

Lecture Notes in Computer Science 6548
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Keith Cooper John Mellor-Crummey
Vivek Sarkar (Eds.)

Languages and Compilers
for Parallel Computing

23rd International Workshop, LCPC 2010
Houston, TX, USA, October 7-9, 2010
Revised Selected Papers

13

Volume Editors

Keith Cooper
Rice University, Department of Computer Science
6100 Main Street, Houston, TX 77005-1892, USA
E-mail: keith@rice.edu

John Mellor-Crummey
Rice University, Department of Computer Science
6100 Main Street, Houston, TX 77005-1892, USA
E-mail: johnmc@cs.rice.edu

Vivek Sarkar
Rice University, Department of Computer Science
6100 Main Street, Houston, TX 77005-1892, USA
E-mail: vsarkar@rice.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-19594-5 e-ISBN 978-3-642-19595-2
DOI 10.1007/978-3-642-19595-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011922053

CR Subject Classification (1998): D.1.3, C.2.4, D.4.2, H.3.4, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is our pleasure to present the papers accepted for the 23rd International Work-
shop on Languages and Compilers for Parallel Computing (LCPC), held during
October 7–9, 2010 at Rice University in Houston, Texas, USA. Since 1988, the
LCPC workshop has emerged as a major forum for sharing cutting-edge research
on all aspects of parallel languages and compilers, as well as related topics includ-
ing runtime systems and tools. The scope of the workshop spans foundational
results and practical experience, and targets all classes of parallel platforms in-
cluding concurrent, multithreaded, multicore, accelerated, multiprocessor, and
cluster systems. Given the rise of multicore processors, LCPC is particularly
interested in work that seeks to transition parallel programming into the com-
puting mainstream. This year’s LCPC workshop was attended by 66 registrants
from across the globe. There were two co-located events held during October 5–6,
2010, prior to the start of LCPC — the Workshop on Language-level Approaches
for Retargetable High-Performance Computational Science Applications, and the
Second Annual Concurrent Collections Workshop.

This year, the workshop received 47 submissions with coauthors from 16
countries — Australia, Brazil, Canada, China, France, Germany, India, Israel,
Japan, Netherlands, Poland, Spain, Sweden, Switzerland, the UK, and the USA.
Of these submissions, the program committee selected 18 papers for presentation
at the workshop, representing an acceptance rate of 38%. Each selected paper
was presented in a 30-minute slot during the workshop. In addition, 9 submis-
sions were selected for presentation as posters during a 90-minute poster session.
Each submission received at least three reviews. The program committee held an
all-day meeting on August 26, 2010 to discuss the papers. Whilst each paper was
discussed, PC members who had a conflict of interest with the paper were asked
to temporarily leave the meeting. Decisions for all PC-authored submissions were
made by PC members, who were not coauthors of any submissions.

We were fortunate to have two keynote speakers at this year’s LCPC work-
shop. Keshav Pingali, who holds the W.A.“Tex” Moncrief Chair of Grid and
Distributed Computing at UT Austin, gave a talk titled “Why Compilers Have
Failed, and What We Can Do about It”. His talk summarized major accom-
plishments of compiler research in the past 25 years, as well as lessons learned
from major failures of compilers during that period. After presenting insights
gained from his group’s Galois project, Keshav challenged the LCPC commu-
nity with a research goal to build a general-purpose automatically parallelizing
compiler system for future 1000-core processors. Steve Wallach, Chief Scientist,
Co-founder and Director of Convey Computers, gave a talk titled “Computer
Software: The ‘Trojan Horse’ of HPC”. He highlighted the increasing gap be-
tween advances in hardware technologies such as heterogeneous accelerators and
setbacks in their accompanying software, and observed that ultimately hardware

VI Preface

that is easier to program will win over hardware that is more difficult to program.
After discussing the approach being taken by Convey Computers with applica-
tion engines that implement application-specific instructions, Steve concluded
that heterogeneous processors are here to stay and that smarter compilers must
be developed to ensure that they can be programmed more easily than with
current approaches. The keynote talks, technical sessions, and poster session led
to several interesting discussions among participants during breakfasts, lunches,
coffee breaks, evening receptions, and the workshop banquet held on October 7,
2010 evening at the Houston Museum of Natural Science.

We would like to conclude by thanking the many people whose dedicated time
and effort helped make LCPC 2010 a success. The hard work invested by pro-
gram committee members and external reviewers in reviewing the submissions
helped ensure a high-quality technical program for the workshop. The steering
committee members and the LCPC 2009 organizing committee provided valu-
able guidance and answered questions that arose during preparations for LCPC
2010. All participants in the workshop contributed directly to the technical vi-
tality of the event either as presenters or as audience members. We would also
like to thank workshop sponsors ET International and Reservoir Labs for their
financial support. Finally, the workshop would not have been possible without
the tireless efforts of the entire local arrangements team at Rice University —
Kathryn O’Brien, Darnell Price, Marilee Dizon, Jennifer Harris, Karen Lavelle,
and Amanda Nokleby.

October 2010 Keith Cooper
John Mellor-Crummey

Vivek Sarkar

Organization

LCPC 2010 was organized by the Department of Computer Science at Rice
University.

Steering Committee

Rudolf Eigenmann Purdue University, USA
Alex Nicolau University of California at Irvine, USA
David Padua University of Illinois at Urbana-Champaign, USA
Lawrence Rauchwerger Texas A&M University, USA

Program Committee

Jose Nelson Amaral University of Alberta, Canada
John Cavazos University of Delaware, USA
Barbara Chapman University of Houston, USA
Keith Cooper Rice University, USA
Guang R. Gao University of Delaware, USA
Xiaoming Li University of Delaware, USA
Calvin Lin University of Texas at Austin, USA
John Mellor-Crummey Rice University, USA
Sanjay Rajopadhye Colorado State University, USA
Lawrence Rauchwerger Texas A&M University, USA
Vivek Sarkar Rice University, USA
Michelle Strout Colorado State University, USA

Proceedings Chair

Jun Shirako Rice University, USA

Web and Publicity Chair

Zoran Budimlić Rice University, USA

Sponsoring Institutions

ET International, Inc., USA
Reservoir Labs, Inc., USA

Table of Contents

McFLAT: A Profile-Based Framework for MATLAB Loop Analysis and
Transformations . 1

Amina Aslam and Laurie Hendren

Static Analysis of Dynamic Schedules and Its Application to
Optimization of Parallel Programs . 16

Christoph M. Angerer and Thomas R. Gross

Lowering STM Overhead with Static Analysis . 31
Yehuda Afek, Guy Korland, and Arie Zilberstein

A Parallel Numerical Solver Using Hierarchically Tiled Arrays 46
James C. Brodman, G. Carl Evans, Murat Manguoglu,
Ahmed Sameh, Maŕıa J. Garzarán, and David Padua

Tackling Cache-Line Stealing Effects Using Run-Time Adaptation 62
Stéphane Zuckerman and William Jalby

Locality Optimization of Stencil Applications Using Data Dependency
Graphs . 77

Daniel Orozco, Elkin Garcia, and Guang Gao

Array Regrouping on CMP with Non-uniform Cache Sharing 92
Yunlian Jiang, Eddy Z. Zhang, Xipeng Shen, Yaoqing Gao, and
Roch Archambault

Sublimation: Expanding Data Structures to Enable Data Instance
Specific Optimizations . 106

Harmen L.A. van der Spek and Harry A.G. Wijshoff

Optimizing and Auto-tuning Belief Propagation on the GPU 121
Scott Grauer-Gray and John Cavazos

A Programming Language Interface to Describe Transformations and
Code Generation . 136

Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen, and
Jacqueline Chame

Unified Parallel C for GPU Clusters: Language Extensions and
Compiler Implementation . 151

Li Chen, Lei Liu, Shenglin Tang, Lei Huang, Zheng Jing,
Shixiong Xu, Dingfei Zhang, and Baojiang Shou

X Table of Contents

How Many Threads to Spawn during Program Multithreading? 166
Alexandru Nicolau and Arun Kejariwal

Parallelizing Compiler Framework and API for Power Reduction and
Software Productivity of Real-Time Heterogeneous Multicores 184

Akihiro Hayashi, Yasutaka Wada, Takeshi Watanabe,
Takeshi Sekiguchi, Masayoshi Mase, Jun Shirako,
Keiji Kimura, and Hironori Kasahara

Debugging Large Scale Applications in a Virtualized Environment 199
Filippo Gioachin, Gengbin Zheng, and Laxmikant V. Kalé

Optimizing the Exploitation of Multicore Processors and GPUs with
OpenMP and OpenCL . 215

Roger Ferrer, Judit Planas, Pieter Bellens, Alejandro Duran,
Marc Gonzalez, Xavier Martorell, Rosa M. Badia,
Eduard Ayguade, and Jesus Labarta

CnC-CUDA: Declarative Programming for GPUs . 230
Max Grossman, Alina Simion Sb̂ırlea, Zoran Budimlić, and
Vivek Sarkar

Parallel Graph Partitioning on Multicore Architectures 246
Xin Sui, Donald Nguyen, Martin Burtscher, and Keshav Pingali

The STAPL pView . 261
Antal Buss, Adam Fidel, Harshvardhan, Timmie Smith,
Gabriel Tanase, Nathan Thomas, Xiabing Xu, Mauro Bianco,
Nancy M. Amato, and Lawrence Rauchwerger

Author Index . 277

McFLAT: A Profile-Based Framework for MATLAB
Loop Analysis and Transformations�

Amina Aslam and Laurie Hendren

School of Computer Science, McGill University, Montreal, Quebec, Canada
amina.aslam@mail.mcgill.ca, hendren@cs.mcgill.ca

Abstract. Parallelization and optimization of the MATLAB programming lan-
guage presents several challenges due to the dynamic nature of MATLAB. Since
MATLAB does not have static type declarations, neither the shape and size of
arrays, nor the loop bounds are known at compile-time. This means that many
standard array dependence tests and associated transformations cannot be applied
straight-forwardly. On the other hand, many MATLAB programs operate on arrays
using loops and thus are ideal candidates for loop transformations and possibly
loop vectorization/parallelization.

This paper presents a new framework, MCFLAT, which uses profile-based
training runs to determine likely loop-bounds ranges for which specialized ver-
sions of the loops may be generated. The main idea is to collect information
about observed loop bounds and hot loops using training data which is then used
to heuristically decide upon which loops and which ranges are worth specializing
using a variety of loop transformations.

Our MCFLAT framework has been implemented as part of the McLAB ex-
tensible compiler toolkit. Currently, MCFLAT, is used to automatically transform
ordinary MATLAB code into specialized MATLAB code with transformations ap-
plied to it. This specialized code can be executed on any MATLAB system, and
we report results for four execution engines, Mathwork’s proprietary MATLAB

system, the GNU Octave open-source interpreter, McLAB’s McVM interpreter
and the McVM JIT. For several benchmarks, we observed significant speedups
for the specialized versions, and noted that loop transformations had different
impacts depending on the loop range and execution engine.

1 Introduction

MATLAB is an important programming language for scientists and engineers [17]. Al-
though the dynamic nature and lack of static type declarations makes it easy to de-
fine programs, MATLAB programs are often difficult to optimize and parallelize. The
McLAB system [2] is being defined to provide an open and extensible optimizing and
parallelizing compiler and virtual machine for MATLAB and extensions of MATLAB

such as ASPECTMATLAB [7]. As an important part of McLAB, we are developing a
framework for loop dependence tests and loop transformations, MCFLAT, which is the
topic of this paper.

� This work was supported, in part, by NSERC.

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 A. Aslam and L. Hendren

Due to the dynamic nature of MATLAB, there is very little static information about
array dimensions and loop bounds. Furthermore, many of the scientific codes written in
MATLAB can be applied to very different sized data sets. Thus, our design of MCFLAT

is based on a profiling phase which collects information about loop bounds over many
different runs. We then have a heuristic engine which identifies important loop bound
ranges and then a specializer which produces specialized code for each important range.
The specializer applies loop dependence tests and loop transformations specific to the
input range. Currently, for each important range, we exhaustively generate all legal
specializations, but the ultimate goal is to combine this framework with a machine
learning approach which will automatically generate a good specialization for the given
range.

This paper describes our initial design and implementation of MCFLAT and provides
some exploratory experimental data obtained by using MCFLAT to generate different
versions of code which we execute on four different systems, Mathworks’ MATLAB

implementation (which includes a JIT), the GNU Octave open-source interpreter [1],
our McVM interpreter and our McVM JIT [13]. Interestingly, this shows that different
optimizations are beneficial for different ranges and on different MATLAB execution en-
gines. This implies that specialization for both the range and intended execution engine
is a good approach in the context of MATLAB.

The remainder of this paper is organized as follows. In Section 2 we give a high-
level view of MCFLAT, and in Section 3 we provide more details of each important
component. We apply our framework to a selection of benchmarks and report on the
experimental results in Section 4. Finally, we discuss related work in Section 5 and
conclude in Section 6.

2 Overview of Our Approach

The overall structure of the MCFLAT framework is outlined in Figure 1. Our ultimate
goal is to embed this framework in our McJIT system, however currently it is a stand-
alone source-to-source framework which uses the McLAB front-end. The user provides
both the MATLAB program which they wish to optimize and a collection of represen-
tative inputs (top of Figure 1). The output of the system is a collection of specialized
programs (bottom of Figure 1), where each specialized program has a different set of
transformations applied. The system also outputs a dependence summary for each loop,
which is useful for compiler developers.

The design of the system is centered around the idea that a MATLAB program is
likely to be used on very different sized inputs, and hence at run-time loops will have
very different loop bounds. Thus, our objective is to find important ranges for each
loop nest, and to specialize the code for those ranges. Knowing the ranges for each
specialization also enables us to use very fast and simple dependence testers.

The important phases of MCFLAT, as illustrated in Figure 1, are the Instrumenter,
which injects the profiling code, the Range Estimator which decides which ranges are
important, and the Dependence Analyzer and Loop Transformer Engine. In the next
section we look at each of these components in more detail.

A Profile-Based Framework for MATLAB Loop Analysis and Transformations 3

with optional loop
annotations(.m)

P
ro

g
ra

m
m

er
In

p
u

t

Training
Data

Matlab Application

Matlab VM

Instrumented
Matlab Application

(.m) (.xml)
Information

Loop Profiling

(.xml)Ranges
Predicted Important

Legality Tester
 and

Loop Transformation

Dependence
Analyzer

O
u

tp
u

t
A

n
al

ys
is

 a
n

d
 T

ra
n

sf
o

rm
at

io
n

s

Dependence
Summary

(.xml)
Application with

Transformed Matlab

In
st

ru
m

en
t

an
d

 P
ro

fi
le

Specialization(.m)

Instrumenter

Range Estimator

Fig. 1. Structure of the McFLAT Framework

3 Important Components of McFLAT

In this section we provide an overview of the key components of our MCFLAT frame-
work, and we briefly discuss parallel loop detection and some current limitations of the
framework.

3.1 Instrumenter

As illustrated in the phase labeled Instrument and Profile in Figure 1, the Instrumenter
component is used to automatically inject instrumentation and profiling code into a
MATLAB source file. This injection is done on the high-level structured IR produced
by the McLAB front-end. In particular, we inject instrumentation to associate a unique
loop number to each loop, and we inject instrumentation to gather, for each loop, the

4 A. Aslam and L. Hendren

lower bound of the iteration, the loop increment, the upper bound of the iteration, the
nesting level of the loop, the time spent executing the loop, and a list of variables that
are written to in the loop body.

The MATLAB program resulting from this instrumentation is functionally equiva-
lent to the original code, but emits additional information that generates training data
required for the next phase.

When the instrumented program is executed using a MATLAB virtual machine, the
profile information is written to an .xml file. This .xml file is persistent, and so multiple
runs can be made, and each run will add new information to the .xml file. The loop
profiling information .xml file is then used as an input to the next component.

3.2 Range Estimator

The Range Estimator is the first important component of the main part of MCFLAT,
the Analysis and Transformations phase in Figure 1. The Range Estimator reads the
loop profiling information and determines which are the important ranges for each loop.
The important ranges are identified using Algorithm 1. The input to this algorithm is a
hash table containing all the observed values for all the loops and the output is a list of
important ranges. The basic idea is that for each loop, we extract the observed values
for that loop, partition the value space into regions and subregions, and then identify
subregions which contain more values than a threshold.

Algorithm 1. Algorithm for range estimation
Data Items
H (K,V) : Hash table with loop numbers as keys and list of observed values
Procedure processLoopData(LoopID)
l← lookup(LoopID, H) // get all observed values for loop with LoopID
sort(l)
importantRanges← empty
R← computeRegions(min(l), max(l))
// for each large region
for all r in R do

// for each subregion (divide R into 10 equal parts)
for all sR in R do

if numInRegion(l,sR) ≥ threshold then
PredVal← maxval(sR)
add PredVal to importantRanges

end if
end for

end for
return(importantRanges)

We determine the regions and subregions as illustrated in Figure 2. The regions are
powers of 10, starting with the largest power of 10 that is less than the smallest observed
value, and ending with the smallest power of 10 that is greater than the highest observed
value. For example, if the observed upper bounds were in the range 120 to 80000, then

A Profile-Based Framework for MATLAB Loop Analysis and Transformations 5

1000−10000

Region Observed values arranged in sub−regions

1 100 200 300 400 500 600 700 800 900 1000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

100−1000

Fig. 2. Pictorial Example of Ranges and Subranges

we would choose regions of size 100, 1000, 10000 and 100000. Each region is further
subdivided into 10 subregions. A subregion is considered important if the number of
observed values are above a threshold, which can be set by the user. For our experiments
we used a threshold of 30 % . When an important region is identified, the maximum
observed value from the region is added to the list of important ranges.

3.3 Dependence Analysis

During this phase, McFLAT calculates dependences between all the statements in the
loop body against all the predicted important ranges for that loop. It maintains various
data structures supporting dependence analysis. This information is used in subsequent
loop transformation phases.

The data dependence testing problem is that of determining whether two references
to the same array within a nest of loops may reference to the same element of that
array [21, 4].

Since we have identified the upper loop bounds via our profiling, we have chosen
very simple and efficient dependence testers: the Banerjee’s Extended GCD(Greatest
Common Divisor) test [8] and the Single Variable Per Constraint Test [4]. Currently,
we have found these sufficient for our small benchmarks, but we can easily add further
tests as needed.

3.4 Loop Transformations

In our framework programmers can either suggest the type of transformation that they
need to apply through optional loop annotations, or it will automatically determine and
apply a transformation or a combination of transformations which are legal for a loop.

MCFLAT implements following loop transformations that have been shown to be
useful for two important goals, parallelism and efficient use of memory hierarchy [15]:
loop interchange and loop reversal. For automatic detection and application of above
mentioned loop transformations, we use the unimodular transformation model pre-
sented in [20]. Loop interchange and reversal are modeled as elementary matrix trans-
formations, combinations of these transformations can simply be represented as product

6 A. Aslam and L. Hendren

of elementary transformation matrices. An elementary transformation or a compound
transformation is considered to be legal if the transformed distance vectors are lexico-
graphically positive.

Apart from automatically testing the legality of loop interchange and reversal, our
framework supports a larger set of transformations which can be specified by the user.
This allows us to use our system as a testbed for programmers with which they can
suggest different transformations and observe the effect of different transformations on
different loops. Programmers just have to annotate the loop body with the type of trans-
formation that they need to apply on the loop. Our framework checks for the presence of
annotations, if a loop annotation is present it computes the dependence information us-
ing the predicted loop bounds for that loop and applies the transformations if there is no
dependency between the loop statements. The current set of transformations supported
by annotations is: loop fission, loop fusion, loop interchange and loop reversal.

3.5 Parallelism Detection

Efficient parallelization of a sequential program is a challenging task. Currently our
MCFLAT framework automatically detects whether a for loop can be automatically
converted to a parfor loop or not. The framework performs parallelization tests on the
loops based on the dependence information calculated in the dependence analysis and
instrumentation phase. A loop is classified as a parallel loop according to MATLAB’s
semantics [17], since the generated code is targeted for the MATLAB system. Thus, a
loop is classified as a parallel for-loop if it satisfies the following conditions.

– There should be no flow dependency between the same array access within the loop
body. i.e. distance vectors for all the same array accesses should be zero.

– Within the list of indices for the arrays accessed in the loop, exactly one index
involves the loop index variable.

– Other variables used to index an array should remain constant over the entire exe-
cution of the loop. The loop index variable cannot be combined with itself to form
an index expression.

– Loop index variables must have consecutively increasing integers.
– The value of the loop index variable should not be modified inside the loop body.

3.6 Current Limitations of MCFLAT

At present, our framework implements a limited set of loop transformations. It only
handles perfectly nested loops which have affine accesses and whose dependences can
be summarized by distance vectors. As we develop the framework we will add further
dependence tests and transformations, as well as transformations to enable more paral-
lelization. However, since we also wish to put this framework into our JIT compiler, we
must be careful not to include overly expensive analyses.

4 Experimental Results

In this section we demonstrate the use of MCFLAT through two exploratory perfor-
mance studies on a set of MATLAB benchmarks. Our ultimate goal is to integrate

A Profile-Based Framework for MATLAB Loop Analysis and Transformations 7

MCFLAT with a machine learning approach, however these example studies provide
some interesting initial data. The first study examines performance and speedups of
transformed programs, applying our dependence testers and standard loop transforma-
tions for a variety of input ranges. The second study looks at the performance of bench-
marks when we automatically introduce parfor constructs.

4.1 Benchmarks and Static Information

Table 1 summarizes our collection of 10 benchmarks, taken from the McLab and Uni-
versity of Stuttgart benchmark suites. These benchmarks have a very modest size, but
yet perform interesting calculations and demonstrate some interesting behaviours. For
each benchmark we give the name, description, source of the benchmark, the number of
functions, number of loop nests, number of loops that can be automatically converted
to parallel for loops.

Table 1. Benchmarks

Benchmark Source of # Lines # # # Par. Benchmark
Name Benchmark Code Func. Loops Loops Description

Crni McLab 65 2 4 1 Finds the
Benchmarks Crank-Nicholoson Sol.

Mbrt McLab 26 2 1 0 Computes mandelbrot set.
Benchmarks

Fiff McLab 40 1 2 0 Finds the finite-difference solution
Benchmarks to the wave equation.

Hnormal McLab 30 1 1 1 Normalises array of homogeneous coordinates.
Benchmarks

Nb1d McLab 73 1 1 0 Simulates the gravitational
Benchmarks movement of a set of objects.

Interpol Uni of Stutt 187 5 5 0 Compares the stability
and complexity of Lagrange interpolation.

Lagrcheb Uni of Stutt 70 1 2 2 Computes Lagrangian and Chebyshev
polynomial for comparison.

Fourier Uni of Stutt 81 3 3 2 Compute the Fourier transform
with the trapezoidal integration rule.

Linear Uni of Stutt 56 1 2 1 Computes the linear iterator.
EigenValue Uni of Stutt 50 2 1 0 Computes the eigenvalues

of the transition matrix.

4.2 Performance Study for Standard Loop Transformations

For our initial study, we ran the benchmarks on an AMD AthlonTM 64 X2 Dual Core
Processor 3800+, 4GB RAM computer running the Linux operating system; GNU Oc-
tave, version 3.2.4; MATLAB, version 7.9.0.529 (R2009b) and McVM/McJIT, version
0.5.

For each benchmark we ran a number of training runs through the instrumenter and
profiler. For these experiments instrumented code was executed only on Mathworks’
MATLAB to generate profile information. Then we used our dependence analyzer and

8 A. Aslam and L. Hendren

Table 2. Mathworks’ MATLAB Execution Times and Speedups

Benchmark Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time % Speedup Time % Speedup Time % Speedup

Crni N 60ms 3.41s
R 60ms 0.0 % 3.21s 5.8 %

Mbrt N 1.91s 9.40s
I 1.98s -3.6 % 9.55s -1.6%
R 1.91s 0.0 % 9.25s 1.5%
(I+R) 1.97s -3.4% 9.32s 0.8%

Fiff NN 400ms 880ms
RN 405ms -1.25% 830ms 5.6%

Hnormal N 1.85s 4.52s
R 1.84s 0.5% 4.48s 0.8%

Nb1d N 40ms 2.53s
Interpol N 44.70s 60.35s
Lagrcheb NN 140ms 280ms 450ms

RR 138ms 1.4% 270ms 3.5% 420ms 6.6%
RN 143ms -2.1% 280ms 0.0% 450ms 0.0%
NR 143ms -2.1% 280ms 0.0% 430ms 4.4%

Fourier NNN 50ms 1.31s
FN 40ms 20.0% 1.49s -13.7%
RRN 50ms 0.0% 1.25s 4.5%
(F+R)N 60ms -20.0% 1.31s 0.0%
RNN 50ms 0.0% 1.21s 7.6%
NRN 50ms 0.0% 1.25s 4.5%

Linear NN 336ms 640ms 2.60s
IN 566ms -68.4% 890ms -39.0% 3.67s -38.4%
IR 610ms -81.5% 850ms -32.8% 3.42s -31.5%
NR 320ms 4.7% 600ms 6.2% 2.51s 3.4%

EigenValue N 80ms 310ms 1.10s
I 100ms -25.0% 370ms -19.3% 1.18s -7.27%
R 90ms -12.5% 290ms 6.4% 1.10s 0.0%
(I+R) 90ms -12.5% 280ms 9.6% 1.08s 1.81%

loop transformer to generate a set of output files, one output file for each combination
of possible transformations. For example, if the input file had two loops, and loop re-
versal could be applied to both loops, then we would produce four different output files
corresponding to: (1) no reversals, (2) reversing only loop 1, (3) reversing only loop 2,
and (4) reversing both loops. For our experiments, we used a combination of both the
modes that MCFLAT provides for applying loop transformations i.e. Automatic mode
and Programmer-annotated mode.

Each output file has a specialized section for each predicted important range, plus a
dynamic guard around each specialized section to ensure that the correct version is run
for a given input.

A Profile-Based Framework for MATLAB Loop Analysis and Transformations 9

Table 3. Octave Execution Times and Speedups

Benchmark Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time % Speedup Time % Speedup Time % Speedup

Crni N 5.46s 1102s
R 5.46s 0 % 1101s 0.09%

Mbrt N 289.8s 2000s
I 300s -3.5 % 2000s 0%
R 289.8s 0 % 2000s 0%
(I+R) 300s -3.5% 2000s 0%

Fiff NN 6.44s 251s
RN 6.41s 0.46% 253s -0.7%

Hnormal N 7.34s 13.4s
R 7.48s -1.9% 13.6s -1.4%

Nb1d N 2.56s 7.89s
Interpol N 3524s 5238s
Lagrcheb NN 630ms 1.28s 1.95s

RR 630ms 0% 1.27s 0.7% 1.94s 0.51%
RN 630ms 0% 1.27s 0.7% 1.94s 0.51%
NR 630ms 0% 1.27s 0.7% 1.94s 0.51%

Fourier NNN 120ms 4.24s
FFN 120ms 0% 4.28s -0.9%
RRN 120ms 0% 4.31s -1.6%
FRN 120ms 0% 4.19s 1.1%
RNN 110ms 8.3% 4.26s -0.4%
NRN 120ms 0% 4.25s -0.2%

Linear NN 6.58s 352s 1496s
IN 6.65s -1.0% 381s -8.2% 1443s 3.5%
IR 6.65s -1.0% 382s -8.5% 1422s 4.9%
NR 6.56s 0.3% 369s -4.8% 1389s 7.1%

EigenValue N 240ms 106s 460s
I 230ms 4.1% 127s -19.8% 502s -9.1%
R 230ms 4.1% 116s -9.4% 486s -5.6%
(I+R) 230ms 4.1% 126s -18.8% 507s -10.2%

We report the results for four different MATLAB execution engines, the Mathworks’
MATLAB (which contains a JIT) (Table 2), the GNU Octave interpreter (Table 3), the
McVM interepreter, and the McVM JIT (McJIT) (Table 4).

In each table, the column labeled Trans. Applied indicates which transformations
are applied to the loops in the benchmark, where N indicates that no transformation is
applied, R indicates Loop Reversal is applied, F represents Loop fusion and I is repre-
sentative of Loop Interchange. NN indicates that there are two loops in the benchmark
and no transformation is applied on any of them. Similarly, IR shows there are two
loops, Interchange is applied on the first loop and reversal on the second loop. I+R
indicates one loop nest on which interchange is applied and then reversal.

Depending on the benchmark we had two or three different ranges that were identi-
fied by the range predictor. The ranges appear in the tables in increasing value, so Pred.

10 A. Aslam and L. Hendren

Table 4. McVM Execution Times and Speedups

McVm(JIT) McVM(Interpreter)
Benchmark Trans Pred. Range 1 Pred. Range 2 Pred. Range 1 Pred. Range 2
Name Applied Time % Speedup Time % Speedup Time %Speedup Time % Speedup
Crni N 4.00s 1074s 7.12s 1386.2s

R 4.00s 0.0 % 820s 23.6 % 6.35s 10.8 % 1341.5 3.2 %
Mbrt N 98.37s 675s 384s 2491s

I 101s -3.3 % 714s -5.8% 344s 10.4 % 2286s 8.2%
R 110s -12.6 % 781s -15.6% 342s 10.9 % 2370s 4.8%
(I+R) 106s -8.16% 738s -9.35% 346s 9.8% 2375s 4.6%

Fiff NN 260ms 500ms 7.38s 7.46s
RN 260ms -1.95% 460ms 8% 6.95s 5.8% 7.25s 2.8%

Hnormal N 5.00s 8.93s 7.23s 11.6s
R 4.96s 0.8% 8.05s 10.9% 7.11s 1.6% 12.24s -5.5%

Nb1d N 850ms 4.10s 1.41s 4.24s

Range 1 corresponds to the lowest range and Pred Range 3 corresponds to the highest
range. We chose one input for each identified range and timed it for each loop trans-
formation version. In each table we give the speedup (positive) or slowdown (negative)
achieved as compared to the version with no transformations. We indicate in bold the
version that gave the best performance for each range.

Let us consider first the execution time for Mathworks’ MATLAB, as given in Table 2.
Somewhat surprisingly to us, it turns out that loop reversal alone always gives perfor-
mance speed-up on the higher ranges. Whereas, on lower ranges there is either no speed
up or performance de-gradation in some of the benchmarks. This implies that it may be
worth having a specialized version of the loops, with important loops reversed for higher
data ranges.

MATLAB accesses arrays in column-major order, and MATLAB programmers nor-
mally write their loops in that fashion, so always applying loop interchange degrades
the performance of the program. Performance degrades more for loops which involve
array dependencies. However, the degradation impact is lower at higher ranges perhaps
due to cache misses in both the transformed and original loop. The loop interchange
degradation impact is less for loops that invoke a function whose value is written to an
array, for example, Mbrt.

Loop fusion was only applied once (in Fourier) where it gives a performance speed-
up on lower ranges. However, as the loop bounds and accessed arrays get bigger then
performance degrades.

Now consider the execution time for Octave, given in Table 3. Octave is a pure
interpreter and you will note that the absolute execution times are often an order of
magnitude slower than Mathworks’ system, which has a JIT accelerator. The applied
transformations also seem to have very little impact on performance, particularly on the
lower ranges. For higher ranges, no fixed behavior is observed, for some benchmarks
there is a performance improvement whereas for others performance degrades.

We were also interested in how the transformations would impact our group’s McVM,
both in pure interpreter mode, and with the JIT. We couldn’t run all the benchmarks on
McVM because the benchmarks use some library functions which are not currently

A Profile-Based Framework for MATLAB Loop Analysis and Transformations 11

supported. However, Table 4 lists the results on the subset of benchmarks currently
supported. Once again loop reversal can make a significant impact on the higher ranges
for the JIT, and actually also seems beneficial for the McVM(interpreter).

4.3 Performance Study for Parallel For Loops

In Table 5 we report the execution time and speedups with MATLAB’s parfor loop-
ing construct. We ran the benchmarks on an Intel TMCore(TM) i7 Processor (4 cores),
5.8GB RAM computer running a Linux operating system; MATLAB, version 7.9.0.529
(R2009b). For these experiments we initialized the MATLAB worker pool to size 4.

Table 5. Mathworks’ MATLAB Execution Times and Speedups with Parallel Loops

Benchmark Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time % Speedup Time % Speedup Time % Speedup

Crni N 280ms 13.41s
pN 1.03s -257% 14.20s -5.9%
R 290ms -3.5 % 13.30s 0.8 %

Hnormal N 800ms 1.70s
pN 70.5s -8712 % 71.3s -4094%
R 780ms 2.5% 1.68s 1.1%

Lagrcheb NN 120ms 200ms 280ms
(pN)(pN) 140ms -16.6% 180ms 10.0% 250ms 10.7%
N(pN) 110ms 8.3% 180ms 10.0% 250ms 10.7%
(pN)N 120ms 0.0% 180ms 10.0% 260ms 7.1%
R(pN) 120ms 0.0% 180ms 10.0% 250ms 10.7%
(pN)R 120ms 0.0% 180ms 10.0% 250ms 10.7%
RR 120ms 0.0% 200ms 0.0% 270ms 3.5%
RN 130ms -8.3% 200ms 0.0% 270ms 3.5%
NR 130ms -8.3% 200ms 0.0% 270ms 3.5%

Fourier NNN 170ms 680ms
(pN)NN 50ms 70% 720ms -5.8%
(pN)(pN)N 200ms -17.6% 720ms -5.8%
N(pN)N 50ms 70% 720s -5.8%
(pF)N 50ms 70% 720ms -5.8%
R(pN)N 50ms 70% 710ms -4.4%
(pN)RN 50ms 70% 680ms 0.0%
FN 20ms 88.2% 690ms -1.4%
RRN 170ms 0.0% 680ms 0.0%
(F+R)N 170ms 0.0% 680ms 0.0%
RNN 170ms 0.0% 680ms 0.0%
NRN 170ms 0.0% 680ms 0.0%

Linear NN 150ms 7.40s 29.8s
N(pN) 150ms 0.0% 7.20s 2.7% 30.2s -1.3%
I(pN) 390ms 0.0% 10.30s -39.1% 40.2s -34.8%
IN 370ms -146.6% 10.30s -39.1% 37.6s -26.1%
IR 370ms -146.6% 10.30s -39.1% 37.6s -26.1%
NR 160ms -6.6% 7.20s 2.7% 29.4s 1.34%

12 A. Aslam and L. Hendren

The term pN indicates that there is one loop in the benchmark, which is parallelized
and no loop transformation is applied on it. (pF) means two loops are fused and then
fused loop is parallelized. Note that it is not possible to combine loop reversal and par-
allelization with the MATLAB parfor construct as the MATLAB specifications require
that the loop index expression must increase.

We have reported execution times of various combinations of parallel and sequential
loops, to study the effect of parallelizing a loop in the context of MATLAB programming
language.

For most of the benchmarks we observed that MATLAB’s parfor loop does not of-
ten give significant performance benefits, and in some cases causes severe performance
degradation. This is likely due to the parallel execution model supported by MATLAB

which requires significant data copying to and from worker threads.

5 Related Work

Of course there is a rich body of research on the topics of dependence analysis, loop
transformations and parallelization. In our related work we attempt to cover a represen-
tative subset that, to the best of our knowledge, covers the prior work in the area of our
paper.

Banerjee [9], Wolfe and Lam [20,21] have modeled a subset of loop transformations
like loop reversal, loop interchange and skewing as unimodular matrices and have de-
vised tests to figure out the legality of these transformations. Our framework also uses
unimodular transformations model to apply and test the legality of a loop transforma-
tion or a combination of loop transformations, but our intent is to specialize for different
predicted loop bounds.

Quantitative models based on memory cost analysis have been used to select optimal
loop transformations [18]. Memory cost analysis chooses an optimal transformation
based on the number of distinct cache lines and the number of distinct pages accessed
by the iterations of a loop. Our framework is a preliminary step towards building a
self-learning system that selects optimal transformations based on loop bounds and
profiled program features that have been beneficial in the past for a transformation or a
combination of transformations.

A dimension abstraction approach for vectorization in MATLAB presented in [10]
discovers whether dimensions of an expression will be legal if vectorization occurs.
The dimensionality abstraction provides a representation of the shape of an expression
if a loop containing the expression was vectorized. To improve vectorization in cases
which have incompatible vectorized dimensionality, a loop pattern database is provided
which is capable of resolving obstructing dimensionality disagreements.

Another framework, presented in [22], predicts the impact of optimizations for some
objective (e.g., performance, code size or energy). The framework consists of three
types of models: optimization models, code models and resource models. By integrating
these models, a benefit value is produced that represents the benefit of applying an
optimization in a code context for the objective represented by the resources. MCFLAT

is the first step towards developing a self-learning system which would use its past
experience in selecting optimal loop transformations.

A Profile-Based Framework for MATLAB Loop Analysis and Transformations 13

5.1 Automatic Parallelization

Static automatic parallelism extraction have been achieved in the past [11, 16]. Un-
fortunately, many parallelization opportunities could still not be discovered by static
analysis approach due to lack of information at the source code level. Tournavitis et. al.
have used a profiling-based parallelism detection method that enhances static data de-
pendence analysis with dynamic information, resulting in larger amounts of parallelism
uncovered from sequential programs [19]. Our approach is also based on profiling-
based parallelism detection but in the context of MATLAB programming language and
within the constraints of MATLAB parallel loops.

5.2 Adaptive Compilation

Heuristics and statistical methods have already been used in determining compiler op-
timization sequences. For example, Cooper et. al. [14] developed a technique using
genetic algorithms to find ”good” compiler optimization sequences for code size reduc-
tion. Profile-based techniques have also been used in the past to suggest recompilation
with additional optimizations. The Jalopeño JVM uses adaption system that can invoke
a compiler when profiling data suggests that recompiling a method with additional op-
timization will be more beneficial [6]. Our work is a first step towards developing an
adaptive system that applies loop transformations based on predicted data from previous
execution runs and profiled information about the programs.

Previously work has been done on JIT compilation for MATLAB. MaJIC, combines
JIT-compilation with an offline code cache maintained through speculative compilation
of Matlab code into C/Fortran. It derives the most benefit from optimizations such as array
bounds check removals and register allocation [5]. Mathworks introduced the MATLAB

JIT-Accelerator [3], in MATLAB 6.5, that has accelerated the execution of MATLAB code.
McVM [13, 12] is also an effort towards JIT compilation for MATLAB, it uses function
specializations based on run-time type of their arguments. The McVM(JIT) has shown
performance speed-ups against MATLAB for some of our benchmarks. MCFLAT, the
framework presented in this paper uses profiled program features and heuristically de-
termines loop bounds ranges to generate specialized versions of loops in the program.

6 Conclusions and Future Work

In this paper, we have described a new framework, MCFLAT, which uses profile-based
training runs to collect information about loop bounds and ranges, and then applies a
range estimator to estimate which ranges are most important. Specialized versions of
the loops are then generated for each predicated range. The generated MATLAB code
can be run on any MATLAB virtual machine or interpreter.

Results obtained on four execution engines (MATLAB, GNU Octave, McVM(JIT)
and McVM(interpreter) suggest that the impact of different loop transformations on
different loop bounds is different and also depends on the execution engine. We were
somewhat surprised that loop reversal was fairly useful for several execution engines,
especially on large ranges. Although the tool detected quite a few parallel loops and

14 A. Aslam and L. Hendren

transformed them to MATLAB’s parfor construct, the execution benefit was very lim-
ited and sometimes very detrimental. Thus, our McJIT compiler will likely support a
different parallel implementation which has lower overheads.

Although MCFLAT is already a useful stand-alone tool, in our overall plan it is a
preliminary step towards developing a self-learning system that will be part of McJIT
and which will decide on whether to apply a loop transformation or not depending on
the benefits that the system has seen in the past. Our initial exploratory experiments
validate that different loop transformations are beneficial for different ranges. Future
work will focus on extracting more information about the program features from profil-
ing, maintaining a mapping between loop bounds, program features and effective loop
transformations and making use of past experience to make future decisions on whether
to apply transformations or not.

References

1. GNU Octave, http://www.gnu.org/software/octave/index.html
2. McLab: An Extensible Compiler Framework for Matlab. Home page,

http://www.sable.mcgill.ca/mclab/
3. Accelerating Matlab (2002),

http://www.mathworks.com/company/newsletters/digest/sept02/
accel_matlab.pdf

4. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools. Addison
Wesley, Reading (1985)

5. Almasi, G., Padua, D.A.: MaJIC: A MATLAB Just-In-Time Compiler. In: Midkiff, S.P., Mor-
eira, J.E., Gupta, M., Chatterjee, S., Ferrante, J., Prins, J.F., Pugh, B., Tseng, C.-W. (eds.)
LCPC 2000. LNCS, vol. 2017, p. 68. Springer, Heidelberg (2001)

6. Arnold, M., Fink, S., Grove, D., Hind, M., Sweeney, P.F.: Adaptive Optimization in the
Jalapeño JVM. In: OOPSLA 2000: Proceedings of the 15th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pp. 47–65. ACM,
New York (2000)

7. Aslam, T., Doherty, J., Dubrau, A., Hendren, L.: AspectMatlab: An Aspect-Oriented Sci-
entific Programming Language. In: Proceedings of 9th International Conference on Aspect-
Oriented Software Development, pp. 181–192 (March 2010)

8. Banerjee, U.K.: Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Norwell (1988)

9. Banerjee, U.K.: Loop Transformations for Restructuring Compilers: The Foundations.
Kluwer Academic Publishers, Norwell (1993)

10. Birkbeck, N., Levesque, J., Amaral, J.N.: A Dimension Abstraction Approach to Vectoriza-
tion in Matlab. In: CGO 2007: Proceedings of the International Symposium on Code Gener-
ation and Optimization, Washington, DC, USA, 2007, pp. 115–130. IEEE Computer Society,
Los Alamitos (2007)

11. Burke, M.G., Cytron, R.K.: Interprocedural Dependence Analysis and Parallelization.
SIGPLAN Not. 39(4), 139–154 (2004)

12. Chevalier-Boisvert, M.: McVM: An Optimizing Virtual Machine for the MATLAB Program-
ming Language. Master’s thesis, McGill University (August 2009)

13. Chevalier-Boisvert, M., Hendren, L., Verbrugge, C.: Optimizing MATLAB through Just-
In-Time Specialization. In: International Conference on Compiler Construction, pp. 46–65
(March 2010)

http://www.gnu.org/software/octave/index.html
http://www.sable.mcgill.ca/mclab/
http://www.mathworks.com/company/newsletters/digest/sept02/accel_matlab.pdf
http://www.mathworks.com/company/newsletters/digest/sept02/accel_matlab.pdf

A Profile-Based Framework for MATLAB Loop Analysis and Transformations 15

14. Cooper, K.D., Schielke, P.J., Subramanian, D.: Optimizing for Reduced Code Space using
Genetic Algorithms. In: LCTES 1999: Proceedings of the ACM SIGPLAN 1999 Workshop
on Languages, Compilers, and Tools for Embedded Systems, pp. 1–9. ACM, New York
(1999)

15. Lam, M.S., Wolf, M.E.: A Data Locality Optimizing Algorithm. In: PLDI 1991: Program-
ming Language Design and Implementation, vol. 39, pp. 442–459. ACM, New York (2004)

16. Lim, A.W., Lam, M.S.: Maximizing Parallelism and Minimizing Synchronization with
Affine Transforms. In: POPL 1997: Proceedings of the 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pp. 201–214. ACM, New York (1997)

17. Matlab. The Language Of Technical Computing. Home page,
http://www.mathworks.com/products/matlab/

18. Sarkar, V.: Automatic Selection of High-Order Transformations in the IBM XL FORTRAN
compilers. IBM J. Res. Dev. 41(3), 233–264 (1997)

19. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.F.: Towards a Holistic Approach to
Auto-Parallelization: Integrating Profile-Priven Parallelism Detection and Machine-Learning
based Mapping. In: PLDI 2009: Programming Languages Design and Implementation,
vol. 44, pp. 177–187. ACM, New York (2009)

20. Wolf, M.E., Lam, M.S.: A Loop Transformation Theory and an Algorithm to Maximize
Parallelism. IEEE Trans. Parallel Distrib. Syst. 2(4), 452–471 (1991)

21. Wolfe, M.J.: Optimizing Supercompilers for Supercomputers. MIT Press, Cambridge (1990)
22. Zhao, M., Childers, B., Soffa, M.L.: Predicting the Impact of Optimizations for Embedded

Systems. In: Proceedings of the 2003 ACM SIGPLAN Conference on Language, Compiler,
and Tool Support for Embedded Systems, San Diego, CA, USA, vol. 38, pp. 1–11. ACM,
New York (2003)

http://www.mathworks.com/products/matlab/

Static Analysis of Dynamic Schedules and Its
Application to Optimization of Parallel

Programs�

Christoph M. Angerer and Thomas R. Gross

ETH Zurich, Switzerland

Abstract. Effective optimizations for concurrent programs require the
compiler to have detailed knowledge about the scheduling of parallel
tasks at runtime. Currently, optimizations for parallel programs must
define their own models and analyses of the parallel constructs used in the
source programs. This makes developing new optimizations more difficult
and complicates their integration into a single optimizing compiler.

We investigate an approach that separates the static analysis of the
dynamic runtime schedule from subsequent optimizations. We present
three optimizations that are based on the information gathered dur-
ing the schedule analysis. Variants of those optimizations have been
described in the literature before but each work is built upon its own
highly specialized analysis. In contrast, our independent schedule analy-
sis shows synergistic effects where previously incompatible optimizations
can now share parts of their implementation and all be applied to the
same program.

1 Introduction

With the arrival of multicore systems, parallel programming is becoming in-
creasingly mainstream. Despite this, compilers still remain largely ignorant of
the task scheduling at run-time. Absent this knowledge, however, a compiler is
missing important optimization and verification opportunities.

Because compilers do not have a good understanding of the runtime scheduling
of tasks, researchers developing optimizations for parallel programs must addi-
tionally develop their own model and analysis of the parallel constructs in use.
The overhead of defining a full-fledged analysis, however, obfuscates the actual
optimization and prohibits synergistic effects that might emerge by combining
different optimizations.

In this paper, we present a static analysis for parallel programs that is in-
dependent from any concrete optimization. By using our schedule analysis, the
core algorithms of existing optimizations can often be implemented in only a few
simple rules. A small algorithmic core not only helps with a better understanding
of the optimization but also supports their integration into a single optimizing
compiler. The contributions of this paper are:
� Supported, in part, by the Swiss National Science Foundation grant 200021 120285.

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 16–30, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Static Analysis of Dynamic Schedules and Its Application 17

– we describe a model for fine-grained parallelism based on lightweight tasks
with explicit scheduling. This model is powerful enough to express a wide
variety of existing parallelism constructs (Section 2);

– we develop a schedule analysis that computes an abstract schedule from a
program containing explicit scheduling instructions (Section 3);

– we present three optimizations for parallel programs that make use of the
results of the schedule analysis. Two optimizations work with fundamen-
tally different synchronization primitives: locks and transactional memory.
The common schedule analysis enables the optimization of programs that
intermix both those synchronization paradigms (Section 4).

The core of the schedule analysis has been implemented in a prototype and is
available online at http://github.com/chmaruni/XSched (Section 5).

2 A Program Model with Explicit Scheduling

In this section we describe a model for fine-grained parallelism based on light-
weight tasks with explicit scheduling. This model is general enough to express
a wide variety of existing concurrency patterns, from structured fork-join style
parallelism to unstructured threads. The explicit happens-before relationships
simplify the analysis of parallel program schedules while avoiding the limitations
of lexically scoped parallelism.

The basic building block of our execution model is a task. A task is similar to
a method in that it contains code that is executed in the context of a this-object
(or the class, in the case of static methods/tasks). Unlike a method, however,
one does not call a task, which would result in the immediate execution of the
body, but instead schedules it for later execution.

As an example, consider a task t() that starts a long-running computation
compute() and schedules a task print() that will print the result after the
computation has finished:

task t() {

Activation aCompute = schedule(this.compute());

Activation aPrint = schedule(this.print());

aCompute→aPrint;

}

A schedule is represented as a graph of 〈object, task()〉 pairs. The statement
schedule(this.print()), e.g., creates a new node with the this object and
the print() task and returns an object of type Activation representing that
node. Like any other object, Activation objects can be kept in local variables,
passed around as parameters, and stored in fields.

At runtime, a scheduler constantly chooses activations that are eligible for
execution and starts them. The order in which the scheduler is allowed to start
the activations is specified by the edges in the schedule graph. If the schedule
contains a happens-before edge 〈o1, t1()〉 → 〈o2, t2()〉, the scheduler must guar-
antee that activation 〈o1, t1()〉 has finished execution before activation 〈o2, t2()〉

18 C.M. Angerer and T.R. Gross

1 class ParallelOrderedMap {

2 Vector out;

3

4 private task doMap(Object data) {

5 Object mappedData = //complex computation using data

6 now.result = mappedData;

7 }

8 private task doWrite(Activation mapActivation) {

9 out.add(mapActivation.result);

10 }

11 task mapInput(Vector input) {

12 Activation lastWrite = now;

13 for(Object data : input) {

14 Activation map = schedule(this.doMap(data));

15 Activation write = schedule(this.doWrite(map));

16

17 map → write;

18 lastWrite → write;

19

20 lastWrite = write;

21 } } }

Fig. 1. Example of a parallel ordered mapping operation

is started. The statement aCompute→aPrint creates an explicit happens-before
relationship between the two activation objects aCompute and aPrint.

In a program, the currently executing activation can be accessed through the
keyword now. Whenever a new task is scheduled, the scheduler automatically
adds an initial happens-before relationship between now and the new activation
node. This initial edge prevent the immediate execution of the new activation
and allows the current task to add additional constraints to the schedule before it
finishes. Therefore, in the example the scheduler implicitly creates two additional
edges now→aCompute and now→aPrint.

2.1 Example of a Parallel Ordered Mapping Operation

Figure 1 shows a more complex example of a class implementing a parallel or-
dered mapping operation. When the mapInput() task is activated, passing a
Vector of input elements, this class will apply a (possibly expensive) mapping
operation to each input element in parallel and write the resulting mapped values
into the out vector in the original order.

The loop on line 13 iterates through every element in the input vector and, for
each element, schedules the doMap() task on line 14, passing the data element
to the activation. Line 15 then activates the doWrite() task for every element.
A chain of doWrite() activations write the mapped values in the correct order
into the out vector.

Static Analysis of Dynamic Schedules and Its Application 19

...

...

doWrite() doWrite() doWrite()

doMap()doMap()

mapInput()

doMap()

Fig. 2. The schedule created by mapInput() from Figure 1

For doWrite() to get to the result of doMap(), we pass the map activation
object as a parameter to doWrite(). Inside doMap() we use the result field
provided by Activation to store the result of the mapping operation which can
then be read in doWrite(). The explicit happens-before relationship added on
line 17 ensures that the mapped value has been stored in the result field before
doWrite() executes.

So far we ensured the ordering between the mapping operation and the write
operation for each single element. The correct ordering of the writes is achieved
by an additional happens-before relationship between the current write activa-
tion and the lastWrite activation on line 18. Initially, we set lastWrite to now
in line 12 and then update it to the most recent write activation on line 20.

Figure 2 shows the schedule that is created by mapInput(). The double-
headed arrows are created implicitly by the schedule statements whereas the
single-headed arrows stem from the →-statements.

After mapInput() has finished setting up the schedule, the scheduler can
choose any of the doMap() activations for parallel execution because they are
not ordered with respect to one another. The doWrite() activations must be
executed in order, however, which guarantees the correct ordering of the written
values in the out vector.

2.2 Additional Synchronization Primitives

Explicit scheduling alone is expressive enough to model many concurrency pat-
terns such as fork-join, bounded-buffer producer-consumer, or fuzzy barriers [9].

There are cases, however, that require nondeterministic choice—which cannot
be expressed with explicit scheduling alone. Non-deterministic access to shared
resources requires additional synchronization primitives such as atomic compare-
and-swap operations, locks, or transactional memory. Take, for example, a shared
resource such as a printer and two parallel tasks waiting for user input before
accessing the printer. There is no point in the program where we can define an
ordering between the two tasks beforehand, because the timing of the user input
is unknown.

20 C.M. Angerer and T.R. Gross

3 Schedule Analysis

The core of our approach is a schedule analysis that can determine whether two
activations are executed in parallel, sequentially, or exclusively. Schedule analysis
thus computes the function Activation×Activation → Relation where Relation
is one of the following:

Sequential: Two activations are sequential if their execution is strictly ordered.
Exclusive: Two activations are exclusive if they can never co-exist in a sin-

gle run of the program (e.g., they are scheduled in different branches of a
conditional statement).

Parallel: If two activations are neither sequential nor exclusive, they are con-
sidered (potentially) parallel.

In addition, schedule analysis computes the sets of objects that are read and/or
written by each activation. The information about the read- and write-sets to-
gether with the information about the relative ordering of activations can then
be used by subsequent optimizations such as the ones from Section 4.

The algorithm presented in this paper computes the abstract schedule and the
read-/write-sets in the four phases shown in Figure 3. Given the bytecode of a
whole program as input, a pre-processing phase extracts static information about
the program structure. This information is used by a standard points-to analysis
to propagate alias information and compute points-to sets for object fields and
program variables. Points-to information is necessary because activations are
normal objects that can be stored in fields and passed as parameters.

The third phase is the schedule analysis. During this phase we compute the
read- and write-sets for each activation and extract an abstract schedule from
the unconditional →-statements present in the program. The abstract schedule
is a directed graph with different node and edge types. The fourth phase takes
this graph and flattens it into the binary relations for sequential, exclusive, and
parallel activations.

Program
bytecode

Pre-
processing

Points-to
Analysis

Schedule
Analysis

Flattening

Happens-before
relationships

Abstract
schedule,

read/write sets

Points-to
information

Program facts

OptimizationsOptimizationsOptimizations

1

3

4

2

Fig. 3. The phases of a schedule analysis

Static Analysis of Dynamic Schedules and Its Application 21

V the domain of variables. V contains all the allocation sites, formal parameters,
return values, thrown exceptions, cast operations, and dereferences in the pro-
gram.

H the domain of heap objects. Heap objects are named by the invocation sites of
object creation operations.

F the domain of fields in the program. There is a special field elements to denote
an array access.

M the domain of implemented methods in the program. It does not include abstract
or interface methods.

N the domain of virtual method names used in invocations.
BC the domain of bytecodes in the program.

Fig. 4. The Datalog domains

3.1 Datalog

Most phases of our analysis are formulated and implemented as Datalog pro-
grams. We chose Datalog because it is a concise high-level specification language
that has been shown to be well-suited for dataflow analyses and scalable to even
large real-world programs [18].

The basis of Datalog are two-dimensional tables called relations. In a relation,
the columns are the attributes, each of which is associated with a finite domain
defining the set of possible values, and the rows are the tuples that are part of
this relation. Figure 4 shows the domains that we use in this paper.

If tuple (x, y, z) is in relation A, we say that predicate A(x, y, z) is true. A
Datalog program consists of a set of rules that compute new members of relations
if the rule body is true. E.g., the rule:

D(w, z) : A(w, x), B(x, y), !C(y, z).

says that “tuple (w, z) is added to D if A(w, x), B(x, y), and not C(y, z) are all
true.” The Datalog runtime will apply rules until a fixed point has been reached
and no more tuples can be added to the relations.

3.2 Pre-processing and Points-to Analysis

The first two phases of the analysis implement a standard points-to analysis. For
space reasons, we only describe briefly the outcomes of both phases. An in-depth
explanation of the algorithms we use is given in [18].

Before the points-to analysis (implemented as a Datalog program) starts, a
pre-processor extracts information about the analyzed program and generates
input tuples that can be read by Datalog. The pre-processor generates many
different relations encoding information about type hierarchies, virtual method
calls, object creation, and more; in this paper, however, we are mostly interested
in the following two relations:

store : BC × V × F × V represents store statements. store(bc, v1, f, v2) says
that bytecode bc is a statement “v1.f = v2”.

22 C.M. Angerer and T.R. Gross

load : BC × V × F × V represents load statements. load(bc, v1, f, v2) says that
bytecode bc is a statement “v2 = v1.f”.

The goal of the points-to analysis is to compute the following three relations
from the input relations generated by the pre-processor:

variablePT : V × H is the variable points-to relation. variablePT (v, obj) means
that variable v can point to heap object obj.

heapPT : H × F × H is the heap points-to relation. heapPT (obj1, f, obj2)
means that field f of heap object obj1 may point to heap object obj2.

invocationEdge : BC × M is the relation of the resolved targets of invocation
sites. invocationEdge(bc, m) says that invocation bytecode bc may invoke
the method implementation m.

During the points-to analysis we treat schedule-statements as normal
method calls. This works because all the parameters for the activation are bound
when the schedule statement is executed even though the exact time when the
activation will execute is not known. →-statements are ignored during this phase.

Whaley and Lam [18] describe various points-to analyses with a variety of
trade-offs between precision and computational cost. For the rest of the paper
we assume a context insensitive analysis with on-the-fly call graph discovery, but
other, more precise variants can be used.

3.3 Computing and Flattening the Abstract Schedule

The main task of the schedule analysis is to compute an abstraction of the
scheduling graphs that can occur at runtime. For this, the analysis must take
the schedule-statements for the initial creation edges and all →-statements for
additional happens-before edges into account.

In general, the safe and conservative assumption is to over-approximate par-
allelism. As an example, take the detection of data races. Two activations are
allowed to write to the same data if and only if they are sequentially ordered. If
the sequential execution cannot be guaranteed we must assume that both tasks
are potentially executed in parallel and report a data race if they access the
same data.

Because the analysis cannot rely on happens-before relationships that are
created conditionally, we only consider unconditional →-statements. Further, if
for a statement lhs→rhs the points-to analysis found that one or both variables
lhs and rhs may point to more than one activation object, the abstract schedule
must over-approximate parallelism by ignoring the happens-before edge because
it cannot guarantee the exact ordering of the involved activations.1

The core of the abstract schedule computation can be expressed in the fol-
lowing Datalog rules:

1 In this case, increasing the context-sensitivity can result in higher precision and
therefore smaller points-to sets which may allow the analysis to drop less edges.

Static Analysis of Dynamic Schedules and Its Application 23

multiple(v) :- variablePT(v, obj1), variablePT(v, obj2), obj1 != obj2.

singleton(v) :- !multiple(v).

happensBeforeEdge(source, target) :-

arrowStatement(lhs, rhs),

variablePT(lhs, source), variablePT(rhs, target),

singleton(lhs), singleton(rhs).

The relation multiple : V contains all the variables that may point to two (or
more) different objects whereas the relation singleton : V contains all vari-
ables not in multiple and thus pointing to at most one object. Given an arrow-
statement lhs→rhs, the happensBeforeEdge : H × H relation contains the
tuple (source, target) if the variables lhs and rhs point to the singleton
objects source and target respectively.

The points-to analysis can only track a finite number of heap objects (in-
cluding activation objects) but a program that contains loops and recursion can
create a potentially infinite number of objects. For this reason, filtering out am-
biguous →-statements is a necessary but not sufficient condition for computing
a conservative abstract schedule because a single object at analysis time may
represent multiple runtime objects.

In the example from Figure 1, there are potentially many activation objects
created at lines 14 and 15. Therefore, the happens-before edge map→write on
in line 17 is only valid without restrictions inside the same loop iteration. An
activation doMap() of a later iteration, e.g., is not guaranteed to happen before
a doWrite() activation of an earlier iteration.

To address this problem, we make use of the fact that a program in static
single assignment form (SSA) captures the flow of values between loop itera-
tions in the form of explicit Φ operations. The pre-processor described in Sec-
tion 3.2 treats a statement var3 = Φ(var1, var2) in the source program sim-
ilar to an object creation site. That is, it adds a new object phiObj to H and
records the assignment of phiObj to var3. Additionally, the preprocessor adds
the facts varIntoPhi(var1, phiObj) and varIntoPhi(var2, phiObj) to a re-
lation varIntoPhi : V × H indicating that variables var1 and var2 flow into
the phiObj.

With this information in place, the schedule analysis can compute the relation
phiEdge : H × H with the following rule:

phiEdge(actObj, phiAct) :-

varIntoPhi(actVar, phiAct), variablePT(actVar, actObj).

A fact phiEdge(act, phi) means that the activation heap object act flows into
the phi heap object phi.

Figure 5 shows the mapInput()-task from Figure 1 and the abstract schedule
that is computed by the schedule analysis. Solid nodes represent normal acti-
vation nodes and dashed nodes are Φ activation objects. The dashed edges are
computed by the above phiEdge rule. In addition to the activation nodes, the
graph contains dashed boxes indicating loop boundaries: a solid node is inside a

24 C.M. Angerer and T.R. Gross

Φ doWrite()

mapInput() doMap()
loop 1

task mapInput(Vector input) {
Activation lastWrite0 = now;
Iterator iterator = input.iterator();

label0:
 Activation lastWrite1 = Φ(lastWrite0, lastWrite2);

 if iterator.hasNext() == 0 goto label1;
 data = iterator.next();

Activation map = schedule this.doMap(data);
Activation write = schedule this.doWrite(map);

map → write;
 lastWrite1 → write;

lastWrite2 = write;
goto label0;

label1:
return;

}

global

Fig. 5. The mapInput() task from Figure 1 in SSA form and the abstract schedule

dashed box if the schedule-statement is inside the loop body. The Φ nodes that
play the role of loop variables are placed in a special “header” area in the loop.
The loop information is computed by a structural analysis on a global interpro-
cedural SSA graph [10]. A special global box represents the whole program.

With the graph in Figure 5, we can deduce that the mapInput() activation
always happens before both the doMap() and the doWrite() activations. This
is because mapInput() is in the global context and connected to the other two
activations by creation edges. Further, the doWrite() activation is sequential to
itself because of the recursion through the Φ node. The recursion loop encodes
the fact that all doWrite() activations are ordered with respect to one another.

The doMap() activation, on the other hand, is parallel to itself, because it
is created inside a loop, as well as parallel to doWrite() because the happens-
before edge between them is created inside the loop 1 box and therefore has no
effect on the global context.

This example demonstrates that the effect of a happens-before edge gener-
ally depends on the loop context: in loop 1, we can say that doMap() always
happens-before doWrite() because those objects are created inside this loop; but
this is not true for the global perspective. Only Φ nodes allow us to establish
happens-before relationships across loop iterations.

Most optimizations work in the global context, because they transform the
source code which affects the whole program and not only a single loop iteration.
Therefore, the last phase of the schedule analysis flattens the abstract schedule in
the global context. The flattening process creates the three relations parallel :
H×H , sequential : H×H , and exclusive : H×H by using the abstract schedule
to find the type of relationship for each pair of activation objects.2

2 Deciding exclusivity requires further flow-sensitive analysis of the source code but
it can reduce the number of activations that are unnecessarily classified as being
potentially parallel.

Static Analysis of Dynamic Schedules and Its Application 25

3.4 Computing Read- and Write-Sets

The second part of the schedule analysis is to compute the read- and write-
sets for each activation. We capture the read and write sets in relations read :
H × BC × H and write : H × BC × H . A tuple read(act, bc, obj), e.g.,
states that activation object act may reach bytecode bc and this bytecode is a
load that may access object obj. The computation of the read and write sets is
straightforward and can be expressed in the following two Datalog rules (where
an underscore ‘ ’ means “any”):

read(act, bc, obj) :-

activationReaches(act, bc), load(bc, v, _, _), variablePT(v, obj).

write(act, bc, obj) :-

activationReaches(act, bc), store(bc, v, _, _), variablePT(v, obj).

The relation activationReaches : H×BC is a simple reachability predicate that
starting from the task of an activation object follows all invocation edges in the
call graph to find all bytecodes that this activation may execute.

4 Optimizations Based on Schedule Analysis

In this section, we present three sample optimizations for parallel programs
that are all based on the same schedule analysis from Section 3. The first two
optimizations have been taken from the literature and target the two main syn-
chronization primitives, locks and transactional memory. The third optimization
is specific to our explicit scheduling model and tries to reduce the number of
happens-before relationships in a program thus reducing scheduling overhead
and potentially increasing parallelism.

4.1 Synchronization Removal

Like many imperative and object-oriented languages, Java provides a synchro-
nization mechanism based on locks. Whenever a method or block may access
data structures that are shared between multiple threads, the programmer must
guard the critical section with a lock, e.g., using the synchronized keyword.
Because a thread-safe library cannot know the context it is used in, it must con-
servatively assume a multi-threaded environment and guard all critical sections
that potentially access shared data. In many programs, however, a large number
of the locking operations may safely be removed because two parallel tasks never
contend for the same locks.

A critical section is required if two parallel activations act1 and act2 may
try to acquire a lock on the same object lockObj. Acquiring a lock requires
the execution of a dedicated monitor enter instruction that is associated with a
variable pointing to the lock object. Conversely, a critical section is unnecessary if
its guarding monitor enter is not required. The following Datalog rules compute
the set of required and unnecessary monitor enter bytecodes:

26 C.M. Angerer and T.R. Gross

lockObject(monitorEnterBC, obj) :-

lockVariable(monitorEnterBC, v), variablePT(v, obj).

requiredMonitorEnter(monitorEnterBC1) :-

parallel(act1, act2),

activationReaches(act1, monitorEnterBC1),

activationReaches(act2, monitorEnterBC2),

lockObject(monitorEnterBC1, lockObj),

lockObject(monitorEnterBC2, lockObj).

unnecessaryMonitorEnter(monitorEnterBC) :-

!requiredMonitorEnter(monitorEnterBC).

If, in the example from Figure 1, the programmer had guarded the call out.add()
in the doWrite() task with a lock, the analysis would consider this lock as unnec-
essary because all activations of doWrite() are ordered and the parallel(act1,
act2) clause is always false for two doWrite() activations. If the programmer
had also guarded the body of task doMap() with the same lock, the above rules
would consider all locks to be required because doMap() activations can happen
in parallel with other doMap() and doWrite() activations.

Ruf [13] describes the same optimization but based on an analysis algorithm
that is specialized to the task of synchronization removal. One of the achieve-
ments is that this approach can remove 100% of all synchronization for the
special case of single threaded programs. Looking at the rules above, we can see
that our optimization has the same property. In a single threaded program, the
clause parallel(act1, act2) is always false and therefore all monitor enter
bytecodes will be classified as unnecessary.

4.2 Reducing Strong Atomicity Overhead

Software Transactional memory is a promising alternative to synchronization
that avoids many of the problems associated with locks. In an STM system,
an atomic region atomic{b}, where the block b is a list of statements, requires
the runtime to execute the sequence b as though there were no interleaved com-
putation. When the transaction inside the atomic region completes, it either
commits, thus making the changes visible to other processes, or it aborts, caus-
ing the transaction to be rolled back and the atomic region to be re-executed.

A transactional system is said to have weak atomicity semantics if it allows
computations outside of transactions to be interleaved with transactions. Weak
semantics allow for a more efficient implementation but it sacrifices ordering and
isolation guarantees which can lead to incorrect execution of programs that are
correctly synchronized under locks [16].

Strong atomicity, on the other hand, requires memory accesses outside of
transactions to be accompanied by memory barriers, and this setup greatly in-
creases the overhead of strong atomicity. Guarding a memory access with a
barrier, however, is only necessary if it may conflict with a memory access inside
a transaction that may be executed in parallel.3

3 Strong atomicity semantics do not cover conflicting memory access outside transac-
tions.

Static Analysis of Dynamic Schedules and Its Application 27

The following Datalog rules decide for a given read- or write-bytecode (outside
a transaction) whether it requires a read or write barrier:

readInsideTransaction(act, obj:H) :-

bcGuardedByAtomic(act, readBC), read(act, readBC, obj).

writtenInsideTransaction(act, obj:H) :-

bcGuardedByAtomic(act, writeBC), write(act, writeBC, obj).

requiresReadBarrier(readBC) :-

read(act1, readBC, obj),

writtenInsideTransaction(act2, obj),

parallel(act1, act2).

requiresWriteBarrier(writeBC) :-

read(act1, writeBC, obj),

writtenInsideTransaction(act2, obj),

parallel(act1, act2).

requiresWriteBarrier(writeBC) :-

read(act1, writeBC, obj),

readInsideTransaction(act2, obj),

parallel(act1, act2).

The relation bcGuardedBy : H × BC is a simple reachability predicate that
contains all bytecodes that, starting from the task of a given activation object,
may be executed inside an atomic block.

Modulo the exact points-to analysis used4, the analysis presented here is al-
most the same as the optimizations presented by Hindman and Grossman [6].
The difference is the additional clause parallel(act1, act2) in each of the
above rules. This means that if in the worst case the schedule analysis cannot
compute any happens-before relationships (and therefore conservatively classifies
all activations as parallel) our analysis is equivalent to [6]. If the schedule anal-
ysis can compute relevant edges, however, our analysis is more precise allowing
the optimizer to remove more read- and/or write barriers.

4.3 Dependence Reduction

Dependence reduction aims at removing →-statements from the source code.
This can be beneficial in two ways:

– Removing a →-statement that creates a happens-before relationship between
two activations that are already (transitively) ordered can improve the per-
formance of later analyses as well as improve the generated code. Unneces-
sary transitive →-statements can be found by looking for transitive edges in
the schedule.

– Removing a →-statement between two activations that are otherwise not
ordered can increase the parallelism in a program.

4 Hindman and Grossman use a points-to analysis that distinguishes objects by type,
not by creation site [6].

28 C.M. Angerer and T.R. Gross

1

2

3

4

1

2

3

4

(a) (b)

e

f

g

e

g

1

2

3

4

(c)

e'

g'

e

g

Fig. 6. Fixing the transitive ordering after removing the edge f

Removing a non-transitive edge between two activations may be allowed if
the read- and write-sets of both activations are disjoint.

requiredEdge(act1, act2) :-

happensBeforeEdge(act1, act2),

write(act1, obj),

readOrWrite(act2, obj).

requiredEdge(act1, act2) :-

happensBeforeEdge(act1, act2),

readOrWrite(act1, obj),

write(act2, obj).

unnecessaryEdge(act1, act2) :- !requiredEdge(act1, act2).

When such an edge is removed, however, we must ensure that the transitive
ordering is kept intact. Take, for example, the schedule shown in Figure 6(a). If
the analysis finds that edge f is unnecessary, simply removing it results in the
schedule shown in Figure 6(b). This schedule is broken, because by removing
f the transitive ordering between node 1 and node 3 as well as the transitive
ordering between node 2 and node 4 that was present before the removal is
missing. After adding the additional edges e’ and g’ as shown in Figure 6(c) the
transitive ordering is correct again. The parallelism has been increased, however,
because activations 2 and 3 can now be executed in parallel. In [3] we present
more details about this optimization.

5 Implementation and Future Work

The Datalog parts of our schedule analysis have been implemented and can
be found on http://github.com/chmaruni/XSched. We use the bddbddb Datalog
system. bddbddb is backed by binary decision diagrams (BDDs) and has been
shown to scale to large programs using over 1014 contexts [18].

The next step is to integrate our optimizations with a compiler to produce
optimized code and to empirically measure how our optimizations compare to
the ones from the original papers.

Static Analysis of Dynamic Schedules and Its Application 29

6 Related Work

The happens-before ordering was first formulated by Lamport [7] and is the
basis of the Java memory model [8]. Despite its significance in the memory
model, in Java happens-before edges can be created only implicitly, e.g., by
using synchronized blocks or volatile variables.

The goal of a pointer analysis is to statically determine when two pointer
expressions refer to the same memory location. Steengaard [17] and Andersen
[2] laid the groundwork for the flow-insensitive analysis of single threaded pro-
grams. Because points-to analysis is undecidable in the general case, however,
researchers developed a large collection of approximation algorithms specialized
for different problem domains [5], including parallel programming.

Rugina and Rinard [14] describe a pointer analysis for programs with struc-
tured fork-join style concurrency. For each program point, their algorithm com-
putes a points-to graph that maps each pointer to a set of locations. By capturing
the effects of pointer assignments for each thread, their algorithm can compute
the interference information between parallel threads. Computing the interfer-
ence information relies on the lexical scoping of the parallel constructs; it cannot
handle unstructured parallelism.

By combining pointer and escape analysis, subsequent projects were able to
extend their analyses beyond structured parallelism [15,11]. Both analyses com-
pute points-to information but do not directly answer as to how two tasks are
executed with respect to each other. Further, the tight integration of the pointer
analysis with the escape analysis and concurrency analysis is contrary to our
goal of separating the concerns of schedule analysis from points-to analysis.

A may-happen-in-parallel (MHP) analysis can be used to determine what
statements in a program may be executed in parallel [12]. Without flow sensi-
tivity, relating two program statements is of limited use for analyzing programs
with unstructured parallelism. If two threads execute the same statements but
in different contexts, for example, a context insensitive MHP analysis might un-
necessarily classify the statements as parallel. When the programming language
is restricted to structured parallelism, as is the case for X10, an intra-procedural
MHP analysis can achieve good results, however [1].

Barik [4] describes a context and flow-sensitive may-happen-before analysis
that distinguishes threads by their creation site. By using threads as their model,
however, they must conservatively assume that a parent thread in the tree runs
in parallel with each child thread. In our model a parent activation is known to
happen before any child activation because the creation tree is a spanning tree
embedded in the schedule.

7 Concluding Remarks

In this paper we showed how an independent schedule analysis can form the
basis for different optimizations of parallel programs.

In previous compilers, each optimization had to come with its own model
and analysis of concurrent computation. The introduction of an independent

30 C.M. Angerer and T.R. Gross

schedule analysis factors out the common aspects of these optimizations, making
it easy to not only combine multiple optimizations but also to derive new ones.
Combining the optimizations discussed in this paper, for example, allows the
optimization of programs that intermix transactional memory with traditional
locking. Moreover, the optimization for synchronization removal could be easily
adapted to remove atomic sections as well.

The key factor that enabled this approach was a model of parallel computation
that allowed a static analysis of the dynamic schedules to be encountered at
runtime. Exposing the schedule (and allowing a compiler to analyze and optimize
it) is a necessary step in the path towards improving the optimization of parallel
programs.

References

1. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel
Analysis of X10 Programs. In: PPoPP (2007)

2. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. Ph.D thesis, DIKU, University of Copenhagen (1994)

3. Angerer, C.M., Gross, T.R.: Parallel Continuation-Passing Style. In: PESPMA
(2010)

4. Barik, R.: Efficient computation of may-happen-in-parallel information for concur-
rent java programs. In: Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayap-
pan, P. (eds.) LCPC 2005. LNCS, vol. 4339, pp. 152–169. Springer, Heidelberg
(2006)

5. Hind, M.: Pointer Analysis: Haven’t We Solved This Problem Yet? In: PASTE
(2001)

6. Hindman, B., Grossman, D.: Strong atomicity for Java without virtual-machine
support. Tech. Rep. UW-CSE- 06-05-01 (May 2006)

7. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM 21(7) (1978)

8. Manson, J., Pugh, W., Adve, S.V.: The Java Memory Model. In: POPL (2005)
9. Matsakis, N., Gross, T.: Programming with intervals. In: Gao, G.R., Pollock, L.L.,

Cavazos, J., Li, X. (eds.) LCPC 2009. LNCS, vol. 5898, pp. 203–217. Springer,
Heidelberg (2010)

10. Muchnick, S.S.: AdvancedCompiler Design and Implementation.Morgan Kaufmann
Publishers, San Francisco (1997)

11. Nanda, M.G., Ramesh, S.: Pointer Analysis of Multithreaded Java Programs.
In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, Springer,
Heidelberg (2004)

12. Naumovich, G., Avrunin, G., Clarke, L.: An Efficient Algorithm for Computing
MHP Information for Concurrent Java Programs. In: ESEC/FSE-7 (1999)

13. Ruf, E.: Effective Synchronization Removal for Java. In: PLDI (2000)
14. Rugina, R., Rinard, M.: Pointer Analysis for Structured Parallel Programs. In:

TOPLAS (2003)
15. Salcianu, A., Rinard, M.: Pointer and Escape Analysis for Multithreaded Programs.

In: PPoPP (2001)
16. Shpeisman, T., et al.: Enforcing Isolation and Ordering in STM. In: PLDI (2007)
17. Steensgaard, B.: Points-to Analysis in Almost Linear Time. In: POPL (1996)
18. Whaley, J., Lam, M.S.: Cloning-Based Context-Sensitive Pointer Alias Analysis

Using Binary Decision Diagrams. In: PLDI (2004)

Lowering STM Overhead with Static Analysis

Yehuda Afek, Guy Korland, and Arie Zilberstein

Computer Science Department, Tel-Aviv University, Israel
{afek,guy.korland}@cs.tau.ac.il, zilbers@post.tau.ac.il

Abstract. Software Transactional Memory (STM) compilers commonly
instrument memory accesses by transforming them into calls to STM
library functions. Done naïvely, this instrumentation imposes a large
overhead, slowing down the transaction execution. Many compiler opti-
mizations have been proposed in an attempt to lower this overhead. In
this paper we attempt to drive the STM overhead lower by discovering
sources of sub-optimal instrumentation, and providing optimizations to
eliminate them. The sources are: (1) redundant reads of memory loca-
tions that have been read before, (2) redundant writes to memory loca-
tions that will be subsequently written to, (3) redundant writeset lookups
of memory locations that have not been written to, and (4) redundant
writeset record-keeping for memory locations that will not be read. We
describe how static analysis and code motion algorithms can detect these
sources, and enable compile-time optimizations that significantly reduce
the instrumentation overhead in many common cases. We implement the
optimizations over a TL2 Java-based STM system, and demonstrate the
effectiveness of the optimizations on various benchmarks, measuring up
to 29-50% speedup in a single-threaded run, and up to 19% increased
throughput in a 32-threads run.

Keywords: Transactional Memory, Optimization, Static Analysis.

1 Introduction

Software Transactional Memory (STM) [15, 24] is an emerging approach that
provides developers of concurrent software with a powerful tool: the atomic block,
which aims to ease multi-threaded programming and enable more parallelism.
Conceptually, statements contained in an atomic block appear to execute as a
single atomic unit: either all of them take effect together, or none of them take
effect at all. In this model, the burden of carefully synchronizing concurrent ac-
cess to shared memory, traditionally done using locks, semaphores, and monitors,
is relieved. Instead, the developer needs only to enclose statements that access
shared memory by an atomic block, and the STM implementation guarantees
the atomicity of each block.

In the past several years there has been a flurry of software transactional
memory design and implementation work; however, with the notable exception
of transactional C/C++ compilers [23], many of the STM initiatives have re-
mained academic experiments. There are several reasons for this; major among

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 31–45, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

32 Y. Afek, G. Korland, and A. Zilberstein

them is the large performance overhead [8]. In order to make a piece of code
transactional, it usually undergoes an instrumentation process which replaces
memory accesses with calls to STM library functions. These functions handle the
book-keeping of logging, committing, and rolling-back of values according to the
STM protocol. Naïve instrumentation introduces redundant function calls, for
example, for values that are provably transaction-local. In addition, an STM with
homogeneous implementation of its functions, while general and correct, will nec-
essarily be less efficient than a highly-heterogeneous implementation: the latter
can offer specialized functions that handle some specific cases more efficiently. For
example, a homogeneous STM may offer a general STMRead() method, while a
heterogeneous STM may offer also a specialized STMReadThreadLocal()method
that assumes that the value read is thread-local, and as a consequence, can op-
timize away validations of that value.

Previous work has presented many compiler and runtime optimizations that
aim to reduce the overhead of STM instrumentation. In this work we add to
that body of knowledge by identifying additional new sources of sub-optimal
instrumentation, and proposing optimizations to eliminate them. The sources
are:

– Redundant reads of memory locations that have been read before.
We use load elimination, a compiler technique that reduces the amount of
memory reads by storing read values in local variables and using these vari-
ables instead of reading from memory. This allows us to reduce the number
of costly STM library calls.

– Redundant writes to memory locations that will be subsequently
written to. We use scalar promotion, a compiler technique that avoids
redundant stores to memory locations, by storing to a local variable. Similar
to load elimination, this optimization allows us to reduce the number of
costly STM library calls.

– Redundant writeset lookups for memory locations that have not
been written to. We discover memory accesses that read locations that
have not been previously written to by the same transaction. Instrumenta-
tion for such reads can avoid writeset lookup.

– Redundant writeset record-keeping for memory locations that will
not be read. We discover memory accesses that write to locations that will
not be subsequently read by the same transaction. Instrumentation for such
writes can therefore be made cheaper, e.g., by avoiding insertion to a Bloom
filter.

Not all STM designs can benefit equally well from all the optimizations listed;
For example, STMs that employ in-place updates, rather than lazy updates, will
see less benefit from the redundant memory reads optimization. From here on,
we restrict the discussion to the Transactional Locking II (TL2) [10] protocol,
which benefits from all of the optimizations.

In addition to the new optimizations, we have implemented the following op-
timizations which have been used in other STMs: 1. Avoiding instrumentations

Lowering STM Overhead with Static Analysis 33

of accesses to immutable and transaction-local memory; 2. Avoiding lock acqui-
sitions and releases for thread-local memory; and 3. Avoiding readset population
in read-only transactions.

To summarize, this paper makes the following contributions:

– We implement a set of common STM-specific analyses and optimizations.
– We present and implement a set of new analyses and optimizations to reduce

overhead of STM instrumentation.
– We measure and show that our suggested optimizations can achieve signifi-

cant performance improvements - up to 29-50% speedup in some workloads.

We proceed as follows: Section 2 gives a background of the STM we optimize. In
Section 3 we describe the optimization opportunities that our analyses expose. In
Section 4 we measure the impact of the optimizations. Section 5 reviews related
work. We conclude in Section 6.

2 Background - Deuce, a Java-Based STM

In this section we briefly review the underlying STM protocol that we aim to
optimize. We use the Deuce Java-based STM framework. Deuce [19] is a plug-
gable STM framework that allows different implementations of STM protocols;
a developer only needs to implement the Context interface, and provide his own
implementation for the various STM library functions. The library functions
specify which actions to take on reading a field, writing to a field, committing a
transaction, and rolling back a transaction.

Deuce is non-invasive: it does not modify the JVM or the Java language, and it
does not require to re-compile source code in order to instrument it. It works by
introducing a new @Atomic annotation. Java methods that are annotated with
@Atomic are replaced with a retry-loop that attempts to perform and commit
a transacted version of the method. All methods are duplicated; the transacted
copy of every method is similar to the original, except that all field and array
accesses are replaced with calls to the Context interface, and all method in-
vocations are rewritten so that the transacted copy is invoked instead of the
original.

Deuce works either in online or offline mode. In online mode, the entire
process of instrumenting the program happens during runtime. A Java agent is
attached to the running program, by specifying a parameter to the JVM. During
runtime, just before a class is loaded into memory, the Deuce agent comes into
play and transforms the program in-memory. To read and rewrite classes, Deuce
uses ASM [6], a general-purpose bytecode manipulation framework.

In order to avoid the runtime overhead of the online mode, Deuce offers the
offline mode, that performs the transformations directly on compiled .class
files. In this mode, the program is transformed similarly, and the transacted
version of the program is written into new .class files.

Deuce’s STM library is homogeneous. In order to allow its methods to take
advantage of specific cases where optimization is possible, we enhance each of its

34 Y. Afek, G. Korland, and A. Zilberstein

STM functions to accept an extra incoming parameter, advice. This parameter is
a simple bit-set representing information that was pre-calculated and may help
fine-tune the instrumentation. For example, when writing to a field that will
not be read, the advice passed to the STM write function will have 1 in the bit
corresponding to “no-read-after-write”.

