0 on � , i.e. although we have imposed a slip condition on �", the rugosity
forces u to satisfy a no-slip (adherence) condition on � . This result extends to the
case where

lim
"!0

ı"

"
D 0; lim

"!0

ı"

"
3
2

D C1;

the results obtained in [3] for ı" D " (see also [2] for the nonperiodic case).
The limit equation (15) corresponding to the critical size � 2 .0;C1/ can be

considered as the general one. In fact, if � is tending to zero or C1 in (15) we get
(12) and (17) respectively.

Remark 2.3 In the cases � D 0 or C1, we can prove that the convergences in (9)
are strong. In fact, assuming ! smooth enough (for example C 2), we can show that
we have
Z
�"

ju" � uj2dx ! 0;

Z
�"

jD.u" � u/j2dx ! 0;

Z
�"

jp" � pj2dx ! 0:

In the critical case � 2 .0;C1/, defining Nu" and Np" by

Nu".x/ D u.x/� �
p
"
�

u1.x
0; 0/b�1.x

"
/C u2.x

0; 0/b�2.x
"
/
	
;

Np".x/ D p.x/ � �p
"

�
u1.x

0; 0/bq1.x
"
/C u2.x

0; 0/bq2.x
"
/
	
;

then the above assertion still holds by replacing u and p by Nu" and Np", respectively.

3 Asymptotic Behavior of a Viscous Fluid
in a Rough Thin Domain

In this section we will generalize the results given in Sect. 2 to the thin domain�thin
"

given by (6) with a rough boundary� thin
" described by (5). Then, for f D .f 0; f3/ 2

L2.!/3 we consider the Navier-Stokes system

8̂
ˆ̂̂<
ˆ̂̂̂
:

���u" C rp" C .u" � r/u" D f in �thin
" ; div u" D 0 in �thin

" ;

u" D 0 on @�thin
" n � thin

" ;

u" � � D 0 on � thin
" ;

@u"
@�

parallel to � on � thin
" :

(18)
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This system has at least a solution .u"; p"/ 2 H 1.�"/
3 � L20.�"/. Moreover it

satisfies

�
Z
�thin

"

ju"j2dx � C"4; �
Z
�thin

"

jDu"j2dx � C"2; �
Z
�thin

"

jp"j2dx � C: (19)

As in the previous section, our aim is to study the asymptotic behavior of u" and p"
when " tends to zero. For this purpose, as usual, we use a dilatation in the variable
x3 in order to have the functions defined in an open set of fixed height. Namely, we
define Qu" 2 H 1.�/3, Qp" 2 L20.�/ by

Qu".y/ D u".y
0; "y3/; Qp".y/ D p".y

0; "y3/; a.e. y 2 � D ! � .0; 1/: (20)

Then, our problem is to describe the asymptotic behavior of these sequences Qu", Qp".
This is given by the following theorem.

Theorem 3.1 Let .u"; p"/ 2 H 1.�"/
3�L20.�"/ be a solution of (18) and let Qu", Qp"

be defined by (20). Then, there exist v 2 H 1.0; 1IL2.!//2, w 2 H 2.0; 1IH�1.!//
and p 2 L20.�/, where p does not depend on y3, such that, up to a subsequence,

Qu"
"
* 0 in H 1.�/3;

Qu"
"2
* .v; 0/ in H 1.0; 1IL2.!//3;

Qu";3
"3

* w in H 2.0; 1IH�1.!//;
(21)

Qp" * p in L2.�/;
@y3

Qp"
"

* f3 in H�1.�/: (22)

According to the value of �thin defined by

�thin D lim
"!0

ı"

r"

r
"

r"
2 Œ0;C1; (23)

the functions v, w and p are given by

(i) If �thin D C1, then denoting by PW?

the orthogonal projection from R2 to
the orthogonal of the space W defined by (16), we have that v is given by

v.y/ D .y3 � 1/

2�

�
y3I C PW?

	 �ry0p.y0/ � f 0.y0/

; a.e. y 2 �;

where p satisfies

8̂̂
<
ˆ̂:

�divy0

��
1

3
I C PW?

�
.ry0p � f 0/

�
D 0 in !;�

1

3
I C PW?

�
.ry0p � f 0/ � � D 0 on @!:
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Moreover, the distribution w is given by

w.y/ D �
Z y3

0

divy0 v.y0; s/ds; in �: (24)

(ii) If � 2 .0;C1/, then defining .b�i ;bqi /, i D 1; 2, as solutions of the Stokes
systems (13) and the matrix R by (14), we have

v.y/ D .y3 � 1/

2�

 
y3I C

�
I C �2

�
R

��1!�ry0p.y0/ � f 0.y0/

; a.e. y 2 �;

where p satisfies
8̂
ˆ̂̂<
ˆ̂̂̂:

�divy0

  
1

3
I C

�
I C �2

�
R

��1!
.ry0p � f 0/

!
D 0 in !;

 
1

3
I C

�
I C �2

�
R

��1!
.ry0p � f 0/ � � D 0 on @!:

Moreover, the distribution w is given by (24).

(iii) If � D 0, then v.y/ D .y23 � 1/

2�
.ry0p.y0/� f 0.y0//; a.e. y 2 �;

where p satisfies ��y0p D �divy0f 0 in !;
@p

@�
D f 0 � � on @!:

Moreover, the distribution w is zero.

Remark 3.2 The role of the parameter �thin in Theorem 3.1 is similar to the one of
� in Theorem 2.1. Indeed, we remember that for " D 1 both parameters agree (note
that the parameter " in Theorem 2.1 is now called r").

Remark 3.3 In the cases �thin D 0 or C1, we can prove that the convergences in
(21)–(22) are strong. In fact, assuming ! smooth enough, we prove that defining Nu",
Np" by

Nu".x/ D
�
"2v.x0;

x3

"
/; 0
	
; Np".x/ D p.x0/ a.e. x 2 �thin

" ;

we have

1

"4
�
Z
�"

ju"� Nu"j2dx ! 0;
1

"2
�
Z
�"

jD.u"� Nu"/j2dx ! 0; �
Z
�"

jp"� Np"j2dx ! 0:

In the critical case �thin 2 .0;C1/, the above assertion still holds replacing
Nu" by

Nu".x/ D
�
"2v.x0;

x3

"
/; 0
	

� �"p"r"
�

v1.x
0; 0/b�1. x

r"
/C v2.x

0; 0/b�2. x
r"
/

�
:
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High Reynolds Channel Flows: Upstream
Interaction of Various Wall Deformations

P. Cathalifaud, M. Zagzoule, J. Cousteix, and J. Mauss

1 Introduction

The upstream non linear interaction at high Reynolds number in a channel with
local or global wall distortion is considered. Three methods are used to study the
anticipated fluid response to the distal disturbance:

	 A new asymptotic approach called Successive Complementary Expansion
Method (SCEM) leading to a uniformly valid reduced model termed GIBL
for Global Interactive Boundary Layer [1, 3].

	 An eigenmode analysis.
	 Full Navier–Stokes simulation.

The three approaches confirm the Smith [2] result: the length of the non linear
upstream influence of an accident at x D x0 at the walls, �, is O.R1=7e /, where
Re is the Reynolds number. The only hypothesis on the wall accident is that it is
significant enough to perturb the Poiseuille flow, so that the Poiseuille flow is no
more a good approximation in the boundary layer.

Then by assuming an exponential variation in x of the perturbed flow, in order to
obtain the Poiseuille flow as x ! �1 (i.e. far upstream the wall deformations), we
perform an eigenmode analysis, which shows that the first mode is related to asym-
metric wall deformations. Finally, comparison with full Navier–Stokes simulation
shows that the GIBL model is well founded.
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Fig. 1 (i) case: Local wall
perturbation; location of the
accident at x D x0

y

x

yu = 1
2 −

yl = − 1
2
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x
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2

H(x y) = 0

X = X0

,

Fig. 2 (ii) case: Global wall curvature; location of the accident at X D X0

2 Geometrical Configuration

Two kinds of geometrical configuration have been considered for the accident: (i) a
local wall perturbation as in Fig. 1, or (ii) a global wall curvature as in Fig. 2.

In the test case (i), the walls are deformed in a domain x0 � x � x0 C L such
as:

F D hl

2

�
1C cos

2	.x � x0/
L

�
IG D �hu

2

�
1C cos

2	.x � x0/
L

�
: (1)

where hu and hl are small parameters.
In the test case (ii), we use a generalized system of coordinates, where X and

Y are distances along and perpendicular to the line H D 0. We call it the median
line if the upper (or inner) and lower (or external) walls are respectively given by

Y D ˙1

2
.

For a point M with general coordinatesX and Y , we can write
��!
OM D ���!

OM0 C
Y n, where n is the unit normal vector. Then,

��!
dM D dX .1CKY / � C dY n, where

� is the unit vector tangent at M0 to the median line in such a way that .�;n/
is direct; K.X/ is the algebraic curvature of this line. Thus, K < 0 in the case
of Fig. 2. The curvature K and its variation in X are small. We thus describe the
channel variable curvature for X > 0 by K D ık.X/, where ı is a small positive
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parameter. Let U and V denote the velocity components parallel and perpendicular
to the line H D 0, then, as V D U� C V n, the full equations of motion written
in generalized coordinates are given in [4]. These equations must be solved with

boundary conditions: U D V D 0 for Y D ˙1

2
.

3 Fully Established Flow in a Curved Channel

For a channel of constant curvature ı, the fully established flow U0 is solution of

.1C ıY /
d2U0
dY 2

C ı
dU0
dY

� ı2

1CK0Y
U0 D �GRe (2)

where G D �@P
@X

is constant, and with U0 D 0 for Y D ˙1

2
. Notice that for ı D 0

we retrieve the equation for the Poiseuille flow:
d2U0
dY 2

D �2. For more details see

Zagzoule et al.[4].
The exact solution is given by:

U0.Y / D 1

64
GRe

f .ı; Y /

.ı2.1C ıY //
(3)

where

f .ı; Y / D �
ı3.1 � 4Y 2/C 8ı2Y.2Y � 1/C 4ı.�4Y 2 C 8Y � 3/

C16.1 � 2Y /� ln

�
2 � ı

2ı

�
C

� � ı3.1 � 4Y 2/C 8ı2Y.2Y C 1/C 4ı.4Y 2 C 8Y C 3/

C16.1C 2Y /
�

ln

�
2C ı

2ı

�
�

32
�
2ıY C ı2Y 2 C 1


ln

�
1C ıY

ı

�

As shown in Fig. 3, the corresponding exact solutionU0.Y / bends towards the inter-
nal wall of the bend. Notice that, for a small constant curvature ı and for a flow rate

of 1=6, an approximate solution O.ı/ is U0.Y / D
�
1

4
� Y 2

��
1 � 2ı

3
Y

�
, which

implies that the skin friction Cf
Re

2
D 1 � ı

3
. If ı D 0 (straight channel) then

U0.Y / D u0.Y / D 1
4

� Y 2.
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Fig. 3 Velocity profile U0.Y /: Poiseuille flow u0.Y / (dashed line); curved flow for ı D 1 (solid
line)

4 Global Interactive Boundary Layer (GIBL) Model

According to the SCEM, a Uniformaly Valid Approximation (UVA) for the velocity
and pressure fields .U; V; P / is obtained by complementing the core approxima-
tion .U1 D u0 C ıu1; V1 D ıv1; P1 D p0 C ıp1/ by the correcting terms
.UBL; VBL; PBL/ such as:

U D u0.Y /C ı Œu1.X; Y; ı/C UBL.X; �; ı/

V D ı Œv1.X; Y; ı/C "VBL.X; �; ı/

P D p0.X/C ı Œp1.X; Y; ı; "/C�."/PBL.X; �; ı; "/ (4)

where u0.Y / D 1

4
� Y 2 and p0.X/ D �2X

Re
correspond to the Poiseuille flow

in a 2D straight channel, and � D
1
2

˙ Y

"
is the boundary layer variable, with

" the boundary layer thickness. Necessarily lim
�!1UBL D 0, lim

�!1VBL D 0 and

lim
�!1PBL D 0 to retrieve in the core flow the core approximation .U1; V1; P1/. By

analysing the various orders of magnitude, it can be shown that the gauge function
�."/ D O."3/ (see Zagzoule et al.[4] for more details).
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Thus, we obtain Uniformaly Valid Approximation (UVA) equations:

@U

@X
C @V

@Y
D 0

U
@U

@X
C V

@U

@Y
D �@P1

@X
C 1

Re

@

@Y

�
.1CKY /

@U

@Y

�

with the following boundary conditions, U D V D 0, for Y D ˙1

2
. The core

equations being:

u0
@V1

@X
�Ku20 D �@P1

@Y

�u0
@V1

@Y
C V1

du0
dY

D �@.P1 � p0/

@X

A simplified model for the pressure gives

@P1

@X
D dp0

dX
C ı

�
A000 C k0 Z Y

Yc

u20.Y
0/ dY 0 C ıB 0.X/;

where A.X/ and B.X/ are 2 unknown functions to determine. At the median line,
i.e. for Y D Yc , since the UVA V should match the core approximation V1, we
impose the coupling condition V D V1 D �A0.X/u0.

For more details about GIBL, see the companion paper Zagzoule et al.[5].

5 Upstream Interaction

5.1 Upstream Length

In a straight channel, upstream of the wall accident, for x < 0, the GIBL and core
equations become:

U
@U

@x
C V

@U

@y
D �@P1

@x
C 1

Re

@2U

@y2
(5)

@U

@x
C @V

@y
D 0 (6)

�u0
@V1

@y
C V1

du0
dy

D �@.P1 � P0/

@x
(7)

u0
@V1

@x
D �@.P1 � P0/

@y
(8)
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We now consider perturbations of the following form: U D u0 C "u, V D "v and
P1 D P0 C �p1.

If the critical unknown streamwise length scale is �, then, with x D x

�
and thus

V D �V , we obtain from (5), (6), (7), (8) the following perturbation equations:

@u

@x
C @v

@y
D 0 (9)

u0
@u

@x
C v

du0
dy

C "

�
u
@u

@x
C v

@u

@y

�
D ��

"

@p1

@x
C �

Re

@2u

@y2
(10)

�u0
@v1
@y

C v1
du0
dy

D ��
"

@p1

@x
(11)

u0
@v1
@x

D ���
2

"

@p1

@y
(12)

If " is the boundary layer thickness, the first significant perturbation is such as u0 D
O."/, v D O."/ in the boundary layers, which implies from (10) that ",

�

"
and

�

"2Re
are of same order. An upstream interaction takes place if we have a generation of
a significant transverse pressure gradient in the core flow, which implies from (12)

that
��2

"
D O.1/. Thus, we easily obtain (as did Smith [2] by regular asymptotic

expansions) the following crucial orders:

� D O.R1=7e /; " D O.R�2=7
e / and � D O.R�4=7

e /: (13)

5.2 Eigenmode Analysis

For x < 0, the linearized UVA system of equations may be written as :

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

u0
@u

@x
C u0

0v D �@p1
@x

C 1

Re

@2u

@y2

@u

@x
C @v

@y
D 0

u0
@v1
@x

D �@p1
@y

(14)

By replacing v1 by v in the transverse core momentum equation, and by assuming
the following form for u, v and p1 :

u.x; y/ D Ou.y/e�x; v.x; y/ D Ov.y/e�x; p1.x; y/ D Op1.y/e�x (15)
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we obtain the following compact formulation for the perturbation equations:

�

0
@u0 0 1
1 0 0

0 u0 0

1
A Oq D

0
BB@
D2

Re
�u0

0 0

0 �D1 0

0 0 �D1

1
CCA Oq (16)

where Oq D
0
@ Ou

Ov
Op1

1
A, D1 D @

@y
and D2 D @2

@y2
.

In the case of a wall distortion which produces streamwise growing perturbations
starting from x D 0, assuming an exponential x-variation, e�x , for the perturbed
flow means that we’ll consider the � > 0 cases, and it thus allows to recover the
Poiseuille flow as x ! �1, i.e. far upstream the wall distortion.

We just have now to find the eigenvalues and eigenfunctions of the matrixB�1A,
where :

A D

0
BB@
D2

Re
�u0

0 0

0 �D1 0

0 0 �D1

1
CCA and B D

0
@u0 0 1
1 0 0

0 u0 0

1
A (17)

The smallest positive eigenvalue, �1, of B�1A, will give us the longest upstream
influence length of the perturbation, i.e. �.

For Re D 1; 000, the first positive eigenvalue found is �1 ' 2:0441. The Fig. 4a
represents the eigenfunctions of this mode. Notice the asymmetrical form of the Ou
and Op1 profiles, which is related to an asymmetric wall disturbance (see [3]). As
shown in Fig. 4b, by computing this first positive eigenvalue for different Reynolds
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Fig. 4 (a) Profiles of the first mode eigenfunctions Ou (straight line), Ov (dashed line) and Op1 (dotted
line) for Re D 1; 000; (b) e�1x evolution for Re D 103 (solid line), 104 (black circle), 105 (dashed
line), 106 (white square)
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number ranging from 103 to 106, and by rescaling x such as x D x

R
1=7
e

, all the

curves collapse with e�1x being negligible for x < 1. We can thus deduce that the
upstream influence� D O.R1=7e / as in the analysis of the Sect. 5.1.

6 Results

Both the order analysis of Sect. 5.1 and the eigenmode analysis of Sect. 5.2 show that
� D O.R1=7e /. We now compute the flow field using the GIBL model described in
Sect. 4 for different accident types at x D 0.

First, we have considered a straight channel connected at x D 0 to a curved
channel of constant curvature. The Fig. 5a and b represent the median curved length
evolution of V.X; �c/ normalized by V.0; �c/ for, respectively, a fixed ı D 0:2 at
different Reynolds numbers, and a fixed Re D 1; 000 at different wall curvature.
These two results show that V.X; �c/ becomes negligible for x < R1=7e confirming
that � D O.R1=7e /.

Then, we have considered an asymmetrically perturbed straight channel at x D 0

with L D 4H and hu D hl D 0:3. The Fig. 6 represents the streamwise evolution of
the normalized V.x; �c/, where we recover as previously� D O.R1=7e /. Finally, we
have compared the Navier–Stokes, GIBL and eigenmode analysis results. In Fig. 7,
we have plotted the u, v and p1 profiles in the (ii) case Re D 1; 000 and ı D 0:2,
obtained using Navier–Stokes and GIBL. We have also plotted on the same figure
the first eigenmode obtained for Re D 1; 000. All the results are very similar.
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Fig. 5 (ii) case: straight channel connected at x D 0 to a curved channel of constant curvature;
(a) ı D 0:2, Re from 100 to 10; 000; (b) Re D 1; 000, ı from 0:1 to 1
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Fig. 6 (i) case: straight channel perturbed at x D 0 with L D 4H , hu D hl D 0:3; x-evolution
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Uniformly Convergent Finite Difference
Schemes for Singularly Perturbed 1D Parabolic
Reaction–Diffusion Problems

C. Clavero and J.L. Gracia

Abstract In this paper we present a numerical method to approximate the solu-
tion of 1D parabolic singularly perturbed problems of reaction-diffusion type. The
method combines the Crank-Nicolson scheme and the central finite difference
scheme defined on nonuniform special meshes. We give a new proof of the asymp-
totic behavior of the semidiscrete problems resulting after the time discretization.
Numerical results show in practice almost second order of uniform convergence of
the discrete method.

1 Introduction

We consider the 1D parabolic reaction-diffusion singularly perturbed problem

8<
:

ut C Lx;"u D f .x; t/; .x; t/ 2 Q D ˝ � .0; T  
 .0; 1/� .0; T ;
u.x; 0/ D 0; x 2 ˝;
u.0; t/ D u.1; t/ D 0; t 2 .0; T ;

(1)

where the spatial differential operator is given by Lx;"u 
 �"uxx Cˇu. We assume
that 0 < " � 1 and it can be sufficiently small, ˇ is a positive constant and sufficient
regularity and compatibility conditions hold in order that the exact solution u 2
C.6;3/.Q/. The solution of (1) has a parabolic boundary layer of width O.

p
"/ at

x D 0; x D 1 (see [6]) and it can be decomposed as u D v C w, where the regular
component is the solution of the problem vt C Lx;"v D f; in Q; v.x; 0/ D 0,
in ˝; and the boundary conditions are given by the reduced problem zt C ˇz D
f .x; t/; z.x; 0/ D 0: The singular component is the solution of the problem
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8<
:

w.x; 0/ D 0; in ˝;
wt C Lx;"w D 0; in Q;
w.0; t/ D u.0; t/� v.0; t/; w.1; t/ D u.1; t/� v.1; t/:

(2)

Moreover, for 0 � k � 3 and 0 � m � 4 it holds (see [2])





@
kv

@tk





1;Q

� C;





 @
mv

@xm





1;Q

� C.1C ".2�m/=2/; (3)

ˇ̌
ˇ̌@kw

@tk
.x; t/

ˇ̌
ˇ̌ � CB".x/;

ˇ̌
ˇ̌@mw

@xm
.x; t/

ˇ̌
ˇ̌ � C"�m=2B".x/; (4)

where k � k1;Q denotes the L1 norm on Q and B".x/ D e�p
ˇ="x C e�p

ˇ=".1�x/;
and for the cross–derivatives it holds





 @3v

@x2@t





1;Q

� C;

ˇ̌
ˇ̌ @3w

@x2@t
.x; t/

ˇ̌
ˇ̌ � C"�1B".x/: (5)

In [1] it was defined a first order method to approximate problem (1) and here we
are interested in a higher order uniformly convergent method. The analysis of the
uniform convergence of the scheme follows the technique given in [1]. Henceforth,
C denotes a generic positive constant independent of the diffusion parameter " and
also of the discretization parametersN and � .

2 The Time Semidiscretization

In Œ0; T  we consider a uniform mesh !M D ftk D k�; 0 � k � M; � D T=M g.
To discretize in time we use the Crank–Nicolson method defined by

8<
:

u0.x/ D 0; x 2 N̋ ;�
.IC.�=2/Lx;"/un.x/D.�=2/.f .x; tn/Cf .x; tn�1//C.I�.�=2/Lx;"/un�1.x/;
un.0/ D un.1/ D 0; 1 � n � M;

(6)
To prove the uniform convergence of this method we consider the problems

(
.IC.�=2/Lx;"/bun.x/ D .�=2/.f .x; tn/C f .x; tn�1//C .I�.�=2/Lx;"/u.x; tn�1/;bun.0/ Dbun.1/ D 0; 1 � n � M:

(7)

Theorem 1. The global error associated to the method (6) satisfies ku.x; tn/ �
un.x/k1;˝ � C�2; 1 � n � M; where k � k1;˝ denotes the L1 norm on ˝.

Proof. First, from [2] we know that the local error satisfies ku.x; tn/�bun.x/k1;˝ �
C�3; 1 � n � M: In the case of the classical heat equation ut � uxx D 0, the
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resolvent set of the sectorial operator L0 WD �uxx satisfies k.�I C L0/�1k1;˝ �
C=j�j (see for example [5]). If we consider the problem (1), it easily follows the
parameter uniform estimate

k.�I C "L0 C ˇI/�1k1;˝ D k.�C ˇ/�1
�
I C "

�C ˇ
L0
��1

k1;˝ � C

j�C ˇj ;
(8)

proving the stability in the maximum norm of the Crank-Nicolson method. The
result follows from the stability of the method. For ˇ constant we have the full
prove of the stability from (8). For the variable case b WD b.x; t/ 	 ˇ > 0, we
do not know a full prove of the stability following the idea given in the previous
proof based on the resolvent of the differential operator even for classical problems
(without a perturbation parameter). Nevertheless we think that same result can be
obtained for the variable case.

Below, to analyze the error of the spatial discretization we will need to know the
asymptotic behavior of the solution of problem (6). Then, we consider the decom-
position un D vnCwn;where for 1 � n � M , the regular component is the solution
of the problem

�
v0.x/ D 0; x 2 ˝;˚
.IC.�=2/Lx;"/vn.x/D .�=2/.f .x; tn/Cf .x; tn�1//C.I�.�=2/Lx;"/vn�1.x/;

(9)
where the values at the boundaries x D 0 and x D 1 are given by

�
.I C .�=2/ˇ/vn.x/ D .�=2/.f .x; tn/C f .x; tn�1//C .I � .�=2/ˇ/vn�1.x/;
v0 D 0;

and the singular component is the solution of the problem

8<
:

w0.x/ D 0; x 2 ˝;�
.I C .�=2/Lx;"/wn.x/ D .I � .�=2/Lx;"/wn�1.x/;
wn.0/ D un.0/� vn.0/; wn.1/ D un.1/� vn.1/:

(10)

Lemma 1. The regular component solution of (9) satisfies

jvxx.x; tn/� vnxx.x/j � C�;





d
kvn

dxk





1;˝

� C.1C "1�k=2/; 0 � k � 4: (11)

The singular component solution of (10) satisfies

jwxx.x; tn/ � wnxx.x/j � C�"�1B".x/;
ˇ̌̌
ˇd

kwn

dxk
.x/

ˇ̌̌
ˇ � C"�k=2B".x/; 0 � k � 4:

(12)
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Proof. We only show the proof for the regular component; for the singular compo-
nent it is similar. The proof proceeds by induction. For n D 1 the proof follows
similar ideas to these ones in [2] for a coupled reaction-diffusion system. Note that
now v1 D Ov1, where Ov1 is the solution of the first step of the auxiliary problem
(7). We assume that the bounds are valid for 0 � n � 1 < M and we ana-
lyze the next time level n. Using that kLx;"vn�1.x/k1;˝ � C , the hypothesis
of induction and applying the maximum principle to (9) at the nth time level, it
follows that kvn.x/k1;˝ � C . In addition, from the special choice of the bound-
ary conditions vn.0/ and vn.1/, we have that vnxx.0/ D vnxx.1/ D 0, and using that
kvn�1
xx .x/k1;˝ � C , and k"vn�1

xxxx.x/k1;˝ � C , following to Madden and Stynes
[3] we can deduce kvnx.x/k1;˝ � C; kvnxx.x/k1;˝ � C . Differentiating twice
equation (9), we have that .vxx.x; tn/ � vnxx/ is solution of the problem

8<
:
�
I C .�=2/Lx;"

�
.vxx.x; tn/ � vnxx.x// D g1.x; tn; tn�1/;

vxx.0; tn/� vnxx.0/ D 0; vxx.1; tn/� vnxx.1/ D 0:

(13)

Using that kvx.x; t/k1;Q � C , kvxx.x; t/k1;Q � C , kvxxt .x; t/k1;Q � C;

kvn�1
xx .x/k1;˝ � C , k"vn�1

xxxx.x/k1;˝ � C , and the hypothesis of induction, it
follows that kg1.x; tn; tn�1/k1;˝ � C� . Then, applying the maximum principle
to (13), easily we can deduce that kvxx.x; tn/ � vnxx.x/k1;˝ � C� , and therefore
kvnxx.x/ � vn�1

xx .x/k1;˝ � C� follows.
For higher order derivatives, differentiating twice (9), we have

jLx;"vnxx.x/j D jfxx.x; tn/C fxx.x; tn�1/C .2=�/.vn�1
xx � vnxx/�Lx;"vn�1

xx j � C;

and therefore kvnxxxx.x/k1;˝ � C"�1. From the bounds for the second and fourth

derivatives, we can obtain kvnxxx.x/k1;˝ � C"�1=2.

3 The Fully Discrete Scheme

To discretize in space we consider a nonuniform mesh ˝
N D f0 D x0 < : : : <

xN D 1g condensing the grid points in the boundary layers. We consider two
different special nonuniform meshes:

The Shishkin mesh [4]. It is a piecewise uniform mesh, depending on two
transition points which are defined by means of the transition parameter

� D min
˚
1=4; �0

p
" lnN

�
; (14)

where �0 is a constant to be fixed later. A uniform mesh is placed in Œ0; �, Œ�; 1��,
and Œ1� �; 1, such that x0 D 0, xN=4 D � , x3N=4 D 1� � and xN D 1. Therefore,
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the mesh points are given by xi D 4i�=N; for i D 0; 1; : : : ; N=4, xi D � C
2.i � N=4/.1 � 2�/=N; for i D N=4 C 1; : : : ; 3N=4 and xi D 1 � � C 4.i �
3N=4/�=N; for i D 3N=4C 1; : : : ; N .

The Vulanovic mesh [7]. This mesh is a generalized Shishkin mesh constructed
by using a suitable generating function @, which also depends on two transition
points. To simplify, we use the same parameter � given in (14). The grid points are
defined by xj D @.j=N /; j D 0; 1; : : : ; N=2, with @ 2 C 2Œ0; 1=2 and

@.z/ D
�
4�=N; z 2 Œ0; 1=4;
p.z � 1=4/3 C 4�.z � 1=4/C �; z 2 Œ1=4; 1=2:

The coefficient p is such that @.1=2/D 1=2 and the mesh is symmetric with respect
to the point x D 1=2. Note that in Œ0; � and Œ1 � �; 1 the mesh points are the same
than in the Shishkin mesh. Otherwise, in Œ�; 1 � � it is nonuniform but the step
sizes satisfy jhiC1 � hi j � CN�2; i D N=4; : : : ; 3N=4, where hi D xi � xi�1,
i D 1; � � � ; n.

From now on we assume that any of the two meshes is nonuniform. Otherwise
a classical analysis of the convergence can be performed deducing second order
convergence in time and space. On these meshes we approximate problem (6) by
using the classical central difference scheme

8̂
<̂
ˆ̂:

U 0i D 0; 0 � i � N;8<
:
.IC.�=2/LN /U ni D .�=2/.f .xi ; tn/C f .xi ; tn�1//C .I � .�=2/LN /U n�1

i ;

0 � i � N;

U n0 D U nN D 0; 1 � n � M;
(15)

with LNZi WD �"ı2Zi C ˇZi , and

ı2Zi D .2=.hi C hiC1// ..ZiC1 �Zi /=hiC1 � .Zi �Zi�1/=hi / :

The convergence of this method is analyzed at each time level by using an inductive
argument. In that proof we will need some properties of the transition operator .I C
.�=2/LN /�1.I � .�=2/LN /.
Lemma 2. Assume that �h D Œ�ai ci � bi  is a tridiagonal matrix with
ai ; ci ; bi >0 and





.I C .�=2/�h/
�1




1

� 1=.1C ˇ�=2/;

and here the norm is the matrix maximum norm. Then, the eigenvalues �i of the
matrix .I C .�=2/�h/

�1.I � .�=2/�h/ are real and they satisfy

�1 < �i � 1 � ˇ�=2

1C ˇ�=2
< 1:

and therefore its spectral radius is bounded by 1.
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Proof. Note that if �i are the eigenvalues of matrix .IC.�=2/�h/�1.I�.�=2/�h/,
then the eigenvalues of matrix .I C .�=2/�h/

�1 are .�i C 1/=2, and using that
�.A/ � kAk, for any matrix norm, then we easily deduce that

j.�i C 1/=2j � 1=.1C ˇ�=2/: (16)

Noting that �h is a tridiagonal matrix, irreducible, with positive diagonal entries
and negative off diagonal entries, then it is possible to prove that its eigenvalues are
real, simple and positive. Using these properties in (16) the result trivially follows.

Remark 1. Note that the operator LN belongs to the class of operators given in
Lemma 2 using the M -criterium with e D .1; : : : ; 1/t . Although this condition on
the spectral radius ensures the boundedness of the computed solution it does not
guarantee convergence unless it holds





Œ.I C .�=2/LN /�1.I � .�=2/LN /k




1

< C; 8k: (17)

The proof of this result is an open question but in the section devoted to the numer-
ical experiments we will show some numerical evidences corroborating that this
property is true.

To obtain bounds for the error of the spatial discretization, similarly to the solu-
tion of the continuous and semidiscrete problems, the solution U D V CW of (15)
is decomposed in a regular and singular part given by

8̂
<̂
ˆ̂:

V 0i D 0; 0 � i � N;8<
:
.I C .�=2/LN /V ni D .�=2/.f .xi ; tn/Cf .xi ; tn�1//C .I � .�=2/LN /V n�1

i ;

0 � i � N;

V n0 D vn.0/; V nN D vn.1/; 1 � n � M;
(18)8<

:
W 0
i D 0; 0 � i � N;�
.I C .�=2/LN /W n

i D .I � .�=2/LN /W n�1
i ; 0 � i � N; 1 � n � M;

W n
0 D wn.0/; W n

N D wn.1/:
(19)

Theorem 2. Assume that bounds (17) hold and that the constant �0 used to define
the Shishkin and Vulanovic meshes satisfies �0 	 2=

p
ˇ. Then, if the method (15)

is constructed on the Shishkin the error satisfies

kU ni � un.xi /k1;˝
N � C.N�1"C .N�1 lnN/2/; (20)

and on the Vulanovic meshes the error satisfies

kU ni � un.xi /k1;˝
N � C.N�1 lnN/2; (21)

where k � k1;˝
N denotes the discrete maximum norm on ˝

N
.
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Proof. Taking Taylor expansions for the truncation error .I C .�=2/LN /.V ni �
vn.xi // and using the bounds (11) on the derivatives of the regular component, we
can obtain

ˇ̌
ˇ̌.I C .�=2/LNx;"/.V

n
i � vn.xi //

ˇ̌
ˇ̌ � C�N�1.N�1 C "/

C
ˇ̌̌
ˇ.I � .�=2/LNx;"/.V n�1

i � vn�1.xi //
ˇ̌̌
ˇ;

on the Shishkin mesh, and

ˇ̌
ˇ̌.I C .�=2/LNx;"/.V

n
i �vn.xi //

ˇ̌
ˇ̌ � C�N�2C

ˇ̌
ˇ̌.I � .�=2/LNx;"/.V n�1

i �vn�1.xi //
ˇ̌
ˇ̌;

on the Vulanovic mesh. Assuming that all the powers of the transition parameter

.I C �

2
LN /�1.I � �

2
LN / are parameter uniform bounded (17), using an inductive

argument and the discrete maximum principle, we can prove

kV ni � vn.xi /k1;˝
N � CN�1.N�1 C "/; kV ni � vn.xi /k1;˝

N � CN�2;

on the Shishkin and Vulanovic meshes respectively.
For the singular component, using a standard argument we obtain bounds in

Œ�; 1� � proving that kW n
i � wn.xi /k1;˝

N � CN�2; xi 2 Œ�; 1� �. Second, on

the set .0; �/[ .1��; 1/, Taylor expansions are taken for the truncation error. From
Lemma 1 and using again the hypothesis (17), for both the Shishkin and Vulanovic
meshes we can prove

ˇ̌
ˇ̌.I C .�=2/LNx;"/.W

n
i � wn.xi //

ˇ̌
ˇ̌ � C.N�1 lnN/2; xi 2 .0; �/ [ .1 � �; 1/:

Using the discrete maximum principle on the intervals Œ0; � and Œ1��; 1we deduce
k.W n

i � wn.xi //k1;˝
N � C.N�1 lnN/2; xi 2 .0; �/[ .1��; 1/. Then, the result

follows from the triangular inequality.

From Theorems 1 and 2 directly follows the main result of this paper.

Theorem 3. LetU be the numerical solution of (15) and u be the solution of (1). We
assume that bounds (17) hold and that the constant �0 used to define the Shishkin
and Vulanovic meshes satisfies �0 	 2=

p
ˇ. Then, on the Shishkin mesh the error

satisfies

kU ni � u.xi ; tn/k1;˝
N � C.N�1"C .N�1 lnN/2 C �2/; (22)
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and on the Vulanovic mesh the error satisfies

kU ni � u.xi ; tn/k1;˝
N � C..N�1 lnN/2 C �2/: (23)

4 Numerical Experiments

We consider the test problem

ut � "uxx C ..1C x2/=2/u D et � 1C sin.	x/; .x; t/ 2 .0; 1/� .0; 1; (24)

with homogeneous initial and boundary conditions. Using a variant of the double
mesh principle, we estimate the numerical errors by

D
";N;�
j;n D jU ";N;�j;n � U

";2N; �
2

j;n j:

The uniform errors and the uniform orders of convergence are approximated by

DN;� D max
"

max
j;n

D
";N;�
j;n ; quni D log .DN;�=D2N;�=2/= log 2:

Although we only have theoretically almost second order convergence for Shishkin
meshes when " is sufficiently small, in practice same results have been obtained
for Shishkin and Vulanovic meshes. Table 1 displays the uniform errors and the
uniform orders of convergence, for the set of the values " 2 f20; 2�2; : : : ; 2�30g,
taking �0 D 2 to define the mesh. From these results we observe almost second
order convergence in agreement with Theorem 3.

To corroborate Lemma 2, the spectral radius for the transition operator associated
with problem (14) is given in Table 2. In this table the value of the upper bound
R.ˇ; �/ D .1 � ˇ�=2/=.1 C ˇ�=2/ also appears, and we observe that for fixed
values of N and � the spectral radius stabilizes and it is very close to the theoretical
upper bound R.ˇ; �/. For large " we see that there is a discrepancy with the upper
bound although it is less than 1 as it was theoretically proved.

Table 3 displays the matrix maximum norm for the transition operator for some
values of ", N and � , observing that the infinity norm is less than 1.

Table 1 Maximum uniform errors and orders of uniform convergence

" N D 32 N D 64 N D 128 N D 256 N D 512 N D 1024
� D 0:2 � D 0:2=2 � D 0:2=22 � D 0:2=23 � D 0:2=24 � D 0:2=25

DN;� 0.117E-1 0.494E-2 0.166E-2 0.578E-3 0.192E-3 0.595E-4
quni 1.247 1.569 1.527 1.590 1.690
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Table 2 Spectral radius and R.ˇ; �/

" N D 16 N D 32 N D 64 N D 128 N D 256
� D 0:2 � D 0:2=2 � D 0:2=22 � D 0:2=23 � D 0:2=24

20 0.98048 0.99026 0.99513 0.99756 0.99878
2�6 0.85554 0.92501 0.96178 0.98070 0.99030
2�12 0.89877 0.94808 0.97369 0.98676 0.99336
2�18 0.90369 0.95080 0.97511 0.98747 0.99372
2�24 0.90463 0.95111 0.97528 0.98756 0.99376
2�30 0.90474 0.95120 0.97529 0.98757 0.99377
R.ˇ; �/ 0.90476 0.95122 0.97531 0.98758 0.99377

Table 3 Maximum norm for the transition operator

N D 16 N D 32 N D 64 N D 128 N D 256
� D 0:2 � D 0:2=2 � D 0:2=22 � D 0:2=23 � D 0:2=24

" D 10�4 0.9044794 0.9511403 0.9752864 0.9875717 0.9937679
" D 10�6 0.9047589 0.9512181 0.9753083 0.9875775 0.9937694
" D 10�8 0.9047617 0.9512194 0.9753086 0.9875776 0.9937694
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Finite Element Approximation
of the Convection-Diffusion Equation:
Subgrid-Scale Spaces, Local Instabilities
and Anisotropic Space-Time Discretizations

Ramon Codina

Abstract The objective of this paper is to give an overview of the finite element
approximation of the convection-diffusion equation that we have been developing
in our group during the last years, together with some recent methods. We discuss
three main aspects, namely, the global stabilization in the convective dominated
regime, the treatment of the local instabilities that still remain close to layers when
a stabilized formulation is used and the way to deal with transient problems.

