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Preface

This volume contains the proceedings of the 7th International Workshop on Web
Services and Formal Methods (WS-FM 2010), held at the Stevens Institute of
Technology, Hoboken, New Jersey, USA, during September 16–17, 2010 and co-
located with the 8th International Conference on Business Process Management
(BPM 2010). The aim of the WS-FM workshop series is to bring together
researchers working on service-oriented computing, cloud computing and formal
methods in order to catalyze fruitful collaboration.

This edition of the workshop attracted 26 submissions. We wish to thank
all their authors for their interest in WS-FM 2010. After careful discussions, the
Programme Committee selected 11 papers for presentation at the workshop.
Each of them was accurately refereed by at least three reviewers, who delivered
detailed and insightful comments and suggestions. The workshop Chairs warmly
thank all the members of the Programme Committee and all their sub-referees
for the excellent support they gave, as well as for the friendly and constructive
discussions. We also would like to thank the authors for having revised their
papers to address the comments and suggestions by the referees.

The workshop programme was enriched by the outstanding invited talks by
Rick Hull of IBM Watson Research Center, USA, and Shriram Krishnamurthi
of Brown University, USA.

We would like to thank the BPM 2010 organizers for the significant amount
of support they provided for the organization of the WS-FM 2010.

We are also grateful to Andrei Voronkov, who allowed us to use the wonderful
free conference software system EasyChair, which we used for the electronic
submission of papers, the refereeing process and the Programme Committee
work.

November 2010 Mario Bravetti
Tevfik Bultan



Organization

Programme Committee Co-chairs

Mario Bravetti University of Bologna, Italy
Tevfik Bultan University of California at Santa Barbara, USA

Programme Committee

Wil van der Aalst Eindhoven University of Technology,
The Netherlands

Matteo Baldoni University of Turin, Italy
Samik Basu Iowa State University, USA
Karthikeyan Bhargavan Microsoft Research-INRIA Joint Centre,

France
Nicola Dragoni Technical University of Denmark, Denmark
Marlon Dumas University of Tartu, Estonia
Schahram Dustdar Technical University of Vienna, Austria
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Introducing the Guard-Stage-Milestone Approach for
Specifying Business Entity Lifecycles

Richard Hull1,�, Elio Damaggio2,��, Fabiana Fournier3,� � �, Manmohan Gupta4,
Fenno (Terry) Heath III1, Stacy Hobson1, Mark Linehan1, Sridhar Maradugu1,

Anil Nigam1, Piyawadee Sukaviriya1, and Roman Vaculin1

1 IBM T.J. Watson Research Center, USA
{hull,theath,stacypre,mlinehan,

sridharm,anigam,noi,vaculin}@us.ibm.com
2 University of California, San Diego

damaggio@cs.ucsd.edu
3 IBM Haifa Research Lab, Israel

fabiana@il.ibm.com
4 IBM Global Business Services, India
manmohan.gupta@in.ibm.com

Abstract. A promising approach to managing business operations is based on
business entities with lifecycles (BEL’s) (a.k.a. business artifacts), i.e., key con-
ceptual entities that are central to guiding the operations of a business, and whose
content changes as they move through those operations. A BEL type includes
both an information model that captures, in either materialized or virtual form,
all of the business-relevant data about entities of that type, and a lifecycle model,
that specifies the possible ways an entity of that type might progress through the
business by responding to events and invoking services, including human activ-
ities. Most previous work on BEL’s has focused on the use of lifecycle models
based on variants of finite state machines. This paper introduces the Guard-Stage-
Milestone (GSM) meta-model for lifecycles, which is an evolution of the previ-
ous work on BEL’s. GSM lifecycles are substantially more declarative than the
finite state machine variants, and support hierarchy and parallelism within a sin-
gle entity instance. The GSM operational semantics are based on a form of Event-
Condition-Action (ECA) rules, and provide a basis for formal verification and
reasoning. This paper provides an informal, preliminary introduction to the GSM
approach, and briefly overviews selected research directions.

Keywords: Business Artifact, Business Entity with Lifecycle, Business Oper-
ations Management, Business Process Management, Case Management, Data-
centric Workflow, Declarative.

1 Introduction

The trend with business activities is towards increased complexity, globalization, and
out-sourcing. At an infrastructure level, the use of SOA, of Software as a Service (SaaS),
and cloud-based computing will become increasingly important. At a semantically richer

� This author partially supported by NSF grant IIS-0812578.
�� Research by this author performed while employed as a summer Ph.D. intern at IBM T.J.

Watson Research Center.
� � � This author partially supported by EU Project FP7-ICT ACSI (257593).

M. Bravetti and T. Bultan (Eds.): WS-FM 2010, LNCS 6551, pp. 1–24, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 R. Hull et al.

level, the framework and tools for structuring and managing future business operations
and processes will evolve from technologies including workflow, Business Process Man-
agement (BPM), case management, and document engineering. A particularly promis-
ing approach for managing business operations and processes, especially those that cut
across silos and organizations, is based on1 Business Entities with Lifecycles (BEL’s)
[23,20,27,4,8], and related works such as [2,6,26,30]. This paper introduces an evolu-
tion of that work, called Business Entities with Guard-Stage-Milestone Lifecycles, ab-
breviated as BEL[GSM] or simply GSM, in which the lifecycles for BEL’s are much
more declarative than previous work. The paper describes a preliminary version of the
GSM meta-model2 and framework, highlights some of its novel features, discusses how
it can provide support for business-level stakeholders in the design process, and lists
some verification and reasoning problems raised by the approach.

The BEL framework is focused on enabling the design, deployment, and ongoing
use of Business Operations Models (BOMs) that manage a business-meaningful scope
of a business. BEL’s are key conceptual entities that are central to the operation of part
of a business and that change as they move through the business’s operations. A BEL
type includes both an information model that uses attribute/value pairs to capture, in
either materialized or virtual form, all of the business-relevant data about entities of
that type, and a lifecycle model, that specifies the possible ways that an entity of this
type might progress through the business, and the ways that it will respond to events
and invoke external services, including human activities. An example BEL type is
financial deal, including evaluation of customer credit and collateral, negotiating in-
terest and terms, tracking of payments, etc. (see [8]). The BEL or entity-centric ap-
proach is said to be “data centric”, because of the emphasis on information and how it
evolves. This is similar to case management (e.g., [30,13]), and contrasts sharply with
process-centric approaches, such as BPMN [25], where modeling the data manipulated
by a Business Process is performed largely outside of the process specification. The
entity-centric approach enables business insights and improves communication among
diverse stakeholders about the operations and processes of a business, in ways that
activity-flow-based and document-based approaches have not [8,10].

Almost all of the previous work on BEL’s is based on meta-models for entity life-
cycles that use variants of finite state machines. The GSM meta-model uses a consid-
erably more declarative approach to specifying the lifecycles. The meta-model builds
on recent work exploring theoretical aspects of declarative approaches to BEL’s (e.g.,
[5,14,15]), and adds a number of practically motivated features. At the core of GSM
lifecycle models is the notion of stage, which is based on three main constructs: (i)
milestone, a business-relevant operational objective expressed using a condition over
the information model and possibly a triggering event; (ii) stage body, containing one
or more activities, including calls to external services and possibly sub-stages, intended

1 In much of the previous research literature on BEL’s, the term ‘Business Artifact’ has been
used in place of the term ‘Business Entity (with Lifecycle)’. These terms refer to the same
concept. Within IBM, the team has been shifting to ‘entity’, because the term ‘artifact’ has a
different, well-established meaning in the community of IT practitioners in the BPM space.

2 Following the tradition of UML and related frameworks, we use here the terms ‘meta-model’
and ‘model’ for concepts that the database and workflow research literature refer to as ‘model’
and ‘schema’, respectively.
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to achieve a milestone (or one of several related milestones); and (iii) guard, a condi-
tion and possibly a triggering event that, when achieved, enables entry into the stage
body. The conditions for milestones and guards range over the information model of
the BEL instance under consideration, and possibly those of related BEL instances. The
conditions are expressed using (a modest extension of) OMG’s Object Constraint Lan-
guage (OCL) [16], which supports the classical first-order logic constructs but adapted
to nested data structures. The triggering events for milestones and guards, if present,
might be from the external world (e.g., from a human performer or an incoming ser-
vice call), might be from another BEL instance, or might be the result of milestones
changing values or stages changing their status. Hierarchy is achieved through nesting
of stages, and multiple stage bodies of a single BEL instance may run in parallel. The
operational semantics of GSM is given by Event-Condition-Action (ECA) rules that are
derived from the guards and milestones. Indeed, GSM can be viewed as an approach
to structuring ECA rules in the BPM context. We hypothesize that because GSM has
a basis that is much more declarative than, e.g., BPMN and earlier BEL meta-models,
it will be easier to specify variations (as arise, e.g., due to regional differences) and to
modify GSM models to reflect changing business requirements.

This short paper is intended to provide a preliminary introduction to the GSM meta-
model and framework. Design extensions and refinements of GSM are still underway;
these are now guided largely by using GSM to specify various application scenarios
drawn from past and current engagements. Being somewhat preliminary, the version of
GSM described here can be considered to be “Version 0.9”. A detailed description of
the “Version 1.0” of GSM is currently in preparation [18], along with a first paper on
formal aspects of it [12]. The GSM approach to specifying business entity lifecycles
forms part of a larger effort at IBM Research, called Project ArtiFactTM.

Section 2 provides an overview of Project ArtiFact and GSM’s role within it. The
section also introduces a running example for the paper, and illustrates how software
based on GSM can be integrated into a larger environment with SOA components and
human performers. Section 3 describes the core GSM meta-model. Section 4 overviews
the operational semantics of GSM. A short survey of verification and reasoning prob-
lems raised by GSM and Project ArtiFact is presented in Section 5. Related research is
discussed in Section 6 and brief conclusions offered in Section 7.

2 Overview of Project ArtiFact

Project ArtiFact is exploring several broad themes in the BPM space. The overarching
goal is to support the wide range of stakeholders involved with specifying and managing
business operations. Figure 1a lists the main categories of such stakeholders, with the
exclusion of IT staff. At one end, the stakeholders include Enterprise Process Owners
and Transformation Executives, who have strong intuitions and want to understand the
BOM at a very coarse-grained level, and at the other Solution Designers, who will create
a specification of the BOM in enough detail that it can be translated into a running
system. The stakeholders in between these extremes will be interested in understanding
and specifying elements of the BOM at varying levels of detail. We refer to all of the
stakeholders above the Solution Designers as business-level stakeholders.
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A central vision of Project ArtiFact is to enable the various business-level stakehold-
ers to create and work with “BOMs” that are intuitive, inprecise, and/or incomplete,
and yet be able to map these into GSM specifications. For example, we want to enable
business-level stakeholders to informally specify a family of entity types and some of
their key milestones, and then specify a number of business scenarios using the mile-
stones (e.g., corresponding to the “sunny day”, to working with customers with credit
risk, etc.). The transformation from these scenarios to GSM specifications would be
based on a combination of inputs from various kinds of stakeholders along with auto-
mated verification and synthesis algorithms. Business rules, e.g., in the sense of OMG’s
Semantics of Business Vocabulary and Rules (SBVR) [24], will also play an important
role in the support of business-level stakeholders. Conditions and rules become essential
when business policies are too intricate or cumbersome to express in a graphical format
alone. The core constructs of GSM were chosen on the one hand to be very close to the
ways that the business stakeholders think – in terms of milestones and business rules –
and on the other to enable both a formal foundation and a fairly direct mapping of GSM
BOMs into running systems.

Enterprise Process  
Owners 

Transformation 
Executives

Business Architects

Business Analysts

Subject Matter 
Experts

Solution Designers

Model specified in core 

GSM Language

Realization

Stakeholders

Business 

vocabulary

Business 

milestones 

& scenarios

Business 

design 

patterns

Business 

rules

Sketches

(a) Various stakeholders and perspectives on
a Business Operations Model

Scope of 
Fixed Price

•Fixed Price Request (FPR)

•Supplier Response 

Requester

Buyer

Supplier
Supplier

Supplier

Reviewer

(Auto) Requester 
Status Check

Legal 
Analysis

Queries (for 
monitoring, 
reporting)

(b) Scope of fixed-price contracting scenario

Fig. 1. Contexts when using GSM

A second broad goal of Project ArtiFact is that the GSM BOMs, while reasonably
intuitive, are actionable, in the sense that there is a relatively direct path from the spec-
ification to an implementation of running systems. As demonstrated by the previous
work on Business Entities with Lifecycles, currently embodied in IBM’s BELA offer-
ing [27], having an actionable meta-model enables the creation of a rapid prototype of
a BOM after just two or three days of modeling, and substantially reduces the risk and
time involved with mapping a detailed BOM into an IT realization.

A third broad goal of GSM is to enable seamless support for highly “prescriptive”
approaches to managing business operations (e.g., as embodied in standards such as
BPMN), and highly “descriptive” approaches (e.g., as embodied in the ad hoc style of
activity management found in case management systems [13,30]). It appears that many
constructs found in classical process-centric approaches to BPM can be simulated in
GSM, and it is natural to include such constructs into GSM as macros (see Subsection
3.9). There is also a close correspondence between GSM and case management, and
as briefly discussed in Section 6, it appears that GSM can simulate the traditional case
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management constructs. GSM may provide a useful platform for exploring new ways
to blend constructs from the prescriptive and descriptive approaches.

The GSM meta-model is being developed and studied in several ways. A concise,
text-based programming language, called GSM-L, is being designed. A prototype en-
gine, called Barcelona, is being developed to support experiments and implementations
using GSM. (This supports a simple graphical design editor, and captures the GSM
BOMs directly into an XML format.) Barcelona is an outgrowth of the Siena system
[9], that supports a BEL meta-model with state-machine based lifecycles. Also, GSM
is providing the basis for the development of a framework to support intuitive design
of BOMs by business-level stakeholders. Finally, a formal specification of the (salient
aspects of the) GSM meta-model is being developed and applied [12].

This section concludes by introducing a running example based on a real-world con-
tracting application scenario called Fixed-Price. This application automates supply
chain management for purchasing services at fixed, predetermined prices. Fixed-Price
enables Requesters in an enterprise to find and hire external professional services con-
tractors to achieve specified goals. The Requesters submit an initial request to a Buyer,
who focuses on numerous technical, financial, and legal aspects of the request. If ap-
proved by the Buyer, then the request is submitted to multiple Suppliers for competitive
bidding. The Suppliers may decline to respond, or may submit a response back to the
Buyer. The responses are evaluated and a winner chosen. Finally, requisitioning takes
place with the winner.

Figure 1b illustrates the scope of Fixed-Price as it might be implemented using
BEL’s. It is natural to use two entity types, called Fixed Price Request (FPR) and Sup-
plier Response. An FPR instance is born when the Requester makes an initial draft of
the request. The Requester may edit it and then submit to the Buyer to modify and
approve it; after a winner is chosen the FPR instance enables management of the req-
uisitioning with the winner. The Supplier Response entity type is used to manage each
individual bid from the Suppliers: from initial notification of a Supplier; response by
that Supplier; evaluation of the response by the Requester, the Buyer, and also one or
more Reviewers; and finally managing notifications to the Suppliers about the outcome.

As discussed below, a collection of BEL types can be managed within a software
container called a BEL Service Center (BSC). For example, in Figure 1b, the cloud icon
represents a BSC that is managing the two BEL types and all of the currently active
instances of those types. In typical usage, the BSC includes SOA interfaces (REST
and/or WSDL) to support interactions with external services, and also interfaces so that
human performers can interact with the BEL instances, both by performing tasks and
by sending messages (i.e., events) to influence the flow of control.

3 The Guard-Stage-Milestone Meta-model

This section introduces the four key constructs of the core GSM meta-model, namely,
information models, guards, stage bodies, and milestones. It also briefly considers re-
lated aspects of the GSM meta-model, including macros, BEL Service Centers, transac-
tional consistency, the incorporation of human performers, and exception handling. The
discussion is based largely on the Fixed-Price scenario from Section 2. The section also
provides a few illustrations of the extended OCL syntax used for conditions in GSM-L.
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Fig. 3. Information model and top-level stages of Supplier Response entity type

3.1 Information Models

Figures 2 and 3 illustrate the FPR and Supplier Response entity types, respectively, in-
cluding sketches of their information model and of the top-level stages of their lifecycle
models. The information models for the two entity types are illustrated along the bot-
tom halves of the two figures. Following the tradition of previous Business Entity meta-
models, a central axiom of the BEL paradigm is that all business-relevant information
about an entity instance should be recorded in its information model. This contrasts with
typical process-centric approaches, where a substantial amount of business-relevant data
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arises in process variables but is difficult or impossible to access from outside the im-
mediate scope of use. The entity information typically includes (i) data provided by
human performers; (ii) data about external services that have been called, and (iii) data
that essentially holds a log of what has happened so far to the entity instance.

The information model of a GSM entity type will be of record type, where each field
is either a scalar, a record type, or a collection type (set, bag, and list), and where the
record and collection constructs can be nested arbitrarily.

As suggested in Figures 2 and 3, the attributes of an information model are broken
into three categories. The data attributes hold business-relevant data about the progress
of an entity instance. For FPR, this includes information about the Requester, the Buyer,
information about the proposed contract, the list of Suppliers to be considered, the
identity of the winning Supplier, information about the requisitioning phase, etc. As
discussed in Subsection 3.7 below, derived data attributes are also supported.

The event attributes hold information about event occurrences of external business-
relevant event types that are relevant to a given entity instance. An event type is consid-
ered to be external (to the pure GSM processing) if (a) it originates from outside of the
BSC, (b) it originates as a message from one entity instance to another entity instance,
or (c) it corresponds to the termination of a computational task (e.g., an assignment
task). A given event occurrence may be relevant to multiple instances, in which case it
is conceptually recorded on all of them. As will be discussed below, each such event
type may serve as the triggering event type for one or more guards and/or milestones in
the lifecycle model of the entity type. External event types specify the structure of pay-
load that is associated with occurrences of the type, including attributes for timestamp
and sender. Each event attribute will hold information about the most recent relevant
occurrence of the event type, and may optionally hold a history of previous relevant oc-
currences of the event type. (In the case of events corresponding to service call returns,
information in the payload will also be written directly into selected data attributes; see
discussion in Subsection 3.6 below.)

The final portion of the information model holds milestone and stage info; this will
be described in Subsection 3.3 below.

3.2 Overview of Lifecycle Models

Lifecycle models specify the business-relevant activities that an entity instance can be
involved in, along with their possible placement in time, as the entity passes through
the business operations. A lifecycle model is specified using stages, where each stage
consists in one or more milestones, a stage body, and one or more guards. Nesting of
stages is supported, and also, stages at the same level of nesting may execute in parallel.
A stage is atomic if it has no substages and non-atomic otherwise (see Subsections 3.6
and 3.9).

As will be seen, in GSM an entity instance will move through its lifecycle as the
result of events coming from the external world (and possibly from other entity in-
stances in the same BSC). When an external event is processed, it may result in a series
of guards becoming true and/or milestones changing value, along with stages becom-
ing open and/or closed. This is captured in the operational semantics using chaining of
ECA rules derived from the BOM (see Subsections 3.3 and 4.1).
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In the context of GSM, human performers play a central role in guiding the process-
ing, in two distinct ways. First, as is typical of most workflow and Business Process
Management systems, they can perform human services that are invoked from within
atomic stages. Second, in GSM the human performers can control the flow of pro-
cessing, by sending events into the BSC that have the effect of triggering guards and
milestones, that is, of opening and closing stage occurrences, respectively. GSM will
provide a natural framework for incorporating rich, declarative constructs for managing
how people can interact with BOMs; this is a direction of current research.

The upper portions of Figures 2 and 3 show the topmost levels of the lifecycle mod-
els of FPR and Supplier Response. There are four top-level stages for the FPR type.
Each stage has one or more milestones, which correspond to key business-relevant op-
erational objectives that an FPR instance might achieve over its lifetime. Importantly,
the milestones used in the lifecycle model for FPR in Figure 2 correspond directly to the
ways that managers of the real-world Fixed-Price application speak about the top-level
steps to be achieved by each fixed-price request, and similiarly for Figure 3.

The stage Drafting enables a Requester to create an initial fixed-price contracting
request. After drafting the request, the Requester can send the event Submit to Buyer,
which triggers the Ready for Buyer Review milestone, assuming that certain business-
relevant conditions are met (e.g., that certain attribute fields have been filled in, that the
end date is after the start date, etc.). Alternatively, the Requester can send the Abandon
FPR event, which triggers the FPR Abandoned milestone. The Reviewing stage (see
Figure 4) is where the Buyer reviews, edits, and augments the request, so that it can
be submitted to the Suppliers. The key milestone here is Submitted to Suppliers (for
their responses); this becomes true when the call-for-bids has been submitted to the

6
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Fig. 4. Drill-down into Reviewing stage of FPR entity type
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s.’Requester to 
Evaluate’.onEvent()

s.’Evaluation Rework’. 
onEvent()

not s.’Buyer Evalution
Submitted’

Fig. 5. Drill-down into Evaluating stage of Supplier Response entity type

Suppliers. (Or to be technically correct, when the Supplier Response entity instances
have been created; those have an automated step to notify the Suppliers by email.)

As will be seen shortly, the bulk of the evaluation of supplier responses is modeled as
part of the lifecycle of the Supplier Response entity type. However, some bookkeeping
tasks are also performed at the level of the FPR instance; this is done in the Track-
ing of Evaluations stage, whose major milestone is Winner Established. This milestone
becomes true when some Supplier Response entity instance has achieved the milestone
Selected as Winner, that is, when the Buyer has selected a particular supplier’s response
to be the winner of the competition.

The final top-level stage of FPR is Requisitioning of a contract with the winning
supplier; this is not discussed in the current paper.

The lifecycle model of Supplier Response also has four top-level stages. The first
one, Initializing, is automated; it populates selected attributes of the Supplier Response
instance and then sends an email to the Supplier. Responding enables the Supplier to
respond; he or she must first accept or decline the Terms & Conditions, and if accepted,
then fill in various attributes of the information model. By sending an event of type Sub-
mit Response the Supplier indicates that the response should be submitted back to the
Buyer. The Evaluating stage, which is described in more detail below (see Figure 5),
manages the evaluations by Buyer, Requester, and Reviewers. It is from within this stage
that the Buyer can indicate that a supplier response is the winner, or explicitly reject it.
If some other response to the FPR instance is selected as winner, then the Implicitly Re-
jected milestone will be be achieved automatically. (See Subection 4.2 for a detailed
description of how this occurs in the operational semantics.) Once a decision is made
for a supplier response, then the Notifying stage sends an email to the Supplier.

3.3 Stage and Milestone Status

Each milestone m will include a boolean attribute, denoted simply by ‘m’, which holds
the current status of m. This is initialized to FALSE, and may become TRUE under
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certain circumstances. For example, f.‘Ready for Buyer Review’ will become true for
some FPR instance f if the Requester submits a Submit to Buyer event and certain
business-relevant requirements are satisfied. In this case we say that the milestone has
been achieved. In some cases, a milestone with value TRUE may become compromised
or invalidated. For example, in FPR if a Buyer rejects an FPR request submitted by a
Buyer, then the milestone Ready for Buyer Review is invalidated, and the associated
value assigned to FALSE.

During the life of a BEL instance, if a guard of some stage S becomes true, then an
occurrence of S is launched; in this case we say that S has become open (or active). If
S is open and a milestone of S becomes true, then the occurrence is ended, and we say
that S has become closed (or inactive).

In some cases it is useful to permit the guards and milestone conditions to refer
directly to the status of stages and/or milestones, and so a BEL information model holds
two kinds of status attributes. This includes for each milestone m the status attribute m
discussed above. It also includes, for each stage S, a boolean status attribute activeS ;
This is assigned TRUE if some occurrence of S is open, and FALSE otherwise.

In some cases it is useful to use the change in value of a status attribute as a triggering
event for some guard or milestone. GSM thus supports four kinds of status-change event
types. The first two, denoted in the GSM-L syntax as S.opened() and S.closed(), are
satisfied at the logical point in time3 where S is opened and closed, respectively. The
other two, denoted m.achieved() and m.invalidated(), are satisfied at the points in time
when m toggles to TRUE and to FALSE, respectively.

In a BEL information model, the milestone and stage info attributes hold information
about how the values associated with stages and milestones change over time. At a
minimum, for each stage S (milestone m, resp.) the current value of status attribute
activeS (m) is maintained, along with the logical timestamp of when it last changed.
Additional information might be stored, e.g., a history of changes to the status attribute
values, and perhaps a count of how many times they have toggled.

3.4 Events and Sentries

As discussed above, there are two categories of event types: external event types and
status-change event types. The syntax to test for an occurrence of external event type e
is e.onEvent(). The syntax for status-change event types was given in Subsection 3.3.

In the current GSM meta-model, both event occurrences and conditions over all at-
tributes in the information models of the BEL types in a BSC can be used when spec-
ifying the circumstances under which a stage should open, when a milestone should
become true, and when a milestone should be invalidated. We use the term “sentry”
to refer to the kind of component that guards and milestones have in common. More
specifically, a sentry is a condition having either the form ‘on ξ’ or the form ‘on ξ if ϕ’
or the form ‘if ϕ’, where ξ is an expression for an external or status-change event type
and ϕ is a condition not involving any event occurrence expressions. As will be seen, a
guard is simply a sentry; sentries are used to specify when milestones become true; and
sentries are used to specify when milestones become false.

3 The notions of ‘logical point in time’ and ‘logical timestamp’ are discussed in Section 4.
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In typical cases a sentry refers only to events and attributes of the entity instance
under consideration, but a sentry may refer to events and/or attributes of other entity
instances. For example, as illustrated in Figure 5, the sentry for milestone Implicitly
Rejected for BEL type Supplier Response is if s.‘Parent FPR’.‘Winner Established’ and
s <> s.‘Parent FPR’.Winner. indicating that this milestone should become true when the
Winner Established milestone of the FPR instance associated to s becomes true. (The
second conjunct is included as a safeguard.) Also, the substage Winner Bookkeeping of
FPR’s Tracking of Evaluations has guard4 f.‘Supplier Response IDs’ -> exists(‘Selected
as Winner’. Here ‘-> exists’ represents a binary predicate whose semantics is, speaking
loosely, that the collection of Supplier Response ID’s satisfies the condition that for at
least one element s, s.‘Selected as Winner’ is TRUE.

In the current formulation of GSM, a sentry is based on at most one event occurrance;
complex event types are not explicitly supported. Such events can be tested for within
the current framework, if histories are maintained in the information model for the
external events and the status attributes.

Suppose a guard for stage S has form on e.onEvent() if ϕ. In core GSM, if an event
occurrence of type e is being processed, and ϕ is not true, then the event occurrence is
“dropped” and S is not opened. In some cases it may be desirable to permit S to open if
ϕ becomes true within some duration. This can be supported as a macro, using a syntax
such as e.sinceEvent<duration> or m.sinceAchieved<duration>.

3.5 Milestones

As noted above, milestones correspond to business-relevant operational objectives that
might be achieved by an entity instance. At a technical level, a milestone has a name,
an associated attribute in the BEL information model, a set of one or more sentries, and
a set of zero or more invalidating sentries. When considered as an attribute, milestone
m has type Boolean, and the function timestamp() can be used to access the logical
timestamp when it last changed.

To illustrate, in FPR there is one sentry for Ready for Buyer Review, which is
on f.‘Submit to Buyer’.onEvent() if ϕ. Here f is a variable that holds the FPR instance
under consideration when evaluating this sentry. Also, ϕ is a condition that captures
various business-relevant requirements. In our running example, there is one invalidat-
ing sentry for this milestone, which is on f.Rejected.achieved().

In the GSM framework milestones play three primary roles: to trigger the closing of a
stage; to trigger other guards, milestones, and milestone invalidators; and to enable later
testing of whether the milestone has been achieved. The first use of milestones makes
intuitive sense, because the purpose of the stage is to achieve one of its operational
objectives, i.e., one of its milestones. (We note that the milestones of a stage are required
to be disjoint, that is, they must be formulated in such a way that it is not possible that
two milestones can become true at exactly the same moment.) The reader may ask: if a
stage occurrence is terminated and there are substages inside with active occurrences,
what happens to them? In the default case, all occurrences of substages are terminated

4 In GSM-L and the figures, sentries are written with a slightly different syntax. E.g., a sentry
of form if ϕ is written simply as ϕ, and a sentry of form on e.onEvent() if ϕ is written as
e.onEvent()and ϕ.
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if the parent closes. This corresponds to the intuition that since the milestone has been
achieved, no further work is needed from within the stage.

A milestone, considered as an event type, can trigger other milestones and guards.
E.g., the guard of Reviewing in FPR is f.‘Ready for Buyer Review’.achieved().

The third role of a milestone is to support long-term testability of whether an op-
erational objective has been achieved (and is still considered valid). For example, the
expression s.‘Submitted for Evaluation’, which arises in the guard of Supplier Response
stage Evaluating (see Figure 5), is used to test whether the Supplier Response instance
referred to by variable s has achieved the Submitted for Evaluation milestone (and it has
not since been invalidated).

3.6 Stage Bodies and Atomic Stages

Stages provide a way to structure the activities related to a BEL instance. As noted
above, if the guard of a stage S becomes true, then an occurrence of S is launched, and
the stage is said to be open. When a stage (occurrence) is open, then substages of that
stage are eligible to be opened if their guards become true. If S is open, and a sentry
of a milestone of S becomes true, then the stage occurrence (and all nested substage
occurrences) become closed.

In the version of GSM described here, for a given stage S there can be at most
one occurrence of S that is open at a given time. (The team is currently exploring a
useful generalization, in which a stage might be applied separately to each element of a
collection, in a manner similar to the map operator in functional programming.)

We consider now atomic stages; example non-atomic stages are described in Sub-
section 3.9. In GSM, all of the “real” work, that is, the writing of attribute values and
interacting with the outside world, is performed within atomic stages. Such stages may
contain one or more tasks of various types, including: (a) assignment of attribute values;
(b) invocation of (one-way or two-way) external services; (c) request to send response
to an incoming two-way service call; (d) request to send an event (message) to one or
more identified entity instance(s); and (e) request to create a new entity instance. Hu-
man services, that is services that human performers do, are considered as a special
case of two-way external services. An atomic stage may include zero or one task from
the categories of (b), (c), (d), or (e), and any number of assignment tasks; these are
combined using a simple sequencing operator.

Following previous work on BEL’s, services in GSM that interact with a BSC can
explicitly read and write to data attributes in the information model of BEL instances.
In particular, if a 2-way service is invoked, then parameters for the service call are pop-
ulated directly from data attributes of the calling BEL instance, and parameter values
from the service call return are written directly into data attributes of that BEL instance.
(See Subsection 3.10.) Analogous remarks hold for tasks of types (c) through (e).

The direct access to data attributes by external services corresponds to the intuition
that the BEL information model is shared among the multiple stakeholders involved
with the associated BEL type, a design feature that fosters communication across dif-
ferent groups and sub-organizations. This is a deliberate and significant departure from
traditional SOA and object-oriented programming, where the internal data structures of
a service or object are hidden.
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Suppose that an atomic stage S includes a task that invokes a two-way external ser-
vice. It is assumed that the external service is capable of eventually sending a return
message into the BSC, and that the BSC can correlate that message to the calling entity
instance. This return message is used to trigger one of the milestones of S, and S is
closed. In some cases an atomic stage S will have a milestone m that can be triggered
before the service call returns. For example, this might arise if the parent stage closes,
or if a manager determines that the budget has run out, and processing should stop. The
called service may have been designed to be capable of receiving an abort message and
responding appropriately. GSM supports the sending of such abort messages.

In practice, the external services, especially those performed by humans, may have
richer capabilities to interact with the BSC. For example, a service invoked from atomic
stage S might be capable of receiving messages from the BSC while in the middle of
processing. (These might be generated as one-way service calls from stages other than
S.) Also, a human performing a service may want to invoke a save or save and exit
command in the middle of processing, while still keepig the atomic stage open.

3.7 Illustration of Derived Attributes

Derived attributes provide a mechanism to enable modularity and simple re-use of ex-
pressions. We briefly illustrate the notion of derived attributes using the attribute Ready
for Evaluation of FPR. This attribute is used as part of the guards for FPR’s stage Track-
ing of Evaluations and Suppler Response’s stage Evaluating (see Figure 5). The expres-
sion defining Ready for Evaluation is given now, and explained below.

((f.‘Bidding style’=FreeForm and f.‘Submitted to Suppliers’)
or
(f.‘Bidding style’=Restrictive and f.‘Response due date’ < now()
or f.‘Supplier Response IDs’ ->

forall(‘Submitted for Evaluation’ or Declined))
) and not f.‘Supplier Response IDs’ -> exists(‘Selected as Winner’)

In our version of Fixed-Price, there are two styles for the bidding: FreeForm and Re-
stricted. In FreeForm bidding, the evaluation of a supplier response can begin as soon as
it arrives from a Supplier; in Restricted bidding, no supplier response can be evaluated
until either (a) the due date for responses has passed or (b) for each supplier associ-
ated to the FPR instance, either the supplier has submitted a response or has declined
to respond. The first line indicates that if the bidding style is FreeForm, then the sup-
plier response is eligible for evaluation as soon as the milestone Submitted to Suppliers
has been achieved by the FPR instance. (Of course, an individual Supplier Response
instance cannot be evaluated until it has been filled out and submitted.)

The second and third lines express the condition for the case of Closed bidding. Here
the ‘-> forall’ construct in the third line is a binary predicate which is true if each s in
f.‘Supplier Response IDs’ satisfies s.‘Submitted for Evaluation’ or s.Declined.

Intuitively, the final conjunct is included in Ready for Evaluation because if a winner
has been selected, there is no reason to start any further evaluations. At a technical level,
including this conjunct impacts the guards of Tracking of Evaluations and Evaluating,
and helps to prevent these stages from opening in cases where a winner has already
been selected. (See also Subsection 3.14.)
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Fig. 6. Illustration of flowchart macros using FRP lifecycle model

3.8 Guards

A guard is simply a sentry associated with a stage. If the sentry becomes true, then (an
occurrence of) the associated stage is opened. The guards of a stage are intended to be
disjoint, analogous to the milestones of a stage.

Some guards have the special role of launching an entity instance. The upper guards
of Drafting in FRP and Initializing in Supplier Response have this role, as indicated by
the diamond icon with a cross in it. The sentries of such guards necessarily have an
event, and the payload of the event is used to initialize some data attributes of the newly
created instance. Also, if such an event is processed successfully, then the BSC sends
a return message to the producer of the event, whose payload includes the ID of the
newly created instance.

Unlike milestones, guards are not required to have explicit names. This is because
business-level stakeholders do not typically refer to guards.

3.9 Macros for Activity Flow Constructs

So far, we have been describing the constructs of the core GSM Language; macros can
also be incorporated. Figure 6 illustrates how the semantics of several of the guards
and milestones of FPR’s lifecycle might be specified using macros based on flowchart
constructs. The arrow from Ready for Buyer Review to the guard of Reviewing can be
interpreted to mean that the guard is specified as f.‘Ready for Buyer Review’.achieved().
The arrow from Rejected to the lower guard of Drafting includes a star, indicating that
an event of type Rework FPR is needed in addition to the boolean attribute f.Rejected
being true. An open exercise is to see how much of BPMN and other process-centric
approachs can be simulated using GSM.

In some cases on can infer flowchart and other constructs from a BOM specified in
core GSM-L. This would be helpful during the design process. Exploring efficient ways
to perform this kind of inference is an open research challenge for GSM.

3.10 Sub-stages

Figures 4 and 5 are now used to illustrate several key properties of stages and sub-
stages. The first shows the FPR stage Reviewing. In the guards and milestones here,
the variable f is used to denote the entity instance currently under consideration. The
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guard on this stage will become true when the Ready for Buyer Review milestone be-
comes true. The stage has three substages. Each of these is atomic, and when opened
has the effect of launching a (human or automated) external service. For example, Le-
gal Reviewing, if opened, will call the automated service LegalReview which has input
parameters Location and Description (and others) which are populated by the attributes
Location and Job Requirements (and others) of the FPR instance being worked on, and
which has output parameter Opinion which is written into the Legal Opinion attribute of
the FPR instance.

Because of the first guard on Buyer FPR Reviewing, this substage is opened automat-
ically when Reviewing is opened. (The two not conditions prevent the substage from
opening automatically a second time; see Subsection 3.14.) This substage may also be
opened by a message of type Buyer reviewing rework sent to this entity instance.

Substage Legal Reviewing may open for one of two reasons. The first guard indicates
that it will be opened whenever a Legal review needed event is sent to the entity instance
(and the substage is not currently open). The second guard indicates that if the Contract
value is over $100,000 (and the substage has not yet run), then the stage should open as
soon as Evaluating opens.

The substage Launching Supplier Responses is opened once the Buyer has approved
the FPR instance. It contains a call to the external service CreateSupplierResponseIn-
stances, which has the effect of sending messages into the BSC calling for the creation
of a new Supplier Response entity instance for each supplier in the collection attribute
f.Suppliers. The ID of each newly created entity instance is returned to the service,
which eventually packs all of the IDs into the output parameter Suppliers with SR IDs
and returns that to the FRP instance. (In a future version of GSM, an approach for
performing such instance creations using explicit GSM constructs may be developed.)

Figure 5 depicts a drill-down into the Evaluating stage of Supplier Response. Recall
that this stages enables evaluation of a Supplier Response instance by various parties,
and enables the Buyer to explicitly select the instance as a winner or loser (or allow it to
be rejected automatically). The guard for this stage is based on a conjunction, with first
conjunct being that the Supplier Response instance has been submitted for evaluation,
and the second conjuct stating that the parent FPR instance has derived attribute Ready
for Evaluation (described above) being true. This sentry illustrates the value of being
able to specify a guard without having to specify all the ways that it might be triggered.

The Evaluating stage has four substages, corresponding to the Buyer doing evalua-
tion, the Requester doing evaluation, the adding of one or more Reviewers, and finally a
Reviewer doing evaluation. Each of these are atomic, with the first, second, and fourth
calling for human services (details not depicted). The body of Adding Reviewer is an
assignment task, that appends the payload of the triggering event to the list s.Reviews.

Substage Buyer Evaluating has two guards. The first will become true as soon as
Evaluating opens, and so the substage will open automatically. The second guard is used
for cases where the Buyer has already completed an evaluation, but wants to revise it; in
this case the Buyer sends an Evaluation Rework event. Following the real-world version
of Fixed-Price, Requester Evaluating will open only if and when the Buyer sends in a
Requester to Evaluate event. Similarly, Adding Reviewers is triggered whenever an Add
Reviewers event is received.
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As shown in Figure 5, the Reviewer Evaluating substage can open whenever there
is an event of type Reviewer evaluation request (and the substage is not already open).
Here, the payload of this request identifies the particular reviewer who will perform the
evaluation. (As noted above, a useful feature to be added to GSM will allow for parallel
occurrences of Reviewer Evaluating, one for each element in s.Reviewers.)

3.11 BEL Service Centers (BSC’s)

As suggested in Figure 1b, the BEL instances in Fixed-Price can interact with the “out-
side world” in four ways. At an implementation level, the component managing the two
business entity types and all of their instances is termed a BEL Service Center (BSC).
In addition to managing the actual entity types and instances, the BSC includes a shell
that provides various services including interfaces to support the interactions with the
external world. Individual entity instances can invoke external web services, such as the
Legal Analysis service; the BSC provides REST and WSDL interfaces and manages the
details of the communication for the entity instance. The BSC supports ad hoc queries
against the data store that holds the entity instances. The BSC can also receive and pro-
cess incoming web service calls; in this case the BSC shell analyzes the call and routes
it to the appropriate entity instance(s) for handling. Finally, the BSC supports the actual
run-time interaction between human performers and the entity instances. In principle,
this includes support for performers to execute the human services, to see the status of
entity instances, and to send events to them.

BSCs also facilitate some communication between entity instances. As noted above,
sentries of one entity instance can refer to the information models of other entity in-
stances. Also, BSCs currently enable one instance to send a “message” to another one
(which is treated essentially as an external event). Finally, an entity instance can invoke
a query against the full family of entity instances currently managed by the BSC.

In the current design, the BSC acts as an SOA-service, that is, it interacts with the
outside world exclusively using service calls (specified using REST and WSDL). An
interesting research direction is to develop a richer, BEL-aware form of interface to
support the interaction between two or more BSCs.

3.12 Parallelism, Transactional Consistency, and Attribute Status

Stage occurrences can run in parallel, which raises the possibility of two stage occur-
rences attempting to write to the same data attribute, or one stage occurrence attempting
to read a data attribute that another one is in the process of writing. To address these
possibilities, a transactional consistency discipline based on read and write locks is fol-
lowed. For each stage, a ReadSet and WriteSet is specified, where these are sets of data
attributes (or subcomponents of them). In the operational semantics, a stage cannot open
if it would lead to a locking inconsistency.

There is a relationship between write locks and the status of attributes, and the use
of attributes in conditions. Attributes generally start in an uninitialized status. When a
stage S opens, if attribute A is in the WriteSet of S, then A moves into an active status,
intuitively because the value of these attributes is subject to change at any time. When S
closes, assuming that no ancestor of S has A in its WriteSet, then A moves to the stable
status. If an ancestor S′ includes A in its WriteSet, then A is viewed as stable within
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the scope of S′ and active outside of that scope. Given an atomic condition involving
attribute A, if A has active status, then the condition evaluates to false. (The team is
currently exploring circumstances where it makes sense to permit a stage to access an
attribute even while it is in active status.) Derived attributes may have status invalid,
e.g., if their evaluation involves a division by zero.

3.13 Exception Handling

As with any programming paradigm, exceptions can arise during run-time, and have to
be addressed. In GSM, the basic approach is to include a fault milestone for each stage
(not done in examples here). Also, for each stage S the Solution Designer may include
a substage S′ that is intended to handle faults raised by other substages of S. If no such
substage is specified, then the fault is propogated to the fault milestone of S.

Recall that all business-relevant data is represented in the information model of an
entity type. In principle, then, any exception can be handled by updating selected at-
tribute values in the information model (including possibly adjusting the Milestone and
Stage Info). This is one way that the data-centric approach underlying GSM appears to
be easier to work with than traditional process-centric approaches.

3.14 Macros and Design Patterns

The focus of the discussion above has been on the core GSM constructs. In some cases
the specifications used to obtain certain patterns of behavior among stages are rather
cumbersome. It will thus make sense to design macros that can be layered on top of core
GSM-L, to simplify both the creation and understanding of GSM BOMs. For example,
some macros to simplify specification of activity flow constructs and of fault recovery
would be appropriate. We mention here a few additional patterns that are currently
under consideration for inclusion as macros.

As illustrated with the Supplier Response Evaluating stage and elsewhere, some
guards have no triggering event. This is useful if there are multiple ways that the stage
can be triggered, and the Solution Designer does not want to enumerate them, or if the
stage is supposed to open automatically when its parent does. As an example of the lat-
ter, the second guard of the Legal Reviewing substage (see Figure 4) is f.‘Contract value’
> 100000 and not f.‘Legal Review Completed’. Why is the second conjunct included
here? If this were omitted, then as soon as the first occurrence of Legal Reviewing com-
pleted then a second occurrence would open. Two macros would be useful to make
specification of such guards less cumbersome. The first would use a syntax such as ‘no
milestone true’; in a guard of some stage S this would evaluate to true only if each
milestone of that stage has value FALSE. The second would be a property specified for
a stage, with a syntax such as ‘run once within(<stage name>)’, where the named stage
is an ancestor of the stage being qualified. The semantics here would be that the stage
could run at most once for each occurrence of the named ancestor.

In some cases, if a stage S has completed but later is re-opened, it will be appropriate
to invalidate all milestones of all substages of S. In core GSM this is achieved by in-
cluding explicit invalidators for each milestone. It would be useful to have a macro, as a
property of a stage, that indicates that all the milestones of children (or of descendants)
should be invalidated if the stage opens.



18 R. Hull et al.

A common situation in practice is that an active BEL instance (or a family of them)
must be suspended, that is, work should stop for these instances, but it might be resumed
later. When an instance is suspended, it may make sense to close some stages, freeze
others, and let others run to completion. If the instance is resumed, some milestones
(and their associated stages) might have to be reworked or verified, while others might
be permitted to remain true. The team is developing macros to simplify specification of
various suspend and resume behaviors.

4 GSM Operational Semantics

This section gives a brief sketch of the GSM operational semantics, first in general
terms and then with two examples. (A detailed discussion is given in [18,12].)

4.1 Transformation into ECA Rules

In GSM, progress along lifecycles by a family of BEL instances is organized into
macro-steps. Each macro-step corresponds to the processing of a single external event,
using a sequence of one or more micro-steps. The first micro-step involves writing data
into an event attribute and possibly into (non-derived) data attributes, and the subse-
quent micro-steps involve changing the values of status attributes. Each of the micro-
steps except the first is an application of an ECA rule derived from the lifecycle models
of the BEL types in the BSC.

At a conceptual level, in the GSM operational semantics each time a macro-step is
performed in a BSC it is assumed that there is a transactional lock on the full set of
entity instances managed by the BSC. (In practical implementations, of course, parallel
processing is permitted, as long as the same semantics is achieved modulo the ordering
of processing of external events.) Intuitively, once a macro-step begins at a time t, the
micro-steps within that macro-step can be viewed as happening “at the same time”, i.e.,
at time t. In this case, t is referred to as the logical point in time when each microstep
was performed, and is used as the logical timestamp of each status change event that
occurs as the result of these micro-steps.

Although space limitations prevent a detailed discussion, we present the basic idea
of how ECA rules are derived from a GSM BOM. Some of the rules are derived directly
from the guards and milestones. These include the following kinds of rules.

(i) (Opening a stage:) if g is the guard of a stage S (with parent S′), then there is a
corresponding rule with antecedent g (conjuncted with activeS′) and consequent
+activeS . The consequent means that the value of status attribute activeS should
be changed to TRUE. (If S has parent S′, then incorporating the conjunct activeS′

reflects that g is eligible for consideration only if the parent stage S′ is open),
(ii) (Setting a milestone and closing its stage:) if α is a sentry for milestone m of stage

S, then there is a corresponding rule with antecedent α conjuncted with activeS ,
and as consequent +m;−activeS .

(iii) (Invalidating a milestone:) if β is an invalidating sentry for milestone m, then there
is a corresponding rule with antecedant β and consequent−m (i.e., make m false).
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(iv) (Launching a BEL instance:) If g is a guard of root-level stage S that launches new
entity instances, then there is a corresponding rule with antecedent g and conse-
quent the creation of a new entity instance, making activeS true for that instance,
and generating a request (to the BSC) to send a message to the producer of the
triggering event with the ID of the newly created entity instance in its payload.

In addition, there are four forms of default ECA rule, as follows.

(v) (Closing a substage:) If S is a stage with substage S′, then there is the rule with
antecedant S.closed() and consequent.−activeS′ .