In this work we focus on the Transactional Locking II (TL2) [10] protocol im-
plementation in Deuce. In TL2, conflict detection is done by using a combination
of versioned write-locks, associated with memory locations or objects, together
with a global version clock. TL2 is a lazy-update STM, so values only written
to memory at commit time; therefore locks are held for a very short amount of
time. Our version of TL2 is word-based, and supports weak isolation [21] and
flat nesting [3].

3 Optimization Opportunities

The following are optimization opportunities we have detected.

3.1 Preventing Redundant Memory Accesses

Load Elimination. Consider the following code fragment that is part of an
atomic block (derived from the Java version of the STAMP suite):

for (int j = 0 ; j < n f e a tu r e s ; j++) {
new_centers [index] [j] = new_centers [index] [j] +

f ea tu r e [i] [j] ;
}

A naïve STM compiler will instrument every array access in this fragment.
However, the memory locations new_centers[index] and feature[i] are loop-
invariant. We can calculate them once, outside the loop, and re-use the calcu-
lated values inside the loop. The technique of re-using values is a form of Partial
Redundancy Elimination (PRE) optimization and is common in modern compil-
ers. When PRE is applied to memory loads, it is called Load Elimination. The
optimized version of the code will be equivalent to:

i f (0 < n f ea tu r e s) {
nc i = new_centers [index] ;
f i = f e a tu r e [i] ;
for (j = 0 ; j < n f e a tu r e s ; j++) {

nc i [j] = nc i [j] + f i [j] ;
}

}

Many compilers refrain from applying the technique to memory loads (as op-
posed to arithmetic expressions). One of the reasons is that such a code trans-
formation may not be valid in the presence of concurrency; for example, the
compiler must make sure that the feature[i] memory location cannot be con-
currently modified by a thread other than the one executing the above loop. This

Lowering STM Overhead with Static Analysis 35

constraint, however, does not exist inside an atomic block, because the atomic
block guarantees isolation from other concurrent transactions. An STM compiler
can therefore enable PRE optimizations where they would not be possible with
a regular compiler that does not support atomic blocks.

We note that this optimization is sound for all STM protocols that guarantee
isolation. The performance boost achieved by it, however, is maximized with
lazy-update STMs as opposed to in-place-update STMs. The reason is that lazy-
update STMs must perform an expensive writeset lookup for every memory read,
while in in-place-update STMs, memory reads are relatively cheap since they are
done directly from memory. In fact, in such STMs, reads of memory locations
that were read before can be optimized [29, 12] to perform just a direct memory
read together with a consistency check. By using load elimination of memory
locations, memory reads are transformed into reads of a local variable; as a
result, such reads are made much faster and a lazy-update STM operates at
in-place STM speeds.

Scalar Promotion. The dual to load elimination is Scalar Promotion. Consider
the following code fragment, also from STAMP:

for (int i = 0 ; i < num_elts ; i++) {
moments [0] += data [i] ;

}

If this fragment appeared inside an atomic method, an STM compiler could take
advantage of the isolation property to eliminate the multiple writes to the same
memory location. An optimized version of the code would be equivalent to:

i f (0 < num_elts) {
double temp = moments [0] ;
try {

for (int i = 0 ; i < num_elts ; i++) {
temp += data [i] ;

}
} f ina l ly {

moments [0] = temp ;
}

}

The advantage of the optimized version is that multiple memory writes are
replaced with just one.

3.2 Preventing Redundant Writeset Operations

Redundant Writeset Lookups. Consider a field read statement v = o.f
inside a transaction. The STM must produce and return the most updated value
of o.f. In STMs that implement lazy update, there can be two ways to look up
o.f’s value: if the same transaction has already written to o.f, then the most
updated value must be found in the transaction’s writeset. Otherwise, the most
updated value is the one in o.f’s memory location. A naïve instrumentation

36 Y. Afek, G. Korland, and A. Zilberstein

will conservatively always check for containment in the writeset on every field
read statement. With static analysis, we can gather information whether the
accessed o.f was possibly already written to in the current transaction. If we
can statically deduce that this is not the case, then the STM may skip checking
the writeset, thereby saving processing time.

Redundant Writeset Record-Keeping. Consider a field write statement o.f
= v inside a transaction. According to the TL2 protocol, the STM must update
the writeset with the information that o.f has been written to. One of the de-
sign goals of the writeset is that it should be fast to search it; this is because
subsequent reads from o.f in the same transaction must use the value that is in
the writeset. But, some memory locations in the writeset will never be actually
read in the same transaction. We can exploit this fact to reduce the amount
of record-keeping that the writeset data-structure must handle. As an example,
TL2 suggests implementing the writeset as a linked-list (which can be efficiently
added-to and traversed) together with a Bloom filter (that can efficiently check
whether a memory location exists in the writeset). If we can statically deduce
that a memory location is written-to but will not be subsequently read in the
same transaction, we can skip updating the Bloom filter for that memory loca-
tion. This saves processing time, and is sound because there is no other purpose
in updating the Bloom filter except to help in rapid lookups.

4 Experimental Results

In order to test the benefit of the above optimization opportunities, we used
Deuce [19], a Java-based STM framework.

PRE optimizations (section 3.1) require no change to the actual Deuce run-
time; they only require an extra preliminary optimization pass.

The optimization of preventing redundant writeset operations (section 3.2)
needs to actually change the instrumentation. To do it, we enhance each of
Deuce’s STM library methods to accept an extra bit-set parameter, advice, every
bit of which denotes an optimization opportunity.

We devised compile-time analyses that discover the opportunities and sup-
ply the advice parameters to the STM library method calls. The STM library
methods detect the enabled bits in the advice parameters and apply the relevant
optimizations. Specifically, the STM read method, upon seeing a 1 in the bit
corresponding to “no-write-before-read”, will avoid looking up the memory loca-
tion in the writeset. Similarly, the STM write function, upon seeing a 1 in the
bit corresponding to “no-read-after-write”, will avoid updating the Bloom filter.

In order to discover which memory locations are read before they are written
to, we perform an interprocedural, flow-sensitive, forward data flow analysis [17],
that simulates the runtime contents of the readset. The analysis uses points-to
information [17] to associate each abstract memory location, in each program
point, with a tag representing whether the memory location was written to
already or not. A similar, backward analysis, is used to discover memory locations
that will not be read after they are written to.

Lowering STM Overhead with Static Analysis 37

Out test environment is a Sun UltraSPARC T2 Plus multicore machine with
2 CPUs, each with 8 cores at 1.2 GHz, each core with 8 hardware threads to a
total of 128 threads.

4.1 Optimization Levels

We compared 5 levels of optimizations. The levels are cumulative so that every
level includes all the optimizations of the previous levels. The None level is the
most basic code, which blindly instruments every memory access. The Common
level adds several well-known optimizations that are common in STMs. These
include 1. Avoiding instrumentations of accesses to immutable and transaction-
local memory; 2. Avoiding lock acquisitions and releases for thread-local memory;
and 3. Avoiding readset population for read-only transactions. The PRE level
consists of load elimination and scalar promotion optimizations. The ReadOnly
level avoids redundant readset lookups for memory locations that have not been
written to. Finally, the WriteOnly level avoids redundant writeset record-keeping
for memory locations that will not be read.

4.2 Benchmarks

We experimented on a set of data structure-based microbenchmarks and several
benchmarks from the Java version [9] of the STAMP [7] suite.

Data Structures Microbenchmarks. In the following microbenchmarks, we
exercised three different data structures: LinkedList represents a sorted linked
list implementation. SkipList represents a skiplist with random leveling. Hash
represents an open-addressing hash table that uses a fixed-size array with no
rehashing. Every data structure supports three atomic operations: adding an
item, removing an item, and checking for containment of an item. The test
consists of threads attempting to perform as many atomic operations as possible
on a shared data structure; each thread chooses its next operation randomly, with
90% chance selecting the lookup operations, and 10% chance selecting addition
or removal. The threads are stopped after 20 seconds.

In the microbenchmarks, we measure throughput, that is, the total number of
operations performed. Each value is normalized relative to the results of a single-
threaded run with no optimizations. The results appears in Figure 1. Each bar
represents the median value of at least 10 runs.

STAMP Benchmarks. We tested four STAMP [7] benchmarks. K-Means im-
plements k-means clustering. Vacation simulates an on-line travel reservation
system. Ssca2 performs several graph operations. In our tests we focused on
Kernel 1, which generates a graph, and Kernel 2, which classifies large sets.
MatrixMul is part of the Java version of the STAMP suite. It performs matrix
multiplication. We could not test the other benchmarks from STAMP due to
technical limitations: STAMP is a C library, and its Java port [1] is written in
a special dialect of Java that requires manual conversion in order to compile on
standard Java. After conversion, the tests ran with incorrect results.

38 Y. Afek, G. Korland, and A. Zilberstein

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 32 64

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Threads

LinkedList

None
Common

PRE
ReadOnly
WriteOnly

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 32 64

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Threads

SkipList

None
Common

PRE
ReadOnly
WriteOnly

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 32 64

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Threads

Hash

None
Common

PRE
ReadOnly
WriteOnly

Fig. 1. Microbenchmarks comparative results (higher is better)

In the STAMP benchmarks we measured the time it took for each test to
complete.1 As before, the values are normalized relative to the single-threaded,
no-optimizations run. The results appears in Figure 2.

4.3 Optimization Opportunities Breakdown

To understand to what extent optimizations are applicable to the benchmarks,
we compared optimization-specific measures on single-threaded runs. The results
appear in tables 1, 2. The measure for PRE is the percent of reads eliminated
by load elimination and scalar promotion (compared to the Common level). The
measure for ReadOnly is the percent of read statements that access memory
locations that have not been written to before in the same transaction. The
measure for WriteOnly is the percent of write statements that write to memory
that will not be read afterwards in the same transaction. All numbers are mea-
sured dynamically at runtime. High percentages represent more optimization
opportunities. Low percentages mean that we could not locate many optimiza-
tion opportunities, either because they do not exist, or because our analyses were
not strong enough to find them.

1 Parameters used for the benchmarks: K-Means: -m 40 -n 40 -t 0.001 -i
random-n16384-d24-c16.input; Vacation: -n 4 -t 5000000 -q 90 -r 65536 -u
80; Ssca2: -s 18; MatrixMul:130.

Lowering STM Overhead with Static Analysis 39

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

1 2 4 8 16 32 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Threads

K-Means

None
Common

PRE
ReadOnly
WriteOnly

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 4 8 16 32 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Threads

Vacation

None
Common

PRE
ReadOnly
WriteOnly

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

1 2 4 8 16 32 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Threads

SSCA2

None
Common

PRE
ReadOnly
WriteOnly

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 4 8 16 32 64

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Threads

MatrixMul

None
Common

PRE
ReadOnly
WriteOnly

Fig. 2. STAMP Benchmarks comparative results (lower is better)

Table 1. Optimization opportunity measures per microbenchmark on a single-threaded
run

LinkedList SkipList Hash
PRE (% of reads eliminated) 0.17% 0.48% 0%
ReadOnly (% of reads from locations not written to before) 100% 3.56% 100%
WriteOnly (% of writes to locations not read from thereafter) 100% 0% 100%

4.4 Analysis

Our benchmarks show that the optimizations have improved performance to
varying degrees. The most noticeable performance gain was due to PRE, espe-
cially in tight loops where many memory accesses were eliminated.

PRE. K-Means benefits greatly (up to 29% speedup) from load elimination: the
above example (section 3.1) is taken directly from K-Means. MatrixMul also
benefits from PRE due to the elimination of redundant reads of the main matrix
object. Vacation achieves 4% speedup in the single-threaded run, but sees little
to no speedup as the number of threads rises; this is because the eliminated loads
exist outside of tight loops.

Our Scalar Promotion analysis, which focuses on finding loops where the same
memory location is re-written in every iteration, was not able to find this pattern
in any of the tested benchmarks. A more thorough analysis, that also considers

40 Y. Afek, G. Korland, and A. Zilberstein

Table 2. Optimization opportunity measures per STAMP benchmark on a single-
threaded run

K-Means Vacation SSCA2 MatrixMul
PRE (% of reads eliminated) 56.86% 4% 0% 33.46%
ReadOnly (% of reads from locations not written to before) 56.05% 1.56% 100% 100%
WriteOnly (% of writes to locations not read from thereafter) 5.26% 0.02% 100% 100%

writes outside of loops, may have been able to detect some opportunities for
enabling the Scalar Promotion optimization.

ReadOnly. LinkedList benefits (throughput increased by at up 28%) from the
ReadOnly optimization, which applies to reading the next node in the list. This
optimization is valid since traversal is done prior to updating the next node.
We note that the read of the head of the list is also a read-only memory access;
however this is subsumed by the Common optimizations because the head is
immutable. Hash’s throughput is increased by up to 4% due to ReadOnly op-
portunities in the findIndex() method, which is called on every transaction.
SSCA2 and MatrixMul see modest benefits.

Our analysis discovered that in 4 benchmarks: LinkedList, Hash, SSCA2 and
MatrixMul, all reads are from memory locations that have not been written to
before in the same transaction. We suspect that reading before writing is the
norm in almost all transactions, but our analyses could prove it only in these 4.

WriteOnly. The WriteOnly optimization is effective on transactions with a high
number of successful writes. Hash, which makes over 11 million writes in the
single-threaded run, shows up to 1.7% improvement, while SSCA2 with a similar
number of writes, is up to 4% faster. Other benchmarks with 100% optimization
of writes, MatrixMul and LinkedList, perform much less writes (only around
15,000) and therefore see very little benefit from the WriteOnly optimization.

We conclude that PRE shows the most impressive gains while ReadOnly follows
next. The impact of the WriteOnly optimization is relatively small. The reason
that the WriteOnly optimization is less effective is that the insertion to the
Bloom filter is already a very quick operation. In addition, our tested workloads
have a relatively low amount of writes.

The effectiveness of the optimizations varies widely with the different work-
loads and benchmarks. For example, the fully optimized LinkedList is 27% faster
(compared to Common) on 1 thread, and 19% faster on 32 threads. MatrixMul
is 50% faster on a single-threaded run. However, SkipList and Vacation shows
no more than 1% gain on any number of threads due to lack of optimization
opportunities.

While generally the optimizations improve throughput and save time, at some
workloads their effects are detrimental. For example, the optimized versions of

Lowering STM Overhead with Static Analysis 41

LinkedList on 64 threads, or SkipList on 8 threads, perform worse than their non-
optimized versions. We suspect that, on some specific workloads, making some
transactions faster could generate conflicts with other advancing transactions.

5 Related Work

The literature on compiler optimizations that are specific to transactional mem-
ory implementations revolves mostly around in-place-update STMs [27]. Harris
et al. [14] presents the baseline STM optimizations that appear in many sub-
sequent works. Among them are: Decomposition of STM library functions to
heterogeneous parts; code motion optimizations that make use of this decom-
position to reduce the number of “open-for-read” operations; early upgrade of
“open-for-read” into “open-for-write” operation if a write-after-read will occur;
suppression of instrumentation for transaction-local objects; and more. In [2],
immutable objects are also exempt from instrumentation. In addition, standard
compiler optimization techniques (see [17] for a full treatment), such as loop
peeling, method inlining, and redundancy elimination algorithms are applied to
atomic blocks.

Eddon and Herlihy [12] apply fully interprocedural analyses to discover thread-
locality and subsequent accesses to the same objects. Such discoveries are ex-
ploited for optimized “fast path” handling of the cases. Similar optimizations also
appear in Wang et al. [29], Dragojevic et al. [11]. We note that the above works
optimize for in-place-update STMs. In such an STM protocol, once a memory
location is “open-for-write”, memory accesses to it are nearly transparent (free),
because the memory location is exclusively owned by the transaction. Our work is
different because it targets lazy-update STMs, where subsequent instrumented
accesses to memory cannot be made much cheaper than initial accesses; e.g.,
the writeset must still be searched on every read. We solve this problem by
transforming instrumented reads and writes, that access shared memory, into
uninstrumented reads and writes that access local variables.

Spear et al. [27] proposes several optimizations for a TL2-like STM: 1. When
multiply memory locations are read in succession, each read is instrumented such
that the location is pre-validated, read, and then post-validated. By re-ordering
the instructions such that all the pre-validations are grouped together, followed
by the reads, and concluded by the post-validations, they increase the time win-
dow between memory fences, such that the CPU could parallelize the memory
reads. 2. Post-validation can sometimes be postponed as long as working with
“unsafe” values can be tolerated; This eliminates or groups together expensive
memory barrier operations. Shpeisman et al. [25]’s barrier aggregation is a sim-
ilar, but simpler, optimization that re-uses barriers inside a basic block if they
guard the same object.

Beckman et al. [5]’s work provides optimizations for thread-local, transaction-
local and immutable objects that are guided by access permissions. These are
Java attributes that the programmer must use to annotate program references.
For example, the @Imm attribute denotes that the associated reference variable is

42 Y. Afek, G. Korland, and A. Zilberstein

immutable. Access permissions are verified statically by the compiler, and then
used to optimize the STM instrumentation for the affected variables.

Partial redundancy elimination (PRE) [18, 22] techniques are widely used in
the field of compiler optimizations; however, most of the focus was at removing
redundancies of arithmetic expressions. Fink et al. [13] and Hosking et al. [16]
were the first to apply PRE to Java access path expressions, for example, ex-
pressions like a.b[i].c . This variant of PRE is also called load elimination. As
a general compiler optimization, this optimization may be unsound because it
may miss concurrent updates by a different thread that changes the loaded value.
Therefore, some works [4, 28] propose analyses that detect when load elimina-
tion is valid. Scalar promotion, which eliminates redundant memory writes, was
introduced by Lu and Cooper [20], and improved by later works (e.g. [26]).

6 Conclusions and Further Work

We showed that two pre-existing optimizations, load elimination and scalar pro-
motion, can be used in an optimizing STM compiler. Where standard compilers
need perform an expensive cross-thread analysis to enable these optimizations,
an STM compiler can rely on the atomic block’s isolation property to enable
them. We also highlighted two redundancies in STM read and write operations,
and showed how they can be optimized.

We implemented a compiler pass that performs these STM-specific code mo-
tion optimizations, and another pass that uses static analysis methods to discover
optimization opportunities for redundant STM read and write operations. We
have augmented the interface of the underlying STM compiler, Deuce, to accept
information about which optimizations to enable at every STM library method
call, and modified the STM methods themselves to apply the optimizations when
possible.

The combined performance benefit of all the optimizations presented here
varies with the workload and the number of threads. While some benchmarks see
little to no improvement (e.g., SSCA2 and SkipList), we have observed speedups
of up to 50% and 29% in other benchmarks (single-threaded MatrixMul and
K-Means, respectively).

There are many ways to improve upon this research. For example, a draw-
back of the optimizations presented here is that they require full interprocedural
analysis to make sound decisions. It may be interesting to research which similar
optimizations can be enabled with less analysis work, for example, with running
only intraprocedural analyses, or with partial analysis data that is calculated at
runtime.

Acknowledgments. The authors thank the anonymous reviewers of this pa-
per’s draft for their clear and spot-on remarks. This paper was supported in part
by the European Union grant FP7-ICT-2007-1 (project VELOX), by grants from
Intel Corporation and Sun Microsystems, and by the Laura Schwarz-Kipp Insti-
tute of Computer Networks.

Lowering STM Overhead with Static Analysis 43

References

[1] http://demsky.eecs.uci.edu/software.php
[2] Adl-Tabatabai, A.-R., Lewis, B.T., Menon, V., Murphy, B.R., Saha, B., Shpeis-

man, T.: Compiler and runtime support for efficient software transactional mem-
ory. In: PLDI 2006: Proceedings of the 2006 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 26–37. ACM, New York
(2006) ISBN 1-59593-320-4,
doi http://doi.acm.org/10.1145/1133981.1133985

[3] Agrawal, K., Leiserson, C.E., Sukha, J.: Memory models for open-nested trans-
actions. In: MSPC 2006: Proceedings of the 2006 Workshop on Memory System
Performance and Correctness, pp. 70–81. ACM, New York (2006) ISBN 1-59593-
578-9, doi http://doi.acm.org/10.1145/1178597.1178610

[4] Barik, R., Sarkar, V.: Interprocedural load elimination for dynamic optimization
of parallel programs. In: PaCT 2009, pp. 41–52. IEEE Computer Society, Los
Alamitos (2009) ISBN 978-0-7695-3771-9,
doi http://dx.doi.org/10.1109/PACT.2009.32

[5] Beckman, N.E., Kim, Y.P., Stork, S., Aldrich, J.: Reducing STM overhead with
access permissions. In: IWACO 2009: International Workshop on Aliasing, Con-
finement and Ownership in Object-Oriented Programming, pp. 1–10. ACM, New
York (2009) ISBN 978-1-60558-546-8,
doi http://doi.acm.org/10.1145/1562154.1562156

[6] Bruneton, E., Lenglet, R., Coupaye, T.: ASM: A code manipulation tool to im-
plement adaptable systems. In: Adaptable and Extensible Component Systems
(2002)

[7] Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford trans-
actional applications for multi-processing. In: IISWC 2008: Proceedings of The
IEEE International Symposium on Workload Characterization (September 2008)

[8] Cascaval, C., Blundell, C., Michael, M., Cain, H.W., Wu, P., Chiras, S., Chatter-
jee, S.: Software transactional memory: why is it only a research toy? Commun.
ACM 51(11), 40–46 (2008) ISSN 0001-0782,
doi http://doi.acm.org/10.1145/1400214.1400228

[9] Demsky, B., Dash, A.: Evaluating contention management using discrete event
simulation. In: Fifth ACM SIGPLAN Workshop on Transactional Computing
(April 2010)

[10] Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

[11] Dragojevic, A., Ni, Y., Adl-Tabatabai, A.-R.: Optimizing transactions for captured
memory. In: SPAA 2009: Proceedings of the Twenty-first Annual Symposium on
Parallelism in Algorithms and Architectures, pp. 214–222. ACM, New York (2009)
ISBN 978-1-60558-606-9, doi http://doi.acm.org/10.1145/1583991.1584049

[12] Eddon, G., Herlihy, M.: Language support and compiler optimizations for STM
and transactional boosting. In: Janowski, T., Mohanty, H. (eds.) ICDCIT 2007.
LNCS, vol. 4882, pp. 209–224. Springer, Heidelberg (2007)

[13] Fink, S.J., Knobe, K., Sarkar, V.: Unified analysis of array and object references in
strongly typed languages. In: SAS 2000. LNCS, vol. 1824, pp. 155–174. Springer,
Heidelberg (2000) ISBN 3-540-67668-6

http://demsky.eecs.uci.edu/software.php
http://doi.acm.org/10.1145/1133981.1133985
http://doi.acm.org/10.1145/1178597.1178610
http://dx.doi.org/10.1109/PACT.2009.32
http://doi.acm.org/10.1145/1562154.1562156
http://doi.acm.org/10.1145/1400214.1400228
http://doi.acm.org/10.1145/1583991.1584049

44 Y. Afek, G. Korland, and A. Zilberstein

[14] Harris, T., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing memory transactions.
In: Conference on Programming Language Design and Implementation. ACM SIG-
PLAN, pp. 14–25 (June 2006)

[15] Herlihy, M., Eliot, J., Moss, B.: Transactional memory: Architectural support
for lock-free data structures. In: Proceedings of the 20th Annual International
Symposium on Computer Architecture, pp. 289–300 (1993)

[16] Hosking, A.L., Nystrom, N., Whitlock, D., Cutts, Q.I., Diwan, A.: Partial redun-
dancy elimination for access path expressions. In: Proceedings of the Workshop
on Object-Oriented Technology, London, UK, pp. 138–141. Springer, Heidelberg
(1999) ISBN 3-540-66954-X

[17] Kennedy, K., Allen, J.R.: Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco
(2002) ISBN 1-55860-286-0

[18] Knoop, J., Rüthing, O., Steffen, B.: Lazy code motion. SIGPLAN Not. 27(7),
224–234 (1992) ISSN 0362-1340,
doi http://doi.acm.org/10.1145/143103.143136

[19] Korland, G., Shavit, N., Felber, P.: Noninvasive concurrency with Java STM. In:
MultiProg 2010: Programmability Issues for Heterogeneous Multicores (January
2010), http://www.deucestm.org/

[20] Lu, J., Cooper, K.D.: Register promotion in C programs. In: PLDI 1997: Proceed-
ings of the ACM SIGPLAN 1997 Conference on Programming Language Design
and Implementation, pp. 308–319. ACM, New York (1997) ISBN 0-89791-907-6,
doi http://doi.acm.org/10.1145/258915.258943

[21] Martin, M., Blundell, C., Lewis, E.: Subtleties of transactional memory atomicity
semantics. IEEE Comput. Archit. Lett. 5(2), 17 (2006) ISSN 1556-6056,
doi http://dx.doi.org/10.1109/L-CA.2006.18

[22] Morel, E., Renvoise, C.: Global optimization by suppression of partial redundan-
cies. Commun. ACM 22(2), 96–103 (1979) ISSN 0001-0782,
doi http://doi.acm.org/10.1145/359060.359069

[23] Ni, Y., Welc, A., Adl-Tabatabai, A.-R., Bach, M., Berkowits, S., Cownie, J., Geva,
R., Kozhukow, S., Narayanaswamy, R., Olivier, J., Preis, S., Saha, B., Tal, A.,
Tian, X.: Design and implementation of transactional constructs for C/C++. In:
OOPSLA 2008: Proceedings of the 23rd Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications, pp. 195–212
(2008)

[24] Shavit, N., Touitou, D.: Software transactional memory. In: Proc. of the 12th
Annual ACM Symposium on Principles of Distributed Computing (PODC), pp.
204–213 (1995)

[25] Shpeisman, T., Menon, V., Adl-Tabatabai, A.-R., Balensiefer, S., Grossman, D.,
Hudson, R.L., Moore, K.F., Saha, B.: Enforcing isolation and ordering in stm.
SIGPLAN Not. 42(6), 78–88 (2007) ISSN 0362-1340,
doi http://doi.acm.org/10.1145/1273442.1250744

[26] So, B., Hall, M.W.: Increasing the applicability of scalar replacement. In: CC, pp.
185–201 (2004)

[27] Spear, M.F., Michael, M.M., Scott, M.L., Wu, P.: Reducing memory ordering over-
heads in software transactional memory. In: CGO 2009: Proceedings of the 7th
Annual IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, Washington, DC, USA, pp. 13–24. IEEE Computer Society, Los Alamitos
(2009) ISBN 978-0-7695-3576-0, doi http://dx.doi.org/10.1109/CGO.2009.30

http://doi.acm.org/10.1145/143103.143136
http://www.deucestm.org/
http://doi.acm.org/10.1145/258915.258943
http://dx.doi.org/10.1109/L-CA.2006.18
http://doi.acm.org/10.1145/359060.359069
http://doi.acm.org/10.1145/1273442.1250744
http://dx.doi.org/10.1109/CGO.2009.30

Lowering STM Overhead with Static Analysis 45

[28] von Praun, C., Schneider, F., Gross, T.R.: Load elimination in the presence of
side effects, concurrency and precise exceptions. In: Rauchwerger, L. (ed.) LCPC
2003. LNCS, vol. 2958, pp. 390–405. Springer, Heidelberg (2004)

[29] Wang, C., Chen, W.-Y., Wu, Y., Saha, B., Adl-Tabatabai, A.-R.: Code generation
and optimization for transactional memory constructs in an unmanaged language.
In: CGO 2007: Proceedings of the International Symposium on Code Generation
and Optimization, Washington, DC, USA, pp. 34–48. IEEE Computer Society,
Los Alamitos (2007) ISBN 0-7695-2764-7,
doi http://dx.doi.org/10.1109/CGO.2007.4

http://dx.doi.org/10.1109/CGO.2007.4

A Parallel Numerical Solver Using Hierarchically Tiled
Arrays

James C. Brodman1, G. Carl Evans1, Murat Manguoglu2, Ahmed Sameh2,
Marı́a J. Garzarán1, and David Padua1

1 University of Illinois at Urbana-Champaign, Dept. of Computer Science
{brodman2,gcevans,garzaran,padua}@illinois.edu

2 Purdue University, Dept. of Computer Science
{mmanguog,sameh}@cs.purdue.edu

Abstract. Solving linear systems is an important problem for scientific com-
puting. Exploiting parallelism is essential for solving complex systems, and this
traditionally involves writing parallel algorithms on top of a library such as MPI.
The SPIKE family of algorithms is one well-known example of a parallel solver
for linear systems.

The Hierarchically Tiled Array data type extends traditional data-parallel ar-
ray operations with explicit tiling and allows programmers to directly manip-
ulate tiles. The tiles of the HTA data type map naturally to the block nature
of many numeric computations, including the SPIKE family of algorithms. The
higher level of abstraction of the HTA enables the same program to be portable
across different platforms. Current implementations target both shared-memory
and distributed-memory models.

In this paper we present a proof-of-concept for portable linear solvers. We
implement two algorithms from the SPIKE family using the HTA library. We
show that our implementations of SPIKE exploit the abstractions provided by the
HTA to produce a compact, clean code that can run on both shared-memory and
distributed-memory models without modification. We discuss how we map the
algorithms to HTA programs as well as examine their performance. We compare
the performance of our HTA codes to comparable codes written in MPI as well
as current state-of-the-art linear algebra routines.

1 Introduction

Computer simulation has become an important tool for scientists and engineers to pre-
dict weather, forecast prices for financial markets, or test vehicle safety. Increasing the
performance of these simulations is important to improve the accuracy of the prediction
or to increase the number of tests that can be performed. One way to achieve this per-
formance improvement is the parallelization of the kernels that lie at the core of many
of these simulations and that solve systems of equations or perform signal transfor-
mations. Today many different types of computing platforms can be used to run these
parallel codes, such as the new ubiquitous multicore, large clusters of machines where
each node is typically a multicore, and the accelerators or clusters of accelerators like

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 46–61, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Parallel Numerical Solver Using Hierarchically Tiled Arrays 47

the Cell Processor or GPUs. However, the many available options for parallel execution
have increased the difficulty of the programmer’s task as they usually must rewrite their
computations with a different programming model for each different type of computing
platform.

Programmer productivity can be improved with a programming model that produces
one portable code that can target several different types of parallel platforms. We believe
portable codes can be obtained by using high level abstractions that hide the details of
the underlying architecture from the programmers and allow them to focus on the cor-
rect implementation of their algorithms. However, one does not want to raise the level
of abstraction so high that programmers sacrifice control over performance. The Hier-
archically Tiled Array (HTA) is a data type that uses abstractions to allow programmers
to write portable numerical computations. HTA uses tiling as a high-level abstraction to
facilitate the specification of the algorithms, while allowing the programmer to control
the performance of their programs.

In this paper we show a proof-of-concept for high-performance computations that are
portable across both shared-memory and message-passing. We present several versions
of SPIKE, a parallel solver for linear banded systems, implemented using the HTA
data type. We show that our implementations exploit the abstractions provided by the
HTA to produce compact, clean code. Our experimental results show that the same
code provides competitive performance when running on message-passing and shared-
memory platforms.

The rest of this paper is organized as follows. Section 2 describes the SPIKE family
of algorithms for solving banded systems of equations. Section 3 describes the Hierar-
chically Tiled Array data type used in our implementations. Section 4 describes how we
actually implement several different SPIKE algorithms using HTAs. Section 5 presents
the performance of our SPIKE implementations using both the shared-memory and
distributed-memory runtimes and compares them to other libraries. Section 6 discusses
related work and Section 7 summarizes our work.

2 SPIKE

Linear solvers are an important class of numerical computation. Many important prob-
lems are sparse. It is well known that the desired data structure to represent sparse
systems influences the performance of solvers for this type of linear system. These
computations do not use dense arrays but rather only store the elements of a matrix that
may be non-zero. Such storage mechanisms reduce not only the memory footprint but
can also reduce the amount of computation needed by only performing computation on
relevant elements. The SPIKE family of algorithms [15] is one such parallel solver for
banded linear systems of equations.

Consider a linear system of the form Ax = f , where A is a banded matrix of order n
with bandwidth much less than n. One can partition the system into p diagonal blocks.
Given p = 4, the partitioned system is of the form,

48 J.C. Brodman et al.

A =

A1

A2

A3

A4

B1

B2

B3

C2

C3

C4

f =

f1

f2

f3

f4

where each Ai is a banded matrix of order n/p. The matrices Bi and Ci are of order m
where the bandwidth of the original matrix A is 2m + 1. Only the A, B, and C blocks
need to be stored for this type of sparse matrix.

Let the block diagonal matrix D = diag(A1, ..., A4). If one were to left-multiply
each side of the above by D−1, one would obtain a system of the form:

S =

I

I

I

I

V1

V2

V3

W2

W3

W4

g =

g1

g2

g3

g4

However, instead of computing D−1, one can compute, as seen below, the blocks of V
and W , or, the spikes by solving a system of equations. The spikes have the same width,
m, as the B and C tiles in the original system.

Ai

[
Vi, Wi

]
=

⎡
⎢⎢⎢⎢⎣

0 Ci

. 0

. .
0 .
Bi 0

⎤
⎥⎥⎥⎥⎦

(1)

Solving the original system Ax = f now consists of three steps.

1. Solve (1)
2. Solve Dg = f
3. Solve Sx = g

The solution of the system Dg = f yields the modified RHS for the system in the
third step. Notice that each blocks of D are independent and thus can be computed in
parallel. Solving the third system can be further reduced by solving the system Ŝx̂ = ĝ,
which consists of the m rows of S directly above and below the boundaries between the
I tiles. The spikes, f , and g can also be partitioned so that we have:

A Parallel Numerical Solver Using Hierarchically Tiled Arrays 49

Vj =

⎡
⎢⎣

V
(t)
j

V ′
j

V
(b)
j

⎤
⎥⎦ Wj =

⎡
⎢⎣

W
(t)
j

W ′
j

W
(b)
j

⎤
⎥⎦ xj =

⎡
⎢⎣

x
(t)
j

x′
j

x
(b)
j

⎤
⎥⎦ gj =

⎡
⎢⎣

g
(t)
j

g′j
g
(b)
j

⎤
⎥⎦ (2)

The reduced system thus takes the following form:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im 0 V
(t)
1

0 Im V
(b)
1 0

0 W
(t)
2 Im 0 V

(t)
2

W
(b)
2 0 Im V

(b)
2 0

. . .
. . .

. . .
. . .

. . .

0 W
(t)
p−1 Im 0 V

(t)
p−1

W
(b)
p−1 0 Im V

(b)
p−1 0

0 W
(t)
p Im 0

W
(b)
p 0 Im

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t)
1

x(b)
1

x(t)
2

x(b)
2
...

x(t)
p−1

x(b)
p−1

x(t)
p

x(b)
p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(t)
1

g(b)
1

g(t)
2

g(b)
2
...

g(t)
p−1

g(b)
p−1

g(t)
p

g(b)
p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Finally, once the solution to the reduced system has been directly computed sequen-
tially, we will have the values of x(b)s and x(t)s. The rest of x can then be computed as
follows:

⎧
⎪⎨

⎪⎩

x′
1 = g′1 − V ′

1x
(t)
2 ,

x′
j = g′j − V ′

j x
(t)
j+1 − W ′

jx
(b)
j−1, j = 2, ..., p− 1,

x′
p = g′p − Wpx

(b)
p−1.

(3)

Thus the SPIKE algorithm can be broken down into the following steps:

1. Factorize the diagonal blocks of A.
2. Compute the spikes using the factorization obtained in the previous step and com-

pute the right hand side. Solve (1) and Dg = f .
3. Form and solve the reduced system.
4. Compute the rest of x.

2.1 SPIKE Variants

The original SPIKE algorithm explained above has many variants. These variants target
systems of equations with certain properties in order to reduce the amount of computa-
tion performed. They also increase the amount of parallelism available during different
stages of the algorithm. In this paper we focus on two variants that use a truncated
scheme to solve the reduced system. The truncated scheme is useful for systems that
are diagonally dominant. In diagonally dominant systems, the values in the spikes far
from the diagonal are likely to be very close to zero and therefore contribute little to the
solution. Consequently, the truncated scheme treats these values as zero and only com-
putes the m×m portion of the spikes close to the diagonal, specifically, V (b) and W (t).

50 J.C. Brodman et al.

This is accomplished by either using the LU or UL factorization computed for the blocks
of the diagonal.

The two variants we present are called TU and TA, and both implement the truncated
scheme. LU factorization of Ai is used to solve the bottom tips, V

(b)
i , of the spikes

and the UL factorization of Ai is used to solve for the top tips, W
(t)
i , of the spikes.

The difference between TU and TA lays in the decomposition of the work. In the TU
scheme, the original matrix is partitioned into as many blocks as there are processors.
Figure 1 shows this partitioning for the case with 4 processors. In this figure B̂i and Ĉi

are
[
0 . . . 0 Bi

]T
and

[
Ci 0 . . . 0

]T
as in equation 1.

A =

A1

A2

A3

A4

B1

B2

B3

C2

C3

C4

f =

f1 P1 : LU A−1
1 B̂1 A−1

1 f1

f2 P2 : LU, UL A−1
2 Ĉ2, A

−1
2 B̂2 A−1

2 f2

f3 P3 : LU, UL A−1
3 Ĉ3, A

−1
3 B̂3 A−1

3 f2

f4 P4 : UL A−1
4 Ĉ4 A−1

4 f4

Factorization Spikes RHS

Fig. 1. Spike TU Partitioning

The TA scheme arises from the fact that the factorization step dominates execution
time. TA is similar to TU with the exception that it partitions the matrix in a different
fashion. Instead of each processor computing both LU and UL for a block since some
blocks must compute two spikes, each processor now computes either LU or UL for a
block but not both in order to compute a single spike. Note that this scheme partitions
the matrix into fewer blocks than the TU scheme does, but results in better load balance
for the computation of the spikes. Figure 2 shows this partitioning for 4 processors using
B̂i and Ĉi which are extended as above.

A =

A1

A2

A3

B1

B2

C2

C3

f =

P1 : LU A−1
1 B̂1 A−1

1 f1f1

P2 : LU A−1
2 B̂2 A−1

2 f2
f2 P4 : UL A−1

2 Ĉ2
–

f3
P3 : UL A−1

3 Ĉ3 A−1
3 f3

Factorization Spikes RHS

Fig. 2. Spike TA Partitioning

A Parallel Numerical Solver Using Hierarchically Tiled Arrays 51

Both versions of the algorithm compute the W (t), V (b), and g tips that are needed for
the truncated reduced system, shown in Figure 3. This system will be block diagonal
and has one less block than the original system. Thus when solving with p processors
TU will have p − 1 blocks in the reduced system while TA will have (p + 2)/2 − 1
blocks in the reduced system. Thus the TU version will have more parallelism than the
TA version in this stage of the computation. Unlike the original SPIKE algorithm, the
reduced system for truncated schemes can be solved in parallel via a direct scheme
where each block has the following form:

[
Im V

(b)
j

W
(t)
j+1 Im

][
x

(b)
j

x
(t)
j+1

]
=

[
g
(b)
j

g
(t)
j+1

]
(4)

Im V
(b)
1

W
(t)
2

Im

Im V
(b)
2

W
(t)
3

Im

Im V
(b)
3

W
(t)
4

Im

g
(b)
1

g
(t)
2

g
(b)
2

g
(t)
3

g
(b)
3

g
(t)
4

Fig. 3. Data sources for TU reduced with 4 blocks

Finally the solution to the original system is recovered by solving:

Ajxj = fj −

⎡
⎢⎢⎢⎣

0
...
0

Bj

⎤
⎥⎥⎥⎦ x

(t)
j+1 −

⎡
⎢⎢⎢⎣

Cj

0
...
0

⎤
⎥⎥⎥⎦x

(b)
j−1 (5)

This can be done in parallel with either the LU or UL factorization of Aj . Here again
the TU version has more parallelism the the TA version.

52 J.C. Brodman et al.

3 Hierarchically Tiled Arrays

The Hierarchically Tiled Array [4,9,3], or HTA, data type extends earlier work on data
parallel array languages with explicit tiling. An HTA object is a tiled array whose el-
ements can be either scalars or tiles. HTAs can have several levels of tiling, allowing
them to adapt to the hierarchical nature of modern machines. Figure 4 illustrates two
examples of how HTAs can exploit hierarchical tiling. For example, tiles in the outer-
most level are distributed across the nodes in a cluster; then, the tile in each node can
be further partitioned among the processors of the multicore node.

Cluster Memory
Hierarchy

Cluster
Node

L2

Multicore L1

Cache Register

Fig. 4. Hierarchical Tiling

The HTA data type makes tiles first class objects that are explicitly referenced and
extends traditional Fortran 90 style array operations to function on tiles. Figure 5 illus-
trates the ways in which HTAs can be indexed. HTAs permit indexing of both tiles and
scalars. We use () to refer to tiles and [] to refer to elements. This way, A(0,0) refers to
the top left tile of HTA A and A(0,1) [0,1] refers to the element [0,1] of the top right
tile of HTA A. Also, HTAs support the triplet array notation in order to index multiple
scalars and/or tiles, as shown in Figure 5 when accessing the two bottom tiles of A by
using A(1, 0:1). Scalars can also be accessed in a flattened fashion that ignores the tiling
structure of the HTA, as shown in the example when accessing the element A[0,3]. This
flattened notation is useful for tasks such as initializing data.

HTAs provide several data parallel operators to programmers. One example is
element-by-element operations such as adding or multiplying two arrays. HTAs also
provide support for operations such as scans, reductions, matrix multiplication, and
several types of transpositions of both tiles and data. Communication of data between
tiles is usually expressed through array assignments, but can also be expressed with
special operations such as transpositions or reductions.

Fig. 5. HTA Indexing

A Parallel Numerical Solver Using Hierarchically Tiled Arrays 53

The HTA also provides a map operator that applies a programmer-specified function
to the corresponding tiles of a set of HTAS. On a parallel platform these functions may
be executed in parallel. This way, the A.hmap(func1()) will invoke func1() on
all the tiles of HTA A. If another HTA B is passed as an argument of hmap, then
func1() will execute on the corresponding tiles of both HTAs, A and B.

HTA Programs thus consist of a sequence of data parallel operators applied to HTAs
that are implicitly separated by a barrier. These programs appear sequential to the pro-
grammer as all parallelism is encapsulated inside the operators. Numbers and sizes of
tiles are chosen both to control the granularity of parallelism and to enhance locality.

The HTA data type has been implemented as libraries for both C++ and MATLAB.
The C++ library currently supports two platforms: distributed-memory built on top of
MPI and shared-memory built on top of Intel’s Threading Building Blocks. These mul-
tiple backends allows programmers to write one code using HTAs that can run on either
multicores or clusters.

4 Implementing SPIKE with HTAs

An implementation of the SPIKE family of algorithms is available in the Intel Adaptive
Spike-based Solver[1], or SpikePACK. It is implemented using MPI and Fortran. We
choose to implement several SPIKE algorithms using HTAs for two reasons. First, writ-
ing SPIKE using HTAs would allow programmers to write one portable code that can be
run on both shared-memory and distributed-memory target platforms. Second, the HTA
notation allows for an elegant, clean implementation of the algorithms. An HTA SPIKE
would more closely resemble the high-level mathematical expression of the algorithms
than Fortran+MPI. Communication takes the form of simple array assignments between
tiles.

We have implemented the TU and TA variants of SPIKE with HTAs. The tiles of
the HTAs map to the blocks of the banded linear system. The bands of the system are
stored inside the tiles using the banded storage format used by LAPACK. Since the code
makes extensive use of LAPACK routines such as DGBTRF and DGBTRS to factorize
and solve banded systems, we modified the HTA library to support column-major data
layout due to the Fortran origins of these routines. The HTA library is written in C++
and originally only supported row-major layout.

The blocks of the bands, spikes, and reduced system are all represented as HTA ob-
jects. Each of these collections of blocks can be viewed as an array of tiles. The storage
for the blocks of the band is overwritten to store the LU or UL factorizations of each
block. The storage for the B and C blocks is likewise overwritten to contain the tips of
the spikes. The number of partitions used by the algorithm for a given number of pro-
cessors directly determines the tiling of the HTA objects. The algorithm is represented
as a sequence of data parallel operations. The semantics state that each data parallel op-
eration is followed by an implicit barrier. This allows the programmer to reason about
the algorithm sequentially as the parallelism is thus encapsulated inside of the data par-
allel operators. The data parallel operations often are represented as hmap operations.

54 J.C. Brodman et al.

This is the mechanism through which we apply LAPACK kernels in parallel across all
the tiles of an HTA. Our implementations also use the array operations provided by
the HTA library to construct the reduced system. When coupled with HTA’s first class
tile objects, array operations enable programmers to write simple, compact statements
that can communicate a range of data from one set of tiles to another. This contrasts
with a Fortran+MPI approach where it is difficult to separate the algorithm from the
implementation.

Porting the programs from one platform to another is accomplished by simply chang-
ing the header file for the library. In order to target MPI, one includes htalib mpi.h.
In order to target TBB, one includes htalib shmem.h.

4.1 TU

Figure 6 presents the core of our implementation. We use a simplified notation to rep-
resent triplets. Recall that TU partitions the matrix into as many blocks as processors.
The HTAs LUA and ULA initially are identical and contain the diagonal blocks of the
system. The LU and UL factorizations of these blocks are performed in-place and in
parallel by the hmap operators used in lines 3-4. The off-diagonal blocks, B and C, that
will contain the spike tips are stored in the HTA BC. Each tile of this HTA contains
space for both the “left” (W (t)) and “right” (V (b)) spikes associated with each block.
The spike tips are computed in line 7 using the LU and UL factorizations computed
previously. The whole right-hand side (RHS) stored in g for the system is then updated
in line 10 using the LU factorization of the diagonal blocks.

The reduced system, shown in Figure 3, can be formed now that the spikes and
updated RHS have been computed. Lines 13-16 make use of HTA array assignments to
construct the reduced system by copying the spike tips into the appropriate sections of
each block of the reduced system. The HTAs REDUCED and BC are indexed using () and
[] operators and triplet notation. The first () is shorthand for selecting every tile of the
HTA REDUCED. For the HTA BC, we select different ranges of tiles for each statement.
The [] operator is used to index a range of elements inside of a tile. The RHS of the
reduced system is formed similarly in lines 19-20. Note that the array assignments used
to form the reduced system imply communication. Once the reduced system has been
formed, it may be solved in parallel as its blocks are independent. This is accomplished
by calls to the hmap operator on lines 23 and 25.

Having solved the reduced system, the RHS of the original system is updated in
lines 28-33. This is accomplished by array assignments and another call to hmap that
performs matrix-vector multiplications in parallel. Once the RHS has been updated
with the values computed from the reduced system, the rest of the solution is obtained
in line 36.

Our implementation of the TU scheme slightly deviates from the SpikePACK im-
plantation of the algorithm in two ways. First, the first and last partitions need only
compute LU or UL, respectively. The inner partitions must compute both LU and UL
in order to compute the tips of the left and right spikes. The first and last partitions only
have either a right or a left spike and do not need to compute both. However, we chose
to have the first and last partitions compute a fake spike in order to avoid special cases
when computing the spikes. We compute both LU and UL for all partitions where as

A Parallel Numerical Solver Using Hierarchically Tiled Arrays 55

the SpikePACK only computes the LU for the first and the UL for the last as needed by
the algorithm. Secondly the SpikePACK implementation uses a nonuniform distribu-
tion with larger partitions for the first and last partitions to balance the load since they
are only computing one factorization. Since we compute two factorizations for every
partition, our implementation uses a uniform size distribution.

1 . . .
2 / / f a c t o r i z e b l o c k s o f A
3 LUA. hmap (f a c t o r i z e l u a ()) ;
4 ULA. hmap (f a c t o r i z e u l a ()) ;

6 / / c a l c u l a t e t h e s p i k e t i p s W(t) and V (b) from Bs and Cs
7 BC . hmap (s o l v e b c () , LUA,ULA) ;

9 / / upda te r i g h t hand s i d e
10 g . hmap (s o l v e l u a () ,LUA) ;

12 / / form t h e r educed s y s t e m
13 REDUCED () [0 : m−1,m:2∗m−1] =
14 BC (0 : num blocks −2)[0:m−1 ,0:m−1];
15 REDUCED () [m:2∗m−1 ,0:m−1] =
16 BC (1 : num blocks −1)[0:m−1,m:2∗m−1];

18 / / form t h e r educed s y s t e m RHS
19 g reduced () [0 : m−1] = g (0 : num blocks −2)[b l o c k s i z e−m: b l o c k s i z e −1];
20 g reduced () [m:2∗m−1] = g (1 : num blocks −1)[0:m−1];

22 / / f a c t o r i z e t h e r educed s y s t e m
23 REDUCED. hmap (f a c t o r i z e ()) ;
24 / / s o l v e t h e r educed s y s t e m
25 g reduced . hmap (s o l v e () ,REDUCED) ;

27 / / Update RHS w i t h t h e v a l u e s from t h e s p i k e s as r = r − Bz − Cz
28 fv = r (0 : num blocks −2); f r h a l f = greduced () [0 : m−1];
29 B . hmap (dgemv () , fv , f r h a l f) ;
30 r (0 : num blocks −2) = fv ;
31 fw = r (1 : num blocks −1); f r h a l f = greduced () [m:2∗m−1];
32 C . hmap (dgemv () , fw , f r h a l f) ;
33 r (1 : num blocks −1) = fw ;

35 / / S o l v e t h e upda ted s y s t e m
36 r . hmap (s o l v e l u a () ,LUA) ;
37 . . .

Fig. 6. HTA SPIKE TU

4.2 TA

The implementation of the TA variant is structurally similar to our implementation of
TU. Figure 7 presents the core of our implementation of TA. The algorithm consists
of array assignments and calls to the hmap operator. The main difference from TU is
that each processor now computes either the LU or the UL factorization for a block
but not both. The TU variant partitions the matrix into one block per processor, and
some processors must compute two spikes. TA has each processor compute only one
spike. Consequently TA partitions the matrix into fewer blocks for a given number of
processors than TU as shown in Figure 2. Whereas TU stored the diagonal blocks in the
HTAs LUA and ULA, TA stores the appropriate blocks in the HTA DIAGS. Note that
DIAGS can contain two copies of the same block of A since the same block is needed

56 J.C. Brodman et al.

to compute two different spikes for the inner blocks. An additional HTA, DIAG MAP,
is used to set flags that indicate whether each tile needs to perform the LU or the UL
factorization for its block. This can be seen in line 3 for the factorization and line 7 for
the computation of the spike tips. The HTA TOSOLVERHS is used to refer to part of
DIAGS as that HTA can contain multiple factorizations for each block. TOSOLVERHS,
seen on line 4, contains only one factorization for each block of the matrix and is used
to update the right hand side on lines 9 and 35. This is also matched with a map that
indicates the type of factorization contained in the tile. Forming and solving the reduced
system proceeds almost identically to the implementation of TU. Note that there is less
parallelism available in this phase of TA than in TU due to partitioning the system into
fewer blocks.

1 . . .
2 / / f a c t o r i z e t h e A b l o c k s
3 DIAGS . hmap (f a c t o r i z e d i a g () , DIAG MAP) ;
4 TOSOLVERHS = DIAGS (0 : num blocks −1);

6 / / compute t h e s p i k e t i p s from Bs and Cs
7 BC . hmap (s o l v e b c () , DIAG MAP, DIAGS) ;
8 / / g e n e r a t e m o d i f i e d r i g h t hand s i d e
9 g . hmap (s o l v e r h s () , TOSOLVERHS MAP, TOSOLVERHS) ;

11 / / form t h e r educed s y s t e m
12 REDUCED () [0 : m−1,m:2∗m−1] =
13 BC (0 : num blocks −2)[0:m−1 ,0:m−1];
14 REDUCED () [m:2∗m−1 ,0:m−1] =
15 BC(num blocks −1:2∗ num blocks −3)[0:m−1 ,0:m−1];

17 / / form t h e r educed s y s t e m r i g h t hand s i d e
18 g reduced () [0 : m−1] = g (0 : num blocks −2)[b l o c k s i z e−m: b l o c k s i z e −1];
19 g reduced () [m:2∗m−1] = g (1 : num blocks −1)[0:m−1];

21 / / f a c t o r i z e t h e r educed s y s t e m
22 REDUCED. hmap (f a c t o r i z e ()) ;
23 / / s o l v e t h e r educed s y s t e m
24 g reduced . hmap (s o l v e () ,REDUCED) ;

26 / / Update RHS w i t h t h e v a l u e s from t h e s p i k e s as r = r − Bz − Cz
27 fv = r (0 : num blocks −2); f r h a l f = greduced () [0 : m−1];
28 B . hmap (dgemv () , fv , f r h a l f) ;
29 r (0 : num blocks −2) = fv ;
30 fw = r (1 : num blocks −1); f r h a l f = greduced () [m:2∗m−1];
31 C . hmap (dgemv () , fw , f r h a l f) ;
32 r (1 : num blocks −1) = fw ;

34 / / S o l v e t h e upda ted s y s t e m u s i n g t h e LU and UL as needed
35 r . hmap (s o l v e r h s () , TOSOLVERHS MAP, TOSOLVERHS) ;
36 . . .

Fig. 7. HTA SPIKE TA

5 Experimental Results

In order to evaluate the performance of our HTA implementations of the two spike vari-
ants, we conducted several experiments. We compare the performance of our implemen-
tations to both the SPIKE implementations in the Intel R©Adaptive Spike-Based Solver
version 1.0 and the sequential banded solvers found in the Intel R©Math Kernel Library

A Parallel Numerical Solver Using Hierarchically Tiled Arrays 57

version 10.2 Update 5. The numbers reported are speedups over the sequential MKL
routines, DGBTRF and DGBTRS. All code was compiled with the Intel R©compilers icc
and ifort version 11.1 Update 6, and all MPI programs were run using mpich2. The
shared-memory HTA library runs on TBB version 2.2 Update 3.

In all cases several different systems of equations were tested and the results were
similar. We present one for each algorithm. Tests were run on a four socket 32-core
system using Intel R©Xeon R©L7555 processors running at 1.86 GHz. The system has 64
gigabytes of memory installed and on a cluster at University of Massachusetts with 8
compute nodes each with two Intel R©Xeon R©X5550 processors running at 2.66 GHz
connected with InfiniBand. In testing we experienced large variations in the execution
time of all programs due to the use of a shared system. To control for this all tests were
run 8 times and the minimum execution time is reported.

5.1 TU

We present the test for a matrix of order 1048576 with a bandwidth of 513 here. This
size was chosen in order to partition the matrix into blocks of uniform size. Figures 8a
and 8c plot the speedups over sequential MKL for TU running on HTAs for shared-
memory run on the 32-core shared memory system, HTAs for distributed-memory, and
the Intel SpikePACK run on both the shared memory system and the cluster.

We believe that our performance advantage comes from implementation differences.
SpikePACK uses larger blocks for the first and last partitions to attempt to minimize any
load imbalance when computing factorizations and the spikes. However, this creates
imbalance when retrieving the solution to the whole system after the reduced system
has been solved since the retrieval for the outer blocks will require more time than the
retrieval for inner blocks. As the number of processors increases, the retrieval becomes
a larger portion of the total execution, and this imbalance is magnified.

It is also important to note that the performance of the HTA codes on shared-memory
is almost identical with both the mpi and tbb backend. While at first this result surprised
us, it is indeed what we should expect. The amount of computation is large, so the
overheads of each runtime system are minimal. The ideal tiling structure may differ
from one platform to the next, but a given tiling ought to perform similarly on the same
system regardless of the backend.

5.2 TA

We present the test for a matrix of order 1093950 with a bandwidth of 513 here. This
size was again chosen to partition the matrix into blocks of uniform size. Recall that the
TA scheme partitions the matrix into fewer blocks than the TU scheme for a given num-
ber of processors. TU assigns one block of the matrix per processor while TA assigns
one spike calculation per processor. The results of these tests are presented in Figures 8b
and 8d which again shows speedup over sequential MKL for the three implementations.
Each version tends to outperform TU and scales reasonably with increasing proces-
sors. However, SpikePACK begins to outperform the HTA implementations after 16
processors.

58 J.C. Brodman et al.

The performance difference seen in this case is due to the differences in the com-
munication patterns between the HTA versions and the SpikePACK version. In the
SpikePACK version of the algorithm, care is taken so that only one of the tips needs to
be communicated to build the reduced system. This produces an irregular distribution
of data. In cases where the number of partitions is small, distribution does not have a
large impact but as the number of partitions grow the impact becomes more significant.

We believe that this behavior could implemented in the HTA versions of TA in two
ways. First, the version of the library built on top of MPI provides support for user-
defined distributions. These distributions could map the tiles of the spikes, RHS, and
reduced system in such a way that minimizes communication between processors. The
HTA library for shared-memory currently has no analog. This limitation is inherent
in many libraries for shared-memory programming as they do not expose mechanisms
to bind a thread to a particular core. The second way through which we could mimic
SpikePACK’s performance is through changing our implementation of the algorithm.
By storing the blocks of the reduced system in a different order, we could more closely
align the respective tiles of the spikes and RHS with the appropriate tiles of the reduced
system. However, this complicates the implementation as the programmer becomes re-
sponsible for maintaining the mapping of the blocks of the reduced system to their
locations in the HTA’s tiling structure. We chose to initially focus on implementing a
simple, elegant solution that closely maps to the algorithm.

6 Related Work

Implementing the SPIKE algorithms on top of the Hierarchically Tiled Array exploits
both the portability and explicit tiling of the HTA programming model. Tiling has
been extensively studied to improve performance of scientific and engineering codes
[2,11,13,17] for parallel execution [16] and as a mechanism to improve locality [17].
However, most programming languages do not provide any support for tiles. In lan-
guages such as C or Fortran, either the programmer needs to write the code to support
tiled computations or the programmer must rely on the compiler to generate them.

Languages such as HPF [10,12] or UPC [5] include support to specify how an array
should be tiled and distributed among the processors, but the resulting tiles are only
accessed directly by the compiler, and the programmer must use complex subscript
expressions. Others like Co-Array Fortran [14] allow the programmer to refer to tiles
and portions of them, but their co-arrays are subject to many limitations. Thus, the main
difference of these languages with HTAs is that HTA Tiles are first class objects that are
explicitly referenced, providing programmers with a mechanism for controlling locality,
granularity, load balance, data distribution, as well as communication.

Sequoia [8] makes uses hierarchies of tasks to control locality and parallelism. Data
is partitioned to create the parameters for the next level of tasks. In Sequoia, tasks
communicate by passing parameters to children tasks and by accepting return values
from them. HTA on the other hand, is data centric so that tiling is associated with
each object and parallel computation follows the tiling. This, combined with the array
notation of HTAs, simplifies the notation when programming algorithms that use tiled
objects. Furthermore, the HTA semantics does not require insulation of the operation
on tiles and therefore subsumes that of Sequoia.

A Parallel Numerical Solver Using Hierarchically Tiled Arrays 59

(a) TU Speedups (b) TA Speedups

(c) Cluster TU Speedups (d) Cluster TA Speedups

Fig. 8. Speedups over Sequential MKL

Many Partitioned Global Address Space, or PGAS, languages aim to provide sup-
port for writing a single program that can run on many different platforms. Examples
of these languages include X10 [7], UPC [5], Chapel [6], and Titanium [18]. These
languages exploit locality by using distribution constructs or directives as hints to the
compiler on how to partition or map the “global” array to the different threads. However,
programmers cannot directly access these tiles and can only use flat element indexes to
access the data (which is similar to our flattened notation). The explicit tiles of HTA
programs increase programmability because they represent better the abstraction that
the programmer has of how data are distributed. Programming using flat indexes forces
the programmer to recover the implicit tiling structure of the data when data communi-
cation is required.

7 Conclusions

In this paper we have shown through the implementation of two variants from the
SPIKE family of algorithms that the Hierarchically Tiled Array data type facilitates
portable parallel programming and increases productivity. Tiles facilitate the mapping

60 J.C. Brodman et al.

of block algorithms to code and result in programs that can run without modifications
on both shared-memory and distributed-memory models.

Our experimental results show that the performance of the same HTA code when
running on both shared-memory and distributed-memory models achieve almost identi-
cal performance, and are competitive to the reference Intel library implemented on top
of MPI. In addition, our codes show that the features provided by the HTA result in pro-
grams that are both clean and compact and closely resemble the algorithm description
of the problem.

Acknowledgments

This material is based upon work supported by the National Science Foundation under
Awards CCF 0702260 and by the Universal Parallel Computing Research Center at
the University of Illinois at Urbana-Champaign, sponsored by Intel Corporation and
Microsoft Corporation.

References

1. Intel adaptive spike-based solver,
http://software.intel.com/en-us/articles/
intel-adaptive-spike-based-solver/

2. Abu-Sufah, W., Kuck, D.J., Lawrie, D.H.: On the Performance Enhancement of Paging Sys-
tems Through Program Analysis and Transformations. IEEE Trans. Comput. 30(5), 341–356
(1981)

3. Andrade, D., Fraguela, B.B., Brodman, J., Padua, D.: Task-parallel versus data-parallel
library-based programming in multicore systems. In: Euromicro Conference on Parallel, Dis-
tributed, and Network-Based Processing, pp. 101–110 (2009)

4. Bikshandi, G., Guo, J., Hoeflinger, D., Almasi, G., Fraguela, B.B., Garzarán, M.J., Padua, D.,
von Praun, C.: Programming for Parallelism and Locality with Hierarchically Tiled Arrays.
In: Proc. of the ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming,
pp. 48–57 (2006)

5. Carlson, W., Draper, J., Culler, D., Yelick, K., Brooks, E., Warren, K.: Introduction to UPC
and Language Specification. Tech. Rep. CCS-TR-99-157, IDA Center for Computing Sci-
ences (1999)

6. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel language.
Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

7. Charles, P., Donawa, C., Ebcioglu, K., Grothoff, C., Kielstra, A., von Praun, C., Saraswat,
V., Sarkar, V.: X10: An Object-oriented Approach to Non-uniform Cluster Computing. In:
Procs. of the Conf. on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA) – Onward! Track (October 2005)

8. Fatahalian, K., Horn, D.R., Knight, T.J., Leem, L., Houston, M., Park, J.Y., Erez, M., Ren,
M., Aiken, A., Dally, W.J., Hanrahan, P.: Sequoia: programming the memory hierarchy. In:
Supercomputing 2006: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
p. 83 (2006)

9. Guo, J., Bikshandi, G., Fraguela, B.B., Garzarán, M.J., Padua, D.: Programming with Tiles.
In: Proc. of the ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming,
pp. 111–122 (February 2008)

http://software.intel.com/en-us/articles/intel-adaptive-spike-based-solver/
http://software.intel.com/en-us/articles/intel-adaptive-spike-based-solver/

A Parallel Numerical Solver Using Hierarchically Tiled Arrays 61

10. High Performance Fortran Forum: High Performance Fortran specification version 2.0 (Jan-
uary 1997)

11. Irigoin, F., Triolet, R.: Supernode Partitioning. In: POPL 1988: Proc. of the 15th ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pp. 319–329 (1988)

12. Koelbel, C., Mehrotra, P.: An Overview of High Performance Fortran. SIGPLAN Fortran
Forum 11(4), 9–16 (1992)

13. McKellar, A.C., Coffman Jr., E.G.: Organizing Matrices and Matrix Operations for Paged
Memory Systems. Communications of the ACM 12(3), 153–165 (1969)

14. Numrich, R.W., Reid, J.: Co-array Fortran for Parallel Programming. SIGPLAN Fortran Fo-
rum 17(2), 1–31 (1998)

15. Polizzi, E., Sameh, A.H.: A parallel hybrid banded system solver: the spike algorithm. Par-
allel Computing 32(2), 177–194 (2006)

16. Ramanujam, J., Sadayappan, P.: Tiling Multidimensional Iteration Spaces for Nonshared
Memory Machines. In: Supercomputing 1991: Proceedings of the 1991 ACM/IEEE con-
ference on Supercomputing, pp. 111–120 (1991)

17. Wolf, M.E., Lam, M.S.: A Data Locality Optimizing Algorithm. In: Proc. of the Conf. on
Programming Language Design and Implementation, pp. 30–44 (1991)

18. Yelick, K.A., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A., Hilfinger,
P.N., Graham, S.L., Gay, D., Colella, P., Aiken, A.: Titanium: A High-Performance Java
Dialect. In: Workshop on Java for High-Performance Network Computing (February 1998)

Tackling Cache-Line Stealing Effects Using
Run-Time Adaptation

Stéphane Zuckerman and William Jalby

University of Versailles Saint-Quentin-en-Yvelines, France
{stephane.zuckerman,william.jalby}@prism.uvsq.fr

Abstract. Modern multicore processors are now found in mainstream
systems, as well as supercomputers. They usually embed prefetching fa-
cilities to hide memory stalls. While very useful in general, there are
some cases where such mechanisms can actually hamper performance, as
is the case with cache-line stealing. This paper characterizes and quanti-
fies cache-line stealing, and shows it can induce huge slowdowns – down
to almost 65%. Several solutions are examined, ranging from deactiva-
tion of hardware prefetching to array reshaping. Such solutions bring
between 10% and 65% speedups in the best cases. In order to apply
these transformations where they are relevant, we use run-time measure-
ments and adaptive methods to generate code wrappers to be used only
when prefetching hurts performance.

1 Introduction

Multicore processors are from now on the norm for almost any kind of computer-
based system. They are used in high-performance computing, as well as domestic
usage or even embedded systems. The increasing gap between how fast a CPU
is and how fast data can be accessed from memory becomes even more problem-
atic in this context: the old hardware and software techniques used to hide it
must prove themselves useful in the wake of some kind of “multicore/manycore
revolution”. Indeed while the well-known gap between a unicore processor and
memory is more or less solved thanks to well-known latency-hiding techniques
(either in hardware or in software), the multiplication of the number of cores
per chip tend to lengthen a given core’s memory latencies, while reducing its
effective bandwidth.

From the hardware side, the use of memory caches does a lot to make the mem-
ory wall [27] and the gap it causes become smaller and narrower. It effectively
hides the latency caused by memory accesses. However, when multiprocessor or
multicore systems are involved, it also means ensuring data coherence between
the various (separate) caches. Hence the apparition of cache coherence protocols
such as MSI, MESI, MOESI, MESIF, etc. [15]. With the advent of multiproces-
sor (and now multicore) systems a new kind of problem occurred: false-sharing,
i.e. the fact that two processors (or cores) write to different values which are
contained in the same cache-line. The negative impact of false-sharing on perfor-
mance for multiprocessor and multicore systems has been extensively studied [9],

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 62–76, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Tackling Cache-Line Stealing Effects Using Run-Time Adaptation 63

and multiple techniques have been devised to detect (via memory tracing for ex-
ample), or even avoid false-sharing altogether (through data structure reshaping,
loop transformations, etc.).

Another well-known technique which helped reduce the gap between memory
and CPU is data prefetching. In a single-core context, data prefetching (whether
performed automatically in hardware, or inserted by the compiler or the user in
software) has shown to be a formidable ally to hide latencies, even though it in-
duces a higher bandwidth usage in the case of hardware prefetching [8] or instruc-
tion overhead for software prefetching. By prefetching data into caches ahead of
time, memory can be accessed much faster, thanks to well placed prefetch orders.
However once again, the advent of multiprocessor and multicore systems tends
to introduce difficulties. Among them is Cache-Line Stealing(CLS), which we
present in Section 2.

To our great surprise, we could not find any paper detailing how too aggressive
a data prefetching policy could indeed slow down an application by “stealing”
another thread’s cache-line. The closest to our definition can be found in a paper
by Hyde et al [9]. CLS is not so frequent that deactivating prefetch mechanisms
altogether to solve cache-line stealing is considered an option, as hardware or
software prefetching have many legitimate uses in the life of a running program.
Hence it is necessary to remove prefetching only in those portions of code where
it is known that no prefetching will make performance go up.

This paper’s contributions are twofold:

– It characterizes and quantifies cache-line stealing.
– It proposes to solve CLS through adaptive compilation methods, deactivating

prefetching only when CLS actually hurts performance.

The remainder of this paper is as follows: Section 2 exposes an example that
motivates this research and describes what cache-line stealing is, and it occurs,
as well as experimental data; Section 3 presents several leads to solve cache-line
stealing problems; Section 4 describes the use of adaptive methods to generate
prefetch-less kernels when needed; Section 5 presents work related to this article;
finally Section 6 presents our conclusions.

2 Motivation

2.1 What Cache-Line Stealing Is, and When It Occurs

Cache-line stealing (CLS) happens when a given core asks for a cache-line in
advance, retrieves it and copies its data into its cache hierarchy while it does not
need the data contained in this cache-line. At the same time, another core does
need this cache-line and has already retrieved it or is about to. By prefetching
an unnecessary cache-line, additional memory and coherency message traffic are
incurred.

CLS happens only when certain conditions are met. First, accessing data in
the “right” storage way usually does not provoke a significant cache-line stealing

64 S. Zuckerman and W. Jalby

(a) 2D array: “overprefetched” surface (b) 3D array: “overprefetched” volume

Fig. 1. Cache-line stealing: general idea. CLS on a 2D array (left) and a 3D one (right).
Dark grayed areas are the ones which are prefetched by an adjacent core but are not
needed by it. As the array is supposed to be one whole contiguous block, there is a
wrap around where the first block of data (on the far left) is partially prefetched by a
sibling thread, just like any other block.

event. CLS mostly happens when a multidimensional array is accessed in the
“wrong”dimension. For example, accessing a 2D array in C through its columns
could trigger CLS in a multithreaded environment. Hence partitioning the input
data set along the columns of a 2D array in C for each thread to process could
lead to additional memory traffic.

Figure 1 shows an example of what would occur in a 2D array as well as in
a 3D one. Each thread prefetches data belonging to one of its siblings, copying
said data into its cache hierarchy. This then triggers cache coherence messages,
where cache-lines will be falsely tagged as shared, invalid, etc.. How negative
an impact that kind of extra-traffic (in terms of data movement and coherence
messages) will have on performance depends on the prefetching policy: if the
hardware prefetcher systematically goes to prefetch the same stream, then this
phenomenon will be amplified – and the more cores are used in the program, the
more likely extra-traffic will occur.

Knowing how many extra cache-lines (ExtraCL) will be loaded in addition
to everything else in an n-dimensional array sums up to solving

ExtraCL = NbOfStreams ∗
n∏

i=2

Ni ∗ distprefetch(N1 − 1)

n is the number of dimensions of the array, and Ni are the different dimensions
of said array. Nn is the “innermost” dimension, i.e. if the array was traversed
in the correct way (along the cache-lines), this dimension would be traversed
in the innermost loop of the loop nest. distprefetch is the prefetch distance.
NbOfStreams is the number of different memory streams which are concur-
rently being accessed. In a hardware-based prefetching mechanism, a limited
amount of streams can be accessed (typically, from 2 to 8).

Tackling Cache-Line Stealing Effects Using Run-Time Adaptation 65

Computing the amount of data stolen can prove difficult: in a hardware-based
prefetch mechanism, the prefetch distance is not necessarily given by the vendor.
In a software context, it is much easier to do, provided the arrays are accessed
directly.

2.2 Experimental Setup

Our experimental setup consists of a Xeon (2.0Ghz) Core 2 system with 4 cores
in total (2 × 2 cores), composed of two dual-core processors sharing 2GB of
main memory. The L1D caches(32KB) are private to every core while the L2
caches (unified, holding both instructions and data) are shared by groups of 2
cores (called adjacent cores), their size being 4MB. Core 2 cores are out-of-order,
superscalar processors, embedding SIMD instructions (SSE). The two levels of
caches embed hardware prefetchers capable of analyzing memory address streams
and triggering prefetches called DPL. They also embed a prefetching mechanism
called “adjacent cache-line fetch”, which systematically fetches a cache-line situ-
ated right after the one being fetched [8].

Intel’s C compiler (icc v11.1) is the reference compiler used in our experi-
ments. Our main way of measurement was the RDTSC instruction, which gives an
exact count of elapsed cycles. We also used Intel’s Performance Tuning Utility
(PTU) to measure cycle and instruction counts. Finally, icc’s OpenMP features
were used to make the parallelizations used in the experiments.

With respect to experimental methodology, each kernel was run once (to put
data into the cache hierarchy), then 2000 times and averaged (with respect to
the cycles count), and each run is repeated 100 times. Among these runs, the
lowest averaged result (in cycles) is then selected – i.e. the best performance is
kept. This ensures that noise (due to the operating system for example) is kept
minimal during the experiments. Moreover, the repetition loop has an interesting
side effect on our study: if the arrays are small enough to fit in a given cache
level (for example L2), the first iteration will initially fetch the arrays into the
L2 cache, but the following iterations will already find them in L2. All the arrays
are aligned on a page boundary basis. The fact that there are NUMA accesses
is of no concern here, as data fit into caches, and there is sufficient repetitions
performed.

Finally, the dimensions of the arrays have been chosen so that there is no
inherent false-sharing when dividing work among threads.

2.3 Experimental Analysis of Cache-Line Stealing

To show evidence of cache-line stealing, two very simple kernels were used. As the
ratio between loads and stores has an impact on performance, we started with
a simple “store only” kernel (memset2D), then a “load-store” one (memcpy2D).
Finally, we used a “one store, many loads” kernel, where the amount of loads
varies to observe its impact on CLS. For the latter case, stencil operator kernels
were used.

66 S. Zuckerman and W. Jalby

Table 1. Impact of hardware prefetching on performance for memset2D (left table)
and memcpy2D (right table), with prefetching either turned ON or OFF. In each table
columns labeled ON (resp. OFF) display the average performance in cycles per store
for memset2D and per load-store for memcpy2D: lower is better. The last column labeled
“Speedup” shows the impact of turning off prefetch: a speedup value greater than 1
shows that turning off prefetch is beneficial. i refers to the number of threads at runtime.
For each kernel, the same amount of work was given to each thread to perform. In the
case of memset2D and memcpy2D, a k×N subarray (or subarrays) was fed to each thread,
8 ≤ k ≤ 30 and 800 ≤ N ≤ 3200 per thread.

(a) Impact of hardware prefetching for
memset2D for a k × 800i array

Number of threads ON OFF Speedup:
ON Vs OFF

1 1.27 1.14 1.12
2 (scatter) 2.09 1.37 1.52
2 (compact) 2.16 1.65 1.31
4 3.00 1.84 1.63

(b) Impact of hardware prefetching for
memcpy2D for k × 800i arrays

Number of threads ON OFF Speedup:
ON Vs OFF

1 1.89 1.86 1.02
2 (scatter) 2.69 2.11 1.28
2 (compact) 2.63 2.43 1.08
4 3.42 2.63 1.30

memset2D and memcpy2D memset2D is the simplest kernel presented in this paper.
It sweeps a 2D array of double precision cells, and sets each of them to a given
value. While it may look like some artificial-made code, similar code does exist in
current commercial libraries. For example, Intel’s Math Kernel Library (MKL)
decomposes C = A × B in two steps: it first performs C = 0, then C = 1 × C +
1×A×B. This is also an interesting kernel, as it only performs stores to memory.
Finally, such a “double precision 2D memset” is used in the MKL’s DGEMM.

As Table 1(a) illustrates, turning the hardware prefetchers off always improves
performance (up to 63%), no matter which configuration was chosen to pin down
the threads.

Because the array is partitioned along the second dimension (and not the
first, see above), HW prefetchers load the next cacheline very aggressively inside
an active thread’s sibling dataset, effectively stealing useless cachelines for the
sibling thread.

As for the memcpy2D kernel, a naive version of a 2D array copy is used 1.
As before, Table 1(b) illustrates the performance gains which are always

brought by turning prefetching off, whatever the threads configuration (up to
30% on four cores).

7-Point Stencil Operator. The 7-point stencil operator yields a certain amount
of 3D arrays to load from, and a single array to store to. The geometry of the
arrays was carefully chosen: the last dimension is far bigger than the first two,
thus making it somewhat “logical” to divide work between threads along the
third dimension. Indeed, this stencil operator accesses data in all directions of
the arrays, and “cutting” them vertically (as shown in figure 1(b)) reduces the
surface where data are to be shared between threads.
1 It is worth mentioning that icc recognizes that the innermost loop of the naive

version is an array copy and thus calls its own version of memcpy on a per-line basis.

Tackling Cache-Line Stealing Effects Using Run-Time Adaptation 67

(a) Memcpy2D: Prefetch ON (b) Memcpy2D: Prefetch OFF

(c) Stencil7: Prefetch ON (d) Stencil7: Prefetch OFF

Fig. 2. The Impact of Cache-Line Stealing. On figure 2(a) (top left), where prefetching
is ON, the amount of cycles per load-store is situated between 3.3 and 3.6 cycles on 4
cores, while on figure 2(b) (top right) where prefetching is OFF, the number of cycles
continuously decreases to reach 2.5 cycles per load-store on 4 cores. On figure 2(c)
(bottom left) prefetching is turned OFF, while on figure 2(d) prefetching is turned ON.
“Scatter” and “compact” are two affinity policies defined in Intel’s OpenMP runtime
(see Section 2.2 for more details). Each thread processes the same amount of work.
Lower is better.

Performance is very sensitive to the geometry of the data and the load-store
ratio. For the 7-point stencil case, there is almost no advantage to turning off
prefetching (except on 4-core) as there is a ratio of 14 loads for one store.

More “convenient” geometries were also used. 3D arrays would be shaped as
ik × 10 × 160, with 3 ≤ k ≤ 32, and i being the number of threads. Hence
the size ratio between dimensions would become much less important. Data are
distributed according to the storage policy, effectively making a thread access
“its” subarray in a stride 1 manner. There is no CLS, but almost no advan-
tage for using hardware prefetching either: speedups are flat (hence not shown
here). Using such a geometry also shows that, contrary to the previous cases,

68 S. Zuckerman and W. Jalby

(c) Impact of hardware prefetching on
the performance of stencil7. Shown
are the average performance (in cy-
cles per stencil computation step) and
speedups. The baseline for speedups
is the configuration where prefetching
is turned ON. The dimensions of the
3D arrays are k × 10 × 640i, where
3 ≤ k ≤ 32, and i is the number
of threads running. 32-bits values are
used in this example.

Threads # ON OFF Speedup:
OFF

1 9.22 9.23 1.00
2 (scatter) 11.60 10.38 1.12
2 (compact) 10.18 10.09 1.01
4 12.55 10.66 1.18

(d) Impact of hardware prefetching on the
performance of stencil7 in a favorable
case. Shown are the average performance
(in cycles per stencil computation step)
and speedups. The baseline for speedups
is the configuration where prefetching is
turned ON.
Threads # ON OFF Speedup: OFF
1 9.22 9.21 1.00
2 (scatter) 9.80 9.76 1.00
2 (compact) 9.78 9.75 1.00
4 10.14 10.23 0.99

whatever number of thread is used yields more or less the same performance on
a per-thread basis. Thus contention is not the reason why in the previous cases
performance decreases as the number of threads increases.

Table 1(d) sums up results for that geometry. Almost no difference appears,
whatever configuration is chosen.

3 Possible Methods to Counter Cache-Line Stealing

CLS occurs mainly because data partitioning between threads was far from op-
timal. This is not necessarily trivial to avoid for the programmer, as such an
ill-partitioned data set could happen when using external libraries on which the
user has no control. In other cases there are inherent constrains to a given com-
putation: for example when multiplying two matrices together, such as Cn,n =
An,k × Bk,n, where k << n but both A and B still take a sizeable amount of
space in memory, thus needing to block along not only on A, but also on B. It
is first necessary to detect CLS. When it is clearly too important to ignore, then
several countermeasures can be used against it.

Detecting Cache-Line Stealing. False-sharing can be detected using memory
traces [9]. CLS, although different, might be tracked down the same way, tracking
only stores.

Turning Off Prefetching. CLS can occur either in hardware or in software. Turn-
ing off prefetch is easy in a software context2.

2 For example, the -no-prefetch compiler option in Intel C Compiler (icc) enables
the programmer to choose when not to activate software prefetching, which comes in
handy for processors which support software prefetching only, such as the Itanium 2.

Tackling Cache-Line Stealing Effects Using Run-Time Adaptation 69

When talking about hardware prefetching, turning it off becomes more diffi-
cult, as it either requires physical access to the machine (which will need to be
rebooted to access its BIOS or setup program), or because it requires superuser
privileges to trigger it in software from the operating system. Used like this,
prefetching can be turned off only when needed (i.e. potential cache-line stealing
has been detected). The potential overhead of a per-process hardware prefetch
trigger is not necessarily as high as the performance loss due to unnecessary data
prefetching.

Loop Transformations. If an array is accessed along the wrong dimension (i.e.
which leads to extensive CLS), it might simply be simpler to perform classical
loop transformations on the loop nest which accesses it. For example, given a 2D
array which was partitioned column-wise while storage policy is row-wise, loop
interchange can totally void CLS, as is shown in figure 3.

On the x86 ISA, accessing the arrays column-wise hampers vector instruction
generation, as there is no packed vector load (or store) memory instruction for
non-unit strides. This effect could be worked around thanks to register blocking
(i.e. accessing an array column-wise, but two cells by two cells). In this case the
prefetcher will not be unnecessarily triggered.

Data Structure Reshaping. Finally, techniques similar to those used against false-
sharing can be used (to a certain extent) against CLS. Array padding, while
useful, will not prevent CLS as extra cache-lines are prefetched nonetheless.
However array transposition, when possible, can help avoid CLS altogether, as
it “reverses” the way cache-lines are packed together. For more complex data
structures, techniques applied to avoid false-sharing can prove effective too.

This is more or less what was done in section 2.3, when arrays were reshaped
to have a better way to parallelize the computation around them.

Fig. 3. A 2D array (stored row-wise) accessed column-wise by each thread. As data
was distributed to threads by batches of columns rather than lines, accessing the ar-
ray column-wise rather than row-wise does not prevent the IP-based prefetcher from
fetching useful additional cache-lines (as there is a fixed stride), and avoids stealing
adjacent cores’ data.

70 S. Zuckerman and W. Jalby

4 Run-Time Adaptation to Solve Cache-Line Stealing
Using a Hybrid Software/Hardware Framework

Cache-line stealing is not encountered very often, yet it can have a disastrous im-
pact on performance, as section 2 shows. Finding out when CLS occurs is no easy
task, as it both depends on the layout of the data structures, how data is par-
titioned between threads, and how many threads share arrays. Moreover, when
using an external library, there is no certainty as to what a given library will do
with the data types it takes as input or output. As the prefetch distance is sel-
dom known in the case of hardware prefetchers (and as it can even be somewhat
adaptive to the current workload of an application), the formula given in section
2 can only be applied with real success in the case of pure software prefetching.
Other cases (i.e. hardware prefetching) must be dealt with differently.

We propose using adaptive methods such as the ones used by WEKA [6] to
solve cache-line stealing, as very few different cases should occur in the kernels
we are evaluating. Indeed, both memset2D and memcpy2D, as well as stencil7
are “streaming”kernels, i.e. they are perfect loop nests with no control structure
inside. Hence if performance is to vary, it is necessarily due to different input
datasets. Moreover, adaptive methods can consider a given machine as some kind
of “black box”. Coupled with standard machine learning techniques, it is enough
to spot problematic input datasets and try to generate a specific version of a
kernel for similar cases.

4.1 Description of the Adaptive Applications Framework

The framework used to counter CLS is explained in figure 4.
The hottest functions in a given application are identified during the initial

measurements done on a given application. Then a driver is created to test such
functions, to test its properties in a confined environment. In this specific case,
only the shapes of the arrays given as input to the functions are of interest
(be them 2D for memset2D/memcpy2D or 3D arrays). Each function is run to
measure its IPC according to the various shapes the input arrays can have. IPCs
are measured3. Usually, only a small number of shapes will incur a variation
in the number of instructions per cycle. IPC is measured both for unicore and
multicore executions, with various affinity policies. If an outstandingly bad IPC
emerges from these tests, then a decision tree is generated or updated, which
decides whether the original function or a wrapper (which turns off prefetching
altogether for this specific input must) must be called. This wrapper function is
also tested to make sure that its IPC is significantly better than the prefetch-
enabled version. Figure 5 shows a C-like example code.