The starting point of our formulation is the variational multiscale framework. The
main idea is to split the unknown into a finite element component and a remainder
that is assumed that the finite element mesh cannot resolve. A closed form expres-
sion is then proposed for this remainder, referred to as subgrid-scale. When inserted
into the equation for the finite element component, a method with enhanced stabil-
ity properties is obtained. In our approach, we take the space for the subgrid-scales
orthogonal to the finite element space.

Once global instabilities have been overcome, there are still local oscillations
near layers due to the lack of monotonicity of the method. Shock capturing tech-
niques are often employed to deal with them. Here, our point of view is that this lack
of monotonicity is inherent to the integral as duality pairing intrinsic to the varia-
tional formulation of the problem. We claim that if appropriate weighting functions
are introduced when computing the integral, giving a reduced weight to layers, the
numerical behavior of the method is greatly improved.

The final point we treat is the time integration in time-dependent problems. Most
stabilized finite element method require a link between the time step size of clas-
sical finite difference schemes in time and the mesh size employed for the spatial
discretization. We show that this can be avoided by considering the subgrid-scales
as time dependent, and discretizing them in time as well. That allows us to perform
a complete numerical analysis which is not restricted by any condition on the time
step size, thus permitting anisotropic space-time discretizations.
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1 Two-Scale Approximation of the Convection-
Diffusion-Reaction Equation

The objective of this section is to summarize the basic stabilized finite element
method we use to solve the convection-diffusion-reaction equation (CDRE) in the
case in which diffusion is small, that is to say, convective effects are dominant. It is
not our intention here neither to describe the details of the problem, which are well
known, not to give a fair acknowledgment of the key contributions to design the final
method that can be found in the literature. This is why, apart from our own work,
only reference to the landmark paper [11] is made. References to other contributions
can be consulted in those cited along this work.

Let us start with the problem we are interested in. For the purposes of this section
it is enough to consider the stationary CRDE with homogeneous Dirichlet boundary
conditions. The problem consists of finding u such that

Lu WD �k�u C a � ru C su D f in ˝

u D 0 on @˝

where k > 0 is the diffusion coefficient, s 	 0 the reaction coefficient, a 2 Rd is
the advection coefficient and f a given datum. The problem is posed in the domain
˝ � Rd (d D 2; 3). Constant coefficients will be assumed throughout, for the sake
of conciseness.

The variational form of the problem can be written as follows: find u 2 V D
H 1
0 .˝/ such that

B.u; v/ D hf; vi 8v 2 V (1)

where:

B.u; v/ D k.ru;rv/C .a � ru; v/C s.u; v/

As usual, .�; �/ denotes the L2 inner product and h�; �i the integral of the product of
two functions, including the duality pairing.

The conforming Galerkin finite element approximation of the problem is stan-
dard. If Vh � V is a finite element space to approximate V , it consists of finding
uh 2 Vh such that

B.uh; vh/ D hf; vhi 8vh 2 Vh
Again for simplicity, we will consider that the finite element partition associated to
Vh is uniform, h being the size of the element domains.

It is well known that this formulation lacks stability when k is small. To justify
the method we propose, it is interesting to start trying to elucidate which is the
stability it has with some more detail than what is usual. If we take vh D uh it is
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readily seen that

B.uh; uh/ D kkruhk2 C skuhk2 (2)

The question is, what control, if any, can be obtained over the convective term? That
is to say, is it possible to have a bound for ka � ruhk? To answer this fundamental
question, we may obtain an improved stability estimate for the Galerkin method in
the form of an inf-sup condition. If we take the test function as vh;0 D �Ph.a � ruh/,
with the parameter � to be defined and Ph being the L2 projection onto Vh, we
obtain:

B.uh; vh;0/ & �kPh.a � ruh/k2

� kkruhkCinv

h
�kPh.a � ruh/k

� skuhk�kPh.a � ruh/k

where & stands for 	 up to positive constants and Cinv is the constant in standard

inverse inequalities. If the parameter � is chosen such that � � min
n
h2

C2
invk
; 1
s

o
then

B.uh; vh;0/ & �kPh.a � ruh/k2 � kkruhk2 � skuhk2

The last two terms can be controled, according to (2). It is then easily seen that
B.uh; vh/ & kkruhk2 C skuhk2 C �kPh.a � ruh/k2, with vh D uh C ˇvh;0
(ˇ sufficiently small), and that kkrvh;0k2 C skvh;0k2 C �kPh.a � rvh;0/k2 .
�kPh.a � ruh/k2, from where an inf-sup condition follows. Therefore, we may con-
clude that only control over �kP?

h
.a � ruh/k2 is missing, with P?

h
D I � Ph, the

projection orthogonal to the finite element space. This control is, at least, what any
stabilized method must provide.

Let us describe now the formulation we propose. It is based on the splitting of the
unknown u in a component uh which can be resolved by the finite element space,
and a remainder, that will be called subgrid scale (SGS). An approximation for the
SGS is required to define a particular numerical formulation. The framework we use
in based on [11]. Let V D Vh˚ QV , where QV is the space for the SGS. Then, problem
(1) unfolds into two variational equations: we have to seek uh 2 Vh and Qu 2 QV such
that

B.uh; vh/C B.Qu; vh/ D hf; vhi 8vh 2 Vh
B.uh; Qv/C B.Qu; Qv/ D hf; Qvi 8Qv 2 QV

Suppose for a moment that QV is made of smooth functions (which are anyhow dense
in the complement of Vh). Then we may write

B.uh; vh/C hQu;L�vhi D hf; vhi 8vh 2 Vh (3)

hLuh; Qvi C hLQu; Qvi D hf; Qvi 8Qv 2 QV (4)
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where second derivatives applied to finite element functions have to be understood in
the sense of distributions. The problem now can be stated as: how do we model Qu?.
At this point is where approximations are required and different methods may be
devised according to the approximation chosen.

The first approximation we shall use is that

hLvh; Qvi �
X
K

.Lvh; Qv/K 
 .Lvh; Qv/h (5)

This essentially means that jumps of derivatives of finite elements functions across
edges of the mesh are neglected. We shall stick to this assumption, although it can
be relaxed, as explained in [9].

The second approximation, which is definitely the most crucial, is

hLQu; Qvi � ��1.Qu; Qv/ where ��1 D c1
k

h2
C c2

jaj
h

C c3s (6)

where c1, c2 and c3 are numerical parameters. There are many ways to arrive at this
expression, which we shall not describe. For an overview, see [5].

Equation (6) can be understood as a lumping of the equation for the SGS. This
lumping is needed to make this equation directly solvable, without the need to
introduce additional degrees of freedom into the problem. Both (5) and (6) can be
justified from an approximate Fourier analysis requiring ��1 � kLk [7]. Having
introduced them, the final problem to be solved is

B.uh; vh/C .Qu;L�vh/h D hf; vhi 8vh 2 Vh (7)

.Luh; Qv/h C ��1.Qu; Qv/ D hf; Qvi 8Qv 2 QV (8)

which has to be compared with (3)–(4).
At this point we may already check which is the stability of the two scales

introduced, namely, uh and Qu. Using standard inverse inequalities, we have that

B.uh; uh/C .Qu;L�uh/h C .Luh; Qu/h C ��1.Qu; Qu/
D kkruhk2 C skuhk2 C 2.Qu;�k�uh C suh/h C ��1kQuk2

& kkruhk2 C skuhk2 � 2
�
�
k

h2
C 2inv

�
kkruhk2

� 2.�s/skuhk2 � ��1

2
kQuk2 C ��1kQuk2

& kkruhk2 C skuhk2 C ��1kQuk2

where the last step holds for an adequate choice of the constants in (6). We observe
that we have the same control on the finite element component as for the Galerkin
method plus additionalL2 control on the SGS.
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The SGS is so far undefined. To choose the subspace QV we consider non-
conforming approximations, and thus QV might not be a subspace of H 1

0 .˝/ (see
[9]). If QP is the L2 projection to QV , we have from (8) that

Qu D � QP .f � Luh/

There are two obvious options:

	 Choice I:

QV � LVh C spanff g ” Qu D �.f � Luh/

In this case, QP is the identity when applied to the finite element residual f �Luh.
This option is the most common in the literature. It yields to stable formulations,
as we shall see. From the conceptual point of view, the danger it has is that the
assumption Vh \ QV D f0g, crucial to derive the method, may not hold.

	 Choice II:

QV D V ?
h ” Qu D �P?

h .f � Luh/

This option was proposed in [6, 7]. In fact, it can be shown that if the SGS are
further approximated as

Qu � ��P?
h .a � ruh/ (9)

the method keeps the order of accuracy. Some care is needed though in the
treatment of boundary effects.

Once the two choices have been described, let us write down the final finite ele-
ment problem to be solved and obtain a simple stability estimate. For choice I the
final problem is

B.uh; vh/C �.Luh;�L�vh/h D hf; vhi C �.f;�L�vh/h

It is immediately checked that

B.uh; uh/C �.Luh;�L�uh/h & kkruhk2 C skuhk2 C �ka � ruhk2

Therefore, this method provides control over the whole convective term.
For choice II the finite element problem is

B.uh; vh/C �.P?
h .a � ruh/; P

?
h .a � rvh//h D hf; vhi

and now we have that

B.uh; uh/C �.P?
h .a � ruh/; P

?
h .a � ruh//h

& kkruhk2 C skuhk2 C �kP?
h .a � ruh/k2
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Thus, this simple stability estimate shows that the method provides control only in
the component of the convective term orthogonal to the finite element space. How-
ever, the term �kP?

h
.a � ruh/k2 is precisely what the Galerkin method lacks. It is

not difficult to foresee that one can in fact obtain optimal stability with choice II.
The results of the numerical analysis of the formulations arising both from choice

I and from choice II is summarized next. Let:

jjjvjjj2 WD kkrvk2 C skvk2 C �ka � rvk2

E.h/2 WD
�
k

h2
C jaj

h
C s

�
h2.pC1/juj2pC1 � ��1h2.pC1/juj2pC1

where jujpC1 is the HpC1 seminorm of the exact solution u. If Bstab is the bilinear
form of any of the two stabilized methods introduced, it holds

inf
uh2Vh

sup
vh2Vh

Bstab.uh; vh/

jjjuhjjjjjjvhjjj 	 C > 0 Stability

jjju � uhjjj . E.h/ Optimal convergence

From these results, there are some remarks to be made:

	 The stability and convergence estimates presented are optimal.
	 These estimates remain meaningful for all values of the physical parameters,

which is the main goal of stabilized finite element methods.
	 There is no need to refer to “hpC1=2” estimates.

2 Avoiding Local Instabilities

The methods proposed in the previous section yield stability and convergence in
global norms. However, local oscillations may still remain in regions where the
solution exhibits sharp layers. Even though these oscillations might be considered
acceptable in linear problems, in nonlinear situations they may lead to a global fail-
ure of iterative schemes. Therefore, eliminating them in linear problems is a required
step to extend the formulation to nonlinear equations. Methods aiming to avoid these
local oscillations are often termed “shock capturing” or “discontinuity capturing”
(DC) techniques.

To start, let us describe the guidelines to design DC methods as presented in [4]
and references therein. Suppose that s D 0 and let

ak D a � ruh
jruhj if jruhj 6D 0; ak D 0 otherwise
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The following observations are crucial:

	 For regular P1 elements, the discrete maximum principle (DMP) holds if an
artificial diffusion kart is added, kart being of the form

kart D 1

2
˛hjakj; ˛ 	 C � 1

Pek
; Pek D jakjh

2k
(10)

where C is a constant that depends on the shape of the elements.
	 If the DMP holds, L1 stability can be proved.
	 If a numerical scheme is linear then it is at most first order accurate in L1

(a reformulation of Godunov’s theorem).

In view of these facts, DC methods may be designed trying to satisfy the DMP, at
least in some simple situations, and need to be nonlinear.

The first family of DC methods proposed is that in which an artificial diffusion
depending on the finite element residual is added to the basic stabilized formulation.
The essential idea of these residual based DC methods is to design the artificial
diffusion in a way similar to (10) but computing kart with

jR.uh/j
jruhj instead of jakj D ja � ruhj

jruhj
where R.uh/ D f � Luh D f � .�k�uh C a � ruh C suh/ (s 	 0 may be con-
sidered now). The resulting method is consistent, in the sense that if it is applied to
the exact solution u the residual is zero.

The semilinear form of the problem is

Bdc.uh; vh/ D Bstab.uh; vh/C
X
K

.kdcruh;rvh/K (11)

with

kdc D 1

2
˛h

jR.uh/j
jruhj (12)

Several DC methods of this type can be found in the literature (see references in [4]).
A refinement of this approach was proposed in [4]. The idea is that the diffusion

introduced by the basic stabilization method can be shown to satisfy the require-
ments posed by the DMP (in some model cases), but it is only introduced along the
streamlines. Therefore, kart needs to be added only in the crosswind direction. This
is accomplished by adding a diffusive term with the diffusion tensor

kdc D 1

2
˛h

jR.uh/j
jruhj

�
I � 1

jaj2 a ˝ a

�
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to the basic stabilized finite element method, I being the second order identity
tensor.

Following the guidelines to design DC methods discussed above, a different pos-
sibility to make the method consistent while introducing additional diffusion is to
make it proportional to the projection of the gradient orthogonal to the finite element
space. Thus, if kart is the diffusion to be added, in order to make it active only in
regions of sharp gradients which cannot be resolved by the finite element mesh, it
can be multiplied by

jP?
h
.ruh/j

jruhj (13)

The semilinear form of the resulting problem is again (11), but now with kdc

given by

kdc D 1

2
˛.jajhC sh2/

jP?
h
.ruh/j

jruhj
instead of (12). Note that, apart from the factor (13), the artificial diffusion in this
method is taken as 1

2
˛.jajhCsh2/, independent of the finite element solution. As in

the residual based DC methods, this diffusion can be introduced only in the cross-
wind direction. Even though we have not published before this proposal, we have
used it routinely in applications requiring a resolution of sharp gradients without
local oscillations.

To conclude this section, let us describe another approach in which we have been
working even if it has not been published before. The idea is as follows. Consider the
problem Lu D f . The discrete problem can be formally written as a “projection”
of this equation onto the finite element space, using the integral as “inner product”.
If Ph is this projection, it is well known that it is non-monotone, in the sense that if
' is discontinuous, Ph.'/ is oscillating. Therefore, if local oscillations have to be
avoided, a natural option seems to be to modify the projection. If, moreover, these
oscillations appear in regions of sharp gradients, it seems reasonable to introduce
a weighting function � in the integral to lighten the weight of sharp layers. This
intuitive idea has many possible realizations. A possibility that we have successfully
checked consists of replacing

hLuh; vhi D hf; vhi by hLuh; �vhi D hf; �vhi

where � ! �0  1 as jruhj ! 1. An example of weight that we have tested is
� D �0 C .1 � �0/ exp .�jruhj=G/, where G is a reference gradient. It is obvious
that the method can be considered of Petrov-Galerkin type, with test function �vh.

This approach has the following properties:

	 The diffusion term is non-symmetric.
	 The partition-of-unity property is lost.
	 The numerical performance that we have observed in several examples is excel-

lent.



Finite Element Approximation of the Convection-Diffusion Equation 93

3 Time Dependent Problems

Let us move our attention now to time dependent problems. The statement of the
initial and boundary problem we are interested in is:

@tu C Lu D f in ˝; t > 0

u D 0 on @˝; t > 0

u D u0 in ˝; t D 0

Our approach consists in extending the scale splitting introduced in Sect. 1 to this
problem. The time dependent counterpart of (3)–(4) is

.@tuh C @t Qu; vh/C B.uh; vh/C hQu;L�vhi D hf; vhi 8vh 2 Vh
.@tuh C @t Qu; Qv/C hLuh; Qvi C hLQu; Qvi D hf; Qvi 8Qv 2 QV

The approximations used to arrive at (7)-(8) now lead to

.@tuh C @t Qu; vh/CB.uh; vh/C .Qu;L�vh/h D hf; vhi 8vh 2 Vh
.@tuh C @t Qu; Qv/C .Luh; Qv/h C ��1.Qu; Qv/ D hf; Qvi 8Qv 2 QV

If the space of SGS is chosen as orthogonal to the finite element space and
approximation (9) is used, the problem to be solved becomes

.@tuh; vh/C B.uh; vh/ � .Qu; a � rvh/ D hf; vhi 8vh 2 Vh (14)

.@t Qu; Qv/C .a � ruh; Qv/C ��1.Qu; Qv/ D 0 8Qv 2 V ?
h (15)

The important point is that the SGS have been considered time dependent [7, 10].
Their evolution equation can be written as

@t Qu C ��1 Qu D �P?
h .a � ruh/

If the time derivative of the SGS is neglected, they can be inserted into (14) to
obtain a closed problem for the finite element component alone. The full analysis of
the resulting formulation can be found in [1, 8].

It is interesting to analyze the dissipative structure of problem (14)-(15). This
was done in [12] in the more complex case of the Navier–Stokes equations. Here
we will apply the results of the cited reference to the CDRE.

If, for each fixed t , we take vh D uh and Qv D Qu in (14)-(15) it is readily checked
that

d

dt
kuhk2 C Dh CT D Ph (16)

d

dt
kQuk2 C QD�T D QP (17)
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with

Dh D kkruhk2 C skuhk2 Dissipation of the finite element scale

QD D ��1kQuk2 Dissipation of the SGS

T D .Qu;L�uh/h D �.Qu; a � rvh/ Energy transfer between scales

These definitions have been introduced thinking of the L2 norm of the unknown as
an energy. In this case, Ph and QP can be considered the external power applied to the
finite element scale and the SGS, respectively. From (16)-(17), with the definition
of the different terms introduced above, we may draw an important conclusion. It is
observed that the “energy balance” for the finite element component is the same as
for the Galerkin method plus the addition of T , which on average can be shown to
be positive. In turn, this additional dissipation is precisely injected with a negative
sign in the energy balance equation for the SGS. Therefore, the global energy is
conserved, but there is an energy transfer from the “large” scales to the “small”
scales. This is the correct dissipative structure for dissipative systems. In particular,
it is crucial for the correct modelling of turbulence.

Let us present some stability and convergence results for (14)-(15). If T is the
final time of analysis, let us start with stability estimates for T < 1. Suppose that
s D 0 for simplicity. Taking vh D uh, Qv D Qu and integrating on Œ0; t 0, t 0 � T in
(14)-(15) we obtain

kuh.t
0/k2 C kQu.t 0/k2 C

Z t 0

0

kkruhk2dt C
Z t 0

0

��1kQuk2dt

�
Z t 0

0

1

k
kf k2�1dt C ku0k2

from where

kuhk 2 L1.0; T /; k1=2kruhk 2 L2.0; T /
kQuk 2 L1.0; T /; ��1=2kQuk 2 L2.0; T /

These results indicate that the stability of (14)-(15) is the same as for the Galerkin
method plus additional stability on the SGS.

Let us move now to the long term behavior, that is to say T D 1. The results
to be presented are proved in [3] for the incompressible Navier–Stokes equations.
Taking vh D uh, Qv D Qu and using the classical Gronwall lemma it is found that

kuhk 2 L1.0;1/; kQuk 2 L1.0;1/

and also

lim
t!1 sup .kuhk C kQuk/ � C

j˝j2=d
k

kf kL1.0;1IL2.˝//
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from where we conclude that there is a L2.˝/˚ L2.˝/-absorbing set in Vh ˚ QV ,
not only in Vh, as for the Galerkin method.

We may also obtain stronger stability estimates using additional regularity
assumptions. Using the uniform Gronwall lemma it is found that

k1=2kruhk 2 L1.0;1/; ��1=2kQuk 2 L1.0;1/

and

lim
t!1 sup

�
kkruhk2 C ��1kQuk2 � C

�
a1 C a2

Qt
	

exp.a3/

for certain constants a1, a2 and a3 that behave as k�4. For the Navier–Stokes
equations, this leads to the existence of an attractor (see [3]).

Finally, let us present a simple convergence result. Suppose that the time interval
is discretized using a uniform partition of size ıt . Let us denote with a superscript n
the approximation to u and tn D nıt . If the backward Euler scheme is used for the
time integration, there holds

ku.tN /� uNh k2 C
NX
nD1

ıtkkrun � runhk2

C
NX
nD1

ıt�ka � run � a � runhk2 � Ih C Iıt

where Iıt and Ih are optimal interpolation errors in space and time (for a proof for
the Stokes problem, see [2]).

From the stability and convergence properties described, and also from the design
of the formulation itself, the following properties are particularly relevant:

	 No relationship between ıt and h is required. Anisotropic space-time discretiza-
tions are possible.

	 No instabilities for small ıt can appear.
	 � is independent of ıt . “Consistent” behavior is obtained for t ! 1 (the steady

state solution does not depend on ıt).

These properties do not hold for the most popular stabilized finite element methods
for transient problems that can be found in the literature.

4 Conclusions

In this work we have summarized the formulation we have developed during the last
years to approximate flow problems and, in particular, the CDRE. The most salient
aspect we would like to stress is that in the splitting of the unknown into finite
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element scales and SGS, the latter have their own “personality” and, in particular,
their own variational equation.

We favor the choice of taking the SGS orthogonal to the finite element space.
This leads to several advantages, in particular for transient problems. In this case,
dynamic SGS solve inconsistencies encountered in several stabilized formulations
(order of space and time discretization, link between h and ıt , steady-state depen-
dence on ıt , etc.) In general, stability properties of the continuous problem are
inherited by the finite element solution plus the SGS. Extension to anisotropic
meshes is possible, the approach relying on appropriate definitions of � and, obvi-
ously, anisotropic interpolation estimates. In applications, such estimates are usually
not feasible. Methods with intrinsic stability are mandatory.

We have also discussed discontinuity capturing techniques, which are required
if local instabilities need to be avoided. This is important in nonlinear problems in
which sharp layers may be developed. Classical residual based DC methods have
been reviewed, and two new ideas have been proposed.
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A Two-Weight Scheme for a Time-Dependent
Advection-Diffusion Problem

Naresh M. Chadha and Niall Madden

Abstract We consider a family of two-weight finite difference schemes for a time-
dependent advection-diffusion problem. For a given uniform grid-spacing in time
and space, and for a fixed value of advection and diffusion parameters, we demon-
strate how to optimally choose these weights by means of the notion of an equivalent
differential equation. We also provide a geometric interpretation of the weights. We
present numerical results that demonstrate that the approach is superior to other
commonly used methods that also fit into the framework of a two-weight scheme.

1 Introduction

We consider the numerical solution of a one-dimensional advection-diffusion
problem

@˚

@t
C L˚ D 0; L WD a

@˚

@x
� "@

2˚

@x2
for .x; t/ 2 .0; l/ � .0; T ; (1a)

subject to the boundary and initial conditions

˚.0; t/ D g0.t/; ˚.l; t/ D gl .t/; t 2 Œ0; T ; (1b)

˚.x; 0/ D f .x/; x 2 Œ0; l; (1c)

were f , g0 and g
l

are known functions and are sufficiently smooth. It is assumed
that " and a, quantifying advection and diffusion processes respectively, are positive
constants.
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Models for the advection and diffusion of pollutants introduced into a fluid
flow usually lead to problems of the form of (1) and its higher dimensional ana-
logues. Many popular computer models for the two- and three-dimensional cases
employ alternating direction implicit (ADI) techniques, where the problem is solved
in only one coordinate direction over a fraction of a time-step. See, for exam-
ple, the two-dimensional finite difference model DIVAST [3]. It solves a variant
of the Navier–Stokes equations for calculating velocity fields, and then the time-
dependent advection-diffusion equation for the solute transport problem, using a
space-staggered uniform grid. Consequently, one is restricted to solving the solute
transport problem on a uniform mesh. This leads naturally to the following question:
how can one design a finite difference scheme which offers a sufficiently accu-
rate solution to (1) on a uniform grid, and which can be easily extended to higher
dimensional problems?

We propose to answer this question in the framework of a two-weight scheme,
the general form of which is two-weight scheme is presented in Sect. 2. This general
form is analyzed in Sect. 3 to derive certain useful bounds which enable us to get
an insight into the specific roles of the weights involved in the scheme, as well
as determining conditions for stability. Furthermore, we demonstrate that there is
a subtle interplay between these two weights which allows to devise a numerical
method which offers better accuracy in comparison to other conventional methods.

In Sect. 4 we employ the notion of an equivalent differential equation [8], and
obtain optimal values of the weights that eliminate first two leading terms in the
truncation error. Furthermore, the optimal values of the weights are combined with
results of Sect. 3 to determine a range of values of the discretization parameters,�x
and�t , that produce a von Neumann stable solution, as well as satisfying necessary
conditions to be non-oscillatory. In Sect. 5, we give numerical results that compare
the proposed method with several well-known techniques that may be considered as
special cases of the general two-weight scheme.

2 A General Two-Weight Scheme

We construct a uniform finite difference, a tensor-product mesh fxj ; tng on
Œ0; l � Œ0; T , where the grid points are defined as .j�x; n�t/; j D 1; : : : N; n D
0; : : : ;M ; �t and �x are the time and space step lengths, respectively. We denote
by unj the value of a mesh function fug at a particular point.

Define the standard discrete difference operators:

D0uj D ujC1 � uj�1
2�x

; D�uj D uj � uj�1
�x

;

ıxxuj D ujC1 � 2uj C uj�1
�x2

; and ıtu
n
j D unC1

j � unj
�t

:
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We can now define a spatial finite difference operator, weighted with the parameter �
that balances between the standard second-order central difference operator, which
may be unstable for small ", and 2-point upwinding operator that is stable, but only
first-order accurate:

LN� uj WD � � "ıxx C aıx

uj ; where ıx WD �D� C .1 � �/D0:

We then introduce the parameter � that weights the scheme between being implicit
and explicit in nature, giving our general method for (1) as

ıt˚
n
j C LN�

�
�˚nC1

j C .1 � �/˚nj

	
D 0; (2)

for j D 1; : : : ; N � 1 and n D 1; : : : ;M .
Several studies, such as [2], consider schemes that involve a weighted spatial

discretization. For example, fixing � D 0, certain values of � lead to some of the
schemes considered in [2]. Moreover, for different combinations of � and � in (2),
one obtains various standard difference-schemes used for linear advection-diffusion
problems. For example,

	 � D 0 and � D 0 correspond to forward Euler with central differencing.
	 � D 0 and � D a�t=�x give the standard Lax-Wendroff scheme.
	 � D 1 and � D 0 give the backward Euler method with central differencing.
	 � D 1=2 gives Crank-Nicolson type methods.

3 Analysis of the Scheme

In this section, we shall analyze the general scheme and derive some useful bounds
for the weights involved in the scheme using various standard concepts, e.g., method
of lines, and stability analysis. These bounds shall be used in Sect. 4. Furthermore,
the geometric interpretation of these bounds enables us to get an insight into their
specific roles in the scheme.

First, note that the scheme (2) can be rewritten as

A1˚
nC1
j�1 C B1˚

nC1
j C C1˚

nC1
jC1 D A2˚

n
j�1 C B2˚

n
j C C2˚

n
jC1; (3)

where, A1 D ��
2
.c C  /; B1 D 1C � ; C1 D �

2
.c �  /;

A2 D 1 � �

2
.c C  /; B2 D 1 � .1 � �/ ; C2D1 � �

2
.�c C  /;

where s WD "�t=.�x/2, c WD a�t=�x,  WD 2s C �c. The scheme is consistent
as A1 C B1 C C1 D A2 C B2 C C2. Next, we derive bounds for the weights in
Sects. 3.1, 3.2, 3.3 using a notion of monotonicity, some standard concepts from
method of lines, and stability analysis, respectively.
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3.1 Using a Notion of Monotonicity

We rewrite the scheme (2) in a semi-discretized form as follows

d˚j

dt
D
X
i

˛i .˚iCj � ˚i /;

˛�1 D a.1C �/

2�x
C "

�x2
I ˛1 D �a.1 � �/

2�x
C "

�x2
:

A necessary (but not itself sufficient) condition for the monotonicity of the scheme
in this form is ˛i 	 0, for all i ¤ 0. This yields

� 	 1 � 2s=c: (4)

Remark 1. One may obtain the bound (4) using eigenvalue analysis. Consider the
linear system that is solved at each time-step in the form (3). The eigenvalues of
the matrix are given by �j D B1 C 2

p
A1C1 cos .j	=.M � 1// ; for j D

1; 2; : : : ;M � 1. For solution to be spatially non-oscillatory, real eigenvalues are
required (see [4]). This gives A1C1 	 0 H) .1=4/�2.c2 �  2/ � 0; which leads
to (4).

3.2 Using the Method of Lines

As stated in Sect. 1, we assume that a and " are constant. So, on an unbounded
domain, one may apply Fourier analysis. We rewrite the difference scheme (2) as
the following system of ordinary differential equations:

d˚j

dt
D �LN� ˚j ; LN� 
 �"ıxx C aıx : (5)

We denote the Fourier transform of the operator LN� by OLN� .ˇ/ D e�ijˇLN� e
ijˇ . A

sufficient condition for von Neumann stability is

SL � S; SL D f��t OLN� .ˇ/ 2 C 8 ˇg;

where S is the stability domain of the time discretization method being used; for
further details, see [9]. For the system (5), we have

�t OLN� .ˇ/ D p.ˇ/C iq.ˇ/;

p.ˇ/ D 2.2s C �c/ sin2.ˇ=2/; q.ˇ/ D c sinˇ:

It can easily be verified that the region SL is fully contained in an ellipse given by
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�
v

 
C 1

�2
C
�w

c

	2 D 1I  D 2s C �c: (6)

Furthermore, we have used the standard theta-method for the time integration, for
which the stability-region is given by

S 

ˇ̌̌
ˇ1C z.1 � �/

1 � z�

ˇ̌̌
ˇ � 1; z D x C iy; (7)

which is equivalent to .1 � 2�/.x2 C y2/ C 2x � 0. This implies that in a case
1 � 2� ¤ 0, S is a region inside a circle (including the boundary) defined as

.x C r/2 C y2 D r2; r D 1

1 � 2� : (8)

Since for von Neumann stability it is sufficient to prove SL � S , from (6) and (8)
we have

r 	 maxf ; c; c2= g: (9)

Geometrically, the weight � controls the length of horizontal axis of the ellipse (6),
while the location of the center and the length of the radius of the circle (8) is con-
trolled by � . Moreover, in the case where " is small, and � D 0 (which corresponds
to pure central differencing), this may lead to a situation where the boundary of
the ellipse (6) would lie outside the circle (8), resulting in an oscillatory computed
solution. On the other hand, � D 1 (which corresponds to pure upwinding) may
unnecessarily stretch the horizontal axis of the ellipse (6), causing damping in the
computed solution. Thus, an optimal value of � should be between 0 and 1, and
should be positive, ensuring that  is positive. This implies that the ellipse (6)
which is a cover of the eigenvalues associated with spatial discretization, should
also be entirely in the left half-plane.

In general, it is desirable to have a time integration method whose stability region
contains the entire left half-plane. Then one may take any time step for (5), provided
that all the eigenvalues have negative real parts, as is often the case in practice [5,
Sect. 8.3]. In our case, the region of stability given by (7) will be in left half-plane if
and only if 1 � 2� 	 0. This suggests that

� � 1=2: (10)

3.3 Using Stability Analysis

Following the standard von Neumann analysis, the amplification factor G can be
found by substituting ˚nj D Gneijˇ ; ˇ D ��x in (3), and it is given as

G D A2e
�iˇ C B2 C C2e

iˇ

A1e�iˇ C B1 C C1eiˇ
:
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It can easily be checked that the requirement for stability, namely jGj � 1 for all ˇ,
leads to the following bounds:

.1 � 2�/c2 �  � 0; and  
�
.1 � 2�/ � 1 � 0: (11)

Given (4), we have  > 0, and so the inequalities in (11) are automatically satisfied
if � 	 1=2. Thus any scheme is unconditionally stable for � 	 1=2. For � < 1=2,
the method is stable providing that

.1 � 2�/c2 �  � .1 � 2�/�1: (12)

This can be rewritten more usefully as a sharp bound on�t ensuring the stability of
the method:

�t � 1

1 � 2� min

"
2"

a2
C �

�x

a
;

�
2"

�x2
C �a

�x

��1#
:

For example, if � D 0 and � D 0 (forward Euler with central differencing), then
one should take �t � min.2"=a2; �x2="/.

Note that it can easily be verified that (12) and (9) are the same conditions, but
derived using two different approaches.

4 Optimal Values of the Parameters

In this section we obtain optimal values of the parameters using a notion of
equivalent differential equation and the standard truncation error analysis.

Using the modified equation approach descried by Warming and Hyett [8], we
can obtain the modified partial differential equation equivalent to the scheme (2),
written as:

@˚

@t
C a

@˚

@x
� "

@2˚

@x2
C

1X
qD2

a�xq�1

qŠ
�q.c; s/

@q˚

@xq
D 0:

This difference scheme is first-order accurate if �2 ¤ 0, and is pth-order accurate
if �q D 0; q D 2; : : : ; p, and �pC1 ¤ 0. The first two leading terms in the trunca-
tion error are associated with numerical dissipation and dispersion, respectively [4,
Sect. 9.2]. Thus, by setting these two terms equal to zero, one may obtain a higher
order scheme. In the process, an optimal value of each of the parameters, � and �
can also be obtained. The desired coefficients are:

�2 D � � c.1 � 2�/; �3 D 1 � 6s � c2 C 6s� C 3� C 3c2�;
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giving optimal value of the parameters:

� D c.1 � 2�/; � D 3.c2 C 2s/˙p
3.2c2 C c4 C 12s2/

6c2
: (13)

This expression leads to two possible values for � and �. In view of (10) and (4),
we take the smaller of the two values for � in (13), thus giving the optimal values of
the parameters:

�opt D c.1 � 2�/; �opt D 3.c2 C 2s/ �p
3.2c2 C c4 C 12s2/

6c2
: (14)

For � ¤ 0 the scheme (3) is implicit in nature, and at each step one must solve a
linear system of equations. It can be easily verified that the matrix on the left-hand
side of (3), is diagonally dominant providing that

j2.1C � /j 	 j � �.c C  /j C j�.c �  /j:

This will be the case for the optimal value of the weights �opt and �opt given in (14),
ensuring that the system is easily solved (Fig. 1).

Remark 2. The bound (4) may be combined with (14) to obtain another useful
relation in terms of c and s, given as

c4 � c2 C 12s2 	 0: (15)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

c

s

 

 

Fig. 1 The regions of stability and no-oscillations in c-s plane. The boundaries of the stability
region (16), and no-oscillation region (15) are shown by solid line, and f� � �g, respectively.
Any combination of .�x;�t; "; a/ that falls into the shaded region would produce a von Neumann
stable solution satisfying necessary conditions to be non-oscillatory
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Moreover, by combining (12) and (14), we have

c4 � c2 C 12s2 � 2s
p
3.2c2 C c4 C 12s2/: (16)

5 Numerical Experiments

To compare various representative methods within the framework of two-weight
scheme for the model advection-diffusion problem (1), we consider a model pre-
dicting the transport of a Gaussian pulse with unit amplitude centered at x D a,
given by

˚.x; 0/ D exp

��.x � a/2

4"

�
; 0 � x � 2:

This problem is widely used for comparison of different numerical schemes for the
advection-diffusion problem; see, e.g., [1, 6]. The exact solution to this problem is

˚.x; t/ D 1p
1C t

exp

��.x � .1C t/a/2

4".1C t/

�
; 0 � x � 2; t 	 0:

The boundary conditions are taken from the exact solution.
In Table 1 we present a comparison between some commonly used methods and

the scheme (14) for various values of N where we have taken the problem data
as a D :25, " D 10�2 and �t D 2�x. The errors presented are the maximum
point-wise errors at time T D 2.

We observe that, for all cases, the scheme (14) is superior to all of the others.
Since we have taken �t D 2�x there is nothing to ensure that the explicit schemes
are stable, and indeed they fail entirely for some values of N .

To verify that there is nothing particularly advantageous for the scheme (14) in
taking these parameters, we repeat the experiments for " D 10�4 and give the results
in Table 2. Again we see that the method (14) yields a more accurate solution than
the other schemes. In all cases, the methods are less accurate for " D 10�4 compared
to " D 10�2; this is hardly surprising since a uniform mesh is used in all cases.

Table 1 Comparison of various schemes for test problem with " D 10�2

Forward Euler Explicit Implicit Crank-Nicolson Optimal
N Central Diff Lax-Wendroff Upwinding Central Diff scheme (14)

64 2.45e C 01 3.78e C 04 8.95e�02 5.38e�03 4.48e�04
128 1.77e C 33 8.11e C 35 4.99e�02 1.33e�03 1.24e�04
256 1.65e C 116 4.92e C 118 2.65e�02 3.33e�04 3.17e�05
512 — — 1.37e�02 8.32e�05 7.96e�06
1024 — — 6.97e�03 2.08e�05 1.99e�06
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Table 2 Comparison of various schemes for test problem with " D 10�4

Forward Euler Explicit Implicit Crank-Nicolson Optimal
N Central Diff Lax-Wendroff Upwinding Central Diff scheme (14)

64 5.12e C 00 3.29e�01 4.83e�01 3.77e�01 2.12e�01
128 4.97e C 01 2.41e�01 4.50e�01 2.92e�01 9.92e�02
256 3.98e C 02 1.29e�01 4.02e�01 2.17e�01 2.31e�02
512 5.02e C 01 3.07e�02 3.39e�01 7.92e�02 3.07e�03
1024 6.56e�01 2.35e�03 2.66e�01 2.00e�02 2.54e�04

6 Conclusions

We have presented a two-weight scheme for a time dependent advection-diffusion
problem. An optimal value of the weights involved have been obtained and their
roles in the scheme have been geometrically interpreted. The supporting numerical
results suggest that the method is promising.

There are several restrictions to note. Firstly, we have assumed that the coefficient
of advection, a, is constant. We are in the process of relaxing this restriction for a
more general case where a D a.t/. This only requires new values of � and � at each
time step.

We also note that many studies of problems of the form (1) consider so-called
parameter robust methods, (e.g., [7]), that perform well for arbitrarily small values
of ". However, due to the nature of our intended work related to enhancing certain
existing hydrodynamics and solute transport models, we are restricted to using uni-
form meshes (and a range of values of " that occur in applied problems). We do not
claim that the method presented here is parameter robust. However, in the future we
aim to extend the approach to allow for piecewise uniform meshes by employing
domain decomposition techniques.