(vi) (Invalidating a milestone of an opening stage:) If S is a stage with milestone m,
then there is a rule with antecedant S.opened() and consequent−m.

(vii) (Launching a task:) If S is an atomic stage with task (or sequence of tasks) T
inside, where T includes a 2-way service, there there is a rule with antecedant
S.opened() and consequent generation of a request (to the BSC) to invoke T .

(viii) (Aborting task:) If S is an atomic stage with task (or sequence of tasks) T inside,
and T can receive abort messages, and m is a milestone of S not triggered by
completion of T , then there is a rule with antecedant m.achieved() and consequent
generation of a request (to the BSC) to abort T .

Various conditions are placed on the lifecycle model and the application of ECA rules to
ensure that processing of micro-steps terminates and satisfies other desirable properties.
An acyclicity condition relates to dependency relationships between status attributes, as
determined by the ECA rules listed above. (If ReadSets and WriteSets are used in the
lifecycle model, then these must also be factored into the acyclicity condition.) The
ECA rules must be applied in an order based on a topological sort.

4.2 Examples

We now illustrate how external events are processed by a cluster of entity instances in a
BSC. For this illustration we focus on the Supplier Response stage Evaluating (Figure
5) and the FPR stage Tracking of Evaluations. Figure 7 depicts the overall context for
the illustration. In particular it shows an FPR instance FPR1 and the several Supplier
Response instances SR1, SR2, . . . , SRn associated to it.

The figure shows a key substage of the FPR stage Tracking of Evaluations, called
Winner Bookkeeping. The guard of this stage will become true when one of the asso-
ciated Supplier Response instances achieves the milestone Selected as Winner. This
stage holds an assignment task, which places the ID of the winning Supplier Response
instance into the FPR attribute Winner. When that assignment task is complete, the
Winner Assigned milestone is achieved. Recall that the assignment task is viewed as
“external” to the GSM processing.

The first external event we consider is when the Buyer sends a Select as Winner
event to SR1. This has the direct impact of writing the event and its payload into the
information model of SR1 (the first micro-step). Next, the milestone Selected as Winner
is achieved and its value is set to true, and the FPR stage Reviewing closes (the second
micro-step). Then, because the guard of Winner Bookkeeping has become true, that
stage opens (the third micro-step). Additional micro-steps may occur in order to close
each substage of Evaluating that is open for SR1. This ends the macro-step.
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Fig. 7. Illustration of event processing

The second external event occurs when the assignment task in Winner Bookkeeping
is completed. The direct impact is that the assigned value is written into f.Winner and
the task completion event is recorded into the information model (the first micro-step)
This triggers the Winner Assigned milestone and closes Winner Bookkeeping (the sec-
ond micro-step). This in turn triggers the milestone Winner Established to become true.
From here, for each of the Supplier Response instances except SR1, the milestone Im-
plicitly Rejected is set (several more micro-steps). Additional micro-steps may occur to
close substages of Tracking of Evaluations that are open for FPR1 and the stages (and
substages) of Evaluating for each SR2, . . . SRn. Also, the guard of Requisitioning in
FPR1 will become true because Winner Established became true, and so that stage will
open (additional micro-step). The macro-step now ends.

(In the BOM here, the stage Winner Bookkeeping contains only an automated com-
putation, and according to the GSM operational semantics, this task completes before
any events from outside of the BSC are processed. If Winner Bookkeeping included a
long-running task e.g., to confirm with the winning Supplier that it is prepared to honor
the contract, then the BOM would have to be modified to prevent the selection of a
second winner before the first winner is fully processed.)

The examples just presented illustrate rather intricate logic at the level of ECA
rule chaining. We anticipate that this kind of logic will be understandable in detail by
Solution Designers. Importantly, the business-level stakeholders will not need to have
a detailed understanding of this kind of logic, although they may develop an intuitive
understanding of it. We hypothesize that GSM’s ability to capture this kind of detailed
logic in a declarative way will simplify the job of modifying BOMs as business require-
ments change.
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5 Representative Verification and Reasoning Problems

This short section identifies several families of well-motivated verification and reason-
ing problems that can be studied in the context of GSM, and mentions a promising
approach that can be used as a starting point to solve them.

As mentioned in Section 2, the Project ArtiFact vision includes enabling business-
level stakeholders to specify models of business operations that are intuitive, imprecise,
and/or incomplete. For example, these stakeholders will be able to specify a family of
high-level business scenarios. It is then natural to ask whether a complete GSM BOM
can support this family of scenarios. A much more challenging problem is to synthesize
a complete BOM that is intended to support a set of scenarios, and be in some sense
minimal among such BOMs. Similar questions can be studied if business rules are used
in place of, or along side with, business scenarios.

Another family of questions is raised by the notion of macros on top of the GSM
constructs, as discussed in Subsections 3.9 and 3.14. Inferring which macros are implied
by a BOM specified using core GSM constructs is very important, because it will help
both Solution Designers and business-level stakeholders to understand GSM BOMs.

A third family of questions are classical and deals with issues such as reachability
and deadlock. Especially interesting here will be the style of these questions in the
context of interactions between BEL instances, if there can be one-many (as in the
running example) or many-many relationships between them.

All of these questions are challenging in the GSM context because of the prominance
of data, and the resulting infinite state space. While much of the work in the verifica-
tion community has focused on extending classical model checking to infinite-state
systems (see [7] for a survey), in most cases the emphasis is on studying recursive con-
trol rather than data, which is either ignored or finitely abstracted. Some recent papers
have developed approaches to verification for declarative entity-centric meta-models,
including most notably [5,14,11]. However, all of these assume that the external ser-
vices are performed in a serial fashion; parallelism is not supported. An approach has
now been developed [12] to reduce verification questions about an abstract GSM BOM
into verification questions about BOMs in a meta-model based on the sequential style
of the previous results [12]. In particular, given a GSM BOM Γ , it is possible to create
a closed-form formula that accurately characterizes the pairs (Σ, Σ′) of snapshots of
Γ with the property that Σ′ can arise as the result of processing a single external event
against Σ. From this starting point it is hoped that by using techniques from [14,11] the
verification and reasoning problems mentioned above can be effectively addressed.

6 Related Work

The GSM framework is a synthesis of ideas from several places. The primary influ-
ence is the work on state-machine based business entities (artifacts) with lifecycles (see
[23,20,27,22], and related work such as [6,26,28]). A short survey of that work is [17]
Another key influence is the recent theoretical work on incorporating rules-based and
declarative constructs into the BEL paradigm (e.g., [5,14,15]).

There is a close relationship between the BEL perspective and case management
[30,13]. Both paradigms place heavy emphasis on the data being manipulated by a
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business process, and structure the data in terms of a long-lived conceptual entity that
can hold all relevant information that is gathered over the lifetime of the entity. Recent
work is incorporating into case management rich declarative constructs for managing
flow of control; these share several similarities with GSM.

The GSM framework can express most if not all of the constructs typical to case
management. To illustrate, we sketch how GSM can support the to-do list construct,
with which a performer identifies the set of activities deemed necessary for successful
completion of a particular case. Let S be a GSM stage with substages S1, . . . , Sn. To
support a to-do list over these substages, begin by including another attribute, called
ToDo, which holds a collection over the enumerated set {‘S1’, . . . , ‘Sn’} (i.e., the
names of the substages of S). Also include another substage Modifying ToDo List to
S, which enables performers to modify the contents of ToDo. For each guard g of a
substage Si, replace g by g′ which is g with an additional conjunct requiring that ‘Si’
is present in ToDo. This prevents Si from opening unless it is in the to-do list. Finally,
for each i ∈ [1..n] a substage Record Si Completion must be included; this is opened
immediately after Si closes, and deletes ‘Si’ from ToDo. Additional details need to be
addressed, e.g., to prevent the performer from adding a substage Si to the to-do list
but not some substage Sj that Si depends on, or at least providing a warning to the
performer if this happens. More generally, the ToDo attribute described here could be
generalized, e.g., to maintain the history of the substages and other information.

An important influence in the development of GSM is the Vortex workflow model
[19], which supports constructs similar to GSM’s information model and stages con-
trolled by guards. In Vortex each attribute can be written at most once, and the stages
must form a directed acyclic graph; GSM is a substantial generalization over Vortex.

Another influence is Hilda, a declarative language and system for data-driven web
applications [31]. While the focus of Hilda is somewhat different, it provides a pro-
gramming framework based on building blocks that work against a centralized data
store using declaratively specified operators. GSM is focused more on managing BEL
types rather than arbitrarily structured data stores, and incorporates constructs such as
milestone that are intended to model the way that business-level people think.

The AXML Artifact model [2,21] supports a declarative form of BEL’s (there called
‘artifacts’) using Active XML [1] as a basis. The approach takes advantage of the hier-
archical nature of the XML data representation used in Active XML. In contrast, GSM
uses milestones and hierarchical stages that are guided by business considerations; these
might not naturally mimic any particular XML formatting of the underlying data.

DecSerFlow [29] is a fully declarative business process language, in which the pos-
sible sequencings of activities are governed entirely by constraints expressed in a tem-
poral logic. GSM does not attempt to support that level of declarativeness. In terms
of essential characteristics, GSM can be viewed as a procedural system that permits
the use of a rich rules-based paradigm for determining, at any moment in time, what
activities should be performed next.

7 Conclusions

This paper introduces a new variant of the Business Entities with Lifecycles (BEL)
framework, that uses a declarative approach called Guard-Stage-Milestone (GSM). This
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is an evolution of previous work in the BEL paradigm, that has been designed to (a)
include constructs that match closely with how business-level stakeholders concep-
tualize their operations, (b) enable the specification of those constructs in a precise,
largely declarative way, and (c) enable a relatively direct mapping from a GSM Business
Operations Model (BOM) into a running implementation.

Current research on the GSM meta-model includes (i) creating a framework and
tool to support BOM design by business-level stakeholders that is based on specifying
business scenarios and other intuitive, imprecise, incomplete specifications; (ii) creat-
ing tools to enable the specification of guards, milestones, and derived attributes us-
ing an SBVR-inspired structured English; and (iii) developing formal foundations and
algorithms for verification and reasoning. Also, the BEL framework, including GSM,
forms the basis of a sizeable research effort on a new approach to supporting service
interoperation [3]. Additional research directions for GSM include (a) creating a frame-
work support rich collaborative design of GSM BOMs; (b) developing a framework
to support variation and change (cf. [21]); (c) finding ways to apply GSM in contexts
that include use of legacy business processes and data stores; and (d) finding scalable
approaches for supporting large GSM BOMs with massive numbers of entity instances.

Acknowledgements. The authors thank the extended Project ArtiFact team at IBM
Research for many informative discussions about the entity-centric approach and its
application in business contexts. This includes David Cohn, Opher Etzion, Amit Fisher,
Adrian Flatgard, Rong (Emily) Liu, Nir Mashkif, Prabir Nandi, Florian Pinel, Sreeram
Ramakrishnan, Guy Sharon, John Vergo, Frederick y Wu. The authors also thank the
many people from outside of IBM who have contributed ideas into Project ArtiFact.
This includes most notably: Diego Calvanese, Hojjat Ghaderi, Giuseppe De Giacomo,
Riccardo De Masellis, Alin Deutsch, Jianwen Su, and Victor Vianu. This also includes
members of the EU-funded ACSI research consortium not listed here.

References

1. Abiteboul, S., Benjelloun, O., Milo, T.: The Active XML project: An overview. Very Large
Databases Journal 17(5), 1019–1040 (2008)

2. Abiteboul, S., Bourhis, P., Galland, A., Marinoiu, B.: The AXML Artifact Model. In: Proc.
16th Intl. Symp. on Temporal Representation and Reasoning, TIME (2009)

3. Artifact-centric service interoperation (ACSI) web site (2010),
http://acsi-project.eu/

4. Bhattacharya,K.,Caswell,N.S.,Kumaran,S.,Nigam,A.,Wu,F.Y.:Artifact-centeredoperational
modeling: Lessons from customer engagements. IBM Systems Journal 46(4), 703–721 (2007)

5. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-
centric business process models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)
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Abstract. A business process is often modeled using some kind of a directed
flow graph, which we call a workflow graph. The Refined Process Structure
Tree (RPST) is a technique for workflow graph parsing, i.e., for discovering the
structure of a workflow graph, which has various applications. In this paper, we
provide two improvements to the RPST. First, we propose an alternative way to
compute the RPST that is simpler than the one developed originally. In particular,
the computation reduces to constructing the tree of the triconnected components
of a workflow graph in the special case when every node has at most one incom-
ing or at most one outgoing edge. Such graphs occur frequently in applications.
Secondly, we extend the applicability of the RPST. Originally, the RPST was
applicable only to graphs with a single source and single sink such that the com-
pleted version of the graph is biconnected. We lift both restrictions. Therefore,
the RPST is then applicable to arbitrary directed graphs such that every node is
on a path from some source to some sink. This includes graphs with multiple
sources and�or sinks and disconnected graphs.

1 Introduction

Companies widely use business process modeling for documenting their operational
procedures. Business analysts develop process models by decomposing business sce-
narios into business activities and defining their logical and temporal dependencies.
The models are then utilized for communicating, analyzing, optimizing, and support-
ing execution of individual business cases within or across companies. Various mod-
eling notations have been proposed. Many of them, for example the Business Process
Modeling Notation (BPMN), Event-driven Process Chains (EPC), and UML activity
diagrams, are based on workflow graphs, which are directed graphs with nodes repre-
senting activities or control decisions, and edges specifying temporal dependencies.

A workflow graph can be parsed into a hierarchy of subgraphs with a single entry
and single exit. Such a subgraph is a logically independent subworkflow or subprocess
of the business process. The result of the parsing procedure is a parse tree, which is
the containment hierarchy of the subgraphs. The parse tree has various applications,
e.g., translation between process languages [1,2,3], control-flow and data-flow analy-
sis [4,5,6,7], process comparison and merging [8], process abstraction [9], process com-
prehension [10], model layout [11], and pattern application in process modeling [12].

M. Bravetti and T. Bultan (Eds.): WS-FM 2010, LNCS 6551, pp. 25–41, 2011.
c� Springer-Verlag Berlin Heidelberg 2011
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Vanhatalo, Völzer, and Koehler [1] proposed a workflow graph parsing technique,
called the Refined Process Structure Tree (RPST), that has a number of desirable prop-
erties: The resulting parse tree is unique and modular, where modular means that a local
change in the workflow graph only results in a local change of the parse tree. Further-
more, it is finer grained than any known alternative approach and it can be computed in
linear time. The linear time computation is based on the idea by Tarjan and Valdes [13]
to compute a parse tree based on the triconnected components of a biconnected graph.

In this paper, we improve the RPST in two ways:

Æ The original RPST algorithm [1] contains, besides the computation of the tricon-
nected components, a post-processing step that is fairly complex. In this paper, we
show that the computation can be considerably simplified by introducing a pre-
processing step that splits every node of the workflow graph with more than one
incoming and more than one outgoing edge into two nodes. We prove that for the
resulting graph, the RPST and the triconnected components coincide. Furthermore,
we prove that the RPST of the original graph can then be obtained by a simple post-
processing step. This new approach reduces the implementation e�ort considerably,
requiring only little more than the computation of the triconnected components, of
which an implementation is publicly available [14].

Æ The original technique [1] is restricted to workflow graphs that have a single source
and a single sink such that adding an edge from the sink to the source makes the
graph biconnected. This assumption is too restrictive in practice as many business
process models have multiple sources and�or sinks, some are not biconnected, and
some are not even connected. In this paper, we show how these limitations can be
overcome. The resulting technique can be applied to any workflow graph such that
each node lies on a path from some source to some sink.

The remainder of the paper is structured as follows: The next section defines the RPST
and provides additional preliminary definitions. Sect. 3 proposes the simplified algo-
rithm for computing the RPST, and Sect. 4 then generalizes the algorithm to operate on
workflow graphs of arbitrary structure.

2 Preliminaries

This section presents the preliminary notions: the RPST [1] in Sect. 2.1, and the tri-
connected components of the graph [13,15] in Sect. 2.2. We refer to the corresponding
original articles for additional motivation of the definitions presented in this section.

2.1 The Refined Process Structure Tree

A multi-graph G � (V� E� �) consists of two disjoint sets V and E of nodes and edges,
respectively, and a mapping � that assigns to each edge either an ordered pair of nodes,
in which case G is a directed multi-graph, or an unordered pair of nodes, in which case
G is an undirected multi-graph. A pair of nodes may be connected by more than one
edge (hence the name multi-graph). We assume that the mapping � is fixed, so that a
subgraph can be identified with a pair (V �� E�), where V � � V and E� � E such that each
edge in E� connects only nodes in V �. Let F � E be a set of edges, GF � (VF � F) is the
subgraph formed by F if VF is the smallest set of nodes such that (VF � F) is a subgraph.



Simplified Computation and Generalization of the Refined Process Structure Tree 27

(a) (b)

Fig. 1. (a) A workflow graph represented in BPMN, (b) the corresponding TTG (simplified)

A multi-terminal graph (MTG) is a directed multi-graph G that has at least one source
and at least one sink such that each node lies on a path from some source to some sink; G
is a two-terminal graph (TTG) if it has exactly one source and exactly one sink. Fig.1(a)
shows a workflow graph in BPMN notation and Fig.1(b) presents the corresponding
TTG. Note that the activity nodes (a1� a2, etc.) are ignored in the TTG for the sake of
simplicity. We assume for simplicity of the presentation that a TTG has at least two
nodes and two edges.

Let G be an MTG and GF � (VF � F) be a connected subgraph of G that is formed
by a set F of edges. A node in VF is interior with respect to GF if it is connected only
to nodes in VF ; otherwise it is a boundary node of GF . A boundary node u of GF is an
entry of GF if no incoming edge of u belongs to F or if all outgoing edges of u belong to
F. A boundary node v of GF is an exit of GF if no outgoing edge of v belongs to F or if
all incoming edges of v belong to F. F is a fragment of a TTG G if GF has exactly two
boundary nodes, one entry and one exit. The set �u� v� containing the entry and the exit
node is also called the entry-exit pair of the fragment. A fragment is trivial if it only
contains a single edge. Note that every singleton edge forms a fragment. By definition,
the source of a TTG is an entry to every fragment it belongs to and the sink of a TTG is
an exit from every fragment it belongs to. Intuitively, control ‘enters’ the TTG through
the source and ‘exits’ the TTG through the sink. Note also that we represent a fragment
as a set of edges rather than as a subgraph.

We say that two fragments F� F� are nested if F � F� or F� � F. They are disjoint
if F � F� � �. If they are neither nested nor disjoint, we say that they overlap. A
fragment of G is said to be canonical (or objective) if it does not overlap with any
other fragment of G. The Refined Process Structure Tree (RPST) of G is the set of all
canonical fragments of G. It follows that any two canonical fragments are either nested
or disjoint and, hence, they form a hierarchy. This hierarchy can be shown as a tree,
where the parent of a canonical fragment F is the smallest canonical fragment that
contains F. The root of the tree is the entire graph, the leaves are the trivial fragments.

(a) (b)

Fig. 2. (a) A TTG and its canonical fragments, (b) the RPST of (a)
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Fig.2 exemplifies the RPST. Fig.2(a) shows a TTG and its canonical fragments,
where every fragment is formed by edges enclosed in or intersecting an area denoted
by the dotted border. For example, the canonical fragment T1 is formed by edges
�b� c� d� e� f �, has interior nodes �v� w� and boundary nodes �u� x�, with u being an en-
try and x an exit of the fragment. Fig.2(b) visualizes the RPST as a tree.

2.2 The Triconnected Components

The fragments of a TTG are closely related to its triconnected components, which was
pointed out by Tarjan and Valdes [13]. This relationship is crucial for the results that are
obtained later in this paper. Here, we introduce the triconnected components in detail
and we start with some preliminary definitions.

The completed version of a TTG G, denoted C(G), is the undirected graph that results
from ignoring the direction of all the edges of G and adding an additional edge between
the source and the sink. The additional edge is called the return edge of C(G). Let G be
an undirected multi-graph. G is connected if each pair of nodes is connected by a path;
G is biconnected if G has no self-loops and if for each triple u� v� x of nodes, there is a
path from u to v that does not visit x. If a node x witnesses that G is not biconnected,
i.e., there exist nodes u� v such that x is on every path between u and v, then x is called
a separation point of G. G is triconnected if for each quadruple u� v� x� y of nodes, there
is a path from u to v that visits neither x nor y. A pair �x� y� witnessing that G is not
triconnected is called a separation pair of G, i.e., there exist nodes u� v such that every
path from u to v visits either x or y.

The TTG in Fig.1(b) is connected, but not biconnected; the nodes u, x, y, and z are all
separation points. Fig.3(a) shows the completed version C(G) of the TTG from Fig.1(b),
where r is the return edge. The completed version is biconnected but not triconnected;
�u� x� and �x� z� are two of many separation pairs of C(G).

Fragments are strongly related to triconnectivity and separation pairs. Note that the
entry-exit-pair �u� x� of fragment T1 in Fig.2(a) is also a separation pair of its completed
version in Fig.3(a). In fact, each entry-exit pair of a non-trivial fragment of a TTG G is
a separation pair of C(G).

An (undirected) graph that is not connected can be uniquely partitioned into con-
nected components, i.e., maximal connected subgraphs. A connected graph that is not
biconnected can be uniquely decomposed into biconnected components, i.e., maximal
biconnected subgraphs. The biconnected components can be obtained by splitting the
graph into multiple subgraphs at each separation point. Because of the relationship of

(a) (b) (c) (d)

Fig. 3. The completed version of the TTG from Fig.1(b) and its triconnected components: (a) The
completed version, (b) a polygon, (c) a rigid component, and (d) a bond
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(a) (b) (c) (d)

Fig. 4. (a) A split of a hexagon from Fig.3(b), (b)-(c) a split of a tetragon, (d) a split of a bond

fragments to triconnectivity, we are interested to decompose a graph into unique tricon-
nected components. That decomposition is explained in the remainder of this section.

Let G be a biconnected multi-graph and u� v be two nodes of G. A separation class
w.r.t. u� v is a maximal set S of edges such that any two edges in S are connected by a
path that visits neither u nor v except as a start or end point. If there is a partition of all
edges of G into two sets E0� E1 such that both sets contain more than one edge and each
separation class w.r.t. u� v is contained in either of these sets, we call �u� v� a split pair.
We can then split the graph into two parts w.r.t. the parameters E0� E1 and u� v: To this
end, we add a fresh edge e between u and v to the graph, which is called a virtual edge.
The graphs formed by the sets E0 � �e� and E1 � �e� are the obtained split graphs of the
performed split operation. A virtual edge is visualized by a dashed line.

For an example of a split operation, consider the hexagon in Fig.3(b). Note that it
already contains virtual edges, which are the result of previous splits. The hexagon can
be split along the split pair u� z using the sets E1 � �k� r� a�� E2 � �m� g� l�. This results
in two tetragons, which are shown in Fig.4(a).

It may be possible to split the obtained split graphs further, i.e., into smaller split
graphs, possibly w.r.t. a di�erent split pair. A split graph is called a split component if it
cannot be split further. Special split graphs are polygons and bonds. A polygon is a graph
that has k � 3 nodes and k edges such that all nodes and edges are contained in a cycle,
cf., Fig.3(b). A bond consists of 2 nodes and k � 2 edges between them, cf., Fig.3(d).
Each split component is either a triangle, i.e., a polygon with three nodes, a triple bond,
i.e., a bond with three edges, or a simple triconnected graph, where simple means that no
pair of nodes is connected by more than one edge [15]. If a split component is the latter,
we also call it a rigid component. Fig.3(c) shows an example of a rigid component,
whereas the split graphs shown in Fig.3(b) and Fig.3(d) are not split components as
they can be split further.

The set of split components that can be derived from a biconnected multi-graph is
not unique. To see that, we consider polygons and bonds. For instance, a tetragon, cf.,
Fig.4(a), can be split along a diagonal into two split graphs. Depending on the choice
of the diagonal, two di�erent sets of split components are obtained. Fig.4(b) shows one
of the two possibilities for splitting the tetragon given on the left in Fig.4(a). Similarly,
a bond with more than three edges, cf., Fig.3(d), can be split into two bonds in several
ways, depending on the choice of E1 and E2. One possibility to split the bond from
Fig.3(d) is shown in Fig.4(d). A set of split components for the graph in Fig.3(a) is
given by the graphs in Figs.3(c), 4(b), 4(c), and 4(d).

The inverse of a split operation is called a merge operation. Two split graphs formed
by edges E0 and E1, respectively, that share a virtual edge e between a pair u� v of
nodes can be merged, which results in the graph formed by the set (E0 � E1) 	 �e�
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(a) (b)

Fig. 5. (a) A TTG and its triconnected component subgraphs, (b) the tree of the triconnected
components of (a)

of edges. If we start with a set of split components of G and then iteratively merge a
polygon with a polygon and a bond with a bond until no more such merging is possible,
we obtain the unique triconnected components of G. Because a merge operation is the
inverse of a split operation, we can also obtain the triconnected components by suitable
split operations only: Let C be a split graph decomposition of G, i.e., a set of split
graphs recursively derived from G. A polygon P 
 C is maximal w.r.t. C if there is
no other polygon in C that shares a virtual edge with P. A bond B 
 C is maximal
w.r.t. C if there is no other bond in C that shares a virtual edge with B. C is a set of
the triconnected components of G if each member of C is either a maximal polygon, a
maximal bond, or a rigid split component. The set of the triconnected components of G
exists and is unique, cf., [15].

The graphs in Fig.4(c) can be merged along the virtual edge p. The obtained tetragon
can be merged with the triangles in Fig.4(b) along the virtual edges n and o to obtain
the maximal polygon from Fig.3(b). Figs.3(b), 3(c), and 3(d) show all the triconnected
components of the graph from Fig.3(a): Fig.3(d) is a maximal bond, which is obtained
by merging the bonds in Fig.4(d), and Fig.3(c) is a rigid component.

Any split graph decomposition can be arranged in a tree: The tree nodes are the split
graphs. Two split graphs are connected in a tree if they share a virtual edge. The root
of the tree is the split graph that contains the return edge. The tree of the triconnected
components of G is the tree derived in this way from its triconnected components.

Let C be a triconnected component of graph G. Let F be the set of all edges of G that
appear in C or some descendant of C in the tree of the triconnected components. The
graph formed by F is called the triconnected component subgraph derived from C.

Fig.5 shows the tree of the triconnected components. In Fig.5(a), the triconnected
component subgraphs of the workflow graph are visualized; they correspond to the
triconnected components from Fig.3. Each triconnected component subgraph is formed
by edges enclosed in or intersecting a region with the dotted border, e.g., all the graph
edges for P1 are derived from the component given in Fig.3(b). Fig.5(b) arranges the
triconnected components in a tree. The root of the tree, i.e., node P1, corresponds to the
triconnected component that contains the return edge r. Note the di�erence between
the tree of the triconnected components in Fig.5 and the RPST in Fig.2.

3 Simplified Computation of the Refined Process Structure Tree

In this section, we show how the RPST computation can be simplified compared with
the original algorithm. In Sect. 3.1, we discuss the RPST of TTGs in which every node
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has at most one incoming or at most one outgoing edge. Such TTGs are common in
practice. In Sect. 3.2, we address the general case of the RPST computation of any
TTG whose completed version is biconnected.

3.1 The RPST of Normalized TTGs

We call a TTG normalized if every node has at most one incoming or at most one
outgoing edge. In this section, we show that for normalized TTGs, the RPST compu-
tation reduces to computing the tree of the triconnected components. In other words,
each canonical fragment corresponds to a triconnected component subgraph and each
triconnected component subgraph corresponds to a canonical fragment.

Let C(G) be the completed version of a TTG. A pair �x� y� of nodes is called a bound-
ary pair if there are at least two separation classes w.r.t. �x� y�. A separation class is
proper if it does not contain the return edge. The boundary pair �u� x� in Fig.3(a) gen-
erates two separation classes. The first contains the edges b� c� d� e� f and is therefore
proper, whereas the second contains all other edges of the graph and is therefore not
proper. Fragments are strongly related to proper separation classes. To describe that
relationship, we introduce the notion of a separation component.

Definition 1 (Separation component). Let �x� y� be a boundary pair of C(G). A sepa-
ration component w.r.t. �x� y� is the union of one or more proper separation classes w.r.t.
�x� y�.

The bond from Fig.3(d) without the virtual edge m is a separation component w.r.t. �y� z�
of the completed version of the TTG from Fig.3(a). It is the union of the three proper
separation classes: �h�, �i�, and � j�.

We know that the entry-exit pair �x� y� of a fragment is a boundary pair of G and that
the fragment is a separation component w.r.t. �x� y� [1]. Furthermore, it follows from
the construction of the triconnected components that each triconnected component sub-
graph is a separation component. Polyvyanyy et al. [9] observed that every triconnected
component subgraph of a normalized TTG is a fragment. For normalized TTGs, we can
extend this observation to a full characterization of fragments in terms of separation
components.

Lemma 1. Let F be a set of edges of a normalized TTG. F is a separation component
if and only if F is a fragment.

Proof. For (�), let �u� v� be the boundary pair of F and let e be an edge in F. As the
return edge is not in F, it is in a di�erent separation class w.r.t. �u� v� than e. Consider a
simple directed path from the source to the sink of the graph that contains e. It follows
that the path contains one of the nodes �u� v� before e and one after e; otherwise the
separation class of e would contain the return edge. Let, without loss of generality, u
be the former node and v the latter. It follows that u has an incoming edge outside F
and an outgoing edge inside F, and v has an incoming edge inside F and an outgoing
edge outside F. Based on the assumption that the TTG is normalized, it is now straight-
forward to establish that u is an entry and v is an exit of F. Furthermore, there is no
other boundary node besides u and v because that would contradict the definition of a
separation class. Hence, F is a fragment.
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The direction (�) is Theorem 2 in [1]. �

It turns out that the set of triconnected component subgraphs of a normalized TTG is
exactly the set of all its canonical fragments and, thus, is the RPST of the TTG. Before
we prove the statement, we give two auxiliary lemmas which also by themselves deliver
interesting insights into separation components of a normalized TTG and their relations.

Lemma 2. If F is a separation component and F� a triconnected component subgraph,
then F and F� do not overlap.

Proof. If F contains only a single edge or the entire graph, the claim is trivial. Otherwise
F can be split o� from the main graph into a split graph. We continue the decomposition
until we reach a set of split components. Those can be arranged in a tree (of split com-
ponents) as described above. F corresponds to a subgraph of this tree, i.e., a subtree
represents exactly the edges of F. On the other hand, F� also corresponds to a sub-
tree of the tree of split components because the triconnected components are obtained
by merging split components, i.e., by collapsing parts of the tree of split components.
Since F and F� both correspond to subtrees of the same tree, they do not overlap. �

It follows from Lemma 2 that triconnected component subgraphs do not overlap. We
show now that for a separation component which is strictly contained in a triconnected
component subgraph, there always exists another separation component contained in
the same triconnected component subgraph that overlaps with it.

Lemma 3. If F is a separation component that is not a triconnected component sub-
graph, then there exists a separation component F�, such that F and F� overlap.

Proof. Consider a split graph decomposition that contains F. If F is not a triconnected
component subgraph, then F and the parent of F are either bonds w.r.t. the same bound-
ary pair or polygons. In both cases, it is easy to display a bond or polygon, respectively,
that overlaps with F. �

We are now ready to prove the main proposition of this section.

Theorem 1. Let F be a set of edges of a normalized TTG. F is a canonical fragment if
and only if F is a triconnected component subgraph.

Proof.
� Let F be a canonical fragment. We want to show that F is a triconnected component

subgraph. Because of Lemma 1, F is a separation component. If F is not a tricon-
nected component subgraph, then there exists, because of Lemma 3, a separation
component F� that overlaps with F. Because of Lemma 1, F� is a fragment, which
contradicts F being canonical.

� Let F be a triconnected component subgraph. We want to show that F is a canonical
fragment. Because of Lemma 1, F is a fragment. Let F� be any fragment. Because
of Lemma 1, F� is a separation component. Because of Lemma 2, F and F� do not
overlap. Hence, F is a canonical fragment. �
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(a) (b)

Fig. 6. (a) A TTG and its triconnected
component subgraphs, (b) the RPST of (a)

For normalized TTGs, Theorem 1 implies that
the tree of the triconnected components and
the RPST coincide, i.e., both deliver the same
decomposition on the set of edges of the TTG.
Fig.6(a) shows a normalized TTG and its tri-
connected component subgraphs. The TTG is
formed by a subset of edges of the workflow
graph from Fig.1(b). The triconnected com-
ponent subgraphs are also all the canonical
fragments of the TTG. Therefore, the RPST
of the workflow graph from Fig.6(a), which is given in Fig.6(b), can be computed by
constructing the tree of the triconnected components of the workflow graph.

3.2 The RPST of General TTGs

We now show how to compute the RPST of an arbitrary TTG whose completed version
is biconnected. To do so, we normalize the TTG by splitting nodes that have more
than one incoming and more than one outgoing edge into two nodes. We then compute
the RPST of the normalized TTG as in Sect. 3.1. Finally, we project the RPST of the
normalized TTG onto the original one and obtain the RPST of the original TTG.

A single node-splitting is sketched in Fig.7(a). For instance, if the splitting is applied
to node u of the graph from Fig.7(b), it results in the new graph given in Fig.7(c) with
three fresh elements: nodes �u and u�, and edge e. This is the only applicable splitting
in the example. Hence, the resulting graph is normalized and we call it the normalized
version of the TTG. The procedure can be formalized as follows.

Definition 2 (Node-splitting). Let G � (V� E� �) be a directed multi-graph and x 
 V
a node of G. A splitting of x is applicable if x has more than one incoming and more
than one outgoing edge. The application results in a graph G� � (V �� E�� ��), where
V � � (V 	 �x�) � ��x� x��, E� � E � �e�, where �x and x� are fresh nodes and e is a
fresh edge, and �� is such that ��(e) � (�x� x�). In addition, f 
 E� �( f ) � (y� z) and
��( f ) � (y�� z�) implies that y� � x� if y � x, and otherwise y� � y; and z� � �x if z � x,
and otherwise z� � z.

Splitting is applicable if and only if the graph is not normalized. It is not diÆcult to see
that the order of di�erent splittings does not influence the final result and, therefore, we
indeed get a normal form by applying all applicable splittings in any order.

(a) (b) (c)

Fig. 7. (a) Node-splitting, (b) a TTG, and (c) the normalized version of (b)



34 A. Polyvyanyy, J. Vanhatalo, and H. Völzer

(a) (b) (c)

Fig. 8. (a) A TTG and its triconnected component subgraphs, (b) the tree of the triconnected com-
ponents of (a), and (c) the normalized version of (a) and its triconnected component subgraphs

After normalization, we proceed by computing the tree of the triconnected compo-
nents of the graph. As we know from Sect. 3.1, the tree coincides with the RPST of the
normalized graph. This tree can be projected onto the original graph by deleting all the
edges introduced during node-splittings. We will see later that this projection preserves
the fragments. However,the deletion of the edges may result in fragments which have a
single child fragment. This means that two di�erent fragments of the normalized graph
project onto the same fragment of the original graph. We thus clean the tree by deleting
redundant occurrences of such fragments. Consequently, the only child fragment of a
redundant fragment becomes a child of the parent of the redundant fragment, or the
root of the tree if the redundant fragment has no parent. The result is the RPST of the
original graph. Alg. 1 details again the sequence of these steps.

Algorithm 1. Simplified computation of the RPST
RPST(Directed multi-graph G � (V� E� �))
1. G� � (V �� E�� ��) is the normalized version of G
2. T � is the tree of the triconnected components of G�

3. T is T � without trivial fragments in E��E
4. R is T without redundant fragments
5. return R �� ��� ���� �� G

We exemplify Alg. 1 in Fig.8 and Fig.9 by computing the RPST of the TTG from
Fig.8(a). Fig.8(a) shows the triconnected component subgraphs P1 and B1 of the TTG,
whereas Fig.8(b) shows the corresponding tree of the triconnected components. The
TTG is not normalized: Nodes y and z are incident with multiple incoming and multiple
outgoing edges, and all the triconnected component subgraphs of the TTG are frag-
ments. Fig.8(c) shows the normalized version of the TTG from Fig.8(a); it is obtained
by splitting nodes y and z, in any order. The normalization introduces edges l and m to
the TTG. The tree of the triconnected components of the normalized version consists of
four triconnected components: P1, B1, P2, and B2 shown in Fig.8(c). It follows from
Lemma 1 that they are all fragments.

Fig.9(a) shows the tree of the triconnected components of the normalized version
from Fig.8(c). Because of Theorem 1, the tree is the RPST of the normalized ver-
sion. In Fig.9(b), one can see the RPST without trivial fragments, which correspond
to the edges l and m. Note that P2 now specifies the same set of edges of the TTG
as B2. Therefore, we omit P2, which is redundant, to obtain the tree given in Fig.9(c).
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(a) (b) (c) (d)

Fig. 9. (a) The tree of the triconnected components of the TTG from Fig.8(c), (b) the tree from (a)
without the fresh edges l and m, (c) the RPST of the TTG from Fig.8(a), and (d) the TTG from
Fig.8(a) and its canonical fragments

This tree is the RPST of the original TTG from Fig.8(a). Fig.9(d) visualizes the TTG
again together with its canonical fragments. Please note that Alg. 1, in comparison with
the triconnected decomposition shown in Fig.8(a) and Fig.8(b), additionally discovered
canonical fragment B2. P1, B1, and B2 are all the canonical fragments of the TTG.

To show that we indeed obtain the RPST of the original graph, we have to show
that (i) each canonical fragment of the normalized version projects onto a canonical
fragment of the original graph or onto the empty set, and (ii) for each canonical fragment
of the original graph, there is a canonical fragment of the normalized version that is
projected onto it. We establish these properties for a single node-splitting step. The
claim then follows by induction.

Consider a single node-splitting step transforming a graph G into G�, let x be the
node that is split into nodes �x and x�, and let e be the edge that is added between �x
and x�. We define the following mappings for the next lemma:
1. A mapping � maps a set F of edges of G� to a set �(F) of edges of G by �(F) �

F 	 �e�.
2. A mapping � maps a set of edges H of G to a set �(H) of edges of G� by �(H) �

H � �e� if H has an incoming edge to x as well as an outgoing edge from x, and
otherwise �(H) � H.

Now, we claim:

Lemma 4. Let �� � and e be defined as above. We have:
1. If F � �e� is a fragment of G�, then �(F) is a fragment of G.
2. If H is a fragment of G, then �(H) is a fragment of G�.
3. If F � �e� is a canonical fragment of G�, then �(F) is a canonical fragment of G.
4. If H is a canonical fragment of G, then there exists a canonical fragment F of G�

such that �(F) � H.

The proof of Lemma 4 is in [16]. Lemma 4 and the fact that each step in Alg. 1 can be
computed in linear time allow us to conclude:

Theorem 2. Alg. 1 computes the RPST of a TTG whose completed version is
biconnected in linear time.
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4 Generalization of the Refined Process Structure Tree

So far, the RPST decomposition is restricted to TTGs whose completed version is bicon-
nected. In practice this is not suÆcient, as a process model may have multiple sources
and sinks, cf., Fig.10(b), may be disconnected or may violate biconnectedness assump-
tion. For the latter, consider Fig.10(a). Node u is a separation point of the completed
version of the graph as its deletion separates the node labeled with a1 from the rest of
the graph. Hence, the completed version is not biconnected. Note that process modeling
languages such as BPMN and EPC do not impose such structural limitations. In fact, a
test of the SAP reference model [17], a collection of industrial process models given as
EPCs, showed that more than 80 percent of the models violate one of the restrictions.

(a) (b)

Fig. 10. A workflow graph (a) whose completed version is not biconnected, (b) has multiple sinks

In this section, we propose a way to decompose any MTG. The results of this section
are also described in detail in a thesis [18]. We start by decomposing arbitrary TTGs.

4.1 The RPST of TTGs

Fig.11(a) shows the TTG that corresponds to the process model in Fig.10(a). As we
explained above, its completed version is not biconnected because node u is a separation
point. Note that u has multiple incoming as well as multiple outgoing edges. Every
separation point has this property:

Lemma 5. Let G be a TTG. Every separation point of C(G) has more than one incom-
ing and more than one outgoing edge in G.

Proof. A source s and a sink t of G are in the same biconnected component of C(G) as
they are connected in G and, therefore, biconnected in C(G) after introducing the return
edge. Moreover, it is easy to see that C(G) is connected without s or t and, hence, s and
t are not separation points of C(G). Let x, without loss of generality, be some separation
point of C(G) that results in a set B of biconnected components. Let b 
 B, without loss
of generality, be a biconnected component induced by x that does not contain s and t.
Assume y is a node which belongs to b. As every node of G is on a path from s to t,
then x is on every path from s to y and from y to t. A path from s to y implies that x has
an incoming edge that does not belong to b and an outgoing edge that belongs to b. A
path from y to t implies that x has an incoming edge that belongs to b and an outgoing
edge that does not belong to b. Hence, the claim holds.

If b consists of a single edge, it is an incoming and an outgoing edge of x. Every
path from s to t through x also contains two edges incident with x, an incoming and an
outgoing, which do not belong to b. Hence, the claim holds. �
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(a) (b) (c) (d)

Fig. 11. (a) A TTG whose completed version is not biconnected, (b) the RPST of (a), (c) the
normalization of (a), and (d) the RPST of (c)

It follows that the completed version of the normalization of G is biconnected. There-
fore, we can apply Alg. 1 from Sect. 3.2 to decompose an arbitrary TTG. We call the
resulting decomposition of G the RPST of G. This is a generalization of the previous
definition because if C(G) is already biconnected, we get the RPST as defined previ-
ously. Note that we obtain the same result by splitting only the separation points of G,
computing the RPST of the resulting graph G� (in any way), and then projecting the
RPST of G� onto G. As the normalized version and its RPST are unique, it then follows
from the construction that the RPST of an arbitrary TTG is unique.

Fig.11 shows the RPST of the example, as well as the way in which it is obtained.
Again, the RPST of the original graph is obtained by deleting the edge h, which was
generated in the node-splitting, and afterwards removing the redundant fragment B2.

Figs. 12(a), 12(b), and 12(c) show more examples of decompositions of TTGs whose
completed versions are not biconnected. Every subgraph obtained has either exactly
two boundary nodes, one entry and one exit, or exactly one boundary node, which is
bidirectional. Let G be a TTG and F be a connected subgraph of G. A boundary node u
of F is bidirectional if there exist an incoming and an outgoing edge of u inside F, and
there exist an incoming and an outgoing edge of u outside F. Note that control flow can
both enter and exit F through u.

Valdes [19] has proposed an alternative way to decompose an arbitrary TTG G. He
proposed to first compute the biconnected components of C(G) and then further decom-
pose each biconnected component into its triconnected components. If we adapt this
idea and compute the RPST of each biconnected component of C(G), we obtain a root
component that contains all biconnected components as children, which in turn have
their RPSTs as subtrees. The result for the graph from Fig.12(c) is shown in Fig.12(d),

(a) (b) (c) (d)

Fig. 12. (a)–(c) The RPST of a TTG, and (d) Valdes’s parse tree of the TTG from (c)
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which is di�erent from the decomposition we propose. Note that the result has a com-
ponent that has more than two boundary nodes, e.g., B, and another one having two
boundary nodes that are both bidirectional, e.g., C. Unlike our decomposition, the de-
composition in Fig.12(d) does not reflect the fact that the component containing node
w depends on the component that is entered through node u.

4.2 The RPST of MTGs

To decompose an arbitrary MTG, we ‘normalize’ an MTG into a TTG by constructing
a unique source and a unique sink as follows.

Definition 3. Let G be an MTG. We construct a graph G� from G as follows.
1. If G has more than one source, a new source s is added and for each source node u

of G, an edge from s to u is added.
2. If G has more than one sink, a new sink t is added and for each sink node v of G,

an edge from v to t is added.
G� is a TTG, which we call the TTG version of G. The normalized version G� of G is
the normalized version of G�.

By normalizing an MTG, we again obtain a TTG whose completed version is bicon-
nected. The normalized version can be decomposed with the RPST, and the decomposi-
tion can be projected onto the original MTG through Alg. 1. The result that is obtained
from applying Alg. 1 to the normalized version of an MTG G is called the RPST of G.
The RPST of an MTG is unique.

Fig.13 shows (a) an MTG G, (b) the RPST of G, (c) the TTG version G� of G, and
(d) the RPST of G�. The RPST of G is derived from the RPST of G� with Alg. 1.

Note that for an MTG, the subgraphs formed by the decomposition may have more
than two boundary nodes. For example, subgraph B1 in Fig.13(a) has two sources u
and v as entries, and an exit w. Subgraph B2 has an entry w, and three sinks as exits.
Subgraph P1 two sources as entries, and three sinks as exits.

An RPST-formed subgraph is not necessarily a connected subgraph of an MTG. If
an MTG is disconnected, the root fragment of its RPST is a union of the connected
components of the MTG. For example, Fig.14 shows an example of (a) a disconnected
MTG G, (b) the RPST of G, (c) the TTG (and normalized) version G� of G, and (d)

(a) (b) (c) (d)

Fig. 13. (a) An MTG G, (b) the RPST of G, (c) the TTG version G� of G, and (d) the RPST of G�
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(a) (b) (c) (d)

Fig. 14. (a) A disconnected MTG G, (b) the RPST of G, (c) the TTG version G� of G, and (d) the
RPST of G�

the RPST of G�. Note that every connected component of the MTG always becomes a
separate component of the RPST decomposition.

Fig.15 shows the RPST-formed fragments of the workflow graphs introduced in
Fig.10. We can use these fragments to translate BPMN diagrams into BPEL processes.
We have labeled the fragments according to the BPEL blocks they correspond to. For
example, sequence B in Fig.15(a) is a sequence of a while loop and the activity a2. These
decompositions are not directly obtainable with any prior decomposition technique.

(a) (b)

Fig. 15. The RPST-formed fragments of the workflow graphs introduced in Fig.10

5 Conclusion

We simplified the theory for workflow graph parsing into single-entry-single-exit frag-
ments through use of normalized TTGs. This leads to a simplification of the RPST pars-
ing algorithm and its implementation. The implementation e�ort is essentially reduced
to the computation of the triconnected components, of which an implementation is pub-
licly available [14]. In fact, in many applications, nodes have either a single incoming
or a single outgoing edge, in which case no pre- and postprocessing steps are required.
Together with our previous results [1,18], we have a parsing technique that produces
a unique and modular decomposition in linear time in a simple way. The result has a
simple characterization in terms of canonical fragments.

