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Preface

Although many papers have presented different aspects of truncated gaussian and

plurigaussian simulations, no single work gives a comprehensive view of the theory

and practical applications of this new and interesting geostatistical simulation

method. Our aim in writing the book has been to encourage readers to test this method

of simulating the geometry of reservoirs and ore-bodies for themselves. That is why

wewrote a suite of programs called Pluridemo to demonstrate how themethodworks.

Initially this material was developed as the notes for short courses on plurigaussian

simulations. The first such course was given in Fontainebleau in September 1998.

Others have been given at Petrobras training centre in Rio de Janeiro in 1999 and at the

IAMG annual conference in Trondheim in 1999.

The original impetus for developing the truncated gaussian method came from

Georges Matheron in response to a request from the Institut Français de Pétrole, in

particular from Lucien Montadert who realized the importance of being able to

simulate the internal architecture of reservoirs. The plurigaussian method was a

natural development from the truncated gaussian method. This cooperation be-

tween the IFP and the Centre de Géostatistique resulted in the development of the

HERESIM program as well as practical applications for many oil companies

including AGIP, Gaz de France, Petrobras and PDVSA.

Applications of the methodology to mining were initiated during a short course to

engineers and geologists of Anglo American Corporation in 1999. Soon afterward a

test case was carried out for Rio Tinto Ltd on data from the Rossing uranium mine.

The authors would like to thank these mining and petroleum companies for their

support in developing and testing this new simulation method. Special thanks are

due to Christian Ravenne formerly of the IFP for his geological insights and for his

enthusiasm while developing the method.

Preface to the Second Edition

Since the book on plurigaussian simulations was first published 8 years ago, many

new case-studies have been published with applications in water resources as well

as petroleum and mining. Several new case-studies are included in this edition of

v



the book. One pleasant surprise when we carried out the literature search, was to

find that truncated gaussian and plurigaussian simulations are being used as the

initial reservoir model for history matching (that is, for updating the reservoir

model when new production data or seismic information becomes available). The

reason is that two of the methods for history matching, the ensemble Kalman filter

(EnKF) and the gradual deformation method, require an underlying gaussian

model.

In addition to including more case-studies, the main change made since the first

edition has been to add a new theory chapter (Chap. 2). When the previous edition

was published our primary objective was to show reservoir engineers and geologists

how the method could be used in practice. As the method is now well-established, it

is important to present the theoretical aspects of the method so that mathematicians,

statisticians and physicists can see its theoretical underpinnings. Those who prefer a

more intuitive presentation can skip Chap. 2, and start reading at Chap. 3.

Finally the new version of the PluriDemo package designed to allow users to

discover plurigaussian simulations by “playing” with them, is now available on the

website. See Chap. 9 for details.

vi Preface
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Chapter 1

Introduction

This book focuses on two methods for simulating facies and lithotypes: truncated

gaussian (Matheron et al. 1987) and plurigaussian simulations (Galli et al. 1994).

The first method was developed in the late 1980s for simulating the lithotypes found

in oil reservoirs because it makes much more sense to simulate the geometry and

internal architecture of the reservoir first, then generate suitable values of porosity

and permeability once the lithotype is known. These simulations were designed for

reservoirs where the lithotypes occur in a sequential order; for example, when

sandstone is followed by shaly sandstone then shale. Plurigaussian simulations

are a natural extension of these. They were designed to produce a much wider

range of patterns and to allow for more complicated types of contacts between

facies.

Figure 1.1 shows canyons along the San Juan river in Utah where phylloidal

algal mounds of Pennsylvanian age are beautifully exposed. This is typical of the

sedimentary oil bearing formations that can be modelled using truncated gaussian

and plurigaussian methods. This series shows tabular prograding sequences of

shallow carbonates and algal mounds. The carbonates can be simulated using the

simpler, truncated gaussian method. The upper part of the series consisting of algal

mound and intermound facies with the sandstones capping them, is more compli-

cated. The plurigaussian method was used to simulate its structure. The details are

given in Chap. 8.

Over recent years the mining industry has also started using these two

approaches to simulate the facies present in orebodies. For example, the recovery

during froth flotation (a mineral processing technique for concentrating sulphide

ore) depends on the rock type, rather than the grades. So for both mining deposits

and oil reservoirs, the message is clear: first simulate the geometry of the

lithotypes or facies then simulate its properties as a function of that type. Before

outlining how truncated gaussian and plurigaussian simulations work, we would

like to take the time to explain why geostatistical simulations of lithofacies are

important in the petroleum industry, since this motivated the development of

both methods.

M. Armstrong et al., Plurigaussian Simulations in Geosciences,
DOI 10.1007/978-3-642-19607-2_1, # Springer-Verlag Berlin Heidelberg 2011
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Putting Reservoir Simulations into Context

The aim of reservoir modelling is to construct a gridded model of the reservoir

containing its petrophysical properties such as porosity, permeabilities and capil-

lary pressure, in order to simulate its behaviour during production. As the wells are

generally widely spaced and as seismics only provides indirect geological informa-

tion with a low resolution, the distribution of the geological heterogeneity between

wells is uncertain. Geostatistical simulations are a way of quantifying the uncer-

tainty by providing reservoir engineers with representations of the spatial distribu-

tion of reservoir heterogeneity. Fluid flow simulations can then be performed on the

model or on an upscaled model to optimise the field’s development.

The precise objectives vary depending on the field’s stage of development. At

the appraisal stage when the aim is to produce a global reservoir model rather than a

detailed one, simulations are used to estimate reserves and to quantify their

uncertainty. They are also used to define recovery process scenarios. At this stage

only a few wells are available and so the seismics play a crucial role.

When the field has started to be developed using primary recover processes, the

aim is to optimise the location of wells. At this stage more wells are available and so

the geological model is constructed using the detailed well descriptions together

with the seismic interpretation. Detailed reservoir characterisation studies will have

been performed, and the petrophysical variables will be available from core and log

analysis. Pressure measurements in wells are used to estimate the reservoir connec-

tivity and well test information provides a way of estimating the permeability

around the wells. Seismic data can also provide information about the heterogeneity

Fig. 1.1 Outcrops of a typical carbonate reservoirs along the San Juan River in Utah
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within layers. The degree of detail required in the simulations (i.e. the grid size)

depends on the recovery process chosen.

During the final stage of the field’s development, the initial reservoir model has

to be updated in order to make the recovery process more efficient. A very detailed

reservoir model is then needed, for example, to optimise the drilling of wells with a

complex geometry. By this time, the well database is much larger; it contains both

geological and petrophysical information. Because of its low resolution the seismic

information is less important. As the production history of the field is generally

available, the observed oil and water flow rates can be compared with those

computed from the simulation and used to modify the model iteratively until a

good fit is obtained. This process is called history matching.

The complete procedure for reservoir simulation including simulating the litho-

facies on a very fine grid and transforming these into reservoir properties, is

described by Matheron et al. (1987). The initial geological modelling is a critical

step because it ensures the consistency of the simulation from a geological point of

view. Another crucial step is upscaling the reservoir properties to a coarse grid to

reduce the number of cells because the capacity of most fluid flow simulators is still

limited.

Finally, all the information available on the field has to be integrated into the

model. Different data have been studied at different scales and have different

characteristics. For example, microscopic information such as pore throat types

obtained from special core analysis has to be combined with information derived

from seismic campaigns having a vertical resolution greater than 20 m. Hard data

such as well logs based on physical measurements in wells, have to be combined

with soft information resulting from geological interpretation of the data. So

simulations have to balance hard and soft constraints.

Idea Behind Truncated and Plurigaussian Simulations

The basic idea is to start out by simulating one or more gaussian variables (i.e. with

a N(0,1) distribution) at every point in the study area and then use the rock type rule
to convert these values back into lithotypes. Figure 1.2 summarises the procedure

when only one gaussian is used. This is called the truncated gaussian approach. The

greytone image (left) represents the gaussian value at each point in space. In the

image on the right, values below �0.6 have been coloured in dark grey, indicating

one facies. Values above 0.5 have been shaded white and intermediate values have

been coloured light grey. These interval definitions constitute the rock type rule.

Looking at Fig. 1.2b we see an important feature of the truncated gaussian

approach: the grey facies can touch the other two facies, but black and white

never touch. Or if they do, it is because the pixel size is too large. If four or five

facies were simulated in this way, they would occur in a fixed order, which is

defined by the sequence stratigraphy.

Idea Behind Truncated and Plurigaussian Simulations 3



Figure 1.3 shows the two thresholds, �0.6 and 0.5, on a standard normal N(0,1)

distribution. It is easy to calculate the areas under the three parts of the curve (25, 45

and 30%) and hence deduce the proportion of space occupied by each facies. In fact

there is a one-to-one relationship between the proportions and the thresholds, once

the order has been established. In practice we compute the proportions experimentally

and use these to deduce the thresholds.

In many cases, the truncated gaussian approach proves to be too restrictive; for

example, if there is no natural sequence in the facies or if certain facies can be in

contact with more than two facies. So it has been extended to two or more

gaussians. Figure 1.4 illustrates this plurigaussian procedure for the case of two

gaussians. At the top we see two gaussian images (simulations obtained using a

gaussian random function). The one on the left has its long range in the NS direction

while the other one has its long range in the EW direction. The square shown in the

bottom right summarises the rock type rule, the rule that is used to assign each point
to a facies. Values of the first gaussian, Y1, can range from �1 to +1. They are

plotted along the horizontal axis. Similarly for those of Y2 along the vertical axis.

This square is divided into three regions corresponding to different lithotypes. If

Y2 < 0, the rock is coded as dark grey; if Y2 > 0 and Y1 < 0, the rock is classified

a b

Fig. 1.2 (a) Simulated greytone image. Values have a N(0,1) distribution. (b) Same image after

being truncated at the cutoffs�0.6 and 0.5. Values below �0.6 have been shaded dark grey, those
between �0.6 and 0.5 are coloured light grey while values above 0.5 are shown in white

Fig. 1.3 Histogram of a

standard normal distribution

[i.e. N(0,1)] showing the two

cut-offs, �0.6 and 0.5
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as being white whereas if Y2 < 0 and Y1 > 0, the rock is light grey. The resulting

three facies are shown in the lower left square.

The underlying idea in both truncated gaussian and plurigaussian simulations is

to set up one or more simulations of standard normal random functions in the area

of interest and to attribute the lithotype or facies depending on the simulated values

at each point. This is done by truncating. When only one gaussian is used, the

truncation is effectively defined by the values of thresholds. When two or more

gaussians are used, the situation is more complex. It is represented graphically via

the rock type rule.

In this book we will almost always use rectangles to divide the rock type rule into

lithofacies. We do this because it makes it easier to work out the thresholds from the

experimental proportions.

In most plurigaussian applications, the two gaussian random functions are

independent of each other but it is also possible to use correlated gaussian RFs.

When this is done the facies tend to “wrap around” each other. This makes it more

difficult to compute the thresholds from the experimental proportions. It is also

Fig. 1.4 How plurigaussian simulations work. The two images at the top are realisations of

gaussian [i.e. N(0,1)] random functions with anisotropies in the NS and EW directions. The rock-

type rule shown bottom right has been used to truncate these two images to obtain the facies or

lithotypes shown bottom left. Note the contrast between the anisotropies in the simulated facies

Idea Behind Truncated and Plurigaussian Simulations 5



possible to use more than two gaussians but this makes it more difficult to compute

the variograms, to estimate the parameters and to carry out the simulations.

As well as being able to use independent or correlated RFs, more advanced

models can be obtained by using derivatives, or translated RFs, or any linear

transform of RFs, even random ones. Even more complicated models can be

obtained by combining these.

Key Steps in a Plurigaussian Simulation

Having explained the broad principles behind plurigaussian simulations we need to

go into more detail. Here we assume that readers are familiar with basic geostatistics

(variograms and kriging) and with simulating gaussian random functions. The four

main steps in a plurigaussian simulation are choosing the appropriate type of model,

estimating the values of its parameters, generating gaussian values corresponding to

the lithotypes at sample points and lastly running the conditional simulation, using

the gaussian values generated in the previous step.

Step 1: Choosing the Model Type

Plurigaussian simulations can be divided into several broad families, depending on

the types of relations between the facies or lithotypes. For example, in some cases

there is a natural sequential order among the facies. In fluvial channel reservoirs, the

lithotypes – sandstone, shaly sandstone and shale – generally occur in that order

because of depositional conditions. To help the reader choose the type of model that

is best suited to his/her data, we provided a catalogue of examples with the freeware

that is available online (see Chap. 9). When there is a clear sequential order in the

lithotypes, a single gaussian usually suffices; otherwise two or more gaussians can

be used. In some cases, one of the facies may appear to be a « shifted» version of

another facies. Increments or derivatives of gaussians can also be used to obtain

special effects.

Step 2: Estimating the Parameter Values

Two key factors control plurigaussian simulations: the thresholds at which the

different gaussians are truncated and the variogram model of the underlying

gaussian variable. The proportion of each facies, the “rock type” rule and the

correlation between the underlying gaussian random functions determine the
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thresholds. Knowing the mathematical relation between the indicator variograms

and the variograms of the underlying gaussian variable(s), we can find a suitable

model for the underlying variogram and estimate the values of its parameters.

Step 3: Generating Gaussian Values at Wells/Drill-Holes

The facies or lithotype is known for each sample at wells (or drill-holes) but this

does not tell us what the corresponding gaussian values are. We merely know that

they must fall in certain domains which reduce to intervals when a rectangular

partition is used. So the third step consists of generating gaussian values in the

appropriate intervals and with the right properties (e.g. so as to respect the vario-

gram model). Obviously these values are not unique. A special statistical method

called a Gibbs sampler is used to generate these values.

Step 4: Simulating Values at Grid Nodes Given Values at Wells

Once the gaussian values corresponding to the facies/lithotypes have been gener-

ated at sample locations, the rest of the simulation procedure is quite straightfor-

ward. Any algorithm can be used for conditionally simulating the gaussian values at

grid nodes. The last step is to convert the gaussian values at grid nodes back into

facies using the rock type rule.

Recent Developments

A few theoretical advances have been made in the past 8 years since the first edition

was published: Xu et al. (2006a, b) developed an approach for handling many

underlying gaussians; Emery and Gonzalez (2007a, b) developed an approach for

incorporating uncertainty on geological boundaries and Emery and da Silva (2009)

developed a hybrid method for conditionally co-simulating continuous and cate-

gorical variables. But the main feature has been a wide range of applications in

disciplines throughout the earth sciences: petroleum, mining, hydrology and envi-

ronmental science. The technique has come of age in the oil industry and is now

widely used for building the underlying geological model. For example, de Galard

et al. (2005) used plurigaussian simulations in a study of a giant highly fractured

carbonate reservoir in Iran in order to improve production; Le Maux et al. (2005)

used them to study the impact of fracture modelling on reservoir performance in

carbonate reservoirs; Albertao et al. (2005) used plurigaussian simulations to model

an offshore reservoir in a cretaceous turbidite environment; Mubarak et al. (2009)
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used them when comparing a double porosity/double permeability model to a

conventional single porosity/single permeability model in fractured carbonate oil

reservoirs and Pontiggia et al. (2010) used them in a study of the diagenesis of an

Egyptian siliclastic reservoir. Gunning et al. (2007) used the truncated gaussian

method to generate a geological model for seismic inversion.

Over the past 10 years, plurigaussian simulations have started to be used for

modelling deposits in the mining industry. One of the first applications was to a

granite-hosted uranium deposit (Skvortsova et al. 2000, 2002). Since then, they

have been applied to a porphyry copper deposit in Chile (Carrasco et al. 2007),

a roll front uranium deposit in Kazakhstan (Fontaine and Beucher 2006), a nickel

laterite deposit (Rondon 2009) and to the upper portion of a diamond pipe in

Botswana which is filled with sedimentary crater facies (Deraisme and Field

2006). Xu and Dowd (2008) used them when simulating rock fractures.

Applications of plurigaussian simulations are beginning in hydrogeology and

environmental science. Mariethoz et al. (2006, 2009) used them to characterize

aquifer heterogeneity; Cherubini et al. (2009a, b) applied them when modelling

aquifer contamination; Babish (2006) included the method in a textbook designed

for environmental scientists.

Probably the most significant set of new applications of plurigaussian simula-

tions has been to construct the geological model in history matching using either an

ensemble Kalman filter or gradual deformation methods, both of which require an

underlying gaussian framework.

History Matching

Aanonsen et al. (2009) provide an excellent review of applications of the ensemble

Kalman filter (EnKF) in reservoir engineering. The authors point out that it can be

considered either as an improvement on the extended Kalman filter designed to

handle more complicated data or alternatively as a sequential Bayesian inversion

method. As the Kalman filter was originally developed for gaussian variables, the

EnKF works best when the data are approximately gaussian.

The first step in history matching is to construct a geological model of the

reservoir as input into a fluid flow simulator. As the variables in the geological

model (permeability, porosity etc) depend on the lithofacies, the lithofacies are

simulated first, then the porosity and permeability are simulated conditional on the

lithotype. Different methods are available for simulating the lithofacies: pixel based

methods such as the truncated gaussian or the plurigaussian, indicator simulations

or object based methods. The advantage of using plurigaussian simulations is that

they provide an underlying gaussian process on which EnKF can be applied.

Liu and Oliver (2003a, b, 2005a, b) seem to have been the first to use plurigaus-

sian simulations to model the geology of the reservoir in history matching pro-

blems, firstly using gradient methods and then in 2005 with EnKF. Agbalaka and

Oliver (2008) and Zhao et al. (2008) considered more realistic 3D reservoirs with
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production data. Gu and Oliver (2007) considered multiphase fluid flow; Chen and

Oliver (2010) focused on improving the mass balance; Haugen et al. (2006) and

Evensen et al. (2007) tested EnKF on real North Sea reservoirs.

It is important to know how this approach (plurigaussian simulations plus EnKF )

compares to others and in particular whether it gives better results than the existing

method, manual history matching. Aanonsen et al. (2009) commented that: Applica-

tions of EnKF to both pseudo field cases (Naevdal et al. 2005; Gu and Oliver 2005;

Lorentzen et al. 2005; Gao et al. 2006) and real field cases (Skjervheim et al. 2007;

Haugen et al. 2008; Evensen et al. 2007; Bianco et al. 2007) have been very

encouraging. Perhaps the most important observation is that a significantly better

match of production data was obtained with EnKF than using manual history

matching.

Gradual deformation methods (Hu 2000) are another approach that is used in

history matching. Plurigaussian simulations have been used to set up the underlying

geological model. See for example, Le Ravalec-Dupin et al. (2004), Thomas et al.

(2006), Gervais et al. (2009) and da Veiga and Le Ravalec (2010).

Layout of the Book

This guidebook to plurigaussian simulations is divided into nine chapters. The

structure of the second edition of the book has been changed slightly compared to

the first one. A new theory chapter (Chap. 2) has been included to present the

method more generally from a mathematical point of view. The Gibbs sampler is

used to generate gaussian values corresponding to the lithotypes/facies at the

sample points. The more mathematical aspects of its convergence which were in

Chap. 6 before are now at the end of Chap. 2, together with an Appendix that

provides reminders on conditional gaussian distributions.

Throughout the rest of the book, a “maths-lite” approach has been used. Having

said, care is required because indicator variables are deceptively simple. People

have the mistaken impression that they can be treated like ordinary variables – like

grades, or porosity, or the depth to a horizon. Chapter 3 reviews their properties and

those of indicator variograms. Chapter 4 is on proportions. It shows how to

calculate vertical proportion curves which summarise the vertical variability in

the lithotypes found in oil reservoirs, and generalises this for the case where there is

horizontal non-stationarity as well. Once the proportions have been modelled, the

thresholds separating the facies can be calculated. Chapter 5 presents this step. The

next step (Chap. 6) is to calculate the experimental indicator variograms and fit

models to the variograms of the underlying gaussian variables. In Chap. 7 we

illustrate how the Gibbs sampler works via several examples.

Chapter 8 focuses on applications of truncated gaussian and plurigaussian

simulations, starting with several petroleum case studies. The first is on algal

mounds in the Paradox Basin in Utah. The second is a synthetic case study of a

reef reservoir. Two shorter studies consider prograding patterns and fracturing in
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one of the facies. Next we address the sensitivity of the variogram parameters and

the rock-type rule on the simulations. This is followed by three new case studies:

one on how to handle heterotopic data and then two mining cases. The first is on a

roll-front uranium deposit in Kazakstan (i.e. a sedimentary deposit). The second is

on a porphyry copper deposit in Chile. This is particularly interesting because it is

not of sedimentary origin.

Chapter 9 presents three freeware programs (PluriDemoSimu, PluriDemoVario
& PluriDemoSet) which were designed to allow readers to test plurigaussian

simulations for themselves. They can be down-loaded from the web.
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Chapter 2

From a Mathematical Point of View

Our objective is to simulate the facies at a set T of N target points given a data set D.

The target is usually a large 2D or 3D grid, often with several hundred thousand

nodes. In petroleum, the data points come from wells interpreted in lithofacies

typically each foot whereas in mining studies data are core samples from drill-

holes. In both cases there are usually a large number of data points too.

Let x and y denote the target points and the data locations respectively. Suppose

that there are nF facies. We model the facies via their indicators, that is, functions

which take the value 1 at point x if x belongs to facies Fi and 0 otherwise. To

simulate the facies, we have to sample from the conditional distribution:

Pð1FiðxÞ; x 2 Tj1FiðyÞ; i 2 1; ::; nFf g; y 2 DÞ:

The two main difficulties are the availability of models for the conditional or

even the unconditional distribution, and the dimension of this distribution. One

classical way of solving these problems is to use indicator simulations based on

kriging. But this approach has three drawbacks:

l Indicator kriging only gives a poor approximation of the conditional expectation.
l Indicator variograms and cross variograms are extremely difficult to model

because of the relationships between them. This will be explained in Chap. 3.
l Often we need to address more complex problems where we have external

information that is indirectly related to the facies and is defined at a different

scale (for example, from seismics).

For all these reasons we chose to define the indicators by truncating a continuous

multivariate random function Z(x) with n components. Let CiðxÞ be a partition of

Rn. A point x belongs to the ith facies Fi if and only if Z xð Þ 2 Ci xð Þ, so

FiðxÞ≜ZðxÞ 2 CiðxÞ:

The advantages of this model are twofold:

l Many more multivariate distributions are available for modelling continuous

random function than random sets.

M. Armstrong et al., Plurigaussian Simulations in Geosciences,
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l The relationships between the n components Zj(x) of Z(x) are simpler than those

between the facies. In particular their variograms and cross variograms are simpler

to model. Furthermore the facies covariances and cross-covariances can be

obtained once we know the distributions of Z.

Despite these advantages, there are still difficulties modelling and simulating

these continuous random functions. Adding extra conditioning information will

usually be difficult. This is why we chose to restrict the random functions that we

use to be surjective functions of a of multi-gaussian random functions. The fact

that we have the freedom to select the functions, gives us access to many more

types of continuous random functions than the classical ones for which we know

the distribution.

The problem is tractable because, as we will see below:

l With a few hypotheses on the function, we can transform the problem in terms of

multi-gaussian random functions.
l Once the gaussian values at the conditioning points have been simulated, we

can use the classical conditional gaussian simulation framework first devel-

oped by Matheron and Journel (see Chilès and Delfiner 1999; Lantuéjoul

2002a, b).

Another advantage of using underlying gaussians is that linear functionals such

as partial derivatives or convolutions of a gaussian are still gaussian. This makes it

is easier to formulate and solve the simulation problem even with additional

information. Finally it is easier to find models for variograms because any negative

definite function can be used as the variogram of a gaussian. Care is required when

modelling the cross-variograms, but some models such as the linear coregionalisa-

tion model are known to ensure consistency. As the formulas for the variograms and

cross-variograms can be derived for linear transforms of gaussians, this model is by

construction consistent.

Taking advantage of these properties we now define a general setting for these

simulations. As we want to be able to handle additional categorical variables and

seismic attributes in addition to lithofacies, we start by defining three standardized

multi-gaussian vectors, Z(x), Y(x) and S(x), which are in general correlated and

which are defined below. The lithofacies are known at mZ sample points, the

categorical variables are known at mY points and the seismic attributes are available

at a third set of mS points. Our objective is to simulate Z(x) given these three types

of data. Let

l ZðxÞ; x 2 Rd be an n-variate standardized multi-gaussian vector (i.e., the mar-

ginal and joint distributions are normal). This will be used to define the facies.

The mZ sample locations where the facies are known are denoted by xZ. If the

sample xa 2 xZ belongs to the ith facies, then Z xað Þ 2 CZi xað Þ.
l YðxÞ; x 2 Rd be an m-variate standardized multi-gaussian vector which is

correlated to Z(x). It will be used to define another categorical variable by

truncation. We have information on it at mY points xY. If the sample xb 2 xY
belongs to the jth category, then Y xb

� � 2 CYj xb
� �

.Note that although we use the
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same symbol for the constraints on Z and Y, the constraints are generally not in

the same space unless n ¼ m.
l SðxÞ; x 2 Rd be a p-variate standardized multi-gaussian vector correlated to Z

and Y that is known at some sample locations xS.

We assume that the three vectors have a joint multi-gaussian distribution1

Comments.
l We could have included the third random function S(x) in Y(x) which looks

more general. However for some of the applications S(x) will be given by

indirect information such as seismics, and thus it is interesting to identify it

explicitly.
l To simplify the notation we will designate the constraints by the symbol C

when there is no risk of confusion. In the cases where we want to specify one

particular facies we will write Ci and if we need to distinguish which random

function it is related to, we will add an upper index (e.g., CZ to specify that it

is related to Z).

Having defined the multi-gaussian random functions, we now define the

functions that may be nonlinear. Let F, c and Z be three functions from Rn

onto E ∈ Rn; from Rm onto F ∈ Rm and from Rp onto H ∈ Rp. We assume

that these functions are surjective but not necessarily bijective, that is, for any

t in the arrival space we can find at least one point in the initial space whose

image is t.

Our objective is to simulate nF facies Fi i ¼ 1,.., nF, defined by truncating

F(Z) at the target points subject to inequality constraints on the three variables at

different points. We are now going to express this problem in three different

ways.

Problem I. To simulate facies Fi defined by f Z xð Þð Þ 2 Cf xð Þ: subject to the

following constraints:

f Z xZð Þð Þ 2 Cf xZð Þ
c Y xYð Þð Þ 2 CC xYð Þ
Z S xSð Þð Þ ¼ SZ xSð Þ:

(I)

Problem II. The model can be made more general by rewriting the constraints using

another function Y and a multi-gaussian B:

1At this level of generality no hypothesis has to be made concerning the stationarity or the

correlation structure of the gaussians. They can be stationary or non stationary. Later on for

practical reasons – mainly the inference of the covariances from the data but also because of the

strong vertical non-stationarity of facies in sedimentary deposits linked to sequence stratigraphy –

we will choose to work with second order stationary gaussians and possibly variable proportions.

But from a theoretical point of view there is no need to specify these properties.
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YðBÞ ¼

fðZðxZ;1ÞÞ
::::

fðZðxZ;mZ
ÞÞ

cðY(xY;1ÞÞ
::::

cðYðxY;mY
ÞÞ

ZðS(xS;1ÞÞ
::::

ZðSðxS;mS
ÞÞ

2
66666666666666664

3
77777777777777775

While this makes it easier to write the simulation problem, it is formally

equivalent to problem I. So the problem is to simulate Fi(x) defined by

Fi ¼ fx 2 R3; fðZðxÞÞ 2 Cfi xð Þg given Y Bð Þ 2 CY: (II)

Note that the CY are quite complex now because they are embedded in a higher

dimension space. Although this problem looks complicated at first glance it is much

simpler than it appears. As we can solve for the functions c and Z we can also solve

for the function Y. So

YðBÞ 2 CY , B 2 C≜ Y�1ðCÞ;
where

Y�1ðCÞ ¼ fu 2 RnmYþmmZþpmS ; YðuÞ 2 Cg:
Similarly

fðZðxÞÞ 2 Cfi ðxÞ , ZðxÞ 2 CiðxÞ;

With Ci≜fu 2 Rn;fðuÞ 2 Cfi ðxÞg. Finally we see that Problem II reduces to a

simpler one which we call Problem IIIa.

Problem III. In this case the problem is to simulate2

Z xð Þ B 2 Cj : (IIIa)

If need be, this problem can be rewritten in terms of Z, Y and S

ZðxÞjZðxZÞ 2 C xZð Þ;YðxYÞ 2 C xYð Þ; SðxSÞ 2 C xSð Þ½ �: (IIIb)

2Here C refers to all the constraints ie at points xZ, xY and xS.
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Note that if Z is not injective, the point constraints for S(xS) are now transformed

into constraints that S(xS) belongs to a set.

Problems IIIa and IIIb are far easier to solve than Problem I, because we can now

use all the nice properties of gaussian random functions for simulation. The

variograms will also be far simpler to model than in the initial form. The only

potential drawback is that the constraints might have complex shapes and might be

more difficult to compute. Now we show how to solve Problem IIIb.

Let g z; zZ; zY; zSð Þ be the density of ZðxÞ;ZðxZÞ;YðxYÞ; SðxSÞð Þ. Note that each
term is itself a vector. For example Z has n components and x lies on a grid.

Whatever the distribution3 of Z, Y and S, the conditioned vector that we have to

simulate has the following density (up to a normation factor that we are in general

unable to compute):

g z; zZ; zY; zSð Þ1zZ2CZ1zY2CY1yS2CS : (2.1)

Using Bayes law we can rewrite it as:

g zjzZ; zY; zSð ÞhðzZ; zY; zSÞ1zZ2CZ1zY2CY1zS2CS ; (2.2)

where h is the density of zZ; zY; zS. Alternatively it can be written as

g zjzZ; zY; zSð ÞhðzZjzY; zSÞ1zZ2CZvðzYjzSÞ1zY2CYwðzSÞ1zS2CS : (2.3)

Equations (2.2) and (2.3) show that we can disconnect the simulation at data

points from the one at grid nodes. More precisely as soon as we have a conditional

simulation at the sample locations, we can simulate Z on the grid given the values

simulated at constraints points. Going further, from (2.3) we can simulate S at its

own data points then Y at its data locations given the S(xS) and so on. This is

independent of any hypothesis (except the existence of a density for all the vari-

ables). In the gaussian case we can go even further: (2.2) and (2.3) are saying that

once we have simulated the values of the various gaussians (truncated or not) at the

constraint points, we can use the well known gaussian conditional simulation

methods using the preceding values as if they were known conditioning values.