Finally, we note that the analysis presented here can be extended to higher
dimensional analogous problems via standard ADI approaches; this is work in
progress.
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Error Estimates for a Mixed Hybridized
Finite Volume Method for 2nd Order
Elliptic Problems

Carlo de Falco and Riccardo Sacco

Abstract In this article, we carry out the convergence analysis of the dual–mixed
hybridized finite volume scheme proposed in (Marco Brera et al., Comput. Methods
Appl. Mech. Eng., in press, 2010) for the numerical approximation of transport
problems in symmetrizable form. Using the results of (Micheletti et al., SIAM
J. Sci. Comput., 23-1:245–270, 2001; Brezzi et al., Discretization of semicon-
ductor device problems (i), Elsevier North-Holland, Amsterdam, 2005) optimal
error estimates are obtained for the scalar unknown and the flux in the appropri-
ate graph norm, while using the techniques and analysis of (Arnold and Brezzi,
Math. Modeling Numer. Anal., 19-1:7–32, 1985; Brezzi and Fortin, Mixed and
Hybrid Finite Element Methods, Springer, New York, 1991) the superconvergence
of the hybrid variable and of its post-processed (nonconforming) reconstruc-
tion are proved. Numerical experiments are included to support the theoretical
conclusions.

1 Introduction

In this article, we consider the elliptic model problem in mixed form:

8<
:

div� D f in ˝
a�1� C ru D 0 in ˝
u D 0 on 
;

(1)

where ˝ � R2 is a convex polygonal domain, while a is a piecewise smooth func-
tion over˝ such that a.x/ 	 a0 > 0 almost everywhere (a.e.) in˝ and f 2 L2.˝/
is a given function. Using the terminology of Continuum Mechanics, the scalar
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variable u is referred to as displacement while the vector-valued variable � is the
flux (or the stress). In [3], a dual–mixed Hybridized (DMH) finite element method
with numerical integration of the local flux mass matrix has been proposed for the
discretization of (1) in the case where such system represents the model for trans-
port phenomena in symmetrizable form. The use of numerical integration allows
to implement the DMH formulation as a genuine finite volume (FV) scheme for
the approximation uh of u that is a piecewise constant function over ˝ . The result-
ing DMH-FV method enjoys the usual properties of dual-mixed approximations
(interelement normal flux conservation and local self-equilibrium), and satisfies the
discrete maximum principle (DMP) under the sole requirement that the finite ele-
ment grid is of Delaunay type, with a considerable reduction of the computational
effort compared to standard DMH formulations. In this article, we carry the error
analysis of the DMH-FV method showing that it enjoys the same theoretical conver-
gence properties as the corresponding DMH formulation. Precisely, after describing
the DMH-FV scheme in Sects. 2, 3 and 4, we prove in Sect. 5 optimal error esti-
mates for the scalar unknown and the flux in the appropriate graph norm, and the
superconvergence of the hybrid variable and of its post-processed (nonconforming)
reconstruction. The theoretical conclusions of Sect. 5 are then numerically validated
in Sect. 6, where the model problem (1) is solved in the case of transport phenomena
in symmetrized form.

2 Geometric Discretization

In view of the numerical discretization of (1), we consider a regular family of given
partitions fThg of the domain ˝ into open triangles K satisfying the usual admis-
sibility condition (see [10], Sect. 3.1 and Def. 3.4.1). For a given Th, we denote by
jKj and hK the area and the diameter ofK , respectively, and we set h D maxTh

hK .
Let x D .x; y/T be the position vector in ˝; then, for each K 2 Th, we denote
by xq , q D 1; 2; 3, the three vertices of K ordered according to a counterclockwise
orientation, by eq the edge of @K which is opposite to xq , by �Kq the angle oppo-
site to eq and by CK the circumcenter of K . We denote by jeqj the length of eq
and by nq the outward unit normal vector along eq . Moreover, we define sKq as the
signed distance between CK and the midpointMq of eq . If �Kq < 	=2 then sKq > 0,
while if K is obtuse in �Kq then sKq < 0, and CK falls outside K . Notice also that
if �Kq D 	=2 then sKq D 0, and CK coincides with Mq . We denote by Eh the set of
edges of Th, and by Eh;int those belonging to the interior of ˝ . For each e 2 Eh;int,
we indicate by K1

e and K2
e the pair of elements of Th such that e D @K1

e \ @K2
e .

Finally, we let se D s
K1

e
e C s

K2
e

e denote the signed distance between CK1
e

and CK2
e

.

If �K
1
e

e C �
K2

e
e < 	 for all e 2 Eh;int, then se > 0, and Th is called a Delaunay tri-

angulation [7]. The Delaunay condition prevents the occurrence of pairs of obtuse
neighbouring elements in Th, still allowing the possibility of having single obtuse
triangles in the computational grid (see [8] for algorithmic details). We assume from
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now on that Th is a Delaunay triangulation, and we refer to [3] for the case where
Th is a degenerate Delaunay triangulation (i.e., se D 0 for some e 2 Eh;int).

3 Finite Element Spaces

For k 	 0 and a given set S, we denote by Pk.S/ the space of polynomials of
degree � k defined over S. We also denote by RT0.K/ WD .P0.K//

2 ˚ P0.K/x

the Raviart–Thomas (RT) finite element space of lowest degree [11], and by P0
the L2-projection over constant functions. Then, we introduce the following finite
element spaces:

Vh WD fv 2 .L2.˝//2 j vjK 2 RT0.K/ 8K 2 Thg
Wh WD fw 2 L2.˝/ j wjK 2 P0.K/ 8K 2 Thg
Mh WD fm 2 L2.Eh/ jmj@K 2 R0.@K/8K 2 Th;

mK
1
e je D mK

2
e je 8e 2 Eh;int; mje D 0;8e 2 
 g

�h WD fvh 2 L2.˝/ j vh 2 P1.K/ 8K 2 Th;
vh.M

K1
e

e / D vh.M
K2

e
e / 8e 2 Eh;int; vh.Me/ D 0 8e 2 
 g;

(2)

where R0.@K/ WD fv 2 L2.@K/j vje 2 P0.e/ 8e 2 @Kg, and mK
1
e , mK

2
e are the

restrictions of the generic functionm 2 Mh on K1
e and K2

e , respectively. Functions
belonging to Vh and Wh are completely discontinuous over Th, while functions in
Mh are single-valued on Eh. Functions in�h are discontinuous and piecewise linear
over Th, with continuity only at the midpoint of each edge e 2 Eh;int.

4 The DMH-FV Method

The DMH-FV Galerkin approximation of problem (1) consists of finding
.� h; uh; �h/ 2 .Vh �Wh �Mh/ such that:

8̂̂
<
ˆ̂:

.A � h; �h/Th;h � .uh; div�h/Th
C h�h; �h � niEh

D 0 8�h 2 Vh

.div� h qh/Th
D .f; qh/Th

8qh 2 Wh
h�h � n; �hiEh

D 0 8�h 2 Mh;

(3)

where A WD a�1 and where we denote by .�; �/Th
, .�; �/Th;h and h�; �iEh

the ele-
mentwise L2 inner product over Th, its approximation using a numerical integration
formula over each elementK 2 Th yet unspecified, and the edgewiseL2 inner prod-
uct over Eh, respectively. The equations in (3) have the following interpretation: (3)1
expresses the approximate local constitutive law; (3)2 expresses the approximate
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local self-equilibrium; (3)3 expresses the approximate continuity of � � n across
each interelement edge. To construct the DMH-FV discretization, we assume, only
for ease of presentation, that Th is strictly acute, i.e., �Kq < 	=2 for each K 2 Th
and q D 1; 2; 3. This implies that sKq > 0 q D 1; 2; 3 for each K 2 Th. For each
K 2 Th, we denote by f�j g3jD1 the basis for RT0.K/ and set

�Kh .x/ D
3X
jD1

˚Kj �j .x/ x 2 K; (4)

where the degree of freedom ˚Kj is the flux of �K
h

across edge ej , j D 1; 2; 3.
Then, we consider the following quadrature formula

.A �j ; �i /K ' .A �j ; �i /K;h WD 1

2
A
K

i cot.�Ki /ıij D A
K

i

sKi
jei jıij i; j D 1; 2; 3;

(5)

where A
K

i WD RMi

CK
AK.�/d�=jsKi j.

Proposition 1. Assume that ajK 2 W 1;1.K/ for each K 2 Th. Then, there exists
a positive constant CK depending only on the regularity of Th such that 8p; q 2
RT0.K/ we have

ˇ̌̌
.Ap; q/K � .Ap; q/K;h

ˇ̌̌
� CKkAkW 1;1.K/hKkpkL2.K/kqkL2.K/: (6)

Proof. We first need to check that (6) holds in the case A D 1. This follows by
inspection on the analysis of [2] and noting that the supremum in (12) of [2] can be
taken on the larger set .L2.K//2 � H.divIK/. Then, the estimate (6) easily follows
by proceeding as in [5] pp. 375–376.

Remark 1. The quantities kpkL2.K/ and kqkL2.K/ can obviously be bounded by
kpkH.divIK/ and kqkH.divIK/, respectively. This allows to recover the analogous
estimates of the quadrature error associated with the approximation (5) proved
in [5, 9].

Using (5) into (3)1, we obtain the following system of linear algebraic equations
for the degrees of freedom f˚KgK2Th

, fuKgK2Th
and f�igei 2Eh;int associated with

the DMH-FV method:
8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

A
K

i ˚
K
i

sKi
jei j � uK C �Ki D 0 8K 2 Th i D 1; 2; 3

3X
iD1
˚Ki D f K jKj 8K 2 Th

˚
K1

e
e C ˚

K2
e

e D 0 8e 2 Eh;int;

(7)
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where f K WD P0f jK for eachK 2 Th. Eliminating from (7)1 and (7)3 the variables
˚Ki and �Ki in favor of uK , and using the fact that �h is single–valued on Eh, we get
the following finite volume set of equations

8̂
<
:̂

�
3X
iD1

Hei
.a/

uKi � uK

si
jei j D f K jKj 8K 2 Th

uKi D 0 8ei 2 
;
(8)

where, for each edge e 2 Eh, the positive quantity He.a/ is the harmonic average
of a across the edge e defined as

He.a/ WD
 R

se
a�1.�/ d�
se

!�1
D se

A
K1

e

e s
K1

e
e C A

K2
e

e s
K2

e
e

: (9)

Proposition 2. System (8) has a unique solution. Moreover, the DMH-FV satisfies
the DMP.

Proof. The set of linear algebraic equations (8) is a special instance of equations
(5.7) of [9]. Therefore, Lemma 5.2 of [9] applies to conclude that the stiffness matrix
associated with the DMH-FV method is a Stieltjes M-matrix [13]. This latter prop-
erty immediately implies that the DMH-FV scheme satisfies the DMP by application
of Theorem 3.1, p.202 of [12].

Once system (8) is solved for the piecewise constant values of uh over Th, the
degrees of freedom for �h can be easily computed by post-processing as

�e D .A
K1

e

e s
K1

e
e /�1uK

1
e C .A

K2
e

i s
K2

e
e /�1uK

2
e

.A
K1

e

e s
K1

e
e /�1 C .A

K2
e

e s
K2

e
e /�1

8e 2 Eh;int; (10)

while �e D 0 for each e 2 
 . Then, � h can be computed over each elementK 2 Th
by using (7)1 and (4).

Remark 2. Propositions 1 and 2 and the post-processing formula (10) still hold
under the more general condition that Th is a Delaunay triangulation. We refer to [3]
for the details of the construction of the DMH-FV scheme under such assumption.

5 Error Estimates

In this section, we assume that the problem coefficients (and, as a consequence, the
solution pair (u, � ) of (1)) have at each step the required regularity required by the
context. We also assume that exact integration is used to evaluate the right-hand side
of (3)2 in order to avoid dealing with the associated quadrature error. Moreover, we
denote by C a positive constant, not depending on h and possibly depending on the
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mesh regularity constant and on the regularity of the coefficients, whose value is not
necessarily the same at each occurrence.

5.1 Internal Variables

Theorem 1. There exists a positive constant C such that

ku � uhkL2.˝/ C k� � � hkH.divI˝/ � Ch
�kukH2.˝/ C kf kH1.˝/


: (11)

Proof. The estimate (11) is an immediate consequence of (7.16) of [9] in the case
� D 0.

Let us denote by Phu the L2-projection of u over Wh. Then, the next superconver-
gence result is an immediate consequence of Theorem 1 and of the analysis at p. 186
of [4].

Theorem 2. There exists a positive constant C such that

kPhu � uhkL2.˝/ � Ch2
�kukH2.˝/ C kf kH1.˝/


: (12)

This latter result indicates that the piecewise constant values of uh are a very good
approximation of the mean value of the exact solution over each elementK 2 Th.

5.2 Hybrid Variable

Let us denote by ˘hu the L2-projection of u over �h and introduce the following
mesh-dependent norm

j�hj2�1=2;h WD
X
e2Eh

hek�hk2
L2.e/

8�h 2 �h:

The next result demonstrates the superconvergence of the hybrid variable �h to the
L2-projection˘hu of u over�h.

Theorem 3. There exists a positive constant C such that

j˘hu � �hj�1=2;h � Ch2
�kukH2.˝/ C kf kH1.˝/


: (13)

Proof. We closely follow the guidelines of the proof of Theorem 1.4 of [1]. For
everyK 2 Th, we have

.A.�h � � /; �h/K � ..uh � Phu/; div�h/K

C..�h �˘hu/; �h � n/@K � �
.A�h;�h/K � .A�h;�h/K;h

 D 0 8�h 2 RT0.K/:
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The boxed term accounts for the quadrature error and is identically equal to zero in
the analysis of [1]. Let us pick �h 2 RT0.K/, as done in [1], in such a way that

�
�h � ne D �h �˘hu on e 2 @K
�h � n D 0 on @K n e: (14)

The above test function satisfies the following scaling properties

k�hkL2.K/ � Ch
1=2
K k�h�˘hukL2.e/; kdiv�hkL2.K/ � Ch

�1=2
K k�h�˘hukL2.e/:

(15)
Using (14), (15) and (6), we obtain

k�h �˘hukL2.e/ � C
�kAkL1.K/h

1=2
K k� � � hkL2.K/ C h

�1=2
K kPhu � uhkL2.K/

C kAkW 1;1.K/h
3=2
K k� hkL2.K/


;

from which we get (13), by squaring both sides of the previous inequality and mul-
tiplying by the length he of edge e, then by using (11), (12) and the well-posedness
of the DMH-FV problem (3) and, finally, by summing over all mesh elements.

Using (11), (12) and (13), and proceeding as in [1], Sect. 2, Theorem 2.2, we can
prove the following result.

Theorem 4. There exists a positive constant C such that

ku � u�
hkL2.˝/ � Ch2

�kukH2.˝/ C kf kH1.˝/


: (16)

This latter result indicates that the piecewise linear (non-conforming) reconstruction
of �h over Th is optimally converging in the L2 norm to the exact solution u as in
the case of standard displacement–based formulations.

6 Numerical Results

In this section, we consider problem (1) in the case a D e�' , ' being a given
piecewise linear function over Th [6]. With this choice, system (1) represents the
symmetrized form of the convection-diffusion model with convective term in gra-
dient form that is widely used to describe transport phenomena in Electrochemistry
and Semiconductor Device Modeling [3]. In order to carry out the numerical valida-
tion of the DMH-FV scheme, we set˝ 
 .0; 2/�.0; 1/ and '.x; y/ D � .2x C y/,
in such a way that the exact solution is u D e�.xC3/ xy.x � 2/.y � 1/. Figure 1
shows uh and the non-conforming interpolant u�

h
of �h, computed on a triangulation

with h D 0:1237. Figure 2 shows the corresponding error curves ku � uhkL2.˝/,
kPhu � uhkL2.˝/, j˘hu ��hj�1=2;h and ku � u�

h
kL2.˝/. The obtained results are in

complete agreement with the theoretical analysis of Sects. 4 and 5.
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On the Choice of Mesh for a Singularly
Perturbed Problem with a Corner Singularity

Sebastian Franz, R. Bruce Kellogg, and Martin Stynes

Abstract A singularly perturbed elliptic problem is considered on the unit square.
Its boundary data has a jump discontinuity at one corner of the square, so the solu-
tion of the problem exhibits a singularity there. To solve the problem numerically,
the Galerkin finite element method is tested on various tensor-product meshes. It is
demonstrated that the Shishkin mesh does not yield satisfactory results, but meshes
with a sufficient degree of mesh grading will yield convergence in certain norms,
uniformly in the singular perturbation parameter.

1 Introduction

Consider the singularly perturbed boundary value problem

�"�u � pux C qu D f in Q WD .0; 1/2; (1a)

u.x; 0/ D gs.x/; u.x; 1/ D gn.x/ for 0 < x < 1; (1b)

u.0; y/ D gw.y/; u.1; y/ D ge.y/ for 0 < y < 1: (1c)

Here the coefficients p and q are constants with p > 0 and q > 0, while the
parameter " lies in .0; 1. The functions f; gw; ge ; gs ; gn are assumed to satisfy f 2
C 2`;˛.Q/; gw; ge ; gs ; gn 2 C 2`;˛.Œ0; 1/ for some non-negative integer ` and ˛ 2
.0; 1/.
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This problem was examined in [3, 4] while assuming an arbitrary but known
degree of compatibility between the boundary data and the solution at the four cor-
ners of Q. Pointwise bounds on the solution u and its derivatives were derived in
these papers. These bounds showed how the singularities induced by the degree of
incompatibility of the data at the corners of Q interacted with the boundary layers
in u that are caused by the convection-dominated nature of (1). These are charac-
teristic layers along the sides y D 0 and y D 1 of Q and an exponential outflow
layer along the side x D 0. It is noteworthy that the corner singularities at .1; 0/ and
.1; 1/ induce large derivatives in the solution that have only a mild decay away from
x D 1. In contrast, the corner singularities at .0; 0/ and .0; 1/ induce large deriva-
tives in the solution that decay rapidly away from x D 0. These facts are shown
in the derivative bounds of [3, 4]. (Note that in [3, 4] the convective direction is the
reverse of that of the present paper.)

Bounds such as these are useful in the analysis of numerical methods for (1).
In [2] they were used in the particular case where the boundary data is contin-
uous at each corner of Q but no higher degree of compatibility was assumed; a
Galerkin finite element method using bilinears on a tensor product Shishkin mesh
was analysed and shown to converge, uniformly in the parameter ", in the energy
norm associated with this problem. Although the Shishkin mesh was designed only
for the boundary layers described above, [2] shows that it is also able to handle
the mild singularity associated with the corners of the domain (the solution of this
problem lies in H 2.˝/).

A natural question now arises: if one reduces the compatibility still further by
allowing the boundary data to have a jump discontinuity at one corner, will the
Shishkin mesh still be adequate? That is, for the same Galerkin method, will one
still obtain uniform convergence in some reasonable norm? In the present paper we
shall investigate and answer this question.

2 The Test Problem and Its Numerical Computation

We construct a test problem of the form (1). The boundary data of this problem will
have a discontinuity at the inflow corner .1; 0/ and be continuous at the other three
corners.

For simplicity take q 
 0. To begin the construction, consider the half-plane
problem

Lv WD �"�v � pvx D 0 for x < 1; v.1; y/ D g.y/ for y 2 .�1;1/:

Its solution v is given (see [3, Sect. 3.1]) by the formula

v.x; y/ D 1 � x

2	"
ep.1�x/=.2"/

Z 1

�1
g.t/

1

r
K1.pr=.2"// dt; (2)
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where r D p
.1 � x/2 C .y � t/2 and K1 is a modified Bessel function of the

second kind. Here the convective direction is into the half-plane and the function
v has no boundary layer. Let us take the case: p D 1 and g.y/ D 1 for y > 0,
g.y/ D 0 for y < 0. Then

v.x; y/ D 1 � x

2	"
e.1�x/=.2"/

Z 1

0

1

r
K1.r=.2"// dt: (3)

This function has an interior layer along the line y D 0; see [3, 4].
Now set w.x; y/D v.x; y/�v.x;�y/. ThenLw D 0 in the quarter-plane x < 1;

y > 0 and w.x; 0/ D 0 for x < 1, w.1; y/ D 1 for y > 0. For the test problem
of this paper we take u D w

ˇ̌
Q

; see Fig. 1. It is easily seen that u 2 L1.˝/. This
function has a characteristic boundary layer along the side y D 0 of Q but no other
layers; the absence of an outflow layer at x D 0 is unimportant since here we are
concerned only with the effect of the corner singularity at .1; 0/. This characteristic
layer will require some form of mesh refinement along y D 0. Furthermore, the
singularity at .1; 0/ may require mesh refinement along the side x D 1.

A weak formulation of (1) is ".ru;rw/ � .ux;w/ D 0 for all w 2 H 1
0 .˝/.

To solve this numerically, a standard Galerkin finite element method will be used;
see (4) below.

The mesh on the unit square is yet to be chosen. We confine our attention to tensor
product meshes with possible refinement along the two sides y D 0 and x D 1.
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Fig. 1 Plot of test problem u.x; y/
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A standard Shishkin mesh would be refined only along y D 0. We shall examine
further geometric mesh refinement near y D 0 and x D 1, while maintaining the
tensor product structure of the mesh. The precise definition of the mesh is given
in (6).

On this mesh, our Galerkin method uses the space V N of continuous, piece-
wise bilinears that vanish at boundary mesh points. The approximate solution uN is
defined to be the continuous piecewise bilinear function, with values at the bound-
ary mesh points given by the values of u, and with values at the interior mesh points
given by the solution to the linear system

".ruN ;rw/ � .uNx ;w/ D 0 8w 2 V N : (4)

In (4), the parentheses are inner products in L2.Q/. The value of uN at the point
.1; 0/ is, somewhat arbitrarily, taken to be 1.

2.1 Computational Aspects

Matlab 7.5.0 is used in our numerical experiments. The exact solution u.x; y/ D
v.x; y/ � v.x;�y/ is obtained by setting � D .1 � x/=.2"/; � D y=.2"/ and
� D t=.2"/ to reformulate (3) as

v.x; y/ D Ov.�; �/ D �

	
e�
Z 1

0

1p
�2 C .� � �/2 K1

�p
�2 C .� � �/2  d�

D I1 C I2;

where

I1 D �

	
e�
Z 1

�

1p
�2 C .�� �/2

K1
�p
�2 C .� � �/2 d�

D �

	
e�
Z 1

0

1p
�2 C s2

K1
�p
�2 C s2


ds

D v.�; 0/;

I2 D �

	
e�
Z �

0

1p
�2 C .� � �/2 K1

�p
�2 C .� � �/2  d�

D �

	
e�
Z �

0

1p
�2 C s2

K1
�p
�2 C s2


ds:

The changes of variable s D ��� and s D ��� were used in I1 and I2 respectively.
It follows that v.x;�y/ D Ov.�;��/ D v.�; 0/ � I2, on making the change of

variable s 7! �s in I2. Thus, setting Qr.s/ D p
�2 C s2, we have
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u.x; y/ D v.x; y/ � v.x;�y/ D 2�

	
e�
Z �

0

1

Qr.s/K1.Qr.s// ds

D 2

	

Z �

0

exp

�
� s2

� C Qr.s/
�

�

Qr.s/
h
e Qr.s/K1.Qr.s//

i
ds: (5)

Note that the improper integral of (3) has now been replaced by an integral over
a bounded interval; the above transformations have the effect of reducing roundoff
error in the calculation. The term in square brackets is evaluated using the Matlab
function besselk(1,z,1) with z D Qr . The integral is then computed using the
built-in routine quadgk, an adaptive Gauss-Kronrod quadrature.

To evaluate energy norm errors, we shall need the first-order derivatives of u. For
these we differentiate (5) directly, obtaining

uy.x; y/ D �

	" Qr.�/e
� �2

�CQr.�/

h
e Qr.�/K1.Qr.�//

i
;

ux.x; y/ D

� 1

	"

Z �

0

e
� s2

�CQr.s/

��
1C �

Qr.s/ � 2�2

Qr.s/3
� h
e QrK1.Qr.s//

i
� �2

Qr.s/2
h
e QrK0.Qr.s//

i�
ds:

3 Numerical Results

Following the discussion in Sect. 2, we define the nodes of our tensor productN �N
mesh as follows:

xi D 1 � Œ1 � .i=N /1Cıx ; i D 0; : : : ; N;

yj D �y.4j=N /
1Cıy ; j D 0; : : : ; N=4;

yj D �y C .1 � �y/
4j=N � 1

3
; j D N=4; : : : ; N;

(6)

where we assumed that

�y WD minf1=4; 2p" lnN g � 1

4
:

Here the positive integerN is the number of mesh intervals in each coordinate direc-
tion. The two parameters ıx and ıy are non-negative and user-chosen. For ıx D 0

we have an equidistant mesh in the x-direction while ıx > 0 gives a mesh that is
graded approaching x D 1. The choice ıy D 0 produces a Shishkin mesh (i.e.,
piecewise equidistant) in the y-direction while ıy > 0 would provide additional
grading in the layer region near y D 0. Away from the layer, i.e., for y > �y , we
always have an equidistant mesh in the y-direction. See Fig. 2.
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Fig. 2 8� 8 meshes with (a) ıx D ıy D 0 (Shishkin mesh) (b) ıx D ıy D 1

We refer to the members of this family as geometric meshes. For other work
on the use of mesh refinement in a problem with both boundary layers and corner
singularities, we mention [1], which deals with a reaction-diffusion problem in an
L-shaped domain, and with zero boundary conditions. The corner singularity is not
as severe as in our problem, but the issue of approximating a function which has
both types of singular behaviour is the same.

Our mesh in the y direction is an S-type mesh; these meshes were introduced
(and analysed for problems without singularities) by Roos and Linß in [5].

When the Galerkin method (4) is applied on this mesh, the integrals are eval-
uated exactly. To measure the errors in the computed solution, we use the exact
solution u as described in (5). The discontinuity in the boundary condition
implies that u … H 1.Q/, the usual Sobolev space. Thus, setting m.x; y/ D
minf";p.x � 1/2 C y2 g, we weaken the standard energy norm to

kvk1;m D
�Z
Q

�
mjrvj2 C v2

�1=2
: (7)

In [3,4] it is shown that the solution u satisfies jru.x; y/j � C
�
.1�x/2Cy2

��1=2
.

Therefore kuk1;m < 1.
When computing errors in theL2 norm and the norm k�k1;m, we approximate the

error integrals by Gaussian quadrature with 5�5 point evaluations in each mesh cell.
Computations show that Gaussian quadrature with fewer points gives inaccurate
results.

In Tables 1–4 we fix " D 10�6 (a small value that ensures the problem is singu-
larly perturbed) and results are presented for various values of ıx and ıy . The rates
of convergence are computed from the hypothesis error D N�rate in columns 3 and
5, while the rates of column 6 are computed assuming that error D .N�1 lnN/rate .

Table 1 is for the case ıx D ıy D 0, i.e., the standard Shishkin mesh. It is clear
from the table that the L2 convergence rate is less than 2, and rates for the energy
norm convergence rates in column 5 and 6 are both less than 1.
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Table 1 Geometric mesh
with ıx D ıy D 0

(i.e., Shishkin mesh)

N ku � uNk0;˝ ku � uNk1;m
16 2.692e-02 2.11 3.161e-02 1.10 1.62
32 6.229e-03 1.96 1.475e-02 0.47 0.63
64 1.604e-03 1.73 1.068e-02 0.38 0.49
128 4.850e-04 1.38 8.204e-03 0.38 0.47
256 1.859e-04 6.298e-03

Table 2 Geometric mesh
with ıx D 1 and
ıy D ıx=2 D 1=2

N ku � uNk0;˝ ku � uNk1;m
16 2.323e-02 2.59 2.639e-02 1.46 2.16
32 3.852e-03 2.57 9.570e-03 0.67 0.90
64 6.496e-04 2.43 6.032e-03 0.58 0.75
128 1.202e-04 2.06 4.022e-03 0.58 0.71
256 2.874e-05 2.697e-03

Table 3 Geometric mesh
with ıx D 3=2 and ıy D 5=4

N ku � uNk0;˝ ku � uNk1;m
16 2.592e-02 3.13 2.823e-02 1.92 2.84
32 2.963e-03 2.96 7.441e-03 0.84 1.14
64 3.808e-04 2.69 4.155e-03 0.78 1.00
128 5.889e-05 1.92 2.421e-03 0.81 1.01
256 1.559e-05 1.378e-03

Table 4 Geometric mesh
with ıx D ıy D 2

N ku � uNk0;˝ ku � uNk1;m
16 2.168e-02 3.53 2.463e-02 1.85 2.73
32 1.881e-03 3.02 6.813e-03 0.90 1.22
64 2.317e-04 1.95 3.648e-03 0.87 1.12
128 5.993e-05 1.88 1.995e-03 0.92 1.14
256 1.632e-05 1.055e-03

An analysis that we shall publish elsewhere shows that for ıx 	 1 and ıy 	 ıx=2,
the L2 error between u and its piecewise bilinear nodal interpolant is bounded by
CN�2.lnN/5=2, where the constant C is independent of " and N . Thus we take
ıx D 1 and ıy D 1=2 in Table 2, whose results are clearly superior to those of
Table 1. In particular we now have O.N�2/ convergence in the L2-norm; but the
energy norm rates still fail to achieve first-order convergence.

Thus we try a further refinement of the mesh. Table 3 shows the results for
ıx D 3=2 and ıy D 5=4. Here, in addition to O.N�2/ convergence in L2, we
have O.N�1 lnN/ convergence in the energy norm.

Further increases of ıx and ıy give limited improvements of these results; see
Table 4 for ıx D ıy D 2.

3.1 Outflow Corner Discontinuity

The situation is somewhat different if the boundary data discontinuity is moved
from .1; 0/ to the outflow corner .0; 0/. One can again start from [3, Sect. 3.1] and,
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Table 5 Outflow
discontinuity, geometric mesh
with ıy D 0:5

N ku � uNk0;˝ ku � uNk1;m
16 3.517e-03 1.81 1.401e-01 0.66 0.98
32 1.002e-03 1.91 8.861e-02 0.72 0.97
64 2.671e-04 1.97 5.391e-02 0.74 0.95
128 6.810e-05 2.04 3.227e-02 0.73 0.91
256 1.659e-05 1.944e-02

similarly to Sect. 2, construct a function that we still call u which satisfies Lu D 0

on Q with a jump discontinuity in its boundary condition at the corner .0; 0/. This
function has an outflow boundary layer along the side x D 0 and no other layer.
Nevertheless we shall consider mesh refinement near y D 0 since the solutions
of almost all boundary value problems associated with the operator L will have
characteristic boundary layers here.

To solve the problem numerically we examine a mesh that is refined geometri-
cally near the side y D 0 of Q exactly as in (6), and has a standard Shishkin mesh
structure in the x variable: piecewise equidistant, and fine near x D 0 with mesh
transition point �x D minf1=2; 2" lnN g. In the case ıy D 0 one gets a Shishkin
mesh that is fine near x D 0 and y D 0.

When measuring the error in our numerical solutions, the energy norm (7) is of
course modified by redefining m.x; y/ D minf";px2 C y2 g. When our problem
is solved numerically on the above Shishkin mesh, the results obtained are broadly
similar to those of Table 1. Thus some mesh refinement is needed to obtain a more
satisfactory rate of convergence in the energy norm.

Table 5 displays numerical results for the geometric mesh with ıy D 0:5; it
shows that we have nearlyO.N�1 lnN/ convergence in the energy norm. This is in
contrast to Tables 1–3 for the inflow corner discontinuity where much more mesh
refinement was needed to attain this order of convergence.
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Local Projection Stabilisation
on Layer-Adapted Meshes
for Convection-Diffusion Problems
with Characteristic Layers (Part I and II)

Sebastian Franz and Gunar Matthies

Abstract For a singularly perturbed convection-diffusion problem with exponen-
tial and characteristic boundary layers on the unit square a discretisation based on
layer-adapted meshes is considered. The standard Galerkin method and the local
projection scheme are analysed for a general class of higher order finite elements
based on local polynomial spaces lying between Pp and Qp . We will present two
different interpolation operators for these spaces. The first one is based on values at
vertices, weighted edge integrals and weighted cell integrals while the second one
is based on point values only. The influence of the point distribution on the errors
will be studied numerically.

We show convergence of order p in the "-weighted energy norm for both the
Galerkin method and the local projection scheme. Furthermore, the local projection
methods provides a supercloseness result of order p in local projection norm.

1 Introduction

Let the singularly perturbed convection-diffusion problem be given by

�"�u � bux C cu D f in ˝ D .0; 1/2; (1a)

u D 0 on 
 D @˝ (1b)

under the assumption that b 2 W 11.˝/, c 2 L1.˝/, b 	 ˇ > 0with some constant
ˇ, and a small perturbation parameter 0 < "  1.
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This combination gives rise to an exponential layer of width O ."/ near the out-
flow boundary at x D 0 and to two parabolic layers of width O

�p
"


near the
characteristic boundaries at y D 0 and y D 1.

Problem (1) possesses a unique solution in H 1
0 .˝/\H 2.˝/ if

c C bx=2 	 � > 0 (2)

holds. Assumption (2) can always be guaranteed by a simple transformation
Qu.x; y/ D u.x; y/e~x with a suitably chosen constant ~.

Due to the layers standard discretisations will not give accurate approximations
on quasi-uniform meshes except the mesh width is of the same order as ". Thus
layer-adapted meshes based on a priori knowledge of the solution behaviour have
been constructed, see [2, 18, 20]. We will use so called S-type meshes [19] combin-
ing the transition point of a standard Shishkin mesh and mesh generating functions
inside the fine part.

Since the standard Galerkin methods lacks stability even on layer-adapted
meshes, see [15, 21], a stabilisation term will be added to the standard discreti-
sation. We will consider the one-level approach of the local projection stabilisation
(LPSFEM), [3–5,17]. However, we will not use enriched Qr -elements but consider
a general class of higher order elements. To this end, let p 	 2 be an arbitrary but
fixed integer to indicate the polynomial degree of our ansatz functions.

This paper contains a condensed analysis of the LPSFEM applied to (1) on S-type
meshes. For a full analysis see [11, 12].

Notation. In this paper, C denotes a generic constant which is always indepen-
dent of the diffusion coefficient " and the mesh parameter N . The usual Sobolev
spaces W m

r .D/ and Lr .D/ on any measurable two-dimensional subset D � ˝ are
used. We write Hm.D/ instead of W m

2 .D/ in the case r D 2. The L2.D/-norm is
denoted by k � k0;D while the .�; �/D is the L2.D/-inner product. The subscript D
will always be dropped if D D ˝ .

By Pr .D/ we denote the space of all polynomials with total degree less than or
equal to r while Qr.D/ is the space of all polynomials with degree less than or
equal to r in each variable separately.

2 Solution Decomposition and Layer-Adapted Meshes

We suppose there exists the following decomposition of the solution u of (1).

Assumption 1. The solution u of (1) can be decomposed as

u D v C w1 C w2 C w12

where we have for all x; y 2 Œ0; 1 and 0 � i C j � p C 1 the pointwise estimates
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ˇ̌
ˇ̌ @iCj v

@xi@yj
.x; y/

ˇ̌
ˇ̌ � C;

ˇ̌
ˇ̌@iCjw1
@xi@yj

.x; y/

ˇ̌
ˇ̌ � C"�ie�ˇx=";

ˇ̌
ˇ̌@iCjw2
@xi@yj

.x; y/

ˇ̌
ˇ̌ � C"�j=2

�
e�y=p" C e�.1�y/=p"

	
;

ˇ̌
ˇ̌@iCjw12
@xi@yj

.x; y/

ˇ̌
ˇ̌ � C"�.iCj=2/e�ˇx=" �e�y=p" C e�.1�y/=p"	 ;

where w1 covers the exponential boundary layer, w2 the parabolic boundary layers,
w12 the corner layers, and v is the regular part.

Remark 2. Kellogg and Stynes [14] proved the validity of Assumption 1 in the
case of constant functions b; c provided f is smooth enough and fulfils certain
compatibility conditions.

When discretising (1), we use in both x- and y-direction S-type meshes with N
mesh intervals each. For this purpose let the mesh transition parameters be

�x WD �"

ˇ
lnN � 1

2
and �y WD �

p
" lnN � 1

4

with some user-chosen positive parameter � 	 p C 1, where we assume for the
mere sake of simplicity

" � min

�
ˇ

2�
.lnN/�1;

1

16�2
.lnN/�2

�
:

In the following, we assume that N is a multiple of 4. The domain ˝ will be
dissected by a tensor product mesh according to

xi WD
(
�"
ˇ
�
�
i
N


; i D 0; : : : ; N=2;

1 � 2.1� �x/.1 � i
N
/; i D N=2; : : : ; N;

and

yj WD

8̂̂
<
ˆ̂:
�

p
"�
�
2j
N

	
; j D 0; : : : ; N=4;

.1 � 2�y/.2jN � 1/C 1
2
; j D N=4; : : : ; 3N=4;

1 � �p
"�
�
2 � 2j

N

	
; j D 3N=4; : : : ; N;

where � is a monotonically increasing mesh-generating function satisfying �.0/ D
0 and �.1=2/ D lnN . Given an arbitrary function � fulfilling these conditions,
an S-type mesh is defined. The final mesh is constructed by drawing lines parallel
to the coordinate axes through these mesh points and is denoted by T N . Figure 1
shows two examples of such meshes. The domain˝ is divided into the subdomains
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Fig. 1 Two S-type meshes: Shishkin mesh (left), Bakhvalov-Shishkin mesh (right)

with˝12 WD Œ0; �x� Œ�y ; 1��y covering the exponential layer,˝21 WD Œ�x ; 1��
Œ0; �y [ Œ1� �y ; 1


the parabolic layers, ˝22 WD Œ0; �x�

�
Œ0; �y [ Œ1� �y ; 1


the corner layers, and˝11 WD Œ�x ; 1� Œ�y ; 1��y the remaining non-layer region.

Related to the mesh-generating function �, we define by  D e�� the mesh-
characterising function whose derivative yields information on the approximation
quality of the mesh.

Two representatives of those meshes are the original Shishkin mesh [18] with
�.t/ D 2t lnN and max j 0j D 2 lnN , and the Bakhvalov-Shishkin mesh [16]
with �.t/ D � ln.1 � 2t.1 � N�1// and max j 0j D 2. Both meshes are shown in
Fig. 1.

We assume for simplicity of the presentation that the maximal mesh sizes inside
the layer regions

h WD max
iD1;:::;N=2

xi � xi�1 and k WD max
jD1;:::;N=4

yj � yj�1

are both smaller than CN�1 max j 0j.