Once the good prefetch-less tuples {function, input dataset, partitioning
scheme} are identified, a decision tree is generated or updated to switch on
the right codelet to call at runtime. It must be noted that Figure 5 deals with

3 Thanks to the INSTRUCTION_RETIRED and CPU_CLK_UNHALTED events.

Tackling Cache-Line Stealing Effects Using Run-Time Adaptation 71

(a) A given kernel is run with hardware counter events measurements.
Code transformations are performed according to the results, and eval-
uated with HW counters. Finally, the decision tree is updated.

(b) Behavior at run-time. An application will first go through a decision
tree which will quickly evaluate which kernel to use according to some
evaluation of the input datasets.

Fig. 4. The adaptive compilation framework used to evaluate when to turn hardware
prefetching off

return_type wrapper_to_function_to_call(parameter1, parameter2, ...)

{

turn_off_prefetching();

function_to_call(parameter1,parameter2, ...);

turn_on_prefetching();

}

Fig. 5. Pseudo C-code for a wrapper to turn off prefetching for a given codelet

72 S. Zuckerman and W. Jalby

the case of hardware prefetchers. In the case of software prefetching (such as for
the Itanium 2 processor), two possibilities exist:

1. All the source code is available. An exact copy of the function can thus be
made, compiled with specific orders to turn prefetching off.

2. The function is located in a binary object. Then it must be directly modified,
which is not currently possible. Additional features to manipulate binary
executables must then be added to the framework.

On the Core 2 microarchitecture, there is no explicit user-space instruction to
turn hardware prefetching on or off. Special files must be written to do so. Special
rights must also be given to the user. In our different tests, trying to write too
frequently into such a file4 sometimes led to a system crash. Hence a more flexible
mechanism to turn on or off hardware prefetching on different cores is a sorely
missing feature in modern microprocessors.

Moreover, writing to such special files yields a severe overhead. There is a
strong need for better hardware/software interactions. Such a hybrid approach
with respect with data prefetching could actually perform better, as the resulting
overhead would be much lower, as the few attempts at hybrid prefetching show
[17,20,13].

4.2 Implementing the Adaptive Framework

Using IPC as an indicator, the framework was used on the stencil7 kernel.
Figure 6 illustrates the different shapes used for our experiments.

The decision tree thus built has two parameters: the shape of the 3D arrays,
and the way data is partitioned. The latter can be inferred from the shape the
arrays each thread has to process.

5 Related Work

Hardware-based prefetching [5] eliminates the instruction overhead encountered
in software-based prefetching [2,14] and may profit from runtime information,
but tends to cause more unnecessary prefetches.

The problem of false-sharing has also been recognized for many years
[4,21,10,3]. Data layout optimizations can help improve the memory performance
of applications by controlling the way data is arranged in memory [16].

A benchmark enforcing false sharing with each write access to an array is
introduced and analyzed for Intel Core Duo, Intel Xeon and AMD Opteron
systems in [24]. The results show the impact of the cache architecture and of the
coherency protocol on the performance.

Other benchmark results for various platforms on sparse matrix-vector prod-
uct [26] show the impact of prefetching on such operations. Another example
can be found in [25], not directly referring to cache-line stealing, but system-
atically benchmarking the impact of enabled/disabled hardware and software
4 Under Linux, we are talking of the /dev/msr/* files.

Tackling Cache-Line Stealing Effects Using Run-Time Adaptation 73

(a) Nar-
row case:
N1 >>
(N2, N3).
Only the
outermost
(“outer”
case) loop
is paral-
lelized.

(b) Narrow case: N2 >>
(N1, N3). Either the outer-
most (“outer” case) or the
innermost (“inner” case)
loop is parallelized.

(c) Narrow case:
N3 >> (N1, N2).
Only the innermost
(“inner” case) loop is
parallelized.

(d) Each
thread pro-
cesses a
cube: “outer”
case.

(e) Each thread pro-
cesses a cube: “inner”
case.

(f) The whole arrays
are cubes: each thread
processes a hyperplan
(“outer” case).

(g) The whole arrays
are cubes: each thread
processes a hyperplan
(“inner” case).

Fig. 6. Various 3D array shapes tested for their IPC in the case of the stencil7 kernel

data prefetching on a medical imaging application running on Intel dual-core
processors.

The notion of memory access intensity is introduced in [12] to facilitate quan-
titative analysis of a program’s memory behavior on multicore systems with
hardware prefetching and is demonstrated with three numerical solvers for large
scale sparse linear systems.

Some research with different solutions have been proposed to solve the problem
of prefetching in a multicore/multiprocessor context [11,22].

74 S. Zuckerman and W. Jalby

Finally, hybrid software/hardware data prefetching has been the interest of
too few researchers. Wang et al [23] propose to improve on scheduled region
prefetching (SRP) with guided region prefetching (GRP). Although the results
are promising, the paper focuses on single-core execution only. Seung Woo Son et
al [18] show how conventional data prefetching techniques usually don’t scale on
CMP systems. They propose compiler-driven prefetching techniques, which they
validate on a simulator. To conclude, Gornish and Veidenbaum [7] propose a hy-
brid mechanism, which consists in using software prefetching before a given loop
in order to “train” the hardware prefetchers, informing them of the stride to use,
as well as the when to stop prefetching. This mechanism, if implemented, could
really bring some leverage to the programmer and compiler writer to efficiently
bring data back into the right cache, for the right core.

To our best knowledge, there has not been much published on investigating
the impact of prefetching on “cache-line stealing” on contemporary multicore ar-
chitectures, for either software- or hardware-based prefetching techniques. Close
to that topic, the work of Song et al [19] tries to make an accurate model of
direct-mapped caches to predict compulsory misses, capacity misses (both on
private and shared data), and when cache hits become cache misses as well as
the contrary.

6 Conclusion and Future Work

While very useful, data prefetching can severely hurt performance by triggering
cacheline stealing. While the unicore case has been studied in depth, the mul-
ticore one features almost no study. Hardware prefetchers do not give the op-
portunity to the user to choose the prefetch distance according to some known
pattern. Hence if cache-thrashing occurs, it is unpreventable. On the software-
side, the shape of the arrays still conditions the efficiency of software prefetching,
and this can only be corrected through iterative methods. Otherwise, cacheline
stealing may occur.

Cache-line stealing induced by too aggressive data prefetching was studied in
this paper, along with a way to compute the number of extra cache-lines brought
into the cache-hierarchy of a given core for a given prefetch distance – which
unfortunately can only be empirically guessed in the case of hardware prefetch-
ers. Prefetching coupled with a certain way of partitioning data between threads
provokes the apparition of cache-line stealing.

Some solutions were proposed to eliminate some or all of cache-line stealing,
such as

– Turning off prefetching. A potential solution could come from microprocessor
vendors to allow some kind of per-process way of activating or deactivating
prefetching.

– Performing loop transformations on the incriminated code.
– Reshaping the data structures to better suit the prefetching policy.

Finally, an adaptive framework was proposed to counter cache-line stealing by
deactivating hardware prefetching on Core 2 processors only when necessary.

Tackling Cache-Line Stealing Effects Using Run-Time Adaptation 75

Although this solution should provide a perfect hybrid way to solve CLS, the
current way to turn HW prefetching on or of offsets the gains. We strongly ad-
vocate for a better hardware/software interaction in the case of prefetching, to
reduce some of the negative impact hardware prefetching can have on perfor-
mance in multicore.

Future work includes refining this adaptive framework to include other, more
complex transformations. Among them, the ones described in section 3, which
were performed by hand so far.

Acknowledgments

The research presented in this paper is supported by ITACA LAB (University
of Versailles and CEA-DAM common lab) and the ITEA2 project “ParMA” [1]
(June 2007 – May 2010).

References

1. ParMA: Parallel programming for multi-core architectures - ITEA2 project
(06015), http://www.parma-itea2.org

2. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler Transformations for High-
Performance Computing. ACM Comput. Surv. 26(4), 345–420 (1994)

3. Bodin, F., Granston, E.D., Montaut, T.: Evaluating two loop transformations for
reducing multiple writer false sharing. In: Pingali, K.K., Gelernter, D., Padua,
D.A., Banerjee, U., Nicolau, A. (eds.) LCPC 1994. LNCS, vol. 892, pp. 421–439.
Springer, Heidelberg (1995)

4. Bolosky, W.J., Scott, M.L.: False Sharing and its effect on shared memory per-
formance. In: Proceedings of the USENIX Symposium on Experiences with Dis-
tributed and Multiprocessor Systems (SEDMS IV), pp. 57–71 (1993)

5. Garzaran, M., Brit, J., Ibanez, P., Vinals, V.: Hardware Prefetching in Bus-Based
Multiprocessors: Pattern Characterization and Cost-Effective Hardware. In: Ninth
Euromicro Workshop on Parallel and Distributed Processing, pp. 345–354 (2001)

6. Holmes, G., Donkin, A., Witten, I.: WEKA: a machine learning workbench. In:
Proceedings of the 1994 Second Australian and New Zealand Conference on Intel-
ligent Information Systems, pp. 357–361 (1994)

7. Gornish, E.H., Veidenbaum, A.: An integrated hardware/software data prefetching
scheme for shared-memory multiprocessors. Intl. Journal of Parallel Programming,
35–70 (1999)

8. Hedge, R.: Optimizing application performance on intel core microarchitecture us-
ing hardware-implemented prefetchers (2008),
http://software.intel.com/en-us/articles/

optimizing-application-performance-on-intel-coret-microarchitecture-

using-hardware-implemented-prefetchers/

9. Hyde, R.L., Fleisch, B.D.: An analysis of degenerate sharing and false coherence.
J. Parallel Distrib. Comput. 34(2), 183–195 (1996)

10. Jeremiassen, T.E., Eggers, S.J.: Reducing False Sharing on Shared Memory Multi-
processors through Compile Time Data Transformations. In: PPOPP, pp. 179–188
(1995)

http://www.parma-itea2.org
http://software.intel.com/en-us/articles/optimizing-application-performance-on-intel-coret-microarchitecture-using-hardware-implemented-prefetchers/
http://software.intel.com/en-us/articles/optimizing-application-performance-on-intel-coret-microarchitecture-using-hardware-implemented-prefetchers/
http://software.intel.com/en-us/articles/optimizing-application-performance-on-intel-coret-microarchitecture-using-hardware-implemented-prefetchers/

76 S. Zuckerman and W. Jalby

11. Jerger, N., Hill, E., Lipasti, M.: Friendly fire: understanding the effects of multipro-
cessor prefetches. In: IEEE International Symmposium on Performance Analysis
of Systems and Software, pp. 177–188 (2006)

12. Liu, L., Li, Z., Sameh, A.H.: Analyzing memory access intensity in parallel pro-
grams on multicore. In: ICS 2008, pp. 359–367. ACM, New York (2008)

13. Marathe, J., Mueller, F., de Supinski, B.R.: Analysis of cache-coherence bottlenecks
with hybrid hardware/software techniques. ACM Trans. Archit. Code Optim. 3(4),
390–423 (2006)

14. Mowry, T.C.: Tolerating Latency in Multiprocessors Through Compiler-Inserted
Prefetching. ACM Trans. Comput. Syst. 16(1), 55–92 (1998)

15. Papamarcos, M.S., Patel, J.H.: A low-overhead coherence solution for multiproces-
sors with private cache memories. In: ISCA 1984: Proceedings of the 11th Annual
International Symposium on Computer Architecture, pp. 348–354. ACM, New York
(1984)

16. Raman, E., Hundt, R., Mannarswamy, S.: Structure Layout Optimization for Mul-
tithreaded Programs. In: CGO, pp. 271–282. IEEE Computer Society, Los Alamitos
(2007)

17. Skeppstedt, J., Dubois, M.: Hybrid compiler/hardware prefetching for multiproces-
sors using low-overhead cache miss traps. In: International Conference on Parallel
Processing, p. 298 (1997)

18. Son, S.W., Kandemir, M., Karakoy, M., Chakrabarti, D.: A compiler-directed data
prefetching scheme for chip multiprocessors. In: PPoPP 2009: Proceedings of the
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pp. 209–218. ACM, New York (2009)

19. Song, F., Moore, S., Dongarra, J.: L2 cache modeling for scientific applications
on chip multi-processors. In: ICPP 2007: Proceedings of the 2007 International
Conference on Parallel Processing, Washington, DC, USA, p. 51. IEEE Computer
Society, Los Alamitos (2007)

20. Struik, P., van der Wolf, P., Pimentel, A.D.: A combined hardware/software solu-
tion for stream prefetching in multimedia applications (1998)

21. Torrellas, J., Lam, M.S., Hennessy, J.L.: False sharing and spatial locality in mul-
tiprocessor caches. IEEE Transactions on Computers 43, 651–663 (1994)

22. Wallin, D., Hagersten, E.: Miss penalty reduction using bundled capacity prefetch-
ing in multiprocessors. In: International Parallel and Distributed Processing Sym-
posium, p. 12a (2003)

23. Wang, Z., Burger, D., McKinley, K.S., Reinhardt, S.K., Weems, C.C.: Guided re-
gion prefetching: A cooperative hardware/software approach. In: Proceedings of
the 30th International Symposium on Computer Architecture, pp. 388–398 (2003)

24. Weidendorfer, J., Ott, M., Klug, T., Trinitis, C.: Latencies of Conflicting Writes
on Contemporary Multicore Architectures. In: Malyshkin, V.E. (ed.) PaCT 2007.
LNCS, vol. 4671, pp. 318–327. Springer, Heidelberg (2007)

25. Whitepaper, I.: Optimizing Embedded System Performance - Impact of Data
Prefetching on a Medical Imaging Application (2006),
http://download.intel.com/technology/advanced_comm/315697.pdf

26. Williams, S., Oliker, L., Vuduc, R.W., Shalf, J., Yelick, K.A., Demmel, J.: Opti-
mization of sparse matrix-vector multiplication on emerging multicore platforms.
In: SC 2007, p. 38 (2007)

27. Wulf, W.A., McKee, S.A.: Hitting the Memory Wall: Implications of the Obvious.
Computer Architecture News 23, 20–24 (1995)

http://download.intel.com/technology/advanced_comm/315697.pdf

Locality Optimization of Stencil Applications
Using Data Dependency Graphs

Daniel Orozco, Elkin Garcia, and Guang Gao

University of Delaware
Electrical and Computer Engineering Department
{orozco,egarcia,ggao}@capsl.udel.edu

Abstract. This paper proposes tiling techniques based on data depen-
dencies and not in code structure.

The work presented here leverages and expands previous work by the
authors in the domain of non traditional tiling for parallel applications.

The main contributions of this paper are: (1) A formal description
of tiling from the point of view of the data produced and not from the
source code. (2) A mathematical proof for an optimum tiling in terms of
maximum reuse for stencil applications, addressing the disparity between
computation power and memory bandwidth for many-core architectures.
(3) A description and implementation of our tiling technique for well
known stencil applications. (4) Experimental evidence that confirms the
effectiveness of the tiling proposed to alleviate the disparity between
computation power and memory bandwidth for many-core architectures.
Our experiments, performed using one of the first Cyclops-64 many-core
chips produced, confirm the effectiveness of our approach to reduce the
total number of memory operations of stencil applications as well as the
running time of the application.

1 Introduction

This paper addresses the problem of how to optimize a class of scientific com-
puting programs called stencil computations running on parallel many-core pro-
cessor architectures. This class of applications performs many read-modify-write
operations on a few data arrays. The main challenge faced by stencil applications
is the limitation of off-chip memory accesses, both in terms of bandwidth and
memory latency.

Tiling, described in [10,11,3,14,15,6,5,4,8] and in many other publications, is
a commonly used technique to optimize stencil applications. Tiling transforma-
tions attempt to reduce the number of off-chip memory accesses by exploiting
locality in a program. To that effect, frequently used data is loaded to the local
processor memory where increased bandwidth and better latency are available.

Previous tiling techniques, when applied to stencil applications, achieve sub-
optimal results because they either do not take advantage of the algorithm [5],
they only work for one-dimensional loop structures [8], they require redundant
computations [4], or, in general, a good tiling solution can not be found because
the particular code written by the programmer does not fit the tiling technique.

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 77–91, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

78 D. Orozco, E. Garcia, and G. Gao

Previous research by the authors looked at the problem of tiling stencil appli-
cations from the side of the data produced in the application regardless of the
source code used to produce such data. The question posed was “What program
partitioning will result in maximum locality for stencil applications running on
many-core processors?”, and a partial answer was provided for a particular in-
stance of a 1 Dimensional Stencil application. Evidence on the advantage of the
technique proposed was produced using a simulator [8].

The limitation of memory bandwidth on many-core applications has been
addressed to other levels in the memory hierarchy for some linear algebra ap-
plications [13,2]. They have proposed alternatives to find optimum tiling to the
register level and mechanism for hiding memory latency.

The main contributions of this paper, outlined in the abstract, are influenced
by a simple idea: Program tiling and/or partitioning should not be the result
of code transformations upon the original code, they should be a natural conse-
quence of the data dependencies between the computations of a program. The
source code of the program should only be used to generate a full data depen-
dency graph for the computations. The data dependency graph is then used to
formulate an optimization problem whose solution is the tiling strategy that, in
our case, would result in the least use of off-chip memory resources. This ap-
proach fundamentally departs from other tiling techniques where the program
partition is heavily influenced by the original structure of the source code.

The tiling strategies resulting from a dependency-graph-based optimization
for stencil computations can be collectively designated as Diamond Tilings. A
very limited form of Diamond Tiling was successfully demonstrated in the past [8]
without a detailed description of the optimization problem or a general solution.
This paper fully develops the idea of how to generate Diamond Tilings based on
the data dependencies of an application. We show guidelines to implement tiles
that increase reuse of data in the case of parallel stencil applications.

The key idea behind the development of the Diamond Tiling class of tilings is
simple: Maximum locality can be obtained if all local, enabled computations are
executed. In here, the term enabled is borrowed from the dataflow field, and it
refers to a computation whose input data is available, and whose input data re-
sides in on-chip memory. This thought is translated into an optimization problem
that is solved in the context of the implementation possibilities such as memory
available (that limits the total size of a tile), synchronization primitives and so
on. The main difference between Diamond Tiling and other tiling techniques is
that Diamond Tiling is not concerned with the original structure of the code.
The source code is only used to generate a complete data dependency graph of
the application, but it is not required in itself to do the tiling transformation.
Many programming models can benefit from the strategies used in the develop-
ment of Diamond Tiling: Dataflow programs, serial programs, parallel programs
and any other kind of program where a data dependency can be extracted.

The effectiveness of Diamond Tiling is presented in our results. Diamond
Tiling was compared against other tiling techniques using an application that
models the propagation of electromagnetic waves (using the FDTD algorithm) in

Optimization of Stencil Applications Using DDG 79

multiple dimensions. The Cyclops-64 many-core processor developed by IBM [1]
is used as our testbed architecture. When DRAM bandwidth is the bottleneck of
the application, Diamond Tiling provides the shortest running time, the smallest
total amount of off-chip memory operations and the best performance among all
other tiling techniques, surpassing recent, state of the art tiling techniques by
many times in some cases.

The rest of the paper is organized as follows: Section 2 provides relevant back-
ground on the field, including details on stencil applications and the Cyclops-64
processor. Section 3 formally describes the problem addressed by this paper.
Section 4 provides a mathematical proof of the optimality of Diamond Tiling to
reduce the amount of DRAM operations, and Section 5 shows how to apply the
mathematical results of Section 4 to implement an application. The experiments
used to test the effectiveness of Diamond Tiling and their results are described
in Sections 6 and 7. The paper concludes with conclusions and future work on
Sections 8 and 9.

2 Background

This section provides a brief introduction of the knowledge required to under-
stand the paper. This section covers Stencil Applications, Cyclops-64 and many-
core Architectures, DRAM memory limitations in many-core architectures, and
traditional tiling approaches.

2.1 Stencil Applications

Stencil Applications are characterized by a kernel that repeatedly updates an
array with a copy of a previous version of the array. Stencil applications typically
solve partial differential equations useful in science and engineering. Common
stencil applications include simulations of Heat Propagation, Particle Transport,
Electromagnetic Propagation, Mass Transport and others.

The Finite Difference Time Domain (FDTD) [16] technique is a common
algorithm to simulate the propagation of electromagnetic waves through direct
solution of Maxwell’s Equations. FDTD was chosen to illustrate the techniques
presented here since it is easy to understand, it is widely used, and it can be
easily written for multiple dimensions.

2.2 Cyclops-64 and Many-Core Architectures

Cyclops-64 [1] is a many-core processor chip recently developed by IBM. Cyclops-
64 allows simultaneous execution of 160 hardware threads. Cyclops-64 shows a
new direction in computer architecture: It has a user-addressable on-chip mem-
ory and no data cache, it has direct hardware support for synchronization (bar-
riers as well as hardware sleep and awake) and a rich set of atomic operations.
The main features of Cyclops-64 chip are shown in Table 1.

Cyclops-64 was chosen as the testbed for this application since it has a
large amount of parallelism (160 threads simultaneously) and it is highly pro-
grammable (each thread runs its own code).

80 D. Orozco, E. Garcia, and G. Gao

Table 1. Cyclops-64 Features

Chip Features

Processor Cores 80 On-Chip Interconnect Full Crossbar
Frequency 500 MHz Off-Chip Interconnect Proprietary
Hardware Barriers Yes Instruction Cache 320 KB
Hardware Sleep - Awake Yes Addressable Memory 1GB
On-Chip Memory User Managed 5MB Off-Chip Memory Banks 4 x 64 bits

Processor Core Features

Thread Units 2, single issue Local Memory 32KB
Floating Point Unit 1, pipelined Registers 64 x 64 bit

2.3 DRAM Limitations for Many-Core Architectures

For many-core architectures, the disparity between the availability of DRAM
and the availability of floating point units is perhaps the most limiting factor for
performance. This disparity is only likely to increase with each new processor
chip generation: it becomes increasingly easier to build more and more floating
point units inside the chip, but the physical connections that supply memory
from outside the chip improve only marginally.

Current many-core architectures already suffer from this limitation. As an
illustration, the ratio of bandwidth available to the Floating Point Units to off-
chip bandwidth is already 60 to 1 in Cyclops (Table 1): There are 80 Floating
Point Floating units that consume 2 and produce 1 64-bit values per cycle while
there are only 4 memory banks that can supply 1 64-bit value per cycle each.

Floating point operations pay a low price in terms of latency, available re-
sources and power, while, on the other hand, memory operations on DRAM
have a long latency, use more power, and their total bandwidth is limited. For
those reasons, memory operations to DRAM are the determinant factor in the
cost of computations for scientific programs.

2.4 Tiling

The limitations of DRAM memory operations for many-core architectures drive
program optimizations to regard memory operations as precious and it makes lo-
cality one of the most important optimization goals. An effective way to optimize
for locality is to partition the computations of an application in groups called
“Tiles”. Tiling, or partitioning the application into tiles, is an effective way to
optimize for locality: The advantages of temporal locality can be exploited by
reusing data.

Current tiling techniques follow the constraints of current paradigms. Tra-
ditional approaches are limited to search for possible partitions from a limited
set of transformations on the starting source code. Newer approaches attempt
to go beyond the limitations of source code, but their results are constrained
to heuristics to transform the code or they are constrained by simplistic code
generation approaches.

Optimization of Stencil Applications Using DDG 81

Traditional approaches find the best tiling technique from a fixed set of transformations.
For example, they find the affine transformation that produces the best result on the
source code.

Fig. 1. Traditional Approaches to Tiling

Some tiling techniques (Figure 1) apply a set of transformations to the source
code provided and search for the best locality in the transformed programs. This
approach was demonstrated with success in the past, but it is constrained by
the fact that the search space is inherently limited by the programs that can be
generated from the initial source code.

Tiling techniques that are not constrained by the structure of the original
source code have been proposed [9]. The approach of those techniques is different
to the approach presented in this paper and in some cases, they produce similar
results.

3 Problem Formulation

The previous sections described the main techniques for tiling. Most of them are
the result of applying clever transformations on the source code of the applica-
tion.

We propose instead focusing on the fundamental problem of tiling, regardless
of code structure or expressiveness (Figure 2): “What is the most effective tiling
strategy to reduce off-chip bandwidth through the use of on-chip memory?”

It is not claimed in this paper that it is always possible or convenient to
find a solution to the tiling problem as presented in Figure 2, or that such a
solution exists for all possible programs running all possible inputs on all possible
architectures. For example, solution of the problem requires knowing the full
dependency graph of the application, which can be practically or theoretically
impossible for some applications.

The focus of this paper is specific: The problem of finding an optimum tiling
is solved for stencil applications (See Section 2) running on parallel processors.
Under those conditions the optimization problem can be approached because:

– The computations in the program are independent of the input data,
– it is possible to count all the computations in the program and
– it is possible to build a data dependency graph providing the relations be-

tween the computations on the program.

The rest of the paper presents the solution in detail.

82 D. Orozco, E. Garcia, and G. Gao

Tiling, in this paper, is the result of an optimization done directly on the data depen-
dency graph of the program. This is different to traditional tiling techniques where a
set of proposed techniques is evaluated to find a local optimum.

Fig. 2. Tiling using Data Dependency Graphs

4 Optimal Tiling for Stencil Computations

The previous section formulated the problem of tiling optimality for a program
in general. This section addresses the problem for the particular case of parallel
stencil computations. Parallel in this context means that a tile can be fully
computed when its memory has been loaded; no communication with off-chip
memory or with other processors is required.

1 for t in 0 to NT-1
2

3 for i in 1 to N-1
4 E[i] = k1*E[i] +
5 k2 * (H[i] - H[i-1])
6 end for
7

8 for i in 1 to N-1
9 H[i]+=E[i]-E[i+1]

10 end for
11

12 end for

Fig. 3. Kernel for FDTD 1D Fig. 4. DDG for FDTD 1D

The optimal tiling problem is approached as a formal optimization problem.
The optimization problem maximizes the ratio of computations to memory op-
erations for all possible tiling approaches.

Tiling of memory addresses and computations is an integer optimization prob-
lem on the computation space. Figure 4 shows the computation space for an
implementation of FDTD (Figure 3). The problem is an integer optimization

Optimization of Stencil Applications Using DDG 83

problem since all computations are associated with a spatial grid and a compu-
tation step. The problem is extended to allow continuous values for the memory
addresses as well as the number of computations (Figure 5). The problem is then
solved in the continuous space. As will be seen in the equations below, the op-
timum solution of the continuous problem is integer, which guarantees that it is
also a solution of the integer optimization problem.

The rest of this section provides definitions of the variables used, some theo-
rems and a final remark that ultimately results in the optimal tiling technique.

Definition 1. DT is the computation space. The elements of DT are the values
computed by the stencil application. Each one of the elements of DT is associated
with a vector xT = (xT,0, xT,1, ..., xT,M−1, t) where M is the number of spatial
dimensions in the stencil problem, and t represents time in the computation. All
components in xT are integers because they are associated with a spatial grid and
a computation step.

Example: The elements of DT for the FDTD 1D implementation of Figure 3
are represented by circles and squares in Figure 4. In Figure 4, xT,0 corresponds
to the i direction and t, the last coordinate of the vector, corresponds to the
t direction. For simplicity of the explanation, consider that the circle and the
square with the same coordinates in space and time are merged and are referred
to simply as one element of the computation space.

Definition 2. Also, each element of DT is associated with a set of vectors
di = (di,0, di,1, ..., di,(M−1), di,t), i = 0, ..., p that represent the direction of the
dependencies in the computation space. In Figure 4 each arrow represents each
di These vectors are also illustrated in Figure 5.

Definition 3. D is the extended continuous space of DT . In the same way, a
point in D can be associated with a vector x = (x0, ..., xM−1, t).

Definition 4. T is a region (e.g. a tile) of the continuous computation space D.

Figure 5 shows the extended computation space D, and an arbitrary tile T .

Fig. 5. Continuous computation space, tiles, and dependencies for FDTD 1D

84 D. Orozco, E. Garcia, and G. Gao

Definition 5. S(T) represents the elements that have to be loaded to compute
T and V (T) represents the elements that can be computed in tile T . S(T) and
V (T) can be interpreted as the surface and volume of T respectively.

Definition 6. N , or N(x), x ∈ S(T) is a unit vector perpendicular to the surface
S(T) at point x. The orientation of N is towards the inside of T if S(T) is associated
with loads or it is towards the outside of T if S(T) is associated with stores.

Definition 7. Vertical bars | | are used to indicate the cardinality of a set in
DT . |S(T)| and |V (T)| can be interpreted as the area of the surface and volume
of T respectively.

Definition 8. m(T) is the amount of memory used by a particular tiling T and
mmax is the maximum amount of on-chip memory available.

The optimization problem for finding the tiling in the continuous space is:

max
T

f(T) =
|V (T)|
|S(T)| (1)

s.t. m(T) ≤ mmax, T is a parallel tiling (2)

The solution can be found by the following theorems:

Theorem 1. If T is a valid, parallel tiling, then N · di ≥ 0 for i = 0, 1, ..., p.

Proof. This condition ensures the dependencies points inwards. It implies, com-
putations inside T do not require loading data from other tiles or from memory
and can be computed in parallel.

Theorem 2. If T ∗ is an optimum solution of the optimization problem, then
T ∗ is a convex tile.

Proof. Considering a feasible non-convex tile Tnc and the smallest convex tile
Tc that fully contains Tnc. Tc is also feasible. f(Tnc) ≤ f(Tc) because |S(Tnc)| ≥
|S(Tc)| and |V (Tnc)| ≤ |V (Tc)|. Since for any feasible non-convex tile there exists
a feasible convex tile with a better or equal value of f(T), it follows that T ∗ is
convex.

Theorem 3. If T ∗ is an optimum solution of the optimization problem, then,
at each point along the boundaries of T ∗, N is perpendicular to at least one of
the dependency vectors di at that point.

Proof. Consider all the tiles T for which |S(T)| is a particular constant value. For
those tiles the optimization problem of Equation 1 is equivalent to maximization
of |V (T)| under the constraints of Equation 2.

Maximization of |V (T)| is equivalent to maximization of a multidimensional
integral1 of −N · t̂ along the surface of T. Which is maximum when N · t̂ is min-
imum at all points along the surface of the tile T.
1 The full details of the derivation of the integral are omitted due to space constraints.

Optimization of Stencil Applications Using DDG 85

Since theorem 1 implies that N lies in a cone extending in the direction of
+t̂. The minimum value of N · t̂ is when N · di = 0, for some i and thus, N is
perpendicular to at least one of the dependence vectors.

Theorem 4. The Tiling technique that solves the optimization problem of Equa-
tions 1 and 2 are tiles where the computation space DT is partitioned with planes
that extend in the direction of the dependencies.

Proof. Theorem 3 states that an optimum tile is formed by planes whose normal
vectors are orthogonal to the dependence vectors. It follows that the planes
extend in the direction of the dependence vectors. Because N · di = 0 is required.
The only shape that satisfies this requirement are diamonds. Thus the name
given to the technique. This is also true in the computation space DT where the
optimum T ∗ is a diamond restricted to planes in a grid.

Theorem 5. The optimum tile has a size that tries to use all the available
memory.

Proof. The function f(T) is a ratio between volume and surface of the tile, and
this ratio increases with the amount of memory used. The maximum tile size is
bounded by the constraint described in Equation 2.

Theorems 4 and 5 are enough to uniquely describe the tiling partition (Figure 5).
The tile partitions extend in the direction of the dependencies (Theorem 4) and
the size of the tile should be as big as possible (Theorem 5).

Note that the results of this section find the global optimum of the described
problem. The solution found here does not address other constraints not speci-
fied. For example, the result obtained in this section does not consider the effect
of latency, only the effects of bandwidth because, as argued, bandwidth is likely
to be the most important limiting factor, and other limitations such as latency
can be hidden using techniques such as double buffering.

The following sections provide examples and results of using the theorems of
this section to minimize the number of off-chip memory operations.

5 Implementation

The process to obtain the optimum tile size and shape for an application was
described and solved for stencil applications in Section 4. This section provides
and informal description of the results of previous sections that seeks clarity
over formality. The complete details of the particular implementation used for
the experiments has been prepared as a separate publication and it can be found
in [7].

The main conclusion of Section 4 is that the optimum tiling technique is
ultimately defined by the direction of the dependencies in the code. Those de-
pendencies ultimately define how the application is tiled.

Consider the application of Figure 3, and its corresponding expanded data
dependency graph (Figure 4). For the elements in the data dependency graph,

86 D. Orozco, E. Garcia, and G. Gao

the vectors that represent the dependencies are (−1, 1), (0, 1), and (1, 1). Follow-
ing the optimality result, the boundaries for the optimum tiling extend in the
direction of the dependencies. The planes that form the tiles would be t = i + c,
i = c and t = −i + c, where c is a constant that is associated with the location
of the tile, and t and i are the time and space indexes respectively. The normal
vectors N , found using linear algebra on the planes, are (− 1√

2
, 1√

2
), (1, 0) and

(1√
2
, 1√

2
) respectively for the planes. The plane i = c is not a valid plane because

it violates the parallel constraint (Theorem 1) so t = i + c, and t = −i + c are
chosen as the partition planes.

The resulting planes partition the iteration space as shown in Figure 5. The
planes are spaced so that each tile uses the maximum memory available.

Stencil applications in any number of dimensions can be similarly tiled.

6 Experiments

A number of experiments were conducted using the Cyclops-64 processor (de-
scribed in Section 2) to test our claims of optimality for Diamond Tiling.

A simulation (using the FDTD technique) of an electromagnetic wave propa-
gating both in 1 and 2 dimensions was used to compare Diamond Tiling to other
traditional and state of the art tiling techniques.

The tiling techniques used were:

Näıve: The traditional rectangular tiling was used. Each one of the perfectly
nested loops in the computation is fully tiled using all the available on-chip
memory.

Overlapped: Tiling along the time dimension and the spatial dimensions is
done at the expense of redundant computations and more memory operations [4].

Split: Two or more tile shapes are used to fully partition the iteration space
such that time tiling with no redundant computations is achieved [4].

Diamond: Diamond Tiling, as described in this paper, was used.

Figure 6 shows a conceptual view of the tiling techniques when applied to a 1
dimensional problem. The experiments use tiling in both one and two dimensions.

Fig. 6. Tiling techniques used in the experiments

Optimization of Stencil Applications Using DDG 87

Tiling was done at the on-chip memory level. Register tiling and tiling at
other levels was not done because the focus of our study is the limitation in
the memory operations between DRAM and the on-chip memory in many-core
processors. Further levels of tiling are likely to accentuate the results, but such
experiments fall outside of the scope of our work.

The code for each one of the tiling approaches was hand written in C. The
programs were compiled with ET International’s Compiler for Cyclops-64 version
4.8.17 with optimization flags -O3.

The required synchronization between the computational steps of each tiling
approach was done using the hardware supported barriers available on Cyclops-
64. The experiments were run using one of the first Cyclops-64 chips produced.

The 1 dimensional implementation computes 4000 timesteps of a problem
of size 10000 while the 2 dimensional application computes 500 timesteps of a
problem of size 1000 × 1000. The tile sizes used were 256 and 24 × 24 for the
implementations in 1 and 2 dimensions respectively. These tile sizes were chosen
so that they used all the available on-chip memory. Hardware counters on the
Cyclops-64 chip where used to measure execution time, floating point operations
and memory accesses.

All results are reported for the computational part of the program. The ini-
tialization and finalization stages of the program represent a minority of the
execution time and code size and they do not participate in tiling. For that
reason they are not included in the results.

7 Results

The result of executing the testbed application (FDTD) in 1 and 2 dimensions
using several tiling techniques are presented in Figures 7 to 12.

The results confirm the hypothesis that Diamond Tiling is an effective way
to tile stencil computations. For the two applications considered in section 6,
the use of Diamond Tiling resulted in a lower total number of DRAM memory
operations, and for the cases in which the bandwidth was the limiting factor of
the application, Diamond Tiling resulted in the best performance.

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 20 40 60 80 100 120 140 160

N
um

be
r o

f D
RA

M
 o

pe
ra

ti
on

s

Threads

Diamond

Naïve

Overlapped

Split

Fig. 7. FDTD 1D: Operations on DRAM

1.0E+07

1.0E+08

1.0E+09

0 20 40 60 80 100 120 140 160

N
um

be
r o

f D
RA

M
 o

pe
ra

ti
on

s

Threads

Diamond

Naïve

Overlapped

Split

Fig. 8. FDTD 2D: Operations on DRAM

88 D. Orozco, E. Garcia, and G. Gao

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160

M
ill

io
n

N
od

es
 p

er
 S

ec
on

d

Threads

Diamond

Naïve

Overlapped

Split

Fig. 9. FDTD 1D: Performance

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160

M
ill

io
n

N
od

es
 p

er
 S

ec
on

d

Threads

Diamond

Naïve

Overlapped

Split

Fig. 10. FDTD 2D: Performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 B
an

dw
id

th
 U

se
d

 (G
B/

s)

Threads

Diamond

Naïve

Overlapped

Split

Fig. 11. FDTD 1D: Bandwidth used

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 B
an

dw
id

th
 U

se
d

 (G
B/

s)

Threads

Diamond

Naïve

Overlapped

Split

Fig. 12. FDTD 2D: Bandwidth used

Figures 7 and 8 show the total number of off-chip memory operations re-
quired to execute the program. They show how Diamond Tiling provides the
lowest number of off-chip memory operations of all the tiling techniques in the
experiments. As explained before, this decrease in the total number of memory
operations greatly contributes to decrease the total running time of the applica-
tion as can be detailed on Figures 9 and 10 using the number of nodes processed
per second as a metric. As a result of the reduction in off-chip memory operations
and the increasing of performance, the average bandwidth used is decreased, as
can be seen on Figures 11 and 12. A better utilization of off-chip bandwidth
is achieved particularly for 2D-FDTD using Diamond Tiling. In all cases, the
maximum amount of bandwidth available was 2 GB/s.

Traditional tiling approaches such as the widely used rectangular tiling (our
näıve implementation) have a performance that is far below the performance of
Diamond Tiling. This is due to the fact that traditional tiling approaches do not
always consider the advantages of tiling across several loops and are limited by
the ability to generate code. Diamond Tiling has a much lower running time and
it has far less off-chip memory operations.

Optimization of Stencil Applications Using DDG 89

The recent Overlapped Tiling [4] overcomes the limitation of low parallelism
between tiles at the expense of more memory operations and redundant com-
putations. The price paid for parallelism results in a lower execution speed and
more off-chip memory operations. For large tiles, such as the ones used in the
experiment, Diamond Tiles require less memory operations while still enabling
full parallelism between tiles. Also, Diamond Tiling does not require redundant
computations.

In summary, the experimental data presented here supports the idea that
Diamond Tiling is an excellent technique to tile stencil applications in a parallel
execution environment.

8 Conclusions

This paper presents a technique for data locality optimization that is based on
the analysis of the data dependency graph of the application.

The most important contribution of this work is that it approaches the prob-
lem of tiling as a mathematical problem of optimality rather than as a transfor-
mation. Although the general approach of tiling a generic application through
mathematical optimization of a performance function is not always feasible, it
is nevertheless useful for Stencil Applications.

Section 4 showed a formal description of the problem and developed it to
reach a simple conclusion: In stencil computations, the iteration space should be
partitioned into Diamond-shaped tiles. This result was obtained for the case of
parallel applications. If the parallel restriction is dropped, it may be possible to
find other tiling techniques with better performance. For example if the execution
is restricted to be serial, skewed tiling [15] may have a better performance than
Diamond Tiling.

The resulting Diamond Tiling has excellent characteristics: (1) It produces
fully parallel tiles, (2) it provides optimum utilization of the off-chip DRAM
bandwidth, and (3) it is easy to generate code for it. Additionally, the positive
impact of Diamond Tiling increases when combined with other optimizations and
possible architecture changes such as better synchronization or more memory.

The results of this paper extend the results of previous research by the authors.
In a previous publication, Diamond Tiling was conjectured to be optimal for
FDTD in 1 dimension [8]. This paper formally confirms such claim and extends
the result to general stencil applications in any number of dimensions.

This paper also opens the door for formal optimization of other applications
where a full data dependency graph is possible to obtain. Or, at the very least,
it provides an alternative to locality optimization from source code.

It is possible that the importance of optimization in a mathematical way
will increase in future generations of many core architectures. If current trends
in computer architecture continue, more and more parallelism will be available
while data movement will become even more expensive.

90 D. Orozco, E. Garcia, and G. Gao

9 Future Work

The main contributions of this paper are significant to stencil applications. Fu-
ture work in locality using data dependency graphs can focus in extending its
applicability to a larger number of applications, or to integrate other techniques
into the formal framework proposed.

So far, the results presented here only address the difficulties of DRAM mem-
ory accesses of one many-core chip. The issue of how to partition a distributed
memory application across multiple many-core chips using data dependency
graphs is a future topic of research.

The tradeoff between barrier synchronizations and point to point synchro-
nizations needs to be evaluated as well. Consumer-producer synchronization
primitives such as phasers [12] can potentially reduce execution noise in stencil
applications.

Future work will also focus on providing a generic mathematical framework
for optimization. In the case of the stencil application optimized here, all the op-
timization steps were hand-designed by the authors. A more attractive approach
would be to design a consistent methodology that could be applied to any ap-
plication without being restricted to a particular class of applications. Whether
or not that is possible is unknown to the authors at the time of publication.

Acknowledgements

This work was possible due to the generous support of the National Science
Foundation through research grants CCF-0833122, CCF-0937907, CNS-0720531,
CCF-0925863 and OCI-0904534. The authors thank the reviewers for their useful
comments, and for helping improving the quality of the paper. The authors
express their gratitude to all CAPSL members at the University of Delaware for
their support during the course of this research.

References

1. del Cuvillo, J., Zhu, W., Hu, Z., Gao, G.R.: Toward a software infrastructure for
the cyclops-64 cellular architecture. In: 20th International Symposium on High-
Performance Computing in an Advanced Collaborative Environment, HPCS 2006,
p. 9 (May 2006)

2. Garcia, E., Venetis, I.E., Khan, R., Gao, G.: Optimized dense matrix multiplication
on a many-core architecture. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.)
Euro-Par 2010. LNCS, vol. 6272, pp. 316–327. Springer, Heidelberg (2010)

3. Irigoin, F., Triolet, R.: Supernode partitioning. In: Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
1988, pp. 319–329. ACM, New York (1988),
http://doi.acm.org/10.1145/73560.73588

4. Krishnamoorthy, S., Baskaran, M., Bondhugula, U., Ramanujam, J., Rountev, A.,
Sadayappan, P.: Effective automatic parallelization of stencil computations. SIG-
PLAN Not. 42(6), 235–244 (2007)

http://doi.acm.org/10.1145/73560.73588

Optimization of Stencil Applications Using DDG 91

5. Lam, M.S., Wolf, M.E.: A data locality optimizing algorithm. SIGPLAN Not. 39(4),
442–459 (2004)

6. Lim, A.W., Cheong, G.I., Lam, M.S.: An affine partitioning algorithm to maximize
parallelism and minimize communication. In: ICS 1999: Proceedings of the 13th
International Conference on Supercomputing, pp. 228–237. ACM, New York (1999)

7. Orozco, D., Gao, G.: Diamond Tiling: A Tiling Framework for Time-iterated Sci-
entific Applications. In: CAPSL Technical Memo 91. University of Delaware (2009)

8. Orozco, D., Gao, G.: Mapping the fdtd application for many core processor. In:
International Conference on Parallel Processing ICPP (2009)

9. Rajopadhye, S.: Dependence analysis and parallelizing transformations. In: Srikant,
Y.N.S., Shankar, P. (eds.) Handbook on Compiler Design, 1st edn. CRC Press,
Boca Raton (2002) (in press)

10. Ramanujam, J., Sadayappan, P.: Tiling multidimensional iteration spaces for mul-
ticomputers. Journal of Parallel and Distributed Computing 16(2), 108–120 (1992)

11. Schreiber, R., Dongarra, J.: Automatic Blocking of Nested Loops (1990)
12. Shirako, J., Peixotto, D.M., Sarkar, V., Scherer, W.N.: Phasers: a unified deadlock-

free construct for collective and point-to-point synchronization. In: ICS 2008, pp.
277–288. ACM, New York (2008)

13. Venetis, I.E., Gao, G.R.: Mapping the LU Decomposition on a Many-Core Archi-
tecture: Challenges and Solutions. In: Proceedings of the 6th ACM Conference on
Computing Frontiers (CF 2009), Ischia, Italy, pp. 71–80 (May 2009)

14. Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. SIGPLAN Not. 26(6),
30–44 (1991)

15. Wolfe, M.: More iteration space tiling. In: Supercomputing 1989: Proceedings of
the 1989 ACM/IEEE Conference on Supercomputing, pp. 655–664. ACM, New
York (1989)

16. Yee, K.: Numerical solution of inital boundary value problems involving maxwell’s
equations in isotropic media. IEEE Transactions on Antennas and Propaga-
tion 14(3), 302–307 (1966)

Array Regrouping on CMP
with Non-uniform Cache Sharing

Yunlian Jiang1, Eddy Z. Zhang1, Xipeng Shen1,
Yaoqing Gao2, and Roch Archambault2

1 Computer Science Department
The College of William and Mary, Williamsburg, VA

{jiang,eddy,xshen}@cs.wm.edu
2 IBM Toronto Software Lab, Toronto, Canada

Abstract. Array regrouping enhances program spatial locality by interleaving
elements of multiple arrays that tend to be accessed closely. Its effectiveness has
been systematically studied for sequential programs running on unicore proces-
sors, but not for multithreading programs on modern Chip Multiprocessor (CMP)
machines.

On one hand, the processor-level parallelism on CMP intensifies memory band-
width pressure, suggesting the potential benefits of array regrouping for CMP
computing. On the other hand, CMP architectures exhibit extra complexities—
especially the hierarchical, heterogeneous cache sharing among hyperthreads,
cores, and processors—that impose new challenges to array regrouping.

In this work, we initiate an exploration to the new opportunities and challenges.
We propose cache-sharing-aware reference affinity analysis for identifying data
affinity in multithreading applications. The analysis consists of affinity-guided
thread scheduling and hierarchical reference-vector merging, handles cache shar-
ing among both hyperthreads and cores, and offers hints for array regrouping and
the avoidance of false sharing. Preliminary experiments demonstrate the potential
of the techniques in improving locality of multithreading applications on CMP
with various pitfalls avoided.

1 Introduction

Modern processor industry relies on the continuous increase of processor-level paral-
lelism. As a result, memory bandwidth is being shared by an increasing number of
threads and processes. Its usage become more critical than before.

Array regrouping is one approach to reducing memory transactions by enhancing
spatial locality and reducing cache conflicts. It has shown promising results on sequen-
tial programs in unicore processors. The basic idea of array regrouping is to merge
arrays that are always accessed at the same time together to form a new big array. Fig-
ure 1 shows a simple example. Figure 1 (a) is the original program. Elements from
arrays A and B with the same index are always accessed together. As shown in Figure
1 (b), to improve spatial locality, we can group arrays A and B together to form a new
two-dimensional array F, in which, F[i][0] and F[i][1] represent A[i] and B[i] in the
original program respectively. After the transformation, one iteration requires only at
most one memory transaction, reducing memory bandwidth pressure significantly.

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 92–105, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Array Regrouping on CMP with Non-uniform Cache Sharing 93

for(i=0;i<N;i++){
A[C[i]] += B[C[i]];
}

(a) Original

for(i=0;i<N;i++){
F[C[i]][0] += F[C[i]][1];
}

(b) Regrouped

Fig. 1. An example of array regrouping

As an effective method for spatial locality enhancement, array regrouping is po-
tentially useful for the improvement of effective memory bandwidth of multithreading
applications running on Chip Multiprocessors (CMP). However, some new features of
CMP architecture, especially the heterogeneous sharing of memory systems, imposes
additional complexities. On a CMP machine with SMT (Simultaneous Multithreading)
enabled, multiple hyperthreads on a core share the whole memory hierarchy, multiple
cores on a single chip share the hierarchy below a certain cache level, and the proces-
sors on different chips share the main memory only. The non-uniform sharing presents
a spectrum of cache contention, hence both new challenges and new opportunities for
array regrouping. Being oblivious to cache sharing, as existing techniques are, may lose
optimization opportunities, as well as cause programs unnecessary cache thrashing.

This paper presents a three-fold exploration to the problem, with the focus on the
following questions: What unique opportunities and challenges CMP brings to array
regrouping, how to effectively apply the transformation to multithreading applications,
and how to maximize the benefits and avoid various pitfalls.

First, through analytical and empirical investigations, we demonstrate that multi-
threading programs on CMP can not only benefit from array regrouping as sequential
programs do, but also expose additional opportunities for array regrouping to exploit.
These opportunities mainly come from the presence of cache sharing in CMP. Consider
the example shown in Figure 2. If the two threads share a cache, grouping arrays A,
B, and C may improve their spatial locality, forming a synergistic sharing between the
two threads. This kind of regrouping is named cache-sharing-aware array regrouping.
Such opportunities do not exist in the sequential version of the program or on traditional
machines that have no shared cache.

for(i=0;i<N;i++){
E[i] = A[P[i]] + B[P[i]];
}

(a) Execution by thread 1

for(i=0;i<N;i++){
F[i] = A[P[i]] + C[P[i]];
}

(b) Execution by thread 2

Fig. 2. An example of cross thread affinity

Second, we show that existing data reference affinity analysis is insufficient for ap-
plying array regrouping in CMP settings. Reference affinity characterizes the access
pattern of a group of arrays which are always accessed together in the whole program.
Existing reference affinity analysis techniques [4, 12] are all built for sequential pro-
grams running on unicore processors. They are insufficient for exploiting the additional
opportunities the new scenario offers. For the example in Figure 2, data reference analy-
sis within a single thread is not able to recognize that A, B, C, are accessed at the same

94 Y. Jiang et al.

time and hence should be grouped together. Cross-thread data affinity analysis is indis-
pensable. Moreover, existing analysis techniques are prone to various pitfalls, especially
false sharing, when applied to systems with shared cache as Section 2.2 elaborates.

Finally, we propose a two-step cache-sharing-aware reference affinity analysis to
compute the reference affinity among data objects both within the execution of a thread
and among the executions of different threads. The algorithm first uses the hierarchical
perfect matching algorithm to determine a good assignment of threads on CMP, and
then computes the reference affinity among data objects with cache sharing taken into
account. The computed affinities offer guidance to array regrouping and also help pre-
vent false sharing from being introduced. Some preliminary experiments demonstrate
the potential of the techniques for improving the performance of multithreading appli-
cations running in CMP.

The rest of this paper is organized as follows. Section 2 discusses the new opportu-
nities and challenges that parallel computing on CMP imposes on array regrouping. It
proposes a two-step cache-sharing-aware reference affinity analysis, and describes the
use of the analysis for guiding array regrouping. Section 3 reports some preliminary
results. Section 4 reviews the related work. Section 5 concludes this paper with a short
summary.

2 Array Regrouping for Multithreading Applications on CMP

Reference affinity analysis—discovering the data objects in a program that have good
reference affinity—is the key to effective array regrouping. To make array regrouping
take advantage of the complex sharing in memory hierarchy of modern CMP, we de-
velop a cache-sharing-aware reference affinity analysis for multithreading applications
running on CMP. The approach is enlightened by a frequency-based affinity analysis
proposed previously for sequential applications. This section first reviews the previous
technique, then describes cache-sharing-aware reference affinity analysis, and finally
discusses the use of the analysis for array regrouping.

2.1 Review of Basic Frequency-Based Affinity Analysis

Ding and Kennedy gave the first compiler technique for array regrouping [4]. They
defined the concept reference affinity. Later, Zhong et al. redefined reference affinity at
the trace level using reuse distance. They proposed a distance-based affinity analysis,
which offers more accurate reference affinity information, but with a high profiling
overhead.

Our current work is based on a frequency-based affinity analysis, proposed by Shen
and others [12]. This analysis uses a frequency-based model, and employs interproce-
dural program analysis to measure the access frequency in the presence of array pa-
rameters and aliases, striking a good tradeoff between the overhead of analysis and the
quality of produced results.

The analysis framework consists of five components.

– Building the control flow graph and the invocation graph with data flow analysis;
– Estimating the execution frequency through either static analysis or profiling;

Array Regrouping on CMP with Non-uniform Cache Sharing 95

– Building array access-frequency vectors using interprocedural analysis;
– Calculating the affinity between each array pair and constructing the affinity graph;
– Partitioning the graph to find affinity groups in linear time.

Our review concentrates on the frequency-based affinity model in the framework be-
cause of its close relevance to this current study. In the model, a program is regarded as
a set of code units, in particular, loops. Suppose there are K code units. Let fi represent
the total occurrences of the ith unit in the program execution, and ri(A) represent the
number of references to array A in an execution of the ith unit. The frequency vector of
array A is defined as follows:

V (A) = (v1, v2, · · · , vk)

where,

vi = 0 if ri(A) = 0;
vi = fi if ri(A) > 0.

A code unit i may have branches inside and may call other functions. The authors
of the previous work conservatively assume that a branch goes both directions when
collecting the data access. They use interprocedural analysis to find the side effects of
function calls. To save space, a bit vector substitutes the access vector of each array and
a separate vector records the frequency of code units.

The affinity between two arrays is the Manhattan distance between their access-
frequency vectors, as shown below. It is a number between zero and one. Zero means
that two arrays are never used together, while one means that both are accessed when-
ever one is.

affinity(A, B) = 1 −
∑K

i=1 |vi(A) − vi(B)|
∑K

i=1((vi(A) + vi(B))
.

The calculated affinities compose an affinity graph, from which, affinity groups are
derived. In the graph, each node represents an array, and the weight of an edge between
two nodes is the calculated affinity between them. There are additional constraints. To
be regrouped, two arrays must be compatible in that they should have the same number
of elements and they should be accessed in the same order. The data access order is not
always possible to analyze at compile time. However, when the information is available
to show that two arrays are not accessed in the same order in a code unit, the weight of
their affinity edge will be reset to zero. The same is true if two arrays differ in size.

Graph partitioning is done through a graph traversal. It merges two nodes into a
group if the affinity weight is over a threshold. After partitioning, each remaining node
is a set of arrays to be grouped together. The threshold determines the minimal amount
of affinity for array regrouping.

This frequency-based reference affinity shows good results on some sequential sci-
entific benchmarks. Next, we describe how to extend it to handle complex cache sharing
on CMP.

96 Y. Jiang et al.

2.2 Cache-Sharing-Aware Reference Affinity Analysis

The goal of cache-sharing-aware reference affinity analysis is to recognize the appro-
priate arrays in a multithreading application to regroup so that the usage of the cache in
the CMP can be maximized. We first outline the main challenges, and then describe our
solutions.

Complexities to Consider. Compared to reference affinity analyses for sequential ap-
plications, there are three-fold distinctive challenges for multithreading applications
running in CMP.

First, the non-uniform cache sharing in CMP suggests that different analyses are
necessary for threads sharing different levels of cache. Figure 3 shows an example.
Loop I reads array A and loop II updates array B. Because the two loops run in parallel,
A, B and C have good affinity, and can be regrouped together. If the two threads run
on the same core with hyperthreads enabled, the regrouping works fine. But if they run
on different cores or processors, the regrouping causes unnecessary false sharing. The
updates by thread II invalidate the cache lines that contain data to be read by thread I.
This example also demonstrate the needs for distinguishing benign and malicious data
sharing in different scenarios during the affinity analysis.

for(i=0;i<N;i++){
temp += A[D[i]] + C[D[i]]
}

(a) Loop I executed by thread 1.

for(i=0;i<N;i++){
B[D[i]] += A[D[i]]
}

(b) Loop II executed by thread 2.

Fig. 3. An example showing different analyses are needed for threads sharing different levels of
cache

The second challenge to reference affinity analysis on CMP relates to the first: Refer-
ence affinity must couple with thread binding and scheduling. Explicitly binding threads
to computing units reveals the cache sharing relation among threads and hence prepares
for the computing of inter-thread data affinity. On the other hand, the data sharing re-
lation among threads determines the best way to bind threads to computing units. The
two form a chicken-egg problem.

The third challenge facing reference affinity analysis in CMP is the timing issue. It is
important to match the code segments that are executed in parallel by different threads.
However, it is sometimes difficult to accurately determine the matching during compile
time given the pointers, aliases, and synchronization complexities; profiling may help,
but is subject to input changes.

Overview of Cache-Sharing-Aware Reference Affinity Analysis. To overcome the
various challenges, we develop a two-step reference affinity analysis. During the first
step, we employ coarse-grained thread affinity to determine the appropriate bindings of
threads to computing units. During this step, we construct a thread-affinity graph and
formulate the thread scheduling problem to a minimum-weight perfect matching prob-
lem. In the second step, we build some reference frequency vectors for each thread and
employ a hierarchical merging algorithm to compute the reference affinity and partition
program data into appropriate affinity groups.

Array Regrouping on CMP with Non-uniform Cache Sharing 97

Before proceeding to the details of the analysis, we emphasize the distinction be-
tween two terms, thread affinity and reference affinity. The former refers to the relation
between two threads—whether they have lots of data sharing; whereas, the latter refers
to the relation between two data objects—whether they are used together during the
execution of the program. Thread affinity is used during the first step of cache-sharing-
aware reference affinity analysis, and reference affinity is the key concept for the second
step.

Step 1: Scheduling Guided by Thread Affinity. We employ coarse-grained thread
affinity to facilitate the assignment of threads to computing units. The basic idea is to
arrange threads with a large volume of shared data close to each other to shorten their
data-sharing path.

The thread affinity between two threads i and j is defined as follows:

Affinityij =
|Datai

⋂
Dataj |

|Datai

⋃
Dataj |

where, Datai is the set of data accessed by thread i. Thread affinity shows how much
data is shared between two threads. It is coarse-grained, considering the entire execution
of a thread rather than each individual program construct executed by the thread. The
large granularity may loose some accuracy but gain simplicity and efficiency.

With the affinities computed for every two threads, we use a thread-affinity graph
to formulate the thread scheduling problem into a minimum-weight perfect match-
ing problem. To simplify the explanation, the following description first assumes that
the underlying architecture contains C dual-core processors without hyperthreads, and
there are T threads, where T = 2 ∗C. The scheduling problem is to assign each thread
to one core, forming a one to one matching between the threads and cores.

A thread-affinity graph is a fully connected graph, with each node representing a
thread. Each edge carries a weight, equaling (1− affinityij) for the edge between the
nodes of threads i and j, as Figure 4 illustrates.

Fig. 4. A thread-affinity graph. The thick lines compose a perfect matching for the graph, corre-
sponding to one schedule for the corresponding threads on a dual-core architecture.

After the construction of an affinity graph, the thread-core assignment problem be-
comes similar to the optimal job co-scheduling problem tackled in previous work [6].
The difference is that in the previous problem, the jobs are independent and share no
data.

98 Y. Jiang et al.

To explain the solution, we introduce two concepts in graph theory. A perfect match-
ing in a graph is a subset of edges that cover all vertices but only once. A minimum-
weight perfect matching problem is to find a perfect matching that has the minimum
sum of edge weights in a graph.

It is obvious that a minimum-weight perfect matching in an affinity graph corre-
sponds to an optimal thread-core assignment if the criterion is to maximize the sum of
the affinity values of all co-running threads. We employ a well-known polynomial-time
algorithm named blossom [5, 2] to find minimum-weight perfect matchings. The time
complexity of the algorithm is O(T 4), where T is the number of nodes.

For a CMP architecture with either hyperthreads or more than two cores per chip,
the thread scheduling problem can be solved through a hierarchical minimum-weight
perfect matching algorithm [6]. The idea is to start from the smallest computing units,
and apply the minimum-weight perfect matching algorithm iteratively.

As an example, consider a system with C quad-core chips and each core has two
hyperthreads. We have T = 8 ∗C threads to run and the goal is to assign each thread to
a hyperthread so that the total thread affinity among co-running threads is maximized.
In the first iteration, the thread-affinity graph has T nodes. After applying the minimum-
weight perfect matching algorithm, we obtain T/2 pairs of threads, which tell us which
two threads should co-run on a core. Next, we treat each pair of threads as one single
large thread and construct a new thread-affinity graph with T/2 nodes. The minimum-
weight perfect matching algorithm then produces T/4 groups of threads. We then treat
each group of threads as one single large thread and apply the operations once again.
All original threads are now partitioned into T/8 groups, and each group consists of
four pairs of original threads. The thread scheduling becomes clear: We just need to
assign each group of threads to one processor, with each pair of threads in the group
assigned to one core in the processor.

Using this hierarchical algorithm, we can approximate the optimal solution for
K-core H-hyperthread CMP by applying the minimum perfect matching algorithm
log(KH) times. The result will be a hierarchy of thread groups, corresponding to a
reasonable schedule of threads to computing units.

Step 2: Reference Affinity Analysis through Hierarchical Merging. With threads
bound to computing units, we can now analyze the reference affinity among threads
that are assigned to the same processor. Recall that the goal of reference affinity analy-
sis is to measure the reference affinity between major data objects (we concentrate on
arrays in this work) in a program and find data objects with good affinity to guide array
regrouping. Our approach consists of two stages.

In the first stage, we attempt to find array affinity groups within each single thread.
We employ the basic frequency-based affinity analysis described in Section 2.1 to do
so. By estimating the access number and the access stride of every array in each inner-
most loop, we build a reference frequency vector for each array. A reference vector of
an array A for a thread is defined as VA = (c1, c2, ..., cn), where ci is the number of
references that thread conducts to array A in the ith inner-most loop of the program.
Based on these vectors, we can build a reference-affinity graph of all the arrays for a
thread and find the affinity groups using the algorithm described in Section 2.1. After
obtaining reference-affinity groups for each thread, we need to verify that an affinity

Array Regrouping on CMP with Non-uniform Cache Sharing 99

group in one thread is indeed an affinity group of the whole program. The condition to
check for an affinity group of a thread is that for each of the other threads, that group of
arrays are either an affinity group as well or not accessed at all.

In the second stage, we deal with array affinity across the threads that run on the
same core or chip. We build two access frequency vectors for each array: One for reads,
the other for writes. The separation is important for false sharing and other reasons
mentioned in Section 2.2.

With the read and write vectors built for every thread, the next step is vector merging.
If the loop corresponding to an element in VA of thread I happens to run in parallel with
the loop corresponding to an element in VA of thread II, the two elements are summed
together to form one element in the merged vector. Figure 5 shows an example.

L1{
... = A[i]

}
L2{

... = A[i] + B[i]
}
L3{

... = B[i]
}

thread 1

L4{
... = B[i]

}
L5{

... = A[i] - B[i]
}
L6{

... = A[i]
}

thread 2

a1 b4

a2 + a5 b2 + b5

a6 b3

(array A) (array B)

(a) Code executed (b) Elements of merged read vectors

Fig. 5. An example illustrating basic merging of frequency vectors. Assume thread 1 and thread
2 are assigned on the same processor, with each executing 3 loops. The read vector of array A on
thread 1 and thread 2 are < a1, a2, 0 > and < 0, a5, a6 > respectively, where ai is the references
to A in loop i. After merging, the vector of array A becomes < a1, a2 + a5, a6 >.

To match with the hierarchical cache sharing on CMP, we apply the vector merging
in a hierarchical fashion. The hierarchy includes two levels: the hyperthread level, and
CPU core level. If the system has hyperthreads enabled, the merging is first applied to
the threads bound to the hyperthreads of a single core. This step does not distinguish
reads from writes: The read and write vectors of an array for a thread are consolidated
into one reference vector before the merging algorithm is applied. This consolidation
is because hyperthreads on one core share the entire memory hierarchy including the
cache closest to the computing units; as a result, writes by one thread to a cache line
do not invalidate the cache line read by another thread in the same core. After this first
step, we construct the reference-affinity graphs using the merged vectors and apply the
graph algorithm mentioned in section 2.1 to compute the reference affinity groups for
the data referenced by the threads on each core.

In the next step, we apply the merging algorithm to the threads running on the same
chip (assuming they share a single last-level cache). But this time, we distinguish writes
from reads and merge the two types of vectors separately. The reference affinity is
computed using only merged read vectors because of the risks of false sharing that
writes may cause. Section 2.3 will explain the uses of the affinity analysis results and
roles of write frequency vectors for array regrouping.

100 Y. Jiang et al.

The reference affinity analysis requires the knowledge of the time matching between
threads. Obtaining an accurate matching for complex programs with various synchro-
nizations may be difficult. Some previous work (e.g., [11]) on parallel program analysis
can help; detailed explorations to this issue is out of the scope of this paper. In our ex-
periments, we use the OpenMP pragmas and pthread functions in the applications as
heuristics for the matching.

The final output from the reference affinity analysis is two levels of affinity groups.
Each affinity group contains a number of arrays whose reference affinity is greater than
a predefined threshold (0.95 in our experiments). The groups in the first level correspond
to the execution of the threads bound to one core, and the groups in the second level
correspond to the execution of the threads bound to all cores on a single processor.

2.3 Array Regrouping

A straightforward way to use the affinity groups for array regrouping is just to group
the arrays that belong to a single affinity group into one. However, this simple approach
cannot work for several problems.

First, the affinity groups may conflict with one another. The conflict may exist in
two dimensions. The first dimension is among the affinity groups in the same level. For
example, two arrays may belong to the same affinity group for threads on processor 1,
but not for threads on processor 2. The second dimension is across levels. Two arrays
may belong to the same affinity group on the hyperthread level, but not on the processor
level.

How to solve the conflicts depends on the types of transformations that can be ap-
plied to the program. Sophisticated transformations may create different versions of
the relevant code segments to accommodate the different affinity groups. For instance,
threads on processor 1 may invoke the version which has A and B regrouped, while,
threads on processor 2 may run the version with A and B separated.

Our manual array regrouping produces only one version for a program. Therefore,
before the regrouping is applied, we validate the affinity groups in a whole-program,
entire-system prospective. Only the groups that show affinity on all cores are regrouped.
More sophisticated treatment will be explored in the future.

The second issue for array regrouping is to prevent regrouping from introducing false
sharing. For a reference-affinity group P = a1, a2, ..., an, where ai is an array, if ai is
written on core cp and ∃cq �= cp, aj �= ai, aj has read accesses at core cq, the compiler
checks whether its data reference pattern analysis [12] can ensure that the read-write
sharing of an array causes no false sharing. If it finds risks of false sharing or cannot
determine the risks, ai is removed from the affinity group.

3 Evaluation

This section reports some preliminary evaluation results. We use the IBM optimizer
TPO (Toronto Portable Optimizer) as the framework for implementing a prototype of
the techniques. TPO is the core optimization component in IBM XL C/C++ and FOR-
TRAN compilers. It implements both compile-time and link-time methods for intra- and
interprocedural optimizations. After getting the affinity groups, we manually conduct

Array Regrouping on CMP with Non-uniform Cache Sharing 101

regrouping transformations. To examine the benefits on different CMP architectures,
our experiments run on three types of machines, which will be described along with the
following experimental results.

We use three programs for evaluation, demonstrating three-fold benefits of the shared-
cache-aware affinity analysis and transformations respectively.

3.1 Affinity-Guided Scheduling for Streamcluster

We use the first program to examine the usefulness of the thread-affinity analysis for
guiding thread scheduling. The program is an online clustering program, named “stream-
cluster”. It originally comes from the PARSEC suite [1]. The version we use goes
through the shared-cache-aware optimizations described in a previous work [14]. Every
two sibling threads work on a chunk of data points. Each thread computes the distance
from every point in the chunk to a number of centers. In our experiments, there are eight
threads.

The computed thread affinities fall into two categories. A pair of sibling threads share
a chunk of data points. In the native inputs coming with the benchmark, the chunk
size is 1000; the thread affinity among sibling threads is 96.2%. Non-sibling threads
share nothing except a center; their affinity values are about 0. With the direction of the
affinity values, threads are scheduled such that sibling threads are bound to the same
chip.

The performance gain of the affinity-guided scheduling depends on the architecture.
On a Westmere machine (a dual-socket quad-core workstation with Westmere proces-
sors clocked at 2.53 GHz; each core has a 32 KB private L1 D-cache, 256 KB private
L2 cache; the four cores on a chip share a 12 MB L3 cache), the performance gain is
negligible. Whereas, on a a Dell PowerEdge 2950 server equipped with 2 quad-core In-
tel Xeon E5310 processors, the scheduling yields a speedup as much as a factor of 1.4
compared to the case where sibling threads are scheduled to separate chips. The main
reason for the negligible benefits on the Westmere machine is that the performance bot-
tleneck exists in the references to the remote memory in the NUMA architecture. The
scheduling benefits are overshadowed by the effects of the bottleneck. The previous
intra-thread affinity analysis is obviously insufficient to discover the cross-thread data
affinity and guide the scheduling.

3.2 Spatial Locality Enhancement for Summation

In our second experiment, we use the “summation” kernel shown in Figure 6 to demon-
strate the benefits of shared-cache-aware array regrouping in enhancing the spatial lo-
cality. We select this kernel because it is amenable for experimenting different size of
footprints and analyzing cache behaviors. Because only the first elements in a row of
the two-dimensional arrays are used in the computation, the original program has poor
spatial locality, especially when N is considerably large. This scenario may seem ar-
tificial, but in many programs where only one field of a structure or class is used in a
phase, such poor spatial locality is not rare.

For this program, the prior intra-thread reference affinity cannot recognize that arrays
A, B, and C are used at the same time. But the cross-thread reference affinity analysis

102 Y. Jiang et al.

double A[M][N], B[M][N], C[M][N];
double V[M][N], W[M][N];

// Thread 1:
 for (i=0; i< IT; i++)
 for (j=0; j<M; j++)
 V[j][0] += (A[j][0]+B[j][0]);

// Thread 2:
 for (i=0; i< IT; i++)
 for (j=0; j<M; j++)
 W[j][0] += (A[j][0]+C[j][0]);

Fig. 6. A kernel named “summation”

successfully recognizes such a reference affinity group. We measure the benefits of the
corresponding array regrouping on two architectures. One is an IBM Power 5 server
(1.7 GHz; 32 KB private L1 D-cache; 1.5 MB L2 D-cache shared by two cores), the
other is the Intel Westmere machine as described in the previous sub-section.

Figure 7 (a) shows the performance improvement on the IBM machine. The small
run (M=128, N=8) has footprint smaller than the size of L1 cache, the median run
(M=1024, N=8) larger than L1 but smaller than L2 and the large run (M=2048, N=32)
larger than L2. In each run, we control the value of “IT ” to ensure that each thread add
exactly 1000 million array elements. The “org. 2-core” bars show that because of cache
contention, the original program exhibits 5–100% performance degradation. The “opt.
2-core” bars show that array regrouping cuts the degradation by 15–70%. It is worth
noting that the “org. 2-core” of the small run is slower than that of the median run;
having more cache conflicts is the major cause—we will come back to this point in the
next sub-section.

Figure 7 (b) summarizes the speedups brought by the array regrouping on the Intel
Westmere architecture. We still use two threads and arrange them to run on the same
chip (different cores). But because of the much larger cache and higher clock frequency
than the Power 5, we use larger data sizes than before. The results show that the regroup-
ing improves the performance across all the inputs with an average speedup of 1.3. The
improvement mainly comes from the synergistic memory loading between threads and
the spatial locality improvement.

3.3 Cache Conflict Reduction for Swim

The third experiment demonstrates that array regrouping can help a program even if
it already has good spatial locality. The main benefits are the reduction of cache con-
flicts. The program we chose is “swim”, a SPEC OpenMP 2001 benchmark. Its memory
references are regular, showing good spatial locality. However, it references 14 arrays,
which tend to cause cache conflicts when multiple threads co-run together.

Our analysis finds four affinity groups (< unew, vnew, pnew >, < u, v >, < uold,
vold, pold >, < cu, cv, z, h >); we regroup each of them into one array. This regroup-
ing reduces the number of arrays to be accessed from 14 to 5, hence reducing the chance

Array Regrouping on CMP with Non-uniform Cache Sharing 103

0

5

10

15

20

25

30

35

40

45

50

small median large

org. 2-chip org. 2-core opt. 2-core

(a) On IBM Power5.

0

0.5

1

1.5

2

2.5

3

3.5

16384
4096

 8192
 4096

 4096
 8192

2048
16384

1024
32768

Matrix Size

R
u

n
n

in
g

 T
im

es
 (

se
c)

Original Regrouped

(b) On Intel Westmere.

Fig. 7. Running times of the summation kernel on two CMP architectures

of cache conflicts. Figure 8 reports the speedups on the Intel Westmere machine with
different numbers of threads assigned to various numbers of cores and hyperthreads.
They demonstrate the gains from the reduced cache conflicts. We note that even though
the reduction of cache conflicts through array regrouping may exist on unicore proces-
sors as well, it is more prominent for multithreading applications running on shared
cache, where the chance for cache conflicts is greater than in unicore scenarios. In
Figure 8, the benefits become modest for the eight-thread case because as the working
set becomes small, cache conflicts and contention in the original program become less
intensive than in the 4-thread or 2-thread cases.

0

10

20

30

40

50

60

70

1 core (2HTs) 2 cores (4HTs) 4 cores (8HTs)
Used Computing Units

R
u

n
n

in
g

 T
im

e
 (

se
c)

original regrouped

Fig. 8. Speedups of Swim

The benefits for cache conflicts reduction are sensitive to cache configurations.
In various architectures we experiment with, the transformed swim shows different
speedups. But in no cases, the transformation slows down the program executions.

4 Related Work

There have been a large number of studies on program data locality improvement. We
concentrate our discussion on some recent work closely related to data reorganizations
and software explorations to take advantage of cache sharing on CMP.

104 Y. Jiang et al.

Ding and Kennedy used array regrouping to improve program locality [4]. Their
technique interleaves the elements of two arrays if they are always accessed together.
Zhong and others used trace-level reference affinity and profiling-based method for ar-
ray regrouping and structure splitting [16]. A series of studies have explored automatic,
safe data transformations for general purpose programs [8, 15, 3]. These studies con-
centrate on sequential programs and the enhancement of locality on unicore processors
with no cache sharing.

Cache sharing exists in both SMT and CMP architectures. Its presence has drawn
some recent work in compiler research. Tullsen and others [10, 7] have proposed com-
piler techniques to change data and instructions placement to reduce cache conflicts
among independent programs. Nikolopoulos [9] has examined a set of manual code
and data transformations for improving shared cache performance on SMT processors.
In a recent study, Zhang and others [14] systematically examine the influence of cache
sharing on the performance of modern multithreading applications running on CMP,
concluding that program-level cache-sharing-aware transformation is one of the most
important approaches for maximizing the usage of shared cache. Our current work is a
step in that direction.

There are some previous work on cache-sharing-aware scheduling. Besides the op-
timal co-scheduling of independent jobs by Jiang and others mentioned in Section 2.2,
Tam and others [13] propose thread clustering to group threads that share many data
to the same processor through runtime hardware performance monitoring. As a run-
time approach, their scheduling method is heuristics-based; the affinity-based thread
scheduling presented in this paper maximizes the total affinity value.

5 Conclusion

This paper explores the special opportunities and challenges facing the use of array re-
grouping for locality enhancement of multithreading applications to improve effective
bandwidth on modern CMP architectures. It presents a cache-sharing-aware reference
affinity analysis to take cache sharing into account for analyzing memory reference pat-
terns. The analysis consists of affinity-guided thread scheduling and hierarchical vector
merging, handles cache sharing both within a core (i.e., among hyperthreads) and across
cores, and offers hints to both array regrouping and the avoidance of false sharing. Pre-
liminary experiments demonstrate the potential of the analysis for benefiting locality
improvement of multithreading applications running on CMP.

Acknowledgment

We owe the anonymous reviewers our gratitude for their helpful comments on the paper.
This material is based upon work supported by the National Science Foundation under
Grant No. 0720499, 0811791 and 0954015, along with IBM CAS Fellowship. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science
Foundation or IBM Corporation.

Array Regrouping on CMP with Non-uniform Cache Sharing 105

References

1. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: characterization
and architectural implications. In: Proceedings of International Conference on Parallel Ar-
chitectures and Compilation Techniques, pp. 72–81 (2008)

2. Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS Journal on
Computing 11, 138–148 (1999)

3. Curial, S., Zhao, P., Amaral, J.N., Gao, Y., Cui, S., Silvera, R., Archambault, R.: Memory
pooling assisted data splitting (mpads). In: Proceedings of the International Symposium on
Memory Management (2008)

4. Ding, C., Kennedy, K.: Improving effective bandwidth through compiler enhancement of
global cache reuse. Journal of Parallel and Distributed Computing 64(1), 108–134 (2004)

5. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. Journal of Research
of the National Bureau of Standards B 69B, 125–130 (1965)

6. Jiang, Y., Shen, X., Chen, J., Tripathi, R.: Analysis and approximation of optimal co-
scheduling on chip multiprocessors. In: Proceedings of the International Conference on Par-
allel Architecture and Compilation Techniques (PACT), pp. 220–229 (October 2008)

7. Kumar, R., Tullsen, D.: Compiling for instruction cache performance on a multithreaded
architecture. In: Proceedings of the International Symposium on Microarchitecture, pp. 419–
429 (2002)

8. Lattner, C., Adve, V.: Automatic pool allocation: improving perfor- mance by controlling
data structure layout in the heap. In: Proceedings of the ACM SIGPLAN Conference On
Programming Language Design and Implementation (2005)

9. Nikolopoulos, D.: Code and data transformations for improving shared cache performance
on SMT processors. In: Proceedings of the International Symposium on High Performance
Computing, pp. 54–69 (2003)

10. Sarkar, S., Tullsen, D.: Compiler techniques for reducing data cache miss rate on a mul-
tithreaded architecture. In: Proceedings of The HiPEAC International Conference on High
Performance Embedded Architectures and Compilation, pp. 353–368 (2008)

11. Sarkar, V.: Analysis and optimization of explicitly parallel programs using the parallel pro-
gram graph representation (1997)

12. Shen, X., Gao, Y., Ding, C., Archambault, R.: Lightweight reference affinity analysis. In:
Proceedings of the 19th ACM International Conference on Supercomputing, Cambridge,
MA (June 2005)

13. Tam, D., Azimi, R., Stumm, M.: Thread clustering: sharing-aware scheduling on SMP-CMP-
SMT multiprocessors. SIGOPS Oper. Syst. Rev. 41(3), 47–58 (2007)

14. Zhang, E.Z., Jiang, Y., Shen, X.: Does cache sharing on modern cmp matter to the perfor-
mance of contemporary multithreaded programs? In: PPoPP 2010: Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 203–
212 (2010)

15. Zhao, P., Cui, S., Gao, Y., Silvera, R., Amaral, J.N.: Forma: A framework for safe automatic
array regrouping. ACM Transactions on Programming Languages and Systems (2) (2007)

16. Zhong, Y., Orlovich, M., Shen, X., Ding, C.: Array regrouping and structure splitting using
whole-program reference affinity. In: Proceedings of ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 255–266 (June 2004)

Sublimation: Expanding Data Structures to
Enable Data Instance Specific Optimizations

Harmen L.A. van der Spek and Harry A.G. Wijshoff

Leiden University, LIACS, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Abstract. Knowledge of specific properties of input data should influ-
ence the compilation process, as different characteristics of input data
might have different optimal solutions. However, in many applications,
it is far from obvious how this can be achieved, as irregularity in pro-
gram code prevents many optimizations from being applied. Therefore,
we propose a two-phase compilation system, which in the first phase an-
alyzes the code and transforms it into a regular intermediate code using
a technique we call sublimation. Sublimation is a process in which dif-
ferent access functions in code are remapped using a common, injective
access function. The resulting, regular intermediate code is compiled in
a second phase, when the actual data input set is known. This allows
for optimizations that compile the regular intermediate into a new code
that uses data structures especially tailored to the input data provided.
We evaluate this compilation chain using three sparse matrix kernels and
show that our data instance specific optimization can provide consider-
able speedups.

1 Introduction

For practical reasons, data structure selection and its actual mapping onto hard-
ware do not necessarily match with the logical structure of a problem. Often, a
single solution is implemented that is supposed to fit a wide range of problem
instances. This, however, is very unlikely to yield optimal performance on the
entire range of input sets. Each problem instance has its own characteristics,
which are not taken into account by the “one solution fits all” implementation.

An obvious example is sparse matrix representation. Many different storage
mechanisms have been proposed, each of which has its applications for specific
instances of a more general problem, for instance, solving a sparse system of
linear equations. This diversity in implementations, each of which is tailored to
specific properties of a problem at hand, is a nightmare from a code management
point of view. For each different class of problems, new code should be written.
In practice, sub-optimal performance will be the result of this trade-off between
implementation effort and efficiency.

Many proposals to optimize irregular and sparse applications have been made
recently. Most, if not all, of these proposal rely heavily on extensive run-time
analysis [10, 5, 9]. Although these techniques themselves might work very well,

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 106–120, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Expanding Data Structures to Enable Data Instance Specific Optimizations 107

they suffer from the fact that the overhead incurred by these run-time mecha-
nisms must be amortized over multiple runs or iterations. To optimize specifically
for each input set, a code using these run-time mechanisms is generally not feasi-
ble. So in order to allow data instance specific optimizations, other mechanisms
are needed.

In this paper, we propose a very ambitious and aggressive compilation tra-
jectory to overcome the issues described above and to allow for data instance
specific optimization. Basically, our approach relies on the fact that for large
scale simulation codes, like circuit simulation, structural mechanics, computa-
tional fluid dynamics, etc., the reference codes which are used have a long life
cycle. Although these codes employ libraries to exploit specific architectural fea-
tures, in general, it is a major and error-prone task to rewrite these codes and
optimize them for a specific problem at hand.

In our approach, these codes will be aggressively analyzed, both at compile
and run-time, and they will be automatically expanded into a form which al-
lows compiler optimizations to be much more effective. Also, other compiler
optimizations are enabled, which optimize these codes for specific problem in-
stances. We envision that this whole transformation chain is split into two parts.
The first part consists of compile and run-time analysis, combined with itera-
tion space expansion and will happen at the vendor/code owner’s site. So even
before the code is shipped to the customer, the code is prepared, instrumented
and expanded. Because this is done on a per customer basis, the amount of time
it takes to prepare this code can be considerable. In this phase, representative
data sets can be used to identify access patterns that are likely to be useful
for restructuring later. In the second phase, after the code is installed at the
customer’s site, “back-end” compiler optimizations take place, which not only
optimize for specific architectural features of the computing platform, but also
take the specific characteristics of the problem to be solved into account. In the
second phase, the overhead incurred by these compiler optimizations should be
minimized.

One might wonder why the code resulting from the first phase cannot be
directly provided by the code owner. However, if this approach would be taken,
the code owner must maintain multiple versions of the code, as different problem
domains show different data usage patterns. A major advantage of this approach
is that the code owner only has to maintain one reference code and not multiple
versions of his codes for the different customers. Note that the different versions
of the code, which otherwise have to be maintained, differ in an essential way,
in the sense that they are based on different data structure choices. Therefore,
this effort would go far beyond common practice, in which the code owners just
have to maintain differently configured versions of its code base for the different
customers.