So now the only problem remaining is to simulate

hðzZ; zY; zSÞ1zZ2CZ1zY2CY1zS2CS (2.4)

or in the second version

hðzZjzY; zSÞ1zZ2CZvðzYjzSÞ1zY2CYwðzSÞ1zS2CS : (2.5)

For sake of completeness Annex 1 at the end of this chapter gives the proof that

the conditional distributions obtained from a gaussian vector given a sub-vector are

3We need only assume that it has a density.
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also gaussian (with the simple co-kriging as its mean and the variance of residuals

as its variance).

In the multi-gaussian case using this result we see that all the three densities (h, v

and w) are standardized multi-gaussians.4 The conditional densities are also gauss-

ian so we only need covariance matrix of the initial multi-gaussian to fully

characterize these distributions. It is interesting to note that they can be computed

quite easily (by a simple inversion) from covariance between facies, or categorical

variables, or between one of these and the seismic data. The formulas for the two

common cases are given below.

Non Centered Covariance Between Two Indicators

Covð1Fi xð Þ; 1Fj yð ÞÞ ¼ Pðx 2 Fi; y 2 FjÞ
¼ E 1FiðxÞ1FjðyÞ

h i
¼ E 1ZðxÞ2CiðxÞ1ZðyÞ2CjðyÞ

h i
¼
ð

CiðxÞ

ð
CjðyÞ

gzðxÞ;zðyÞðu,vÞ dudv;

(2.6)

where gzðxÞ;zðyÞðu, vÞ is the 2n-variate gaussian density of the vector (Z(x), Z(y)), so
each integral is over Rn.

For the sake of completeness we write the other non-centred covariances which

are very similar

P(x 2 FYi; y 2 FYjÞ ¼
ð

CiðxÞ

ð
CjðyÞ

gYðxÞ;YðyÞ(u, v)dudv; (2.7)

where FY is the categorical variable defined by FYi¼ x 2 Rd;Y(xÞ 2 Ci(xÞ
� �

. Note

that each integral is now over Rm.

P(x 2 Fi,y 2 FYjÞ ¼
ð

CZiðxÞ

ð
CYjðyÞ

gZðxÞ;YðyÞ(u, v)dudv: (2.8)

Note that gZðxÞ;YðyÞ(u, v) is the density of the n + m vector (Z(x), Y(y)) so the

dimension of the first integral is n and the second is m.

4But the conditional versions are no longer standardized. See Annex 1.
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Centered Covariance Between One Indicator and One Gaussian

Cov Fi(x), G(y)ð Þ ¼ E 1FiðxÞG(yÞ
� �

¼ E 1ZðxÞ2CiðxÞG(yÞ
� �

¼
ð

CiðxÞ

du

ð
R

s gZðxÞ;GðyÞ(u, s)ds
: (2.9)

The dimension of the first integral is 1 and n for the second one.

Before studying the conditioning process we present some examples to illustrate

the flexibility of the method and the variety of shapes it can produce. Geological

realism will be postponed until the next chapter and the case studies.

Examples

In this section we present several examples of cases where the functions f; c and �
are linear, then several non-linear cases including one where f is quadratic, which

gives rise to a gamma distribution. For the linear cases we start out with the simplest

case where n ¼ 1 (which corresponds to the well-known truncated gaussian case).

Then we consider several cases with n ¼ 2, with different types of sample data.

Linear Case with One Gaussian (n ¼ 1)

In this case there is no Y or S and n ¼ 1. This is usually referred to as the truncated

gaussian method. The problem is to simulate Z(xÞjZðxZÞ 2 CðxZÞ. Each simulation

of Z conditioned by Z(xz) has only to be truncated in order to define the facies Fi
according to the definition:

Fi ¼ x 2 R2; ZðxÞ 2 CiðxÞ
� �

:

In this case CiðxÞ is generally an interval, and as was mentioned earlier the CiðxÞ
for i ¼ 1,...., nF are a partition of R for every x. As this interval depends on x, even

if we choose Z(x) to be stationary, the spatial distribution of the facies can be non-

stationary. The non centered cross-covariance of facies is easy to relate to the

covariance of the gaussian and to the constraints. In this case (2.9) simplifies to

two integrals over R.

E 1Fi (xÞ1Fj (y)
� � ¼ E 1ZðxÞ2CiðxÞ1ZðyÞ2CjðyÞ

h i
¼
ð

CiðxÞ

dv

ð
CjðyÞ

gZ xð Þ;Z yð Þ(u,vÞdu; (2.10)
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where

gZ xð Þ;Z yð Þ u,vð Þ ¼ 1

2pð Þn=2det Cx;y

exp � 1

2
ut; vtð ÞC�1

x;y

u

v

 ! !

and Cx,y is the covariance Z(x) and Z(x). See Chap. 5 for more information, and in

particular how to determine the covariances and the thresholds (domains Ci), from

facies data points. Equation (2.2) becomes

g(zjzZ)h(zZÞ1zZ2C xZð Þ: (2.11)

Here g(zjzZÞ is the multi-variate gaussian density of dimension N (the number of

target points). The mean at each target point is the simple kriging of the Z(x) using

the Z(xZ), and its covariance is that of the residuals. The second and third terms give

the facies information at data points, h is also a multi-variate gaussian density with

mean 0 and variance 1. These two terms correspond to the density of a truncated

gaussian vector to be simulated. So in order to simulate Z(x) we first simulate the

Z(xZ), that is, the truncated gaussian values at data points. Then for each simulation

we simulate the Z(x) at target points according to (2.11), using the preceding

simulated values as conditioning points. That is, we are left with the simulation

of a gaussian random function whose conditional distribution is g(zjzZÞ. The three
examples shown in Fig. 2.1 were obtained by truncating the same gaussian random

function – one with an anisotropic gaussian variogram with a parameter 100 in the

horizontal direction and 50 in the vertical direction. Only the threshold intervals

differ. The grey facies corresponds to the interval 1;1½ ½ (Fig. 2.1a) while it

corresponds to the interval 0:58;
ffiffiffi
6

p� �
(Fig. 2.1b). Both have approximately 30%

of grey facies. The interval �0:1; 0:1½ ½ for the grey facies is symmetric around zero

(Fig. 2.1c). It has been included to help in understanding the case with two

gaussians and a nonlinear transformation shown in Fig. 2.2.

Non Linear Case with One Gaussian: A Gamma Process

Let fðtÞ ¼ t2 so the facies are defined by:

Fi ¼ x 2 R3;Z2ðxÞ 2 CiðxÞ
� �

:

For each value t in Ci(xÞ 2 Rþ we have two roots � ffiffi
t

p
, so

Fi ¼ x 2 R2;Z(xÞ 2 �
ffiffiffiffiffiffiffiffiffiffi
Ci(xÞ

pn o
:

For example, if CiðxÞ is the interval ½a, b½ we get:

Fi ¼ x 2 R2;Z(xÞ 2 �b;�a� �
[

a,b½ ½
n o

:
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Each facies is now defined by the union of two intervals instead of one, but

except for that, we are back to the first example: linear case with one gaussian.

In particular the covariances are easily expressed using (2.10) (after replacing CiðxÞ
by � ffiffiffiffiffiffiffiffiffiffiCiðxÞ

p S ffiffiffiffiffiffiffiffiffiffiCiðxÞ
p

, the simple and cross covariances for the facies can be

expressed as a sum of four covariances corresponding to the linear case with one

gaussian. Two simulations of a gamma truncated process are shown in Fig. 2.2.

Fig. 2.2 Truncated gamma function. The underlying gaussian is the same as Figure 2.1 and the

proportion of grey facies is very similar too. The truncation interval is [1,1[ (left) and [1,6[ (right)

Fig. 2.1 Three examples obtained by truncating the same gaussian. The grey facies corresponds

to the interval 1;1½ ½ (top left), to 0:58;
ffiffiffi
6

p� �
(top right) and to �0:1; 0:1½ ½ (bottom)
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The underlying gaussian is the same as in Fig. 2.1. The grey facies have been given

the same proportion as in top examples. The truncation on the gamma random

function is [1,1[ on the left and [1,6[ on the right. Comparing these to Fig. 2.1a, b

the obvious difference is that the shapes are less continuous. Looking more care-

fully we see grey facies at the bottom left of Fig. 2.3 that was not present on Fig. 2.1.

They correspond to low values of the initial gaussian.

In many cases it might be interesting to use the gaussian which defines the

truncation, as an auxiliary correlated variable to simulate values in the facies (e.g.,

porosities or permeabilities) in order to have more continuity on the edges of the

facies. This was first done by Freulon et al. (1990) for the univariate case. By doing

this, we could, for example, generate a bimodal permeability distribution within

one lithofacies. One population of permeabilities would correspond to high values

of the underlying gaussian, and the other to low values.

Nonlinear Case with One Gaussian and a Third Order Polynomial

Consider the case of a third order polynomial with three real roots t0, t1, t2:

f tð Þ ¼ t� t0ð Þ t� t1ð Þ t� t2ð Þ:
The truncation now depends on the roots of the polynomial. In Fig. 2.3 we use

the same underlying gaussian G as in Figs. 2.1 and 2.2. The grey facies corresponds

to values of G such that fðGÞ � 0, that is, to values lower than t0 or in the interval

[t1, t2[. For Fig. 2.3a we set t0 ¼ �1.08, t1 ¼ 1 and t2 ¼ 3, which gives approxi-

mately the same proportion of grey as in Figs. 2.1a, b and 2.2a. For Fig. 2.3b we

changed t0 to 0.1, while keeping the other two parameters the same. Continuing the

reasoning used for the gamma case, we find that the non centered simple and cross

covariances between facies are the sum of nine non centred simple and cross

covariances of a classical truncated gaussian. On Fig. 2.3a the grey facies is less

continuous than on Fig. 2.2a, which itself was less continuous than on Fig. 2.1b.

Fig. 2.3 The grey corresponds to f(G) � 0 with t0¼ �1.08 (right) and t0 ¼ �0.1 (left). In both

cases, t1 ¼ 1 and t2 ¼ 3
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If we want to simulate petrophysical values on the grey facies using the underlying

gaussian defining it as a correlated variable, we would have a different bivariate

distribution than in the gamma case.

These two very simple examples show that non linear transforms of Z(x) are a

convenient way to generate truncation rules that are more complex than intervals.

They can provide much more freedom when fitting complex variograms of facies

indicators and are useful because it is easier to understand the properties of the

resulting facies by looking at the transform itself than the resulting rule on Z(x).

This can also help to simulate multimodal distributions for petrophysical variables.

Linear Case with Two Gaussians (n ¼ 2)

The only constraints are on Z(xÞ ¼ ðZ1ðxÞ;Z2ðxÞÞ.

Classical Plurigaussian Case

The problem is to simulate Z(x)jZ(xzÞ 2 CðxzÞ. For each xZ, CðxZÞ is a domain in

R2 (n ¼ 2). In most practical applications CðxzÞ ¼ I1ðxzÞ � I2ðxzÞ, where I1 and I2
are intervals in R. So as soon as we have simulated Z(x) the facies at location x is

given by:

Fi ¼ x;Z1ðxÞ 2 Ii1ðxÞ & Z2ðxÞ 2 Ii2ðxÞ
� �

:

Rewriting (2.2) in terms of the two components we get:

gðz1; z2jz1Z; z2Z)hðz1Z; z2ZÞ1z1Z2I1ðxZÞ1z2Z2I2ðxZÞ (2.12)

where gðz1; z2jz1Z; z2ZÞ is the multi-variate gaussian distribution. The dimension of

both z1 and z2 is that of the grid to be simulated. For every grid node x, the mean of

Fig. 2.4 Three facies obtained using one Gaussian and its derivative. The grey facies could

represent meandering streams; the black one could be crevasse splays (in oil reservoirs) or washout

in coal fields. Reproduced with permission
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the distributions is the simple co-kriging of the Z(x) by the Z(xZ), and its covariance

is that of residuals. Here the co-kriging of Z(x) is the simple co-kriging of each

component using the two components at data points. When Z1 is independent of Z2

this simple co-kriging simplifies to two simple krigings.

The other three terms in the product is the distribution of the truncated gaussian

vector to be simulated (up to a factor). So as in the previous case we start by

simulating the two truncated gaussian random functions at data points using the

preceding distribution. Then we use the simulated values as conditioning points for

simulating the two gaussians on the grid according to (2.12). (See Chap. 7 for

details on how (2.6) is written for this case).

Up to now, we have not specified the covariance and cross covariance of Z1 and

Z2. There is no specific constraint, provided they constitute a valid model for

coregionalisation. One way to ensure this would be for example to use the linear

model for coregionalisation, but there are plenty of other possibilities, e.g., by

specifying a functional relationship between the two gaussians. For example Z2

could be a convolution of Z1 (or a convolution of a variable correlated to Z1). Below

we present a case where Z2 is a partial derivative of Z1

.In Chap. 7 we discuss the link between the co-regionalisation structure of the Ys

and that of the facies for the case of two gaussians, in more detail.

Derivative Based Plurigaussian Simulations

Here we present an example where the second gaussian is the partial derivative of

the first one (Armstrong and Galli 1999). In order for the derivative of Z1(x) to exist,

the covariance of Z1(x) must be twice differentiable. More general models based on

other derivatives can also be used for Z2. For example, the derivative of another

random function Z3 that is possibly correlated with Z1 could be included:

Z2ðx; yÞ ¼ a
@

@x
Z1ðx, yÞ þ b

@

@y
Z3ðx, yÞ:

The method is exactly the same as in the general case presented above. The only

differences will be in the covariance of Z2(x) and the cross covariance with Z1(x). If

we assume that the processes are stationary and if we let h be the vector of

differences, then we have:

CZ2
ðhÞ ¼ �a2

@2

@h1
2
CZ1

ðhÞ � b2
@2

@h2
2
CZ3

ðhÞ þ ab
@2

@h1@h2
CZ1;Z3

ðhÞ

CZ1;Z2
ðhÞ ¼ a

@

@h1
CZ1

ðhÞ:

Figure 2.4 taken from Armstrong and Galli (1999) presents an example with

three facies. The grey facies represents meandering streams or rivers; the black one
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could be crevasse splays in an oil reservoir or washouts in a coal measure. This sort

of geometry is difficult to reproduce without using this type of model.

Linear Case with Two Gaussians and Two Categorical Constraints

There are situations where the dataset is composed of two types of categorical data

at the same sample locations or at different locations. In some cases these could be

related to two facies types (initial facies and diagenetic facies for instance see

Pontiggia et al. 2010), whereas in others, they could be related to the same facies

(for instance, different interpretations of logs). In that case we would not want to

include this information in the truncation rule, because only the correlation matters.

Let the two gaussians for the facies be Z1(x) and Z2(x); let Y1(x) and Y2(x) be the

two gaussians corresponding to categorical constraints. The simulation method is

the same as before, except that an extra step has to be included: first simulate Z(xZ)

and then simulate Z(x) with the right conditional distribution which involves the Z

(xY) and the Z(xZ). For simplicity we assume that various C are the products of

intervals. Equation (2.2) becomes:

gðz1; z2jz1Z; z2Z; z1Y; z2YÞ
� hðz1Z; z2Zjz1Y; z2YÞ1Z1z2I1ZðxZÞ1Z2z2I2

Z
ðxZÞ

� vðz1Y; z2YÞ1z1y2I1YðxYÞ1z2Y2I2YðxYÞ:
(2.13)

The conditional distribution of the Z(xZ) given the Y(xY), is a truncated gaussian

whose mean is the cokriging of each component of the Z by the known values of the

Y and the covariance matrix is that of the corresponding residuals. So the simula-

tion of Z at points xZ is carried out using this distribution. The next step is to

simulate the two components at grid nodes using their conditional distribution

which is also gaussian.

Fig. 2.5 Truncating a non-linear function of two independent gaussians, with I1¼[�0.2 2[, I2¼[�0.1

5] on the right, and I1 ¼[�0.5 0.5[, I2 ¼[0.1 5] on the left
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From a theoretical point of view, there is little difference between this and the

case without constraints on Y, but from a practical point of view we must have a

consistent coregionalisation model for four random functions (Z1, Z2, Y1, Y2)

which can be complicated to infer. Furthermore the cokriging starts to become

quite involved. Note that from (2.6)–(2.8) we can relate facies and categorical data

to the various gaussian. So provided we have enough data, the coregionalisation

structure of the gaussian can be inferred from that of the facies and the second

categorical variable.

Non Linear Case with Two Gaussians

Continuing the preceding discussion we show that the non linear transforms can be

more complicated because both components can involve one or two gaussians. So

the truncation rules will be far more complex, as in the simple example below. The

conclusions found for one gaussian hold here too, except that the simple and cross

variograms of facies are more complex.

Case with Two Facies

The first gaussian is the same as in the previous examples with an anisotropic

gaussian variogram with aX ¼ 100, aY ¼ 50, while the second is isotropic with a

gaussian variogram with a ¼ 50. To simplify further we let the two gaussians be

independent

F1 ¼
Z1ðxÞ 2 I1

Z1ðxÞZ2ðxÞ 2 I2

( )
:

This case is interesting when the origin belongs to I1. At points where Z1 equals

0 no facies F1 can be present unless I2 also contains 0. So we are able to generate

two types of grey facies, a massive one and a thin one. In the case on the left the thin

ones are connected to the massive ones, while on the right they are isolated

(Fig. 2.5).

Linear Case with One Gaussian Z(x) and Seismic Constraints S(x)

Suppose that we want to simulate three facies obtained by truncating Z(x) given

seismic information S(x). For simplicity we assume that this seismic information is

a vertical convolution: (in 3D x is denoted by (x1, x2, x3))

S xð Þ ¼
ðd
c

w x3 � yð Þ G x1; x2;y
� �

dy: (2.14)
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Here G(x) is a standard normal distribution N(0,1) that is correlated to Z(x). The

function w has been normalized so that S(x) is also N(0,1). In this very simple case

with conditioning data, (2.5) simplifies (up to a constant factor) to:

h(zjzSÞ1zZ2CZ :

Here zS stands for the values of seismics at sample locations S(xS), and h is the

gaussian distribution of Z given S.

The mean of this gaussian conditional distribution is just the simple cokriging of

Z knowing the seismics at data points; its covariance is the covariance of the simple

kriging residual. So provided we know the covariance between Z and S we can

carry out all the computation required. In order to compute this covariance, we use

the classic convolution formula, but for that we need the covariance between Fi and

G, as shown below.

CFi;S xþ h,xð Þ ¼ E 1Fi xþ hð ÞS xð Þð Þ

¼
ðd
c

w x3 þ h3 � yð ÞCov 1Z xþhð Þ2Ci xþhð Þ;G x1; x2; yð Þ� �
dy:

By applying (2.13) or by direct computation, we obtain:

Cov 1Z xþhð Þ2Ci xþhð Þ;G x1; x2; yð Þ� � ¼ E 1Z xþhð Þ2Ci xþhð ÞG x1; x2; yð Þ� �
¼ Ð

R
sg sð Þ N

bi � l xþ h; xð Þs
s xþ h; xð Þ

	 

� N

ai � l xþ h; xð Þs
s xþ h; xð Þ

	 
� �
ds;

(2.15)

where

l xþ h, xð Þ ¼ CZ;G xþ h, xð Þ
s xþ h, xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

Z;G xþ h, xð Þ
q

and CZ,G is the cross-covariance between Z and G and Ci xþ hð Þ ¼ ai; bi� �.
Assuming the stationarity of the cross-covariance between Y and S we can

estimate the covariance between Z and G simply by inverting equations (2.15) if

we have enough information to compute an experimental cross-covariance (or cross

variogram) between the facies and the seismic. Then we use the convolution

formula to obtain the required covariances, CS and CZ S.

Figure 2.6 shows a synthetic example where seismics (top) were used when

simulating the facies. Two different correlation coefficients were compared: a

weaker one (r ¼ 0.4) above and a stronger one (r ¼ 0.8) below.
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We have seen that the gaussian Z could be used as a driving factor to simulate

continuous variables such as grades, porosities or permeabilities in the facies.

In some cases it might be interesting to simulate the additional categorical variable

Y(x). In other cases, a shift could be introduced into the correlation between the

gaussian and the facies. For example, Langlais et al. (2008) used a deterministic

shift in a case study on a roll-front uranium deposit, while Emery (2007a, b) used a

stochastic one.

Simulating a Truncated Gaussian

There are many direct methods available for simulating gaussian random functions.

The simplest are by matrix factorization, then by simulating the residuals, or by the

sequential gaussian simulation where each point is simulated in turn. The problem

is more difficult for truncated gaussian functions. To the best of our knowledge, no

Fig. 2.6 Synthetic example where the seismics (above) were taken into account when simulating

the facies. The middle panel corresponds to a correlation of 0.4, compared to 0.8 (below)
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direct method exists for truncated gaussians random functions so we have to resort

to MCMC.

To start we note that if Z ¼ (Z1, Z2) is a multivariate gaussian vector with n

components that has been partitioned into n1, n2 then the conditional distribution of

the vector Z1 given Z2 is gaussian. Its mean is the simple co-kriging of Z1 by Z2 and

its covariance matrix is the covariance of residuals. So if all of the values but one

are known, then we only have to simulate a truncated random variable within a

known set. Many algorithms are available for doing this. The simplest based on

inversion is not the most efficient. Others based on acceptation & rejection algo-

rithms using suitable functions (Devroye 1986; Geweke 1991; Robert 1995) have a

high acceptance rate. Chopin (2011) proposed an extremely fast algorithm when

only one sample has to be drawn. A variant of it exists for bivariate truncated

Gaussians for infinite intervals.

This suggests that the Gibbs sampler might be a good choice because it chooses

one component after another and draws values according to the conditional distri-

bution given all the others (that is, from a univariate truncated gaussian). The Gibbs

sampler can be described as follows:

Given a truncated multivariate gaussian vector Z to be simulated in a set C we

first partition the vector Z into (Z1, Z2) with n1 and n2 components respectively.

Then the algorithm is:

Choose an initial vector Z0 ¼ ðZ0
1;Z

0
2Þ satisfying the constraints.

Iterate

1. Draw Znþ1
1 following a truncated gaussian distribution in the set C given the

values of Zn
2

2. Draw Znþ1
2 following a truncated gaussian distribution in the set C given the

values of Znþ1
1

Two points in the method have to be noted:

1. The question of when to stop the iterations is treated in Chap. 7

2. The question of how to draw the two sub-vectors can be solved either by Gibbs

sampling the sub-vector or in the case where n1 (or n2) equals 1 by drawing an

univariate truncated gaussian using one of the algorithms mentioned below

The case where n2 ¼ 1 was first treated by Freulon (1994) in order to

simulate conditionally truncated univariate gaussians with interval constraints,

and by Le Loc’h and Galli (1997) for the bivariate truncated plurigaussian with

interval constraints. But it might be worthwhile to consider different blocking

cases for practical reasons, for example taking Z1 as the vector Z(xZ) and Z2 as

Y(xY).

Other ways to proceed could be to follow (2.5) and simulate Y first under its

constraints and then Z. But as is well known (Robert and Sahu 1997; Galli and Gao

2001) the convergence rate depends strongly on the blocking and also the ordering

of the components. A study of the best ordering and blocking can be made for the

gaussian case and used for the plurigaussian simulation. A practical example with

four conditioning samples is treated in Chap. 7.
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Convergence of the Gibbs Sampler

The Untruncated Case

The Gibbs sampler is known to converge in the untruncated gaussian case. See

Barone and Frigessi (1990), Amit and Grenader (1991), Roberts and Sahu (1997) or

Galli and Gao (2001). In fact, the Gibbs Sampler corresponds to Gauss-Seidel

iterations on the inverse of the covariance matrix. This can be proved by expressing

the inverse of the covariance matrix C�1 as D(I�L�U) where D is the block

diagonal part of C�1, L and U are lower and upper block triangular matrices and

I is the identity matrix. Then the iteration matrix of the Gibbs sampler can be

written as A ¼ (I�L)�1 U. So the rate of convergence depends on its spectral

radius r(A). A simple proof based on relating these iterations to linear fixed point

iterations is given in Galli and Gao (2001). The iteration is:

Yðnþ1Þ ¼ AYðnÞ þ I� Lð Þ�1
Rðnþ1Þ;

where R(n+1) ¼ LRV
(n+1). Here LR is the lower triangular part of the Cholesky

decomposition of D�1 and V(n+1) is a vector containing independent N(0,1) com-

ponents. Consequently the covariance matrix of R(n+1) is D�1. The equation can be

written in a more compact form.

Yðnþ1Þ ¼ AYðnÞ þ U nþ1ð Þ;

where the covariance matrix of U(n+1) is

S ¼ ðI� LÞ�1
D�1ðI� LÞ�t:

Blocking Factor

Galli and Gao (2001) also demonstrated the importance of the block size used in the

Gibbs sampler (i.e., in the matrices D, L and U) for geostatistical applications. The

most natural choice for D is simply the diagonal terms of C�1. This corresponds to

blocks of size 1 � 1. Other choices are possible and these can significantly increase

the speed of convergence.

To illustrate its impact, we compare the spectral radius for the 1 � 1 blocking

size with that for the 2 � 2 case for the four sample example considered earlier in

the chapter. In that case the covariance matrix is of the form:

C ¼
1 a a2 a3

a 1 a a2

a2 a 1 a

a3 a2 a 1

2
664

3
775 and C�1 ¼ 1

ða2 � 1Þ

1 a 0 0

a �ða2 þ 1Þ a 0

0 a �ða2 þ 1Þ a

0 0 a 1

2
664

3
775:
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In this case, it is not difficult to calculate the various matrices and hence find the

spectral radii for the two block sizes and also if the points are arranged in a different

order.

Block Size of 1 (Order: 1, 2, 3, 4)

D ¼ 1

ða2 � 1Þ

1 0 0 0

0 �ða2 þ 1Þ 0 0

0 0 �ða2 þ 1Þ 0

0 0 0 1

2
664

3
775;

A ¼ ðI� LÞ�1
U ¼

0 b 0 0

0 b2 b 0

0 b3 b2 b

0 b4 b3 b2

2
664

3
775;

where

b ¼ a

ða2 þ 1Þ
and hence the spectral radius r(A) is the largest root of the equation:

l2 l2 � 3b2 lþ b4
� � ¼ 0:

That is, it is

rðAÞ ¼ b2
3þ ffiffiffi

5
p

2
<1 since max b2

� � ¼ max
a2

a2 þ 1ð Þ2
 !

¼ 1

4
:

Block Size of 2 (Points 1 & 2 and 3 & 4)

D ¼ 1

ða2 � 1Þ

1 a 0 0

a �ða2 þ 1Þ 0 0

0 0 �ða2 þ 1Þ a

0 0 a 1

2
664

3
775;

A ¼
0 0 a2 0

0 0 a 0

0 0 a2 0

0 0 a3 0

2
664

3
775
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and hence the spectral radius r(A) is the largest root of the equation:

l3 a2 � l
� � ¼ 0 ) rðAÞ ¼ ffiffiffi

a
p

:

Block Size of 2 (Points 1&3 and 2&4)

D ¼ 1

ða2 � 1Þ

1 0 0 0

0 �ða2 þ 1Þ 0 0

0 0 �ða2 þ 1Þ 0

0 0 0 1

2
664

3
775;

A ¼
0 0 b 0

0 0 b b

0 0 2b2 b2

0 0 b2 b2

2
664

3
775

and hence the spectral radius r(A) is the largest root of the equation:

l2 l2 � 3b2 lþ b4
� � ¼ 0:

So it is the same as in the first case.

Convergence in the Truncated Gaussian Case

In his thesis Freulon (1992) considered two iterative ways of simulating truncated

gaussian random functions. The first was based on work in the field of statistical

mechanics by Metropolis et al. (1953) while the second is the Gibbs sampler (see

Geman and Geman 1984). Freulon (pp 58–65) proved that both procedures con-

verge to a truncated gaussian distribution, for the total variation distance, but his

demonstration of their ergodicity only works for the case where the constraint is a

compact (i.e., a closed and bounded interval). Secondly it does not provide any way

to compute the rate of convergence because it is the minimum of k(x, y) on D � D

which is difficult to evaluate because of the denominator. In order to obtain more

general results, we need to work in a more general framework, and so we introduce

Markov chains.

Markov Chains

Here we give an intuitive introduction to Markov chains. For more precise and more

complete descriptions see Numelin (1984), Meyn and Tweedie (1993) or Gikhman
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and Skorokhod (1969). A Markov chain is a chain X(0), X(1), . . . ,X(n) . . . with the

property that for n > 1:

EðXðnÞjXðn�1Þ; :::: Xð1Þ;Xð0ÞÞ ¼ EðXðnÞjXðn�1ÞÞ:
So a chain is fully determined as soon as we know the transition probabilities

from one state to another. Here the possible states are not countable so they are

characterised by an integral kernel kn (x, y). If the kernel does not depend on the

position in the chain, ie kn(x, y) ¼ k(x, y) the chain is said to be homogeneous. We

will only consider this case.

Two Integral Operators

We can define two integral operators from this kernel. If f(x) is a density then the

operator g(y) ¼ Kf(y) as defined below is a density:

g(yÞ ¼
ð
S

k(x, yÞ fðxÞ dx:

Furthermore, if f is the density of the (n � 1)st iterate then g(y) is the density of

the nth one. Let h(x) be the conditional expectation of t(X(n)) given X(n�1). Then

h(xÞ ¼ EðtðXðnÞÞjXðn�1Þ ¼ xÞ ¼
ð
S

k(x, y)t(y)dy:

The two operators can be expressed in a more symmetrical way by letting

~kðy; xÞ ¼ k(x, yÞ:

In that case

KFt(yÞ ¼
ð
S

~k(x, y)t(x)dx:

Let K(n) be the iterated operator, that is,

K nð Þ(fÞ ¼ K K n�1ð Þ(fÞ

 �

:

Similarly let KF
(n) be

K
nð Þ
F ðtÞ ¼ KF K

n�1ð Þ
F (t)


 �
:
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Finally let k(n)(x, y) be the corresponding kernel. The operator K(n) expresses the

relationship between the density of X(p) and that of X(p+n). In contrast KF
(n) gives the

conditional expectation of a function of X(p+n) given X(p)

EðtðXðnþpÞÞjXðpÞÞ:
Note that for a homogeneous chain the joint distribution of the iterates X(n+p) and

X(n) is:

gðnþpÞðx, yÞ ¼ kðnÞ ðx, y)fðpÞ(xÞ ¼ gðnÞy (x)fðnþpÞðyÞ:

Here f (p) and f (n+p) stand for the marginal densities obtained by running the chain.