3 General Finite Element Spaces and Interpolation

Let us come to the definition of the general local finite element space. It is given by

Q|
p . O�/ D span

�
f1; �g � f1; �; : : : ; �pg [ f1; �; : : : ; �pg � f1; �g [ �2�2eQ. O�/

�

with the space

eQ. O�/ WD span
˚
�i�j W i D 0; : : : ; p � 2; j D 0; : : : ; ki

�

satisfying Pp�4. O�/ � eQ. O�/ � Qp�2. O�/ and ki 	 kiC1 for i D 0; : : : ; p � 3.
Figure 2 shows a graphical representation of two example of Q|

p . O�/ in the case
p D 9. A square at position .i; j / represents a basis function �i�j of Q|

p . O�/. The
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Fig. 2 Full space Qp.O�/ (left), Serendipity space Q˚

p .O�/ (right)

darker squares correspond to those functions present in all spaces we consider, while
the lighter ones represent �2�2eQ. O�/. The left picture of Fig. 2 shows the standard
Qp-space governed by taking eQ. O�/ D Qp�2. O�/; while the right picture presents
the serendipity space Qp̊ defined by eQ. O�/ D Pp�4. O�/ for p 	 4 and eQ. O�/ D ; for
p D 2; 3.

We define our global finite element space as

V N WD
n
v 2 H 1

0 .˝/ W vj� 2 Q|
p .�/ 8� 2 T N

o

where Q|
p .�/ is obtained from Q|

p . O�/ in the usual way by using the reference
mapping F� W O� ! � .

We now define two different interpolation operators. First, we consider an inter-
polation operator based on point evaluation at the vertices, line integrals along the
edges and integrals over the cell interior.

Let Oai and Oei , i D 1; : : : ; 4, denote the vertices and edges of the reference
element O� , respectively. We define the vertex-edge-cell interpolation operator I W
C. O�/ ! Q|

p . O�/ by

I Ov. Oai / D Ov. Oai /; i D 1; : : : ; 4; (3a)Z
Oei

.I Ov/ Oq D
Z

Oei

Ov Oq; i D 1; : : : ; 4; Oq 2 Pp�2. Oei /; (3b)

“
O�
.I Ov/ Oq D

“
O�

Ov Oq; Oq 2 eQ. O�/: (3c)

It can be proved that this interpolation operator is uniquely defined.
The interpolation operator I on the reference element O� induces the global

interpolation operator IN W C.˝/ ! V N by
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.IN v/j� WD F� ı I ı F �1
� .vj� / 8� 2 T N ; v 2 C.˝/; (4)

with the bijective reference mapping F� W O� ! � .

Theorem 3. For the finite element space V N and the vertex-edge-cell interpolation
operator IN defined by (3) and (4), there holds the L1-stability




INw




L

1

.�/
� CkwkL

1

.�/ 8w 2 C.�/; 8� � ˝;

and the anisotropic error estimates




w � INw




Lq.�ij /

� C

sX
rD0





hs�ri krj
@sw

@xs�r@yr






Lq.�ij /

;




.w � INw/x




Lq.�ij /

� C

tX
rD0





ht�ri krj
@tC1w

@xt�rC1@yr






Lq.�ij /

;




.w � INw/y




Lq.�ij /

� C

tX
rD0





ht�ri krj
@tC1w

@xt�r@yrC1






Lq.�ij /

for �ij � ˝ and q 2 Œ1;1, 2 � s � p C 1, 1 � t � p.

Using the technique given in [1] this theorem can be proved. Details can be found
in [11].

The second interpolation operator we are interested in, is a point-value oriented
interpolation operator. We consider two increasing sequences of pC 1 points �1 D
�0 < �1 < � � � < �p�1 < �p D C1 and �1 D �0 < �1 < � � � < �p�1 < �p D C1.
The point-value oriented interpolation operator J W C. O�/ ! Q|

p . O�/ is defined by
values on the edges including the vertices

.J Ov/.�i ;˙1/ WD Ov.�i ;˙1/; i D 0; : : : ; p; (5a)

.J Ov/.˙1; �j / WD Ov.˙1; �j /; j D 1; : : : ; p � 1; (5b)

and values in the interior

.J Ov/.�iC1; �jC1/ WD Ov.�iC1; �jC1/; i D 0; : : : ; p � 2; j D 0; : : : ; ki :

(5c)

The interpolation operator J is uniquely determined, see [11] for details. Similarly
as before we can define a global interpolation operator JN W C.˝/ ! V N using
the bijective reference mapping F� . It can be shown that all results from Theorem 3
are also valid for JN . For details we refer again to [11].



LPS for Convection-Diffusion Problems with Characteristic Layers 133

4 Numerical Method and Convergence

We derive in this section bounds on the interpolation error and prove convergence
of the Galerkin method and the LPSFEM. Although we will give in this section
only results for the interpolation operator IN , the same results hold true for the
operator JN . With the usual Galerkin bilinear form

aGal .u; v/ WD ".ru;rv/C .cu � bux; v/; u; v 2 H 1
0 .˝/;

associated with problem (1), the standard Galerkin formulation of (1) is given by:

Find QuN 2 V N such that

aGal .QuN ; vN / D .f; vN / 8vN 2 V N : (6)

Since the standard Galerkin discretisation lacks stability even on S-type
meshes [15, 21], the local projection method is applied for stabilisation. Let 	�
denote the L2-projection into the finite dimensional function space D.�/ WD
Pp�2.�/. The fluctuation operator �� W L2.�/ ! L2.�/ is defined by ��v WD
v � 	�v.

In order to get additional control on the derivative in streamline direction, we
define the stabilisation term

s.u; v/ WD
X
�2TN

ı�
�
�� .bux/; �� .bvx/


�

with the cell-dependent parameters ı� 	 0, � 2 T N , which will be constant inside
each subdomain of ˝ , i.e., ı� D ıij for � � ˝ij . It was stated in [10] for dif-
ferent stabilisation methods that stabilisation is best if only applied in ˝11 [ ˝21.
Therefore, we set ı12 D ı22 D 0 in the following.

The stabilised discrete problem reads:

Find uN 2 V N such that

aLPS.u
N ; vN / WD aGal .u

N ; vN /C s.uN ; vN / D .f; vN / 8vN 2 V N : (7)

The subsequent analysis uses the "-weighted energy- and the LPS-norm

jjjvjjj" WD �
"krvk20 C �kvk20

1=2
and jjjvjjjLPS WD

�
jjjvjjj2" C s.v; v/

	1=2
:

Theorem 4 (Interpolation error). Let the solution u of (1) fulfil Assumption 1.
Then, the interpolation operator IN provides the following pointwise interpolation
error bounds
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IN u � u




L

1

.˝11/
� CN�.pC1/;




IN u � u




L

1

.˝n˝11/
� C

�
N�1 max j 0jpC1

:

Moreover, the L2- and energy norm bounds




IN u � u




0

� C
�
N�1 max j 0jpC1

and
ˇ̌
ˇ
ˇ̌
ˇ
ˇ̌
ˇIN u � u

ˇ̌
ˇ
ˇ̌
ˇ
ˇ̌
ˇ
"

� C
�
N�1 max j 0jp

hold true.

The proof of Theorem 4 uses the decomposition of Assumption 1 and Theorem 3
to bound the different parts of u in the several subdomains of˝ . Note the appearance
of max j 0j in the estimates that refers to the quality of the underlying mesh.

Theorem 5 (Convergence Galerkin FEM and LPSFEM). Let the solution u
of (1) satisfy Assumption 1 and let QuN denote the Galerkin solution of (6). We
set

C WD 1CN�1=2 ln1=2N max j 0j: (8)

Then, we have ˇ̌̌̌̌̌ ˇ̌̌
u � QuN

ˇ̌̌̌̌̌ ˇ̌̌
"

� CC 
�
N�1 max j 0jp :

Let the LPSFEM solutions of (7) be denoted by uN and let the stabilisation
parameters be chosen according to

ı11 � CN�2�max j 0j2p; (9a)

ı21 � C"�1=2 ln�1N
�
N�1 max j 0j2; (9b)

ı12 D ı22 D 0: (9c)

Then, we have

ˇ̌
ˇ
ˇ̌
ˇ
ˇ̌
ˇu � uN

ˇ̌
ˇ
ˇ̌
ˇ
ˇ̌
ˇ
"

� CC 
�
N�1 max j 0jp (10)

and
ˇ̌̌ˇ̌̌̌̌̌
IN u � uN

ˇ̌̌̌̌̌ ˇ̌̌
LPS

� CC 
�
N�1 max j 0jp: (11)

Proof. The first result (10) follows from the triangle inequality, (4) and (11).
In order to prove (11), we use coercivity and the weak Galerkin orthogonality of

the stabilised method and obtain

ˇ̌
ˇ
ˇ̌
ˇ
ˇ̌
ˇIN u � uN

ˇ̌
ˇ
ˇ̌
ˇ
ˇ̌
ˇ2
LPS

� aGal
�
IN u � u; �

C s
�
IN u; �


:
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Now the decomposition of Assumption 1 and anisotropic error estimates of IN and
�� can be applied in the various subdomains of ˝ .

For a complete proof see [12].

Note that in order to prove convergence of the LPSFEM no additional orthogonality
of the interpolation operator is required and that the last estimate is a supercloseness
result.

Remark 6. The factor C defined in (8) is bounded by a constant for Shishkin and
the Bakhvalov-Shishkin meshes.

Remark 7. The choice (9) gives us the largest upper bounds for the whole class of
S-type meshes such that convergence of order p holds. In particular, for the standard
Shishkin mesh we obtain

ı11 � CN�2� lnN
2p
; ı21 � C"�1=2N�2 lnN; ı12 D ı22 D 0 (12)

while we get

ı11 � CN�2; ı21 � C"�1=2 ln�1NN�2; ı12 D ı22 D 0: (13)

for the Bakhvalov-Shishkin mesh.

5 Numerical Results

We consider the following singularly perturbed convection-diffusion problem for
our numerical study:

�"�u � .2 � x/ux C 3

2
u D f in ˝ and u D 0 on @˝;

where the right-hand side f is chosen such that

u.x; y/ D
 

cos
	x

2
� e�x=" � e�1="

1 � e�1="

! �
1 � e�y=p"

	 �
1 � e�.1�y/=p"

	
1 � e�1=p"

is the solution. Note that Assumption 1 is satisfied.
The presented numerical results were obtained by the finite element package

MooNMD [13]. All occurring systems of linear equations were solved directly by
using package UMFPACK [6–9].

As parameters we use " D 10�12, p D 5, � D 6. All numerical quadratures
are carried out using a 8 � 8-Gaussian quadrature rule. For the LPSFEM we set the
stabilisation parameters according to (12) for the Shishkin mesh and to (13) for the
Bakhvalov-Shishkin mesh, both with C D 0:001.
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Fig. 4 Energy-norm errors for Galerkin FEM (left) and LPSFEM (right)

Figure 3 shows for three different choices of Q|
p the computational costs in

terms of degrees of freedom and number of non-zero entries in the stiffness matrix.
Clearly, the choice of the serendipity element Qp̊ reduces the costs by a factor of
about 2 compared to the full Qp-element while the standard enriched element QC

p

[12], gained by taking eQp D Qp�3 ˚ span
˚
�p�2; �p�2�, lies in between.

Figure 4 shows the convergence of the two methods for the three different spaces
on the Shishkin and the Bakhvalov-Shishkin mesh. The upper curves correspond to
the Shishkin mesh and a convergence rate of O

�
.N�1 lnN/5

�
is observable for the

Galerkin FEM on the left and for the LPSFEM on the right. Note that the choice
of the space has almost no effect on the quality of the computed solutions. However,
the choice of the mesh has a much stronger effect – the lower curves correspond
to the Bakhvalov-Shishkin mesh. We observe a convergence order of O

�
N�5� and

on the finest mesh three orders of magnitude difference.
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Table 1 Galerkin discretisation withQ˚

5 ,N D 64, and " D 10�12 for different point distribution
types

ku � uN k" kJN u � uk" kJN u � uN k"
Type S-mesh B–S mesh S-mesh B–S mesh S-mesh B–S mesh

1 1.991-06 3.751-09 2.634-06 4.788-09 1.722-06 2.987-09
2 1.991-06 3.751-09 2.464-06 4.649-09 1.465-06 2.760-09
3 1.991-06 3.751-09 3.748-06 7.097-09 3.176-06 6.028-09

Table 2 Local projection stabilisation with Q˚

5 , N D 64, and " D 10�12 for different point
distribution types

ku � uN kLPS kJN u � ukLPS kJN u � uN kLPS
Type S-mesh B–S mesh S-mesh B–S mesh S-mesh B–S mesh

1 2.383-06 4.546-09 2.636-06 4.790-09 2.169-06 3.953-09
2 2.383-06 4.546-09 2.464-06 4.650-09 1.941-06 3.767-09
3 2.383-06 4.546-09 3.749-06 7.098-09 3.603-06 6.552-09

Finally, we want to study the influence of the distribution of the points which are
used to define the interpolation operator J . We have considered the case � D �with
three different choices:

type 1 equidistant point distribution (�1;�0:6;�0:2; 0:2; 0:6; 1),

type 2 Gauss–Lobatto points (�1;�0:765;�0:285; 0:285; 0:765; 1),

type 3 points condensed near 0 (�1;�0:25;�0:083; 0:083; 0:25; 1).

Tables 1 and 2 show the errors for the methods based on the above given point
distribution for a fixed mesh ofN D 64. Clearly, the difference of the errors between
those three different types is very small. Nevertheless, it can be observed that the
Gauss-Lobatto points give the smallest interpolation- and closeness errors while
type 3 generates the biggest errors. This is caused by the concentration of points
near 0 which leads to a worse behaviour of the interpolation operator.

Since the finite element space V N is not influenced by the choice of the interpo-
lation points, the error u � uN is the same for all interpolation operators. This can
be seen from the columns 2 and 3 in Tables 1 and 2.

Above consideration of the influence of point distributions on the behaviour
of the interpolation operator JN shows that it is sufficient to use an equidistant
point distribution although the more sophisticated choice of Gauss–Lobatto points
generates smaller interpolation errors.
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A Singularly Perturbed Convection Diffusion
Parabolic Problem with an Interior Layer

J.L. Gracia and E. O’Riordan

Abstract In this paper, we examine a singularly perturbed convection-diffusion
problem where the coefficients are smooth, but the solution contains an interior
layer, generated from the fact that the initial condition contains an internal layer.

1 Introduction

In [2], we examined the following singularly perturbed parabolic problem: Find Ou
such that

OL" Ou WD �"Ouss C Oa.t/Ous C Out D Of .s; t/; .s; t/ 2 Q WD .0; 1/ � .0; T ; (1a)

Ou.s; 0/ D O�.sI "/; 0 � s � 1; (1b)

Ou.0; t/ D �L.t/; Ou.1; t/ D �R.t/; 0 < t � T; (1c)

Oa.t/ > ˛ > 0; (1d)

where the coefficient of the convection term only depends on the time variable, the
initial condition O� is smooth, but contains an interior layer in the vicinity of a point
s D p; 0 < p < 1 and p is independent of ". The function O� is defined as the
solution of a singularly perturbed problem of the form

�" O�00 C Ob.s/ O� D Of1.s/; j Of1jk � C"�k=2e�˛ js�pj

p

" ;

(see Sect. 4 for an example of such a function). The solution of problem (1) will
exhibit an interior layer of width O.

p
"/ (emanating from the initial condition),
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which travels along the characteristic curve associated with the reduced differential
equation (formally set " D 0 in (1a)) given by


 � WD f.p.t/; t/jp0.t/ D Oa.t/; 0 < p.0/ D p < 1g:

In general a boundary layer of width O."/ will also appear in the vicinity of the
edge x D 1. We restrict the size of the final time T so that the interior layer does not
interact with this boundary layer. Since Oa > 0, the function p.t/ is monotonically
increasing. Thus, we limit the final time T such that

ı WD .1 � p.T //.1� p/�1 > 0: (2)

Using the map [1] X W .s; t/ ! .x; t/ given by

x.s; t/ D

8̂̂
<
ˆ̂:

p

p.t/
s; s � p.t/;

1 � 1 � p
1 � p.t/ .1 � s/; s 	 p.t/;

(3)

the differential equation (1a) transforms into

L"u WD ��"uxx C �.x; t/ux
C g.x; t/ut D g.x; t/f .x; t/; x ¤ p;

u.x; 0/ D �.xI "/; 0 < x � 1; u.0; t/ D �L.t/; u.1; t/ D �R.t/; 0 < t � T;

�.x; t/ WD

8̂
<̂
ˆ̂:

a.t/p.t/

p

�p � x
p


; x < p;

a.t/.1 � p.t//
.1 � p/

.x � p/

.1 � p/ ; x > p;
g.x; t/ WD

8̂
<̂
ˆ̂:

�p.t/
p

2
; x < p;

�1 � p.t/
1 � p

2
; x > p:

(4)
Throughout this paper, we use the notation !.x; t/ WD O!.s; t/. In the transformed
problem, the coefficient �.x; t/ of the first derivative in space is positive, except
along the internal line x D p where it is zero.

The solution of problem (4) can be decomposed into the sum of a regular and
singular (boundary and interior layers) components: u D v C w C z: The regular
component is discontinuous along .p.t/; t/ and the values on the edges .p.t/; t/
and .1; t/ are defined such that no layers are present in the regular component. This
regular component satisfies the bounds




 @jCmv

@xj @tm




 � C.1C "2�.jCm//; 0 � j C 2m � 4: (5)

The continuous boundary layer function w is defined to be identically zero in˝� WD
.0; p/ and in ˝C WD .p; 1/ it satisfies the bounds

ˇ̌
ˇ @jCmw

@xj @tm
.x; t/

ˇ̌
ˇ � C"1�m"�j e� ˛ı.1�x/

2" ; 0 � j � 4; m D 1; 2; .x; t/ 2 ˝C: (6)
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The discontinuous multi-valued interior layer function z satisfies the bounds

jz.x; t/j � Ce�p
˛
"
.p�x/; .x; t/ 2 ˝�; (7a)

jz.x; t/j � Ce�e�

kakt
ı.1�p/

p
˛
" .x�p/; .x; t/ 2 ˝C; (7b)

and for all 1 � j C 2m � 4;

ˇ̌̌ @jCmz

@xj @tm
.x; t/

ˇ̌̌
� C"�j=2e�p

˛
2"
.p�x/; .x; t/ 2 ˝�; (7c)

ˇ̌
ˇ @jCmz

@xj @tm
.x; t/

ˇ̌
ˇ � C"�j=2e�e�

kak

ı.1�p/
T p

˛
2"
.x�p/; .x; t/2˝C: (7d)

We refer the reader to [2] for details on how these components are defined. Based
on the bounds (7a,b) an appropriate piecewise-uniform mesh of Shishkin type can
be defined (see Sect. 3) for problem (1). In addition, using the bounds (5), (6)
and (7a,b), first order uniform convergence was established in [2] for a numerical
method composed of a standard upwind finite difference operator and this piecewise
uniform mesh.

This paper is a companion paper to [2]. Here we examine the effect of having the
convective coefficient Oa D Oa.s; t/ depend on both time and space. We will see that
the main changes are in the statement of the transformed problem and the estab-
lishment of the bounds (7c,d) on the derivatives of the interior layer component.
Throughout the paper, c or C denotes a generic constant that is independent of the
singular perturbation parameter " and of all discretization parameters.

2 Continuous Problem

In passing, we note that when the convective term is independent of space, then the
characteristic curve 
 � is explicitly determined by

p.t/ D p C
Z t

sD0
Oa.s/ ds:

When the convective term depends on space then the path of 
 � is implicitly defined
by p0.t/ D Oa.p.t/; t/. This is the first hint that allowing the convective coefficient
to depend on space complicates the numerical analysis.

Note that the mapping (3), transforms the convection term Oa.s; t/ into

�.x; t/ WD

8̂̂
<
ˆ̂:

p.t/

p

�
a.x; t/ � xa.p; t/

p


; x < p;

1 � p.t/
1 � p

�
a.x; t/ � .1 � x/a.p; t/

1 � p


; x > p:

(8)
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To immediately extend the analysis from [2] to the case of Oa.s; t/, we require that
�.x; t/ > 0; .x; t/ 2 ˝� [˝C. Hence, in this paper we will assume that

Oa.s; t/ > ˛ > 0I a.x; t/

a.p; t/
>

8̂̂
<
ˆ̂:

x

p
; in ˝�;

1 � x
1 � p

; in ˝C:
(9)

It is convenient to impose a condition on the convective coefficient Oa.s; t/ in the
original .s; t/–variables. It is easy to show that Oass < 0; .s; t/ 2 Q is a sufficient,
but not a necessary, condition for (9) to be satisfied.

If the decomposition of the solution u D v C w C z used in [2] is employed
in the case of Oa D Oa.x; t/, then the bounds (5), (6) on the regular and boundary
layer components can be easily established. In addition, one can also check that the
bounds (7a,b) on the interior layer component still apply when Oa.s; t/. However,
the proof used in [2] to establish (7c,d) is not applicable in this paper. To be more
precise, if we consider the homogeneous differential equation

��"zxx C �.x; t/zx
C g.x; t/zt D 0; .x; t/ 2 ˝�:

When Oa.t/ is independent of space, the stretched variable � D .p � x/p.t/

p
p
"

;

transforms this homogenous differential equation into the simple heat equation

�Qz�� C Qzt D 0;

where Qz.�; t/ D z.x; t/. From this heat equation, we can deduce bounds on the par-
tial derivatives of the component z. However, when Oa D Oa.s; t/, this same change of
variable does not cancel the convection term and therefore this particular argument
does not allow us deduce the bounds (7c,d). In this paper, we simply assume that
the bounds (7c,d) extend to the case where Oa can depend on both space and time.

3 Discrete Problem

Based on the bounds (7a,b), we propose the following mesh for both the cases
Oa D Oa.s; t/ and Oa D Oa.t/: Let N and M be two positive integers. To approxi-
mate the solution we use a uniform mesh in time ftj D j�t; j �t D T=M g and a
piecewise uniform mesh of Shishkin type in space fxi gNiD1 (described below) in the

transformed variables .x; t/. The grid is given by ˝
N;M D ftj gMjD0 � fxi gNiD0. The

Euler method is used to approximate the time variable and the upwind finite dif-
ference operator to approximate the space variable. The finite difference equation
associated with each grid point is given by
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.�"ı2xU C �D�
x U C gD�

t U /.xi ; tj / D .g f /.xi ; tj /; xi ¤ p; tj > 0; (10a)

D�
x U.p; tj / D DC

x U.p; tj /; tj > 0; (10b)

�"ı2xU.xi ; 0/C b.xi /U.xi ; 0/ D f1.xi /; 0 < xi < 1; (10c)

U.0; tj / D �L.tj /; U.1; tj / D �R.tj /; tj 	 0; (10d)

where b and f1 are smooth functions (see Sect. 4 for an example). Here, DC
? , D�

?

denote the forward and backward finite difference to approximate the first order
derivatives, and ı2x the classical approximation of the second order derivative on a
nonuniform mesh.

The space domain is discretized using a piecewise uniform Shishkin mesh which
splits the space domain Œ0; 1 into four subintervals

Œ0; p � �1 [ Œp � �1; p C �2 [ Œp C �2; 1 � � [ Œ1 � �; 1; (11)

where the transition parameters are defined by

�1 WD minfp
2
;

r
2"

˛
lnN g; �2 WD minf1� p

2
; e

kak

ı.1�p/
T

r
2"

˛
lnN g; (12a)

� WD minf1� .p C �2/

2
;
4"

˛ı
lnN g: (12b)

The grid points are uniformly distributed within each subinterval such that

x0 D 0; xN=4 D p � �1; xN=2 D p; x5N=8 D p C �2; x7N=8 D 1 � �; xN D 1:

Analogously to the continuous problem, a decomposition of the solution of the dis-
crete problem U D V CW CZ was established in [2]. This decomposition, can be
easily extended to the case Oa D Oa.s; t/, and these discrete counterparts satisfy the
usual properties on the Shishskin mesh.

Define the global approximation

NU .x; t/ WD
N;MX

iD0;jD1
U.xi ; tj /'i .x/ j .t/

where 'i .x/ is the standard hat function centered at x D xi and  j .t/ D M.t �
tj�1/; t 2 Œtj�1; tj /.

Theorem 1. Assume (9) and that the bounds (7c,d) hold. For M sufficiently large
so that

M > .lnN/
.kak C 1 � p/T

.1� p/ı2
;

is satisfied, then

k NU � Ouk NQ � CN�1.lnN/2 C CM�1 lnN;
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where U is the discrete solution of (10) and Ou is the solution of the continuous
problem (1), where Oa.s; t/ is a function of both space and time.

Proof. Apply the arguments given in [2].

Remark 1. We note that a different choice of �2 can be used to define the mesh

��
2 .tj / D minf1� p

2
; e

kak

ı.1�p/
tj

r
2"

˛
lnN g: (13)

This mesh is time dependent and therefore interpolation is required to compute the
solution with the two level numerical method (10) at each time level. The interpola-
tion increases the computational cost of the method, but this new mesh places more
mesh points within the interior layer at all time levels. In Sect. 4, we employ linear
interpolation when implementing this choice of mesh.

4 Numerical Experiments

As the exact solutions of the problems of this section are unknown, we estimate the
errors using the double mesh principle to compute the global differences:

dN;M" WD



 NUN;M � NU 2N;2M




 N̋ N;M [ N̋ 2N;2M
; dN;M WD max

S"

dN;M" :

Here NU denotes the linear interpolation of the numerical solutionU and the singular
perturbation parameter varies over the set S" D f20; 2�1; : : : ; 2�30g: From these
values we calculate computed orders of convergence qN;M" and computed orders of
uniform convergence qN;M using

qN;M" WD log2
�
dN;M" =d 2N;2M"

	
; qN;M WD log2

�
dN;M=d 2N;2M

	
:

Example 1. The first test problem is given by

�"Ouss C .1C s2/Ous C Out D 4s.1 � s/; .s; t/ 2 .0; 1/� .0; 0:15;
Ou.s; 0/ D O�.sI "/; 0 < s � 1; Ou.0; t/ D 0; Ou.1; t/ D 2; 0 < t � 1;

(14)

where the initial condition � is the solution of the following problem

� " O�00 C O� D 1C tanh.
s � 0:25

2
p
"
/; O�.0/ D 0; O�.1/ D 2: (15)

Note that in this problem Oass D 2 > 0, but condition (9) still holds.
The mesh is defined by means of the transition points (12). In Table 1 we display

the uniform differences and the corresponding orders of convergence, which exhibit
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Table 1 Uniform differences and computed orders of uniform convergence qN;M for test
problem (14)

N D 64 N D 128 N D 256 N D 512 N D 1; 024

M D 64 M D 128 M D 256 M D 512 M D 1; 024

dN;M 0.459E-01 0.228E-01 0.113E-01 0.531E-02 0.267E-02
q
N;M
uni 1.010 1.014 1.088 0.991

0
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0.8
1

00.020.040.060.080.10.120.14
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0
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0.06

Space
Time

"Errors"

Fig. 1 Problem (14): Computed solution and two mesh differences for " D 10�8 and
N D M D 32

first order convergence. In Fig. 1 the solution and the global differences are shown
for " D 10�8 and N D M D 32.

Example 2. The second test problem is given by

�"Ouss C .4 � s2/Ous C Out D 4s.1� s/; .s; t/ 2 .0; 1/ � .0; 0:15;
Ou.s; 0/ D O�.sI "/; 0 < s � 1; Ou.0; t/ D 0; Ou.1; t/ D 2; 0 < t � 1;

(16)

where the initial condition O� is the solution of problem (15).
The mesh is defined by means of the transition points (12). In Table 2 we display

the uniform differences and the corresponding orders of convergence, which again
indicates first order convergence. In Fig. 2 the solution is shown for " D 10�8 and
N D M D 32.

Test problem (16) is now approximated with the time dependent mesh (13). The
results are given in Table 2. In Fig. 2 the computed solution is displayed for " D
10�8 and N D M D 32 and we observe that the grid inserts more mesh points
into the interior layer than the time independent mesh (12). This is more clearly
depicted in Fig. 3, where a zoom of the grid in space for both the dependent and
independent grids is given in the transformed variables .x; t/. Nevertheless, this new
time-dependent mesh does not improve the order of uniform convergence provided
by the time independent mesh and therefore we conclude that the independent grid
has been computationally more efficient for this particular test example.

Acknowledgements This research was partially supported by the project MEC/FEDER
MTM2007-63204 and the Diputación General de Aragón.
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Table 2 Uniform differences and computed orders of uniform convergence for test problem (16)
using time independent (first row) and dependent (second row) meshes

N D 64 N D 128 N D 256 N D 512 N D 1024
M D 64 M D 128 M D 256 M D 512 M D 1024

dN;M 0.474E+0 0.310E+0 0.135E+0 0.609E-1 0.336E-1
q
N;M
uni 0.615 1.199 1.148 0.860
dN;M 0.196E+00 0.120E+00 0.768E-01 0.455E-01 0.275E-01
q
N;M
uni 0.715 0.638 0.756 0.724

0
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Fig. 2 Problem (16): Computed solution for " D 10�8 and N D M D 32 using a time
independent (left) and dependent (right) meshes
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Fig. 3 Zoom of the time independent (left) and dependent (right) grids for test problem (16) for
" D 10�8 and N D M D 32 in the transformed variables .x; t /
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Mesh Adaptivity Using VMS Error Estimators:
Application to the Transport Equation

G. Hauke, M.H. Doweidar, and S. Fuentes

Abstract Recently, it has been developed an explicit a-posteriori error estima-
tor (Ainsworth and Oden, A posterior error estimation in finite element analysis,
Wiley, 2000) especially suited for fluid dynamics problems solved with stabilized
methods (Hauke et al., Variational multiscale a-posteriori error estimation for the
multi-dimensional transport equation, Comput. Meth. Appl. Mech. Eng. 195, 1573–
1593, 2006; Hauke et al., The multiscale approach to error estimation and adaptivity,
Comput. Meth. Appl. Mech. Eng. 197, 2701–2718, 2008; Hauke et al., Multiscale
Methods in Computational Mechanics, vol. 55. Springer, 2010). The technology
is based upon the theory that inspired stabilized methods, namely, the variational
multiscale theory (Hughes, Comput. Meth. Appl. Mech. Eng. 127, 387–401, 1995;
Hughes et al., Comput. Meth. Appl. Mech. Eng. 166, 3–24, 1998). The salient fea-
tures of the formulation are that it can be readily implemented in existing codes,
it is a very economical procedure and it yields very accurate local error estimates
uniformly from the diffusive to the advective regime.

In this work, the variational multiscale error estimator is applied to develop adap-
tive strategies for the advection-diffusion-reaction equation. The performance of
two local error norms and three strategies to adapt the mesh are investigated, with
emphasis on flows with boundary and interior layers.
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1 Preliminaries

1.1 Problem Setup

Strong Form

Consider a spatial domain ˝ with boundary 
 , which is partitioned into two non-
overlapping zones 
g and 
h. Let x and y be two points in ˝. The strong form
of the boundary-value problem consists of finding u W ˝ ! R such that for the
given essential boundary condition g W 
g ! R, the natural boundary condition
h W 
h ! R, and forcing function f W ˝ ! R, the following equations are
satisfied

8<
:
Lu D f in ˝

u D g on 
g
Bu D h on 
h

(1)

where L is in principle a second-order differential operator and B, an operator acting
on the boundary that defines the natural boundary condition.

1.2 A Posteriori Error Estimators

Let us introduce a finite element mesh of elements˝e with boundary 
 e . The finite
element solution (given, in principle, by a stabilized method) is denoted as Nu and the
error as u0, such that u D Nu C u0.

Three explicit a posteriori error estimators will be investigated, namely,

MS06L2 [4]

jju0.x/jj˝e � �eflow jjLNu � f jj˝e (2)

MS06P0 [4]

jju0.x/jj˝e � �eflow .LNu � f /pmeas.˝e/ (3)

where the bar denotes the average value within the element.

MS08 [5]

jju0.x/jjLr .˝e/ � meas.˝e/1=r �eLr

�
�
jjLNu � f jjL

1

.˝e/ C 1
2

meas.� e/
meas.˝e/

jjŒŒB NujjL
1

.� e/

	
in ˝e

(4)
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Fig. 1 Notation to define the
jump across element
interfaces

where typically, r D 1 or 2. Furthermore, ŒŒ� denotes the jump operator of a func-
tion across a discontinuity. Following the notation of Fig. 1, where the respective
outward unit normals to elements ˝C and ˝� are nC and n�, the jump of v � n is
defined as [7]

ŒŒv � n D nC � vC C n� � v� (5)

The parameter �eflow is the intrinsic flow time-scale, whereas �eLr
, the error time-

scale. Their definitions can be found later, in the Numerical Test section.
Note that the first two methods give an estimate of the error in the L2 norm,

whereas the third method can give that estimate either in the L2 or L1 norms. Also,
note that the first two methods lack the contribution of the jump term ŒŒB Nu and,
therefore, are only applicable to advection-dominated flows. The third formulation,
MS08, is endowed with contributions stemming from element interior residuals and
inter-element jumps and, therefore, can be applied to any regime from advection-
dominated to diffusion-dominated flows.

2 Remeshing Strategies

It is assumed that the user provides the target error in the form of a constant local
error norm e

Lr

TOL in ˝e or in the form of a constant pointwise error uTOL. The error
estimator provides an estimate of the error in the same local error norm �eLr

(with
r D 1 or 2). The remeshing strategy consists of an iterative process such that,
given an initial mesh with mesh size distribution he and a stabilized finite element
solution Nu, from the estimated error and the user target error, the new mesh size
distribution h0

e is calculated and a new mesh, generated. The process is repeated
until convergence of the mesh. Three strategies have been investigated:

	 To uniformly distribute the desired local error norm over the old mesh
	 To uniformly distribute the desired local error norm over the new mesh
	 To uniformly distribute the desired pointwise error

Convergence theory and suitable hypothesis yield the expressions of Table 1.
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Table 1 Expressions to calculate the new mesh sizes h0

e from the old mesh sizes he , the estimated
local error norm �eLr and the user tolerance eLrTOL or uTOL, for r D 1 or r D 2. ˇ is the order of
convergence of the finite element method

Method User error Error estimate in Lr norm

Local norm over old mesh e
Lr
TOL

h0

e

he
D
�
e
Lr
TOL
�eLr

� 1
ˇ

Local norm over new mesh e
Lr
TOL

h0

e

he
D
�
e
Lr
TOL
�eLr

� 1
ˇC2=r

Pointwise error uTOL
h0

e

he
D
�

u
L1
TOLmeas.˝e /1=r

�eLr

� 1
ˇC2=r

2.1 Numerical Test: L-Shaped Problem

The equation contemplated in this investigation is the transport equation, for which
the differential and the natural boundary condition operators can be written as

Lu D a � ru � r � .�ru/� su (6)

Bu D �ru � n (7)

with the velocity field a W ˝ ! R, the diffusion coefficient � W ˝ ! R, � 	 0, and
the source parameter s, with s > 0 for production and s < 0 for dissipation.

For this partial differential equation, the flow time-scale �flow is defined according
to [2] and the error time-scales are defined as follows,

�eL1
D min

�
he

2 jaj ;
h2e
12 �

;
1

jsj
�

(8)

�eL2
D min

�
hep
3 jaj ;

h2e

2
p
30 �

;
1

jsj
�

(9)

The numerical test, described in [9], considers the flow in a L-shaped domain
and has zero essential boundary conditions along the boundary. The parameters of
the problem are a D .1; 3/, two values of � D 10�6; 1, s D �1 and the independent
forcing function f .x/,

f .x; y/ D 100r.r � 0:5/.r � 1=
p
2/ (10)

with r2 D .x � 0:5/2 C .y � 0:5/2.
Figure 2 shows the exact solution for both viscosities. For � D 1 the solution is

fairly smooth, except at the corner, which is a singularity point. For � D 10�6, the
solution displays sharp interior, boundary and outflow layers, a typical challenge of
low viscosity flow solutions.
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Fig. 2 Contour plots of the exact solutions
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Fig. 3 Iterations of the remeshing process for � D 1:0 � 10�6 and a user error tolerance of
e
L2
TOL D 10�5

3 Results

Figure 3 displays the typical iterative process to adapt the mesh, including the initial
mesh, which does not have any information about the flow features.
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Fig. 4 Comparison of technologies for � D 1:0�10�6 and a user error tolerance of eL2TOL D 10�4.
Uniform distribution of L2 local error norm over the old mesh

Figure 4 compares the performance of the three technologies for the advection-
dominated case. One can conclude that the three technologies generate very similar
meshes, capturing the flow boundary and inner layers for the small error tolerance.

For the MS08 error estimator, Figs. 5, 6 compare for the L1 and L2 norms
the three remeshing strategies for the advection-dominated and diffusion-dominated
cases, respectively.

4 Conclusions

It has been shown that the three error estimators produce similar adapted meshes.
For advection-dominated flows one can choose the more complex MS08 formula-
tion or the simpler MS06.

The uniform distribution of the local error norm over the old mesh or the new
mesh generates similar meshes, both for the L1 and L2 norms. In general, both
norms give rise to good quality meshes. However, the uniform distribution of the
local error norm over the old mesh in combination with the L1 local norm produces
oscillatory meshes and, therefore, it should be avoided as an adaptive strategy.

The uniform distribution of pointwise error produces sharper (finer) meshes
around singularities than the even distribution of local error norms.

During the iteration process, the second mesh tends to be too fine. As a con-
sequence, the error tolerance should be decreased slowly towards the user target
error.

As a summary, it can be concluded that variational multiscale error estimators
generate economic, good quality adapted meshes.

Acknowledgements Funding of the Ministry of Science and Innovation of Spain under contract
MTM2009-13286 is gratefully acknowledged.



Mesh Adaptivity using VMS Error Estimators 153

Uniform local error norm over old mesh

x

y

0 0.5

L2 norm

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 norm

Uniform local error norm over new mesh

x

y

0 0.5

L2 norm

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.5

L1 norm

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uniform pointwise error

L2 norm
x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.5

L1 norm

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5 Comparison of remeshing strategies. Fine meshes with � D 1:0� 10�6
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Uniform local error norm over old mesh
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Fig. 6 Comparison of remeshing strategies. Fine meshes with � D 1:0
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Numerical Simulation of Turbulent
Incompressible and Compressible Flows
Over Rough Walls

Petr Louda, Jaromír Příhoda, and Karel Kozel

1 Introduction

Wall roughness affects flow characteristics practically in all technical applications.
In internal flows, the height of rough elements should be much smaller than the
thickness of the shear layer (so called distributed roughness) and its influence on the
flow cannot be directly simulated. Instead a model of rough wall is needed.