In the second part of the paper, we have shown how the RPST technique gives rise to
a decomposition of any workflow graph that may occur in practice. The only remaining
assumption is that each node must be on a path from some source to some sink.
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We have implemented the simplified RPST computation, as proposed in this pa-
per, and tested its functionally against the implementation of the original RPST tech-
nique [1] on the SAP reference model [17], which consists of 604 EPC models. The
models were transformed to TTGs that range in size from 2 to 195 edges, with the aver-
age of 28�7 edges in one TTG. As it was discovered during evaluation, the models have
on average 16�5 non-trivial fragments, ranging from the minimum of 1 fragment to the
maximum of 132 fragments in one model.
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Abstract. Given a web service W , a stub is a simple service S intended
to impersonate W and simulate some of its input-output patterns. When
W ’s behaviour is represented by a logic formula ϕ, S can use a satisfiability
solver to drive the simulation and generate valid messages compliant with
ϕ. A satisfiability solver for a variant of first-order temporal logic, called
LTL-FO+, is described. Using a chain of existing, off-the-shelf tools, a stub
can be generated from a set of LTL-FO+ formulæ expressing a wide range
of constraints, including message sequences, parameter values, and inter-
dependencies between both. This, in turn, produces a faithful simulation
of the original service that can be used for development and testing.

1 Introduction

The distributed nature and loose coupling of web services has contributed to their
increasing success by separating various processes into independent units that
communicate through standard network protocols. Often a web service under
development cannot be run and tested in isolation, and must communicate with
its actual partners, even in its early stages of design. Yet for various reasons, it
might be desirable that no actual communication takes place.

A possible way to alleviate this issue is to close the environment by replac-
ing an external partner with a stub, intended to mimic a web service without
providing the actual functionality of the original. A stub typically accepts the
same requests and parameters as the actual service, and returns stock responses
with the same structure as real ones. The goal is to provide a “dummy” that is
sufficiently realistic to be used as a partner for the service under development.
However, developing such a stub is itself a time-consuming task. One is required
to peruse the documentation of the service to simulate, and write code to parse
any incoming request and produce a response with appropriate parameters.

There exist a few development tools that ease this process by automatically
producing boilerplate requests and responses, for example by parsing the WSDL
document associated with the service; these stock events can then be filled with
actual values by the programmer. While such tools allow to produce credible
abstractions of simple web services, they fail to capture the transactional nature
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of some others. An auto-generated stub typically returns the same hard-coded
response for every request of the same type. If the original service’s behaviour is
stateful, and includes dependencies on the sequence of requests it receives, one
must either do without such aspects in the stub, or resort to code them by hand.

This paper attempts to resolve this issue by describing a method for automat-
ically generating stubs of transactional web services. In addition to the definition
of requests, responses and their possible parameters, the generic stub shown in
this paper also takes a set of assertions on its sequential behaviour, expressed
in an extension of Linear Temporal Logic called LTL-FO+. This logic includes
a limited form of quantification over request parameters that allows the expres-
sion of data dependencies across requests at different moments in a transaction.
A prototype implementation uses a model checker as a background engine to
generate a counter-example trace to the negation of the original specification;
this counter-example is then parsed, and a valid response to any request can
be constructed from it. Experimental results show on a simple example how a
handful of LTL-FO+ expressions are sufficient to automatically produce a faith-
ful simulation of a transactional web service —including data dependencies—
and generate responses in reasonable time.

2 Web Service Stubs

The interaction with most web services is done through the use of the Hypertext
Transfer protocol (HTTP) [10]. Under this general setting, two main families of
services can be distinguished. The first family uses the Simple Object Access Pro-
tocol (SOAP), where an operation and its related parameters are encapsulated
into an XML document, which is then sent as a payload inside an HTTP POST
request. The structure of each XML document, corresponding to the available
operations, is advertised into a WSDL document.

We rather concentrate in this paper on web services using HTTP “GET”
requests for their invocation. GET requests invoke only a limited form of pay-
load, consisting of a list of attribute-value pairs. Such parameters are generally
appended at the end of a request URL, separated from it by a question mark.
For example, a simple GET request for a login operation, providing a username
(name) and an authentication code (code), can be encoded as the following URL:
http://example.com/login?user=sylvain&code=12345. In this case, the web
service is hosted on a server named example.com.

These services are sometimes called “REST” web services, as they loosely fol-
low a design philosophy called Representational State Transfer [11] that forms
the basis of the HTTP protocol. Although REST services accept only a limited
form of data structure in their requests, their simplicity became a reason for their
wide adoption; it was reported in the early 2000s that 85% of the usage of Ama-
zon’s web services API came via the REST interface [20]. The Programmable
Web repository lists more than 1,400 APIs using REST [21].
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2.1 A Running Example

We devise a simple REST online trading service where a user can create and
modify a stock portfolio, adapted from [17]. Table 1 summarizes its available
different requests and responses, along with their possible parameters.

Table 1. Summary of operations for the stock portfolio

Operation Sample request Sample response
Search for stock search?term=abcd stocks?stock=1234&stock=5678. . .
Get stock info stock?item=34 stock-info?price=5&name=abc
Create cart new-cart cart-info?id=123&empty=true
Add to cart add?id=123&item=34 cart-info?id=123&empty=false
Remove from cart remove?id=123&item=34 cart-info?id=123&empty=X
Empty cart empty?id=123 cart-info?id=123&empty=true
Commit to buy commit?item=34 confirmed?item=34&item=. . .
Request payment req-payment payment-form
Logout logout bye

In this example, the catalogue of available stocks can first be searched using
the search method, which takes as input a search term and returns a stocks
response containing a list of available stocks. Information on individual items
can be asked with the stock operation, whose response (stock-info) returns
its price and name.

From an inventory of stocks, a portfolio, similar to a shopping cart, can be
created. The result of this operation returns a cart-info, containing the unique
ID used to reference that cart. Elements can be added and removed from the
cart, by passing as arguments the cart ID and the item number of the element
to add or remove. All such requests are simply replied with cart-info as a
confirmation.

Finally, a user can benefit from discounted prices if she commits to buy an
item. The service replies with a confirmation, listing all the items that were
already committed, including the last one. Committed items can no longer be
removed from the cart, and any attempt by the user to logout from the system
is replied with the payment form instead of the logout confirmation.

Such a simple web service is subject to a number of constraints in the way these
operations can be invoked. First, the only allowed parameters for any request
and response are those listed in Table 1’s respective entries. For example, it does
not make sense for a stocks response to contain parameter empty. Second, all
requests must be replied with their appropriate response operation.

However, a correct invocation of this service involves a number of additional
constraints linked to the semantics of the operations involved.

1. Since the IDs added to the cart must be valid stock numbers, the service
imposes that no element can be added to the portfolio before some stock
information has been asked.

2. If a user commits to buy any item during her session, the logout message
must be replied by a payment-form instead of the simple bye.
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3. Once a cart is created, the same cart id must be passed in all requests and
responses.

4. Any stock ID sent in a commit request must appear in all future confirmed
messages.

2.2 Producing a Web Service Stub

The REST interface allows this service to be used by any third-party application
developer wishing to include stock manipulation functionalities. However, there
exist various reasons one might want to avoid communicating with the real
service in the development phase.

First, real operations on an actual stock portfolio should be prevented when
testing a third-party application. To this end, some providers offer a copy of their
actual services running in a closed environment for developers to test with. Ama-
zon Web Services [1] and PayPal [2] provide such “sandboxes”. Once an applica-
tion ends its testing phase, the URL endpoint of the sandbox is replaced by the
URL of the real service, which is supposed to work in the exact same way.

While such a principle allows the highest degree of faithfulness, there exist
cases where such environments are not available for the service in question. Even
when sandboxes do exist, it can be desirable to control the outside environment
for debugging purposes. Suppose for example that some piece of local code only
executes when the service’s responses follow a precise sequence. To debug that
piece of code in a sandbox environment, one must find a way for the service to
respond that particular sequence —yet the sandboxed service is not under the
developer’s control.

In such cases, replacing the actual web service with a placeholder stub that
simulates its input-output patterns can prove an interesting development and
testing tool. When hosted locally, the stub can also do away with eventual net-
work problems such as congestion, firewalls and latency.

2.3 Current Solutions

However, as mentioned earlier, stubs mostly require manual programming. We
mention a few solutions that have been developed to ease the burden of writing
stubs.

A commercial development tool for SOAP web services, called soapUI [3],
allows a user to create “mock web services”. The WSDL document declaring
the structure of each XML request and response is automatically parsed, and a
boilerplate message for each is given to the user.

Web services have also been simulated through the generation of random,
WSDL-compliant messages when requested. WSDL documents have been used
as templates to generate test cases for web services [4]. A tool called TAXI
(Testing by Automatically generated XML Instances) has been developed to
automatically produce valid instances of XML Schemas [5]. It has been used
in the field of web services, to automatically generate XML documents with
given structure to be sent as an input to a web service to test. A similar tool
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called WebSob [18], when used in conjunction with unit test generators such
as JCrasher [8], can generate random WSDL-compliant requests and discover
incorrect handling of nonsensical data on the service side.

However, all these approaches treat request-responses as atomic patterns inde-
pendent of each other, and are ill-suited to the transactional nature of our current
example. Formal grammars have been used to generate test data [23,19,9,6]. The
principle has been extended into interface grammars, which have been used to
represent the possible sequences of messages in SOAP web services. [16]. The ap-
proach takes into account message structure and relationships between message
elements [12]. Yet, grammars are monolithic; the same production rule often plays
a role in more than one constraint. This makes it hard to take away or to add a new
requirement without rewriting substantial parts of the specification. In addition,
grammars do not provide an easy way to constrain request parameters.

3 A Formal Model of Web Service Stub Behaviour

To alleviate the issues mentioned above, we first describe a simple formal model
of REST web service requests, along with an extension of Linear Temporal Logic
suitable to express the dependencies elicited in Section 2.1.

3.1 First-Order Linear Temporal Logic: LTL-FO+

Let P be the set of parameter names, D be the set of value names, and A be the
set of action names. We define a special symbol, #, standing for “undefined”.
A request r = (a, �) is an element of A× (P → 2D ∪ {#}), where → designates
a function. For example, the request remove?id=123&item=34 can be repre-
sented by the pair (remove, �), where � is the function such that �(id) = {123},
�(item) = {34}, and �(p) = ∅ for any other parameter p ∈ P . A trace of requests
r is a sequence r0, r1, . . . such that ri ∈ R for all i ≥ 0.

LTL-FO+ is a logic that expresses assertions over traces of requests. Its build-
ing blocks are atomic propositions, which can be of two forms: “α” for α ∈ A,
and “p = v”, for p ∈ P and v ∈ D.

A GET request r = (a, �) satisfies an atomic proposition π, noted r |= π,
exactly when one of the following two cases occurs:

– π is of the form α for α ∈ A and α = a
– π is of the form p = v for p ∈ P and v ∈ D and v ∈ �(p)

Atomic propositions can then be combined with Boolean operators ∧ (“and”), ∨
(“or”), ¬ (“not”) and → (“implies”), following their classical meaning. In addi-
tion, temporal operators can be used. The temporal operator G means “globally”.
For example, the formula Gϕ means that formula ϕ is true in every request of
the trace, starting from the current request. The operator F means “eventually”;
the formula Fϕ is true if ϕ holds for some future request of the trace. The op-
erator X means “next”; it is true whenever ϕ holds in the next request of the
trace. Finally, the U operator means “until”; the formula ϕUψ is true if ϕ holds
for all requests until some request satisfies ψ.
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Finally, LTL-FO+ adds quantifiers that refer to parameter values inside re-
quests. Formally, the expression ∃px : ϕ(x) states that in the current request
r = (α, �), there exists a value v ∈ �(p) such that ϕ(v) is true. Dually, the
expression ∀px : ϕ(x) requires that ϕ(v) holds for all v ∈ �(p). The semantics
of LTL-FO+ are summarized in Table 2, where r̄ = r0, r1, . . . is a sequence of
requests; the reader is referred to [13] for a deeper coverage of LTL-FO+ in a
related context.

Table 2. Semantics of LTL-FO+ for GET requests

r |= α ≡ r0 = (a, �) and a = α

r |= p = v ≡ r0 = (a, �) and � (p) = v

r |= ¬ϕ ≡ r �|= ϕ

r |= ϕ ∨ ψ ≡ r |= ϕ and r |= ψ

r |= ϕ ∨ ψ ≡ r |= ϕ or r |= ψ

r |= ϕ → ψ ≡ r �|= ϕ or r |= ψ

r |= G ϕ ≡ r0 |= ϕ and r1 |= G ϕ

r |= F ϕ ≡ r0 |= ϕ or r1 |= F ϕ

r |= X ϕ ≡ r1 |= ϕ

r |= ϕ U ψ ≡ r0 |= ψ, or both r0 |= ϕ and r1 |= ϕ U ψ

r |= ∃px : ϕ ≡ r0(p) �= # and r |= ϕ[x/r0(p)]

r |= ∀px : ϕ ≡ r0(p) = # or r |= ϕ[x/r0(p)]

3.2 Formalizing Web Service Constraints

Equipped with this language, one can revisit the constraints described in Section
2.1. Constraints on request-responses pairs can be easily expressed; for example,
the formula G (search → X stocks) states that every search action is followed
by a stocks action. Similar formulæ can be written for the remaining request-
response pairs in Table 1.

The four semantic constraints can also be formalized in LTL-FO+. The fol-
lowing formula express the fact that no element can be added to the portfolio
before some stock information has been asked.

(¬add U search) ∨G¬add (1)

Similarly, the restriction on commitment to buy can also be written as an
LTL-FO+ formula, as follows:

G (commit→ ((logout→ X payment-form) U req-payment)) (2)

This formula expresses that once a commit request is sent, a logout action must
be followed by a payment-form, unless the form has been requested manually
by the client.

The remaining two constraints require the data quantification mechanism spe-
cific to LTL-FO+. To express that the same cart ID must be passed in all requests
and responses, one writes:

G (∃idi : G ∀idj : i = j) (3)
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This formula states that at any point in a transaction, if the parameter id takes
some value i, then all occurrences of parameter id have a value j such that
i = j.1

Finally, the last LTL-FO+ formula encodes the “memoryful” behaviour of the
commitment mechanism:

G (commit→ ∀idi : G (confirmed→ ∃idj : i = j)) (4)

This formula states that globally, any id value i occurring in a commit request
is such that, from now on, any confirmed response will include an occurrence of
id with value j such that i = j. This is equivalent to the requirement that the
list of committed items is additive and includes all previously committed items.

3.3 Model Checking and Satisfiability of LTL-FO+

One can see how, by means of four simple LTL-FO+ formulæ (in addition to the
straightforward request-response patterns), a somewhat faithful encoding of the
service’s behaviour can be achieved. That is, any trace of GET requests fulfilling
these formulæ must be such that, for example, cart operations will be mimicked
with relative precision, the commitment mechanism will faithfully remember all
committed items, and will force payment before logout. Consequently, a proce-
dure that can generate a sequence of such requests, according to the temporal
specifications, can form the basis of a web service stub for the trading service.

To this end, existing tools called model checkers can be put to good use. An
LTL model checker is a piece of software which, given an LTL formula ϕ and some
encoding for a Kripke structure K, can exhaustively check all possible traces of
that state machine for compliance to ϕ. Otherwise, the model checker returns a
counter-example: a single execution of the state machine that violates the formula.
This counter-example generation mechanism can be put to good use in the present
context. To explicitly produce a trace of M that complies with ϕ, one can send
¬ϕ, the negation of the property under study, to the model checker. Any counter-
example trace found by the tool is directly a trace satisfying the original formula
ϕ. Hence, a model checker can be used in reverse, as a “model finder”.

In the present context, this principle can be used as follows. Given a trace of
n requests and responses, a Kripke structure with n+1 states is generated. The
first n states are completely fixed and correspond exactly to the trace that has
been recorded. The values for the last state are left unconstrained. When the
model checker finds a counter-example, this scheme forces the counter-example
to be identical to the recorded trace for its n first states. Then, by construction,
the n + 1-th state will correspond to a valid extension of the current trace.

4 An Off-the-Shelf Web Service Stub

The use of a model checker as a model finder allows us to use off-the-shelf
components to handle most of the computation of a satisfying trace for an
1 This formula, as well as formula (4), assumes that only one cart per session can be

created, and that requests for multiple sessions are split into their own separate trace.



WS Stubs Using Satisfiability Solving 49

LTL-FO+ specification. In this section, we describe such a tool chain and provide
initial experimental results.

4.1 Tool Chain

The process is shown in Figure 1. First, an LTL-FO+ specification is given to the
stub (1), which converts it internally into a formula ψ that will be used by the
model checker to generate its counter-example. Every time a new request ri is
sent (2), the stub appends it to the trace of previous requests r0, . . . , ri−1 stored
in memory. A linear Kripke structure K is created from that trace, leaving values
for a potential state ri+1 undefined. This structure, along with formula ψ, is then
sent to the model checker (3). If the trace can be extended with a new state in such
a way that ϕ is fulfilled, a counter-example trace for ψ will be found and returned
to the stub (4). The output from the model checker is parsed, and the i+1-th state
of that counter-example constitutes the message to return. An HTTP response is
formed from that message and returned by the stub (5).

An interesting consequence of this architecture is that the stub can act either
as the server, or in reverse as the client. Indeed, one can use the stub to generate
requests, which can then be sent to an actual implementation of the web service.
The stub generates valid HTTP requests, according to the specification, that are
sent to the actual web service. The service responds with actual HTTP responses
that are then processed by the stub. This is what Hughes et al. call a driver [16].
This is possible because the declarative specification of the service’s behaviour
gives constraints on responses as well as on requests.

The stub itself is hosted by an Apache web server, and is made of a single PHP
script of about 20 kilobytes. This script is responsible for handling the LTL-FO+

specification, keeping in persistent storage the trace of previous requests and

Fig. 1. Tool chain for a web service stub
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Table 3. A sample definition file for the web service stub

REQUESTS

new-cart[];

add[id,item];

...

DOMAINS

id: 0,1;

item: item1, item2;

...

SPECS

G (add -> cart-info);

G (<id:i> G [id:j] i=j);

...

responses, generating appropriate input files for the model checker and parsing
its output back into HTTP requests.

The specific model checker used in the chain is NuSMV 2.5 [7]. Although
many other proponents could have been considered, recent benchmarks [22] have
shown that, when used as LTL satisfiability solvers, symbolic model checkers
like NuSMV are clearly superior than explicit model checkers such as SPIN [15].
Since, in the current setting, the whole process is repeated at every web service
invocation, both the temporary NuSMV input file and a copy of NuSMV itself
are located on a RAM drive and executed from that location.

The PHP script remains the same, regardless of the web service to imitate;
only the set of LTL-FO+ formulæ that dictate its behaviour will differ from
one stub to the other. The stub requires an input file, whose structure is shown
in Table 3. The input file first enumerates the list of possible requests, and
gives between brackets the names of all possible parameters attached to that
request. It then provides ranges of possible values for each parameter, that are
used to populate requests and responses when required. Finally, the input file
provides a list of LTL-FO+ formulæ that describe the stub’s intended behaviour,
as described previously.

4.2 From a Trace to a Kripke Structure

For the purpose of this stub, a straightforward translation of GET requests and
LTL-FO+ formulæ was developed. First, the arity of GET requests is fixed to
some integer k. Any request can then be represented by a fixed data structure
formed of 2k + 1 variables:

– A variable a, with domain A, containing the request’s action
– k variables named p1 to pk, with domain P ∪ {#}, containing the request’s

parameter names
– k variables named v1 to vk, with domain D ∪ {#} containing the value for

each parameter

Intuitively, a GET request simply becomes an action, followed by an array of
parameter-value pairs. Since the maximal arity is not necessarily reached in each
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request, we allow both p’s and v’s to contain the “empty” symbol #. A variable
pi equal to # stands for an empty slot in the array.

From a given trace of n GET requests, the stub creates a state machine
in NuSMV’s input format, whose first n states are completely defined by the
contents of that trace. It uses an additional integer, m count, that is incremented
at each message. The transition relation of that system, defined by means of the
TRANS construct, gives a number of conditions on a valid transition:

1. m count is incremented by 1 at each step
2. When m count equals m, variables a, and all the pi’s and vi’s take the values

corresponding to request rm

3. For each i, an empty pi entails an empty vi

4. For each i < j, an empty pi entails an empty pj

5. For each possible action α ∈ A, a = α constrains the possible parameters
that the pi can take (according to the definition file)

6. For each possible action p ∈ P , pi = p constrains the possible values that
the vi can take (according to the definition file)

Conditions 1-2 force the system to have a single execution for its first n states
corresponding to the trace of GET requests. Conditions 3-4 force the model
checker to produce an n+1-th state that corresponds to an actual request: there
can’t be a value without a parameter, and all empty slots appear at the end of
the array. Finally, conditions 5-6 force the model checker to include only valid
parameters for a given action, and only valid values for each parameter, as was
specified in the REQUESTS and DOMAINS sections of the stub’s definition file.

4.3 From LTL-FO+ to LTL

The use of an off-the-shelf model checker implies that support for LTL-FO+

must be simulated, by converting the original specification back into a classical
LTL formula. This translation is performed by a recursive mapping ω, which
takes an LTL-FO+ formula and produces an equivalent LTL formula.

The translation is direct for all Boolean and temporal operators; that is,
ω(◦ ϕ) ≡ ◦ ω(ϕ) for ◦ ∈ {¬,G,F,X}, and ω(ϕ ◦ ψ) ≡ ω(ϕ) ◦ ω(ψ) for ◦ ∈
{∨,∧,→,U}. The only special case to be handled is quantifiers, which must be
expanded into their propositional equivalents:

– ω(∃px : ϕ) ≡
∨

v∈D(
∨k

i=1 pi = p ∧ vi = v ∧ ω(ϕ[x/v]))
– ω(∀px : ϕ) ≡

∧
v∈D(

∧k
i=1(pi = p ∧ vi = v) → ω(ϕ[x/v]))

Intuitively, the translation of ∃px : ϕ indicates that for some value v ∈ V , one of
the pi contains parameter p and its corresponding vi contains some value v ∈ V ;
moreover, this value is such that ϕ[x/v] is true. Since parameter p can occur in
any slot of the request, the formula must be repeated for every pi. Similarly, the
translation of ∀px : ϕ stipulates that whenever some value v is contained in a
state variable vi such that the corresponding pi has value p, then ϕ[x/v] is true.
The length of the resulting LTL expression is exponential in the number k of
quantifiers, with respect to the original LTL-FO+ formula.
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4.4 Experimental Results

To prove the concept, we performed a series of experiments with the stock port-
folio stub. We first measured the running time at each invocation of the stub
for a given interaction. That is, we started the stub from an empty trace, and
repeatedly invoked it to generate a possible first, second, third message, and so
on. The results are plotted in Figure 2.
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Fig. 2. Stub running time per message for a trace of 20 requests and responses

Since the model checker is given a larger Kripke structure each time (it con-
tains one more state), correspondingly, we expect the running times to generate
each new message to increase as the transaction progresses. As the figure shows,
running times for a transaction range between 0.4 and 1.7 second and steadily
increase as the trace gets longer. However, these times can be deemed reason-
able, in a context where a stub is intended for use as a placeholder when testing
a third-party client.

Finally, since LTL-FO+ involves quantification over data domains, we mea-
sured the impact of the domain size on generation time. More precisely, we
generated a fixed trace of 20 requests, and called the stub to extend that trace
with a compliant 21st request, and measured its running time. At first, the stub
was given a specification where the item parameters could take a single value,
and repeated the process by progressively increasing the domain size, up to 12
possible item numbers. The results are shown in Figure 3.

As one can see, domain size has the highest impact on the stub’s running time.
Despite a drop in execution time when the domain reaches a size of 6,2 the global
tendency is an exponential growth. For the properties of the stock portfolio ex-
ample, as soon as the data domain reaches 3 to 4 elements, running times become
2 This drop is most likely due to NuSMV’s opportunity to optimize its internal repre-

sentation of the system once it reaches a certain number of states. The exact cause
was not investigated, and is out of the scope of this paper.
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Fig. 3. Stub running time per message with varying data domain sizes

prohibitive. This issue can be mitigated by the fact that, again, the stub is in-
tended to be used as a tool for testing a third-party client; as a result, a domain
of only a few elements is probably sufficient to cover most possible behaviours.

5 Conclusion and Open Issues

The automated generation of web service stubs based on temporal logic specifi-
cations appears to be a promising path. The case study described in this paper
shows how a faithful description of a service behaviour can be captured by only
a few expressions in an extension of Linear Temporal Logic called LTL-FO+.
These expressions can even stipulate data dependencies spread across requests
that can be arbitrarily far apart in an execution; therefore, they are especially
suited to describe transactional web service behaviour.

In turn, preliminary experimental results indicate that the use of a model
checker as a back-end engine to produce message traces compliant with these
formulæ is feasible. Despite a potential exponential growth in execution time
with respect to domain size, for modest domain sizes, it achieves response times
appropriate for its use as a development and testing tool for third-party applica-
tions. It shall also be recalled that current solutions, such as mock web services
with hard-coded stock responses, do not provide any variability in requests’ and
responses’ values, and can be likened to the current stub with a domain of size
one. In this respect, even small domains can be seen as an interesting new feature.

An extended version of the stub mechanism described in this paper is currently
under development. The concepts presented hereby lend themselves to possible
improvements and raise a number of open issues. We conclude this paper by
briefly mentioning a few of them.

1) Messages are considered flat. Although this simplification is appropriate
for REST web services, where all arguments of a call are linearized into a list of
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parameter-value pairs, there exist cases where nested message structures, such
as XML messages using the SOAP protocol, are necessary. Taking into account
so-called semi-structured requests, and modelling them appropriately for input
into a model checker is a challenging problem.

2) Explicit handling of quantification. The use of NuSMV as a back-end en-
gine requires that LTL-FO+ expressions be translated into LTL. Currently, the
quantification is removed in an explicit way, i.e. each quantifier is replaced with
the appropriate conjunction or disjunction over the range of possible values. An
alternate translation of quantifiers into classical temporal logics, called freeze
quantification, has been shown to improve model checking performance in such
situations [14].

3) Reliance on model checking. The main argument in favour of using a model
checker as the satisfiability engine is the presumption that its exhaustive state
space search is more efficient than any home-brewed constraint solver specific to
LTL-FO+. However, retrofitting an existing on-the-fly model checking algorithm
for LTL-FO+ [13] into a constraint solver might prove equally successful.

4) Incremental support. As was described earlier, the whole chain of generating
a Kripke structure from the most recent trace of messages, starting NuSMV to
find a counter-example, and process the returned trace back into a message
has to be repeated every time the stub is invoked. Yet most of the work done
by the model checker on a trace of n messages could be reused for the trace
of n + 1 sharing a prefix of length n with the previous round. Support for an
“incremental” evaluation of the trace, where information computed by previous
rounds of solving could be saved and resumed, could greatly improve performance
of the stub. Based on the previous figures, this could amount to an average
running time of 70 ms per message.
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Abstract. This paper presents a methodology to perform passive test-
ing based on invariants of distributed systems with time information.
This approach is supported by the following idea: A set of invariants
represents the most relevant expected properties of the implementation
under test. Intuitively, an invariant expresses the fact that each time the
system under test performs a given sequence of actions, then it must
exhibit a behavior reflected in the invariant. We call these invariants
local because they only check the correctness of the logs that have been
recorded in each isolated system.

We discuss the type of errors that are undetectable by using only
local invariants. In order to cope with these limitations, this paper intro-
duces a new family of invariants, called globals to deal with more subtle
characteristics. They express properties of a set of systems, by making
relations between the set of recorded local logs. In addition, we show that
global invariants are able to detect the class of undetected errors for local
invariants.

Keywords: Passive Testing, Service Oriented Systems, Monitoring.

1 Introduction

Testing consists in checking the conformance of a system by performing ex-
periments on it. The application of formal testing techniques [11] to check the
correctness of a system requires to identify the critical aspects of the system,
that is, those aspects that will make the difference between correct and incorrect
behavior. In this line, the time consumed by each operation should be considered
critical in a real-time system. The testing community has shown a growing in-
terest in extending these frameworks so that not only functional properties but
also quantitative ones could be tested.

Most formal testing approaches consist in the generation of a set of tests that
are applied to the implementation in order to check its correctness with respect
to a specification. Thus, testing is based on the ability of a tester to stimulate the
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implementation under test (IUT) and check the correction of the answers pro-
vided by the implementation. However, in some situations this activity becomes
difficult and even impossible to perform. Actually, it is very frequent that the
tester is unable to interact with the implementation under test. In particular,
such interaction can be difficult in the case of large systems working 24/7 since
this interaction might produce a wrong behavior of the system. Thus, usually
we can classify testing methodologies into two approaches: Active and passive
testing. The main difference between them is how a tester can interact with the
IUT. In the active paradigm the tester is allowed to apply any set of tests to
the IUT. In passive testing, the tester is only an observer of the IUT, and he has
to provide a degree of confidence of the system, only taking into account the
monitored traces.

In this paper we present a formal passive testing methodology to test web ser-
vices with temporal restrictions. In our passive testing paradigm, testers provide
a set of invariants that represents the most relevant properties that they would
like to check against the logs. Our approach makes use of the ideas presented
in [3], a timed extension of the framework defined in [6], to define invariants,
in [9] to define orchestrator and choreography behaviors, and in [2], our previ-
ous approach to test web services using invariants without considering a timed
environment. In this paper, a Service-Oriented Scenario consists of a large num-
ber of services that interact with each other and testers are unable to interact
with them. Thus, we propose passive testing techniques based on invariants to
test these systems. These invariants allow us to express temporal properties that
must be fulfilled by the system. For example, we can express that the time the
system takes to perform a transition always belongs to a specific interval. Thus,
timed invariants are used to express the temporal restrictions of the collected
logs of the systems. When these events are collected into each service they are
called local logs and the invariants to check their correctness are called local
invariants.

Our invariants can be seen as the SLAs presented in [12], but there are some
relevant differences. In [12] the set of SLAs are formulas that are extracted from
the most frequent patterns of the specification. So, these formulas do not contra-
dict the specification. In our approach, we assume that invariants are provided
either by a tester or by using data mining techniques [4]. So, the correctness of
the invariants must be checked with respect to the specification. Most impor-
tantly we do not need to exchange additional information between web services
since we have a decentralized approach.

There already exist several approaches to study the integration of formal test-
ing in web services, providing formal machinery for representing and analyzing
the behavior of communicating concurrent/distributed systems. Next we briefly
review some previous work related to our framework. In [8] an automatic back-
box testing approach for WS-BPEL orchestrations was presented, which was
based on translation into Symbolic Transition System and Symbolic Execution.
This approach supports the rich XML-based data types used in web services
without suffering from state explosion problems. This work was inspired in a
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previous work on symbolic testing [10], where the authors showed a modeling
and testing approach focused on detecting failures, supporting conformance, and
reducing drastically the effort to design test cases, validate test coverage, and
execute test cases. In [5] a methodology to automatically generate test cases
was presented. The authors combine coverage of web services operations with
data-driven test case generation. These test cases were derived from WSDL [13]
descriptions. For that purpose, they used two tools: soapUI and TAXI. The first
one generates stubs of SOAP calls for the operations declared in a WSDL file.
The other one facilitates the automated generation of XML instances from an
XML Schema. In [7] the authors present different mechanisms to collect traces.
They also study the differences between online and offline monitoring, being the
main difference that the testing algorithms in online monitoring are adapted to
analyze the information as soon as possible, so a huge amount of computational
resources is needed. Their methodology differs from our approach since they use
the specification to check the correctness of the traces, while we might have only
invariants, and they record global traces while we can operate at a local level.

Regarding our methodology, our invariants can be seen as the SLAs presented
in [12] but there are some relevant differences. In [12] the set of SLAs are formulas
that are extracted from the most frequent patterns of the specification. So, these
formulas do not contradict the specification. In our approach, we assume that
invariants are provided either by a tester or by using data mining techniques.

The rest of this paper is structured as follows. First, Section 2 presents our
formal framework to represent web services choreographies, and orchestrations.
In Section 3 we present how to define local and global invariants. Finally, in
Section 4 we present our conclusions and some lines for future work.

2 Preliminaries

In this section we present our formalism to define web services and choreogra-
phy models. We follow the ideas underlying the definition of orchestration and
choreography model behaviors presented in [9]. However, instead of Finite State
Machines, we use Timed Automata, with a finite set of clocks over a dense time
domain, to represent orchestrations. Since we will not use most of the technical
machinery behind Timed Automata, the reader is referred to [1]. The internal
behavior of a web service is given by a Timed Automaton where the clock do-
main is defined in IR+. The choice of a next state in the automaton does not
only depend on the action, but also on the timed constraints associated to each
transition. Only when the time condition is satisfied by the current values of
the clocks, the transition can be triggered. We assume that the communication
between systems is asymmetric.

Definition 1. A clock is a variable c in IR+. A set of clocks will be denoted by
C. A timed constraint ϕ on C is defined by the following EBNF:

ϕ ::= ϕ ∧ ϕ | c ≤ t | c < t | ¬ϕ
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where c ∈ C and t ∈ IR+. The set of all timed constraints over a set C of clocks
is denoted by φ(C).

A clock valuation ν for a set C of clocks assigns a real value to each of them.
For t ∈ IR+, the expression ν + t denotes the clock valuation which maps every
clock c ∈ C to the value ν(c) + t. For a set of clocks Y ⊆ C, the expression
ν[Y := 0] denotes the clock valuation for C which assigns 0 to each c ∈ Y and
agrees with ν over the rest of the clocks. The set of all clock valuations is denoted
by Ω(C).

Let ν be a clock valuation and ϕ be a timed constraint. We write ϕ � ν iff ν
holds ϕ; ϕ � ν denotes that ν does not hold ϕ. ��

Next we define a web service. The internal behavior of a web service, in terms of
its interaction with other web services, is represented by a Timed Automaton.

Definition 2. We call any value t ∈ IR+ a fixed time value. For all t ∈ IR+ we
have both t < ∞ and t +∞ = ∞. We say that p̂ = [p1, p2] is a time interval if
p1 ∈ IR+, p2 ∈ IR+ ∪ {∞}, and p1 ≤ p2. We consider that IIR+ denotes the set
of time intervals.

Along this paper ID denotes the set of web service identifiers. A web service
is a tuple A = (id,S, s0, Σ, C,Z, E) where id ∈ ID is the identifier of the service,
S is a finite set of states, s0 ∈ S is the initial state, Σ is the alphabet of actions,
C is a finite set of clocks, Z : S → φ(C) associates a time condition to each state,
and E ⊆ S × {id} ×Σ × ID × φ(C)× ℘(C)× S is the set of transitions. We will
consider that Σ is partitioned into two (disjoint) sets of inputs denoted by I,
preceded by ?, and outputs denoted by O, preceded by !. Along this paper ΣID

denotes the set ID ×Σ × ID.
We overload the � symbol. Let s ∈ S and ν ∈ Ω(C). We denote by s � ν the

fact that ν holds Z(s) (resp. s � ν represents that ν does not hold Z(s)). Let
e = (s, id, α, id′, ϕ,Y, s′) ∈ E . We denote by e � ν the fact that ν holds ϕ (resp.
e � ν represents that ν does not hold ϕ). ��

Intuitively, a transition (s, id, α, id′, ϕ,Y, s′) indicates that if the system is at
state s and the current valuation of the clocks holds ϕ, then the system moves
to the state s′ performing the action α from id to id′ and resetting the clocks
in Y. In other words if we consider e1 = (s, id, ?α, idb, ϕ,Y, s′) then the action
α is emitted from id to idb, and if we consider e2 = (s, id, !α, idb, ϕ,Y, s′) then
the action α is received on id from idb. For each state s, Z(s) represents a timed
constraint for s, that is, the system can remain in s while the current valuation
of the clocks holds Z(s). We will assume the following usual condition on timed
automata: For all s ∈ S and all valuation ν ∈ Ω(C) if s � ν then there exists at
least a transition e = (s, id, α, id′, ϕ,Y, s′) ∈ E with e � ν. This property allows
to leave a state once the restrictions on clocks do not hold in that state.

Example 1. Next we present a small running example to explain the previous
concepts. Let us consider the set of four web services represented in Figure 1. In
this example we will consider that we have only one clock for each web service,
and it is set to 0 in the transition that reach the state s1. The time constrains
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Automaton E
s0start

s1

x < 40

s2

s3

s4

s5

A.!Connect
true

G.?Hello
x < 40

G.?Hello
x ≥ 40

M.!Coffee
true

M.!Tea
x ≥ 40

Automaton M
s0start

s1

x < 40

s2

s3

s4

s5

A.!Connect
true

C.?Good Morning

x < 40

C.?Good Morning

x ≥ 40

E.?Coffee
true

E.?Tea
true

Automaton G
s0start

s1

x < 40

s2

s3

s4

s5

A.!Connect
true

E.!Hello
x < 40

E.!Hello
x ≥ 40

C.!Thank you

true

C.!Good Bye

true

Automaton C
s0start

s1

x < 40

s2

s3

s4

s5

A.!Connect
true

M.!Good Morning

x < 40

M.!Good Morning

x ≥ 40

G.?Thank you

true

G.?Good Bye

true

Fig. 1. Example of four web services

represented in some states, for example x < 40 in s1 of G, represent the time that
this automaton is allowed to be in the state. In the transitions are represented
two items. The first one is a pair composed of the id of the web service that
interacts with this automaton and the action that they exchange. The second
one represents the condition to trigger this transition.

These automata are communicating each others. All of them start receiving
Connect from another web service, called A, in order to be synchronized. After
this, each one has its own behaviour. Let us remark that the time between
receiving Connect, and to perform next action will decide the future behaviour
of the web service. For example if we consider that this time is less than 40 time
unit and M sends Good Morning to C. Then after any elapsed of time it only can
send to E the message Tea. ��

The semantics of a web service is given by translating it into a labeled transition
system with an uncountably number of states. Let us remark that, in general,
we will not construct the associated labeled transition system; we will use it to
reason about the traces of the corresponding timed automaton.

Definition 3. A Labeled Transition System, in short LTS, is defined by a tuple
M = (ID,Q, q0, Σ,→), where ID is a set of web service identifiers, Q is a set of
states, q0 ∈ Q is the initial state, Σ is the alphabet of actions, and the relation
→⊆ Q×ΣID ∪ IR+ ×Q represents the set of transitions.

Let A = (id,S, s0, Σ, C,Z, E) be a web service. Its semantics is defined by
its associated LTS, AM = (ID,Q, q0, Σ,→), where Q = {(s, ν) | s ∈ S ∧ ν ∈
Ω(C) ∧ s � ν}, q0 = (s0, ν0), being ν0(c) = 0 for all c ∈ C, and we apply two
rules in order to generate the elements of →. For all (s, ν) ∈ Q we have:

– If for all 0 ≤ t′ ≤ t we have s � (ν + t′), then ((s, ν), t, (s, ν + t)) ∈→.
– If e � ν, for e = (s, id, α, id′, ϕ,Y, s′) ∈ E , then ((s, ν), (id, α, id′), (s′, ν[Y :=

0])) ∈→.

In addition, we consider the following conditions: (a) If we have q t−−→ q′ and

q′ t′−−→ q′′, then we also have q
t+t′−−−−→ q′′ and (b) if q 0−−→ q′ then q = q′, that is, a

passage of 0 time units does not change the state. The set of all LTS associated
with web services will be denoted by SetLTS. ��
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Next, we introduce the notion of visible trace, or simply trace. As usual, a trace
is a sequence of visible actions and time values.

Definition 4. Let M = (ID,Q, q0, Σ,→) be a LTS, ϑ1, . . . , ϑn ∈ ΣID, and
t1, . . . , tn−1 ∈ IR+. We say that σ = 〈ϑ1, t1, ϑ2, t2, . . . , tn−1, ϑn〉, with n > 0, is
a visible trace, or simply trace, of M if there exits the transitions (q1, ϑ1, q2),
(q2, t1, q3), . . . , (q2∗n−2, tn−1, q2∗n−1), (q2∗n−1, ϑn, q2∗n) ∈→. We will denote by
NT(M) the set of all visible traces.

We define the function TT as the sum of all time values of a normalized visible
trace, that is TT(σ) =

∑n−1
i=1 ti. We denote by σ<< ⊆ SetNVT the set of all

subsequences of σ that are visible traces. ��

We will usually consider normalized visible traces since this is what we observe
from the execution of a system. We cannot observe either internal activity (that
is, the performance of internal actions) or different passages of time associated
to different transitions. Logs recorded from a IUT, will look like visible traces.

Example 2. Let us consider the web services presented in Figure 1, and M.LOG =
〈A.!Connect, 60, C.?Good Morning, 50, E.?Tea, 〉 be a local log recorded in the
web service M. Intuitively, this log represents that A sends Connect to M in order
to synchronize with the others web services. Then, after 60 time units, M has
sent to C the message Good Morning, and after 50 local time units, it has sent
to E the action Tea. ��

Next we introduce our formalism to represent choreographies. Contrarily to sys-
tems of orchestrations, choreographies focus on representing the interaction of
web services as a whole. Thus a single machine, instead of the composition of sev-
eral machines, is considered. The choreography model also is a timed automata,
but there are the following differences with respect to web services model: The
first one is that there exists only one clock, that is called global clock; the second
one is that in the transitions is represented the interaction of the web services,
and the third one is that the valuation of the global clock in the initial state is
0, and it can not be reseted.

Definition 5. A choreography machine is a tuple D = (S, Σ, ID, s0, {x},Z, T )
where S denotes the set of states, Σ is the set of messages, ID is the set of web
service identifiers, s0 ∈ S is the initial state, {x} is a clock called global clock,
Z : S → φ({x}) associates a time condition to each state, and T ⊆ S ×ΣID×S
is the set of transitions. The initial valuation of {x} is 0. And this clock can
never be reseted. ��

The notions of traces, and the transformation of the choreography into its LTS
associated are similar that the one presented for the web services. Concerning
choreography machines, transitions are tuples (s, id, α, id′, ϕ, s′) where s, s′ ∈ S
are the initial and final states, α is the message, and id, id′ ∈ ID are the sender
and the addressee of the message, respectively. Next, let us introduce the idea
of choreography with the following example.
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s0start

s1 s2

s3 s4

s5

s6

s7

s8

s9

s10

A Connect−−−−−→ G, true

A Connect−−−−−→ C, true

A Connect−−−−−→ E, true

A Connect−−−−−→ M, true

E Hello−−−−→ G, true

M
Good Morning−−−−−−−−−→ C, true

C
Thank you−−−−−−−→ G, x < 40

M Coffee−−−−−→ E, true

C
Good Bye−−−−−−−→ G, x ≥ 40

M Tea−−→ E, true

Fig. 2. Choreography of C, E, G and M

Example 3. Let us consider the choreography represented in Figure 2. In this
model is denoted the global behaviour of the web services presented in Figure 1.
Let us denote that the initial valuation of the global clock, by means x is 0.

In the figure, the transition s4E
Hello−−−−−→ G, true, s5 represents that the web

service E will send the message Hello to G. The value true means that there
not exists any time constrain associated with this transition. This choreography
is a reduced graph of the complete choreography of these web services. In the
complete one we will have to increase with the permutation of all possible inter-
action of the web services from s0 to s6, from s6 to s8 and from s6 to s10. ��

3 Invariants

In this section we introduce the notion of invariant. Invariants are used in our
approach to represent the properties that we would like to check against the logs
extracted from the IUT. The notion of invariant being correct with respect to a
specification means that if the invariant detects a mismatch, then the implemen-
tation that has generated this log is incorrect with respect to the specification.
First, after producing a set of invariants and before checking them against the
log, they must be checked against the specification; otherwise, we might have an
invariant which indicates an erroneous behavior that does not violate the require-
ments expressed in the specification. Another possibility would be to consider
that invariants are correct by definition. In this case a mismatch will automati-
cally imply that a fault was detected.
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We present two different kinds of invariants: Local invariants and global in-
variants. The first type is used to express properties of isolated web services,
while the second one, will use the combination of all isolated logs, to check some
significant properties at the system level.

3.1 Local Invariants

Definition 6. Let A = (ida,S, s0, Σ, C,Z, E) be a web service. We say that the
sequence φida is a local invariant for A if it is defined according to the following
EBNF:

φida ::= Body �→ Consequent
Body ::= ϑ/p̂, Body | � /p̂, Body | ϑ′/p̂

Consequent ::= O � p̂

In this expression we consider that p̂ ∈ IIR+ , ϑ′ ∈ {ida} ×Σ × ID, ϑ ∈ {ida} ×
Σ ∪ {?} × ID, and O ⊆ {ida} ×Σ × ID.

Let φid = P �→ R be a local invariant. We define the functions Body(φid) = P
and Consequent(φid) = R. The set of all invariants for a set of web services
identifiers ID is denoted by ΦID, and the set of all bodies of these invariants is
denoted by Φbody

ID . ��

Let us remark that time conditions established in invariants are given by inter-
vals. However, web services in our formalism present fix time. Intervals represent
the idea that it can be admissible that the execution of a task sometimes takes
more time than expected: If most of the times the task is performed on time, a
small number of delays can be tolerated. Moreover, another reason for the tester
to allow imprecisions is that the artifacts measuring time while testing a system
might not be as precise as desirable. In this case, an apparent wrong behavior
due to bad timing can be in fact correct since it may happen that the clocks are
not working properly.

In our framework, the symbol ? can replace any action while the symbol � can
replace a sequence of actions not containing the first action symbol that appears
in the part of the invariant that follows it. Intuitively, the EBNF expresses that
a local invariant is either a sequence of symbols where each component, but
the last one, is either or an expression ida, α, idb/p̂, with ida and idb being web
services identifier, with α being an action or the wildcard character ?, and p̂
being a timed interval, or an expression �/p̂.

There are two restrictions to this rule: a local invariant cannot contain two
consecutive components �/[p1, p2] and �/[q1, q2] since this situation could be
simulated by means of the expression �/[p1 + q1, p2 + q2], and a local invariant
cannot present a component of the form �/p̂ followed by a wildcard character ?,
that is, the action of the next component must belong to Σ. The last component,
corresponding to the expression ϑ′/p̂ �→ O � q̂, is composed of two web service
identifiers associated with an action, that is ϑ′, followed by a timed interval, and
followed by a set of triples identifier/actions/identifier and another time interval.

When we check a log with respect to a local invariant, first we check if the
log matches the body of the invariant. When we find a sequence that matches,
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then we check the correctness of this sequence. The correctness of a sequence
can have the usual three valued valuations: correct, incorrect and inconclusive.
The result is returned inconclusive if the trace never matches the body of the
invariant. An invariant can detect an error with respect to two restrictions.
These are represented in the consequent part of the invariant, that is O � q̂.
The first requirement is given by O, and it is associated to the last term of the
log. It means that if a log 〈ϑ1, . . . , ϑn〉 matches the body of the invariant, then
last component, by means ϑn, must belong to O. Meanwhile q̂ means that the
sum of all time values presented in the log must belong to this interval, that is
TT(〈ϑ1, . . . , ϑn〉) ∈ q̂.