In this paper, we mainly describe the first phase of this compilation chain,
where we specifically describe the way the code could potentially be expanded.
This expansion is based on the notion of sublimation, in which data structures
used are being embedded into enveloping data structures, such that proper data

108 H.L.A. van der Spek and H.A.G. Wijshoff

dependence analysis can be performed in the second phase. In fact, sublimation
converts indirect addressed based loops into loop structures that do not contain
indirect addressing and therefore can be analyzed by classical methods. In order
to enable this sublimation as a preparatory phase, the pointer-based codes are be-
ing transformed into (indirect addressed) array-based codes using pool allocation
and structure splitting. Although this in itself is a challenging problem, recent
results show that this can be solved using compile-time techniques [6, 3, 13, 14].
This phase will be extended by automatically generated compiler instrumenta-
tion (for tracing memory pool accesses [13]), which uses run-time information to
identify regions in which indirections are referring to distinct objects. This infor-
mation is used in the expansion phase to further eliminate indirect addressing,
yielding indirection free, array-based code which can therefore can be analyzed
by standard compiler optimizations. This representation of the code is then an-
alyzed at the customer’s site together with the characteristics of the specific
problem instance to be solved to obtain a problem/architectural optimized im-
plementation of the code. This last phase is based on compilation techniques
that optimize dense codes together with a non-zero pattern specification into an
optimized sparse implementation [2].

Within the scope of this paper, we will not be able to describe all the specifics
of each of these phases, but we will mainly concentrate on the sublimation/
expansion process. As already described, the overall compilation chain is very
ambitious, but it is our belief that such an approach is needed in the future to
tackle the problems faced when implementing data specific optimizations.

This paper is organized as follows. Using an array-based representation of a
pointer-based application, which can be obtained by applying the transforma-
tions described by Van der Spek et al. [13, 14], sublimation, (the technique to
embed data structures into an enveloping data structure) is explained in Sec-
tion 2. We have applied sublimation to three sparse matrix kernels, which are
sparse matrix vector multiplication, Jacobi iteration and a direct solver using
an LU-factorized matrix. The derivation using sublimation is done in Section 3.
The kernels have been optimized using a variety of different input matrices and
the results are presented in Section 4, which also evaluates and describes the
overhead of the compilation chain in the second phase. Section 5 concludes our
paper.

2 Sublimation

The basic idea behind sublimation is to transform a code using indirect ad-
dressing into a dense code, thereby eliminating the occurrence of indirect ad-
dressing entirely. So for example, we want to transform a code using compressed
row format-based to represent sparse matrices into a dense code using com-
piler transformations. In this section, we describe how this could be achieved by
first restructuring access to arrays to conform to a common access pattern. By
transferring the indirection from the loop body to the header, followed by an
expansion of the iteration space, a regular intermediate code is obtained.

Expanding Data Structures to Enable Data Instance Specific Optimizations 109

Prototypes of these techniques have been implemented [15,11]. These address
either simple indirect addressing based loops or nicely nested pointer traversal
loops. These implementations have not yet been extended to use pool-allocated
data structures. For the sake of a concise description, we will describe these
transformations using generic code samples.

Note that sublimation is part of the first phase of the compilation process.
Therefore, the overhead needed when implementing the transformations as de-
scribed in this section is only incurred once. In the second phase, the data in-
stance specific optimizations will have to be much more efficient.

The example codes all use an array-based representation. However, Van der
Spek et al. have recently shown that type-homogeneous data structures that are
pool-allocated can be rewritten using an indirection array-based style [14]. This
paper also describes a method to detect invariant loop traversal patterns which
can be replaced by counted loop structures. This invariance is used to obtain a
countable iteration space for data dependent loop structures whose conditions
are proved to be constant with respect to a specific program region. In the
remainder of this paper, we express our transformations using the indirection
array-based version of the pointer-based codes, and thus assume that pointers
and data dependent while loops have been eliminated using the techniques in
the paper cited above.

The analysis and code generation presented in this section which eliminate
indirection consists of three (sub)phases. First, data access functions are deter-
mined, which ensures that data access patterns in the loop body are aligned. In
the second phase, the indirection is eliminated in the loop body and transferred
to the loop header. Subsequently, in the third phase, the irregular iteration space
is embedded into a containing iteration space, with known loop bounds.

2.1 Data Access Restructuring

Consider the following loop structure:

for (i=0; i<n; i++) {
...A[i]...
...B[C[i]]...

}

In this loop, two arrays are accessed using the iteration counter i and the index
array C, which basically is a function of the iteration counters. An obvious choice
to restructure data in this loop is to restructure array B in order to follow the
same access pattern as A.

for (i=0; i<n; i++) {
...A[i]...
...B’[i]...

}

Where B′ is defined as: ∀i, 0 ≤ i ≤ n : B′[i] = B[C[i]]. While this gather
operation is the most obvious choice for restructuring, we will focus on another

110 H.L.A. van der Spek and H.A.G. Wijshoff

choice, which is sublimation of array A, by changing its regular access pattern
into the same irregular access pattern of B. In this case, the code is transformed
into:

for (i=0; i<n; i++) {
...A’[C[i]]...
...B[C[i]]...

}

In the resulting code, both the arrays are accessed using the same access
pattern. Of course, the restructuring of the arrays must meet certain criteria in
order to be valid. All values used in the original array must be preserved in the
target array and in case an array is written to, data should not be duplicated.

Generally speaking, let f(I) and g(I) denote the new and original access
functions, respectively. An access function is defined as a function that maps
a point from the iteration space into an integer offset. In the example above,
f(i) = C[i] (access using index array) and g(i) = i (the iteration counter). The
following condition must hold if f(I) is used to access data that is being read:
∀I, J : I �= J → f(I) �= f(J) (thus, f is an injective function). If f(I) is used to
index an array that is written to, then the injectivity of f(I) is not sufficient. In
that case, the original access function must also be injective, in order to avoid
duplication of data originating from the same location in memory. For writes,
the following condition must hold: ∀I, J : I �= J → (f(I) �= f(J) ∧ g(I) �= g(J))
(both f and g are injective functions).

2.2 Identifying Injective Functions in Code

The notion of sublimation that was explained in the previous section was based
on a simple regular access pattern combined with an indirect access pattern. In
general, the simple regular access pattern can be extended to any injective access
pattern derived from loop counters. Such patterns naturally arise in counted loop
structures. From such loop structures, the iteration space and a total ordering
of its traversal can be determined at compile-time. On this total order T , a
bijective mapping h : T → Zn to the iteration space can be defined. Using
this bijective mapping, all of the techniques described above are generalized to
multi-dimensional iteration spaces.

Within a loop, multiple access patterns can be identified, each of which is a po-
tential candidate to be used as the access function to which other access functions
adapt. This adaptation is what the notion of sublimation refers to. While not all
access functions are injective, all access functions can be made injective with re-
spect to the containing loop structure by expanding their dimensionality. We will
clarify this using the example shown in Figure 1a. This code computes a sparse
matrix vector product. The addressing expressions that can be derived from this
code sample are: i, k and ColIdx[k]. Of these, colIdx[k] is injective with respect
to every single iteration of the inner loop and k is injective across the entire
iteration space. This can be specified in a directive (as done in our example) or
we can choose to speculate on this property and check injectiveness at run-time.

Expanding Data Structures to Enable Data Instance Specific Optimizations 111

#pragma INJECTIVE(k)
for (i=0; i<n; i++) {
#pragma INJECTIVE(colIdx[k])

for (k=start[i]; k<start[i+1]; k++) {
result[i] += M[k] * right[colIdx[k]];

}
}

for (i=0; i<n; i++) {
for (k=start[i]; k<start[i+1]; k++) {

result[i] += M’[i,colIdx[k]] *
right[colIdx[k]];

}
}

(a) (b)

Fig. 1. Example of injective access functions

In this example, colIdx[k] is not injective across the entire iteration space. By
extending the access function using one of the dimensions of the iteration space,
a new, injective function is obtained. In our example, the new injective function
is f(i, k) = (i, colIdx[k]). The resulting loop structure that is obtained (the
#pragma statements are left out) is shown in Figure 1b. Note that this resulting
code is never directly executed. It only serves as an intermediate code. In this
code, M’[i, colIdx[k]] = M[k].

2.3 Eliminating Indirect Addressing in the Loop Body

Irregularity can be present both in the loop header as well as in the loop body.
With irregularity, we mean any property that cannot be statically determined.
This includes, data dependent loop conditions and unpredictable memory ref-
erence patterns [12]. In our example, the lower and upper bound of the inner
loop are data dependent and thus irregular. The inner loop is a counted loop,
which in itself defines an injective function. This injective property can be used
to transfer the irregular access that still exists within the inner loops to the loop
header. Let the original iteration space be Δ and let h be an irregular access
function within the loop. Then the irregular access function can be transferred
to the loop header as follows:

for (I ∈ Δ) {
...A’[h(I)]...

}

is transformed to: for (I’ ∈ h(Δ)) {
...A’[I’]...

}

Applied to our example, the irregular access function defined by the index array
expression colIdx[k] is dependent on the inner loop counter, and the access
function can be transferred to the loop bounds of the inner loop:

for (i=0; i<n; i++) {
for (q ∈ { colIndex[start[i]], colIndex[start[i]+1],

..., colIndex[start[i+1]-1] }) {
result[i] += M’[i, q] * right[q]];

}
}

The irregularity has now been transferred from the loop body to the loop header.

2.4 Expanding the Iteration Space

The resulting loop header is still data dependent and thus irregular. This form of
irregularity can be eliminated by expanding the iteration space to a space that

112 H.L.A. van der Spek and H.A.G. Wijshoff

encompasses the entire iteration space using a fixed interval that is large enough
to contain all of the elements of the original iteration space. The fact that this
can be done, relies on the property that statements of the following form do not
have any effect:

(1) A = A + 0
(2) A = A ∗ C, if A is zero.

Therefore, any extraneously executed statements will not change the semantics
of programs. Such statements naturally occur in numerically intensive applica-
tions, and therefore this method is suitable for large scale simulation codes as
mentioned in the introduction.

In general, let Δ be the iteration space after transferring the indirect access to
the loop header as described in the previous section. Let Ω be the new iteration
space that extends Δ (Ω ⊇ Δ). The injective function g is the extended function
of the original access function f . If A is the result of sublimation on an array,
the array A′ used in the expanded iteration space is defined as follows: ∀I ∈ Ω :
A′[g(I)] = A[f(I)] if I ∈ Δ, 0 if I ∈ Ω\Δ.

Applied to our example code, the iteration space can be extended by trans-
forming the inner loop to a counted loop with a range that covers all possible
values. The new access function is still (i, q), but q covers a larger range of values.

for (i=0; i<n; i++) {
for (q=0; q<MAX INT; q++) {

result[i] += M’’[i, q] * right[q]];
}

}

Note that this code is an intermediate code, and therefore is never executed.
The loop bounds here are taken very conservatively. Using directives or results
from other analyses, a smaller iteration space could be used. Eventually, this
intermediate is recompiled and proper loop bounds are generated. Note that the
definition of M ′ needs to be changed, in order to specify the zero elements:

∀(i, q) : if q ∈ {colIndex[start[i]], . . . , colIndex[start[i + 1]− 1]}
M ′′[i, q] = M ′[i, q]

else
M ′′[i, q] = 0

2.5 Restructuring in the Application Context

To summarize, the iteration space and data redefinitions are depicted in pseudo-
code sample in Figure 2. It should be noted again that this code should not
be viewed as code that will be executed. The extended iteration space Ω, for
example, might be huge (read: unfeasible to traverse) and the code samples above
either serve as semantic definitions or are compiled to a data-instance specific
optimized code.

Expanding Data Structures to Enable Data Instance Specific Optimizations 113

...
/* Loop kernel */
for (I ∈ Δ) {

...A[f(I)]...
}
...

→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...
/* Initialization of zero space */
for (I ∈ Ω) {

A’[g(I)] = 0;
}
/* Sublimation of array A */
for (I ∈ Δ) {

A’[g(I)] = A[f(I)];
}

/* Loop kernel */
for (I ∈ Ω) {

...A’[g(I)]...
}
/* Write-back stage */
for (I ∈ Δ) {

A[f(I)] = A’[g(I)];
}
...

Fig. 2. Summary of sublimation and the embedding in a regular, expanded iteration
space

3 Application of Sublimation to Pointer-Based Matrix
Kernels

We have applied sublimation on three sparse matrix kernels, that use orthog-
onally linked lists to store the matrix data. The three kernels considered are
sparse matrix multiplication, sparse Jacobi iteration and a direct sparse solver
using an LU-factorized matrix, and are taken from SPARK00 [12]. These kernels
have been transformed to an array-based representation using the transforma-
tions described by Van der Spek et al. [14]. On each of these kernels, sublimation
is applied, causing the array representation of the matrix values to be extended.
Although all programs use the orthogonally linked list representation for sparse
matrices, the difference in traversal patterns may lead to completely different im-
plementations for different kernels. In this section, the transformation of each of
the three kernels is described and characteristic features of each of these kernels
are explained.

3.1 Sparse Matrix Vector Multiply

Sparse matrix vector multiplication is an important kernel in many applications.
Figure 3 shows the code samples while the code is being transformed. We start
with the array-based code resulting from the pointer to array conversion. In this
code, the variable k is increased in the inner loop body. Therefore, k defines
an injective access pattern. The values that k takes for each inner loop can be
determined during the pointer to array conversion and results in a loop structure
where the bounds of k are defined in the loop header.

We pick the access pattern colIdx[k] to be used for sublimation and redefine
M accordingly. As explained in Section 2.2, access functions that are not injective
can be made injective by extending them using a dimension from the iteration
space. In this case, it is extended using the iteration counter i. Injectivity must
be determined either by using directives or by run-time analysis.

Subsequently, the indirection is moved to the loop header, after which the
iteration space is expanded, using the property that the access function is injec-
tive with respect to the inner loop. The resulting dense intermediate code will
be optimized later when the actual data set has been loaded at run-time.

114 H.L.A. van der Spek and H.A.G. Wijshoff

k=0;
for (i=0; i<n; i++) {

for (j=0; j<limj[i]; j++) {
result[i] += M[k] * right[colIdx[k]];
k++;

}
}

for (i=0; i<n; i++) {
for (k=start[i]; k<start[i+1]; k++) {

result[i] += M[k] * right[colIdx[k]];
}

}

(a) Pointers transformed to arrays (b) Injective inner loop

for (i=0; i<n; i++) {
for (k=start[i]; k<start[i+1]; k++) {

result[i] += M’[i,colIdx[k]] *
right[colIdx[k]];

}
}

for (i=0; i<n; i++) {
for (q=0; q<INT MAX; q++) {

result[i] += M’’[i,q] * right[q];
}

}
(c) Sublimation of M to M’ (d) Transferred and expanded loop bounds

Fig. 3. Starting point for code analysis and sublimation of sparse matrix vector multiply

3.2 Jacobi Iteration

Figure 4 shows the code for Jacobi iteration while it is being transformed. Jacobi
iteration has the interesting property that it consists of two inner loops. These
loops originate from the pointer-based code, where elements before and after the
diagonal are traversed in separate loops, while storing the diagonal entry to a
temporary variable. In the array-based version shown here, the diagonal entries
are stored in the array diag. Therefore, the loops can now be merged into a
single loop. Similar as in the sparse matrix multiplication code, k is injective
and can be transferred to the inner loop by storing the lower and upper bounds
per execution of the inner loop.

The sublimation process and iteration space expansion follow the same pattern
as previously. It should be noted, though, that the definition of M ′′ will not include

k = 0;
for (h=0; h<hlim; h++) {

for (i=0; i<ilim[h]; i++) {
x 2[h] -= M[k] * x 1[colIdx[k]];
k++;

}

for (j=0; j<jlim[h]; j++) {
x 2[h] -= M[k] * x 1[colIdx[k]];
k++;

}
x 2[h] = x 2[h] / diag[h];

}

for (h=0; h<hlim; h++) {
for (k=start[h]; k<start[h+1]; k++) {

x 2[h] -= M[k] * x 1[colIdx[k]];
}
x 2[h] = x 2[h] / diag[h];

}

(a) Pointers transformed to arrays (b) Fused injective inner loop

for (h=0; h<hlim; h++) {
for (k=start[h]; k<start[h+1]; k++) {

x 2[h] -= M’[h,colIdx[k]]*x 1[colIdx[k]];
}
x 2[h] = x 2[h] / diag[h];

}

for (h=0; h<hlim; h++) {
for (q=0; q<INT MAX; q++) {

x 2[h] -= M’’[h,q]*x 1[q];
}
x 2[h] = x 2[h] / diag[h];

}
(c) Sublimation of M to M’ (d) Transferred and expanded loop bounds

Fig. 4. Starting point for code analysis and sublimation of Jacobi iteration

Expanding Data Structures to Enable Data Instance Specific Optimizations 115

entries from the main diagonal, as these are separately stored in the array diag.
While looking similar to sparse matrix multiplication, the missing diagonal might
lead to different optimization choices in the optimization back-end.

3.3 Direct Solver

The results of the transformation steps on the direct solver are shown in Figure 5.
Characteristic for the kernel is the use of two different index arrays, one using row
indices (rowIdx) upon column-wise traversal of the matrix and one using column
indices (colIdx) upon row-wise traversal. The lower triangle of the matrix is tra-
versed column-wise (first loop), the upper triangle is traversed row-wise (second
loop). Indirect access is both present in reads of arrays as well as in writes.

I = 1; k = 0;
for (g=0; g<glim; g++) {
Temp = Intermediate[I];
Temp = Temp / pivot[g];
Intermediate[I] = Temp;
for (m=0; m<mlim[i]; m++) {

Intermediate[rowIdx[k]] -= Temp * M[k];
k++;

}
I++;

}

I2 = Size; k2 = 0;
for (h=0; h<hlim; h++) {
Temp = Intermediate[I2];
for (n=0; n<nlim[h]; n++) {

Temp -= M2[k2]*Intermediate[colIdx[k2]];
k2++;

}
Intermediate[I2] = Temp;
I2--;

}

for (g=0; g<glim; g++) {
Temp = Intermediate[g+1];
Temp = Temp / pivot[g];
Intermediate[g+1] = Temp;
for(k=start[g]; k<start[g+1]; k++) {

Intermediate[rowIdx[k]] -= Temp * M[k];
}

}

I2 = Size;
for (h=0; h<hlim; h++) {
Temp = Intermediate[I2];
for(k2=start2[h]; k2<start2[h+1]; k2++) {

Temp -= M2[k2]*Intermediate[colIdx[k2]];
}
Intermediate[I2] = Temp;
I2--;

}

(a) Pointers transformed to arrays (b) Injective inner loops

for (g=0; g<glim; g++) {
Temp = Intermediate[g+1];
Temp = Temp / pivot[g];
Intermediate[g+1] = Temp;
for(k=start[g]; k<start[g+1]; k++) {

Intermediate[rowIdx[k]] -= Temp *
M’[g,rowIdx[k]];

}
}

I2 = Size;
for (h=0; h<hlim; h++) {
Temp = Intermediate[I2];
for(k2=start2[h]; k2<start2[h+1]; k2++) {

Temp -= M2’[h,colIdx[k2]] *
Intermediate[colIdx[k2]];

}
Intermediate[I2] = Temp;
I2--;

}

for (g=0; g<glim; g++) {
Temp = Intermediate[g+1];
Temp = Temp / pivot[g];
Intermediate[g+1] = Temp;
for(q=0; q<INT MAX; q++) {

Intermediate[q] -= Temp * M’[g,q];
}

}

I2 = Size;
for (h=0; h<hlim; h++) {
Temp = Intermediate[I2];
for(r=0; r<INT MAX; r++) {

Temp -= M2’’[h,r] * Intermediate[r];
}
Intermediate[I2] = Temp;
I2--;

}

(c) Sublimation of arrays M and M2 (d) Transferred and expanded loop bounds

Fig. 5. Starting point for code analysis and sublimation of a direct solver

116 H.L.A. van der Spek and H.A.G. Wijshoff

In the code, the data has been segmented in two different arrays, M and M2,
representing the lower triangle and upper triangle, respectively. k and k2 define
an injective access pattern, and are put in the inner loops with corresponding
lower and upper loop bounds. In the first loop, the variable i is an induction
variable and is replaced by g + 1. In the first loop, M is sublimated using the
access function rowIdx[k], while in the second loop M2 is sublimated using the
access pattern colIdx[k2]. After transferring indirect addressing and expanding
the iteration space, the intermediate dense code specifies two dense matrices,
each representing the lower and upper triangle of the input matrix. Similar as in
Jacobi iteration, the main diagonal is not part of the M ′′ or M2′′, but is stored
separately in the array pivot.

4 Experiments

The sparse matrix kernels, on which sublimation has been applied, have been
optimized and executed using a variety of matrices from Davis’s University of
Florida Sparse Matrix Collection [4]. Not all data sets that are used in the sparse
matrix multiplication are used in Jacobi iteration because input matrices for
Jacobi iteration cannot contain zero entries on the diagonal. For the direct solver,
the matrices have been LU-factorized prior to running the program. Matrices
taking excessive time to factorize have not been used.

The dense intermediate codes derived in the previous section are compiled to
a data set-specific implementation of the kernel. In our experiments, we use the
MT1 compiler as our back-end [2]. MT1 compiles a dense specification together
with the specification of the non-zero patterns and produces a data set-specific
optimized implementation. The access patterns can be obtained by instrument-
ing the code obtained by the methods proposed by Van der Spek et al. [14].
All experiments have been run on Intel Core 2 Duo 2.33GHz system with 2GiB
of main memory, running Mac OS X 10.6.2. The programs are compiled using
GCC 4.2.1 using the options ’-O3 -ftree-vectorize’.

First, we will present the results of the recompiled kernel that uses the dense
code as input and the access patterns as defined by the specific input matrix.
Next, the overhead of the dynamic code-generation is assessed. Note that in the
first phase of our overall compilation process, the overhead can be substantial.
However, when transforming the intermediate (dense) code into a data instance
specific code, which belongs to the second phase of the overall compilation pro-
cess, the overhead should be minimized.

4.1 Results on Sparse Matrix Kernels

As soon as the data is loaded from the input file and it is determined that
the access pattern of the kernel will remain static (as described by Van der
Spek et al. [14]), the code resulting from sublimation together with a definition
of the access patterns is compiled using the MT1 compiler. The overhead is
measured separately, as this is constant for each kernel and data set combination.
Including the overhead in the kernel execution time yields arbitrary results. In

Expanding Data Structures to Enable Data Instance Specific Optimizations 117

many cases, iterative numerical solution methods require multiple executions of
a sparse matrix kernel with a right hand side vector which converges to the
correct solution. In each of these subsequent iterations, the underlying structure
of the matrix does not change. So, by increasing the number of iterations, the
overhead per iteration can be made as small as desired. Therefore, we will show
more details about the overhead in the next section, and here we will focus on
the performance of the kernel itself.

Figure 6 shows the speedups obtained by running the optimized kernels. In
these figures, the data sets are sorted by increasing size from left to right. For
each of these kernels, we can observe that the restructuring methods are most
suitable for the larger data sets, while the optimizations do not negatively effect
performance for the small data sets, in general. The bars are annotated with the
break-even points (×1000 iterations).

As we can see, the speedups can be substantial. Although the data structure
layout for the original kernels have been optimized and take into account the

O
be

rw
ol

fa
ch

/L
F

10
H

B
/im

pc
ol

_b
B

ai
/r

w
13

6
R

aj
at

/r
aj

at
11

H
B

/b
cs

st
m

09
S

an
di

a/
os

ci
l_

tr
an

s_
01

H
B

/6
62

_b
us

H
B

/s
tr

_2
00

N
or

ris
/lu

ng
1

B
oe

in
g/

bc
ss

tm
34

va
nH

eu
ke

lu
m

/c
ag

e9
Z

itn
ey

/r
di

st
3a

H
ol

lin
ge

r/
ja

n9
9j

ac
04

0
S

an
di

a/
A

S
IC

_1
00

ks
N

or
ris

/h
ea

rt
3

V
an

V
el

ze
n/

Z
d_

Ja
c3

_d
b

A
C

U
S

IM
/P

re
s_

P
oi

ss
on

B
oe

in
g/

bc
ss

tk
36

N
D

/n
d3

k

S
pe

ed
up

0

1

2

3

4

5 −
16

72
6.

9
90

25
.0

15
94

.4 −
16

92
.9

89
6.

6
30

1.
7

80
.4

56
.3

31
.2

21
.3

15
.9 2.
8

2.
9

2.
7

2.
8

2.
8

2.
6

O
be

rw
ol

fa
ch

/L
F

10

H
B

/6
62

_b
us

N
or

ris
/lu

ng
1

B
oe

in
g/

bc
ss

tm
34

va
nH

eu
ke

lu
m

/c
ag

e9

S
an

di
a/

A
S

IC
_1

00
ks

V
an

V
el

ze
n/

Z
d_

Ja
c3

_d
b

A
C

U
S

IM
/P

re
s_

P
oi

ss
on

B
oe

in
g/

bc
ss

tk
36

N
D

/n
d3

k

S
pe

ed
up

0

1

2

3

4

5 −

53
7.

2

36
5.

5

54
.1

21
.6 3.
2

3.
6

3.
6

3.
6

3.
6

(a) Sparse matrix vector multiply (b) Jacobi iteration

O
be

rw
ol

fa
ch

/L
F

10

H
B

/6
62

_b
us

B
ai

/r
db

45
0l

B
oe

in
g/

bc
ss

tm
34

B
oe

in
g/

cr
ys

tm
01

va
nH

eu
ke

lu
m

/c
ag

e9

S
pe

ed
up

0

1

2

3

4

5

12
29

46
.8

40
9.

8

96
.6

13
.0 1.
9

1.
4

(c) Direct solver

Fig. 6. Speedups obtained on the data set specific optimized kernels. The numbers
show the break-even point (×1000 iterations).

118 H.L.A. van der Spek and H.A.G. Wijshoff

O
be

rw
ol

fa
ch

/L
F

10
H

B
/im

pc
ol

_b
B

ai
/r

w
13

6
R

aj
at

/r
aj

at
11

H
B

/b
cs

st
m

09
S

an
di

a/
os

ci
l_

tr
an

s_
01

H
B

/6
62

_b
us

H
B

/s
tr

_2
00

N
or

ris
/lu

ng
1

B
oe

in
g/

bc
ss

tm
34

va
nH

eu
ke

lu
m

/c
ag

e9
Z

itn
ey

/r
di

st
3a

H
ol

lin
ge

r/
ja

n9
9j

ac
04

0
S

an
di

a/
A

S
IC

_1
00

ks
N

or
ris

/h
ea

rt
3

V
an

V
el

ze
n/

Z
d_

Ja
c3

_d
b

A
C

U
S

IM
/P

re
s_

P
oi

ss
on

B
oe

in
g/

bc
ss

tk
36

N
D

/n
d3

kF
ra

ct
io

n
of

 T
ot

al
 O

ve
rh

ea
d

[%
]

0

20

40

60

80

100
2.

31
s

1.
94

s
1.

94
s

1.
95

s
2.

01
s

2.
32

s
1.

96
s

1.
98

s
2.

03
s

2.
20

s
2.

40
s

2.
62

s
3.

28
s

8.
87

s
10

.5
2s

10
.3

8s
10

.3
4s

15
.5

2s
46

.8
1s

O
be

rw
ol

fa
ch

/L
F

10

H
B

/6
62

_b
us

N
or

ris
/lu

ng
1

B
oe

in
g/

bc
ss

tm
34

va
nH

eu
ke

lu
m

/c
ag

e9

S
an

di
a/

A
S

IC
_1

00
ks

V
an

V
el

ze
n/

Z
d_

Ja
c3

_d
b

A
C

U
S

IM
/P

re
s_

P
oi

ss
on

B
oe

in
g/

bc
ss

tk
36

N
D

/n
d3

kF
ra

ct
io

n
of

 T
ot

al
 O

ve
rh

ea
d

[%
]

0

20

40

60

80

100

2.
32

s

1.
96

s

2.
02

s

2.
31

s

2.
54

s

10
.0

4s

13
.2

6s

13
.0

8s

20
.1

4s

62
.5

3s

(a) Sparse matrix vector multiply (b) Jacobi iteration

O
be

rw
ol

fa
ch

/L
F

10

H
B

/6
62

_b
us

B
ai

/r
db

45
0l

B
oe

in
g/

bc
ss

tm
34

B
oe

in
g/

cr
ys

tm
01

va
nH

eu
ke

lu
m

/c
ag

e9F
ra

ct
io

n
of

 T
ot

al
 O

ve
rh

ea
d

[%
]

0

20

40

60

80

100

2.
14

s

2.
20

s

2.
29

s

3.
19

s

11
.5

0s

17
.8

9s

Other
Initialization
Optimization/Code Generation
Structure Analysis
Restructuring

(c) Direct solver (d) Legend

Fig. 7. Contribution of different phases to the overhead of run-time compilation of
the dense intermediate with data set dependent access pattern to a data set specific
implementation. The time plotted at the top of each bar is the total time spent in
run-time compilation.

sparsity of the data, they have not been optimized for specific non-zero structure
information. As a result of our transformations, these original codes are com-
pared to kernels which are specifically optimized for a particular input matrix.

4.2 Overhead

While the application of sublimation is a compile-time analysis and transforma-
tion, which generates the dense intermediate code, the data set specific com-
pilation is deferred to run-time. At run-time, the final re-targeting of the code
using input data set dependent access patterns is performed before the kernel is
executed.

Figure 7 shows the overhead for the run-time compilation for the kernels with
their different input data sets. For the smaller data sets, it is clear that the

Expanding Data Structures to Enable Data Instance Specific Optimizations 119

majority of the time is spent in optimization and code generation (this is the
generation of a shared library). This is caused by the fact that this is a fairly
constant factor, as this consists of compiling the code emitted by MT1 (using for
example GCC) into a binary. More complicated code could be emitted for larger
data sets, but this only results in a relatively small increase in compilation time
(observed times for this phase range from 0.27s − 4.37s). For the larger data
sets, restructuring, structure analysis and initialization (loading data using the
restructured data layout) are the dominating factors.

5 Conclusions

In this paper, we proposed a two-phase approach to the optimization of appli-
cations. The first phase consists of compile-time analysis in which data used in
the application is embedded in enveloping data structures. This is driven by a
technique we call sublimation, which forces data to be laid out in memory using
a common and appropriate access function. The resulting code is an intermedi-
ate code which is not directly executed. In the second phase this intermediate
is compiled together with actual data and an instance specific optimized code is
generated.

Other methods often target the definition of sparse algorithms. Mateev et al.
employ generic programming in C++ to provide separate APIs for algorithm
specification and data access [7], A restructuring compiler is responsible for
the translation from the algorithm API to the data structure API. Reordering
strategies to improve the overlap in computation and communication have been
proposed by Basumallik and Eigenmann in the context of OpenMP to MPI
translation for irregular applications [1]. A key difference with our work is that
we derive a dense intermediate code and preserve the nesting structure of loops.
An intermediate code for the generation of sparse code from dense code, SIPR,
has been developed by Pugh and Shpeisman [8]. Our transformations work in
the opposite direction, as we transform pointer-based and sparse code into a
dense intermediate.

We have described how sublimation can potentially be applied to codes in-
cluding pointer-based data structures. The subsequent optimizations in the first
phase are all based on array-based codes. Using three sparse matrix kernels, we
have evaluated the potential of the transformation to an enveloping data struc-
ture (a dense matrix in this case) and show that considerable speedups can be
achieved. The overhead involved in the restructuring during the second phase
has been evaluated. For smaller data sets, the final code generation time is domi-
nating. For large sets, restructuring and initialization of the new data structures
after compilation are dominating.

While the experiments show the potential of our two-phase compilation system
using sublimation, these experiments are only a limited application of these tech-
niques. We envision applications in which computational intensive parts are com-
piled into an intermediate code using sublimation, which is compiled together with
specific input data to enable even more aggressive optimizations to be applied.

120 H.L.A. van der Spek and H.A.G. Wijshoff

References

1. Basumallik, A., Eigenmann, R.: Optimizing irregular shared-memory applications
for distributed-memory systems. In: PPoPP 2006: Proceedings of the Eleventh
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 119–128. ACM, New York (2006)

2. Bik, A.J.C., Wijshoff, H.A.G.: Automatic data structure selection and transfor-
mation for sparse matrix computations. IEEE Trans. Parallel Distrib. Syst. 7(2),
109–126 (1996)

3. Curial, S., Zhao, P., Amaral, J.N., Gao, Y., Cui, S., Silvera, R., Archambault, R.:
MPADS: memory-pooling-assisted data splitting. In: ISMM 2008: Proceedings of
the 7th International Symposium on Memory Management, pp. 101–110 (2008)

4. Davis, T.A.: The University of Florida sparse matrix collection. submitted to ACM
Trans. on Mathematical Software,
http://www.cise.ufl.edu/research/sparse/matrices

5. Kodukula, I., Pingali, K.: Data-centric transformations for locality enhancement.
Int. J. Parallel Program. 29(3), 319–364 (2001)

6. Lattner, C., Adve, V.: Automatic pool allocation: Improving performance by con-
trolling data structure layout in the heap. In: Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
2005) (June 2005)

7. Mateev, N., Pingali, K., Stodghill, P., Kotlyar, V.: Next-generation generic pro-
gramming and its application to sparse matrix computations. In: ICS 2000: Proc of
the 14th Int. Conference on Supercomputing, pp. 88–99. ACM, New York (2000)

8. Pugh, B., Shpeisman, T.: SIPR: A new framework for generating efficient code for
sparse matrix computations. In: Carter, L., Ferrante, J., Sehr, D., Chatterjee, S.,
Prins, J.F., Li, Z., Yew, P.-C. (eds.) LCPC 1998. LNCS, vol. 1656, pp. 213–229.
Springer, Heidelberg (1999)

9. Rus, S., Rauchwerger, L., Hoeflinger, J.: Hybrid analysis: static & dynamic memory
reference analysis. Int. J. Parallel Program. 31(4), 251–283 (2003)

10. Saltz, J.H., Mirchandaney, R., Crowley, K.: Run-time parallelization and schedul-
ing of loops. IEEE Trans. Comput. 40(5), 603–612 (1991)

11. van der Spek, H.L.A., Bakker, E.M., Wijshoff, H.A.G.: A compile/run-time envi-
ronment for the automatic transformation of linked list data structures. Interna-
tional Journal of Parallel Programming 36(6), 592–623 (2008)

12. van der Spek, H.L.A., Bakker, E.M., Wijshoff, H.A.G.: Characterizing the perfor-
mance penalties induced by irregular code using pointer structures and indirection
arrays on the Intel Core 2 architecture. In: CF 2009: Proceedings of the 6th ACM
Conference on Computing Frontiers, pp. 221–224. ACM, New York (2009)

13. van der Spek, H.L.A., Holm, C.W.M., Wijshoff, H.A.G.: Automatic restructuring
of linked data structures. In: Gao, G.R., Pollock, L.L., Cavazos, J., Li, X. (eds.)
LCPC 2009. LNCS, vol. 5898, pp. 263–277. Springer, Heidelberg (2010)

14. van der Spek, H.L.A., Holm, C.W.M., Wijshoff, H.A.G.: How to unleash array
optimizations on code using recursive data structures. In: ICS 2010: Proc. of the
24th ACM Int. Conf on Supercomputing, pp. 275–284. ACM, New York (2010)

15. Zhao, L., Wijshoff, H.A.G.: A case study in automatic data structure selection for
optimizing sparse matrix computations. In: Proceedings of the IEEE International
Workshop on Advanced Compiler Technology for High Performance and Embedded
Systems (IWACT), pp. 22–55 (July 2001)

http://www.cise.ufl.edu/research/sparse/matrices

Optimizing and Auto-tuning Belief Propagation
on the GPU

Scott Grauer-Gray and John Cavazos

Computer and Information Sciences
University of Delaware

Newark, DE 19716
{grauerg,cavazos}@cis.udel.edu

Abstract. A CUDA kernel will utilize high-latency local memory for
storage when there are not enough registers to hold the required data
or if the data is an array that is accessed using a variable index within
a loop. However, accesses from local memory take longer than accesses
from registers and shared memory, so it is desirable to minimize the use
of local memory. This paper contains an analysis of strategies used to
reduce the use of local memory in a CUDA implementation of belief prop-
agation for stereo processing. We perform experiments using registers as
well as shared memory as alternate locations for data initially placed in
local memory, and then develop a hybrid implementation that allows the
programmer to store an adjustable amount of data in shared, register,
and local memory. We show results of running our optimized implemen-
tations on two different stereo sets and across three generations of nVidia
GPUs, and introduce an auto-tuning implementation that generates an
optimized belief propagation implementation on any input stereo set on
any CUDA-capable GPU.

1 Introduction

Belief propagation is a general-purpose iterative algorithm used for inference on
problems that utilize Bayesian networks, Markov random fields, and other graph-
ical representations. Applications of the algorithm include free energy estimation
in proteins, turbo code decoding, and satisfiability.

Sun [16] introduced belief propagation as applied to the stereo vision problem,
and implementations that incorporate the algorithm generally output desirable
results according to the Middlebury stereo evaluation [14]. The input to the
problem consists of two images of the same scene, a reference image and a test
image, with each image displaying the scene from a different perspective along
the x-axis. The goal is to accurately retrieve the difference, or disparity, in lo-
cation along the x-axis of the object shown in each pixel of the reference image
to the same scene object in the test image. The disparity space refers to the
set of possible disparity values at each pixel. The output is given as a disparity
map with a disparity estimate at each pixel, and it is often visualized as a 8-bit
grayscale image by multiplying the disparity estimates by an appropriate value

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 121–135, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

122 S. Grauer-Gray and J. Cavazos

to cover the 8-bit range. The results are often used to estimate distance to an
object in the scene, as objects corresponding to pixels of greater disparity are
closer than objects of corresponding to pixels of lesser disparity.

For this problem, the belief propagation implementation consists of each node
in a 2-D grid computing and sending messages to each of its four-connected
neighbors in each iteration, where each message can be viewed as a vector con-
taining a value corresponding to each possible disparity. The algorithm must
iterate enough times for the message values to converge in order to obtain an
accurate output.

Unfortunately, the algorithm has some shortcomings. Many iterations are nec-
essary for the message values to converge, ample storage is needed to hold the
message value vectors at each pixel, and the naive computation time of each
message vector is of order O(n2), where n refers to the number of values in the
disparity space. Some applications of stereo vision require real-time processing,
and a naive belief propagation implementation on the CPU suffers from slow
run-time and high storage requirements.

Felzenszwalb [6] presents methods to mitigate these downsides, presenting a
hierarchical scheme to reduce the number of iterations necessary for message
value convergence, a checkerboard scheme that reduces storage requirements by
allowing updates to be performed ‘in place’ and that halves the number of mes-
sages computed and sent in each iteration, and an algorithm that generates the
message vectors in O(n) time using certain discontinuity models. These methods
are regularly applied in belief propagation implementations for stereo processing.

The running time of a belief propagation implementation can be reduced
further by taking advantage of the parallel processing capabilities of the graphics
processing unit (GPU), as each step of the algorithm can be performed in parallel
on each pixel. Brunton [2], Yang [18], Grauer-Gray ([8] and [7]), Xu [19], Liang
[10], and Ivanchenko [17] present implementations of belief propagation for stereo
processing on the GPU. Brunton and Yang map their implementations to the
graphics API, while Grauer-Gray, Xu, Liang, and Ivanchenko take advantage of
the CUDA architecture.

There are challenges to optimizing a program on the CUDA architecture, as
noted by Ryoo [13] and Datta [5]. An optimization that decreases the running
time of one program may increase the running time of another program, or of the
same program with a change of parameters, and the impact of an optimization
may vary across GPUs with non-uniform architectures.

In this paper, we focus on optimizations that can be applied to a CUDA
implementation of belief propagation as applied to stereo vision. We explore ways
to minimize the number of accesses to high-latency local memory on the GPU.
Data in local memory is frequently accessed in our initial implementation, and a
decrease in the number of local memory accesses is likely to lead to a faster run-
time. We present three optimized CUDA implementations of belief propagation,
and go on to present an auto-tuning implementation that can optimize CUDA
belief propagation across different stereo sets and GPUs.

Optimizing and Auto-tuning Belief Propagation on the GPU 123

float m[N];

float currMin = INFINITY;

for (int i=0; i < N; i++)
{
 m[i] = dataC[INDX_D_i] +
 neigh1[INDX_N1_i] +
 neigh2[INDX_N2_i] +
 neigh3[INDX_N3_i];

 if (m[i] < currMin)
 currMin = m[i];
}
.
.

__shared__ float m_shared[N*THREAD_BLK_SIZE];

float currMin = INFINITY;

for (int i=0; i < N; i++)
{
 m_shared[i_currThread] =
 dataC[INDX_D_i] +
 neigh1[INDX_N1_i] +
 neigh2[INDX_N2_i] +
 neigh3[INDX_N3_i];

 if (m_shared[i_currThread] < currMin)
 currMin = m_shared[i_currThread];
}
.
.

(a) Naive Implementation
 Using Local Memory

(b) Optimized Implementation
 Using Register Memory

(c) Optimized Implementation
 Using Shared Memory

float m[N];

float currMin = INFINITY;

#pragma unroll
for (int i=0; i < N; i++)
{
 m[i] = dataC[INDX_D_i] +
 neigh1[INDX_N1_i] +
 neigh2[INDX_N2_i] +
 neigh3[INDX_N3_i];

 if (m[i] < currMin)
 currMin = m[i];
}
.
.

Fig. 1. Code analogous to a portion of the dominant kernel of our CUDA belief prop-
agation implementation; shows the naive and optimized register / shared memory im-
plementations

2 Optimization Overview

As described in the programming guide [1], CUDA allows the GPU to be utilized
as a co-processor to the CPU for general-purpose programming, processing a ker-
nel function on multiple threads simultaneously. Each thread contains a unique
ID within a 1D, 2D, or 3D thread block structure, and each thread block is part
of a 1D or 2D grid structure of thread blocks. Each thread within a block is exe-
cuted on the same multiprocessor and is processed as part of a 32-thread chunk
known as a warp. The number of active warps per multiprocessor is bounded by
a GPU-specific maximum, placing a ceiling on the parallelism in the program
execution. However, the number of active warps is often limited by the number
of registers or the shared memory available on each multiprocessor. The ratio
of the actual number of active warps to the maximum number of active warps
during the kernel execution represents the multiprocessor occupancy.

To illustrate potential optimizations, we describe the following algorithm
which is analogous to a portion of the most heavily-used/dominant kernel of
our belief propagation implementation:

1. Set a float variable ‘currMin’ to infinity.
2. For i = 1 to some N do the following:

(a) Compute mi, the sum of the values accessed from specific indices in four
separate arrays (the data cost array and the message arrays from three
neighbors, using the indices INDX D i, and INDX N1 i, INDX N2 i, and
INDX N3 i, respectively) in global memory, and store the value to a
specific form of storage (local, shared, or register memory).

(b) Check if mi is less than the value of ‘currMin’; if so, set ‘currMin’ to mi.

The set of mi values are accessed, manipulated, and compared with each other
in future operations, so it makes sense to store them in a structure such as an
array that allows for easy access via index value.

124 S. Grauer-Gray and J. Cavazos

Our initial implementation causes the mi values to be stored in an array which
is local to the thread, resulting in the utilization of local memory on the GPU.
Unfortunately, accesses to data in local memory are slow compared to accesses
to data in registers or shared memory. We go on to generate optimized im-
plementations where local memory accesses are converted to register or shared
memory accesses. Code corresponding to each implementation is displayed in
Figure 1. In the register memory implementation, the loop is completely un-
rolled via the ‘#pragma unroll’ directive; this changes the implementation such
that the array is no longer indexed via a variable value within a loop and is no
longer automatically stored in local memory. In the shared memory implemen-
tation, the array m shared is shared across every thread in a thread block of
size THREAD BLK SIZE; the index i currThread in the code is unique to each
thread in the block; it corresponds to the location of the mi value stored in the
array m shared for the thread.

Intuitively, one would expect the optimized implementations to be faster than
the initial implementation since accesses to high-latency local memory in the ini-
tial implementation are replaced with accesses to low-latency registers or shared
memory in the optimized implementations. However, the utilization of a greater
number of registers per thread in the register implementation and of shared mem-
ory in the shared memory implementation limits the number of thread warps
which can be processed in parallel, decreasing the multiprocessor occupancy and
possibly adversely affecting the running time. The only way to truly determine
the effect of these optimizations is to perform experiments which involve com-
paring the results of the different implementations; we perform such experiments
using these optimizations and describe the results in Section 5.

3 CUDA Belief Propagation

In this section, we present a initial CUDA implementation of belief propagation;
the implementation utilizes the speed-ups described by Felzenszwalb [6] and
consists of the following steps:

1. Calculate the data cost for each pixel at each disparity in the disparity space
at the bottom level of the hierarchy.

2. Iteratively calculate the data costs at each succeeding level of the hierarchy.
3. For each level in the hierarchy (starting from top):

(a) For each pixel in the current ‘checkerboard’ set, compute the message to
send to its four-connected neighbors in the alternate set using the current
message values and data cost. Repeat for i iterations, alternating between
the two checkerboard sets.

(b) If not at the bottom level of the hierarchy, copy the message values at
each pixel to a 2 X 2 block of corresponding pixels in the succeeding
level of the hierarchy.

4. Retrieve the disparity estimate at each pixel using the current message values
and data costs, with the output corresponding to the disparity that mini-
mizes the sum of the current message values and data cost at the pixel. The
disparity estimates across every pixel represent the output disparity map.

Optimizing and Auto-tuning Belief Propagation on the GPU 125

Grauer-Gray [8] showed that each of the steps of the algorithm can be per-
formed in parallel using the CUDA architecture, and the resulting disparity
map is obtained more quickly using a CUDA implementation as compared to
a sequential CPU implementation. However, that work does not discuss opti-
mizations which can be applied to decrease the running time of the CUDA
implementation. In this paper, we present optimizations that can be utilized to
reduce the running time of a CUDA implementation without affecting the output
disparity map.

In our experiments, we first smooth the images using a Gaussian filter of
sigma value 1.0, then run belief propagation using 5 hierarchical levels, 10 BP
iterations per level, and a disparity space ranging from 0 to 14 in increments of
1. The truncated linear model is used for the data and discontinuity costs, with a
maximum value of 15.0 and 1.7 for the data and discontinuity cost, respectively.
The relative weight of the data cost as compared to the discontinuity cost is
held at .07.

Our initial CUDA experiments utilize the nVidia GTX 285 GPU and are
compiled using CUDA toolkit 3.1. The GTX 285 contains 30 multiprocessors,
each containing 8 processors for a total of 240 parallel processors, with 16392
registers and 16 KB shared memory available in each multiprocessor. The thread
block dimensions are set to 32 X 4, with 32 corresponding to the width and 4
corresponding to the height.

We begin with a naive CUDA belief propagation implementation, using a sep-
arate kernel for each step/sub-step of the algorithm, and run our implementation
on the 384 X 288 Tsukuba stereo set shown in Figure 2. This implementation
runs in 47.0 ms; the resulting disparity map is shown to the right of the stereo
set in the figure.

Fig. 2. Left/Middle: Images of Tsukuba stereo set; Right: Computed disparity map
using our implementation

We utilize the CUDA profiler to analyze the running time of each kernel
and discover that almost 70% of the running time is spent in the kernel which
computes four arrays of message values, each to be received by one of the current
pixel’s four-connected neighbors. As a result, we focus our optimizations on this
kernel, which corresponds to step 3a of the aforementioned belief propagation
algorithm. Each array of message values is computed in the kernel using the
following O(n) algorithm introduced by Felzenszwalb [6]:

126 S. Grauer-Gray and J. Cavazos

1. For each disparity d in the disparity space, initialize the message value md to
the sum of the data cost and the current message value of each non-recipient
neighbor, where the data costs and message values are retrieved from global
memory, and retrieve the minimum md value; this step corresponds to the
code described in Section 2.

2. Set mmax to the sum of the minimum md value and Tdata, the truncation
value that corresponds to the maximum possible discontinuity cost.

3. Loop from d = 1 to d = maxdisp, setting each md = min(md−1 + 1, md),
assuming that the values in the disparity space differ by 1.

4. Loop from d = maxdisp−1 to d = 0, setting each md = min(md+1 + 1, md),
assuming that the values in the disparity space differ by 1.

5. Loop from d = 0 to d = maxdisp, setting each md = min(md, mmax), and
compute the summation of the output md values.

6. Retrieve the average message value by dividing the summation of the output
md values by the number of message values.

7. Loop from d = 0 to d = maxdisp, setting md = md - (average message value).
8. Store the resulting message values md for each disparity d in the appropriate

location in global memory for use in the following iteration or final disparity
estimation.

Inspection of the resulting PTX code and the profiling output reveals that local
memory is utilized to hold the array that contains the message values that are
currently being computed, causing a large number of accesses to the high-latency
storage.

In the following sections, we discuss strategies to reduce or eliminate the use
of local memory in this array, looking at ways to utilize registers and shared
memory rather than local memory.

The number of local loads/stores given in the results correspond to totals
across all invocations of this kernel, while the number of registers and the occu-
pancy refers to the resource use in a single invocation of the kernel.

4 Experimental Methodology

We first run experiments using optimized implementations that utilize either
registers or shared memory in the array that contains the message values that
are currently being computed, go on to introduce a hybrid implementation
that combines the usage of register, shared, and local memory in the array,
and finally develop an auto-tuning implementation to generate the optimal pa-
rameters for the hybrid implementation that works across different stereo sets
and GPUs.

We initially perform our experiments using the GTX 285 GPU, and
then go on perform some of the same experiments using the Tesla C870 and the
GTX 470, CUDA-capable GPUs with architectures that differ from the GTX
285.

Optimizing and Auto-tuning Belief Propagation on the GPU 127

5 Optimization Results: Register and Shared Memory
Implementations

In this section, we describe the results of applying optimizations to the most
heavily used kernel of our CUDA belief propagation implementation; these opti-
mizations are intended to eliminate the use of local memory in the computation
of the message values corresponding to each disparity, placing the data in regis-
ters or shared memory rather than local memory.

The first optimized implementation utilizes registers to store message values
via the method shown in the sample code in Figure 1; this can be viewed as an
application of the register promotion/scalar replacement optimization described
by Cooper [4] and Callahan [3], where a value in memory is placed in a register
for quick access. However, this optimization increases register pressure, which
decreases the number of thread blocks which can run in parallel and may cause
register spilling into local memory.

The second optimized implementation takes advantage of the shared memory
present on each multiprocessor to store message values via the method shown in
the right of Figure 1; the utilization of shared memory as a user-managed cache
is a common CUDA optimization as described in the programming guide [1]. It
is often profitable to load values from global memory into shared memory and
then access/update the values from there to take advantage of the low latency
associated with shared memory.

The results of running these optimizations are displayed in Table 1. The mul-
tiprocessor occupancies did decrease due to increased use of registers/shared
memory in the optimized implementations. Still, the total running time on the
GTX 285 decreased from 47.0 ms using the initial CUDA implementation to 24.3
ms using the register implementation and to 25.4 ms using the shared memory
implementation, corresponding to speed-ups of 1.93 and 1.85, respectively, over
the initial CUDA implementation.

Table 1. Running times and resource use of the initial and the optimized register
and shared memory CUDA belief propagation implementations on Tsukuba stereo set
on the GTX 285. The resource use data corresponds to the most heavily used kernel
described in Section 3.

Storage/Loop Unroll
Setting

Num lo-
cal loads

Num
local
stores

Num
regs

Occup. Total running
time

Speedup
from init.
CUDA imp.

Initial CUDA imp. on
GTX 285

1307529 7360296 37 0.375 47.0 ms —

Register memory imp.
on GTX 285

0 0 110 0.125 24.3 ms 1.93

Shared memory imp.
on GTX 285

0 0 53 0.25 25.4 ms 1.85

128 S. Grauer-Gray and J. Cavazos

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60

S
p

e
e
d

u
p

 v
s
.
In

it
.
C

U
D

A
 I
m

p
.

Num Values (out of 65) in message array stored in shared memory
(remaining values stored in reg or local memory depending on experiment)

Local/Shared Memory Imp. w/ 32 X 4 Thread Block
Local/Shared Memory Imp. w/ 32 X 2 Thread Block

Reg/Shared Memory Imp. w/ 32 X 4 Thread Block
Reg/Shared Memory Imp. w/ 32 X 2 Thread Block

Fig. 3. Speedup of running the hybrid CUDA imp. (vs the initial CUDA imp.) on the
‘Cones’ stereo set with the GTX 285 using varying amounts of shared and register/local
memory

6 Hybrid Implementation: Multiple Memory Modes in a
Single Implementation

Next, we create a hybrid implementation which can utilize shared, register, and
local memory in the array used for computation of the message values on the
GPU. This allows more values to be placed in low-latency shared/register mem-
ory without resorting to high-latency local memory and allows the programmer
to direct storage to local memory without dealing with the unpredictable effects
of register spilling.

Our implementation allows the programmer to store x values of the array
in register memory, y values in shared memory, and z values in local memory.
The values in register memory may be spilled into local memory if there are not
enough registers allocated to hold them or if any loops accessing them becomes
too large to be unrolled, while the number of values which can be stored in shared
memory is limited by the shared memory available on the multiprocessor.

We run our hybrid implementation on the GTX 285 using the quarter-sized
version of the ‘Cones’ stereo set included as part of the 2003 Middlebury stereo
sets [15]. These images measure 450 by 375 and have a disparity range from 0
to 64; the remaining parameters are the same when processing this image set as
the Tsukuba set described in Section 3.

Our initial CUDA implementation described in Section 3 processes the images
in 420 ms on the GTX 285; we use this result as the basis for the speed-up of
our optimizations. The optimized register memory implementation described in
Section 5 processes the stereo set in 300 ms, while the size of the input disparity
range precludes running our optimized shared memory implementation (also
described in Section 5); there is not enough shared memory available on the

Optimizing and Auto-tuning Belief Propagation on the GPU 129

multiprocessor to store the entire array used for message value computation
when using a disparity increment of 1 and thread block dimensions of 32 X 4.

We go on to perform four sets of experiments using the our hybrid imple-
mentation; the results of each set of experiments on the GTX 285 in terms of
speed-up over the initial CUDA implementation are shown in Figure 3, while the
data corresponding the best-performing configuration is displayed in Table 2.

In the first set of experiments, we hold the thread block dimensions constant
at 32 X 4 and adjust the register/shared memory usage when placing the values
in the array used for the computation of message values. In the second set of
experiments, we set the thread block dimensions to 32 X 2 to allow greater use
of shared memory when updating the message values; these dimensions allow up
to 61 message values in each thread to be stored in the 16 KB shared memory
available on each multiprocessor on the GTX 285 compared to 31 message values
when using 32 X 4 thread blocks. In the third and fourth sets of experiments,
we use the same 32 X 4 and 32 X 2 thread block dimensions and utilize shared
and local memory rather than shared and register memory.

The best-performing configuration on the GTX 285 gives a speedup of 1.76
times over the initial CUDA implementation; this shows that with the right
choice of parameters, our hybrid implementation can be utilized to reduce the
running time of CUDA belief propagation.

Table 2. Optimal configuration and corresponding results obtained when running our
CUDA hybrid implementation on the ‘Cones’ stereo set using the GTX 285, Tesla
C870, and GTX 470 GPUs. The resource use data corresponds to the most heavily
used kernel described in Section 3.

Optimal Configuration and run-time data/results
GPU (config.) Thread

Block
Dims

Num vals in
reg.-shared-
loc. mem. in
mess. array

Num lo-
cal loads

Num
local
stores

Num
regs
used

Occup. Total
run-
time

Speedup
over
Init.
CUDA
imp.

GTX 285 32 X 2 34-31-0 2209184 4418368 124 0.125 238.0
ms

1.76

Tesla C870 32 X 2 14-51-0 0 0 120 0.083 840.2
ms

1.43

GTX 470 (fav
L1 cache)

32 X 2 0-7-58 4523184 4339010 61 0.333 231.2
ms

0.94

GTX 470 (fav
shared mem)

32 X 2 0-63-2 87327 133654 59 0.125 189.6
ms

1.19

6.1 Hybrid Results Discussion

While investigating the results of the hybrid implementation experiments, we dis-
covered that the running time often decreases when moving to a configuration
which allows for an increase in occupancy from the previous configuration, and

130 S. Grauer-Gray and J. Cavazos

then the running time increases with increased usage of local memory until the
parameter set allows for another increase in multiprocessor occupancy.

Based on this observation, we believe that it is possible to run experiments
using a single well-generated configuration at each occupancy to retrieve the
optimal configuration, rather than searching the entire optimization space. In the
next section, we introduce such a auto-tuning system that uses this observation
to optimize belief propagation on any CUDA-capable GPU.

7 Auto-tuning Implementation

In this section, we present our auto-tuning implementation introduced in Section
6.1. At each occupancy, we produce the configuration that maximizes the usage
of shared/register memory, with the goal to minimize the number of accesses to
local memory. Then, we compare the results across occupancies to retrieve the
optimal configuration.

The steps of our auto-tuning implementation are as follows:

1. For the input max occupancy, determine the thread block dimensions. The
width is set at 32, while the height is retrieved as follows:
(a) Retrieve the whole number of rows of length 32 which are to be processed

in parallel on each multiprocessor using the input max occupancy and the
GPU-specific max number of threads which can be processed in parallel
on each multiprocessor.

(b) Calculate the maximum thread block height (1-16) that allows for this
number of rows to be processed concurrently on each multiprocessor,
operating under the GPU-imposed constraint that no more than 8 thread
blocks can be processed concurrently on each multiprocessor.

(c) If no thread block height meets the above criteria, decrement the number
of rows by one and return to the previous step. This process continues
until the criteria is met.

2. Determine the number of registers which can be allocated to each thread
based on the thread dimensions, max occupancy, and the number of registers
available on each multiprocessor.

3. Set a NUM REG VALUES INITIAL number of values to be stored in reg-
ister memory in the array used for the computation of message values (note
that this data may be spilled to local memory).

4. If there are still values left to be stored in the array, determine the number
of values that can be stored in shared memory with the given occupancy,
and set the minimum of that value and the number of values that still need
to be stored in shared memory.

5. If there are still values to be stored, place the remaining values in register
memory until MAX REG VALUES are placed in register memory. Then
place the remaining values in local memory.

This implementation can be viewed as an application of tiling, as we perform
experiments using data partitions of varying sizes via changing the maximum

Optimizing and Auto-tuning Belief Propagation on the GPU 131

Table 3. Optimal Results obtained from auto-tuning at varying maximum occupancies

Optimal Configuration from auto-tuning
GPU (config.) Max oc-

cupancy
Running
Time (ms)

Speed-up
over Init.
CUDA
imp.

% Difference in
speedup from opt.
imp. from Section 6

GTX 285 0.14 238.3 ms 1.76 0.0%
Tesla C870 0.10 797.7 ms 1.51 +5.06%
GTX 470 (favor
L1 cache)

0.58 227.6 ms 0.95 +1.56%

GTX 470 (favor
shared mem)

0.16 188.0 ms 1.20 +1.01%

occupancy. A greater portion of the data can be stored in low-latency register
and shared memory with a lower multiprocessor occupancy, but at the cost of
less parallelism.

In our experiments, we set the NUM REG VALUES INITIAL to 12 and
MAX REG VALUES to 50 data elements, which leads to register spillover but
which led to a faster run-time than specifically placing more of the data in lo-
cal memory. Then, we test our implementation at each occupancy from 0.04
to 1.00 in increments of 0.02. The results are given in terms of speed-up over
the initial CUDA implementation in Figure 4, with the maximum speed-up and
the difference from the optimal implementation in Section 6 shown in Table 3.
The maximum speedup over the initial CUDA implementation on the GTX 285
using this implementation is 1.76, which is the same as the speed-up found in
Section 6 and is generated using fewer trials. In the future, we plan to look into
improvements to the framework in order to generate better results in fewer trials.

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

S
p

e
e
d

u
p

 O
v
e
r

In
it

.
G

P
U

 I
m

p
le

m
e
n

ta
ti

o
n

Max Occupancy Setting

GTX 285
Tesla C870

GTX 470 (favor L1 cache)
GTX 470 (favor shared memory)

Fig. 4. Results of auto-tuning at different occupancy levels

132 S. Grauer-Gray and J. Cavazos

8 Experiments Using Different GPUs

To compare the results across multiple generations of GPUs, we perform the
hybrid implementation and auto-tuning experiments on the Tesla C870 GPU,
which uses a GPU architecture which proceeded the GTX 285, and the GTX
470 GPU, which utilizes the Fermi architecture that succeeded the GTX 285.
The results are shown with the GTX 285 results in Figure 4 and Table 2.

The Tesla C870 GPU utilizes the G80 architecture that proceeded the GTX
285; it contains 16 multiprocessors, each with 8 processors for a total of 128
processors [1]. Each multiprocessor contains 16 KB shared memory and 8192
registers, representing half the number of registers per multiprocessor compared
to the GTX 285. Meanwhile, the GTX 470 utilizes the GF100 (Fermi) architec-
ture that succeeded the GTX 285; this GPU contains 14 multiprocessors with 32
processors each for a total of 448 processors. Each multiprocessor contains 32768
registers and 64 KB which is shared between shared memory and L1 cache. The
L1 cache on each multiprocessor along with the global L2 cache reduces the la-
tency associated with local memory. The programmer can either allocate 16 KB
shared memory / 48 KB L1 cache per multiprocessor or 48 KB shared memory
/ 16 KB L1 cache per multiprocessor [1]; we perform experiments using each
configuration. Our experiments on the GTX 285 and Tesla C870 are compiled
and run using CUDA 3.1, while the experiments using the GTX 470 utilize a
beta version of CUDA 3.2.

Our experiments using the GTX 470 reveal that unrolling the loops to place
the data in registers does not decrease the running time as it does on the GTX
285 and the Tesla C870; one possible reason for this is the L1 cache present on
the GTX 470, as this decreases the latency associated with local memory. As
a result, we set NUM REG VALUES INITIAL and MAX REG VALUES to 0
when performing auto-tuning on this GPU; this places as much data as possible
in shared memory given the occupancy, and then places the remaining data in
local memory.

The results show that our implementations are flexible across GPUs; our sys-
tem is able to generate an optimal configuration for each architecture. Inter-
estingly, the optimal implementation retrieved on the GTX 470 when favoring
L1 cache does not give a speed-up over the initial implementation; this is likely
because the presence of the larger L1 cache results in lower-latency accesses
to local memory. Nevertheless, our framework is able to obtain a significantly
faster implementation on the GTX 470 when favoring shared memory; we obtain
a speedup of 1.20 times over the initial CUDA implementation using this option.

9 Splitting Up the Image

Now, we modify the implementation to allow for image splitting in order to
increase the flexibility of our implementation across GPUs with varying amounts
of DRAM and to relax the constraint on image size and the number of disparity
levels. This implementation splits the input images into multiple partitions, runs
belief propagation on each partition, and then combines the results.

Optimizing and Auto-tuning Belief Propagation on the GPU 133

To prevent inaccurate measurements on the edge of each partition, our im-
plementation allows padding to be applied on each image partition, making the
partition size larger than the section included in the output disparity map.

We perform our experiments using the half-sized and full-sized images of the
‘Cones’ stereo set described in Section 6; these stereo sets measure 900 by 750
with a disparity range from 0 to 128 and 1800 by 1500 with a disparity range
from 0 to 255, respectively. We set the padding to 20 pixels in each experiment.
On the half-sized ‘Cones’ stereo set, we divide the image into three rows, and on
the full-sized set, we divide the image into 25 partitions (5 ways vertical and 5
ways horizontal). The remaining parameters remain the same as in the previous
experiments.

We benchmark our implementations on the GPU using the initial CUDA
implementation as described in Section 3. Then, we utilize our auto-tuning im-
plementation to retrieve an optimal configuration on each GPU; the resulting
running time and speed-up over the initial CUDA implementation on the image
sets using this optimal configuration are shown in Table 4.

As the number of disparity values increases, a greater portion of the data
is placed into local memory due to the limited amount of registers and shared
memory on each processor. As a result, the optimized results are very similar to
the initial CUDA results in these experiments. Future work includes research into
methods intended to optimize the running time when there is a larger disparity
space.

Table 4. Optimal Results on half-sized (full-sized) ‘Cones’ stereo set obtained from
auto-tuning

Optimal Configuration from auto-tuning
GPU (config.) Max occupancy Running Time Speed-up over initial

CUDA imp.
GTX 285 0.14 (0.14) 3120 ms (31500 ms) 1.18 (0.97)
Tesla C870 0.36 (0.36) 8260 ms (74900 ms) 1.01 (0.94)
GTX 470 (favor
L1 cache)

0.54 (0.64) 1980 ms (18600 ms) 0.98 (0.98)

GTX 470 (favor
shared mem)

0.58 (0.54) 1940 ms (18500 ms) 1.02 (0.99)

10 Related Work

We discussed related work in GPU belief propagation in Section 3. In addition,
there is a body of work related to optimizing/auto-tuning on the GPU. Ryoo
[13] looked at optimizations targeted to hide the stalling associated with long-
latency operations, methods to be distribute the workload, reducing the number
of dynamic instructions, and maximizing intra-thread parallelism and resource
use on the GTX 8800 GPU. Datta [5] looked at optimizing and auto-tuning the
stencil computation on a variety of multi-core architectures, including the GTX
280 GPU. Nukada [12] presented a method of auto-tuning the 3D FFT library

134 S. Grauer-Gray and J. Cavazos

on CUDA, while Li [9] looked at optimizing and auto-tuning a CUDA implemen-
tation of the GEMM algorithm. Meanwhile, Liu [11] introduced a more general
adaptive framework that takes the input parameters and uses the framework to
generate the optimal CUDA implementation for the given input.

Our work differs from this body of related work because of our focus on
optimizing and developing an auto-tuning framework for the belief propagation
algorithm that has not been optimized for CUDA across a large range of possible
inputs and GPUs.

11 Conclusions and Future Work

In this paper, we explored methods to optimize a CUDA belief propagation im-
plementation for stereo vision processing. Our results provide insights and results
which can be used to optimize a real-life implementation of belief propagation for
stereo; such an implementation could be utilized as part of a real-time computer
vision system, among other real-world applications.

In the process, we explored the optimization space of using local, shared, and
register memory options for data storage on the GPU. It is clear that high-
latency local memory accesses should be kept to a minimum, and we explored
various options to achieve that goal. We looked at the results of optimizations
on the GTX 285, Tesla C870, and GTX 470 GPUs, and discovered that the
properties of the target GPU(s) must be taken into account when optimizing a
CUDA program. We showed that our optimizations work on two distinct stereo
sets with different properties.

In the future, we intend to explore various properties of the CUDA compiler,
such as when the compiler will automatically unroll a loop inside a kernel and
how the compiler handles register spilling. We plan to run our optimized be-
lief propagation implementations on stereo sets with varying characteristics and
with a variety of input parameters, as well as explore how to optimize a belief
propagation implementation for 2D motion estimation from a set of sequential
images.

References

1. NVIDIA CUDA Programming Guide: Version 3.0. NVIDIA Corporation (2010),
http://developer.nvidia.com/cuda

2. Brunton, A., Shu, C., Roth, G.: Belief propagation on the gpu for stereo vision,
June 2006, pp. 76–76 (2006)

3. Callahan, D., Carr, S., Kennedy, K.: Improving register allocation for subscripted
variables. SIGPLAN Not. 25(6), 53–65 (1990)

4. Cooper, K.D., Lu, J.: Register promotion in c programs. In: Proc. ACM SIGPLAN
Conf. Programming Language Design and Implementation (PLDI 1997), pp. 308–
319. ACM Press, New York (1997)

5. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson,
D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on state-
of-the-art multicore architectures. In: SC 2008: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, pp. 1–12. IEEE Press, Piscataway (2008)

http://developer.nvidia.com/cuda

Optimizing and Auto-tuning Belief Propagation on the GPU 135

6. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vi-
sion. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. 261–268 (2004)

7. Grauer-Gray, S., Kambhamettu, C.: Hierarchical belief propagation to reduce
search space using cuda for stereo and motion estimation. In: 2009 IEEE Workshop
on Applications of Computer Vision, WACV 2009 (2009)

8. Grauer-Gray, S., Kambhamettu, C., Palaniappan, K.: Gpu implementation of belief
propagation using cuda for cloud tracking and reconstruction. pp. 1–4 (2008)

9. Li, Y., Dongarra, J., Tomov, S.: A note on auto-tuning GEMM for gPUs. In: Allen,
G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2009. LNCS, vol. 5544, pp. 884–892. Springer, Heidelberg (2009)

10. Liang, C.K., Cheng, C.C., Lai, Y.C., Chen, L.G., Chen, H.H.: Hardware-efficient
belief propagation. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 80–87 (2009)

11. Liu, Y., Zhang, E.Z., Shen, X.: A cross-input adaptive framework for gpu program
optimizations. In: International Parallel and Distributed Processing Symposium,
pp. 1–10 (2009)

12. Nukada, A., Matsuoka, S.: Auto-tuning 3-d fft library for cuda gpus. In: SC 2009:
Proceedings of the Conference on High Performance Computing Networking, Stor-
age and Analysis, pp. 1–10. ACM, New York (2009)

13. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., Hwu, W.m.W.:
Optimization principles and application performance evaluation of a multithreaded
gpu using cuda. In: PPoPP 2008: Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pp. 73–82. ACM Press,
New York (2008)

14. Scharstein, D., Szeliski, R., Zabih, R.: A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms, pp. 131–140 (2001)

15. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light.
In: IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, vol. 1, p. 195 (2003)

16. Sun, J., Zheng, N.N., Shum, H.Y.: Stereo matching using belief propagation. IEEE
Trans. Pattern Anal. Mach. Intell. 25(7), 787–800 (2003)

17. Ivanchenko, V., Shen, H., Coughlan, J.: Elevation-based stereo implemented in
real-time on a gpu. In: 2009 IEEE Workshop on Applications of Computer Vision,
WACV 2009 (2009)

18. Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., Nistér, D.: Real-time global
stereo matching using hierarchical belief propagation. In: British Machine Vision
Conf., pp. 989–998 (2006)

19. Xu, Y., Chen, H., Klette, R., Liu, J., Vaudrey, T.: Belief propagation implementa-
tion using cuda on an nvidia gtx 280, pp. 180–189 (2009)

A Programming Language Interface to Describe
Transformations and Code Generation

Gabe Rudy1, Malik Murtaza Khan2, Mary Hall1,
Chun Chen1, and Jacqueline Chame2

1 School of Computing, University of Utah, Salt Lake City, UT
2 USC/Information Sciences Institute, Marina del Rey CA

Abstract. This paper presents a programming language interface, a
complete scripting language, to describe composable compiler transfor-
mations. These transformation programs can be written, shared and
reused by non-expert application and library developers. From a com-
piler writer’s perspective, a scripting language interface permits rapid
prototyping of compiler algorithms that can mix levels and compose dif-
ferent sequences of transformations, producing readable code as output.
From a library or application developer’s perspective, the use of trans-
formation programs permits expression of clean high-level code, and a
separate description of how to map that code to architectural features,
easing maintenance and porting to new architectures.

We illustrate this interface in the context of CUDA-CHiLL, a source-
to-source compiler transformation and code generation framework that
transforms sequential loop nests to high-performance GPU code. We show
how this high-level transformation and code generation language can be
used to express: (1) complex transformation sequences, exemplified by a
single loop restructuring construct used to generate a series of tiling and
permute commands; and, (2) complex code generation sequences to pro-
duce CUDA code from a high-level specification. We demonstrate that
the automatically-generated code either performs closely or outperforms
two hand-tuned GPU library kernels from Nvidia’s CUBLAS 2.2 and 3.2
libraries.

1 Introduction

Programmers of petascale and high-performance desktop platforms alike de-
mand high levels of performance on their library and application code. Despite
a large body of research on compiler techniques for increasing parallelism or
better managing the memory hierarchy [34,31,32,25,28,4,20,16,23,21,1,18,19,12],
the complexity of optimizing for today’s diverse architectural features leaves a
significant gap between performance produced by a compiler and that achiev-
able by a savvy programmer. For this reason, many such programmers continue
to manually apply the very same code transformations that their compiler can
apply automatically, not only increasing programming time but also producing
low-level architecture-specific code that is difficult to port and maintain. The
performance differences between automatic and manual optimization stem from
many sources:

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 136–150, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Programming Language for Optimizations 137

– Compilers must be conservative to avoid generating incorrect code and are
therefore limited to optimizations that are provably safe.

– Compiler decision algorithms are usually based on static compile-time anal-
ysis which cannot always accurately predict dynamic behavior.

– Programmers can fundamentally rewrite their code (e.g., use a new algo-
rithm), while compilers must optimize the computation as written.

Even with these limitations, compilers nevertheless provide powerful and robust
techniques for transformation and code generation, which if harnessed, could
greatly accelerate the human effort involved in performance tuning and facilitate
clean, portable code for high-performance architectures. Our research has been
addressing this performance gap in two ways: (1) we use auto-tuning to gener-
ate a search space of alternative implementations of key computations and then
explore this space with empirical measurement to identify the best-performing
solution; and, (2) we collaborate with application and library developers in de-
scribing how to generate code through a composition of code transformations.
These two separate concepts have motivated a rethinking of the compiler struc-
ture and how both application/library programmers and compiler developers
should interact with it.

A previous paper described transformation recipes, which are descriptions of a
composition of program transformations to be applied to a piece of code contain-
ing loop nests [9]. These recipes can be written by a programmer or generated
automatically by the compiler using the same structure. Similar concepts ap-
pear in the literature, some recent, although primarily other work focuses on
annotations on the source code [22,7,10,36]. The recipes in [9] are in a separate
script, permitting greater flexibility and portability, since a collection of differ-
ent scripts, possibly targeting different architectures, can be associated with the
same high-level code.

This paper takes the notion of transformation recipes a significant step further
by providing a programming language interface for describing transformation and
code generation. We have developed an embedded scripting language interface
to express high-level transformation recipes that are translated to a lower-level
interface, in the same way that high-level programming languages are translated
to lower level ones to improve programmer productivity. Using a programming
language offers several advantages: (1) the system can integrate queries of the
program state and other control flow to guide optimization decisions; (2) the
programmer can create variables to refer to output objects from code transfor-
mations to which additional transformations can be applied, and which are used
to produce readable code; and, (3) the programmer of the system can express en-
capsulation into functions to prototype or implement high-level transformation
algorithms, which can be reused by other, possibly less-skilled developers or for
other pieces of similar code.

To illustrate the power of this programming language interface, we have
used it to implement a core set of transformations to generate CUDA code,
a parallel programming language interface for Nvidia GPUs [15]. Each CUDA-
specific transformation generates a composition of a sequence standard compiler

138 G. Rudy et al.

Fig. 1. Compiler Developer Workflow

transformations. The programming language interface is also being used for other
data-parallel and locality optimization and code generation tasks.

This paper makes the following contributions over our previous work [9]. We
introduce the notion of a programming language interface for implementing se-
quences of transformation and code generation tasks, with compiler workflow and
structure and interface constructs described in Section 2. We use this framework
to develop CUDA-CHiLL, which generates high-performance CUDA code for se-
quential loop nest computations. Section 3 provides an example of implementing
a complex transformation sequence involving a series of tiling and permute com-
mands that can be expressed with a single line, high-level construct. Section 4
presents a complex code generation sequence for CUDA targeting a GPU, which
is also expressed compactly with a single line. We demonstrate in Section 5 that
this system generates high-performance code that can perform comparably or
even outperform manually-tuned library code from Nvidia’s CUBLAS library.

2 Compiler Structure and Motivation

This section provides an overview of the auto-tuning compiler organization we
have been developing, which combines a polyhedral code generation and trans-
formation framework called CHiLL, a loop transformation recipe interface, and
auto-tuning framework for empirically searching a space of possible implementa-
tions of a key computation, as shown in Figure 1. The loop transformation recipe,
which could either be generated by the compiler or written by an application de-
veloper, describes a sequence of code transformations that, when applied to the
original code, corresponds to an optimized version of the code. An auto-tuning
search engine can explore the space of multiple code variants described by differ-
ent recipes and parameter values within each recipe to find the best-performing
implementation. More details of the system organization and use in optimizing
library and application code can be found elsewhere [2,29,37,27,26].

In this paper, we illustrate the power of this compiler structure with an
example use of the language interface called CUDA-CHiLL [24]. The goal of

Programming Language for Optimizations 139

CUDA-CHiLL is to automate many of the difficult programming tasks in gener-
ating high-performing, equivalent CUDA code targeting an Nvidia GPU, start-
ing from a sequential computation [15]. The automatically generated CUDA
code is then compiled by the Nvidia backend to exploit its ability to perform
low-level architecture-specific optimization. While such GPUs represent a pow-
erful and programmable parallel architecture, with hundreds of parallel cores,
it is still the case that generating high-performance CUDA code is challenging.
A loop transformation framework such as ours can be extremely valuable for
CUDA optimization and code generation. Known compiler transformations can
be adapted and applied both in the decomposition and mapping process, and in
subsequently optimizing the kernel code to manage the memory hierarchy and
parallelism tradeoffs. Since there is significant performance variation on GPUs
for very subtle differences in code, the integration with an auto-tuning frame-
work allows us to explore a space of different implementations, and different
values of parameters associated with the mapping. Compiler automation is also
useful for error-prone code generation tasks such as array indexing and bounds
checking, and mundane code generation tasks such as allocating memory for
GPU input and output, copying data to and from the GPU, and performing
block and thread decomposition.

2.1 Requirements for Translating Sequential Loop Nests to CUDA

In CUDA, a thread program (called a kernel) is executed on each point of a
multidimensional space, or grid. A grid defines a two-level parallelism hierarchy
of thread blocks, where blocks can be indexed into one or two dimensions, and
each block is further decomposed into threads, where threads can be indexed into
one, two or three dimensions. A computation mapping of a loop nest to a grid
is a mapping from the iteration space of the loop nest onto grid points (with
portions of the iteration space possibly executed within each kernel).

To take advantage of these two levels of parallelism, the iteration space of
a loop nest can be decomposed into loops such that each loop is mapped to a
level of blocks or threads. Partitioning the iteration space of a loop into blocks or

void seqMV(float c[N][N], float a[N],
float b[N]) {

int i, j;
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

a[i] = a[i] + c[j][i] * b[j];
}

(a) Matrix-vector multiply source code.

/* map ii to block, i to threads */
for(ii = 0; ii < 32; ii++)
for(i = 32 * ii; i < 32 * ii + 32; i++)

for(j = 0; jj < N; jj++)
a[i] = a[i] + c[j][i] * b[j];

(c) After tile command in (b) is applied to example
in (a), with N=1024.

1 TI=32
2 tile by index({"i"}, {TI},

{l1 control="ii"},
{"ii", "i", "j"})

(b) Tiling for computation partitioning.

Fig. 2. Example of tile transformations to deconstruct iteration space

140 G. Rudy et al.

tiles with a fixed maximum size has been widely used when constructing parallel
computations [33,14]. The shape and size of the tile can be chosen to take advan-
tage of the target parallel hardware and memory architecture, maximizing reuse
while maintaining a data footprint that meets memory capacity constraints.

Tiling involves re-structuring an iteration space into a control loop and tile
loop. Given an iteration space of size N and a tile size of TX , the tile loop
iterates over a space defined by the tile size (TX), while the constructed control
loop has N/TX iterations (when TX divides N evenly) 1. By using tiling with
appropriate tile sizes it is possible to derive a transformed loop nest where each
loop level (and its iteration space) corresponds to a specific block or thread
dimension, normalized to start at 0 and have a unit step size.

Figure 2 shows an example of using loop tiling to re-structure the iteration
space of the matrix-vector multiplication code in Figure 2 (a). The transfor-
mation recipe in Figure 2 (b) contains a tile command specifying that loop “i”
should be tiled with a tile size of 32. This generates a control loop “ii” which is
placed just outside “i”. The tile command has a parameter (not shown in the
script) that specifies the stride of the new control loop as either 1 (counted)
or the tile size (strided). The resulting code, given N=1024, TI=32, and con-
trol loop with stride 1, is shown in Figure 2 (c). The outermost ii loop is then
mapped to a single GPU block dimension and the i loop is mapped to a single
thread dimension.

Explicit data movement. The GPU memory hierarchy is heterogeneous and must
be explicitly managed by software. Data must be copied from the host into global
device memory, with latencies of hundreds of cycles per access and no caching
(on the NVIDIA GTX280.) All data are stored in global memory by default,
unless explicitly copied into low-latency shared memory which can be accessed
across threads running concurrently on a streaming multiprocessor (SM). Us-
ing a datacopy transformation, the compiler introduces a new, usually smaller
data structure from the footprint of array accesses within a given loop nest. Al-
though not an explicitly controlled memory structure, the large register file can
be exploited by copying data into fixed sized thread-local arrays and scalars. A
variant of datacopy, which we refer to as datacopy privatized, targets registers
by copying local data that are touched only by the subset of iterations assigned
to a thread to thread-local arrays and scalars kept in registers.

2.2 Foundation from CHiLL Loop Transformation Recipes

Our previous work describes providing the transformation recipe interface to
library and application developers, so that they can control the compiler’s op-
timization strategy [9]. We developed a script interface with a flat sequence of
transformations that were unconditionally applied, and a collection of standard
compiler transformations with parameters that fully specified the application

1 The simplicity of an evenly divisible problem size is not a requirement, but is used
to clarify the example.

Programming Language for Optimizations 141

Table 1. Description of common CHiLL commands, used by CUDA-CHiLL

Command Description
tile Tile a loop with a given tile size. Specify an index variable for the

new control loop and a second index variable to optionally rename the
original index variable of the tiled loop.

permute For a specified statement, reorder loops in a loop nest (the iteration
space of the statement.) The permutation order is specified by a list
of loop index variables.

datacopy For a specified statement, starting loop level and array variable, copy
array data that is accessed within the starting loop level to a smaller
dimensional structure. Optionally annotate the new data structure
with shared to specify a copy to shared memory.

datacopy privatized Similar to datacopy but used to copy data private to a thread and thus
does not have an option to flag for shared memory.

of each transformation. Table 1 shows a few of the previously available CHiLL
commands, ones that are used by CUDA-CHiLL.

2.3 Using a Lua Programming Language Interface in CUDA-CHiLL

CUDA-CHiLL maps sequential code to CUDA primarily through a sequence
of tile, permute and datacopy transformations. Other than the specific CUDA
constructs discussed in Section 4, a sequence of the CHiLL transformations in
Table 1 can produce the parallel code structure for the CUDA program. How-
ever, the transformation recipes to realize these implementations can be fairly
complex, and for different programs the recipes share a similar standard struc-
ture. Therefore, as part of this work, we have developed a higher-level interface
that encapsulates these standard mapping strategies.

Using the programming language interface, transformation recipes are ex-
pressed in Lua [11], a lightweight, embeddable scripting language with extensible
semantics and easy integration with a host program. Through Lua, we are able
to create scripts that describe transformation “programs”, ones that can query
the internal data structures of the compiler to make optimization decisions, cre-
ate output variables that represent the results of transformations, incorporate
control flow to tailor optimization to context, and encapsulate commonly used
constructs into “subroutines” that can be part of an optimization library.