Wall roughness influences the flow structure only in the vicinity of the wall. The
effect of wall roughness on the velocity profile can be expressed by the shift of the
mean velocity profile in the logarithmic part of the wall region.

In this work, the SST k-! model is used to compute two cases of incompressible
flows over rough walls, and one case of compressible flow through a turbine cascade.
Also Spalart-Allmaras model modified for rough walls [3] is tested on flat plate
flow, but its results are not encouraging. Further, the same aproach as for the SST
model is used for explicit algebraic Reynolds stress (EARSM) model by Wallin and
Hellsten [5, 13]. This model uses k-! system of equations very similar to SST one,
and results show the effect of roughness can be incorporated with similar reliability
as in the SST model. Results are compared with measurements and the effect of wall
roughness shown by comparison with computation for smooth walls.
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Institute of Thermomechanics v.v.i., Czech Academy of Sciences, Dolejškova 5, 182 00 Praha 8,
Czech Republic,
e-mail: louda@it.cas.cz, prihoda@it.cas.cz

K. Kozel
Department of Technical Mathematis, Faculty of Mechanical Engineering, Czech Technical
University in Prague, Karlovo nám. 13, 121 35 Praha 2, Czech Republic,
e-mail: karel.kozel@fs.cvut.cz

C. Clavero et al. (eds.), BAIL 2010 – Boundary and Interior Layers, Computational
and Asymptotic Methods, Lecture Notes in Computational Science and Engineering 81,
DOI 10.1007/978-3-642-19665-2_17, c� Springer-Verlag Berlin Heidelberg 2011

157

louda@it.cas.cz
prihoda@it.cas.cz
karel.kozel@fs.cvut.cz


158 P. Louda et al.

2 Mathematical and Numerical Model

The mathematical model of compressible turbulent flow is based on the Favre
averaged Navier–Stokes equations in 2D case

@W

@t
C @Fi

@xi
D @Ri

@xi
; .i D 1; 2/ (1)

W D

2
664
�

�u1
�u2
e

3
775 ; Fi D

2
664

�ui
ui�u1 C pıi1
ui�u2 C pıi2

ui .e C p/

3
775 ; Ri D

2
664

0

�i1 � ti1
�i2 � ti2

.�ij � tij /uj � qi � qti

3
775 ;

where � is mean density, ui mean velocity vector, p mean static pressure, ıij is the
Kronecker delta, �ij tensor of viscous stress, e mean total energy per unit volume
and qi heat flux vector. A state equation of perfect gas is assumed. The tensor tij is
the Reynolds stress tensor and qti turbulent heat flux. These terms are approximated
by a turbulence model. For incompressible fluid flows, the corresponding system
of simplified Navier–Stokes equations is used instead of the above system with
� D const.

2.1 Turbulence Model

The eddy viscosity SST (Shear Stress Transport) model by Menter [4], defines the
Reynolds stress tensor by eddy viscosity �t

tij D ��t2Sij C 2

3
�kıij ; �t D a1�k

max.a1!; j˝jF2/ ; a1 D 0:31 (2)

where k is turbulent energy,! specific dissipation rate and Sij and˝ij are the strain
rate tensor and the rotation tensor respectively. j˝j D .˝ij˝ij /

1=2 is the absolute
value of the rotation tensor. The function F2 activates the Bradshaw hypothesis for
the Reynolds shear stress t12 D a1�k, see [4].

The EARSM model by Wallin [13] can be expressed in terms of dimensionless
anisotropy tensor aij as

tij D aij�k C 2

3
�kıij ; (3)

aij D ˇ1�Sij

C ˇ3�
2.˝ik˝kj � II˝ıij=3/C ˇ4�

2.Sik˝kj �˝ikSkj /

C ˇ6�
3.Sik˝kl˝lj C˝ik˝klSlj � 2IV ıij =3/

C ˇ9�
4.˝ikSkl˝lm˝mj �˝ik˝klSlm˝mj /;
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where � is turbulent time scale and Sij ; ˝ij are strain rate and rotation tensors,
respectively. The invariants II˝ ; IV formed by Sij ; ˝ij are given in Hellsten [5]
as well as coefficients ˇ. The original version of model by Wallin [13] has slightly
different coefficients ˇ. It should be noted, that only ˇ1; ˇ4 should be non-zero in
a 2D mean flow. However, due to the necessary approximate explicit solution of the
algebraic stress model, not all remaining coefficients are exactly zero in 2D. In this
work the general 3D form of the model is used without regard to 2D geometrical
configuration.

The turbulent heat flux is approximated by

qti D qi
Pr

�

�t

Prt
; (4)

where the turbulent Prandtl number Prt D 0:91 and �t is defined using the linear
part of the Reynolds stress tensor in the case of EARSM model.

Both turbulence models use the k-! system of equations to estimate turbulent
scales

D�k

Dt
D �tij @ui

@xj
� ˇ��k! C @

@xj

�
.�C �k�t /

@k

@xj

�
;

D�!

Dt
D �� !

k
tij
@ui
@xj

� ˇ�!2 C @

@xj

�
.�C �!�t /

@!

@xj

�
C �

�d

!

@k

@xj

@!

@xj
(5)

where the derivative D � =Dt 
 @ � =@t C @.uj �/=@xj . For the coefficients
ˇ�; �k; �; ˇ; �! ; �d in the SST or EARSM model see [4] and [5] respectively.

2.2 Roughness Model

The effect of wall roughness on the velocity profile can be expressed by the shift of
the mean velocity profile in the logarithmic part of the wall region �u. According
to Nikuradse [9] it is expressed using the equivalent sand grain roughness ks

�u

u�
D 1

�
ln

u�ks
�

� 3; � D 0:41 (6)

where u� is the friction velocity. The velocity shift occurs also in a k-! turbulence
model if it is integrated up to the wall with wall value of! which is not large enough.
Wilcox [12] proposed value of ! on the rough wall in the form

!w D u2�
�
SR; SR D

�
Œ50=max.kC

s ; k
C
smin/

2 for kC
s < 25

100=kC
s for kC

s 	 25
(7)
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The smooth regime is reached for values kC
s < 4. Hellsten [5] observed that the

wall shear stress is very sensitive to the value kC
smin which determines the smooth

regime. To remove such dependence he proposed the following relation

kC
smin D minŒ2:4.�yC

1 /
0:85; 8 (8)

where�yC
1 is the thickness of the grid cell next to the wall. The boundary condition

given by (7) and (8) is used for the SST as well as the EARSM turbulence model.
The SST model is further modified according to Hellsten and Laine [6] by

introduction of the function F3 to prevent the activation of the SST limiter in the
roughness layer

�t D a1�k

max.a1!; j˝jF2F3/ ; F3 D 1 � tanh

�
150�

!y2

�4
(9)

The function F3 is equal zero near the wall and unity elsewhere.

3 Numerical Method

The system of governing equations is solved by the implicit upwind finite volume
method. The cell centered finite volume method with quadrilateral finite volumes is
applied for spatial discretization. The inviscid flux in the case of compressible flow
is defined using the AUSM U-splitting [7]. A higher order of accuracy is achieved by
the MUSCL interpolation in the directions of grid lines using the van Leer limiter.
In the case of the steady incompressible flow an artificial compressibility method is
used which consists of adding a pressure time derivative into the continuity equation

1

a2
@p

@t
C @ui
@xi

D 0; (10)

where a is a positive constant parameter chosen for good convergence to a steady
state. In this work a is approximately equal to the maximum velocity. The inviscid
flux is discretized using the third order van Leer upwind interpolation in the direc-
tion of grid lines without limiter. The discretization of diffusive fluxes is central.
The approximation of cell face derivatives needed in diffusive terms uses quadrilat-
eral dual finite volumes constructed over each face of primary finite volume. The
time integration uses the backward Euler implicit scheme. The non-linear discrete
equations are linearized using the Newton method. The resulting block 5-diagonal
system of algebraic equations is solved using block relaxation method with direct
tri-diagonal solver for selected family of grid lines [2, 8].
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Fig. 1 Flat-plate flow, mean velocity profiles (left: SST model, right: EARSM model)

4 Computational Results

4.1 Flat Plate Flow

The roughness model was tested on the incompressible constant-pressure bound-
ary layer. The measurement data are taken from Pimenta, Moffat and Kays [10].
The flat plate was covered by tightly packed spheres of 1.27 mm diameter, which
corresponds to the equivalent sand roughness ks D 0:683 mm. Numerical results
are compared with experimental data for the free-stream velocity Ue D 39:7 m/s.
Figure 1 shows mean velocity profiles in non-dimensional coordinates and Fig. 2 the
distribution of the boundary layer thickness, here including also results of Spalart-
Allmaras one-equation model. The computational results are in a good agreement
with measurement, except for Spalart-Allmaras model which under-predicts wall
shear stress.

4.2 Flow Over Ramp

Here an incompressible flow in a channel with ramp on the bottom wall according
to measurements of Song and Eaton [11] is considered. The sketch of the channel
with a smoothly contoured ramp formed by a circular arch with a radius of 127 mm
is given in Fig. 3. The bottom wall was covered with 36-grit sandpaper from 1.3 m
up-stream of the ramp to the ramp trailing edge. The wall roughness is characterized
by the equivalent sand roughness ks D 2:4mm. Numerical simulation was carried
out for the free stream velocity Ue D 20m/s.

For smooth ramp, both SST and EARSM model give recirculation zone twice as
long as measured (approx. 85 mm vs. 43 mm). In the case of rough ramp, the reat-
tachment point is predicted nearly exactly. The separation point is not given exactly
in the reference. Figure 4 shows profiles of mean velocity and shear Reynolds stress
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Fig. 2 Flat-plate flow, boundary layer thickness

Fig. 3 Geometry of the circular ramp

compared to measurement [11]. The agreement with measurement is again better
for the rough ramp than for smooth one (not shown).

4.3 Flow Through a Turbine Cascade

Finally, a subsonic flow through VS33 turbine blade cascade with the chord length
b D 75mm is considered. Two similar regimes are chosen which differ mainly
by the roughness of the blade from measurements carried out by Ulrych et al. [1].
The value of ks D 0mm was considered for smooth blades, whereas for rough
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Fig. 4 Rough ramp: mean velocity and Reynolds shear stress in the middle of the ramp, at the end
of the ramp, and 3 ramp lengths downstream (from left to right)

blades covered with carborundum particles with Ra D 30�m the corresponding
equivalent sand roughness ks D 0:174mm was used. The smooth regime is charac-
terized by the isentropic outlet Mach number M2is D 0:88, the Reynolds number
Re2is D 8:4 � 105, and the angle of attack ˛1 D 0ı while the rough regime by val-
ues M2is D 0:90; Re2is D 8:8 � 105; ˛1 D 6ı. In both cases, the total temperature
T0 D 293 K and ratio of specific heats � D 1:4 was considered.

The pressure and shear stress distribution on smooth and rough blades are shown
in Fig. 5. There is no significant difference between SST and EARSM models. The
roughness, as expected, influences mainly shear stress and not much the static pres-
sure on the blade. The energy loss coefficient � was evaluated using the Laval
numbers �2; �2is according to relations

� D 100.1� �22=�
2
iso2/;

�22 D � C 1

2

�
1C � � 1

2
M 2
2is

��1
M 2
2is; �2iso2 D � C 1

� � 1

"
1 �

�
p2

p0

� ��1
�

#

(11)

where p2 and p0 are mean values of the static pressure behind the cascade and the
total pressure obtained from mean mass and momentum fluxes. The overview of
the loss coefficient is given in the Table 1. Although loss coefficients predicted by
the both turbulence models differ, the wall roughness characterized by the parameter
Ra D 30�m causes always approximately equal increase in the loss coefficient
by 62%–65%. The difference between measured and calculated losses for smooth
blades could be caused by the fact that the prediction was carried out for turbulent
flow only, without considering the laminar part. This difference is negligible for
rough blades, as the laminar/turbulent transition occurs very early.
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Table 1 Kinetic energy loss coefficient

Measurement SST model EARSM model

Smooth blade 2.2% 4.3% 3.7%
Rough blade 6.6% 7.0% 6.1%
Increase by roughness 200% 62% 65%

5 Conclusions

The prescription of boundary conditions directly on the rough wall was tested in the
framework of SST and EARSM turbulence models. Based on the considered cases,
the roughness model developed for k-! eddy viscosity model can be used in the
EARSM model as well. This makes possible future 3D simulations with EARSM
model and rough walls, where eddy viscosity models typically fail in capturing sec-
ondary flows. In the turbine cascade simulation the accounting for wall roughness
causes same change in loss coefficient for both turbulence models, although this
parameter is sensitive and different for both models. Nevertheless it can be assumed
that the effect of wall roughness on the loss coefficient was adequately estimated.
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A Projection-Based Variational Multiscale
Method for the Incompressible
Navier–Stokes/Fourier Model

Johannes Löwe, Gert Lube, and Lars Röhe

1 Introduction

In a bounded domain ˝ � R
d
; d 2 f2; 3g, we consider the Navier–Stokes/Fourier

equations as a model of non-isothermal, incompressible flows

@tu � r � .2�Du/C .u � r/u C rp C ˛g� D f (1)

r � u D 0 in .0; T  �˝ (2)

@t� � ~�� C u � r� D Q (3)

ujtD0 D u0; � jtD0 D �0 in f0g �˝ (4)

for velocity u, pressure p, and temperature � with appropriate boundary conditions.
The deformation tensor is Du D 1

2
.ru C .ru/t /. Viscosity � and diffusivity ~,

together with reference temperature �max � �min, characteristic length L, thermal
expansion coefficient ˛ and gravity vector g determine the relevant dimensionless

Rayleigh numberRa D ˛jgjL3.�max��min/
~

.
In Sect. 2, we introduce a projection-based variational multiscale model.

Section 3 is concerned with aspects of the numerical analysis of the semidis-
crete model. Finally, in Sect. 4, the approach is applied to a benchmark problem of
natural convection.

2 Variational Multiscale Model

Let Th be an admissible triangulation of ˝ s.t. ˝ D [K2Th
K. For simplicity,

we assume that Dirichlet boundary conditions for velocity and temperature are
homogenized. Then, we seek conforming finite element (FE) approximations of
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velocity, pressure, and temperature in subspaces of

V D ŒH 1
0 .˝/

d ; Q D L2�.˝/ D fq 2 L2.˝/ W
Z
˝

q dx D 0g; � D H 1
0 .˝/:

Let us consider inf-sup stable velocity-pressure FE spaces Vh �Qh � V �Q. The
basic Galerkin FE method reads:
find .uh; ph; �h/W Œ0; T  ! Vh �Qh��h s.t. for all .vh; qh;  h/ 2 Vh�Qh��h

.@tuh; vh/C .2�Duh;Dvh/C bS .uh;uh; vh/C .˛g�h; vh/

�.ph;r � vh/C .qh;r � uh/ D .f; vh/ (5)

.@t�h;  h/C .~r�h;r h/C cS .uh; �h;  h/ D .Q; h/ (6)

with the skew-symmetric form of the advective terms

bS .u; v;w/ WD Œ..u � r/v;w/� ..u � r/w; v/=2;
cS .u; �;  / WD Œ..u � r/�;  / � ..u � r/ ; �/=2:

The variational multiscale (VMS) approach, developed by Hughes [5], has been
used as a tool for scale separation in turbulence since 2000; for a review see [3].
Consider a three-scale decomposition

V 3 v D vh C Qvh„ ƒ‚ …
Dvh2Vh

COvhI Q 3 q D qh C Qqh„ ƒ‚ …
Dqh2Qh

COqhI � 3  D  h C Q h„ ƒ‚ …
D h2�h

C O h

with resolved scales .vh; qh;  h/ 2 Vh�Qh��h � V �Q�� . Inspired by [8], for
the model influence of .Ovh; Oqh; O h/ on .Qvh; Qqh; Q h/ define discontinuous FE spaces
LH , MH for the deformation tensor and temperature gradient

f0g � LH � L WD
n
L D .lij / 2 ŒL2.˝/d�d j lij D lj i ; 1 � i; j � d

o

f0g � MH � M WD ŒL2.˝/d

on TH ;H 	 h and the L2-orthogonal projection operators ˘ u
H W L ! LH and

˘�
H W M ! MH together with the fluctuation operators

�u.Duh/W D .Id �˘ u
H /.Duh/; �� .r�h/W D .Id �˘�

H /.r�h/:

For the calibration of the subgrid models for velocity and temperature, we introduce
cellwise constant terms �S .uh; �h/ and ~S .uh; �h/ s.t.

�KS .uh; �h/ WD �S .uh; �h/jK ; ~KS .uh; �h/ WD ~S .uh; �h/jK :
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As model of the small unresolved pressure scales we add grad-div stabilization with
cellwise constant �K.uh; ph/ WD �.uh; ph/jK s.t.

.�.uh; ph/.r � uh/;r � vh/ WD
X
K2Th

�K.uh; ph/.r � uh;r � vh/K :

Summarizing, we obtain the following variational multiscale model:
find .uh; ph; �h/ s.t. for all .vh; qh;  h/ 2 Vh �Qh � �h:

.@tuh; vh/C 2� .Duh;Dvh/C bS .uh;uh; vh/C .˛g�h; vh/

C .�S .uh; �h/�uD.uh/; �uD.vh//C .�.uh; ph/r � uh;r � vh/ (7)

C .r � uh; qh/� .r � vh; ph/ D .f; vh/ (8)

.@t�h;  h/C .~r�h;r h/C cS .uh; �h;  h/

C.~S .uh; �h/�� .r�h/; �� .r h// D .Q; h/: (9)

3 A Priori Error Analysis of the Semidiscrete Model

Following [7], we obtain stability estimates for the VMS scheme (7)–(9).

Lemma 1. Let f 2 L1.0; T IL2.˝//;Q 2 L1.0; T IL2.˝// and u0 2 ŒL2.˝/d ,
�0 2 L2.˝/. Then we obtain for t 2 .0; T  control of kinetic and heat energy

k�hkL1.0;t IL2.˝// � K1.Q; �0/ WD k�0k0 C kQkL1.0;t IL2.˝//

kuhkL1.0;t IL2.˝// � K2.f;u0;Q; �0/ WD ku0k0 C kfkL1.0;t IL2.˝// C C˛kgk0K1
and control of dissipation and subgrid terms

~kr�hk2
L2.0;t IL2.˝//

C
Z t

0

X
K

~KS .uh; �h/k��r�hk20;Kdt � 3

2
K2
1

�kDuhk2
L2.0;t IL2.˝//

C 1

2

Z t

0

X
K

�KS .uh; �h/k�uDuhk20;Kdt

C1

2

Z t

0

X
K

�K.uh; ph/kr � uhk20;Kdt � 3K2
2 :

Now we introduce elementwise multiscale viscosities �KVMS ; ~
K
VMS via

X
K2Th

�KS .uh; �h/ k�uDvhk20;K D
X
K2Th

�KS .uh; �h/
�
1�


˘ u

HDvh


2
0;K

kDvhk20;K

�

„ ƒ‚ …
DWK

VMS.vh/
0

kDvhk20;K ;
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X
K2Th

~KS .uh; �h/ k��r hk20;K D
X
K2Th

~KS .uh; �h/
�
1�


˘�

Hr h


2
0;K

kr hk20;K

�

„ ƒ‚ …
DW~K

VMS. h/
0

kr hk20;K

where we applied the projector properties of the fluctuation operators.
In the following we will omit the dependency of the parameters on uh; �h for

better readability. Using the modified elementwise viscosities

�Kmod.vh/W D 2� C �KVMS.vh/; ~Kmod. h/W D ~ C ~KVMS. h/

we define the following mesh-dependent expressions

jjju.t/jjj2 WD ku.t/k20 C
X
K2Th

Z t

0

 
�Kmod.u/
2

kDuk20;K C�K.uh; ph/ kr � uk20;K
!
dt;

jŒ�.t/j2 WD k�.t/k20 C
X
K2Th

Z t

0

1

2
~Kmod.�/ kr�k20;K dt:

The following semidiscrete a priori estimate is an extension of a previous result
in [6] and [10] for the isothermal case. The proof takes advantage of the fact
that, for inf-sup stable FE spaces for velocity/pressure, the space V div

h
of discretely

divergence free functions is not empty. Thus one can separate estimates for veloc-
ity/temperature and pressure and apply an interpolation operator by Girault/Scott
[2] in V div

h
on isotropic meshes.

Theorem 1. For a sufficiently smooth solution .u; �/ of the Navier–Stokes/Fourier
model with ru 2 L4.0; t IL2˝//; @tu 2 L2.0; t IH�1.˝// and r� 2
L4.0; t IL2˝//; @t� 2 L2.0; t IH�1.˝//; it holds for the solution of (7)–(9)
for all t 2 .0; T /:

jjj.u � uh/.t/jjj2 C jŒ.� � �h/.t/j2
� 2 inf

Quh 2 L2.0; tI V div
h

/

Q�h 2 L2.0; tI�h/

jjj.u � Quh/.t/jjj2 C jŒ.� � Q�h/.t/j2

C inf
Quh 2 L4.0; tI V div

h
/

Qph 2 L2.0; tIQh/

Q�h 2 L2.0; tI�h/

e
R t

0 g.s/ds

�
k.uh � Quh/.0/k20 C k.�h � Q�h/.0/k20 C

Z t

0

g2.s/ds

�

with

g.t/W D 27C 4LT

2�min
mod.e

u
h
/3

kDuk40 C 8C 41

�min
mod.e

u
h
/ ~min

mod.e
�
h
/2

kr�k40 C 2˛ kgk1 ;
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g2.t/W D2
X
K2Th

�
min

�
9C 2Ko

�min
mod.e

u
h
/
;

1

�K.uh/

��
kp � Qphk20;K C �2K.uh/ kr � �uk20;K

	

C 6
�
� C �KVMS.�

u/
	

kD�uk20;K C
�
2~ C 4~KVMS.�

� /
	 


r��




2
0;K

C 6�KS .uh; �h/ k�uDuk20;K C 4~KS .uh; �h/ k��r�k20;K
�

C 6C 2Ko

�min
mod.e

u
h
/

k@t�uk2�1;˝ C 4

~min
mod.e

�
h
/




@t��



2�1;˝ C ˛jgj1




��


2
0

C 6C 2LT
�min

mod.e
u
h
/

�
CFCKo kDuk20 C kuhk0 kDuhk0

	
kD�uk20

C 4C 21CKo

~min
mod.e

�
h
/

�
CFCKo kr�k20 kD�uk20 C kuhk0 kDuhk0




r��



2
0

�

where �min
mod.e

u
h
/ WD minK2Th

�Kmod.e
u
h
/, ~min

mod.e
�
h
/ WD minK2Th

~Kmod.e
�
h
/ and

uh�u D .uh� Quh/�.u� Quh/ DW eu
h��u; �h�� D .�h� Q�h/�.�� Q�h/ DW e�h��� :

CF and CKo are the constants of the inequalities of Friedrichs and Korn. CLT and
C1 are related to upper bounds of the advective terms.

Sketch of the proof: Please note that the regularity assumptions imply uniqueness
of the continuous solution .u; p; �/. Starting from the error equations for eu

h
and e�

h
,

careful estimates of the right hand side terms lead to

@t

�

eu
h



2
0

C ke�hk20
	

C g1.t/ � g.t/
�

eu

h



2
0

C ke�hk20
	

C g2.t/

with g.t/ and g2.t/ as stated in the Theorem and

g1.t/W D1

4

X
K2Th

�Kmod.e
u
h/


Deu

h



2
0;K

C 1

2

X
K2Th

~Kmod.e
�
h/



re�h




2
0;K

C
X
K2Th

�K.uh; ph/ kr � ehk20;K :

Gronwall’s Lemma implies for all t 2 Œ0; T 


eu
h.t/



2
0
Cke�h.t/k20C

Z t

0

g1.s/ds � e
R t

0 g.s/ds
� 

eu

h.0/


2
0
Cke�h.0/k20C

Z t

0

g2.s/ds

:

Finally, the triangle inequality concludes the proof. For full details of the proof, we
refer to [9]. �
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Let us discuss the result for FE spaces Qk=Qk�1=Qk or Pk=Pk�1=Pk for
.uh; ph; �h/ on isotropic meshes. Moreover, we formally assume sufficiently smooth
solutions .u; p; �/ of the continuous model. In particular, it can be shown that the
piecewise constants �min

mod.e
u
h
/, ~min

mod.e
�
h
/, and �K.uh; ph/, occuring on the right hand

side of the error estimate, remain bounded.
The third line of term g2.t/ consists of model errors. Let us assume

�KS .uh; �h/; ~
K
S .uh; �h/ D O.h2K/ for the subgrid functions. For the discontin-

uous spaces LH D ŒQdisc
k�2

d�d , MH D ŒQdisc
k�2

d , or Qdisc
k�2 replaced with P disc

k�2, the

fluctuation operators provide an interpolation error of O.h2.k�1/
K /. Thus the model

error terms are of order O.h2k/.
The remaining approximation terms in g2.t/ are formally of order O.h2k/, based

on the V div
h

-interpolation operator on isotropic meshes, see [2]. Properly chosen
subgrid parameters improve the estimate. see, e.g., the role of �K . Moreover, in term
g.t/, viscosity � is replaced with �C 1

2
minK �KVMS .uhI u� Quh/, which corresponds

to an increased effective Reynolds number. A similar argument holds for ~.

Let us finally consider the Gronwall factor e
R t

0 g.s/ds. Following [4], this factor is
unavoidable for unstable solutions of the Navier–Stokes problem. It can be avoided
in case of (quasi-)exponentially stable solutions.

4 Application to Natural Convection Flow

For the spatial discretization we apply quadrilateral meshes with FE spaces
Q2=Q1=Q2 for velocity/pressure/temperature within the FE package deal.II,
see [1]. The arising semidiscrete problem of the form

0
@Mu 0 0

0 M� 0

0 0 0

1
A
0
@ u0

h
.t/

� 0
h.t/

p0
h
.t/

1
A D

0
@ fh.t/

qh.t/
0

1
A �

0
@Au.uh/ C B

0 A� .uh/ 0
BT 0 0

1
A
0
@ uh.t/

�h.t/

ph.t/

1
A

is a DAE-system with differentiation index 2 and perturbation index 2. For the time
discretization, we apply the BDF(2)-formula for velocity

u0
h.tnC1/ � Œ3uh.tnC1/� 4uh.tn/C uh.tn�1/=.2�n/

and similarly for � 0
h.tnC1/. This results in favourable stability properties and does

not lead to order reduction for the algebraic variable. A fixed-point iteration is
performed for the arising non-linear implicit scheme.

In a next step, we have to introduce the non-isothermal viscosity model. We start
from the residual stress tensor �R and residual temperature flux h

�R WD hu ˝ ui � uh ˝ uh � �2�SDuh; h WD hu�i � uh�h � �~Sr�h
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and apply the subgrid model of Smagorinsky-Edison [12]

�S D .CE�/
2 max

�
0 ; kDuhk2F C ˇ

PrS
g � r�h

�1=2
; ~S D �S=PrS

with CE D 0:21 and PrS D 0:4. As filter width � we use an anisotropic scaling
matrix that takes local mesh anisotropy and orientation into account. This approach
gave better results than taking an isotropic filter width (e.g. length of shortest edge).
The model reduces to the Smagorinsky model if g�r�h D 0. For wall bounded flows
the turbulent viscosities may be multiplied by van Driest-type damping functions
for reasonable near wall behavior. It is well known that the Smagorinsky model
is over-diffusive. A reduction of model dissipation may then be established by an
application of the fluctuation operators

�R D �2�S�u.Duh/; h D �~S��.r�h/:
In our implementation, we use an one-level approach with H D h and the
discontinuous spaces Lh D ŒQdisc

0 d�d and Mh D ŒQdisc
0 d .

Now we apply the method to natural convection in a differentially heated cav-
ity ˝ WD .0; 1/d . The numerical simulations in [12] in a three-dimensional cavity
show that for appropriate boundary conditions in x3-direction there appears a sta-
tistically two-dimensional flow. This motivates the present restriction to d D 2.
Heating � D �max and cooling � D �min is performed at lateral boundaries,
whereas the upper and lower boundaries are highly conducting. As suggested in
[11] we use experimental data as boundary conditions on these walls. No-slip con-
ditions u D 0 for velocity are given at the whole boundary @˝ . Computations
were done on two meshes with 64 and 32 cells in each dimension. An anisotropic
mesh refinement had been performed at all boundaries by transforming an equidis-
tant reference mesh with x D Ox � 19

40

sin.2	 Ox/ and y D Oy � 7

16

sin.2	 Oy/ : The

maximum aspect-ratio of cells at the vertical walls was about 36:1.
Let us present some first results for time-averaged quantities of a low-turbulence

flow at RaD 1:58 � 109. Here we used the projection-based VMS with
Smagorinsky-Edison parametrization of the subgrid model without van Driest
damping. On both meshes the results for velocity and temperature profiles, wall
shear stress (see Figs. 1 and 2) and Nusselt number (not shown) are in good agree-
ment to experimental data of [11]. Interestingly, we observed (for fixed parameters)
no big difference of the solutions on the two grids with exception of wall-shear
stress.

We used grad-div stabilization with constant �K D 0:3 to improve the mass
conservation properties of the scheme. On the coarse grid with n D 32, we obtained
kr � uhk0 D 0:0029 for � D 0:3 as opposed to kr � uhk0 D 0:0517 for � D 0, i.e.,
an improvement by a factor of 18.

One critical point of the simulation is the separation of the flow at the vertical
walls and its reattachment at the horizontal walls. Experiments show small counter-
rotating vortices in these corners, which we also found in our simulations on the fine
mesh.
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Fig. 2 Temperature profile on vertical centerline T .0:5; y/ (left) and wall shear stress (right) and
experimental data of [11]

5 Summary and Outlook

In this paper, we applied a variational multiscale model to the time-dependent
Navier–Stokes/Fourier model of incompressible and non-isothermal flows. For the
case of piecewise nonlinear subgrid models for the unresolved velocity, temperature,
and pressure fluctuations, an a priori analysis of the nonlinear semidiscrete problem
was given. Finally, we applied the approach to the standard benchmark problem of
natural convection problem in a differentially heated two-dimensional cavity.

Some open problems are the extension to Rayleigh-Benard convection and to
mixed convection problems in indoor air-flow simulation. This will be considered
in future research.
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Improved Mathematical and Numerical
Modelling of Dispersion of a Solute
from a Continuous Source

Niall Madden and Kajal Kumar Mondal

We present a refinement of a model due to Mondal and Mazumder [7] for dis-
persion of fine particles in an oscillatory turbulent flow. The model is based on
the time-dependent advection-diffusion equation posed on a semi-infinite strip,
whose solution represents the concentration of particles over time and down-stream
distances.

The problem is solved by first mapping to a finite domain and then, using a
monotone finite difference method on a tensor product, piecewise uniform mesh.
The numerical results obtained for the related steady-state problem are compared
with experimental data.

1 Introduction

This paper is concerned with a mathematical model for the dispersion of fine parti-
cles in an advection-dominated flow, and its numerical resolution. In presenting it,
our goals are three-fold:

1. To present an improvement of the model in [7].
2. To outline how a layer adapted piecewise uniform (“Shishkin”) mesh may be

applied when solving this model, and further, to motivate the use of a parameter-
robust method for this applied problem.

3. To obtain better agreement between the model’s predictions and experimental
data than that achieved in related studies.
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It is important to understand the basic mechanism of dispersion processes of
passive contaminants in a stream or in the atmosphere from a continuous source; in
particular it gives an insight to control the pollution level in the environment. It is
shown in [7] how the spreading of injected particles is influenced by the combined
action of oscillatory flow (with or without a non-zero mean), settling velocity, and
vertically varying eddy diffusivity over the rough-surface for all time periods. The
introduced particles are represented as a single point discontinuity at the in-flow
boundary. In addition, a transformation is used to map the unbounded region to a
bounded one. A finite difference method on a uniform grid is then used to solve the
model numerically.

In Sect. 2 we present a mathematical model that is a modification of one
described in [7]. The concentration of the particles introduced into the flow as
a continuous source term and it is represented mathematically as a two-dimensional
Dirac delta function, leading to an interior layer in the solution. Furthermore, we
take the diffusivity term as being a combination of molecular diffusivity and tur-
bulent eddy diffusivity (the earlier study neglected molecular diffusivity, leading to
problems with the representation of the boundary conditions at the free surface).

In Sect. 3.1 we describe the transformation from the semi-infinite to a finite
domain that has been used in related studies [4, 6, 7]. In Sect. 3.2 we give a sim-
ple example that demonstrates how the transformation effects the development of
the interior layer, and so the choice of numerical procedure.

As stated, we wish to validate the model by comparison with a suitable set of
experimental results. One such, widely cited study is [9]. However, those experi-
ments are for a situation that is not as general as the model presented here allows;
it corresponds to the steady case. Therefore, the numerical method described in
Sect. 3.3 is only concerned with the solution of a two-dimensional (in space)
advection-diffusion problem. We use a standard finite-difference discretization on a
fitted piecewise uniform mesh of Shishkin type. The comparison between the exper-
imental data and the numerical results are given in Sect. 4. We conclude with some
observations, and an outline for future work.

2 The Model

Figure 1 gives a simple diagram of the coordinate system, representing a body of
water in an infinitely long stream of finite depth. Expressed in dimensionless vari-
ables (see [7]), the rough stream bed is at z D z0 > 0, and the free surface is at
z D 1. The flow is assumed to be steady two dimensional flow, and is advection
dominated, in the positive x-direction. The flow is turbulent, and the effects of this
turbulence is represented in the model by an eddy diffusivity term that varies only
with the vertical coordinate, z.

Particles are introduced into the stream at the point x D 0; z D zp, their concen-
tration represented in the source term as a distribution (Dirac delta). The equation is
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Fig. 1 Sketch of the coordinate system

@C

@t
C u.z/

@C

@x
� !s

@C

@z
D kx.z/

@2C

@x2
C @

@z

�
kz.z/

@C

@z

�
C f .x; z/; (1a)

on .�1;1/ � .z0; 1/ � .0; T , and subject to boundary and initial conditions

C.˙1; z; t/ D 0;

�
kz.z/

@C

@z
C !sC

�
zDz0;1

D 0; C.x; z; 0/ D 0; (1b)

where z0 is the boundary roughness height,!s is the settling velocity, and f .x; z/ D
ı.x/ı.z � zp/, i.e., point source at .x; z/ D .0; zp/. Here the problem has been
expressed in terms of dimensionless variables. That is, where D is the depth of the
carrier fluid and where u� is the friction velocity (taken as reference velocity), we
take

x D x�

D
; z D z�

D
; t D t�u�

D
; u D u�

u�
; !s D !�

s

u�
:

We use the standard “log-law” as the steady velocity distribution u.z/ with an
additional term, the wake functionW.z/ which is required to incorporate the effects
of wakes generated below the free surface. The combination of “log-law" and wake
function is called the “log-wake law” and it is used for fully developed homoge-
neous turbulent flow. In our present study, we have not taken account the effect of
inhomogeneous turbulent fluctuations, so the velocity distribution is

u.z/ D 1

�
ln

�
z

z0

�
CW.z/;

where � is the von-Kármán constant and z0 is the equivalent bed roughness. The
wake functionW.z/ is taken as that of Coles [1]:

W.z/ D 2˘

�
sin2

�	
2

z
	
;

where ˘ is the wake-strength parameter.
When the Reynolds decomposition is performed on the laminar advection-

diffusion equation by decomposing the velocity (u D u C u0) and concentration
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(C D C C C 0) into the sum of their mean and fluctuating parts, the term
@.u0C 0/=@xj represents the transport of concentration C due to turbulent
fluctuations. Because the molecular diffusivity (kmd) is usually a very small quan-
tity, u0C 0 � kmd@C=@xj , the effects for molecular diffusion is often negligible
compared to the effects of turbulence, and so omitted from the model (e.g., as
in [3, 12]). However, in this model the molecular diffusion is an important mecha-
nism for mixing of the concentration to the flow at the smallest scales, and so we
take the diffusivity profile as

kx.z/ D kmd C ked.z/;

where ked.z/ is the eddy-diffusivity as proposed by Nezu and Rodi [8]:

ked.z/ D �.1 � z/

�
1

z
C˘	 sin.	z/

��1
:

Since our problem is posed in a fully developed homogeneous turbulent flow, we
take kx.z/ D kz.z/, and neglect the cross-stream diffusion terms.

Note that, since ked.1/ D 0, if the settling velocity !s D 0 and kmd neglected,
then boundary condition at the free surface carries no physical significance, and the
mathematical problem is ill-posed.

3 Numerical Solution of the Model

To compute an accurate numerical solution to model given above, several issues
need to be addressed. Firstly, the problem is posed on a semi-infinite domain.
Numerical solutions are only possible on finite domains, so the domain must either
be truncated or transformed. Here we take the latter approach, discussed in Sect. 3.1,
since it has proved successful in related studies. Then the layer(s) present in the
solution must be resolved; a suitable method is described in Sect. 3.3.

3.1 Transformation of the Domain

In [7], a tanh-transformation from the domain .x; z/ 2 .�1;1/� Œz0; 1 to .�; z/ 2
.�1; 1/ � Œz0; 1 is made using

x D 1

2a
log

�
1C �

1 � �
�
;

where a is a “stretching” factor, usually chosen based on computational experience.
Following the transformation the model becomes
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@C

@t
C u.z/a.1 � �2/@C

@�
� !s

@C

@z

D a2k� .z/.1 � �2/

�
.1 � �2/@

2C

@�2
� 2� @C

@�

�
(2a)

C @

@z

�
kz.z/

@C

@z

�
C ı.�/ı.z � zp/;

C.˙1; z; t/ D 0;

�
kz.z/

@C

@z
C !sC

�
zDz0;1

D 0; C.�; z; 0/ D 0: (2b)

Remark 1. Although the full model as presented here is time-dependent, for the
remainder of this paper we consider only the analogous steady problem. This is
because we wish to compare our numerical results with experimental data. Since
a reliable and well-tested set is available in the literature [9] for the steady case,
we have opted to restrict our attention to that. We note that the issues concerning
transformation from the semi-infinite domain to a finite one, and resolution of the
interior layer, still feature.

3.2 A Simple Example

To consider how one might construct a suitable mesh for this problem, and to con-
sider the effect of the transformation parameter, we present the following simple
example: omit the @C=@t term in (2a) above, and take u 
 1, !s D 0, and constant
viscosity " � k� .zp/ D kz.zp/:

� "a2.1 � �2/
�
.1 � �2/

@2C

@�2
� 2�

@C

@�

�
� "

@2C

@z2
C a.1 � �2/@C

@�
D (3)

ı.�/ı.z � zp/;

and the boundary conditions as in (2b) above.
In Fig. 2 we show the cross-section at z D zp of the computed solution, restricting

to a small region around � D 0 where the interior layer is most obvious. The given
results are for " D 10�4, and cases a D 10; 1 and 0:1. As one would expect, taking
relatively large values of a expands the layer in the computational domain, while
for smaller values of a the layer is sharper.