The last equality holds because of Bayes Theorem.

If we let k*(y, x) be the transition kernel corresponding to reverse passage from y

to x, then g
ðnÞ
y (x) corresponds to k*(n)(y, x) . So we get:

gðnþpÞðx, yÞ ¼ kðnÞ ðx, y)fðpÞ(xÞ ¼ k�ðnÞðy, x)fðnþpÞðyÞ: (2.16)

Stationary Distribution

We say that a chain has a stationary distribution if the influence of the initial point

X(0) disappears after some time. More formally a chain has a stationary distribution

if P(X(n) ∈A|X(0)) tends toward p(A) for any measurable set A, whatever the initial

state X(0). In our case this is equivalent to k(n)(x, y) ! p(y). The chain is said to

have an invariant distribution p if there exists a distribution p(x) such that

pðyÞ ¼
ð
S

k(x, y) p(x)dx:

Clearly a stationary distribution must be an invariant distribution. Assuming that

p(x) is an invariant distribution, and applying (2.16) with p ¼ 1, n ¼ 1, and

f(x) ¼ p(x) we get:

gð2Þðx, yÞ ¼ kðx, yÞ pðxÞ ¼ k�ðy, x) p(yÞ: (2.17)

Irreducible Chain

A Markov chain is said to be c irreducible if for each x in the support of a measure

c, and for each measurable set A such that c(A) > 0, there exists an integer p � 1

such that
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P(XðpÞ 2 AjXð0Þ ¼ xÞ > 0:

A chain is said to be periodic if there exists an integer d � 2 and a sequence of

nonempty disjoint sets D1; . . . Dd�1 i ¼ 1, . . . (d�1) such that

8 i ¼ 1; :::,r� 1 and 8 x 2 Di; Kðx;DjÞ ¼ 1;

where

j ¼ ð1þ 1)mod d:

A chain is aperiodic if it is not periodic. Note that if a chain is irreducible with

p ¼ 1, then it is aperiodic.

Distance Metric and Convergence

To define convergence we first have to define a distance criterion. One of the most

commonly used distances is total variation (TV). The fact that a measure mn
converges toward a measure m for this distance, implies that for any bounded

measurable function f we have convergence of the expectation. That is,

mn � mk kTV ! 0 implies that

ð
ð mn � mÞðdx)f(xÞ ! 0

for any measurable bounded function f. This can be written as

En(fÞ ! E(fÞ:

We have the following convergence result for Markov chains.

Theorem 1 (Tierney 1994, 1996). If a chain is an irreductible aperiodic Markov
chain with transition kernel k and an invariant distribution p then:

k
ðnÞ
F ðx; :Þ � pð:Þ

��� ���
TV

! 0:

Although this result is interesting, its usefulness is limited because of its gener-
ality. Secondly it does not give the rate of convergence. Stronger results can
obtained in L2 type spaces, provided one makes some additional assumptions
about the compactness of the integral operators defined previously. Here we will
restrict ourselves to the case where the state space S is compact. For the truncated
gaussian case this excludes unbounded intervals. From a practical point of view, it
means adding two additional facies with infinitesimal proportions which are not
seen in the data in order to bound the interval by a large value.
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For that case the previous result provides a method to estimate the speed of
convergence in practice, at least for reasonably small spaces. In the case of
truncated gaussian this means a reasonable number of constraints. The idea is
to estimate the transition operator while running the chain as was proposed by
Lantuéjoul (2002a, b). But here the chain has a continuous state space, so it is not
possible to consider all possible transitions.

Given a finite partition of S, that is, a family of disjoint sets Di such that:

S ¼
[n
i¼1

Di;

we consider the transition matrix:

Pi;j
D ¼ 1

Dij j
ð
Di

ð
Dj

k(x,y) dx dy:

This can be estimated reasonably by running the chain for a long enough time.
Then we can compute the eigenvalues of Pi,j

D. So the question is now: How close
are these eigenvalues to those of K.? Our assumptions are

l The state space S is compact.
l The kernel k is continuous
l The assumptions of Theorem 1 hold.

The first and second assumptions ensure that K will map C(S) to C(S). This is
easy to verify because for continuous functions on a compact, there is no problem
inverting the limit and the integral. Then using a result in Yosida (1978, p 277) we
can show that this new operator K considered from C(S) to C(S) is compact. The
convergence result of Theorem 1 ensures that the eigenvalues of K are lower than
or equal to 1, and that it has one and only one eigenvalue 1, which is associated to
the eigenvector p. This is easy to show because the set of bounded measurable
functions on S includes continuous functions. Consequently

Sup
f2C S½ �; fj j�1

ð
S

kðnÞ(x, y)� p(y)

 �

f(y) dy

������
������ � kðnÞ � p

�� ��
TV
:

If there were a distribution g 6¼ p such that KF(g) ¼ cg with c � 1, then K(n)
F (g)

would equal cn g and the integralð
S

(cng(yÞ � p(y))dy

would not converge to 0. This, in turn, implies that ||k(n)�p ||TV would not converge.

Finally if we define

PDðf)(tÞ ¼ 1

Dij j
ð
Di

f(u)du for t in Di:
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We see that when

Dj j ! 0; PDfðtÞ ! fðtÞ:

Finally it can be shown that this corresponds to a Galerkin approximation. See
Chatelin (1983, pp 170–174). That guarantees the convergence of PD toward k as
|D| tends toward 0. Interestingly, the rate of convergence depends on the deriva-
bility of k (see exercise 4.39 p 191 in Chatelin (1983). Furthermore the convergence
of eigenvalues is also ensured and bounds are known.

The Gibbs Sampler

Let p(x) be the density of the vector (X1,. . .Xn), and let p(xijxi�;xiþÞ be the

conditional density of Xi given ðXi�;XiþÞ where

Xi� ¼ ðX1; :::;Xi�1Þ and Xiþ ¼ ðXiþ1; :::XnÞ:

By convention

X0� ¼ ; and Xnþ ¼ ;:

The Gibbs sampler modifies all the coordinates of the vector, one after another,

using the newly simulated one and the former ones. Note that Xi may be either a

single component or a block of components. In the latter case we should speak of

the block Gibbs sampler, but for simplicity we will call it a Gibbs sampler even if

we are using a blocking factor.

The transition kernel for one iteration of the Gibbs sampler from x to y is:

kðx,yÞ ¼
Yn
i¼1

p(yijyi�; xiþÞ:

The positivity condition is said to hold if the support of p is the product of the

supports of its marginal distributions. This turns out to be true in our case provided

the constraints are products of unions of intervals.

Using this positivity condition we can establish the Hammersley Clifford

decomposition (Besag 1974). It is easy to show that

pðxÞ ¼ pðx1jx1�; x1þ) p(x1�; x1þÞ

¼ pðx1jx1�; x1þÞ
p(y1jx1�; x1þÞ

p(y1;x1�; x1þÞ:
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By repeating this operation on pðy1;x1�; x1þÞ we obtain:

pðxÞ ¼
Qn
i¼1

pðxijyi�; xiþÞQn
i¼1

p(yijyi�;xiþÞ
pðyÞ Hammersley Cliffordð Þ

The denominator is k(x,y) and the numerator is the kernel k*(y, x) corresponding

to one iteration of the Gibbs sampler from y to x in the reverse order. So we can

rewrite the Hammersley Clifford decomposition in the following way:

p(x)k(x, y) ¼ p(y)k�ðy, x): (2.18)

Integrating this givesð
p(x)k(x, y)dx ¼

ð
p(y)k�ðy, x)dx

¼ p(y)
ð
k�ðy, x)dx

¼ p(yÞ:

Consequently p is an invariant distribution of the Markov chain with transition

kernel k(x,y) and also of the Markov chain with transition kernel k*(y, x). Equation

(2.18) could be obtained directly from (2.16) without the positivity assumption but

assuming that p is the stationary distribution of the chain.

Truncated Gaussian Case

In the truncated gaussian case

p(x) ¼ k g(x)1D(x),

where k is the normalisation constant and 1D(x) is the indicator of constraints. We

will only consider constraints which are products of unions of intervals. So the

positivity condition holds because the conditional distributions p(xijxi�; xiþÞ are
truncated gaussians whose domain is the union of intervals corresponding to the

constraint for the ith component. Let the inverse of the covariance matrix of X be

C�1 ¼ D(I� L� U);

where D is the block diagonal part of the inverse of C, and U and L are the upper

and lower triangular parts.

Using the results for the non truncated gaussian case, it is easy to show that the

transition kernel is:

k(x, y) ¼ k(x)e�
1
2
ðy�AxÞtSðy�AxÞ1D(y)1D(x),

36 2 From a Mathematical Point of View



where k(x) is a normation factor whose value depends on x and

A ¼ ðI� LÞ�1
U and S ¼ ðI� LÞtDðI� LÞ:

Similarly,

k�ðy, xÞ ¼ k�ðy)e�1
2
ðx�~AyÞt ~Sðx�~AyÞ1DðyÞ1DðxÞ;

where

~A ¼ ðI� UÞ�1
L and ~S ¼ (I� UÞtDðI� UÞ:

It is obvious that the conditions for Theorem 1 hold so the Gibbs sampler

converges toward our candidate distribution p, for the total variation distance.

Then the kernels are continuous in the support of p, and if D is compact the two

operators K and KF corresponding to the truncated gaussian case define compacts

operators from C(D) to C(D). So we can apply the approximation method described

earlier to estimate the eigenvalues, and to estimate the speed of convergence

experimentally. It is also interesting to note that provided the constraints are the

product of compact intervals, the minorisation condition holds.

Definition.We say that the kernel k(x,y) satisfies the minorisation condition if there
exists a density c, and a parameter 0 < r < 1 such that

8x 2 D 8y 2 D k x,yð Þ�r c yð Þ:

Theorem 2. If the constraints D are compact the kernel k(x,y) of the transition
operator satisfies the minorisation condition.

Proof. From above

k(x,y) ¼ k(x)e�
1
2
ðy�AxÞtSðy�AxÞ1DðyÞ1DðxÞ:

As the proof depends on the properties of convex sets, we start out by reviewing

some basic facts about them. A point v in a convex is an extremum if it cannot be

written as a convex combination of other points in the convex. In a polyhedral

convex such as y�A(D), the extremal points are just the vertices of the polyhedra.

Because D is compact and k(x) is continuous, it is bounded below by a parameter

c which is greater than 0 because k(x) 	 P(D�Ax), and its minimum is reached at

at least one point x0 and P(D�Ax0) > 0. In order to minimise the exponential term

we have to maximise the exponent.

Let u ¼ y�Ax. This is equivalent to maximising

jjujj2K ¼ ut Su
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subject to the constraints

u 2 y� A Dð Þ:

As the function is continuous and as the set y�A(D) is compact, the minimum is

attained. Because S � 0, the function is strictly convex.

As is well known, the maximum of a convex function on a convex is reached at

extremal points of the convex. See for example Rockafellar (1970). Now each

extremal point of y�A(D) is of the form y�A(xi) where xi is an extremum in D.

There are 2n extremal points xi in D, they are the vertices of the hyper-rectangle. Let

Ti be the points y whose corresponding extremal point is xi. By definition D is the

union of the Ti and we can write:

k(x,yÞ>c
X
i

1Ti
ðyÞe�1

2
ðy�AxiÞtSðy�AxiÞ:

If we let f
~
(y) denote

~fðyÞ ¼ c
X
i

1Ti
ðyÞe�1

2
ðy�AxiÞtSðy�AxiÞ;

we find that

1 ¼
ð
D

k(x, y)dy>

ð
D

~fðyÞdy > 0:

If we let r be the integral of ~f over D we can define the density f(yÞ ¼ ~fðyÞ=r.
We find that:

8y 2 D; 8x 2 D k(x; yÞ > rf(yÞ with r<1:

This minorisation condition ensures the convergence of the Gibbs sampler in L1.

See for example, Roberts and Polson (1994).

Summary

The Gibbs sampler is a very powerful simulation method. It is not difficult to

establish its convergence in the truncated gaussian case. However it is far more

difficult to find its rate of convergence experimentally, even in the case of

compact constraints which considerably simplify the problem. For this case we

proposed a finite rank operator which approximates the transition operator (which

is compact).
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Annex 1: Conditional Distribution of a Gaussian

Basic Properties of a Gaussian Vector

Let Z be an arbitrary gaussian vector of dimension p + n. Assume its covariance

matrix S has an inverse S�1. Its density is:

g(w1;w2; . . .wpþnÞ ¼ 1

ð2 p)ðpþnÞ=2 Sj j
exp � 1

2
w�mð Þt S�1 w�mð Þ

� �
;

where w and m are column vectors with m ¼ E(Z) and where Sj j is the determinant

of the covariance matrix.

We split the vector Z into two parts X and Y, of dimension p and n respectively.

These correspond to the p data points and the n target points to be simulated.

Partitioning the covariance matrix in the same way we obtain:

S ¼ SXX SXY

S t
XY SYY

	 

;

where SXX and SYY are the covariance matrices of X and Y, respectively, and SXY

is the cross covariance matrix between X and Y. Let L be the vector defined by

L ¼ S�1
XXSXY:

It is easy to see that its ith column consists of the weights for the minimum

variance linear estimate of the ith element of Y given the vector X as data. Let R be

the covariance matrix of the residuals when estimating Y given X; that is, R ¼
cov(Y�LtX). It is well known5 that the inverse of the covariance matrix S�1 is

S�1 ¼ S �1
XX þ LR�1 Lt � LR�1

�R�1 Lt R�1

� �
:

If we let u and v be vectors containing the first p and the remaining n components

of w then

ðutvtÞ S�1 u

v

	 

¼ ðv� Lt u)t R�1 ðv� Lt uÞ þ utS�1

XXu:

Now we use this decomposition to express the gaussian density given earlier as

the product:

5See for example Galli and Gao (2001).
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g(u,v) ¼ k gu (v) g(u),

where the normation constant k is just

k ¼ SXXj j Rj j
Sj j ;

g(uÞ ¼ 1

ð2 pÞp=2 SXXj j
exp � 1

2
ut
X�1

XX
u

� �

and

gu(v) =
1

ð2 pÞn=2 Rj j
exp � 1

2
ðv� Lt u)

t
R�1 ðv� Lt uÞ

� �
:

Both are normal distributions; the first has zero mean and covariance SXX, the

second has mean Ltu and covariance R. As their integrals are equal to 1, the

normation factor k turns out 1, which was not obvious initially. The first one g(u)

is the distribution of the vector X. The second is the conditional density of Y given X.

It is still gaussian but its mean now equals the minimum variance estimate of Y

given X, and its covariance matrix is R, the covariance matrix of the residuals.

Some typical examples are:

Z ¼ Z xZð Þ, Z xð Þð Þ ) X ¼ Z xZð Þ;Y ¼ Z xð Þ
Z ¼ Z xZð Þ, Z xð Þ,Y xYð Þð Þ ) X ¼ Z xZð Þ, Y xYð Þð Þ
Z ¼ Z xZð Þ, Z xð Þ,Y xYð Þ,S xSð Þð Þ ) X ¼ Z xZð Þ, Y xYð Þ, S xSð Þð Þ:

Except when working with univariate truncated gaussians, the matrix S is the

simple co-kriging matrix. The L are the co-kriging weights, u stands for the data

points so Ltu is the co-kriging estimate at locations x and R is the matrix of the

covariance of the co-kriging residuals. See Chap. 7 for more detail.
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Chapter 3

Basic Properties of Indicators

The aim of this section is to review so me of the basic properties of indicators that

will be needed later. We let F be a random set (i.e. all the points belonging to one

particular facies). Let F be its complement (i.e. the points that do not belong to F).

The indicator function for the set F takes the value 1 at all the points inside F; it

takes the value 0 elsewhere. This indicator function is denoted by 1FðxÞ. In the

Fig. 3.1, the set F has been shaded. Its complement F includes all of the non-shaded

area. The set F could be any shape or form, and need not be a single piece. It could

be split into several parts.

The first property of indicator functions relies on the fact that inside F its

indicator takes the value 1 whereas the indicator of its complement takes the

value zero. Outside F the converse is true. That is, the union of F and its comple-

ment fills the whole space. Consequently,

1 ¼ 1F[FðxÞ ¼ 1FðxÞ þ 1FðxÞ

One property of a geological facies that can be measured experimentally is the

proportion of space that it occupies. If we let PFðxÞ be the probability that point

x lies in F, then it is equal to the mean or mathematical expectation of 1F (x). That is,

PFðxÞ ¼ E 1FðxÞ½ �

As the random function 1F(x) takes the values 0 or 1, its expected value must lie

between these two values.

0 � PFðxÞ � 1

Moreover, because of the linearity of taking expectations in,

PFðxÞ þ PF ðxÞ ¼ 1

Now we calculate its variance. Since [1F(x)]
2 ¼ 1F (x),

Var 1FðxÞ½ � ¼ E 1FðxÞ½ � � E 1FðxÞ½ �f g2 ¼ PFðxÞ 1� PFðxÞð Þ � 0:25

M. Armstrong et al., Plurigaussian Simulations in Geosciences,
DOI 10.1007/978-3-642-19607-2_3, # Springer-Verlag Berlin Heidelberg 2011
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Spatial Covariances, Variograms and Cross-Variograms

In this section we focus on the spatial relation between indicators by studying their

centred and non-centred covariances, then their variograms and cross-variograms.

After defining these concepts we derive their key properties. The first step is to

study the relationship between the facies at point x and the one at y, firstly via the

(non-centred) spatial covariance CFðx; yÞ and then via the variogram gFðx; yÞ.

Spatial Covariances

Let x and x þ h be any two points. Their non-centred covariance is defined as:

CFðx, xþ hÞ ¼ E½1FðxÞ 1Fðxþ hÞ� ¼ P½1FðxÞ ¼ 1&1Fðxþ hÞ ¼ 1�
¼ P½x 2 F&xþ h 2 F�

It measures the probability that both points lie inside F (Fig. 3.2). Similarly the

centred covariance sF x; xþ hð Þ and the centred cross covariance between facies

Fi and Fj, denoted by sFiFj
x; xþ hð Þ are respectively defined as

sF(x, xþ h) ¼ Ef[1F(x)� PF(x)] ½1F(xþ h)� PF(xþ h)]g
¼ CF(x, xþ h)� PF(x)PF(xþ h)

sFi Fj(x, xþ h) ¼ Ef[1Fi(x)� PFi(x)][1Fj (xþ h)� PFj(xþ h)]g
¼ CFi Fj(x, xþ h)�PFi(x)PFj(xþ h)

Variograms and Cross-Variograms

Let A(x) be an arbitrary variable. It could be an ordinary variable Z(x) or an

indicator 1FðxÞ. Its variogram, denoted by gA, is defined as:

Fig. 3.1 Set F (shaded grey) and its complement F in white
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gAðx, xþ hÞ ¼ 1

2
Var ½AðxÞ � Aðxþ hÞ�

¼ 1

2

n
Eð½AðxÞ � Aðxþ hÞ�2Þ � ðE½AðxÞ � Aðxþ hÞ�Þ2

o

Consequently the indicator variogram of the facies F, denoted by gF, is just:

gFðx, xþ hÞ ¼ 1

2
Var ½1FðxÞ � 1Fðxþ hÞ�

¼ 1

2

n
Eð½1FðxÞ � 1Fðxþ hÞ�2Þ � ðE½1FðxÞ � 1Fðxþ hÞ�Þ2

o
Note that if the indicator is stationary, the second term disappears. The cross

variogram between facies Fi and Fj is defined as:

gFiFjðx; xþ hÞ ¼ 1

2
E 1FiðxÞ � 1Fiðxþ hÞ½ � 1FjðxÞ � 1Fjðxþ hÞ� �� �

When this product is expanded, two of the four terms disappear because 1Fi
and

1Fj
cannot both take the value 1 at the same point since we have one and only one

facies at each point. This gives:

gFiFjðx; xþ hÞ ¼ � 1

2
E 1FiðxÞ 1Fjðxþ hÞ� �þ E 1FjðxÞ 1Fiðxþ hÞ� �� �

Variogram Properties

Property 1

As the indicators can only take the values 0 or 1, the values of the variogram must

satisfy the inequality:

gFðx; xþ hÞ ¼ 1

2
Var 1FðxÞ � 1Fðxþ hÞ½ � � 0:5

One consequence of this is that indicator variograms must be bounded. So a

power function could never be an appropriate model for an indicator variogram.

Fig. 3.2 Two points, x and x + h, lying in facies F
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Property 2: Variograms for two facies (stationary case)

gFðhÞ ¼ gFðhÞ

Proof. By definition the variograms of F and F are

gFðhÞ ¼
1

2
E½1Fðxþ hÞ � 1FðxÞ�2 and gFðhÞ ¼

1

2
E½1Fðxþ hÞ � 1FðxÞ�

The first result follows because

1Fðxþ hÞ � 1FðxÞ ¼ � 1Fðxþ hÞ � 1FðxÞ
� �

Property 3: Covariances for two facies

If F is a stationary random set, its variogram depends on the vector between the two

points, but not on their positions, and similarly for the covariances. The next

property follows from this.

sFðhÞ ¼ sFðhÞ ¼ � sFFðhÞ ¼ � sFFðhÞ

Proof. By definition, we have

sFðhÞ ¼ E 1Fðxþ hÞ � PFðxþ hÞ½ � 1FðxÞ � PFðxÞ½ �f g
Because of the stationarity, PFðxþ hÞ ¼ PFðxÞ ¼ PF and similarly for its com-

plement. So:

sFðhÞ ¼ E½1Fðxþ hÞ � PF� ½1FðxÞ � PF�
sFðhÞ ¼ E½1Fðxþ hÞ � PF� ½1FðxÞ � PF�
sFFðhÞ ¼ E½1FðxÞ � PF� ½1Fðxþ hÞ � PF�
sFFðhÞ ¼ E½1FðxÞ � PF� ½1Fðxþ hÞ � PF�

Moreover

1Fðxþ hÞ � PF ¼ 1� 1Fðxþ hÞ � PF ¼ � 1Fðxþ hÞ � PF

� �
1FðxÞ � PF ¼ � 1FðxÞ � PF

� �
Substituting these relations into the covariance formulas gives the second result.

Comments

There are three practical consequences of these results. Firstly two complementary

random sets are forcibly correlated. They cannot be independent of each other.
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Secondly their cross covariance is the same as the direct covariance up to a change

of sign. Thirdly, the indicator covariance is not a connectivity index. A connectivity

index tells us whether it is possible to find a path joining any two points in the facies

and lying completely inside that facies, whereas the indicator covariance merely

tells us whether to two end points are in the facies. It says nothing about paths

joining the two points.

A facies F and its complement rarely have the same connectivity and yet their

indicator covariances are identical. Figure 3.3 illustrates this point. The background

is divided into two separate parts but the shaded facies is a single piece

Property 4: Three facies

Instead of two facies we now consider three facies labelled A, B and C, which

together fill the whole space under study. See for example Fig. 3.4. At present we

assume that the three random sets are stationary.

For these three facies:

sAðhÞ ¼ � sABðhÞ � sACðhÞ
sBðhÞ ¼ � sBAðhÞ � sBCðhÞ
sCðhÞ ¼ � sCAðhÞ � sCBðhÞ
sABðhÞ�sBAðhÞ ¼ sBCðhÞ� sCBðhÞ ¼ sCAðhÞ � sACðhÞ

Proof. To prove this result, we note that any point x lies in one and only one of the

three sets; that is:

1A(x)þ 1B(x)þ 1C(x) ¼ 1

Fig. 3.3 The facies F and its complement do not have the connectivity but their indicator

covariances are identical
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Consequently

PA þ PB þ PC ¼ 1

Hence

1AðxÞ � PA ¼ � 1BðxÞ � PB þ 1CðxÞ � PC½ �
We now substitute this into the second term of

sAðhÞ ¼ E 1Aðxþ hÞ � PA½ � 1AðxÞ � PA½ �
This gives

sAðhÞ ¼ �E 1Aðxþ hÞ � PA½ � 1BðxÞ � PB þ 1CðxÞ � PC½ � ¼ sABðhÞ � sACðhÞ

This proves the first three parts of property #3. Now to get the last part, we start

from the definitions:

sAB(h) ¼ E[1A(x)� PA� ½1B(xþ h)� PB�
sBA(h) ¼ E[1B(x)� PB� ½1A(xþ h)� PA�

Fig. 3.4 Three facies A, B and C shown in white, light grey and dark grey
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As before, we substitute the relation linking 1A to 1B þ 1C into these two, giving:

sAB(h) ¼ �E[1B(x)� PBþ1C(x)� PC� ½1B(xþ h)� PB� ¼ � sB(h)� sCB(h)

sBA(h) ¼ �E[1B(x)� PB�½1B(xþ h)� PBþ1C(xþ h)� PC� ¼ � sB(h)� sBC(h)

Subtracting gives the result:

sABðhÞ � sBAðhÞ ¼ sBCðhÞ �sCBðhÞ:

Property 5: Is it possible for two facies to be independent?

As A, B and C are a partition of the space, they cannot all be uncorrelated. But we

can ask whether it is possible for two facies, A and B (say), to be uncorrelated. We

are now going to show that this is not possible. If there were more than three facies,

we could simply regroup all the other facies (except A and B) into a single facies C.

So it suffices to prove the result for three arbitrary facies, A, B and C. Suppose that

facies A and B are uncorrelated. Then

sABðhÞ ¼ E 1AðxÞ � PA½ � E 1Bðxþ hÞ � PB½ � ¼ 0:

Similarly for sBAðhÞ. So

0 ¼ sABðhÞ�sBAðhÞ;

hence

sBCðhÞ ¼ sCBðhÞ and sCAðhÞ ¼ sACðhÞ:

Consequently

sAðhÞ ¼ 0� sACðhÞ
sBðhÞ ¼ 0� sBCðhÞ
sCðhÞ ¼ sCAðhÞ � sCBðhÞ:

From this it is easy to show that

sCðhÞ ¼ sAðhÞ þ sBðhÞ:

The next step is to substitute h ¼ 0 into this equation. Since sð0Þ is equal to the
variance, we get

PCð1� PCÞ ¼ PAð1� PÞ þ PBð1� PBÞ
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and because PC ¼ 1� PA � PBð Þ

PAPB ¼ 0:

This means that one of the two facies A or B is not present, which contradicts the

initial hypothesis. This proves that facies cannot be independent.

Property 6: One consequence of the triangle inequality

Matheron (1987) proved that all indicator variograms must satisfy the triangle

inequality for any two distances, h1 and h2:

gðh1 þ h2Þ � gðh1Þ þ gðh2Þ

This tells us about the behaviour of indicator variograms near the origin.

Suppose that the behaviour was a power function near h ¼ 0; say gðhÞ � hj ja.
What values are possible for the power a? Let h1 ¼ h ¼ h2. Then

gðh1 þ h2Þ � 2hj ja and gðh1Þ þ gðh2Þ � 2 hj ja

Consequently a must be less than or equal to 1. This means that the gaussian
variogram should not be used as a model for an indicator variogram. Two

examples of the types of inconsistencies that can arise when unsuitable variogram

models are used for indicators, are given in exercises 2.3 and 2.4 at the end of the

chapter. The point in including these examples is to show just how difficult it is to

give a general characterisation for the variogram of an indicator random function,

or in other words, of a random set. Matheron (1987, 1989, 1993) produced several

papers on this subject. The third one gives results concerning groups of 3, 4 and 5

points and then makes a conjecture to generalise these. These results are relevant in

“multi-point” geostatistics.

Need for a Mathematically Consistent Method

In the previous section we saw that although indicators are very simple themselves,

their properties are far from intuitive. For example, most people believe that it

would be possible for some of the facies or lithotypes to be independent of each

other, until they have seen the proof to the contrary. Nor do they realise that power

functions and the gaussian model are not suitable models for indicator variograms.

Although we have proved that these two models are not acceptable, this does not

mean that the others can be used. It merely means that no counter examples have

yet found to them. Perhaps someone will one tomorrow. This raises a troubling
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question: which variogram models can be used for indicators. Or putting it more

generally, Bochner’s theorem provides a general characterisation for positive

definite functions (i.e. for the covariances of gaussian random functions, and

hence their variograms). Is there an equivalent theorem for random sets and

indicator variograms? To the best of our knowledge there is not.

So we are faced with two options: make ad hoc choices about the indicator

variograms with the risk of ending up with mathematical inconsistencies, or con-

struct a mathematically consistent model.We prefer the second option. The way that

we have chosen to do this is, as we saw in Chap. 1, by truncating simulations of

gaussian random functions in a suitable way. The advantages of using underlying

gaussian random functions are clear: firstly, the normal (gaussian) distribution has

many nice statistical properties; secondly, there are many ways of simulating

gaussian random functions. The good properties, from a theoretical point of view,

of the normal distribution and gaussian random functions include

l In simple kriging the error is orthogonal to the estimate, so it is independent of it.

This allows us to condition simulations by kriging.
l Any positive definite function can be used as the covariance model of a gaussian

random function. This is not true for other distributions, either discrete or

continuous. We have already seen this for indicators which are discrete vari-

ables. In a similar vein, Armstrong (1992) shows that the spherical variogram is

not always compatible with a lognormal distribution.

Transition Probabilities

From experimental data, it is easy to compute the proportion of samples belonging

to a particular facies. Although it is a little more complex, we can also calculate

the conditional probability of going from one facies to another, or of staying in the

same facies for points a certain distance apart. We are now going to express these

transition probabilities in terms of the indicator covariance and the proportions.