Table 2 illustrates how the programming language interface implements these
higher-level commands and complex sequences by composing basic commands
from Table 1. Each table entry lists the command and its description, with
example parameters shown in Table 2. We will describe a few of these commands
in more detail in subsequent sections. Note that the commands in Table 1 and
Table 2 can be mixed together to fully utilize the expressive power of CUDA-
CHiLL’s programming language interface, and further control the mapping if
the high-level constructs are not producing the desired results. As a measure of
power of Lua as a scripting language, the entire Phase I CUDA-CHiLL extensions
represented in Table 2 are implemented in just over 300 lines of Lua code. The
tiling-related code and the copy-related code are comprised of roughly 100 lines
of Lua each, the unroll algorithm is roughly 50 lines of code, and the remainder
is utility functions.

142 G. Rudy et al.

Table 2. Description of prominent commands in CUDA-CHiLL scripts

Command Example Parameter Description

tile by index

{"i","j"} The index variables of the loops to be tiled
{TI,TJ} The respective tile sizes for each index variable
{l1 control="ii",
l2 control="jj"}

A mapping that specifies control loop variable
names and optionally renames tile loop index vari-
ables.

{"ii", "jj", "i", "j"} Final order of nested loops with updated loop in-
dex names

cudaize
"gpuMV" The name of the kernel function
{a=N, b=N, c=N*N} The data sizes of the arrays if not statically deter-

minable
{block={"ii"},
thread={"jj"}}

Block and thread indices for mapping. The bounds
for these loops are used to define the grid dimen-
sions.

copy to registers
"kk" The loop level, given as an index variable, that is

the target of register structure
"c" The name of the array variable to be copied

copy to shared
"tx" The loop level, given as an index variable, that is

the target of the copied data
"b" The name of the array variable to be copied
-16 Ensure the last dimension of the temporary array

are coprime with 16
unroll to level 1 Unrolls all statements up to one level from inner-

most loops outwards. This construct will stop un-
rolling if it encounters a CUDA thread mapped
index.

3 Computation Decomposition of a Loop Nest: A
Complex Transformation Sequence

In this section we discuss the semantics and implementation of key CUDA-
CHiLL constructs, focusing on the loop restructuring.

Loop restructuring using tile by index. As described in Section 2, a computa-
tion partition that takes advantage of the multiple levels of parallelism on a
GPU grid can be achieved by decomposing the iteration space of a loop nest
into a set of loops such that each loop is mapped to a block or thread dimen-
sion, or is within a thread loop. This decomposition requires a complex sequence
of tile and permute transformations when expressed using CHiLL’s lower-level
transformation interface. In the CUDA-CHiLL interface, this sequence of trans-
formations can be expressed by a single command, tile by index, which directs
the computation space decomposition of the original loop nest as well as laying
the foundation for control of subsequent memory hierarchy optimizations. Table
2 provides descriptions of each parameter of the tile by index command.

Figure 3(a) shows a CUDA-CHiLL script for the matrix-vector multiply code
in Figure 2(a) that uses tile by index to specify multiple tile transformations.
We can see the lower-level nature of the corresponding sequence of CHiLL trans-
formations is shown in Figure 3(b). Source code and a more complex script for
matrix-matrix multiply is shown in Figure 4.

Figure 5 presents the details of the algorithm used in the tile by index func-
tion. The algorithm builds a list of tile transformations based on the desired

Programming Language for Optimizations 143

1. N=1024
2. TI=32
3. tile by index({"i","j"}, {TI,TI},

{l1 control="ii", l2 control="jj"},
{"ii", "jj", "i", "j"})

4. normalize index("i")
5. cudaize("mv GPU", a=N, b=N, c=N*N,

block="ii", thread="i")
6. copy to shared("tx", "b", 1)
7. copy to registers("jj", "a")
8. unroll to depth(1)

1. N=1024
2. TI=32
3. original()
4. tile(0, 1, TI, 1, i, ii, 1)
5. tile(0, 3, TI, 2, j, k, 1)
6. tile(0, 3, 3)
7. datacopy(0, 3, b, "tmp1", "tmp2", false,

0, 1, 1, true)
8. tile(1, 3, 3)
9. datacopy privatized(0, k, a, tx)
10.unroll(0, 5, 0)

(a) CUDA-CHiLL script for matrix-
vector multiply. (b) CHiLL script generated by Lua interface.

void seqMV(float (*c)[1024], float *a,
float *b)

{
float *devO1Ptr, *devI1Ptr, *devI2Ptr;
cudaMalloc(&devO1Ptr, 1024 * 4);
cudaMemcpy(devO1Ptr, a, 1024 * 4,

cudaMemcpyHostToDevice);
cudaMalloc(&devI1Ptr, 1048576 * 4);
cudaMemcpy(devI1Ptr, c, 1048576 * 4,

cudaMemcpyHostToDevice);
cudaMalloc(&devI2Ptr, 1024 * 4);
cudaMemcpy(devI2Ptr, b, 1024 * 4,

cudaMemcpyHostToDevice);
dim3 dimGrid(64, 1);
dim3 dimBlock(64, 1);
gpuMV<<<dimGrid,dimBlock>>>(devO1Ptr,

(float(*) [1024])devI1Ptr, devI2Ptr);
cudaMemcpy(a, devO1Ptr, 1024 * 4,

cudaMemcpyDeviceToHost);
cudaFree(devO1Ptr);
cudaFree(devI1Ptr);
cudaFree(devI2Ptr);
}

global void gpuMV(float *a, float **c, float *b)
{
int bx = blockIdx.x; int tx = threadIdx.x;
shared float bcpy[32];

float acpy = a[tx + 32 * bx];
for (jj = 0; jj < 32; jj++) {

bcpy[tx] = b[32 * jj + tx];
syncthreads();

//this loop is actually fully unrolled
for (j = 32 * jj; j <= 32 * jj + 32; j++)

acpy = acpy + c[j][32 * bx + tx] * bcpy[j];
syncthreads();

}
a[tx + 32 * bx] = acpy;

}

(c) CUDA host code. (d) CUDA kernel code.

Fig. 3. Scripts for matrix-vector multiply and generated code

loop order and tile sizes. At each step it calls BuildOrder to construct an order
that reflects the number of tile operations that have already been performed.
Given this order it can choose a couple of different ways of tiling to ensure the
proper placement of the control loop and tile loop. After each tile transforma-
tion, it performs a permutation to handle further changes to the loop order. This
algorithm and its auxiliary functions is implemented in roughly 300 lines of Lua
code. In the figure, the use of control flow and queries to CHiLL enable the
algorithm to determine the current loop structure and the sequence of permute
and tile functions needed to achieve the desired goal.

Unrolling and Copy commands. Due to space limitations, we omit a detailed
discussion of other CUDA-CHiLL commands, but summarize their functionality
here. The unrolling function applies aggressive loop unrolling to fully unroll a
specific loop nesting level in the GPU code, and is implemented in about 50 lines
of Lua code. While the use of aggressive unrolling can create register pressure
and fill up the instruction cache, the size of the iteration space of inner loops on
the GPUs is typically small due to managing limited memory resources, and the

144 G. Rudy et al.

void seqMM(float c[N][N], float a[N][N],
float b[N][N])

{
int i, j, k;
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
for (k=0; k < N; k++)

c[i][j] = c[i][j] +
a[i][k] * b[k][j];

}

1. tile by index({"i","j"},{TI,TJ},
{l1 control="ii",l2 control="jj"}
{"ii","jj","i","j"})

2. tile by index({"k"},{TK},
{l1 control="kk"},
{"ii","jj","kk","i","j","k"},
strided)

3. tile by index({"i"},{TJ},
{l1 control="tt",l1 tile="t"},
{"ii","jj","kk","t","tt","j","k"})

4. cudaize("mm GPU",{a=N*N,b=N*N,c=N*N},
{block={"ii","jj"},thread={"t","tt"}})

5. copy to registers("kk","c")
6. copy to shared("tx","b",-16)
7. unroll to depth(2)

(a) Matrix-matrix multiply source code. (b) CUDA-CHiLL script.

Fig. 4. Source and CUDA-CHiLL script for matrix-matrix multiply

register file is extremely large, so aggressive unrolling usually is profitable and
can be avoided when it is not. It not only reduces control overhead and improves
instruction-level parallelism, but it also simplifies the code and encourages the
nvcc backend compiler to allocate array variables to registers. The implemen-
tation of the unroll to depth function is the application of unrolling to all
statements in the transformed code. Importantly, after tiling for problem sizes
that are not divisible by the tile size, the compiler generates additional clean-up
code, so this function applies unrolling to the clean-up loops as well.

The copy to registers and copy to shared are the most complex functions,
implemented in about 300 lines of Lua code. These functions take as input the
level of the loop nest to place the copy function, and then the compiler implicitly
generates the temporaries and derives their size according to the footprint of the
accesses to the original array within the portion of the loop nest specified by the
parameter. For registers, the temporary is declared as a local array in the thread
program, while for shared memory, it is declared with a shared attribute. An
additional parameter for copying to shared memory is used to specify padding
to avoid shared memory bank conflicts.

4 CUDA Code Generation

After CHiLL’s internal abstraction of the code is modified through a sequence
of these transformations, the resulting changes to the code are applied to the
compiler’s intermediate representation to produce the desired GPU code.

As an example, consider the CUDA code shown in Figure 3(c). This code is
automatically generated to provide the proper scaffolding to handle data move-
ment between host and GPU and make the GPU kernel call. The array references
in the sequential loop nest are analyzed to determine their read and write prop-
erties. Appropriate cudaMalloc and cudaMemcpy calls are then generated for
each array to transfer data to and from GPU global memory. If size attributes
were specified in the cudaize call in the CUDA-CHiLL transformation script,
they will be used in these memory copy operations.

Programming Language for Optimizations 145

TileByIndexCommands(s,I,S,M,O)
Input: s: Statement number; I : Indices to tile; S : Tile sizes;

M : Map of names for indices; O: Final loop nest order
Output: F : Set of transformation operations
begin

F := ∅
C := extract control loop name list from M
I′ := extract renamed tile loop name map from M ∪ I
order := BuildOrder(O, C, I′, 0)
F := F + [[permute(s,order)]]
for i in 1..|I| do

level := FindLevel(Ii)
order := BuildOrder(O, C, I′, i)
offset := offset between I′

i and Ci in order
if offset < 0 then

F := F + [[tile(s,level,Si,level + offset,I′
i,Ci)]]

then
F := F + [[tile(s,level,Si,level,I′

i,Ci)]]
end
order := BuildOrder(O, C, I′,i)
F := F + [[permute(s,order)]]

end
return F

end

BuildOrder(O,C,I,n)
Input: O: Final loop nest order;

C : Control loop list;
I : Index loop mapping;
n: Current index;

Output: B: Built order
begin

B := {}
for o in O do

Skip if o ∈ C after n
if o ∈ I then

o := I(o)
end
B := B :: o

end
return B

end

Fig. 5. Algorithm used by tile by index where FindLevel finds the loop level of a in-
dex variable in the current internal representation and BuildOrder builds the snapshot
of what the order should be between its current state and its final state given that n
tile operations were already processed.

The kernel call requires parameters to define the CUDA grid for the compu-
tation. In this case, there is only one grid dimension and thread dimension (all
other dimensions are set to 1). The call to the generated GPU kernel, gpuMV, is
made with the dim3 variables that define the execution grid space as extra pa-
rameters. CUDA uses the <<< >>> syntax in a C++-template manner to prefix
the parameter list at the call site of the kernel function with these dimension
variables. The kernel code is shown in Figure 3(d).

Finally, as an effect of the cudaize call in the transformation script, for
each statement group there should be loop levels with specially renamed index
variables from the set bx,by,tx,ty,tz. During the transformation to CUDA
code, loops with these indices are removed and references to these variables are
replaced with the CUDA provided index variables from the set blockIdx.x,
blockIdx.y, threadIdx.x, threadIdx.y, threadIdx.z. If there was a com-
pound upper bound for a removed loop it is replaced with a bounds check to en-
sure correctness. For example, if the upper bound for the tx loop was min(-(58 *
bx) + 116, 128) and the thread.x grid dimension was 128, the loop construct
would be replaced with the condition if(tx < -(58 * block.x) + 116).

Interestingly, the generated code is fairly complex even for this simple kernel,
and can be quite different for different problem sizes. The code for problem size
4096, which includes the CUDA scaffolding code of Figure 3(c) and the CUDA
kernel of Figure 3(d), has 97 lines of code, partially due to the aggressive loop
unrolling. The code for size 1975 is longer, with 142 lines of code. Because 1975 is
not divisible by the tile size and thread partitioning size of 32, the compiler must
generate “clean up” code for the portion of the computation that goes beyond an

146 G. Rudy et al.

12
8

56
9

10
10

14
51

18
92

23
33

27
74

32
15

36
56

40
97

45
38

49
79

54
20

58
61

63
02

67
43

71
84

76
25

80
66

0

10

20

30

40

50

60

70

CHILL
CUBLAS

Problem Size(Square matrices)

G
F

L
O

P
S

12
8

61
8

11
08

15
98

20
88

25
78

30
68

35
58

40
48

45
38

50
28

55
18

60
08

64
98

69
88

74
78

79
68

0

50

100

150

200

250

300

350

400

CHILL
CUBLAS

Problem Size(Square Matrices)

G
F

L
O

P
S

(a)sgemv-GFlops(GTX-280) (b)sgemm-GFlops(GTX-280)

86
4

17
28

25
92

34
56

43
20

51
84

60
48

69
12

77
76

86
40

0

5

10

15

20

25

30

35

40

45

50

ChiLL
CUBLAS

Problem Sizes (Square Matrices)

G
F

L
O

P
S

86
4

17
28

25
92

34
56

43
20

51
84

60
48

69
12

77
76

86
40

0

100

200

300

400

500

600

700

ChiLL
CUBLAS

Problem Sizes (Sq matrices)

G
F

L
O

P
S

(c)sgemv-GFlops(Tesla C2050) (d)sgemm-GFlops(Tesla C2050)

Fig. 6. Performance comparison of automatically-generated CUDA-CHiLL code with
for Single Precision Matrix-Vector and Matrix-Matrix Multiplication kernels, on a
GTX-280 vs. CUBLAS 2.2 (a,b) and on a Tesla C2050 vs. CUBLAS 3.2 (c,d).

even multiple of 32, and also test to ensure that a particular thread participates
in a portion of the computation. This clean up code falls out naturally from the
compiler’s polyhedral framework for code generation, using the same set of tile
commands for both problem sizes.

5 Performance Results

We applied the transformation scripts in Figures 3 and 4 to single precision
matrix-vector (sgemv) and matrix-matrix (sgemm) multiplication (with an ad-
ditional script not shown to optimize sgemm for the C2050). We examined the
performance of the generated code for a set of square matrix sizes in the range
128-8192. We illustrate the power of our approach with a performance com-
parison between our automatically-generated code and the CUBLAS 2.2 and
3.2 library versions released by Nvidia as shown in Figure 6. All results were
obtained on an Nvidia GTX280 and Tesla C2050, and show the average perfor-
mance over three runs, with a standard deviation of less than 0.1 msec. We show
a large collection of points in the matrix size range to demonstrate the success
of the approach across different matrix sizes. We step by 49 when comparing to
CUBLAS 2.2 in Figure 6(a,b) to show a diversity of problem sizes and highlight
the unstable behavior of CUBLAS for different problem sizes. As performance
of CUBLAS 3.2 is much more stable, we we used a smaller set of matrix sizes
for the comparison in Figure 6(c,d).

We used auto-tuning to explore a small set of tile sizes (multiples of 16 that are
smaller than 128) to achieve these performance results. As tile sizes govern the

Programming Language for Optimizations 147

number of threads in a block, and thus affect the memory coalescing behavior,
we chose tile sizes that are multiples of a warp (i.e., 32, the scheduling unit) or
a half-warp (16, the memory scheduling unit on the GTX-280).

Comparing against CUBLAS 2.2 on a GTX 280 in 6(a,b), the CUDA-CHiLL
code outperforms CUBLAS 2.2 in sgemv over the whole range of problem sizes
considered. Similarly, for almost all problem sizes used in our experiment CHiLL
outperforms CUBLAS 2.2 for sgemm. CHiLL achieves a 1.78x average speed up
over CUBLAS 2.2 for sgemv and 1.5x for sgemm. The maximum GFlops achieved
by CHiLL generated code is 366GF. Figure 6(c,d) shows similar comparisons
with CUBLAS 3.2 on TeslaC2050, an architecture with more cores and larger
shared memory. Even for this newer library implementation, our automatically-
generated sgemv always outperforms CUBLAS 3.2 and achieves up to 44GFlops.
We are within 11-13% the CUBLAS 3.2 sgemm code, reaching up to 565 GFlops.
Some of the performance gap in the C2050 sgemm performance comes from the
explicit use of texture memory with dedicated hardware which CUDA-CHiLL
does not currently use, but is planned for future work.

6 Related Work

Polyhedral loop transformation frameworks (e.g., [13,8]) are known to support
composition of multiple transformations. Internally, these frameworks manip-
ulate mathematical representations of iteration spaces and loop bounds, and
expose interfaces that allow users (or compilers) to manipulate these low-level
mathematical representations or individual loop or statement manipulations.
Such interfaces are still too cumbersome to use when implementing a complex
optimization strategy because descriptions of transformation sequences tend to
be lengthy. Our own compiler uses a polyhedral transformation framework, but
the transformation recipes specify high-level transformations that operate on a
complete loop nest; transformation algorithms translate from the recipes to the
iteration space manipulations for all statements enclosed in the loop nest [5,6]. As
compared to other polyhedral frameworks, the transformation recipes described
in this paper target a higher level description of a composition of transforma-
tions that is suitable for savvy application developers in addition to compiler
developers; further, the interface can be broadly applicable to non-polyhedral
frameworks and polyhedral frameworks alike.

A number of interfaces to code transformation exist that are targeting a sim-
ilar level to the transformation recipes presented here. These include pragma-
oriented transformation specifications such as LoopTool [22], X language [7], and
Orio [10]. A related tool POET uses an XML-based description of code transfor-
mation behavior to produce portable code transformation implementations [36],
These tools all provide a general and flexible way to express a set of transforma-
tions on a specific code fragment and several of these generate a set of alternative
implementations to support auto-tuning. Looking across the tools, the set of sup-
ported transformations is different, and ours is neither a subset or superset of
other systems. Some distinguishing characteristics of our supported transforma-
tions include the OpenMP and CUDA parallel code generation, specialization

148 G. Rudy et al.

and index set splitting. Further, these tools support a core set of transforma-
tions such as loop unrolling and loop tiling, and some support extension to add
new transformations. In summary, each tool has its unique strengths and most
suitable applications. Thus, we expect that the existence of other interfaces at
this level gives promise to potential for interoperability between tools.

Compilers for generating GPU code include work in Pluto that automatically
parallelizes a sequential code [3],and generation of CUDA from OpenMP [17].
GPU code optimizers include generation of optimized code from a naiive gpu
kernel in a CUDA to CUDA code optimizer [35] and CUDA-lite [30], which
optimize CUDA code to improve the coalescing of global memory accesses and
the bandwidth to global memory.

7 Summary and Future Work

This paper has described a programming language interface to transformation
and code generation that permits high-level description and encapsulation of
complex transformation sequences. In this paper, we have developed this inter-
face in the context of CUDA-CHiLL, which provides an interface for generating
CUDA code for GPUs from sequential code and a transformation recipe. We
demonstrate that the automatically-generated code either performs closely or
outperforms two hand-tuned GPU library kernels from Nvidia’s CUBLAS 2.2
and 3.2 libraries, matrix-vector and matrix-matrix multiply.

We envision this approach as a step towards building compilers in a different
way, where these “programs” become libraries of transformation strategies that
could be made available to users of different expertise levels. Over time, this
library could grow and be customized for specific domains, applications or user
communities.

Acknowledgements. This work has been funded in part by Department of En-
ergy grants DE-FC02-06ER25765 and DE-FC02-10ER25898, National Science
Foundation grants SHF-1018881, SHF-0916436, and OCI-0749360, and DARPA
contract HR0011-10-9-000.

References

1. Ahmed, N., Mateev, N., Pingali, K.: Synthesizing transformations for locality en-
hancement of imperfectly-nested loop nests. In: Proceedings of the 2000 ACM
International Conference on Supercomputing (May 2000)

2. Bailey, D.H., Chame, J., Chen, C., Dongarra, J., Hall, M., Hollingsworth, J.K.,
Hovland, P., Moore, S., Seymour, K., Shin, J., Tiwari, A., Williams, S., You, H.:
PERI auto-tuning. Journal of Physics: Conference Series 125(1) (2008)

3. Baskaran, M.M., Bondhugula, U., Krishnamoorthy, S., Ramanujam, J., Rountev,A.,
Sadayappan, P.: A compiler framework for optimization of affine loop nests for
GPGPUs. In: Proceedings of the 22nd Annual International Conference on Super-
computing, ICS 2008, pp. 225–234. ACM, New York (2008)

Programming Language for Optimizations 149

4. Carr, S., Kennedy, K.: Improving the ratio of memory operations to floating-
point operations in loops. ACM Transactions on Programming Languages and
Systems 16(6), 1768–1810 (1994)

5. Chen, C.: Model-Guided Empirical Optimization for Memory Hierarchy. PhD the-
sis, University of Southern California (May 2007)

6. Chen, C., Chame, J., Hall, M.: CHiLL: A framework for composing high-level loop
transformations. Technical Report 08-897, University of Southern California (June
2008)

7. Donadio, S., Brodman, J., Roeder, T., Yotov, K., Barthou, D., Cohen, A.,
Garzarán, M.J., Padua, D., Pingali, K.: A language for the compact representation
of multiple program versions. In: Ayguadé, E., Baumgartner, G., Ramanujam, J.,
Sadayappan, P. (eds.) LCPC 2005. LNCS, vol. 4339, pp. 136–151. Springer, Hei-
delberg (2006)

8. Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam,
O.: Semi-automatic composition of loop transformations for deep parallelism and
memory hierarchies. International Journal of Parallel Programming 34(3), 261–317
(2006)

9. Hall, M., Chame, J., Chen, C., Shin, J., Rudy, G., Khan, M.M.: Loop transfor-
mation recipes for code generation and auto-tuning. In: Gao, G.R., Pollock, L.L.,
Cavazos, J., Li, X. (eds.) LCPC 2009. LNCS, vol. 5898, pp. 50–64. Springer, Hei-
delberg (2010)

10. Hartono, A., Norris, B., Sadayappan, P.: Annotation-based empirical performance
tuning using Orio. In: Proceedings of the 23rd International Parallel and Dis-
tributed Processing Symposium (May 2009)

11. Ierusalimschy, R., de Figueiredo, L.H., Filho, W.C.: Lua an extensible extension
language. Softw. Pract. Exper. 26, 635–652 (1996)

12. Jiménez, M., Llabeŕıa, J.M., Fernández, A.: Register tiling in nonrectangular iter-
ation spaces. ACM Transactions on Programming Languages and Systems 24(4),
409–453 (2002)

13. Kelly, W., Pugh, W.: A framework for unifying reordering transformations. Techni-
cal Report CS-TR-3193, Department of Computer Science, University of Maryland
(1993)

14. Kennedy, K., McKinley, K.: Optimizing for parallelism and data locality. In: ACM
International Conference on Supercomputing (July 1992)

15. Kirk, D., Hwu, W.: Programming Massively Parallel Processors: A Hands-on Ap-
proach. Morgan Kaufmann Publishers, San Francisco (2010)

16. Kodukula, I., Ahmed, N., Pingali, K.: Data-centric multi-level blocking. In: Pro-
ceedings of ACM SIGPLAN Conference on Programming Languages Design and
Implementation (June 1997)

17. Lee, S., Min, S.-J., Eigenmann, R.: OpenMP to GPGPU: a compiler framework
for automatic translation and optimization. In: ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (February 2009)

18. Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization
with affine partitioning. In: Proceedings of ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 1997) (January 1997)

19. Lim, A.W., Liao, S.-W., Lam, M.S.: Blocking and array contraction across arbi-
trarily nested loops using affine partitioning. In: ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (June 2001)

20. McKinley, K.S., Carr, S., Tseng, C.-W.: Improving data locality with loop trans-
formations. ACM Transactions on Programming Languages and Systems 18(4),
424–453 (1996)

150 G. Rudy et al.

21. Pugh, B., Rosser, E.: Iteration space slicing for locality. In: Carter, L., Ferrante, J.
(eds.) LCPC 1999. LNCS, vol. 1863, p. 164. Springer, Heidelberg (2000)

22. Qasem, A., Jin, G., Mellor-Crummey, J.: Improving performance with integrated
program transformations. Technical Report TR03-419, Rice University (October
2003)

23. Rivera, G., Tseng, C.-W.: Data transformations for eliminating conflict misses. In:
Proceedings of ACM SIGPLAN Conference on Programming Languages Design
and Implementation (June 1998)

24. Rudy, G.: CUDA-CHiLL: A programming language interface for GPGPU opti-
mizations and code generation. Master’s thesis, University of Utah (May 2010)

25. Sarkar, V., Thekkath, R.: A general framework for iteration-reordering loop trans-
formations. In: Proceedings of ACM SIGPLAN Conference on Programming Lan-
guages Design and Implementation (June 1992)

26. Shin, J., Hall, M., Chame, J., Chen, C., Fischer, P.F., Hovland, P.D.: Speeding
up nek5000 with autotuning and specialization. In: Proceedings of the 2010 ACM
International Conference on Supercomputing (June 2010)

27. Shin, J., Hall, M.W., Chame, J., Chen, C., Hovland, P.D.: Autotuning and special-
ization: Speeding up matrix multiply for small matrices with compiler technology.
In: Proceedings of the 4th International Workshop on Automatic Performance Tun-
ing (October 2009)

28. Temam, O., Granston, E.D., Jalby, W.: To copy or not to copy: A compile-time
technique for assessing when data copying should be used to eliminate cache con-
flicts. In: Proceedings of Supercomputing 1993 (November 1993)

29. Tiwari, A., Chen, C., Chame, J., Hall, M., Hollingsworth, J.K.: A scalable auto-
tuning framework for compiler optimization. In: Proceedings of the 24th Interna-
tional Parallel and Distributed Processing Symposium (April 2009)

30. Ueng, S.-Z., Lathara, M., Baghsorkhi, S.S., Hwu, W.-m.W.: CUDA-Lite: Reduc-
ing GPU Programming Complexity. In: Amaral, J.N. (ed.) LCPC 2008. LNCS,
vol. 5335, pp. 1–15. Springer, Heidelberg (2008)

31. Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. In: Proceedings of
ACM SIGPLAN Conference on Programming Languages Design and Implementa-
tion (June 1991)

32. Wolf, M.E., Lam, M.S.: A loop transformation theory and an algorithm to max-
imize parallelism. IEEE Transactions on Parallel and Distributed Systems 2(4),
452–471 (1991)

33. Wolfe, M.: More iteration space tiling. In: Proceedings of the 1989 ACM/IEEE
Conference on Supercomputing, pp. 655–664. ACM, New York (1989)

34. Wolfe, M.: Data dependence and program restructuring. The Journal of Supercom-
puting 4(4), 321–344 (1991)

35. Yang, Y., Xiang, P., Kong, J., Zhou, H.: A gpgpu compiler for memory optimization
and parallelism management. SIGPLAN Not. 45(6), 86–97 (2010)

36. Yi, Q., Seymour, K., You, H., Vuduc, R., Quinlan, D.: POET: parameterized op-
timizations for empirical tuning. In: Proceedings of the 21st International Parallel
and Distributed Processing Symposium (March 2007)

37. Zima, H., Hall, M., Chen, C., Chame, J.: Model-guided autotuning of high-
productivity languages for petascale computing. In: Proceedings of the 18th ACM
International Symposium on High Performance Distributed Computing (HPDC
2009) (June 2009)

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 151–165, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Unified Parallel C for GPU Clusters: Language
Extensions and Compiler Implementation

Li Chen1, Lei Liu1, Shenglin Tang1, Lei Huang2,
Zheng Jing1, Shixiong Xu1, Dingfei Zhang1, and Baojiang Shou1

1 Key Laboratory of Computer System and Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, China

{lchen,liulei2007,tangshenglin,jingzheng,xushixiong,
zhangdingfei,shoubaojiang}@ict.ac.cn

2 Department of Computer Science, University of Houston; Houston, TX, USA
lei.huang@mail.uh.edu

Abstract. Unified Parallel C (UPC), a parallel extension to ANSI C, is designed
for high performance computing on large-scale parallel machines. With
General-purpose graphics processing units (GPUs) becoming an increasingly
important high performance computing platform, we propose new language
extensions to UPC to take advantage of GPU clusters. We extend UPC with
hierarchical data distribution, revise the execution model of UPC to mix SPMD
with fork-join execution model, and modify the semantics of upc_forall to
reflect the data-thread affinity on a thread hierarchy. We implement the
compiling system, including affinity-aware loop tiling, GPU code generation,
and several memory optimizations targeting NVIDIA CUDA. We also put
forward unified data management for each UPC thread to optimize data transfer
and memory layout for separate memory modules of CPUs and GPUs. The
experimental results show that the UPC extension has better programmability
than the mixed MPI/CUDA approach. We also demonstrate that the integrated
compile-time and runtime optimization is effective to achieve good
performance on GPU clusters.

1 Introduction

Following closely behind the industry-wide move from uniprocessor to multi-core and
many-core systems, HPC computing platforms are undergoing another major change:
from homogeneous to heterogeneous platform. This heterogeneity - exhibited in
compute capability, speed, memory size and organization, and power consumption -
may increase in the near future, along with the increasing number of cores configured.
General-purpose graphics processor units (GPGPUs) based clusters are attractive in
obtaining orders of magnitude performance improvement with relatively low cost.

Current prevailing programming models, like MPI and OpenMP, have not
supported heterogeneous platforms yet. Programming for the current dominant
heterogeneous systems equipped with general-purpose multi-core processors and
NVIDIA GPUs, programmers typically first program in OpenMP, Pthreads or other
suitable programming interfaces, then manually identify code regions for GPU

152 L. Chen et al.

acceleration, partition computation to GPU threads, and generate optimal accelerated
code in OpenCL (or CUDA which still dominates). Besides, users have to
manipulate data transfers and specify architecture-specific parameters in code
optimizations. For GPGPU clusters, hybrid MPI and OpenCL is a suggested
programming method, but it is not easy since both of them are low level programming
interfaces.

Partitioned Global Address (PGAS) languages are successful in capturing non-
uniform memory access feature of clusters and provide programmability very close to
shared memory programming. There are a number of PGAS language extensions
available. UPC, Co-array Fortran and Titanium are the dialects for C, Fortran and Java,
respectively. For UPC, there are open source implementations as Berkeley UPC, GCC-
based Intrepid UPC and MTU UPC, and commercial ones such as Cray UPC, HP
UPC, IBM XL UPC and etc. Previous work [15,16] demonstrated that UPC delivers
flexible programmability, high performance, and portability across different platforms.
UPC encourages global view programming with upc_forall, and it lays the basis for
hierarchical computation partitioning.

We make three contributions in this paper. Firstly, we extend UPC with
hierarchical data distribution and advance the semantics of upc_forall to support
multi-level work distribution. Affinity expression with hierarchical data distribution
indicates how to map the corresponding iterations to an implicit thread hierarchy.
Code portability can be gained across traditional HPC clusters and GPU clusters.
Secondly, we investigate important compiler analysis and runtime supports for these
language extensions. Affinity-aware loop tiling is put forward for computation
partitioning, array region analysis is used for inter-UPC communication and explicit
data transfer for GPUs, and the unified data management is introduced to the runtime
system to optimize data transfer and memory layout on different memory modules of
CPUs and GPUs. Thirdly, we implement several memory-related optimizations for
GPUs. Experimental results show that the UPC extensions have better
programmability than MPI+CUDA approach, and the integrated compile-time and
runtime optimization is effective to achieve good performance.

The rest of the paper is organized as follows. Section 2 presents our language
extension. Section 3 outlines the compiling and runtime framework for GPU clusters,
including affinity-aware loop tiling, memory layout optimization and the unified data
management system. Section 4 presents our experimental methodology and the
results. Section 5 discusses related work, and Section 6 contains our conclusion and
future work.

2 Extending UPC with Hierarchical Parallelism

In this section, we describe our revised execution model to UPC and the extension on
hierarchical data distribution. We also explain how to exploit massive parallelism
upon the upc_forall construct.

2.1 UPC’s Execution Model on GPGPU Clusters

Standard UPC only has flat SPMD parallelism among UPC threads. In order to match
the hierarchical thread organization of GPU, we introduce implicit threads. Implicit

Unified Parallel C for GPU Clusters: Language Extensions and Compiler Implementation 153

Fig. 1. Extension on UPC’s execution model

threads are created in the fork-join style by each UPC thread at upc_forall, and are
organized in groups similar to the CUDA thread blocks. Implicit threads are created
and managed by runtime, and programmers do not have much control over them,
except their granularity and organization.

Figure 1 shows the extension on UPC’s execution model on GPU cluster. Solid
lines represent the original UPC threads that exist from the very beginning of a UPC
program. UPC threads have their thread identities and are synchronized using barriers
and locks. Implicit threads represented as dotted lines, are created at the entry of
upc_forall loops, then synchronize with the UPC thread that forks them at the join
point, and then disappear. So, it is a mix between SPMD and fork-join model. Thread
group is the form of organizing implicit threads. Implicit threads run completely on
GPUs, and the original UPC threads do not participate in the computation on GPU.

In our UPC execution model, the organization of implicit threads is determined by
the affinity expression of upc_forall. Since there may be multiple upc_foralls in a
UPC program, the number and the organization of implicit threads varies during the
program execution.

2.2 Hierarchical Data Distribution

UPC maintains the partitioned global address space for different UPC threads in the
clusters. We introduce hierarchical data distribution into UPC allowing users to map
data to a hierarchical machine abstraction of GPU clusters.

We adopt the multi-dimensional shared array data distribution extension as in [7].
Upon this, a shared array is decomposed into a tree of data tiles and mapped to a
thread hierarchy. The syntax is as follows.

shared [ub1][ub2]...[ubn], [sb1][sb2]...[sbn], [tb1][tb2]...[tbn] <type>
A[d1][d2] ... [dn];

Implicit
thread groups

Implicit threads

Implicit threads or
thread subgroups

UPC threads

Fork point

Join point

UPC thread

Implicit
thread groups

Implicit threads

Fork point

Join point

UPC program

upc_forall

154 L. Chen et al.

Here, the sequence of [ub1][ub2]...[ubn] is the layout qualifier, describing the shape
of a data tile. This means that array A is decomposed into data tiles sizing ∏1≤i≤n(ubi)
at the first level, and these data tiles are distributed to UPC threads in lexicographic
order and in block-cyclic manner. We call these data tiles, upc-tiles. The second and
third level layout qualifiers are separated using commas. Each upc-tile is further split
into smaller tiles, whose number is ∏1≤i≤n⎡ubi/sbi⎤. These smaller data-tiles are called
subgroup-tiles, and are also arranged in lexicographic order. Similarly, each
subgroup-tile is again split into data tiles sizing ∏1≤i≤n(tbi) , which are called thread-
tiles, and this further set up father-child relationship between subgroup-tiles and
thread-tiles. From this father-child relationship, each data distribution implies a tree of
data-tiles.

(a) Implicit thread tree (b) Tree of data-tiles

… …
… UPC thread

UPC program

1

4 4

shared [32][32], [4][4],[1][1] float
A[128][128];

…
16

Upc-tiles

128

… …
64

32

Subgroup-tiles

Thread-tiles

…
64

32

16

Subgroup

implicit threads

16

64

16

Fig. 2. Two hierarchies implied by the same data distribution

Figure 2 illustrates the two hierarchies implied by a three-level data distribution.
The tree of data-tiles is given in Figure 2b, while Figure 2a illustrates the related
thread tree. In this example, there are 16 sub-trees of implicit threads, and four such
sub-trees will map to the same UPC thread if THREADS=4.

The meaning of data affinity is different on the three thread levels. Level-1 data
tiles are physically distributed to UPC threads. The data tiles on the other levels do
not indicate physical data distribution. The computation granularity of implicit threads
is decided by the leaf thread-tiles, while subgroup-tiles decide the grouping of implicit
threads, and indicate that each subgroup can share a logical shared memory.

Unified Parallel C for GPU Clusters: Language Extensions and Compiler Implementation 155

2.3 Loop Partitioning to Implicit Thread Tree

We leverage the global view loop construct upc_forall to express hierarchical
parallelism. Its semantics are extended in several ways. Firstly, upc_forall is further
restricted to genuine independent loops, while the UPC standard only requires that
there should be no data dependences between UPC threads in this loop. Secondly, for
affinity expression with pointer-to-shared type, the semantics of workload partitioning
is extended to a thread hierarchy. Affinity expression actually has many instances
during the execution of the loop nest. For a parallel loop with pointer-to-shared type
affinity expression, a loop iteration will be mapped to a certain (implicit) thread if the
corresponding instance of the affinity expression has affinity to that (implicit) thread.
Since each distributed array decides an implicit thread tree, there is definitive mapping
between the loop iterations of a parallel loop and the related implicit thread tree.

shared [32][32], [4][4],[1][1] float A[128][128];
upc_forall(i=0; i<128; i++; continue)
upc_forall(j=5; j<128; j++; &A[i][j])

 body...

(d) Condensed implicit thread tree.

(b) Workloads on
different UPC threads

Multi-edge

Implicit threads

 0:63

0:3

4:15

8:15

UPC threads

UPC program

16:63

0:15

4:15

0:15

0:7

Subgroups

0
1

1
1

0:3

0

0:15

5

(a) Source code of the loop

127

8

(c) Thread 0

Fig. 3. Workload distribution of an upc_forall

Figure 3a presents the source code of a parallel loop nest. In figure 3b, the
shadowed area indicates the whole iteration space, and this shows the workload
distribution on all UPC threads, so if there are 16 UPC threads, each gets one block,
Figure 3c shows the workload distribution on thread 0 where each “box” is a
subgroup. And figure 3d describes workload distribution on the condensed implicit
thread tree. Here, weight is given to each leaf node to indicate if it contains real
workload. To make the tree concise, two nodes are merged when they are isomorphic
and have the same father. Two nodes are isomorphic if they have the same amount of
work. Node merging brings about multi-edges, labeled with integer intervals to
represent those children merged. The children of each node have the serial numbers
ranging from 0 to n-1.

156 L. Chen et al.

Of course, when the affinity expression is of integer type or the corresponding
shared array has only one level of data distribution, the workload partitioning is
compatible to standard UPC.

According to a machine configuration file, compiler maps the implicit thread tree
to concrete GPU platform. Basically, each implicit thread maps to one CUDA thread,
and each subgroup maps to one thread block. When the size of the implicit thread tree
surpasses that of the architectural constraints, compiler can choose between reporting
an error and applying another level of loop tiling.

3 Implementation on GPU Clusters

We implement the compiling system in Berkeley UPC compiler v2.8.0. The source-
to-source translator is extended to support hierarchical data distribution, affinity-
aware loop tiling, DSM consistency maintenance and memory optimization for
CUDA, the output source code is CUDA C source code. UPC runtime is extended
with unified memory management between CPU and GPU, and data regrouping
supports for GPU.

The translated CUDA C source code is compiled using nvcc compiler and linked
with CUDA runtime, CUDA core library and UPC runtime. The object code runs on a
GPGPU cluster in the same way as a traditional UPC application.

3.1 Overview of the Compiling System

A upc_forall loop nest is called well-formed hierarchical parallel loop nest, if it
meets the following criteria, 1) its effective affinity expression is of pointer-to-shared
type. 2) the related array to the affinity expression has three-level data distribution.3)
each subscript of the affinity expression is unary affine function.

For well-formed hierarchical parallel loop nests, legality analysis rules out loops
which are invalid to apply loop tiling or include operations that platform does not
support, such as I/O operations etc. There is a definite mapping between the iteration
space and the CUDA thread topology. From inside out, the loop index of upc_forall
loops corresponds to the x, y, and z dimensions of the grid topology respectively. In
general, compiler applies three-level loop tiling, level one is used for affinity
expression promotion, the second and the third level tiling map the loop iteration
space to implicit thread tree. If the memory is insufficient on GPU, there needs
another level of loop tiling between the first and the second level loop tiling.

The compiler has three tasks, 1) Try affinity-aware multiple-level loop titling. 2)
Apply array region analysis for GPU’s heap allocation, and apply exposed array
region analysis for communication generation which is launched in the runtime. 3)
Data layout analysis for GPUs, including inter-thread data reuse analysis for shared
memory, and data layout transformation analysis for memory coalescing. Data
movement of these data transformations is carried out in the runtime system.

Runtime system is comprised of three parts, unified data management, inter-UPC
communication and data regrouping for GPUs.

Unified data management takes care of the local memory space of each UPC
thread. It is a simple DSM system, scheduling data transfer between CPUs and GPUs.

Unified Parallel C for GPU Clusters: Language Extensions and Compiler Implementation 157

The data granularity of shared data is upc-tile, while the granularity of private data is
the whole array. Shared heap is initialized on both GPU and CPU by the runtime
system at startup time. Further, the runtime system analyzes the exposed array region
that compiler provides to see if inter-UPC communication is needed, and it will
launch inter-UPC communication if necessary and shuffle data on the GPU to get a
contiguous memory region. Here, inter-UPC messages are private data, and will be
disposed of after use.

Data regrouping includes array transposition and structure splitting, and is realized
in CUDA code as a runtime library routine.

3.2 Affinity-Aware Loop Tiling Transformation

In this section, we introduce affinity-aware loop tiling to map well-formed
hierarchical parallel loop nests to the implicit thread tree. Affinity-aware loop tiling
assures that each tile-element-loop always has a unique thread affinity.

In a well-formed hierarchical parallel loop nest, an upc_forall loop is called an
effective parallel loop, if its loop index appears in a subscript of the affinity
expression. Otherwise, this upc_forall loop will not be partitioned among different
UPC threads, and basically it is a serial loop. The subscript of an affinity expression
related to the effective parallel loops are called effective subscripts.

Effective upc_forall loops will be partitioned and distributed to an implicit thread
tree according to the data distribution of the related affinity expression. For each
effective upc_forall loop, an affine loop transformation T can be introduced to make
the effective subscript of the affinity expression have the form of unit coefficient and
zero offset, thus forming a new iteration space. If represented as a bounding box, the
new iteration space is consistent with the data space decided by the effective
subscripts of the affinity expression. Traditional loop tiling then can be applied
regularly on the new iteration space such that iterations inside each tile-element-loop
have the same affinity attribute. Finally, guard conditions are sank into the innermost
loop body. And this is called affinity-aware loop tiling transformation. An example is
given in Figure 4.

3.3 Memory Optimizations for CUDA

GPUs have complex memory hierarchy. Shared memory is suitable to store data with
high temporary locality, in order to reduce the number of global memory access.

For each array, an average, temporary reuse degree is computed. The problem is
formulated as a 0/1 binpack problem, if regarding reuse degree and the size of
referenced regions as the benefit and the cost respectively. In our implementation, we
use an exhaustive method.

Dynamic data transformation is introduced to change array’s access pattern. Array
transposition and structure splitting are two kinds of data transformations that we
consider. Dynamic data transformation is carried out in the runtime system using
optimized GPU code. About profitability, coalescing references and non-coalescing
references are counted respectively, and the extra cost on dynamic data
transformation is included, so the profit of a new memory layout can be estimated.

158 L. Chen et al.

Fig. 4. Illustration on how to apply affinity-aware loop tiling

shared [32][32], [4][4],[1][1] float A[128][128];
… …

upc_forall(i=6; i<128; i++; continue)
upc_forall(j=0; j<128; j++; &A[i-1][j])
 F[i][j]...
Step1: iteration space transformation, to make affinity expression consistent with data space
upc_forall(i=5; i<127; i++; continue)
upc_forall(j=0; j<128; j++; &A[i][j])
 F[i+1][j]... //transformation
Step2: three level tiling, actually two level tiling here
for (iu=0; iu<128; iu=iu+32)
for (ju=0; ju<128; ju=ju+32)

if (has_affinity(MYTHREAD, &A[iu][ju])) {//upc thread affinity
for (ib=iu ; ib<min(128, iu+32); ib=ib+4)
for (jb= ju; jb< min(128, ju+32); jb=jb+4)

for (i=ib; i<min(128,ib+4); i=i+1)
for (j=jb; j<min(128,jb+4); j=j+1)

if(i>=5 && i<127) //sink the guard condition here!
... ... F[i+1][j]... ;

}//of upc thread affnity
Step 3: spawn fine-grained threads
dim3 threads (4,4);
dim3 blocks (8,8);
for (iu=0; iu<4; iu=iu+1)
for (ju=0; ju<4; ju=ju+1)

if (has_affinity(MYTHREAD, &A[iu][ju])) {// upc thread affinity
 …dsm_read… F[iu+1:min(128, iu+32)][ju: min(127,ju+31)] // for exposed region

Foffset= compute_device_address(F, iu+1, ju, … …)
comput<<<blocks,threads>>>(Foffset,…);

}

__global__ void comput(float* F,… …){
… …

x = blockIdx.x * blockDim.x + threadIdx.x;
y = blockIdx.y * blockDim.y + threadIdx.y;
pitch= blockDim.y*gridDim.y; // for the linear address on device memory

if(x>=5 && x<127)
 … F[(x+1)+y*pitch]… ;
}

Unified Parallel C for GPU Clusters: Language Extensions and Compiler Implementation 159

It should be noted that layout transformation of an array which appears in the
affinity expression of some upc_forall, actually changes the thread hierarchy that
users specified by data distribution. If the compiler strictly complies with the user’s
intention, such data optimizations should be disabled.

3.4 Unified Data Management

The section focuses on data transfer scheduling in the runtime system. It manages
UPC thread’s local memory space, removing redundant data transfer and redundant
data layout transformation.

A simple data transfer strategy is as follows. According to data flow analysis, a
CPU-to-GPU data transfer is needed for any upward exposed use, and a GPU-to-CPU
data transfer is needed for any downward exposed definition. But, this simple strategy
may incur lots of redundant data transfer. In Figure 5 the data transfers between
kernel1 and kernel2 are redundant. And the other two data transfers can be promoted
outside of the time loop, because there is no data dependence carried by the time loop.

Fig. 5. Example for redundant data transfer removal

This optimization can be realized at compiler-time or runtime. Compiler analysis
needs to apply data flow analysis on array regions, and inter-procedural analysis is
demanded in real applications. We adopt the runtime approach, maintaining the valid
copies and deleting unnecessary data transfers between GPU and CPU. At each
consistency maintenance point, status of the related memory regions is updated or a
data transfer is launched when the current copy is stale. Currently we do not support
concurrency between CPU and GPU. Consistency maintenance points are the
boundaries between CPU codes and GPU codes.

For the example in Figure 5, the illustrative code of DSM-instrumentation is in
Figure 6. Here valid() is used to check the validity of some data copies on a certain
device, and set_valid/invalid will change the validity status of data copies. For each
write operation, set_exclusive_valid will make the directory entry valid on a certain
device, but invalid on all other devices. We can deduce that in this time loop there are
only two data transfers, and the redundant data transfer is optimized by the runtime
system.

It should be noted that there is a special argument TRANSPOSE in one DSM
library call. It is used to declare an expected memory layout for the following kernel
code. This data layout transformation also has similar optimization opportunity as
redundant transfer removal. The naïve method is to change the layout of a certain
array before the CUDA kernel call and restore back to the original one when CUDA
kernel finish. We can delete the redundant data transformation using a demand-driven

a = …
for (time=… …){
 kernel1(/*in*/a, /*out*/ b);
 kernel2(/*in*/b, /*out*/c);
}
… = c;

160 L. Chen et al.

a[…]= …
set_exclusive_valid(a, HOST);// multiple Devices
for (time=… …) {
 if (!valid(a, this_dev)) {//
 device_a= upcr_dsm_input_shared

(a,……,TRANSPOSE);
 set_valid(a, this_dev);

}
device_b=… …

 kernel1(in: device_a, out: device_b);
 set_exclusive_valid(b, this_dev);
 if (!valid(b, this_dev)) {
 upcr_dsm_input_private(b,device_b,… …);
 set_valid(b, this_dev);
 }
 kernel2(in: device_b, out: device_c);
 set_exclusive_valid(c, this_dev);
} //end recursive loop
if (!valid(c, HOST)) {
 cudaMemcpyD2H(c, device_c);
 set_valid(c, HOST);
}
……=c[2]

Fig. 6. Data transfer code inserted for the DSM system

approach. In each directory entry, an extra field is added to record the current memory
layout. And at the entry point of each kernel call, data transformation will be triggered
only when the current layout does not meet the expectation.

4 Experimental Results

The benchmarks we use are shown in table 1, four of them from Parboil, one from
SPEC CPU 2006, and one from China CUDA Campus Programming Contest. We
recode them into two UPC versions, one is in standard UPC, and the other is with
hierarchical data distribution. The original version of Parboil and n-body can be
regarded as highly tuned CUDA programs.

4.1 Programmability Evaluation

Conceptually, users only need to decide a proper hierarchical data distribution for
certain shared arrays, when porting a UPC program to a GPU cluster. So, the porting
process is easy.

We use source lines of code (SLOCs) in this section to quantify the programmability of
this UPC extension. The counterpart is MPI/CUDA, and is denoted as MPI in Figure 7.

Unified Parallel C for GPU Clusters: Language Extensions and Compiler Implementation 161

Table 1. Applications used in the experiments

Benchmarks Description Original
language

Application field Source

N-body
n-body simulation

CUDA
+MPI

Scientific
computing

CUDA campus
programming
contest 2009[14]

LBM Lattice Boltzmann method
in computational fluid
dynamics

C Scientific
computing

SPEC CPU 2006

CP Coulombic Potential CUDA Scientific
computing

UIUC Parboil
Benchmark

MRI-FHD Magnetic Resonance
Imaging FHD

CUDA Medical image
analysis

UIUC Parboil
Benchmark

MRI-Q Magnetic Resonance
Imaging Q

CUDA Medical image
analysis

UIUC Parboil
Benchmark

TPACF Two Point Angular
Correlation Function

CUDA Scientific
computing

UIUC Parboil
Benchmark

The source lines of code in the kernel part of each program are shown in Figure 7a. We
can easily see that UPC versions have remarkably less SLOCs than that of MPI/CUDA.
Programmers do not need to transform the array subscripts in kernel functions, or to
manage shared memory explicitly, or write code on data regrouping for memory
coalescing, and all of the above optimizations are handled by the compiler.

Figure 7b compares the overall SLOCs between the two programming methods,
and the same benchmarks are used. For the code outside of the kernel parts, UPC
versions also save code lines on separated memory management, thread hierarchy
declaration, kernel call invocation and inter-node MPI communications.

SLOCs in the kernels

0

20

40

60

80

100

120

140

160

180

200

n-body mri-fhd mri-q tpacf cp LBM

S

L

O

C

s

MPI HUPC

Overall SLOCs

0

100

200

300

400

500

600

700

800

900

n-body mri-fhd mri-q tpacf cp LBM

S

L

O

C

s

MPI HUPC

 (a) SLOCs of the kernel parts (b) Overall source lines of code

Fig. 7. Source lines of codes compared with MPI/CUDA

4.2 Performance Evaluation

In this section, we evaluate the performance of our UPC compiler. Our experimental
platform is a 4 node GPU cluster connected through gigabyte Ethernet. Each node has
two 2.5GHz dual-core AMD Opteron Processor 880 and NVIDIA GeForce 9800 GX2

162 L. Chen et al.

(CUDA 1.1), having 2G main memory. The latter is a dual GPU card, each having 16
multiprocessors with a clock rate of 1.5GHz, 512M global memory, and 64K constant
memory. Each multiprocessor is equipped with 8 SIMD processing units, 16K shared
memory and 8192 registers. The compiler we use is GCC3.4.6 and NVCC2.2.

The serial performance is gained using standard UPC programs running with one
UPC thread. We evaluate the speedups of UPC programs on our UPC compiler and
compare them with hand-tuned CUDA versions. In this experiment, we always deploy
one UPC thread. As shown in section 3, different optimizations are implemented in
our UPC compiler, so we also illustrate their respective contribution to the overall
performance.

Figure 8a shows the overall speedups on a single GPU node, and we choose
two benchmarks, n-body and LBM. The serial performance is treated as 1. We consider
four cases in the UPC implementation, basic code generation for GPU, unified
data management (DSM), memory coalescing optimization and shared memory
optimization. The optimizations are enabled one after another. Both the benchmarks
benefit from DSM management, and lbm has higher speedup for referencing larger
arrays and having large iteration count. Both n-body and lbm benefit from structure
splitting, while array transpose contributes only to n-body. The compiler finds many
inter-thread data reuses in n-body but none in lbm. For n-body, the three optimizations
gain improvement of 64%, 121% and 102% respectively, and eventually surpass the
hand-tuned version. The reason is that we exploit more data reuses through shared
memory management, while the hand-tuned version misses the opportunity. For LBM,
50% of the hand-tuned performance is reached.

one-node speedup to serial execution

0

5

10

15

20

25

30

35

40

nbody lbm

s

p

e

e

d

u

p

base DSM memory coalescing SM reuse manual CUDA

Four-node speedup to serial execution (log2)

0

1

2

3

4

5

6

7

8

9

10

nbody mri-fhd mri-q tpacf cp

s
p
e
e
d
u
p

base DSM memory coalescing SM reuse Manual CUDA/MPI

 (a) On single GPU node (b) On a 4-node GPU cluster

Fig. 8. Overall performance speedups

We also test the benchmarks on the 4-node GPU cluster, and the results are shown
in Figure 8b. All the performance data are compared to the serial CPU performance,
and all the speedups are logarithm to base 2. Similarly to the single node experiments,
we deploy one UPC thread on each node. The benchmarks include n-body and 4
kernels from parboil. The performance of n-body is similar to that on a single GPU
node. In Parboil, the compiler finds no redundant data transfer or optimization

Unified Parallel C for GPU Clusters: Language Extensions and Compiler Implementation 163

opportunity for memory coalescing, but there exists large number of temporary data
reuses. Shared memory management contributes an average speedup of 5.71, and the
overall performance reaches 53% of the highly optimized versions on average. Hand
tuned versions use constant memory other than shared memory to cache reused data,
and it might lead to better performance. Further our simple shared memory strategy
limits the concurrency for allowing less thread blocks sharing the same shared
memory.

5 Related Work

CUDA targets general purpose computing, and provides relative good programmability.
To ease programming on CUDA, many tools have been developed. CUDA-lite [5]
performs code transformation of coalescing global memory access based on
programmer’s annotations. hiCUDA [6] also leverages annotations to partition parallel
loops among CUDA blocks and threads. JCUDA [7] is a programming interface which
makes it possible to invoke CUDA kernels in JAVA. The JCUDA compiler has a basic
heterogeneous memory management strategy to schedule data transfer between CPU
and GPU. In [12], compiler techniques were developed targeting naïve GPU kernel
functions, it identifies the memory access patterns, and realizes different optimizations
for memory bandwidth enhancement, data reuse and parallelism management.

In [8] a compiler framework is introduced to translate standard OpenMP shared-
memory programs into CUDA-based GPGPU programs, and several key
transformation techniques are exploited for efficient GPU global memory access. In
industry, there have been some directive based programming efforts for GPGPU
architectures. Some enterprise compilers, such as PGI Accelerator [9] and HMPP
Workbench [10], provide directives indicating the code region that will be executed
on the accelerator, or defining the relationship of input and output parameters between
code regions, or related to specific code generation optimizations and etc.

For PGAS languages, there are other language extensions on hierarchical
parallelism or on thread grouping. GWU [13] puts forward an extension on nested
parallelism, and IBM suggests instant team [4] for collective operations in a data-
centric approach. In order to allow optimizations on collective operations and
provide adequate support for libraries, team is suggested to be added to Co-Array
Fortran [14].

Sequoia [1] exposes data movement along the memory hierarchy and allows users
to tune the data layout and data transfer. Sequoia supports uniprocessors, SMPs, Cell,
clusters, and even GPUs[17]. Hierarchical place tree (HPT) [2] is introduced into X10
for both computation and data mapping in parallel systems with hierarchical memory
hierarchy. In sequoia and X10, hierarchical parallelism is expressed through nested
parallel constructs (or recursive methods). HTA [3] provides a new data type
(hierarchical tiled array) to existing sequential languages to express multiple levels of
tiling for locality and parallelism, and parallel operators are used to express
hierarchical parallelism. Besides uniprocessors, SMPs and clusters, HTA plans to
support GPUs too.

164 L. Chen et al.

6 Conclusion and Future Work

In this paper, we extend UPC with hierarchical data distribution and introduce the
implicit thread hierarchy in addition to UPC threads by leveraging the upc_forall
construct. We investigate important compiler analysis as affinity-aware loop tiling,
and implement unified data management on each UPC thread to optimize data
transfer and data layout on different memory modules. We implement the compiler
and the runtime system, and the experimental results show that UPC has better
programmability than the mixed MPI/CUDA approach. We also demonstrate that the
integrated compile-time and runtime optimization is effective to achieve good
performance on GPU clusters.

There are several directions for further work. Firstly, UPC needs to be further
extended to support collaboration between CPU and GPU to better utilize the
computing resources. Secondly, both compiler and runtime support should be
improved. Asynchronous data transfers can be used to realize communication overlap,
and constant memory should be exploited along with shared memory optimization. At
last, irregular applications should be supported. Currently we only support array-
based applications with affine access patterns, but many real applications have
irregular, dynamic data structures, and hierarchical data distribution should be
expanded to non-array data structures.

Acknowledgements. This research was supported in part by the National Fundamental
Research Program of China (2005CB321602), the National Natural Science Foundation
of China (60970024, 60633040), the National Science and Technology Major Project of
China (2009ZX01036-001-002), the Innovation Research Group of NSFC (60921002)
and a gift grant from Intel.

We would like to thank the reviewers for valuable comments and suggestions. We
are grateful to Professor Huiyang Zhou at University Central Florida for shepherding
the paper.

References

1. Fatahalian, K., Knight, T., Houston, M., Erez, M., Horn, D., Leem, L., Park, H., Ren, M.,
Aiken, A., Dally, W., Hanrahan, P.: Sequoia: Programming the Memory Hierarchy.
In: Proceedings of Supercomputing 2006 (November 2006)

2. Yan, Y., Zhao, J., Guo, Y., Sarkar, V.: Hierarchical place trees: A portable abstraction for
task parallelism and data movement. In: Gao, G.R., Pollock, L.L., Cavazos, J., Li, X. (eds.)
LCPC 2009. LNCS, vol. 5898, pp. 172–187. Springer, Heidelberg (2010)

3. Bikshandi, G., Guo, J., Hoeflinger, D., Almasi, G., Fraguela, B.B., Garzarán, M.J., Padua,
D., von Praun, C.: Programming for parallelism and locality with hierarchically tiled
arrays. In: PPoPP, New York, USA, March 29-31 (2006)

4. Nishtala, R., Almasi, G., Cascaval, C.: Performance without pain = productivity: data
layout and collective communication in UPC. In: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP 2008 (2008)

5. Ueng, S., Lathara, M., Baghsorkhi, S.S., Hwu, W.W.: CUDA-lite: Reducing GPU
programming complexity. In: Amaral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 1–15.
Springer, Heidelberg (2008)

Unified Parallel C for GPU Clusters: Language Extensions and Compiler Implementation 165

6. Han, T.D., Abdelrahman, T.S.: hiCUDA: a high-level directive-based language for GPU
programming. In: Workshop on General Purpose Processing on Graphics Processing Units
(GPGPU), pp. 52–61 (March 2009)

7. Yan, Y., et al.: JCUDA: a Programmer-Friendly Interface for Accelerating Java Programs
with CUDA. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704,
pp. 887–899. Springer, Heidelberg (2009)

8. Lee, S., Min, S.-J., Eigenmann, R.: OpenMP to GPGPU: a compiler framework for
automatic translation and optimization. In: ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pp. 101–110 (February 2009)

9. The Portland Group. PGI Fortran & C Accelerator Programming Model (March 2010),
http://grape.pgroup.com/lit/whitepapers/
pgi_accel_prog_model_1.2.pdf

10. http://www.caps-entreprise.com/fr/
page/index.php?id=49&p_p=36

11. NVIDIA CUDA, China campus programming contest (2009),
http://cuda.csdn.net/contest/pro

12. Yang, Y., Xiang, P., Kong, J., Zhou, H.: A GPGPU Compiler for Memory Optimization and
Parallelism Management. In: The ACM SIGNPLAN 2010 Conference on Programming
Language Design and Implementation, PLDI 2010 (June 2010)

13. Serres, O., Kayi, A., Anbar, A., El-Ghazawi, T.: A UPC Specification Extension Proposal
for Hierarchical Parallelism. In: The 3rd Conference on Partitioned Global Address Space
Programming Models, Virginia, USA (October 2009)

14. Numrich, R.: Teams for Co-Array Fortran. In: The 3rd Conference on Partitioned Global
Address Space Programming Models, Virginia, USA (October 2009)

15. Barton, C., Casçaval, C., Almási, G., Zheng, Y., Farreras, M., Chatterje, S., Amaral, J.N.:
Shared memory programming for large scale machines. In: Proceedings of the 2006 ACM
SIGPLAN Conference on Programming Language Design and Implementation, Ottawa,
Ontario, Canada, June 11-14 (2006)

16. Husbands, P., Iancu, C., Yelick, K.: A performance analysis of the Berkeley UPC
compiler. In: Proceedings of the 17th Annual International Conference on
Supercomputing, San Francisco, CA, USA, June 23-26 (2003)

17. Bauer, M., Clark, J., Schkufza, E., Aiken, A.: Sequoia++ User Manual,
http://sequoia.stanford.edu/

How Many Threads to Spawn during
Program Multithreading?

Alexandru Nicolau1 and Arun Kejariwal2

1 University of California, Irvine
Irvine, CA 98612, USA

2 Yahoo! Inc.
Sunnyvale, CA 94089, USA

Abstract. Thread-level program parallelization is key for exploiting the
hardware parallelism of the emerging multi-core systems. Several tech-
niques have been proposed for program multithreading. However, the ex-
isting techniques do not address the following key issues associated with
multithread execution of a given program: (a) Whether multithreaded exe-
cution is faster than sequential execution; (b) How many threads to spawn
during program multithreading. In this paper, we address the above limi-
tations. Specifically, we propose a novel approach – T-OPT – to determine
how many threads to spawn during multithreaded execution of a given
program region. The latter helps to check under-subscribing and over-
subscribing of the hardware resources. This in turn facilitates exploita-
tion on higher level of thread-level parallelism (TLP) than what can be
achieved using the state-of-the-art. We show that, from program depen-
dence standpoint, use of larger number of threads than advocated by the
proposed approach does not yield higher degree of TLP. We present a cou-
ple of case studies and results using kernels, extracted from open source
codes, to demonstrate the efficacy of our techniques on a real machine.

}

for (str = fmtbuf + 1; *str; str++)

 if (*str == ’,’) {

 for (d1 = 0; d1 < 4; d1++)

 if (str[−1] == pdir[d1])

 break;

 str[−1] = ’\0’;

 sp = &board[s1 = ctos(fmtbuf + 1)];

 n = (sp−>s_frame[d1] − frames) * FAREA;

 *str++ = ’\0’;

 break;

 }

OpenBSD v4.5:src/games/gomoku/main.c:405

Parallel

Inherently

 if (core_header) {

 rgbTriples[i].rgbtRed = palEntry[i].peRed;

 rgbTriples[i].rgbtGreen = palEntry[i].peGreen;

 rgbTriples[i].rgbtBlue = palEntry[i].peBlue;

 }

 else {

 rgbQuads[i].rgbRed = palEntry[i].peRed;

 rgbQuads[i].rgbGreen = palEntry[i].peGreen;

 rgbQuads[i].rgbBlue = palEntry[i].peBlue;

 rgbQuads[i].rgbReserved = 0;

 }

}

for (i = 0; i < (1 << bmp−>bitmap.bmBitsPixel); i++) {

Wine v1.1.9:dlls/gdi32/dib.c:721

N
o

n
−

D
O

A
L

L
 L

o
o

pSerial

Potentially Parallel

(albeit not profitable to threadize)

 k = ptr[j]−1; if (k < 0) k += nblock;

 c1 = block[k];

 if (!bigDone[c1])

 ptr[copyStart[c1]++] = k;

SPEC CINT2006 401.bzip2:blocksort.c:970

for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) {

D
O

A
L

L
 L

o
o

p

1. Threadize always?

N
o

n
−

D
O

A
L

L
 L

o
o

p

Potentially

Parallel

2. How many threads?

3. How to threadize?

(how to insert synchronization

primitives?)

1530 for (b8=0; b8 < (img−>num_blk8x8_uv/2); b8++)

1531 {

1532 for (b4=0; b4 < 4; b4++)

1533 {

1534 n1 = hor_offset[yuv][b8][b4];

1535 n2 = ver_offset[yuv][b8][b4];

 ...

 ...

1598 if(!lossless_qpprime)

1599 img−>m7[n1+i][n2+j]=ilev;

1600 }

1601 ACLevel[scan_pos] = 0;

1602 }

1603 }

SPEC CINT2006:464.h264ref/src/block.c:1530

Fig. 1. Loop Threadization Space

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 166–183, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

How Many Threads to Spawn during Program Multithreading? 167

for (j = pIdx.size() − 1 − start2; j >= 0; j −= incr2)

{

 i = pIdx.index(j);

 xi_ip = xi_p * pVec[i];

 x = penalty_ptr[i] += xi_ip * (xi_ip * pi_p

 − 2 * (thesolver−>vector(i) * workVec));

 if (x < delta)

 penalty_ptr[i] = delta;

 else if (x > infinity)

 penalty_ptr[i] = 1 / thesolver−>epsilon();

}

450.soplex/src/spxsteeppr.cc:399

(a) (b)

Fig. 2. An example Non-DOALL loop with non-uniform trip count distribution

1 Introduction

Multi-core processors are becoming ubiquitous as exemplified by Intel’s Core i7
[4] processor. The number of cores per chip is expected to rise in foreseeable
future, as evidenced by the recently announced AMD’s 6-core Istanbul, 8-core,
12-core Magny-Cours and the 16-core Interlagos processors [1] and Intel’s 80-
core Teraflops Research Chip. Harnessing the hardware parallelism of multi-core
systems calls for program multithreading. Given that loops account for a large
percentage of program runtime in general [25], we focus on loop threadization
in the rest of this paper. Figure 1 presents an overview of loop threadization
space (kernels shown in the figure are taken from industry standard SPEC CPU
benchmarks [9] and other open source applications such as Wine v1.1.9 [11] and
OpenBSD v4.5 [5]). We partition the loop threadization space into the following
three classes:

❍ Parallel loops: A parallel loop is a loop in which there does not exist
any loop-carried dependence [16] (parallel loops also referred to as DOALL
loops [29]). Hence, different iterations of a DOALL loop can be executed
on concurrent threads, where each thread in software is mapped on to
a separate core, without any explicit thread synchronization. An exam-
ple DOALL loop is shown on the top left of Figure 1. Note that write to
rgbTriples and rgbQuads in the different iterations are independent of each
other.

❍ Serial loops: A serial loop is a loop in which there exists one or more early
exits in the loop body. An example serial loop is shown on the left hand
side of Figure 1. Note that there are multiple early exits in the loop body.

❍ Potentially parallel loops: A potentially parallel loop is a loop in which
there may may exist one or more loop-carried dependence(s). From hereon,
we refer to such loops as non-DOALL loops. An example non-DOALL loop is
shown on the top right of Figure 1. Note that there is a potential loop-carried

168 A. Nicolau and A. Kejariwal

dependence based on the writes to img->m7 in different iterations of the loop.
Multithreaded execution of non-DOALL loops requires support for explicit
thread synchronization in order to preserve the dependences between the
different concurrent threads.

We sub-classify non-DOALL loops, akin to Wu et al. classification [44], into
the following two categories:

❚ Unprofitable to threadize: The efficacy of multithreaded execution of a
non-DOALL loop is dependent on a wide variety of parameters such as
(but not limited to) threading overhead, trip count and amount of com-
putation in the loop body. Multithreaded execution of loops belonging to
this category result in performance slowdown w.r.t. serial execution. An
example non-DOALL loop not suitable for threadization, owing to small
amount of computation in the loop body, is shown at the bottom of Fig-
ure 1; in particular, multithreaded execution of the loop resulted in a
slowdown w.r.t. sequential execution.

❚ Profitable to threadize: The remaining set of non-DOALL loops fall under
this category. An example non-DOALL loop suitable for threadization is
shown on the left hand side of Figure 1.

In the rest of the paper, we address threadization of non-DOALL loops unless
stated otherwise explicitly.

Three questions arise in the context of threadization of non-DOALL loops, as
enumerated on the right hand side of Figure 1.

1. When to threadize?
As mentioned above, it is not profitable to threadize every non-DOALL loop.
Furthermore, as illustrated in Figure 2, it may not be practical – owing to,
for example, threading overhead, memory bandwidth pressure, to threadize
every invocation of a given loop. Note that the trip count of the loop across
different invocations is not uniform. The trip count profile was obtained using
the ref.mps input data set and the -m3500 parameter.

2. How many threads to spawn?
The current industrial trend has been towards increasing number of cores
per processor. However, in the context of a single application, using as many
threads as the maximum number of cores will often not yield the best per-
formance owing to, say, thread creation and switching overhead, thread syn-
chronization and memory bandwidth issues. This is exemplified in Figure 3,
wherein use of two threads on a quad-core processor yields best performance.
Detailed experimental setup is given in Table 1. The application was executed
with the reference data set. Furthermore, in the current case, the pattern
in variation in performance with increasing number of threads is consistent
across different compilers – we used the state-of-the-art Intel C++ compiler
and the widely used gcc [3] compiler.

How Many Threads to Spawn during Program Multithreading? 169

Table 1. Experimental setup cor-
responding to Figure 3

System Quad Core Processor

Processor IntelR©XeonR©CPU 1.86GHz
L1 Cache 32 KB
L2 Cache 4096 KB
Memory 4038908 KB

Compilers gcc 4.4.0 Intel C++ Compiler v11.1
OS Linux perflab139 2.6.9-34.ELsmp #1 SMP

Fig. 3. Variation in run time of 470.lbm [8]
with increasing number of threads

3. How to threadize?
This question pertains to how to efficiently insert synchronization primitives
such as post and wait.1 In this regard, recently techniques based on code
motion were proposed [33,34]. Existing techniques can be used to orchestrate
upward and downward code motion of post and wait primitives respectively.
Further, libraries such as Intel R©Threading Building Blocks (TBB) [38] or
directives such as OpenMP [6] can be used for threadization. We applied
the optimizations proposed in [34] prior to the application of the techniques
proposed in this paper.

In this paper we address the first two questions. In particular, the main contri-
butions of the paper are:

❐ We propose a novel technique, referred to as T-OPT, to determine how
many threads to spawn during threadization of an innermost loop. Further,
we show that, from program dependence standpoint, use of larger number
of threads than advocated by the proposed approach does not yield higher
degree of TLP.

Specifically, the T-OPT algorithm determines a kernel (discussed in the
next section) such that the multithreaded execution of a given instance of the
kernel does not require any synchronization between the concurrent threads.
To the best of our knowledge, T-OPT is the first algorithm that can detect
a synchronization-free kernel. The span of the T-OPT kernel – number of
iterations the kernel spreads across – corresponds to the number of threads
to spawn. We formally prove that a T-OPT kernel always emerges.

❐ We present a couple of case studies and results using kernels, extracted from
open source codes, to illustrate the efficacy of the proposed techniques on a
real machine.

The rest of the paper is organized as follows: Section 2 introduces the termi-
nology used in the rest of the paper and background. Section 3 presents novel

1 There exists a vast amount of literature, spanning over four decades, on the design
and use of synchronization primitives, refer to [S1]-[S43] in [26].

170 A. Nicolau and A. Kejariwal

techniques addressing the aforementioned questions. Case studies and results are
presented in Section 4. An overview of related work is presented in Section 5.
Finally, Section 6 concludes with directions for future work.

2 Terminology and Background

In this section, we introduce the terminology used in the rest of the paper and
present a brief background. Given two operations u, v with a loop-carried depen-
dence between them u → v [27], we say that u is the source and v is the sink.
Next, we introduce a couple of definitions.

Definition 1. Given a dependence graph G(V, E), a path from an operation v1
to an operation vk is a sequence of operations 〈v1, . . . , vk〉, such that (vi−1, vi) ∈
E for i = 1, 2, . . . , k.

Definition 2. A cycle in a dependence graph is a path 〈v1, . . . , vk〉 such that
v1 = vk and the path contains at least one edge. A cycle is simple if, in addition,
v1, . . . , vk−1 are distinct.

A loop carried dependence in conjunc-

v1

v2

b)

DDG

a)

end do

2: A[i] = B[i] + 1

do i = 1, N

1: B[i] = A[i−2] + r
<2>

Fig. 4. Loop recurrences

tion with intra-iteration dependences
may form a simple cycle in the depen-
dence graph. For example, in Figure
4, the intra-iteration dependence and
the loop carried dependence, denoted by
dashed arrow, between the operations
v1 and v2 form a simple cycle. A loop
has a recurrence if an operation in one
iteration of the loop has a direct or in-
direct dependence upon the same operation from a previous iteration, e.g., in
Figure 4, operations vk

i and vk−2
i constitute a recurrence, where vk

i represents
the i-th operation of the k-th iteration. The dependence distance (in number of
iterations) [42,16] between v2 and v1 is shown within <>. In general, a recur-
rence may span several iterations, i.e., an operation vk

i may be depend on an
operation vk−j

i , where j > 1. The existence of a recurrence manifests itself as a
simple cycle in the dependence graph. Subsequently, a cycle refers to a simple
cycle in a dependence graph.

Given that, in most cases, loops account for most of the run time of programs
[25], several techniques for loop optimization have been proposed [43]. In the
context of VLIW processors [24], modulo scheduling [37] and software pipelining
[32,39,22,28,36] have been proposed. Similar techniques have been proposed for
superscalar processors [23]. Software pipelined schedule corresponding to the
loop shown in Figure 5. Note that the span of the kernel is 2.

In [12], Aiken and Nicolau proposed a software pipelining technique, referred
to as OPT, for optimal parallelization of innermost loops. Arguably, in the con-
text of loop threadization, one could threadize the kernel obtained via OPT.

How Many Threads to Spawn during Program Multithreading? 171

v1

v2

v2

v1

v1

v2

1 2 3

Iteration

1

3

4

2

K
er

n
el

Fig. 5. Software pipelined schedule corresponding to the loop shown in Figure 4 (a)

However, this does not necessary yield the best multithreaded performance (this
is illustrated in the next section). We propose a technique to alleviate the above.
Specifically, using the OPT kernel as the base,2 the proposed technique, T-
OPT, gears advanced TLP-centric code motion to eliminate the need the thread
synchronization in the kernel. Additionally, the proposed technique helps to de-
termine how many threads to use.

3 The “What” and “How”

In this section, we illustrate, with the help of a running example, the two prob-
lems we address in this paper and walk through the techniques we propose to
address the same.

Let us consider the data dependence v1

v2 v3

v4

v7v8

v5

v9v6

v12

v14

v15 v16 v17

v10

v13

v11

<1> <1>

<1>
<1>

<1>

<1>

Fig. 6. A data dependence graph

graph (DDG) shown in Figure 6, taken
from [21]. We shall use this DDG as
our running example in the rest of this
section. The dashed arrows represent
loop-carried dependences and the solid
arrows represent intra-iteration data de-
pendences. The data dependence dis-
tances are shown in angle brackets. Note
that the following simple cycles [20] exist
in the DDG shown in Figure 6:
v2 → v5 → v8 → v2
v4 → v7 → v4
v2 → v5 → v3 → v4 → v8 → v2

3.1 Greedy Schedule

One of the straightforward ways to schedule the loop corresponding to DDG
shown in Figure 6 is ASAP (As Soon As Possible) scheduling (also referred to as

2 The rationale behind selecting OPT kernel as the base stems from the fact that, for
innermost loops, OPT achieves an optimal schedule, subject to dependences and
given enough cores. OPT does not account for synchronization cost in the case of
asynchronous multithreaded execution.

172 A. Nicolau and A. Kejariwal

v1 v2 v3

v4 v5 v6 v9

v8 v10 v11 v12v7

v13

v14

v15 v16 v17

v1

v9

v3 v11 v12

v2 v4 v13

v5 v6 v7 v14

v15 v16 v17

v8 v10

2

v3

v4 v10

v2 v7

v5

v8

v1

v9

v11 v12

v13

v6 v14

v15 v16 v17

3

v3

v2 v4

v5 v7

v8

v15 v16 v17

v10

v1

v9

v11 v12

v13

v14v6

v3

v2 v4

v5 v7

v8

v15 v16 v17

v10

v1

v9

v11 v12

v13

v6 v14

Iteration

1 4 5

In
cr

ea
si

n
g
 T

h
re

ad

Id
li

n
g

p

w

p

w

Fig. 7. Greedy schedule

greedy scheduling). Greedy schedule for the DDG in Figure 6 is shown in Figure 7
wherein each iteration is mapped on to a different thread. Given an iteration,
operations placed at the same horizontal level can be executed in parallel on
different functional units, subject to their availability. For example, in iteration
3, operations v11 and v12 can be executed in parallel. An iteration is mapped on
to a thread as and when a thread become available. Data dependences between
iterations are preserved with the help of synchronization primitives such as post,
wait . For clarity purposes, only one pair of post, wait primitives are shown
between consecutive iterations. The other data dependences between iterations
i and i + 1 are the following:

v15 → v10
v17 → v5
v8 → v2
v5 → v3
v7 → v4

Exploitation of TLP is limited by the need for thread synchronization. From
Figure 7 we note that as the greedy schedule progresses, a pipeline bubble de-
velops. This is due to the loop-carried dependence v5 → v3. More importantly,
we observe that the pipeline bubble lengthens as the schedule progresses. Over
time, the threads get “aligned” as governed by loop-carried dependences; in
other words, thread pipelining takes effect. The enlarging bubble in turn induces
increased thread idling which hampers multithreaded performance. In such a

How Many Threads to Spawn during Program Multithreading? 173

v1 v2 v3

v4 v5 v6 v9

v8 v10 v11 v12v7

v13

v14

v15 v16 v17

v1

v9

v3 v11 v12

v2 v4 v13

v5 v6 v7 v14

v15 v16 v17

v8 v10

2

v3

v4 v10

v2 v7

v5

v8

v1

v9

v11 v12

v13

v6 v14

v15 v16 v17

3

v15 v16 v17

v1

v9

v11 v12

v13

v14

v3

v2 v4

v5

v8

v7

v10v6

v3

v2 v4

v5 v7

v8

v15 v16 v17

v1

v9

v11 v12

v13

v14

v10v6

Iteration

1 4

p

w

p

w

5

In
cr

ea
si

n
g
 T

h
re

ad

Id
li

n
g

Fig. 8. Scheduling with delayed waits (using MoveOpDown [33])

scenario, spawning additional threads does not boost TLP. The current discus-
sion is strictly limited to data dependences and does not account for run time
effects such as memory subsystem performance, context switching et cetera.

3.2 Scheduling with Delayed waits

In [33], Nicolau et al. showed that multithreaded performance can be enhanced
via downward percolation of waits. To this end, they proposed a transformation,
referred to as MoveOpDown, to delay the execution of the wait primitive, subject
to data dependences. In the current context, from Figure 7 we note that, from
iteration 4 onwards, there are 2 sources of loop-carried dependences above the
pipeline bubble, viz.,

v15 → v10
v13 → v6

These dependences further (i.e., beyond the pipeline bubble) limit extraction of
TLP. However, this can be alleviated by downward percolation, via the MoveOp-
Down transformation [33], of the sinks (and the associated waits) of the corre-
sponding dependences. The schedule obtained after applying the transformation
is shown in Figure 8 – the operations percolated down are embedded in a dashed
circle in the figure. Note that the downward percolation does not lengthen the
critical path and eliminates the need for synchronization corresponding to op-
erations v6 and v10, thereby improving the efficiency of the code. Unlike the
schedule shown in Figure 7, in Figure 8, operations {v13, v14, v15, v16, v17} of the

174 A. Nicolau and A. Kejariwal

different iterations can be executed asynchronously on different threads. This
boosts the TLP achieved.

From Figure 8 we observe that the set of operations V =
{v1, v9, v11, v12, v13, v14, v15, v16, v17} of each iteration can be executed in
parallel without any need of thread synchronization. Therefore, conceivably, the
loop corresponding to the DDG shown in Figure 6 can be distributed such that
the operations in V form one loop and the remaining operations form another
loop. The former is a DOALL loop. However, threadization of the distributed
loops may not be profitable owing to the small amount of computation in their
respective loop bodies and the high threading overhead. The trade-off between
loop transformations such as loop distribution and thread synchronization is
beyond the scope of the paper.

3.3 OPT-Driven Scheduling

In the previous subsection we saw that downward percolation of waits boosts
TLP. However, the transformation neither eliminated the pipeline bubble nor did
it shorten the pipeline bubble. On the contrary, the bubble in the schedule shown
in Figure 8 is longer than the bubble shown in Figure 7. This raises the question
whether one can eliminate the pipeline bubble(s) induced by data dependences.3

As mentioned earlier, in the context of VLIW compilation, there has been
a lot of work on compaction-based parallelization. In [13], Aiken proposed a
technique, referred to as OPT, for optimal parallelization of innermost loops.
They showed that eliminating “gaps” (pipeline bubble in Figures 7 and 8) yields
a recurring kernel. Most importantly, they show that no operation on the critical
path is delayed as result of “gap” elimination. The OPT schedule corresponding
to the greedy schedule shown in Figure 7 is shown in Figure 9. Although OPT
was proposed for innermost loops without conditionals, it should be noted that
OPT can also be applied to innermost loops with conditionals by applying
hierarchical reduction [28] or by employing if-conversion [14].

Multithreaded execution of theOPT kernel does not incur any pipeline bubbles
induced by data dependences. However, we note that there exists a loop-carried
dependence between iterations 1 and 2 of the OPT kernel. This necessitates in-
sertion of post, wait synchronization primitives (see Case I in Figure 10). This
adversely affects performance owing to the synchronization overhead and the par-
tial ordering imposed by the post, wait primitives.

One way to eliminate the need for thread synchronization in the OPT kernel is
clustering. Under clustering, iterations corresponding to the source and sink of a
given loop-carried dependence are mapped on to the same thread. This obviates
the need for thread synchronization in the kernel. A clustered version of the
OPT kernel is shown in Case II of Figure 10, wherein each cluster is mapped
on to a different thread. Note that there is at least one dependence between
consecutive instances of the OPT kernel. This is highlighted with a dashed
arrow in Figure 9. Consequently, barrier synchronization would be required to
3 Again, we do not address the pipeline bubbles which arise due to run time issues

such as L2 cache misses, DTLB misses and resource stalls.

How Many Threads to Spawn during Program Multithreading? 175

v1 v2 v3

v4 v5 v6 v9

v8 v10 v11 v12v7

v13

v14

v15 v16 v17

v1

v9

v3 v11 v12

v2 v4 v13

v5 v6 v7 v14

v15 v16 v17

v8 v10

v3

v4 v10

v2 v7

v5

v8

v1

v9

v11 v12

v13

v6 v14

v15 v16 v17

v3

v2 v4

v5 v7

v8

v1

v9

v11 v12

v13

v6 v14

v15 v16 v17

v10

v3

v2 v4

v5 v7

v8

v1

v9

v11 v12

v13

v6 v14

v15 v16 v17

v10

v3

v2 v4

v5 v7

v8

v1

v9

v11 v12

v13

v6 v14

v15 v16 v17

v10

7

v3

v2 v4

v5 v7

v8

v1

v9

v11 v12

v13

v6 v14

v15 v16 v17

v10

v8

v1

v9

v11 v12

v13

v6 v14

v15 v16 v17

v10

v3

v5 v7

v2 v4

Iteration

1 2 3 4 5 6

The kernel

8

Fig. 9. Optimal ILP-centric schedule using OPT

v8 v3

v5 v7

v2 v4 v15 v16 v17

v10

v6 v14 v9

v11 v12

v13 v1

v8 v3

v5 v7

v2 v4 v15 v16 v17

v10

v6 v14 v9

v11 v12

v13 v1

T3T2T1 T4 T5 T1 T2 T3

v8 v3

v5 v7

v2 v4 v15 v16 v17

v10

v6 v14 v9

v11 v12

v13 v1

T4

Case I: Case II:

The kernel

p

w

Fig. 10. Threadizing the OPT kernel

preserve dependences between consecutive instances of the OPT kernel. The
cost of the barrier can be amortized by unrolling the kernel.