In choosing a for a particular problem, we would like to take it as large as pos-
sible, so that the layer is easily resolved. However, taking a very large value of a
will result in the region away from the layer being squeezed into the boundary. In
practise, one usually is seeking values of the solution at certain points, so a should
be small enough so that these are included in the computational domain. Thus we
note that even when the problem data is fixed, one may be interested in solutions for
different values of a. Therefore, the use of a parameter uniform method is desirable.
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Fig. 2 Solution to (3) with " D 10�4 and a D 10, 1 and 0:1

3.3 The Numerical Method

To simplify notation, we restate the steady problem succinctly as

� "1.�; z/@
2C

@�2
� "2.�; z/@

2C

@z2
C ˇ1.�; z/

@C

@�
C ˇ2.�; z/

@C

@z
D
ı.�/ı.z � zp/: (4)

Taking (for now) arbitrary meshes !� W 0 D �0 < �1 < � � � < �M D 1, and
!z W 0 D z0 < z1 < � � � < zN D 1 in the �- and z-directions, one may form the
tensor-product mesh ! WD !� �!z. We denote the mesh widths as��i D �i � �i�1
and�zi D zi�zi�1, and the approximation forC.�; z/ at .�i ; zj / asCi;j . Derivatives
with respect to � are discretized using standard second order finite difference:

D2
�Ci;j WD 2

��i C��iC1

�
CiC1;j � Ci;j

��iC1
� Ci;j � Ci�1;j

��i

�
;

and first-order upwinded finite difference:

D1
�Ci;j WD

�
Ci;j � Ci�1;j

��i

�
:

The discretizations of the derivatives with respect to z are analogous, though with
a suitable down-winding operator for @C=@z. The discrete problem is

�
� "1.�i ; zj /D

2
� � "2.�i ; zj /D

2
z C ˇ1.�i ; zj /D

1
� C ˇ2.�i ; zj /D

1
z

�
Ci;j D

ı.�i /ı.zj � zp/ for i D 1; : : : ;M � 1; j D 1; : : : ; N � 1:

With a suitable implementation of the boundary conditions, this is easily solved.
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We wish to construct a piecewise uniform Shishkin-type mesh that will resolve
the interior layer; in particular we want the mesh to be refined around the injec-
tion point .0; zp/. Define �z D "2.0; zp/=ˇ2.0; zp/, and set �z D �z lnN . If �z 	
2.1�z0/=N , take!z to be the uniform mesh ofN intervals on Œz0; 1. Otherwise pro-
ceed as follows. Construct two meshes: !Az is the uniform mesh with N=2 intervals
on Œz0; 1 and !Bz is the uniform mesh with N=2 intervals on Œzp � �z=2; zp C �z=2.
Then take !z to be the union of !Az nŒzp � �z=2; zp C �z=2 and !Bz . The mesh !� is
constructed in an analogous fashion.

Remark 2. This construction varies slightly from the usual Shishkin mesh, which
selects appropriate transition points at which to switch between a course and fine
piecewise uniform mesh. In this case, since the injection point may be close to one
of the boundaries, the construction given here is easier to implement, and ensures
uniform mesh widths in the regions away from the injection point.

4 Numerical Results

We compare our numerical results for the steady problem (i.e., (2a–2b) but with the
time derivative omitted) with experimental results of [9]. A heat source was treated
as the passive tracers and the wind flow maintained in such a way that the flow
yielded an approximate logarithmic velocity profile u� D u� log.z�=z�

0/=� with
roughness height z�

0 D 0:12 mm and � D 0:38. We take the molecular viscosity
to be kmd D 10�6. The wake-strength parameter is taken as ˘ D 0:09, see [11].
The heat source was situated at 60 mm above the zero plane of the surface and the
depth of the carrier fluid was D D 540 mm, giving the non-dimensional height of
the source as zp D 60=540.

The vertical and downstream distances were normalized by the heat source height
zp and the concentration C has been normalized as C n D C by a temperature
scale of the form:#� D F=

�
zpu.zp/


, where F is the constant flux of contaminant

through a plane normal to the flow.
Measurements of the concentration are available from [9] at four down-stream

locations: x D 0:2778, 0:8333, 1:6667, and 3:3333. These are shown, left to right, as
circles in Fig. 3 below. The closest down-stream station is our main interest of loca-
tion where the interior layer is much more stronger than the other three locations.
That diagram also shows the model’s predictions at each of these four down-stream
locations. For the first location, we took a D 0:02 (chosen by inspection to resolve
the portion of the later of interest). When the problem is reformulated as in (4) this
leads to values of "1.0; zp/ and "2.0; zp/ required to form the mesh described in
Sect. 3.3 as 0:0062 and 0:0390, respectively. Clearly excellent agreement can be
observed between the data concentration measurements and the predictions when
the fitted mesh described above is employed. We also give the predictions obtained
using a uniform mesh. As was observed in [7], that approach overestimates the width
of the layer, and underestimate the strength of the concentration.
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Fig. 3 Comparisons at the four down-stream locations

For the remaining three down-stream distances we took a D 0:4 and give the
results just for a fitted mesh; the results for a uniform mesh are very similar. Again
excellent agreement is found between measurements and numerical results, though
at these distances the layer is not as strong.

5 Conclusions and Observations

We have provided an improved model for dispersion of settling particles in an
advection-driven flow, shown how to employ a piecewise uniform Shishkin-type
mesh, and found excellent agreement between the experimental measurements and
the numerical results.

The use of Shishkin meshes for singularly perturbed problems has been widely
studied; see e.g., [2,5,10]. The majority of studies are concerned with obtaining uni-
form convergence results for model problems; this study adds to the smaller number
dealing with models that can be validated against experimental data. Much further
work is required, however, to provide a mathematical justification for the approach
for this specific problem.
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Numerical Method for a Nonlinear Singularly
Perturbed Interior Layer Problem

E. O’Riordan and J. Quinn

Abstract Nonlinear singularly perturbed interior layer problems are examined.
Numerical results are presented for a numerical method consisting of a monotone
scheme on a Shishkin mesh refined around the approximate location of the interior
layer.

1 Introduction

In this paper, we examine nonlinear singularly perturbed problems of the form

."u00 � uu0 � bu/.x/ D 0; b.x/ > 0; x 2 .0; 1/; u.0/ > 0 > u.1/: (1)

We show that solutions to (1) can exhibit an interior layer centered around a unique
point p" 2 .0; 1/. However, the exact location of this point p" is not explicitly
determined. We construct a numerical method based on the approximate location of
this point given in [4].

In [7], the time dependent problem corresponding to (1) is examined. A numer-
ical scheme is constructed that uses a classical approach when " > CN�2=5 and a
sophisticated shock-capturing algorithm when " 6 CN�2=5. A parameter-uniform
error bound of the form

ku � UN k 6 CN�1=5

is established. Note that k�k is the standard pointwise maximum norm,N is the num-
ber of mesh steps and throughout the paper, C denotes a constant independent of
" and N . The algorithm given in [7] is intricate, mainly due to the fact that the loca-
tion of the internal layer needs to be accurately determined at all time levels. Below
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we confine our discussion to the steady-state problem (1). However, the numerical
algorithm in Sect. 4 has some common attributes with the algorithm given in [7].

We present numerical results for a monotone scheme on a piecewise-uniform
Shishkin mesh which suggest that this method is essentially first order convergent
when applied to (1). However we do not provide any numerical analysis for this
scheme in this paper. Note that throughout the paper, the notation f .k/ denotes the
k-th derivative of f .

2 Continuous Problem

Consider the following problem class: Find y" 2 C 2.0; 1/ such that

."y00
" � y"y

0
" � by"/.x/ D 0; x 2 ˝ WD .0; 1/;

y".0/ D A > 0; y".1/ D B < 0; .P"/

b 2 C 2Œ.0; 1/; b.x/ > 0; x 2 N̋ :

The left and right reduced solutions, rL and rR respectively, satisfy

�rL=R.r 0
L=R C b/.x/ D 0; rL.0/ D A; rR.1/ D B: (2)

These equations are easily solved. We are interested in the occurrence of an interior
layer and for convenience we assume that

rL.x/ D A�
Z x

0

b.t/ dt > 0 and rR.x/ D B C
Z 1

x

b.t/ dt < 0;8x 2 ˝: (3)

From the analysis in [4], the necessary conditions for the occurrence of an interior
layer in the solution to .P"/ are: if

rL.x/ > 0; for x 2 Œ0; xL; 0 < xL � 1I (4a)

rR.x/ < 0; for x 2 ŒxR; 1; 0 � xR < 1I (4b)

xR < xLI and J.x/ WD
Z rL.x/

rR.x/

s ds has a zero at x� 2 ŒxR; xLI (4c)

then an "-width interior layer occurs around the point x�. In our case, from (3), we
have xL 
 1 and xR 
 0. Solving for x� from (4) we have that

Z x�

0

b.t/ dt D 1

2
.AC B C

Z 1

0

b.t/ dt/: (5)

Lemma 1. The problem .P"/ has a unique solution y" 2 C 2.˝/, satisfying B 6
y".x/ 6 A, x 2 N̋ .
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Proof. Use constant upper and lower solutions (see [6]) to establish the existence
of y" and to bound y". Suppose y1 and y2 are two solutions of .P"/ and define
! WD y1 � y2. Then ! satisfies

"!00 � y1!0 � .y0
2 C b/! D 0; x 2 ˝; !.0/ D 0; !.1/ D 0: (6)

Uniqueness follows by noting that 0 is both a lower and upper solution of (6). ut
By using a proof by contradiction argument with .P"/, one can show that y" cannot
have a positive internal minimum or a negative internal maximum. Hence y0

" < 0

on ˝ . Thus there exists a unique point p" 2 .0; 1/ such that

y".p"/ D 0: (7)

We split the problem .P"/ into left and right problems defined either side of p". The
left problem is defined to be: Find yL such that

."y00
L � yLy0

L � byL/.x/ D 0; x 2 .0; p"/; yL.0/ D A; yL.p"/ D 0; .PL/

and the right problem is given by: Find yR such that

."y00
R � yRy

0
R � byR/.x/ D 0; x 2 .p"; 1/; yR.p"/ D 0; yR.1/ D B: .PR/

Using upper and lower solutions for .PL/ we have

0 6 yL.x/ 6 A; x 2 Œ0; p": (8)

For the problem .PL/, existence and uniqueness of a solution holds as with .P"/.
Hence y".x/ 
 yL.x/; 0 � x � p". We decompose the solution yL as yL D
vL C wL. The regular component vL is defined as the solution of

."v00
L � vLv0

L � bvL/.x/ D 0; x 2 .0; p"/; vL.0/ D A; vL.p"/ D .rL C "v1/.p"/;
(9)

where vL D v0 C "v1 C "2v2; v0 
 rL and v1,v2 satisfy the nonlinear problems

v0v0
1 C .v0

0 C b/v1 D v00
0; v1.0/ D 0; (10a)

"v00
2 � vLv0

2 � .v0
0 C "v0

1 C b/v2 D v1v0
1 � v00

1; v2.0/ D v2.p"/ D 0: (10b)

The layer component wL is defined as the solution of the nonlinear problem

."w0
L � 1

2
.yL C vL/wL/

0.x/� bwL.x/ D 0; x 2 .0; p"/; (11a)

wL.0/ D 0; wL.p"/ D �vL.p"/: (11b)

Bounds on both components vL and wL and their derivatives are given in the
following lemma.
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Lemma 2. Assuming (3), for k D 0; 1; 2; 3; the solutions vL and wL of (9) and (11)
respectively, uniquely exist and satisfy the bounds

�vL.p"/e
� rL.p"/

2� .p"�x/=" 6 wL.x/ 6 �vL.p"/e
��A.p"�x/="; � > 1;

kv.k/L k 6 C.1C "2�k/; jw.k/L .x/j 6 C"�ke� C
"
.p"�x/; x 2 Œ0; p":

Proof. The existence and uniqueness of vL and its bounds are obtained in the same
manner as in [6] including the bound

vL.x/ > rL.p"/� C" > srL.p"/ > 0; 0 < s < 1; x 2 Œ0; p": (12)

We bound the layer component as follows. Clearly 0 is an upper solution for (11).
Consider the terminal value problem (t.v.p)

"w0 � 1

2
.yL C vL/w D 0; x 2 Œ0; p"/; w.p"/ D wL.p"/: (13)

Using (8) and (12) we have yL C vL > srL.p"/. Thus using lower and upper solu-
tions (for t.v.p.’s [5]), it can be shown that wL.p"/e� 1

2"
srL.p"/.p"�x/ 6 w.x/ 6 0.

This, in turn, can be used to show that w is a lower solution for (11). Bound the
derivatives of wL as in [6, Lemma 3.4]. We finish by bounding the layer component
away from zero. The equation in (11) can also be written as

."w00
L � yLw0

L � .v0
L C b/wL/.x/ D 0: (14)

Using (8) we have yL 6 A and from (10) we have v0
L C b D O."/. Thus for

sufficiently small " we can show, using upper and lower solutions, that

jwL.x/j > jwL.p"/je��A.p"�x/="; � > 1; x 2 Œ0; p":

ut
Analysis of .PR/ is analogous to that of .PL/ with an equivalent decomposition
yR D vR C wR and the following Lemma is established in the same manner.

Lemma 3. Assuming (3), for k D 0; 1; 2; 3, if yR D vR C wR is the decomposition
of yR into a regular and layer component then vR and wR uniquely exist and satisfy
the bounds

jvR.p"/je��jBj.x�p"/=" 6 wR.x/ 6 jvR.p"/je� jrR.p"/j

2�
.x�p"/="; � > 1;

kv.k/R k 6 C.1C "2�k/; jw.k/R .x/j 6 C"�ke� C
"
.x�p"/; x 2 Œp"; 1:

Note that the location of the point p" has not been determined.
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2.1 Alternative Problem

We now consider an alternative problem to simulate an interior layer at a known
point q, close to p": Find z" such that

z".x/ WD fzL.x/; x � qI zR.x/; x > qg;

where zL and zR satisfy

."z00
L � zLz0

L � bzL/.x/ D 0; x 2 .0; q/; zL.0/ D A; zL.q/ D 0; .QL/

."z00
R � zRz0

R � bzR/.x/ D 0; x 2 .q; 1/; zR.q/ D 0; zR.1/ D B: .QR/

The problems .QL/ and .QR/ are analogues of .PL/ and .PR/. We decompose zL
into a regular component gL and a layer component sL and similarly zR = gR + sR.
Bounds on these components and their derivatives are given in the following lemma.

Lemma 4. Assuming (3) and (4), for k D 0; 1; 2; 3; if zL D gL C sL and zR D
gR C sR are the decompositions into a regular and layer component of zL and zR
respectively then

gL.x/ D rL.x/CO."/ x 2 Œ0; q and gR.x/ D rR.x/CO."/ x 2 Œq; 1;
�gL.q/e� rL.q/

2� .q�x/=" 6 sL.x/ 6 �gL.q/e��A.q�x/="; � > 1; x 2 Œ0; q;
jgR.q/je��jBj.x�q/=" 6 sR.x/ 6 jgR.q/je� jrR.q/j

2�
.x�q/="; � > 1; x 2 Œq; 1;

kg.k/L k 6 C.1C "2�k/ and js.k/L .x/j 6 C"�ke� C
" .q�x/; x 2 Œ0; q;

kg.k/R k 6 C.1C "2�k/ and js.k/R .x/j 6 C"�ke� C
"
.x�q/; x 2 Œq; 1:

Proof. Analogous to the proof of Lemma 2. ut
Remark 1. The assumption in (4) is not used in the proof of Lemma 4. However, in
Sect. 4, we explain the motivation for choosing q D x� as defined in (4) and thus
we require the existence of x� 2 .0; 1/.
We now present a bound on ky" � z"k under the assumption that

jp" � qj 6 C": (15)

Lemma 5. Assuming (15), if y" is the solution of .P"/ and z" is the solution of
.QL/,.QR/ then

ky" � z"k 6 C

"
jp" � qj on N̋ :
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Proof. Without loss of generality, assume that p" < q. We will examine the differ-
ence d" WD y" � z" over the intervals Œ0; p", Œp"; q and Œq; 1 separately. On each
interval, using .P"/ and .QL/,.QR/, d" satisfies

."d 0
" � 1

2
.y" C z"/d"/

0.x/ � bd".x/ D 0: (16)

Considering d" over Œ0; p" we have d".0/ D 0. Using Lemma 4, (15) and the
inequality 1 � e�t 6 t , 0 < t < 1 we have

jd".p"/j Dj � zL.p"/j 6 j � gL.p"/C gL.q/e
��A.q�p"/="j

6 kg0
Lkjp" � qj C gL.q/j1 � e��A.q�p"/="j 6 C

"
jp" � qj:

It follows using constant upper and lower solutions that jd".x/j 6 C="jp" � qj for
x 2 .0; p"/. Bound d".q/ in the same fashion to complete the proof. ut

3 The Discrete Problem

To numerically approximate the solution of .P"/ we consider the following discreti-
sation of .QL/, .QR/: Find Z" such that

Z".xi / D fZL.xi /; xi � qI ZR.xi /; xi > qg;

where ZL and ZR satisfy

.DC."D�ZL � 1

2
Z2L/� bZL/.xi /D 0; xi 2 I�; ZL.0/DA;ZL.q/ D 0; .QN

L /

.D�."DCZR � 1

2
Z2R/� bZR/.xi /D 0; xi 2 IC; ZR.q/D 0;ZR.1/ D B; .QN

R /

on a piecewise-uniform mesh ˝N
" . Note that DC;D� denote the standard forward

and backward finite difference operators. Motivated by Lemma 4, the mesh ˝N
" is

defined as

xi 2 ˝N
" W xi D

8̂̂
<
ˆ̂:

4.q��0/
N

i; 0 6 i 6 N
4
;

q � �0 C 4�0

N
.i � N

4
/; N

4
< i 6 N

2
;

q C 4�1

N
.i � N

2
/; N

2
< i 6 3N

4
;

q C �1 C 4.1�q��1/
N

.i � 3N
4
/; 3N

4
< i 6 N;

9>>=
>>;
; (17a)

�j WD min f qC.1�2q/j
2

; �
�j
" lnN g; �0 D rL.q/; �1 D jrR.q/j; � > 2; (17b)

I� D fxi W xi 2 ˝N
" ; i < N=2g and IC D fxi W xi 2 ˝N

" ; i > N=2g: (17c)
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In [6], numerical analysis was presented for a nonlinear singularly perturbed prob-
lem with a boundary turning point. Using the same techniques of analysis, one can
establish the following lemma.

Lemma 6. Assuming (3), if z" is the solution of .QL/, .QR/ and Z" is the solution
of .QN

L /, .Q
N
R / then

j.Z" � z"/.xi /j 6 CN�1 lnN; xi 2 ˝N
" :

Finally, combining Lemmas 5 and 6 we have that

Lemma 7. Assuming (3), if y" is the solution of .P"/ and Z" is the solution of
.QN

L /, .Q
N
R / then

j.y" �Z"/.xi /j 6 C

"
jp" � qj C CN�1 lnN; xi 2 ˝N

" : (18)

Observe that if the point q was within O."/ of the point p", then Lemma 7 would
not suffice to guarantee convergence.

4 Numerical Results

The numerical algorithm described in Sect. 3 solves two boundary turning point
problems joined together at q. The algorithm involves a non-linear monotone finite
difference operator and a Shishkin mesh centered about an unspecified point q. In
this final section, we present an algorithm which linearizes this discrete problem
using a continuation method (see [3] for details) and takes q WD x�, where x� is
given in (5). At each new time level in the continuation method, we do not determine
where the interpolant of the discrete approximation is zero. We employ a scheme,
motivated by [1], which preserves the monotonicity of the finite difference operator.
Find Yi;j WD Y".xi ; tj / such that

"D�
xD

C
x Yi;j � 1

2
Y �
i;jD

�
x Yi;j � bYi;j D D�

t Yi;j ; if Yi;j�1 > 0

"DC
x D

�
x Yi;j � 1

2
Y C
i;jD

C
x Yi;j � bYi;j D D�

t Yi;j ; if Yi;j�1 < 0

Y �
i;j WD .Yi;j�1 C Yi�1;j�1/; Y C

i;j WD .YiC1;j�1 C Yi;j�1/; .AN" /

xi 2 ˝N
" ; Y".0; tj / D A; Y".1; tj / D B;

Y".xi ; 0/ D ˚
rL.xi /I if xi < x�I 0; if xi D x�I rR.xi /; if xi > x� � ;

where rL and rR are the reduced solutions (2) and˝N
" is the mesh described in (17)

with q D x� given in (5). Note that ˝N
" remains fixed with q WD x� at all time

levels. We continue to iterate in j until maxxi 2˝N
"

ˇ̌
Yi;j � Yi;j�1

ˇ̌
6 10�6:
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Table 1 Computed double mesh rates for algorithm .AN" / applied to problem .P"/, with b.x/ �
0:5, A D 1 and B D �1:1

pN"

" N D 32 N D 64 N D 128 N D 256 N D 512

20 1.14 1.07 1.03 1.03 0.98
2�1 1.17 1.17 0.89 1.04 0.97
2�2 �0.1 1.82 0.84 0.88 1.02
2�3 1.66 2.45 0.02 1.45 0.71
2�4 1.65 1.68 0.90 1.48 0.89
2�5 0.90 1.29 1.54 1.07 1.40
2�6 0.62 0.71 0.92 1.12 1.19
2�7 0.61 0.74 0.84 0.98 1.09
2�8 0.60 0.72 0.81 0.89 1.05
2�9 0.60 0.71 0.79 0.85 0.99
2�10 0.59 0.71 0.78 0.83 0.94
2�11 0.59 0.71 0.78 0.82 0.92
2�12 0.59 0.71 0.78 0.82 0.91
2�13 0.59 0.71 0.77 0.82 0.90
. . . . . .
. . . . . .
2�20 0.59 0.71 0.77 0.82 0.90
pN 0.90 0.75 0.82 0.82 0.90

Example. Consider .P"/ with b.x/ 
 0:5,A D 1 andB D �1:1. The mesh defined
in (17) is used with q D x� D 0:4 [solved from (5)] and we choose � D 2:1 in
(17b). Table 1 displays the computed rates of convergencepN" and the uniform rates
of convergence pN , using the double mesh principle [2]. The computed uniform
rates pN are tending to first order for this example.

Remark 2. For any given value of ", using asymptotic arguments Howes [4, Theo-
rem 5.5] indicates that the point x� is within anO."/ neighbourhood of the unknown
shock location p". That is, p" is located within the fine mesh centered about x�. In
the above numerical algorithm, the center of the shock layer is initially located at
x�, but shifts position at each new time level. In the numerical experiments, we
have observed that when the continuation method stops iterating, the shock layer is
still located within the fine mesh region. If it is positioned at the mesh point (in the
fine mesh) closest to the point p", then by Lemma 7 we have generated a first order
approximation to the exact solution of .P"/. Hence, this paper can only be viewed
as containing an interim result. Until one has information about the terminal shock
location, one cannot conclude that the algorithm .AN" / is a first order numerical
method for the problem .P"/.

Remark 3. Based on Lemma 7, we deduce that when b is not constant then x�
should be calculated exactly from (5) or at least approximated to within O."/ of its
exact value.
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Large-Eddy Simulation of Wall-Bounded
Turbulent Flows: Layer-Adapted Meshes
vs. Weak Dirichlet Boundary Conditions

Lars Röhe and Gert Lube

1 Introduction

In a bounded domain ˝ � R3, we consider the incompressible Navier–Stokes
model to determine velocity u and pressure p s.t.

@tu � r � .2�Du/C .u � r/u C rp D f in .0; T  �˝ (1)

r � u D 0 in Œ0; T  �˝ (2)

ujtD0 D u0 in ˝ (3)

together with appropriate boundary conditions on the boundary @˝ . The deforma-
tion tensor is denoted by Du D 1

2
.ru C .ru/t /. The Reynolds number Re D UL



relies on viscosity �, a reference length L, and velocity U.
In Sect. 2, we introduce a variational multiscale (VMS) finite element model.

Aspects of the numerical analysis of the semi-discrete model are addressed in
Sect. 3. Section 4 is concerned with the application of the approach to a bench-
mark problem of wall-bounded flows in a channel. In particular, we discuss the
problem whether a layer-adapted mesh in the boundary layer regions or a weak
implementation of boundary conditions for the velocity at the wall is appropriate.

2 Variational Multiscale Approach

For simplicity, we consider no-slip boundary conditions and thus, for a weak
formulation, the spaces

V D ŒH 1
0 .˝/

3; Q D L2�.˝/ WD fq 2 L2.˝/ W
Z
˝

q dx D 0g:
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By k � k0;G we denote the standard L2-norm on a measurable domain G � ˝ .
Moreover, let k � k0 D k � k0;˝ .

Let Th be an admissible (possibly anisotropic) mesh s.t. ˝ D [K2Th
K. We

consider finite element (FE) spaces Vh �Qh � V �Q for velocity/pressure subject
to the discrete inf-sup stability condition

9ˇ ¤ ˇ.h/ s:t: inf
qh2Qh

sup
vh2Vh

.qh;r � vh/

kqhk0krvhk0 	 ˇ > 0:

The basic Galerkin FE method reads:
find .uh; ph/W Œ0; T  ! Vh �Qh s.t. 8.vh; qh/ 2 Vh �Qh

.@tuh; vh/C .2�Duh;Dvh/C bS .uh;uh; vh/� .ph;r � vh/ D .f; vh/

.qh;r � uh/ D 0

with the skew-symmetric advective term

bS .u; v;w/ WD Œ..u � r/v;w/� ..u � r/w; v/=2:

We consider the following three-scale decomposition

V 3 v D vh C Qvh„ ƒ‚ …
Dvh2Vh

COvhI Q 3 q D qh C Qqh„ ƒ‚ …
Dqh2Qh

COqh

with resolved scales .vh; qh/ 2 Vh � Qh � V � Q. The influence of the small
unresolved scales .Ovh; Oqh/ on .Qvh; Qqh/ will be modelled following the variational
multiscale approach, see [5]. Define the FE space LH for the deformation tensor on
TH ;H 	 h

f0g � LH � L WD ˚
L D .lij / j lij D lj i 2 L2.˝/ 8i; j 2 f1; 2; 3g�

and the L2-orthogonal projection operator˘H W L ! LH . The model of the small
unresolved velocity scales is defined by means of the fluctuation operator

�.Dvh/ WD .Id �˘H /.Dvh/:

For the calibration of the subgrid model for velocity, we introduce cellwise constant
terms �T .uh/ s.t. �KT .uh/ WD �T .uh/jK :

As a model of the small unresolved pressure scales, we add the so-called grad-div
stabilization [11] with cellwise constant �K.uh/ WD �.uh/jK s.t.

.�.uh/.r � uh/;r � vh/ WD
X
K2Th

�K.uh/.r � uh;r � vh/K :
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Finally, the VMS model reads as follows: find .uh; ph/ s.t.

.@tuh; vh/C 2� .Duh;Dvh/C bS .uh;uh; vh/

C .�T .uh/�.Duh/; �.Dvh//C .�T .uh/r � uh;r � vh/

C .r � uh; qh/ � .r � vh; ph/ D .f; vh/

(4)

for all .vh; qh/ 2 Vh � Qh.

3 Aspects of the Numerical Analysis

The following sketch of the semi-discrete analysis is an extension of a result in [7].
It takes advantage of the fact that, for inf-sup stable FE spaces for velocity/pressure,
the space V div

h
of discretely divergence free functions is not empty. In particular, we

can separate estimates for velocity and pressure. Moreover, an additional pressure
stabilization is not required.

Following the approach in [9], we obtain the following stability estimates which
are valid on arbitrary admissible grids.

Lemma 1. Let f 2 L1.0; T IL2.˝//;u0 2 ŒL2.˝/3. Then, for all t 2 .0; T ,
there is control of kinetic energy

kuhkL1.0;t IL2.˝// � K.f;u0/ 
 ku0k0 C kfkL1.0;t IL2.˝//

and of the dissipation and subgrid terms

�kDuhk2
L2.0;t IL2.˝//

C 1

2

Z t

0

X
K

�KT .uh/k�.Duh/k20;Kdt

C1

2

Z t

0

X
K

�K.uh/kr � uhk20;Kdt � 3K2.f;u0/:

We introduce elementwise multiscale viscosities �KVMS.uh; vh/ via

X
K2Th

�KT .uh/ k�.Dvh/k20;K D
X
K2Th

�KT .uh/
�
1 � k˘HDvhk20;K

kDvhk20;K

�

„ ƒ‚ …
DWK

VMS.uh;vh/
0

kDvhk20;K

where we take advantage of the projector properties of the fluctuation operator �.
Then we define the following mesh-dependent expression for the analysis

jjju.t/jjj2 WD ku.t/k20 C
X
K2Th

Z t

0

�
�Kmod.u;uh/

2
kD.u/k20;K C �K.uh/ kr � uk20;K

�
dt
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with modified elementwise viscosities:

�Kmod.uh; vh/ WD 2� C �KVMS.uh; vh/:

Then we obtain the following a priori estimate for the semi-discrete scheme.

Theorem 1. For a sufficiently smooth solution u of the Navier–Stokes model (1)–(3)
it holds for the solution of the VMS model (4) for all t 2 .0; T /:

jjj.u � uh/.t/jjj2 � 2 inf
Quh 2 L2.0; tI V div

h
/

jjj.u � Quh/.t/jjj2

C e

R t
0

27C 4
LT

2	min
mod.uh;eu

h
/3

kDu.s/k4
0ds

inf
Quh 2 L4.0; tI V div

h
/

Qph 2 L2.0; tIQh/

�
k.uh � Quh/.0/k20 C

Z t

0

A.s/ds

�

with

A.t/ WD2
X
K2Th

�
6�KT .uh/ k�Duk20;K C 6

�
� C �KVMS .uh; �

u/
	

kD�uk20;K

C min

�
9C 2Ko

�min
mod.uh; e

u
h
/
;

1

�K.uh/

��
kp � Qphk20;K C �2K.uh/ kr � �uk20;K

	 �

C 6C 2LT
�min

mod.uh; e
u
h
/

�
CFCKo kDuk20 C kuhk0 kDuhk0

	
kD�uk20

C 6C 2Ko

�min
mod.uh; e

u
h
/

k@t�uk2�1;˝ ;

where �min
mod.uh; e

u
h
/ WD minK �Kmod.uh.t/; vh.t// and

uh � u D .uh � Quh/� .u � Quh/ DW eu
h � �u:

CF and CKo are the constants of the inequalities of Friedrichs and Korn. CLT is
related to an upper bound of the advective term.

Remark 1. The first r.h.s. term in the first line of term A.t/ is related to the
VMS-model error. For the remaining approximation terms in A, we can apply
the interpolation operator by Girault/Scott [6] in V div

h
on isotropic meshes and a

standard interpolation operator for the pressure. Then these terms are formally of
order O.h2k/ for FE spaces Qk=Qk�1 or Pk=Pk�1 for velocity/pressure, the choice
LH D ŒQdisc

k�2 
3� 3, and �KT 2 Œ0; Ch2K .

Sketch of the proof: From the weak form of (1)–(3) and (4), we obtain the error
equation
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1

2
@t


eu
h



2
0

C
X
K2Th

�Kmod.uh; e
u
h/


Deu

h



2
L2.K/

C
X
K2Th

�K.uh/


r � eu

h



2
L2.K/

D �
@t�

u; eu
h

C .2�D�;Deu
h/C bS .u;u; eu

h/ � bS .uh;uh; eu
h/� .p � �h;r � eu

h/

C
X
K2Th

h
�K.uh/

�r � �u;r � eu
h


K

C �KT .uh/
�
�D�u; �Deu

h


K

��KT .uh/
�
�Du; �Deu

h


K

i
; 8�h 2 Qh:

Careful estimates of the right hand side terms lead to

@t


eu
h.t/



2
0

C d.t/ � g.t/


eu
h.t/



2
0

C A.t/

with

g.t/ WD 27C 4LT

2�min
mod.uh; e

u
h
/3

kDu.t/k40 ;

d.t/ WD 1

4

X
K2Th

�Kmod.uh; e
u
h/


Deu

h.t/


2
0;K

C
X
K2Th

�K.uh/ kr � eh.t/k20;K ;

and A.t/ as given in the Theorem. Gronwall’s Lemma implies for all t 2 Œ0; T 


eu
h.t/



2
0

C
Z t

0

d.s/ds � e
R t

0 g.s/ds
� 

eu

h.0/


2
0

k20 C
Z t

0

A.s/ds

:

Finally, the triangle inequality concludes the proof. For full details of the proof, we
refer to [12]. �

In the remaining part of the paper, we will discuss how the given approach can
be adapted to the case of turbulent channel flows.

4 Application to Turbulent Channel Flow

For the spatial discretization, we apply hexahedral meshes with FE spaces Q2=Q1

for velocity/pressure within the FE package deal.II, see [2]. The arising semi-
discrete problem of the form

�
Mu 0

0 0

��
u0
h
.t/

p0
h
.t/

�
D
�

fh.t/
0

�
�
�
Au.uh/ B
BT 0

��
uh.t/
ph.t/

�

is a DAE-system with differentiation index 2 and perturbation index 2. For the time
discretization, we apply the BDF(2)-formula

u0
h.tnC1/ � 1

2ıt
Œ3uh.tnC1/ � 4uh.tn/C uh.tn�1/
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which provides favourable stability properties and does not lead to order reduc-
tion for the pressure. A fixed-point iteration is applied for the resulting non-linear
implicit scheme.

The calibration of the viscosity model is motivated by the Boussinesq approxi-
mation of the residual stress tensor via

�R WD hu ˝ ui � uh ˝ uh � �2�TDuh

together with the classical Smagorinsky model and van-Driest damping

�T .Duh/jK D
�
CS�K.1 � exp .�u�dist.SK ; @˝/

26�
/

�2
kDuh.SK/kF :

Here, SK denotes the center of gravity of element K and u� denotes the wall fric-
tion velocity, see below. In the experiments below, we apply a one-level approach
with H D h and Lh D f0g. On each element K 2 Th, the filter width is given
by �K D meas.K/=.2.k � 1// with element order k of Vh. The Smagorinsky
constant C 2S D 0:0942 is taken from Lilly’s argument for isotropic homogeneous
turbulence, see [12].

A reduction of model dissipation can be established by application of the fluctu-
ation operator

�R � �2�T .Duh/�.Duh/:

with the fluctuation operator � WD Id � ˘h, the L2-orthogonal projection ˘h W
L ! Lh, and Lh D Q0

d�d .

4.1 Turbulent Channel Flow at Moderate Reynolds Number Re�

We start with channel flow at a moderate Reynolds number Re� D 180 (corre-
sponding toRe D 5;644 in channel center) for which an anisotropic grid resolution
of the boundary layer regions is feasible. The Reynolds number Re� D Hu�=� is
defined via the half width H of the channel and wall-friction velocity u� satisfying
Spalding’s form of the law of the wall

yC D f .uC/ WD uC C e�5:5�
�
e�uC � 1 � �uC � 1

2
.�uC/2 � 1

6
.�uC/3

	

with yC WD yu�


, uC WD kuhk

u�
, and � D 0:4:

A careful description of the set-up of the problem (but with different scaling) is
given in [8]. We performed simulations with N 3 grid points, with equidistant distri-
bution of elements in x1; x3-directions and anisotropic distribution in x2-direction
according to

x2 D y D tanh.2.2i=.N /� 1//= tanh.2/; for i D 0; :::; N:
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Statistical averaging h�i is performed over all homogeneous directions x1; x3; t .
As an example of first-order statistics, we present in Fig. 1 the mean streamwise
velocity U D huhie1 and its normalized variant UC. Compared to direct numerical
simulation (DNS) results of [10], we obtain very good agreement in the viscous
sub-layer whereas slight deviations can be found in the log-layer and in the center
of the channel. As examples of second-order statistics, the normalized fluctuations
hu0
1; u

0
2iC and hu0

1; u
0
1iC are shown in Fig. 2. The agreement with the DNS data is

very good in the vicinity of the wall and (for such relatively coarse grid) reasonable
in the core of the channel.

Numerical experiments in [1] with lowest-order Taylor-Hood elements on ani-
sotropic grids show a potential influence of a large aspect ratio a˝ WD maxK hK=�K
where hK and �K denote the diameter of K resp. the diameter of the largest ball in
K . Here we obtained for N D 32 grid points in x2-direction a value of a˝ � 20.
A modification of the V div

h
-interpolation results of [6] to Cartesian tensor-product

meshes provides the (non-optimal?) result

ku � Quhk0;K C �K ju � Quhj1;K . a.!K/
X

j˛jDl
h˛KkD˛uk0;!.K/; 8u 2 H l.!.K//
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Fig. 1 Channel flow at Re� D 180 with 323 grid points: mean streamwise velocity U D huhie1
(left) and its normalized variant UC D U=u� (right)
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where a.!K/ denotes the aspect ratio of the patch !K � K . This limits the appli-
cability of layer-adapted meshes with Taylor-Hood elements to moderate values
of Re� .

4.2 Turbulent Channel Flow at Higher Reynolds Numbers

A proper anisotropic resolution of near-wall region in LES for higher Re� is not
feasible. Near-wall modelling with adaption of wall-functions on isotropic grid
may be considered as a remedy. Here we follow the approach in [3, 4] with weak
implementation of wall boundary conditions on isotropic grids.

The simplest variant [3] is a weak nonsymmetric or symmetric penalty-type
implementation of Dirichlet condition uh D 0 at the wall 
W and is performed
by adding the following terms

�
X�

.2�Duh � n; vh/@K\�W
˙ .uh; 2�Dvh � n/@K\�W

C .uh; �Bvh/@K\�W


:

Here the Dirichlet penalty factor is taken as �B WD u2
�kuhk with tangential velocity uh

and wall-friction velocity u� . A similar approach is realized on inflow and outflow
parts of the channel.

In particular, for the non-symmetric case, symmetric testing vh D uh gives
immediately control of

P
K �Bkuhk2

0;@K\�W
: A modification of the numerical

analysis in Sect. 3 is possible, but will not considered.
A refined variant of a weak implementation of Dirichlet conditions, including

advective and pressure parts of the traction operator, is given in [4]. Convincing
numerical results for channel flows on (rather fine) isotropic grids are reported in
[3, 4] for Reynolds numbers Re� 2 f395; 950; 2003g.