First Type of Transition Probability

The first type of transition probability is just the probability of being in facies Fj at

point x þ h knowing that point x is in facies Fi:

Pðxþ h 2 Fj x 2 Fij Þ ¼ P 1Fjðxþ hÞ ¼ 1 1FiðxÞ ¼ 1j� �
¼ P 1Fjðxþ hÞ ¼ 1 & 1FiðxÞ ¼ 1

� �
P 1FiðxÞ ¼ 1½ �

¼ E 1Fjðxþ hÞ 1FiðxÞ
� �

E 1FiðxÞ½ � ¼ Cijðx; xþ hÞ
pFiðxÞ
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This is the probability of going from facies Fi to facies Fj, not being sure that we

have a transition between x and x + h. This formula is also correct if j ¼ i. If the

facies are stationary, then this probability contains essentially the same information

as the indicator variogram.

Example of the First Type of Transition Probability

To illustrate how to calculate this type of transition probability, we have selected

four neighbouring drill-holes extending from one chronostratigraphic marker

(N�11) down to the following one (N�10). Only two facies are present, A and B.

Observations of the facies were made at 2 m intervals down the holes (Table 3.1).

As the drill-hole sections are of different lengths and as Marker N�10 is

considered as the reference level (see Chap. 3 for more information on reference

levels), the sections are given from this level upward rather than from marker N�11
downward, with blanks at the top. Our objective is to calculate the transition

probabilities. By definition, these depend on the two points x and x + h. If the

data are stationary horizontally (which is often the case), we can average along the

rows. Similarly, if they are stationary vertically we can average in that direction but

vertical stationarity is rare in sedimentary rock-types. Here as we only have four

Table 3.1 Facies observed at 2 m spacing going from marker N�11 down to marker N�10
Drill-hole N�92 Drill-hole N�58 Drill-hole N�39 Drill-hole N�84
A – – –

B – – –

A A – –

B A – –

A A B –

A A A –

A A B –

B A B –

B A A –

B B A –

B A A –

B A B B

B A B B

B B B A

B B B A

B B B B

B A B A

B A A B

B B B A

A A B A

B A B B

A B B B

B B B B
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drill-holes in this example, we will assume vertical and horizontal stationarity for

simplicity.

Table 3.2a shows the numbers of each type of transition (i.e. A ! A, A ! B,

B ! A and B ! B) for a distance of 2 m upward while Table 3.2b shows

the number of transitions that would be expected, assuming a random distribu-

tion of facies. As 33 of the 75 observations are facies A, the Pr(A) ¼ 0.44 and

Pr(B) ¼ 0.56. Consequently since there are 71 transitions each 2 m long, the

expected number of transitions A ! B or B ! A is just 0.44 � 0.56 � 71. In

fact, the observed number of transitions A ! A and B ! B is higher than would

be expected if the facies were arranged randomly, which was expected because of

the sequential structure of sedimentary facies at this scale. Similarly, Table 3.3a

shows the numbers of each type of transition for a distance of 10 m upward while

Table 3.3b shows the corresponding number of transitions that would be expected,

assuming independence.

One difference between the observed values in the previous tables is that

Table 3.2 is almost symmetric around the diagonal but Table 3.3 is definitely not.

The lower line representing sections starting with facies B contains 36 out of 55

observations (i.e. 65% rather than 56%). This indicates that facies B tends to be

lower in the stratigraphic sequence than facies A; that is, this is evidence of non-

stationarity. So averaging along the vertical direction is not a valid operation in this

case. This problem will be encountered again when calculating variograms.

Second Type of Transition Probability

Here we consider the case where there are three or more facies. We are interested in

the probability of being in facies Fj at point x + h knowing that we are in facies Fi at

point x but not at x + h. This probability is:

Table 3.2 (a) Observed number of transitions for a distance of 2 m upward (out of a total of 71),

(b) expected number of transitions assuming independence

(a) (b)

Up to A Up to B Up to A Up to B

From A 16 13 From A 13.7 17.5

From B 15 27 From B 17.5 22.3

Table 3.3 (a) Observed number of transitions for a distance of 10 m upward (out of a total of 55),

(b) expected number of transitions assuming independence

(a) (b)

Up to A Up to B Up to A Up to B

From A 11 8 From A 10.7 13.5

From B 14 22 From B 13.5 17.3
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P xþ h 2 Fj x 2 Fi & xþ h =2 Fij� �
= P 1Fjðxþ hÞ ¼ 1 1Fij ðxÞ ¼ 1 &1Fiðxþ hÞ ¼ 0

� �
¼ P 1Fjðxþ hÞ ¼ 1&1FiðxÞ ¼ 1&1Fi ðxþ hÞ ¼ 0

� �
P 1FiðxÞ ¼ 1&1Fiðxþ hÞ ¼ 0½ �

¼ E 1Fjðxþ hÞ 1FiðxÞ 1� 1Fiðxþ hÞ½ �� �
E 1FiðxÞ 1� 1Fi ðxþ hÞ½ �f g

¼ E 1Fjðxþ hÞ 1FiðxÞ
� �

E 1FiðxÞ 1� 1Fi ðxþ hÞ½ �f g ¼ Cijðx; xþ hÞ
PFiðxÞ � Ciiðx; xþ hÞ ;

where Cijðx; xþ hÞ is the non centred covariance between 1FiðxÞ and 1Fjðxþ hÞ. This
is the probability of going from facies Fi to facies Fj, when we know that the facies at

x + h is not the same as at x. Clearly this probability cannot be computed if j ¼ i.

Example

The second type of transition probabilities were calculated in the vertical direction

for the image shown in Fig. 3.5, which was obtained by truncating a gaussian with

an anisotropic gaussian variogram. The EW range was 50 units compared to 10

units in the NS direction. The graph shows the probability that the second point

(x + h) lies in facies 2 (or facies 3) given that the first point (x) is in facies 1 and that

the second one is not in facies 1 (right). We see that for short distance up to about 4

units the only possible transition is from facies 1 to 2. As the distance increases the

probability that the second point lies in facies 3 rises steadily to about 0.35.

Fig. 3.5 Simulation of a gaussian random function with a gaussian variogram with an EW range

of 50 units and a NS range of 10 units (left), and the probability of a point at position x + h being in

facies 2 (or facies 3, respectively) given that the first point at position x lies in facies 1 and that the

second one does not, plotted as a function of the distance between the two points (right)
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As a contrast, the image shown in Fig. 3.6 was obtained by truncating the same

gaussian random function using a different rock type rule. In the previous case, the rock

type rule consisted of three intervals in the order: black, then grey and then white. Now

there are four intervals: black, grey, black and white. The graph shows the

corresponding transition probability. The essential difference between these two is

that in the first case the black never touches thewhitewhereas it does in the second case.

Exercises

The first two exercises are designed to familiarise readers with indicator random

functions. The next two illustrate the types of inconsistencies that arise with

unsuitable models for indicator covariances. The last exercise gives some rather

interesting results on multi-point statistics.

Exercise 3.1

l Figure 3.7 shows 12 regularly spaced points in a 2D zone containing two facies

(coloured grey and white). Let F denote the white facies. Write the values of the

indicators of F and F in Table 3.4.
l Calculate the experimental mean and variance of the indicator for F and of its

complement. Check that the means lie between 0 and 1, and that the variances

are no greater than 0.25. Under what circumstances would the variances equal

0.25?
l Calculate the experimental variogram for facies F, and then for its complement

for up to 3 lags in the EW direction. Plot these. Why are they the same? What

shape do they have near the origin?

Fig. 3.6 Simulation of a gaussian random function with a gaussian variogram with an EW range

of 50 units and a NS range of 10 units (left), and the probability of a point at position x + h being in

facies 2 (or facies 3, respectively) given that the first point at position x lies in facies 1 and that the

second one does not, plotted as a function of the distance between the two points (right)
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l The next step is to calculate the centred spatial covariances for F and its

complement, then their cross covariances. Check that the direct covariances

are identical and that the cross covariances are the negative of these.

Exercise 3.2

Assume that a facies F is stationary with probability PF ¼ 0.6 in the area under study.

Show that the variance of the indicator 1FðxÞ equals 0.24. Suppose that its variogramcan

be modelled as an exponential with a scale parameter equal “a”.

l What is the value of its sill?
l Write down the equation for the variogram of its complement.
l Write down the equations for the centred covariance of the indicator for F and

for its complement.
l Plot the non-centred covariances for these two indicators.

Exercise 3.3

Inappropriate models for indicator variograms. This example taken from Matheron

(1987) and Armstrong (1992) highlights the types of inconsistencies that can arise

when inappropriate models are chosen as indicator variograms. In this case we are

going to show again that the gaussian variogram is unsuitable as a model for

the variogram of the indicators.

Fig. 3.7 Twelve samples are available in an area containing a facies F that is coloured in white. Its
complement F is shaded grey

Table 3.4 Values of the indicator for the facies F and its complement

Point N� 1 2 3 4 5 6

1FðxÞ
1FðxÞ
1FðxÞ þ 1FðxÞ
Point N� 7 8 9 10 11 12

1FðxÞ
1FðxÞ
1FðxÞ þ 1FðxÞ
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Consider two points x1 and x3. Let x2 be their midpoint. As each of the three

indicators can take two values, 0 and 1, there are 8 possible combinations for the

values of the three indicators. Let o denote the probability that all three indicators

take the value 1. That is,

o ¼ Pr 1F x1ð Þ ¼ 1F x2ð Þ ¼ 1F x3ð Þ ¼ 1½ �
As usual the non-centred covariance is:

Cij ¼ CF xi; xj
� � ¼ E 1FðxiÞ1FðxjÞ

� � ¼ Pr 1FðxiÞ ¼ 1FðxjÞ ¼ 1
� �

Show that:

Pr 1Fðx1Þ ¼ 1Fðx2Þ ¼ 1 & 1Fðx3Þ ¼ 0½ � ¼ C12 � o

Pr 1Fðx2Þ ¼ 1Fðx3Þ ¼ 1 & 1Fðx1Þ ¼ 0½ � ¼ C23 � o

Pr 1Fðx1Þ ¼ 1Fðx3Þ ¼ 1 & 1Fðx2Þ ¼ 0½ � ¼ C13 � o

Hint. Split the event 1Fðx1Þ ¼ 1Fðx3Þ ¼ 1½ � into two mutually exclusive events

according to the value of the third indicator e.g.

Pr½1Fðx1Þ ¼ 1Fðx2Þ ¼ 1� ¼ Pr½1Fðx1Þ ¼ 1Fðx2Þ ¼ 1Fðx3Þ ¼ 1� þ Pr½1Fðx1Þ
¼ 1Fðx2Þ ¼ 1&1Fðx3Þ ¼ 0�

Similarly show that

Pr½1Fðx1Þ ¼ 1 & 1Fðx2Þ ¼ 0 & 1Fðx3Þ ¼ 0� ¼ C11 � C12 � C13 þ o

Pr½1Fðx1Þ ¼ 0 & 1Fðx2Þ ¼ 1 & 1Fðx3Þ ¼ 0� ¼ C22 � C12 � C23 þ o

Pr½1Fðx1Þ ¼ 0 & 1Fðx2Þ ¼ 0 & 1Fðx3Þ ¼ 1� ¼ C33 � C13 � C23 þ o

Hint. consider the event 1Fðx1Þ ¼ 1 & 1Fðx2Þ ¼ 1Fðx3Þ ¼ 0½ �:
The contradiction becomes apparent if the three points are set 0.15 apart

(compared to a scale parameter of 1) and if the probability that 1Fi
ðxÞ ¼ 1 is 0.1.

C11 ¼ C22 ¼ C33 ¼ 0:9

Calculate the value of the gaussian variogram for a distance of 0.15 and show

that the following values are obtained for the noncentred covariance:

C12 ¼ C23 ¼ 0:1� 0:9� 0:494 ¼ 0:0396 and C13 ¼ 0:1� 0:9� 0:478 ¼ 0:043

Show that 0 � 0:043� o since Pr 1Fðx1Þ ¼ 1Fðx3Þ ¼ 1 & 1Fðx2Þ ¼ 0½ � � 0:
In the same way, use the fact that
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Pr 1Fðx1Þ ¼ 0 & 1Fðx2Þ ¼ 1 & 1Fðx3Þ ¼ 0½ � ¼ C22 � C13 þ C23 � o � 0

to prove that o � 0:82
Since it is impossible for o � 0.043 and o � 0.821, the gaussian variogram

model is incompatible with indicator data.

Exercise 3.4

Another unsuitable variogram model. At first one might be tempted to think that the

gaussian variogram is not allowable because it is infinitely differentiable or because

it is quadratic near the origin. To show that this is not the case, Matheron produced a

construction for a variogram model

fðxÞ ¼ ½a2e�ax � bð2a� bÞe�bx�

where a< b< 2a and o2 ¼ 2ab� b2.

This is licit for indicators in 1-D provided that o < b. However he also proved

that if o > b, the triangle inequality is not respected. To see this, let b ¼ 0.1,

o ¼ 1 and h ¼ 0.2.

Exercise 3.5

Multi-point Statistics. Covariances and variograms are examples of two point

statistics. This exercise gives some theoretical results on multi-point statistics.

Part (a) shows that once one of the three point covariances is known, all the others

can be expressed in terms of it and of lower order statistics. Let

CFFF ðx; y; zÞ ¼ Eð1FðxÞ1FðyÞ1FðzÞÞ

Show that:

CFFFðx; y; zÞ ¼ �CFFFðx; y; zÞ þ CFFðx; yÞ
CFFFðx; y; zÞ ¼ CFFFðx; y; zÞ � CFFðx; yÞ � CFFðx; zÞ þ PFðxÞ
CFFFðx; y; zÞ ¼ �CFFFðx; y; zÞ þ CFFðx; yÞ þ CFFðx; zÞ þ CFFðy; zÞ þ 1

� PFðxÞ � PFðyÞ � PFðzÞ

By permuting the order of the coordinates show that

CFFFðx; y; zÞ ¼ �CFFFðx; y; zÞ þ CFFðx; zÞ

Deduce similar expressions for the remaining three point statistics. (Exercise 2.3

is based on these.) We can now extend this result to higher order multi-point

statistics. First we need to define the notation. Let

CFFðx1; x2Þ ¼ CF2 and CFFFðx1; x2; x3Þ ¼ CF3
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More generally, let the covariance for the case where the first (p�k) points

belong to the facies F and the remaining k points to its complement be

C
F:::F|ffl{zffl}
ðp�kÞ

;F:::F|ffl{zffl}
k

ðx1; :::xpÞ ¼ C
Fp�kF

kðx1; :::xpÞ

Show that for any two integers k and p

C
Fp�k;�F

kðx1; x2; :::; xpÞ ¼ ð�1ÞkCFpðx1; x2; :::; xpÞ þ F ðx1; x2; :::; xpÞ
� �

The function F involves only lower order covariances CFp�i and proportions.

This can be deduced by expanding the appropriate product. For example, to find

CFFFðx; y; zÞ, we expand

FðxÞ 1� FðyÞ½ � 1� FðzÞ½ � ¼ FðxÞFðyÞFðzÞ � FðxÞFðyÞ � FðxÞFðzÞ þ FðxÞ

This gives

CFFFðx; y; zÞ ¼ CFFFðx; y; zÞ � CFFðx; yÞ � CFFðx; zÞ þ PFðxÞ:

By permuting the coordinates we can show that any n-point statistics can be

expressed using the basic n-point covariance CFpðx1; x2; :::; xpÞ and terms involving

lower order covariances.

Exercise 3.6

Erosion model. Consider two models with two facies where A and D are the main

facies and A;D their complements. Then form a model with three facies, A, B and

C, by letting A erode D and its complement.

l Write the indicators of A, B, C using the indicators of A, and D.
l Use the previous results to compute the indicator covariances of A, B, C for the

case when the facies A is independent of D.

Exercise 3.7

Porous medium. Consider a porous media. Let A be the random set describing the

pores. The porosity of support V is the mean value of the indicator A on the volume

V centred at the point x. Compute the analytical form of

l The covariance of the porosity of support V.
l The covariance of another indicator F with the porosity of support V.
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Chapter 4

Proportions

The simplest quantity that can be measured from an image showing different facies

or lithotypes is the percentage of space taken up by each facies. So the first step in a

plurigaussian study is to calculate the proportions from the experimental data. In the

stationary case, we only need calculate the percentage of all the data that belong to

each facies to get the proportions. However in most practical cases, the geology is

more complicated. For example, petroleum reservoirs are not stationary in the

vertical direction because of cyclic changes during their deposition. Vertical pro-

portion curves were designed to quantify these changes. We will show how to

compute and interpret these curves. In more complicated cases the proportions vary

laterally as well. In that case we build up a 3D matrix of proportion curves.

Although plurigaussian simulations were first developed for the oil industry, they

are now used in mining as well. Proportion curves and 3D proportion matrices are

also used there to estimate the proportions of each rock type.

The first section in this chapter describes vertical proportion curves for the

simplest case where the reservoir or deposit is stationary horizontally. These curves

summarise the vertical variability in the proportions. After that we treat the more

general case of non-stationarity where we use 3D proportion matrices. One key

factor when calculating vertical proportion curves (VPC, for short) is the choice of

the reference level. An example is presented to illustrate the impact of inappropriate

choices on VPC.

How to Calculate Vertical Proportion Curves

Vertical proportion curves first proposed by Matheron et al. (1987) are a simple tool

for quantifying the evolution in the amount of each facies or lithotype present as a

function of depth. They are computed along lines parallel to the chosen reference

level (generally a chrono-stratigraphic marker). The results are presented as a graph

showing the proportion of each facies at each level. We illustrate this procedure

using a simple example.

Figure 4.1 shows five fictive wells each containing five core sections of equal

length. Three lithotypes which we call sandstone, shaly-sandstone and shale, have

M. Armstrong et al., Plurigaussian Simulations in Geosciences,
DOI 10.1007/978-3-642-19607-2_4, # Springer-Verlag Berlin Heidelberg 2011
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been recorded. Looking at this figure, we see that there is more shale at the top

of the wells than at the bottom. In fact, all five core sections in the top row are shale

(i.e. 100% shale). In the second row there is 80% shale and 20% shaly-sandstone.

At the bottom there is 40% shaly-sandstone and 60% sandstone, but no shale.

These proportions are presented graphically in Fig. 4.2. The order that the facies

are arranged in is important. It must reflect the evolution seen in the geology. In this

case the interpretation is simple: the grain size at the top of the wells is much

smaller than at the bottom. This indicates sedimentological evolution from a high

energy medium at the bottom to a low energy one at the top.

Example 1: The Ravenscar Sequence

The Ravenscar sequence which outcrops in cliff faces near Scarborough in North

Yorkshire, consists of about 200 m of siliclastic sediments dating from the Middle

Fig. 4.1 Five drill-holes each containing five core sections of equal length

Fig. 4.2 Vertical Proportion Curves showing the proportion of each facies per level
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Jurassic era. The Cleveland basin to which it belongs is a progradation of a deltaic

system with marine influences. Figure 4.3 (taken from Beucher et al. 2006) shows a

conceptual model of it.

The Ravenscar sequence consists of seven units. From the top down, these are

Scarborough, Gristhorpe, Millepore, Sycarham, Cloughton, Ellerbeck and Saltwick.

Each had a distinctly different depositional environment. For example, the Saltwick

unit was laid down in a continental environment whereas the Ellerbeck unit is

characterised by steady changes in the sea level. Figures 4.4 and 4.5 (from Beucher

et al. 2006) show the vertical proportion curves for these two units. The three main

channel producing episodes are clearly visible in the VPC for the Saltwick unit. In

contrast to this, the VPC for the Ellerbeck unit shows regular changes from an open

Fig. 4.3 Conceptual model of the deposition

Fig. 4.4 Vertical proportion curves for the Saltwick unit of the Ravenscar sequence
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marine environment (marine mudstones and marls) at the bottom of the unit to

continental facies at the top. Intermediate lithounits include argillaceous sandstones

and transgressive sandstone corresponding to the shoreface and clean sandstone from

the foreshore and upper shoreface. The top of the unit is characterised by a lagoon

environment with a floodplain, continental mudstone and argillaceous sands.

Example 2: Facies with Contrasting Anisotropies in a Gold Deposit

The Lupin mine in Northwest Canada is a good example of a stratiform banded iron

formation (BIF) hosted gold deposit. Some of the gold is uniformly disseminated in

thin, laterally continuous units of sulphur-richBIFwhile the rest is contained in steeply

inclined quartz veins that have overprinted the BIF. See Kerswill et al. (1996) for

more information. The two gold-bearing lithofacies and the barren background are

present in the schematic vertical cross-section of the orebody shown in Fig. 4.6 from

Roth et al. (1998).

Figure 4.7 shows the experimental VPC computed from Fig. 4.6 with the

proportion of quartz vein in dark grey and that of sulphide BIF in light grey. The

proportion of quartz vein changes gradually, reaching a maximum near the middle

of the cross-section. In contrast to this, the proportion of sulphide BIF is erratic.

Before this VPC can be used to calculate the thresholds we have to decide

whether these peaks are representative of genuine geological features in the deposit

or whether they are due to statistical fluctuations. Looking back at Fig. 4.4, we see

that same problem arose with the VPC for the Saltwick unit of the Ravenscar

sequence. If the peaks are a real feature they should be modelled. Otherwise we

should smooth them. Alternatively, the reference level has to be changed. This

decision can only be made after discussion between the geologist or the engineer

Fig. 4.5 Vertical proportion curves for the Ellerbeck unit of the Ravenscar sequence
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and the geostatistician. In both of these cases it was decided that the peaks

represented real features of the deposit/reservoir that should be reproduced in the

simulations. So the thresholds were set to generate more BIF (or more channels as

the case may be) at the corresponding depths.

Horizontal Non-stationarity

The vertical proportion curves presented in the previous section were computed

assuming that the deposit/reservoir was at least horizontally stationary. In many

cases, this is not true. The proportions vary laterally from one area to another. The

Millpore and Gristhorpe units of the Ravescar sequence in Yorkshire are a typical

example of this. The depositional environment varied from marine to littoral

deposits. It is characterised by marine mudstone, wash-over argillaceous sandstones

Fig. 4.6 Schematic vertical cross-section of the Lupin orebody showing two mineralised litho-

facies with contrasting anisotropies on a waste background

Fig. 4.7 The corresponding vertical proportion curves
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through to deltaic environment with a floodplain and fluvial and deltaic channels.

Beucher et al. (2006) constructed a 3D matrix of proportion curves to model the

evolution in the proportions both vertically and laterally. Their first steps was to

group wells locally and compute vertical proportion curves for each set. The

percentage of each of eight lithotypes was then kriged at the nodes of a regular

grid and the kriged estimates were recombined to give vertical proportion curves.

As the proportions were kriged individually, they do not add up to 100% at each

grid node. So the values were rescaled to guarantee this. Figure 4.8 shows nine cells

from the 3D proportion matrix.

Fig. 4.8 Kriging VPC onto a regular grid (above). Representing nine cells from the 3D proportion

matrix (below)
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Having to rescale the proportions to make them sum to 100% is not entirely

satisfactory. One could envisage using cokriging, but this would result in difficul-

ties setting up the structural model (i.e. the variograms and the cross-variograms).

A more fundamental reason for using a simple technique like kriging is that it is

then easier to incorporate additional information, for example from seismic data.

Moulière et al. 1997; Moulière 1998 considered a case where a 2D seismic attribute

gave the cumulative thickness of one lithotype (shaly sandstone) for each unit in the

formation. So it was important to incorporate this constraint into the proportion

curves. She proposed two methods for doing this: one based on cokriging and the

other using kriging. She showed that the simulations obtained after taking account

of the available seismic information were much more realistic than those based on

data from the limited number of wells that were available.

Lateral non-stationarity was also encountered by Doligez et al. (1994a, b) in

their study of the Cajigar 2 succession. As the proportions changed from one area to

another, they constructed a matrix of lithofacies proportions on a 300 m � 300 m

grid. Each horizontal proportion curve was obtained by averaging the percentages

of each lithofacies in the three levels above and below, as well as the level itself.

This has the advantage of maintaining the vertical correlations between successive

levels, as well as smoothing the results. Whereas in vertical proportion curves, the

proportions are plotted horizontally as a function of the vertical height, the hori-

zontal proportion curves show the proportions on the Y-axis with horizontal

coordinate along the X-axis.

Non-stationarity can also arise when studying mining deposits. Compared with

petroleum data, far more drill holes are usually available but there is often no

chronostratigraphic marker to help interpret the geology. Betzhold and Roth (2000)

studied the Mantos Blancos copper orebody which is located 45 km northeast of the

city of Antofagasta in the north of Chile.

Their objective in simulating the orebody was to improve the ore homogenisa-

tion procedure by providing mine-planning engineers with more accurate images of

the key mineralogical units. The rocks at Mantos Blancos come from a volcanic

sequence consisting of andesitic flows and flow breccia at the top, then flow-breccia

and flows of porphyritic dacite, and at the bottom, flows of augen (quartz-eye)

dacite.

The sequence dips to the southwest at 10–20� in themine area. Themineralisation

forms an irregular blanket ranging from 100 to 200 m thick. As different mineralo-

gical ensembles with similar average grades do not increase the grade variability,

they can effectively be grouped together and treated as one new unit.

This led Betzhold and Roth to define three ore type classifications:

l High grade ore comprising chalcocite-bornite ore
l Low grade ore comprising chalcopyrite and chalcopyrite-pyrite ores
l Waste rocks that are not sent to the flotation plant. These include the oxide ore

(atacamite-malachite), pyrite and the barren rock that is generally found beneath

the orebody
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Over the whole field, there is almost 10% of high-grade ore and about 45% of

both low grade and non-copper sulphide material but these proportions are not

constant in space. For example, there is much lower grade material near the top of

the orebody. The proportions have to be modelled as a function of the point

considered in the field.

Proportion curves were computed by a simple moving average procedure that

was refined and complemented manually to incorporate knowledge about the

geological characteristics of the site. Figure 4.9 shows two sets of proportion curves

from a 2D test zone containing just over 900 samples. The horizontal axes are the

east-west direction (on the left) and the vertical direction (on the right). In the top

diagram, the horizontal proportion curve was calculated close to the surface, and

the vertical proportion curve on the Western side of the field. In the lower diagram

Fig. 4.9 Two sets of proportion curves, an HPC and a VPC, calculated using just over 900

samples. The horizontal axes are the east-west direction (on the left) and the vertical direction (on

the right). In the top diagram, the HPC was calculated close to the surface, whereas the VPC came

from the Western side of the field. In the lower diagram both proportion curves were computed

closer to the centre of the field. The proportions are shown as a coloured surface on the vertical axis

with high grade ore in black, low grade ore in middle grey and poor material in light grey
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the proportion curves were computed closer to the centre of the field. The propor-

tions of the three ore types are shown as a coloured surface on the vertical axis: high

grade ore in black, low ore in middle grey and poor grade in light grey. The sum of

the facies proportions is always equal to 100%. It is interesting to see how much the

proportions of low and poor facies can vary over relatively small distances. In

contrast the proportion of high grade ore seems more regular.

Choosing the Reference Level

The shape of the vertical proportion curves and the resulting simulations depend on

the choice of the reference level. For oil reservoirs this is a specific geological marker

which is used to restore the geometry of the reservoir at the time of deposition.

This level must have been horizontal during sedimentation, and, should, if possi-

ble, correspond to a time line. That is, it should be a chronostratigraphic marker not

an erosional unconformity. The reservoir is then flattened using this as the refer-

ence level.

Common choices for the reference level are the top of the unit or the bottom.

Alternatively, a proportional grid could have been used to take account of differen-

tial subsidence. Figure 4.10 illustrates two of these three possibilities. Different

reference levels can be used for each reservoir unit, or one serve for several of them.

Fig. 4.10 Two ways of flattening a reservoir, (a) using the top as reference level, (b) proportion-

ately to account for differential subsidence
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To illustrate how important this choice is, Figure 4.11 illustrates the impact of

three possible reference levels on the vertical proportion curve and then on the

simulations. The Ellerbeck unit of the Ravenscar sequence which was described

earlier in the chapter, was used as an example. The correct level is a flooding

surface inside the Ellerbeck unit near the bottom. The two incorrect levels she

considered were the base of the Ravenscar sequence and its top (denoted by R1

and R2 respectively). The base is a chronostratigraphic marker, the top is an

unconformity.

Figure 4.12 shows the VPC for the three different choices. The best one (denoted

by OK) shows a steady gradation in the depositional environment. Starting from the

bottom these are:

l Mudstone coming from an open marine environment
l Argillaceous sandstone from the low to mid shore
l Transgressive sandstone
l Clean sandstone from the foreshore
l A mixture of argillaceous sandstone and mudstone from a lagoon environment
l Continental mudstone from a flood plain environment at the top

The secondVPC correspond to reference level R1which is not the correct one. But

its irregularities could have been due to cycleswithin the depositional cycles. The third

VPC corresponding to reference level R2 is obviously incorrect. Figure 4.13 shows

one simulation of the unit obtained using the correct VPCwhich reproduces the type of

continuity that would be expected at this scale, in this type of depositional environ-

ment. The lithotypes in the simulation corresponding to R1 are much less continuous

Fig. 4.11 Three possible choices for the reference level; the flooding surface inside the Ellerbeck

formation (the correct choice), the bottom of the reservoir (R1) and the top (R2)
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Fig. 4.12 Vertical proportion curve corresponding to the different reference levels: correct (top) –

reference level R1 (middle) – reference level R2 (bottom)
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Fig. 4.13 One simulation of the unit obtained using different reference levels: correct (top) –

reference level R1 (middle) – reference level R2 (bottom)
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Fig. 4.14 Accumulated sand thickness obtained using the different reference levels: correct (top) –

reference level R1 (middle) – reference level R2 (bottom)
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and would lead to quite different fluid flows. The third simulation for R2 suggests no

connectivity from one part of the unit to another.

It is not always obvious which level is the most appropriate for the reference.

When in doubt, seismic data can sometimes provide guidance because it can give an

indication of the cumulative thickness of sandstone. This could be compared to the

cumulative thickness found in simulations. Figure 4.14 shows the cumulative

sandstone thickness for the three simulations. The differences are quite marked.