Definition 7. Let ϑ = 〈ida, α, idb〉, ϑ′ = 〈id′a, α′, id′b〉 ∈ ΣID, be two items of a
normalized visible trace, t ∈ IR+ be a time value and p̂ ∈ IIR+ be an interval. We
define the function compare, denoted by c : (ΣID× IR+)× (ΣID×IIR+) �→ Bool
as follow:

c(〈ϑ, t〉, (ϑ′/p̂)) = ((ida = id′a) ∧ (idb = id′b) ∧ (α = α′) ∧ (t ∈ p̂))

Let σ = 〈ϑ1, t1, . . . , ϑn, tn〉, be a normalized visible trace, with n > 0, and
μ = (ϑ′/p̂, . . . , ϑ′

m/p̂m), with m > 0, be a body of an invariant. Let Match :
SetNVT×Φbody

ID �→ Bool be a function that computes if a normalized visible trace
and an invariant matches. Formally we define Match(σ, μ) as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

false if n > 1 ∧ m = 1 ∨ n = 1 ∧ m > 1
c(〈ϑ1, t1〉, (ϑ′

1/p̂1)) if σ = 〈ϑ1, t1, ϑ2〉 ∧ μ = (ϑ′
1/p̂1)

Match(〈ϑ2, . . . , ϑn〉, (ϑ′
2/p̂2, . . . , ϑ

′
m/p̂m)) if n > 1 ∧ m > 1 ∧ c(〈ϑ1, t1〉, (ϑ′

1/p̂1))
false if n > 1 ∧ m > 1 ∧ ¬c(〈ϑ1, t1〉, (ϑ′

1/p̂1))
M’(σ, μ′, q̂, 0) if n > 2 ∧ μ = (�/q̂, . . . , ϑ′

m, p̂m)

where M’ : SetNVT× Φbody
ID × IIR+ × IR+ → Bool is an auxiliary function used to

compute the appearance of the wildcard �.
Let μ = (ϑ′

1/p̂′1, . . . ϑ
′
m/p̂′m), with m > 0 and ϑ′

1 = (id′a, α′, id′), be the body
of an invariant, σ = 〈ϑ1, t1, . . . , ϑn〉, with n > 0 and ϑ1 = (ida, α, id), be a
normalized visible trace, q̂ = [q1, q2] ∈ IIR+ be timed interval, and t ∈ IR+.
Formally, we define M’(σ, μ, q̂, t) as{

false if t > q2 ∨ n = 1 ∨ (ida = id′
a ∧ t �∈ q̂)

Match(σ, μ) if ida = id′
a ∧ t ∈ q̂

M’(〈ϑ2, t2, . . . , ϑn〉, μ, [q1, q2], t + t1) if t ≤ q2 ∧ ida �= id′
a

Let φ be a local invariant and σ = 〈ϑ1, t1, . . . , ϑn〉 be a trace. We say that σ
is inconclusive with respect to φ if ∀σ′ ∈ σ<< we have that Match(σ′, Body(φ))
does not hold. Let O � q̂ = Consequent(φ), we say that σ is correct with respect
to φ if ∀σ′ = 〈ϑb, tb, . . . , ϑr〉 ∈ σ<<, with 1 ≤ b < r ≤ n, if Match(σ′, Body(φ))
then we have that ϑr ∈ O and TT(〈ϑ1, t1, . . . , ϑr〉) ∈ q̂.

We say that σ is not correct with respect to φ if ∃σ′ = 〈ϑb, tb, . . . , ϑr〉 ∈
σ<<, with 1 ≤ b < r ≤ n, if Match(σ′, Body(φ)) then we have that ϑr �∈ O or
TT(〈ϑ1, t1, . . . , ϑr〉) �∈ q̂.
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φE1 =
E, !Connect, A[0, 39],
E, ?Hello, G[0,∞] �→ {(E, !Coffee, M)} � [0,∞]

φE2 = E, !Connect, A[0, 39], �→ {(E, ?Hello, G)} � [0, 39]

φE3 =
E, !Connect, A[41,∞],
E, ?Hello, G[0,∞] �→ {(E, !Tea, M)} � [41,∞]

φE4 = E, !Connect, A[41,∞], �→ {(E, ?Hello, G)} � [41,∞]

φE5 =
E, !Connect, A[0,∞],
E, ?Hello, G[0,∞]

�→
{

(E, !Tea, M)
(E, !Coffee, M)

}
� [0,∞]

Fig. 3. Local invariants suite for web service E

We denote by σ � φ the fact that σ is correct with respect to φ, alternatively
σ¬ � φ denotes that is erroneous. ��

Next, we will illustrate the semantics of a local invariant by using an example. Let
φ = id, α, id′/p̂, �/p̂�, id, α′, id′′/p̂′ �→ O � q̂ be a local invariant. This property,
with respect to a recorded trace, means that if we observe the action α from
id to id′ in a time belonging to the interval p̂, followed by a (possibly empty)
sequence of actions without occurrence of the action α′, then if we observe the
input symbol α′ from id to id′′, and the lapse of time between the performance
of the action α and input α′ belongs to the interval p̂� then the head of the
invariant must hold. This means that α′ must be followed by a triple id-action-
id belonging to the set O with an associated time value belonging to p̂′. The
interval q̂ makes reference to the total time that the system must spend to
perform the whole trace. Let us remark that an invariant can only detect an
error if the body of the invariant, that is the part of the invariant previous to
�→ symbol, matches the log and, either the functional restriction does not match
or any temporal requirement does not match. When an invariant is provided by
a tester, before using it to check the correctness of a log, we may ensure that
this invariant does not contradict what is represented in the specification model,
that is, the invariant has to be correct with respect to the specification.

Definition 8. We say that an invariant φ is correct with respect to a web service
A, being AM the LTS associated with A, if the following two conditions hold:
For all σ ∈ NT(AM) we have both conditions: or σ � φ or σ is inconclusive with
respect to φ, and there exits σ ∈ NT(AM) with σ � φ. ��
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Example 4. Let us consider the web services specification presented in Figure 1.
Next we show how we can express some properties with timed invariants for the
web service E. Let us denote that following the same pattern presented for E, it
is easy to produce the invariants suites for the rest of web services.

The first invariant, by means φE1, means that on the one hand always that
E receives Connect from A, followed by a time value less than or equal to 39
time units, then after sending Hello to the web service G, it will always receive
Coffee from M; and on the other hand, that the sum of all time values, from
Connect to Coffee is included in [0,∞].

Another example is the invariant φE2. It computes on the one hand that always
that E receives Connect from A, followed by a time value less than or equal to 39
time units, then it will send Hello to the web service G, and on the other hand,
that the sum of time values from Connect, to Hello belongs to [0,39].

Let us remark that just in the case of φE5, there are more than one item in
the last set. This mean that the web service is allowed to perform any of these
actions after matching its body. ��

3.2 Global Invariants

Usually we cannot assume that we have access to the global log. However, we
would like to represent some properties involving more than one web service. We
call a global log, as a log recorded in a centralized web service, where all actions
are marked with the same time-stamp clock, thus there are not measure errors.
In this case choreographies help us to check the correctness of these logs, due
to the fact that they have a global clock and we can define properties as “local
invariants” for the choreography. In our approach we do not consider to have
this global log, thus we introduce the notion of global invariants, which will help
us to represent properties that involve many isolated local logs.

Let us present with our running example, an error produced in local logs that
cannot be detected with local invariants. Let us consider the logs presented in
the Figure 4. As we can observe, all of them start with the synchronization input
Connect from the web service A. After 40 time units the web services M and E
send Good Morning to C and Hello to G(locally 41 time units in M and 40.2 time
units in E). It could be possible that the clocks of the web services C, and G work
slower than the one presented in M and E; thus, they receive this inputs on 39.8
and on 39.9. After that the web service M communicates with the web service
E and the web service C with respect to the web service G. As we can observe,
taking into account the choreography of our web services, presented in Figure 2.
This is not a correct situation of the local logs. The idea is that some web services
perform the actions from s6 to s8, and the others perform the actions from s6 to
s10. But, as we do not have a global log, only by checking the local behaviours
we are unable to see that the set of logs represents an incompatible state.

To solve this problem, first we will define a global log, just adding one local
log after another local log. The idea is to be able to represent properties over
this global log, which help us to detect this kind of errors.
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M.LOG= 〈 A.!Connect,41 C.?Good Morning, 36.1, E.?Tea, 〉
E.LOG= 〈 A.!Connect,40.2 G.?Hello, 36, M.!Tea, 〉
C.LOG= 〈 A.!Connect,39.8 M.!Good Morning, 50.3, G.?Thank you, 〉
G.LOG= 〈 A.!Connect, 39.9 E.!Hello, 50.2, C.!Thank you, 〉

Fig. 4. Set of local logs recorded in the web services M, E, C and G

Definition 9. Let σ1 = 〈ϑ1
1, . . . , ϑ

1
n〉, . . . , σj = 〈ϑj

1, . . . , ϑ
j
m〉 be j local logs

recorded from j different services. We will define a global log as the concate-
nation of these logs, that is σ = 〈ϑ1

1, . . . , ϑ
1
n, 0, . . . , 0, ϑj

1, . . . , ϑ
j
m〉. We let πid(σ)

denote the projection of σ on a web service identifier id.
Let ϑ = (id′a, α, id) be an item of a visible trace, and ida be a web service

identifier. We define the following boolean function: cmp(ϑ, ida) = (id′a = ida).
Let σ = 〈ϑ1, . . . , ϑn〉 be a global log, and ida be a web service identifier. Formally,
the projection is defined as:

πida(σ) =

⎧⎪⎪⎨
⎪⎪⎩
〈〉 if n = 1 ∧ ¬cmp(ϑ1, ida)
〈ϑ1〉 if n = 1 ∧ cmp(ϑ1, ida)
πida(〈ϑ2, . . . , ϑn〉) if ¬cmp(ϑ1, ida)
〈ϑ1, t1, 〉πida(〈ϑ2, . . . , ϑn〉) if cmp(ϑ1, ida)

Given two normalized visible traces σ1, σ2, we write σ1 ∼ σ2 if σ1 and σ2 cannot
be distinguished when making local observations, that is, we have that πid(σ1) =
πid(σ2) for all id ∈ ID. ��
In our framework we assume that testers can combine the set of local logs taking
into account any criterion. It is easy to proof that any two of them σi and σj

are σi ∼ σj . Following, we will define the notion of global invariants, and the
correctness of global logs with respect to them.

Definition 10. Let D = (S, Σ, ID, s0, {x},Z, T ) be a choreography. We say
that the sequence ψ is a global invariant for D, where ψ is defined according to
the following EBNF:

ψ ::= SET1 �→h SET2

In this expression we consider that h ∈ {(1, 1), (1, +), (+, +), (+, 1)}, and SET1,
SET2 ⊆ ΦID. Let ψ = SET1 �→h SET2 be a global invariant, we will define the
functions SET1(ψ) = SET1 and SET2(ψ) = SET2. Let σ be a global log. We will
formally define the semantic of Correct, Incorrect (C/I) or Inconclusive:

h Verdict Condition
{1, 1} C/I ∃φα ∈ SET1(ψ) : πα(σ) � φα → ∃φβ ∈ SET2(ψ) : πβ(σ) � φβ

{1, 1} Inconclusive � ∃φα ∈ SET1(ψ) : πα(σ) � φα

{1, +} C/I ∃φα ∈ SET1(ψ) : πα(σ) � φα → ∀φβ ∈ SET2(ψ) : πβ(σ) � φβ

{1, +} Inconclusive � ∃φα ∈ SET1(ψ) : πα(σ) � φα

{+, 1} C/I ∀φα ∈ SET1(ψ) : πα(σ) � φα → ∃φβ ∈ SET2(ψ) : πβ(σ) � φβ

{+, 1} Inconclusive ∃φα ∈ SET1(ψ) such that πα(σ)¬ � φα

{+, +} C/I ∀φα ∈ SET1(ψ) : πα(σ) � φα → ∀φβ ∈ SET2(ψ) : πβ(σ) � φβ

{+, +} Inconclusive ∃φα ∈ SET1(ψ) such that πα(σ)¬ � φα
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ψ =

⎧⎪⎪⎨
⎪⎪⎩

(M, !Connect, A)/[40,∞]
(M, ?Good Morning, C)/[0,∞]

�→ {(M, ?Tea, E)} � [40,∞],

(E, !Connect, A)/[40,∞]
(E, ?Hello, G)/[0,∞] �→ {(E, !Tea, M)} � [40,∞]

⎫⎪⎪⎬
⎪⎪⎭�→(+,+)

⎧⎪⎪⎨
⎪⎪⎩

(C, !Connect, A)/[40,∞]
(C, !Good Morning, M)/[0,∞]

�→ {(C, ?Good Bye, G)} � [40,∞],

(G, !Connect, A)/[40,∞]
(G, !Hello, E)/[0,∞] �→ {(G, !Good Bye, C)} � [40,∞]

⎫⎪⎪⎬
⎪⎪⎭

Fig. 5. Choreography of C, E, G and M

The symbol � used to represent the correctness is overloaded, we will denote
by σ � ψ that σ is correct with respect to ψ. ��

Next, we define the correctness of global invariants with respect to both, the
orchestration models and the choreography model. Let us remark that we are
not allowed with any global clock for checking the temporal restrictions with
respect to the choreography. So, on the one hand, we might check the correctness
of the time restrictions of the global invariant against the web services and, on
the other hand, we might check that the global invariant does not contradict the
choreography.

Definition 11. Let ψ = SET1 �→h SET2 be a global invariant, and D =
(S, Σ, ID, s0, {x},Z, T ) be a choreography. We say that ψ is correct if for all
tr ∈ NT(D) we have that:

– Or tr �ψ or tr is inconclusive with respect to ψ, and there exists at least one
tr that tr � ψ.

– For all φα ∈ SET1 ∪ SET2 we have that φα is correct with respect to α.
��

We conclude this section with the proposed problem of our running example.
Let us summarize all information that we have, present the problem, and show
the solution. We are provided with a set of web services, defined in Figure 1,
which are modeled by using an adaptation of timed automata. For this set of
web services, we have defined a choreography, also modeled by using a timed
automata, and presented in Figure 2. We have introduced a set of local invariants
to check the correctness of the web services, see Figure 3. Due to the fact we
do not have a global clock, we cannot assume that all internal clocks of the
web services work properly. Thus, we could have that some of them work faster
than the others. This situation could produce the set of local logs presented
in Figure 4. As we discussed, with only local invariants we are not allowed to
decide that this set of logs is incorrect. With the use of global invariants, we
can detect this fault. Let us consider the global invariant presented in Figure 5.
When we check the correctness of the set of logs of the Figure 4 with respect
to this invariant, we detect an error on them. Thus, we are able to detect an
unexpected behaviour in the composition of these web services.

4 Conclusions and Future Work

In this work we have presented a formal framework to perform passive testing
of distributed systems taking into account time information. We assume that we
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are provided with a formal specification of both the web services, and the inter-
action between them. These specifications are modeled by an adaptation of the
well known timed automaton model. One contribution of this paper is to define
(local)invariants for web services. A (local) invariant represents testing-properties,
expresses by using input and outputs actions, for checking the correctness of the
recorded traces (i.e, logs) of the system.

Another contribution of this paper is to discuss about some errors that are
never detected only using local invariants. These errors are based into the idea
that each web service has got its own set of local clock, and they do not share
these clocks, it means, some of them can be faster that the others. Regarding, in
our work we assume that we are not provided with a global clock. This scenario
can produce erroneous undetectable situations using only sets of local invariants.

The last contribution of this paper is to provide a way to define (global)
invariants for a set of web services without having a global clock. To finalize,
we discuss that these invariants allow us to detect class of errors that we were
unable to detect only using local invariants. As future work, we would like to
upgrade our PASsive TEsting tool1 with this methodology. On the one hand,
we will implement the algorithms of checking the correctness of local and global
invariants with respect to web services and choreography; and on the other hand
algorithms for checking the correctness of logs with respect to local and global
invariants.
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Abstract. Data plays a fundamental role in modeling and management of busi-
ness processes and workflows. Among the recent “data-aware” workflow mod-
els, artifact-centric models are particularly interesting. (Business) artifacts are
the key data entities that are used in workflows and can reflect both the busi-
ness logic and the execution states of a running workflow. The notion of artifacts
succinctly captures the fluidity aspect of data during workflow executions. How-
ever, much of the technical dimension concerning artifacts in workflows is not
well understood. In this paper, we study a key concept of an artifact “lifecycle”.
In particular, we allow declarative specifications/constraints of artifact lifecycle
in the spirit of DecSerFlow, and formulate the notion of lifecycle as the set of
all possible paths an artifact can navigate through. We investigate two technical
problems: (Compliance) does a given workflow (schema) contain only lifecycle
allowed by a constraint? And (automated construction) from a given lifecycle
specification (constraint), is it possible to construct a “compliant” workflow? The
study is based on a new formal variant of artifact-centric workflow model called
“ArtiNets” and two classes of lifecycle constraints named “regular” and “count-
ing” constraints. We present a range of technical results concerning compliance
and automated construction, including: (1) compliance is decidable when work-
flow is atomic or constraints are regular, (2) for each constraint, we can always
construct a workflow that satisfies the constraint, and (3) sufficient conditions
where atomic workflows can be constructed.

1 Introduction

Business process management (BPM) has received a rapidly increasing interest in re-
search communities (MIS, CS, and application domains including digital governments,
health care delivery, as well as traditional business applications) [5,31]. A key reason is
that BPM as a core part of a business enterprise has a wide scope (resource including
human management, workflow management, etc.) and is difficult in aspects including
discipline barriers among business administration, MIS, IT, etc., and effective man-
agement of process/workflow changes. The demand for workflow management tools is
enormous. On the other hand, BPM as a research area is rather appealing since there
is a lack of a suitable technical framework or model that includes process, data, re-
sources, and human, and can help separating technical problems so that they can be
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addressed individually and independently [5]. In this paper, we introduce integrity con-
straints for workflow executions and study the interactions of workflow models and
such constraints.

Data plays a fundamental role in modeling and management of business workflows
[5]. For example, it is quite often that a workflow starts in response to an (external)
request that records some vital information about the request; at each step of a workflow
execution, proper bookkeeping is made so that the results of actions taken are reflected
and can be used for future decisions, and even the actions themselves are logged for
system reasons (e.g., reliability) and business reasons (e.g., accountability). Among the
recent proposals for “data-aware” workflow models, artifact-centric models [23,9,2]
are particularly interesting. Here (business) artifacts mean the key data entities that are
used in workflows and can reflect both the business logic and the execution states of a
running workflow. The notion of artifacts succinctly captures the fluidity aspect of data
during workflow executions.

Although artifact-centric modeling approach is suitable for applications [3], many
challenges remain in developing technical models for artifact centric workflows. Pre-
vious studies on artifact-centric workflow models focused on formal models [9,2,1],
verification of temporal properties concerning the workflow logic [9,13,6], static analy-
sis of model well-formedness [2], automated construction from non-temporal goals [8],
etc. However, there are still many issues concerning artifacts in workflows that are not
well understood.

In this paper, we study the key concept of “lifecycle” for artifacts. A lifespan of
an artifact is the sequence of services it encountered during its life time. A lifecycle
of an artifact class is the set of all possible lifespan by artifacts in the class. In the
formal study, we introduce a variant model for artifact-centric workflows called ArtiNet.
ArtiNet workflows resemble Petri nets (see [22] for a tutorial) with two key differences.
First, artifacts are used in instead of “tokens”. Each artifact belongs to a “class” and
places are “typed”, i.e., each place may store artifacts of a fixed class. Second, when
a transition have multiple input (output) places, only one artifact of each input class is
consumed (generated) at each firing.

Motivated by DecSerFlow [32,33], we allow declarative specifications of or con-
straints on artifact lifecycle. We consider two formalisms for lifecycle specifications:
regular expressions and semilinear sets of Parikh maps [24] that we call counting
constraints. As lifecycle constraints, we study the compliance problem: does a given
workflow only contain lifecycle allowed by a constraint? As lifecycle specification, we
investigate the automated construction problem: from a given lifecycle specification, is
it possible to construct a workflow that “realizes” (satisfies) the specification?

DecSerFlow is a declarative language for specifying permitted sequences of services
in a workflow. Earlier work on DecSerFlow focused primarily on implementation of
DecSerFlow specifications [33], mapping into SCIFF [21], and verification of logical
properties [4]. The compliance problem for regular lifecycle constraints was studied
earlier [28,18,17,34]. However, the notion of compliance in these works is “syntactic”,
i.e., based on containment of transition relations. Our model of compliance is semantic
and our results naturally generalize the earlier results.
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We present a range of technical results concerning compliance and automated con-
struction problems. We show the following. (1) The compliance problem is decidable
for either atomic workflows or regular constraints, with the case of workflows and
counting constraints remains open. (2) For each regular/counting specification we can
always construct a workflow that realizes the constraint, in particular, each regular con-
straint is realized by an atomic workflow. (3) We also give cases when atomic workflows
can be constructed for counting constraints with or without regular constraints.

This paper is organized as follows. Section 2 motivates the problem with an example.
Section 3 defines the ArtiNet model, Section 4 introduces the regular and counting con-
straints. Sections 5 and 6 focus on compliance and automated construction problems,
respectively. Section 7 concludes the paper.

2 Motivations

We use a workflow example to motivate artifact lifecycle constraints and the problems
studied in this paper. In this example (Fig. 1), preselling refers to selling an apartment
before completing the construction. A preselling permit for a group of apartments must
be obtained by a developer before selling activities happen. This workflow is simplified
from a similar workflow for real estate management in Hangzhou, China [19] where
permits are issued by the real-estate administration office of the city.

In Fig. 1, upon receiving an application, an artifact of PAF (Preselling Approval File)
is created. For each apartment listed in the PAF, an AF (Apartment File) is created. Each
AF is first verified by a compliance officer, and then evaluated by a pricing estimator.
Finally an approving process takes the PAF and the reviews for each AF and approves
and completes the application.

As a part of the government requirement, each PAF application must have one pre-
liminary review and and one approving service (task), in that order. This can be easily
expressed as a regular constraint “(receiving App-Form)(PAF prelim. review)+(PAF
approving)+”. Another constraint to satisfy involves the number of times services are
executed. Note that each apartment in a PAF application need to be reviewed sepa-
rately. Hence the number of PAF preliminary review executions should be the same as
the number of PAF approving executions, otherwise, some apartments could miss the
PAF approving service before the entire PAF application is approved. Both example
properties are properties on PAF artifact “lifecycle”.
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Fig. 1. An ArtiNet Workflow for Apartment Preselling Approval
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In this paper we focus on artifact lifecycles, and study the compliance and automated
construction problems for workflows in the ArtiNet model. When a new workflow is
designed, it is always desirable to know if the workflow is compliant with specified life-
cycle constraints. In [28,18,17] authors studied OLCs (object life cycles), and the con-
formance and coverage problems of OLCs by business process models. A comparison
with their results is provided in Section 5. In [34], authors studied the coupling between
objects and proposed a method to compute the expected coupling of a process model.
Different from these earlier studies, our study also includes automated construction of
workflows from lifecycle constraints.

3 ArtiNet: A Formal Model for Artifact-Centric Workflows

In this section, we define the key concepts needed for the technical presentation, includ-
ing “artifacts”, “workflow”, “configurations”, and “enactments”.

Intuitively, artifacts are (abstract) objects that can “flow” through a workflow. The
workflow model resembles Petri nets [25] (see e.g., [22]) by substituting tokens with
artifacts. Perhaps, the main semantic difference lies in the transition firing rule. But
as we will explain below, the firing rule can be simulated by standard Petri nets. Our
workflow model is a formal version of ArtiFlow [19] used in the ArtiMT system [20].

In the technical development, we assume the existence of the following countably
infinite, pairwise disjoint sets:

– A of (artifact) class (names),
– S of services (names),
– P of places, and
– T of transitions.

Definition 1. Let B be a class. A workflow for B is a tuple W = (Σ, P, T, τs, τf , E, r, s)
satisfying all of the following conditions:

– Σ is a finite (possibly empty) set of classes such that B �∈ Σ,
– P ⊆ P is a finite set of places (or repositories),
– T ⊆ T is a finite set of transitions and τs, τf ∈ T are the seed and archival

transitions respectively,
– E ⊆ P×(T−{τs}) ∪ (T−{τf})×P is a set of edges,
– r : P → Σ ∪ {B} is a mapping that assigns each place p ∈ P a class such that if

(τs, p) ∈ E or (p, τf ) ∈ E then r(p) = B,
– For each transition τ ∈ T−{τs, τf}, (p, τ) ∈ E and r(p) = B for some place

p ∈ P iff (τ, q) ∈ E and r(q) = B for some place q ∈ P , and
– s : T − {τs, τf} → S is a mapping that assigns each transition a service name.

The workflow W is atomic if Σ = ∅.

If W is a workflow for B, we also call B the focused class of W . (Σ in W consists of
auxiliary classes.) To simplify the presentation, for the remainder of this paper, we fix
some focused class B.
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Definition 2. Given a workflow W = (Σ, P, T, τs, τf , E, r, s) for a class B, a configu-
ration of W is a mapping C from P to natural numbers. A configuration is empty if it
assigns 0 (zero) to every place.

If a place p is assigned C(p), then p stores C(p) number of artifacts.
Let W = (Σ, P, T, τs, τf , E, r, s) be a workflow. The set of input (resp. output)

places of a transition τ , denoted by •τ (resp. τ• ), is the set of all places that have an
edge entering (resp. leaving) the transition τ . We also denote by (•τ)A (resp. (τ• )A)
denote all input (resp. output) places of the transition τ labeled A. For a set P of places,
we define r(P ) = {r(p) | p ∈ P}. In the remaining of this paper, we will frequently
use the notations r(•τ) and r(τ• ) to mean input and output labels of τ , respectively.

Definition 3. Given a workflow W = (Σ, P, T, τs, τf , E, r, s) for a class B, a transition
τ ∈ T is enabled in a configuration C if for each A ∈ r(•τ), Σp∈(•τ)AC(p) > 0.

This condition states that a transition is enabled if there is at least one artifact available
from each input class from all input places combined. A transition can have multiple
input places with the same label, but only one artifact from each input class is sufficient
to enable the transition. Note that this is different from standard Petri nets that consume
a token from each input place. However, one can simulate this semantics in Petri nets.
For example, if a transition τ has input places p, q storing artifacts of B. We could
construct an additional place p′ and two transitions τp and τq that reads input from p
and q (resp.) and outputs to the place p′. We also modify τ ’s input so that it takes one
input from p′. Thus, the “picking an artifact from either places” construct in our model
is turned into “picking some artifact from a place” in Petri nets.

A workflow “moves” from one configuration to another when a transition fires. Given
a configuration, there might be more than one possible transitions that are enabled. One
of the enabled transitions is chosen to be fired nondeterministically.

When a transition fires, it consumes one artifact from each input class. It generates
one artifact for each output class and puts it nondeterministically in one of the output
places if there are multiple possible places to put the artifact.

The firing of a transition τ is defined as a triple (C, τ, C′). It indicates transition τ is
invoked and the workflow moves from configuration C to configuration C′.

Definition 4. Given a workflow W = (Σ, P, T, τs, τf , E, r, s), two configurations of
C1, C2 of W and a transition τ ∈ T , C1 derives C2 using τ if the following conditions
are all true:

1. τ is enabled in C1,
2. If A is an input class and let pA be the place artifact labeled A is chosen to be

consumed, then for each input place p ∈ (•τ)A,

C2(p) =
{

C1(p)− 1 If p = pA
C1(p) otherwise

3. If A is an output class and let pA be the place artifact labeled A is put then for each
output place p ∈ (τ• )A,

C2(p) =
{

C1(p) + 1 If p = pA
C1(p) otherwise
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Definition 5. An enactment of a workflow (Σ, P, T, τs, τf , E, r, s) is an alternating se-
quence of configurations and transitions C0τ0C1τ1C2 · · · τn−1Cn such that

1. C0 is the empty configuration,
2. τ0 = τs (seed transition) and for all 1 � i < n, τi ∈ T − {τs}, and
3. For each 0 � i < n, Ci derives Ci+1 using τi.

The enactment is complete (or terminating) if the last configuration Cn is empty and
the last transition is the archival transition.

4 Lifecycle Constraints of Artifacts

In this section, we introduce a notion of integrity constraints for ArtiNet workflows,
called “lifecycle constraints”. Intuitively, lifecycle constraints limits the way how work-
flow executions should be carried out. In artifact-centric workflows, a workflow enact-
ment (or instance) executes a collection of services in certain order to accomplish the
business goal. The constraints in our model thus focus on the sequencing aspect. In the
general case, lifecycle constraints could involve the contents of artifacts. However in
this initial study, we focus on constraints that do not examine data values. In this sec-
tion we formulate the key concepts, the technical discussions will be presented in the
next two sections.

Clearly, the language DecSerFlow [32,33] for specifying sequencing of service or-
derings is easily seen as a class of lifecycle constraints. In [29,30], an algebra was
developed for event sequences. Algebraic expressions were used as constraints on task
sequences during the execution. In [18,28,17] authors studied the consistency of OLC
(object life cycle) with respect to a business process model. Finite state machines are
used to represent OLCs. In that aspect, our definition of lifecycle coincides with the
OLC notion in these papers.

Definition 6. Let W=(Σ, P, T, τs, τf , E, r, s) be a workflow for artifact class B and
C0τ0C1τ1C2 · · · τn−1Cn a complete enactment of W . A lifespan of B in W is a se-
quence of service names corresponding to the transitions in the complete enactment:
s(τ0)s(τ1) · · · s(τn−1). The lifecycle L(W ) of B is the set of all lifespans of B in W .

Note that the seed and archival transitions are ignored in a lifespan. Let W be a work-
flow. We define SW as the set of all services that are images of the service mapping
in W .

Definition 7. Let W be a workflow for a class B. A (life-cycle) constraint on B is a
subset of S∗

W , i.e., a (possibly infinite) set of words over SW . The workflow W satisfies
(or realizes) a life-cycle constraint γ, if L(W ) ⊆ γ (resp. L(W ) = γ).

Let W be a workflow for class B. We consider two classes of life-cycle constraints:
“regular” and “semi-linear” constraints. A constraint γ on B is regular if γ is a regular
language over SW . In this paper, we further assume that regular constraints are specified
in form of regular expressions [14]. Assuming a, b, c . . . are services in SW examples
of regular constraints include: (a + b)∗c, (ab∗a)∗, and a∗b∗(c + d).
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To define the second class of constraints, we first assume some fixed enumeration
s1, ..., sn of SW . The Parikh map [24] of a word w ∈ S∗

W is a vector of natural numbers
Parikh(w) = (v1, ..., vn) such that for each i ∈ [1..n], vi is the number of occurrences
of si in w. Let γ ⊆ S∗

W be a set of words over SW . The Parikh map of γ is the set
Parikh(γ) = {Parikh(w) | w ∈ γ}.

We say that γ ⊆ S∗
W is a counting constraint if its Parikh map Parikh(γ) is a

semilinear set [10]. Recall that a linear set is a pair (v̄, P ) where v̄ is an n-vector
and P = {v̄1, ..., v̄n} is a finite set of base vectors. It defines the set of points in n-
dimensional space {ū | ū = v̄ +

∑n
i=1 kiv̄i, where ki � 0 for all 1 � i � n}. A

semilinear set is a finite union of linear sets.
An example of a counting constraint is i · (1, 2, 0)+ j · (0, 0, 2) where i, j � 0. This

constraint states that s2 occurs twice as much as s1 and s3 occurs an even number of
times.

Lemma 4.1. Let W be a workflow for a class B and Γ be a finite set of regular (resp.
counting) constraints on B. Then there exists a regular (resp. counting) constraint γ
such that the following are equivalent:

1. W satisfies every constraint in Γ .
2. W satisfies the constraint γ.

The above lemma easily follows from the fact that both regular languages and semilin-
ear sets are closed under intersection [14,10].

We conclude the section with the following results.

Proposition 4.2. (1) The lifecycle of every atomic workflow is a regular language.
(2) The lifecycle of a workflow is always context-sensitive, and there are workflows

whose lifecycles are (i) context-free but not regular, or (ii) not context-free.

Item 1 is rather straightforward. Item 2 is not surprising, since (formal) languages de-
fined by Petri nets are always context-sensitive [26,22].

5 Compliance of Lifecycle Constraints

In this section, we focus on the “compliance” problem for ArtiNet workflows and life-
cycle constraints. The problem easily occurs in practice as one would ensure if the
existing workflow would satisfy the constraints. We show that the problem is decidable
for atomic workflows with either type of constraints, and for workflows with regular
constraints. The case of workflows with counting constraints is left open. We also study
compliance of DecSerFlow constraints.

Lifecycle Compliance (LC) Problem: Given a workflow W and a regular or counting
constraint γ, determine if W satisfies γ.

Unlike the work in [29,30] where enforcement is done at runtime, we study the static
analysis problem of deciding if the workflow will always satisfy the constraints. The
object lifecycle compliance problem studied in [28,18,17] is closely related to the com-
pliance problem defined above. However, the notion of compliance in [28,18] requires
that the object state transitions in the business process is a subset of the transitions in
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a specified lifecycle. This is a stronger requirement, i.e., if a workflow is compliant in
our model, it may not be compliant by their definition. However, compliance holds in
their model would imply compliance in our model. [17] studied compliance considering
side-effects while our model does not consider side-effects.

The main results of the section are now stated below.

Theorem 5.1. LC problem is decidable for atomic workflows. For the general case of
workflows, LC is decidable for regular constraints.

ArtiNet workflows can be reduced to Petri nets, which as language acceptors, accept
context-sensitive languages [22,26]. Since the emptiness problem for context-sensitive
languages is undecidable [14], one cannot directly apply known results for the LC prob-
lem. On the other hand, Petri nets can be converted to “partially blind multicounter
machines” [16], and it is shown [16] that the containment of a Petri net language in a
regular language can be determined.

In the remainder of this section, we focus on atomic workflows.

Lemma 5.2. Given an atomic workflow W and a regular constraint γ, it is decidable
to check if W satisfies γ.

To establish the lemma, it is sufficient to note that one can effectively convert each
regular expression γ to an equivalent (non-deterministic) finite state machine Mγ . By
Proposition 4.2, the language accepted by W is regular; subsequently, one can construct
a finite state machine MW that accepts the language L(W ). It follows that W satisfies
γ iff MW ⊆ Mγ (with an abuse of notation). The latter is known to be decidable.

The LC problem for atomic workflows and regular constraints is however PSPACE-
complete. This follows from the fact that checking if a non-deterministic FSA accepts
Σ∗ is PSPACE-hard [11]. We note here that the main source of complexity is from
constraints and not workflows. To see its membership in PSPACE, we note that the con-
tainment M1 ⊆ M2 of two FSAs can be reduced to checking the emptiness of M1∩M c

2
(M c

2 is the complement of M2). Although M c
2 has an exponential size, the emptiness

checking can be done without writing down the complete complement machine.

Lemma 5.3. Let γ be a regular constraint that is equivalent to a deterministic FSA Mγ .
It can be determined in O(n2) time if an atomic workflow satisfies γ, where n is the
size of the workflow and Mγ .

Clearly, the workflow can be viewed as an FSA MW . MW ⊆ Mγ iff MW ∩ M c
γ is

empty. Since Mγ is deterministic, M c
γ and Mγ have the same size. Finally, the empti-

ness of intersection of two FSAs can be determined in the size of their product.
An interesting application of Lemma 5.3 is on compliance of DecSerFlow [32,33]

constraints by ArtiNet workflows. DecSerFlow is a declarative language for specifying
permitted sequences of tasks in a workflow. DecSerFlow is based on LTL [7] with
restrictions in syntax and semantics.

A DecSerFlow specification includes a finite set of services (tasks) and a set of con-
straints. It defines a set of sequences of services permitted in workflow execution. There
are two types of constraints. The first type is cardinality constraints that are associated
with individual services, which limits the number of invocations allowed for a service
(i.e., occurrences of the service in the sequence). The second type of constraints are
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Fig. 2. A DecSerFlow Specification
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Fig. 3. FSAs corresponding to DecSerFlow constraints

relational constraints. A relational constraint can be associated with two services and
limits occurrences and/or ordering of the involves services.

Fig. 2 shows a simple DecSerFlow specification with three services and two rela-
tional constraints. The cardinality constraints restrict the lower and upper bounds of
the numbers of occurrences of services (∗ means unbounded). The relational constraint
from s2 to s1 requires that each s2 must be followed by some s1, i.e., s2 cannot occur
as the last task. The constraint from s2 to s3 requires that between two occurrences s2
there must be an s3 and that some s3 must appear after the last s2.

There are 11 types of relational constraints in DecSerFlow and some of them have
negated versions [32,33]. For example, existence-response on two services s1, s2 means
that if s1 executes, s2 should also execute but the timing of these executions can be arbi-
trary; the relational constraint response from s1 to s2 requires that whenever s1 executes,
there is a “responding” execution of s2 later on. In this case, timing is important. How-
ever, s2 does not have to execute immediately after s1, and two or more executions of s1
may share the same s2 responding execution. The dual relational constraint precedence
from s1 to s2 enforces that if s2 executes there must be a preceding s1 execution.

We can easily view each DecSerFlow specification as a lifecycle constraint. In this
sense, the following can be shown.

Theorem 5.4. Let γ be a DecSerFlow constraint and W a workflow. It can be decided in
O(nml) time if W satisfies γ, where n is the size of W , m the total number of services
and relational constraints in γ, and l the largest integer in the cardinality bounds in γ.

In Fig. 3(a), we give the FSA corresponding the alternate response constraint in Dec-
SerFlow between s2 and s3 showed in Fig. 2. (T stands for the finite set of services.) In
this FSA, after each s2 occurrence, there has to be at least one s3 before the next s2 oc-
currence. Therefore, this FSA is exactly the alternate response constraint. In Fig. 3(b),
we give the FSA corresponding to the cardinality constraint on s2 in Fig. 2, where s2
can occur at most 3 times.

For each relational constraint γ′ in γ, we can easily construct a deterministic FSA
with a constant number of states. By Lemma 5.3, satisfaction of γ′ can be tested in
O(n) time. For each cardinality constraint, we can also construct a deterministic DFA
with at most l number of states. The theorem follows easily. We now turn to counting
constraints.
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Lemma 5.5. Given an atomic workflow W and a counting constraint γ, it can be de-
termined if W satisfies γ.

From Proposition 4.2, the lifecycle of W is a regular language. To establish decidabil-
ity in Lemma 5.5, we note that the Parikh map of each regular language is semilinear
[15]. It is also known that semilinear sets are closed under intersection, union, and
complement [10]. Thus, W satisfies γ iff Parikh(L(W )) ∩ γ is empty (γ denotes the
complement of γ), the latter is decidable [12]. (An alternative is to construct a Pres-
burger formula that states the containment Parikh(L(W )) ⊆ γ; the decidability follows
from the decidability of Presburger arithmetic [27].)

6 Workflow Construction from Lifecycle Specification

In this section, we treat a lifecycle constraint as a workflow specification and study the
problem of constructing a workflow from a given constraint. It is obvious that one can
always construct an atomic workflow for each regular constraint. Therefore, we restrict
our attention to (atomic) workflows and counting constraint or in conjunction with a
regular constraint, and study the problem of whether from a given counting constraint
we can construct an (atomic) workflow. We show that for each counting constraint we
can effectively construct a workflow that realizes (satisfies) the constraint. We also ex-
hibit various cases when atomic workflows can be constructed for a counting constraint.

Automated Construction Problem: Given a counting constraint γ, can we find an
(atomic) workflow that realizes (satisfies) γ?

Theorem 6.1. (a) For every regular constraint γ, there is an atomic workflow that re-
alizes γ.

(b) For every counting constraint γ, there is a workflow that realizes γ.

Part (a) of Theorem 6.1 is straightforward. In particular, γ can be converted into a
nondeterministic FSA Mγ , and then one can construct an atomic workflow by creating
a transition node for each transition in Mγ and a place node for each state in Mγ .

Since each DecSerFlow constraint can be expressed as a regular constraint, the fol-
lowing holds.

Corollary 6.2. Each DecSerFlow constraint can be realized by an atomic workflow.

For Part (b), we use auxiliary artifacts to help counting. For one linear set counting
constraint, we can construct one workflow that realizes (satisfies) the constraint. If the
counting constraint γ is semilinear, i.e., a finite union of linear sets, we can construct a
workflow for each linear set and then combine the workflows into a single workflow.

To demonstrate the key idea and techniques, consider a counting constraint 2za = zb

that states the number of executions of transition b should be twice as much as the
number of occurrences of transition a. The Parikh map of the constraint is {(i, 2i) | i �
0}, i.e., the base vector is (1, 2). To realize this constraint, in addition to our focused
artifact B we also have one auxiliary artifact A. There is one place for class B, all
transitions labeled a or b take a B artifact from and put it back to the place when they
are executed. We have 4 places for the auxiliary artifact A each representing the vectors
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Fig. 4. Realization of a Counting Constraint

(i, j), where 0 � i � 1 and 0 � j � 2, except for (0, 0) (not started yet) and (1, 2)
(completed). Each of the a transitions takes an A artifact from (i, j) for some i, j and
after execution puts it into (i+1, j) (or just archive it), therefore simulating the increase
in the number of a’s. Similarly, each of the b transitions should increase the b counts by 1
while leaving a count unchanged. It is clear that the constraint on the numbers of a’s and
b’s has to be satisfied in complete enactments. Fig. 4 shows the workflow constructed
for the counting constraint 2za = zb. In a complete enactment of this workflow, all
the places should be empty at the end. Therefore, all tokens of the auxiliary artifact A
should already be consumed. It can be clearly seen in the figure that when all tokens of
A is consumed, the number of executions of transitions b is exactly the twice as much
as the number of executions of transition a.

We now describe the construction of a workflow from a counting constraint. We
start from linear sets with a single base vector (m1, ..., mk), where k is the number
of services. We create place nodes for class A for each vector (n1, ..., nk) where 0 �
ni � mi for each 0 � i � k, except the two vectors (0, ..., 0) and (m1, ..., mk).
For each place p representing the vector (n1, ..., nk) where ∃j, nj = 1, nr = 0 if
r �= j, 0 � j, r � k, we create an initialization transition τ and an edge (τ, p). For
each place p representing the vector (n1, ..., nj , ..., nk), if there is a place p′ with the
vector (n1, ..., nj−1, nj + 1, nj+1, ..., nk), then we create a continuation transition τ
and two edges (p, τ), and (τ, p′). For each place p representing the vector (n1, ..., nk)
where ∃j, nj = mj − 1, nr = mr if r �= j, 0 � j, r � k, we create an ending
transition τ and an edge (p, τ). In fig. 4, created initialization transitions are t1 and t4,
continuation transitions are t2, t5, t6, and ending transitions are t3 and t7. In addition,
we create a place node p∗ for the focused artifact B and edges (τs, p∗) and (p∗, τf ).
We also create edges (τ, p∗) and (p∗, τ) where τ �= τs, τf . It can be shown that the
Parikh map constraint {i · (m1, ..., mk) | i � 0} is satisfied. When a linear set has more
than one base vector, the construction would repeat for each base vector, except that the
common place p∗ for the focused class is shared. If the counting constraint γ is a finite
union of linear sets, we will construct a workflow with disjoint places for linear set and
let the seed transition to (randomly) pick one B place to start.

In the remainder of the section, we study the problem of constructing atomic work-
flows: Given a counting constraint γ, find an atomic workflow that satisfies γ.

Clearly, if the γ is a regular language, it reduced to Theorem 6.1(a). We assume
that γ is not regular. Actually, the class of counting constraints includes all context-free
languages [24]. Naturally, we are looking for atomic workflows whose lifecycles are
sublanguages of γ.
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Since atomic workflows are basically FSAs, in the following discussions, we focus
on finding regular sublanguages called “factors” rather than constructing workflows.

Definition 8. Given two languages L1 and L2, L2 is said to be a factor of L1 if L2 ⊆
L1, L2 is infinite and regular.

Notion of factor naturally leads to the following strategy for automated constructions.
Given a constraint γ. Let L1, ..., Lk be factors of γ, we construct a FSA (workflow) for
L where L = ∪1�i�kLi.

Lemma 6.3. The language L ⊆ {a, b}∗ such that Parikh(L) = {(i, i) | i � 0} has
infinitely many pairwise incomparable factors.

To prove the above lemma, we construct the sets En’s (n � 1) as follows. En = {w |
Parikh(w) = (n, n) and w �∈ ∪n−1

i=1 E⊕
i }, where E⊕

i = {wj | w ∈ Ei and j � 1}.
Claim 1: For each n � 1, En is not empty.

Claim 1 holds because there are no words in∪n−1
i=1 E⊕

i that starts with n a’s. However,
anbn ∈ En.

Claim 2: For each i � 1, and each w ∈ Ei, w∗ ⊆ L.
One can easily show that Parikh(w∗) ⊆ {(i, i) | i � 0}; therefore w∗ ⊆ L.

Claim 3: For each pair of words w1, w2 ∈ ∪iEi, if w1 �= w2 then w∗
1 � w∗

2 .
If we can find a word w ∈ w∗

1 and w �∈ w∗
2 , then w∗

1 � w∗
2 . Consider w = w1.

If |w1| < |w2|, then there are no words in w∗
2 with the same length as w1, since each

word in the set w∗
2 has length |w2| or greater. Therefore, w1 �∈ w∗

2 .
If |w1| > |w2|, to satisfy the condition w1 ∈ w∗

2 , we should have w1 = wi
2 for some

i � 1. This violates our construction, hence such w1 cannot exists.
If |w1| = |w2|, only word in w∗

2 that has the same length with w1 is w2. But obvi-
ously, w1 �= w2, therefore w1 �∈ w∗

2 .
Lemma 6.3 naturally generalizes to the following.

Theorem 6.4. Let Σ be a (finite) alphabet. Every non-regular counting constraint over
Σ∗ has infinitely many pairwise incomparable factors.

L has at least one non-regular subset whose Parikh map is a linear set. Let’s assume L′

is such a subset of L. Since L′ is not regular, there is at least one base vector for the
Parikh map of L′ that defines a non-regular language. The corresponding non-regular
constraint can be written as {i · (ma, mb, . . . , mz)} and at least two of the mis are
non-zero. If at most one of them is non-zero, then it defines a regular language. For the
basis vector {i · (ma, mb, . . . , mz)}, one can come up with infinitely many pairwise
incomparable factors, using a similar construction as shown in Lemma 6.3. In fact,
these factors can be constructed as: for each i � 1, (ai·mabi·mb · · · zi·mz)∗. Since L′ is
a subset of L and L′ has infinitely many pairwise incomparable factors, so does L.

Theorem 6.4 shows even if the constraints define non-regular languages, “compliant”
implementations by atomic workflows are still possible. And in fact, there are many
ways to choose from. However, the following result shows that combining regular and
counting constraints may sometimes prohibit atomic workflows.
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Lemma 6.5. L = {anbn | n � 0} has no factors.