3.4 T-OPT Algorithm

Although clustering of the OPT kernel obviates the need for thread synchro-
nization, it reduces the effective span of the OPT kernel. This in turn limits the
exploitation of the hardware parallelism. To alleviate this, we propose a novel ap-
proach, based on code motion. Broadly speaking, the code motion orchestrated
by Algorithm 1 must conform to the following:

176 A. Nicolau and A. Kejariwal

❚ There is one instance of each operation in the new kernel (akin to the OPT-
kernel.4

❚ There is no data dependences across iterations in the new kernel.

Prior to describing the T-OPT algorithm, we introduce the following definition.

Definition 3. A dependence chain C is a sequence of operations {xh1 , . . . , xhn}
such that (xhi , xhi+1) is a loop-carried dependence edge in the DDG. Also,
start(C) = xh1 and V (C) denote the set of operations constituting C.

Algorithm 1. T-OPT Algorithm

Input: An OPT kernel K
Output: T-OPT kernel

Set counter ← 1

repeat
Determine the set of dependence chains C in K
for each ci ∈ C do

Let V
′
(ci) = V (ci)− {start(ci)}

S = Set of operations dependent on the operations in V
′
(ci)

M = V
′
(ci) ∪ S

for each instance � (> counter) of K do
Percolate all operations in M from instance � to � + 1

end for
counter ← counter + 1

end for
until a recurring pattern with no dependence chains is found

Algorithm 1 iterates over multiple instances of the input OPT kernel. Specif-
ically, the algorithm percolates operations downwards as to obviate the need for
thread synchronization during multithreaded execution of the OPT kernel. The
code motion is targeted towards operations that are part of a dependence chain.
This results in “breaking” the dependence chains in the instance of the OPT
kernel under consideration. On the other hand, as a result of the downward code
motion, “new” dependence chains may arise in the subsequent instances of the
OPT kernel. The algorithm applies code motion iteratively until there is no
dependence chain in the instance of the OPT kernel – which constitutes the
T-OPT kernel – under consideration. The span of the T-OPT kernel is the
number of threads that should be spawned during threadization of innermost
loops. Spawning more threads will not boost TLP owing to pipeline bubbles in-
duced by data dependences. Theorem 1 proves that application of Algorithm 1
always yields the T-OPT kernel.
4 It is assumed that transformations such as loop unrolling are applied (if at all) prior

to code motion.

How Many Threads to Spawn during Program Multithreading? 177

v8 v3

v5 v7

v2 v4 v15 v16 v17

v10

v6 v14 v9

v11 v12

v13 v1

v8 v3

v5 v7

v2 v4 v15 v16 v17

v10

v6 v14 v9

v11 v12

v13 v1

v8 v3

v5 v7

v2 v4 v15 v16 v17

v10

v6 v14 v9

v11 v12

v13 v1

v8

v15 v16 v17

v10

v6 v14 v9

v11 v12

v13 v1

v3

v2 v4

v5 v7

v2

v5

v8

v2

v5

v8

v3

v4

v7

v2

v5

v8

v3

v4

v7

O
P

T
 k

er
n
el

Increasing iteration number

T
−

O
P

T
 k

er
n
el

Fig. 11. Obtaining the T-OPT kernel

Next, we illustrate Algorithm 1 by applying it on the OPT kernel shown in
Figure 9.

a) Consider the first instance of K. The dependence chains are the following:
v8 → v2
Note that v5 is dependent on v2. Therefore, we percolate {v2, v5} down from
instance � to instance � + 1.

b) Now let us consider the second instance of K. The downward percolation
of v2 from instance 1 to instance 2 (in step a) above) induces the following
dependence chain: v2 → v3.

Note that operations {v4, v7} are dependent on v3. Therefore, we percolate
{v3, v4, v7} down from instance � to instance � + 1.

c) In the third instance of K, we observe that there do not exist any dependence
chains. Hence, the third instance corresponds to the T-OPT kernel.

The new kernel, referred to as T-OPT, corresponding to the OPT kernel shown
in Figure 9 is shown in Figure 11. On comparing Figures 10 and 11, we note that
Algorithm 1 obviates the need for thread synchronization during threadization
of the software pipelined kernel. Furthermore, note that there are no pipeline
bubbles, owing to data dependences, in the T-OPT kernel.

Theorem 1. Algorithm 1 always yields the T-OPT kernel.

Proof. We break down the proof into the following three cases:

❐ First, if there are no dependence chains in the OPT kernel, then the OPT
kernel is the T-OPT kernel. In [13], Aiken proved that the OPT kernel can
always exists.

❐ Second, if downward percolation of operations from one instance of the
OPT kernel does not give rise to “new” dependence chain(s) in the OPT
kernel, then the resulting kernel constitutes the T-OPT kernel.

178 A. Nicolau and A. Kejariwal

❐ Third, the downward percolation of operations from one instance of the
OPT kernel gives rise to “new” dependence chain(s) in the OPT kernel. Re-
call that the downward percolation breaks the existing dependence chains.
Given this and the fact that there are finite number of loop-carried de-
pendences in the DDG, a recurring pattern – the T-OPT kernel – will
always emerge as a consequence of downward code motion (as described in
Algorithm 1).

3.5 Remark

Let us consider the example

C[i] = B[i] + y[i]

B[i] = A[i] + C[i−1]

v1

v2

v3

do i = 1, N

end do

A[i] = B[i−1] + 1

a)

v1

v2

v3

v1

v2

v3

v1

v2

v3

v1

v2

v3 v1

v2

v3 v1

v2

v3

p
w

p
w

1 2 3

Iteration

c)

1 2 3

Iteration

b)

T
−

O
P

T
 K

er
n
el

O
P

T
 K

er
n
el

Fig. 12. Illustration of serialization induced by
Algorithm 1

shown in Figure 12(a). There
exist two loop-carried depen-
dences, viz., v2 → v1, v3 →
v2. The OPT kernel of the
loop is shown in Figure 12(b).
Note that there exists a de-
pendence chain – marked
with an arrow – in the OPT
kernel. Breaking the chain
via Algorithm 1 results in the
T-OPT kernel shown in Fig-
ure 12(c), which is the original loop body. Thus, there does not exist a synchro-
nization free OPT kernel for this particular loop.

The serialization induced the Algorithm 1 exemplifies the trade-off between
elimination thread synchronization and loss of TLP.

4 Case Studies and Results

In this section, we present a couple of case studies and results using kernels,
extracted from open source codes, to demonstrate the efficacy of the techniques
proposed in Section 3. We use multithreaded execution of the OPT kernel as
our baseline. Evaluation of the proposed techniques on overall benchmarks is
beyond the scope of this paper. The primary focus herein is to showcase a previ-
ously unexplored optimization opportunity, and provide evidence of its practical
applicability in real codes using real hardware.

The two case studies correspond to the
DDG shown in Figure 6 and a loop taken
from 189.lucas, a benchmark in the SPEC
CFP2000 benchmark suite [7]. The kernels
were optimized using the technique proposed
in Section 3. We compiled the optimized ker-
nels using the Intel C++ compiler and ran the
kernels on a real machine. The detailed exper-
imental setup is given in Table 2.

Table 2. Experimental Setup

System 2 Quad-Core Processor
Processor Intel R©Xeon R©CPU 1.86GHz
L1 Cache 32 KB
L2 Cache 4096 KB
Memory 4038908 KB
Compiler Intel C++ Compiler v11.1

Compiler Flags -parallel -openmp -O3
OS Linux 2.6.9-34.ELsmp #1 SMP

How Many Threads to Spawn during Program Multithreading? 179

We first analyze the multithreaded performance, refer to Figure 13, of the
loop corresponding to the DDG shown in Figure 6. From Figure 13 we note that
spawning as many threads as the number of cores available does not necessar-
ily yield best performance (the execution times are normalized with respect to
OPT) . On the contrary, in the current context, spawning 3 threads, as guided
by Algorithm 1 yields best performance. Observe that the multithreaded per-
formance with 5 threads (equal to the span of the OPT kernel) is worse than
T-OPT. Likewise, performance with 2 threads (equal to the span of the kernel
obtained using modulo scheduling) is worse than T-OPT. Lastly, multithreaded
performance with 8 threads (equal to the number of cores) is worse than T-OPT.

The second case study

Fig. 13. Performance variation with varying number of
threads for the loop corresponding to the DDG shown
in Figure 6

corresponds to the loop
taken from 189.lucas, a
benchmark in the SPEC
CFP2000 benchmark
suite [7]. The span of the
T-OPT for this loop is 8.
As per Algorithm 1, best
performance corresponds
to 8-way multithreaded
execution. The same is
observed from Figure 14.
From the figure we note
that performance im-
proves with increasing
number of threads and
best performance is
achieved with 8 threads.

Note that T-OPT

Fig. 14. Performance variation with varying number of
threads for the loop taken from 189.lucas

performs better than
OPT even when both
yield kernels of the
same width. This can
be attributed to the fact
that synchronization
is not needed during
multithreaded execution
of the T-OPT kernel.

Next, we present re-
sults using kernels, ex-
tracted from open source
codes. The kernels were
extracted from industry-
standard SPEC CPU2006 benchmark suite [10] and open source FreeBSD, ver-
sion 7.0 [2], see Table 3. We applied T-OPT to the kernels listed in Table 3.

180 A. Nicolau and A. Kejariwal

Table 3. Kernels

Kernel Benchmark Suite
K(calculix) 454.calculix CFP2006
K(bzip2) 401.bzip2 CINT2006
K(hmmer) 456.hmmer CINT2006
K(h264ref) 464.h264ref CINT2006
K(soplex) 450.soplex CFP2006
K1(bzip2) bzip2 FreeBSD
K(gcc) gcc FreeBSD

Table 4. Experimental results

Kernel # Threads Speedup
K(calculix) 1 NA
K(bzip2) 3 12%
K(hmmer) 5 22%
K(h264ref) 2 26%
K(soplex) 1 NA
K1(bzip2) 3 14%
K(gcc) 5 18%

The results are presented in Table 4. The second column in Table 4 corresponds
to the number of threads spawned (which was determined as discussed in Sec-
tion 3). The speedups reported in the table are with respect to multithreaded
OPT kernel (recall that, unlike the T-OPT kernel, multithreaded execution of
an instance the OPT kernel requires thread synchronization).

From Table 4 we note that a couple of kernels (with “NA” in the third column)
were executed in a sequential fashion. This is due to the fact that application of
Algorithm 1 resulted in serialization of the loop body (refer to the discussion in
subsection 3.5). Furthermore, the two kernels were deemed to be unprofitable for
multithreaded execution owing to small loop bodies. Multithreaded execution of
the OPT kernel resulted in a performance slowdown! Lastly, from the table we
observe that speedup up to 26% was obtained.

5 Previous Work

In this section we overview related work in three different subsections.

5.1 Compaction-Based Parallelization

Compaction-based parallelization has received considerable attention in the past.
The primary focus has been on extraction of instruction-level parallelism (ILP)
[13,30]. As mentioned earlier, modulo scheduling [37] and several techniques for
software pipelining [32,39,22,28,36] have been proposed for loops. Similar tech-
niques have been proposed for superscalar processors [23]. None of the techniques
proposed in the aforementioned works can be used to address the problems ad-
dressed in this paper. This can be ascribed to the fact that these techniques are
instruction-level based, whereas the current focus is at the thread-level.

5.2 Multithreaded Performance

There exists a large amount of prior work in the context of multithreaded per-
formance. Owing to space limitations, we present a brief overview herein.

Bokhari proposed techniques for task mapping and reassignment for dis-
tributed systems [18,19]. An early survey of strategies for task allocation for
distributed systems is presented in [35]. In [17], Billionnet et al. presented a
cost-model for task assignment in an heterogeneous multiple processors systems.
Ernst et al. presented exact solutions for the task allocation problem in the same

How Many Threads to Spawn during Program Multithreading? 181

context. Arguably, one could leverage the techniques proposed in the works men-
tioned above in the current context. However, this is not feasible owing to the
fact that multi-core systems are shared-memory based.

In [15], Anderson et al. examine the performance implications of several data
structure and algorithm alternatives for thread management in shared-memory
multiprocessors. For applications with fine-grained parallelism, they show that
small differences in thread management can have significant performance impact.
In addition, they show that the method used by processors to queue for locks
can affect performance significantly. In [41], Weissman proposed an approach to
improve thread locality via the use of hardware performance monitors of modern
processors and to use program-centric code annotations to guide thread schedul-
ing on SMPs. Later, Narlikar proposed an approach for scheduling threads for
low space requirement and good locality [31]. None of the above works address
the issue of how many threads to use and when to threadize. We believe the
aforementioned works are complimentary to the work presented in this paper.
Recently, Suleman et al. proposed a technique – Feedback-Driven Threading
(FDT) – to dynamically control the number of threads at run-time [40]. As a
next step, FDT is used to implement Synchronization-Aware Threading (SAT),
which predicts the optimal number of threads depending on the amount of time
spent in critical section and parallel part of a given loop. Unlike T-OPT, SAT
is oblivious of the dependence graph of the loop. Given the runtime nature of
SAT, we believe that T-OPT and SAT are complementary to each other.

6 Conclusion

We proposed a novel technique for determining how many threads to spawn
during threadization of innermost loops. We formally proved that a T-OPT
kernel always emerges on orchestrating code motion outlined in Algorithm 1.
Spawning additional – more than the span of the T-OPT kernel – does not yield
higher TLP w.r.t. pipeline bubbles induced by data dependences. We illustrated
the efficacy of our techniques using a couple of case studies.

An OPT kernel is an input to the T-OPT algorithm. Recall that the OPT
algorithm [12] determines the first repeating pattern while closing the gaps, ir-
respective of the existence of dependence chains within the pattern. As future
work, we intend to develop a parameterized algorithm which factors in the syn-
chronization cost5 while determining a repeating pattern. Also, we plan to extend
our current work to N-dimensional loops.

References

1. AMD’s 16-core Interlagos, processor,
http://www.tgdaily.com/content/view/42125/135/

2. FreeBSD,
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/anoncvs.

html

5 Note that the synchronization cost is a function of the design of the synchronization
primitives and the target hardware.

http://www.tgdaily.com/content/view/42125/135/
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/anoncvs.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/anoncvs.html

182 A. Nicolau and A. Kejariwal

3. GCC, the GNU Compiler Collection, http://gcc.gnu.org/
4. Intel R© CoreTM i7 Processor Datasheet, Vol. 1,

http://download.intel.com/design/processor/datashts/320834.pdf

5. OpenBSD, http://www.openbsd.org/
6. OpenMP Specification, version 2.5,

http://www.openmp.org/drupal/mp-documents/spec25.pdf

7. SPEC CFP2000, http://www.spec.org/cpu2000/CFP2000
8. SPEC CFP2006, http://www.spec.org/cpu2006/CFP2006
9. SPEC CPU Benchmarks, http://www.spec.org/benchmarks.html

10. SPEC CPU2006, http://www.spec.org/cpu2006
11. Wine, http://sourceforge.net/project/showfiles.php?group_id=6241
12. Aiken, A., Nicolau, A.: Optimal loop parallelization. In: Proceedings of the SIG-

PLAN 1988 Conference on Programming Language Design and Implementation,
Atlanta, GA (June 1988)

13. Aiken, A.S.: Compaction-based parallelization. PhD thesis, Dept. of Computer
Science, Cornell University (August 1988)

14. Allen, J.R., Kennedy, K., Porterfield, C., Warren, J.: Conversion of control de-
pendence to data dependence. In: Conference Record of the Tenth Annual ACM
Symposium on the Principles of Programming Languages, Austin, TX (January
1983)

15. Anderson, T.E., Lazowska, D.D., Levy, H.M.: The performance implications of
thread management alternatives for shared-memory multiprocessors. In: SIGMET-
RICS 1989: Proceedings of the 1989 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, Oakland, CA, pp. 49–60
(1989)

16. Banerjee, U.: Dependence Analysis. Kluwer Academic Publishers, Boston (1997)
17. Billionnet, A., Costa, M.C., Sutter, A.: An efficient algorithm for a task allocation

problem. Journal of the ACM 39(3), 502–518 (1992)
18. Bokhari, S.: Dual processor scheduling with dynamic reassignment. IEEE Trans-

actions on Software Engineering SE-5, 341–349 (1979)
19. Bokhari, S.: On the mapping problem. IEEE Transactions on Computers C-30,

207–214 (1981)
20. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT

Press, Cambridge (1990)
21. Cytron, R.: Compile-time Scheduling and Optimization for Asynchronous Ma-

chines. PhD thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign (October 1984)

22. Ebcioğlu, K.: A compilation technique for software pipelining of loops with con-
ditional jumps. In: Proceedings of the 20th Workshop on Microprogramming, Co-
larado Springs, CO (December 1987)

23. Ebcioğlu, K., Groves, R.D., Kim, K.C., Silberman, G.M., Ziv, I.: VLIW compilation
techniques in a superscalar environment. In: Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation, pp. 36–48
(1994)

24. Fisher, J.A.: VLIW architectures: an inevitable standard for the future? Super-
computer 7(2), 29–36 (1990)

25. Kejariwal, A.: On the evaluation and extraction of thread-level parallelism in or-
dinary programs. PhD thesis, University of California, Irvine, CA (January 2008)

26. Kejariwal, A., Nicolau, A.: Reading list of mutual exclusion, locking, synchroniza-
tion and concurrent objects,
http://www.ics.uci.edu/~akejariw/ConcurrentExecutionReadingList.pdf

http://gcc.gnu.org/
http://download.intel.com/design/processor/datashts/320834.pdf
http://www.openbsd.org/
http://www.openmp.org/drupal/mp-documents/spec25.pdf
http://www.spec.org/cpu2000/CFP2000
http://www.spec.org/cpu2006/CFP2006
http://www.spec.org/benchmarks.html
http://www.spec.org/cpu2006
http://sourceforge.net/project/showfiles.php?group_id=6241
http://www.ics.uci.edu/~akejariw/ConcurrentExecutionReadingList.pdf

How Many Threads to Spawn during Program Multithreading? 183

27. Kuck, D.: The Structure of Computers and Computations, vol. 1. John Wiley and
Sons, New York (1978)

28. Lam, M.: Software pipelining: An effective scheduing technique for VLIW machines.
In: Proceedings of the SIGPLAN 1988 Conference on Programming Language De-
sign and Implementation, Atlanta, GA (June 1988)

29. Lundstrom, S.F., Barnes, G.H.: A controllable MIMD architectures. In: Proceed-
ings of the 1980 International Conference on Parallel Processing, St. Charles, IL,
pp. 19–27 (August 1980)

30. Nakatani, T., Ebcioğlu, K.: Making compaction based parallelization affordable.
IEEE Transactions on Parallel and Distributed Systems 4(9), 1014–1029 (1993)

31. Narlikar, G.J.: Scheduling threads for low space requirement and good locality.
In: Proceedings of the 11th Annual ACM Symposium on Parallel Algorithms and
Architectures, Saint Malo, France, pp. 83–95 (1999)

32. Nicolau, A.: Parallelism, memory anti-aliasing and correctness for trace schedul-
ing compilers (disambiguation, flow-analysis, compaction). PhD thesis, Dept. of
Computer Science, Yale University (1984)

33. Nicolau, A., Li, G., Kejariwal, A.: Techniques for efficient placement of synchro-
nization primitives. In: Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Raleigh, NC, USA, pp. 199–208
(February 2009)

34. Nicolau, A., Li, G., Veidenbaum, A.V., Kejariwal, A.: Synchronization optimiza-
tions for efficient execution on multi-cores. In: Proceedings of the 23rd ACM In-
ternational Conference on Supercomputing, New York, NY, pp. 169–180 (2009)

35. Price, C.C.: Task allocation in distributed systems: A survey of practical strategies.
In: Proceedings of the ACM 1982 Conference, pp. 176–181 (1982)

36. Rau, B.R., Fisher, J.A.: Instruction level parallel processing: History, overview and
perspective 7(1), 97 (January 1993)

37. Rau, B.R., Glaeser, C.D.: Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing. In: Proceedings
of the 14th Annual Workshop on Microprogramming, Chatham, MA, pp. 183–198
(December 1981)

38. Reinders, J.: Intel threading building blocks. O’Reilly & Associates, Inc., Se-
bastopol (2007)

39. Su, B., Ding, S., Xia, J.: URPR - an extension of urcr for software pipelining. In:
Proceedings of the 19th Workshop on Microprogramming, New York, NY (October
1986)

40. Suleman, M.A., Qureshi, M.K., Patt, Y.N.: Feedback-driven threading: Power-
efficient and high-performance execution of multi-threaded workloads on CMPs.
In: Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, Seattle, WA, pp. 277–286 (2008)

41. Weissman, B.: Performance counters and state sharing annotations: a unified ap-
proach to thread locality. In: Proceedings of the Eighth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VIII), San Jose, CA, pp. 127–138 (1998)

42. Wolfe, M.: The definition of dependence distance 16(4), 1114–1116 (1994)
43. Wolfe, M.J.: Optimizing Supercompilers for Supercomputers. The MIT Press,

Cambridge (1989)
44. Wu, P., Kejariwal, A., Caşcaval, C.: Compiler-driven dependence profiling to guide

program parallelization. In: Proceedings of the 21st International Workshop on
Languages and Compilers for Parallel Computing, Alberta, Canada (2008)

Parallelizing Compiler Framework and API for
Power Reduction and Software Productivity of

Real-Time Heterogeneous Multicores

Akihiro Hayashi, Yasutaka Wada, Takeshi Watanabe, Takeshi Sekiguchi,
Masayoshi Mase, Jun Shirako, Keiji Kimura, and Hironori Kasahara

Department of Computer Science and Engineering, Waseda University,
3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan
{ahayashi,yasutaka,watanabe,

takeshi,mase,shirako,kimura}@kasahara.cs.waseda.ac.jp,
kasahara@waseda.jp

http://www.kasahara.cs.waseda.ac.jp/

Abstract. Heterogeneous multicores have been attracting much atten-
tion to attain high performance keeping power consumption low in wide
spread of areas. However, heterogeneous multicores force programmers
very difficult programming. The long application program development
period lowers product competitiveness. In order to overcome such a sit-
uation, this paper proposes a compilation framework which bridges a
gap between programmers and heterogeneous multicores. In particular,
this paper describes the compilation framework based on OSCAR com-
piler. It realizes coarse grain task parallel processing, data transfer using
a DMA controller, power reduction control from user programs with
DVFS and clock gating on various heterogeneous multicores from dif-
ferent vendors. This paper also evaluates processing performance and
the power reduction by the proposed framework on a newly developed
15 core heterogeneous multicore chip named RP-X integrating 8 gen-
eral purpose processor cores and 3 types of accelerator cores which was
developed by Renesas Electronics, Hitachi, Tokyo Institute of Technol-
ogy and Waseda University. The framework attains speedups up to 32x
for an optical flow program with eight general purpose processor cores
and four DRP(Dynamically Reconfigurable Processor) accelerator cores
against sequential execution by a single processor core and 80% of power
reduction for the real-time AAC encoding.

Keywords: Heterogeneous Multicore, Parallelizing Compiler, API.

1 Introduction

There has been a growing interest in heterogeneous multicores which integrate
special purpose accelerator cores in addition to general purpose processor cores
on a chip. One of the reason for this trend is because heterogeneous multi-
cores allow us to attain high performance with low frequency and low power

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 184–198, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.kasahara.cs.waseda.ac.jp/

Parallelizing Compiler Framework and API 185

consumption. Various semiconductor vendors have released heterogeneous mul-
ticores such as CELL BE[15], NaviEngine[11], Uniphier[13], GPGPU[9], RP1[20]
and RP-X[21].

However, the softwares for heterogeneous multicores generally require large
development efforts such as the decomposition of a program into tasks, the im-
plementation of accelerator code, the scheduling of the tasks onto general pur-
pose processors and accelerators, and the insertion of synchronization and data
transfer codes. These software development periods are required even for expert
programmers.

Recent many studies have tried to handle on this software development issue.
For example, NVIDIA and Khronos Group introduced CUDA[3] and OpenCL[7].
Also, PGI accelerator compiler[19] and HMPP[2] provides a high-level program-
ming model for accelerators. However, these works focus on facilitating the de-
velopment for accelerators. Programmers need to distribute tasks among general
purpose processors and accelerator cores by hand. In terms of workload distribu-
tion, Qilin[10] automatically decides which task should be executed on a general
purpose processor or an accelerator at runtime. However, programmers still need
to parallelize a program by hand. While these works rely on programmers’ skills,
CellSs[1] performs an automatic parallelization of a subset of sequential C pro-
gram with data flow annotations on CELL BE. CellSs automatically schedules
tasks onto processor elements at runtime. The task scheduler of CellSs, how-
ever, is implemented as a homogeneous task scheduler, namely the scheduler is
executed on PPE and just distributes tasks among SPEs.

In the light of above facts, further explorations are needed since it is the
responsibility of programmers to parallelize a program and to optimize a data
transfer and a power consumption for heterogeneous multicores. One of our
goals is to realize a fully automatic parallelization of a sequential C or For-
tran77 program for heterogeneous multicores. We have been developing OSCAR
paralleling compiler for homogeneous multicores such as SMP servers and real-
time multicores[5,8,12]. These works realize automatic parallelization of pro-
grams written in Fortran77 or Parallelizable C, a kind of C programming style
for parallelizing compiler, and power reduction with the support of both OS-
CAR compiler and OSCAR API(Application Program Interface)[6]. This paper
describes an automatic parallelization for a real heterogeneous multicore chip.
Though prior work demonstrates the performance of automatic parallelization of
a Fortran program on a heterogeneous multicore simulator[18], this paper makes
the following contributions:

– A proposal of an accelerator-independent and general purpose compilation
framework including a compilation framework using OSCAR compiler and
an extention of OSCAR API[8] for heterogeneous multicore

– An evaluation of a processing performance and a power efficiency using 3 Par-
allelizable C applications on the newly developed RP-X multicore chip[21].

In order to build an accelerator-independent and a general-purpose compila-
tion framework, we take care of utilizing existing tool chains such as accelerator
compilers and hand-tuned libraries for accelerators. Therefore, this paper firstly

186 A. Hayashi et al.

Fig. 1. OSCAR API Applicable heterogeneous multicore architecture

defines an general-purpose architecture and compilation flow in Section 2. Sec-
ondly, we defines distinct responsibilities among these tool chains and interface
among them by extending OSCAR API in Section 3.

2 OSCAR API Applicable Heterogeneous Multicore
Architecture and Overview of the Compilation Flow

This section defines both target architecture and compilation flow of the pro-
posed framework. In this paper, define a term “controller” as a general purpose
processor that controls an accelerator, that is to say, it performs part of coarse-
grain task and data transfers from/to the accelerator and offload the task to the
accelerator.

2.1 OSCAR API Applicable Heterogeneous Multicore Architecture

This section defines “OSCAR API Applicable Heterogeneous Multicore Archi-
tecture” shown in Fig.1.. The architecture is composed of general purpose pro-
cessors, accelerators(ACCs), direct memory access controller(DMAC), on-chip
centralized shared memory(CSM), and off-chip CSM. Some accelerators may
have its own controller, or general purpose processor. Both general purpose pro-
cessors and accelerators with controller may have a local data memory (LDM),
a distributed shared memory (DSM), a data transfer unit (DTU), a frequency
voltage control registers (FVR), an instruction cache memory and a data cache
memory. The local data memory keeps private data. The distributed shared
memory is a dual port memory, which enables point-to-point direct data transfer
and low-latency synchronization among processors. Each existing heterogeneous
multicore can be seen such as CELL BE[15], MP211[17] and RP1[20] as a subset

Parallelizing Compiler Framework and API 187

Fig. 2. Compilation flow of the proposed framework

of OSCAR API applicable architecture. Thus, OSCAR API can support such
chips and a subset of OSCAR API applicable heterogeneous multicore.

2.2 Compilation Flow

Fig.2. shows the compilation flow of the proposed OSCAR heterogeneous com-
piler framework. The input is a sequential program written in Parallelizable C or
Fortran77 and the output is an executable for a target heterogeneous multicore.
The following describes each step in the proposed compilation flow.

Step 1: Accelerator compilers or programmers insert hint directives immedi-
ately before loops or function calls , which can be executed on the accelera-
tor, in a sequential program.

Step 2: OSCAR compiler parallelizes the source program considering with hint
directives: the compiler schedules coarse-grain tasks[18] to processor or ac-
celerator cores and apply the low power control[8]. Then, the compiler gener-
ates a parallelized C or Fortran program for general purpose processors and
accelerator cores by using OSCAR API. At that time, the compiler gener-
ates C source codes as separate files for accelerator cores. Each file includes
functions to be executed on accelerators when a function is scheduled onto
accelerator by the compiler.

Step 3: Each accelerator compiler generates objects for its own target acceler-
ator. Note that each accelerator compiler also generates both data transfer
code between controller and accelerator, and accelerator invocation code.

Step 4: An API analyzer prepared for each heterogeneous multicore translates
OSCAR APIs into runtime library calls, such as pthread library. Afterwards,
an ordinary sequential compiler for each processor from each vender gener-
ates an executable.

It is important that the framework also allows programmers to utilize existing
hand-tuned libraries for the specific accelerator. This paper defines a term “hand-
tuned library” as an accelerator library which includes computation body on
the specific accelerator and both data transfer code between general purpose
processors and accelerators and accelerator invocation code.

188 A. Hayashi et al.

3 A Compiler Framework for Heterogeneous Multicores

This section describes the detail of OSCAR compiler and OSCAR API.

3.1 Hint Directives for OSCAR Compiler

This subsection explains the hint directives for OSCAR compiler that advice OS-
CAR compiler which parts of the program can be executed by which accelerator
core.

Fig.3. shows an example code. As shown in Fig.3., there are two types of hint
directives inserted to a sequential C program, namely “accelerator task” and “os-
car comment”. In this example, there are “#pragma oscar hint accelerator task
(ACCa) cycle(1000, ((OSCAR DMAC()))) workmem(OSCAR LDM(), 10)” and
“#pragma oscar hint accelerator task (ACCb) cycle(100, ((OSCAR DTU())))
in(var1, x[2:11]) out(x[2:11])”. In these directives, accelerators represented as
“ACCa” and “ACCb” is able to execute a loop named “loop2” and a function
named “function3”, respectively. The hint directive for “loop2” specifies that
“loop2” requires 1000 cycles including the cost of a data transfer performed by
DMAC if the loop is processed by “ACCa”. This directive also specifies that 10
bytes in local data memory are required in order to control “ACCa”. Similarly,
for “function3”, it takes 100 cycles including the cost of a data transfer by DTU.
Input variables are scalar variable “var1” and array variable “x” ranging 2 to
11. Also, output variable is array variable “x”. “oscar comment” directive is in-
serted so that either programmers or accelerator compilers give a comment to
accelerator compiler through OSCAR compiler.

3.2 OSCAR Parallelizing Compiler

This subsection describes OSCAR compiler.

int main() {

 int i, x[N], var1 = 0;

 /* loop1 */

 for (i = 0; i < N; i++) { x[i] = i; }

 /* loop2 */

#pragma oscar_hint accelerator_task (ACCa) \

 cycle(1000,((OSCAR_DMAC()))) workmem(OSCAR_LDM(), 10)

 for (i = 0; i < N; i++) { x[i]++; }

 /* function3 */

#pragma oscar_hint accelerator_task (ACCb) \

 cycle(100, ((OSCAR_DTU()))) in(var1,x[2:11]) out(x[2:11])

 call_FFT(var1, x);

 return 0;

}

void call_FFT(int var, int* x) {

#pragma oscar_comment "XXXXX"

 FFT(var, x); //hand-tuned library call

}

Fig. 3. Example of source code with hint directives

Parallelizing Compiler Framework and API 189

Ti
m
e

MT1

for CPU

MT2

for CPU

MT3

for CPU

MT4

for ACC
MT5

for ACC

MT6

for CPU

MT7

for ACC

MT8

for CPU

MT9

for ACC

MT10

for ACC

MT11

for CPU

MT12

for ACC

MT13

for ACC

EMT

MT1

MT2

MT8

MT11

MT3

MT6

MT13

MT4
MT5
MT7

MT9

MT10

MT12

MT13

CPU0 CPU1 CPU2
+
ACCa

Fig. 4. An Example of Task Scheduling Result

First of all, the compiler decomposes a program into coarse grain tasks, namely
macro-tasks (MTs), such as basic block (BPA), loop (RB), and function call or
subroutine call (SB). Then, the compiler analyzes both the control flow and
the data dependencies among MTs and represents them as a macro-flow-graph
(MFG). Next, the compiler applies the earliest executable condition analysis,
which can exploit parallelism among MTs associated with both the control de-
pendencies and the data dependencies. The analysis result is represented as a
hierarchically-defined macro-task-graph (MTG)[5]. When the compiler cannot
analyze the input source for some reason, like hand-tuned accelerator library
call, “in/out” clause of “accelerator task” gives the data dependency informa-
tion to OSCAR compiler. Then, the compiler calculates the cost of MT and finds
the layer which is expected to apply coarse-grain parallel processing most effec-
tively. “cycle” clause of “accelerator task” tells the cost of accelerator execution
to the compiler.

Secondly, the task scheduler of the compiler statically schedules macro-tasks
to each core[18]. Fig.4. shows an example of heterogeneous task scheduling result.
First the scheduler gets ready macro-tasks from MTG(MT1 in Fig.4 in initial
state). Ready tasks satisfy earliest executable condition[4]. Then, the scheduler
selects a macro-task to be scheduled from the ready macro-tasks and schedules
the macro-task onto general purpose processor or accelerator considering data
transfer overhead, according to the priorities, namely CP length. The scheduler
performs above sequences until all macro-tasks are scheduled. Note that a task
for an accelerator is not always assigned to the accelerator when the accelerator
is busy. At this case, the task may be assigned to general purpose processor to
minimize total execution time.

Thirdly, the compiler tries to minimize total power consumption by changing
frequency and voltage(DVFS) or shutting power down the core during the idle
time considering transition time[16]. The compiler determines suitable voltage
and frequency for each macro-task based on the result of static task assignment
in order to satisfy the deadline for real-time execution(Fig.5.). In Fig.5., FULL
is 648MHz and MID is 324MHz, respectively. Each of which is used in RP-X
described in Section4.

190 A. Hayashi et al.

CPU0
MT1
FULL

ACC0ACC0

MT2
FULL

Ti
m
e

CPU0

MT1
MID

ACC0

MT2
MIDTi

m
e

CPU0
MT1
FULL

ACC0

MT2
FULL

Ti
m
e

Power
Off Power

Off

Deadline Deadline
Off

Deadline

FV state example : FULL= 648MHz@1.3V, MID = 324MHz@1.1V, LOW = 162MHz@1.0V

Fig. 5. Power control by compiler

Finally, the compiler generates parallelized C or Fortran program with OS-
CAR API. OSCAR compiler generates the function which includes original
source for accelerator. Generation of data transfer codes and accelerator in-
vocation code is responsible for accelerator compiler.

OSCAR compiler uses processor configurations, such as number of cores, cache
or local memory size, available power control mechanisms, and so on. This in-
formation is provided by compiler options.

3.3 The Extension of OSCAR API for Heterogeneous Multicores

This subsection describes API extension for heterogeneous multicores to be the
output of OSCAR compiler. Thee extension is very simple. Only one directive
“accelerator task entry” is added to OSCAR homogeneous API. This directive
specifies the function’s name where general purpose processor invokes an accel-
erator.

Let us consider an example where the compiler parallelizes the program
in Fig.3. We assume a target multicore includes two general purpose proces-
sors, one ACCa as an accelerator with its controller and one ACCb as an
accelerator without its controller. One of general purpose processors, namely
CPU1, is used as controller for ACCb in this case. Fig.6. shows as exam-
ple of the parallelized C code with OSCAR heterogeneous directive generated
by OSCAR compiler. As shown in Fig.6., functions named “MAIN CPU0()”,
“MAIN CPU1()” and “MAIN CPU2()” are invoked in omp parallel sections.
These functions are executed on general purpose processors. In addition, hand-
tuned library “oscartask CTRL1 call FFT()” executed on ACCa is called by
controller “MAIN CPU1()”. “MAIN CPU2” also calls kernel function “oscar-
task CTRL2 call loop2()” executed on ACCb. “accelerator task entry” directive
specifies these two functions. “controller” clause of the directive specifies id of
general purpose CPU which controls the accelerator. Note that there exists “os-
car comment” directives at same place shown in Fig.3.. “oscar comment” direc-
tives may be used to give accelerator specific directives, such as PGI accelerator
directives, to accelerator compilers. Afterwards, accelerator compilers generates
the source code for the controller and objects for the accelerator, interpreting
these directives.

Parallelizing Compiler Framework and API 191

int main() {

#pragma omp parallel sections

 {

#pragma omp section

 { MAIN_CPU0(); }

#pragma omp section

 { MAIN_CPU1(); }

#pragma omp section

 { MAIN_CPU2(); }

 }

 return 0;

}

int MAIN_CPU1() {

 ...

 oscartask_CTRL1_call_FFT(var1, &x);

 ...

}

int MAIN_CPU2() {

 ...

 oscartask_CTRL2_call_loop2(&x);

 ...

}

#pragma oscar accelerator_task_entry controller(2) \

 oscartask_CTRL2_loop2

void oscartask_CTRL2_loop2(int *x) {

 int i;

 for (i = 0; i <= 9; i += 1) { x[i]++; }

}

#pragma oscar accelerator_task_entry controller(1) \

 oscartask_CTRL1_call_FFT

void oscartask_CTRL1_call_FFT(int var1, int *x) {

#pragma oscar_comment "XXXXX"

 oscarlib_CTRL1_ACCEL3_FFT(var1, x);

}Source Code for CPUs

Source Code for ACCa

Source Code for ACCb

Fig. 6. Example of parallelized source code with OSCAR API

4 Performance Evaluations on RP-X

This section evaluates the performance of the proposed framework on 15 core
heterogeneous multicore RP-X[21] using media applications.

4.1 Evaluation Environment

The RP-X processor is composed of eight 648MHz SH-4A general purpose
processor cores and four 324MHz FE-GA accelerator cores, the other dedi-
cated hardware IP such as matrix processor “MX-2” and video processing unit
“VPU5”, as shown in Fig.7.. Each SH-4A core consists of a 32KB instruction
cache, a 32KB data cache, a 16KB local instruction/data memory(ILM and DLM
in Fig.7.), a 64KB distributed shared memory(URAM in Fig.7) and a data trans-
fer unit. Furthermore, FE-GA is used as an accelerator without controller be-
cause FE-GA is directly connected with on-chip interconnection network named
“SHwy#1”, a split transaction bus. With regard to the power reduction con-
trol mechanism of RP-X, DVFS and clock gating for each SH-4A core can be

SH-X3 SH-X3 SH-X3 SH-4A

I$ D$

ILM

CPU FPU

URAM

CRU

DLM

SH-4A
DTU

MX2
#0-1

SHPB
HPB LBSC SATA SPU2 PCI

exp

DBSC
#0

DMAC
#0

DMAC
#1

DBSC
#1

FE
#0-3 VPU5

SHwy#0(Address=40,Data=128) SHwy#1(Address=40,Data=128)

SHwy#2(Address=32,Data=64)

SNC

SH-X3 SH-X3 SH-X3 SH-4A

L2C

Fig. 7. RP-X heterogeneous multicore for consumer electronics

192 A. Hayashi et al.

0

3.75

7.50

11.25

15.00

1SH 2SH 4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

12.36

5.48

2.65

5.64

3.46

1.90
1.00

Fig. 8. Performance by OSCAR compiler and FE-GA Compiler(Optical Flow)

controlled independently using special power control register by a user. DVFS
for FE-GAs can be controlled by a user. This hardware mechanism is low over-
head, for example frequency change needs a few clocks. This paper evaluates
both generating the object code by accelerator compiler and using the hand-
tuned library on RP-X processor. We evaluate the processing performance and
the power consumption of the proposed framework using upto eight SH-4A cores
and four FE-GA cores.

4.2 Performance by OSCAR Compiler with Accelerator Compiler

An “optical flow” application from OpenCV[14] is used for this evaluation. The al-
gorithm is a type of object tracking system, which calculates velocity field between
two images. The program is modified in Parallelizable C[12] in this evaluation.
This program consists of the following parts: dividing the image into 16x16 pixel
blocks, searching a similar block in the next image for every block in the current
image, shifting 16 pixels and generating the output. OSCAR compiler parallelizes
the loop which searches a similar block in the next image. In addition, FE-GA
compiler developed by Hitachi analyzed that the sum of absolute difference(SAD),
which occupies a large part of the program execution time, is to be executed on
FE-GA. FE-GA compiler also automatically inserts the hint directives to the C
program. OSCAR compiler generates parallel C program with OSCAR heteroge-
neous API. The parallel program is translated into parallel executable binary by
using API analyzer which translates the directives to library calls and sequential
compiler and FE-GA compiler translates the program parts in the accelerator files
to FE-GA binary. Input images are two 320x352 bitmap images. Data transfer be-
tween SH-4A and FE-GA is performed by SH-4A via data cache.

Fig.8. shows parallel processing performance of the optical flow on RP-X. The
horizontal axis shows the processor configurations. For example, 8SH+4FE rep-
resents for the configuration with eight SH-4A general purpose cores and four
FE-GA accelerator cores. The vertical axis shows the speedup against the se-
quential execution by a SH-4A core. As shown in Fig.8, the proposed compilation
framework achieves speedups of up to 12.36x with 8SH+4FE.

Parallelizing Compiler Framework and API 193

0

10

20

30

40

1SH 2SH 4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

32.65

26.71

18.85

5.40
3.092.291.00

Fig. 9. Performance by OSCAR compiler and Hand-tuned Library(Optical Flow)

4.3 Performance by OSCAR Compiler and Hand-tuned Library

In this evaluation, we evaluate two applications written in Parallelizable C. The
one is the optical flow from Hitachi Ltd. and Tohoku university, and the other
is AAC encoder available on a market from Renesas Technology.

There are a few differences between the optical flow program used in this sec-
tion and the program in Section4.2: In the optical flow program for this section,
shift amount is 1 pixel, the input of the application is a sequence of images,
and hand-tuned library for FE-GA is utilized. OSCAR compiler parallelizes the
same loop, which is shown in the previous subsection. The hand-tuned library,
which executes 81 SAD functions in parallel, is used for FE-GA. The hint direc-
tives are inserted to the parallelizable C program. OSCAR compiler generates
parallel C program with OSCAR API or directives for these library function
calls. The directives in the parallel program is translated to library calls by us-
ing API analyzer. Then, sequential compiler generates the executables linking
with hand-tuned library for SAD. Input image size, number of frames and block
size is 352x240, 450, 16x16, respectively. Data transfer between SH-4A and FE-
GA is performed by SH-4A via data cache. AAC encoding program is based on
the AAC-LC encode program provided by Renesas Technology and Hitachi Ltd.
This program consists of filter bank, midside(MS) stereo, quantization and huff-
man coding. OSCAR compiler parallelizes the main loop which encodes a frame.
The hand-tuned library for filter bank, MS stereo and quantization is used for
FE-GA. Data transfer between SH-4A and FE-GA is performed by DTU via
distributed shared memory.

Fig.9. shows parallel processing performance of the optical flow at RP-X. The
horizontal axis shows the processor configurations. For example, 8SH+4FE rep-
resents for the configuration with eight SH-4A general purpose cores and four
FE-GA accelerator cores. The vertical axis shows the speedup against the se-
quential execution by a SH-4A core. As shown in Fig.9, the proposed framework
achieved speedups of up to 32.65x with 8SH+4FE.

194 A. Hayashi et al.

0

5

10

15

20

1SH 2SH 4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

16.08

8.77

4.60
6.33

3.86
1.98

1.00

Fig. 10. Performance by OSCAR compiler and Hand-tuned Library(AAC)

Fig.10. shows parallel processing performance of the AAC at RP-X. As shown
in Fig.10, the proposed framework achieved speedups of up to 16.08x with
8SH+4FE.

4.4 Evaluation of Power Consumption

This section evaluates a power consumption by using optical flow and AAC
encoding for real-time execution on RP-X. Fig.11 shows the power reduction by
OSCAR compiler’s power control, under the condition satisfying the deadline.
The deadline of the optical flow is set to 33ms for each frame processing so that
standard 30 [frames/sec] for moving picture processing can be achieved. The
minimum number of cores required for the deadline satisfaction of optical flow
calculation is 2SH+1FE. As shown in Fig.11, OSCAR heterogeneous multicore
compiler reduces from 65% to 75% of power consumption for each processor
configuration. Although power consumption is increased by the augmentation of
processor core, the proposed framework reduces the power consumption.

Fig.12 shows the waveforms of power consumption in the case of optical flow
using 8SH+4FE. The horizontal axis and the vertical axis show elapsed time and
a power consumption, respectively. In the Fig.12, the arrow shows a processing
period for one frame, or 33ms. In the case of applying power control(shown in
Fig.12. b), each core executes the calculation by changing the frequency and the
voltage on a chip. As a result, the consumed power ranges 0.3 to 0.7[W] by OS-
CAR compiler’s power control. On the contrary, in the case of applying no power
control(shown in Fig.12. a), the consumed power ranges 2.25[W] to 1.75[W].

Fig.13 shows the summary of frequency and voltage status for optical flow
calculation with 8SH+4FE. In this figure, FULL is 648MHz with 1.3V, MID is
324MHz with 1.1V, and LOW is 162MHz with 1.0V. Each box labeled “MID”
and “timer” “Sleep” represents macro-task. As shown in Fig.13., four SAD tasks
are assigned to each FE-GA, and the tasks are executed at MID. All SH-4A core
except “CPU0” is shutdown until the deadline comes. “CPU0” executes “timer”
task for satisfying the deadline. In other words, “CPU0” boot up other SH-4A
cores when the program execution reaches the deadline. Note that FE-GA core
is not shutdown after task execution because DVFS is only applicable.

Parallelizing Compiler Framework and API 195

Without Power Control With Power Control

0

0.5

1.0

1.5

2.0

2SH+1FE 4SH+2FE 8SH+4FE

0.450.46
0.55

1.681.63
1.55

-65% -75%-72%

Fig. 11. Power reduction by OSCAR compiler’s power control (Optical Flow)

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000

Po
w

er
[W

]

Time

33[ms]
0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000

Po
w

er
 [W

]

Time

33[ms]

a) Without Power Saving(Average:1.68W) b) With Power Saving(Average:0.45W)

Fig. 12. Waveforms of Power Consumption(Optical Flow)

CPU0 CPU1 CPU2 CPU3 CPU FE-GA00 CPU FE-GA11 CPU FE-GA22 CPU FE-GA3

Sleep

Timer

Sleep Sleep Sleep

Sleep SleepSleepMID MID MID MID

0

Ti
m
e

3

cycle

Sleep

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

Deadline
=1fps
=33ms

FV state example : FULL= 648MHz@1.3V, MID = 324MHz@1.1V, LOW = 162MHz@1.0V

Fig. 13. Power Control for 8SH+4FE(Optical Flow)

196 A. Hayashi et al.

0

0.5

1

1.5

2

2.5

3

3.5

0

Po
w

er
 [W

]

Time

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500

Po
w

er
 [W

]

Time

a) Without Power Saving(Average:1.9W) b) With Power Saving(Average:0.38W)

0.46[s]

0.46[s]

Fig. 14. Waveforms of Power Consumption(AAC)

For AAC program, an audio stream is processed per frame. The deadline
of AAC is set to encode 1 [sec] audio data within 1 [sec]. Fig.14 shows the
waveforms of power consumption in the case of AAC using 8SH+4FE. In the case
of applying power control(shown in Fig.14. b)), each core execute the calculation
by changing the frequency and the voltage on a chip. As a result, the consumed
power ranges 0.4 to 0.55[W]. On the contrary, in the case of applying no power
control(shown in Fig.14. a), the consumed power ranges 1.9[W] to 3.1[W]. In
summary, the proposed framework realizes the automatically power reduction of
heterogeneous multicore for several applications.

5 Conclusions

This paper has proposed OSCAR heterogeneous multicore compilation frame-
work. In particular, this paper introduces (1)the general purpose and multi-
platform automatic compilation flow using OSCAR compiler and various
accelerator compilers or hand-tuned libraries and (2)the heterogeneous extension
of OSCAR homogeneous API. In this paper, we have evaluated the processing
performance and the power efficiency of the proposed framework using RP-X,
15 core heterogeneous multicore chip, as an example. The developed framework
automatically gave us speedups of up to 32x for an optical flow program with
eight general purpose processor cores and four accelerator cores against sequen-
tial execution. Also, it shows 80% of power reduction by automatic DVFS for the
real-time AAC encoding execution mode with eight general purpose processor
cores and four accelerator cores compared with no power control.

Acknowledgement

This work has been partly supported by the METI/NEDO project “Hetero-
geneous Multicore for Consumer Electronics” and MEXT project “Global
COE Ambient Soc”. Specifications of OSCAR API[6] heterogeneous multicore

Parallelizing Compiler Framework and API 197

extension are developed by NEDO Heterogeneous multicore architecture and
API committee at Waseda university. The authors specially thanks to the mem-
bers of the API committee from Fujitsu Laboratory, Hitachi, NEC, Panasonic,
Renesas Technology, and Toshiba. The hand-tuned library for FE-GA is provided
by Hariyama Lab. at Tohoku university and Hitachi.

References

1. Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: Cellss: a programming model
for the cell be architecture. In: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, SC 2006 (2009)

2. Dolbeau, R., Bihan, S., Bodin, F.: Hmpp(tm):a hybrid multi-core parallel pro-
grammingg environment. In: GPGPU 2007: Proceedings of the 1st Workshop on
General Purpose Processing on Graphics Processing Units (2007)

3. Garland, M., Grand, S.L., Nickolls, J., Anderson, J., Hardwick, J., Morton, S.,
Phillips, E., Zhang, Y., Volkov, V.: Parallel computing experiences with cuda.
IEEE Micro 28(4), 13–27 (2008)

4. Kasahara, H., Honda, H., Mogi, A., Ogura, A., Fujiwara, K., Narita, S.: A multi-
grain parallelizing compilation scheme for OSCAR (Optimally scheduled advanced
multiprocessor). In: Proceedings of the Fourth International Workshop on Lan-
guages and Compilers for Parallel Computing, pp. 283–297 (August 1991)

5. Kasahara, H., Obata, M., Ishizaka, K.: Automatic coarse grain task parallel pro-
cessing on SMP using openMP. In: Midkiff, S.P., Moreira, J.E., Gupta, M., Chat-
terjee, S., Ferrante, J., Prins, J.F., Pugh, B., Tseng, C.-W. (eds.) LCPC 2000.
LNCS, vol. 2017, p. 189. Springer, Heidelberg (2001)

6. kasahara.cs.waseda.ac.jp: Oscar-api v1.0,
http://www.kasahara.cs.waseda.ac.jp/

7. khronos.org: Opencl, http://www.khronos.org/opencl/
8. Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Shirako, J., Kasahara, H.:

OSCAR API for real-time low-power multicores and its performance on multi-
cores and SMP servers. In: Gao, G.R., Pollock, L.L., Cavazos, J., Li, X. (eds.)
LCPC 2009. LNCS, vol. 5898, pp. 188–202. Springer, Heidelberg (2010)

9. Luebke, D., Harris, M., Govindaraju, N., Lefohn, A., Houston, M., Owens, J.,
Segal, M., Papakipos, M., Buck, I.: Gpgpu: General-purpose computation on graph-
ics hardware. In: 2006 ACM/IEEE Conference on Supercomputing, SC 2006 (11
November 2006 through 17 November 2006 2006)

10. Luk, C., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping, microarchitecture. In: Proceedings of42th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-42
(2009)

11. Masayasu, Y., Takeshi, S., Toshiaki, T., Yasuhiko, K., Toshinori, I.: Naviengine
1, system lsi for smp-based car navigation systems. NEC TECHNICAL JOUR-
NAL 2(4) (2007)

12. Mase, M., Onozaki, Y., Kimuraa, K., Kasahara, H.: Parallelizable c and its per-
formance on low power high performance multicore processors. In: Proc. of 15th
Workshop on Compilers for Parallel Computing (July 2010)

13. Nakajima, M., Yamamoto, T., Yamasaki, M., Hosoki, T., Sumita, M.: Low power
techniques for mobile application socs based on integrated platform ”uniphier”. In:
ASP-DAC 2007: Proceedings of the 2007 Asia and South Pacific Design Automa-
tion Conference (2007)

http://www.kasahara.cs.waseda.ac.jp/
http://www.khronos.org/opencl/

198 A. Hayashi et al.

14. opencv.org: Opencv, http://opencv.org/
15. Pham, D., Asano, S., Bolliger, M., Day, M.N., Hofstee, H.P., Johns, C., Kahle,

J., Kameyama, A., Keaty, J., Masubuchi, Y., Riley, M., Shippy, D., Stasiak, D.,
Suzuoki, M., Wang, M., Warnock, J., Weitzel, S., Wendel, D., Yamazaki, T.,
Yazawa, K.: The design and implementation of a first-generation cell processor.
In: 2005 IEEE International Solid-State Circuits Conference, ISSCC (6 February
2005 through 10 February 2005 2005)

16. Shirako, J., Oshiyama, N., Wada, Y., Shikano, H., Kimura, K., Kasahara, H.:
Compiler control power saving scheme for multi core processors. In: Ayguadé, E.,
Baumgartner, G., Ramanujam, J., Sadayappan, P. (eds.) LCPC 2005. LNCS,
vol. 4339, pp. 362–376. Springer, Heidelberg (2006)

17. Torii, S., Suzuki, S., Tomonaga, H., Tokue, T., Sakai, J., Suzuki, N., Murakami, K.,
Hiraga, T., Shigemoto, K., Tatebe, Y., Obuchi, E., Kayama, N., Edahiro, M.,
Kusano, T., Nishi, N.: A 600mips 120mw 70 μ a leakage triple-cpu mobile applica-
tion processor chip. In: ISSCC (2005)

18. Wada,Y.,Hayashi,A.,Masuura,T., Shirako, J.,Nakano,H., Shikano,H.,Kimura,K.,
Kasahara, H.: Parallelizing compiler cooperative heterogeneous multicore. In: Pro-
ceedings of Workshop on Software and Hardware Challenges of Manycore Platforms,
SHCMP 2008 (June 2008)

19. Wolfe, M.: Implementing the pgi accelerator model. In: GPGPU 2010: Proceedings
of the 3rd Workshop on General-Purpose Computation on Graphics Processing
Units (2010)

20. Yoshida, Y., Kamei, T., Hayase, K., Shibahara, S., Nishii, O., Hattori, T.,
Hasegawa, A., Takada, M., Irie, N., Uchiyama, K., Odaka, T., Takada, K.,
Kimura, K., Kasahara, H.: A 4320mips four-processor core smp/amp with individ-
ually managed clock frequency for low power consumption. In: IEEE International
Solid-State Circuits Conference, ISSCC (February 2007)

21. Yuyama, Y., Ito, M., Kiyoshige, Y., Nitta, Y., Matsui, S., Nishii, O., Hasegawa, A.,
Ishikawa, M., Yamada, T., Miyakoshi, J., Terada, K., Nojiri, T., Satoh, M.,
Mizuno, H., Uchiyama, K., Wada, Y., Kimura, K., Kasahara, H., Maejima, H.:
A 45nm 37.3gops/w heterogeneous multi-core soc. In: IEEE International Solid-
State Circuits Conference, ISSCC (February 2010)

http://opencv.org/

Debugging Large Scale Applications
in a Virtualized Environment

Filippo Gioachin, Gengbin Zheng, and Laxmikant V. Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign

gioachin@ieee.org, {gzheng,kale}@illinois.edu

Abstract. With the advent of petascale machines with hundreds of thousands of
processors, debugging parallel applications is becoming an increasing challenge.
Aside from the complicated debugging techniques required to debug applications
at such scale, it is often difficult to gain access to these machines for a sufficient
period of time, if at all. Some existing parallel debuggers are capable of handling
these machines, but they still require the whole machine to be allocated. In this
paper, we present an innovative approach to address debugging on such extreme
scales. By leveraging the concept of object-based processor virtualization, our
technique enables debugging of even a million processor execution under a sim-
ulated environment using only a relatively small cluster. We describe the obsta-
cles we overcame to achieve this goal within two message passing programming
models: CHARM++ and MPI. We demonstrate the results using real world appli-
cations such as Molecular Dynamics and Cosmological simulation programs.

1 Introduction

Debugging a parallel application requires numerous iterative steps. Initially, the appli-
cation is tested on simple benchmarks on a few processors. At this point, many errors
due to the communication exchanges between the processes in the parallel scenarios can
be captured. Later, during production runs, the application will be deployed with larger
input datasets, and on much bigger configurations. Oftentimes, the application will not
behave as expected, and terminate abnormally. When this happens, the programmer is
left to hunt the problem at the scale where it manifests, with possibly thousands of pro-
cessors involved. If lucky, he may be able to recreate the problem on a smaller scale
and debug it on a local cluster, but this is not always possible.

One example of a bug that may not be reproduced on a smaller scale is when the bug
is located in an algorithm, and this algorithm depends on how the input data is parti-
tioned among the processors. Reducing the problem size might be a solution to scale
down the problem, but the inherent physics of the problem may not allow that. Another
example is when the physics simulation output is incorrect. In this case, the problem
can derive from rare conditions that only big datasets expose. Again, the problem size
may not be reduced since otherwise the bug disappears. In all these examples, the only
alternative left to the programmer is to use the whole machine, and debug with the full
problem size on possibly thousands of processors.

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 199–214, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

200 F. Gioachin, G. Zheng, and L.V. Kalé

Interactive sessions on large parallel machines are usually restricted to small alloca-
tions. For large allocations, batch scheduling is often required. To debug the application,
the programmer will have to launch the job through the scheduler and be in front of the
terminal when the job starts. Unless a specific allocation slot is pre-requested, this can
happen at unpredictable, inconvenient times. Furthermore, the nature of debugging is
such that it may require multiple executions of the code to track the bug, and to try dif-
ferent potential solutions. This exacerbates the problem and leads to highly inefficient
debugging experience.

Moreover, debugging sessions on a large number of processors are likely to consume
a lot of allocation time on supercomputers, and significantly waste precious computa-
tion time. During an interactive debugging session, the programmer usually lets the
program execute for some time and then pauses it to inspect its data structures, then
iteratively advances it step-by-step, while monitoring some data of interest. Therefore,
processors are idle most of the time waiting for the user to make a decision on what to
do next, which is a very inefficient use of supercomputers.

The innovative approach we describe in this paper is to enable programmers to per-
form the interactive debugging of their applications at full scale on a simulated target
machine using much smaller clusters. We do this by making each processor in the ap-
plication a virtual processor, and mapping multiple virtual processors to a single phys-
ical processor. This reduces the processor count needed for debugging. This mapping
is transparent to the application, and only the underlying runtime system needs to be
aware of the virtualization layer. A parallel debugger connected to the running applica-
tion presents to the programmer the vision of the application running on thousands of
processors, while hiding the fact that maybe only a few dozen were actually used.

Our idea transcends the programming model used for the virtualization and how
the debugging infrastructure is implemented. However, to prove the feasibility of this
approach, we implemented it within the CHARM++ runtime system [1,2], using the
BigSim emulation environment, and the CHARMDEBUG debugger. Thus, applications
written in CHARM++ will be the main target for our debugging examples. MPI appli-
cations are supported via a virtualized MPI implementation called AMPI [3].

In the remainder of this paper, we start by describing the infrastructure of the debug-
ger, CHARMDEBUG, in Section 2 and BigSim Emulator in Section 3. We present the
object-based virtualization approach we adopted to integrate the two systems into a vir-
tualized debugger in Section 4. Section 5 further describes how we applied this method
in the context of debugging MPI applications. Sections 6 and 7 analyze our system in
terms of overhead and functionality with some examples. Related work is described in
Section 8 followed by some comments on future work in the concluding section.

2 CharmDebug

CHARMDEBUG [4] is a graphical debugger designed for CHARM++ applications. It
consists of two parts: a GUI with which a programmer interacts, and a plugin inside
the CHARM++ runtime itself. The GUI is the main instrument that a programmer will
see when debugging his application. It is written in Java, and is therefore portable to all

Debugging Large Scale Applications in a Virtualized Environment 201

operating systems. A typical debugging session is shown in Figure 1. The user will start
the CHARMDEBUG GUI on his own workstation. He can then choose to start a new
application to debug, or attach to a running application manually, using the appropriate
commands available in the GUI. By default, every CHARM++ application contains a
CHARMDEBUG plugin inside. This plugin is responsible to collect information from
the running application, and to communicate with the CHARMDEBUG GUI. With this
plugin integrated in the application itself, no external tool is necessary on every compute
node. Thanks to the tight coupling between these two components of CHARMDEBUG,
the user can visualize several kinds of information regarding his application. Such infor-
mation includes, but is not limited to, the CHARM++ objects present on any processor
and the state of any such objects, the messages queued in the system, and the memory
distribution on any processor.

Fig. 1. Diagram of CHARMDEBUG’s system

The communication between the
CHARMDEBUG GUI and the CHARM-
DEBUG plugin happens through a high-
level communication protocol called
Converse Client-Server, or CCS [4].
This protocol has become a standard
for CHARM++, and is built into all
CHARM++ applications. It can be used
both by the user directly into his own
application, for example to enable live
streaming of images to remote clients, or
internally by the system, as in this case by CHARMDEBUG to collect status informa-
tion. The CCS server, which is the parallel application in the case of CHARMDEBUG,
opens a single socket connection and listens to it for incoming connections. Later, the
CHARMDEBUG CCS client initiates the communication by connecting to this socket
and sending a request. This request is translated by the server (i.e. the application), into
a CHARM++ level message which is then delivered to a pre-registered routine. This
routine can perform any operation it deems necessary, including operations involving
parallel computations. This leverages the message-driven scheduler running on each
processor in CHARM++: in addition to dealing with application messages, the sched-
uler also naturally handles messages meant for debugging handlers. Finally, the server
can return an answer to the waiting client, if appropriate. Note that since only one single
connection is needed between the debugger and the application under examination, we
avoid the scalability bottleneck of having the debugger connect directly to each process
of the parallel application. This allows CHARMDEBUG to scale to as large a configura-
tion as CHARM++ does.

In CHARM++, every parallel application is integrated with debugging support in the
form of a CHARMDEBUG plugin. When a program starts, this plugin registers inspec-
tion functions that the CHARMDEBUG GUI will send requests to. This initialization
happens by default during CHARM++’s startup without the user intervention. There-
fore, any program is predisposed for analysis with CHARMDEBUG. Although lack-
ing direct connection to each processor, the user can request the debugger to open a

202 F. Gioachin, G. Zheng, and L.V. Kalé

GDB [5] session for any particular processor. This gives the user flexibility to descend
to a lower level and perform operations that are currently not directly supported by
CHARMDEBUG.

3 BigSim Emulator

Although CHARMDEBUG as described in the previous section is implemented to be
scalable and efficient for debugging very large scale applications, in practice, its use-
fulness is greatly impaired by the constraint of large amount of resource needed for
debugging. This motivated the work in this paper to exploit a virtualized environment
called BigSim to reduce the need for the whole machine.

BigSim [6,7] is a simulation framework that provides fast and accurate performance
evaluation of current and future large parallel systems using much smaller machines,
while supporting different levels of fidelity. It targets petascale systems composed of
hundreds of thousands of multi-core nodes. BigSim consists of two components. The
first component is a parallel emulator that provides a virtualized execution environment
for parallel applications. This emulator generates a set of event logs during execution.
The second component is a post-mortem trace-driven parallel simulator that predicts
parallel performance using the event logs as input, and supports multiple resolutions
for prediction of sequential and network performance. For example, the simulator can
(optionally) predict communication performance accurately by simulating packets of
each message flowing through the switches in detail, using a parallel discrete event
simulation technique. Since the simulator only considers the trace logs and does not
re-execute the application at the code level, it is not suitable for debugging purpose.
However, the BigSim Emulator, which supports emulation of a very large application
using only a fraction of the target machine, is useful for debugging. In the remainder of
this section, we shall focus our attention on the emulator component.

Since multiple target processors are emulated on one physical processor, the memory
usage on a given physical processor may increase dramatically. It may thus become
impossible to fit the whole application into the physical memory available. Interestingly,
our studies show that many real world scientific and engineering applications, such as
molecular dynamics simulation, do not require a large amount of memory. For example,
in one experiment, we were able to emulate NAMD [8] running on a 262,144-core Blue
Waters machine [9] using just 512 nodes of the Ranger cluster, a Sun Constellation
Linux Cluster at the Texas Advanced Computing Center (TACC).

For applications with large memory footprint, the physical amount of memory avail-
able per processor indeed poses a constraint. However, even in this scenario, we can
still emulate these applications by using an efficient out-of-core technique [10,11] opti-
mized for the BigSim Emulator. Clearly, out-of-core execution, even with optimization,
incurs a much higher overhead than the pure in-memory execution, mainly due to the
constraint imposed by disk I/O bandwidth. For example, we observed a slowdown of
about 18 times in terms of the total execution time of a Jacobi application in [10].

For interactive debugging, the degraded performance due to the out-of-core exe-
cution may impact the user experience with slow responsiveness especially when the
user requests involve all the virtual processors on disk. Increasing the number of

Debugging Large Scale Applications in a Virtualized Environment 203

emulating processors, and hence memory, helps reducing the need for extensive disk
I/O in the out-of-core execution. Even though inefficient, this is a viable debugging
solution when there is no other workaround.

4 Debugging CHARM++ Applications on BigSim

In order to combine the BigSim emulation system with the CHARMDEBUG debug-
ging framework, several new problems had to be solved. Most arose from the fact that
CHARMDEBUG needs to deal with the virtualized CHARM++ and other virtualized lay-
ers in the emulation environment.

Normally, CHARM++ is implemented directly on top of CONVERSE, which is re-
sponsible for low-level machine-dependent capabilities such as messaging, user-level
threads, in addition to message-driven scheduling. This is shown on the left branch of
Figure 2. When CHARM++ is re-targeted to the BigSim Emulator, there are multiple tar-
get CHARM++ virtual processors running on one physical processor, as explained in the
previous section. Therefore, all layers underneath CHARM++ must be virtualized. This
new software stack is shown in the same Figure 2, on the right branch. Specifically, the
virtualized CONVERSE layer becomes BigSim CONVERSE, which is the CONVERSE

system implemented using the BigSim Emulator as communication infrastructure. This
is equivalent to treating the BigSim Emulator as a communication sub-system.

4.1 Communicating with Virtual Processors

Fig. 2. BigSim Charm++ Software Stack

One problem we had to overcome was
the integration of the CCS framework
into BigSim. CCS connects CHARM-
DEBUG and a running application con-
sidering each operating system process
as an individual CHARM++ processor.
However, in the BigSim Emulation en-
vironment, CCS is unaware of the em-
ulated target processors because it is
implemented directly on CONVERSE.
Therefore, it needs to be adapted to the
emulation system so that the CHARM-
DEBUG client can connect to the emu-
lated virtual processors. To achieve this, we created a middle layer for CCS (virtualized
CCS) so that messages can reach the destination virtual processor. The target of a CCS
message becomes now the rank in the virtual processor space. Figure 3 depicts the new
control flow.

When a CCS request message is sent from CHARMDEBUG to a virtual processor,
the message first reaches the CCS host (1). From here, it is routed to the real processor
where the destination virtual processor resides (2). The processor level scheduler in
CONVERSE will pick up the request message, but not execute the message immediately.
Instead, it enqueues the message to the corresponding virtual node, and activates it (3).

204 F. Gioachin, G. Zheng, and L.V. Kalé

The scheduler on the virtual node will serve the CCS request by invoking the function
associated with the request message (4), and return a response message. Notice that the
response does not need intervention from CONVERSE since the virtual processor has
direct access to the data structures stored in the common address space. Multicast and
broadcast requests are treated in the virtualized environment. While this can add some
overhead to the execution of a CCS request, it greatly simplifies the system, and the
code reuse between the emulated and non-emulated mode.

Fig. 3. Diagram of CCS scheme under BigSim
Emulation

Some CCS request messages are not
bound to any specific virtual proces-
sor. For example, CHARMDEBUG may
send CCS requests to physical proces-
sors to query processor-wide informa-
tion such as those related to the system
architecture or the memory system. How-
ever, since all virtual processors on the
same physical processor have access to
the processor information including the
whole memory, any of these virtual pro-
cessors can, in fact, serve the CCS re-
quests. Therefore, our approach is to
have CHARMDEBUG client always send
such CCS requests to a virtual processor
on a physical processor. This approach
greatly simplifies the design and imple-
mentation of the CCS protocol, since we eliminate the need of having to specify if the
request needs to be treated at the physical processor level, or at the virtual processor
level.

4.2 Suspending Virtual Processors

Another challenge was to figure out how to suspend the execution of a single virtual
processor. Notice that while a processor is suspended, we still want to deliver mes-
sages to it. For example, requests from the debugger should be honored regardless of
the processor’s state. At the same time, we do not want other virtual processors emu-
lated inside the same physical processor to be affected. In the non-virtualized environ-
ment, the technique we use to suspend a processor is to enter a special scheduler when
the processor needs to be suspended. In this mode, regular messages are placed into a
queue, and buffered in FIFO order until the processor can handle them. This scheduler
is also in charge of driving the network, and receiving incoming messages. In this way,
commands from the debugger can still be executed. In the virtualized environment, the
scheduler that drives the network and forwards messages to the virtual processes is a
separate entity from the scheduler inside each virtual processor. In this case, it is not
possible to have each virtual processor driving the network, which will be too chaotic.

We modified our scheme to move the buffering of messages inside each individual
virtual processor. When a worker processor needs to suspend due to an explicit de-
bugger “freeze” command or due to a breakpoint, it calls its own scheduler recursively.

Debugging Large Scale Applications in a Virtualized Environment 205

Since this scheduler is stateless, such a recursive scheme is feasible. This new scheduler
then starts the buffering of messages. When the processor is released by the debugger,
and is allowed to continue its normal execution, we terminate the internal scheduler,
and return control to the outer one. Buffered messages are guaranteed to be executed in
the same order as they were received while we exit from the internal scheduler. Mean-
while, the main CONVERSE scheduler remains the only one that drives the network
and receives messages. Moreover, the CONVERSE scheduler is always active, and never
enters a buffering mode.

With the techniques described, we can now debug applications in the virtualized
environment as if they were running on a real machine. We shall see an example of
using CHARMDEBUG on a real application in section 7. In the future work section, we
will outline other topics we plan to address.

5 Debugging MPI Applications on BigSim

Debugging a large scale MPI application on a smaller machine requires running mul-
tiple MPI “processes” on one processor. This can be done using existing MPI imple-
mentations, if allowed by the operating system. However, this is often infeasible for
various reasons. First, operating systems often impose hard limits on the total number
of processes allowed by a user on one processor, making it challenging to debug a very
large scale application. Secondly, processes are heavy-weight in terms of creation and
context switching. Finally, there are very few MPI implementations that support out-of-
core execution, which is needed for running applications with large memory footprints.

Fig. 4. AMPI virtualization using CHARM++

To overcome these challenges, we
adopted the same idea of processor virtu-
alization used in CHARM++: each MPI
rank is now a virtual processor imple-
mented as a light-weight CONVERSE

user-level thread. This leads to Adap-
tive MPI, or AMPI [3], an implemen-
tation of the MPI standard on top of
CHARM++. As illustrated in Figure 4,
each physical processor can host a num-
ber of MPI virtual processors (or AMPI
threads). These AMPI threads communi-
cate via the underlying CHARM++ and
CONVERSE layers. This implementation
also takes advantage of CHARM++’s out-of-core execution capability. Since AMPI is
a multi-threaded implementation of the MPI standard, global variables in MPI applica-
tions may be an issue. AMPI provides a few solutions to automatically handle global
variables [12] to ensure that an MPI application compiled against AMPI libraries runs
correctly.

Debugging MPI applications can now use any arbitrary number of physical proces-
sors. For example, when debugging Rocstar [13], a rocket simulation program in MPI
developed by the Center for Simulation of Advanced Rockets (CSAR) at the Univer-
sity of Illinois, a developer was faced with an error in mesh motion that only appeared

206 F. Gioachin, G. Zheng, and L.V. Kalé

Fig. 5. Screenshot of GDB attached to a specific MPI rank, and displaying its stack trace

when a particular problem was partitioned for 480 processors. Therefore, he needed to
run the application on a large cluster at a supercomputer center to find and fix the bug.
However, the turn-around time for a 480 processor batch job was fairly long since the
batch queue was quite busy at that time, which made the debugging process painfully
slow. Using AMPI, the developer was able to debug the program interactively, using
480 virtual processors distributed over 32 physical processors of a local cluster, where
he could easily make as many runs as he wanted to resolve the bug.

Since AMPI is implemented on top of CHARM++, the basic techniques for debug-
ging as described in Section 4 work on AMPI programs automatically. In addition, if the
user desires to perform more in-depth analysis on a specific MPI rank, he can choose to
start a GDB sequential debugger attached to the processor hosting that rank, and focus
on the desired rank. This GDB process is shown in Figure 5 for a simple test program.
In this example, the user has set a breakpoint on MPI Scatterv function, and when the
breakpoint was hit, he printed the stack trace.

6 Debugging Overhead in the Virtualized Environment

In this section, we study the debugging overhead using a synthetic Jacobi benchmark
and a real application, NAMD, running on the modified BigSim emulator with CHARM-
DEBUG support.

Our test environment is Blue Print, a Blue Waters interim system at National Center
for Supercomputing Applications (NCSA). It is an IBM Power 5+ system. There are
107 compute nodes actually available for running a job, and each node has 16 cores
(i.e. 1712 cores total).

We first tested a Jacobi3D program written in CHARM++ on 1024 virtual processors
on a varying number of physical processors with CHARMDEBUG enabled, and mea-
sured the execution time per step. Figure 6(a) shows the results of the execution time
with varying number of physical processors, from 8 to 1024. The last bar in the fig-
ure is the actual execution time of the same code on the 1024 processors with normal
CHARM++. We can see that by using exactly same number of processors, Jacobi under

Debugging Large Scale Applications in a Virtualized Environment 207

 0

 5

 10

 15

 20

 25

 30

8 16 32 64 128 256 512 1,024

T
im

e
pe

r
It

er
at

io
n

(s
ec

on
ds

)

Number of Physical Processors

1024 core emulation
1024 core real

(a) 1024 emulated processors. The last bar is the ac-
tual runtime on 1024 processors.

 0

 5

 10

 15

 20

 25

400 800 1,712

T
im

e
pe

r
It

er
at

io
n

(s
ec

on
ds

)

Number of Physical Proc.

(b) 1M (1,048,576) emulated
processors.

Fig. 6. Jacobi3D execution time with varying number of physical processors

BigSim Emulator runs as fast as the actual execution in normal CHARM++, showing
almost no overhead of the virtualization in BigSim. When we use fewer physical pro-
cessors to run the same Jacobi emulation on 1024 virtual processors, the total execution
time increases as expected. However, the increase in the execution time is a little less
than the time proportional to the loss of processors. For example, when using 1024
physical processors, the execution time is 0.25s, while it takes only 23.96s when us-
ing only 8 physical processors. That is about 92 times slower (using 128 times fewer
processors). This is largely due to the fact that most communication becomes in-node
communication when using fewer processors.

As a stress test, we ran the same Jacobi3D program on one million (1,048,576) em-
ulated processors, while trying to use as fewer number of physical processors as possi-
ble. Figure 6(b) shows the execution time when running on 400, 800, and 1712 physical
processors. These experiments show that it is feasible to debug an application in a vir-
tualized environment for very large number of target processors using a much smaller
machine.

To test how much time typical operations take from the debugger point of view, we
used a similar Jacobi3D program, this time written in MPI. Table 1 reports timings for
starting the MPI application, loading the list of messages queued on a given processor,
and perform a step operation (deliver a single message) on all virtual processors. The
latter two operations perform in an almost identical amount of time in all scenarios,
including the case when the application is run in the non-virtualized environment.

We also studied the BigSim overhead on a real application. NAMD [14,8] is a
scalable parallel application for Molecular Dynamics simulations written using the

Table 1. Time taken by the CHARMDEBUG debugger to perform typical operations, using MPI
Jacobi3D application with 1024 emulated processors on varying number of physical processors

8 16 32 64 128 256 512 1024 original
Startup (seconds) 11.60 11.63 13.34 13.12 15.86 14.41 16.45 17.71 17.85
Load a message queue (ms) 398 399 399 400 400 399 399 379 379
Single step, all pe (ms) 131 99 213 66 41 118 67 118 114

208 F. Gioachin, G. Zheng, and L.V. Kalé

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

8 16 32 64 128 256 512 1,024

T
ot

al
 T

im
e

(s
ec

on
ds

)

Number of Physical Processors

1024 core emulation
1024 core real

(a) Execution Time

 0

 200

 400

 600

 800

 1,000

 1,200

8 16 32 64 128 256 512 1,024

M
ax

 m
em

or
y

pe
r

Pr
oc

es
s

(M
B

)

Number of Physical Processors

1024 core emulation
1024 core real

(b) Memory Usage

Fig. 7. NAMD on 1024 emulated processors using varying number of physical processors. The
last bar is the actual run on 1024 processors.

CHARM++ programming model. It is used for the simulation of biomolecules to under-
stand their structure. In these experiments, we ran NAMD on 1024 emulated processors
with Apolipoprotein-A1 (ApoA1) benchmark for 100 timesteps. We measured the total
execution time of each run (including startup and I/O) using a varying number of physi-
cal processors, from 8 to 1024. This is illustrated in Figure 7(a). Same as for Jacobi, we
ran NAMD also in non-emulated mode using 1024 physical processors. The total exe-
cution time is shown in the last bar of the figure. We can see that NAMD running on the
BigSim Emulator is only marginally slower (by 6%) compared to the normal execution
on 1024 physical processors, showing little overhead of the emulator. On 512 proces-
sors, however, NAMD running in the emulation mode is even slightly faster than the
actual run on 1024 processors. This is due to savings in the NAMD initial computation
phases: faster global synchronization on fewer nodes.

Overall, this demonstrates that in terms of the time cost, debugging in a virtualized
environment using much smaller number of processors is possible. Although it takes a
longer time (19 times slower from 1024 to 8 processors) to run the application, debug-
ging on a much smaller machine under a realistic scenario is not only easily accessible
and convenient, but also simpler for setting up debugging sessions.

We further studied the memory overhead under the virtualized environment. Using
the same NAMD benchmark on 1024 virtual processors, we gathered memory usage
information for each processor. Figure 7(b) shows the peak memory usages across all
physical processors. Again, the last bar is with the non-emulated CHARM++. Note that
in emulation mode, the total memory usage is the sum of the application’s memory
usage across all emulated processors, plus the memory used by the emulator itself. It
can be seen that there is no difference in memory usage between the emulation mode
and non-emulation mode when using 1024 physical processors. When the number of
processors decreases to 512, or even 256, the memory usage remains about the same.
This is because NAMD has some constant memory consumption that dominates the
memory usage (for example, read-only global data such as molecule database, which
is replicated on each node), and the emulator itself tends to use less memory when
the number of processors decreases. However, when the number of physical proces-
sors keeps reducing, each physical processor hosts a much larger number of emulated

Debugging Large Scale Applications in a Virtualized Environment 209

(a) Launching scenario (b) Attach scenario

Fig. 8. Screenshots of CHARMDEBUG parameter window

virtual processors whose memory usage starts to dominate, therefore the total memory
usage increases significantly. Nevertheless, when the number of physical processors is
down to 8, the peak memory usage reaches about 1GB, which is still very feasible on
machines nowadays. Note that this is an increase of only about 7 fold compared to the
1024 processor case, due to the sharing of the global read-only data at the process level.

In summary, we have demonstrated that debugging under virtualized environment
incurs reasonably low overhead, considering the overhead proportional to the loss of
processors. This makes it feasible to debug applications running on a large machine
using only a portion of it.

7 Case Study

To demonstrate the capabilities of our technique, we used a few examples of complex
applications, and debugged them in the virtualized environment. It is not the purpose of
this section to describe actual bugs found with this technique, but rather illustrate how
the user has access to all the same tools as in a normal scenario. With those tools, the
user can search for the bug as he sees fit in the virtualized environment. Some appli-
cations have been described in section 6 while considering the overhead our technique
imposes to the application under debugging. In this section, we use another real world
application as an example.

CHANGA [15] is a production code for the simulation of cosmological evolution,
currently in its second release. It is capable of computing standard gravitational and hy-
drodynamic forces using Barnes-Hut and SPH approaches respectively. This application
is natively written in CHARM++, and it uses most of the language abstractions provided
by the runtime system. While most of the computation is performed by CHARM++ ar-
ray elements, which are not bound to the number of processors involved in the sim-
ulation, the application also uses CHARM++ groups and nodegroups for performance
reasons. The groups have the characteristic of having one entity per processor, thus
modifying the application behavior when scaling to larger number of processors. The
complexity of this application is one reason why we chose it over other examples.

After the user has built the CHARM++ runtime system with support for BigSim em-
ulation and compiled the CHANGA program over the virtualized CHARM++, he can
start CHARMDEBUG’s GUI. Figure 8(a) shows the dialogue box for the application pa-
rameters. In here, the user will indicate the location of his executable, the arguments,

210 F. Gioachin, G. Zheng, and L.V. Kalé

and the number of processors he wants to run on. The only difference from a standard
non-virtualized execution is the presence of a checkbox to enable the virtualization. In
general, the user will input the number of desired processors in the “Number of Proces-
sors” textfield and confirm. In this case, “Number of Processors” refers to the number of
physical processors CHARMDEBUG will allocate on the machine. The number of pro-
cessors the user wants to debug on has to be specified in the field named “Number of
Virtual Processors”. These fields are highlighted in the Figure. At this point the user can
confirm the parameters, and start the execution of the program from CHARMDEBUG’s
main view.

If the machine to be used for debugging requires jobs to be submitted through a
batch scheduler (or if the user desires to start the application himself), only the fields
regarding executable location and CCS host/port connection need to be specified. These
are highlighted in Figure 8(b). When the attach command is issued from the main view,
the CHARMDEBUG plugin will automatically detect the number of processors in the
simulation, and if the execution is happening in the virtualized environment.