Volpi et al. (1997) and Ravenne et al. (2002) discuss vertical proportion curves in

detail. The definition of a level has a marked impact on the result of the simulation.

Onlap or toplap configurations can be produced depending on the choice of a

reference level with regards to the unit geometry.

Non-stationarity

From a geological point of a view, a non-stationarity is characterised by a signifi-

cant lateral change in the lithotype distribution in a reservoir unit, within the study

area. It often shows up in the horizontal proportion curves as significant variations

in the lithotype proportions in a given direction.

As geological phenomena always have some non-stationary aspects, depending

on the scale of investigation, the choice between stationary or non-stationary

models is subjective. It implies firstly a classification of the heterogeneity and

then setting up a hierarchy. The distribution of the relevant heterogeneity will be

then analysed to determine if it is stationary or not.

Non-stationarity concerns both object and sequence-based models. In object

based models, it implies lateral variations of the object frequency. In sequence –

based models, non stationarity can be handled by computing several proportion

curves for lithotypes in different areas of the reservoir. This leads to the construc-

tion of a proportion matrix, in which vertical proportion curves are computed in

each cell of a grid (Beucher et al. 1993; Doligez et al. 1999a, b, c). This approach is

very flexible and gives realistic lateral variation of lithofacies. Furthermore, it is

easy to integrate soft constraints such as an external drift into the computation of the

proportion matrix. Geological information derived from seismic campaigns can

then be integrated in the simulations (Moulière et al. 1997; Fournier and Derain

1997; Johann et al. 1996; Beucher et al. 1999).
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Chapter 5

Truncation and Thresholds

Basic Principle in the Truncated Gaussian Method

In truncated gaussian simulations, the lithofacies are not simulated directly: a

stationary gaussian random function is simulated first, and is then transformed

into the lithofacies variable by truncation. For example, if we want to simulate

two lithofacies, F1 and F2, a very intuitive way to transform the simulated gaussian

variable into facies values is to say “if the numerical value of the simulated gaussian

is lower than the number t1, we obtain the first facies F1; otherwise, we obtain the

second facies F2”. The value t1 is called a threshold.

Defining the Thresholds

Let x be any point in the simulated domain, let 1F1(x) and 1F2(x) be the indicators of

the lithofacies F1 and F2 and let Z(x) be the simulated gaussian function at point x.

The transformation used is described mathematically by:

1F1 xð Þ ¼ 1 , �1 � Z xð Þ < t1:

When we want to simulate a lithofacies variable which can take more than two

values, we have to define more than one threshold (N�1 thresholds for N possible

lithofacies values). The ith facies Fi is defined by:

x 2 Fi , 1Fi xð Þ ¼ 1 , ti�1 � Z xð Þ < ti:

The thresholds are in increasing order

t1 � t2 � . . . � ti�1 � ti � tiþ1 � . . . � tN�1:

And we can obviously have one and only one facies value at each point.

M. Armstrong et al., Plurigaussian Simulations in Geosciences,
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Transitions Between Facies

Provided that the nugget effect in the variogram is zero, the simulated gaussian

function is continuous. We are going to study the simulated values as we go from

point x to point y.

For any intermediate value between z(x) and z(y), there must be at least 1 point

where z takes that value. This is true for every path going from x to y, no matter how

complicated it is (Fig. 5.1).

This has important consequences. Suppose that the points x and y belong to

different facies, respectively Fi and Fj, where i < j. Then we will find all the

intermediate facies Fk (i < k < j) on all paths joining the points x and y (provided

that the thresholds do not vary in space). Graphically, this corresponds to a

Fig. 5.2 Characteristic patterns generated using an exponential variogram (left) and a gaussian

variogram (right)

Fig. 5.1 Examples of possible paths

74 5 Truncation and Thresholds



characteristic pattern of concentric shapes (Fig. 5.2). In both cases, if we go from a

point in the white facies to one in the dark grey, we have to cross the light grey. So

the contacts that are possible using the truncated gaussian model are defined by the

ordering of the thresholds, i.e., by the ordering of the facies.

Figure 5.3 shows three simulations obtained with different choices of facies

ordering. In the top figure, the light grey always occurs between white and dark

Fig. 5.3 Three truncated gaussian simulations with the facies ordered in different ways. At the

top, the light grey always occurs between white and dark grey. In the middle, the dark grey forms

the buffer between the other two colours whereas at the bottom it is the white. This relationship is

summarised in the rocktype rules to the right of each figure

Basic Principle in the Truncated Gaussian Method 75



grey. In the middle figure, the dark grey forms the buffer between the other two

colours whereas in the bottom figure it is the white. This relationship is summarised

in the rocktype rules to the right of each figure. The discretisation of the space can

attenuate this effect, especially when the properties of the gaussian variable allow

sharp (but nevertheless continuous) variations.

Variation of the thresholds in space can also attenuate this effect, especially

when some facies disappear locally.

Link Between Thresholds and Proportions

Earlier we saw that the proportion of a particular facies Fi at point x is the

probability of having this facies Fi at that point x. This can be written as:

PFi ¼ P(facies at point x ¼ Fi) ¼ E[1Fi(x)].

As we have

1Fi xð Þ ¼ 1 , ti�1 � Z xð Þ < ti;

we can also write:

pFi xð Þ ¼ P ti�1 � Z xð Þ < tið Þ ¼ Pð�1 < Z xð Þ < tiÞ � Pð�1 < Z xð Þ < ti�1Þ
pFi xð Þ ¼ G tið Þ � G ti�1ð Þ;

where G(t) is the cumulative distribution function for the standard normal distribu-

tion N(0,1). (The choice of the normal is entirely conventional). As the proportions

of each facies are known experimentally, we just invert this relationship to deduce

the thresholds:

t1 ¼ G�1 pF1 xð Þ½ �
t2 ¼ G�1 pF1 xð Þ þ pF2 xð Þ½ �
ti ¼ G�1 pF1 xð Þ þ pF2 xð Þ þ � � � þ pFi xð Þ½ �:

Once the facies ordering has been chosen, we have a one to one relationship

between the thresholds and the proportions. This shows a limitation of the truncated

gaussian method: as the model orders the facies, this ordering must be realistic from

a geological point of view.

Remark 5.1. Once the facies sequence is defined, it is of no importance whether they
are numbered in an increasing order or a decreasing one. By replacing Z with �Z,
both cases are equivalent.
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Non Stationary Facies

If the facies are stationary, the thresholds are constant in space; otherwise they vary.

The example of how to calculate vertical proportion curves given in Chap. 3 is a

typical case of vertical non stationarity. Table 5.1 lists the proportions of each facies

in each level for that example and Table 5.2 gives the corresponding thresholds.

The first and last thresholds are always equal to �1 and 1 respectively, and

they are not taken into account in the N�1 thresholds (if we consider them, there are

Nþ1 thresholds).

In non stationary cases, facies sometimes disappear locally. For example, if the

ith facies is not present, then ti�1 ¼ ti as occurred in Table 5.2.

Idea Behind the Plurigaussian Method

With the plurigaussian method, we simulate several gaussian functions instead of

one. A transformation is made on the whole set of gaussian functions to obtain the

facies value. We will illustrate how this is done via a few examples.

Example 5.1. To start with, we limit ourselves to two gaussian functions Z1(x) and

Z2(x), to simplify the graphical display. Figure 5.4 shows the 2D gaussian space and

the position of two simulated points in this space. As the partition chosen here

contains only two subsets, we will have two lithofacies (white and grey). At the first

point x1 the simulated values are Z1(x1) and Z2(x1), which we will shorten to z1�1

and z2�1. This pair of values belongs to the subset labelled F1. This means that the

white facies will be attributed to x1. At point x2 the simulated values are z1�2 and

z2�2. This pair of values belongs to the subset labelled F2, which means that the

Table 5.1 Proportions of each facies shown in Fig. 4.1

Level (numbered from

bottom to top)

Shale (F1) (%) Shaly sandstones

(F2) (%)

Sandstones

(F3) (%)

5 100 0 0

4 80 20 0

3 20 80 0

2 0 60 40

1 0 40 60

Table 5.2 Thresholds corresponding to proportions shown in Table 5.1

Level t0 t1 t2 t3

5 �1 1 1 1
4 �1 0.84 1 1
3 �1 �0.84 1 1
2 �1 �1 0.25 1
1 �1 �1 �0.25 1
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grey facies will be attributed to x2. (N.B. the gaussian functions take all values

between �1 and +1. We represent them in a rectangle, to simplify the display.

Example 5.2. In this example, we have also two gaussian functions, but there are six

lithofacies. Figure 5.5 shows the 2D gaussian space with its partition, and the

position of three simulated points in this space. Here we attribute the facies F1 to

point x1, F2 to point x2 and F5 to point x3.

Remark 5.2. 1. In these figures, we see that the limits of the subsets can be rather

complicated, so we can no longer speak of thresholds.

2. If we simulate N gaussian functions, they define a theoretical space with N

dimensions. At any point x, the values of the simulated gaussian functions, z1,

z2,. . ., zN, define the co-ordinates of the simulated value in this new space. The

facies are labels attached to parts of this space. If we want to be able to give a

facies to each simulated point, these parts must define a partition of the gaussian

F3

F2
F1

F4

F6

F5

F3

X1

X3

X2

Fig. 5.5 Rocktype rule with six facies. The three points lie in facies N� 1, 2 and 5 respectively

F2

F1

Z1 – 1Z1 – 2

Z2 – 2

Z2 – 1

Fig. 5.4 Rocktype rule for two facies
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space. If we have N gaussian functions Zj, and if we let Di be the subset of the

gaussian space which is labelled as facies Fi, we can write:

1Fi xð Þ ¼ 1 , Z1ðxÞ;Z2ðxÞ; :::;ZNðxÞð Þ 2 Di:

3. The gaussian functions need not to be independent. They can be correlated.

Link with the Proportions

As for the truncated gaussian, the proportion of facies Fi at point x is just the

probability of having this facies Fi at that point. It can be written as:

pFi xð Þ ¼ P (facies at point x ¼ FiÞ ¼ E 1FiðxÞ½ �:
As we have 1FiðxÞ ¼ 1 , Z1ðxÞ;Z2ðxÞ; :::;ZNðxÞð Þ 2 Di we also have:

pFiðxÞ ¼ P ½Z1ðxÞ; . . . ;ZNðxÞ� 2 Dif g ¼
ð
Di

gSðz1; . . . ; zNÞ dz1 . . . dzN;

where gS z1; z2; . . . ; zNð Þ is the N-variate gaussian density function with mean 0 and

variance 1, and S is its correlation matrix. Computing pFi is quite easy when we

know S and Di, but determining S and Di even when we know all the pFi is

impossible in the general case because there is infinity of solutions. To solve this

problem, we have to impose some constraints on the parameters.

Parameter Simplification: Use of Thresholds

To overcome this problem, we choose to partition the gaussian space into rectangles

(if we have two gaussian functions) or in rectangular parallelepipeds (with more

than two gaussian functions). Figure 5.6 shows an example of one such partition

with two gaussian functions. These rectangular boxes are defined by their projections

t2–2

t2–1

t1–1 t1–2

Fig. 5.6 Partition in rectangles (left) and thresholds (right)
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on the gaussian coordinate axes. The end points of these projections can be

considered as thresholds. Each rectangular box is defined by 2N thresholds (some

of them can be infinite). When we know 2N � 1 of them, it is possible to invert the

equation

pFi xð Þ ¼
ð
Di

g z1; z2; . . . ; zNð Þ dz1 dz2 . . . dzN

numerically to find the last unknown threshold. If we have N gaussian functions and

M facies, we have M� 2N thresholds. As we do not allow “empty space”, our

rectangular boxes constitute a partition of this space. This considerably decreases

the number of independent thresholds. For example, if we include the infinite

thresholds, we have:

l M þ 1 thresholds with 1 gaussian function (i.e., truncated gaussian method)
l M þ 3 thresholds with 2 gaussian functions
l M þ 5 thresholds with 3 gaussian functions
l M þ 2N�1 thresholds with N gaussian functions

which means M�1 finite independent thresholds.

Choice of the Partition

Even after having decided to use a rectangular partition, there are many possible

layouts. For example with two gaussian functions and four lithofacies, we have ten

possibilities, plus one which is equivalent to the case with only one gaussian

function. Figure 5.7 shows these partitions. With 6 facies, we have approximately

140 possibilities. This shows that we will not be able to test all the possible

Fig. 5.7 Rectangle rocktype rules for four facies
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partitions. We have to make a choice, and then find a criterion to help us do this.

Figure 5.8 shows examples of simulations corresponding to two cases fromFigure 5.7.

We can see that the facies that touch each other in the rocktype rule are also in

contact in the simulation. This is a general rule when the proportions are constant,

and when the simulated field is large enough to be statistically representative.

This rule is usually sufficient to choose the partition if there are only a few facies,

but when the number increases we can find several partitions which give the same

contact possibilities (Fig. 5.9). In that case, the shape of these contacts can also help

us.We have to decide which gaussian function will guide the shape of which contact.

When the proportions vary, some facies can disappear in some parts of the

simulated field. In that case, the rocktype rule also varies, and the forbidden contact

will locally disappear.

Choice of the Correlation Matrix

With two gaussian functions, the correlation matrix which can be written as

S ¼ 1 r
r 1

� �

is consistent provided that �1 < r < 1. The values r ¼ �1 are also authorised,

but in that case it is better to work with only one gaussian function. The covariance

matrix must always be positive definite. With more than two gaussians, it would be

Fig. 5.8 Examples of simulation for two of the rocktype rules shown in Fig. 5.7
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virtually impossible to get a positive definite matrix just by picking values for the

terms. It is better to give a consistent model of relationships between the gaussians,

and then deduce a suitable covariance matrix from this. We will not go into more

detail here.

With two gaussian functions, once the rocktype rule is chosen, we still need to

know the M�1 thresholds and the correlation, r, which gives M unknowns. So we

need M equations linking the unknowns to the proportion values. We have M

equations but they are not independent because the partition automatically ensures

that the proportions sum to 1. As a consequence, we have more variables than

independent equations. The number of solutions is infinite. Worse, these solutions

are not equivalent: they give rise to simulations that are quite different.

For example Fig. 5.10 shows two simulations obtained with the same partition

but different correlations, 0 and 0.6. The shape of the black facies is exactly the

same in both cases because the first gaussian function is the same, but those of the

three other facies change. This is easiest to see on the white facies. In the right hand

simulation where the correlation is 0.6, the white tends to wrap around the black,

especially in the bottom left corner. In Chap. 8, we present a case study where

correlation will be used to drape one facies over algal bioherms.

Fig. 5.9 Examples of simulations with the same contacts, but with different rocktype rules
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The example given above shows that increasing the correlation coefficient

introduces a border effect, which looks like the ordering effect we have with only

one gaussian function. This is the reason why we suggest choosing the value of the

correlation coefficient arbitrarily, depending on whether we want to have a strong

border effect or not. Note that the correlation coefficient is a property of the

gaussian functions: it will remain constant over the whole domain.

Calculating the Thresholds

When we have chosen the correlation coefficient, we have M�1 independent

equations of the form:

pFi ðxÞ ¼
ð
Di

gðz1; z2; . . . ; zNÞ dz1 dz2 . . . dzN;

where the Di are rectangles [ti�1, ti] � [si�1, si].

We have already seen that there are M�1 independent thresholds. This equation

system cannot be solved analytically, but iterative methods can give us the solution.

The trial and error method, testing successively all the thresholds, would be too

slow, because it does not automatically ensure the consistency of the partition in

rectangles.

In general, it is better to perform a global optimisation, minimising for example

the global square error on the proportions. But in many cases, it is possible to

group the facies and work successively on one gaussian function, then the other

one (we may have to iterate this procedure). Figure 5.11 shows an example of

this. Here the trial and error method is very quick, because the partition is

automatically consistent. The partition we want to obtain is shown on the top

line. The second line shows the order in which the thresholds are evaluated,

starting with the top block.

Fig. 5.10 Simulations with the same lithotype rule and different correlation coefficients, r ¼ 0

and r ¼ 0.6
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Generalisation to Non-stationary Case

As for the truncated gaussian, non-stationarity is obtained via varying proportions.

This results in varying thresholds for both gaussian functions. The rocktype rule

must be given including all the facies, even if some of them can disappear locally.

When Simulations Show “Prohibited” Contacts

Sometimes simulations show contacts which do not exist in the rock type rule

diagram. In the stationary case, there are two possible reasons for this: one

(or more) of the gaussian functions is discontinuous, or the discretisation is too

coarse to show the continuity. This problem occurs much more often in the non-

stationary case. We will demonstrate this in the most common case of vertical non

stationarity for the truncated gaussian, but the same applies for horizontal

non stationarity and in the plurigaussian case.

When one facies disappears, the two facies which should be separated by it come

into direct contact. This is obvious when the local rock type rule is shown, but can

be forgotten when only the global rocktype rule is given. One consequence is that

the relative position of two facies which never appear at the same level is of no

importance (see Fig. 5.12). What must be taken into account is their relationship

with the other facies.

Two facies which are not in contact in the rock type rule can sometimes touch if

the proportions (and hence the thresholds) vary sharply between consecutive levels.

This is easy to see on the example below, where there are three facies: shale (F1),

shaly sandstone (F2) and sandstone (F3). On level 1, the proportions are respec-

tively 60%, 20% and 20%, which gives the thresholds t1 ¼ 0.25 and t2 ¼ 0.84.

On level 2, they are 20%, 20% and 60%, and so the thresholds are t1 ¼ �0.84,

t2 ¼ �0.25. The gaussian values between �0.25 and þ0.25 represent 20% of the

histogram. When the value simulated on level 1 is between �0.25 and 0.25 (which

corresponds to the facies shale), there is a high probability that on level 2 the

Fig. 5.11 Successive groupings to obtain the thresholds
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simulated gaussian value is located within the same interval. (This of course

depends on the variogram model). If that happens, the sandstone will be directly

in contact with the shale vertically below it (Table 5.3).

Higher Dimensional Rock-Type Rules

The rock-type rules presented up to this point have all been two dimensional, even

though higher dimensional rules are possible as Xu et al. (2006) showed. The

reasons for presenting only 2D rules are that they are easier to interpret and to

present in papers and reports and because we have not needed higher dimensional

Table 5.3 Schematic representation of the rocktype rules on two consecutive levels, respecting

the ordering in the threshold values

Level 2 Shale Shaly sandstones Sandstones

Level 1 Shale Shaly sandstones Sandstones

Fig. 5.12 Equivalent rocktype rules if F3 and F4 do not appear on the same level

Fig. 5.13 3D rock-type rule used by Emery (2007a, b) for modelling five mineralogical domains

in a Chilean porphyry copper deposit: alluvial gravel, oxides, leached capping material, primary

and secondary sulphides. Reproduced with permission
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rules in any of our case-studies. Having said that, in a study of a Radomiro Tomic

porphyry copper deposit north of Calama City in Chile, Emery (2007b) encountered

a case where a 3D rule was required to represent the connections between the five

mineralogical domains of interest: alluvial gravels, leached capping, oxides, pri-

mary and secondary sulphides. The gravel are located near the surface and in

contact with the oxides and the leached capping but never the sulphides, but the

other four domains are in contact with each other. A convenient way of representing

this situation is by using a 3D rule as shown in Fig. 5.13. Introducing a third

gaussian allows more flexibility but complicates the variogram analysis.

86 5 Truncation and Thresholds



Chapter 6

Variograms and Structural Analysis

This chapter describes how to calculate experimental variograms for the facies

indicators and how to fit models to them. The relationship between the facies

indicators and the underlying gaussian values has been given in Chap. 2.

In this chapter we will give the variogram equations in the case when we only

have constraints on facies but no other categorical variable or continuous function

in the data set.

The theoretical relation linking the variograms of the underlying gaussians and

those of the indicators is described. From this link we use a specific fitting method:

rather than invert it, we use an indirect iterative procedure to fit a variogram model.

But first, we show how to calculate the experimental variograms for the facies

indicators.

Experimental Variograms and Cross-Variograms for Facies

In Chap. 2, the definition of the centred covariance of the indicators and its

relationship with the gaussian has been given. Here we consider the centred

variogram of the indicator of the facies F which is the tool used in most geostatis-

tical studies:

gFðx; xþ hÞ ¼ 1

2
Var 1FðxÞ � 1Fðxþ hÞ½ �

¼ 1

2
E 1FðxÞ � 1Fðxþ hÞ½ �2
� �

� E 1FðxÞ � 1Fðxþ hÞ½ �ð Þ2
n o

When the facies indicators are second order stationary or intrinsic with constant

mean, the second term is zero and the formula simplifies to:

gF(x, xþ h) ¼ gF(h) ¼
1

2
E 1F(x)� 1F(xþ h)½ �2
� �

M. Armstrong et al., Plurigaussian Simulations in Geosciences,
DOI 10.1007/978-3-642-19607-2_6, # Springer-Verlag Berlin Heidelberg 2011
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If the mean is not constant, it is still possible to define the non-centred variogram

~gFðx; xþ hÞ ¼ 1

2
E 1FðxÞ � 1Fðxþ hÞ½ �2
� �

Centred variogram and non-centered variograms are equal when the facies indicators

are second order stationary or intrinsic with constant mean. In the non-stationary case,

the mean E[1F(x)] cannot be computed experimentally. In this non-stationary case we

have no alternative to the experimental evaluation of the non-centred variogram. As a

consequence, we will compute the experimental non centred variogram in all cases.

Hence the formula for computing the experimental variogram for facies F is:

g�Fðx, xþ hÞ ¼ 1

2N

X
xa�xbj j¼h

1FðxaÞ � 1FðxbÞ
� �2

where the data points xa and xb are separated by the vector h (possibly with a

tolerance). The summation is carried out over all the data pairs separated by this

distance, and N is the number of pairs. More information will be given later on how

to compute the experimental variogram in the non-stationary case.

In exactly the same way, the cross variogram for facies Fi and Fj is defined as:

gFi Fjðx, xþ hÞ ¼ 1

2
E 1Fi(x)� 1Fi(xþ h)½ � 1Fj(x)� 1Fj(xþ h)

� �� �
Again, this corresponds to the centred (usual) cross-variogram in the second order

stationary case, and to a non-centred cross-variogram in the non stationary case.

Consequently the formula for the corresponding experimental cross-variogram is:

g�Fi Fjðx, xþ hÞ ¼ 1

2N

X
xa�xbj j¼h

1FiðxaÞ � 1FiðxbÞ
� �

1FjðxaÞ � 1FjðxbÞ
� �

Linking the Indicator Variograms to the Underlying Variograms

We have seen in Chap. 2 that the non centred covariance can be interpreted in terms

of probability: Covð1Fi xð Þ; 1Fj xþ hð ÞÞ ¼ Pðx 2 Fi; xþ hð Þ 2 FjÞ

Variograms

From this equation, we can deduce that in the stationary case the variogram of the

indicator of facies Fi can also be interpreted in terms of probability:

gFiðx, xþ hÞ ¼ 1

2
P x 2 Fi½ � + P xþ h 2 Fi½ �f g � P x 2 Fi, xþ h 2 Fi½ �
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If we consider the set of underlying gaussian functions Z(x) and the constraint Ci(xÞ
which describes the link between Z(x) and the indicator 1FiðxÞ, this equation gives:

gFiðx, xþ hÞ ¼ 1

2
P Z(x) 2 Ci(x)½ � þ P Z(xþ h) 2 Ci(xþ h)½ �f g

� P Z(x) 2 CiðxÞ;Z(xþ h) 2 Ciðxþ hÞ½ �
Then

gFiðx, xþ hÞ ¼ 1

2
PFiðxÞ þ PFiðxþ hÞf g �

ð
CiðxþhÞ

ð
CiðxÞ

gzðxÞ;zðxþhÞðu, vÞdu dv

Cross-Variograms

In the same way as in Chap. 2, we showed that the cross-variogram can be written as

gFiFjðx, xþ hÞ ¼ � 1

2
E[1Fi (x)1Fj (xþ h)]þ E[1Fj (x)1Fi (xþ h)]
� 	

Hence

gFi Fjðx, xþ hÞ ¼ � 1

2

n
P Z xð Þ 2 Ci xð Þ; Z xþ hð Þ 2 Cj xþ hð Þ� �

þ P Z xð Þ 2 Cj xð Þ; Z xþ hð Þ 2 Ci xþ hð Þ� �o

and

gFi Fjðx, xþ hÞ ¼ � 1

2

ð
CjðxþhÞ

ð
CiðxÞ

gzðxÞ;zðxþhÞðu, vÞdu dv

8><
>:

þ
ð

CiðxþhÞ

ð
CjðxÞ

gzðxÞ;zðxþhÞðu, vÞdu dv

9>=
>;

In the next paragraphs, we will explain how to use these general equations in the

case of the truncated gaussian method (the vector Z(x) contains only a single

gaussian function) and of the classical plurigaussian method (the vector Z(x)

contains two or more gaussian functions).

Truncated Gaussian Method

In the truncated gaussian method, Z(x) 2 CiðxÞ can also be written ti�1 � ZðxÞ
< tiðxÞ where ti�1 and ti are the thresholds for facies Fi.
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In this case,

gF
i
ðx, xþ hÞ ¼ 1

2
PFiðxÞ þ PFiðxþ hÞf g

� P ti�1(x) � Z(x)< ti(x), ti�1(xþ h) � Z(xþ h)< ti(xþ h)½ �

If the correlation function of the gaussian function Z is r(h), the indicator variogram
is given by:

gF
i
ðx, xþ hÞ ¼ 1

2
PF

i
ðxÞ þ PF

i
ðx + hÞ

n o
�

ðtiðxþhÞ

ti�1ðxþhÞ

ðtiðxÞ
ti�1ðxÞ

grðhÞðu, vÞÞdu dv

¼ 1

2
PFiðxÞ þ PFiðxþ hÞf g

� 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rðhÞ2

q ðtiðxþhÞ

ti�1ðxþhÞ

ðtiðxÞ
ti�1ðxÞ

exp � u2 þ v2 � 2rðhÞuv
2ð1� rðhÞ2Þ

 !
du dv,

where pFi(x) is the proportion of facies Fi at point x and gr(h) is the bigaussian

density function. The correlation between the two gaussian variables u and v is

r(h). Once we have chosen the variogram for the gaussian function, we know r(h)
and can compute the variogram for each facies using the previous equation.

Cross-Variograms

As the cross-variogram can be written as

gFi Fjðx, xþ hÞ ¼ � 1

2
E 1Fi (x)1Fj (xþ h)
� �þ E 1Fj (x)1Fi (xþ h)

� �� 	
this becomes:

gFi Fjðx, xþ hÞ ¼ �
ðtjðyÞ

tj�1ðyÞ

ðtiðxÞ
ti�1ðxÞ

grðhÞðu, vÞdu dv

Truncated Plurigaussian Method

Variograms

We will give the equations linking the indicator variogram models to those of the

gaussians for the case with only two gaussian functions. They can easily be

extended to the case where we have more than two gaussians.
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In this case, as Z(x) is a bivariate gaussian function, Ci(x) ∈ R2. The variogram

can be written:

gFiðx, xþ hÞ ¼ 1

2
P Z(x) 2 Ci(x)½ � þ P Z(xþ h) 2 Ciðxþ hÞ½ �f g

� P[Z(x) 2 Ci(x); Z(xþ h) 2 Ciðxþ hÞ�
g 1Fi(x),1Fi(xþ h)½ � ¼ 1

2
fPFiðxÞ þ PFiðxþ hÞg

�
ðð

CiðxþhÞ

ðð
CjðxÞ

gSðu1; u2; v1; v2Þ du1 du2 dv1 dv2

If we let Z1 and Z2 be the two gaussian functions, components of the bivariate

gaussian Z, S is the covariance matrix for the four gaussian variables Z1(x), Z2(x),

Z1(x + h) and Z2(x + h) and gS is the quadrivariate gaussian density.

Let r be the correlation coefficient between Z1 and Z2. Similarly let rZ1(h) and
rZ2(h) be the covariance functions of the two gaussians Z1 and Z2. With this

information we can compute 12 of the 16 terms in the covariance matrix. The

remaining four terms depend on the cross-covariance function between Z1 and Z2,

rZ1Z2(h), which is given by the coregionalization model of Z.

When h represents the vector y�x, the matrix S is:

S ¼
1 r rZ1 hð Þ rZ1Z2 hð Þ
r 1 rZ1Z2 �hð Þ rZ2 hð Þ

rZ1 hð Þ rZ1Z2 �hð Þ 1 r
rZ1Z2 hð Þ rZ2 hð Þ r 1

0
BB@

1
CCA

A wide choice of coregionalization models is available. For example, we can use the

standard linear coregionalization model where Z1 and Z2 are linear combinations of

independent factors. If Y1(x) and Y2(x) are independent N(0,1) gaussian functions

having the covariances rY1(h) and rY2(h), we can define Z1(x) and Z2(x) as

Z1(x) = Y1(x) and Z2(x) ¼ rY1(x) +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
Y2(x)

where

rZ1(h) = rY1(h) and rZ2(h) = r2 rY1(h) + ð1� r2Þ rY2(h)

or

rY1(h) = rZ1(h) and rY2(h) =
rZ2ðhÞ � r2rZ1ðhÞ

1� r2
:
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The cross-covariance is then rZ1Z2(h) = rrZ1(h). It is an even function

rZ1Z2(h) ¼ rZ1Z2ð � h), which is not true in general.

The covariance matrix S is then:

S ¼
1 r rZ1 hð Þ rrZ1 hð Þ
r 1 rrZ1 hð Þ rZ2 hð Þ

rZ1 hð Þ rrZ1 hð Þ 1 r
rrZ1 hð Þ rZ2 hð Þ r 1

0
BB@

1
CCA

Alternatively Z2 could be the derivative of Z1 (in a given direction) or it could equal

the first gaussian shifted by a vector “a”. That is,

Z2 xð Þ ¼ @Z1 xð Þ
@xi

or Z2(x) = Z1(x� a)

Combinations of these are also possible. For example, one model that covers quite

a wide range of cases is:

Z1(x) ¼ Y1(x)

Z2(x) ¼ l1Y1(xþ a)þ l2Y2(x)

(

If we want a specific correlation r between Z1 and Z2, then:

l1 ¼ r
rZ1ðaÞ

; l2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

rZ1ðaÞ2
s

In that case, the covariance matrix S is:

S ¼

1 r rZ1 hð Þ rrZ1 hþ að Þ
rZ1 að Þ

r 1
rrZ1 h� að Þ

rZ1 að Þ rZ2 hð Þ

rZ1 hð Þ rrZ1 h� að Þ
rZ1 að Þ 1 r

rrZ1 hþ að Þ
rZ1 að Þ rZ2 hð Þ r 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

where

rZ2 hð Þ ¼ r2

r2Z1 að Þ rZ1ðhÞ þ 1� r2

r2Z1 að Þ
� �

rY2 hð Þ

As before, rY2(h) is the covariance function of the second independent

gaussian Y2.