Assume L has a factor L′. Let M be the FSA that accepts the language L′. Since L′ is
infinite, there exists a word w ∈ L′ such that w = aibi and |w| > number of states in
M . By the pumping lemma for regular languages, M must include words not in L (thus
not in L′).

In spite of the above negative result, in the following, we show that it may still be
possible to find atomic workflows for a pair of regular and counting constraints.

Lemma 6.6. Let γr and γc two a regular and counting (resp.) constraint. if γr has no
union and one star, then γr ∩ γc defines a regular language.

Intuitively, the above lemma holds since for each linear set, and each union-free regular
expression with at most one star, their intersection must be regular. It is because with no
stars, the language is finite and so is the intersection. With one star, the Parikh map of
the corresponding regular language can be expressed linear equations with the number
i of iterations as a parameter. The intersection is thus a linear set and is either finite or
infinite including all i’s greater than some fixed number.

With this positive result, it is interesting to obtain more sufficient conditions for
factor existence in presence of a regular and a counting constraint.

7 Conclusions

In this paper we provide a formal analysis on artifact-centric workflows, centering
around the notion of artifact lifecycle. Although our work is inspired by DecSerFlow,
the technical problems examined provide new insights into the interplay between con-
straints/specifications and workflow models. On one hand, compliance problems are
solvable in case of workflow and regular expressions (but remain open for counting
constraints). On the other hand, construction of workflows can always be done. Our
results do not provide a complete characterization of complexity for the technical prob-
lems. There are many open problems, including: compliance of counting constraints by
workflows, sufficient (and/or necessary) conditions for existence of atomic workflows
for counting constraints with or without regular constraints.

One interesting remark is that while our workflow model is closely related to Petri
nets, our study of the technical problems uses a myriad of tools including formal lan-
guages, automata, linear algebra, and logic.
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models. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 181–192. Springer, Heidelberg (2007)

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading (1979)

15. Ibarra, O.: Private communications (2010)
16. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. Journal

of the ACM 25, 116–133 (1978)
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Abstract. Web applications are both the consumers and providers of
information. To increase customer confidence, many websites choose to
publish their privacy protection policies. However, policy conformance is
often neglected. We propose a logic based framework for formally spec-
ifying and reasoning about the implementation of privacy protection by
a web application. A first order extension of computation tree logic is
used to specify a policy. A verification paradigm, built upon a static
control/data flow analysis, is presented to verify if a policy is satisfied.

1 Introduction

The importance of protecting personal information privacy has been recognized
for decades (e.g., see the the Health Insurance Portability and Accountability
Act [23]). To increase customer confidence, many websites publish their privacy
policies regarding the use and retention of information, using standards such as
P3P [30] and EPAL [26]. For example, an online store web application can state
that the credit card information she collects is used for the purpose of financial
charge only and will be destroyed once the transaction is completed.

A publicly stated policy, however, may be violated by malperformed business
practices and web application implementations, e.g., saving the credit card in-
formation to a “secrete database” instead of destroying it. We are interested in
the following problem:

Given a privacy policy which specifies the purpose, retention, and recipient of
information, can designers employ static analysis techniques to verify if a web
application (including its code level implementation and system configuration)
satisfies the policy?

The problem is essentially a verification problem (which we dubbed as “confor-
mance verification”), because this is about checking if a system implementation
respects a public specification (e.g., to observe a communication protocol [24,5]).

We propose PV (Privacy Verification), a framework built upon the first order
relational logic [18]. The conformance check is semi-automatic and it consists of
the following stages: (1) Modeling: A web application is modeled as a reactive
system that responds to requests from its customers and stakeholders. Each
servlet is modeled as an atomic transition rule that updates the knowledge of
entities about private information. Here, an entity can be used to describe any
“live being” in the model, e.g., a servlet, an employee, a database, an operating
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system call, etc. (2) Static Analysis: To ensure the precision of a model, a
static analysis is used for extracting the information flow between entities of
a web application, which is later used to construct the formal model of each
web servlet. The analysis is conservative in that it may have false positives, but
every possible information flow path in a servlet is reported. (3) Verification: a
privacy policy is specified using a temporal logic, by adapting CTL [10] with first
order relational logic components. The verification has to be limited to a finite
model for ensuring decidability. The Alloy Analyzer [17] is used in the proof of
the concept experiments. In the future, the Kodkod constraint solver [28] can be
directly used for discharging symbolic constraints.

The contributions of this paper include the following: (1) PV provides a com-
pact representation of knowledge ownership and its dynamic changes with sys-
tem execution; (2) Instead of deriving PV from a top-down design, we propose a
static analysis framework that extracts PV model from code level implementa-
tion. This would save tremendous time in modeling and can better accommodate
the evolution of software systems; and (3) the verification paradigm includes
a processing algorithm that handles highly expressive CTL-FO, which is not
originally available in Alloy (as a model finder).

The rest of the paper is organized as follows. §2 briefly overviews P3P, which
motivates the formal model in §3. §4 presents the verification algorithm. §5 intro-
duces the static analysis algorithm that extracts information flow. §6 discusses
related work and §7 concludes.

2 Overview of Security Policies

There are several competing standards for privacy protection, e.g., EPAL [26]
and P3P [30]. Although often under debate and criticism, P3P has gained wide
acceptance. Each P3P security policy consists of a collection of security state-
ments. A statement declares the purpose of the data collection activity, the data
group to be collected, the intended retention, the recipient, and the consequence.

Figure 1 shows one sample P3P statement for a web application that charges
user credit card. As shown by the policy, the purpose of the data collection is for

<STATEMENT>
<CONSEQUENCE>

We charge your credit card for your purchase order.
Information is destroyed once transaction complete.

</CONSEQUENCE>
<PURPOSE><sales/></PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION><stated-purpose/></RETENTION>
<DATA-GROUP>
<DATA ref="#user.payment.creditcard">

<category> <purchase /> </category>
</DATA>

</DATA-GROUP>
</STATEMENT>

Fig. 1. Sample P3P Statement
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sales. The information will be maintained at the website (as specified by ours
in the RECIPIENT element), for a limited time until the transaction is completed
(as indicated by stated-purpose).

P3P provides many predefined constants for each element of a statement. For
instance, the following are several typical values for the PURPOSE element: (1)
current: for the current one-time activity, (2) admin: for website administra-
tion, and (3) telemarketing: the information can be reused for promotion of a
product later. For another example, the value of the RECIPIENT element can be,
e.g., ours (the website owner), delivery (the delivery service), same (including
other collaborators performing one-time use of the information), and public.

Clearly, a P3P policy is an access control specification that describes how in-
formation is distributed, stored, and destroyed. Many consider the policy enforce-
ment as a requirement engineering problem [15]. We are interested in automated
verification and auditing of policy enforcement, using a logic based framework.
This requires a simplified formal model which avoids semantics problems in P3P.

3 PV Framework

The PV logic framework intends to model the information flow among entities
of a web application, including software components as well as stakeholders. We
assume an infinite model in this section, but later in verification, Alloy Analyzer
works on a finite model only.

3.1 Data Model

Let E be an infinite but countable set of entities in a web application. An entity
represents an atomic real entity of the world. It can be a person, a database, and
an organization. Let D be an infinite and countable set of data items. Each data
item d ∈ D is an atomic piece of information (e.g., the name of a person, a credit
card number, etc.). The data model is flattened, i.e., we do not allow hierarchical
data structure in the model like [7]. Data typing is defined using set containment
as in relational logic [18]. A data type is a set of data items. A data type D1 is a
subtype of D2 iff D1 ⊆ D2. If a data item d ∈ D, we say that d has the type D.

3.2 Web Application

A web application is modeled as a reactive software system, consisting of a
finite collection of servlets. This corresponds to many existing web application
platforms such as PHP, JavaEE, and ASP.Net. A servlet is a function which
takes an HTTP request as input, and returns an HTTP response as output. It
may have side effects, e.g., manipulating backend database, and sending emails.
Very often the business organization (owner of the website) may have routinely
performed procedures (e.g., clearing customer database monthly etc.). They are
similar to servlets in that they have side effects. We generalize the notion to
actions for capturing the semantics of both servlets and business procedures.
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Fig. 2. Sample Bookstore Application

Definition 1. A web application W is a tuple (D, Ew,A,P , Ee, P ) where D is
a a set of data items, Ew is a finite set of entities in W , A ⊆ Ew is a finite
set of actions (including servlets and business procedures), P is a finite set of
purposes, and Ee is a set of entities in the environment. P : A → 2P associates
a set of purposes to each action.

Example 1. Shown in Figure 2 is the architecture of a bookstore web application.
Ew ={DisplayBooks, ChargeCC, Deliver, Telemarket, DB, DBAdmin, MarketTeam,
CEO} is the set of entities within the application. A contains the first four
elements (i.e., the servlets) of Ew. Ee = {Customer, Bank, DeliveryService}
contains three external entities that interact with the web application.
P has three elements: purchase, delivery, and marketing. Clearly, for the

three servlets, their purposes can be defined as below. P(ChargeCC)={purchase,
delivery}, P(Deliver) = {delivery}, and P(Telemarket) = {marketing}.
D consists of data items that belong to three data types: CC (credit card

number), ADDR (address), and ISBN (book id). In the rest of the paper, we use
the above example as a motivating case study.

3.3 Action

We assume that each servlet (action) will eventually complete, i.e., it is never
trapped in an infinite loop. In practice, this is guaranteed by the time-out action
of web server. An action is atomic. Formally, an action is defined as a transition
rule that manipulates predicates on the “knowledge” of entities.

An action is a first order relational logic formula [18], built on a predicate
named know. When a predicate is primed, it represents the value of the predicate
in the next system state of a web application. All free variables in the formula
are regarded as input parameters.

Example 2. We list the specification of all servlets in Example 1, which can be
generated by the static analysis algorithm in §5.

1. DisplayBooks: ∀x ∈ Ew ∪ Ee ∀d ∈ D : know(x, d) = know′(x, d).
The servlet does not have any side effects. Thus it does not change the
valuation of predicate know.
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2. ChargeCC: cc ∈ CC ∧ know′(DB, cc) ∧ know′(Bank, cc) ∧ ∀x ∈ Ew −
{DB, Bank} ∀d ∈ D : know(x, d) = know′(x, d) ∧ ∀d ∈ D − {cc} :
know(Bank, d) = know′(Bank, d) ∧ know(DB, d) = know′(DB, d)
Note that cc (the free variable) is the input parameter of the servlet.
ChargeCC saves the information to local database and submits the infor-
mation to Bank. Here CC, DB, Bank are all constants. The last two clauses
(with ∀ quantifiers) keep the valuation of the predicate for all other entities
and data. In the rest of the paper, we use same except((DB, cc), (Bank, cc))
to represent such an assignment that maintains predicate valuations in the
new system state, except for pairs {(DB, cc), (Bank, cc)}.

3. Deliver: cc ∈ CC ∧ ad ∈ ADDR ∧ know′(DeliveryService, ad) ∧
know′(DeliveryService, cc) ∧ ¬know′(DB, cc) ∧
same except({(DB, cc), (DeliveryService, {cc, ad})}).
The Delivery servlet is similar to ChargeCC. The difference is that the record
cc is now removed from DB, to achieve the stated-purchase property, i.e.,
the credit card information is destroyed after the transaction is completed.

4. Telemarket: it is the same as DisplayBooks and does not have any side
effects (it simply takes a list of email addresses and sends out emails).

There are certain cases that the information flow between components may not
be extracted by a static analysis. We use the notion of Pipe to specify such flow
directly.

Definition 2. Let D ⊆ D be a data type and e1 and e2 two entities in Ew ∪ Ee.
We say Pipe(e1, e2, D) if information of type D flows from e1 to e2.

Each Pipe(e1, e2, D) can be translated into a transition rule

∀d ∈ D : know(e1, d)⇒ know′(e2, d)

Example 3. The information flow in Figure 2 can be represented using the con-
junction of three pipes: (1) Pipe(DB, DBAdmin,D), (2) Pipe(DBAdmin, CEO,D),
and (3) Pipe(CEO, MarketTeam, ADDR).

3.4 Modeling Security Policy

A privacy policy is about the access control of information: (1) if the information
is used for intended use, (2) if the information is destroyed after the specified
retention, and (3) if the information is only known by a restricted group of
people. This is reflected by the PURPOSE, RETENTION, and RECIPIENT elements
in a P3P policy.

Natural language specification, however, lacks formal semantics and can often
cause confusion. Consider, for example, the term stated-purpose in P3P speci-
fication (“Information is retained to meet the stated purpose. This
requires information to be discarded at the earliest time possible”
[30]). The “earliest time” can be interpreted in many ways, e.g., when the trans-
action is completed or when the website owner feels no needs of the data.
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Temporal logic can be used to nicely capture privacy policies. We assume
that readers are familiar with computation tree logic (CTL) [10]. In the follow-
ing we define CTL-FO, an extension of CTL which allows free mixture of first
order quantifiers. The definition is borrowed directly from [11,13], with slight
modification for relational logic.

Definition 3. Let D be a data domain and P be a finite set of predicates. The
CTL-FO formulas are defined as below:

1. Let p ∈ P be a predicate with arity n, and x be a vector of variables and
constants (|x| = n). Then p(x) is a CTL-FO formula.

2. If f and g are CTL-FO formulas, then all of the following are CTL-FO
formulas: f ∧ g, ¬ f , f ∨ g, AX f , EX f , AF f , EF f , A f U g,
E f U g, and A f R g, and E f R g. Here A (universal path quantifier),
E (existential path quantifier), X (next state), F (eventually), G (globally),
U (until), and R (release) are standard CTL temporal operators.

3. If f is a CTL-FO formula and D ⊆ D is a data type, then ∀x ∈ D : f and
∃x ∈ D : f are CTL-FO formulas.

Definition 4. A CTL-FO formula ϕ is said to be well formed if ϕ has no free
variables, and every quantified variable v appears in some predicate in ϕ.

The semantics of CTL-FO formula can be defined by directly extending the CTL
semantics in [10] with the addition of the following two semantics rules. Given
a formula ϕ and a free variable v in ϕ, ϕx←↩d is the result of replacing every x
with constant d. Then given a Kripke structure M and a state s:

1. M, s |= ∀x ∈ D : ϕ ⇔ for each value d in D: M, s |= ϕx←↩d

2. M, s |= ∃x ∈ D : ϕ ⇔ there exists a value d in D s.t. M, s |= ϕx←↩d

Note that in the above definition, the ∀x ∈ D : ϕ and ∃x ∈ D : ϕ are required
to be well-formed. In another word, ϕx←↩d has no free variables. In the following
we introduce one security policy specified using CTL-FO for Example 1.

Example 4. Policy 1: any credit number collected by the ChargeCC servlet is
eventually destroyed by the web application, i.e., no entities in the bookstore
web application knows about the credit card number eventually. The property
can be expressed as below:

∀d ∈ CC : AG(know(DB, d) ⇒ AF(∀x ∈ Ew : ¬know(x, d)))

3.5 Conformance Verification Problem

Given a web application W = (D, Ew,A,P , Ee, P ), it is straightforward to define
a Kripke structure on W , written as M(W ). The basic idea is that each state of
M(W ) is a distinct valuation of predicate know on each pair of entity (in Ew∪Ee)
and data item (in D). The initial state s0 of W needs to be manually defined by
the designer. Transitions between states can be derived by the action rules of A.
Then the conformance verification problem is defined as the following.

Definition 5. Let W be a web application, and (M, s0) the derived Kripke struc-
ture and the initial state. W conforms to a CTL-FO formula ϕ iff M, s0 |= ϕ.
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4 Verification

4.1 Overview

This section introduces a symbolic verification paradigm which takes a web ap-
plication specification and a CTL-FO formula as input. It either outputs “yes”,
or generates a firing sequence of servlets (or other actions) that leads to the
violation of the property. We rely on the Alloy Analyzer [17] for model checking
if a PV model satisfies a privacy policy specified in CTL-FO logic. Using SAT-
based model finder Kodkod [28], Alloy performs scope-restricted model finding.
The Alloy specification supports first order relational logic [18], which is very
convenient for specifying the transition system of a PV model.

The verification paradigm consists of the following steps:

1. Translation from PV Transition System to Alloy: It consists of two parts:
(a) specification of all PV data entities using the Alloy type system, and
(b) translation of each action into a first order relational logic formula that
contains both current/next state predicates. Notice that Alloy is originally
designed for static model analysis, the state of a PV transition system has to
be explicitly modeled to simulate a Kripke structure. Subsection 4.2 presents
the technical details about this part of translation.

2. Translation from a CTL-FO formula to Alloy predicates and assertions: Al-
loy itself does not support temporal logic. This translation is about simulat-
ing the fixpoint computation of temporal operators. Subsection 4.3 presents
the details.

3. Verification using Alloy: Given a property (expressed as Alloy assertions),
Alloy is able to find a model that violates the assertion using a finite mod-
el/scope search. The error trace can be easily identified from the visual repre-
sentation provided by Alloy. In the visual model, an error trace comprises of
a sequence of PV states. Note that these states and their transition relation
are already explicitly encoded in the model.

4.2 Translating PV Transition System to Alloy

The translation algorithm is straightforward. Currently, for the case study ex-
ample, the translation is accomplished using manual simulation of the algorithm.
In our future work, the translation will be automated.

Taking Example 1 as an example, its Alloy specification is given in Figure 3.
The specification contains three parts: (1) the general data schema that defines
the world of entities and actions; (2) the specific data setting related to the web
application, e.g., its actions and stakeholders, (3) the formal definition of actions,
where each action (servlet) is modeled as a parametrized transition rule.

The World Schema: The first section of the Alloy specification defines the
general data schema for all PV model specifications in Alloy. Here Object is a
generic type, which has three subtypes: WA (all entities within the web appli-
cation), Env (all entities of the environment), and Data (all data items). The
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module bookstore

//1. World Schema

abstract sig Object {}
abstract sig WA, Env, Data extends Object {}

abstract sig Actions, Entities extends WA{}
abstract sig actionStatus{}
one sig RUN, SLEEP, READY extends actionStatus{}

abstract sig Purpose {}
sig State{

know: (WA +Env) -> Data,
prev: one State,

actstate: Actions -> actionStatus
}{

all x: Actions | some status: actionStatus |

x -> status in actstate
}

sig initState extends State {}
fact generalInitState{

all x: initState |

(x.prev = x and
all y: Actions | x.actstate[y] = SLEEP

) and
(some y: State -initState | x in y.^prev)

}
fact factAllStates{

all x: State - initState | some y : initState |

y in x.^prev
}

fact TransitionRelation{
all x: State | all y: State - initState |

( (x in y.prev => Transition[x,y]) and

(Transition[x,y] => x in y.prev) )
}

//2. Web Application Specific Setting (Bookstore)

sig NAME, CC, ADDR, ID extends Data{}
one sig DisplayBooks, ChargeCC,

Deliver, Telemarket extends Actions {}

one sig DB, DBAdmin, MarketTeam,
CEO extends Entities {}

one sig Bank, DeliverService, User extends Env {}
...

//3. Actions (Servlets and Pipes)
...

pred pChargeCC [s,s’: State, d: CC]{
ChargeCC->READY in s.actstate and

(
s’.know = s.know + {DB->d} +{Bank->d} &&
s’.prev = s &&

s’.actstate = s.actstate - {ChargeCC->READY}
+ {ChargeCC->SLEEP} - {Deliver->SLEEP}

+ {Deliver->READY}
)

}

pred pipe[s,s’: State, e1, e2: Object, D: Data]{
(some d: D | e1->d in s.know

&& !(e2->d in s.know))
&&(

s.know in s’.know &&
(all x: (WA+Env) | all y:Data |

(x->y in s’.know-s.know) <=>

(x=e2 && e1->y in s.know
&& !(e2->y in s.know)) )

&& s’.prev=s
&& s’.actstate = s.actstate

)
}

pred customer[s,s’:State]{
(DisplayBooks->SLEEP in s.actstate and

s’.actstate = s.actstate
- {DisplayBooks->SLEEP}
+ {DisplayBooks->READY}

&& s’.prev=s && s’.know=s.know) or
...

}

pred Transition[s,s’:State]{
//servlets
pDisplayBooks[s,s’] or

pTelemarket[s,s’] or
(some d:CC | pChargeCC[s,s’,d]) or

(some d:ADDR | some d2:CC |
pDelivery[s,s’,d,d2]) or

//pipes

pipe[s,s’,DB,DBAdmin,Data] or
pipe[s,s’,DBAdmin,CEO,Data] or

pipe[s,s’,CEO,MarketTeam,ADDR] or
//other actions

customer[s,s’]

}

//4. CTL-FO to predicates and assertion
pred ef[s:State,d:Data]{

some s’: State | (CEO ->d in s’.know)

&& s in s’.*prev
}

pred fa[s:State]{

all d: Data | (DB->d in s.know) => ef[s,d]
}

assert AGProperty{
all s: State | fa[s]

}

Fig. 3. Sample ALLOY Specification

WA entities consist of Actions (like servlets) and Entities (like databases). To
simulate each action as a transition, we define three constants to denote status of
an action: RUN, READY, and SLEEP (the RUN status is actually not needed as each
transition rule is atomic). To build a Kripke structure of the transition system,
we declare State which includes Knows (tracking the knowledge of each entity
on data items), prev (the previous state), and the status of each action. The
restriction “all x: Actions | some status: actionStatus | x -> status
in actstate” requires that all action has a status. We also declare that there is
one or more initial states (as described by fact generalInitState): the status
of all actions are set to SLEEP. More details of the initial states are defined in
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the section on web application specific settings. Note that Alloy specification
is declarative, thus the order of Alloy statements does not affect the semantics.
Finally, the fact factAllStates requires that all instances of State enumerated
by Alloy should be contained in the transitive closure of prev link to an initial
state (note ^ is the non-reflexive transitive closure operator).

Web Application Specific Settings: The settings related to the Bookstore
application are specified, e.g., the subtypes NAME, CC, and ADDR, the servlets, and
external entities.

Actions (Servlets, Pipes): Each action is modeled as a predicate in Alloy.
A typical example is pChargeCC which represents the transition rule for the
ChargeCC servlet. The predicate takes three parameters: s and s’ are the current
and next states. d is a credit card number. Clearly, the predicate specifies that
in the next state, the DB is able to know d, and it updates the prev link and the
action status correspondingly. The pipe predicate models a template of piping
information. Given entities e1 and e2, if e1 knows d, then in the next state, e2
also knows d. Notice that there is a customer action, which non-deterministically
invokes DisplayBooks and ChargeCC.

The Transition predicate defines the transition relation, which is composed
of the predicates that model the servlets, pipes, and other actions/roles in the
system. Clearly, with Transition and factAllStates, a Kripke structure is
formed using the prev field of each state. Alloy will analyze the states reachable
from the initial state only.

4.3 Translating CTL-FO Formula

A CTL-FO Formula can be translated into one Alloy assertion and a collection
of Alloy predicates. The translation runs from top to bottom, following the
syntax tree. The top level CTL-FO formula is formulated as an assertion. Then
each component is modeled as an Alloy predicate (with one input parameter on
PV state, and the necessary parameters for quantified variables). The fixpoint
computation of CTL formula can be modeled using first order logic plus the
prev link (which models the transition relation between states).1

Take the following CTL-FO formula as one example.

AG(∀d ∈ Data : know(DB, d) ⇒ EF(know(CEO, d)))

The top level AG property is first translated into an Alloy assertion (as shown
in AGProperty). The EF formula is defined as a predicate ef which has two
parameters: s and d. Here d is a variable which is restricted by the universal
quantifier, and s is a PV state. The predicate ef[s,d] is true iff at s and for
data item d eventually there is a path leads to a state that CEO knows d. This
is defined using the formula inside ef, which leverages the Kleene closure of the
prev link (see “s in s’.*prev”).

1 Currently, only the least fixed point operators are handled.
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4.4 Initial Experimental Results

We performed an initial experiment with the Alloy model. The verification cost
explodes quickly with the number of states. The system runs out of memory
when it exceeds 50 PV states, on a PC with 4GM RAM.

5 Static Information Flow Analysis

This section proposes a semi-automatic static analysis algorithm that produces
the PV model. The algorithm has not been implemented, but the idea is straight-
forward. The algorithm consists of four stages: (1) a static code analysis that
extracts the external entities, e.g., file system and databases that are accessed by
servlets, (2) a manual definition stage, where the designers supply the rest of the
roles and stakeholders, e.g., the MarketTeam and CEO in Example 1, (3) model-
ing of all system calls, e.g., to define the data sink and operations performed by
system calls such as JDBC executeUpdate, and (4) a fully-automatic analysis
of servlet bytecode, which extracts information flow and builds the transition
system. We omit the details of steps (1) to (3), and concentrate on step (4).

5.1 Path Transducer

The fully automatic static code analysis assumes that each web servlet can be
represented by a set of path transducers. A path transducer of a servlet is es-
sentially one possible execution path of the servlet from its entry to exit (by
unwrapping loops, branches, and tracing into function calls). The analysis can
be inter-procedural in the sense that it traces into every function defined by the
web application, but not into the function body of any system functions provided
by the environment (e.g., OS system calls).

Definition 6. A path transducer T is a tuple (I, M , S) where I is a finite
set of input parameters, M is a finite set of variables, and S is a sequence of
statements. Each statement has one of the following two forms (letting v ∈M ,
V ⊆M , and C be a sequence of constants):

1. (Assignment) v := E(V, C).
2. (System Call) v := f(V, C).

Here M includes all static, stack, and heap variables that could occur during the
execution, as unwrapping is bounded. E is an arithmetic or logical expression on
V and C. f has to be a system call that is provided by the external environment
of the web application.

Example 5. Figure 4 presents a simple Java servlet that adds a user to a web
email system. It calls a self-defined massage() function to sanitize user input.
Then it submits an INSERT query to the database. The statement sequence of
a sample path transducer is given in Figure 5. Here system calls are replaced
by a shorter name for simplicity (e.g., response.getWriter(...) is replaced
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1 protected void processRequest(
2 HttpServletRequest request ...){
3 PrintWriter out = response.getWriter();
4 String sUname = request.getParam("sUname");
5 String sPwd = request.getParameter("sPwd");
6 Connection conn = DM.getConnection("...");
7 Statement stmt = conn.createStatement();
8 String strCmd= "INSERT ..."
9 + massage(sUname) + ... + massage(sPwd);
10 int n = stmt.executeUpdate(strCmd);
11 if(n>0) out.println("Welcome"+sUname);
12 }
13 protected String massage(String str){
14 return str.replaceAll("’", "’’");
15 }

Fig. 4. Add Member Servlet

1 out = f1();
2 sUname = input_sUname;
3 sPwd = input_sPwd;
4 //new entity DBConn_Addr
5 stmt = f2();
6 //now call massage(sUname)
7 str = sUname;
8 s1 = f3(str,"’", "’’");
9 //now call massage(sPwd)
10 str = sPwd;
11 s2 = f3(str,"’", "’’");
12 //now call executeUpdate
13 strCmd = f4("INSERT..."+s1+...+s2);
14 n = f5(stmt, strCmd)

Fig. 5. Sample Path Transducer

by f1(...)). All branch statements and calls of self-defined functions (i.e.,
massage) are removed by unwrapping. For example, f3 (String.Replace) is
called twice because the execution enters the massage function twice. Tempo-
rary variables, e.g., s1 and s2, are created to handle the temporary function
call results. But only a finite number of them are needed because the unwrap-
ping depth is bounded. By defining the data sinks of system calls and applying
string analysis such as [31], it is possible to extract flow information from system
calls,e.g., from f5 (the executeUpdate) function.

Symbolic execution [22] can be used to extract path transducers from the byte-
code of servlets. A typical approach is to instrument the virtual machine and
skip the real decision of a branch statement so that both branches can be cov-
ered (see e.g., [3]). An alternative approach is to instrument the bytecode of the
web application being inspected, to change its control flow, using tools such as
Javassist [9]. A servlet may have an infinite number of path transducers.

5.2 Static Analysis for Constructing Transition System

Figure 6 displays the static analysis algorithm. It takes two inputs: a path trans-
ducer T and a mapping ρ that associates each input variable with the corre-
sponding private information. CalcInfoFlow returns a collection of tuples that

1 Procedure CalcInfoFlow(T = (M , I, S), ρ : I → 2D)
2 //T is a path transducer, ρ is a mapping from input variables to the data items.
3 know := ρ
4 foreach s in S do:
5 case Mi := E(V, C):
6 for each v ∈ V : for each x s.t. (v, x) ∈ know: know.add(Mi,x)
7 case Mi := f(V, C):
8 for each v ∈ V : for each x s.t. (v, x) ∈ know: know.add(Mi,x)
9 Let e be the data sink of f
10 for each x s.t. (v, x) ∈ know:
11 know.add(e, x)
12 return {(x, d) | (x, d) ∈ know ∧ x 
∈ M ∪ I}

Fig. 6. Static Analysis Algorithm
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represent the new facts about the knowledge of information by entities. know
models the knowledge of all entities (including variables) on private informa-
tion. We populate its contents from the initial knowledge of ρ. Whenever an
assignment is reached, the knowledge of all variables on the right will also be the
knowledge of the left hand side. When a statement is an invocation of system
call, the information is propagated to the proper data sink. Finally, the collection
of know tuples is returned. Then we can easily generate the transition rule that
models the servlet. The following lemma implies that we do not need an infinite
collection of path transducers to compute the complete result.

Lemma 1. For any servlet ai (letting ρ be the mapping in Figure 6), there exists
a finite set of path transducers for ai (letting it be Ψ) s.t. for any path transducer
set for ai (letting it be Φ) the following is true:⋃

τ∈Φ

CalcInfoFlow(τ, ρ) ⊆
⋃
τ∈Ψ

CalcInfoFlow(τ, ρ)

6 Related Work

Using formal methods to model privacy has long been an area of interest (see
[29] for a comprehensive review). One typical application is the study of the
semantics of security policies. While P3P [30] is able to express a security policy
in a machine understandable format (i.e., XML), its lack of formal semantics is
often under debate as well as criticism. Barth and Mitchell pointed many pitfalls
of P3P and EPAL in [7], e.g., the early termination causing non-robustness,
the lack of distinction between provider and consumer perspectives, and the
missing of fine-grained access control on subset of data groups. Similarly, Yu et
al. showed that a P3P privacy policy can have multiple statements conflicting
with each other [32] (e.g., imposing multiple retention restrictions over one data
item). There are several proposals to fix the problems of P3P, e.g., the EPAL
standard [26], and the privacy policy based on semantic language DAML-S [19].
This paper uses a first order extension of computation tree logic (CTL) for
modeling privacy policies. The benefit of using temporal logic is the simplicity
of model and the very expressive temporal operators for expressing the notions
of information control that is related to time. The idea of using temporal logic for
specifying privacy policies is not new. In [6], Barth et al. presented an extension
of Linear time Logic (LTL) for modeling a variety of privacy policy languages.
Similar efforts include the REVERSE working group on trust and policy definition
[25], led by M. Baldoni. Compared with [6], our contribution is the modeling of a
web application as a transition system and the verification scheme that addresses
the model checking of first order temporal logic, which is not discussed in [6].

Deployment of privacy policies (e.g., [1]) is not the concern of this paper.
We are more interested in the enforcement (or conformance check) of privacy
policies. Many works enforce privacy policies using a top-down fashion, e.g.,
role engineering in the software architectural design stage (assigning permission
rights of storing and distributing information to stakeholders) [15], enforcing
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P3P policy in a web application by leveraging existing enterprise IT systems [4],
asking designers to follow specific design patterns (IBM Declarative Data Privacy
Monitoring) [16], and enforcing data access control using JIF (a variant of Java)
[14]. This work adopts a bottom-up approach: given an existing web application,
we perform static analysis on its bytecode, extract a formal model on information
flow, and verify if the model satisfies a privacy policy. The conservative code
analysis helps to increase confidence in privacy protection.

This work follows the general methodology of symbolic model checking and its
applications to web services [8,12]. However, we face the challenge of handling first
order logic, which in general is an undecidable problem. Our approach is to bound
the scope of the model, and rely on Alloy Analyzer [17] to perform a bounded
model checking. Alloy has been widely applied to many interesting problems, e.g.,
multicast key management [27], correcting naming architecture [21], and solving
relational database constraints [20]. Most of its applications are applied to static
models, while we attempted the modeling of a dynamic transition system (and
computing fixpoint of first order temporal logic formula) using Alloy. The experi-
ment shows that the verification cost explodes quickly with the number of states.
More efficient verification can be performed, e.g., by invoking the Kodkod model
finder [28] directly. An alternative is to prove privacy preservation by studying
refinement relation between transition systems [2].

7 Conclusion

This paper has presented a logic based framework for reasoning about the privacy
protection provided by a web application. A first order extension of the computa-
tion tree logic is used to specify a privacy policy. Then a formal transition model
is constructed by performing a semi-automatic code level analysis of the web ap-
plication. The verification relies on Alloy Analyzer and is performed on a finite
model, expressed in first order relational logic. Our future directions include im-
plementing the PV framework, applying it to non-trivial web applications, and
exploring more efficient constraint solving techniques.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Implementing p3p using database
technology. In: Proceedings of 19’th International Conference on Data Engineering,
pp. 595–606 (2003)
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Abstract. Behavioural profiles have been proposed as a concept to
judge on the behavioural consistency of process models that depict dif-
ferent perspectives of a process. These profiles describe the observable
relations between the activities of a process model. Consistency criteria
based on behavioural profiles are less sensitive to model projections than
common equivalence criteria, such as trace equivalence. Existing algo-
rithms derive those profiles for unlabelled sound free-choice workflow nets
efficiently. In this paper, we generalise the computation of behavioural
profiles by relaxing the aforementioned assumptions. First, we introduce
an algorithm that derives behavioural profiles from the complete prefix
unfolding of a bounded Petri net. Hence, it is applicable in a more gen-
eral case. Second, we lift the concept to the level of labelled Petri nets.
We also elaborate on findings of applying our approach to a collection of
industry models.

1 Introduction

Notions of behavioural similarity and consistency of business process models
have a broad field of application, e.g., for model retrieval [1] or management of
process variants [2]. Targeting at the analysis of behavioural consistency between
business process models used as a specification and workflow models representing
the implementation of the process, behavioural profiles have been proposed as
a basis for such consistency analysis [3]. These profiles capture the relations
between pairs of activities in terms of their order of potential execution.

Behavioural profiles have been introduced for unlabelled Petri nets along with
efficient algorithms for their computation. For sound free-choice Petri nets that
have dedicated start and end places (aka workflow nets), the profile is computed
in O(n3) time with n being the number of nodes of the net [3]. Under certain
structural assumptions, computation is even more efficient [4]. In this paper,
we generalise the computation of behavioural profiles. That is, we introduce an
approach for their computation that imposes solely one restriction on a Petri net
system — the system has to be bounded. We derive the behavioural profile from
the complete prefix unfolding of a Petri net system. We also report on findings of
applying our approach to a collection of industry models. In addition, we show
how the notion of a behavioural profile is lifted to the level of labelled nets.
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Fig. 1. Process models in BPMN (a); one of the corresponding net systems (b)

Due to their focus on order dependencies, consistency measurement based on
behavioural profiles is not affected by model extensions (or model projections,
respectively) that impact on the causal dependencies between activities. For in-
stance, Fig. 1(a) depicts two process models in BPMN, the lower one being
an extended version of the upper one. A new action to start the process, i.e.,
get running request (B), has been introduced in the course of model refinement.
Apparently, this activity breaks the causal dependency that can be observed be-
tween activities send request and store log in the upper model. Nevertheless, the
behavioural profile states that both activities show the same order of potential
execution. There are further areas of application for behavioural profiles. They
can be used to quantify behavioural deviation between two process models [3],
to measure the compliance of process logs [5], and enable change propagation [6].

As mentioned before, there are efficient algorithms for the computation of
behavioural profiles that impose the following restrictions.
◦ The Petri net has to be sound. This property is traced back to liveness and

boundedness and implies the freedom of deadlocks and livelocks along with
the absence of dead transitions. Still, a recent study observed that solely half
of the process models in an industry model collection are sound [7]. Moreover,
it has been argued that soundness is a rather strict correctness criterion for
some use cases. Nevertheless, several weaker correctness criteria, such as
weak soundness [8], do not allow for unbounded systems either. Therefore,
we argue that boundedness is a reasonable assumption for process models.

◦ The Petri net has to be free-choice. This restriction requires that conflicts
and synchronisations of transitions do not interfere. Various constructs of
common process modelling languages, such as BPMN, BPEL, and EPCs,
can be formalised in free-choice Petri nets [9,10,11]. However, formalisation
of exception handling imposes various challenges [12] and typically results
in non-free-choice nets (see [9,10]).

The importance of these restrictions is illustrated in Fig. 1(b), which depicts the
Petri net formalisation for the lower model in Fig. 1(a). The net is not free-choice
due to the modelling of the time-out.

The remainder of this paper is structured as follows. The next section intro-
duces formal preliminaries. Section 3 introduces our approach of deriving the
behavioural profile from the complete prefix unfolding along with experimen-
tal results. Section 4 defines behavioural profiles for labelled Petri net systems.
Finally, Section 5 reviews related work before Section 6 concludes the paper.
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2 Background

This section introduces the background of our work. Section 2.1 recalls basic
definitions for net systems. Section 2.2 discusses Petri net unfoldings, while
Section 2.3 introduces behavioural profiles.

2.1 Net Syntax and Semantics

We recall basic definitions on net syntax and semantics.

Definition 1 (Net Syntax)
◦ A net is a tuple N = (P, T, F ) with P and T as finite disjoint sets of places

and transitions, and F ⊆ (P × T ) ∪ (T × P ) as the flow relation. We write
X = (P ∪ T ) for all nodes. The transitive (reflexive) closure of F is denoted
by < (≤). A net is acyclic, iff ≤ is a partial order.

◦ For a node x ∈ X, the preset is •x := {y ∈ X | (y, x) ∈ F} and the postset
is x• := {y ∈ X | (x, y) ∈ F}. For a set of nodes X ′, •X ′ =

⋃
x∈X′ •x and

X ′• =
⋃

x∈X′ x•.
◦ A tuple N ′ = (P ′, T ′, F ′) is a subnet of a net N = (P, T, F ), if P ′ ⊆ P ,

T ′ ⊆ T , and F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)).

Definition 2 (Net Semantics). Let N = (P, T, F ) be a net.
◦ M : P �→ N is a marking of N , M denotes all markings of N . M(p) returns

the number of tokens in place p. We also identify a marking M with the
multiset containing M(p) copies of p for every p ∈ P .

◦ For any two markings M, M ′ ∈ M, M ≥ M ′ if ∀ p ∈ P [ M(p) ≥ M ′(p) ].
◦ For any transition t ∈ T and any marking M ∈ M, t is enabled in M ,

denoted by (N, M)[t〉, iff ∀ p ∈ •t [ M(p) ≥ 1 ].
◦ Marking M ′ is reached from M by firing of t, denoted by (N, M)[t〉(N, M ′),

such that M ′ = M − •t + t•, i.e., one token is taken from each input place
of t and one token is added to each output place of t.

◦ A firing sequence of length n ∈ N is a function σ : {0, . . . , n− 1} �→ T . For
σ = {(0, tx), . . . , (n− 1, ty)}, we also write σ = t0, . . . , tn−1.

◦ For any two markings M, M ′ ∈ M, M ′ is reachable from M in N , denoted
by M ′ ∈ [N, M0〉, if there exists a firing sequence σ leading from M to M ′.

◦ A net system, or a system, is a pair (N, M0), where N is a net and M0 is
the initial marking of N .

◦ A system (N, M0) is bounded, iff the set [N, M0〉 is finite.

2.2 Unfoldings of Net Systems

Any analysis of the state space of a net system has to cope with the state explo-
sion problem [13]. Unfoldings and their complete prefixes have been proposed
as a technique to address this problem [14,15]. The unfolding of a net system is
another, potentially infinite net system, which has a simpler, tree-like structure.
We recall definitions for unfoldings based on [16].
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Definition 3 (Occurrence Net, Ordering Relations)
◦ A pair of nodes (x, y) ∈ (X ×X) of a net N = (P, T, F ) is in the conflict

relation #, iff ∃ t1, t2 ∈ T [ t1 �= t2 ∧ •t1 ∩ •t2 �= ∅ ∧ t1 ≤ x ∧ t2 ≤ y ].
◦ A net N = (P, T, F ) is an occurrence net, iff (1) N is acyclic, (2) ∀ p ∈ P [ |•

p| ≤ 1 ], and (3) for all x ∈ X it holds ¬(x#x) and the set {y ∈ X | y < x}
is finite. In an occurrence net, transitions are called events, while places are
called conditions.

◦ For an occurrence net N = (P, T, F ), the relation < is the causality relation.
A pair of nodes (x, y) ∈ (X ×X) of N is in the concurrency relation co , if
neither x ≤ y nor y ≤ x nor x#y.

◦ For an occurrence net N = (P, T, F ), Min(N) denotes the set of minimal
elements of X w.r.t. ≤.

The relation between a net system S = (N, M0) with N = (P, T, F ) and an
occurrence net O = (C, E, G) is defined as a homomorphism h : C ∪E �→ P ∪ T
such that h(C) ⊆ P and h(E) ⊆ T ; for all e ∈ E, the restriction of h to •e is a
bijection between •e and •h(e); the restriction of h to e• is a bijection between
e• and h(e)•, the restriction of h to Min(O) is a bijection between Min(O) and
M0; and for all e, f ∈ E, if •e = •f and h(e) = h(f) then e = f .

A branching process of S = (N, M0) is a tuple π = (O, h) with O = (C, E, G)
being an occurrence net and h being a homomorphism from O to S as defined
above. A branching process π′ = (O′, h′) is a prefix, if O′ = (C′, E′, G′) is a
subnet of O, such that if e ∈ E′ and (c, e) ∈ G or (e, c) ∈ G then c ∈ C′; if
c ∈ C′ and (e, c) ∈ G then e ∈ E′; h′ is the restriction of h to C′ ∪ E′.

The maximal branching process of S is called unfolding. The unfolding of a
net system can be truncated once all markings of the original net system and all
enabled transitions are represented. This yields the complete prefix unfolding.

Definition 4 (Complete Prefix Unfolding). Let S = (N, M0) be a system
and π = (O, h) a branching process with N = (P, T, F ) and O = (C, E, G).
◦ A set of events E′ ⊆ E is a configuration, iff ∀ e, f ∈ E′ [ ¬(e#f) ] and
∀ e ∈ E′ [ f < e ⇒ f ∈ E′ ]. The local configuration �e� for an event e ∈ E
is defined as {x ∈ X | x < e}.

◦ A set of conditions C′ ⊆ C is called co-set, iff for all distinct c1, c2 ∈ C′ it
holds c1 co c2. If C′ is maximal w.r.t. set inclusion, it is called a cut.

◦ For a finite configuration C′, Cut(C′) = (Min(O)∪C′•)\•C′ is a cut, while
h(Cut(C′)) is a reachable marking of S, denoted Mark(C′).

◦ The branching process is complete, iff for every marking M ∈ [N, M0〉 there
is a configuration C′ of π such that M = Mark(C′) and for every transition
t enabled in M there is a finite configuration C′ and an event e /∈ C′ such
that M = Mark(C′), h(e) = t, and C′ ∪ {e} is a configuration.

◦ An adequate order � is a strict well-founded partial order on local configu-
rations such that for two events e, f ∈ E �e� ⊂ �f� implies �e� � �f�.

◦ An event e ∈ E is a cut-off event induced by �, iff there is a corresponding
event f ∈ E with Mark(�e�) = Mark(�f�) and �f� � �e�.
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◦ The branching process π is the complete prefix unfolding induced by �, iff it
is the greatest prefix of the unfolding of S that does not contain any event
after a cut-off event.

A1

C1

D1 E2

L1

E1

C2

D2

L2

B1

...

...

...

...
C3

D3

...

...

Fig. 2. Complete prefix unfolding
of the net system in Fig. 1(b)

We see that the definition of a cut-off event
and, therefore, of the complete prefix un-
folding is parametrised by the definition of
an adequate order �. Multiple definitions
have been proposed in the literature, cf., [15].
The differences between these definitions can
be neglected for our approach and are rele-
vant solely for the experimental evaluation
in which we rely on the definition presented
in [16]. As we leverage the information on cut-
off events in our approach, we include them
in the complete prefix for convenience.

Fig. 2 illustrates the concept of an unfold-
ing and its complete prefix for the net system
in Fig. 1(b). Here, the labelling of transitions and the initial marking hints at
the homomorphism between the two systems. Apparently, the unfolding of the
net system is infinite due to the control flow cycle. In Fig. 2, cut-off events are
highlighted in grey and the complete prefix unfolding is marked by dashed lines.

2.3 Behavioural Profiles

Behavioural profiles capture behavioural aspects of a system in terms of order
constraints [3]. They are based on the set of possible firing sequences of a net
system and the notion of weak order. Informally, two transitions t1, t2 are in
weak order, if there exists a firing sequence reachable from the initial marking
in which t1 occurs before t2.

Definition 5 (Weak Order). Let (N, M0) be a net system with N = (P, T, F ).
Two transitions x, y are in the weak order relation  ⊆ T × T , iff there exists
a firing sequence σ = t1, . . . , tn with (N, M0)[σ〉, j ∈ {1, . . . , n− 1}, j < k ≤ n,
for which holds tj = x and tk = y.

Depending on how two transitions of a system are related by weak order, we
define three relations forming the behavioural profile.

Definition 6 (Behavioural Profile). Let (N, M0) be a net system with N =
(P, T, F ). A pair of transitions (x, y) ∈ (T ×T ) is in at most one of the following
profile relations:
◦ The strict order relation �, if x  y and y � x.
◦ The exclusiveness relation +, if x � y and y � x.
◦ The interleaving order relation ||, if x  y and y  x.
B = {�, +, ||} is the behavioural profile of (N, M0).
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For our example net system in Fig. 1(b), for instance, it holds A � C, as there
exists no firing sequence, in which C occurs before A. As no firing sequence
contains both transitions, A and B, it holds A + B. Due to the control flow
cycle, it holds C||L. That is, both transitions can occur in any order in a firing
sequence of the system. With �−1 as the inverse relation for �, the relations
�,�−1,+, and || partition the Cartesian product of transitions.

3 Generalised Computation of Behavioural Profiles

This section introduces our approach of computing the behavioural profile of a
bounded net system from its complete prefix unfolding. First, Section 3.1 relates
the ordering relations of an unfolding to the relations of the profile. Second,
Section 3.2 presents an algorithm for the computation of behavioural profiles.
Finally, Section 3.3 presents experimental results.