5 Summary: Outlook

We applied a variational multiscale model to the time-dependent Navier–Stokes
model. For wall-bounded flows in a channel, we discussed two variants: anisotropic
mesh resolution in boundary layers for moderate Re� and isotropic meshes with
near-wall modelling via weak Dirichlet conditions for higherRe� . The a priori anal-
ysis of the arising nonlinear semi-discrete problem given in [12] can be adapted to
both situations.

We believe that the current approach in airbus industry, e.g. at DLR (German
Aerospace Center), with delayed detached eddy simulation (DDES) with LES away
from layers and RANS in layer regions can be cast into the framework of the pro-
posed projection-based VMS method. In particular, an application of the approach
to problems with separation is in order.
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Improved Scheme on Adapted Locally-Uniform
Meshes for a Singularly Perturbed Parabolic
Convection-Diffusion Problem

G.I. Shishkin

Abstract For a Dirichlet problem for a singularly perturbed parabolic convection-
diffusion equation with small parameter " multiplying the highest-order derivative,
a finite difference scheme with improved accuracy is constructed that converges
almost "-uniformly with order of the convergence rate close to 2 for fixed values
of ". When constructing the scheme, monotone classical approximations of the dif-
ferential equation on a priori adapted locally-uniform meshes are used. To improve
accuracy of the scheme, the Richardson technique on embedded grids is applied.

1 Problem Formulation: Aim of Research

In the domain G, where

G D D � .0; T ; G D G
S
S; D D .0; d/; (1)

we consider the initial-boundary value problem for the singularly perturbed
parabolic convection-diffusion equation

L u.x; t/ D f .x; t/; .x; t/ 2 G; u.x; t/ D '.x; t/; .x; t/ 2 S: (2)

Here

L2 
 " a.x; t/
@2

@x2
C b.x; t/

@

@x
� c.x; t/ � p.x; t/

@

@t
; .x; t/ 2 G;

the functions a.x; t/, b.x; t/, c.x; t/, p.x; t/, f .x; t/ and '.x; t/ are assumed to be
sufficiently smooth onG and S , respectively, moreover,a.x; t/; b.x; t/; p.x; t/ > 0
and c.x; t/ 	 0; the parameter " takes arbitrary values in the interval .0; 1.
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We assume that the data of the problem (2), (1) on the set of corner points Sc D
S0

T
S
L

satisfy compatibility conditions that guarantee the required smoothness of
the solution on G (see, e.g., [1]). Here S D S0

S
SL, S0 and SL are the lower and

lateral parts of the boundary; S0 D S0; SL D S l
S
S r , where S l and S r are the

left and right parts of the lateral boundary.
For small values of the parameter ", a regular boundary layer appears in a

neighbourhood of the set S l D f.x; t/ W x D 0; 0 < t � T g.
Now we give some definitions [10]. Let z.x; t/, .x; t/ 2 Gh, be a solution of a

difference scheme and let the function z.x; t/ satisfy the estimate

ju.x; t/ � z.x; t/j � M�
�
"�N�1; N�1

0


; .x; t/ 2 Gh; (3)

where �.�1; �2/ ! 0 for �1; �2 ! 0 uniformly with respect to the parameter ";
� 	 0. By definition, the solution of this scheme converges on the set Gh uniformly
with respect to the parameter " (or, briefly, "-uniformly) if � D 0 in the estimate
(3). Otherwise, we say that the scheme does not converge "-uniformly on Gh. But
if the scheme converges for N�1 D o ."/, moreover, the constant M in the esti-
mate (3), in general, depends on �, however in general, there is no convergence
for N�1 DO ."/, we say that the scheme converges with defect �. In that case
when the value � can be chosen arbitrarily small, and also the solution of the differ-
ence scheme controlled by the value � satisfies estimate (3), we say that the scheme
converges on Gh almost "-uniformly with defect � (or, briefly, almost "-uniformly).

For problem (2), (1), the defect of the classical scheme (7) on the uniform grid (6)
equals 1. Difference schemes in [5–9] on adapted locally-uniform meshes (uniform
on these subsets where the more precise solution is computed) converge almost "-
uniformly, but with order of the convergence rate not higher than one for fixed values
of the parameter ".

Our aim for the boundary value problem (2), (1) is to construct an almost
"-uniformly convergent scheme on a priori adapted locally-uniform meshes with
order of the convergence rate for fixed values of the parameter " close to two.

2 A Priori Estimates for the Solution of Problem (2), (1)

Here we give a priori estimates for solutions and derivatives of the boundary value
problem (2), (1); the derivation of these estimates is similar to that in [2,4,10]. Write
the solution of the problem as the sum of the functions

u.x; t/ D U.x; t/C V.x; t/; .x; t/ 2 G; (4)

where U.x; t/ and V.x; t/ are the regular and singular parts of the solution. For

a; b; c; p; f 2 C l; l .G/; ' 2 C l; l.G/; l D 3nC 1;
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where n > 0 is integer [n characterizes the number of terms in asymptotic expan-
sions of the components U.x; t/ and V.x; t/], and for appropriate compatibility
conditions in corner points (see, e.g., [10]) we obtain the estimate

ˇ̌
ˇ̌
ˇ
@kCk0

@xk@tk0
U.x; t/

ˇ̌
ˇ̌
ˇ � M ;

ˇ̌
ˇ̌
ˇ
@kCk0

@xk@tk0
V.x; t/

ˇ̌
ˇ̌
ˇ � M "�k exp.�m"�1 x/; (5)

.x; t/ 2 G; k C 2k0 � K�;

where K� D nC 1 andm 2 .0;m0/ with m0 D minG Œa
�1.x; t/ b.x; t/.

3 Richardson Method for a Classical Scheme

We construct a difference scheme based on a classical approximation of problem
(2), (1). On the set G we introduce the uniform grid

Gh D G
u
h D ! u � ! u

0 ; (6)

where ! u and ! u
0 are uniform meshes with the step-sizes h D d N�1 on the inter-

val Œ0; d  and ht D T N�1
0 on Œ0; T , where N C 1 and N0 C 1 are the numbers of

points in the meshes ! and !0, respectively. We approximate problem (2), (1) by
the finite difference scheme [3]

� z.x; t/ D f .x; t/; .x; t/ 2 Gh; z.x; t/ D '.x; t/; .x; t/ 2 Sh (7)

Here � 
 " a.x; t/ ıxx C b.x; t/ ıx � c.x; t/ � p.x; t/ ıt ; .x; t/ 2 Gh, Gh D
G
T
Gh, Sh D S

T
G, ıxx z.x; t/ is the central difference derivative on the uniform

mesh, and ıx z.x; t/ and ıx z.x; t/, ıt z.x; t/ are the first-order (forward and back-
ward) difference derivatives. Taking into account the estimate (5) with K D 4, we
obtain the following estimate for the solution of the scheme (7), (6):

ju.x; t/ � z.x; t/j � M
h�
"CN�1�1 N�1 CN�1

0

i
; .x; t/ 2 Gh: (8)

Now we describe the Richardson method used to improve accuracy of discrete
solutions for the standard basic scheme. On the set G we construct grids

G
i

h D G
u i
h D ! i � ! i0; i D 1; 2; (9a)

where ! i D ! u i , ! i0 D ! u i
0 are uniform meshes in x and t . Here G

2

h D Gh.6/

is the basic grid, and G
1

h is the “coarsed” grid. The step-sizes h1 and h10 in the
meshes ! 1 on the interval Œ0; d  and ! 10 on the interval Œ0; T  are k� times more
than the step-sizes h2 and h20 in the meshes ! 2 and ! 20 . The numbers of points in



210 G.I. Shishkin

the meshes ! 2 and ! 20 are N .2/C 1 and N .2/
0 C 1, respectively, and the numbers of

points in the meshes ! 1 and ! 10 are N .1/ C 1 and N .1/
0 C 1, respectively:

N .2/ D N; N
.2/
0 D N0I N .1/ D .k�/�1N; N .1/

0 D .k�/�1N0: (9b)

Define
G
0

h D G
1

h

T
G
2

h : (9c)

Let zi .x; t/, .x; t/ 2 G i

h, i D 1; 2 be solutions of the difference schemes

�.7/z
i .x; t/Df .x; t/; .x; t/ 2 Gih; (10a)

zi .x; t/D'.x; t/; .x; t/ 2 S ih; i D 1; 2:

Set

z0.x; t/ D � z1.x; t/C .1 � �/ z2.x; t/; .x; t/ 2 G 0

h ; (10b)

� D �.k�/ D �.k� � 1/�1:

The function z0
.10/

.x; t/, .x; t/ 2 G 0

h , is the solution of the difference scheme of the

Richardson method (10), (9). Thus, setting basic grid G
1

h .9a/, we define the solution
of the problem (10), (9):

z0.x; t/ D z0.x; t I G 1

h /; .x; t/ 2 G0hI G
0

h D G
0

h.G
1

h /: .10c/

In the case of the estimate (5) with K D 6, we obtain the estimate

ju.x; t/ � z0.x; t/j � M
�
N�2 ."CN�1/�2 CN�2

0

�
; .x; t/ 2 G0h: (11)

4 Scheme on Local-Uniform Grids

We give an algorithm, based on the algorithm in [8], of constructing a local-uniform
(adapted in the boundary layer) grid and a discrete solution on it.

On the set G we introduce the basic grid G1h that we use for constructing a
standard scheme of the Richardson method on the first iteration:

G1h 
 Gh.6/: (12a)

The grid G1h .12a/ defines the solution of the Richardson method scheme z01.x; t/

on the grid G
0

1h on the first iteration

z01.x; t/ D z01 .10c/.x; t I G1h/; .x; t/ 2 G 0

1hI G
0

1h D G
0

1h .10c/.G1h/;
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where G
0

1h D ! 01 �! 00 . This solution is constructed on the base of the components

zi1.x; t/, .x; t/ 2 Gi1h, i D 1; 2, considered on the grids:

G
2

1h; G
1

1h (12b)

where G
2

1h D G1h.12a/ is the basic grid and G
1

1h is the coarsed grid. For the set G,

the functions z1.x; t/, zi1.x; t/ and the gridsG1h,G
i

1h we shall use also the notations

G.1/, z.1/.x; t/, zi
.1/
.x; t/ and G.1/h, G

i

.1/h, respectively; i D 0; 1; 2.

Let the value d1 2 ! 01 be found in some a way (see, e.g., (17) in Sect. 5) such

that for x 	 d1 the discrete solution z01.x; t/, .x; t/ 2 G 0

1h, is a good approximation
the solution of the problem (2), (1), moreover,

ju.x; t/� z01.x; t/j � M ı; .x; t/ 2 G 0

1h; x 	 d1; d1 2 Œ0; d /; (13a)

where ı > 0 is an arbitrary sufficiently small number specifying the required
accuracy of the discrete solution, andM is a constant independent of ı.

For x < d1 > 0, we shall make more precise the solution of the discrete problem,
i.e., we shall construct a scheme of the Richardson method on the second iteration.

We define the subdomain G.2/, on which we shall refine the grids G
i

1h in order to
do the discrete solution more precise:

G.2/ D G.2/
S
S.2/; G.2/ D G.2/.d1/; G.2/ D D.2/ � .0; T ; D.2/ D .0; d1/:

On the subdomainG.2/ we introduce the basic grid

G.2/h D !.2/ � !0;

where !.2/ is an uniform mesh on D.2/ with the step-size h.2/ and the number of

nodes N C 1; construct the coarsed grid G
1

.2/h. On the set G
i

.2/h, i D 1; 2, we find
the solution zi

.2/
.x; t/ of the discrete problem

�.7/ zi.2/.x; t/Df .x; t/; .x; t/ 2 Gi.2/h;

zi.2/.x; t/D
(

zi1.x; t/; .x; t/ 2 S i
.2/h

n S;
'.x; t/; .x; t/ 2 S i

.2/h

T
S; i D 1; 2;

where Gi
.2/h

D G.2/
T
G
i

.2/h, S i
.2/h

D S.2/
T
G
i

.2/h. We define the discrete sets

G
i

2h, i D 1; 2, on G and the functions zi2.x; t/, .x; t/ 2 G
i

2h, i.e., components of
the Richardson scheme, by the relations
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G
i

2h D G
i

.2/h

S n
G
i

1h nG.2/
o
; zi2.x; t/ D

(
zi
.2/
.x; t/; .x; t/ 2 G i

.2/h;

zi1.x; t/; .x; t/ 2 G i

1h nG.2/;

where i D 1; 2. Further, taking account of the grids G
i

2h, i D 1; 2, and the com-

ponents zi2.x; t/, we construct the grid G
0

2h and the function z02.x; t/ on this set,
i.e., the solution of the Richardson method on the second iteration. If turns out that
d2 > 0, then we continue the computations.

For k D K and dK�1 > 0, where K is a given fixed number (the number of
iterations for improving the grid solution),K 	 1, we set

G
0

h D G
K 0

h 
 G
0

Kh; z0.x; t/ D zK 0.x; t/ 
 z0K.x; t/: .12e/

The grid G
0

h and the function z0.x; t/ in (12e) are constructed using the grid sets

G
i

.k/h and the functions zi
.k/
.x; t/, .x; t/ 2 Gi.k/h, k D 1; : : : ; K , i D 1; 2.

We call the function z0
.6/
.x; t/, .x; t/ 2 G

0

h.12/, the solution of scheme (7), (12),
which is the scheme of the Richardson method on locally-uniform meshes.

5 Difference Scheme on Adapted Meshes

We consider a difference scheme on a priori adapted meshes constructed using a
majorant to the singular component of the discrete solution. We denote by zv.x; t/,
.x; t/ 2 Gh the solution of the difference problem

�.7/ z.x; t/ D L.2/ v.x; t/; .x; t/ 2 Gh; z.x; t/ D v.x; t/; .x; t/ 2 Sh;

where v 2 C 2;1.G/TC.G/. Write the solution of problem (7), (6) as the sum

z.x; t/ D zU .x; t/C zV .x; t/; .x; t/ 2 Gh; (14)

where zU .x; t/ and zV .x; t/ are grid functions approximating the components
U.x; t/ and V.x; t/ in the representation (3); zV .x; t/ is the function of the grid
boundary layer. The function

W.x/ D W.xI "; h/ D .1Cm0"�1h/�n; x D xn 2 D1
h ; x

n D nh; (15)

where D
1
h is an uniform grid on the semiaxis D

1 D Œ0; 1/ with step-size h,
is a majorant (up to a constant-multiplier) for the singular component zV .x; t/ in
representation (14) for the solution of the difference scheme (7) on the grid (6),
where h.6/ D h.15/ and m0 D min

G

Œa�1.x; t/b.x; t/. We say that the value

� D �.ıI "; h/; (16a)
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is the width of the grid boundary layer, if � is the minimum of the value �0 satisfying
the estimate

W.xI "; h/ � ı; x 2 D1
h ; x 	 �0: (16b)

On the uniform gridD
1
h.15/ with step-size hwe associate the value faI hge to the

value a 	 0; the value faI hge is defined by the relation

faI hge D
8<
:

a for h
�
h�1a

�e D a;

h
n
h
�
h�1a

�e C 1
o

for h
�
h�1a

�e
< a;

where Œ a  e is the integer part of the number a. Write the value � in the form

� D �.ıI "; h/ D faI hge; where a D h ln ı�1 ln�1.1Cm0"�1h/: (16c)

For .x; t/ 2 G
u
h.6/ with x 	 �.ıI "; h/, we have jzV .x; t/j � Mı ([10], Chap. 11,

[8]).
Define the values dk in the algorithm in Sect. 4 by the relations

dk D dk.ıI "; h1.k//; k D 1; : : : ; KI (17a)

d1 D min
h
�.ıI "; h1.1//; d

i
; k D 1;

dk D
8<
:

min
h
�.ıI "; h1

.k/
/; dk�1

i
for �.ıI "; h1

.k/
/ < mdk�1

dk�1 for �.ıI "; h1
.k/
/ 	 mdk�1

9=
; ; k D 2; : : : ; K;

m is a sufficiently small constant; h1
.k/

D k� dk�1N�1 for k 	 1, d0 D d . Set

ı D ı.N / ! 0 for N ! 1: (17b)

The difference scheme (7), (12), (17) defined by the values N;N0; ";K (where
N;N0 ! 1, " 2 .0; 1, K 	 1) is the the scheme of the Richardson method on
locally-uniform a priori adapted meshes.

For the solution of the scheme (7), (12), (17) in the case of estimates (5) for
K� D 6 the following estimate holds:

ju.x; t/� z0K.x; t/j � (18)

(
M
�
ı.N /CN�2 ln2N CN�2

0

�
; x 	 dK ; .x; t/ 2 Gh;

M
�
."C dK�1N�1/�2 d 2K�1N�2 C ı.N /CN�2 ln2N CN�2

0

�
; .x; t/ 2 G0h:

Thus, the difference scheme (7), (12), (17) for given number of iterations K con-
verges "-uniformly outside the dK -neighbourhood of the boundary SL1 with the first
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order of accuracy ı D ı.N /, close to the second order in N and with the second
order in N0, and it also converges on the whole set Gh under the condition

"�1 D o
�
.dK�1/�1N


: (19)

For the solution of the Richardson method scheme (7), (12), (17) with ı D N�2,
the following estimate holds:

ju.x; t/� z0K.x; t/j � (20a)

�
(
M
�
N�2 ln2N CN�2

0

�
; x 	 dK�1;

M
�
."�1N�K ln2N/2 CN�2 ln4N CN�2

0

�
; x < dK�1I .x; t/ 2 G0Kh:

The value dK satisfies the estimate

dK � dK�1 � M N�KC1 ln2N; " 2 .0; 1: (20b)

Thus, for N;N0 ! 1, outside the dK�1-neighbourhood of the boundary S l , K-th
iteration of the Richardson method scheme (7), (12), (17) converges with an accu-

racy order close to 2; in the dK�1-neighbourhood, the scheme converges on G
0

K h

under the condition N�K ln2N  "; for large values of K the scheme converges
almost "-uniformly with the defect � satisfying the estimate

� < �.K/ 
 1=.K �m/: (21)

Theorem 5.1 Let the estimate .5/ for K D 6 be satisfied. Then the solution
z0K.x; t/, .x; t/ 2 GK h.12/ of the Richardson method scheme (7), (12), (17) con-
verges under the conditionN�K ln2N  ". The function z0K.x; t/ and the defect �
of the almost "-uniform convergence satisfy the estimates (20) and (21), respectively.

The Richardson technique allows us to construct almost "-uniformly convergent
schemes on locally-uniform meshes, and with the high convergence rate for fixed
values of the parameter ". Principles of proof to Theorem 5.1 are similar to those
given in [8, 10]. The full presentation of results of the present paper is given in the
paper submitted for another publication.
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Flux Difference Schemes for Parabolic
Reaction-Diffusion Equations
with Discontinuous Data

L.P. Shishkina and G.I. Shishkin

Abstract For an initial-boundary value problem for a singularly perturbed para-
bolic reaction-diffusion equation on a composed domain, a conservative flux dif-
ference scheme on flux piecewise-uniform grids is constructed whose solution and
also normalized diffusion flux converge (in the maximum norm) independent of the
perturbation parameter " at the rate O

�
N�2 ln2N CN�1

0


.

1 Problem Formulation: Aim of Research

On the composed domain

G D G1
S
G2 (1)

with the interface boundary S int D G1
T
G2 between the subdomains G1 and G2,

we consider the initial-boundary value problem for the singularly perturbed
parabolic reaction-diffusion equation1

L.2/ u.x; t/ D f .x; t/; .x; t/ 2 Gi ; i D 1; 2; (2a)

l0 u.x; t/ D l1 u.x; t/ D 0; .x; t/ 2 S int; u.x; t/ D '.x; t/; .x; t/ 2 S: (2b)

Here G D G
S
S , G D D � .0; T , Gi D Gi

S
Si Gi D Di � .0; T ,

D D Œd�1; d�
1 , D1 D Œd�1; 0, D2 D Œ0; d�

1 , d�
1 	 d > 0, �d�1 	 d > 0,

1Notation L.j/ (m.j/ , M.j/ , Gh.j/) means that these operators (constants, grids) are introduced in
formula .j /.
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L.2/ 
 "2
@

@x

�
a.x; t/

@

@x

�
� c.x; t/ � p.x; t/

@

@t
;

l0 u.x; t/ 
 u.x C 0; t/ � u.x � 0; t/;
l1 u.x; t/ 
 a.x C 0; t/

@

@x
u.x C 0; t/ � a.x � 0; t/ @

@x
u.x � 0; t/:

The coefficients a.x; t/, c.x; t/, p.x; t/ and the right-hand side f .x; t/ are assumed
to be sufficiently smooth on the sets Gi , i D 1; 2, moreover, a.x; t/; p.x; t/ > 0,
c.x; t/ 	 0. The boundary function '.x; t/ is sufficiently smooth on the sets S0
and S

L
and is continuous on S , where S0 and SL are lower and lateral parts

of the boundary S , moreover, S0 D S0. The parameter " takes arbitrary values
in .0; 1. The derivative multiplied by "2 in the differential equation is written in
divergent form. For " ! 0, the boundary and interior parabolic layers appear in

neighbourhoods of the sets S
L

and S int.
In [3, 4] it is shown that even for regular problems with discontinuous data solu-

tions of difference schemes, which are not conservative, do not converge to solutions
of boundary value problems in the maximum norm.

Our aim for the boundary value problem (2), (1) is to construct an "-uniformly
convergent conservative difference scheme on a flux grid that approximates both the
solution and a diffusion flux.

2 A Priori Estimates for Solutions and Derivatives

Here we give a priori estimates for solutions and derivatives of the problem (2), (1)
that are established with using the technique from [1, 2, 5, 6].

Using a comparison Theorem [5], we obtain the estimate

ju.x; t/j � M
�

max
G

jf .x; t/j C max
S

j'.x; t/j�; .x; t/ 2 G: (3)

Assume that the data of the problem (2), (1) satisfy the condition

a 2 C l˛C1;.l˛C1/=2.Gi /; c; p; f 2 C l˛;l˛=2.Gi /; ' 2 C l˛ .S0/TC l˛=2.S L/;
(4a)

where l˛ D l C ˛, l 	 0, ˛ > 0, i D 1; 2. Moreover, on the set of corner points

Sc D S
LT

S0 of the set G, and also on the set of interior corner points Sd D
S
int T

S0 of the sets G1 and G2, additional conditions are satisfied that guarantee
smoothness of the problem solution on the sets G1 and G2.

Definition. Set '0.x/ D '.x; t/, .x; t/ 2 S0. Let the function '.x; t/, .x; t/ 2 S ,
satisfy the condition '.�; 0/ 2 C l˛ .D/ ('0 2 C l˛ .D/), moreover, for the func-

tion '.x; t/ considered on S
L

, the derivatives .@k0=@tk0/ '.x; t/ for .x; t/ 2 Sc ,
k0 � l=2 are defined. Using the function '0.x/ prescribed on the set S0 and the
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equation (2a), we find the derivative in t of the function u.x; t/ on S0i which
are lower boundaries of the sets Gi , i D 1; 2. We denote this derivative by
.@=@t/ '0;tD0.x/. Further, using equations obtained by differentiation in x and t
of the equation (2a), we find derivatives in t up to order k0 � Œl=2i , where Œai
is the integer part of the number a 	 0; we denote these derivatives by .@k0=@tk0/

'0;tD0.x/, x 2 Di , i D 1; 2. We say that the data of the boundary value problem
on the set Scd D Sc

S
Sd satisfy a compatibility condition that ensures continuity

of the derivatives in t of the function u.x; t/ on Scd up to order K0, or, briefly, the
data of the problem satisfy on Scd a compatibility condition of the derivatives in t
up to orderK0 [1, 2], if the following condition holds:

.@k0=@tk0/ '.x; t/ D .@k0=@tk0/ '0;tD0.x/; .x; t/ 2 Sc ;

.@k0=@tk0/ '0;tD0.x � 0/ D .@k0=@tk0/ '0;tD0.x C 0/; .x; t/ 2 Sd ;

where 0 � k0 � K0. For the stated conditions,K0 � Œl=2i . ut
Compatibility conditions of the problem data on the set Scd that guarantee

continuity of the derivatives in x and t : .@kCk0=@xk @tk0/ u.x; t/ up to order
k C 2k0 � K;K D 2=;K0, on the sets Gi , i D 1; 2, are necessary and sufficient.

Suppose that on the set Scd compatibility conditions of the derivatives in t up
to order K0 D l=2 (assume that the value l is even) are satisfied that guarantee the
smoothness

u 2 C lC˛;.lC˛/=2�Gi ; i D 1; 2: (4b)

Write the solution of the problem (2), (1) in each subdomain as the sum of the
functions

u.x; t/ D U.x; t/C V.x; t/; .x; t/ 2 Gi ; i D 1; 2; (5)

where U.x; t/ and V.x; t/ are the regular and singular parts of the solution. The
function U.x; t/, .x; t/ 2 Gi , is the restriction to G of the function U e.x; t/,
.x; t/ 2 G e

i . The function U e.x; t/ is the solution of the problem

L e.2/i U
e.x; t/ D f e.x; t/; .x; t/ 2 G e

i ; U e.x; t/ D ' e.x; t/; .x; t/ 2 S ei :

Here S ei D S.G e
i /; the domainG e

i is an extension of Gi beyond the boundary SLi ,
the set G

e

i includes Gi together with its m-neighborhood; the coefficients of the
operator L e

.2/i
and the right-hand side f e.x; t/ are smooth extensions of those in

(2), (1) from the set Gi to G
e

i ; 'e.x; t/ is a smooth function, moreover, 'e.x; t/ D
'.x; t/, .x; t/ 2 S0i . The function V.x; t/ is the solution of the problem

LV.x; t/ D 0; .x; t/ 2 Gi ; V .x; t/ D
(
'.x; t/ � U.x; t/; .x; t/ 2 Si TS;
u.x; t/ � U.x; t/; .x; t/ 2 Si n S:

The functions U.x; t/ and V.x; t/ are not continuous on S int.
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For the components U e
0 .x; t/ and v eU .x; t/ in the representation

U e.x; t/ D U e
0 .x; t/C v eU .x; t/; .x; t/ 2 G e

; (6)

where v eU .x; t/ is the remainder term, U e
0 .x; t/ and v eU .x; t/ are solutions of the

problems

L e U e
0 .x; t/


�
�ce.x; t/ � pe.x; t/

@

@t

�
U e0 .x; t/Df e.x; t/; .x; t/ 2 G enSei0;

U e0 .x; t/D'e.x; t/; .x; t/ 2 Sei0I

Le
.2/i

v eU .x; t/ D �"2 @

@x

�
ae.x; t/

@

@x

	
U e0 .x; t/; .x; t/ 2 Gei ;

v eU .x; t/ D 'e.x; t/ � U e0 .x; t/; .x; t/ 2 Sei ; i D 1; 2;

we obtain the estimates
ˇ̌
ˇ̌
ˇ
@kCk0

@xk@tk0
U e0 .x; t/

ˇ̌
ˇ̌
ˇ � M;

ˇ̌
ˇ̌
ˇ
@kCk0

@xk@tk0
veU .x; t/

ˇ̌
ˇ̌
ˇ � M "2�k ; .x; t/ 2 G e

i ;

where i D 1; 2; k C 2k0 � K; K D l . Thus, we have

ˇ̌
ˇ̌
ˇ
@kCk0

@xk@tk0
U.x; t/

ˇ̌
ˇ̌
ˇ � M Œ1C "2�k; .x; t/ 2 Gi ; kC 2k0 � K; i D 1; 2; (7)

where K D l . For the function V.x; t/ with regard to estimates (3), (7), we obtain
the estimate

jV.x; t/j � M exp
� �m"�1 r.x; 
i /


; .x; t/ 2 Gi ; i D 1; 2; (8)

where r.x; 
i / is a distance from the point x, x 2 Di , to the boundaryGi of the set
Di , m is an arbitrary constant.

Find estimates of derivatives for the function V.x; t/, assuming

a.x; t/ D a.x/; c.x; t/ D c.x/; p.x; t/ D p.x/; .x; t/ 2 Gi ; i D 1; 2:

(9)
By applying the operators @k0=@tk0 , 1 � k0 � Kt , Kt D l=2, to the problem (2),
we find that .@k0=@tk0/ u 2 C ˛.Gi /, i D 1; 2. For the derivative .@k0=@tk0/ u.x; t/,
.x; t/ 2 G, we obtain the estimate

ˇ̌
ˇ.@k0=@tk0/ u.x; t/

ˇ̌
ˇ � M; .x; t/ 2 Gi ; 0 � k0 � Kt ; i D 1; 2; (10)



Flux Schemes for a Parabolic Equation with Discontinuous Data 221

Further, considering the function u.x; t/ in each subdomain Gi as the solu-
tion of the initial-boundary value problem with boundary conditions satisfying the
condition (10), and with regard to the estimate (7), we find

ˇ̌
ˇ̌
ˇ
@kCk0

@xk@tk0
V.x; t/

ˇ̌
ˇ̌
ˇ � M exp

� �m"�1 r.x; 
i /

; .x; t/ 2 Gi ; i D 1; 2; (11)

where k C 2k0 � K; K � l , m D m.8/.

Theorem 2.1 Let the data of the initial-boundary value problem (2), (1) satisfy the
conditions (4), (9) for l 	 2. Then for the components of the solution in the
representation (5), the estimates (7), (11) are satisfied.

Remark 1 The statement of Theorem 2.1 preserves in the case when only the coef-
ficients a.x; t/, c.x; t/ are independent of t , or the coefficient c.x; t/ equals zero and
also when the condition (9) holds only in the m-neighbourhood of the set S int. ut

3 Conservative Difference Scheme on Flux Grids

For the initial-boundary value problem (2), (1), we propose a difference scheme on
flux grids considered for regular problems in [3].

On the set G we introduce the rectangular grid

Gh D Dh � !0 D ! � !0; (12a)

where ! and !0 are meshes on the intervals D and Œ0; T , respectively, in general,
nonuniform; the point x D 0 belongs to the mesh !. We denote by N C 1 and
N0 C 1 the numbers of nodes in the meshes ! and !0. Let

x0; x1; : : : ; xi ; : : : ; xN ; (12b)

be nodes in the mesh !, where x0 Dd�1, xN Dd�
1 . Set hi DxiC1 � xi , xi ;

xiC1 2!, h D maxi hi , h
j
t D tjC1 � tj , tj ; tjC1 2 !0, ht D maxj h

j
t ; assume to

be satisfied the conditions h � M N�1 and ht � M N�1
0 .

To construct a difference scheme, we apply the integro-interpolational
method [3].

For the problem (2), (1) we have the difference scheme

�.13/ z.x; t/ D fh.x; t/; .x; t/ 2 Gh; z.x; t/ D '.x; t/; .x; t/ 2 Sh: (13)
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Here Gh D G
T
Gh, Sh D S

T
Gh,

�.13/ z.x; t/ 
 "2 ıbx �ai�1=2.x; t/ ıx z.x; t/
�ch.x; t/ z.x; t/�ph.x; t/ ıt z.x; t/;

ıbx
�
ai�1=2.x; t/ ıx z.x; t/


, ıt z.x; t/ are difference derivatives (see [3]):

ıbx
�
ai�1=2.x; t/ ıx z.x; t/

D 1

„
˚
aiC1=2.x; t/ ıx z.x; t/ � ai�1=2.x; t/ ıx z.x; t/

�
;

ıx z.x; t/D 1

hi

�
z.xiC1; t/ � z.x; t/


; ıx z.x; t/D 1

hi�1
�
z.x; t/ � z.xi�1; t/


;

ai�1=2.x; t/ D a
�
2�1 .xi�1 C xi /; t


; aiC1=2.x; t/ D a

�
2�1 .xi C xiC1/; t


;

ıtz.x; t/D
�
hj�1�1�z.x; t/ � z.x; tj�1/


; .x; t/ D .xi ; tj /;„ D 2�1.hi C hi�1/;

the functions ch.x; t/, ph.x; t/, fh.x; t/, .x; t/ 2 Gh are defined by the relation

vh.x; t/ D
(

v.x; t/; x ¤ 0;

.hi C hi�1/�1
˚
hi viC1=2.x; t/C hi�1 vi�1=2.x; t/

�
; x D xi D 0;

where v.x; t/ is one of the functions c.x; t/, p.x; t/, f .x; t/. In a similar way it is
possible to write out a scheme when fxg \ ! D ;.

The difference operator�.13/ is "-uniformly monotone.
On G we construct the grid on which the scheme converges "-uniformly:

Gh D G
s

h D ! s � !0; (14a)

where !0 D !u
0 is an uniform mesh, ! s D ! s.�/ is the piecewise-uniform mesh

on Œd�1; d�
1  condensed in neighbourhoods of the interval and of the point x D 0.

The step-sizes in the meshes ! s are constant on the intervals

Œd�1; d�1 C �; Œ��; �; Œd�
1 � �; d�

1 ; and Œd�1 C �;��; Œ�; d�
1 � �; (14b)

and they equal, respectively, to h.1/ D 8 � N�1 and h.2/ D 2 Œd � 4 �N�1, where
d D d�

1 � d�1. The value � is defined by the relation

� D �."; N / D min
�
4�1 jd�1j; 4�1 d�

1 ; M " lnN
�
; M D 2m�1

.8/:

For the solution of the scheme (13), (14) we obtain the "-uniform estimate

ju.x; t/ � z.x; t/j � M
�
N�2 ln2N CN�1

0

�
; .x; t/ 2 Gh: (15)

In the scheme (13), (12), the function wh iC1=2.x; t/ D �"2 aiC1=2.x; t/
ıx z.x; t/, .x; t/ 2 Gh, x ¤ d�, corresponds to the function wiC1=2.x; t/ D
�"2 aiC1=2.x; t/ .@=@ x/ u.x; t/, i.e., the diffusion flux for the diffusion coefficient
"2 aiC1=2.x; t/ in “middle points” of the grid Gh .12/.
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On the set G we introduce the basic (“main”) grid G
b

h

G
b

h D Gh.12/I G
b

h D ! b � !0.12/; ! b D !.12/ (16a)

and “auxiliary” grid Ga
h

Gah D !a � !0.12/: (16b)

Here !a is the mesh with “half-integer” nodes x 1
2
; x1C 1

2
; : : : ; xiC 1

2
; : : : ; xN� 1

2
,

where xiC 1
2

D xiC 1
2
.xi ; xiC1/ D 2�1 .xi C xiC1/, xi ; xiC1 2 ! b .

For the problem (2), (1) we have the difference scheme on the grid Gh.16/

� z.x; t/ D fh.x; t/; .x; t/ 2 Gbh ; z.x; t/ D '.x; t/; .x; t/ 2 Sbh : (17)

� z.x; t/ 
 "2 ıbx�a.x.�1/; t/ ıx z.x; t/
 � ch.x; t/ z.x; t/ � ph.x; t/ ıt z.x; t/:

Here and further .x; t/ 2 Gb
h

, .x.�1/; t/; .x.1/; t/ 2 Ga
h

, where x.1/ D x.1/.x/,
x.�1/ D x.�1/.x/, x.1/.x/ 
 xiC 1

2
for x D xi , x.�1/.x/ 
 xi� 1

2
for x D xi ,

xi 2 ! b , xiC 1
2
; xi� 1

2
2 !a.

In the scheme (17), (16), the function wh.x.1/; t/ D �"2 a.x.1/; t/ ıx z.x; t/, i.e.,
grid diffusion flux, is defined on the flux grid Ga

h.16b/. We call the set of the grids

G
b

h and G
a

h also the flux grids. We call the difference scheme (17), (16) the scheme
on the flux grid (16).

The scheme (17), (16) allows us to compute the flux wh.x.1/; t/, .x.1/; t/ 2 Ga
h

.
This scheme is conservative under the condition

p.x; t/ D p.x/; .x; t/ 2 Gi ; i D 1; 2: (18)

The difference schemes (17), (16) and (13), (12) are equivalent.

Theorem 3.1 Let for the components of the solution to initial-boundary value prob-
lem (2), (1), the estimates (7), (11/ be satisfied for K D 4. Then the solution of the
difference scheme .13/, (14) .scheme .17/, (16), (14)/ converges to the solution of
the initial-boundary value problem "-uniformly. The discrete solutions satisfy the
estimate (15).

4 Flux Difference Scheme on Flux Grids

Here we perform the problem (2), (1) and the difference scheme (17), (16) to a
“canonic form” containing the flux in explicit form.

Write the problem (2), (1) in the form

L1. u.x; t/;w.x; t//
 w.x; t/C "2 a.x; t/
@

@x
u.x; t/ D 0; (19)
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L2.u.x; t/;w.x; t//
 @

@x
w.x; t/C c.x; t/ u.x; t/C p.x; t/

@

@t
u.x; t/ D �f .x; t/;

.x; t/ 2 Gi ; i D 1; 2;

l1.u.x; t/;w.x; t//
 u.x C 0; t/ � u.x � 0; t/ D 0;

l2.u.x; t/;w.x; t//
 w.x C 0; t/� w.x � 0; t/ D 0; .x; t/ 2 S int;

u.x; t/D '.x; t/; .x; t/ 2 S:

Here the function w.x; t/, .x; t/ 2 Gi , i D 1; 2, is the diffusion flux; the
perturbation parameter "2 characterizes the diffusion coefficient "2 a.x; t/.

For the problem (19), (1) we have the difference scheme on the grid (16)

�1
�
z.x; t/; wh.x; t/


 wh.x
.1/; t/C "2 a.x.1/; t/ ıx z.x; t/ D 0; (20)

�2
�
z.x; t/; wh.x; t/


 ıx.1/ wh.x
.�1/; t/C ch.x; t/ z.x; t/C ph.x; t/ ıt z.x; t/

D �fh.x; t/; .x; t/ 2 Gh; .x.1/; t/; .x.�1/; t/ 2 Gah ;
z.x; t/ D '.x; t/; .x; t/ 2 Sh; x.1/ D x

.1/

.17/
.x/; x.�1/ D x

.�1/

.17/
.x/:

The set of discrete equations (20), (16) connecting the function z.x; t/, .x; t/ 2
Gh, and the discrete diffusion flux wh.x.1/; t/, .x.1/; t/ 2 Ga

h
, is the canonic flux

difference scheme on flux grids; the function z.x; t/ is the solution of this scheme,
the function wh.x.1/; t/ is the grid flux corresponding to this solution.

Under the condition (18), the scheme (20), (16) is conservative.
Note that the function "�1 w.x.1/; t/ is "-uniformly bounded; we call it the

normalized diffusion flux.
For the solution of the difference scheme (20), (16), (14), the estimate (15) holds.