Now we consider the case where the constraints Ci(x) and Ci(xþ h) are

identical, equal to Ci. This corresponds to stationary indicator functions with
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pFi(x) ¼ pFi(x + h) ¼ pFi). If Ci are defined as a rectangle limited by the thresh-

olds ti1 and ti2 for Z1, and si1 and si2 for Z2, then the equation becomes:

g 1Fi(x), 1Fi(x + h)½ �¼PFi �
ðSi2
Si1

ðti2
ti1

ðSi2
Si1

ðti2
ti1

gSðu1; u2; v1; v2Þ du1 du2 dv1dv2

Knowing the proportions, the thresholds and the covariance matrix of Z1 and Z2,

it is easy to compute (and plot) the indicator variograms.

Cross-Variograms

We saw in Chap. 2 that the cross variogram model can be written as

gFi Fjðx, xþ hÞ ¼ � 1

2
E 1Fi(x)1Fj(xþ h)
� �

+ E 1Fj(x)1Fi(xþ h)
� �� 	

which gives:

g 1Fi xð Þ; 1Fj xþ hð Þ� � ¼ � 1

2

ðð
Cj xþhð Þ

ðð
Ci xð Þ

gS u1; u2; v1; v2ð Þdu1 du2 dv1 dv2

8><
>:
þ
ðð

Ci xþhð Þ

ðð
Cj xð Þ

gS u1; u2; v1; v2ð Þdu1 du2 dv1 dv2

9>=
>;

In the stationary case where CiðxÞ ¼ CiðyÞ ¼ Ci, this becomes:

g 1Fi(x),1Fj(xþ h)
� � ¼ �

ðð
Cj

ðð
Ci

gSðu1;u2;v1;v2Þdu1du2dv1dv2

Generalisation to the Non-stationary Case

Experimental Variograms

In the non-stationary case, we can only compute the experimental non-centred

variogram.

gexp 1Fi xað Þ; 1Fi xb
� �� � ¼ 1

2N

X
xa�xbj j¼h

1Fi xað Þ � 1Fi xb
� �� �2
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It is no longer equal to the centred variogram. Nevertheless, if the facies can be

considered as stationary in the strata plane, the experimental variogram is computed

level by level in the plane of the strata (Fig. 6.1). Although the proportions vary

along the vertical direction (i.e. vertical after flattening), they can often be consid-

ered as constant in the horizontal plane. We call this vertical non-stationarity.

In theory we should fit all these variograms simultaneously (using the same

parameters for the gaussian function), but this has two disadvantages:

l In practice, we usually have hundreds of levels, and it takes too much time to

check the fit on all these levels;
l If the data come from only a few wells, the statistical fluctuations in the

variograms computed level by level are too large, and we cannot fit these

variograms at all.

These are the reasons why we average all the variogram levels rather than fitting

a model to them all directly. It should be kept in mind that this average is no longer

a variogram but a mean variogram. It is still possible to fit it, so we have to find a

model for it.

The experimental variogram in the directions of this plane can then be consid-

ered as an average of centred variograms (with experimental means which change

level by level).

Remarks. In the case of vertical non stationarity, it is necessary to treat the

horizontal variogram (average of centred variograms) and the vertical variogram

(non centred from start) separately.

Another point to note is that when all the wells cross all the levels vertically, there

is no difference between this average level by level and the average in the whole

space. Otherwise, these averages are different. We usually compute the average

directly throughout the space when the strata cannot be considered as homogeneous.

For the cross variograms, we also compute the non-centred cross variogram

gexp 1Fi xð Þ; 1Fj xþ hð Þ� � ¼ 1

2N

X
xa�xbj j¼h

1Fi xað Þ � 1Fi xb
� �� �

1Fj xað Þ � 1Fj xb
� �� �

x1 + h x2 + h x4 + h

x3 + h

x5 + h

yes yes yes yesno

Variogram level
x1 x2 x4

x3

x5

Fig. 6.1 Variogram level
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Depending on the type of stationarity (or otherwise), the average is calculated over

the whole space, or level by level, as for the simple variograms.

When the cross variograms are computed level by level, we average them again

to obtain a mean cross variogram.

Indicator Variogram Model (Truncated Gaussian Model)

We now present the variogram model for the non-stationary case. Earlier in the

chapter we saw that for the stationary case, the variogram for the indicator function

1Fi(x) is:

gFiðx, xþ hÞ ¼ 1

2
P ti�1 � Z(x)< ti½ � þ P ti�1 � Z(xþ h)< ti½ �f g

� P ti�1 � Z(x)< ti; ti�1 � Z(xþ h)< ti½ �

As the thresholds now vary with location, the equivalent equation is:

g 1Fi(x),1Fi(xþh)½ �¼1

2

�
P ti�1(x)�Z(x)<ti(x)½ �þP ti�1(xþh)�Z(xþh)< ti(xþh)½ �
�2P ti�1(x)�Z(x)< ti(x), ti�1(xþh)�Z(xþh)<ti(xþh)½ �	

where ti�1 and ti are the thresholds for the facies Fi. This can be written as:

g[1Fi(x),1Fi(xþ h)] ¼ 1

2
PFiðxÞ þ PFiðxþ hÞ �

ðtiðxþhÞ

ti�1ðxþhÞ

ðtiðxÞ
ti�1ðxÞ

grðhÞðu, vÞ du dv

8><
>:

9>=
>;

¼ 1

2

n
PFiðxÞ þ PFiðxþ hÞ

o

� 1

2

1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rðhÞ2

q ðtiðxþhÞ

ti�1ðxþhÞ

ðtiðxÞ
ti�1ðxÞ

exp � u2 þ v2 � 2rðhÞuv
2 1� rðhÞ2� �

 !
du dv

where pFi(x) and pFi(x + h) are the proportions of facies Fi at points x and x + h,

and gr(h) is the same bigaussian density function as in the stationary case. The cross

variogram model is given by:

g 1Fi xð Þ;1Fj xþ hð Þ� �¼
� 1

2

ðtj xþhð Þ

tj�1 xþhð Þ

ðti xð Þ

ti�1 xð Þ

gr hð Þ u, vð Þ du dvþ
ðti xþhð Þ

ti�1 xþhð Þ

ðtj xð Þ

tj�1 xð Þ

gr hð Þ u, vð Þdu dv

8><
>:

9>=
>;

Generalisation to the Non-stationary Case 95



Variogram and Cross-Variogram Model (Truncated Plurigaussian
Method, two Gaussian Functions)

We have seen that

g[1Fi(x),1Fi(xþ h)] ¼ 1

2
PFi (x) + PFi (x + h)f g

�
ðð

CiðxþhÞ

ðð
CjðxÞ

gSðu1;u2;v1;v2Þdu1 du2 dv1 dv2

where S is the same covariance matrix as in the stationary case (as the gaussian

functions are stationary).

In the case when the constraint CiðxÞ is given by a rectangle in R2, which can be

written as:

Ci xð Þ ¼ ti1 xð Þ; ti2 xð Þ½ � � si1 xð Þ; si2 xð Þ½ �

The variogram equation becomes:

g 1Fi xð Þ;1Fi xþhð Þð Þ¼

1

2
pFi xð ÞþpFi xþhð Þ�2

ðsi2 xþhð Þ

si1 xþhð Þ

ðti2 xþhð Þ

ti1 xþhð Þ

ðsi2 xð Þ

si1 xð Þ

ðti2 xð Þ

ti1 xð Þ

gS u1;u2;v1;v2ð Þdu1 du2 dv1 dv2�

2
64

The cross variogram model is given by:

g 1Fi xð Þ;1Fj xþ hð Þ� �� � ¼ 1

2

ðð
Cj xþhð Þ

ðð
Ci xð Þ

gS u1;u2;v1;v2ð Þ

8><
>: du1 du2 dv1 dv2

þ
ðð

Ci xþhð Þ

ðð
Cj xð Þ

gS u1;u2;v1;v2ð Þdu1 du2 dv1 dv2

9>=
>;

Comparing Variogram Models for Indicators

and Gaussian Functions

Only the stationary case will be discussed here in detail. In the non stationary case,

the proportions vary and this has various effects on the individual variograms. The

impact on the mean variogram is much more complex as can be seen from the

examples given in the section on “variogram fitting”.
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Sill of the Indicator Model

In the stationary case, the sill of the indicator variogram for facies Fi is equal to

pFi(1�pFi). As there is no link between the sill of the indicator variograms and that

of the gaussians, we can choose any sill for the latter and the standard normal N(0,1)

is the simplest choice. In the case of non stationarity, we can no longer speak of a

sill. The variogram shape for long distances can be rather complicated; it need not

stabilize. This often happens for vertical variograms. This long distance shape is

completely controlled by the proportions.

Shape of the Indicator Model

We are now going to see which features of the variogram of the gaussian functions

reappear in the indicator variogram. Figure 6.2 shows a gaussian variogram with a

range of 50, and the corresponding indicator variogram for the truncated gaussian

model. We already know (see Chap. 3) that the indicator variogram cannot have a

zero derivative at the origin. We see here that the indicator variogram is linear near

the origin. The curvature near the origin which is characteristic of the gaussian

variogram has disappeared.

Now look at Fig. 6.3 which shows an exponential variogram with the same

practical range of 50, and the corresponding indicator variogram (same propor-

tion and same rock-type rule as in Fig. 6.2). In this case, the overall shape of the

indicator variogram for the exponential is closer to that of the exponential than

for the gaussian variogram in Fig. 6.2. In general, there is less difference

between the shapes of the indicator variograms than between those of the

underlying gaussians. So it is not possible to determine the type of model or

its parameters from the indicator variogram. In top of this as will be seen in the

next section, changes in the proportions have are marked impact on their shape.

So the choice between a gaussian variogram and an exponential is made by

studying the consequences of this choice on the resulting simulations, especially

the continuity and regularity of each facies, rather than the shape of the

variogram.

Practical Range of the Indicator Model

The previous figures correspond to the facies F1 in the rocktype rule given in

Fig. 6.4. Figure 6.5 shows the indicator variogram for facies F2 using the same

exponential variogram and the same proportion (33%) as in Fig. 6.3. These figures

clearly show that the practical range of the indicator variogram depends on the

position of the corresponding facies in the rocktype rule as well as the practical

range of the gaussian function variogram.
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Fig. 6.2 Gaussian variogram (left) and the corresponding indicator variogram (right)

Fig. 6.4 Rock-type rule

Fig. 6.3 Exponential variogram (left) and the corresponding indicator variogram (right)
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Figure 6.6 shows what happens to this indicator variogram when the proportion

is increased from 33 to 50% or decreased to 15%, respectively. As expected in the

first case, the sill increases (a proportion of 50% gives the maximum sill in the

stationary case). We see that the practical range has increased too. In the latter case,

the practical range decreases as does the sill. This shows that in the same way that

we cannot choose the variogram model for the gaussian function just by looking at

the shape of the indicator variogram, we cannot deduce its range directly from that

of the indicator variogram.

Fig. 6.5 Comparison of the indicator variograms for facies F1 and F2

Fig. 6.6 Comparison of the indicator variograms for facies F2 when the proportion is increased

from 33% to 50% (left) and decreased from 33% to 15% (right)
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Anisotropies

If the gaussian function model has a geometric anisotropy, the isovalue lines in the

variogram map are ellipses. Figure 6.7 shows the isovalue line for the indicator

variogram corresponding to 90% of the sill for the rocktype rule depicted in

Fig. 6.4. The two gaussian functions have exponential variograms with a geometric

anisotropy with ranges of 25 and 100. The long axis of continuity is oriented north-

south for the first gaussian function Z1, and east-west for the other gaussian function

Z2. These are independent.

For facies F1 and F2, the isoline curves are still ellipses, as the truncation is

carried out on only one gaussian function. The shape is more complicated for facies

F3 and F4 (as they have the same proportions and are symmetrical in the rocktype

rule, their variograms are the same). The result looks like a combination of the two

ellipses in perpendicular directions.

Figure 6.8 was obtained in the same way as Fig. 6.7 except that the anisotropy

axes have been rotated for Z2. The long axis is now north-east/south-west. We

immediately see that the isolines for facies F1 and F2 have not changed, as the

truncation for these facies is made only on Z1 which has not changed. However, the

isolines for facies F3 and F4 have changed markedly. Here the ellipses with both sets

of main anisotropy axes are superposed.

Fig. 6.7 For the facies of Fig. 6.4, isolines representing g(h) ¼ 90% of the sill. Long anisotropy

axes of the gaussian random functions are perpendicular
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Variogram Fitting

As the principle behind variogram fitting is the same in truncated gaussian case and

in plurigaussian case, both cases will be presented together.

Stationary Case

We now use the theoretical relation between the variograms of the underlying

gaussian variables and the facies indicators to fit models to them. We first choose a

model for the gaussian function, to calculate the equivalent indicatormodel and to plot

this. The key point in the variogram fitting is to have good quality experimental

variograms in order to compare themwith themodel. The examples shown in Figs. 6.7

and 6.8 show what is required (at least four directions are required to define the

variogram model in a given plane). If the data do not allow us to compute all these

experimentally, we need additional information, for example from the geologist.

In the plurigaussian case, if some facies are defined by truncating on one gaussian

function only, it is better to fit them first. Once the values of the parameters for this

gaussian have been fitted, then the facies for the second gaussian function can be fitted.

Figure 6.9 shows an example of fitting a vertical variogram in the stationary

case. Note that this vertical stationarity is not common. In this particular case,

experimental vertical proportions show a slight vertical non stationarity, which can

be interpreted as statistical fluctuations as there is no clear trend.

Fig. 6.8 For the facies of Fig. 6.4, isolines representing g(h) ¼ 90% of the sill. Long anisotropy

axes of the gaussian random functions make a 45� angle
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Non-stationary Case

The variogram fitting is done the same way as in the stationary case. We have to

average the theoretical variograms in the same way as the experimental variograms

(level by level or globally). In the non stationary case, the long distance variations

are completely controlled by the proportions. Figure 6.10 shows the same

Fig. 6.9 Example of stationary variogram fitting

Fig. 6.10 Example of use of the raw varying proportions in a stationary case
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experimental variogram as in Fig. 6.9, but the slight vertical non stationarity has

been taken into account during the fitting process.

Note that the long distances are better fitted here (see black square). Even in the

stationary case, it can be easier to fit the variogram with a non stationary approach

taking into account the experimental fluctuations of the proportions. The stationary

proportions will be used for the simulation, together with the fitted variogram

model. If the case is clearly non stationary, we can choose to smooth the proportions

Fig. 6.11 Non stationary variogram fitting using raw proportions

0.2

0.1

0
0 10 20 30

Vertical variogram

Nb.of steps

40 50

Fig. 6.12 Non stationary variogram computed using smoothed proportions
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for the simulation in order to reduce their experimental fluctuations, but the fitting

must be done with the raw proportions. Figure 6.11 shows a variogram fitting in a

non stationary case. Its shape is completely irregular, due to the marked variability

in the proportions. Figure 6.12 shows the variogram model obtained using the same

ranges but computed using smoothed proportions. Smoothing has produced quite

marked changes particularly near the origin. In some cases it has been impossible to

get a good fit after modifying the proportions. This difficulty can also appear when

using proportions which vary in all directions. These proportions usually are the

result of estimation and do not come directly from a local average. There can be

higher discrepancies between the experimental “variograms” and the model curves.

A careful study of the proportions before the variogram fitting stage can reduce

these discrepancies.

Transition Probabilities

We saw earlier that transition probabilities are simple to compute when we know

the non-centred covariances of the indicator functions:

P xþ h 2 Fj x 2 Fij� � ¼ Cij x; xþ hð Þ
pFi xð Þ

and

P xþ h 2 Fj x 2 Fi and xþ h =2 Fij� � ¼ Cij x; xþ hð Þ
pFi xð Þ � Cii x; xþ hð Þ

These non centred covariances are easy to compute for the plurigaussian method:

Cijðx, xþ hÞ ¼
ðð

CjðxþhÞ

ðð
CiðxÞ

gSðu1;u2;v1;v2Þ du1 du2 dv1 dv2

and

Ciiðx, xþ hÞ ¼
ðð

CiðxþhÞ

ðð
CiðxÞ

gSðu1;u2;v1;v2Þ du1 du2 dv1 dv2

This gives the following transition probabilities:

P½xþ h 2 Fj x 2 Fij � ¼

ÐÐ
CjðxþhÞ

ÐÐ
CiðxÞ

gSðu1;u2;v1;v2Þ du1 du2 dv1 dv2

PFiðxÞ
and

P½xþh2Fj x2Fij andxþh=2Fi�¼

ÐÐ
CjðxþhÞ

ÐÐ
CiðxÞ

gSðu1;u2;v1;v2Þdu1du2dv1dv2

PFiðxÞ�
ÐÐ

CiðxþhÞ

ÐÐ
CiðxÞ

gSðu1;u2;v1;v2Þdu1du2dv1dv2
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We see that these probabilities provide the same information as the non centred

covariances. They differ from variograms because they are not symmetrical in

general. For example, these probabilities are not symmetrical if the proportions

vary in the direction of the vector h, even if the gaussian functions have symmetri-

cal covariances: ðð
CjðxþhÞ

ðð
CiðxÞ

gSðu1;u2;v1;v2Þ du1 du2 dv1 dv2

6¼
ðð

CiðxþhÞ

ðð
CiðxÞ

gSðu1;u2;v1;v2Þ du1 du2 dv1 dv2

These probabilities can also help to infer the value of the correlation r between the

gaussian functions, especially the second one:

P[xþ h 2 Fj x 2 Fi and xþ h =2 Fij � ¼ Cijðx; xþ hÞ
PFiðxÞ � Ciiðx, xþ hÞ

Finally, they are easy to compute experimentally in the stationary case provided

that there are enough data points to be able to compute reliable statistics. For

example, we can only compute the second one when we have enough points within

the facies Fi at level x, and enough points which are not in facies Fi at level x + h.
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Chapter 7

Gibbs Sampler

Our ultimate objective is to simulate a gaussian random function with a specified

covariance structure, given the observed lithotypes (facies) at sample points. As the

lithotypes are known at these points, the corresponding gaussian variables must

lie in certain intervals or sets but their values are not known. The difficulty is

that these random functions conditioned to the constraints are no longer gaussian

random functions.

In Chap. 2, the two step procedure used was presented from a theoretical point of

view. Here we give a “maths-lite” presentation to illustrate the key concepts. The

first section presents several examples to explain why we have recourse to a Gibbs

sampler to generate gaussian values at sample points that have the right covariance

and belong to the right intervals. Once we have this set of point values, any method

for conditionally simulating gaussian random functions can be used; for example,

turning bands together with a conditioning kriging, sequential gaussian simula-

tions, LU decomposition, etc. See Chilès and Delfiner (1999), Lantuéjoul (2002a, b)

or Deutch and Journel (1992). As these techniques are well known, we will not

dwell on them here.

Why We Need a Two Step Simulation Procedure

The aim of this section is to highlight the difficulties of simulating gaussian random

functions subject to interval constraints. To do this we consider three simple cases

where there are only two points:

l With no constraints
l With interval constraints on one variable
l With interval constraints on both variables

In the first case, the conditional distribution of Z(x) given Z(y) turns out to be

a gaussian distribution but this is no longer true in the other two cases. The con-

ditional distributions are merely proportional to gaussians.

M. Armstrong et al., Plurigaussian Simulations in Geosciences,
DOI 10.1007/978-3-642-19607-2_7, # Springer-Verlag Berlin Heidelberg 2011
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Simulating Z(x) and Z(y) When There Are No Constraints

Consider two gaussian variables Z(x) and Z(y) with a correlation coefficient, r. In
order to simulate Z(x) given Z(y) we need to know its conditional distribution

which can be deduced from the joint distribution of the two variables:

gðu; vÞ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p exp � u2 þ v2 � 2ruvð Þ
2ð1� r2Þ

� �

where u and v represent z(x) and z(y) respectively. This can be rewritten as

gðu, vÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp � u� rvð Þ2
2 s2

( )
1ffiffiffiffiffiffi
2p

p exp
�v2

2

� �
(7.1)

where s2 ¼ 1 � r2. The second term is just the marginal distribution of Z(y). The

first is the conditional distribution that we are looking for. It is clearly a gaussian

distribution with mean, rv, and variance s2. Equation (7.1) can be written as

gðu, vÞ ¼ gv(u)g(v) (7.2)

This is equivalent to the well-known decomposition:

ZðxÞ ¼ rZðyÞ þ sRðxÞ

where R(x) is a N(0,1) residual that is independent of Z(y). If we estimate Z(x)

given z(y), the simple kriging weight equals r, and the SK variance is s2 ¼ 1� r2.
To simulate pairs of values of Z(x) and Z(y), we first draw two independent

N(0,1) values for Z(y) and R(x), then we substitute them into the decomposition

formula to get Z(x). Alternatively we could say that we draw one realisation v of

a N(0,1) variable for Z(y), followed a N(rv,s2) variable for Z(x). In that case, we

use the marginal distribution of Z(y) to draw a realisation of it, then the conditional

distribution of Z(x) given Z(y) to draw the other value directly. This is only possible

because the form of the conditional distribution is so simple.

Simulating Z(x) and Z(y) When Z(y) Belongs to an Interval

In this case Z(y) is known to lie in a specified interval, I, and we want to simulate

the pair of variables, Z(x) and Z(y), given that Z(y) lies in that interval. The joint

density of the two variables is now

hðu; vÞ ¼ k gðu; vÞ1IðvÞ
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where 1IðvÞ is the indicator function for the interval I and k is the normation factor

required to ensure that the integral of h(u,v) sums to 1. So the joint density is

hðu; vÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp
�1

2

u� rvð Þ2
s2

( )
� kffiffiffiffiffiffi

2p
p exp

�1

2

v2
� �

1IðvÞ

This can be written as

hðu; vÞ ¼ hVðuÞ hðvÞ

It is clear that h(v) is the marginal distribution of a gaussian variable Z(y) restricted

to the interval I. To show that it is the marginal distribution, we just have to prove

that ð
<

hvðuÞ du = 1

Integrating h(u, v) with respect to u gives

ð
<

hðu; vÞ du ¼
ð
<

1

s
ffiffiffiffiffiffi
2p

p exp � u� rvð Þ2
2s2

( )
du

kffiffiffiffiffiffi
2p

p exp � v2

2

� �
1IðvÞ

As the first term on the right hand side is just the integral of a N(rv,s2) variable, it

equals 1, which gives us the required result. In order to simulate these we use the

same interpretation as before: first simulate Z(y) in the interval I then simulate Z(x)

given that Z(y) 2 I. The first simulation is just a truncated gaussian; the second one

corresponds to simulating an independent N(rv,s2) variable. That is, we are still

using the classical decomposition.

But there is a fundamental change in the marginal distribution of Z(x). To

see this, we integrate the joint density with respect to v using (7.2) written as

gðu; vÞ ¼ guðvÞgðuÞ:ð
<

hðu; vÞ dv ¼
ð
<

k gðu; vÞ 1IðvÞ dv

¼
ð
<

1

s
ffiffiffiffiffiffi
2p

p 1IðvÞ exp �ðv� ruÞ2
2s2

( )
dv� kffiffiffiffiffiffi

2p
p exp � u2

2

� �

If we let t ¼ v� ru, then v 2 I, t 2 I� ru and the first term on the right becomes

ð
<

1

s
ffiffiffiffiffiffi
2p

p 1I�ruðt) exp � t2

2s2

� �
dt ¼ E 1I�ru

� �
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As E[1I�ru� ¼ Ps½I� ru�
ð
<

h(u, v)dv = k
1ffiffiffiffiffiffi
2p

p exp
�u2

2

� �
� PsðI� ruÞ

This shows that the marginal density of Z(x) given that Z(y) 2 I, is no longer

gaussian. It is proportional to a gaussian density but is multiplied by the probability

that the first variable lies in the interval, I � ru. To illustrate the impact of this

change, we have plotted this distribution for two intervals: [�0.5, 0.5] and [2, 3],

and for two different correlation factors, �0.5 and 0.8. Figures 7.1 and 7.2 present

the resulting curves.

Fig. 7.1 Probability densities functions for the marginal distributions for the two intervals, for the

case where r ¼ �0:5 together with the N(0,1) density for comparison purposes

Fig. 7.2 Probability densities functions for the marginal distributions for the two intervals, for the

case where r ¼ 0:8 together with the N(0,1) density for comparison purposes
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Simulating Z(x) and Z(y) When Both Belong to Intervals

Now suppose that Y(x) belongs to I1 and Y(y) belongs to I2. Their joint density is

h(u, v) ¼ kg(u, v) 1I1ðuÞ 1I2ðvÞ

where k is the appropriate normation factor.

h(u, v) =
k

s
ffiffiffiffiffiffi
2p

p exp �ðu� rv2Þ
2s2

� �
1I1ðuÞ

1ffiffiffiffiffiffi
2p

p exp � v2

2

� �
1I2ðvÞ

As expected, the marginal distributions are no longer gaussian or even truncated

gaussian. Integrating with respect to u gives

ð
<

h(u, v) du / 1ffiffiffiffiffiffi
2p

p Ps2
ðI1 � rvÞ exp �v2

2

� �
112ðvÞ (7.3)

Similarly integrating with respect to v gives

ð
<

h(u, v) dv / 1ffiffiffiffiffiffi
2p

p Ps1
ðI2 � r uÞ exp �u2

2

� �
111ðuÞ (7.4)

Because of the increasing difficult in simulating these distributions directly as the

number of interval constraints increases, we rapidly reach the point where direct

simulation is no longer practicable and we have to resort to an indirect approach

such as the Gibbs sampler.

These examples suggest the idea of using a two step procedure to conditionally

simulate gaussian values when some of them are constrained to lie in specified

intervals. The two steps are:

1. Generating gaussian values at data points, in the prescribed intervals and with

the right covariance structure

2. Using any algorithm for conditionally simulating gaussian random functions

given the values generated in step (1)

Direct Simulation Using an Acceptance/Rejection Procedure

Having seen that the first step is to generate a set of gaussian values at sample points,

the next question is how this should be done. We might be tempted to try an

acceptance/rejection procedure, by generating gaussian values with the right covari-

ance structure and rejecting those lying outside the specified intervals. If only 10 or

20 samples were available this could be done directly using an LU decomposition
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(i.e. a Cholesky decomposition of the covariance matrix). The LU decomposition

could be carried out for much larger matrices (up to about 500 � 500). The limiting

factor in the procedure is the rate of rejection. For example, suppose that ten samples

were available and that there were only two facies each present 50% of the time. Then

if there was no spatial correlation (pure nugget effect), the probability of getting all

ten values in the right intervals would be 1 in 210; that is, about 1 in 1,000. This

procedure becomes prohibitively slow as the number of samples increases. As there

are usually hundreds or thousands of data in mining and petroleum applications,

another approach is needed. This is why we have to resort to more complicated

methods.

Gibbs Sampler

Statisticians routinely use iterative methods based on Markov chain Monte Carlo

simulations (MCMC, for short) for sampling complicated distributions and for

estimating parameter values. The best known are the Hastings-Metropolis algo-

rithm and the Gibbs sampler. The latter is a particular case of the Hastings-

Metropolis method. See Meyn and Tweedie (1993), Cowles and Carlin (1996)

and Robert (1996) for information on these methods. Freulon (1992) and Freulon

and de Fouquet (1993) adapted the Gibbs sampler to truncated gaussian simula-

tions. To introduce this technique, we present an example to show how this method

works and to illustrate the concept of convergence.

Four Sample Example

Suppose that there are only two lithotypes F1 and F2, and that they are present in

equal proportions. So it is natural to use a zero threshold to separate them. Negative

Fig. 7.3 Simplified well or drill hole containing four samples
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gaussian values correspond to F1; positive ones, to F2. Figure 7.3 shows a simplified

well or drill hole containing four samples, with the top two belonging to F1 and the

other two belonging to F2. The gaussian values assigned to the top samples must be

negative, the others have to be positive.

The procedure relies on the standard decomposition of the gaussian random

function into its simple kriging estimate and an orthogonal residual.

Z(xÞ ¼ ZSK(xÞ þ sSKR(x)

where the index SK denotes the simple kriging estimate or its variance and R(x) is a

N(0,1) residual. Note that for gaussian random variables, the SK estimate equals the

conditional expectation.

Exponential Variogram

Suppose that the four samples are 1m apart and that the underlying variogram for

the gaussians is an exponential with a unit sill and a scale parameter a ¼ 2 m (i.e. a

practical range of 6 m). The SK weights for estimating the top point using the other

three points as data are:

l2 ¼ 0:61; l3 ¼ 0; l4 ¼ 0 and s2
SK ¼ 0:63 ) sSK ¼ 0:79

(Points are numbered from the top down). By symmetry the weights are the same

but in the reverse order when kriging the fourth point from the other three. The

weights for the second point (or similarly the third one) are:

l1 ¼ 0:44; l3 ¼ 0:44; l4 ¼ 0 and s2
SK ¼ 0:46 ) sSK ¼ 0:68

As the configuration does not change from one iteration to the next the weights

remain the same.

Step 1: Initialising the Procedure

The first step consists of choosing gaussian values that belong to the appropriate

intervals. Here we select (�1, �1, þ1, þ1)

Step 2: Iterative Procedure

Simple kriging is applied to the points in turn. For example, the value of the top

point is kriged using the other three points as input data. Then we move down to the

second point and krige it using the initial values for the points below it and the new
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updated value for the top point. After completing the second point we move down

to the third one which is kriged using the updated values for the points above it and

the old value for the point below it. Similarly for the fourth point. When all the

points have been updated by kriging, one iteration has been completed.