3.1 Behavioural Relations

The computation of the behavioural profile from the complete prefix unfolding
is based on the ordering relations introduced for occurrence nets in Definition 3.
The causality, conflict, and concurrency relation partition the Cartesian product
of events of an occurrence net and, therefore, of the complete prefix unfolding,
similar to the relations of the behavioural profile. However, the ordering relations
of an occurrence net relate to events, i.e., occurrences of transitions of the original
net system. Formally, this is manifested in the homomorphism between the net
system and its complete prefix unfolding, which may relate multiple events to
a single transition. For the net system in Fig. 1(b), for instance, transition C
relates to two events in the prefix in Fig. 2, C1 and C2 (the latter being a cut-
off event). Both events represent an occurrence of transition C in the original
system and, hence, have to be considered when deriving the behavioural profile.

A

B

C

D

(a)

A1 C1

B1

D1

(b)

Fig. 3. Net system (a); its
complete prefix unfolding (b)

In general, the order of potential execution, i.e.,
the weak order relation of the behavioural pro-
file, can be deduced from the concurrency and
the causality relation of the complete prefix un-
folding. The existence of a firing sequence con-
taining two transitions of the original system is
manifested in two events in the prefix that re-
late to these transitions and are concurrent or in
causality. The former represents two transitions
that can be enabled concurrently in the original
system. Thus, there is a firing sequence contain-
ing both transitions in either order. Two events
in causality in the prefix, in turn, represent two
transitions in the original net that can occur in a firing sequence in the respective
order.

Another observation relates to the fact that not all firing sequences are visible
in the complete prefix unfolding directly. Events that relate to two transitions
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might not show causality or concurrency although the respective transitions
might occur in a firing sequence. Fig. 3 illustrates this issue. Apparently, transi-
tion D might be observed in firing sequences that commence with transition B in
the net system in Fig. 3(a). The events that represent occurrences of both tran-
sitions, B1 and D1, are in conflict in the complete prefix unfolding in Fig. 3(b).
Hence, the information that is hidden due to the cut of the unfolding has to be
taken into account. In Fig. 3(b), firing of B1 leads to a marking that is already
contained in the prefix. That is, firing of A1 reaches at the same marking and
enables the event C1. Therefore, it can be deduced that an event relating to
transition D of the original net can follow any firing of event B1.

...

e

c1

c1'

...

c2

c2'f

...

... ......

...

...

...

Fig. 4. Sketch of a complete prefix unfolding; e and f
can occur together in a firing sequence

While this example illus-
trates solely a simple depen-
dency, Fig. 4 illustrates the
general case. Consider the
events e and f and assume
that both events represent
the occurrences of different
transitions te and tf of the
original net system and that
both events are in conflict.
Still, the transitions te and
tf might occur in a firing se-
quence of the net system due
to the cut-off events c1 and
c2 and their corresponding
events c′1 and c′2. Event e is
in a causal relation with the cut-off event c1. The respective cut of its local
configuration is highlighted by a dashed line. This cut corresponds to the cut
of the local configuration of event c′1, which, in turn, is concurrent to another
cut-off event c2. Similarly, a relation can be established between c2 and f via c′2.
This example illustrates that such dependencies between two events may span
multiple cut-off events.

Based on this observation, we establish the relation between the ordering
relations of the complete prefix unfolding and the weak order relation as follows.

Proposition 1. Let S = (N, M0) be a bounded system and π = (O, h) its
complete prefix unfolding including the cut-off events with N = (P, T, F ) and
O = (C, E, G). Then, two transitions x, y ∈ T are in weak order, x  y, iff there
are two events e, f ∈ E with h(e) = x and h(f) = y and either
◦ they are causally related or concurrent, i.e., (e < f) ∨ (e co f), or
◦ there is a sequence of cut-off events (g1, g2, . . . , gn) with gi ∈ E for 1 ≤ i ≤ n

and a sequence of corresponding events (g′1, g′2, . . . , g′n) with g′i ∈ E, such that
(e = g1) ∨ (e < g1), ∃ c ∈ Cut(�g′j�) [ c < gj+1 ] for 1 ≤ j < n, and either
g′n = f or ∃ c ∈ Cut(�g′n�) [ c < f ].

Proof. Let x, y, (g1, g2, . . . , gn), and (g′1, g′2, . . . , g′n) be defined as above.
(⇒) Let x  y. Then, there is a reachable firing sequence in S containing
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transition x before y. As the prefix is complete, both occurrences of transi-
tions are represented by corresponding events e, f ∈ E with h(e) = x and
h(f) = y. If there is a firing sequence in O starting in its initial marking induced
by Min(O) that contains e before f , they are causally related or concurrent, i.e.,
(e < f) ∨ (e co f) (first statement of our proposition). If there is no such firing
sequence, then either e#f or f < e. If there are no cut-off events after firing of e
in O, all markings that are reached after firing of x in S have their counterparts
in π directly. Those do not enable f . Therefore, there has to be a cut-off event
k that can occur after firing of e (or which is equal to e). Hence, either e ≤ k,
or e co k. Assume that the sequence of cut-off events is one. Then, the corre-
sponding event k′ for the cut-off event k has to occur together with the event f ,
i.e., k′ < f , f < k′ or f co k′. If e co k, then there has to be an event e′ with
h(e) = h(e′) and e′ co k′. In this case, we, again, arrive at (e′ < f) ∨ (e′ co f).
Consider e ≤ k. To observe a firing of x before y, we have to exclude f < k′

from the possible relations between f and k′. That is because f < k′ implies
that y is observed before the marking represented by the cut of �k� is reached as
Mark(�k�) = Mark(�k′�). Hence, we have k′ < f or f co k′ (the second state-
ment of our proposition). The same argument can be applied to all intermediate
cut-off events in case the sequence of cut-off events is longer than one. (⇐) For
all events e, f ∈ E with h(e) = x and h(f) = y let (1) (e < f) ∨ (e co f), or
(2) there is a sequence of cut-off events (g1, g2, . . . , gn) and corresponding events
(g′1, g′2, . . . , g′n), such that (e = g1)∨ (e < g1), ∃ c ∈ Cut(�g′j�) [ c < gj+1 ] for all
j ∈ {1, . . . , n− 1}, and g′n = f or ∃ c ∈ Cut(�g′n�) [ c < f ]. Assume that x � y.
From the initial marking of the occurrence net that is induced by Min(O), we
can fire all events of the local configuration of f , �f�, in their order induced by
< to reach a marking M1. Then, event f can be fired in this marking to reach
marking M2. If e < f then event is e is part of �f� and, therefore, has been
fired already. If e co f , event e has not been fired as part of �f� to reach M1.
Still, there must be an event g in �f� such that for every condition cf ∈ •f
there is a condition cg ∈ g• with cg < cf or cg = cf . Due to e co f , g < f ,
and g < e, we also know cg �< e for all those conditions cg. All conditions cg are
marked in M1. They are also marked in M2 reached via firing of e as cg �< e.
Hence, there has to be a firing sequence starting in M2 and containing all events
that are part of �f� \ �e�. Then, event f can be fired in the reached marking.
Thus, in both cases there is a firing sequence containing both events e and f .
When all fired events are resolved according to h, there is a firing sequence in
S containing x before y, which is a contradiction with x � y. Consider case (2).
Following on the argument given in the previous case, we know that there is a
firing sequence in the occurrence net that contains event e before event g1. For
the corresponding event g′1, we know Mark(�g1�) = Mark(�g′1�). Hence, the
marking in S reached via firing the transitions that correspond to all events �g1�
is equal to the marking reached by firing the corresponding transitions in �g′1�.
Assume that the sequence of cut-off events is one, i.e., ∃ c ∈ Cut(�g′1�) [ c < f ].
Again, there is a firing sequence in the occurrence net that contains g′1 before
event f . Due to Mark(�g1�) = Mark(�g′1�), there is a firing sequence in S that
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contains the transition represented by the event g1 before the one represented by
f , i.e., transition y. From e < g1, we get that such a firing sequence can contain
the transition represented by event e, i.e., x, before the one represented by g1
and, therefore, also before y. Thus, there is a firing sequence in S in which x
is followed by y and we arrive at a contradiction with x � y. Again, the same
argument can be applied to all intermediate cut-off events in case the sequence
of cut-off events is longer than one. ��

3.2 Computation Algorithm

As we have seen in the previous section, the weak order relation of the be-
havioural profile can be traced back to the ordering relations of the complete
prefix unfolding. Based thereon, Algorithm 1 shows how the behavioural profile
is computed for a bounded system given its complete prefix unfolding.

First and foremost, the algorithm comprises the computation of the ordering
relations, i.e., the causality, conflict, and concurrency relation, for the complete
prefix unfolding (line 1). The respective algorithm can be found in [17].

Second, we capture relations between cut-off events (lines 2 to 12). We
compute the relation between events and the conditions that belong to the cut
induced by their local configuration (set L). Then, causality between these con-
ditions of one event and another event is captured in set LC. The set Ccut is filled
with all cut-off events, while their corresponding events are added to the set Ccor.
The relation between them is stored as an entry in the relation C. We check for
each event that corresponds to a cut-off event, whether it is in a causal relation
with a condition of the cut relating to the local configuration of another cut-off
event. If so, this information is stored in the relation C. The intuition behind is
that the transitive closure of C hints at the existence of a sequence of cut-off and
corresponding events as defined in Proposition 1.

Third, all pairs of events of the complete prefix unfolding are assessed according
to Proposition 1 (lines 13 to 21). If the respective requirements are met, the weak
order relation is captured for the transitions that are represented by these events.

Finally, the relations of the behavioural profile are derived from the weak
order relation according to Definition 6 (lines 22 to 27).

Proposition 2. Algorithm 1 terminates and after termination B = {�, +, ||}
is the behavioural profile of S.

Proof. Termination: The algorithm iterates over sets that are derived from E,
C, Ccut ⊆ E, Ccor ⊆ E, and T . T is finite by definition. Due to boundedness of
the net system the complete prefix unfolding and, therefore, the sets of events
E and conditions C are finite as well. Hence, the algorithm terminates.
Result: The set L contains all pairs of events and conditions, such that the
condition belongs to the cut of the local configuration of the respective event.
That is achieved by considering all conditions of the postset of the event and all
concurrent conditions that are either initially marked or are part of a postset
of another event that is in a causal relation with the former event. Then, an
entry of set LC associates an event to all events that are in causality to one of
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Algorithm 1: Algorithm for the computation of the behavioural profile

Input: S = (N,M0), a bounded system with N = (P, T, F ).
π = (O, h), its complete prefix unfolding including cut-off events with O = (C,E,G).

Output: B = {�,+, ||}, the behavioural profile of S.

1 Compute ordering relations <, #, and co of O;

/* Establish relation between cut-off events of O */
2 L,LC, Ccor, Ccut, C ←− ∅;
3 foreach (e, c) ∈ (E × C) do
4 if (c ∈ e•) ∨ ((e co c) ∧ ((•c× {e} ⊆ <) ∨ (•c = ∅))) then L ←− (e, c);
5 end
6 foreach (e1, c, e2) ∈ (L × E) do if c < e2 then LC ←− (e1, e2);
7 foreach (e1, e2) ∈ (E × E) do
8 if (Mark(�e1	) = Mark(�e2	)) ∧ (�e1	 � �e2	) then
9 Ccor ←− (e1); Ccut ←− (e2); C ←− (e2, e1);

10 end

11 end
12 foreach (ecor, ecut) ∈ (Ccor × Ccut) do if ecor LC ecut then C ←− (ecor, ecut);

/* Derive weak order for transitions of N */
13 
 ←− ∅;
14 foreach (e1, e2) ∈ (E × E) do
15 if (e1 < e2) ∨ (e1 co e2) then 
 ←− (h(e1), h(e2));
16 else foreach (ecut, ecor) ∈ (Ccut × Ccor) do
17 if (e1 ≤ ecut) ∧ (ecut C+ ecor) ∧ (ecor LC e2)) then
18 
 ←− (h(e1), h(e2));
19 end

20 end

21 end

/* Derive relations of behavioural profile of N */
22 �,+, || ←− ∅;
23 foreach (t1, t2) ∈ (T × T ) do
24 if (t1 
 t2) ∧ (t2 
 t1) then || ←− (t1, t2);
25 else if t1 
 t2 then � ←− (t1, t2);
26 else + ←− (t1, t2);

27 end

the conditions of the former event’s cut. Moreover, set C is build such that it
contains all pairs of cut-off events and their corresponding events. Then, pairs
of corresponding events and further cut-off events are added, if there is a causal
relation between them in LC. Hence, the transitive closure of C hints at the exis-
tence of a sequence of cut-off events and corresponding events that are causally
related. Based thereon, Proposition 1 is implemented directly. The derivation of
the profile from the weak order relation follows directly on Definition 6. ��

The algorithm runs in polynomial time with respect to size of the complete prefix
unfolding. The final step of the algorithm that sets the profile relations based
on the weak order relation for all pairs of transitions is neglected at this point.

Proposition 3. The following problem can be solved in O(n4) time with n as
the number of events and conditions of the complete prefix unfolding:
For a bounded net system and its complete prefix unfolding, to compute the weak
order relation for the net system.

Proof. Computation of the ordering relations of the complete prefix unfolding
can be done in O(|E| ∗ |C|) time [17]. In the second step of the algorithm, we
iterate over E ×C, E ×C ×E, and E ×E, which takes O(|E|2 ∗ |C|) time. Due
to Ccut ⊆ E and Ccor ⊆ E, the third step takes O(|E|4) time. As a prerequisite
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Fig. 5. (a) Size of complete prefix unfolding relative to the size of the net system; (b)
overall computation time relative to the size of the complete prefix unfolding

for this step the transitive closure of C has to be computed, which takes O(|E|3)
time. Therefore, overall time complexity is O(n4) with n as the number of events
and conditions of the complete prefix unfolding. ��

3.3 Experimental Evaluation

The approach introduced in the previous section is applicable in a general case
as it requires only boundedness of the net system. However, the generality is
traded for computational complexity. On the one hand, computation of the prefix
unfolding is computationally hard, as it is an NP-complete problem. On the
other hand, our algorithm runs in polynomial time with respect to the size of
the complete prefix unfolding. We are using the partial order defined in [16]
for identifying cut-off events, which has been shown to create compact prefixes.
Nevertheless, complete prefix unfoldings might have a very large size, such that
even a polynomial time algorithm results in long computation times. According
to [16], the size of the prefix is at most the size of the reachability graph.

In order to investigate the implications of these issues, we conducted an ex-
periment based on 735 industry process models for which net systems have been
derived (see [7] for further details). Although these systems were free-choice, only
half of them were sound [7]. Hence, the existing efficient algorithms would be
applicable solely for half of these models. In the implementation of our approach,
we used Mole1 to generate the complete prefix unfolding.

For four net systems, creation of the complete prefix unfolding was not possi-
ble due to the size of the unfolding. The maximum size of the derived complete
prefix unfoldings was 500.000 nodes. Fig. 5(a) illustrates that prefixes can be an
order of magnitude larger in size than the original net systems (note the logarith-
mic scale). Still, the majority of complete prefix unfoldings was rather small. 94%
of the net systems had a prefix with less than 800 nodes. For these net systems,
Fig. 5(b) shows the overall computation time of the behavioural profile including
prefix creation relative to the size of the prefix in terms of the number of nodes. For
1 http://www.fmi.uni-stuttgart.de/szs/tools/mole/

http://www.fmi.uni-stuttgart.de/szs/tools/mole/
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small prefixes with less than 250 nodes, computation of the behavioural profile is
done within one or two seconds. However, computation for prefixes with more than
300 nodes may take up to tens of seconds. The inherent exponential complexity is
also visible in the exponential least squares regressiondepicted in Fig. 5(b). Taking
into account that 94% of the net systems have a complete prefix unfolding with less
than 800 nodes, we see that our approach works for the majority of process models
in the collection within a reasonable time.
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Fig. 6. Overall computation time relative to the
size of the net system

In order to shade light on
the trade-off between efficiency
and generality of the different
approaches for the profile com-
putation, Fig. 6 compares the
generic approach based on un-
foldings with the structural ap-
proach presented in [3] (along
with exponential or polynomial
least squares regressions). Due
to the assumptions of the latter
approach, solely sound systems
are considered. The differences
in the base effort are due to the usage of an external unfolding tool. We see
that effects in terms of efficiency become visible for net systems that have more
than 100 nodes. For these systems, the structural characterisation building on
the assumption of soundness and free-choiceness is more efficient.

4 Behavioural Profile of a Labelled Net System

As the final step of our generalised profile computation, we lift the concept to
the level of labelled net systems. While our initial example in Fig. 1 comprises
solely unique transitions, this assumption does not hold for real world process
models. Multiple transitions with the same label occur as activities might be
executed at different stages of a process. For instance, exception handling for an
activity might comprise the possibility to redo the activity. Then, there may be
two transitions with the same label, one as part of the standard processing and
one as part of the exception handling.

Formally, a labelled net is a tuple N = (P, T, F, Λ, λ), where (P, T, F ) is a net,
Λ is a set of labels, and λ : T �→ Λ is a labelling function. (N, M0) is called labelled
system, iff N is a labelled net. The weak order relation can be lifted to labels
as follows. Two labels are in weak order, if and only if, two transitions carrying
those labels are in weak order. Based thereon, the relations of the behavioural
profile can be lifted to labels in a straight-forward manner.

Definition 7 (Weak Order & Behavioural Profile on Labels). Let S =
(N, M0) be a labelled system with N = (P, T, F, Λ, λ) and  the weak order
relation of S.
◦ Two labels l1, l2 are in the weak order on labels relation  Λ ⊆ Λ × Λ, iff

there are two transitions x, y ∈ T such that λ(x) = l1, λ(y) = l2, and x  y.
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◦ A pair of labels (l1, l2) ∈ (Λ×Λ) is in at most one of the following relations:
− The strict order relation �Λ, if l1  Λ l2 and l2 � Λ l1.
− The exclusiveness relation +Λ, if l1 � Λ l2 and l2 � Λ l1.
− The interleaving order relation ||Λ, if l1  Λ l2 and l2  Λ l1.
B = {�Λ, +Λ, ||Λ} is the behavioural profile on labels of S.

As behavioural profile on labels is derived directly from the behavioural profile
its computation can be done efficiently.
Proposition 4. The following problem can be solved in O(n2) time with n as
the number of transitions:
Given the behavioural profile of a labelled net system, to derive its behavioural
profile on labels.
Proof. Both, deriving the weak order relation on labels and setting the relations
of the behavioural profile on labels, requires iteration over the Cartesian product
of transitions of the net system. Assuming that each label relates to at least one
transition, the number of labels is smaller than the number of transitions. Thus,
overall time complexity is O(n2) with n as the number of transitions. ��

5 Related Work

Since the unfolding technique has been introduced by McMillan [14], it has been
extended and analysed in a huge number of publications, see [15] for a thorough
discussion. Moreover, this technique has been applied for various purposes. Un-
foldings are used to check common properties of net systems, such as reachability
of certain markings, or even for LTL model checking (cf., [18]). Moreover, domain
specific problems, e.g., the analysis and synthesis of asynchronous circuits [19],
have been addressed using the unfolding technique. Recently, complete prefix
unfoldings have been used to restructure process models [20].

Besides applications of unfoldings, our work relates to notions of behavioural
consistency or similarity, as behaviouralprofiles provide a behavioural abstraction.
There is a huge body of work on such notions, starting with the equivalence cri-
teria of the linear time – branching time spectrum [21]. Similarity measures may
define an edit distance between processes, which, in turn, is based on the n-gram
representation of the process language or the underlying automaton [22]. Close to
behavioural profiles are causal footprints [23]. These footprints capture causal de-
pendencies between activities and can also be leveraged to determine behavioural
similarity. Behavioural relations between activities are also at the core of many
process mining algorithms that aim at constructing models from event logs. The
α-algorithm for mining process models [24] is based on relations that are similar
to those of the behavioural profile, yet different.

6 Conclusion

In this paper, we generalised the computation of behavioural profiles. We in-
troduced an algorithm that derives behavioural profiles from the complete pre-
fix unfolding of a bounded Petri net. Moreover, we showed how behavioural
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profiles are lifted to the level of labelled net systems. Therefore, our approach is
applicable in a more general setting than the existing techniques.

The overall complexity of our approach is dominated by the exponential com-
plexity of computing the prefix unfolding, which is an NP-complete problem. We
investigated the implications of this complexity issue by an experimental setup
involving 735 industry process models. Our results show that computation of
behavioural profiles is feasible within seconds for a certain class of process mod-
els, for which the complete prefix unfolding contains several hundreds of nodes.
We also proved that our computation based on the complete prefix unfolding
runs in low polynomial time. Due to the inherent complexity of the unfolding
technique, our approach cannot be applied to all process models. However, we
significantly broadened the set of process models for which behavioural profiles
can be derived as existing algorithms assume soundness and free-choiceness of
net systems. Therefore, our approach gives rise to the usage of the various appli-
cations of behavioural profiles (cf., [3,5,6,25]) for a wider class of process models.

There is a lot of potential for the combination of the presented approach with
structural decomposition techniques, similar to those used in [4] for the compu-
tation of behavioural profiles for sound free-choice systems. Sub-systems that
represent single-entry single-exit blocks might be considered in isolation. Then,
the profile is computed iteratively for all these sub-systems, which in combina-
tion yield the profile for the whole system. The unfoldings of these sub-systems
may be significantly smaller in size than the unfolding of the overall system. For
sound and free-choice sub-systems, the efficient algorithms from our previous
work can be used. We want to investigate the combination of these techniques in
future work. Moreover, we want to explore the application of unfoldings for un-
bounded net systems [26], which would allow for the computation of behavioural
profiles even for this class of systems.
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vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

24. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE TKDE 16(9), 1128–1142 (2004)

25. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business
process models. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave
2009. LNCS, vol. 5900, pp. 115–129. Springer, Heidelberg (2009)

26. Desel, J., Juhás, G., Neumair, C.: Finite unfoldings of unbounded petri nets. In:
Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 157–176.
Springer, Heidelberg (2004)



Constructing Replaceable Services Using
Operating Guidelines and Maximal Controllers

Arjan J. Mooij1, Jarungjit Parnjai2, Christian Stahl1, and Marc Voorhoeve1

1 Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands

{A.J.Mooij,C.Stahl,M.Voorhoeve}@tue.nl
2 Humboldt-Universität zu Berlin, Institut für Informatik, Berlin, Germany

parnjai@informatik.hu-berlin.de

Abstract. Service-oriented systems support process evolution by allow-
ing the replacement of a service S by another service T . To maintain
proper interaction in the overall system, service T should interact prop-
erly with all controllers (i. e., in all contexts) of service S.

To support the construction of such services T , we compute operating
guidelines that represent all services that can replace service S. Our com-
putation relies on the additional notion of a maximal controller. Maximal
controllers can also be used for deciding whether a service T can replace
service S, and for computing a public view that hides service details that
are not relevant for controllers.

1 Introduction

Complex business processes typically combine several simpler processes that col-
laborate across the boundaries of organizations. Such collaborations inevitably
evolve over time, e. g., because one organization wants to implement a new func-
tionality, or another one wants to improve an existing functionality.

Service-orientation supports process evolution by considering a complex busi-
ness process as a collaboration of several simpler, interacting services. Replacing
one or more of these services, however, may endanger the proper interaction in
unexpected ways. As usually no single organization can oversee the full collabo-
ration, verifying the collaboration is not a feasible option.

In this paper, we address the replacement of services that are stateful rather
than stateless, i. e., their exposed operations have to be invoked in a particular
order, described by their business protocol. To this end, we focus on protocol
changes [24], and ignore issues like nonfunctional properties.

A service T can replace a service S if every admissible context for service S is
also admissible for T . Admissible contexts are defined as controllers ; service R is
called a controller of service S if R and S can interact in a deadlock-free manner.
This notion of replacement is formalized by the accordance preorder [27]: we say
that T accords with S if every controller of S is a controller of T .

Constructing nontrivial replaceable services is an activity that is vital for
many organizations to stay competitive, but also known to be error-prone and

M. Bravetti and T. Bultan (Eds.): WS-FM 2010, LNCS 6551, pp. 116–130, 2011.
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time-consuming. Yet, the BPM tools that are currently available on the mar-
ket offer only limited support. The language WS-BPEL, for example, has rules
(called profiles) allowing to transform a service S into a service T that can re-
place S, but these rules are very restricted. Even the extensions proposed in [14]
are incomplete, as they do not cover all possible replacements.

Our main contribution is to support the construction of a service T that can
replace S, by computing the set of all services that can replace a given service
S. We represent such an infinite set using operating guidelines [19]. Our solution
relies on the additional, but related, notion of a maximal controller. A maximal
controller mc(S) of a service S is a controller of S with the property that every
controller of S accords with mc(S). This notion differs from a most-permissive
controller [30] of S, which is a controller that exhibits the behavior of every
controller of S. A maximal controller of S can be seen as a single service that
encodes the set of all controllers of S. Moreover, every controller T of a maximal
controller of S can replace service S.

There are at least two other applications of maximal controllers. One is de-
ciding whether a given service T can replace a given service S. The other is
computing a public view of a service S that hides all service internals that are
not relevant for controllers of S.

Overview. Section 2 continues with some background. In Sect. 3 we study accor-
dance. We explore maximal controllers in Sect. 4 and show in Sect. 5 how they
can be constructed. In Sect. 6 we present applications of maximal controllers.
Finally Sect. 7 discusses related work, and Sect. 8 concludes the paper.

2 Preliminaries

In this section, we describe our service model, service automata, the notion of a
controller, accordance, and operating guidelines.

2.1 Services and Controllers

A service consists of a control structure describing its behavior and an interface
for asynchronous communication with other services. An interface is a set of
(input and output) channels. We abstract from the syntax of service description
languages and use service automata to model service behavior.

An automaton (Q, q0, I, O, δ) consists of a finite set Q of states, an initial state
q0 ∈ Q, a set I of input channels, a set O of output channels (I and O are disjoint
and do not contain τ), and a transition relation δ ⊆ Q× (I ∪O ∪ {τ})×Q. An
automaton is deterministic if τ only occurs in selfloops and no state has any two
equally labeled outgoing transitions. A service automaton (or service, for short)
(Q, q0, Ω, I, O, δ) consists of an automaton (Q, q0, I, O, δ) and a set Ω ⊆ Q of
final states [19].

An m-labeled transition (q, m, q′) ∈ δ is a sending transition if m ∈ O, a
receiving transition if m ∈ I, and an internal transition if m = τ . In the graphical
representation, we label sending a message to a channel m as !m and receiving
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Fig. 1. Running example

a message from a channel m as ?m. An arc without source state indicates the
initial state, and double circles indicate the final states.

We can compose two services R and S if the input channels of R are the
output channels of S, and vice versa. Composition yields a service R⊕ S where
states are triples (qR, qS ,M) consisting of a state qR of R, a state qS of S, and
a multiset (i. e., bag) M of currently pending asynchronous messages that were
sent but not yet received. The initial state (q0R, q0S , [ ]) consists of the two initial
states q0R and q0S of R and S, and the empty multiset [ ]. An m-labeled sending
transition of R adds1 in R⊕S one element m to the bagM. Similarly a transition
receiving an m removes one m from M. Internal transitions of R and S do not
updateM. In the composition all transitions become internal transitions labeled
τ . Final states of the composed system are those where both services are in their
respective final states, and the message bag is empty.

Two services R and S interact properly if their composition R⊕S is deadlock-
free (denoted by DF (R ⊕ S)); that is, every reachable nonfinal state has an
outgoing transition. In this case, R is a controller of S. The set Controllers(S) =
{R | DF (R ⊕ S)} denotes the set of all controllers of S. If S has at least one
controller, then S is controllable. The notion of a controller is symmetric; so if
R is a controller of S, then S is a controller of R.

Example 1. Figure 1 depicts the business protocols of customers A, B, and C,
each represented as a service with the same interface. All customers can send a
request (labeled !q) and then receive a response (labeled ?r); customer C can
additionally receive a response before sending a request. Alternatively, customers
1 We ensure that R⊕S has again finitely many states by disallowing m-labeled sending

transitions if there are k messages m in M ; see [19]. In our examples we use k = 1,
but our theoretical results are independent of any specific k.
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B and C can send a stop message (labeled !s) at the beginning. The composition
B⊕P of customer B and online shop P (as depicted) is deadlock-free. Hence B
is a controller of P , and vice versa, and B and P are controllable.

For comparing two automata S and T , we use a simulation relation [20]. Automa-
ton T = (QT , q0T , I, O, δT ) simulates automaton S = (QS , q0S , I, O, δS) if there
exists a binary relation � ⊆ QS×QT where (q0S , q0T ) ∈ � and, for all (qS , qT ) ∈ �
and (qS , m, q′S) ∈ δS , there exists a state q′T such that (qT , m, q′T ) ∈ δT and
(q′S , q′T ) ∈ �. If T simulates S using a relation �, and S simulates T using rela-
tion �−1, then S and T are bisimilar [25], denoted by S =bsim T . These notions
can be lifted to services, by requiring the simulation relation � to be such that
also for all (qS , qT ) ∈ � if qS is a final state then qT is a final state.

2.2 Accordance Preorder and Equivalence

A service T can replace a service S, if every controller of S is a controller of
T . This replaceability notion is accordance [27], and technically it is a preorder
on services. Using the notations from [21], we formalize accordance ≤ as for
all services S and T : T ≤ S ⇔ Controllers(S) ⊆ Controllers(T ). The set
Accord(S) = {T | T ≤ S} contains all services T that accord with S. The
accordance preorder ≤ induces an equivalence relation =acc that relates services
with identical sets of controllers; for all services S and T : S =acc T ⇔ S ≤
T ∧ T ≤ S.

Example 2. In Fig. 1, A ≤ B and B =acc C. To show that B ≤ A does not hold,
define P ′ as P without the transition ?s. Service P ′ is a controller of A but not
of B, as the state (b3, p′1, [s]) is a deadlock in the composition B ⊕ P ′.

2.3 Operating Guidelines

If a service S is controllable, then it has a most-permissive controller [30]. There
may exist more than one most-permissive controller, but each of them can exhibit
all behavior that any controller of S can exhibit. This gives a necessary condition
for deciding whether a service R is a controller of S: a most-permissive controller
of S must simulate R.

To obtain an exact characterization of the set Controllers(S), we annotate
each state q of the most-permissive controller with a Boolean formula φ(q). These
formulae consists of conjunctions ∧, disjunctions ∨, and atomic propositions
IS ∪ OS ∪ {τ,final}, indicating for a state whether certain outgoing edges are
present and whether the state is final. The operating guidelines of S [19] is the
annotated automaton OG(S) = (ZS , φ), where ZS denotes the automaton of the
most-permissive controller of S. Note that ZS has no final states; this information
is encoded in the formulae instead.

To determine whether a service R is a controller of S, we analyze whether
R matches with OG(S), denoted by R ∈ Match(OG(S)). Service R matches
with OG(S) if R has the same interface as ZS and there is a simulation relation
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Fig. 2. Operating guidelines for the running example

� ⊆ QR × QZ such that, for all (qR, qZ) ∈ � the formula φ(qZ) is satisfied in
the following assignment β (denoted by β |= φ(qZ)). Assignment β is a Boolean
function on IS ∪OS ∪ {τ,final} such that β(x), for x ∈ IS ∪OS ∪ {τ}, is true if
there exists a state q′R with (qR, x, q′R) ∈ δR, and β(final) is true if qR ∈ ΩR.

Proposition 1 ([19]). For each service S, Match(OG(S)) = Controllers(S).

From [19], we conclude that most-permissive controllers, and hence also oper-
ating guidelines, have a deterministic transition relation. Moreover, if the sim-
ulation relates states qR and qZ , and qR enables a τ -transition in R, then the
formula φ(qZ) is satisfied by state qR.

We can use operating guidelines to decide whether T accords with S, i. e., T ≤
S, by relating the operating guidelines OG(S) = (ZS , φ) and OG(T ) = (ZT , ψ):
ZT must simulate ZS (i. e., ZT simulates every controller of S) such that the
formulae annotated to every state in OG(S) imply the annotated formulae of
the respective state in OG(T ) (i. e., whenever a service R deadlocks with T it
does so with S).

Proposition 2 ([27]). For each two services S and T , with OG(S) = (ZS , φ)
and OG(T ) = (ZT , ψ), we have that Controllers(S) ⊆ Controllers(T ) iff there
is a simulation relation � ⊆ QZS ×QZT such that, for all (q, q′) ∈ �, the formula
(φ(q) =⇒ ψ(q′)) is a tautology.

Example 3. Figure 2 depicts operating guidelines OG(B) of customer B in Fig. 1.
Every dashed edge leaving a state has the dashed node as its target. A most-
permissive controller of B can receive the corresponding messages but they will
never occur, because B cannot send them. The annotation of the initial state
shows that a controller must be able to receive both a response and a stop mes-
sage, or send a request, or do an internal action. In the τ -annotated state, B
is in its final state b3 and one response message is pending. Hence, a controller
has to continuously execute τ -steps to avoid a deadlock in the composition (as
indicated by the annotation). Online shop P in Fig. 1 matches with OG(B):
the automaton underlying OG(B) simulates P , and the states of P satisfy the
annotations. For example, state p1 corresponds to an assignment β that only
assigns true to ?q and ?s, and this satisfies the annotation in the initial state of
the operating guidelines.
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3 Accordance-Preserving Transformation Rules

Our final goal is to compute operating guidelines representing Accord(S) for a
service S. Before we can discuss this, we first need two rules that transform
a service S into a service T that can replace it. These rules can be seen as
an extension of the transformation rules from [1,14] and have the style of the
Murata rules [23]. These rules, like the ones from [1], make the services smaller
or bigger with respect to accordance.

Rule 1 from Fig. 3(a) specifies that an intermediate τ -transition can be in-
serted into a service S or removed from a service T , provided that:

– states s1 and t1 have the same incoming transitions,
– states s1 and t2 have the same outgoing transitions, and
– s1 is a final state if and only if t2 is a final state.

Proposition 3 (Rule 1 [23,22]). For each two services S and T that are
related as in Fig. 3(a), it holds that S =acc T .

Rule 2 from Fig. 3(b) specifies that a service becomes smaller with respect to ≤
by removing alternatives for an outgoing τ -transition, provided that:

– states t1 and s1 have the same incoming transitions,
– the outgoing transitions of state t1 are contained in those of state s1,
– states t2 and s2 have the same outgoing transitions, and
– t2 is a final state if and only if s2 is a final state.

Theorem 1 (Rule 2). For each two services T and S that are related as in
Fig. 3(b), it holds that T ≤ S.

Proof. Suppose the composition X ⊕ T (for any service X) can reach a state
that is not final and that has no outgoing transition. In this state, T is not in t1,
as t1 has an outgoing τ -transition. The composition X ⊕ S can also reach such
a state, as T is a subgraph of S that only differs in t1 and s1. ��

4 Maximal Controller

Operating guidelines OG(S) describe the set of all controllers of a service S,
represented by an annotated automaton. In this section we represent operating
guidelines of S by a single controller. This controller is the maximal controller
mc(S) [21], as it is larger in the accordance preorder than all controllers R of S.

Definition 1 ([21]). A maximal controller of a controllable service S is a ser-
vice mc(S) such that: (∀R :: R ∈ Controllers(S) ⇔ R ≤ mc(S)).

Using the definitions of ≤ and Controllers(S), we can simplify the two implica-
tions inside the equivalence ⇔:
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⇐ : mc(S) is a controller: mc(S) ∈ Controllers(S), and
⇒ : mc(S) is larger than all controllers: (∀R :: R ∈ Controllers(S) ⇒ R ≤

mc(S)).

The maximal controller is unique up to accordance, and in Sect. 5 we show how
to construct one. In the following, we study how a maximal controller behaves
with respect to the accordance preorder. In [21] we derived a Galois connection
(see [3]) for the maximal controller and the accordance preorder.

Proposition 4 ([21]). For each two controllable services R and S:

R ≤ mc(S) ⇔ S ≤ mc(R)

Given such a Galois connection and the preorder ≤, we obtain all kinds of
standard properties similar to those mentioned in [21]. Moreover, we can use
Definition 1 to prove a stronger version of two properties.

Lemma 1. For each two controllable services S and T :

T ≤ S ⇔ mc(S) ≤ mc(T ) and S =acc mc(mc(S))

Proof. In succession, we calculate:

mc(S) ≤ mc(T )
⇔ {indirect inequality}

(∀R :: R ≤ mc(S) ⇒ R ≤ mc(T ))
⇔ {Definition 1 (twice); set theory}

Controllers(S) ⊆ Controllers(T )
⇔ {definition of ≤}

T ≤ S

S =acc mc(mc(S))
⇔ {indirect equality}

(∀T :: T ≤ S ⇔ T ≤ mc(mc(S)))
⇔ {Proposition 4}

(∀T :: T ≤ S ⇔ mc(S) ≤ mc(T )))
⇔ {first part of this lemma}

true

Consequently, the lemma holds. ��

These two properties are illustrated in Fig. 4, and they turn out to be useful in
further proofs and applications.

5 Finite Maximal Controllers

In this section, we provide a construction of a maximal controller as a finite
service, and we relate it to some existing results on operating guidelines.
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5.1 Construction

For a given service S, there are several maximal controllers mc(S), like there are
several most-permissive controllers. In the following we construct a particular
finite maximal controller, denoted by M (S). In [21] we informally conjectured the
computation of M (S) from finite operating guidelines OG(S) = (ZS , φ): “M (S)
is obtained from the operating guidelines by replacing every labeled state q of
ZS by a nondeterministic internal choice between all the valid combinations of
outgoing edges from this state.” A combination of outgoing edges (and a final
proposition) of a state q is valid if it satisfies the annotation φ(q).

Definition 2 (Construction of M (S)). Let S be a controllable service, let
(ZS , φ) be operating guidelines of S, and let ZS = (Q, q0, I, O, δ). Service M (S) =
(Q′, q′0, Ω

′, I, O, δ′) is defined as:
– Q′ = Q ∪ {qβ | q ∈ Q ∧ β |= φ(q)}; q′0 = q0; Ω′ = {qβ | β(final)};
– δ′ = {(q, τ, qβ) | q ∈ Q ∧ β |= φ(q)} ∪ {(qβ, m, q′) | (q, m, q′) ∈ δ ∧ β(m)}.

The upper part of Fig. 5 sketches the construction of a fragment of M (S) from
operating guidelines OG(S). For every state q in ZS and assignment β that
satisfies φ(q), there is a state qβ , a τ -transition from q to qβ , and, for each m
in β, a transition from qβ to the corresponding successor q′. If β assigns true to
final at q, then qβ is a final state.

Given the direct relation between OG(S) and M (S), algorithms for OG(S)
can easily be adapted to M (S). For simplicity reasons, our construction of M(S)
is based on all satisfying assignments β of each formula φ(q). Thus, in worst case,
the size of M (S) is proportional to the size of OG(S) multiplied by 2 to the power
of the number of interface channels (which we consider to be static). As the size
of operating guidelines is exponential [30] in the size of the size of automaton S,
this static factor is negligible.

For applications that rely on maximal controllers, we sketch how the size
of M (S) can be reduced. Consider operating guidelines with formulae φ(q) in
disjunctive normal form (i. e., a disjunction of conjunctions). Another finite max-
imal controller can be obtained by replacing every labeled node q by a nondeter-
ministic internal choice between all the disjuncts d in φ(q), where each disjunct
d is a conjunction of outgoing edges (or the proposition final). In addition, this
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R by a bisimilar W , and replace M (S) by a bisimilar N . Then transform N into W
using Rule 1 and Rule 2.

choice is extended with an external choice between the outgoing edges that do
not occur in φ(q). The accordance equivalence of the two finite maximal con-
trollers can be proved in the proof style of Sect. 3 using that for every disjunct d
there is a satisfying assignment β that matches exactly, and for every satisfying
assignment β (a conjunction) there is a disjunct d that is satisfied by (a subset
of) β.

5.2 Validity

In [21] it was conjectured that the construction from Definition 2 yields a max-
imal controller. In the remainder of this section, in particular in Theorem 2, we
prove that M (S) is indeed a maximal controller of service S. To this end, we
show in Lemma 2 that M (S) is a controller of S, and in Lemma 3 that M (S) is
larger than every controller of S.

Lemma 2. For every controllable service S: M (S) ∈ Controllers(S).

Proof. By Proposition 1: Controllers(S) = Match(OG(S)). Let OG(S) = (ZS , φ)
be operating guidelines of S with ZS = (Q, q0, I, O, δ), and M(S) be constructed
from (ZS , φ) as described in Definition 2. The required simulation relation �
is: � = {(q, q) | q ∈ Q} ∪ {(qβ , q) | q ∈ Q ∧ β |= φ(q)} using that every state
q in (ZS , φ) has a τ -loop, and {τ} satisfies φ(q) holds. ��

In the next lemma we prove that M (S) is larger than every controller of S.

Lemma 3. For every controllable service S:

(∀R :: R ∈ Controllers(S) ⇒ R ≤ M (S))

Proof. Let S be a controllable service and R be a service. After applying Propo-
sition 1, let (ZS , φ) be operating guidelines of S with ZS = (Q, q0, I, O, δ). We
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first replace R and M (S) by bisimilar service automata W and N that have
similar states:

- Let W be the following service:
– QW = QR×Q; q0W = (q0R, q0); ΩW = ΩR×Q; IW = IR; OW = OR;
– δW = {((q, r), m, (q′, r′)) | (q, m, q′) ∈ δR ∧ (r, m, r′) ∈ δ}

Service W synchronizes R with ZS, but ignores transitions that are not
shared. Each state (q, r) from W is bisimilar to q from R, as ZS simulates
R, and ZS is deterministic. The simulation relation between the reachable
part of W and (ZS , φ) is � = {((q, r), r) | (q, r) ∈ QW }.

- Let N be the service (Q′′, q′′0 , Ω′′, I, O, δ′′) defined as:
– Q′′ = (QR ∪ {⊥})× (Q ∪ {qβ | q ∈ Q ∧ β |= φ(q)});
– q′′0 = (q0R, q0); Ω′′ = (Q ∪ {⊥})× {qβ | β(final)}
– δ′′ = {((p, q), τ, (p, qβ)) | q ∈ Q ∧ β |= φ(q)} ∪

{((p, qβ), m, (p′, q′)) | (q, m, q′) ∈ δ ∧ β(m) ∧
((p, m, p′) ∈ δR ∨ (p′ =⊥ ∧ ¬(∃r :: (p, m, r) ∈ δR)))}

Service N synchronizes M (S) with R, and uses states (⊥, q) for transitions
that are not in R. Each state (p, q) in N is bisimilar to state q in M (S).

The states of W are a subset of the states of N ; see Fig. 5. To prove W ≤ N ,
we show how to obtain W from N using Rule 1 and Rule 2.

Consider every reachable state in W . Each state (qR, q) in W simulates state q
in ZS and satisfies φ(q). By construction, the state (qR, q) in N offers a nondeter-
ministic internal choice between all assignments β that satisfy φ(q). Using Rule
2, we can remove from state (qR, q) in N all τ -branches except the one leading
to the state (qR, qβ) that has the same outgoing edges (and final proposition) as
state (qR, q) in W . Using Rule 1, we can eliminate this τ -edge. By construction,
the remaining state has the same direct successors as (qR, q) in W . ��

Theorem 2. For every controllable service S, the service M (S) is a maximal
controller of S, i. e., it is a solution for mc(S) in Definition 1.

Proof. Follows from Lemma 2 and Lemma 3. ��

5.3 Canonicity

Accordance equivalent services may have different operating guidelines, and
hence Definition 2 may give maximal controllers that are not isomorphic. We
show that the resulting maximal controllers are bisimilar.

Lemma 4. For any two controllable services S and T :

S =acc T ⇒ M (S) =bsim M (T )

Proof. Let S and T be services such that S =acc T . By definition of =acc, the
operating guidelines of S and T have the same sets of matching services. Using
Proposition 2 this means that the automata underlying the operating guidelines
simulate each other, and the annotations of the states imply each other. As the
automata are deterministic, they are bisimilar and related states have equivalent
annotations. From Definition 2, we conclude M (S) =bsim M (T ). ��
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6 Applications to Service Replaceability

In this section we illustrate three applications of a maximal controller in the
context of service replaceability. The main idea is that, as a maximal controller
is a service rather than operating guidelines, we can apply service operations
to it, including composition, operating guidelines computation, and maximal
controller computation. These results extend the results in [26] that are published
in nonrefereed workshop proceedings.

6.1 Deciding Replaceability

The first application is service replaceability, which addresses the question
whether a service T can replace a service S. Accordance guarantees this in-
dependently of the context of S, i. e., by ensuring that every controller of S is a
controller of T .

The sets of controllers are infinite, but operating guidelines are finite char-
acterizations of these sets. The current procedure [27] for deciding accordance
requires the computation of operating guidelines of S, operating guidelines of T ,
and the verification of a refinement relation between them; see Proposition 2. Us-
ing a maximal controller mc(S), we can decide accordance by checking deadlock
freedom in the composition of T and mc(S).

Theorem 3. For each service T and controllable service S:

T ≤ S ⇔ DF (mc(S)⊕ T )

Proof. DF (mc(S) ⊕ T ) iff mc(S) ∈ Controllers(T ) (by definition of controller)
iff mc(S) ≤ mc(T ) (by Definition 1) iff T ≤ S (by Lemma 1) ��

This decision procedure requires the computation of one maximal controller and
one check for deadlock freedom. In contrast to [27], we have not yet implemented
this procedure, but we expect that this procedure is also feasible in practice.

6.2 Characterizing all Replaceable Services

Our main application of maximal controllers is the computation of operating
guidelines that represent the set Accord(S) of all services that can replace S.
As a maximal controller of S represents all possible controllers of S, we can
represent Accord(S) by operating guidelines of mc(S).

Theorem 4. For each controllable service S: Accord(S) = Controllers(mc(S)).

Proof. Follows from Theorem 3 and the definition of Accord and Controllers . ��

Using Theorem 4 and Proposition 1, we can compute Accord(S) as operat-
ing guidelines OG(mc(S)). The matching algorithm enables us to select from
OG(mc(S)) any service T that can replace S. Each T can be seen as a com-
munication skeleton (or an abstract BPEL process) that can be refined, e. g.,
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using the accordance-preserving rules from [1,14]. Our approach has beneficial
practical implications. Using the set Accord(S) we can find all services that can
replace S, whereas this is not possible applying existing transformation rules.
This may potentially save development time when creating a service.

Example 4. Figure 2 depicts OG(mc(B)), representing all services that can re-
place service B. This set contains services A, B, and C in Fig. 1.

We can also apply all existing techniques for operating guidelines. Suppose we
want to impose additional requirements on the service T . Then we can restrict
OG(mc(S)) to services that satisfy certain behavioral constraints [18], or that
can perform certain activities [28]. If service T must be similar (in terms of an
edit distance) to another given service T ′ (which may not accord with S), we can
use the approach of [17] to compute from OG(mc(S)) such a service T together
with the edit actions for transforming T ′ into T .

Finally, OG(mc(S)) provides another way of deciding accordance: T accords
with S if T matches with OG(mc(S)). If OG(mc(S)) is not given, then it is
unlikely that this procedure improves on the one from Sect. 6.1. However, if
OG(mc(S)) has already been computed, then we expect this procedure to be
practically feasible. It is further work to confirm this using real experiments.