Under the condition (9), the normalized diffusion flux "�1 wh.x; t/ satisfies the
estimate

"�1
ˇ̌
ˇw.x.1/; t/ � wh.x

.1/; t/
ˇ̌
ˇ � M

h
N�2 ln2N CN�1

0

i
; .x.1/; t/ 2 Gah : (21)

Theorem 4.1 Let the data of the initial-boundary value problem (2), (1) satisfy
the condition (9), and let the components of the solution to this problem in the
representation (5) satisfy the estimates (7), (11) for K D 6. Then the solution
of the difference scheme (20), (16), (14) converges to the solution of the initial-
boundary value problem (19), (1) "-uniformly. The discrete solutions satisfy and the
normalized diffusion flux satisfy the estimates (15) and (21), respectively.

Remark 2 Let z.x; t/; .x; t/ 2 G be the linear interpolant constructed on elemen-
tary rectangular elements in the partition of the setG using the values z.x; t/; .x; t/2
Gh, in the vertices of the elementary rectangles. Let wh.x; t/; .x; t/ 2 Gi ; i D 1; 2,
be the linear interpolant constructed on elementary rectangular elements in the
partition of the set Gi using the values wh.x; t/; .x; t/ 2 Ga

h
in the vertices of the
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elementary rectangles from Gi ; we extend these linear interpolants on elementary
rectangular elements to the sets Gi ; i D 1; 2, with preserving linearity in x. The
functions z.x; t/ and wh.x; t/; .x; t/ 2 G, satisfy the estimates (15) and (21) from
Theorem 4.1, where z.x; t/ and wh.x; t/ are, respectively, z.x; t/ and wh.x; t/, and
Gh and Ga

h
is G. ut

The full presentation of results of the present paper is given in the paper
submitted for publication in a mathematical journal.
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Numerical Approximation of Flow Induced
Vibration of Vocal Folds

P. Sváček and J. Horáček

1 Introduction

In this paper the numerical study of a simplified model of airflow through glot-
tal region of the human vocal tract is addressed and the self-oscillating vocal fold
is modelled. The main attention is paid to comparison of approximation of a cou-
pled fluid–structure interaction problems to results of aeroelastic model published
in [5]. In order do compare these approaches a simplified geometrical domain is
considered. In [5] the aeroelastic problem was modelled as 1d flow, which allows
to determine flutter boundary (i.e. flow velocity for which the instability occurs fol-
lowed by the vocal folds self-oscillations creating the human voice source). Here,
a more general model is developed, the airflow through two-dimensional channel
interacts with vibrations of channel walls induced by aerodynamical forces. The
mathematical model is described by the airflow governed by the incompressible
Navier–Stokes equations (as flow velocities in the glottal region are typically lower
than 100 m s�1). The structure vibrations are described with the aid of two-degrees
of freedom model and governed by linearized system of ordinary differential equa-
tions. The problem is numerically approximated by finite element method stabilized
by Galerkin-Least Squares(GLS) method, cf. [4] modified for the application on
moving domains (cf. [8]).
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2 Mathematical Model

The mathematical model consists of domain description (geometry), fluid flow
model, structure motion model and interface, boundary and initial conditions. A
simplified geometry of the channel is chosen in order to obtain results similar to the
results of the simplified mathematical model (1d) from [5].

2.1 Geometry

The geometry of vocal folds depends on the tension in the vocal folds and varies
with the fundamental vibration frequency, loudness and mode of phonation. For
the purposes of numerical analysis in this paper the geometry of the vocal folds is
chosen either as af .x/ D 0:77120 x [m] (linear shape, approximation of the vocal
fold for female) or ai .x/ D �159:861.x�5:812�10�3/2C5:4�10�3 [m] (parabolic
shape, approximation of the vocal fold for male), see Fig. 1. Here, x 2 h0;Li [m].
The density, thickness and length of the vocal fold are �h D 1; 020 kg m�3, h D
18 mm and L D 6:8 mm, respectively. The channel height (at time t D 0) is chosen
as H0 D maxx2h0;Li a.x/C g0, where g0 is the initial gap.

2.2 Flow Model

To describe the flow model on moving domains the Arbitrary Lagrangian–Eulerian
(ALE) method is used. ALE method is based on an ALE mapping At .�/ of a ref-
erence point � from the reference (two dimensional) domain � 2 ˝0 onto the

0

1

2

3

4

5

6

0 1 2 3 4 5 6

y 
[m

m
]

x [mm]

linear shape af(x) (female)
quadratic shape am (x) (male)

l

w1

L

l

w2

Fig. 1 The considered geometry of vocal folds (left) and example of the vocal fold in displaced
position (right)
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computational domain ˝t at time instant t . The fluid flow is governed by the
incompressible Navier–Stokes equations written in ALE form

DAv
Dt

C ..v � wD/ � r/v � �4v C rp D 0; r � v D 0; in ˝t ; (1)

where v D v.x; t/ is the flow velocity vector (v D .v1; v2/), p D p.x; t/ is the
kinematic pressure (i.e. pressure divided by the constant fluid density �1), � is the
kinematic viscosity,DA=Dt is the ALE derivative (i.e. time derivative with respect
to the fixed point in the reference domain ˝0), and wD is the domain velocity.

The boundary of the computational domain @˝t consists of mutually disjoint
parts 
D (wall), 
I (inlet), 
O (outlet), 
S (axis of symmetry) and the moving part

W t (oscillating wall). The following boundary conditions are prescribed

a) v.x; t/ D 0 x 2 
D; b) v.x; t/ D wD.x; t/ x 2 
W t ;
c) v.x; t/ D .V0; 0/ x 2 
I ; d) v2.x; t/ D 0; @v1

@y
.x; t/ D 0 x 2 
S

e) � .p � pref /n C 1
2
.v � n/�v C � @v

@n D 0; on 
O ;
(2)

where n denotes the unit outward normal vector, pref denotes a reference pressure
value, V0 is the inlet flow velocity magnitude. Further, ˛� denotes the negative part
of ˛. Finally, we prescribe the initial condition v.x; 0/ D v0.x/ for x 2 ˝0. The
initial configuration˝0 is shown in Fig. 2 for linear shape of the vocal fold.

2.3 Structure Model

The geometry of the channel and of the vibrating glottal region is chosen similarly
as in [6] (see Fig. 2), where vibrations are part of the solution. The vibrating part
(vocal folds) of the channel walls is governed by an aeroelastic two degrees of free-
dom model, i.e. the motion of 
W t is governed by the displacements w1.t/ and
w2.t/ (upward positive) of the two masses m1 and m2, respectively (see Fig. 3).
The displacements w1.t/ and w2.t/ are then described by the following equations
(see [6] for details)

ΓOΓI
ΓWt

t

L2
ΓD

Ω
g(t)

2H
0

sym

LL0

2H
0

Fig. 2 The symmetric domain occupied by fluid and the computational domain˝t with boundary
parts (lower part, shaded)
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w2

l

m1

m2

F1 F2

l

m3

CoGw1

L

ll

w1 w2

Fig. 3 Aeroelastic two degrees of freedom model (with masses m1, m2, m3) in displaced position
(displacements w1 and w2) and aerodynamic forces F1 and F2 (left) and deformation of the vocal
fold shaped element (right)

�
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4
m3

4
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4
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4

�� Rw1
Rw2

�
C B

� Pw1
Pw2

�
C
�
c1 0

0 c2

��
w1
w2

�
D
��F1

�F2
�
; (3)

wherem1; m2; m3 are masses, c1; c2 are spring constants, and B is the matrix of the
proportional structural damping. Here, F1; F2 are the aerodynamical forces (down-
ward positive). The fluid flow model (1) is coupled with the structure motion model
(3) by interface conditions. The proportional damping matrix is chosen

B D "1M C "2K:

2.4 Coupling Conditions

The flow and structure models are coupled by (A) the deformation of the vocal
fold, (B) kinematic boundary condition for flow velocity, (C) aerodynamical forces.
The deformation of the domain ˝t depends on the displacements w1.t/, w2.t/ of
structure model (3) . The kinematic boundary condition for flow velocity is given
by (2b) and depends on structural velocity. The aerodynamic forces F1 F2 in (3)
depends on flow velocity v and pressure p resulting from (1). Particularly, any point
� D .�1; �2/ 2 
W 0 of the vibrating lower part of the vocal folds is transformed on
At .�/ D .X; �2/ 2 
W t , where

X D 1

2l
Œ.�1 �L1 � l/w1.t/C .�1 � L1 C l/w2.t/ ;

where L1 D L=2. The grid velocity is then computed by wD.x; t/ D dAt .�/
dt

where x D At .�/. The aerodynamical forces (the viscous terms are neglected) are
evaluated by

F1.t/D h

2l

Z L

0

.l � x CL1/p.x; t/ dx; F2.t/D h

2l

Z L

0

.l C x � L1/p.x; t/ dx:
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3 Numerical Approximation

FEM is well known as a general discretization method for partial differential equa-
tions. Nevertheless, the straightforward application of FEM procedures often fails
in the case of incompressible Navier–Stokes equations. The reason is that momen-
tum equations are of advection–diffusion type with dominating advection and the
Galerkin FEM leads to unphysical solutions if the grid is not fine enough in regions
of strong gradients (e.g. in boundary layer). In order to obtain physically admissible
correct solutions it is necessary to apply suitable mesh refinement (e.g. anisotrop-
ically refined mesh, cf. [3]) combined with a stabilization technique, cf. [1, 4, 7].
In this work, the FEM is stabilized with the aid of Galerkin-Least Squares (GLS)
method, cf. [4]) modified for the application on moving domains (cf. [8]).

The detailed description of the numerical approximation of flow model can be
found, e.g. in [8]. The flow problem (1) is discretized in time by backward differ-
ence formula of second order (BDF2), formulated weakly and spatially discretized
by the finite element method based on anisotropically refined triangulation and
Taylor Hood finite elements for velocity/pressure approximation. Furthermore, the
time and space discretized linearized problem of the arising large system of linear
equations needs to be solved in a fast and efficient manner. Here, the solution is per-
formed by the application of direct solver as UMFPACK (cf. [2]), where different
stabilization procedures can be easily applied even when the anisotropically refined
grids are employed.

The motion equations are discretized with the aid of the 4th order Runge-Kutta
method and the coupled fluid–structure model is solved with the aid of partitioned
strongly coupled scheme. This means that per every time step the fluid flow and
the structure motion are approximated repeatedly in order to converge to a solution
which satisfy all interface conditions.

4 Numerical Results

4.1 Input Data for Aeroelastic Model

For the computations the fluid density � D 1:2 kg m�3, and fluid kinematic viscosity
� D 1:58 � 10�5 m2 s

�1
were chosen. The length l i.e. the distance of the masses

from the center was l D L=2, the lengths of sub- and supra-glottal regions were
L0 D 1:5L and L2 D 5L, respectively. The height of the channel was 2H0, where
H0 D g0 C maxx2h0;Li a.x/, where 2g0 is the initial gap g.0/ D 2g0. The initial
gap g0 for Model F and Model M was chosen 0:25mm and 0:2mm, respectively.

Using the given shape and dimension of the vocal fold and using the structural
density �h the total mass m, the moment of inertia I and the excentricity e is
computed. The system is then replaced by the equivalent three mass system where
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m1;2 D 1
2l2
.I Cme2 ˙me l/ andm D m1 Cm2 Cm3. The structural parameters

were chosen according [5], see Table 1.

4.2 Aeroelastic Response

The solution of the aeroelastic system was performed for two cases represented
by Table 1. The solution of the flow model (1), structure model (3) and interface
conditions was numerically approximated in a simplified geometry shown in Fig. 2.
The aeroelastic response is shown in Fig. 4 for Model F and in Fig. 5 for Model M
in time domain in terms of displacements w1.t/ and w2.t/. The vibrations of the

Table 1 Structural parameters considered for the aeroelastic system in numerical examples; f1; f2
are the corresponding natural frequencies of the structure in vacuo

Model F Model M

Shape af .x/ am.x/

m (kg) 3:274 � 10�4 4:812 � 10�4

I (kg m�2) 1:341 � 10�9 2:351 � 10�9

e (m) 1:133 � 10�3 0:771 � 10�3

c1 (N m�1) 44:8 56

c2 (N m�1) 84:6 174:3

f1 (Hz) 100 100
f2 (Hz) 160 160

a

-0.006
-0.005
-0.004
-0.003
-0.002
-0.001

 0

0 0.02 0.04 0.06 0.08 0.1

[m
m

]

t[s]

w1

-0.0035
-0.003

-0.0025
-0.002

-0.0015
-0.001

-0.0005
 0

 0.0005

0 0.02 0.04 0.06 0.08 0.1

[m
m

]

t[s]

w2

b

-0.008
-0.007
-0.006
-0.005
-0.004
-0.003
-0.002
-0.001

 0

0 0.02 0.04 0.06 0.08 0.1

[m
m

]

t[s]

w1

-0.005
-0.004
-0.003
-0.002
-0.001

 0
 0.001

0 0.02 0.04 0.06 0.08 0.1

[m
m

]

t[s]

w2

c

-0.014
-0.012

-0.01
-0.008
-0.006
-0.004
-0.002

 0
 0.002
 0.004

0 0.02 0.04 0.06 0.08 0.1

[m
m

]

t[s]

w1

-0.012
-0.01

-0.008
-0.006
-0.004
-0.002

 0
 0.002
 0.004
 0.006
 0.008

0 0.02 0.04 0.06 0.08 0.1

[m
m

]

t[s]

w2

Fig. 4 The aeroelastic response of the system w1.t /,w2.t / for the inlet velocity (a) V0 D
0:2m s�1, (b) V0 D 0:3m s�1 and (c) V0 D 0:34m s�1
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Fig. 5 The aeroelastic response of the system w1.t /,w2.t / for the inlet velocity (a) V0 D
0:575m s�1, (b) V0 D 0:6m s�1 and (c) V0 D 0:625m s�1

structure die in time after a time period due to both structural and strong aerody-
namic damping for lower flow velocities. With increasing flow velocity the flutter
type of instability can be observed, which is in good agreement with results pre-
sented in [5]. The physical meaning of the instability is so-called phonation onset
which is an important voice production characteristic in humans.

5 Conclusion

In this paper the numerical method for an analysis of a simplified model of airflow
through of glottal region was described and an attention was paid to comparison of
approximation of a coupled fluid–structure interaction problems to results of aeroe-
lastic model published in [5]. The flutter type of instability was observed for inlet
velocities which agrees with results [5]. The numerical results are in general in good
agreement with the physiological data known for human voice source. The devel-
oped numerical method improves the previous approximate solution for finding the
phonation onset parameters given by the aeroelastic instability of the vocal folds.
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Fundamental Properties of the Solution
of a Singularly Perturbed Degenerate
Parabolic Problem

Martin Viscor and Martin Stynes

Abstract A singularly perturbed degenerate parabolic problem is considered. The
behaviour of its solution u depends on three parameters that are determined by the
data of the problem. Theoretical bounds on u are stated in terms of these parameters
and extensive numerical experiments verify the sharpness of these bounds.

1 Introduction

Consider the singularly perturbed initial-boundary value problem

Lu.x; t/ WD "uxx.x; t/ � x˛ut .x; t/ D f .x; t; "/ for .x; t/ 2 ˝; (1a)

subject to the Dirichlet initial and boundary conditions

u.0; t/ D 'L.t; "/ for 0 < t � T; (1b)

u.x; 0/ D '0.x; "/ for 0 � x � 1; (1c)

u.1; t/ D 'R.t; "/ for 0 < t � T; (1d)

where˝ WD .0; 1/�.0; T  for some fixed T > 0, the small parameter " 2 .0; 1 and
˛ > 0 is a positive constant. The functions f and ' are smooth; precise hypotheses
will be given in Sect. 2.

The vanishing of the coefficient x˛ of ut at the boundary x D 0 of N̋ means
that the parabolic differential operatorL of (1a) is degenerate and consequently the
standard theory of parabolic partial differential equations is inapplicable – even for
fixed " > 0. The analysis of (1) is hampered by this factor and also by the singularly
perturbed nature of (1a), which is caused by the small parameter ". The solution u
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has boundary layers, as is usual in singularly perturbed problems, but the complexity
of the layer along x D 0 is increased by the degeneracy of the problem; see Sect. 5
for more information.

Problems like (1) arise when one models the transfer of heat over a rectangle in a
medium that moves with velocity x˛ along the x-axis and conducts heat only across
the flow; see [5] and also [4].

Notation. We use k � k to denote the maximum norm on C. N̋ /. The quantity C
denotes a generic constant that is independent of ", x and t .

2 Existence and Regularity of u

The standard classical theory of parabolic partial differential equations cannot be
applied to (1) because the coefficient x˛ of ut is not bounded from below by any
positive constant in ˝ and also fails to lie in the functional spaces used in [2, 3].
Hence an alternative proof of the existence and regularity of u is needed.

Lemma 1. Consider the problem (1). Assume that ˛ < 4,

f; ft 2 C. N̋ /;
'0.x/ 2 C 2Œ0; 1 and '0 is of bounded variation on Œ0; 1;

'L; 'R 2 C 2.0; T ;

for each fixed t 2 Œ0; T , the function f .�; t/ is of bounded variation on Œ0; 1;

for i=0,1,2, limt!0C

@i

@t i
'L.t/ and limt!0C

@i

@t i
'R.t/ exist and are finite,

lim
t!0C

 L.t/ D  0.0/; lim
t!0C

 R.t/ D  0.1/:

Then the problem (1) has a unique solution in C. N̋ / \ C 2;1. N̋ n f.0; 0/; .1; 0/g/.
Proof. The proof is an extension of an argument from [1]. It is based on an explicit
construction of the solution in the form of an infinite series containing Bessel
functions. For full details see [6].

Remark 1. Consider a function g 2 C.0; 1/. To show that its Bessel series con-
verges uniformly to g on .0; 1/, one needs the integral

R 1
0 x

�1=2g.x/dx to be

convergent. For our problem this condition becomes j R 1
0
x�˛=4f .x; t/dxj � C

for 0 � t � T ; this is why the condition ˛ < 4 is needed in Lemma 1. Nevertheless
our numerical experience is the same for ˛ 	 4 as for ˛ < 4.
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3 Main Properties of u

Unlike the singularly perturbed parabolic operator v 7! "vxx � vt , in general kuk
[where u is the solution of (1)] is not bounded uniformly with respect to the param-
eter ". The bound on kuk depends on the structure of f .x; t; "/ and on the boundary
data. Set

� D 1

2C ˛
:

Definition 1. Let ˇ 	 0 be the largest constant such that for all " 2 .0; 1

jf .x; t; "/j � M maxf"ˇ; xˇ g; .x; t/ 2 N̋
j'L.t; "/j � M".ˇ�˛/; 0 < t � 1

j'R.t; "/j � M; 0 < t � 1;

j'0.x; "/j �
�
M".ˇ�˛/ for 0 � x � ";

Mxˇ�˛ for " � x � 1

hold true with some constantM that is independent of ", x, ˇ and ˛.

Remark 2. The constant ˇ is well defined except when f .x; t/ and the boundary
data are all identically zero – in this case ˇ D 1 and u 
 0. We exclude this trivial
case from our analysis.

The following result reveals the significance of ˇ.

Theorem 1. Let u be the solution of (1). Then

ju.x; t/j �
�
C".ˇ�˛/ for 0 � x � ";

Cxˇ�˛ for " � x � 1:

Proof. These bounds can be shown by barrier function arguments, but these are
more complicated than for non-degenerate problems: a quadratic function of the
form C".ˇ�˛/ Œ"�2a1x2 C "�a2x C a3 on Œ0; "  � Œ0; T  is combined with an
algebraic function Cxˇ�˛ on Œ" ; 1 � Œ0; T . See [6] for details.

Numerical evidence suggests that the bounds of Theorem 1 are sharp – see
Sect. 4. Note that for ˇ < ˛ the solution u.x; t/ becomes large for x close to 0
as " ! 0. On the other hand for ˇ > ˛ the solution u.x; t/ remains small for x
close to 0 as " ! 0. When ˛ D ˇ the solution u remains of moderate size for all
values of ".

Considering the bounds of Theorem 1, define the continuous function

�.x/ D
�
".˛�ˇ/ for 0 � x � ";

x˛�ˇ for " � x � 1;

and the weighted norm
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kuk� D max
.x;t/2 N̋

j�.x/u.x; t/j:

Then Theorem 1 implies that kuk� � C . Thus kuk� is bounded uniformly in " for
all permissible values of ˛ and ˇ, unlike kuk.

4 Experimental Verification of Dependence of u on ˛; ˇ; "

We provide numerical results for problem (1) with

f .x; t/ D .xˇ C "ˇ/.et � 1/
�
1 � x=4C sin .2	x/=2C xt C t2

�
(2)

and homogeneous initial-boundary data

'0.x/ D 0 for 0 � x � 1; 'L.t/ D 'R.t/ D 0 for 0 < t � 1:

Various values of ˛ and ˇ will be used in our experiments to test the sharpness of
Theorem 1. Our solutions u are computed using the numerical method of [6] on
a mesh that is fine enough to ensure the accuracy of our numerical results (this is
guaranteed by the theory of [6], which will be published elsewhere; a special case
has appeared already in [7]).

4.1 Case ˇ D ˛

In this case, kuk is uniformly bounded with respect to " (see Theorem 1) as can be
seen from Fig. 1 and Table 1.
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ε = 10−7

ε = 10−15

Fig. 1 Solution of (1) and (2) at t D 1, ˛ D ˇ D 1:25
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Table 1 Values of kuk, ˇ D ˛

"n˛ 0:25 1:25 2:25 3:25 4:25 5:25 6:25 7:25 8:25

100 0:734 0:630 0:581 0:555 0:540 0:530 0:524 0:519 0:516

10�1 2:157 1:755 1:513 1:340 1:208 1:104 1:023 0:956 0:903

10�2 2:645 2:233 1:984 1:802 1:678 1:594 1:535 1:488 1:447

10�3 2:478 2:213 2:141 2:023 1:888 1:764 1:662 1:583 1:525

10�4 2:260 1:999 2:035 2:041 1:998 1:920 1:829 1:739 1:658

10�5 2:087 1:860 1:882 1:933 1:960 1:952 1:914 1:856 1:789

10�10 2:008 1:746 1:648 1:606 1:600 1:615 1:643 1:677 1:710

10�15 2:010 1:749 1:642 1:577 1:536 1:512 1:501 1:502 1:511

10�20 2:010 1:750 1:644 1:578 1:536 1:501 1:501 1:501 1:501
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Fig. 2 Solution of (1) and (2) at t D 1, ˛ D 1:25, ˇ D 0:75

Remark 3. Shishkin [5] considered the case f .x; t; "/ D x˛f1.x; t/ C "f2.x; t/,
where f1 and f2 are well behaved. This is a subcase of our case ˇ D ˛. In [7] we
improved some of his results for this problem.

4.2 Case ˇ < ˛

Now Theorem 1 states that kuk is bounded by negative powers of " as " ! 0. This
can be seen in Fig. 2 and Table 2. Furthermore, Fig. 3 and Table 3 show that, as
expected, kuk� remains bounded uniformly with respect to ". From Table 3 one also
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Table 2 Values of kuk, ˇ D 0:75

"n˛ 1:25 2:25 3:25 4:25 5:25 6:25 7:25 8:25

100 0:6999 0:7345 0:7533 0:7642 0:7708 0:7751 0:7779 0:7798

10�3 5:94e00 2:24e01 5:08e01 8:71e01 1:27e02 1:68e02 2:07e02 2:44e02
10�6 1:43e01 2:15e02 1:18e03 3:77e03 8:74e03 1:64e04 2:68e04 3:95e04
10�9 4:04e01 2:33e03 2:92e04 1:64e05 5:72e05 1:48e06 3:12e06 5:69e06
10�12 1:17e02 2:65e04 7:68e05 7:57e06 3:97e07 1:40e08 3:74e08 8:29e08
10�15 3:39e02 3:04e05 2:06e07 3:59e08 2:84e09 1:36e10 4:64e10 1:25e11
10�18 9:81e02 3:48e06 5:52e08 1:72e10 2:06e11 1:35e12 5:86e12 1:92e13
10�21 2:84e03 3:99e07 1:48e10 8:22e11 1:50e13 1:34e14 7:48e14 2:97e15

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

x

η(
x)

u(
x,

t)

ε = 1
ε = 10−1

ε = 10−2

ε = 10−3

ε = 10−4

ε = 10−10

Fig. 3 Solution of (1) and (2) multiplied by �.x/ at t D 1, ˛ D 1:25, ˇ D 0:75.

observes that the value of kuk� increases approximately linearly as ˛ increases; our
theory does not include this.

4.3 Case ˇ > ˛

In this case, kuk is uniformly bounded in " by Theorem 1. Moreover, the theorem
implies that u is small close to x D 0 when " is small. This can be clearly seen
from Fig. 4. Figure 5 shows that kuk� remains uniformly bounded with respect to ".
Table 4 demonstrates that the value of kuk� now depends on ˛ and ˇ more strongly
than in the case ˇ < ˛.
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Table 3 Values of kuk� , ˇ D 0:75

"n˛ 1:25 2:25 3:25 4:25 5:25 6:25 7:25 8:25

100 0:699 0:734 0:753 0:764 0:770 0:775 0:777 0:779

10�3 2:430 2:660 2:778 2:861 2:950 3:063 3:203 3:370

10�6 1:933 2:225 2:601 2:997 3:372 3:708 4:005 4:263

10�9 1:873 2:042 2:286 2:588 2:933 3:305 3:690 4:073

10�12 1:873 2:016 2:208 2:437 2:704 3:004 3:331 3:683

10�15 1:875 2:016 2:193 2:396 2:622 2:871 3:145 3:442

10�18 1:876 2:018 2:193 2:387 2:596 2:820 3:062 3:320

10�21 1:876 2:019 2:195 2:387 2:590 2:803 3:027 3:264
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Fig. 4 Solution of (1) and (2) at t D 1, ˛ D 1:25, ˇ D 3:75

5 Layers

The layer at x D 0 depends strongly on the value of ˛ but the layer at x D 1 is
much more independent of this parameter. This can be clearly seen from Fig. 6. The
width of the x D 0 layer is shown in [6] to be O."1=.2C˛// while the width of the
x D 1 layer, where x˛ is well behaved, is O."1=2/ as in non-degenerate problems;
these assertions are illustrated in Fig. 7.
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Fig. 5 Solution of (1) and (2) multiplied by �.x/ at t D 1, ˛ D 1:25, ˇ D 3:75

Table 4 Values of kuk� , ˛ D 1:25

"nˇ 2:25 3:25 4:25 5:25 6:25 7:25 8:25 9:25 10:25

100 0:554 0:515 0:494 0:481 0:473 0:468 0:464 0:461 0:459

10�2 2:452 2:973 3:964 5:881 9:738 17:86 35:81 77:31 177:7

10�4 2:195 2:762 3:896 6:220 11:20 22:41 48:85 114:0 281:4

10�6 1:985 2:472 3:440 5:410 9:604 18:98 40:94 94:80 236:5

10�8 1:940 2:408 3:335 5:216 9:209 18:11 38:89 89:70 219:2

10�10 1:934 2:399 3:360 5:188 9:149 17:97 38:56 88:87 217:0

10�12 1:936 2:400 3:361 5:190 9:152 17:97 38:57 88:88 217:0

10�14 1:937 2:402 3:364 5:195 9:162 17:99 38:62 88:99 217:3
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Fig. 6 Solution of (1) and (2) at t D 1, ˇ D 1:25, " D 10�4
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Fig. 7 Detail of solution of (1) and (2) at t D 1 with ˛ D 1:75; ˇ D 1:25; " D 10�8, so
"1=.2C˛/ :D 0:0074 and "1=2 D 0:0001; vertical lines indicate these layer widths
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High Reynolds Channel Flows: Variable
Curvature

M. Zagzoule, P. Cathalifaud, J. Cousteix, and J. Mauss

Abstract Two-dimensional laminar flow, at high Reynolds number Re, of an
incompressible Newtonian fluid in a curved channel connected to two fitting tan-
gent straight channels at its upstream and downstream extremities is considered. The
Successive Complementary Expansion Method (SCEM) is adopted. This method
leads to an asymptotic reduced model called Global Interactive Boundary Layer
(GIBL) which gives a uniformly valid approximate solution of the flow field in the
whole domain. To explore the effect of the variable curvature on the flow field,
the bend has an elliptical median line. The validity of the proposed GIBL model
is confronted to the numerical solution of complete Navier–Stokes equations. This
comparison includes the wall shear stress which is a very sensitive measure of the
flow field. The GIBL results match very well the complete Navier–stokes results for
curvaturesKmax up to 0.4, curvature variations jK 0

max j up to 0.7 and eccentricities
e up to ' 0:943 in the whole geometrical domain. The upstream and downstream
effects as well as the impact of the curvature discontinuities and the behaviour in
the entire bend are well captured by the GIBL model.

1 Mathematical Formulation

1.1 Geometrical Configuration

As a typical illustration we consider a 2D bend connected to two fitting tangent
straight channels at its upstream and downstream extremities (see Fig. 1). The bend
starts at x D 0, the median line is denoted H.x; y/ D 0. Generalized coordinates
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H(x, y) = 0

y

x

X

Y

M
M0

− 1
2

+
1
2

X = 0

Fig. 1 Geometrical configuration and coordinate system

.X; Y / are used and are defined such that: X and Y are distances along and perpen-
dicular to H D 0 with the wall boundaries located at Y D ˙1=2. In the straight
parts this coordinate system reduces to the Cartesian one .x; y/. The velocity
components U and V are respectively parallel and perpendicular to H D 0, thus

V D U� C V n ; where � D X and n D Y :

� and n are unit vectors respectively tangent and normal to the median line. K.X/
is the algebraic curvature of the median line. Since .�;n/ is direct, hence K < 0 in
the case of Fig. 1.

1.2 Navier–Stokes Equations in Generalized Coordinates

In the previously defined generalized coordinate system the continuity equation and
the Cauchy equations are
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where, for a newtonian fluid
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The Reynolds number Re is given by Re D � U�H�

��

; where U � and H� are
characteristic velocity and length, � the density and �� the viscosity.

These equations must be solved with boundary conditions,

U D V D 0 for Y D ˙1=2

1.3 The O(ı) Navier–Stokes Equations

The variable curvatureK D ık.X/ and its variation inX are now considered small,
ı being a small positive parameter. Since we are considering a high Reynolds num-
ber basic flow dominated by its longitudinal component, all the terms are small

except U ,
@U

@Y
and

@2U

@Y 2
which are of order 1. Then, to order ı included, continuity

equation and Navier–Stokes equations can be written in the stationary case,
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Note that in this O.ı/ approximation the curvature is appearing only twice : in the
viscous term of the longitudinal momentum equation as a “variable viscosity” and
in the KU 2 centrifugal/inertial part of the transversal momentum equation. The
streamline curvature creates a radial pressure gradient which is very important
for upstream influence. To simplify the notation the unknowns are still denoted
.U; V; P /, even if now it is a uniformly valid approximation.
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1.4 The GIBL Model for a Curved Channel

1.4.1 A: Velocity Field

We seek a solution in the form: U D u0 C ıu ; V D ıv, where u0.Y / D 1
4

� Y 2

is the basic unperturbed Poiseuille flow.
According to the Successive Complementary Expansion Method (SCEM), devel-

oped by [3], the core approximation,

U D u0.Y /C ıu1.X; Y; ı/C : : : ; (4)

V D ıv1.X; Y; ı/C : : : ; (5)

can be complemented to build a Uniformly Valid Approximation (UVA) [4] :

U D u0.Y /C ı
�
u1.X; Y; ı/C UC

BL.X; �
C; ı/C U�

BL.X; �
�; ı/


(6)

V D ı
�
v1.X; Y; ı/C "ŒV C

BL.X; �
C; ı/C V �

BL.X; �
�; ı/


(7)

the dependence on the Reynolds number being implicit; the terms UBL and VBL,
being of order 1, are correcting terms respectively to u1 and v1 in the upper and
lower boundary layers such that, lim

�!1UBL D 0, and lim
�!1VBL D 0. The boundary

layer variables �˙ are given by, �C D 1
2

�Y
"

and �� D 1
2

CY
"

. The form of V is
imposed by the continuity equation. In the longitudinal equation, in order to have the
same order for the inertial and viscous terms and since u0 D O."/ in the boundary

layer, we take " D OS

�
R

� 1
3

e

�
. The first significant perturbation is obtained when,

in the boundary layer, " and ı are of the same order, i.e. ı D O

�
R

� 1
3

e

�
, which

allows U to be negative. A characteristic number that links the Reynolds numberRe

and the curvature ı is thus defined by � D ıR
1
3
e . The parameter� can be seen as the

ratio between the curvature ı and the boundary layer thickness ". The challenging
case is therefore � being O.1/, which is our assumption.

1.4.2 B: Pressure Field

In the core flow P D p0.X/C ıp1.X; Y; ı/C : : : . Then a UVA for the pressure is
as follows:

P D p0.X/C ı
�
p1.X; Y; ı/C�."/.PC

BL.X; �
C; ı/C P�

BL.X; �
�; ı//

�
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where the PBL terms satisfy lim
�!1PBL D 0 and �."/ is a gauge function not yet

determined. A careful analysis of the various orders of magnitude [8], in the core
flow, and especially in the boundary layer, shows that � D O."3/. Now, from (3), it
can be seen that in the whole field, boundary layer and core, we have the key result,
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C ı

�
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@X
C O."3/

�
(8)

Thus at the considered order, in (2),
@P

@X
can be replaced by

@P1

@X
, given by:
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C ı

@p1

@X
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The long scale approximation [6, 7] yields a simplified model for the pressure
gradient [8] :
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D dp0
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�
A000 C k0 Z �

�c

u20.�
0/ d�0 C ıB 0.X/ (10)

where A is the so called displacement function, (u1 D A.X/u0
0 ; v1 D �u0A0.X/).

1.4.3 C: GIBL

Finally the global interactive boundary layer model (GIBL) for the straight and
variable curved channel parts consists of the generalized boundary layer equations:
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where
@P1

@X
D dp0

dX
C ı

�
A000 C k0 Z �

�c

u20.�
0/ d�0 C ıB 0.X/

with U D V D 0 for Y D ˙1=2. This model is uniformly valid in the whole
flow field, involvingU and V instead of their boundary layers valuesUBL and VBL.
Consequently we have in the core flow V D V1 where, in the case of the long scale
approximation, V1 D �ıu0A0.X/ .

Thus using this last relation as a coupling condition imposed at the median line
the numerical resolution of the GIBL model is done through an iterative procedure in
which the calculation domain is swept from upstream to downstream.The sweeping
is repeated until convergence is achieved on A and B and finally on the shear stress.
See [1, 8] for more details.
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2 Results and Discussion

Figures 2–4 present several cases where the wall shear stress (Cf D � 2
Re

@U
@Y

ˇ̌
ˇ
YD˙ 1

2

) as obtained by the GIBL model is compared to the numerical solu-

tion of the complete Navier–Stokes equations for Re D 1;000. At the inlet of the
upstream straight tangent channel a parabolic profile was given while at the outlet
of the downstream channel a constant zero pressure was prescribed. The GIBL
results match very well the complete Navier–stokes results for Kmax up to 0.4 and
the eccentricity e up to ' 0:943 in the whole geometrical domain. The upstream
and downstream effects as well as the impact of the curvature discontinuities at the
junctions are well captured, and the behaviour in the entire bend is quantitatively
well reproduced by the GIBL model .

The behaviour of the wall shear stress in the upstream tangent channel is similar
to the case of a distal constant curvature bend [8]: some distance ahead from the
junction with the bend the normalised shear stress increases at the internal wall and
decreases at the external wall relatively to the upstream Poiseuille flow. The length
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Fig. 2 Elliptical bend Œ�	=2; 	=2; Re D 1;000, major semi-axis a D 10, minor semi-axis
b D 8, eccentricity e D 0:6; (a) Median line curvature K evolution; (b) dK=dX evolution; (c)
Wall shear stress; straight lines: NS results; dashed lines: GIBL results
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b D 5, eccentricity e ' 0:866; (a) Median line curvature K evolution; (b) dK=dX evolution; (c)
Wall shear stress; straight lines: NS results; dashed lines: GIBL results

of this upstream influence to an incoming Poiseuille flow was shown asymptotically

by Smith[5] to be, for high Reynolds, of the order of R
1
7
e whatever the nature of the

distal perturbation is. In a companion paper [2] this result is confirmed numerically
and by a modal analysis.

In the tree cases tested the median line curvatureK.X/ increases up to the middle
of the bend where Kmax is reached and then decreases, while the maximum of its
variationK 0

max is reached just before the middle of the bend. BothK.X/ andK 0.X/
combined to the fluid inertia modulate the shape and the peaks of the internal and
external wall shear stresses. The wall shear stress peaks are attained just before the
middle of the bend.

Figure 2 shows the case of a channel having an elliptical median line that deviates
little from a circle, with its major semi-axis a D 10 and its minor semi-axis b D
8, hence an eccentricity e D 0:6. For a circular bend of radius equal to 10, thus
having a constant curvature ı D 0:1, an established flow occurs in the bend at
the same Reynolds number, that is a constant value of the shear stress is attained
and maintained in a large part of the bend away from the discontinuities [8]. On the
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b D 10, eccentricity e ' 0:943; (a) Median line curvature K evolution; (b) dK=dX evolution;
(c) Wall shear stress; straight lines: NS results; dashed lines: GIBL results

contrary it is seen here that a small deviation from a circular median line, i.e. a small
variable curvature with Kmax ' 0:16 and jK 0

maxj ' 0:08, has a clear influence in
the spatial evolution of the wall shear stress. No constant wall shear stress is to be
expected when the curvature varies as can be clearly deduced from the pressure
gradient expression of (10) which is a function of the curvature variation K 0.X/,
not to mention the viscous term since K D ık0.X/ in the longitudinal momentum
equation (12). In the case of Fig. 2, the wall shear stress peaks just before the middle
of the bend are less than those induced by the discontinuities at the upstream and
downstream junctions with the straight tangent channels.

In Fig. 3 the ellipticity of the median line is increased with Kmax D 0:4,
jK 0
maxj ' 0:6 and e ' 0:866. Here the peaks of the shear stress inside the bend

are larger than those which occur at the discontinuities. The key parameter� is now
equal to 4 leading to slight differences in the wall shear stress peaks inside the bend
between the GIBL model and the complete Navier–Stokes equations results.

To isolate more the variable curvature effects from those induced by the discon-
tinuities of the junctions in one hand and to test the GIBL model validity with a
stronger eccentricity on the other hand we run the case of Fig. 3 where e ' 0:943
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with Kmax ' 0:3 and jK 0
maxj ' 0:7 . Here the junction discontinuities are smaller

than the previous cases and � D 3.

The GIBL accuracy is mainly dependent on the key parameter � D ıR
1
3
e since

this asymptotic model has been built under the assumption that � is O.1/ . Not
presented in the present work, quite good agreement is achieved even when� ' 11,
i.e. when Kmax ' 1:1 and K 0

max ' 3, which is out of the formal range of validity
of the GIBL model.
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