Point No 1

The kriged estimate for Z(x1), abbreviated to Z(1), based on the initial values (i.e.

�1, +1, +1) for the other three points is:

ZSKð1Þ ¼ �1� 0:61þ 1� 0þ 1� 0 ¼ �0:61

And the corresponding residual must satisfy

R(1) � �ð� 0:61Þ=0:79 ¼ 0:77

Suppose for argument’s sake that we draw a value of 0.52 (from a N(0,1) distribu-

tion). Then the updated value would be

Zð1Þ ¼ �0:61þ 0:79� 0:52 ¼ �0:20

Point No 2

The kriged estimate for Z(2) based on the initial values for Z(3) and Z(4), and the

updated value of Z(1) is:

ZSKð2Þ ¼ �0:20� 0:44þ 1� 0:44þ 1� 0 ¼ 0:42

The corresponding residual must satisfy

Rð2Þ � 0:42=0:68 ¼ 0:62

If we draw a value of �0.75, then the updated value of Z(2) is

Zð2Þ ¼ 0:42þ 0:68��0:75 ¼ �0:09

Point No 3

Following the same procedure, the kriged estimate for Z(3) and the inequality to be

satisfied by its residual are

ZSKð3Þ ¼ �0:20� 0� 0:09� 0:44þ 1� 0:44 ¼ þ0:40
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R(3) � 0:40=0:68 ¼ 0:59

If we draw a value of 0.28, then the updated value of Z(3) is 0.21.

Point No 4

In the same way, the kriged estimate for Z(4) and the inequality to be satisfied by its

residual are

ZSKð4Þ ¼ 0� ð0:20Þ þ 0� ð�0:09Þ þ 0:61� 0:21 ¼ 0:13

R(4) � �0:13=0:79 ¼ �0:16

Drawing a value of 0.63 would give an updated value of 0.63 for Z(4).

Results

Table 7.1 summarises the intermediate results during first iteration. This updating

procedure is repeated iteratively, in general for several hundred or several thousand

iterations. Table 7.2 shows the results of the first five iterations.

Alternative Updating Strategies

In the previous example, individual points were sequentially updated. A variant of

this consists of sequentially updating from the top down, then from the bottom up

on the next iteration.

Table 7.1 Successive steps in the first iteration of this Gibbs sampler

Table 7.2 Results of first five iterations of the Gibbs sampler

Pt N� Initial No 1 No2 No3 N� 4 N� 5
1 �1 �0.20 �0.37 �1.34 �0.34 �0.13

2 �1 �0.09 �0.35 �0.24 �0.31 �0.20

3 þ1 þ0.21 þ0.15 þ0.05 þ0.19 þ0.20

4 �1 þ0.63 þ0.86 þ0.10 þ0.26 þ0.32
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Blocking Factor

It is also possible to update blocks of points simultaneously. For example, the four

points could be grouped into two blocks each consisting of two points. There are

three possible groupings of this type:

l Points 1 & 2 and Points 3 & 4
l Points 1 & 3 and Points 2 & 4
l Points 1 & 4 and Points 2 & 3

In the first case, the values of the top two points are updated using the values of

the other two as the conditioning data (i.e. using kriging) and simulated in the right

interval with the right correlations, and vice versa for the other pair. We will

illustrate this procedure later in the chapter. As was shown in Chap. 2 suitably

chosen blocking strategies can significantly improve the speed of convergence.

Experimentally Testing Convergence

Having seen how the procedure works, several questions need to be answered.

Firstly, does the algorithm converge? If so, after how many iterations? What factors

affect the speed of convergence? How should we choose the initial values?

Burn-in Period

In this section we illustrate the difference between the initial burn-in period and the

subsequent stationary part of the Markov chain. To do this we continue the previous

example but the variogram is changed to a gaussian model with a practical range of 3.

So the correlation between adjoining samples is 0.95. Five hundred iterations of the

corresponding Gibbs sampler were run starting from a very extreme set of initial

values (+5,+5,�5,�5). This choice lengthens the initial burn-in period, making it

visually much more obvious.

Figure 7.4 shows the output for each component as a function of the number of

iterations. The values of the first component (top left) decrease steadily from the

initial value of þ5 until they are below 1.0. The curve seems to stabilise after

approximately 100 iterations so the burn-in period must be at least this long.

Similarly for the third and fourth components. But it appears to be much shorter

for the other component (bottom left), about 20 iterations. This shows that the burn-

in period need not be the same for all components in a Gibbs sampler. In MCMC

theory it is well-known that different states can have different rates of convergence;

see Meyn and Tweedie (1993, pp 362–363).

The implications of not necessarily having the same burn-in period for all

components are important in practice. When there are only four components it is
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possible to check the convergence of all of them but if there were 1,000 samples it

would be virtually impossible to inspect the output of the Gibbs sampler for all

1,000 components. We could only check a few of them visually and we might have

the bad luck to choose those with shorter burn-ins. Inspecting the results for

selected components gives us an idea of the burn-in period but it is not foolproof.

Effect of the Range on the Burn-in Period

Several factors including the range of the variogram and the number of components

have a marked effect on the length of the burn-in period. To illustrate the effect of the

range, we repeated the previous example using a practical range of 5 instead of 3.

This increases the correlation between adjoining samples from0.95 to 0.98. Figure 7.5

shows the output.

Whereas the burn-in period for the first component was about 100 beforehand,

it is now closer to 500. Conversely decreasing the range would decrease the

burn-in period. Looking at Fig. 7.5 we also notice how smooth the curves are
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Fig. 7.4 Output of the Gibbs sampler for all 4 components for 500 iterations, starting from initial

values of (þ5,þ5,�5,�5). The second component (lower left) seems to stabilise after about 20

iterations components whereas the other three are much slower. They take at least 100 iterations to

reach their stationary distribution
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compared to the corresponding ones in Fig. 7.4. The strong serial correlation

between successive values makes it more difficult to determine whether the Markov

chain has converged.

These two examples show that it is not simple to judge whether a Gibbs sampler

has reached its stationary distribution just by studying the output from a single run

(even a very long one). It would be better to run a large number of samplers in

parallel and study their output after 1, 5, 10, . . . , 50 iterations and so on. Ideally we
should compare the experimental distribution of the output with the stationary

distribution. How could this be tested experimentally?

A multivariate normal distribution is fully specified when the means and the

covariance matrix are known. By extension, a truncated gaussian is fully defined

when the truncation thresholds are known together with themeans and the covariance

matrix for the full distribution. Having said that, it is clear that after truncation the

means are not going to be the same as before. See (7.3) and (7.4). Nor are the vari-

ances or the correlations. In the case under study, the four components come from

a quadrivariate normal distribution with the covariance matrix given in Table 7.3.

Because of the high correlation between adjoining samples, its density is an

elongated cigar shape. Figure 7.6 shows a diagram representing the bivariate

densities of X1 and X2, and X2 and X3 respectively. The impact of different types
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Fig. 7.5 Output of the Gibbs sampler for the first of 4 components for 500 iterations, starting from

initial values of (þ5,þ5,�5,�5). Compared to Fig. 7.4, the correlation between adjoining points

has been increased from 0.95 to 0.98. Note the increase in the burn-in period
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of truncations is evident from these. In one case, we are dealing with the elongated

part of the ellipse whereas in the other, it is merely a triangular “corner”. Intuition

can often be misleading when trying to guess the properties of truncated gaussian

distributions. For example many people expect the marginal distributions in this

example to be “half gaussians”. The marginal distributions given in Fig. 7.7 show

just how wrong intuition can be and also confirms what was shown in the two

variable case given at the beginning of the chapter.

The Impact of Different Parallel Runs

Up till now we have illustrated the difference between the burn-in period and the

stationary part by focussing on individual components. An alternative is to run

Table 7.3 Quadrivariate

covariance matrix for

the 4-sample case

1 0:95 0:80 0:61
0:95 1 0:95 0:80
0:80 0:95 1 0:95
0:61 0:80 0:95 1

2
664

3
775

Fig. 7.6 Schematic representation of the bivariate densities of X1 and X2 (left) and of X2 and

X3 (right)

Fig. 7.7 The marginal distributions of X1 and of X3
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many Gibbs samplers in parallel and study the results after a certain number of

iterations. Figure 7.8 plots the first and second components for 50 parallel runs.

Figure 7.8a shows their locations after a single iteration; both started out from an

initial value of þ5. Figures 7.8b–d give the output after 5, 10 and 50 iterations.

As expected, the centre of the cloud moves downwards and disperses outward

from this. Initially the distribution is far from the target cloud but as the number

of iterations increases, it steadily tends toward it.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Fig. 7.8 The values of the first and second components after 1 iteration (top left), then 5 (top
right), 10 (bottom left) and 50 iterations (bottom right) starting out from initial values of þ5 (as

indicated by the crosshairs)
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Chapter 8

Case Studies and Practical Examples

Choosing Which Simulation Method to Use

Simulation methods fall into two broad classes: pixel methods and object-based

methods. Before presenting any practical examples, it is important to decide which

methodwould be the most appropriate for the problem under study. So we first review

the pros and cons of two classes of models, sequence-based pixel methods such as the

truncated gaussian and plurigaussian simulations, and object-based methods, in par-

ticular boolean simulations. As this book focuses on plurigaussian simulations, we do

not intend to present boolean simulations here. Interested readers can consult Math-

eron (1968, 1975), Lantuéjoul (1997a, b, 2002) Chilès and Delfiner (1999), and

Molchanov (1997). Sequence-based pixel methods and boolean simulations can also

be combined to get the best of both approaches. These are called nested simulations.

Sequence-Based Pixel Models

As their name suggests, sequence-based models are well suited to simulating

geological configurations where lithotypes are organised in sedimentary sequences.

Within a sedimentary sequence, lithotypes are correlated both vertically and hori-

zontally. According to Walther’s law, vertical successions of lithotypes also imply

a lateral correlation between the lithotypes. Another advantage of pixel simulations

is that they realistically reproduce the facies interfingering. Sedimentary sequences

occur at different scales, and their organisation is a function both of auto and

allocyclic processes. For example, fluvial channel sequences are characterised by

a particular succession of lithotypes from base to top as the channels filled. The

progradation of a shoreface which is mostly controlled by relative sea-level varia-

tions also shows a typical vertical succession of facies from offshore to foreshore.

Over the past fifteen years, tremendous progress has been made in sequence

stratigraphy and this has led to a much better understanding of the facies architec-

ture of depositional sequences of different orders, in a wide range of depositional

environments.

M. Armstrong et al., Plurigaussian Simulations in Geosciences,
DOI 10.1007/978-3-642-19607-2_8, # Springer-Verlag Berlin Heidelberg 2011
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Even though the relative volume of facies and their geometric organisation (the

facies partitioning) changes according to sequence organisation and although the

sequences are usually non-stationary, proportion curves have proved to be a simple

but highly effective tool for imaging sequences and for quantifying the associated

non-stationarity. As they measure the relative proportion of lithofacies, both verti-

cally and horizontally, they provide a good way of describing the spatial distribu-

tion of the lithofacies. They can guide the geologist in his interpretation and can

help to define the reservoir layering (Eschard et al. 1999).

Vertical proportion curves give information on the facies partitioning within the

sequences and indicate the stratigraphic levels where the main vertical permeability

barriers can be expected, which is important in reservoir characterisation.

Computing horizontal proportion curves also helps in understanding the spatial

distribution of the lithofacies and the geometry of the reservoir. Their representativity

depends on the well spacing and distribution in the area to be simulated. When

calculated in different directions across the field, they can show whether there are

any major lateral facies variations in the study area. Furthermore, they can aid in

deciding whether there is non-stationarity. When the relative proportions of facies

vary significantly laterally within a reservoir unit, then non-stationarity is present.

In sequence-based pixel models, the correlation between facies is quantified by

the vertical and horizontal variograms. In standard geostatistical studies, the range

of the variogram has a direct geological significance; here the relationship is

indirect. It is a function of the size of the heterogeneity, but also of its spatial

frequency. The type of variogram used in the simulations also has a strong impact

on the way the simulated facies are organised. Exponential variograms, for exam-

ple, are appropriate when facies transition is progressive. On the contrary, gaussian

variograms generate more "rounded" shapes in simulations.

Many depositional systems can be simulated well by sequence-based pixel

approaches. They can handle carbonate depositional systems, which are often char-

acterised by a cyclic organisation of facies and progressive facies interfingerings. In

clastic depositional environments, the approach is also suitable for deltaic or shore-

face sediments which are organised in transgressive-regressive cycles. Internal

heterogeneity within fluvial sand sheets can also be simulated in this way. These

types of reservoirs often show an internal sequential organisation which can be

reproduced easily by sequence-based models.

One difficulty in the method is computing reliable horizontal variograms from

wells because the well spacing is generally greater than the mean heterogeneity

size. Different variogram ranges can then be tested, and the one which provides

the best fit with production data is chosen (Eschard et al. 1998). Alternatively, data

bases on analogous reservoirs or outcrops can be used to give an idea of the range.

Object-Based Models

Object-based models were designed to simulate geological objects which have a

well-defined geometry. These generally correspond to sedimentary bodies isolated
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in a non-reservoir matrix (e.g. fluvial channels in floodplain mudstones). Similarly,

shale breaks with a specific geometry within a massive sandstone unit can also be

generated as objects. Different types of objects can be simulated together. Attrac-

tion or repulsion functions can also be applied to promote or prevent connections

between different types of objects. Objects also can be superposed with erosion or

preservation rules. The vertical frequency of the objects can be computed at dif-

ferent levels from the well data.

Generally speaking, object-based simulations require a great deal of a priori
geological information. First, the geologist has to determine and classify the differ-

ent types of objects from the well data. Then, he has to impose a simplified shape

on them. This requires a good knowledge of the geological setting, and also the

possibility of consulting reservoir data bases containing the geometry (width versus

thickness, etc) and shapes (sinuosity, etc) for each depositional environment. This

information generally comes from outcrop studies, from observations of compara-

ble modern depositional environments or from well-documented subsurface fields.

It is generally summarised in the form of cross plots and frequency diagrams in

which the variability of the measured parameters is shown. This variability is often

high for a given sedimentary object because the shapes and the amalgamation rate of

the objects depend on their location within a sequence (Eschard et al. 1999). During

periods when there is little space available for sedimentation, channels deeply incise

the floodplain mudstones, and the amalgamation rate of fluvial channels is high.

When this space is large, the floodplain aggrades, and channels become less incised

in floodplain mudstones. Although this type of information is critical for controlling

the object size, it is rarely available in reservoir data bases.

Siliclastic reservoirs can often be simulated by object based methods. The most

classical objects that are simulated with this approach are fluvial channels and

crevasse splays in a matrix composed of floodplain mudstones. Channels can

either be straight or sinuous, isolated in the floodplain or amalgamated. Crevasse

splays are connected to the channels.

Nested Simulations

Nested simulations combine object and sequence-based pixel models. Typically,

the objects are simulated first, then filled with lithotypes using a sequence-based

simulation. This approach is generally used to simulate large geological objects

which present internal heterogeneities. For example, the heterogeneity in fluvial

and estuarine channels corresponds to mudstone plugs deposited within the chan-

nels. The object, the channel, is simulated first, then filled by heterogeneous

material using a sequence-based algorithm.

A similar approach was used by (Cozzi et al. 2002; Felletti 2004) for simulating

turbidites. Rather than using objects to define the outer boundary of the turbidite

units he kriged the exterior contours and then used mono-gaussians and factorised

exponential variograms.
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Building up the Reservoir or Orebody Model

The first step in a plurigaussian simulation of an orebody or a reservoir is to

calculate the proportions of each facies. But even before doing this, we have to

make a series of preliminary choices. We have to define the lithotypes to be studied,

to divide the reservoir or orebody into units, to choose the references levels to be

used for flattening each unit and finally to choose the parameters of the grid to

be simulated.

Step 1: Defining the Lithotypes

The lithotypes constituting the orebody or reservoir have to be defined from the

available data: core samples, well logs and seismic data. They have to honour

the geological information, and where applicable, the petrophysical information.

In general, the geologists define more facies than can reasonably be simulated.

So these have to be grouped into lithotypes.

The definition adopted is crucial, firstly in the data integration process and later

in the simulations themselves. For example, as well as reproducing the geology of

the reservoir realistically, reservoir simulations must reproduce the key reservoir

properties (porosity, relative permeability, capillary pressure, etc) from a fluid flow

point of view. This implies reconciling the geological and petrophysical descrip-

tions of the reservoir when the lithotypes are first defined. Furthermore, the litho-

type data base must be homogeneous in all the wells.

Step 2: Dividing Reservoir or Orebody into Units

Reservoirs generally consist of several stacked units. Their geology may differ from

one unit to another. So each unit must be simulated independently with different

parameters. Variogram ranges and anisotropies are generally different for each of

the units. Sometimes the geostatistical techniques used can vary from one unit

to another, depending on their geology. It is not possible to correlate lithotypes

across unit boundaries, and moreover the simulation grid follows the geometry of

the units. This is why the definition of the reservoir units is a such critical step in

reservoir modelling.

Step 3: Defining the Reference Level

The reference level for the simulation is a specific geological layer which is used to

restore the geometry of the orebody or reservoir at the time of deposition. This level

must have been deposited horizontally during sedimentation and should, if possible,
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correspond to a time line. The reservoir is then flattened using this as the reference

level. Different reference levels can be used for each reservoir unit, or one can serve

for several of them.

As for the definition of the lithotypes, the choice of the reference level has a

marked impact on the result of the simulation. For example, onlap or toplap

configurations can be produced depending on the choice of a reference level with

regards to the unit geometry (Fig. 8.1).

Step 4: Choosing the Grid Spacing

The grid size is in theory directly dependent on the size of the heterogeneities to be

reproduced in the simulation. The detail needed in a simulation also depends on the

recovery process used to produce the reservoir. Gas is less sensitive than oil to small

scale reservoir heterogeneities. Fields developed with horizontal wells generally

require very detailed reservoir models. From a geological point of view, it is

tempting to simulate as much detail as possible, but in practice, the number of

cells is limited by computer capacity. Because of the limitations on fluid flow

simulators, the fine grid simulated has to be upscaled to a coarser one. Within

each cell of the latter grid, the upscaling algorithm has to summarise all the values

in the fine grid in a single value. This is quite simple for porosity where it means

taking the average, but it is more difficult for permeability. Only approximate

solutions exist (unless we run a fluid flow simulator for each cell of the coarse

grid, and that would be prohibitively time consuming). Consequently many differ-

ent upscaling techniques exist and so differences may appear in the simulation

depending on which upscaling method is applied, especially when the number of

cells is very large.

REFERENCE LEVEL

REFERENCE LEVEL

“TOPLAP”

“ONLAP”

EROSIONAL SURFACE

EROSIONAL SURFACE

Fig. 8.1 Onlap (above) or toplap (below) configurations are produced depending on the choice of

a reference level relative to the unit geometry
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Petroleum Applications of the Plurigaussian Approach

The geostatistical methods presented above have their limitations when applied in

complex geological settings. In some cases, the reservoir architecture presents

complex facies transitions which cannot be simulated with mono-gaussian techni-

ques. Similarly, boolean models are only suitable when only a few types of

sedimentary bodies are present and when their shapes are well defined. The main

advantage of the plurigaussian approach is its ability to handle complex facies

relationships, both vertically and laterally, in a pixel simulation. For example, it is

possible to impose different anisotropies onto the gaussian functions. Furthermore,

different types of variograms each with its own range and anisotropy can be used

for each gaussian function. The combination of all these parameters makes the

approach very flexible.

Constructing the Lithotype Rule with Geological Constraints

As the theory of the lithotype rule construction has already been described, we will

illustrate it with several examples to show how the rules can be chosen a priori
depending on the geological context. As usual, lithotypes are represented by

different colours and the surface occupied by each one in the matrix is a function

of the relative proportion of facies computed in wells. Complex facies transitions

can then be reproduced by changing the relative position and surface of the

lithotype in the matrix.

If only one gaussian function is used, the lithotype rule only shows superposed

bands, with each band representing a lithofacies. When colours are in contact in the

lithotype rule, the corresponding lithotypes will be connected in the simulation.

Consequently the ordering of the facies in the lithotype rule must then respect a

sedimentary sequence in order to correctly reproduce facies inter-fingerings in the

simulation. One of the most common sequences encountered corresponds to the

progradation of a shoreface (top of Fig. 8.2), in which offshore, shoreface, foreshore

and coastal plain deposits are organised in a prograding sequence. Its lithotype rule

is also shown in Fig. 8.2.

Simulation of Reservoir with Complex Facies Transitions

The lithotype rule also makes it possible to simulate complex geological settings,

especially in carbonate depositional systems. For example, it is difficult to simulate

the irregular shape and complex internal architecture of algal or reefal bioherms

with classical object or sequence based models (Van Buchem et al. 2000). In this

case, the lithotype rule is used together with the vertical proportion curve as a kind

of facies substitution diagram to reproduce the sequential organisation of the facies.
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Figure 8.3 shows algal mounds in the Paradox basin, of Pennsylvanian age,

which were studied in outcrops along the San Juan River (Grammer et al. 2000; Van

Buchem et al. 2000). The algal bioherms correspond to bioconstructions with

irregular rounded shapes which were constructed in a mixed carbonate and silici-

clastic open shelf. The carbonate shelf first prograded (facies 1–3), and then when a

certain water depth was reached, incipient mounds (facies 4) started to develop in

the shelf setting.

After this initial stage, the mounds themselves started to grow, and different

stages of construction have been observed (facies 5: initial stage, facies 6: final

stage). At the end, the mounds have an irregular rounded shape with a height of

more than 20 m compared to the surrounding shelf. When the algal mound growth

stopped, the inter-mounds troughs where progressively filled by in situ shelf sedi-

ments and material falling from the mounds. These deposits now form flanking beds

in outcrops (facies 7), with the beds onlapping the mound relief.

Finally, clastic deposits (facies 8) were deposited in the shelf setting during

subsequent relative sea-level drops. On top of the sequence, karstification often

restricted marine carbonates (facies 9) during emersion.

The lithotype rule corresponding to this complex geological setting is shown in

Fig. 8.4. Firstly, the series was divided in two units: the lower unit corresponds to

the platform progradation, whereas the algal mounds are located in the upper unit.

The lithotype rule of the lower unit is simple as only one gaussian function is used

for its simulation. Its vertical proportion curve also reflects the progradational

pattern of the shelf.

In the upper unit, the lithotype rule is more complex because of the spatial

organisation of the mounds and intermound facies. The intermound facies (facies 7)

can be in contact with the two mounds facies (facies 5 and 6) and with the

sandstones capping both the mounds and the inter-mounds deposits (facies 8).

The simulation in Fig. 8.5 reproduces the geometry of the mounds in this shallow

marine platform setting, very realistically both in section and in plan view.

Fig. 8.2 Lithotype rule with

only one gaussian function

used to simulate a prograding

sequence. Facies ordering is

respected in the rule
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Plurigaussian simulations are particularly suitable for simulating interdependent

phenomena which interacted during sedimentation or just afterwards. Moreover,

the two phenomena can have different anisotropies, and can be correlated or not.

Fig. 8.4 Lithotype rules for

the upper (on the right) and

lower units of Paradox basin

Fig. 8.3 Geological model of Pennsylvanian algal mounds in outcrops (from Galli et al. 2006)

Fig. 8.5 Cross section in a simulation of the Pennsylvanian algal mounds using the pluri-gaussian

approach. The mound geometry is realistically reproduced (compare with the geological model in

Fig. 8.3)
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The effects of the primary diagenesis, which affect the sediments just after burial,

can be simulated with this approach.

The Paradox basin algal mounds described earlier are a good example of the

effects of primary diagenesis. During relative sea-level drops, the topmost part

of the mounds was altered when the mound top is emerged. This alteration is

a function of the initial carbonate texture and porosity. The flanking beds which

were deposited after this episode, were not affected. A new facies corresponding

to this alteration of the reef was added into the lithotype rule (facies 9). It is in

contact with both the flanking beds laterally, the mound core below and the sand-

stones above. The simulation in Fig. 8.6 reproduces the altered facies capping

the mounds.

Simulation of the Effects of Primary Diagenesis
in Complex Reservoir

A synthetic case study of a reef reservoir was carried out in order to test the ability

of the plurigaussian method to simulate this type of reservoir. It is based on the

Miocene reefs observed in subsurface by Gr€ostch and Mercadier (1999). In this

synthetic case (Fig. 8.7), the reef growth occurs in three stages. Each stage is

characterised by a specific organisation of the facies. The basal unit (unit III)

corresponds to the initial stage of the reef growth when no lagoon had developed

inside the reef. The middle unit (unit II) corresponds to the growth stage of the reef.

Back-reef and lagunal deposits were well developed inside the reef. The topmost

layers of unit II were cemented during a relative sea-level drop when the topmost

part of the reef emerged. Unit I is the final stage of the reef growth. According to

Fig. 8.6 Simulation showing the altered facies capping the mounds. The altered facies corre-

sponds to the light grey colour on top of the dark algal mound
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Gr€otsch and Mercadier (1999), cementation can specifically affect the core reef

exposed to the ocean but not the lee-side where porosity is preserved.

Six facies were differentiated for the simulation: fore reef (facies 1), core reef,

basin-ward (facies 2), back-reef (facies 3), lagoon (facies 4), cemented facies

(facies 5), and core-reef landward (facies 6). Facies 5 corresponds to a cemented

horizon which affected facies 2, 3 and 4 in unit II. The cemented horizon constitutes

a significant permeability barrier within the reservoir, and so it is important to

reproduce it in the simulation. Three litho-stratigraphic units were then used for the

reservoir simulation, each with a specific facies distribution. The simulation was

processed in a proportional grid within a unit, in order to get correlation lines

parallel to the top and bottom of each unit.

In unit III, the truncated gaussian algorithm was used with a simple lithotype rule

(Fig. 8.8). In unit II, the plurigaussian algorithm was applied in order to respect the

complex relationship between the facies. The cemented facies (facies 5) can be in

contact with facies 2, 3 and 4 but facies 5 cannot be in contact with facies 1. The

vertical proportion curve also constrains facies 5 only to the topmost part of the unit

II. In unit I, the porous core reef (facies 6) is only present in the lee side oriented

towards the continent. The lithotype rule prevents contact between facies 6 and 4.

Gaussian variograms were used for the two gaussian functions in order to respect the

rounded shape of the reef facies belts. The continuity of the facies distribution was

also ensured by using long variogram ranges of the 6,000 m in the East-West

direction and 15,000 m in the North-South direction. This anisotropy imposes an

ellipsoidal shape on the simulated reef. The results of the simulation are shown in

Unit II

Unit III
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1
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3

3
4

5
1

1

1

Unit I

Fig. 8.7 Synthetic model of a reef complex from which a pseudo-well data-base was compiled for

simulation purposes

130 8 Case Studies and Practical Examples



Fig. 8.8 in a vertical section across the reef, and in Fig. 8.9 in plan view. The

complex internal organisation of the reef has been reproduced well in the simulation.

Simulating Progradational Patterns

In a progradational sequence, the facies are organised in a logical order from the

deepest facies at the base of sequence to the shallowest on top. Laterally, the

LYTHOTYPE RULE

Unit III

Unit II

Unit I

VERTICAL PROPORTION
CURVES

CROSS-SECTION

GAUSSIAN VARIOGRAMS
LONG RANGES
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Fig. 8.8 Vertical section extracted from a plurigaussian simulation of the reefal complex which

was divided into three units. These are shown with their lithotype rules (left) and their vertical

proportion curves (right)

Fig. 8.9 Plan view of the reef simulation, using a gaussian variogram with a long range in Unit II

(a) and III (b). See Fig. 8.8 for unit names
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geometry of a progradation is marked by oblique clinoforms each corresponding

to a depositional surface The facies belts are then organised obliquely with

their dip corresponding to the direction of progradation (Fig. 8.10). In it litho-

facies 1 is separated from lithofacies 4 by lithofacies 2 and 3. The first gaussian

function controls the thresholds of lithofacies 1 and 4, and the second, litho-

facies 2 and 3. An anisotropy was added to simulate the dip of facies 3 within

facies 4.

Simulation of Fractures Affecting a Specific Facies

Fracturing which affects some reservoirs after burial can also be simulated with

a stochastic approach (Cacas et al. 2001). Fracture networks are simulated as

objects in a reservoir matrix. In many cases, there is a relationship between the

fracture distribution and the initial lithotypes because the mechanical properties of

the latter depend on their lithology and textures. When stressed during burial and

tectonic deformation, fracturing affects the lithotypes differentially. Some of them

end up intensively fractured, whereas others do not. So it is important to correlate

the fracture distribution with the lithotype.

We simulated algal mounds with fractures in them. We consider that only the

mound facies (facies 5 and 6) have been fractured significantly. The distribution of

the facies was simulated first with the plurigaussian method. Then, fractures were

only simulated in the mound facies. Figure 8.11 presents the results.

Testing the Impact of Simulation Parameters

Different tests were carried out to evaluate the sensitivity of the simulations to variations

in input parameters. The synthetic reef case study presented in Fig. 8.7 was used as

a reference to evaluate the effect of changing the type of variogram model and its

range. The influence of the range was tested on unit II. In the reference simulation

Fig. 8.10 Simulation of a progradation
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(Figs. 8.8 and 8.9), the horizontal ranges used were 6,000 m and 15,000 m in the X and

Y directions respectively. In Fig. 8.12, smaller ranges were used (X ¼ 1,500 m,

Y ¼ 1,300 m).

Comparing the two simulations shows that the range reduction has dramatic

consequences on the shape and distribution of the facies belts. Small isolated reefs

are produced by the smaller ranges. The sensitivity of the simulations to the

variogram model was then tested. In the reference simulation, two gaussian vario-

grams with ranges of X ¼ 6,000 m, Y ¼ 15,000 m, Z ¼ 5 m were used for each

gaussian function. Figure 8.13 shows the results produced using exponential var-

iograms with similar ranges to the reference simulation. The consequences of this

change are again very important.

The facies are more scattered in the simulation using an exponential variogram

models than in the one using gaussian variograms. So the type of variogram model

can have important consequences when computing facies connectivity within a

reservoir.