6.3 Constructing a Public View of a Service

In the context of inter-organizational processes, service providers need to publish
information about the services they offer. On the one hand, they have to provide
enough details to correctly interact with the services, while on the other hand
hiding all other details of the service. A popular approach is to publish a public
view (or interaction protocol) of the service [2,16].

Using the maximal controller, we can construct a canonical public view of a
service. A maximal controller encodes the set of all controllers: Lemma 1 shows
that equivalent services mc(S) and mc(T ) indicate that services S and T have
the same controllers. By applying Lemma 1 twice, we can also conclude that
equivalent services mc(mc(S)) and mc(mc(T )) indicate that services S and T
have the same controllers.

As Lemma 1 indicates that service mc(mc(S)) is accordance equivalent to ser-
vice S, a service provider that offers service S could safely publish mc(mc(S))
instead. Although it is likely that OG(S) has less states than mc(mc(S)), pub-
lishing mc(mc(S)) instead of OG(S) has two benefits: mc(mc(S)) is a single
service rather than a representation of a set of services, and it represents the
offered service rather than its controllers.

Using the specific maximal controller as described in Definition 2, M (M (S))
is a canonical element of the equivalence class of S.

Theorem 5. For any two controllable services S and T :

S =acc T ⇔ M (M (S)) =bsim M (M (T ))
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Proof. We justify the equivalence by proving two implications:
⇒: Follows from Lemma 4 (twice), as bisimulation implies accordance.
⇐: Follows from Lemma 1 (twice), as bisimulation implies accordance. ��
With this result, we can show that M (S) can be used as a canonical represen-
tation of the equivalence class of S.

Theorem 6. For any two controllable services S and T :
S =acc T ⇔ M (S) =bsim M (T )

Proof. We justify the equivalence by proving two implications:
⇒: See Lemma 4.
⇐: Using Lemma 4 we conclude M (M (S)) =bsim M (M (T )), as bisimulation
implies accordance. Using Theorem 5 we then obtain S =acc T . ��

7 Related Work

Apart from the accordance preorder, several other preorders have been proposed
to characterize and to decide service replaceability, see [29,11,4,15,6,27,5], for
instance. The accordance preorder coincides with the stable failures preorder [13].
Closest to accordance is the subcontract preorder [15], which coincides for τ -free
services with accordance. For a more detailed comparison of accordance with
other preorders, we refer to [27].

In Theorem 3, we showed how the notion of a maximal controller can be used
to decide accordance and hence service replaceability. Similar decision procedures
for different preorders have been studied in [7,9]. Moreover, the notion of a
maximal controller is related to the notion of a canonical dual from [8]. A trivial
construction method in their (restricted) setting is proposed in [8], but this
method does not apply in our setting.

The notion of a public view of a service has been considered in [2,16,10], for
instance. In contrast to the construction algorithms in [2,10], our proposed public
view based on a maximal controller is a canonical construction that is indepen-
dent of reduction rules while acting as a “service obfuscator”. Another approach
is to publish a representation of all controllers of S, e. g., using operating guide-
lines [19]. Operating guidelines describe the communication structure that is
necessary for deadlock-free interaction. The advantage of publishing operating
guidelines is that matching a single service R with operating guidelines OG(S)
of a service S is in general less complex than model checking the composition of
R and the public view of S for deadlock freedom.

8 Conclusion and Further Work

Operating guidelines have been proposed as a finite representation of the infinite
set of controller services that can interact properly with a given service. They
have already been used for many applications in the context of service-oriented
systems, yet no operating guidelines could be computed to represent all services
that can replace a given service.



Constructing Replaceable Services Using Operating Guidelines 129

In this paper, we have broadened the applicability of operating guidelines by
adding the notion of a maximal controller mc(S) of a service S. A maximal
controller mc(S) is a largest controller of S that encodes all controllers of S. We
have shown a way to construct a maximal controller, and proved its correctness.

A maximal controller mc(S) allows for at least three applications. First, op-
erating guidelines of mc(S) represent the set of services that can replace service
S, and they can be further manipulated using various existing techniques for
operating guidelines. Second, using mc(S) we can also construct a public view
of a service, and third decide whether a service T can replace service S.

Operating guidelines and maximal controllers are related, as they can be seen
as different encodings of the set of controllers. On the one hand, operating guide-
lines have less states and are more suitable for human comprehension. On the
other hand, a maximal controller is a single, albeit larger, service that is more
suitable as input for further operations on services.

It is further work to study maximal controllers for other correctness notions
than deadlock freedom (see [12] for some initial partial results), and for other
sets of services than operating guidelines.
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Abstract. Soundness is one of the well-studied properties of processes;
it denotes that a final state can be reached from every state that is
reachable from the initial state. Soundness-preserving refinements are
important for enabling the compositional design of systems.

In this paper we concentrate on refinements of service compositions.
We model service compositions using Petri nets, and consider specific
pairs of places that belong to different services. Starting from a sound
service composition, we show how to check whether such a pair of places
can be refined by another sound service composition, so that soundness
is preserved through the refinement.

Keywords: Service composition, refinement, Petri net, soundness,
verification.

1 Introduction

Recent developments such as component-based software engineering (CBSE) and
service-oriented architectures (SOA) have led to systems that are composed from
many services. Each service delivers a specific functionality, and communicates
asynchronously with some other services using messages. In turn, a service itself
may be composed out of several other (communicating) services, resulting in an
intricate network of services.

This trend became only more visible with the adoption of the Software as a
Service (SaaS) paradigm that facilitates the communication across boundaries
of organizations. As a consequence, it became virtually impossible for a single
organization to obtain a full model of the system, and hence it became even
more challenging to ensure its (behavioral) correctness.

In this paper we study compositional design methods that ensure correctness
of service compositions based on properties of communicating pairs of services.
One of the main formalisms for modeling and analyzing systems that communi-
cate asynchronously are Petri nets, which we use in this paper. The behavioral
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Fig. 1. Refinement of (synchronizable) places

correctness property that we consider is soundness [1], or weak termination,
which requires that a final state can be reached from every state that is reach-
able from the initial state. Soundness has been studied extensively, and has
proved to be practically relevant.

Compositional techniques for design and analysis have a long tradition. A
nice overview of fundamental refinement techniques for Petri nets is given in
[4,29]. In the context of component-based systems and service-oriented tech-
nologies, a lot of research considers communicating systems, see e.g., [14,26,27],
in combination with some variants of soundness. However, these works focus on
“horizontal” modularization (i.e., composition) of communicating systems, while
we are interested here in “vertical” modularization (i.e., refinement). Conditions
for vertical modularization were given by [28,12], regarding soundness-preserving
refinements of a single place (in a Petri net).

In this paper we consider the refinement of a pair of places p and q in a Petri
net N by a sound workflow net M with two designated initial (source) places p
and q and two final (sink) places p′ and q′; see Fig. 1. Both net N and net M
model service compositions that may involve multiple communicating services.
We define conditions for refined net N and refining net M in isolation such that
the refinement is sound.

Overview. In Section 2, we summarize the basic definitions related to Petri nets
and the accordance relation. In Section 3, we introduce the refinement of synchro-
nizable places and give the intuition behind this concept. In Section 4, we present a
homogeneous criterion for refinement based on two soundness checks. In Section 5
we formally prove its correctness. We conclude in Section 6 with some conclusions
and further work.

2 Preliminaries

Let S be a set. A sequence σ of length n ∈ IN over S is a function σ : {1, . . . , n} →
S; we denote its length by |σ| = n. If |σ| = 0, then σ is the empty sequence ε.
The set of all finite sequences over S is denoted by S∗.

A bag (or multiset) m over S is a function m : S → IN . We use ‘.’ to denote
function application; so, for s ∈ S, m.s denotes the number of occurrences of s
in m. We write INS for the set of all bags over S, and [s] for the bag containing
one occurrence of s ∈ S. We use + for the sum of two bags, and ≤ for the
comparison of two bags. Sets can be seen as bags in which all elements have
multiplicity one.
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Let A be the universe of actions, not including silent (or internal) action τ .

Definition 1 (Labeled transition system). A labeled transition system,
LTS for short, L is a 4-tuple (S,−→, si, Ω), where S is a set of states; −→ ⊆
S× (A∪{τ})×S is a transition relation; si ∈ S is the initial state; and Ω ⊆ S
is the set of final states.

For s, s′ ∈ S and a ∈ A, we write s
a−→ s′ if and only if (s, a, s′) ∈−→. A state

s ∈ S is called a deadlock if no action a ∈ A ∪ {τ} and state s′ ∈ S exist such
that s

a−→ s′. If for some σ ∈ (A ∪ {τ})∗ of length n, and states si ∈ S for
0 ≤ i ≤ n such that si−1

σ.i−→ si for 0 < i ≤ n, we write s0
σ−→ sn. The set of

reachable states from a given state s ∈ S is defined as R(L, s) = {s′ ∈ S | ∃σ ∈
(A ∪ {τ})∗ : s

σ−→ s′}.

Definition 2 (Weak termination). An LTS L is weakly terminating if for
every state s ∈ R(L, si), Ω ∩R(L, s) �= ∅ holds.

2.1 Petri Nets, Workflows and Soundness

A Petri net is a 3-tuple N = (P, T, F ), where P and T are two disjoint sets of
places and transitions respectively; and F ⊆ (P ×T )∪(T ×P ) is a flow relation.
The elements from the set P ∪ T are called the nodes of N . Elements of F are
called arcs. Given a node n ∈ (P∪T ), we define its preset •n = {n′ | (n′, n) ∈ F},
and its postset n• = {n′ | (n, n′) ∈ F}. Graphically, places are depicted as circles,
transitions as squares, and arcs as arrows.

Markings are the states of a net; each marking m of a Petri net N = (P, T, F )
is a bag over P . A transition t is enabled in a marking m if •t ≤ m; firing an
enabled transition t in marking m yields a marking m′ such that m′+•t = m+t•.

A system is a triple (N, m, Ω), where N is a Petri net, m ∈ INP is the initial
marking and Ω ⊆ INP is a set of final markings. The semantics of a system
(N, m, Ω) is defined as an LTS (INP ,−→, m, Ω), where (m, t, m′) ∈−→ if and
only if m′ + •t = m + t• and •t ≤ m.

Workflow nets are special Petri nets with one initial place and one final place.

Definition 3 (Workflow net, soundness). A Petri net (P, T, F ) is called a
workflow net if (1) there exists exactly one place i ∈ P , called the initial place,
such that •i = ∅, (2) there exists exactly one place f ∈ P , called the final place,
such that f• = ∅, and (3) all nodes are on a path from i to f .

A workflow net N is sound if the LTS semantics of system (N, [i], {[f ]}) is
weakly terminating.

In the temporal logic CTL (Computation Tree Logic, [9]), weak termination (and
hence soundness) can be expressed using the “AG EF” pattern, where AG refers
to every reachable state, and EF refers to the existence of a (terminating) path.
Such properties can be checked for Petri nets using tools like LoLA [25].
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2.2 Open Nets and Composition

We use an extension of Petri nets that is called open nets [13,18]. To model
external asynchronous communication, open nets have an interface that consists
of input places and output places.

Definition 4 (Open (Petri) net, soundness). An open (Petri) net is a
7-tuple (P, T, F, Pi, Po, m0, Ω), where ((P, T, F ), m0, Ω) is a system; Pi ⊆ P is a
set of input places such that •p = ∅ for all p ∈ Pi; Po ⊆ P is a set of output places
such that p• = ∅ for all p ∈ Po; and m.p = 0 for all markings m ∈ Ω ∪ {m0}
and places p ∈ Pi ∪ Po.

A closed net is an open net without asynchronous interface places, i.e., Pi =
Po = ∅. A closed net N is called sound, denoted by SD.N , if the LTS semantics
of its system is weakly terminating.

To model synchronous communication, we extend open nets as in [22] with a
total labeling function L, which assigns to every transition a label that denotes
the synchronous port (if any) it is connected to. If a transition is not connected
to any synchronous port, it is assigned the auxiliary label τ . A closed net also
has no synchronous interface ports, i.e., (∀t : t ∈ T : L.t = τ).

Traditional open nets (without synchronous ports) can be composed by fusing
interface places that are an input place of one net and an output place of the
other, resulting in internal places. Two nets are composable if and only if their
shared interface places are of this kind. Open nets with synchronous ports can be
composed by also fusing each pair of transitions from the two nets with identical
non-τ labels, resulting in τ -labeled transitions.

Without loss of generality, we assume that all nodes except the interfaces of
the involved nets are disjoint, which can be achieved by renaming the internal
(non-interface) places and transitions.

Definition 5 (Composition, [22]). Let N1 and N2 be open nets. N1 and N2
are composable iff Pi1∩Pi2 = ∅ and Po1∩Po2 = ∅. If N1 and N2 are composable,
their composition N = N1 ⊕N2 is defined by

P = P1 ∪ P2; Pi = (Pi1 ∪ Pi2) \ (Po1 ∪ Po2); Po = (Po1 ∪ Po2) \ (Pi1 ∪ Pi2);
Ω = {m1 + m2 | m1, m2 : m1 ∈ Ω1 ∧ m2 ∈ Ω2}; m0 = m01 + m02;

T = Tf ∪ Ts;
Tf = {t | t : t ∈ T1 ∧ (L1.t = τ ∨ (∀t′ : t′ ∈ T2 : L1.t �= L2.t

′))}
∪ {t | t : t ∈ T2 ∧ (L2.t = τ ∨ (∀t′ : t′ ∈ T1 : L2.t �= L1.t

′))};
Ts = {{t1, t2} | t1, t2 : t1 ∈ T1 ∧ t2 ∈ T2 ∧ L1.t1 = L2.t2 ∧ L1.t1 �= τ};

L = {[t, (L1 ∪ L2).t] | t : t ∈ Tf} ∪ {[{t1, t2}, τ ] | t1, t2 : {t1, t2} ∈ Ts};

F = ((F1 ∪ F2) ∩ ((P ∪ Tf)× (P ∪ Tf )))
∪ {[p, {t1, t2}] | p, t1, t2 : {t1, t2} ∈ Ts ∧ ([p, t1] ∈ F1 ∨ [p, t2] ∈ F2)}
∪ {[{t1, t2}, p] | p, t1, t2 : {t1, t2} ∈ Ts ∧ ([t1, p] ∈ F1 ∨ [t2, p] ∈ F2)}.
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2.3 Accordance

A controller of an open net S is an open net R such that SD.(R ⊕ S) holds. A
controllable open net is an open net that has at least one controller.

Definition 6 (Accordance pre-order). The accordance pre-order ≤ on open
nets S and T is defined as: S ≤ T ≡ (∀R :: SD.(R ⊕ T ) ⇒ SD.(R⊕ S)).

The accordance pre-order [3] is equivalent to the conflict pre-order from [17], and
the sub-contract pre-order from [5]. In [20] the relation between this pre-order
and other pre-orders (in particular, fair testing [24]) has been studied.

Definition 7 (Maximal controller, [21]). A maximal controller of a control-
lable open net S is an open net mc.S such that:

(∀R :: SD.(R ⊕ S) ≡ R ≤ mc.S)

We can simplify the two implications inside the equivalence ≡ as follows:

⇐ : mc.S is a controller: SD.(mc.S ⊕ S), and
⇒ : mc.S is larger than all controllers: (∀R :: SD.(R⊕ S) ⇒ R ≤ mc.S).

Using the maximal controller, we can decide accordance by checking deadlock-
freedom in the composition of T and a maximal controller of S. Similar decision
procedures for different pre-orders have been studied in [6,10].

Proposition 1 (Deciding accordance using maximal controller, [19]).
For each open net S and controllable open net T : S ≤ T ≡ SD.(S ⊕mc.T ).

3 Synchronizable Places

In this section we explore the problem of preserving soundness while refining
pairs of (synchronizable) places. We apply a semi-formal style.

3.1 Introduction

Service compositions consist of several independent services that communicate
via interfaces. We use Petri nets to model the communication between such
services. Our aim is to support the design of nets in a top-down manner, in
particular by refining pairs of places.

Suppose a closed net N is given, which contains two internal places p and q
(which do not occur in the initial marking nor in any final marking). These two
places can be refined by an open net M with input places p and q, and output
places p′ and q′. This refinement, denoted by N $M , is sketched in Fig. 1.

If places p and q in N are related to two different services, we thus impose
the additional communication protocol M on the two services to which places
p and q in N belong. We assume that open net M also models several services,
i.e., input place p models the initial state of one service, and output place p′



136 K.M. van Hee et al.

M
p

p’

q

q’

f

(a) Workflow

p q

p’ q’

(b) Forward

p q

f
p’ q’

u

t1 t2 t3

(c) Sequence

Fig. 2. Exploration: some (counter) examples

models the end state of the service; similarly for q and q′ in relation to another
service. Moreover, net M consumes a token from p before it produces a token
in p′; similarly for places q and q′. Finally, we assume that the net in Fig. 2(a),
which contains M , is a sound workflow.

In what follows, we study under which conditions p and q in net N can
be called synchronizable, i.e., under which conditions the refinement N $M is
sound. Such conditions must implicitly approximate M , but independently of
any specific M .

3.2 Soundness

Soundness of N is a necessary condition for the refinement. Consider for example
the net M in Fig. 2(b), for which N $M is equivalent (fusion of series places
[23]) to N , for every net N . For N $M to be sound, net N must be sound.

However, this is not a sufficient condition. An example refinement N $ M
is depicted in Fig. 2(c). Net N contains places p and q that are “sequentially
connected” by transition t2, and net M is a simple synchronizing net. Although
N is sound, N $ M reaches a deadlock after firing transition t1. From this
example we conclude that it should be possible to mark places p and q in net N
at the same time.

3.3 Refinement with the Simplest Synchronizing Net

The previous subsection suggests to check soundness of N refined with the sim-
plest synchronizing net M , viz., a single transition, as depicted in Fig. 2(c).

However, this is not a sufficient condition. An example refinement N $ M
is depicted in Fig. 3(a). Net N fires transition t1, followed by an alternation
between transitions t3, t6 and t2, t5, and finally transition t4. Net N is sound, even
after refinement with the simplest synchronizing net. However, in the refinement
N $M , net M can consume a second token from q before producing a token
in p′ (or net N can produce a second token in q before consuming a token from
p′). After firing transitions t1, u1 and u2, transitions t3 and t6 can fire, and
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hence transitions u4 and u7 can fire; thus resulting in a deadlock. The net is
even unbounded, as after transitions t1, u1, u2, t3, t6 and u4, transition u6 can
fire unlimitedly. Net N enables behavior in net M that is not considered by the
soundness check on M as the transitions u4, u5, u6, u7 and u8 are dead.

Thus the simplest synchronizing net M as depicted in Fig. 2(c) is not a proper
approximation of each sound workflow. For the AG-part of soundness, we con-
clude that net N should not contain transitions (like the ones we have just
discovered) that may lead M into unexplored behavior.

3.4 Some Transitions Should Not Occur

The previous subsection suggests to check that N can only produce tokens on
place p (using action p) and consume tokens from place p (using action p′) in
the orders described in Fig. 4. The initial state is s0, and both the solid and the
dashed transitions are permitted. For readability reasons, each state is annotated
with the number of tokens in places p and q. Without loss of generality, we assume
that each transition in N performs at most one action. In particular, in states
s4, s5 and s7, Fig. 4 excludes producing a token in q for the second time before
any token has been consumed from p; thus excluding the example in Fig. 3(a).

However, this is not a sufficient condition. An example refinement N $M is
depicted in Fig. 3(b). In net N , transition t is crucial for termination; its firing
implies that N has produced a token on p, but not yet on q. Net N only executes
actions in the order specified in Fig. 4, but in N$M , net M eliminates the path
to termination from net N . So M imposes additional synchronization on net N .

Thus the solid and dashed transitions in Fig. 4 are not a proper approximation
of each sound workflow. For the EF-part of soundness, we conclude that net N
should only use transitions that cannot be excluded by any M .
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Fig. 4. May/exit transition system

3.5 Some Transitions Should Occur

The previous subsection suggests to check that also from every reachable non-
final state of N , a final state can be reached using only the solid transitions in
Fig. 4. In particular, in state s1, this excludes that for termination of net N first
a token from p must be consumed before any token on q has been produced.

Fig. 4 contains a may/exit transition system, where all transitions are may-
transitions, and the solid transitions are also exit-transitions. Thus, we obtain
a sufficient condition for synchronizable places p and q in N , viz., N should be
sound under the restrictions from the may/exit transition system in Fig. 4. That
is, for the AG-part of soundness both the exit- and the may-transitions can be
used, whereas for the EF-part of soundness only the exit-transitions can be used.

In relation to modal (may/must) transition systems [15], the may-transitions
correspond, whereas the exit- and must-transitions are unrelated. In relation to
game theory [8], the may-transitions are “conserving”, and the exit-transitions
are “equalizing”. A detailed study of may/exit transition systems is outside the
scope of this paper.

4 Homogeneous Solution

The refinement described in Section 3 depends on a sound workflow for M and a
special kind of soundness for N that takes into account the may/exit transition
system from Fig. 4. In this section we show how these criteria can be formulated
in a homogeneous way as two checks for (traditional) soundness. We start by
defining place refinement in terms of composition of open nets.

4.1 Refinement in Terms of Composition

Suppose a net N is given with places p and q as in Fig. 5(a). To separate the
incoming and outgoing arcs from these places we apply fusion of series places [23]
and obtain Fig. 5(b). By definition of composition of asynchronous interfaces,
this is equal to Fig. 5(c).
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Fig. 5. Refinement in terms of composition

Thus each net N is equivalent to a similar open net N ′ composed with the
open net from Fig. 2(b). The refinement of net N with an open net M (with an
asynchronous interface), denoted by N $M , is defined as N ′ ⊕M .

Although asynchronous interfaces are most natural in Petri nets, our results
are easier to explain in terms of synchronous interfaces. Therefore we show how
two nets with an asynchronous interface can be translated into two nets with a
synchronous interface, in such a way that the compositions are equivalent.

Consider any pair of corresponding interface places from the two nets as in
Fig. 5(d). After composing them, we apply fusion of series places [23] and obtain
Fig. 5(e). By definition of composition of synchronous interfaces, this is equal
to Fig. 5(f). So every asynchronous interface place in the open nets N ′ and M
becomes an internal place that is connected by a transition to a synchronous
interface port (indicated by a black dot). Thus we transform open nets N ′ and
M into open nets N ′′ and M ′′ such that N $M is equivalent to N ′′ ⊕M ′′. In
what follows, we use N and M to refer to N ′′ and M ′′.

4.2 Two Checks for Soundness

In this section we propose a pair of open nets E (environment) and T (test)
with the same synchronous interface as N and M . The idea is to conclude that
N ⊕M is sound if both N ⊕ T and E ⊕M are sound:

(∀N, M :: SD.(N ⊕ T ) ∧ SD.(E ⊕M) ⇒ SD.(N ⊕M))
For brevity reasons, in Fig. 6 we describe open nets E and T using an LTS
(where double circles denote final states) with some additional transitions; such
an LTS can be translated to an open net with a synchronous interface (where
every transition has one incoming and one outgoing arc). For every numbered
state i and action a mentioned in Fig. 6(c), a transition i

a−→ b should be added
(called a “fact”-transition in [11]), where state b is a deadlock state.

In the remainder of this section we motivate these nets E and T using the
insights from Section 3. In Section 5 we formally show their correctness, and the
way in which net T can be computed from net E.
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Fig. 6. State machines for the pair 〈E, T 〉

Net E: The condition on M in Section 3 is that Fig. 2(a) yields a sound work-
flow. Definition 3 (Workflow) requires that all nodes are on a path from i to f ,
which, in combination with soundness, guarantees that after M has produced all
output tokens, all non-output places of net M are empty. As the internal places
of M cannot be accessed using composition, the overall structure of net E in
Fig. 6(a) checks that M is sound even when executed multiple times. Note that
this condition is slightly more liberal.

The τ -transitions in states 1 and 2 indicate that M does not need to be able
to produce tokens in p′ or q′ before consuming a token from both p and q. The
τ -transitions in states 0 and 4 indicate that M should not depend on the order
in which tokens are produced in p and q, or consumed from p′ and q′.

The fact transitions check a condition related to M modeling a pair of services,
viz., whether M cannot produce a token in place p′ too early (before consuming
a token from place p); and similarly for q and q′.

Net T : The condition on N in Section 3 is that N is sound under the restrictions
from the may/exit transition system in Fig. 4, and that all transitions that are
connected to p and q occur in Fig. 4. Net T in Fig. 6(b) is motivated by the
first part, and therefore consists of two sides: the left side contains both the may
and the exit transitions, while the right side contains only exit transitions. The
initial state is at the left, the final state is at the right, and there are only τ -edges
from left to right. This motivates that net T checks that N is sound under the
restrictions from Fig. 4.

What remains is to ensure that N does not contain transitions that do not
occur in Fig. 4. The fact transitions in T check that the transitions p and q (that
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produce a token in a place) do not occur as specified in Fig. 4. We do not need
such a check for transitions p′ and q′ (that consume a token from a place), as in
these cases the place is guaranteed to be empty.

5 Generalizing Theory

In this section we focus on the approach from Section 4. We give a theoretical
foundation, and show a way in which valid pairs of nets can be constructed. In
this way we generalize the notion of synchronizable pairs of places.

5.1 Foundation

Suppose two open nets N and M are given, and we want to prove that their
composition is sound, denoted by SD.(N⊕M). We aim for a sufficient condition
that can be split into parts referring only to N or M , but not both.

Let us calculate for any two open nets N and M :

SD.(N ⊕M)
≡ { “⇐” Definition 6 (Accordance pre-order); “⇒” instantiation E := N }

(∃E :: N ≤ E ∧ SD.(E ⊕M))
≡ { Proposition 1 (Deciding accordance using maximal controller) }

(∃E :: SD.(N ⊕mc.E) ∧ SD.(E ⊕M))

Note that conjunct SD.(E⊕M) guarantees that net E is controllable, and hence
mc.E is defined. For every open net E we thus obtain a sufficient condition for
proving SD.(N ⊕M), viz.,

(∀E, M, N :: SD.(N ⊕mc.E) ∧ SD.(E ⊕M) ⇒ SD.(N ⊕M))

Alternatively, suppose the open nets E and M are given. We want to prove that
SD.(E ⊕M) is an exact condition for concluding that for each net N such that
SD.(N ⊕mc.E) holds, also SD.(N ⊕M) holds.

Theorem 1.

(∀E, M :: SD.(E ⊕M) ≡ (∀N :: SD.(N ⊕mc.E) ⇒ SD.(N ⊕M)))
(∀E, N :: SD.(N ⊕mc.E) ≡ (∀M :: SD.(E ⊕M) ⇒ SD.(N ⊕M)))

Proof. We justify the two equivalences ≡ by proving two implications:

⇒ : follows from our introductory result (using quantifier logic);
⇐ : follows from instantiations N := E and M := mc.E respectively. ��

In fact, “⇐” uses that mc.E is a controller, and “⇒” uses that it is maximal.

5.2 Computing Maximal Controllers

Maximal controllers are related to canonical duals [7] for which there is a trivial
computation, but this does not apply in our setting. In [19] we have shown how
to construct a maximal controller if the behavioral property is deadlock freedom.
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This was based on operating guidelines [16] for deadlock freedom. As far as we
know, there are no published results yet wrt. soundness for maximal controllers
nor for operating guidelines. In what follows we compute a finite representation
of a maximal controller for soundness, but only for a class of open nets.

The open nets that we consider are a generalization of net E in Fig. 6(a) or
net T in Fig. 6(b). For describing the parameters, we focus on such a net E. The
states contain a set I of core states (which are numbered in Fig. 6(a)), including
the initial state b. There is a subset F of I that contains the core states with a
τ transition to a final state without outgoing transitions.

The transitions from each core state i : i ∈ I can be characterized by three
sets: set E.i contains the non-τ actions from state i, set C.i contains the non-τ
actions from state i for which there is a dedicated τ transition from i, and set
D.i contains the fact non-τ actions from state i that lead to a deadlock. Finally,
W.i.a indicates the next core state after doing action a in core state i;

Definition 8 (Pair of nets 〈X, Y 〉). Given a set I of core states, an initial
core state b : b ∈ I, and a set F : F ⊆ I of final core states. Furthermore, for
every i : i ∈ I, three sets E.i, C.i and D.i of actions are given, and a successor
function W.i.a with result type I for a : a ∈ E.i ∪ C.i.

A pair of nets 〈X, Y 〉 consists of two open nets X and Y . Open net X has the
following LTS semantics (for any δ : δ �∈ I and ω : ω �∈ I):

S = {X.i | i ∈ I} ∪ {X.i.a | i ∈ I ∧ a ∈ C.i} ∪ {X.δ, X.ω}
→ = {(X.i, a, X.(W.i.a)) | a ∈ E.i}

∪ {(X.i, τ, X.i.a) | a ∈ C.i} ∪ {(X.i.a, a, X.(W.i.a)) | a ∈ C.i}
∪ {(X.i, a, X.δ) | a ∈ D.i} ∪ {(X.i, τ, X.ω) | i ∈ F}

Ω = {X.ω} si = X.b

Open net Y has the following LTS semantics (for any δ : δ �∈ I):

S = {Y.i | i ∈ I} ∪ {Z.i | i ∈ I} ∪ {Y.δ}
→ = {(Y.i, a, Y.(W.i.a)) | a ∈ E.i ∪ C.i} ∪ {(Z.i, a, Z.(W.i.a)) | a ∈ C.i}

∪ {(Y.i, a, Y.δ) | a ∈ E.i ∪C.i ∪D.i} ∪ {(Y.i, τ, Z.i) | i ∈ I}
Ω = {Z.i | i ∈ F} si = Y.b

This definition provides a procedure for computing Y if X is given, or X if Y
is given. Net E in Fig. 6(a) and net T in Fig. 6(b) form a pair of nets 〈E, T 〉 as
described in Definition 8.

In the remainder of this section we provide a condition on pairs of nets 〈X, Y 〉
that guarantees that nets X and Y are a maximal controller of each other. To
this end we need to prove that net Y is a controller of net X , and net Y is larger
than each controller of X ; and vice versa.

The first requirement boils down to checking soundness of X ⊕ Y . We focus
on the last requirement, which can be formalized as

– (∀M :: SD.(X ⊕M) ⇒ M ≤ Y ) , and
– (∀N :: SD.(N ⊕ Y ) ⇒ N ≤ X) ,
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which are equivalent to the following symmetric formalization:

(∀M, N :: SD.(N ⊕ Y ) ∧ SD.(X ⊕M) ⇒ SD.(N ⊕M))

Before proving this in Lemma 2, we first prove a supporting lemma. For a path
σ, we use πN .σ to denote the projection of σ on the steps by N ; we use s

σ−→ t to
denote that there is a path σ from state s to state t. In the context of synchronous
interfaces, each state that is reachable in the composition N⊕M can be described
as a pair (sN , sM ) consisting of a state sN in N and a state sM in M .

Lemma 1. Given any pair of nets 〈X, Y 〉 as in Definition 8, and any two open
nets M and N , such that SD.(N ⊕ Y ) and SD.(X ⊕M). For any path σ and
states sN and sM such that N ⊕M

σ−→ (sN , sM ), there exists a core state i and
paths σ1 and σ2 such that:

N⊕Y
σ1−−→ (sN , Y.i) ∧ X⊕M

σ2−−→ (X.i, sM ) ∧ πN .σ = πN .σ1 ∧ πM .σ2 = πM .σ

Proof. We prove this using structural induction on σ. In the basis σ = ε we
choose σ1 = σ2 = ε and i = b. Each appended internal step of either N or M in
σ can be appended to σ1 or σ2 respectively without affecting i.

Each appended synchronized step a in σ is a step of both M and N , and hence
it should be appended to both σ1 and σ2. As SD.(N ⊕ Y ) and SD.(X ⊕ M),
a is not a fact transition in state X.i nor in state Y.i, i.e., a is not in D.i nor
in E.i ∪ C.i ∪ D.i; hence a is in E.i or C.i. Both X.i and Y.i can perform
this step (after inserting a τ -step in σ2 in case a ∈ C.i), and resulting in state
X.(W.i.a) and Y.(W.i.a) respectively. ��

Lemma 2. For every pair of nets 〈X, Y 〉 as in Definition 8:

(∀M, N :: SD.(N ⊕ Y ) ∧ SD.(X ⊕M) ⇒ SD.(N ⊕M))

Proof. Assume SD.(N ⊕ Y ) and SD.(X ⊕M), and let us focus on SD.(N ⊕M).
Soundness denotes that after every path there is a path to a final state. From
Lemma 1 we can conclude that every path in N ⊕M to any state (sN , sM ) can
be mimicked using paths to (sN , Y.i) and (X.i, sM ) in N ⊕ Y and X ⊕M .

What remains is to construct a path from state (sN , sM ) to a final state. At
this point we use the τ -step from Y.i to Z.i. As N ⊕ Y is sound, there is a path
from (sN , Z.i) to a final state (s′N , Z.i′), with i′ ∈ F ; in Y such a path can only
use C-actions.

As X ⊕M is sound (and hence deadlock free), we can use the τ -steps to the
C-actions in X to construct a path in X ⊕M to a state (X.i′, s′M ) using the
same synchronized steps as the path in N ⊕ Y . From state (X.i′, s′M ) the state
(X.ω, s′M ) can be reached using a τ -step. As X ⊕M is sound, this means that
from state s′M in M there is a path to a final state s′′M using only internal steps.
Using a proper synchronization of these paths, we obtain a path in M ⊕N to a
final state (s′N , s′′M ). ��

Theorem 2. Given a pair of nets 〈X, Y 〉 as in Definition 8. If the composition
X ⊕ Y is sound, then nets X and Y are a maximal controller of each other.



144 K.M. van Hee et al.

The composition T ⊕E for the pair 〈T, E〉 in Fig. 6 is sound. Given the disjoint-
ness of C, D, E and E.i ∪ C.i ∪D.i, and as the C’s are non-empty, there are no
reachable deadlocks. From every reachable state there is a path to a final state
that only uses C transitions. Hence T and E are maximal controllers.

Using the construction from this section, we can generalize Section 4 from
pairs of synchronizable places to larger numbers of synchronizable places. In
these cases, the nets E and T become bigger; net E is probably the simplest one
to modify manually, whereas net T can better be computed using Definition 8.

6 Conclusions and Further Work

In the context of service compositions, we have developed conditions on a refined
net N and a refining net M in isolation such that the refinement of N by M
is sound. We have generalized these techniques to a larger class of refinements,
and proved their correctness in terms of composition and maximal controllers.

It is further work to combine our techniques (aimed at vertical modulariza-
tion) with the techniques from [2] for horizontal modularization. Furthermore, we
want to investigate which other temporal properties, besides soundness, can be
preserved by (extensions of) our method.

Our techniques are based on pairs of nets that are each others maximal con-
troller. These nets can be considered as tests, and thus have a much wider appli-
cation area. For example, a sound pair 〈X, Y 〉 can be seen as a contract between
two organizations. If one organization develops a service M that is sound with X ,
and the other independently develops a service N that is sound with Y , then the
composition of M and N is also guaranteed to be sound. In this way, X and Y can
be seen as test stubs and skeletons for M and N .
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Abstract. We present the first direct formalization of the semantics of
inclusive gateways as described in the Business Process Modeling Nota-
tion (BPMN) 2.0 Beta 1 specification. The formal semantics is given for
a minimal subset of BPMN 2.0 containing just the inclusive and exclu-
sive gateways and the start and stop events. By focusing on this subset
we achieve a simple graph model that highlights the particular non-local
features of the inclusive gateway semantics. We sketch two ways of imple-
menting the semantics using algorithms based on incrementally updated
data structures and also discuss distributed communication-based imple-
mentations of the two algorithms.

1 Introduction

Business Process Modeling Notation (BPMN), a standardized notation for rep-
resenting processes within organizations, is soon to be released in a major new
revision. According to the draft BPMN 2.0 specification,

The primary goal of BPMN is to provide a notation that is readily un-
derstandable by all business users, from the business analysts that create
the initial drafts of the processes, to the technical developers responsible
for implementing the technology that will perform those processes, and
finally, to the business people who will manage and monitor those pro-
cesses. Thus, BPMN creates a standardized bridge for the gap between
the business process design and process implementation [5, p. 1].

Because BPMN seeks to serve as a kind of universal communication tool for
business processes, it is vitally important that all parties agree on the meaning
of a BPMN diagram. The BPMN 2.0 specification provides a rather detailed,
but still only informal description of its semantics [5, p. 389].

The so-called inclusive gateways of BPMN seem particularly challenging to
provide semantics for, since a non-trivial (and non-local) backwards search in
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the flow graph is included in the specification of their semantics. This is similar
to the OR-joins of YAWL and EPC which have been the subject of several
papers aiming to clarify their non-local semantics [6,1,3]. In this work, we focus
on a small subset of BPMN 2.0, called BPMNinc (BPMN inclusive) which just
includes the primitives needed to illustrate the complexity of inclusive gateways
and formalize their semantics in a way that can be generalized to full BPMN
2.0.

BPMNinc is defined in Section 2. A formal semantics is provided for BPMNinc
in Section3, followed by a discussion of how it can be implemented efficiently
and in a distributed manner. Related work is discussed in Section 4.

2 BPMNinc and Its Informal Semantics

BPMN process diagrams contain a large number of different graphical elements.
Broadly speaking, there are four classes of elements that are of interest when
designing semantics:
Sequence Flow describes the order in which various parts of the process occur.
Events represent things that can happen during a process, such as a message
being sent or a timer.
Activities represent work performed by a company, and can either be atomic (in
which case they are called tasks) or they can represent another process diagram.
Gateways provide flow control within a process diagram [5, p. 21].
With the exception of Sequence Flow, there are multiple variations of each of
the above elements, providing for different kinds of flow control and allowing
representation of different kinds of business activities.

For purposes of this paper, only a small subset of BPMN that is sufficient to
illustrate certain difficult properties will be used. BPMNinc, the subset, contains:

- Sequence flow - Exclusive gateways - Inclusive gateways
- Start events - End events

Above, a gateway is exclusive when it behaves as an exclusive conditional while
it is inclusive when its activation depends on further conditions on the incoming
flows as well as allowing for multiple parallel outcomes. Start and end events
model initiation and termination of BPMN processes. In the following, certain
aspects of BPMNinc will not be defined in full detail. For example, the conditions
that determine which outgoing sequence flow should be chosen after a gateway is
activated are simply assumed to exist and be subject to evaluation, giving either
a true or false result, while the mechanism of this evaluation remains unspecified.

Activities are not included in BPMNinc, as their possible effects are not mod-
eled. For our purposes, an activity will be equivalent to an exclusive gateway
with a single incoming and a single (default) outgoing sequence flow.

Finally, note that the parallel split from BPMN where the flow of execution
is split into two parallel flows can just be seen as a special case of inclusive
gateways, where all outgoing conditions evaluate to true and the default flow
connects to the end event. Parallel join is not straightforwardly encodable using
inclusive gateways, but it is however straightforward to include in our semantics.
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2.1 Sequence Flow and Tokens

Sequence flow represents the order in which the execution of a BPMN process
occurs. [5, p. 21] It is represented as an arrow.

We follow the BPMN 2.0 specification in representing the execution state of
a process with tokens on sequence flow[5], which is represented graphically as a
small solid black circle placed next to the sequence flow. When the sequence flow
before some element of a process diagram receives a token, then the element is
activated in some way dependent on the precise type of element. The control-flow
semantics of the gates are then given by the tokens required on their incoming
sequence flow and the tokens produced on the outgoing sequence flow. Note that
a sequence flow may have more than one token.

2.2 Exclusive Gateways

The semantics of exclusive gateways are quite uncomplicated. When a token
arrives on any incoming sequence flow, it evaluates the conditions on the outgoing
sequence flow until it finds one that returns true. It then places a token on that
sequence flow and stops evaluating conditions. If no condition evaluates to true,
then the sequence flow marked as default receives the token. [5, p. 401]

In BPMNinc, every exclusive gateway must have a default outgoing sequence
flow, which is indicated by placing a slash through the line immediately next to
the gateway. In the exclusive gateway in Fig. 1, when a token arrives on any one

Fig. 1. An exclusive gateway

of the incoming sequence flow on the left, C1 is evaluated. If it is true, a token
is emitted on the sequence flow that C1 is associated with. If it is not true, then
C2 is evaluated, and if it is true, then a token is emitted on the sequence flow
attached to C2. Finally, if no condition evaluates to true, then a token is emitted
on the default sequence flow.

2.3 Inclusive Gateways

The BPMN inclusive gateway is problematic because it requires a search to be
made for tokens upstream of it.1. To quote the specification:

The Inclusive Gateway is activated if
– At least one incoming sequence flow has at least one Token and

1 Note that other gateways, such as the complex gateway, share this behavior.
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– for each empty incoming sequence flow, there is no Token in the
graph anywhere upstream of this sequence flow, i.e., there is no di-
rected path (formed by Sequence Flow) from a Token to this sequence
flow unless
• the path visits the inclusive gateway or
• the path visits a node that has a directed path to a non-empty

incoming sequence flow of the inclusive gateway. [5, p. 401]

BPMNinc includes all this behavior. Note that the specification is independent
of which other events, activities or gateways are allowed in the diagram. Con-
sequently, our formal semantics for inclusive gateways can be straightforwardly
extended to any superset.

According to the above definition, in the process shown in Fig. 2, if there is
a token on edges A and B, then the rightmost inclusive gateway is allowed to
activate because there is a directed path from the topmost exclusive gateway to
A. However, if the topmost exclusive gateway fires first and sends a token on
its top sequence flow, then the gateway labeled α must complete, depositing a
token at C, before the rightmost inclusive gateway can fire. The example thus
also illustrates that the BPMN 2.0 specification of the behavior of inclusive
gateways may lead to race conditions.

Fig. 2. Process with inclusive gateways

The other exception in the search defined above relates to gateways in cycles.
Fig. 3 shows one such process. The inclusive gateway can fire if there is a token
on the first sequence flow (immediately after the start event) even though the
top incoming sequence flow does not have a tokens.

Fig. 3. A simple process with a loop

A simple approach to a token-based semantics, in which gates determine
whether to fire based only upon which of the incoming sequence flow contain
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tokens, is clearly unable to implement the requirements of the specification with-
out resorting to some kind of global information about the flow of control in the
rest of the process.

After the inclusive gateway fires, the conditions on all outgoing sequence flow
are evaluated. If any of them are true, then all sequence flow whose conditions
are true receive tokens. If none of them are true, then the default outgoing
sequence flow receives a token.

2.4 Start and End Events

A start event is responsible for emitting the first token that starts the process.
BPMN has relatively complex semantics for running multiple parallel instances
of subprocesses. Because BPMNinc has no concept of subprocesses, start events
need only emit the first token.

Likewise, no specific semantics for the end of a subprocess are necessary in
BPMNinc. Therefore, end events simply consume tokens, and the process is com-
plete when there are no tokens remaining.

3 Formal Semantics for BPMNinc

In this section, we define a formal semantics for BPMNinc. Unlike the other
possible approaches to providing a formal semantics for BPMN (see Section 4),
the semantics provided here does not attempt to translate the BPMNinc process
to another formal system. Instead, semantics is given operationally directly as a
token-based semantics for the BPMNinc process graph.

Throughout this section, the process in Fig. 3 will be used to demonstrate the
formalization. The letters α, β, γ and δ are not a part of BPMNinc, but they
provide a means of referring to individual gateways.

3.1 BPMNinc Process Graphs

Below, we give the formal definition of BPMNinc process graphs:

Definition 1 (BPMNinc Process). 2 A process P is a tuple (N,L, S,%, C, M)
such that:

– N is a set of nodes;
– the labeling L : N → {Excl , Incl ,Start ,End} maps nodes in N to either Excl

(BPMN exclusive gateways), Incl (BPMN inclusive gateways), Start (start
events), and End (end events);

– S ⊆ N × N is a set of sequence flows such that (n, n′) ∈ S implies L(n) �=
End and L(n′) �= Start;

2 This definition is somewhat analogous to that of Petri nets[7], where N corresponds
to transitions, and S corresponds to places, except that the sequence flow connects
exactly one node to another node.
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– %⊆ S × S is an ordering relation over S such that
• for all n if (n, n′) ∈ S and (n, n′′) ∈ S then either (n, n′) % (n, n′′) or

(n, n′′) % (n, n′) (% is total over the outgoing sequence flows for any
given gateway);

• and (n1, n2) % (n3, n4) implies n1 = n3 (% does not relate sequence flows
with different source gateways);

– C : S → Cond is a partial map (defined on the outgoing sequence flows of
inclusive and exclusive gateways) to (an assumed set of) conditions such that
the maximal (w.r.t. the ordering %) outgoing flow for each gateway always
has the condition true; and

– M : S → N is a marking of S with tokens.

Above, % is an ordering relation defined such that the outgoing sequence flow
of any node is totally ordered. The maximal outgoing flow of exclusive and
inclusive gateways w.r.t. this ordering plays the special role as the default flow.
Graphically, this is represented by the layout order of the outgoing sequence
flow, with a dash through the line of the default flow (if there are more than
one outgoing flow). In the rest of the paper we will let D � {s | L(fst(s)) ∈
{Excl, Incl} ∧ ∀s′ : s % s′ implies s′ = s} be the set of all default flows. We
can then use this ordering when implementing the exclusive gateway in order to
determine the order in which the conditions on the outgoing sequence flow should
be evaluated. C represents a mapping from sequence flow to logical conditions
that are evaluated in order to determine which outgoing sequence flow of some
gateway receives tokens when that gateway fires. For our purposes, it suffices
simply to define some condition C(s) for some sequence flow s ∈ S to be true
just in case some evaluation function eval(C(s)) returns true. Note that it is not
strictly necessary to introduce C and eval , as the rules could simply be rewritten
to be nondeterministic, yielding a simpler semantics with equivalent behavior.
However, the current formulation is closer to the semantics of full BPMN, and it
makes clear exactly how this particular nondeterminism is to be removed when
expanding the subset.

Example 1. TheprocessP1 inFig. 3 is represented as the tuple (N,L, S,%, C, M),
where

N = {α, β, γ, δ, }
L = {(α,Start), (β, Incl), (γ,Excl), (δ,End)}
S = {(α, β), (β, γ), (β, δ), (γ, β)}
C = {((β, γ), Cβ,γ), }
M = {((α, β), 1), ((β, γ), 0), ((β, δ), 0), ((γ, β), 0)}

and (β, γ) % (β, δ) is the only non-trivial pair in %

where Cβ,γ denotes some condition with associated evaluation function eval that
returns either true or false. The set D of default flows given as the maximal
outgoing flows w.r.t. the order % is {(β, δ), (γ, β)}.
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Before giving the formal semantics of processes, we formalize the notions of
incoming and outgoing sequence flows.