Once the program has been started, and CHARMDEBUG has connected to it, the user
can perform his desired debugging steps, oblivious of the fact that the system in using
fewer resources internally. Figure 9 shows the CHANGA application loaded onto four

Fig. 9. Screenshot of ChaNGa debugged on 4,096 virtual processors using 32 real processors

Debugging Large Scale Applications in a Virtualized Environment 211

thousand virtual processors. Underneath, we allocated only 32 processors from four
local dual quad-core machines. In the bottom left part of the view, we can see all the
messages that are enqueued in the selected processor (processor 3,487 in the Figure).
Some messages have a breakpoint set (7th message, in orange), and one has actually
hit the breakpoint (1st message, in red). In the same message list, we can see that some
messages have as destination “TreePiece” (a CHARM++ array element), while others
have as destination “CkCacheManager”, one of the groups mentioned earlier. One such
message is further expanded in the bottom right portion of the view (10th message).

When joining multiple processes inside the same address space, the behavior of the
system might be altered. First of all, one virtual processor could corrupt the memory
belonging to another one. To solve this problem, the techniques described in [16] can
be used. Another problem regards the kind of bugs that can be detected, in particular
race conditions. By reducing the amount of physical processors available, a race condi-
tion might not appear anymore. A solution is to use record-replay techniques to force
the execution of a particular message ordering. This is already available in the virtual-
ized environment, as described in [17]. The other possibility is to force the delivery of
messages in the virtualized environment in a different order each time.

8 Related Work

In the realm of parallel debugging, there are several tools that a programmer can use
to understand why his program is misbehaving and correct the problem. Widely used
commercial products are TotalView [18] from TotalView Technologies, and DDT [19]
from Allinea. At least one of these tools is generally available in the majority of par-
allel supercomputers. Within the Open Source community, a tool worth mentioning
is Eclipse [20]. Several Eclipse plugins have been developed to address parallel com-
puting, in particular the Parallel Tools Platform (PTP) [21]. All these debuggers tar-
get applications written both in C/C++ and Fortran languages, and using MPI and/or
OpenMP [22] as programming models. None of them supports the CHARM++ pro-
gramming model natively. They all could manage CHARM++ programs if CHARM++
were built with MPI as its underlying communication layer. In this case, though, users
would be exposed to the CHARM++ implementation, rather than their own program.
Most importantly, while all the tools mentioned can scale to large number of proces-
sors, they all require the whole set of processors to be allocated. If the users desires to
perform his debugging using one hundred thousand processors, then a big machine has
to be used and occupied for long periods of time for the debugging to happen.

Virtualization for High Performance Computing has been claimed to be important
[23]. Nevertheless, no tool known to the authors does, at present, provide a debugging
environment tailored to thousands of processors or more, while utilizing only the few
processors that a local cluster can provide. A few techniques have been developed in
contexts other than High Performance Computing leveraging the concept of virtualiza-
tion. These target the debugging of embedded systems [24], distributed systems [25],
or entire operating systems using time-travel techniques [26,27]. All of them target vir-
tual machines (such as Xen [28] or IBM Hypervisor [29]) where the entire operating
system is virtualized. Using virtual machines may pose problems for a normal user as

212 F. Gioachin, G. Zheng, and L.V. Kalé

the installation and configuration of such virtual environments require administration
privileges, and most supercomputers do not provide them by default. Our technique,
instead, resides entirely in the user space, and does not suffer from this limitation.

9 Conclusions and Future Work

In this paper, we presented an innovative technique to address the issue of debugging
applications on very large number of processors without consuming large amount of
resources. In order to do this, we extended and integrated CHARMDEBUG, a debugger
for CHARM++ applications, with BigSim, an emulator for large machines. By combin-
ing these two systems, and solving the resultant challenges in scaling and integration,
we were able to provide the user a seamless debugging approach that uses much fewer
processors than those requested by the user. This is accomplished by internally allo-
cating multiple virtual processors inside each physical processor. We demonstrated the
feasibility of this approach by studying the virtualization overhead with real world ap-
plications. We showed examples of the debugger used on many processors, displaying
information about objects, breakpoint, and the content of each virtual processor. Fur-
thermore, we also extended this technique to applications written in MPI, one of the
most popular parallel programming model.

With the co-existence of multiple virtual processors inside the single address space
of a physical processor, some memory operations have been disabled. For examples,
searching for memory leaks. This and other operations require the debugger to disam-
biguate which virtual processor allocated the memory. One approach would be to use
the same memory tagging mechanism described in [16] and cluster memory allocation
by virtual processor.

Another future work regards MPI. As we described in section 5, currently CHARM-
DEBUG focuses primarily on applications written in CHARM++. While it can debug
MPI applications using the AMPI implementation of the MPI standard, we realize that
for a programmer debugging his application there may be unnecessary overhead. For
the future, we are considering possible extensions to provide a more natural debugging
also for MPI programs.

Acknowledgments

This work was supported in part by the NSF Grant OCI-0725070 for Blue Waters, and
by the Institute for Advanced Computing Applications and Technologies (IACAT).

References

1. Kale, L.V., Zheng, G.: Charm++ and AMPI: Adaptive Runtime Strategies via Migratable
Objects. In: Parashar, M. (ed.) Advanced Computational Infrastructures for Parallel and Dis-
tributed Applications, pp. 265–282. Wiley-Interscience, Hoboken (2009)

2. Kale, L.V., Bohm, E., Mendes, C.L., Wilmarth, T., Zheng, G.: Programming Petascale Ap-
plications with Charm++ and AMPI. In: Bader, D. (ed.) Petascale Computing: Algorithms
and Applications, pp. 421–441. Chapman & Hall / CRC Press (2008)

Debugging Large Scale Applications in a Virtualized Environment 213

3. Huang, C., Zheng, G., Kumar, S., Kalé, L.V.: Performance Evaluation of Adaptive MPI. In:
Proceedings of ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming 2006 (March 2006)

4. Gioachin, F., Lee, C.W., Kalé, L.V.: Scalable Interaction with Parallel Applications. In: Pro-
ceedings of TeraGrid 2009, Arlington, VA, USA (June 2009)

5. Free Software Foundation, GDB: The GNU Project Debugger,
http://www.gnu.org/software/gdb/

6. Zheng, G., Singla, A.K., Unger, J.M., Kalé, L.V.: A parallel-object programming model for
petaflops machines and blue gene/cyclops. In: NSF Next Generation Systems Program Work-
shop, 16th International Parallel and Distributed Processing Symposium (IPDPS), Fort Laud-
erdale, FL (April 2002)

7. Zheng, G., Wilmarth, T., Jagadishprasad, P., Kalé, L.V.: Simulation-based performance pre-
diction for large parallel machines. International Journal of Parallel Programming 33(2-3),
183–207 (2005)

8. Phillips, J.C., Zheng, G., Kumar, S., Kalé, L.V.: NAMD: Biomolecular simulation on thou-
sands of processors. In: Proceedings of the 2002 ACM/IEEE Conference on Supercomput-
ing, Baltimore, MD, September 2002, pp. 1–18 (2002)

9. National Center for Supercomputing Applications, Blue Waters project,
http://www.ncsa.illinois.edu/BlueWaters/

10. Mei, C.: A preliminary investigation of emulating applications that use petabytes of memory
on petascale machines. Master’s thesis, Dept. of Computer Science, University of Illinois at
Urbana-Champaign (2007),
http://charm.cs.uiuc.edu/papers/ChaoMeiMSThesis07.shtml

11. Potnuru, M.: Automatic out-of-core exceution support for charm++. Master’s thesis, Univer-
sity of Illinois at Urbana-Champaign (2003)

12. Negara, S., Zheng, G., Pan, K.-C., Negara, N., Johnson, R.E., Kale, L.V., Ricker, P.M.: Au-
tomatic MPI to AMPI Program Transformation using Photran. In: 3rd Workshop on Produc-
tivity and Performance (PROPER 2010), Ischia/Naples/Italy, vol. (10-14) (August 2010)

13. Jiao, X., Zheng, G., Alexander, P.A., Campbell, M.T., Lawlor, O.S., Norris, J., Haselbacher,
A., Heath, M.T.: A system integration framework for coupled multiphysics simulations. En-
gineering with Computers 22(3), 293–309 (2006)

14. Bhatele, A., Kumar, S., Mei, C., Phillips, J.C., Zheng, G., Kale, L.V.: Overcoming scaling
challenges in biomolecular simulations across multiple platforms. In: Proceedings of IEEE
International Parallel and Distributed Processing Symposium 2008 (April 2008)

15. Jetley, P., Gioachin, F., Mendes, C., Kale, L.V., Quinn, T.R.: Massively parallel cosmological
simulations with ChaNGa. In: Proceedings of IEEE International Parallel and Distributed
Processing Symposium 2008 (2008)

16. Gioachin, F., Kalé, L.V.: Memory Tagging in Charm++. In: Proceedings of the 6th Workshop
on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD), Seattle,
Washington, USA (July 2008)

17. Gioachin, F., Zheng, G., Kalé, L.V.: Robust Record-Replay with Processor Extraction. In:
Proceedings of the 8th Workshop on Parallel and Distributed Systems: Testing, Analysis,
and Debugging (PADTAD - VIII), Trento, Italy, pp. 9–19 (July 2010)

18. TotalView Technologies, TotalView R© debugger,
http://www.totalviewtech.com/TotalView

19. Allinea, The distributed debugging tool (DDT),
http://www.allinea.com/index.php?page=48

20. T.E. Foundation, Eclipse - an open development platform,
http://www.eclipse.org/

http://www.gnu.org/software/gdb/
http://www.ncsa.illinois.edu/BlueWaters/
http://charm.cs.uiuc.edu/papers/ChaoMeiMSThesis07.shtml
http://www.totalviewtech.com/TotalView
http://www.allinea.com/index.php?page=48
http://www.eclipse.org/

214 F. Gioachin, G. Zheng, and L.V. Kalé

21. Watson, G.R., Rasmussen, C.E.: A strategy for addressing the needs of advanced scientific
computing using eclipse as a parallel tools platform. Los Alamos National Laboratory, Tech.
Rep. LA-UR-05-9114 (December 2005)

22. Dagum, L., Menon, R.: OpenMP: An Industry-Standard API for Shared-Memory Program-
ming. IEEE Computational Science & Engineering 5(1) (January-March 1998)

23. Mergen, M.F., Uhlig, V., Krieger, O., Xenidis, J.: Virtualization for high-performance com-
puting. SIGOPS Oper. Syst. Rev. 40(2), 8–11 (2006)

24. Pan, Y., Abe, N., Tanaka, K., Taki, H.: The virtual debugging system for developing embed-
ded software using virtual machinery. In: Yang, L.T., Guo, M., Gao, G.R., Jha, N.K. (eds.)
EUC 2004. LNCS, vol. 3207, pp. 139–147. Springer, Heidelberg (2004)

25. Gupta, D., Vishwanath, K.V., Vahdat, A.: Diecast: Testing distributed systems with an ac-
curate scale model. In: Proceedings of the 5th USENIX Symposium on Networked System
Design and Implementation (NSDI 2008). USENIX Association, Berkeley (2008)

26. Ta-Shma, P., Laden, G., Ben-Yehuda, M., Factor, M.: Virtual machine time travel using con-
tinuous data protection and checkpointing. SIGOPS Oper. Syst. Rev. 42(1), 127–134 (2008)

27. King, S.T., Dunlap, G.W., Chen, P.M.: Debugging operating systems with time-traveling
virtual machines. In: ATEC 2005: Proceedings of the annual conference on USENIX Annual
Technical Conference, p. 1. USENIX Association, Berkeley (2005)

28. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, pp. 164–177. ACM, New York (2003)

29. The research hypervisor: A multi-platform, multi-purpose research hypervisor, IBM Re-
search, http://www.research.ibm.com/hypervisor/

http://www.research.ibm.com/hypervisor/

Optimizing the Exploitation of Multicore
Processors and GPUs with OpenMP and

OpenCL

Roger Ferrer1, Judit Planas1, Pieter Bellens1, Alejandro Duran1,
Marc Gonzalez1,2, Xavier Martorell1,2, Rosa M. Badia1,3,

Eduard Ayguade1,2, and Jesus Labarta1,2

1 Barcelona Supercomputing Center, Jordi Girona, 29. Barcelona, Spain
2 Departament d’Arquitectura de Computadors, Univ. Politècnica de Catalunya,

Jordi Girona, 1–3. Barcelona, Spain
3 IIIA, Artificial Intelligence Research Institute, CSIC

Spanish National Research Council, Spain
name.surname@bsc.es

Abstract. In this paper, we present OMPSs, a programming model
based on OpenMP and StarSs, that can also incorporate the use of
OpenCL or CUDA kernels. We evaluate the proposal on three different
architectures, SMP, Cell/B.E. and GPUs, showing the wide usefulness
of the approach. The evaluation is done with four different benchmarks,
Matrix Multiply, BlackScholes, Perlin Noise, and Julia Set. We compare
the results obtained with the execution of the same benchmarks written
in OpenCL, in the same architectures. The results show that OMPSs
greatly outperforms the OpenCL environment. It is more flexible to ex-
ploit multiple accelerators. And due to the simplicity of the annotations,
it increases programmer’s productivity.

1 Introduction

In this paper we present OMPSs, the programming model based on OpenMP
and StarSs extensions, which can also include OpenCL or CUDA kernels, as a
solution for easy programming of heterogeneous architectures. We have devel-
oped OMPSs to run on plain SMP machines, the Cell/B.E. processor, and SMP
machines with GPUs. We are also making a port of the model for clusters.

From OpenMP we obtain high expressiveness to exploit parallelism using
tasks. StarSs extensions allow runtime dependence analisys between tasks, and
automatic data transfers. And OpenCL allows the programmer to easily write
efficient and portable SIMD kernels to be exploited inside the tasks.

This approach is developed and evaluated for an Intel Xeon server (SMP,
with 24 cores), a Cell/B.E.–based blade (with 2 Cell processors), and a machine
with two NVIDIA GTX285 GPUs. Results show that OMPSs outperforms the
equivalent code written in OpenCL, in the Xeon server, and the Cell/B.E. ar-
chitectures. The proposal also outperforms the native CUDA implementations
in NVIDIA GPUs.

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 215–229, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

216 R. Ferrer et al.

Our approach allows the same source code to run on all three architectures
(currently, except for the CUDA implementation of the kernels in the NVIDIA
architecture), showing that productivity and performance is achievable in these
environments.

The rest of the paper is organized as follows: Section 2 shows the proposal
presented in this paper and it introduces the benchmarks used in the evaluation
of the proposal. Section 3 presents the evaluation of the proposal. Section 4
shows the comparison with the related work, and Section 5 concludes the paper,
and presents our future work.

2 Proposal

Our proposal is to have a single programming model covering the different ho-
mogeneous and heterogeneous architectures in use today, and opened to future
ones. To achieve this goal, we have proposed OpenMP extensions to deal with
devices, data movement, and data dependences [3].

Using these extensions, applications are annotated with directives avoiding
as much as possible runtime library calls. Avoiding library calls is important to
keep the source code of the application clean, and still be able to compile and
debug the functionality of the application in a serial manner.

2.1 Brief Description of the Programming Model

In the proposed OMPSs programming model, programmers use tasks to express
parallelism, like in OpenMP 3.0. Task pragmas can annotate sections of code
to be outlined as functions, or functions written by the programmer. A new
pragma, target, is used preceeding a task or a user function to specify that their
execution can be done in specific devices, and whether the data accessed by the
task code should be copy in, copy out, or copy inout, from the point of view
of the accelerator. The task specification is completed with its needs for data
input, output, or inout. The runtime system will then ensure that the task is
not activated until the data has been produced (e.g. by another task), and the
runtime system will activate dependent tasks when data is available.

As a summary of the syntax used, Listing 1.1 shows the grammar that our
Mercurium compiler recognizes. Our support for accelerators currently includes
the smp, cell, and cuda devices.

Listing 1.1. Grammar of the proposed OpenMP extensions

1 #pragma omp target device(devnam ,...) [implements (function_name)] \
2 { [copy_deps] [copy_in(array_spec ,...)] [copy_out (...)] [copy_inout (...)] }
3 #pragma omp task [input (...)] [output (...)] [inout (...)]
4 { function or code block }

In this paper we have used the benchmarks Matrix Multiply (AMD OpenCL
SDK [2]), and BlackScholes, Perlin Noise and Julia Set (IBM OpenCL SDK [8]).
In the next subsections, we explain how they have been rewritten using OMPSs.

Optimizing the Exploitation of Multicore Processors and GPUs 217

2.2 Matrix Multiply

The Matrix Multiply benchmark works on 2 input matrices (A, B), and an
input/output matrix C, that has been initialized to zero. All accelerators write
part of the result on a block of C, after computing the result for this block based
on the input blocks of A and B.

Listing 1.2 shows the code implementing this benchmark. Pragmas in lines 2,
8, and 14 annotate the alternative functions computing a block of the matrix, so
that each invocation in line 26 gets created as a task. In lines 8 and 14, the imple-
ments clause indicates that the functions matmul block cl and matmul block gpu
will be used in devices cell and cuda. The function at line 3 will be used in
the SMP environment. The copy deps clause in lines 8 and 14 indicates to the
compiler that the same data areas checked for data dependences (input/inout
clauses in line 2) should be moved into and out of the accelerators, in case of
execution on the Cell SPUs or NVIDIA GPUs.

Listing 1.2. Annotated blocked Matrix Multiply. Each block is NBxNB float values
1 const int NB = 512;
2 #pragma omp task inout([NB*NB] C) input ([NB*NB] A, [NB*NB] B)
3 void matmul_block(float * A,float * B,float * C)
4 {
5 // p l a i n C k e r n e l code f o r the SMP env i r onment
6 }
7

8 #pragma omp target device(cell) copy_deps implements(matmul_block)
9 void matmul_block_cl(float * A,float * B,float * C)

10 {
11 // OpenCL k e r n e l code
12 }
13

14 #pragma omp target device(cuda) copy_deps implements(matmul_block)
15 void matmul_block_gpu (float * A,float * B,float * C)
16 {
17 // CUDA k e r n e l code
18 }
19

20 void matmul (int m, int l, int n, int mDIM , int lDIM , int nDIM ,
21 float ** A, float ** B, float ** C)
22 {
23 for(i = 0;i < mDIM; i++) {
24 for (j = 0; j < nDIM; j++) {
25 for (k = 0; k < lDIM; k++) {
26 matmul_block (A[i*lDIM+k],B[k*nDIM+j], C[i*nDIM+j]);
27 }
28 }
29 }
30 #pragma omp taskwait
31 }

2.3 BlackScholes

The BlackScholes benchmark computes the pricing of European-style options. Its
kernel has 6 input arrays, and a single output. Listing 1.3 shows the annotated
code. In this example, the pragmas are the same as in Matrix Multiply, but
instead of annotating a function, the annotation is done on inline code. Lines 1
to 12 show the parallel loop. It creates a task for each work group of iterations, in

218 R. Ferrer et al.

the same way the OpenCL version does. Each task copies the 6 input parameters
in (lines 3-5), executes the kernel (line 9), and at the end it copies the output
array(answer) out of the accelerator (expressed in line 6).

The original version of this application was written in OpenCL. For the ex-
periments with OMPSs in SMP and the Cell/B.E. processor we simply reuse the
same OpenCL kernel code. To reuse the OpenCL code, we compile the code to
an object file, and then the OMPSs task simply calls it as if it were a C function,
as seen in line 9 of Listing 1.3. Listing 1.4 shows a portion of the OpenCL code.
Observe the use of SIMD data types, int4, and float4, which direct the OpenCL
compiler to use the SIMD units available, if any, in the processor cores. Ob-
serve also the expressiveness with respect to mathematical operators (addition,
multiplication, etc.), and functions (log, sqrt) on SIMD data types.

Listing 1.3. Annotated BlackScholes
1 for (i=0; i<array_size; i+= work_group) {
2 #pragma omp target device(smp,cell ,cuda) \
3 copy_in ([work_group] &cpflag[i], [work_group] &S0[i], \
4 [work_group] &K[i], [work_group] &r[i], \
5 [work_group] &sigma[i], [work_group] &T[i]) \
6 copy_out ([work_group] &answer[i])
7 #pragma omp task shared (cpflag ,S0,K,r,sigma ,T,answer)
8 {
9 bsop_reference_float (& cpflag[i],&S0[i],&K[i],&r[i],

10 &sigma[i],&T[i],&answer[i]);
11 }
12 }
13 #pragma omp taskwait

Listing 1.4. BlackScholes OpenCL kernel. For reusing the OpenCL code, we compile
the code to an object file, and then the OMPSs task simply calls it as if it were a C
function
1 __kernel void bsop_reference_float(
2 int4 * cpflag , float4 * S0, float4 * K,
3 float4 * r, float4 * sigma , float4 * T, float4 * answer)
4 {
5 float4 d1, expval , Nd1 , Nd2, call , put;
6 ...
7 for (x=0; x<work_group; x++) {
8 d1 = log(S0[x]/K[x]) + (r[x] + HALF * sigma[x]*sigma[x])*T[x];
9 d1 /= (sigma[x] * sqrt(T[x]));

10 ...
11 call = S0[x] * Nd1 - K[x] * expval * Nd2
12 put = K[0] * expval * (ONE - Nd2) - S0[x] * (ONE - Nd1);
13 answer[x] = bitselect(put , call , as_float4(cpflag));
14 }
15 }

For the GPU version, we have not been able to use this same technique yet,
so we have translated the kernel into CUDA code. The translation is straight-
forward. And then we use a similar technique, shown in Listing 1.5 to exploit
the CUDA code in the GPU from inside the task. We are currently working
to overcome this limitation, and be able to use exactly the same OpenCL code
also in the GPUs environment. Our compiler outlines the CUDA code, and then

Optimizing the Exploitation of Multicore Processors and GPUs 219

compiles the task with the NVIDIA compiler for the GPU. Observe that in
the GPU case, we use the plain, non-SIMD, data types, as those get better
performance in the GPU.

Listing 1.5. BlackScholes CUDA code, annotated with the task pragma, and using
the CUDA syntax for kernel launching. The kernel has been written using non-SIMD
data types for better performance in the GPUs
1 #pragma omp target device(cuda) ...
2 #pragma omp task ...
3 {
4 dim3 dimBlock (local_work_group);
5 dim3 dimGrid (work_group);
6 cuda_bsop <<<dimGrid , dimBlock >>> (
7 cpflag , S0, K, r, sigma , T, answer);
8 }
9 ...

10 __global__
11 void cuda_bsop (int * cpflag , float * S0, float * K,
12 float * r, float * sigma , float * T, float * answer)
13 {
14 int x = blockIdx .x * blockDim .x + threadIdx.x;
15 float d1, expval , Nd1 , Nd2 , call , put;
16 ...
17 d1 = log(S0[x]/K[x]) + (r[x] + HALF * sigma[x]*sigma[x])*T[x];
18 d1 /= (sigma[x] * sqrt(T[x]));
19 ...
20 call = S0[x] * Nd1 - K[x] * expval * Nd2
21 put = K[0] * expval * (ONE - Nd2) - S0[x] * (ONE - Nd1);
22 answer[x] = (cpflag[x])? put, call;
23 }

2.4 Perlin Noise

Perlin Noise has a single output, an image that is filled with noise to improve
the realistic view of moving graphics, for example in games. Listing 1.6 shows
the annotations used for Perlin Noise. Each task created by the loop starting in
line 1, generates an horizontal slice of the image of height BS lines.

Listing 1.6. Annotated Perlin Noise
1 for (j = 0; j < img_height; j+=BS) {
2 #pragma omp target device(smp,cell ,cuda) \
3 copy_out ([BS*rowstride] optr)
4 #pragma omp task shared(optr)
5 {
6 // OpenCL / CUDA k e r n e l
7 }
8 }
9 #pragma omp taskwait

2.5 Julia Set

Julia Set computes a series of images of the Julia Set fractal. Listing 1.7 shows
the annotations used for this benchmark. Each task has one input, julia context,
a structure with the characteristics of the julia image to be generated. Among
others, the image number to be generated, light position and intensity, and the
spectator position, are passed in julia context. As output, each task delivers a
horizontal slice of the Julia fractal of height BS lines.

220 R. Ferrer et al.

Listing 1.7. Annotated Julia Set
1 for (j = 0; j < img_height; j+=BS) {
2 #pragma omp target device(smp,cell ,cuda) \
3 copy_in (julia_context) copy_out ([BS*rowstride] image)
4 #pragma omp task shared(out , julia_context) \
5 {
6 // OpenCL / CUDA k e r n e l
7 }
8 }
9 #pragma omp taskwait

As it can be observed, the benchmarks are easily annotated. Also, the pro-
posed environment does not require to use the low level OpenCL or CUDA
runtime calls to allocate and copy memory, compile the kernel code at runtime,
or copy the results back to main memory. Our runtime system takes care of
implementing memory allocation and data transfers and optimizing them.

3 Evaluation

This section presents the execution environments used for evaluation, and the
evaluation of the benchmarks.

3.1 Execution Environments

Three execution environments have been used to evaluate the benchmarks:

– Intel Xeon server. This is a machine with 4 Intel Xeon chips, with 6 cores
each, for a total of 24 cores. Each chip runs at 2.4 Ghz, and it has a L2
cache of 12Mbytes, shared among the 6 cores, and a peak of 9.6 Gflops. The
machine has 48 Gbytes of main memory (RAM). In the Intel server, we run
the AMD/ATI OpenCL SDK [2], and we compare its performance to the
OMPSs environment. In this SMP environment OMPSs relies on the shared
memory, and it avoids all data copies. On the contrary, the native OpenCL
runs still do data copying. This is the main source of improvement in this
platform.

– Cell/B.E. The QS20 Cell/B.E.–based blades contain two Cell/B.E. proces-
sors, running at 3.2 Ghz, each with a L2 cache of 512Kbytes. The blade has
1 Gbyte of main memory. Each Cell/B.E. has 8 SPUs, for a total of 16 in the
blade. In the Cell/B.E. we run the IBM OpenCL SDK [8], and we compare
its performance to the StarSs environment for the Cell processor [17]. In this
environment, OMPSs is able to exploit higher coarse granularity in the data
transfers. This is because the OpenCL environment has a limit on the size
of each work–item, and thus in the associated data used to compute on it.

– NVIDIA GPUs
The NVIDIA GPUs are in a host with dual-chip dual-core Opteron AMD
processors. It has 8 Gbytes of main memory. Two NVIDIA GeForce GTX
285 GPUs are connected through the PCI bus. The GPU clock is 1.476
Mhz, it contains 240 CUDA cores, and it has 1 GBytes of global memory.
We had also the opportunity to run two of the benchmarks in an Intel host

Optimizing the Exploitation of Multicore Processors and GPUs 221

(dual chip, each with 4 i7 975 cores at 3.33Ghz, and 24 Gbytes of main
memory) with a Fermi GTX480 GPU. In the GPUs environment, we run
the NVIDIA OpenCL SDK [14], and we compare its performance to the
current porting of the OMPSs environment for GPUs. In this environment,
a general comparison is more difficult to do. The coding of the kernels in
CUDA seems to go against good performance in OMPSs. Nevertheless, the
results achieved are still good.

3.2 On an Intel Xeon Server

Figure 1 presents the evaluation of Matrix Multiply on 512x512 float matrices,
on the Xeon server. It shows the OpenCL version, and two versions running with
OMPSs. 512-nb stands for the non-blocked version, and 512-b for the blocked
version. As it can be observed, the OMPSs blocked version outperforms the
other two versions. Blocked versions achieve better data locality, and it is the
reason for the better performance. As soon as the matrix size is increased from
512x512 elements, the performance obtained by the OpenCL environment heav-
ily decreases, as shown in Figures 2 and 3. Initially, we thought that the reason
could be that the data set could exceed the L2 data cache, but this is not the
case. We suspect that the ATI OpenCL implementation has some problem when
dealing with the transfers of large data sizes.

Figure 4 shows the speedup obtained on the BlackScholes benchmark for the
OpenCL and OMPSs versions, running from 1 to 24 cores in the Xeon–based
machine. Both the OpenCL and OMPSs versions on a single core achieve a
speedup of 2.6 over the serial version due to the vectorization achieved through
the SIMD OpenCL kernel. OMPSs is consistently better than OpenCL. We
attribute this benefit to the fact that in OMPSs for SMP machines, we do not
need to copy any data to work in parallel, while in OpenCL the data copies are
done in the same way as for heterogeneous machines, as the data movement is
coded in the application itself by the programmer.

Fig. 1. Evaluation of Matrix Multiply
(512x512) in an Intel Xeon server

Fig. 2. Evaluation of Matrix Multiply
(1024x1024) in an Intel Xeon server

222 R. Ferrer et al.

Fig. 3. Evaluation of Matrix Multiply
(2048x2048) in an Intel Xeon server

Fig. 4. Evaluation of BlackScholes in an
Intel Xeon server

Figure 5 shows the results obtained from the Perlin Noise benchmark. The plot
shows millions of pixels per second processed by the benchmark when running
from 1 to 24 cores. In this case, we compared the performance of the OpenCL
kernel with the C code compiled with gcc. We found out that gcc is achieving
better performance on the inner kernel of this application. Our opinion is that
for some reason gcc is able to exploit better the SIMD units of the Xeon pro-
cessor. This situation does not happen in the other benchmarks. This shows the
importance of being able to reuse the best code generated for an application,
as we can do with OMPSs. This is something that it is not immediate for the
OpenCL environment, as in it the kernel is compiled during runtime, and it will
not be easy to have gcc generating the code for the kernel at runtime.

Figure 6 shows the results obtained from the Julia Set benchmark. The plot
displays millions of pixels per second, obtained when running the benchmark
from 1 to 24 cores. From the results obtained we also conclude that our OMPSs
approach is performing better with respect the OpenCL version of the bench-
mark, being much easier to code.

3.3 On the Cell/B.E. Processor

In the Cell processor environment, we have used the CellSs flavor [17] of OMPSs.
In this environment, we have found that the OpenCL Matrix Multiply bench-
mark achieves very poor performance compared to the hand–tuned SDK version,
so that it is not interesting to show results on this benchmark. We present the
results obtained in BlackScholes, Perlin Noise and Julia Set.

Figure 7 presents the results obtained from the BlackScholes benchmark when
run from 1 to 16 SPUs. The OpenCL version can be compiled using different
techniques to execute the OpenCL kernel. Those techniques using the OpenCL
intrinsic async work group copy are the best behaving in the Cell processor. The
bar labeled OpenCL, awgc shows the results when using OpenCL ranges and
such intrinsic. The bar labeled OpenCL, db presents the results when using the
OpenCL task approach and also such intrinsic, in this case to implement double

Optimizing the Exploitation of Multicore Processors and GPUs 223

Fig. 5. Evaluation of Perlin-Noise in an
Intel Xeon server

Fig. 6. Evaluation of Julia-Set in an In-
tel Xeon server

buffering. It is interesting to compare these results, as tasks with double buffering
perform a little worse than using ranges and single buffering. This seems to be
due to the overhead of creating the individual tasks in OpenCL, compared to
the overhead of using OpenCL ranges.

The comparison of the OpenCL versions against OMPSs results highly bene-
ficial for our approach, that reaches a 2x performance increase when running on
12 and 16 SPUs. This is again because our approach is able to reduce the number
of data transfers. In OpenCL the application has to create special buffers to put
the data on, an then the OpenCL kernel running on the SPUs issues the work
group copies that trigger the SPUs DMA data transfers. This two–level copy is
avoided in OMPSs, where the SPUs access the application data directly through
the DMAs managed by the SPU runtime system.

Figure 8 shows the results obtained from the Perlin Noise benchmark. It
shows millions of pixels per second, depending on the number of SPUs used.
We also show two different alternatives for OpenCL, ranges with asynchronous
work group copies, and tasks with load/store operations. For this benchmark,
the latter performs better, but it is far from the performance of OMPSs. As in
BlackScholes, the reduced number of copies done in OMPSs benefit performance.

Figure 9 compares the performance obtained from OpenCL and OMPSs on
the Julia Set benchmark. In this case, the kernel of the benchmark is highly
computational, so the impact of the data transfers is not so high. Nevertheless,
the figure shows that OMPSs is having better scalability than OpenCL, as there
is a consistent increase in the difference of performance between both approaches,
as long as the number of SPUs is increased.

3.4 On NVIDIA GPUs

In this section we present the first evaluation of the OMPSs proposal on GPUs.
Figure 10 shows the results obtained in Matrix Multiply using the example

in the CUDA SDK, the OpenCL example from the ATI SDK, and the OMPSs
approach with the CUDA kernel. It presents Gflop/s, on matrix sizes of 512x512,

224 R. Ferrer et al.

Fig. 7. Evaluation of BlackScholes in a
Cell/B.E. blade

Fig. 8. Evaluation of Perlin-Noise in a
Cell/B.E. blade

Fig. 9. Evaluation of Julia-Set in a Cell/B.E. blade

1024x1024 and 2048x2048, and in the case of OMPSs also using 1 and 2 GPUs.
For the 512x512 matrix size, OMPSs performs very similarly to OpenCL, and
both are a little bit better than CUDA. This is despite the fact that our OMPSs
approach uses the CUDA kernel. For the 1024x1024 matrix size, OMPSs outper-
forms the CUDA and OpenCL environments. For the 2048x2048 matrix size, the
three environments behave very similarly. In the NVIDIA CUDA, and OpenCL
environments, it is not immediate to exploit more than one GPU. The source
code of the application needs to be modified to access to the additional devices,
and do the memory allocations and transfers.

Instead, with OMPSs it is our runtime system that accesses the number of
devices indicated by the user through an environment variable (NX GPUS, sim-
ilarly to the traditional OMP NUM THREADS), and the application can auto-
matically be exploited in several GPUs.

For matrix sizes larger than 1024x1024, OMPSs scales nicely when going from
1 to 2 GPUs. For the 1024x1024 matrix size and below, there is no gain in using

Optimizing the Exploitation of Multicore Processors and GPUs 225

Fig. 10. Evaluation of Matrix Multiply
in NVIDIA GTX285 GPUs

Fig. 11. Evaluation of BlackScholes in
NVIDIA GTX285 GPUs

more GPUs because the data set is so small, and the overhead of having several
data transfers to different devices is noticeable.

Figure 11 shows the speedup obtained from BlackScholes. It compares two
alternative implementations of the OpenCL kernel, with the OMPSs approach.
The latter uses the kernel translated to CUDA. As in the case of OMPSs on
SMPs, the performance achieved is similar. OMPSs does not obtain any im-
provement when executing on two GPUs. This is because the data transfers
dominate the execution time, as the parallel region has 6 input data arrays.
Again, if we compare the results obtained in a single GPU we can state that the
performance is the same, and the programming effort will be much less.

Figure 12 shows the results obtained from the Perlin Noise benchmark. Re-
cently, we have had access to a NVIDIA Fermi GTX480 card, and we have
executed Perlin Noise and Julia Set on it. The plot compares the performance
obtained from the OpenCL and OMPSs versions of the benchmark, on one and
two GPUs (two only for the GTX285). Looking at the evaluation on one GPU, we
can appreciate that OMPSs outperforms OpenCL for both the GTX285 and the
GTX480 GPUs. It is outstanding the increase of performance that the GTX480
hardware represents, and it is also outstanding the 2x speedup that OMPSs
obtains in a single GPU over the OpenCL version of the benchmark. Finally,
the benchmark scales from 1 to 2 GTX285 GPUs. We have not had access to
hardware with two GTX480 GPUs yet.

Figure 13 shows the results obtained from the Julia Set benchmark. The plot
shows the OpenCL and OMPSs versions of the benchmark on the GTX285 and
GTX480 GPUs. The lower performance that OMPSs gets in the GTX285 GPU
is due to the translation of the OpenCL kernel code into CUDA. We had to
translate the OpenCL kernel code into CUDA because of the the limitation
described in section 2.3, regarding the lack of ability to compile the OpenCL
kernel code to be used in the OMPSs applications for the GPUs environment.
It is interesting to note that even if the CUDA code obtains lower performance in

226 R. Ferrer et al.

Fig. 12. Evaluation of Perlin Noise in
NVIDIA GTX285 and GTX480 GPUs

Fig. 13. Evaluation of Julia Set in
NVIDIA GTX285 and GTX480 GPUs

GTX285 GPUs, OMPSs outperforms the OpenCL version of the benchmark in
the GTX480 GPU. We think that this shows that our approach is well positioned
for future GPU hardware. Notice also, that Julia Set scales nicely when executed
on two GTX285 GPUs.

4 Related Work

New computer architecture designs based on heterogeneous multicores have
raised the question about their programmability. The CAPS HMPP [6] toolkit
is a set of compiler directives, tools and software runtime that supports paral-
lel programming in C and Fortran. HMPP works based on codelets that define
functions that will be run in a hardware accelerator. These codelets can either be
hand–written for a specific architecture or be generated by some code generator.
Offload [5] is a programming model for offloading portions of C++ applications
to run on accelerators. Code to be offloaded is wrapped in an offload block,
indicating that the code should be compiled for an accelerator, and executed
asynchronously as a separate thread. Call graphs rooted at an offload block
are automatically identified and compiled for the accelerator. Data movement
between host and accelerator memories is also handled automatically.

Recently, general purpose computation on graphic processors has received a
lot of attention as it delivers high performance computing at rather low price.
Major processor vendors have showed their intent to integrate GPUs as a GPU–
core in the CPU chip [9,1]. CUDA [13] is an extension to C++ proposed by
NVIDIA. It is based on kernels that are run n times in parallel by n threads.
Tools to better map the algorithms to the memory hierarchy have been pro-
posed [19]. They advocate for that programmers should provide straight-forward
implementations of the application kernels using only global memory, and that
tools like CUDA-lite will do the transformations automatically to exploit local
memories.

Optimizing the Exploitation of Multicore Processors and GPUs 227

Most of the programming models suitable for heterogeneous multicores allow
to express some form of task based parallelism. OpenMP 3.0 [16], the industry
standard for parallelism in shared memory machines, introduces a task suitable
for parallelization of irregular applications [4]. The Sequoia [11] alternative fo-
cuses on the mapping of the application kernels onto the appropriate engines
to exploit the memory hierarchy. RapidMind [18] is a development and runtime
platform that uses dynamic compilation to accelerate code for the accelerators
available, being those GPUs or the Cell SPUs. The programmer encapsulates
functions amenable for acceleration into program containers. The code in con-
tainers is only compiled during the execution of the application, so that it can be
optimized dynamically depending on the input data and the target architecture.

Merge [12] encapsulates specialized languages targeting specialized accelera-
tors (GPUs, FPGAs) in C/C++ functions to provide a uniform interface for
them. Encapsulation is based on EXOCHI [20], which uses pragmas to offload
the domain specific language to be compiled with the compiler of the target
device. Merge allows the specification of the same function for different targets,
as new intrinsic functions, and it provides the mechanism for dynamic function
selection at runtime.

We have found that all solutions make the programmer to split the applica-
tion in pieces to provide the low level kernels to the acceleration engines. As we
propose with OMPSs, we think that the compiler must be the responsible to ad-
dress this issue. This will increase productivity in multicore processors, specially
in the heterogeneous ones. This is also the case of Offload [5] and the IBM com-
piler [7,15], also known as Octopiler, which takes OpenMP code and places the
parallel regions on the Cell SPUs. We propose to augment the C/C++ languages
to incorporate vector types like OpenCL does. This will allow to easily obtain
performance from OpenMP parallel regions and vectorization at the same time,
which is currently difficult with current programming models.

5 Conclusions and Future Work

This paper presents OMPSs, a proposal to improve programming on multicore
processors and GPUs. The proposal improves productivity and achieves a perfor-
mance similar or better than existing environments based on CUDA/OpenCL.

OMPSs is based on program annotations taking the best features from the
tasks of OpenMP, StarSs dependence analysis and automatic generation of data
transfers, and the expression of SIMD operations in OpenCL kernel codes.

The OMPSs proposal is evaluated with four benchmarks: Matrix Multiply,
BlackScholes, Perlin Noise, and Julia Set; and using three distinct architectures:
an Intel SMP, an IBM Cell/B.E.–based blade, and NVIDIA GPUs.

Results show that OMPSs outperforms OpenCL/CUDA implementations of
the same benchmarks, in the three execution environments. In addition, it
achieves a unified way of programming them in different environments. We pro-
pose to augment the C/C++ languages to incorporate vector types. This will
allow to exploit parallelization with OpenMP and vectorization at the same time.

228 R. Ferrer et al.

Our future work is focused on the improvement of OMPSs, including re-
search on task scheduling in heterogenous environments, automatic tuning of
data transfer sizes, and task granularity. In addition, we are porting larger ap-
plications to the programming model, to show that it is applicable in a general
way to a variety of algorithms.

Acknowledgments

This work utilized the AC cluster [10] operated by the Innovative Systems Lab-
oratory (ISL) at the National Center for Supercomputing Applications (NCSA)
at the University of Illinois. The cluster was funded by NSF SCI 05-25308 and
CNS 05-51665 grants along with generous donations of hardware from NVIDIA,
Nallatech, and AMD.

We thankfully acknowledge the support of the European Commission through
the ENCORE project (FP7-248647), the TERAFLUX project (FP7-249013),
the TEXT project (FP7-261580), the SARC IP project (FP6-27648), and the
HiPEAC-2 Network of Excellence (FP7/ICT 217068), the support of the CSIC
through the intramural project no. 200850I237, and the support of the Spanish
Ministry of Education (TIN2007-60625, and CSD2007-00050), the Generalitat
de Catalunya (2009-SGR-980), and the BSC-IBM MareIncognito project.

References

1. AMD Corporation. The AMD Fusion Family of APUs, http://fusion.amd.com
2. AMD/ATI. OpenCL: The Open Standard for Parallel Programming of GPUs and

Multi–core CPUs (2010),
http://www.amd.com/us/products/technologies/stream-technology/

opencl/Pages/opencl.aspx

3. Ayguade, E., Badia, R.M., Cabrera, D., Duran, A., Gonzalez, M., Igual, F.,
Jimenez, D., Labarta, J., Martorell, X., Mayo, R., Perez, J.M., Quintana-Orti,
E.S.: A Proposal to Extend the OpenMP Tasking Model for Heterogeneous Ar-
chitectures. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP
2009. LNCS, vol. 5568, pp. 154–167. Springer, Heidelberg (2009)

4. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Su, E.,
Unnikrishnan, P., Zhang, G.: A proposal for task parallelism in openMP. In: Chap-
man, B., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP
2007. LNCS, vol. 4935, pp. 1–12. Springer, Heidelberg (2008)

5. Cooper, P., Dolinsky, U., Donaldson, A.F., Richards, A., Riley, C., Russell, G.:
Offload – automating code migration to heterogeneous multicore systems. In: Patt,
Y.N., Foglia, P., Duesterwald, E., Faraboschi, P., Martorell, X. (eds.) HiPEAC
2010. LNCS, vol. 5952, pp. 337–352. Springer, Heidelberg (2010)

6. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A Hybrid Multi-core Parallel Program-
ming Environment. In: Workshop on General Processing Using GPUs (2006)

7. Eichenberger, A.E., O’Brien, K., O’Brien, K.M., Wu, P., Chen, T., Oden, P.H.,
Prener, D.A., Shepherd, J.C., So, B., Sura, Z., Wang, A., Zhang, T., Zhao, P.,
Gschwind, M., Archambault, R., Gao, Y., Koo, R.: Using advanced compiler tech-
nology to exploit the performance of the cell broadband engine(tm) architecture.
IBM Systems Journal 45(1), 59–84 (2006)

http://fusion.amd.com
http://www.amd.com/us/products/technologies/stream-technology/opencl/Pages/opencl.aspx
http://www.amd.com/us/products/technologies/stream-technology/opencl/Pages/opencl.aspx

Optimizing the Exploitation of Multicore Processors and GPUs 229

8. IBM Corporation. OpenCL (2010),
http://www.alphaworks.ibm.com/tech/opencl

9. Intel Corporation. Intel Unveils Product Plans for HPC (May 2010),
http://www.intel.com/pressroom/archive/releases/2010/20100531comp.htm

10. Kindratenko, V., Enos, J., Shi, G., Showerman, M., Stone, G.A.J., Phillips, J.,
Hwu, W.: GPU Clusters for High-Performance Computing. In: IEEE Int. Conf. on
Cluster Comp. Workshop on Parallel Programming on Accelerator Clusters (2009)

11. Knight, T.J., Park, J.Y., Ren, M., Houston, M., Erez, M., Fatahalian, K., Aiken, A.,
Dally, W.J., Hanrahan, P.: Compilation for explicitly managed memory hierarchies.
In: Proceedings of the 2007 ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (2007)

12. Linderman, M., Collins, J., Wang, H., Meng, T.: Merge: A Programming Model
for Heterogeneous Multi-core Systems. In: Proc. of the 14th Int. Conf. on Arch.
Support for Prog. Languages and Operating Systems (ASPLOS) (March 2009)

13. NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Ver-
sion 2.0 (2008)

14. NVIDIA Corporation. OpenCL (2010),
http://www.nvidia.com/object/cuda_opencl_new.html

15. O’Brien, K., O’Brien, K.M., Sura, Z., Chen, T., Zhang, T.: Supporting openmp on
cell. International Journal of Parallel Programming 36(3), 289–311 (2008)

16. OpenMP Architecture Review Board. OpenMP Application Program Interface.
Version 3.0 (May 2008)

17. Perez, J.M., Bellens, P., Badia, R.M., Labarta, J.: CellSs: Making it easier to
program the Cell Broadband Engine processor. IBM Journal of Research and De-
velopment 51(5), 593–604 (2007)

18. RapidMind. RapidMind Multi-core Development Platform,
http://www.rapidmind.com/pdfs/RapidmindDatasheet.pdf

19. Ueng, S.-Z., Lathara, M., Baghsorkhi, S.S., Hwu, W.-m.W.: CUDA-Lite: Reduc-
ing GPU Programming Complexity. In: Amaral, J.N. (ed.) LCPC 2008. LNCS,
vol. 5335, pp. 1–15. Springer, Heidelberg (2008)

20. Wang, P., Collins, J., Chinya, G., Jiang, H., Tian, X., Girkar, M., Yang, N., Lueh,
G.-Y., Wang, H.: EXOCHI: Architecture and programming environment for a het-
erogeneous multi-core multithreaded system. In: Proc. of PLDI, pp. 156–166 (2007)

http://www.alphaworks.ibm.com/tech/opencl
http://www.intel.com/pressroom/archive/releases/2010/20100531comp.htm
http://www.nvidia.com/object/cuda_opencl_new.html
http://www.rapidmind.com/pdfs/RapidmindDatasheet.pdf

CnC-CUDA: Declarative Programming for
GPUs

Max Grossman, Alina Simion Sb̂ırlea, Zoran Budimlić, and Vivek Sarkar

Department of Computer Science, Rice University
{jmg3,alina,zoran,vsarkar}@rice.edu

Abstract. The computer industry is at a major inflection point in its
hardware roadmap due to the end of a decades-long trend of exponen-
tially increasing clock frequencies. Instead, future computer systems are
expected to be built using homogeneous and heterogeneous many-core
processors with 10’s to 100’s of cores per chip, and complex hardware
designs to address the challenges of concurrency, energy efficiency and
resiliency. Unlike previous generations of hardware evolution, this shift
towards many-core computing will have a profound impact on software.
These software challenges are further compounded by the need to enable
parallelism in workloads and application domains that traditionally did
not have to worry about multiprocessor parallelism in the past. A recent
trend in mainstream desktop systems is the use of graphics processor
units (GPUs) to obtain order-of-magnitude performance improvements
relative to general-purpose CPUs. Unfortunately, hybrid programming
models that support multithreaded execution on CPUs in parallel with
CUDA execution on GPUs prove to be too complex for use by main-
stream programmers and domain experts, especially when targeting plat-
forms with multiple CPU cores and multiple GPU devices.

In this paper, we extend past work on Intel’s Concurrent Collections
(CnC) programming model to address the hybrid programming challenge
using a model called CnC-CUDA. CnC is a declarative and implicitly
parallel coordination language that supports flexible combinations of task
and data parallelism while retaining determinism. CnC computations are
built using steps that are related by data and control dependence edges,
which are represented by a CnC graph. The CnC-CUDA extensions in
this paper include the definition of multithreaded steps for execution
on GPUs, and automatic generation of data and control flow between
CPU steps and GPU steps. Experimental results show that this approach
can yield significant performance benefits with both GPU execution and
hybrid CPU/GPU execution.

1 Introduction

The computer industry is at a major inflection point in its hardware roadmap due
to the end of a decades-long trend of exponentially increasing clock frequencies.
Instead, future computer systems are expected to be built using homogeneous
and heterogeneous many-core processors with 10’s to 100’s of cores per chip,

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 230–245, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

CnC-CUDA: Declarative Programming for GPUs 231

and complex hardware designs to address the challenges of concurrency, energy
efficiency and resiliency. Unlike previous generations of hardware evolution, this
shift towards many-core computing will have a profound impact on software.

These software challenges are further compounded by the need to enable par-
allelism in mainstream workloads and application domains that have tradition-
ally not had to worry about multiprocessor parallelism in the past. Despite over
four decades of research, there are few choices of high-level parallel program-
ming models available to domain experts who are not computer science experts.
Fortunately, this situation is starting to change. Systems like MapReduce [7]
are succeeding based on implicit parallelism, albeit with a restricted applica-
bility. Other systems like CUDA [20] and OpenCL [17] are partially there for
GPU accelerators, providing a restricted programming model to the user but
also exposing a fair amount of hardware details.

Intel’s Concurrent Collections1 (CnC) is a declarative and implicitly paral-
lel coordination language that supports flexible combinations of task and data
parallelism while retaining determinism. CnC computations are built using steps
that are related by data and control dependence edges, which in turn are rep-
resented by a CnC graph. CnC is provably deterministic [2]. While this restricts
CnC’s scope, it is more general than other deterministic programming models in-
cluding dataflow and stream-processing, and can incorporate static and dynamic
forms of task, data, loop, pipeline, and tree parallelism. However, all known im-
plementations of CnC to date have been on homogeneous multicore SMP’s.

A recent trend in mainstream desktop systems is the use of general-purpose
graphics processor units (GPGPUs) to obtain order-of-magnitude performance
improvements. As an example, NVIDIA’s Compute Unified Device Architec-
ture (CUDA) has emerged as a popular hybrid programming model for CPUs
and GPGPUs [20]. While it can be fairly straightforward for mainstream pro-
grammers to write the device code for specific kernels in CUDA, the CPU-GPU
interactions necessary for deploying a complete CUDA application can be com-
plicated to implement because of the necessary control flow for launching new
kernels, data flow for communicating inputs and outputs, and synchronization
to ensure proper coordination between the CPU and GPU. Further, debugging
the execution of a CUDA program across a multicore SMP and a GPU is espe-
cially onerous because of the loose coupling via the device interface and the lack
of integrated debugging tools. For these reasons, we believe that writing and
deploying full CUDA applications is beyond the scope of mainstream domain
experts, from the viewpoints of both programmability and productivity.

In this paper, we extend past work on Intel’s Concurrent Collections (CnC)
programming model to address the hybrid programming challenge using a model
called CnC-CUDA. The CnC-CUDA extensions in this paper include the defini-
tion of multithreaded steps for execution on GPUs, and automatic generation of
data and control flow between CPU steps and GPU steps. Further, given the
widespread use of managed-runtime execution environments, such as the Java
Virtual Machine (JVM) and .Net platforms, we have developed a Java-based

1 An earlier version of CnC was called TStreams [18].

232 M. Grossman et al.

implementation of CnC which provides the foundation for the CnC-CUDA im-
plementation. In this way, the programmer has the choice of writing CPU Steps
in Java or C (since C code can be invoked from Java) and GPU steps in CUDA,
and can leave all the remaining details of creating and managing parallel tasks
and data transfers to the CnC-CUDA framework. Experimental results show
that this approach can yield significant performance benefits with both GPU
execution and hybrid CPU/GPU execution. To the best of our knowledge, this
is the first experience with mapping the CnC model on to hybrid systems with
accelerators (GPUs).

The rest of the paper is organized as follows. Section 2 briefly summarizes
the CnC and CUDA programming models. Section 3 introduces the CnC-CUDA
Programming Interface and Implementation. Section 4 presents preliminary ex-
perimental results for CnC-CUDA. Related work is discussed in Section 5, and
our conclusions are contained in Section 6.

2 Background

2.1 Concurrent Collections Programming (CnC) Model

In this section, we give a brief summary of the CnC model, as described in [3]. As
in dataflow and stream-processing languages, a CnC program is a graph of serial
kernels, communicating with one another. The three main constructs in CnC
are step collections, data item collections, and control tag collections. Statically,
each of these constructs is a collection representing a set of dynamic instances.
Step instances are the unit of distribution and scheduling. Item instances are the
unit of synchronization and communication. Control tag instances are the unit
of control.

The program is represented as a graph. In textual form, the graph is denoted
using () to suggest circles for computation steps, [] to suggest boxes for data
items and <> to suggest triangles for control tags. The edges in the graph specify
the partial ordering constraints required by the semantics. One type of ordering
constraint arises from a data dependence. This relationship occurs when an in-
stance of a step, say (F1), produces an instance of an item, say [X], which is
later consumed by an instance of another step, say (F2). Clearly the producing
step instance must occur before the consuming step instance. Another type of or-
dering constraint arises from a control dependence, where one computation step
determines if another computation step will execute. In that case, the controller
step puts a control tag in a tag collection, which in turn prescribes the controllee
step. The execution order of step instances is constrained only by their dynamic
data and control dependences.

Control, data, and step instances are all identified by a unique tag within each
collection. In CnC, tags are arbitrary values that support an equality test and
hash function. Each type of collection uses tags as follows:

– Putting a tag into a control collection will cause the corresponding steps (in
the prescribed step collections) to eventually execute. A control collection C
with tag i is denoted 〈C : i〉.

CnC-CUDA: Declarative Programming for GPUs 233

– Each step instance is a computation that takes a single tag (originating
from the prescribing control collection) as an argument. The step instance
of collection (foo) at tag i is denoted (foo : i).

– A data collection is an associative container indexed by tags. The entry for a
tag i, once written, cannot be overwritten (dynamic single assignment). The
immutability of entries within a data collection is necessary for determinism.
An instance in data collection x with tag “i, j” is denoted [x : i, j].

A CnC specification can optionally include tag functions [13] and use them
to specify the mapping between a step instance and the data instances that it
consumes or produces. A tag function can be the identity function, or can define
nearest neighbor computations, a parent/child in a tree, neighbors in a graph,
or any other relationship useful in the application.

2.2 Habanero-Java Implementation of CnC

Habanero-Java (HJ) is a programming language being developed in the Habanero
Multicore Software Research project at Rice University [1]. We chose it for the
baseline implementation of the CnC runtime system because it includes con-
structs that serve as a convenient target for implementing CnC primitives. We
were pleasantly surprised to see how straightforward it has been to map CnC
primitives to HJ, as summarized in Table 1.

Table 1. Summary of mapping from CnC primitives to HJ primitives

CnC construct Translation to HJ
Tag Java String object or point object

Prescription async or delayed async
Item Collection java.util.concurrent.ConcurrentHashMap

put() on Item Collection Nonblocking put() on ConcurrentHashMap
get() on Item Collection Blocking or nonblocking get() on ConcurrentHashMap

Additional details of the mapping from CnC to HJ are summarized below.

Tags. We allow tags to be instances of String or point value types. A point
in HJ is an integer tuple that can be declared with an unspecified rank. A
multidimensional tag is implemented by a multidimensional point.

Prescriptions. We have optimized away all prescription tags in the HJ imple-
mentation. When a step needs to put a prescription tag in the tag collection,
we perform a normal async or a delayed async for each step prescribed by that
tag. The normal async statement, async 〈stmt〉 causes the parent activity to
create a new child activity to execute 〈stmt〉. Execution of the async statement
returns immediately i.e., the parent activity can proceed immediately to its next
statement. The delayed async statement, async (〈cond〉) 〈stmt〉, is similar to a
normal async except that execution of 〈stmt〉 is guaranteed to be delayed until
after the boolean condition, 〈cond〉, evaluates to true.

234 M. Grossman et al.

Item Collections. We use the java.util.concurrent.ConcurrentHashMap
class to implement item collections. Our HJ implementation of item collections
supports the following operations:

– new ItemCollection(String name): create and return a new item collec-
tion. The string parameter, name, is used only for diagnostic purposes.

– C.put(point p, Object O): insert item O with tag p into collection C.
Throw an exception if C already contains an item with tag p.

– C.awaitAndGet(point p): return item in collection C with tag p. If neces-
sary, the caller blocks until item becomes available.

– C.containsTag(point p): return true if collection C contains an item with
tag p, false otherwise.

– C.get(point p): return item in collection C with tag p if present; return
null otherwise. The HJ implementation of CnC ensures that this operation
is only performed when tag p is present i.e., when C.containsTag(point p)
= true. Unlike awaitAndGet(), a get() operation is guaranteed to always
be nonblocking.

Put and Get Operations. A CnC put operation is directly translated to a
put operation on an HJ item collection, but implementing get operations can
be more complicated. A naive approach is to translate a CnC get operation to
an awaitAndGet operation on an HJ item collection. However, this approach
does not scale well when there are a large number of steps blocked on get op-
erations, since each blocked activity in the current HJ work-sharing scheduler
gets bound to a separate Java thread. A Java thread has a larger memory foot-
print than a newly created async operation. Typically, a single heavyweight Java
thread executes multiple lightweight async’s; however, when an async blocks on
an awaitAndGet operation it also blocks the Java thread, thereby causing addi-
tional Java threads to be allocated in the thread pool [9]. In some scenarios, this
can result in thousands of Java threads getting created and then immediately
blocking on awaitAndGet operations.

This observation lead to some interesting compiler optimization opportunities
of get operations using delayed asyncs. Consider a CnC step S that performs
two get operations followed by a put operation as follows (where Tx, Ty, Tz are
distinct tags):

S: { x := C.get(Tx); y := C.get(Ty); z := F (x, y); C.put(Tz, z); }
Instead of implementing a prescription of step S with tag TS as a normal async
like “async S(TS)”, a compiler can implement it using a delayed async of the
form “async when(C.containsTag(Tx) && C.containsTag(Ty)) S(TS)”. With
this boolean condition, we are guaranteed that execution of the step will not
begin until items with tags Tx and Ty are available in collection C.

2.3 GPU Architecture and the CUDA Programming Model

The NVIDIA CUDA programming model is an interface designed to allow pro-
grammers access to the extremely parallel hardware of programmable Graphics

CnC-CUDA: Declarative Programming for GPUs 235

Processing Units (GPUs). With an architecture originally intended for graphics
rendering, the GPU’s strengths lie with highly parallel applications, streaming
data, and low inter-thread communication and synchronization. For instance,
the GPU used in our performance evaluation, an NVIDIA GTX 480, has 480
processing cores. From this we can see that GPUs’ architecture make them easily
applicable to scientific and mathematical computing problems.

CUDA is an extension on the C/C++ programming language, with the CUDA
runtime library providing a collection of device memory management, host-
device stream synchronization, and execution control functions (among others).
The general flow of a CUDA program consists of the following steps [23], where
all allocation and copying of device memory is controlled explicitly or implicitly
by the host using the CUDA runtime library:

1. Copy data from main memory to GPU memory
2. CPU instructs GPU to start a kernel
3. GPU executes kernel in parallel and accesses GPU memory
4. Copy the results from GPU memory to main memory

CUDA is a data parallel SIMT architecture, in which the same programmer-
defined kernel executions on all launched threads. These threads are launched
in batches of blocks and grids, where blocks are collections of threads and grids
are collections of blocks.

3 Programming Interface and Implementation

We have implemented several extensions to the CnC programming model in order
to support CUDA steps, which we outline in this section.

3.1 Graph File

Some of the features added require using new syntax in the graph file. First, we
introduce a new syntax for CUDA steps. CUDA steps are declared with braces,
{}, instead of parentheses, (), for CPU steps. The graph file can now define both
CPU and GPU steps.

Second, we have added support for the programmer to specify constants in
the graph file using the following notation:

|const name const value|;
where const value is of an integer type. This definition generates constant values
to be used both in HJ and CUDA. These constants are used for specifying the
exact type of item and tag collections that are passed to CUDA, ensuring the
copying of the correct amount of data from Java arrays onto the CUDA device.
For example, if each CUDA thread takes 1000 integers, this item collection would
be declared as:

[int items[1000]];, or |size 1000|; [int items[size]];

Using the second method allows the CnC programmer access to the constant
value inside the computation step and the program’s entry point, ensuring no
stale values for those constants caused by multiple definitions.

236 M. Grossman et al.

3.2 Item Collections

Access functions for all item collections are automatically generated from the
CnC parser in order to enforce strict typing rules on items and tags. Item col-
lections maintain the standard interface for adding or retrieving items, the Put
and Get methods for individual items. With this approach, each of the items
is put into a ConcurrentHashMap, similarly to what is done in CnC-HJ. Once
a threshold number of tags have been put, the items corresponding to those
tags are collected from the ConcurrentHashMap, converted to a C friendly for-
mat (i.e., java.lang.Integer→int) and passed to CUDA. While this approach cor-
rectly handles individual Put and Get operations, it also results in a significant
performance overhead.

In CUDA-CnC we introduce a much more efficient alternative. The PutRe-
gion/GetRegion primitives allow the programmer to put a (potentially multidi-
mensional) region of integers associated with a similarly dimensioned array of
items. This approach eliminates putting and then extracting individual items
since the array is directly passed to the kernel. Currently we only support ar-
rays of primitive types (int[], float[], e.t.c.), which we believe to be a reasonable
limitation as the CUDA kernels are usually coded using primitive types any-
way. Optimizing the individual item puts and gets, adding support for getting
individual items from region puts, and implementing PutRegion and GetRegion
for arrays of more complex structures (i.e., user defined classes) are beyond the
scope of this paper and a subject of future research.

Currently, if an error occurs in copying an item collection (i.e., insufficient
device memory) no error is reported to the user. This is simple to implement as
the library written for CnC-CUDA host-device memory transfer returns error
values, and will certainly be in future work in CnC-CUDA.

3.3 Tag Collection - PutRegion and GetRegion

Tag collections are automatically generated using type definitions in the graph
file. Our preliminary implementation only supports integer tags, which can be
easily extended to any type that can be hashed, as in traditional CnC.

As described earlier, tag collections control the execution and synchronization
of computation steps. Synchronization between computation steps using tag col-
lections is a different matter in CUDA. First, a pthread mutex is used to indicate
that the device is currently in use by a computation step and inaccessible by any
new computation steps for non-Fermi architecture GPUs which do not support
concurrent kernel execution. Second, we limit the number of CUDA computation
steps that can be prescribed by another CUDA computation step to 1, which
considerably simplifies the complexity of synchronizing multiple CUDA compu-
tation steps. If a CUDA step prescribes another CUDA step (as determined by
analyzing the CnC graph file), the second step is invoked immediately follow-
ing the first without returning to HJ. No limitation is placed on a CUDA step
prescribing multiple HJ steps. Last, synchronization between host and device
computation steps is used by a call to a CUDA tag collection’s Wait() method.

CnC-CUDA: Declarative Programming for GPUs 237

This call blocks until all launched CUDA kernels have returned and their output
has been placed in host memory.

Tag Collections also implement the PutRegion operation, which places a re-
gion of integer tags into the tag collection. PutRegion immediately launches a
CUDA kernel for all tags in the range once the required items are available. On
individual tag Puts, the tag collection waits for a threshold number of tags to
be put, and then launches a CUDA kernel with those tags and their associated
items. We have currently empirically set this threshold to 8192 tags. Once all
tags have been put into a GPU tag collection, the programmer has to issue a call
to that tag collection’s Wait() function to be certain that all CUDA threads have
completed as the transferring of data to and from device memory and launching
of CUDA kernels is handled by a separate CPU thread.

For more advanced CUDA programmers we introduce the option of defining
a two dimensional tag:

<int tag:two region>

This offers the opportunity of placing a tag with 2 regions on the graph. Those
two regions will be interpreted as number of blocks per grid and threads per
block to be used in a kernel launch. In addition, one can specify the number of
desired threads in a block by compiling the graph file with the flag: -t <number
of threads>.

We also support the item collection property One-For-All (OFA), which passes
the same data to each thread on a device. This property follows the format:

[int item:ofa]

where int can be any supported data type. This can result in both considerable
saving in device and host memory (less memory allocated to copy from and to)
as well as better performance with less time spent copying data to the device.

3.4 CUDA Kernel

The advantage of using CnC CUDA is that the user need not worry about the
allocating and copying of data, but just about writing the actual CUDA ker-
nel. The translator is the one responsible for generating stub codes that will
allocate memory and copy the data structures to the device before a step is
executed as well as free the device memory after these finish. During the exe-
cution of a kernel, no puts or get are done on GPUs. The actual step code is
written as a CUDA device function by the CnC programmer in a file named
“XXXXXKernel.cu” where ‘XXXXX’ is the CUDA step name as declared in the
graph file. The step function needs to be defined as a device function because
the global entry point to the device is auto-generated by the translator to
protect against unwanted threads entering the programmer-defined kernel (i.e.
513 tags are put, but 2x512 threads are launched. The auto-generated global
function will ensure the upper 511 threads of the second block do not enter
the programmer-defined kernel). Also, CUDA kernels are limited to putting a
single item on each output item collection. This limitation is a result of CUDA

238 M. Grossman et al.

requiring preallocation of all device memory before kernel launch. Future work
will allow the programmer to specify the number of items output from a kernel.

3.5 Implementation Details

The CnC-CUDA execution model requires a Java-to-native code interface. The
approach outlined below builds on our past experience with the JCUDA sys-
tem [23].

Java provides the native keyword which is used to define functions that are
implemented in native code. Our implementation creates a libJVMToC.so library
which contains CUDA and C code needed to communicate the data to and from
the device and execute the kernel. This library encapsulates the C and CUDA
code auto-generated by the translator and is generated by the compiler. In CnC-
CUDA, all of the complexity of inter-language function-calls and device memory
management is hidden from the CnC programmer and auto-generated at compile
time, allowing them to focus on developing and implementing the algorithms in
their application.

Habanero Java also offers the extern keyword — similar to native in Java —
which greatly simplifies programming with native code. Compiling an HJ class
with extern functions generates C stubs which will be included in the file with
the native function implementation, named ClassName FunctionName.

The C and CUDA code that are generated by our CnC translator are respon-
sible for creating a data collection for every data structure declared in the graph
file, copying the said data structure to the GPU before launching the kernel and
from the device back to the CPU afterwards, and actual launching of the CUDA
computation step(s). The CnC graph is analyzed to determine which item and
tag collections are only accessed from the device (i.e., Put from one CUDA step
and Get from another), and this analysis is used to remove extraneous device
memory copies from the generated code.

4 Preliminary Experimental Results

4.1 Experimental Setup

In order to compare the performance of CnC-CUDA to CnC-HJ (available at
[6]) and other programming models and languages we used three benchmarks
from the Java Grande Forum (JGF) benchmark suite [15], as well as the Heart
Wall Tracking program from the Rodinia benchmark suite [5]. The three bench-
marks from the JGF suite are Fourier coefficient analysis (Series), successive
over-relaxation (SOR), and IDEA encryption (Crypt). Each was run on varying
data sizes using CnC-CUDA, CnC-HJ, Serial C, hand-coded CUDA, and the
original single-threaded JGF Java benchmark. Additionally, the Crypt bench-
mark was run using CnC-CUDA and CnC-HJ computation steps running in
parallel. The timing of each benchmark was started just before the first set of
tag puts were performed to launch the CnC graph or the function call to launch
the actual computation for non-CnC benchmarks. Timing was stopped when all

CnC-CUDA: Declarative Programming for GPUs 239

CnC steps completed (as detected by the HJ finish construct) or the core func-
tion completed. For GPU execution, this included the overhead of copying data
to and from device memory.

For these evaluations, we used an NVIDIA GTX 480 GPU. The GTX 480
has 480 processing cores and 1.6 GB of memory. The CPU host of this GPU
is a AMD Phenom 9850 Quad-Core Processor with a 1.25 GHz clock, 512 KB
cache, and 8 GB of memory. The installed software includes a Java HotSpot 64-
bit virtual machine from version 1.6.0 20 of the Java Development Kit (JDK),
a GNU C compiler v. 4.1.2, and version 3.1 of the NVIDIA CUDA Toolkit.

There are a few limitations in the current CnC-CUDA implementation which
will need to be addressed in future work. First, the current implementation limits
tags to only be integers. Second, both parent and CUDA steps are assumed to al-
ways have the same block/grid structure; giving the CnC programmer the ability
to change the number of threads used across parent-child CUDA computation
steps could further increase the flexibility of our CnC-CUDA implementation.

4.2 Evaluation and Analysis

Tables 2, 3, and 4 display the average execution times across ten runs of the
respective benchmarks in different programming models or languages. In the
CnC versions (HJ or CUDA), the CnC Parser was used to auto-generate all
the glue code, leaving the programmer to only provide the CnC step code in
CUDA or HJ and the code for launching the CnC graph in the main HJ program.
The CnC-CUDA measurements on the GPU were compared to CnC-HJ runs of
the same benchmarks on the CPU and the results listed in the Speedup column
of each table. Each CUDA kernel launch was performed with a constant 256

Table 2. Execution times in seconds of JGF Crypt benchmark implemented in several
programming models, and Speedup of CnC-CUDA relative to CnC-HJ

Crypt GPU Performance CPU Performance
Data Size (bytes) CnC-CUDA CUDA CnC-HJ Serial C Serial Java Speedup

(16 cores)
50,000,000 (JGF Size C) 0.886 0.161 2.067 7.367 2.92 2.33

75,000,000 1.208 0.253 3.239 11.033 4.387 2.68
100,000,000 1.488 0.341 4.460 14.678 5.818 3.00
150,000,000 2.311 0.550 6.903 22.039 8.716 2.99

Table 3. Execution times in seconds of JGF Series benchmark implemented in several
programming models, and Speedup of CnC-CUDA relative to CnC-HJ

Series GPU Performance CPU Performance
Data Size CnC-CUDA CUDA CnC-HJ (16 cores) Serial C Serial Java Speedup

10,000 (JGF Size A) 0.332 0.0095 3.587 3.157 6.777 10.80
100,000 (JGF Size B) 0.441 0.116 36.588 31.832 69.074 60.78

1,000,000 (JGF Size C) 1.411 1.279 572.86 321.553 N/A 406.00

240 M. Grossman et al.

Table 4. Execution times in seconds of JGF SOR benchmark implemented in several
programming models, and Speedup of CnC-CUDA relative to CnC-HJ

SOR GPU Performance CPU Performance
Data Size (Dim) CnC-CUDA CUDA CnC-HJ (16 cores) Serial C Serial Java Speedup

1,000 (JGF Size A) 0.403 0.021 0.714 1.691 1.247 1.77
1,500 (JGF Size B) 0.448 0.045 3.015 3.811 3.872 6.73
2,000 (JGF Size C) 0.498 0.078 5.400 6.769 6.891 10.84

3.000 0.602 0.186 12.079 15.309 15.677 20.06
4,000 0.795 0.475 21.512 27.262 27.658 27.06
5,000 0.952 0.813 33.547 42.600 43.129 35.24

Table 5. Execution times in seconds, and Speedup of a hybrid CnC-CUDA/HJ version
of Crypt against only CnC-CUDA

Crypt (150,000,000 bytes) Hybrid Performance
Percent of Data on GPU Average Slowest Fastest Speedup (Relative to CnC-CUDA)

10 3.042 3.806 2.493 0.76
20 3.066 3.765 2.727 0.75
30 2.720 3.048 2.223 0.85
40 2.289 2.750 1.878 1.01
50 2.139 2.397 1.973 1.08
60 2.035 2.242 1.538 1.14
70 2.076 2.799 1.755 1.11
80 2.189 2.511 1.883 1.06
90 2.143 2.344 1.968 1.08

Table 6. Execution times in seconds on GPU - CnC-CUDA and hand-coded (Rodinia)
CUDA versions - and CPU - Serial, OpenMP on 16 cores and CnC-HJ on 16 cores -
of the Heart Wall Tracking benchmark

Heart Wall Tracking GPU CPU
Data Size CnC-CUDA CUDA Serial Open MP CnC-HJ

(# of frames) 16 cores 16 cores
1 0.427 0.985 0.005 0.005 0.246

104 4.4842 3.6133 156.977 13.863 11.058

threads per block, with the grid size determined by the iteration size2. Each CnC-
HJ execution was performed using 16 worker threads. (Over-provisioning the
number of worker threads per CPU degraded performance for the benchmarks
and hardware studied in this paper.)

No special CUDA memory (e.g., texture, shared, constant) was used in the
execution of these benchmarks.

2 An evaluation of alternate grid/block sizes is a subject for future work.

CnC-CUDA: Declarative Programming for GPUs 241

These results demonstrate that performance potential of GPUs can be made
accessible to non-expert programmers through CnC-CUDA. Without any knowl-
edge of CUDA’s memory or threading model, a CnC-CUDA programmer can go
from working with CnC-HJ to exploiting the computational power of a GPU
using CnC-CUDA quickly and easily, achieving a magnitude of performance
better than a quad-core CPU. For example, building the SOR benchmark from
a CnC-HJ version required 3 hours of time to port the step code to CUDA,
and resulted in a 35× speedup. Auto-generation of CUDA code using techniques
such as those reported in [19] could result in a further productivity boost for
non-expert programmers.

We observe that the speedup of CUDA over HJ increases as the size of the data
set increases, with the maximum average speedup (406.00×) observed for the
embarrassingly parallel Series benchmark at its largest data size. The minimum
average speedup of 1.77× was observed for SOR executed with its smallest data
size. While not observed in these results, it is of course possible for a GPU version
of an application to run slower than a CPU version, when the relative overheads
of host-device data transfers, CUDA initialization, or of control flow divergence
lead to performance degradation on the GPU.

The results in Table 5 shows the potential for performance improvement us-
ing hybrid CPU-GPU execution in the CnC model. For consistency, the hybrid
CUDA/HJ tests were performed using 256 threads per block for GPU execution.
These results were obtained by evaluating different load distributions between
the CPU and GPU for the Crypt benchmark with its largest size, for which the
average speedup of the GPU over the CPU in Table 2 was 1.82×. In Table 5, we
see that an additional 1.14× speedup can be obtained over the pure CnC-CUDA
version by a hybrid execution in which 60% of the load is placed on the GPU
and 40% of the load on the CPU. An interesting topic for future research is to
extend the CnC runtime to perform this load distribution adaptively and auto-
matically, allowing for a single CnC-CUDA graph to dynamically and efficiently
handle a wide range of data set sizes.

Finally, Table 6 shows the execution times in seconds for the CnC-CUDA
and hand-coded CUDA versions of the Heart Wall Tracking benchmark (the
hand-coded version was obtained from the Rodinia benchmark set [5]). When
comparing the fastest times, we see that both versions have comparable per-
formance when processing a single frame, but the CnC-CUDA version is 1.25×
slower than the hand-coded version for 104 frames thereby reflecting the extra
coordination overhead in CnC involved in sequencing the computation across
frames.

5 Related Work

We discuss related work according to their attributes in three dimensions: Declar-
ative, Deterministic and Efficient. A number of lower-level programming models
in use today — e.g., Intel TBB [22], .Net Task Parallel Library, OpenMP [4],
Nvidia CUDA, Java Concurrency [21] — are non-declarative, non-deterministic,

242 M. Grossman et al.

and efficient3. Deterministic Parallel Java [10] is an interesting variant of Java;
though imperative (non-declarative), it includes a subset that is provably deter-
ministic, as well as constructs that explicitly indicate when determinism cannot
be guaranteed for certain code regions.

Higher-level languages such as High Performance Fortran (HPF) [16], X10
[8], and Linda [14] contain hybrid combinations of imperative and declarative
programming in different ways. HPF combines a declarative language for data
distribution and data parallelism with imperative (procedural) statements, X10
contains a functional subset that supports declarative parallelism, and Linda is
a coordination language in which a thread’s interactions with the tuple space is
declarative. Linda was a major influence on the CnC design, but CnC also differs
from Linda in many ways. For example, an in() operation in Linda atomically
removes the tuple from the tuple space, but a CnC get() operation does not re-
move the item from the collection. This is a key reason why Linda programs can
be non-deterministic in general, and why CnC programs are provably determin-
istic. Further, there is no separation between tags and values in a Linda tuple;
instead, the choice of tag is implicit in the use of wildcards. In CnC, there is a
separation between tags and values, and control tags are first class constructs
like data items.

Both streaming and dataflow languages have also had major influence on the
CnC design. The CnC semantic model is based on dataflow in that steps are
functional and execution can proceed whenever data is ready, without unnec-
essary serialization. However, CnC differs from dataflow in some key ways. The
use of control tags elevates control to a first-class construct in CnC. In addition,
item collections allow more general indexing (as in a tuple space) compared to
dataflow arrays (I-structures). CnC is like streaming in that the internals of a
step are not visible from the graph that describes their connectivity, thereby es-
tablishing an isolation among steps. A producer step in a streaming model need
not know its consumers; it just needs to know which buffers (collections) to per-
form read and write operations on. However, CnC differs from streaming in that
put and get operations need not be performed in FIFO order, and (as mentioned
above) control is a first-class construct in CnC. We observe that CnC’s dynamic
put/get operations on data and control collections is a general model that can
be used to express many kinds of applications (such as Cholesky factorization)
that would not be considered to be dataflow or streaming applications.

With respect to our experimental results, we are not claiming that the GPU
by itself offers a certain speedup [12], rather that the speedup we get is from
taking advantage of the high amount of data parallelism in our test applications,
having 256-512 GPU threads run in parallel instead of 16-32 on a CPU, and an
easy to use programming model that hides the use of resources from the user
while offering lower execution times. The overhead of copying data from and
to the device is hidden by a much larger number of tasks run in parallel. The
innovation we offer is an easy way for a programmer to specify the algorithm

3 We call a programming model efficient if there are known implementations that
deliver competitive performance for a reasonably broad set of programs.

CnC-CUDA: Declarative Programming for GPUs 243

while taking advantage of the available resources. Like Oregami [11], CnC is based
on a graph description of the algorithm, however in Oregami the programmer
needs to design the program as a “set of parallel processes that communicate
through explicit message passing. The identity of all of the processes are known
at compile time [...]”. Such restrictions are not applicable to CnC-CUDA.

In summary, CnC has benefited from influences in past work, but we are not
aware of any other parallel programming model that shares CnC’s fundamental
properties as a coordination language, a declarative language, a deterministic
language, and a language amenable to efficient implementation. To the best of
our knowledge, this is the first experience with mapping the CnC model on to
hybrid systems with accelerators (GPUs).

6 Conclusions and Future Work

In this paper, we extended past work on Intel’s Concurrent Collections (CnC)
programming model to address the hybrid programming challenge using a model
called CnC-CUDA. The CnC-CUDA extensions in this paper include the defini-
tion of multithreaded steps for execution on GPUs, and automatic generation
of data and control flow between CPU steps and GPU steps. Further, given the
widespread use of managed-runtime execution environments, such as the Java
Virtual Machine (JVM) and .Net platforms, we have developed a Java-based
implementation of CnC which provides the foundation for the CnC-CUDA im-
plementation. In this way, the programmer has the choice of writing CPU Steps
in Java or C (since C code can be invoked form Java) and GPU steps in CUDA,
and can leave all the remaining details of creating and managing parallel tasks
and data transfers to the CnC-CUDA framework. The CnC-CUDA extensions in
this paper include the definition of multithreaded steps for execution on GPUs,
and automatic generation of data and control flow between CPU steps and GPU
steps. Experimental results show that this approach can yield significant perfor-
mance benefits with both GPU execution and hybrid CPU/GPU execution.

There are multiple opportunities for future research. We would like to sup-
port richer (non-primitive) element data types in the PutRegion and GetRegion
primitives. In addition, we would like to extend the types accepted for tags to
more than integers. There is a large amount of overhead incurred by transfers
to and from device memory, and further experimentation with transfer pat-
terns may yield better performance. Finally, our longer-term plan is to extend
the CnC-CUDA implementation to serve as a unified runtime for heterogeneous
combinations of CPUs, GPUs, and FPGAs in the CDSC project.

Acknowledgments

We would like to thank all members of the Habanero team at Rice University
and the CnC team at Intel for valuable discussions and feedback related to the
Concurrent Collections programming model. We gratefully acknowledge support
from an Intel award during 2009-2010. This research is partially supported by the

244 M. Grossman et al.

Center for Domain-Specific Computing (CDSC) funded by the NSF Expedition
in Computing Award CCF-0926127. Finally, we would like to thank Tim War-
burton for providing access to the GPU systems used to obtain the performance
results reported in this paper.

References

1. Habanero Multicore Software Project, http://habanero.rice.edu
2. Budimlić, Z., Burke, M., Cavé, V., Knobe, K., Lowney, G., Newton, R., Palsberg,

J., Peixotto, D., Sarkar, V., Schlimbach, F., Taşrlar, S.: The CnC Programming
Model. In: SIAM PP10, Special Issue on Scientific Programming (2010)

3. Burke, M.G., Knobe, K., Newton, R., Sarkar, V.: The Concurrent Collections
Programming Model. In: Padua, D. (ed.) Encyclopedia of Parallel Computing.
Springer, New York (to be published 2011)

4. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Pro-
gramming in OpenMP. Academic Press, London (2001)

5. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.-H., Skadron, K.:
Rodinia: A benchmark suite for heterogeneous computing. In: IEEE International
Symposium on Workload Characterization (October 2009)

6. Concurrent Collections in Habanero-Java, HJ (2010),
http://habanero.rice.edu/cnc-download

7. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

8. Charles, P., et al.: X10: An object-oriented approach to non-uniform cluster com-
puting. In: Proceedings of OOPSLA 2005, ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications, pp. 519–538 (2005)

9. Barik, R., et al.: Experiences with an smp implementation for x10 based on the
java concurrency utilities. In: Workshop on Programming Models for Ubiquitous
Parallelism (PMUP), held in conjunction with PACT 2006 (September 2006)

10. Bocchino, R.L., et al.: A type and effect system for Deterministic Parallel Java. In:
Proceedings of OOPSLA 2009, ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, pp. 97–116 (2009)

11. Lo, V.M., et al.: Oregami: Tools for mapping parallel computations to parallel
architectures. IJPP: International Journal of Parallel Programming 20(3), 237–270
(1991)

12. Lee, V.W., et al.: Debunking the 100x gpu vs. cpu myth: An evaluation of through-
put computing on cpu and gpu. In: ISCA 2010: ACM IEEE International Sympo-
sium on Computer Architecture (June 2010)

13. Budimlić, Z., et al.: Declarative aspects of memory management in the concur-
rent collections parallel programming model. In: DAMP 2009: the Workshop on
Declarative Aspects of Multicore Programming, pp. 47–58. ACM, New York (2008)

14. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

15. The Java Grande Forum benchmark suite,
http://www.epcc.ed.ac.uk/javagrande

16. Kennedy, K., Koelbel, C., Zima, H.P.: The rise and fall of High Performance
Fortran. In: Proceedings of HOPL 2007, Third ACM SIGPLAN History of
Programming Languages Conference, pp. 1–22 (2007)

http://habanero.rice.edu
http://habanero.rice.edu/cnc-download
http://www.epcc.ed.ac.uk/javagrande

CnC-CUDA: Declarative Programming for GPUs 245

17. Khronos OpenCL Working Group. The OpenCL Specification - Version 1.0. Tech-
nical report, The Khronos Group (2009)

18. Knobe, K., Offner, C.D.: Tstreams: A model of parallel computation (preliminary
report). Technical Report HPL-2004-78, HP Labs (2004)

19. Lee, S., Min, S.-J., Eigenmann, R.: Openmp to gpgpu: a compiler framework
for automatic translation and optimization. In: PPoPP 2009, pp. 101–110. ACM,
New York (2009)

20. Nickolls, J., Buck, I., Garland, M., Nvidia, Skadron, K.: Scalable Parallel Program-
ming with CUDA. ACM Queue 6(2), 40–53 (2008)

21. Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., Holmes, D.: Java Concur-
rency in Practice. Addison-Wesley Professional, Reading (2005)

22. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-Core Pro-
cessor Parallelism. O’Reilly Media, Sebastopol (2007)

23. Yan, Y., Grossman, M., Sarkar, V.: Jcuda: A programmer-friendly interface for
accelerating java programs with cuda. In: Sips, H., Epema, D., Lin, H.-X. (eds.)
Euro-Par 2009. LNCS, vol. 5704, pp. 887–899. Springer, Heidelberg (2009)

Parallel Graph Partitioning on Multicore
Architectures

Xin Sui1, Donald Nguyen1, Martin Burtscher2, and Keshav Pingali1,3

1 Department of Computer Science, University of Texas, Austin
2 Department of Computer Science, Texas State University, San Marcos

3 Institute for Computational Engineering and Sciences,
University of Texas, Austin

Abstract. Graph partitioning is a common and frequent preprocess-
ing step in many high-performance parallel applications on distributed-
and shared-memory architectures. It is used to distribute graphs across
memory and to improve spatial locality. There are several parallel imple-
mentations of graph partitioning for distributed-memory architectures.