Fig. 8.12 Testing the variogram range influence on the reefal complex described in Fig. 8.7. The

figure shows a plan view of the reef using variograms with short ranges. Compare with Fig. 8.9 in

which the same plan was simulated with a long range

Fig. 8.11 Simulation of fractures only affecting one facies within the Pennsylvanian algal mounds
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Testing the Impact of the Rock-Type Rule

Normando et al. (2005) tested the effect of slightly changing the rock-type rule on

the connectivity of the reservoir while fixing the other parameters. In a study on

a mature Brazilian field with four facies, the authors showed permuting the

position of two of the facies in the rock-type rule led to significant changes in

the connectivity in simulated reservoirs obtained using the two different rules

(Table 8.1).

Handling Heterotopic Data

The aim of the project between IFP, Ecole des Mines de Paris and the Italian oil

company, ENI, was to tackle the problem of simultaneously simulating sedimentary

facies and diagenesis index in a reservoir deposited in a clastic fluvial environment.

Four sedimentary facies were defined from cores and logs of 15 wells. In addition

four diagenetic indices were identified from thin section analyses for some of the

wells. As the two properties are not known at the same locations, this dataset

is heterotopic. This study gave us the opportunity to test different simulation

approaches to produce a reservoir model including the two properties, and to

Table 8.1 Percentage of

connected volume in one zone

of the reservoir

Rock type P90 (%) P50 (%) P10 (%)

N� 1 15 20 25

N� 2 27 31 35

Fig. 8.13 Testing the variogram model. The simulation represents a cross section of the reef

complex described in Fig. 8.7. An exponential variogram model was used here. Compare with

Fig. 8.8 in which the same reef complex was simulated with a gaussian variogram
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identify the different characteristics of these methods. Three different approaches

were used to simulate the sedimentary facies and the diagenetic

l Nested truncated gaussian simulations
l Classical plurigaussian simulations (PGS)
l Bi-plurigaussian simulations (Bi-PGS)

In the workflow for the nested simulations, the steps are performed sequentially:

first a classical plurigaussian simulation of sedimentary facies, using a vertical pro-

portion matrix in terms of sedimentary facies (Fig. 8.14); second, for each sedi-

mentary facies, a classical plurigaussian simulation of the diagenesis index,

and third the reconstitution of the final information using logical rules to combine

the different realizations (Fig. 8.15). The simulation parameters are specific to each

property, sedimentary facies and diagenesis index. This method makes it possible

to separate the constraints for each simulated property in terms of conditioning

wells and parameters. The diagenetic property is independent from one cell to

another, if the sedimentary facies change between these cells. The disadvantage is

that it will not be possible to use any correlations found between the sedimentation

and the diagenesis.

The classical plurigaussian simulation method (PGS) can be used directly if the

two indicators variable are combined into one single global indicator variable,

called the facies-diagenesis variable. In that case only the wells where both types

Fig. 8.14 Matrix of percentage for the sedimentary facies
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of information, sedimentary facies and diagenesis index, are defined can be used for

the conditioning.

A single simulation where each Gaussian function is associated with one indicator

variable, (here G1 is related to the sedimentation and G2 is related to the diagenesis)

is carried out globally. A correlation coefficient between the two Gaussian functions

could be used to take account of a relationship between sedimentation and diagenesis

(Fig. 8.16). This approach is in fact a short-cut to combine in one simulation two

mono-truncated Gaussian simulations. Thus the continuity in the diagenesis property

through the facies is respected by construction.

Fig. 8.17 illustrates the main differences between the three simulation methods.

The bi-plurigaussian simulation (Bi-PGS) model has been also used as it provides

a sound basis for bivariate categorical simulation. In this approach, each physical

process is associated with a complete PGS. The two vertical proportion matrices
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Fig. 8.15 Two levels in the reservoir model using nested truncated Gaussian simulations
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are linked through the conditional probabilities between the two indicators. The

advantage of this approach is that all the data are taken into account during the

conditioning, even the ones where only one indicator is available (Fig. 8.17).

Fig. 8.16 Workflow and parameters for plurigaussian simulation
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Mining Applications of the Plurigaussian Approach

In this section we present two applications of plurigaussian simulations to mining

projects. The first was developed in answer to a question by the French uranium

mining company, Areva: Is the plurigaussian approach suitable for reproducing the

characteristics of roll-front uranium deposits? As these deposits are formed in

permeable sandstone, the method is a natural extension of the techniques in the

oil industry. The second case-study is an application to a porphyry copper deposit in

Chile, that is, in a non-sedimentary environment.

Roll-Front Uranium Deposit

In this application, we are interested in a roll-front uranium deposit and its exploi-

tation by in-situ leaching. The dataset comes from the Muyumkum deposit in the

South Khazakstan (Fontaine and Beucher 2006). Roll-front uranium deposits are

formed in permeable sandstone. The uranium is located at the interface between

oxidizing and reducing conditions.

The in-situ leaching technique consists of circulating oxidising and acid or

alkaline solutions in the mineralised area via injection wells to dissolve the uranium

selectively. As a consequence, there are two issues: on the one hand, to delimit the

areas where the uranium grade is above a given threshold and on the other hand to

reproduce the distribution of the hydrodynamic parameters to mimic the fluid flows

for the in-situ leaching.

Fig. 8.17 Comparing the three approaches. The nested simulation (left) there is no con-

tinuity (correlation ) in the diagenesis variable. In the Bi-PGS simulation (centre) all data are
used and there is continuity in the diagenesis. In contrast the wells where there was no

diaenesis data were not used the PGS (right) and so the wells with circles around them are

not respected
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First Issue

As the hydrodynamic parameter distribution depends mainly on the geological

characteristics, this constitutes the first step of the study. In the example, the facies

have been grouped in three classes from silt to medium and coarse grained sands.

Moreover the sands have been split into non-oxidized and oxidized facies. So,

seven types were defined. The spatial distribution of the proportions (see vertical

proportion curves, Fig. 8.18, and vertical proportion matrix, Fig. 8.19) shows that

the oxidized types are predominantly in the south east which is correlated to the

origin of the oxidizing fluids. Vertically, these facies are more abundant in

the upper part of the deposit. The shale facies has almost the same proportion in

the whole domain.

As these seven types result from two processes, two underlying Gaussians

are used. The first one gives the granulometric evolution from coarse sand to silt

and the second one separates oxidized and non oxidized types. The shapes of the

experimental variograms confirm the choice of the lithotype rule. The fits of the

oxidized facies is presented in the figure.

Giving this lithotype rule, the fit of shale type gives the parameters for the first

gaussian random function. Then the second one is chosen by fitting the other

experimental indicator variograms. The result is presented for the oxidized facies

in Fig. 8.20. A vertical E-W cross-section in a conditional simulation (Fig. 8.21)

Lithotypes
coarse sand
medium sand
fine sand +silt
shale
coarse sand oxy
medium sand oxy
fine sand oxy

Fig. 8.18 Vertical proportion curves (VPC)
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shows the spatial distribution of the oxidized and non oxidized facies from east

to west.

A 3D view of the simulated shale (Fig. 8.22) illustrates the relative stationarity of

this facies in the field as visible in the vertical proportion matrix while Fig. 8.23

shows a 3D view of the simulated oxidized facies.

Fig. 8.19 Vertical proportion matrix (VPM)
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Fig. 8.20 Experimental and fitted vertical variograms for the oxidizing lithotypes

Fig. 8.21 Vertical cross-section on one of the simulations showing the seven lithotypes

Fig. 8.22 3D block model of the simulated shale facies
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Second Issue

As a result of the deposition process, the high grade uranium is located at the

interface between oxidized facies and not oxidized ones. The idea is to define

three domains: the non oxidized area (initial state), the oxidized area (swept by

oxidizing fluids) and area where uranium grade is high. The procedure for

transforming the geological facies and the grades into indicators is the following:

the high grade indicator is obtained using a threshold on the uranium grade and in

the rest, the initial state and the oxidized one, is distinguished depending on the

oxidation factor.

Globally the high grade ore is more or less constant along the vertical axis

(see VPC Fig. 8.24). In the 3D space it is mainly located in the North West

part along a West south- North east axis (see the 3D view of the high grade

proportion upper than 30% (Fig. 8.25). This is the result of the deposition

process.

The lithotype rule was also defined based on the deposition process: the first

underlying Gaussian is affected to the distinction between oxidized and non

oxidized facies while the second one depends on the grade information. This choice

is confirmed by the behaviour of the experimental variograms. In fact, on the

normalized variograms (same variances for the three types equal to 1) the shapes

of oxidized and non oxidized variograms are similar to each other but are differ-

ent from the one for the high grade ore. The fit of the high grade variogram

gives directly the model for the second Gaussian. The fits of the other types is

a combination of this model and the model for the first Gaussian. (Fig. 8.26) The

conditional simulations were then performed with all the previous parameters.

A typical simulation is shown in Fig. 8.27.

Fig. 8.23 3D block model of simulated oxidized facies
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Fig. 8.25 Proportion of high grades above 30%
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Fig. 8.24 Global vertical proportion curves for the three types
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Simulation of a Porphyry Copper Deposit: Non-sedimentary
Environment

This case-study has been included to show that plurigaussian simulations can also be

used in non sedimentary geological environments. In these cases, there is no longer

any reason to use vertical proportions, as the geology is not guided by the vertical

sedimentation.

The MM copper deposit is a porphyry copper deposit near the Chuquicamata

mine. In this type of deposit, the mineralization is constrained by rising fluids

through a network of faults and joints and by the interactions of these fluids with the

Fig. 8.27 A simulation with only oxidised and high grade facies shown

Lithotypes

Init type
High grade
Oxydation

__ __
-----
......

Fig. 8.26 Experimental variograms (dotted lines) and fitted models (solid lines)
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pre-existing minerals. In this orebody, this network is controlled by a major sub

vertical North-South fault, called the MM fault. As the auxiliary faults and joints

principally follow this fault, the copper mineralization, which controls the working

rock types used for this study has a general North South vertical orientation. Four

rock types have been defined, corresponding to different stages of copper enrich-

ment: breccias (higher grade ore), C5 stockwork (also high grade ore), the low

grade ore C1, and the waste rock. Breccias and C5 are generally in direct contact

with the faults of joints network. The copper concentration of the fluids decreased

as they went further from this network. Their interaction with the pre-existing rocks

created the low grade rock type C1.

Further out, there was not enough copper left in the fluids to lead to mineraliza-

tion and the resulting rock type is waste. Figure 8.28 shows the distribution of the

rock types in an east-west vertical section.

As the rocktype depends mostly on the distance from the fault, it seems natural to

use the fault plane which is oriented in a North-South vertical direction, as the

reference level. The flattening consists in shifting the East-West coordinates to

transform the fault into a perfect North-South vertical plane. Consequently, the
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Fig. 8.28 Schematic distribution of the rocktypes. in a vertical east-west vertical section. Repro-

duced from Riquelme et al. (2008) with permission
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proportions will be plotted along an East-West direction, perpendicular to the MM

fault in the working grid (Fig. 8.29).

The rock type distribution varies perpendicular to the fault. As was mentioned,

the copper rich rock types, breccias and C5 stockwork are closer to the fault, while

the C1 and waste are more distant, but the rock types also vary in the other

directions. For example, the breccias are wider towards the top. So we decided to

use proportions which vary in all directions, hence to use a proportion matrix.

This matrix has been built from 16 local East-West proportion curves, by kriging

with a linear variogram.

With only four rock types, the rock-type rule is quite simple (Fig. 8.30). The first

gaussian separates C1 from the brecciasþ C5 group on one side, waste on the other

side, while the second separates Breccia and C5.

Once the rock-type rule has been chosen, the variograms can be fitted and the

orebody can be simulated. The goal of this simulation was to propose a block model

Fig. 8.29 Horizontal

projection view of the MM

fault, the breccias (blue) and
the drillholes (pink).
Reproduced from Riquelme

et al. (2008) with permission

Breccia

C5

C1

Waste

Fig. 8.30 Rock-type rule. The first gaussian separates C1 (green) from the richer rock types

(breccias + the C5 group) on one side, and from the waste (grey) on the other side, while the second
separates breccia (blue) and C5 (red). Reproduced from Riquelme et al. (2008) with permission
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without manual smoothing done by the geologist. the new model compared favour-

ably with the block model previously designed by the mine geologist.

Figure 8.31 compares the block model provided by the geologists (top) with two

simulations. The waste rock has not been represented in the geologists model

whereas it is grey in the simulations. An extended version of this case study can

be found in Riquelme et al. (2008).
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Fig. 8.31 Comparison between two simulations (center and below) and the block model given by

the geologist (above). The waste rock (grey on the simulations) has not been represented on the

geologist’s block model. Reproduced from Riquelme et al. (2008) with permission
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Chapter 9

Freeware

Introduction

In order to demonstrate the power and the flexibility of the truncated plurigaussian

method, three free programs can be downloaded from the following Web site:

http://pluridemo.geosciences.mines-paristech.fr

PluriDemoSimumakes it possible to visualise simple plurigaussian simulations

and to see how changes in the input parameters affect the resulting images.

PluriDemoVario illustrates the relationship between the indicator variogram

and those of the underlying gaussian random functions (RFs for short) that are

truncated to give the indicators.

PluriDemoSet allows the user to build a random set (two facies only) using the

PluriGaussian Truncated method in a non-stationary framework.

For each program the web site also provides a set of graded exercises showing

how to run the program and how the key parameters affect the simulated images or

the indicator variograms, as the case may be.

Installation

The package is available for the following platforms:

l Windows (XP, Vista, Windows 7) 32/64 bits
l Linux x86 32/64 bits. Tests have been made under Ubuntu 9, Fedora 8, Redhat 4,

Redhat 5.

Installation Instructions for Windows Users

1. Download the archive file named pluridemo_winnt.zip and save it into a tempo-

rary directory.

M. Armstrong et al., Plurigaussian Simulations in Geosciences,
DOI 10.1007/978-3-642-19607-2_9, # Springer-Verlag Berlin Heidelberg 2011
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2. Unzip the archive file pluridemo_winnt.zip in the destination directory (for

example in C:\Programs File).

3. Create the shortcuts for the three programs in the Windows Start Menu and on

your desktop. Double click on the file named create_start_menu_links You

will find this file in the directory where you installed the package (for example

C:\Programs File\PluriDemo).

4. Start one of the programs by clicking on the corresponding icon created on your

desktop or in the Windows Star Menu.

Installation Instructions for Linux Users

1. Download the archive file named pluridemo_linux.tgz and save it in a temporary

directory (for example/tmp)
2. Open a terminal window

3. Choose an installation directory (for example/usr/local). Note that, depending

on this choice, you may need the administrator privileges.

cd /usr/local

tar zxvf /tmp/pluridemo_linux.tgz.

4. Start one of the programs (for example: PluriDemoSimu) by typing the follow-

ing command:

/usr/local/PluriDemo/PluriDemoSim

Description of PluriDemoSimu

In this program, the user must select:

l The two underlying Gaussian random functions
l The rock type rule
l The proportions for each facies

Figure 9.1 presents a snapshot of the main panel of this program:

The Choice of the Model

Each underlying Gaussian random function (GRF) is chosen by selecting one

of the 12 pre-programmed images. These images have been generated using

three exponential models, three gaussian models, three cardinal sine models and

three spherical models. In each case, the parameters are different, in particular the

ranges and the anisotropy coefficients and directions (refer to Table 9.1 for the

parameters).
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The Rock Type Rule

The rock type rule defines the number of facies and the relationship between them.

A rock type rule is represented as a square icon which gives a symbolic

representation of the thresholds separating facies. The horizontal axis representing

the first GRF goes from –1 on the left to + 1 on the right; and similarly for the

second GRF along the vertical axis.

As an illustration, how do we interpret the second rock type rule of the first row? As

the square is divided into three regions coloured orange, yellow and green, this rule

Fig. 9.1 PluriDemoSimu main window
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generates three facies. Any point belonging to the green facies (in the left area)

corresponds to a value for the first GRF smaller than a given threshold s1, whatever

the value for the second GRF. A point belonging to the yellow facies corresponds to a

value for the first GRF larger than s1 and a value for the secondGRF larger than another

threshold s2. Finally a point belonging to the orange facies corresponds to a value for

the first GRF larger than s1 and a value for the second GRF smaller than s2. See

Chap. 5. Twenty four rock type rules are available, involving from three to five facies.

Vertical Proportions

The user must specify the proportions for each one of the facies involved in the rock

type rule. In the case of the second rock type rule, we are using the two thresholds s1 and

s2, one for eachGRF. Their values determine the proportion for each facies. Decreasing

the value of the threshold on the first GRF s1 decreases the amount of the green facies

and increases the amounts of yellow and orange facies. Similarly, increasing the

threshold on the secondGRF s2 increases the amount of the orange facies and decrease

the amount of yellow facies, keeping the amount of green facies unchanged. In the

default case the facies are programmed to have equal proportions (here 33%).

In the stationary case, these would be the same at all points in the area under

study. The program also allows the user to check the impact of non-stationary

proportions by defining the top and bottom proportion values. The proportions are

then interpolated linearly from the top of the image to the bottom.

Simulation Outcome

When the parameters have been selected, the user produces the corresponding

simulation outcome by pressing the Apply button.

The panel that appears on the output window is divided into four quadrants. The

two images that were used in the construction are shown in the top two quadrants.

Table 9.1 Parameters of the variogram models used to generate the 12 images. (angles are

measured counter-clockwise starting from east)

Name Variogram type Long range Short range Orientation

Exponential 1 Exponential 35 20 170�

Exponential 2 Exponential 105 25 40�

Exponential 3 Exponential 60 6 95�

Gaussian 1 Gaussian 50 7 0�

Gaussian 2 Gaussian 40 30 120�

Gaussian 3 Gaussian 40 18 60�

Cardinal sine 1 Cardinal sine 70 55 20�

Cardinal sine 2 Cardinal sine 150 20 140�

Cardinal sine 3 Cardinal sine 90 35 85�

Spherical 1 Spherical 80 15 10�

Spherical 2 Spherical 60 30 160�

Spherical 3 Spherical 60 50 35�
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Note that the top right quadrant is left blank when the rock type rule indicates that the

second GRF plays no role in the simulation. The resulting plurigaussian image

appears in the bottom left quadrant. The bottom right square shows the rock type

rule and the proportions that were used to generate it. The proportions are repre-

sented either as a pie diagram for stationary proportions or as a vertical proportion

curve in the non-stationary case.

When the user performs several trials, the different simulation outcomes are

produced in the same output window, subdivided into several tabs. When click-

ing on a given tab, the corresponding parameters are loaded back in the main

window.

Fig. 9.2 PluriDemoSimu output window
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Figure 9.2 represents the outcome of a plurigaussian simulation performed using

the second rock type rule (involving three facies) when the first GRF corresponds to

the model Exponential 1 and the second GRF to the model Gaussian 2. All three
facies have the same proportion.

The green foreground in the plurigaussian image corresponds to the lowest

values of the first GRF. The contour lines around the green facies are broken up

because its model is exponential. The contour separating the orange from the

yellow is smooth because the corresponding model is gaussian.

Limitations of the Program

As this program was designed to demonstrate how plurigaussian simulations work,

it does not have the full capacity of commercial software. This paragraph outlines

its main limitations:

l The program is limited to two independent gaussian variables. No allowance has

been made for correlations between the variables.
l Twelve simulated images were pre-programmed. The user cannot generate more

images with the same variogram models or with others.
l Only 24 rock type rules are available. To simplify the calculation of thresholds

the partition is rectangular. Then the number of facies was limited to 3, 4 or 5.

Even with these restrictions the catalogue of rock type rules is by no means

exhaustive. For example each colour only appears once.
l The program allows for non-stationarity in the vertical direction (but no other)

and then only a linear change in the proportions from top to bottom. In practice

the cyclic changes in the geological environment over time mean that the

variations are far more complex.
l Lastly, the program gives only non-conditional simulations. No condition-

ing data can be included. But the conditioning step is possible in practical

cases.

Description of PluriDemoVario

The program PluriDemoVario, was designed, as its name suggests, to show what

the indicator variograms corresponding to different types of underlying random

functions look like.

Figure 9.3 presents a snapshot of the main panel of this program:

In this program, the user must select:

l The model for the two underlying gaussian random functions
l The rock type rule
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l The proportions for each facies
l The direction in which the variogram of indicators will be calculated.

Choice of the Model

The user must specify the type of variogram for each underlying GRF. Unlike in

PluriDemoSimu, the user can choose:

l The variogram type selected among the following possibilities: exponential,

gaussian, cardinal sine or spherical
l The (generic) range
l The anisotropy ratio which gives the ratio between the smallest and the longest

ranges

Fig. 9.3 PluriDemoVario main window
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l The anisotropy direction (an angle between 0� and 360� measured counter-

clockwise starting from east) which corresponds to the longest range
l The percentage of nugget effect added to the model. Note that the sill of each

underlying GRF (including the nugget effect) must be equal to 1.

Rock Type Rule

The same 24 Rock Type Rules as in the program PluriDemoSimu are available.

Proportions of Lithotypes

As in the program PluriDemoSimu, the user can select the proportion for each one

of the facies involved in the rock type rule. However here only the stationary case is

envisaged: the proportions would be the same at all points in the area under study.

Direction for Calculation

After pressing the Apply button, the program will display the indicator variograms

calculated in the direction defined by the user. The direction angle is measured (in

degrees) counter-clockwise starting from the east.

Indicator Variograms

When the parameters have been selected, the user produces the corresponding

indicator variograms by pressing the Apply button.

The output window is divided into four quadrants. The top two images represent

the model selected for each underlying GRF. Note that the top right quadrant is left

blank when the rock type rule indicates that the second GRF plays no role. The

bottom left quadrant represents the 2D anisotropy diagram showing the distance at

which the variogram of each indicator reaches 95% of its sill value as a function of

direction. The bottom right quadrant represents the variograms of the indicators

calculated in the direction requested by the user. It also presents a set of icons which

allow the user to select:

l S: simple variograms of indicators
l SN: simple variograms of indicators after their sills have been normalized to 1
l X: cross-variograms of indicators between the reference and all the other facies.

The reference facies is selected using the corresponding coloured icon
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l XN: cross-variogram of indicators between the reference and all the other facies,

after their sills have been normalized
l F: the function measuring the edge effect of a reference against the other facies.

When the user performs several trials, the different indicator variograms are

produced in the same output window, subdivided into several tabs. By clicking on a

given tab, the corresponding parameters are loaded back in the main window.

Figure 9.4 represents the outcome of the program PluriDemoVario performed

using:

l An exponential model with a range of 50 and anisotropy with a ratio of 51% and

a direction of 30� for the first GRF
l A gaussian model with a range of 50 and anisotropy with a ratio of 70% and a

direction of 61� for the second GRF

Fig. 9.4 PluriDemoVario output window
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The second rock type rule involving three facies with the following proportions:

proportions for the facies are 50% green, 33% orange and 17% yellow.

The 2D anisotropy diagram shows the green ellipse with a main direction

oriented 30� and a ratio of the smallest to the longest ranges equal to 0.5 (51%).

This reflects that the green facies only depends upon the model characteristics of the

first GRF. The curves for the other facies are not precisely ellipses as they combine

the model characteristics of the two GRFs, and therefore their anisotropy directions

which do not coincide (30� for the first GRF and 61� for the second GRF).

The variogram of indicators are all different (this can be checked using the

normalized version). The one corresponding to the green facies is the translation of

the exponential variogram of the underlying first GRF to the indicator, whereas the

other two indicator variograms involve the models of both underlying GRFs.

Description of PluriDemoSet

The PluriDemoSet program allows the user to simulate a random set using the

truncated plurigaussian method applied to a case with only two facies (black and

white). The main window is presented in of PluriDemoSet Fig. 9.5.

In this program, the user must select:

l The model for the two underlying gaussian random functions and their possible

transformation
l The particular rock type rule and the proportions

The black facies is obtained by truncating two underlying GRFs according to the

special rock type rule presented in Fig. 9.6:

The first GRF is displayed along the horizontal axis whereas the vertical axis

corresponds to the second GRF. The black facies is obtained when the first GRF lies

within ½s1; s2� or when the second GRF lies within ½t1; t2�.

Choice of the Underlying GRF

Each underlying gaussian random function (GRF) is chosen by selecting one of the

12 pre-programmed images (same as in the PluriDemoSimu program). These

images have been generated using three exponential models, three gaussian models,

three cardinal sine models and three spherical models. In each case, the parameters

are different, in particular the ranges and the anisotropy coefficients and directions

(refer to Table 9.1 for the parameters).

Each realization can be transformed using one of the following operations:

l No transformation
l Experimental Gradient along W-E: the gradient is obtained by finite difference

comparing consecutive grid nodes along the W-E axis
l Experimental Gradient along N-S
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Fig. 9.5 PluriDemoSet main window

s1 s2

t2

t1

Fig. 9.6 Rock Type Rule
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The Proportions

In this program, the user does not exactly specify the proportions of a facies.

Instead, he provides the lower and upper thresholds for both GRFs.

Along the horizontal axis for the first GRF, the thresholds are defined through the

proportions of the low white facies (below s1), of the black set facies (within the

interval ½s1; s2�) and of the high white facies (above s2). These proportions can

be either constant over the simulation field or may vary linearly in presence of a

trend. Similarly along the vertical axis for the second GRF, the user defines the

proportions of the low white facies, the black set and the high white facies.

Note that the proportion of the black facies in the final simulation outcome

cannot be derived easily from the proportions for the black set along the two

underlying GRFs.

Particular Case

Generally, the two underlying GRFs (denoted Z1 and Z2) are simulated indepen-

dently. However, they can be replaced by the set of new GRFs Y1 and Y2, derived
from Z1 and Z2 according to one of the following modes:

l Using the correlation coefficient r as follows:

Y1 ¼ Z1
Y2 ¼ rZ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
Z2

�

l Using the shift d as follows:

Y1 ¼ Z1
Y2 ¼ Z1ðxþ dÞ

�

l Using the linear transformation where a varies from 0 (bottom) to 1 (top):

Y1 ¼ Z1
Y2 ¼ aZ1ðxÞ þ ð1� aÞZ2ðxÞ

�

In Fig. 9.7, the random set is obtained from:

l The first GRF generated using the model Gaussian 1 and showing a strong W-E

anisotropy, with constant proportions: 40% for low, 20% for set and 40% for high
l The second GRF generated using the model Gaussian 3 and showing a moderate

anisotropy along the first bisector, with proportions varying from bottom (40%

for low, 20% for set and 40% for high) to top (65% for low, 31% for set and 3%

for high)
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The output window is subdivided into four quadrants:

l The top quadrants show the underlying GRFs used for the simulation
l The bottom right quadrant shows the rock type rule at the four corners of the

field, represented with the corresponding proportions
l The bottom left quadrant represents the simulated outcome

We can check that the black facies is a mixture of thin stripes oriented along the

W-E axis and thicker meanders oriented along the first bisector. These meanders

become even thicker in the topmost part of the simulation (due to the trend in the

proportions).

Fig. 9.7 PluriDemoSet output window
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réservoirs: des données de puits aux simulations d’écoulement en utilisant des outils géostatis-
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Thèse de Docteur en Géostatistique, ENSMP. 168p

Freulon X (1994) Conditional simulation of a Gaussian random vector with nonlinear and/or noisy

observations. In: Armstrong M et al (eds) Geostatistical simulations. Kluwer, Dordrecht,

pp 57–71

Freulon X, de Fouquet C (1993) Conditioning a Gaussian model with inequalities. In: Soares A

(ed) Geostat Troia ’92, vol 1. Kluwer, Dordrecht, pp 201–212

Freulon X, de Fouquet C, Rivoirard J (1990) Simulation of the geometry and grades of a uranium

deposit using a geological variable. In: Proceedings of the XXII international symposium

APCOM. Vol 2, pp 649–659

Galli A, Beucher H (1997) Stochastic models for reservoir characterization: a user-friendly

review. In: Fifth Latin American and Caribbean petroleum engineering conference and exhi-

bition, Rio de Janeiro, Brazil, 30 Aug–3 Sept 1997. SPE 38999, 11 p

Galli A, Guérillot D, Ravenne C (1990) Combining geology, geostatistics and multiphase fluid

flow for 3D reservoir In: Guérillot D et al (eds) 2nd European conference on the mathematics of

oil recovery. Technip, Paris, pp 11–19

Galli A, Beucher H, Le Loc’h G, Doligez B (1994) The pros and cons of the truncated gaussian

method. In: Armstrong M et al (eds) Geostatistical simulations. Kluwer, Dordrecht,

pp 217–233

166 References



Galli A, Ravenne C, Richard V, Guérillot D (1995) Constraining detailed geostatistical reservoir

models with seismic and dynamic data. In: Seamless seismic to simulation and back. Proceed-

ings of EAPG/SPE Workshop, Glasgow, 6 p

Galli A, Gao H (2001) Rate of convergence of the Gibbs Sampler in the Gaussian Case. Math Geol

33(6):653–678

Galli A, Le Loc’h G, Geffroy F, Eschard R (2006) An Application of the Truncated Pluri-gaussian

Method for Modeling Geology. AAPG computer application for geology, pp 109–122

Gao G, Zafari M, Reynolds AC (2006) Quantifying uncertainties for the PUNQ-S3 problem in a

Bayesian setting with RML and EnKF. SPE J 11(4):506–515, SPE-93324-PA, doi 10.2118/

93324-PA

Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribution and the bayesian restoration

of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

Gervais V, Roggero F, Le Ravalec M (2009) Adaptative local parametrization of facies propor-

tions for the history matching of production and time lag saturation data. IFP Working Paper,

10 pp

Geweke J (1991) Efficient simulation from the multivariate normal and Student-t distributions

subject to linear constraints and the evaluation of constraint probabilities. Comput Sci Stat

23:571–578

Gikhman IJ, Skorokhod AV (1969) Introduction to the theory of random processes. Dover,

New York

Gossa H, Gaaya MH, Yahmadi B, Volpi B, Doligez B, Hu LY, Galli A (1993) A geostatistical

approach aimed at reservoir characterization: a case study. In: 2èmes Journées Tunisiennes de
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