In this paper, we present a parallel graph partitioner that implements
a variation of the Metis partitioner for shared-memory, multicore ar-
chitectures. We show that (1) the parallelism in this algorithm is an
instance of the general amorphous data-parallelism pattern, and (2) a
parallel implementation can be derived systematically from a sequential
specification of the algorithm. The resulting program can be executed in
parallel using the Galois system for optimistic parallelization. The scal-
ability of this parallel implementation compares favorably with that of a
publicly available, hand-parallelized C implementation of the algorithm,
ParMetis, but absolute performance is lower because of missing sequen-
tial optimizations in our system. On a set of 15 large, publicly available
graphs, we achieve an average scalability of 2.98X on 8 cores with our
implementation, compared with 1.77X for ParMetis, and we achieve an
average speedup of 2.80X over Metis, compared with 3.60X for ParMetis.
These results show that our systematic approach for parallelizing irreg-
ular algorithms on multicore architectures is promising.

1 Introduction

Graph partitioning is a common preprocessing step in many high-performance
parallel algorithms. It is used to find partitions of graph nodes such that each
partition has roughly the same number of nodes and the sum of the weights
of cross-partition edges is minimized. If the number of nodes in a partition is
proportional to the amount of work involved in processing that partition and the
edge weights are a measure of communication costs, such a partition attempts to
achieve load balance while minimizing the inter-processor communication cost.

Graph partitioning is useful in distributed architectures where partitioning
can reduce the amount of explicit communication between distributed processing
elements. In shared memory settings, partitioning is useful for reducing memory
contention and increasing spatial locality.

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 246–260, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Parallel Graph Partitioning on Multicore Architectures 247

More formally, we define a weighted, undirected graph in the usual way: G =
(V, E), and w is a function assigning weights to each edge (u, v) ∈ E. For any
subset of vertices Vi ⊆ V , the cut set induced by Vi is Ci = {(u, v) ∈ E | u ∈
Vi, v ∈ V − Vi}. The value (or edge cut) of the cut set Ci is wi =

∑
e∈Ci

w(e).
The subsets P = V1, V2, . . . , Vk are a k-way partitioning iff (1) ∪iVi = V and (2)
∀i, j : i �= j → Vi ∩ Vj = ∅. The balance of P is

B(V1, V2, . . . , Vk) =
k ∗ maxk

i=1 wi∑k
i=1 wi

The graph partitioning problem is, given k and G, to find a k-way partitioning
P such that the balance of P and the edge cut of P (i.e.,

∑
wi) are minimized.

The most widely used graph partitioner is the sequential partitioner Metis
from Karypis et al. [8]. There are several parallel graph partitioners: ParMetis [6]
from Karypis et al. as well as PT-Scotch [1] and JOSTLE [13]. All of these im-
plementations are explicitly parallel programs for distributed-memory architec-
tures. With the rise of multicore, we are interested in parallel implementations
that can take advantage of the lightweight synchronization and communication
available on multicore machines. Additionally, we prefer implementations that
hew as close as possible to their original sequential implementations as it is
usually easier to write and determine the correctness of sequential programs.

The approach that we adopt in this paper is as follows. First, we recognize
that the Metis algorithm exhibits a generalized form of data-parallelism that we
call amorphous data-parallelism [12]. Second, we implement a version of Metis
that exploits amorphous data-parallelism, and we show that it is possible to
achieve better scalability than existing parallelizations without resorting to ex-
plicit parallel programming.

This paper is organized as follows. Section 2 describes the existing implementa-
tions of Metis, sequential and parallel, in detail. Section 3 introduces amorphous
data-parallelism, and Section 4 describes the Galois system, a programmingmodel
and runtime system designed to exploit amorphous data-parallelism. In Section 5,
we show how the Metis algorithm exhibits amorphous data-parallelism and how
to implement it using the Galois system. Section 6 discusses results, and Section 7
presents conclusions from this study.

2 Graph Partitioning Algorithms

Metis is one of the most widely used graph partitioners. Recent work has shown
that ParMetis is generally the best parallel graph partitioner for distributed-
memory systems [5]. In this section, we describe both of these partitioners in
more detail.

2.1 Metis

Metis is composed of a set of algorithms for graph and mesh partitioning. The key
algorithm is KMetis. It uses a multilevel scheme that coarsens input graphs until

248 X. Sui et al.

they are small enough to employ more direct techniques and then interpolates
the results of the smaller graph back onto the input graph. It consists of three
phases: coarsening, initial partitioning, and refinement (see Figure 1).

Coarsening. The goal of coarsening is to construct a smaller graph from the
input graph that preserves most of the connectivity information. This is achieved
by constructing a sequence of graphs, each of which is obtained by contracting
edges in the previous graph (see Figure 3). When contracting an edge (a, b), a
new node is created in the coarse graph, and its weight is set to the sum of the
weights of nodes a and b. If nodes a and b are both connected to a node c in the
fine graph, a new edge with a weight equal to the sum of the weights of edges
(a, c) and (b, c) is created in the coarse graph.

To find edges to collapse, KMetis computes a maximal matching. A matching
is a set of edges in the graph that do not share any nodes. A matching is maximal
if it is not possible to add any edges into it. There are several heuristics for finding
the maximal matching. KMetis employs a heuristic called heavy edge matching.
Heavy edge matching finds maximal matchings whose edges have large weight
(Figure 2(b)). Collapsing such edges will greatly decrease the edge weights in the
coarse graph and improve the quality of the resulting partitioning. The nodes
in the graph are visited randomly, and each node is matched to the unmatched
neighbor with the maximal edge weight. If there is no such neighbor, the node
is matched to itself.

The coarsening phase ends when the number of nodes in the coarse graph is
less than some threshold or the reduction in the size of successive graphs is less
than some factor.

Initial partitioning. In this phase, a recursive bisection algorithm called PMetis
is used to partition the coarsest graph. Each bisection has the same phases as
KMetis except that PMetis (1) uses a breadth-first traversal to perform an initial
bisection and (2) employs the Kernighan-Lin heuristic [9] to improve the quality
of the bisection. Compared to KMetis, PMetis is slower when the desired number
of partitions is large because it coarsens the input graph multiple times. Usually,
this phase represents only a small fraction of the overall partitioning time.

Refinement. In this phase, the initial partitioning is projected back on the orig-
inal graph via the sequence of graphs created in the coarsening phase (Fig-
ure 2(c)). KMetis uses a simplified version of the Kernighan-Lin heuristic called
random k-way refinement. The nodes of the graph that are on the boundary
between partitions are visited randomly. A boundary node is moved to its neigh-
boring partition if doing so reduces the edge cut without leading to a significant
imbalance in the partitioning.

2.2 ParMetis

ParMetis is a parallelization of KMetis using MPI. In ParMetis, each process
owns a random portion of the input graph. Each of the phases of KMetis is
parallelized as follows.

Parallel Graph Partitioning on Multicore Architectures 249

Fine Graph Coarse Graph

Coarsening

Initial Partitioning

R
efinem

ent

Fig. 1. The phases of a multilevel partitioning algorithm. Dashed lines illustrate the
partitioning projected from the coarse graph, and solid shaded lines illustrate the re-
fined partitioning.

1 Graph g = // Read in graph
2 int k = // Number of pa r t i t i on s
3 Graph o r i g i n a l = g ;
4 do {
5 heavyEdgeMatching(g) ;
6 Graph cg = coarsen (g) ;
7 cg . setFinerGraph (g) ;
8 g = cg ;
9 } while (! g . coarseEnough ()) ;

10 PMetis . p a r t i t i o n (g , k) ;
11 while (g != o r i g i n a l) {
12 Graph f g = g . f inerGraph () ;
13 g . p r o j e c tP a r t i t i o n i n g (f g) ;
14 f g . makeInfoForRefinement () ;
15 r e f i n e (f g) ;
16 g = fg ;
17 }

(a) Pseudocode for main Metis
algorithm.

1 void heavyEdgeMatching(Graph g) {
2 // Randomly access
3 foreach (Node n : g) {
4 i f (n . isMatched ()) continue ;
5 Node match = n . findMatch () ;
6 g . setMatch (n , match) ;
7 }
8 }

(b) Pseudocode for heavy edge match-
ing.

1 void r e f i n e (Graph g) {
2 Worklist wl = new Worklist () ;
3 foreach (Node n : g . boundaryNodes ()) {
4 i f (. . .) // Moving n to neighbor pa r t i t i on reduces edge cut
5 wl . add (n) ;
6 }
7 foreach (Node n : wl) {
8 part = // Neighbor pa r t i t i on with max edge cut gain ;
9 i f (. . .) // Balancing condit ion i s not v i o l a t e d

10 moveNode(n , part) ;
11 }
12 }

(c) Pseudocode for random k-way refinement.

Fig. 2. Pseudocode for Metis algorithm. Foreach loops indicate the presence of amor-
phous data-parallelism.

250 X. Sui et al.

1 Graph coarsen (Graph graph) {
2 Graph cg = new Graph () ; // Coarse graph
3 for (Node n : graph) {
4 i f (n . v i s i t e d) continue ;
5 Node cn = cg . createNode (n . weight+n . getMatch () . weight) ;
6 n . s e tRep r e s en ta t i v e (cn) ;
7 n . getMatch () . s e tRep r e s en ta t i v e (cn) ;
8 n . getMatch () . s e tV i s i t e d (true) ;
9 }

10 . . . // Reset v i s i t e d f i e l d for each node in the graph
11 foreach (Node n : graph) {
12 i f (n . v i s i t e d) continue ;
13 // Add edges in cg according to n ’ s ne ighbors
14 for (Node nn : n . getNe ighbors ()) {
15 Edge e = graph . getNeighbor (n , nn) ;
16 Node cn = n . ge tRep r e s en tat iv e () ;
17 Node cnn = nn . ge tRep r e s en ta t i ve () ;
18 Edge ce = cg . getEdge (cn , cnn) ;
19 i f (ce == null) { cg . addEdge (cn , cnn , e . getWeight ()) ; }
20 else { ce . inc reaseWeight(e . getWeight ()) ; }
21 . . . // Add edges in cg according to n . getMatch () ’ s neighbors ,
22 . . . // and s im i l a r l y for n
23 n . getMatch () . s e tV i s i t ed (true) ;
24 }
25 }
26 return cg ;
27 }

Fig. 3. Pseudocode for creating a coarse graph. Foreach loops indicate the presence of
amorphous data-parallelism.

Coarsening. The parallelization of heavy edge matching proceeds in alternating
even and odd rounds. There are two steps in each round. In the first step, each
process scans its local unmatched nodes, and for each node v, each process tries
to find a neighbor node u to match using the heavy edge matching heuristic.
There are three cases for u: (1) if u is stored locally, then the matching is com-
pleted immediately; (2) if the round is odd and v < u or the round is even and
v > u, the process sends a matching request to the process owning u; or (3)
otherwise, the match is deferred to the next round. In the second step, each pro-
cess responds to its matching requests. Processes break conflicts arbitrarily and
notify senders on whether their matching requests were successful. Heavy edge
matching terminates when some large fraction of the nodes has been matched.

Initial partitioning. ParMetis does not use PMetis for its initial partitioning
phase. Instead, it uses the following parallel algorithm: all the pieces of the
graph are scattered to all threads using an all-to-all broadcast operation. Then,
each process explores a single path of the recursive bisection tree. The recursive
bisection is based on nested dissection [4].

Refinement. The random k-way refinement algorithm is parallelized similarly to
heavy edge matching. The algorithm runs in rounds. Each round is divided into
two steps. In the first step, nodes can only be moved to higher partitions. During
the second step, nodes can only be moved to lower partitions. This alternation
pattern helps avoid situations where moves of nodes to new partitions, when

Parallel Graph Partitioning on Multicore Architectures 251

considered in isolation, would decrease the edge cut but, when considered en
masse, actually increase the overall edge cut.

ParMetis also implements optimizations specific to the message-passing pro-
gramming model. It coalesces small messages into larger messages, and it detects
situations where the graph can be redistributed to a smaller set of processes.

3 Amorphous Data-Parallelism

Amorphous data-parallelism is a form of parallelism that arises in irregular algo-
rithms that operate on complex data structures like graphs [12]. At each point
during the execution of such an algorithm, there are certain nodes or edges in
the graph where computation might be performed. Performing a computation
may require reading or writing other nodes and edges in the graph. The node
or edge on which a computation is centered is called an active element, and the
computation itself is called an activity. It is convenient to think of an activity
as resulting from the application of an operator to the active node. We refer to
the set of nodes and edges that are read or written in performing the activity as
the neighborhood of that activity. Note that in general, the neighborhood of an
active node is distinct from the set of its neighbors in the graph. Activities may
modify the graph structure of the neighborhood by adding or removing graph
elements.

In general, there are many active nodes in a graph, so a sequential implemen-
tation must pick one of them and perform the appropriate computation. In some
algorithms such as Metis, the implementation is allowed to pick any active node
for execution. We call these algorithms unordered algorithms. In contrast, other
algorithms dictate an order in which active nodes must be processed. We call
these ordered algorithms.

A natural way to program these algorithms is to use the Galois programming
model [10], which is a sequential, object-oriented programming model (such as
Java) augmented with two Galois set iterators :

– Unordered-set iterator: foreach (e : Set S) { B(e) }
The loop body B(e) is executed for each element e of set S. The order in which
iterations execute is indeterminate and can be chosen by the implementa-
tion. There may be dependences between the iterations. When an iteration
executes, it may add elements to S.

– Ordered-set iterator: foreach (e : OrderedSet S) { B(e) }
This construct iterates over an ordered set S. It is similar to the unordered
set iterator above, except that a sequential implementation must choose a
minimal element from set S at every iteration. When an iteration executes,
it may add new elements to S.

Opportunities for exploiting parallelism arise if there are many active elements
at some point in the computation, each one is a site where a processor can
perform computation. When active nodes are unordered, multiple active nodes
may be processed concurrently as long as their neighborhoods do not overlap.

252 X. Sui et al.

For ordered active elements, there is an additional constraint that activities must
appear to commit in the same order as the ordering on the set elements.

Definition 1. Given a set of active nodes and an ordering on active nodes,
amorphous data-parallelism is the parallelism that arises from simultaneously
processing active nodes, subject to neighborhood and ordering constraints.

Amorphous data-parallelism is a generalization of conventional data-parallelism
in which (1) concurrent operations may conflict with each other, (2) activities
can be created dynamically, and (3) activities may modify the underlying data
structure.

4 The Galois System

The Galois system is a set of data structures and a runtime system for Java that
allows programs to exploit amorphous data-parallelism. The runtime system
uses an optimistic parallelization scheme, and the data structures implement
the necessary features for optimistic execution: conflict detection and rollback.

Data structure library. The system provides a library of concurrent implemen-
tations of data structures, such as graphs, maps, and sets, which are commonly
used in irregular algorithms. Programmers can either use one of the existing
implementations or provide new ones. For a data structure implementation to
be suitable for the Galois system it must satisfy three properties: (1) operations
on the data structure must appear to execute atomically, (2) it should enforce
the appropriate neighborhood constraints, and (3) it should enable rollback in
case of conflicts.

Execution Model. The data structures are stored in shared-memory, and ac-
tive nodes are processed by some number of threads. A free thread picks an
arbitrary active node and speculatively applies the operator to that node. Each
data structure ensures that its neighborhood constraints are respected. Note that
this is performed by the library code not the application code. If a neighborhood
constraint is violated, a conflict is reported to the runtime system, which rolls
back one of the conflicting activities. To enable rollback, each library method
that modifies a data structure makes a copy of the data before modification.
Like lock manipulation, rollbacks are a service implemented by the library and
runtime system.

Runtime System. The Galois runtime system coordinates the parallel execution
of the application. A foreach construct is executed by some number of threads.
Each thread works on an active node from the Galois iterator and executes
speculatively, rolling back the activity if needed. Library code registers with the
runtime to ensure that neighborhood conflicts and rollbacks are implemented
correctly.

Parallel Graph Partitioning on Multicore Architectures 253

5 GMetis

In this section, we show how the Galois system can be used to parallelize Metis.
Parallelization proceeds in three steps: (1) we identify instances of amorphous
data-parallelism, (2) we modify those instances to use a Galois set iterator, and
(3) we modify the algorithm to use the graph data structure from the Galois
library. Once we identify the amorphous data-parallelism loops, the subsequent
steps (2–3) are straightforward.

Coarsening. The heavy edge matching algorithm is amorphous data-parallel.
All the graph nodes are active nodes, and the neighborhood of an active node
consists of itself and its direct neighbors in the graph. Nodes can be processed
in any order, so this is an unordered algorithm.

Creating a coarser graph is also amorphous data-parallel. All the graph nodes
in the finer graph are the active elements, and nodes in the coarser graph can be
created in any order. When processing an active node n, an activity will access
the neighbors of n and the neighbors of the node with which n matches. Edges
are added between this set of nodes and the corresponding set in the coarser
graph. This entire set of elements is the neighborhood of an activity.

Initial Partitioning. This phase generally accounts for only a small fraction of
the overall runtime of Metis, so we did not investigate parallelizing it.

Refinement. Random k-way refinement is amorphous data-parallel. The bound-
ary nodes can be processed in any order. They are the active nodes. When
moving a node n to a neighbor partition, the partitioning information of the
direct neighbors of n has to be updated. Thus, the neighborhood of each active
node consists of these direct neighbors.

5.1 Optimizations

Graph Representation. The graphs in the Galois library are object-based adja-
cency lists. The graph keeps a list of node objects, and each node object keeps
a list of its neighbors. However, this implementation is very costly compared
to the compressed sparse row (CSR) format based on arrays used in Metis (see
Figure 4). For instance, a serial version of Metis using Galois and using object-
based adjacency lists is about an order of magnitude slower than the standard
implementation of Metis written in C (see Section 6). Note that this includes
the overhead of Java over C. This slowdown has nothing to do with parallelism
per se but rather is a sequential optimization that is difficult to perform starting
from the Galois library of graph implementations. The API of the CSR graph is
incompatible with the more general graph API used by the library.

We have developed a variant of the Galois parallelization of Metis, which
differs only in that it has been modified by hand to use a CSR graph. It is this
variant that will be our main point of comparison in Section 6.

254 X. Sui et al.

One-shot. Each one of the instances of amorphous data-parallelism identified
above benefits from the one-shot optimization [11]. Briefly, if the neighborhood
of an activity can be determined before executing it, then the neighborhood
constraints of the activity can evaluated eagerly. This provides three benefits:
(1) no rollback information needs to be stored during the execution of the activity
because the activity is guaranteed to complete after the initial check, (2) the cost
of an aborted activity is less because conflicts are found earlier, and (3) there
are no redundant checks of neighborhood constraints because all the constraints
are checked at once.

Fig. 4. The graph data structure of GHMetis is a variation of the compressed sparse
row (CSR) format that allows creating the graph in parallel because the maximum
degree of a node is specified beforehand.

6 Evaluation

6.1 Methodology

To evaluate the impact of exploiting amorphous data-parallelism in graph par-
titioning, we implemented a version of Metis written in Java and using the
Galois system to exploit amorphous data-parallelism (GMetis) and a version of
GMetis that additionally implements the data structure optimization mentioned
in Section 5.1 by hand (GHMetis). We compared the performance of our imple-
mentations with two publicly available graph partitioners: the sequential Metis
program and ParMetis, a MPI parallelization of Metis by the same authors.

Table 1 summarizes the graph partitioners that we evaluated. As we described
before, Metis and ParMetis have the same algorithm framework, but they differ
in (1) heuristics, for example, ParMetis gives priority to internal nodes owned by
a process; (2) parameter values, such as the coarsening threshold; and (3) initial
partitioning algorithm. We configured Metis to use the heavy edge matching
(HEM) and random k-way refinement (KWAYRANDOM) options. This makes
the implementation similar to the algorithm described in [7]. GMetis is adapted
directly from Metis (with the same heuristics and parameter values) but (1)
with a general-purpose graph implementation, (2) with a different algorithm to
randomize visiting nodes, and (3) written in Java. GHMetis is a modification of
GMetis that replaces the general-purpose graph implementation with the CSR
representation described in Section 5.1.

Parallel Graph Partitioning on Multicore Architectures 255

We conducted two sets of experiments. A small-scale experiment with all
four partitioners, and a large-scale experiment with only Metis, ParMetis, and
GHMetis. For all experiments, we partitioned the input graph into 64 partitions.
We transformed the input graphs or sparse matrices into suitable inputs to graph
partitioning by making them symmetric with unit edge weights and removing
all self edges.

For the small-scale experiment, we selected three graphs of road networks from
the University of Florida Sparse Matrix Collection [2] and from the DIMACS
shortest path competition [3]. For the large-scale experiment, we chose the 15
inputs from the University of Florida collection with the largest number of edges
(number of non-zeros) whose fraction of edges to nodes was less than 20 (to
select sparse matrices). The choice of cutoff was arbitrary, but, generally, more
dense matrices would not benefit from exploiting amorphous data-parallelism
because the number of conflicts would be high. In cases where there were multiple
matrices from the same problem family, we selected only the largest input of the
family except for the wikipedia family of inputs where we selected the smallest
input because we had trouble running the largest input with Metis. Table 2
shows the matrices selected.

We ran all the implementations on the same test machine: a Sun Fire X2270
running Ubuntu Linux 8.04.4 LTS 64-bit. The machine contains two quad-core
2.93GHz Intel Xeon X5570 processors. The two CPUs share 24GB of main
memory. Each core has a 32KB L1 cache and a unified 256KB L2 cache. Each
processor has an 8MB L3 cache that is shared among the cores.

We used Metis 5.0pre2 and ParMetis 3.1.1 compiled with gcc 4.2.4 and with
the default 64-bit build options. For both programs, we configured the graph
index data type to be a 64-bit integer as well. With ParMetis, we used Open-
MPI 1.4.2, and multiple MPI processes were launched on the same machine.
For GMetis and GHMetis, we used the Sun JDK 1.6.0 to compile and ran the
programs with a heap size of 20GB. To control for JIT compilation, we ran each
input 5 times within the same JVM instance and report the median run time.

Table 1. Summary of graph partitioning algorithms evaluated

Language Parallelization Graph Data Structure Adapted From
Metis C CSR -
ParMetis C MPI Distributed CSR -
GMetis Java Galois Object-based adjacency list Metis
GHMetis Java Galois CSR GMetis

6.2 Results

Tables 5 and 3 show the results from the small-scale experiment. The results are
typical of many of the trends we see in the large-scale experiment as well. We
define scalability as the runtime relative to the single-threaded runtime of the
same program. Speedup is the runtime relative to the runtime of Metis.

256 X. Sui et al.

Table 2. Summary of inputs used in evaluation. The top portion lists the small-scale
inputs; the bottom portion lists the large-scale inputs. All inputs are from [2] except
USA-road-d.W, which is from [3].

|V | |E| |E|/|V | Description
roadNet-CA 1,965,206 2,766,607 1.41 Road network of California
roadNet-TX 1,379,917 1,921,660 1.39 Road network of Texas
USA-road-d.W 6,262,104 7,559,642 1.21 Road network of western USA
as-Skitter 1,696,415 11,095,298 6.54 Internet topology graph
cage15 5,154,859 47,022,346 9.12 DNA electrophoresis
circuit5M dc 3,523,315 8,562,474 2.43 Large circuit, DC analysis
cit-Patents 3,774,768 16,518,947 4.38 Citation network among US patents
Freescale1 3,428,754 8,472,832 2.47 Circuit problem
GL7d19 1,955,309 37,322,139 19.09 Differentials of Voronoi complex
kkt power 2,063,494 6,482,320 3.14 Nonlinear optimization
memchip 2,707,524 6,621,370 2.45 Memory chip
patents 3,750,822 14,970,766 3.99 NBER US patent citations
rajat31 4,690,002 7,813,751 1.67 Circuit simulation matrix
rel9 5,921,786 23,667,162 4.00 Relations
relat9 9,746,232 38,955,401 4.00 Relations
Rucci1 1,977,885 7,791,154 3.94 Ill-conditioned least-squares problem
soc-LiveJournal1 4,846,609 42,851,237 8.84 LiveJournal online social network
wikipedia-20051105 1,598,534 18,540,603 11.60 Link graph of Wikipedia pages

Table 3. Time, edge cut and balance of ParMetis, GMetis and GHMetis as a function
of input and number of threads. All times are in milliseconds. Metis results (Time,
Cut, Balance) for roadNet-CA, roadNet-TX and USA-road.d.W are (1644, 6010, 1.02),
(1128, 4493, 1.02), and (5704, 3113, 1.01) respectively.

ParMetis GMetis GHMetis
T Time Cut Bal. Time Cut Bal. Time Cut Bal.

roadNet-CA 1 1,195 5,752 1.03 16885 9886 1.03 3785 5525 1.02
2 1,340 6,455 1.04 12982 9495 1.03 2307 5882 1.02
4 684 6,341 1.04 9226 9401 1.02 1686 5605 1.02
8 391 6,472 1.03 7540 9707 1.03 1367 5865 1.03

roadNet-TX 1 791 4,426 1.03 12067 4760 1.03 2570 4592 1.02
2 970 4,715 1.05 8114 4443 1.02 1706 4237 1.03
4 473 4,705 1.05 6517 4433 1.03 1185 4165 1.02
8 260 4,611 1.04 4901 4329 1.02 980 4232 1.02

USA-road-d.W 1 4,781 11,012 1.18 68151 3057 1.01 15384 2930 1.02
2 6,230 6,382 1.23 47598 3007 1.01 8457 2951 1.00
4 4,449 5,868 1.22 28064 2951 1.00 5754 2971 1.01
8 2,944 5,455 1.22 21691 3050 1.00 4394 3175 1.01

For single-threaded runs, GMetis is about five times slower than GHMetis,
and GHMetis is about twice as slow as Metis and ParMetis. The scalability
of ParMetis, GMetis and GHMetis is similar for the smaller inputs, roadNet-
CA and roadNet-TX, but for USA-road-d.W, GMetis and GHMetis have better
scalability than ParMetis. In the large-scale experiments, the scalability gap

Parallel Graph Partitioning on Multicore Architectures 257

Threads/Processes

S
ca

la
bi

lit
y

1.0

1.5

2.0

2.5

3.0

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

kind
● ghmetis

gmetis
parmetis

(a)
Threads/Processes

S
pe

ed
up

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

●

●

●

●

●

●

●
●

1 2 3 4 5 6 7 8

kind
● ghmetis

parmetis

(b)

Threads/Processes

S
ca

la
bi

lit
y

1.0

1.5

2.0

2.5

3.0

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

kind
● ghmetis

gmetis
parmetis

(c)
Threads/Processes

S
pe

ed
up

1

2

3

4

●

●
●

●

●
●

●

●

1 2 3 4 5 6 7 8

kind
● ghmetis

parmetis

(d)

Threads/Processes

S
ca

la
bi

lit
y

1.0

1.5

2.0

2.5

3.0

3.5

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

kind
● ghmetis

gmetis
parmetis

(e)
Threads/Processes

S
pe

ed
up

0.5

1.0

1.5

●

●

●

●
●

●

●

●

1 2 3 4 5 6 7 8

kind
● ghmetis

parmetis

(f)

Fig. 5. Scalability and speedup of ParMetis, GMetis and GHMetis. Scalability is
runtime relative to runtime with one thread/process. Speedup is runtime relative to
runtime of sequential Metis. (a) and (b) are scalability and speedup for roadNet-CA.
(c) and (d) are scalability and speedup for roadNet-TX. (e) and (f) are scalability and
speedup for USA-road-d.W.

between GHMetis and ParMetis becomes more pronounced. For USA-road-d.W,
ParMetis produces worse partitions in terms of balance and edge cut than the
other three partitioners. We believe this is due to the different initial partitioning
phase. Also, ParMetis uses a different partitioning strategy when run with one
process than with more than one process. This may explain the much larger edge
cut in the one process case. ParMetis has better speedup than GHMetis largely

258 X. Sui et al.

Table 4. Performance of Metis, ParMetis and GHMetis. m/t is speedup, runtime
relative to sequential Metis (m). t/t1 is scalability, runtime relative to single-threaded
runtime. All times are in milliseconds. Blank entries correspond to runs that terminated
abnormally or exceeded the timeout of 30 minutes.

Metis Best ParMetis Best GHMetis
Time m/t t1/t m/t t1/t

as-Skitter 273,581 14.86 2.50
cage15 23,677 2.86 2.31 1.04 3.16
circuit5M dc 3,164 1.63 1.38 1.26 3.20
cit-Patents 58,740 4.34 1.62 2.22 2.93
Freescale1 2,944 1.90 1.60 1.22 3.61
GL7d19 168,199 4.51 6.64 2.43 2.50
kkt power 10,445 3.80 1.34 1.22 2.91
memchip 2,368 2.14 1.84 1.35 3.27
patents 51,695 4.10 1.65 2.08 2.91
rajat31 4,044 4.27 3.49 1.35 3.37
rel9 1.13
relat9 1,106,377 2.63 1.06
Ruccil 1,065,551 20.26 1.03 48.45 3.15
soc-LiveJournal1 304.295
wikipedia-20051105 358,030 8.98 2.54
Geomean 3.60 1.77 2.80 2.98

Table 5. Balance and EdgeCut of Metis, ParMetis and GHMetis. Blank entries corre-
spond to runs that terminated abnormally or exceeded the timeout of 30 minutes.

Metis Best ParMetis Best GHMetis
Cut Bal. Cut Bal. Cut Bal.

as-Skitter 3,054,856 1.03 1,991,020 1.03
cage15 4,536,885 1.03 4,697,417 1.05 4,629,593 1.03
circuit5M dc 13,187 1.03 14,764 1.05 14,133 1.02
cit-Patents 3,036,598 1.02 3,258,823 1.05 2,900,222 1.02
Freescale1 13,429 1.03 15,093 1.05 13,828 1.02
GL7d19 31,168,010 1.03 34,248,358 1.26 31,295,495 1.03
kkt power 453,357 1.02 578,264 1.04 392,115 1.01
memchip 16,235 1.02 18,524 1.05 16,534 1.02
patents 2,672,325 1.02 2,841,655 1.05 2,550,783 1.01
rajat31 27,391 1.01 27,907 1.04 26,851 1.00
rel9 12,774,163 1.05
relat9 22,417,154 1.03 21,532,960 1.05
Ruccil 1,890,352 1.03 1,928,212 1.01 1,074,278 1.00
soc-LiveJournal1 13,838,247 1.03
wikipedia-20051105 10,081,144 1.03 9,389,056 1.03
Geomean 1.02 1.06 1.02

Parallel Graph Partitioning on Multicore Architectures 259

due to starting with a better single-threaded runtime. Recall that GHMetis is
implemented in Java whereas ParMetis and Metis are implemented in C.

Tables 4 and 5 show the results from the large-scale experiment. Instead of
showing results for each number of threads/processes, we only show the best per-
forming result for ParMetis and GHMetis and its corresponding edge cut and
balance. The trends from the small-scale experiment show up here as well. GH-
Metis achieves better scalability and produces better partitions than ParMetis,
but ParMetis is faster than GHMetis. In fact, it is often faster than Metis as
well. Observe that the speedup of ParMetis is greater than its scalability. Over a
large set of inputs, we see that GHMetis scales better than ParMetis, suggesting
that amorphous data-parallelism is a fruitful form of parallelism to exploit.

The missing runs for GHMetis are generally due to lack of memory. They
occur on larger inputs when GHMetis spends most of its time doing garbage
collection. For inputs as-Skitter, rel9 and Ruccil, Metis performs particularly
poorly compared to ParMetis or GHMetis. We believe that this is due to the
randomization strategy used in Metis, which causes the coarsening phase to stop
early and consequentially produces a very large input to the initial partitioning
phase. When we used the same randomization strategy in GHMetis, we observed
similarly poor performance.

7 Conclusion

Graph partitioning is an important problem in parallel computing, and we have
shown how one common graph partitioning application, Metis, naturally exhibits
a form of parallelism that we call amorphous data-parallelism. Using the Galois
system, we can exploit this parallelism to achieve reasonable parallel scalability
from a sequential specification, and this scalability is comparable to that of
an explicitly parallel implementation over a suite of large test matrices. An
advantage of the Galois version is that it is derived directly from the sequential
application.

Our näıve implementation still does not obtain consistent speedup over se-
quential Metis, but we have shown how changing the graph data structure bridges
the gap considerably. In addition, we have not parallelized the initial partition-
ing phase of the algorithm. We also believe that a significant overhead exists
because our implementation is in Java, whereas Metis is hand-tuned C.

The previous approaches to parallelizing graph partitioning [1,6,13] are com-
plementary to our approach. On a hybrid architecture consisting of multiple
multicore machines, amorphous data-parallelism can exploit intra-machine par-
allelism while message-passing can exploit inter-machine parallelism.

References

1. Chevalier, C., Pellegrini, F.: Pt-scotch: A tool for efficient parallel graph ordering.
Parallel Computing 34(6-8), 318–331 (2008)

2. Davis, T.A., Hu, Y.F.: The university of florida sparse matrix collection (in sub-
mission). ACM Transactions on Mathematical Software (2010)

260 X. Sui et al.

3. DIMACS. 9th dimacs implementation challenge—shortest paths (2005),
http://www.dis.uniroma1.it/~challenge9

4. George, A.: Nested dissection of a regular finite element mesh. SIAM Journal on
Numerical Analysis 10(2), 345–363 (1973)

5. Gupta, A.: An evaluation of parallel graph partitioning and ordering software on
a massively parallel computer. Technical Report RC25008 (W1006-029), IBM Re-
search Division, Thomas J. Watson Research Center (2010)

6. Karypis, G., Kumar, V.: A coarse-grain parallel formulation of multilevel k-way
graph-partitioning algorithm. In: Proc. 8th SIAM Conference on Parallel Process-
ing for Scientific Computing (1997)

7. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing 48(1), 96–129 (1998)

8. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1999)

9. Kernighan, B.W., Lin, S.: An effective heuristic procedure for partitioning graphs.
The Bell System Technical Journal, 291–308 (February 1970)

10. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.:
Optimistic parallelism requires abstractions. SIGPLAN Not. (Proceedings of PLDI
2007) 42(6), 211–222 (2007)

11. Mendez-Lojo, M., Nguyen, D., Prountzos, D., Sui, X., Hassaan, M.A., Kulkarni, M.,
Burtscher, M., Pingali, K.: Structure-driven optimizations for amorphous data-
parallel programs. In: Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 3–14 (2010)

12. Pingali, K., Kulkarni, M., Nguyen, D., Burtscher, M., Mendez-Lojo, M., Prountzos,
D., Sui, X., Zhong, Z.: Amorphous data-parallelism in irregular algorithms. regular
tech report TR-09-05, The University of Texas at Austin (2009)

13. Walshaw, C., Cross, M.: Jostle: Parallel multilevel graph-partitioning software—
an overview. In: Magoules, F. (ed.) Mesh Partitioning Techniques and Domain
Decomposition Techniques, pp. 27–58. Civil-Comp. Ltd. (2007)

http://www.dis.uniroma1.it/~challenge9

The STAPL pView�

Antal Buss, Adam Fidel, Harshvardhan, Timmie Smith,
Gabriel Tanase, Nathan Thomas, Xiabing Xu, Mauro Bianco,

Nancy M. Amato, and Lawrence Rauchwerger

Parasol Lab, Dept. of Computer Science and Engineering, Texas A&M University
stapl@cse.tamu.edu

Abstract. The Standard Template Adaptive Parallel Library (STAPL)
is a C++ parallel programming library that provides a collection of
distributed data structures (pContainers) and parallel algorithms (pAl-
gorithms) and a generic methodology for extending them to provide cus-
tomized functionality. STAPL algorithms are written in terms of pViews,
which provide a generic access interface to pContainer data by abstract-
ing common data structure concepts. Briefly, pViews allow the same
pContainer to present multiple interfaces, e.g., enabling the same pMa-
trix to be ‘viewed’ (or used) as a row-major or column-major matrix, or
even as a vector. In this paper, we describe the stapl pView concept and
its properties. pViews generalize the iterator concept and enable paral-
lelism by providing random access to, and an ADT for, collections of
elements. We illustrate how pViews provide support for managing the
tradeoff between expressivity and performance and examine the perfor-
mance overhead incurred when using pViews.

1 Introduction

Decoupling of data structures and algorithms is a common practice in generic
programming. stl, the C++ Standard Template Library, obtains this abstrac-
tion by using iterators, which provide a generic interface for algorithms to access
data that is stored in containers. This mechanism enables the same algorithm
to operate on multiple containers. In stl, different containers support various
types of iterators that provide appropriate functionality for the data structure,
and algorithms can specify which types of iterators they can use. For example,

� This research supported in part by NSF awards CRI-0551685, CCF-0833199, CCF-
0830753, IIS-096053, IIS-0917266, NSF/DNDO award 2008-DN-077-ARI018-02, by
the DOE NNSA under the Predictive Science Academic Alliances Program by grant
DE-FC52-08NA28616, by THECB NHARP award 000512-0097-2009, by Chevron,
IBM, Intel, Oracle/Sun and by Award KUS-C1-016-04, made by King Abdullah
University of Science and Technology (KAUST). This research used resources of the
National Energy Research Scientific Computing Center, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. Tanase is now a Research Staff Member at IBM T.J. Watson Research
Center. Bianco is now a scientist at the Swiss National Supercomputing Centre.

K. Cooper, J. Mellor-Crummey, and V. Sarkar (Eds.): LCPC 2010, LNCS 6548, pp. 261–275, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

stapl@cse.tamu.edu

262 A. Buss et al.

algorithms requiring write operations cannot work on input iterators and lists
do not support random access iterators. The major capability provided by the
iterator is a mechanism to traverse the data of a container.

The Standard Template Adaptive Parallel Library (stapl) [3] provides build-
ing blocks for writing parallel programs – parallel algorithms (pAlgorithms),
parallel and distributed containers (pContainers), and pViews to abstract data
accesses to pContainers. pAlgorithms are represented in stapl as task graphs
called pRanges. The stapl runtime system includes a communication library
(ARMI) and an executor that executes pRanges. The stapl pView generalizes
the iterator concept by providing an abstract data type (ADT) for the data it
represents. While an iterator corresponds to a single element, a pView corre-
sponds to a collection of elements. Also, while an iterator primarily provides a
traversal mechanism, pViews provide a variety of operations as defined by the
ADT. For example, all stapl pViews support size() operations that provide the
number of elements represented by the pView. A stapl pView can provide oper-
ations that return new pViews. For example, a pMatrix supports access to rows,
columns, and blocks of its elements through row, column and blocked pViews,
respectively.

pViews are designed to enable parallelism. In particular, pViews provide ran-
dom access to partitioned collections of elements of each ADT supported by
stapl. This characteristic is essential for the scalability of stapl programs. The
size of these collections can be dynamically controlled and typically depends on
the desired degree of parallelism. For example, the pList pView provides con-
current access to segments of the list, where the number of segments could be set
to match the number of parallel processes. The pView provides random access
to a partitioned data space. To mitigate the potential loss of locality incurred
by the flexibility of the random access capability, pViews provide, to the degree
possible, a remapping mechanism of a user specified pView to the container’s
physical distribution (known as the native pView).

In this paper, we describe the stapl pView concept and its properties. As
outlined above, critical aspects of the pView are:

– stapl pViews generalize the iterator concept — a pView corresponds to a
collection of elements and provides an ADT for the data it represents.

– stapl pViews enable parallelism — this is done by providing random ac-
cess to the elements, and support for managing the tradeoff between the
expressivity of the views and the performance of the parallel execution.

2 STAPL Overview

stapl [3,20,15,16] is a framework for parallel C++ code development (Figure 1).
Its core is a library of parallel algorithms (pAlgorithms) and distributed data
structures (pContainers)[18] that have interfaces similar to the (sequential)
C++ standard library (stl) [12]. Analogous to stl algorithms that use iterators,
stapl pAlgorithms are written in terms of pViews so that the same algorithm
can operate on multiple pContainers.

The STAPL pView 263

User Application Code

pAlgorithms pViews

pRange

Run-time System

Pthreads, OpenMP, MPI, Native, ...
A

da
pt

iv
e

F
ra

m
ew

or
k

Scheduler Executor Performance
Monitor

ARMI Communication
 Library

pContainers

Fig. 1. STAPL Overview

pAlgorithms are represented by pRanges. Briefly, a pRange is a graph whose
vertices are tasks and edges are dependencies, if any, between tasks. A task
includes both work (workfunctions) and data (from pContainers, generically
accessed through pViews). The executor, itself a distributed shared object, is
responsible for the parallel execution of computations represented by pRanges.
Nested parallelism can be created by invoking a pAlgorithm from within a task.

stapl pContainers are distributed, thread-safe, concurrent objects, i.e.,
shared objects that provide parallel methods that can be invoked concurrently.
They are composable and extendible via inheritance. Currently, stapl provides
counterparts of all stl containers (e.g., pArray, pVector, pList, pMap, etc.), and
two pContainers that do not have stl equivalents: parallel matrix (pMatrix)
and parallel graph (pGraph). pContainers include a set of bContainers, that
are the basic storage components for the elements, and distribution information
that manages the distribution of the elements across the parallel machine.

pContainers provide methods corresponding to the stl container methods,
and some additional methods specifically designed for parallel use. For example,
stapl provides an insert async method that can return control to the caller
before its execution completes, or an insert anywhere that does not specify
where an element is going to be inserted and is executed asynchronously. While
a pContainer’s data may be distributed, pContainers offer the programmer
a shared object view, i.e., they are shared data structures with a global ad-
dress space. This is supported by assigning each pContainer element a unique
global identifier (GID) and by providing each pContainer an internal transla-
tion mechanism that can locate, transparently, both local and remote elements.
The physical distribution of pContainer data can be determined automatically
by stapl or it can be user-specified.

The runtime system (RTS) and its communication library ARMI (Adaptive
Remote Method Invocation) provide the interface to the underlying operating
system, native communication library and hardware architecture. ARMI uses
the remote method invocation (RMI) communication abstraction to hide the
lower level implementation (e.g., MPI, OpenMP, etc.). The RTS provides lo-
cations as an abstraction of processing elements in a system. A location is a
component of a parallel machine that has a contiguous memory address space
and has associated execution capabilities (e.g., threads).

264 A. Buss et al.

3 Related Work

The view concept has been used in different areas.
One of first uses of the view concept was in database systems. In particular,

views can be defined by a database query and used to represent a virtual table
in a relational database or an entity in an object oriented database. Generally,
database views are read-only. However, views can be updatable (writable) if the
database supports reverse mappings from a view to the database. Some systems
implement updatable views using an “instead of” trigger that is executed when
an insert, delete or update over the view is executed. A similar approach is
presented in [1] where lenses implement bidirectional transformations.

GIL (Generic Image Library) [2,8] is a C++ image library from Adobe for
image manipulation. It provides the concept of an image view, which generalizes
STL’s range concept [13] to multiple dimensions. GIL’s image views are special-
ized for operating on two-dimensional images which may have different storage
distributions in memory, but are always in the same address space.

The VTL (View Template Library) [21] project worked with views as an
adaptor layer on top of stl. This project, which has been inactive since 2000,
was heavily inspired by the Views library of Jon Seymour [17]. A VTL view is a
container adaptor, that provides a container interface to access a portion of the
data, to rearrange the data, to transform data, or to combine data. The stapl
pView provides similar capabilities for pContainers.

The view concept has been used in some PGAS (Partitioned Global Address
Space) languages. X10 [6] provides the notion of a region to specify a section
of data. Chapel [5] provides the user a global view over a container, specifies
subarrays with domains, and uses iterators [10] as abstractions for algorithms.
stapl pViews provide a container interface in addition to support for iterators.

The Hierarchically Tiled Array (HTA) data type [7] provides a rich inter-
face to specify array views. It also implements advanced support for handling
the boundary communication of common patterns arising in scientific comput-
ing. stapl overlap pViews are similar to HTA overlapped tiling, though stapl
supports arbitrary, static and dynamic data types.

4 STAPL pView Concept

In this section, we introduce the pView concept and explain how it can be ex-
ploited in the parallel and distributed environment of stapl.

A pView is a class that defines an abstract data type (ADT) for the collec-
tion of elements it represents. As an ADT, a pView provides operations to be
performed on the collection, such as read, write, insert, and delete.

pViews have reference semantics, meaning that a pView does not own the
actual elements of the collection but simply references to them. The collection is
typically stored in a pContainer to which the pView refers; this allows a pView
to be a relatively light weight object as compared to a container. However, the
collection could also be another pView, or an arbitrary object that provides a

The STAPL pView 265

container interface. With this flexibility, the user can define pViews over pViews,
and also pViews that generate values dynamically, read them from a file, etc.

All the operations of a pView must be routed to the underlying collection. To
support this, a mapping is needed from elements of the pView to elements of
the underlying collection. This is done by assigning a unique identifier to each
pView element (assigned by the pView itself); the elements of the collection must
also have unique identifiers. Then, the pView specifies a mapping function from
the pView’s domain (the union of the identifiers of the pView’s elements) to the
collection’s domain (the union of the identifiers of the collection’s elements).

More formally, a pView V is a tuple

V def
= (C,D,F ,O) (1)

where C represents the underlying typed collection, D defines the domain of V ,
F represents the mapping function from V ’s domain to C’s domain, and O is the
set of operations provided by V , which must also be supported by C.

To support parallel use, the C and D components of the pView can be parti-
tioned so that they can be used in parallel. Also, most generally, the mapping
function F and the operations O may differ for each component of the partition.
That is, C = {c0, c1, . . . , cn−1}, D = {d0, d1, . . . , dn−1}, F = {f0, f1, . . . , fn−1},
and O = {o0, o1, . . . , on−1}. This is a very general definition and not all com-
ponents are necessarily unique. For example, the mapping functions fi and the
operations oi may often be the same for all 0 ≤ i < n. The tuples (ci, di, fi, oi)
are called the base views (bViews) of the pView V . The pView supports par-
allelism by enabling random access to its bViews, which can then be used in
parallel by pAlgorithms.

Note that we can generate a variety of pViews by selecting appropriate com-
ponents of the tuple. For instance, it becomes straightforward to define a pView
over a subset of elements of a collection, e.g., a pView of a block of a pMatrix
or a pView containing only the even elements of an array. As another example,
pViews can be implemented that transform one operation into another. This is
analogous to backinserter iterators in stl in which a write operation is trans-
formed into a pushback in a container.

Example. A common concept in generic programming is a one-dimensional array
of size n supporting random access. The pView corresponding to this has an
integer domain D = [0, n) and operations O including the random access read
and write operators. This pView can be applied to any container by providing a
mapping function F from the domain D = [0, n) to the desired identifiers of the
container. If the container provides the operations, then they can be inherited
using the mechanisms provided in the base pView. If new behavior is needed,
then the developer can implement it explicitly.

Composition of views. Since a pView and the collection it represents can be
used interchangeably, the pView definition (Equation 1) naturally enables com-
position, i.e., pViews defined over other pViews. Figure 2(a) shows the construc-
tion of pViews over other pViews, and the possibility of having multiple pViews

266 A. Buss et al.

vp ≡ (c0, d0, fident, oc)

vq ≡ (vp, dq, f
p
q , oq)

vs ≡ (vq, ds, f
q
s , os)

vr ≡ (vp, dr, f
p
r , or)

(a)

Overlap view of A[0, 10]
For c = 2, l = 2, and r = 1,

ith element is A[c · i, c · i + 4]

elements of the overlap view:
A[0, 4], A[2, 6], A[4, 8], A[6, 10]

(b)

Fig. 2. (a) Example of construction of pViews over the same collection. vp is a pView

over the collection c0. vq and vr are two, possibly different, pViews over vp, and vs is
a pView over vq . (b) Example overlap pView for A[0, 10].

concurrently referencing the same container. Thus, composition makes possible
the representation of complex data organizations and naturally supports the
recursive partitioning of domains.

4.1 Useful Views

There are several types of pViews worthy of note because they enable optimiza-
tions or are useful in expressing computations.

By providing certain operations and not others, pViews can be classified as
read-only or write-only. This is analogous to the stl input and output iterators.

Some special cases of pViews are particularly useful in the context of parallel
programming. For instance the single-element partition, where the domain of
the collection is split into single elements and all mapping functions are iden-
tity functions. This partition enables maximum parallelism and is the default
partition adopted by stapl when calling a pAlgorithm.

Other important pViews include the balanced pView where the data is split
into a specified number of approximately equal-sized chunks, and the native
pView, which provides bViews that are aligned with the pContainer distribution.
These turn out to be very useful in the context of stapl.

Transform pViews apply a user specified function to the elements returned
from the collection. This feature can be used to change the value, type, or both,
of the returned element. Important aspects of the transform pView are that the
elements in the underlying collection are not modified and the result is computed
and made available only when an element accessed through the pView is actually
referenced in the program. In contrast, for example, a for each algorithm ap-
plied to a pContainer, would traverse and modify all elements of the container
within the relevant range.

There are also a number of useful views that have more complex elements.
One example is a zip pView, which takes two (or more) collections and provides
a pView where each element is a pair (or tuple) including an element from each
collection. Zip views are useful for expressing algorithms that operate on mul-
tiple collections. Another pView heavily used in stapl is the overlap pView, in
which one element of the pView overlaps another element of the view. This pView
is naturally suited for specifying many algorithms, such as adjacent differences,

The STAPL pView 267

Table 1. Major views implemented in stapl and corresponding operations.
tranform view implements an overridden read operation that returns the value pro-
duced by a user specified function, the other operations depends on the pView the
transform pView is applied to. insert any refers to the special operations provided by
stapl pContainers that insert elements in unspecified positions.

read write [] begin
end

insert
erase

insert
any

array 1d pview ✔ ✔ ✔ ✔

array 1d ro pview ✔ ✔ ✔

static list pview ✔ ✔

list view ✔ ✔ ✔ ✔ ✔

matrix pview ✔ ✔ ✔

graph pview ✔ ✔ ✔ ✔

strided 1D pview ✔ ✔ ✔ ✔

transform pview ✔ - -
balanced pview ✔ ✔ ✔

overlap pview ✔ ✔ ✔

native pview ✔ ✔ ✔

repeated pview ✔ ✔ ✔

string matching, etc. The repeated pView is a special case of an overlapped pView
in which each element includes the entire collection. As an example, we can define
an overlap pView for a one-dimensional array A[0, n−1] using three parameters,
c (core size), l (left overlap), and r (right overlap), so that the ith element of the
overlap pView vo[i] is A[c · i, c · i + l + c + r − 1]. See example in Figure 2(b).

5 The pView Class

The pView is an object that builds on the stapl pContainer framework. To cre-
ate a pView, the user specifies the partitioned collection (often a pContainer),
the partitioned domain D, and the mapping functions F , as (template) argu-
ments of the pView class, while the operations O must be implemented by the
class itself. All stapl pViews are derived from the core view templated base
class. This class provides constructors, and stores references to C, D, and F .

To ease the implementation of the basic operations, and thus the implemen-
tation of the generic pView concepts needed by stapl algorithms, the user
can derive the pView class from classes implementing those operations, e.g.,
a pContainer. Usually, the pView can directly invoke the pContainer methods.
An exception is the transform pView, where the read operation is implemented
as return F(container.operation(f(i), ...)) and F is the transformation
function, and f is the mapping function.

pViews in stapl. Table 1 shows a list of some pViews available in stapl. These
pViews are implemented using the schema discussed above, and new pViews can
be implemented and created in the same way. The native pView is a pView whose
partitioned domain D matches the data partition of the underlying pContainer,

268 A. Buss et al.

allowing data references to it to be local. The balanced pView partitions the
data set into a user specified number of pieces. The sizes of the pieces differs
by at most by one. This pView can be used to balance the amount of work in
a parallel computation. If stapl algorithms can use balanced or native pViews,
then performance is greatly enhanced.

Optimizations. There are trade-offs between the expressivity offered by the
pViews and performance. For this reason, the pViews are designed to allow the
implementation of different optimizations to improve the performance of data
access. Below, we present a few such examples.

The repeated composition of pViews, an important technique to develop new
pViews, can result in an increasing chain of indirect data references due to the
repeated composition of the mapping functions (Fs). In certain cases, such as
when where F is statically known, and has a relatively simple closed form expres-
sion, stapl can reduce the chain of indirections to one. For instance, composing
identity functions results in another identity function, while composing an arbi-
trary function F with an identity function is the same F .

Another important optimization is localization of memory references. stapl
pViews can determine which sections of consecutive references are local (within
the same address space). This allows the pView to use a much simpler, and thus
much faster mechanism to reference local data.

6 Results: Expressivity, Genericity, and Performance

In this section, we present experimental results to study the trade-offs between
the enhanced expressivity enabled by pViews and their performance. For this
purpose, we compare the performance of functionally equivalent stapl programs
written using pViews and C++ MPI programs.

We conducted our experimental studies on two architectures: an 832 processor
IBM cluster with p575 SMP nodes (16 cores per node) available at Texas A&M
University (called P5-cluster) and a 38,288 processors Cray XT4 with quad
core Opteron processors (4 cores per node) available at NERSC (called CRAY4-
cluster). The compiler used for the experiments was gcc (version 4.3.1 on P5-
cluster and version 4.4.1 on CRAY4-cluster) with the -O3 optimization
flag. In all experiments, a location contains a single processor, and the terms
can be used interchangeably.

Genericity. We can solve many problems using the stapl::count if(view,
pred) algorithm which takes an array 1D view and counts how many times the
referenced elements satisfy a user provided predicate pred.

For instance, we can compute π using the well known Monte Carlo method
[14]. Random points are generated inside the unit square and we count how
many of these fall inside the unit circle. The ratio between these and the total
number of points generated is π/4. The pView used to represent the input does
not need a reference to storage because the points can be generated on demand.
Hence, the container provided to the pView is a simple class that exports the

The STAPL pView 269

struct in_circle {
template<typename Reference>
bool operator()(Reference ref) const {

std::pair<double, double> val = ref;
return sqrt(pow(val.first,2.0) +

pow(val.second,2.0)) < 1.0;
}

}

void stapl_main(int argc, char** argv){
typedef array_1D_ro_view

<rand_gen_cont> rand_gen_view;

rand_gen_cont rgc(N);
rand_gen_view rgenv(rgc);

int result =
stapl::count_if(rgenv,in_circle());

double pi = 4*(result/(double)N);
}

(a)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 4 16 64 256 1024 4096 16384

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of processors

CRAY4-CLUSTER: Pi computation
 weak scaling 10M samples per location

Pi comp. (MPI)
Pi comp. (STAPL)

(c)

MPI_Init(&argc, &argv);
int P;

MPI_Comm_size(MPI_COMM_WORLD, &P);

N=N/P;

int pid;
MPI_Comm_rank(MPI_COMM_WORLD,&pid);

int cnt(0);
for (int i=0; i<N; ++i) {
double xcoord = drand48();
double ycoord = drand48();

double dist =
sqrt(pow(xcoord, 2.0)
+ pow(ycoord, 2.0));

if (dist < 1.0)
++cnt;

}

int res;
MPI_Reduce(&cnt,&res,1,MPI_INT,MPI_SUM,0,

MPI_COMM_WORLD);
MPI_Finalize();

double pi = 4*(res/(double)(N*P));

(b)

Fig. 3. Computing π. (a) stapl code using a view over a generator container. (b) MPI
version. (c) Execution times on CRAY4-cluster.

container interface and whose read method returns a randomly generated point
in the unit square. Passing this pView to stapl::count if, with a predicate
to check if the point lies within the unit circle, will execute the π computation.
We also evaluated an equivalent C++ MPI program for computing π. The code
snippets are shown in Figures 3(a) and 3(b), respectively. Note that the two
programs are comparable in terms of complexity for this embarrassingly parallel
algorithm. Figure 3(c) shows that the performance for the two implementations
is comparable, with the stapl program slightly outperforming the MPI version.

String matching can also be implemented by calling stapl::count if(view,
pred) with an appropriate pView and predicate. In this case, given a pattern
of length M , we create an overlap pView over the text, with a core of length
1, left overlap of size 0 and right overlap of size M − 1. This will give a pView
over all the sub-strings of size M of the input text. The code sample is shown
in Figure 4(a). In Figure 4(b), an MPI version of the program is shown. In this
case it becomes possible to appreciate the additional complexity of the MPI
code with respect to the stapl version, since in MPI the programmer must
take explicit care of the boundary regions (this is a special case of the use of
ghost nodes, a well known technique in parallel processing [11,7]). Figure 4(c)

270 A. Buss et al.

struct strmatch {
const string& S;
strmatch(const string& s): S(s) {}

template<typename View>
bool operator()(View v) const {

return equal(S.begin(),S.end(),
v.begin());

}
};

void stapl_main(int argc, char** argv) {
typedef stapl::p_array<char>

p_string_type;
typedef stapl::array_1D_view

<p_string_type> pstringView;
...
result=stapl::count_if(

stapl::overlap_view(text,
1,0,pattern.size()-1),
strmatch(pattern));

...
} (a)

 0

 0.5

 1

 1.5

 2

 2.5

 4 16 64 256 1024 4096 16384

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of processors

CRAY4-CLUSTER: String matching alg.
 weak scaling 10M chars. per location

best case (MPI)
worse case (MPI)

best case (STAPL)
worse case (STAPL)

(c)

int main(int argc, char** argv) {
...
MPI_Comm_size(MPI_COMM_WORLD, &P);

N=N/P;
std::vector<char> V(N);
int M=S.length();

for (int i=0; i <= N-M+1; ++i)
if (equal(S.begin(), S.end(),

V.begin()+i)) ++cnt;
if (pid>0)

MPI_Send((&V[0]), M-1, MPI_CHAR,
pid-1, 1, MPI_COMM_WORLD);

if (pid<P-1) {
vector<char> BUFF(2*(M-1));
copy(V.begin()+N-M+1, V.end(),

BUFF.begin());

MPI_Recv(&BUFF[M-1], M-1, MPI_CHAR,
pid+1, 1, MPI_COMM_WORLD,
&status);

for (int i=0; i <= M-1; ++i)
if (equal(S.begin(), S.end(),

BUFF.begin()+i))
++cnt;

}

int res;
MPI_Reduce (&cnt, &res, 1, MPI_INT,

MPI_SUM, 0, MPI_COMM_WORLD);
...

}

(b)

Fig. 4. String matching. (a) stapl code using an overlap partitioned view. (b) MPI
version. (c) Execution times on CRAY4-cluster.

shows that performance of the two versions is comparable. In the best case, the
first character of the substring is not in the text and the number of occurrences
is zero. In the worse case, both text and substring are composed of the same
character, maximizing the number of occurrences.

Graph views. stapl provides the pGraph, a parallel and distributed graph data
structure. Algorithms operating on pGraphs are written generically in terms of
graph pView concepts. In this section, we describe pGraph specific pViews and
discuss the performance of generic algorithms using them.

For simple operations such as initializing the data of each vertex or edge, we
can use a view over the set of vetrices and edges. These views implement the
static list concept and support efficient parallel map and map reduce opera-
tions. In Figure 5, we show a stapl program that performs an initialization of
the pGraph vertex properties (Figure 5, Line 5), and then computes and stores
the set of source vertices in a parallel list (Figure 5, Line 6). The list view (Fig-
ure 5, Line 4) defined over a parallel list [19] supports an interface to efficiently

The STAPL pView 271

1 stapl::p_graph<vertex_property> graph;
2 stapl::graph_view<stapl::p_graph<vertex_property> > graph_view(graph);
3 stapl::p_list<vertex> list;
4 stapl::list_view<stapl::p_list<vertex> > result_view(list);
5 stapl::for_each(graph_view.vertices(), init_property());
6 stapl::p_find_sources(graph_view.edges(), result_view);

Fig. 5. Find sources and sinks in a graph

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4-CLUSTER: pGraph Algorithms Weak Scaling
 2.25M vertices and 3M edges per location

for_each
std::for_each

p_find_sources pList
p_find_sources sequential list

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4-CLUSTER: pGraph Algorithms Weak Scaling
 2.25M vertices and 3M edges per location

p_for_each pGraph
p_find_sources pGraph

p_for_each pArray
p_find_sources pArray

(b)

Fig. 6. Weak scaling on CRAY4-cluster of pGraph methods with 2.25M vertices and
∼3M edges per location. (a) pView overhead: comparison of calling stapl::for each

versus stl for each, and of storing sources in a pList versus a sequential stl list; (b)
Comparison of graph algorithms on graph views defined over pGraph and pArray.

insert and erase elements concurrently. The stapl::find sources algorithm
uses the insert anywhere method of the list view to populate the parallel
list with source vertices. To evaluate the algorithms we perform a weak scaling
experiment using a 2D sparse mesh as input, where each processor holds a sten-
cil of 1500×1500 vertices. The number of edges per location is on average two
thirds the maximum number of edges in a 2D mesh while the number of remote
edges is ∼1500 (0.3%) per location.

Figure 6 shows the performance of the two algorithms on theCRAY4-cluster.
stapl::for each is a simple do-all operation that applies a functor to every el-
ement of a view. It scales well when the number of processors is varied from 4
to 16384. stapl::find sources performs a stapl::for each on a pView over
the edges of the graph, marking their targets as non source vertices. To evaluate
the overhead of using views and stapl containers, we performed the following
experiments: first we compared the performance of the stapl::for each
using a vertex set view versus a simple stl for each applied to individual
elements stored inside the pGraph’s bContainers. We observe in Figure 6(a)
that stapl::for each has no overhead relative to the stl for each. A second
experiment performedwas to evaluate the overheadof storing the source vertices in
a pList through a list view versus storing the vertices directly in sequential stl
lists, one for each location considered. As we can see from Figure 6(a), the pList
incurs an overhead of only 4%.

272 A. Buss et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 128 256 512 1024 2048 4096 8192 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4-CLUSTER : Euler Tour Weak Scaling
 tree graph with 500K or 1M vertices per location

euler tour 500K
euler tour 1M

(a)

 0

 0.5

 1

 1.5

 2

 4 16 64 256 1024 4096 16384

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of processors

CRAY4-CLUSTER: Views over pMatrix
 weak scaling 100x3M per location

Fill matrix view linearization
min of each row

min of each block

(b)

Fig. 7. Weak scaling experiments on CRAY4-cluster. (a) Euler Tour computation
on binary tree with 500K or 1M subtrees per processor. (b) pMatrix fill with random
values using a linearization view and computing the minimum of each row or block.

Another important feature of using views is that new interfaces can be defined
on top of existing data structures. For example, a graph view can be defined for a
pArray of lists of edges. Generic parallel graph algorithms in stapl will operate
properly on the data stored in a pArray, provided a suitable graph pView is
implemented. In Figure 6(b) we show the performance of stapl::for each and
stapl::find sources when accessing data using a graph view defined on a
pGraph and a graph view defined on a pArray. We observe that both views
provide good scaling. When data is stored in the pArray, stapl::for each
is slightly faster. On the stapl::find sources algorithm there is additional
overhead because stapl::find sources uses additional graph methods (e.g.,
find vertex) that are more efficiently implemented in the native pGraph.

The Euler Tour (ET) is an important pView of a graph for parallel processing.
In particular, the ET, which traverses every edge of the graph exactly once,
corresponds to an edge view of the graph. Since the ET represents a depth-first-
search traversal, when it is applied to a tree it can be used to compute a number
of tree functions such as rooting a tree, postorder numbering, computing the
vertex level, and computing the number of descendants [9]. The parallel Euler
Tour algorithm [9] implemented in stapl uses a stapl pGraph to represent the
tree and a pList to store the final Euler Tour. The algorithm executes parallel
traversals on the pGraph view, generating Euler Tour segments that are stored
in a temporary pList. Then, the segments are linked together to form the final
pList containing the Euler Tour. The performance is evaluated by performing a
weak scaling experiment on CRAY4-cluster using as input a tree distributed
across all locations. The tree is generated by first building a binary tree in
each location and then linking the roots of these trees in a binary tree fashion.
The number of remote edges is at most six for each location (one to the root
and two to the children of the root in each location, with directed edges for
both directions). Figure 7(a) shows the execution time on CRAY4-cluster for
different sizes of the tree. The running time increases with the number of vertices

The STAPL pView 273

block_partition_t blkpart(m,n);

p_matrix_t pmat(N1,N2,blkpart);

matrix_view_t vmat(pmat);

// Row major linearization of the p_matrix

typedef array_1D_view<p_matrix_t,

dom1D<size_t>,

f1d_row_major_2d<size_t,p_matrix_index_type> > linear_row_t;

linear_row_t lrow = vmat.linear_row();

// Fill the matrix using the linearization view

// One dimensional view over the p_matrix’s rows

typedef partitioned_view<matrix_view_t,

rows_partition<matrix_domain_t,row_domain_t>,

map_fun_gen1<fcol_2d<size_t,matrix_dom_t::index_type> >,

matrix_view_t::row_type> rows_view_t;

rows_view_t rowsv(vmat, rows_partition_t(vmat.domain()));

// Computing the minimum of each row

stapl::transform(rowsv, resv, stapl::min_value<int>());

// One dimensional view of blocks over the p_matrix

typedef partitioned_view<matrix_view_t,

block_partition_t,

map_fun_gen<f_ident<mat_view_t::index_type> > > blocks_view_t;

blocks_view_t blocksv(vmat,blkpart);

// Computing the minimum of each block

stapl::transform(blocksv, resv, stapl::min_value<int>());

Fig. 8. Snippets of code used to create different types of views over pMatrix: row major
linearization of the matrix, partition the matrix view in rows and partition the matrix
view in blocks

per location because the number of edges in the ET to be computed increases
correspondingly.

Matrix views. The pMatrix is a pContainer that implements a dense, two-
dimensional array [4]. We can create different types of views over a pMatrix
to adapt the container to the algorithm requirements. For example, we can ini-
tialize the values of a container using stapl::generate or stapl::copy. Both
algorithms require the data layout in a one-dimensional container. Using a map-
ping function to translate indices from one to two dimensions, we can define a
linearization view over the pMatrix (e.g., f1d row major 2d in Figure 8). Simi-
larly, we can create row and blocked pViews of the pMatrix. Figure 8 shows two
of these views: a pView over the rows (rows view t) and a pView over blocks
(blocks view t). They differ in the partitioner and the mapping function gen-
erator used.

274 A. Buss et al.

Figure 7(b) shows the execution time on CRAY4-cluster of three algo-
rithms using pMatrix: filling the pMatrix using stapl::copy from a generator
container through the row major linearization pView, computing the minimum
element of each row and computing the minimum element of each block using
stapl::transform(input view,output view,functor) algorithm, where the
functor finds the minimum of a sequence of elements.

7 Conclusion

In this paper we have introduced the pView a higher level concept that allows
programmers to be more expressive. Furthermore, it is a concept that hides some
of the details of parallel programming. It has been assumed that programming at
higher levels of abstraction inevitably reduces performance, an unwelcome side-
effect in general, and in parallel programming in particular. In this paper we have
shown that, at least as far the pView is concerned, performance does not always
have to suffer. In fact, in some cases we have shown that the pView offers more
structural and semantic information than, for example, the stl iterator, and
thus enables better performance. We believe that a programming environment
such as stapl will prove to be both expressive and productive as well as high
performance.

References

1. Barbosa, D.M.J., Cretin, J., Foster, N., Greenberg, M., Pierce, B.C.: Matching
Lenses: Alignment and View Update. In: Proc. ACM SIGPLAN Int. Conf. on
Functional Programming, Baltimore, Maryland (September 2010)

2. Bourdev, L.: Generic Image Library. Software Developer’s Journal, 42–52 (2007)
3. Buss, A., Harshvardhan, Papadopoulos, I., Pearce, O., Smith, T., Tanase, G.,

Thomas, N., Xu, X., Bianco, M., Amato, N.M., Rauchwerger, L.: STAPL: Standard
template adaptive parallel library. In: Proc. Annual Haifa Experimental Systems
Conference (SYSTOR), pp. 1–10. ACM, New York (2010)

4. Buss, A., Smith, T., Tanase, G., Thomas, N., Bianco, M., Amato, N.M.,
Rauchwerger, L.: Design for interoperability in stapl: pMatrices and linear alge-
bra algorithms. In: Amaral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 304–315.
Springer, Heidelberg (2008)

5. Callahan, D., Chamberlain, B.L., Zima, H.P.: The Cascade High Productivity Lan-
guage. In: The 9th Int. Workshop on High-Level Parallel Programming Models and
Supportive Environments, Los Alamitos, vol. 26, pp. 52–60 (2004)

6. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K.,
von Praun, C., Sarkar, V.: X10: an Object-Oriented Approach to Non-Uniform
Cluster Computing. In: ACM SIGPLAN Conf. on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 519–538. ACM Press, New York (2005)

7. Guo, J., Bikshandi, G., Fraguela, B.B., Padua, D.: Writing Productive Stencil
Codes with Overlapped Tiling. Concurr. Comput.: Pract. Exper. 21(1), 25–39
(2009)

8. Adobe Inc.: Generic Image Library,
http://opensource.adobe.com/wiki/display/gil/Generic+Image+Library

http://opensource.adobe.com/wiki/display/gil/Generic+Image+Library

The STAPL pView 275

9. JàJà, J.: An Introduction Parallel Algorithms. Addison-Wesley, Reading (1992)
10. Joyner, M., Chamberlain, B.L., Deitz, S.J.: Iterators in Chapel (April 2006)
11. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.W.: Challenges in Parallel

Graph Processing. Parallel Processing Letters 17(1), 5–20 (2007)
12. Musser, D., Derge, G., Saini, A.: STL Tutorial and Reference Guide, 2nd edn.

Addison-Wesley, Reading (2001)
13. Ottosen, T.: Range Library Proposal. Technical report, JTC1/SC22/WG21 - The

C++ Standards Committee (2005),
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1871.html

14. Quinn, M.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill, New
York (2003)

15. Rauchwerger, L., Arzu, F., Ouchi, K.: Standard Templates Adaptive Parallel Li-
brary (STAPL). In: O’Hallaron, D.R. (ed.) LCR 1998. LNCS, vol. 1511, pp. 402–
409. Springer, Heidelberg (1998)

16. Saunders, S., Rauchwerger, L.: ARMI: An Adaptive, Platform Independent Com-
munication Library. In: Proc. ACM SIGPLAN Symp. Prin. Prac. Par. Prog
(PPoPP), San Diego, California, USA, pp. 230–241 (2003)

17. Seymour, J.: Views - a C++ Standard Template Library Extension (January 1996),
http://www.zeta.org.au/~jon/STL/views/doc/views.html

18. Tanase, G., Buss, A., Fidel, A., Harshvardhan, P.I., Pearce, O., Smith, T., Thomas,
N., Xu, X., Mourad, N., Vu, J., Bianco, M., Amato, N.M., Rauchwerger, L.: The
STAPL Parallel Container Framework. In: Proc. ACM SIGPLAN Symp. Prin.
Prac. Par. Prog (PPoPP), San Antonio, Texas, USA (2011)

19. Tanase, G., Xu, X., Buss, A., Harshvardhan, Papadopoulos, I., Pearce, O., Smith,
T., Thomas, N., Bianco, M., Amato, N.M., Rauchwerger, L.: The STAPL pList. In:
Gao, G.R., Pollock, L.L., Cavazos, J., Li, X. (eds.) LCPC 2009. LNCS, vol. 5898,
pp. 16–30. Springer, Heidelberg (2010)

20. Thomas, N., Tanase, G., Tkachyshyn, O., Perdue, J., Amato, N.M., Rauchwerger,
L.: A framework for adaptive algorithm selection in STAPL. In: Proc. ACM SIG-
PLAN Symp. Prin. Prac. Par. Prog (PPoPP), Chicago, IL, USA, pp. 277–288
(2005)

21. Weiser, M., Powell, G.: The View Template Library. In: 1st Workshop on C++
Template Programming, Erfurt, Germany (October 2000)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1871.html
http://www.zeta.org.au/~jon/STL/views/doc/views.html

Author Index

Afek, Yehuda 31
Amato, Nancy M. 261
Angerer, Christoph M. 16
Archambault, Roch 92
Aslam, Amina 1
Ayguade, Eduard 215

Badia, Rosa M. 215
Bellens, Pieter 215
Bianco, Mauro 261
Brodman, James C. 46
Budimlić, Zoran 230
Burtscher, Martin 246
Buss, Antal 261

Cavazos, John 121
Chame, Jacqueline 136
Chen, Chun 136
Chen, Li 151

Duran, Alejandro 215

Evans, G. Carl 46

Ferrer, Roger 215
Fidel, Adam 261

Gao, Guang 77
Gao, Yaoqing 92
Garcia, Elkin 77
Garzarán, Maŕıa J. 46
Gioachin, Filippo 199
Gonzalez, Marc 215
Grauer-Gray, Scott 121
Gross, Thomas R. 16
Grossman, Max 230

Hall, Mary 136
Harshvardhan 261
Hayashi, Akihiro 184
Hendren, Laurie 1
Huang, Lei 151

Jalby, William 62
Jiang, Yunlian 92
Jing, Zheng 151

Kalé, Laxmikant V. 199
Kasahara, Hironori 184
Kejariwal, Arun 166
Khan, Malik Murtaza 136
Kimura, Keiji 184
Korland, Guy 31

Labarta, Jesus 215
Liu, Lei 151

Manguoglu, Murat 46
Martorell, Xavier 215
Mase, Masayoshi 184

Nguyen, Donald 246
Nicolau, Alexandru 166

Orozco, Daniel 77

Padua, David 46
Pingali, Keshav 246
Planas, Judit 215

Rauchwerger, Lawrence 261
Rudy, Gabe 136

Sameh, Ahmed 46
Sarkar, Vivek 230
Sekiguchi, Takeshi 184
Shen, Xipeng 92
Shirako, Jun 184
Shou, Baojiang 151
Simion Sb̂ırlea, Alina 230
Smith, Timmie 261
Sui, Xin 246

Tanase, Gabriel 261
Tang, Shenglin 151
Thomas, Nathan 261

van der Spek, Harmen L.A. 106

Wada, Yasutaka 184

278 Author Index

Watanabe, Takeshi 184
Wijshoff, Harry A.G. 106

Xu, Shixiong 151
Xu, Xiabing 261

Zhang, Dingfei 151
Zhang, Eddy Z. 92
Zheng, Gengbin 199
Zilberstein, Arie 31
Zuckerman, Stéphane 62

	Title
	Preface
	Organization
	Table of Contents
	McFLAT: A Profile-Based Framework for MATLAB Loop Analysis and Transformations
	Introduction
	Overview of Our Approach
	Important Components of McFLAT
	Instrumenter
	Range Estimator
	Dependence Analysis
	Loop Transformations
	Parallelism Detection
	Current Limitations of McFlat

	Experimental Results
	Benchmarks and Static Information
	Performance Study for Standard Loop Transformations
	Performance Study for Parallel For Loops

	Related Work
	Automatic Parallelization
	Adaptive Compilation

	Conclusions and Future Work
	References

	Static Analysis of Dynamic Schedules and Its Application to Optimization of Parallel Programs
	Introduction
	A Program Model with Explicit Scheduling
	Example of a Parallel Ordered Mapping Operation
	Additional Synchronization Primitives

	Schedule Analysis
	Datalog
	Pre-processing and Points-to Analysis
	Computing and Flattening the Abstract Schedule
	Computing Read- and Write-Sets

	Optimizations Based on Schedule Analysis
	Synchronization Removal
	Reducing Strong Atomicity Overhead
	Dependence Reduction

	Implementation and Future Work
	Related Work
	Concluding Remarks
	References

	Lowering STM Overhead with Static Analysis
	Introduction
	Background - Deuce, a Java-Based STM
	Optimization Opportunities
	Preventing Redundant Memory Accesses
	Preventing Redundant Writeset Operations

	Experimental Results
	Optimization Levels
	Benchmarks
	Optimization Opportunities Breakdown
	Analysis

	Related Work
	Conclusions and Further Work
	References

	A Parallel Numerical Solver Using Hierarchically Tiled Arrays
	Introduction
	SPIKE
	SPIKE Variants

	Hierarchically Tiled Arrays
	Implementing SPIKE with HTAs
	TU
	TA

	Experimental Results
	TU
	TA

	Related Work
	Conclusions
	References

	Tackling Cache-Line Stealing Effects Using Run-Time Adaptation
	Introduction
	Motivation
	What Cache-Line Stealing Is, and When It Occurs
	Experimental Setup
	Experimental Analysis of Cache-Line Stealing

	Possible Methods to Counter Cache-Line Stealing
	Run-Time Adaptation to Solve Cache-Line Stealing Using a Hybrid Software/Hardware Framework
	Description of the Adaptive Applications Framework
	Implementing the Adaptive Framework

	Related Work
	Conclusion and Future Work
	References

	Locality Optimization of Stencil Applications Using Data Dependency Graphs
	Introduction
	Background
	Stencil Applications
	Cyclops-64 and Many-Core Architectures
	DRAM Limitations for Many-Core Architectures
	Tiling

	Problem Formulation
	Optimal Tiling for Stencil Computations
	Implementation
	Experiments
	Results
	Conclusions
	Future Work
	References

	Array Regrouping on CMP with Non-uniform Cache Sharing
	Introduction
	Array Regrouping for Multithreading Applications on CMP
	Review of Basic Frequency-Based Affinity Analysis
	Cache-Sharing-Aware Reference Affinity Analysis
	Array Regrouping

	Evaluation
	Affinity-Guided Scheduling for Streamcluster
	Spatial Locality Enhancement for Summation
	Cache Conflict Reduction for Swim

	Related Work
	Conclusion
	References

	Sublimation: Expanding Data Structures to Enable Data Instance Specific Optimizations
	Introduction
	Sublimation
	Data Access Restructuring
	Identifying Injective Functions in Code
	Eliminating Indirect Addressing in the Loop Body
	Expanding the Iteration Space
	Restructuring in the Application Context

	Application of Sublimation to Pointer-Based Matrix Kernels
	Sparse Matrix Vector Multiply
	Jacobi Iteration
	Direct Solver

	Experiments
	Results on Sparse Matrix Kernels
	Overhead

	Conclusions
	References

	Optimizing and Auto-tuning Belief Propagation on the GPU
	Introduction
	Optimization Overview
	CUDA Belief Propagation
	Experimental Methodology
	Optimization Results: Register and Shared Memory Implementations
	Hybrid Implementation: Multiple Memory Modes in a Single Implementation
	Hybrid Results Discussion

	Auto-tuning Implementation
	Experiments Using Different GPUs
	Splitting Up the Image
	Related Work
	Conclusions and Future Work
	References

	A Programming Language Interface to Describe Transformations and Code Generation
	Introduction
	Compiler Structure and Motivation
	Requirements for Translating Sequential Loop Nests to CUDA
	Foundation from CHiLL Loop Transformation Recipes
	Using a Lua Programming Language Interface in CUDA-CHiLL

	Computation Decomposition of a Loop Nest: A Complex Transformation Sequence
	CUDA Code Generation
	Performance Results
	Related Work
	Summary and Future Work
	References

	Unified Parallel C for GPU Clusters: Language Extensions and Compiler Implementation
	Introduction
	Extending UPC with Hierarchical Parallelism
	UPC’s Execution Model on GPGPU Clusters
	Hierarchical Data Distribution
	Loop Partitioning to Implicit Thread Tree

	Implementation on GPU Clusters
	Overview of the Compiling System
	Affinity-Aware Loop Tiling Transformation
	Memory Optimizations for CUDA
	Unified Data Management

	Experimental Results
	Programmability Evaluation
	Performance Evaluation

	Related Work
	Conclusion and Future Work
	References

	How Many Threads to Spawn during Program Multithreading?
	Introduction
	Terminology and Background
	The ``What" and ``How"
	Greedy Schedule
	Scheduling with Delayed waits
	OPT-Driven Scheduling
	T-OPT Algorithm
	Remark

	Case Studies and Results
	Previous Work
	Compaction-Based Parallelization
	Multithreaded Performance

	Conclusion
	References

	Parallelizing Compiler Framework and API for Power Reduction and Software Productivity of Real-Time Heterogeneous Multicores
	Introduction
	OSCAR API Applicable Heterogeneous Multicore Architecture and Overview of the Compilation Flow
	OSCAR API Applicable Heterogeneous Multicore Architecture
	Compilation Flow

	A Compiler Framework for Heterogeneous Multicores
	Hint Directives for OSCAR Compiler
	OSCAR Parallelizing Compiler
	The Extension of OSCAR API for Heterogeneous Multicores

	Performance Evaluations on RP-X
	Evaluation Environment
	Performance by OSCAR Compiler with Accelerator Compiler
	Performance by OSCAR Compiler and Hand-tuned Library
	Evaluation of Power Consumption

	Conclusions
	References

	Debugging Large Scale Applications in a Virtualized Environment
	Introduction
	CharmDebug
	BigSim Emulator
	Debugging Charm++ Applications on BigSim
	Communicating with Virtual Processors
	Suspending Virtual Processors

	Debugging MPI Applications on BigSim
	Debugging Overhead in the Virtualized Environment
	Case Study
	Related Work
	Conclusions and Future Work
	References

	Optimizing the Exploitation of Multicore Processors and GPUs with OpenMP and OpenCL
	Introduction
	Proposal
	Brief Description of the Programming Model
	Matrix Multiply
	BlackScholes
	Perlin Noise
	Julia Set

	Evaluation
	Execution Environments
	On an Intel Xeon Server
	On the Cell/B.E. Processor
	On NVIDIA GPUs

	Related Work
	Conclusions and Future Work
	References

	CnC-CUDA: Declarative Programming for GPUs
	Introduction
	Background
	Concurrent Collections Programming (CnC) Model
	Habanero-Java Implementation of CnC
	GPU Architecture and the CUDA Programming Model

	Programming Interface and Implementation
	Graph File
	Item Collections
	Tag Collection - PutRegion and GetRegion
	CUDA Kernel
	Implementation Details

	Preliminary Experimental Results
	Experimental Setup
	Evaluation and Analysis

	Related Work
	Conclusions and Future Work
	References

	Parallel Graph Partitioning on Multicore Architectures
	Introduction
	Graph Partitioning Algorithms
	Metis
	ParMetis

	Amorphous Data-Parallelism
	The Galois System
	GMetis
	Optimizations

	Evaluation
	Methodology
	Results

	Conclusion
	References

	The STAPL pView
	Introduction
	STAPL Overview
	Related Work
	STAPL pView Concept
	Useful Views

	The pView Class
	Results: Expressivity, Genericity, and Performance
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