Definition 2 (Incoming/Outgoing Sequence Flow). The incoming sequence
flow of some noden, writtenSin(n), is defined asSin(n) = {(n0, n1) ∈ S | n1 = n}.
The outgoing sequence flow Sout is defined as Sout(n) = {(n0, n1) ∈ S | n0 = n}.

Additionally:

Definition 3 (Source/Target Nodes on Sequence Flow). The source and
target nodes of some sequence flow s = (n0, n1) are defined as fst(s) = n0 and
snd(s) = n1.

Example 2. For P from Example 1 Sin(β) = {(α, β), (γ, β)} and Sout(β) =
{(β, γ), (β, δ)}.

3.2 BPMNinc Formal Semantics

The approach to semantics discussed in this section successfully implements
the rules governing inclusive gateways informally discussed above. Evaluation is
divided into two phases. The first phase of the evaluation consists of annotating
each sequence flow with the set of paths from that sequence flow to each upstream
token. In the second phase we use that information to determine if inclusive
gateways can fire. Once a gateway fires, a token (and at most one) is obviously
consumed.

The annotation map G has type S → 2N∗
, or in other words, it maps sequence

flow to sets of sequences of nodes. To avoid confusion, sequences of nodes are
written in square brackets, where [] represents the empty sequence. G is com-
puted with algorithm 3.1. One way to picture the operation of the algorithm
(which we will elaborate a bit more in Section 3.3 below) is by imagining that
each token sends a message down its sequence flow. That message, which starts
with an empty payload, accumulates the unique identifiers of each of the gate-
ways that it crosses. The message travels out of all of the outgoing sequence flow
of each gateway it enters. If the gateway that the message is about to cross is
already listed in the message payload, then it stops.

The algorithm consists of two working procedures AddToPath and
StepPathAnnotation along with the main code contained in main. Procedure
AddToPath simply takes a path of nodes [a0, a1, . . . , an] and appends a new
node b at its end only if b is not already present. The other procedure, namely
StepPathAnnotation takes a flow annotation G as an argument and returns
a new one by updating G according to the marking M . More precisely, each
sequence flow s containing a token (that is, where M(s) > 0) is annotated with
the empty string. On the other hand, each edge with no tokens is updated ac-
cording to the annotations of upstream sequence flows: if (n0, n) and (n, n1) are
in S then G((n, n1)) is also updated with AddToPath(G((n0, n)), n). Finally,
the code in main computes the least fixed point of StepPathAnnotation.
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Algorithm 3.1. ComputePathAnnotations(S, N, M)

procedure AddToPath([a0, a1, . . . , an], b)
/*Add b to the end of the path only if b is not in the path already*/
if b ∈ {a0, a1, . . . , an}

then p← [a0, a1, . . . , an]
else p ← [a0, a1, . . . , an, b]

return (p)

procedure StepPathAnnotation(G)
G′ ← ∅ /*G′ represents the new annotation to be generated from G. */
for each s = (n0, n1) ∈ S

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if M(s) > 0

then

⎧⎨
⎩

G′(s) ← {[]}
/* Sequence flow containing a token always has
an empty path to a token */

else

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ps ← ∅
for each s′ ∈ Sin(n0)
do ps ← ps ∪ {AddToPath(p, n0) | p ∈ G(s′)}

G′(s) ← ps

/* Each sequence flow gets incoming sequence
flows’ + the node on the left */

return (G′)

main
G0 ← StepPathAnnotation(∅)
repeat

do

⎧⎨
⎩

/* Iterate until the fixed point is found */
G1 ← G0
G0 ← StepPathAnnotation(G0)

until G0 = G1
return (G1)

Example 3. Applying Algorithm 3.1 to P from Example 1 yields the map

(α, β) �→ {[]}
(β, γ) �→ {[β], [βγ]}
(γ, β) �→ {[βγ]}
(β, δ) �→ {[β], [βγ]}

This annotation is illustrated visually in Fig. 4
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Fig. 4. Example path annotation

We can now state the following:

Theorem 1. Algorithm 3.1 always terminates.

Proof (Sketch). The fix point always exists simply because the topology of the
process is finite, paths can at most contain each node once, and the function
AddToPath is monotone. ��

Given a BPMNinc process (N,L, S,%, C, M) with path annotation G, a new
marking M ′ can be obtained by applying any of the following rules to any node
n = (a, t).

First, to help keep the definition of the rule covering inclusive gateways read-
able, the function NotBlocking , which determines whether a particular empty
incoming sequence flow prevents an inclusive gateway from activating, is defined
as follows:

Definition 4. The predicate NotBlocking(s) is true if and only if⎛
⎜⎜⎜⎜⎝

G(s) = ∅ ∨

∀p ∈ G(s) :

⎛
⎜⎝

snd(s) ∈ p ∨

∃s′ ∈ Sin(snd(s)) :

(
M(s′) > 0 ∧
∃n ∈ p : Reachable(n, s′)

)⎞
⎟⎠

⎞
⎟⎟⎟⎟⎠

where

Reachable(n, s) �
(
n = fst(s) ∨ ∃s′ ∈ Sin(fst(s)) : Reachable(n, s′)

)
NotBlocking corresponds to the conditions defined in the specification under
which an inclusive gateway is allowed to fire even though it has empty incoming
sequence flow. When listing the requirements for empty incoming sequence flow
to inclusive gateways, the specification states that the gateway may only fire
if there is no token upstream of the empty sequence flow, unless the path to
the token visits the inclusive gateway or any node on the path is upstream of
one of the incoming sequence flows with a token [5, p. 401]. In the definition of
NotBlocking :

– The clause G(s) = ∅ corresponds to there being no token upstream of the
sequence flow, as it means there are no paths from a token to s.
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– The first disjunct within the universally quantified clause represents the
situation in which the path in question visits the inclusive gateway.

– The second disjunct represents the path in question being upstream of an
incoming sequence flow that has a token. This is because if a node that is
upstream of the empty incoming sequence flow includes another node that is
part of a path to a sequence flow with a token, then that node is upstream
of that sequence flow.

We now give the formal semantics of BPMNinc through three rules. In the fol-
lowing, we define δφ = 1 whenever the predicate φ is true and δφ = 0 otherwise.
First, we give the rules for the activation of inclusive gateways:

(Incl)

∀s ∈ Sin(n) : (M(s) > 0 ∨ NotBlocking(s)) ∃st ∈ Sin(n) : M(st) > 0

∃sok ∈ Sout(n) : (sok �∈ D ∧ eval(C(sok))) L(n) = Incl

∀s ∈ Sin(n) : M ′(s) = M(s) − δM(s)>0

∀s′ ∈ Sout(n) : M ′(s′) = M(s′) + δ(s′ �∈D∧eval(C(s′)))

(Incldf)

∀s ∈ Sin(n) : (M(s) > 0 ∨ NotBlocking(s)) ∃st ∈ Sin(n) : M(st) > 0

¬ (∃sok ∈ Sout(n) : (sok �∈ D ∧ eval(C(sok)))) L(n) = Incl

∀s ∈ Sin(n) : M ′(s) = M(s) − δM(s)>0

∀d ∈ Sout(n) : M ′(d) = M(d) + δd∈D

These rules construct a new marking M ′, which gives the marking of the in-
going and outgoing flows after the gateway has fired. (Incldf) activates the de-
fault outgoing sequence flow if no outgoing sequence flow with conditions receive
tokens.

The clause L(n) = Incl in the premise of (Incl) simply restricts the rule
to only apply to inclusive gateways. The condition ∃st ∈ Sin(n) : M(st) > 0
corresponds to the requirement in the specification that “At least one incoming
sequence flow has at least one Token”[5, p. 401]. The condition ∀s ∈ Sin(n) :
(M(s) > 0 ∨ NotBlocking(s)) guarantees that each empty incoming sequence
flow meets the requirements, as discussed above. Finally, the condition (∃sok ∈
Sout(n) : (Sok �∈ D ∧ eval(C(sok)))) guarantees that the outgoing sequence flow
should not be activated. In that case, (Incldf) should be activated instead.
The two components of the conclusion of (Incl) are responsible for removing
tokens from the incoming sequence flow and distributing them over the outgoing
sequence flow according to the conditions, respectively.

The structure of (Incldf) is similar to that of (Incl). It simply states that if
an inclusive gateway fires and none of its non-default outgoing sequence flow will
receive a token, then the default sequence flow receives the token. Otherwise, it
works as (Incl).
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Exclusive gateways are much simpler:

(Excl)

s ∈ Sin(n) M(s) > 0

s′ ∈ Sout(n) eval (C (s′))

∀s′′ ∈ Sout(n) : eval (C(s′′)) =⇒ s′ % s′′ L(n) = Excl

∀sin ∈ Sin(n) : M ′(s) = M(s)− δsin=s

∀sout ∈ Sout(n) : M ′(s′) = M(s′) + δsout=s′

Example 4. Given G from Example 3, we can compute our new marking using
the evaluation rules. Incl can be applied at β, as both (α, β) and (γ, β) satisfy
InclSearch. Assuming that eval(Cβ→α), we can then generate a new marking

M ′ = {((α, β), 0), ((β, γ), 1), ((β, δ), 0), ((γ, β), 0)}

M ′ represents the new state of the process on which the token has been passed
onward from the inclusive gateway.

3.3 Incremental and Distributed Implementations

The semantics given above formalizes the specification rather directly. If imple-
mented naively, the computation of StepPathAnnotation and NonBlocking are a
quite costly way to determine if an inclusive gateway can fire. Below we discuss
two possible ways of implementing the semantics more efficiently by updating
the data structures incrementally.

Incrementally computed path annotations. Alternatively to computing
the path annotations from scratch for every step we can compute them incre-
mentally. We then initially (and only once) compute the path annotations using
the ComputePathAnnotation algorithm. Every time a gateway n is fired we
update the path annotations for each flow s reachable from the outgoing flows of
n as follows: If the marking of an outgoing s flow changes from 0 to 1 we remove
n from the head of all the paths in annotations of the flows reachable from s (i.e.
they receive a token and there was no token before). If all the incoming flows of
the gateway n get marking 0 we also remove all paths from annotations of flows
reachable from the outgoing flows that have n at their head. Figure 5 shows an
example of this update on the example given in Figure 2 (default flows are left
unspecified in the figure). After γ fires, it is removed from the heads of the paths
of the downstream sequence flow annotations.

Precomputed path annotations and incrementally computed normal-
ized markings. Given a marking, define the normalized marking M0,1 by

M0,1(s) = δM(s)>0

For any BPMNinc process there are finitely many (2|S|) normalized markings.
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Fig. 5. Incremental path annotation update

Now, the function G computed by ComputePathAnnotations and the
function NonBlocking for each flow only depend on the normalized marking
of the flows that are reachable by following sequence flow backwards from the
sequence flow in question. Consequently, as an alternative to incrementally main-
taining the path annotations, the functions can be pre-computed for all of the
possible normalized markings.

In addition to maintaining the markings of sequence flows, an implementa-
tion needs then only, for each sequence flow (n, n′) ∈ S, to incrementally keep
updated a table of normalized markings of the flows backwards reachable from
the gateway n′. This can be done each time a gateway fires by updating the
normalized marking (if it changes) for the flows reachable on paths starting on
the outgoing flows of the gateway.

Distributed communication-based implementations. The two implemen-
tations above can be made in a distributed way by representing each gateway
as a process and sequence flows as communication channels between processes.
Each gateway process then maintains for each incoming flow the data structures
(of respectively the path annotations or the table of normalized markings). It can
then receive messages from gateways connected to incoming flows with updates,
which can be forwarded (if necessary) to the gateways on outgoing flows.

4 Related Work

Previous work regarding the semantics of BPMN inclusive gateways can, broadly
speaking, be divided into three main categories: semantics of BPMN that do not
provide a non-local upstream search behavior for inclusive gateways, BPMN
semantics that do, and semantics of other languages with similar constructs.

In [10], Völzer proposes three semantics for BPMN 2.0 inclusive gateways.
Two of them are only restricted to the acyclic cases while the third semantics
covers the general case (any kind of workflow) like ours. The latter is equipped
with a linear algorithm for detecting the presence of upstream tokens.
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All other previous work has been based on earlier versions of the BPMN
standard, which were significantly less specific with regards to the semantics of
the inclusive gateway. As far as the authors are aware, this is the first formal
treatment of inclusive gateways making use of BPMN 2.0’s semantics aside from
[10], which introduced the approach used in the standard.

The definition of inclusive gateways in BPMN 1.0 is as follows:

Process flow SHALL continue when the signals (Tokens) arrive from all
of the incoming Sequence Flow that are expecting a signal based on the
upstream structure of the Process (e.g., an upstream Inclusive Decision).

The particular deficiency of the specification of inclusive gateways in BPMN
1.0[4] is highlighted in a paper by Dijkman, et al, that provides a mapping from
a large subset of BPMN to Petri nets, enabling the use of standard tools for
analysis of processes.

Dijkman et al point out that the definition of inclusive gateways fails to specify
which sequence flow should expect a signal, and especially does not take into
account situations in which the inclusive gateway is upstream from itself. These
concerns are largely solved in the draft version of BPMN 2.0, which is quite
specific on these matters.

Wong and Gibbons[11] present a translation of a subset of BPMN process
diagrams to CSP. They characterize the inclusive gateway as simply accepting
tokens on some subset of the incoming sequence flows and then generating tokens
on some subset of the outgoing sequence flows.

Prandi et al [8] define a mapping from BPMN to the process calculus COWS.
Similarly to other mappings based on BPMN 1, an inclusive join is simply trans-
lated into a process that can receive a signal on any subset of its inputs and then
sends a signal onwards.[8, p.256]

Ye, et al ’s translation to YAWL [12] is perhaps the most faithful to BPMN in
its implementation of inclusive gateways. The inclusive gateway is mapped to a
YAWL OR-join. In YAWL, the OR-join has non-local semantics similar to those
defined for BPMN’s inclusive gateway [9]. Indeed, Dijkman suggested that the
designers of BPMN borrow these semantics directly in an aside in [2].

The inclusive gateway semantics proposed in [1] is compatible with the vague
phrasing of BPMN 1.0. However, the model adopted to deal with cyclical process
graphs is not compatible with the better-specified semantics in [5], as it divides
the tokens in the cycle into groups based on the iteration in which they are
produced, and then considers each iteration separately. BPMN 2.0 [5] did not
adopt this model, and it allows tokens from many different iterations to interact.

Dumas et al. [3] provide a semantics for BMPN’s inclusive gateways based on
the imprecise BPMN 1.0 specification, and their solution ends up very similar
to ours. However, they provide a means for resolving the resulting deadlock in
the vicious circle example, which is a situation in which two inclusive gateways
depend on each other cyclically. Since the informal specification that was even-
tually adopted in BPMN 2.0 does not include this resolution strategy, and as
our work is a faithful translation, we do not include it.
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BPMN’s inclusive gateway is quite similar to constructs called “OR-joins”
in various other process formalisms, in particular YAWL[9] and EPCs. Indeed,
Dijkman suggested that the designers of BPMN borrow YAWL’s semantics di-
rectly in an aside in [2].

In [6], Kindler points out that the informal semantics of OR-joins in Event
driven Process Chains (EPCs), which contain a similar non-local backwards con-
dition, can not be formalized consistently, due to the same sort of vicious circle
treated in [3]. The BPMN 2.0. specification eliminates this problem, although
the vicious circle example will result in a deadlock. However, as illustrated by
the example in Fig. 2 BPMN 2.0 may exhibit race-conditions.

The primary difference between BPMN inclusive gateways and OR-joins in
other notations is that a token that is upstream of both an empty and a full
incoming sequence flow does not block the activation of the gateway in BPMN,
while other languages do not include this stipulation. Therefore, straightforward
translations of inclusive gateways to OR-joins such as Ye, et al ’s translation to
YAWL[12] are insufficient to capture BPMN 2.0’s semantics.

5 Conclusion and Future Work

The particular behavior defined for inclusive gateways in BPMN 2.0 makes it
difficult to provide a local semantics. However, given access to global information
about the current state of execution, a precise semantics for inclusive gateways
can be provided.

In this paper, one such precise semantics is provided. It differs from other ap-
proaches in that it does not attempt to translate BPMN process diagrams into
other, better-understood calculi or process modeling languages. Instead, the se-
mantics is provided directly in terms of a subset of BPMN. While this approach
precludes the use of tools and methods developed for these other models, it can
allow use of the semantics more easily either in implementations of BPMN or in
providing analyses that are more easily understood by less-technical users who
may not be familiar with other process models. Due to the non-local nature of in-
clusive gateways, this semantics requires the use of a backwards search algorithm
for determining the parts of the global execution state that are relevant to each
inclusive gateway at each step of the execution. We have sketched in Section 3.3
two approaches to how this search can be replaced by incremental updates to re-
spectively token-paths annotations and to local copies of (normalized) markings
after a gateway is fired.

Possibilities for future work include extending the semantics to cover more of
BPMN, formalizing the incremental implementations of the semantics and prove
their correctnes, and investigating applications of the semantics to real projects
that make use of BPMN 2.0. Additionally, other approaches than token-based
semantics, such as graph rewriting, can possibly be developed to give a simpler
semantics for inclusive gateways. We also plan to implement the semantics fol-
lowing the different approaches sketched in Section 3.3, analyze their complexity
and compare the implementations using a set of example BPMNinc processes.
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Abstract. The Web service composition problem involves the creation
of a choreographer that provides the interaction between a set of com-
ponent services to realize a goal service. Several methods have been pro-
posed and developed to address this problem. In this paper, we consider
those scenarios where the composition process may fail due to incom-
plete specification of goal service requirements or due to the fact that the
user is unaware of the functionality provided by the existing component
services. In such cases, it is desirable to have a composition algorithm
that can provide feedback to the user regarding the cause of failure in
the composition process. Such feedback will help guide the user to re-
formulate the goal service and iterate the composition process. We pro-
pose a failure analysis technique for composition algorithms that views
Web service behavior as multiple sequences of input/output events. Our
technique identifies the possible cause of composition failure and suggests
possible recovery options to the user. We discuss our technique using a
simple e-Library Web service in the context of the MoSCoE Web service
composition framework.

1 Introduction

A number of formal approaches [DS05, HS04, tBBG07] have been developed in
recent years to address the problem of service composition. These approaches
take as input the specification of existing service functionalities and the desired
functionality (also referred to as the goal) in a specific formalism, and auto-
matically generate a choreographer that mediates the communication between
a subset of existing services to realize the goal (if possible). In addition to au-
tomation, these approaches also provide formal guarantees of the correctness of
the composition.

Typically, the existing approaches can be viewed as a single-step process,
where the result is either a feasible composite service or no result at all when
the composition process fails to generate a composite service that conforms to
the goal functionality. We claim that such failures may be due to the fact that
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the developer may not be aware of all the details of existing services’ functionali-
ties and as a result s/he may specify certain goal functionality that is impossible
to realize using any of the existing services. However, if the developer were pro-
vided with some feedback and/or suggestions regarding the cause of composition
failure, then the developer would be able to reformulate the goal functionality
without violating the overall desired requirements such that the new goal would
become realizable from the composition of existing services. Such a process may
be iterative, resulting from multiple composition failures, failure analysis and
re-formulations.

In this context, we propose methods to analyze the cause of composition
failures and to provide feedback to the developers based on the analysis. We
consider the problem in the MoSCoE service composition framework [PBLH06],
where services and the goal functionalities are described as labeled transition
systems. States in the transition system represent the configurations of the ser-
vice/goal and transitions labeled with input/output events represent how the
service evolves from one configuration to another. The composition algorithm in
MoSCoE aims to identify the communication pattern between existing services
via a choreographer such that the resulting transition system describing the com-
posite service mimics every behavior of the goal service. Failure to generate a
composite service in MoSCoE, therefore, is due to the existence of transitions in
the goal that cannot be replicated by any composition of the existing services.
This, in turn, implies that the given input sequence as specified by the goal
functionality is not sufficient to produce the required output sequences. Once
our method identifies the cause of the failure, it suggests possible changes to
the goal transition system that can address the failure and lead to a successful
composition. The developer can then choose to incorporate the suggestions and
re-run the composition process.

The rest of the paper is organized as follows. Section 2 presents an illustrative
example that will be used in the rest of the paper to explain the salient aspects
of our work. Section 3 provides a brief overview of the MoSCoE composition
algorithm. Section 4 discusses the various scenarios that can cause the failure of
the composition followed by our method to identify them. Section 5 discusses the
application of our method on the illustrative example. Section 6 gives a summary
of our work and describes future avenues of research.

2 Illustrative Example

Consider a library book reservation service (eLibrary) that requires three main
functionalities: book searches, book delivery requests and book reservations. The
goal of the service is to allow a library member to search through the library
catalog for a book based on parameters such as the book title and the author. If
the library has copies of the book, the service checks if a copy is available to be
checked out. If it is, the service places a request for delivery of the book to the
member’s home address, which is stored in the member’s account information. If
all copies of the book have been checked out, the service places a hold request on
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?getRequestDetails(title, author, memberId)

findBook(title, author; isPresent)

[isPresent=1]

                            

s1

s2

s3

s4 s5

[isPresent=0]
!app(“fail”) checkAvailability(title, author; avail)

s7s6

[avail=1]

requestDelivery(title, author, date, 
addr, memberId; delStatus)

[avail=0]

recallBookFor(title, author, 
memberId; resStatus)

[delStatus=1]
!app(“success”)

s8
s9

[delStatus=0]
!app(“fail”)

[resStatus=0]
!app(“fail”)

[resStatus=1]
!app(“success”)

s10 s11

Fig. 1. Specification of goal service eLibrary as labeled transition system

the book. The Web service developer is assigned the task of generating the above
service. The developer prepares the transition system (Figure 1) representing the
goal behavior. There are three types of transitions: input, denoted by ?, output,
denoted by !; and function invocation. For instance s1 −→ s2 is an input tran-
sition, s3 −→ s4 is an output transition and s2 −→ s3 is a function invocation.
Input/output transitions contain a message header and a message body, e.g.,
getRequestDetails is the message header and its parameters denote the mes-
sage body. Transitions denoting function invocation contain the function name,
the input parameters and the output of the function. For instance, findBook is
the function name, title and author are input parameters and isPresent is
the output. Transitions may also contain a guard (enclosed in [ ·]) denoting the
condition under which the transition is enabled; transitions with no guards are
always enabled.

The repository that will be used to generate the composite service contains the
following services: Availability, BookReservation, DeliveryRequest,
MemberAddress and SearchBook. The Availability service accepts as input
the title of a book and checks whether a copy of the book can be checked out.
The BookReservation service accepts as input the book title and the mem-
ber ID, then places a recall request for a copy of the book for that member.
DeliveryRequest places a request for delivery of a book to the address speci-
fied in the member’s account on a particular date. MemberAddress accesses the
member’s account details and returns the member’s home address. Finally, the
SearchBook service searches the library catalog for a book given the title and
the name of the author. The labeled transition system specifications of each of
these services are shown in Figure 2. The objective of the composition algorithm
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?details(title, author)

searchCatalog(title, author;isPresent)

!details(isPresent)

t0

t1

t2

t3

?reserveDetails(title, author, memberId)

recallBookFor(title, author, memberId;  
resStatus)

!reserveDetails(resStatus)

t4

t5

t6

t7

(a) SearchBook (b) BookReservation

?bookDetails(title, author)

checkAvailability(title, author; avail)

!bookDetails(avail)

t8

t9

t10

t11

?deliveryDetails(title, author, 
                                        date, addr, memberId)

requestDelivery(title, author, date, addr, 
memberId; delStatus)

!deliveryDetails(delStatus)

t12

t13

t14

t15

(c) Availability (d) DeliveryRequest

?memberDetails(memberId)

getMemberAddress(memberId; addr)

!memberAddress(addr)

t16

t17

t18

t19

(e) MemberAddress

Fig. 2. Component services

is to generate a choreographer that will mediate the communication between the
component services such that the behavior of the component services and the
choreographer replicates the behavior of the goal service. Note that the chore-
ographer cannot generate any messages and cannot provide any functions.
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We consider this simple example scenario to explain the salient aspects of the
proposed method. It is worth mentioning that though the existing services in the
example do not contain any loops and branching-behavior, the composition
algorithm we considered (MoSCoE, see Section 3) and the proposed failure anal-
ysis based on MoSCoE (see Section 4) are capable of handling services with loops
and branches.

3 MoSCoE Composition Algorithm

3.1 Web Services as Transition Systems

Definition 1 (Service Transition System (STS)). A Web service transition
system is a tuple W = (S, s0, F, T ) where S is the set of states, s0 ∈ S is the
start state, F ⊆ S is the set of final states and T is the set of transitions between
pairs of states. A transition is of the form s

g,a−→ s′ where s ∈ S and s′ ∈ S are
source and destination states of the transition, g is the guard on the transition
and a is the event that is executed by the transition. There are four types of
events:

– input events denoted by ?msgHeader(msgBody),
– output events denoted by !msgHeader(msgBody), and
– function invocation denoted by functionName(InputParameters; Output).
– internal event denoted by τ .

Transitions are referred to as input, output, function, or internal based on their
labels. An Internal event denotes computation or communication performed by
a (composite) service that is not observable to the client.

Example 1. Figures 1 and 2 illustrate STS-representations of goal and existing
services. The state states are represented by • and the final states are represented
by©• . In Figure 1, the transition s1 −→ s2 is an input transition with true guard;
the transition s2 −→ s3 is a function invocation with the name of the function
findBook and with true guard; the transition s3 −→ s4 is an output transition
with a guard on isPresent.

Definition 2 (Parallel Composition of STS [PBLH06]). Given two STSs
W1 = (S1, s01, F1, T1) and W2 = (S2, s02, F2, T2), their parallel composition un-
der the restriction set L, denoted by (W1‖W2)\L, is a tuple (S, s0, F, T ) where
S ⊆ S1 × S2, s0 = (s01, s02), F ⊆ F1 × F2 and T is the transition relation
described as follows: for (i, j) ∈ {(1, 2), (2, 1)}

1. s
g1,?m(x)−→ s′ ∈ Ti ∧ t

g2,!m(x)−→ t′ ∈ Tj ∧ m ∈ L ⇒ (s, t)
g1∧g2,τ−→ (s′, t′)) ∈ T

2. s
gi,e−→ s′ ∈ Ti ∧ header(e) �∈ L⇒ (s, t)

gi,e−→ s′(s′, t) ∈ T .

where

header(e) =
{

m if e ∈ {?m(x), !m(x)}
⊥ otherwise
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The parallel composition describes the rules by which two or more services can
communicate with each other. The first rule in the transition relation describes
a synchronous move where one services provides an output that is consumed as
input by the other service. The result is an internal transition in the composite
service. The second rule, on the other hand, is an autonomous move by the
individual services. These rules are derived from CCS-style synchronization in
process algebra [Mil82].

3.2 The Service Composition Problem

Given the transition system of a goal, Wg, and the set of available components
W = {W1, W2, . . . , Wn}, the problem of service composition entails identifying
a choreographer transition system Wc such that

((Wi1‖Wi2‖ . . . ‖Wik)‖Wc) \L ≈ Wg (1)

where L is the set of actions that are not present in Wg and ≈ is the largest
relation describing weak bisimilarity [Mil82] between pairs of states. This defini-
tion ensures that the goal Wg and the composite service containing Wi1, . . . , Wik

and Wc exhibit observable behaviors that are temporally indistinguishable (i.e.,
no temporal logic can differentiate between the behaviors). Note that, the weak
bisimulation is only concerned with the observable events, i.e, all internal and
unobservable behaviors (events involving τ) are ignored. The choreographer gen-
erated by the composition algorithm can be viewed as a new service with the
restriction that it cannot have any function invocation or internal event; the role
of the choreographer is to buffer and relay messages between existing services.

The composition algorithm takes as input the start states of the existing
component service transition systems and that of the goal transition system and
iteratively performs the following computations:

0. a transition in the goal is enabled only when the variables in the correspond-
ing transition-guard are available at the current state of the choreographer;

1. if the transition in the goal is an input, then generate the corresponding
input transition in the choreographer, and move the goal transition system
to the next state;

2. if the transition in the goal is an output and the output messages are available
to the choreographer, then generate the corresponding output transition in
the choreographer, and move the goal transition system to the next state;

3. if the transition in the goal is a function and there exists a service Wi that
can supply the function transition from its current state, then move Wi and
the goal transition state to their corresponding next states;

4. if the transition in the goal is a function and there exists a service that
can supply the function transition from some future state, then identify any
service that can make a move on some input available to the current state
of the choreographer and move the choreographer and the corresponding
service to their next states.
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Consider the illustrative example in Figures 1 and 2 (Section 2). The transi-
tion in the goal s1 −→ s2 is an input transition—this indicates that the goal
service expects input from the client (who will use the service) to move from
s1 to s2. Therefore, following Rule 1 above, the transition is replicated in the
choreographer, which will act as the interface between the client and the existing
services. A pair of new states c1 and c2 are created for the choreographer such
that c1 −→ c2 is labeled by the input event that labels s1 −→ s2. At state c2,
the messages title, author and memberId are available to the choreographer, as
these are supplied by the client. If the goal is at state s3, for the choreographer
to replicate either of the transitions s3 −→ s4 and s3 −→ s5, the choreographer
needs to be at a state where isPresent is available to the choreographer (see
Rule 0 above).

If after repeated applications of the rules described above, the goal moves
to the final state, then the parallel composition of the generated choreographer
and the existing services is weakly bisimilar (see Equation 1 in Section 3.2) to
the given goal (soundness). On the other hand, if none of the above rules for
choreographer generation are applicable, then the composition process fails and
there exists no choreographer that can realize the given goal (completeness). For
details of the described method and the proof of its soundness and completeness,
refer to [PBLH06].

The above method is described in the context of the MoSCoE service com-
position framework. Similar methods that also represent services and the goal
using transition systems are developed by [BCD+05, CDL+08, HB03].

4 Failure Analysis for MoSCoE Composition

In this paper, we focus on the cases where the service composition process fails,
i.e., during the iterative choreographer generation process described in Section 3
the goal, the generated choreographer and the existing services move to states
from which none of the rules can be applied. We augment the composition algo-
rithm with a method which identifies the cause of the failure of the composition
process and provides feedback/suggestions (to avoid failure) to the developer.

The feedback given to the developer is of utmost importance as it allows
for progressive service composition. The feedback provides information not only
regarding the cause of the composition failure but also as to how such failure
can be resolved. Two problems need to be addressed for developing a feedback
process that can be effectively used in practice: (a) what is to be given as feedback
and (b) how that feedback is to be presented to the developer.

4.1 Tree of Recovery Options

When failure occurs during composition, the cause of the failure is identified.
Failures occur mostly due to missing messages that are required as input to
functions or input transitions to some service, or due to functions required by the
goal and not provided by any of the existing services. Such failures are resolved
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by finding alternate paths in the component services, by calling on components
that provide the missing message sets, or by identifying a semantically equivalent
function in the existing services. In short, multiple resolutions are possible for
each failure.

The failure analysis approach presented in this work explores each such recov-
ery option. Upon failure, all possible recovery options are identified and a choice
point is created in the composition computation. For each recovery option, a
new branch in computation is explored using the corresponding option. In every
branch, the goal service is modified based on the recovery solution corresponding
to that branch. Once the goal service has been modified, the composition process
continues using the modified goal service. If one or more branches (at each choice
point), leading to a different modification to the original goal service, eventually
terminate successfully, the developer is provided with the information regarding
the various goal service modifications. The developer can decide to either select
one of these modifications or discard all modifications and reformulate the goal
from scratch. We refer to the above computation process as the recovery tree.

A sample computation tree is illustrated in Figure 3. The composition process
starts and fails for the first time at node n1. Three branches are created from
this node, with each branch representing one solution to the failure at node n1.
Two of these solutions fail during the simulation, but node n3 indicates that
the modified goal service corresponding to the second solution is successfully
composed. There are two possible solutions to the failure at node n2 and both of
them are explored, as shown. Node n8 indicates that the goal service modified
at node n6 results in failure. This branch is marked as failed; for the purpose of
efficiency, we do not consider exploring any paths that contain more than three
choice points. This is because the modifications deployed to the goal service in
multiple choice points are likely to make the modified goal service excessively
different from the original developer-specified goal service and as such are likely
to be discarded by the developer.

4.2 Identifying Recovery Options

The following cases would result in failures during the composition process:

1. A guard condition cannot be examined as variables required for the condition
are not available

2. Messages for an output transition are not available to the choreographer
3. Messages for an input transition to an existing service are not available to

the choreographer
4. A required function cannot be invoked, that is, none of the existing services

provide a function specified in the goal service

In the following, we discuss the recovery options identified for each of the above
failure scenarios.

I: Failure due to guard conditions. This can happen when a variable (either
provided via input from the client or output from some existing service) has not
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Fig. 3. Recovery Tree

yet been available to the generated choreographer, and the composition process
encounters a guard on such a variable in the goal transition. There are two
possible recovery options from this failure based on the following:

– There exists a service that has an output containing the missing variable(s)
in the output message body. The recovery option is to identify the input that
must be provided at the current state of this service such that eventually
the required output can be obtained.

– If no such service exists, the goal service is modified to include an input
transition requesting the client to provide the message that is required for
the guard condition.

II: Failure due to unavailability of output message. In this scenario, the com-
posite service has to provide an output message to the client but is unable to
do so as it does not have the output message set. This happens when the algo-
rithm encounters an output transition in the goal service and the choreographer
store does not have the output message for such a transition. Recovery from this
failure is based on the existence of a service that performs the required output
action as specified by the goal. The recovery option is to identify the input that
must be provided at the current state of this service such that eventually the
required output can be obtained.

III: Failure due to unavailability of input message. In this scenario, the chore-
ographer has to provide an input message to the component, which might fail
if the choreographer does not have the required message set. This scenario also
includes the case where a function is to be called and the message set required
to call the function is not available. The recovery option in this case is the same
as scenario I above.
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?getRequestDetails(title, author, memberId)
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s1
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s4 s5

[isPresent=0]
!app(“fail”) checkAvailability(title, author; avail)

s7

s6

[avail=1]

requestDelivery(title, author, date, 
addr, memberId; delStatus)

[avail=0]

recallBookFor(title, author, 
memberId; resStatus)
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!app(“success”)
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[delStatus=0]
!app(“fail”)

[resStatus=0]
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s10 s11

getMemberAddress(memberID; addr)

?getDeliveryDate(date)

s12 s13

searchCatalog(title, author; isPresent)

Fig. 4. Suggested Goal; modifications suggested as part of recovery from composition
failure are shown in bold

IV: Failure due to unavailability of required function. In this case, the goal
service has a function invocation that is not provided by any of the existing
services. To recover from this failure, we search for a semantically equivalent
function with the same input and output messages as the required function. The
transition on the missing function in the goal is then replaced by a transition on
this semantically equivalent function.

5 Case Study

We discuss the application of the failure identification and recovery options using
the illustrative example introduced in Section 2. The objective is to solve the
following problem

∃Wc : (SearchBook‖BookReservation‖Availability‖DeliveryRequest
‖MemberAddress)‖Wc)\L ≈ eLibrary

and identify a Wc (choreographer, if one exists). In the above, the restriction set
L = {m | m = header(e) ∧ e ∈ existing services}, i.e., L contains the header
of events on which the existing services can communicate with the generated
choreographer (see Section 3.2).
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Fig. 5. Generated Choreographer for the modified Goal (Figure 4); transitions of the
choreographer are annotated with the service or client (in bold) which participates in
communication via the event on the transition

The composition algorithm takes as input the goal as specified by the devel-
oper and the set of component services, and attempts to create a choreographer
for the eLibrary system. The input action ?getRequestDetail(title, author,
memberId) in the goal corresponds to the receipt of a message from the client,
meaning that the client has entered data in the system. The choreographer mim-
ics this input action and stores the message body in the choreographer message
store.

The next step in the composition is to create a transition that realizes the func-
tion invocation findBook (see Figure 1). The composition process fails as none of
the component services can provide the required invocation (see scenario IV in
Section 4.2). The failure analysis method identifies the searchCatalog function
provided by the searchBook service as a possible replacement for the findBook
function, based on matching input parameters and output. The replacement func-
tion should be compared with the original for semantic equivalence. Checking
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a function for semantic equivalence1 can be done based on the type of the in-
puts and outputs associated with the function (see for example, [Bur04, BHS03,
DMD+03]). Based on this recovery option, a choice point and a branch are created
in the recovery tree. The branch considers a modified version of the goal service
where the function findBook is replaced by searchCatalog (see Figure 4). All
the computation along this branch uses this modified goal as input.

Note that the searchBook service is at state t0. In order to replicate the
function invocation searchCatalog in the modified goal service, it is necessary
to move the searchBook service to state t1. In order to realize this, the chore-
ographer is required to provide the input to the searchBook service at state
t0. Therefore, a transition on the input action !details(title, author) (to
be consumed by the searchBook service with the same message header) is cre-
ated in the choreographer (see Figure 5); all the elements in the message body
(i.e., title and author) are available to the choreographer (i.e., present in the
choreographer store).

Composition proceeds without any failure and the choreographer is gener-
ated to communicate with the Availability service such that the invocation of
the function checkAvailability(title, author; avail), as prescribed in the
goal, can be realized. However, when the goal-state s5 is reached, the composition
process fails to replicate the transition s5 −→ s6. This is because the choreogra-
pher cannot provide addr information as required by the input to the function
requestDelivery(title, author, addr, memberId; delStatus). This cor-
responds to scenario III described in Section 4.2. To recover from this failure,
our method searches for an existing service that has an output transition with
message body containing addr. Such a service is identified to be memberAddress.
A choice point and the corresponding branch of computation are created and it is
given a copy of the goal service, the choreographer and the component services.
The input variables required to initiate the memberAddress service are avail-
able to the choreographer, so the recovery method simply inserts a transition on
getMemberAddress in the goal service for the new branch.

To support this function invocation in the modified goal service, two new
transitions on the output and input actions, !memberDetails(memberId) and
?memberAddress(addr), are created in the choreographer. At this point, the
choreographer store has all the required inputs of requestDelivery function,
except date. As a result, the composition process fails again.

The failure analyzer searches for any service that can provide an output date.
As no such service exists, the only recovery option is to insert an input operation
in the goal that requests the client to provide the date.

Since the entire message set for the requestDelivery function is now avail-
able, this function can now be invoked. The algorithm supports this invocation
by creating two new actions !deliveryDetails(date, addr, memberId) and
?deliveryDetails(delStatus) in the suggested choreographer. This means
that an output message !deliveryDetails(date, addr, memberId) was sent

1 Methods for identifying semantically equivalent functions are beyond the scope of this
work.
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Fig. 6. Composition of generated choreographer (Figure 5) and existing services
(Figure 2); composite service is weakly bisimilar to suggested goal (Figure 4)

to the memberAddress service, the function getMemberAddresswas invoked and
the output of the function call was then sent back to the choreographer. The
composition process, finally, considers the behavior of the goal as specified by
transitions from s5 −→ s7 −→ . . .. The composition process successfully com-
pletes generating the choreographer without failure.

Figure 4 shows the suggested goal following the recovery options
described above; the modifications are shown in bold. Figure 5 illustrates the
corresponding choreographer generated by the composition process. Figure 6
shows the composite service that will be realized when the generated choreogra-
pher is composed with the existing service. It can be shown that the
composite service is (weak) bisimulation equivalent to the suggested goal-
transition system.
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6 Conclusion

The failure analysis and the recovery techniques proposed in this work help in
identifying the cause of failure in the composition process and provide appro-
priate feedback to the developer. The feedback is described as possible modifi-
cations to the goal service for every possible recovery from the failure. Though
the technique is described in the context of MoSCoE service composition frame-
work [PBLH06], it can be applied with minimal modification, to the analysis of
failures of the composition process where the composition is defined over different
variations of labeled transition systems.

As part of future work, we plan to investigate the efficiency and applicability
of the proposed method in practical settings using real-world and benchmark
service composition problems. We will also work to develop failure analysis
techniques where the goal is specified in the language of temporal logic (e.g.,
EAGLE [PTB05]), description logic( [BCG+03]), etc., and the composition prob-
lem is reduced to the satisfaction problem (instead of the equivalence problem
as described in MoSCoE).
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Abstract. The ability to compose existing services to form new functionality is
one of the most promising ideas enabled by SOA and the framework of (web)
services. A composition or a workflow often involves services distributed over a
network and possibly many organizations and administrative domains. Nondeter-
minism could occur in a composition in at least two ways. The first form is the
result of modeling abstraction that hides the detail information and thus makes
the “computation” appear non-deterministic. The second form is closely related
to “operational optimization”, e.g., one may try to invoke more than multiple ser-
vices for a task, whichever completes first will produce the result and preempts all
other services. In this paper, we focus on the latter and measure the complexity of
service execution as the amount of needed resources and controlling mechanism
for executing nondeterministic service compositions. We formalize the model and
complexity problem and develop technical results for this problem in the general
setting as well as special cases.

1 Introduction

Web services are bite-sized pieces of software components that can be executed over,
e.g., the Internet (see [9]). The ability to organize, manage, discover, compose, and
invoke web services creates a great potential in changing the way we develop soft-
ware systems for applications [10,16]. To a degree, this change is already happening,
e.g., in workflow management [17]. An immediate goal is to be able to dynamically
share web services in a similar manner to the sharing of data on the Web. This in-
cludes, in particular, composing geographically distributed web services. Nondeter-
ministic web services are an important class of web services that have been studied
variously [19,15,5,1,20,3,6,11]. Business processes or workflows are probably the most
frequently seen web service compositions in applications. This paper studies a new and
interesting management problem for executing nondeterministic workflows.

Generally, nondeterminism in services/workflows has several possible causes. One
is modeling abstraction. Indeed, hiding data values may turn a conditional choice into a
nondeterministic choice. Nondeterministic web services and workflows in many early
studies are in this category [5,1,3]. Another is optimization. For example, if we have two
candidate tasks (to reserve a ticket) to execute but only one (ticket) is needed, we may
proceed to invoke both; whichever completes first would produce the result and should
end the execution (of both). In some cases, such an opportunistic strategy is needed due
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to “deferred choice” [6]. Also, collaborative processes are often a contributing factor
for nondeterminism [19,15,11].

If services/workflow are truly nondeterministic (e.g., reasons other than the first
listed in the above), managing executions of nondeterministic services/workflows needs
additional support [20]. In this paper we focus on the problem of keeping track of all
threads of nondeterministic executions and formulate a new notion of “degree of non-
determinism” to measure a type of difficulty in execution management. We study the
decision and computation problems associated with this notion.

Consider a workflow (or composite service) represented as a nondeterministic finite
state machine where states are geographically distributed. (The assumption on states is
a direct consequence of invoking distributed geographically services and control flow
being tightly associated with invocation.) Executing the workflow would mean to fol-
low all possible nondeterministic execution paths simultaneously. For example, if the
current state has two possible next states after an activity, both would need to continue
the execution since we do not know which path will lead to a (successful) completion.
If the (graph of the) workflow is acyclic, there is clearly a bound on the number of ex-
ecution paths to manage (assuming each service takes a unit time) that depends on the
structure of the state machine. If the workflow has cycles, it is unclear whether such
a bound exists. The central problem studied in this paper is to decide if such a bound
exists and compute the bound if it does.

In this paper we investigate the upper bound on the number of execution paths in
workflows under two models. The first model is called “organization flows”. An orga-
nization flow is a graph with an initial node and several final nodes, and each outgoing
edge is interpreted as a possible nondeterministic execution. Such workflows corre-
spond to structures of organizations that can execute workflows. The second model
extends the first by adding edge labels (tasks) and assigning (geographical) locations to
states. We study two subclasses of such workflows, “fully distributed” where each state
is assigned a distinct location, and “transformation flow” where all states are assigned
to a fixed location. We present the following technical results:

1. We show that boundedness of degree of nondeterminism for arbitrary organization
flows can always be decided in linear time, and for a subclass of organization flows
the degree can be computed in cubic time.

2. For fully distributed workflows, both boundedness and computation of nondeter-
minism degree can be done in exponential space and time, respectively.

3. For transformation flows, we can construct equivalent workflows with a minimum
degree (i.e., the state machine is deterministic).

This paper is organized as follows. Section 2 focuses on organization flows and their
nondeterminism. Section 3 defines a general model for workflows, generalizes the non-
determinism notion, and presents technical results on fully distributed workflows; trans-
formation flows are presented in Section 4. Section 5 concludes the paper.

2 Organization Flow

In this section, we study “organization flow,” which focuses on organizations of admin-
istration domains and their connectivity in supporting workflows.
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Fig. 1. Examples of Organization Flows

Example 2.1. As shown in Fig. 1(a), a city office [12] for handling real estate permits
consists of 5 stations: receptionist (R), preliminary (P) and secondary (S) reviews and
decisions, manager (M), and document archival (A). Typically, the receptionist decides
to accept or deny an application. The manager approves cases, or could decide to re-
consider a case. Fig. 1(a) shows all five stations and possible case trails between them.
Note that all case documents are electronic, there is no requirement that a case is only
at one station at a time.

Similarly, Fig. 1(b) shows a travel agency where the front desk (F) collects require-
ments, an agent plans the itinerary (I) by consulting with an external agency (B) for
booking individual segments, a cashier (C) handles payments from the customer and to
other agencies, and the completed plan is delivered (D) to the customer.

In the technical discussions, let L be an infinite set of locations.

Definition. An organization flow is a tuple (V, E, s, F ) where V ⊆ L is a finite set of
locations, s ∈ V is the initial location, F ⊆ V is a set of terminal (or final) locations,
and E ⊆ (V−F )×V is a set of (directed) edges over V .

Definition. Let n � 0 be an integer and Π = (V, E, s, F ) an organization flow. An
enactment of length n over Π is a sequence of locations π = v0v1···vn where vi’s are
locations in V , v0 = s (the initial location), and for each i ∈ [0..(n−1)], (vi, vi+1) ∈ E.
The enactment π is complete if vn is in F (terminal).

Fig. 1 shows two organization flows. Both Π1 and Π2 have five locations (labeled ‘R’,
‘P’, ..., ‘D’) where R, F are initial and A, D are final. Π1 has enactments RPSM of length 4,
RPSMPS of length 6, and RPSMPSMA of length 8 that is also complete. The organization
flow Π2 in Fig. 1(b) allows enactments FI(BI)∗CC∗D and their prefixes.

Note that the condition in the definition of enactment states that if an enactment
reaches a terminal node, it should end (all but the last location should not be terminal).

Let Π=(V, E, s, F ) be an organization flow. For each integer n�0, we define EΠ(n)
to be the set of all enactments of length n over Π , and EcntΠ(n) as the cardinality of
the set EΠ(n), i.e., the number of distinct enactments over Π of length n.

Definition. Let Π be an organization flow. The degree of nondeterminism of Π is de-
fined as DN(Π) = max{EcntΠ(n) | n � 0}. The degree of nondeterminism of Π is
bounded if DN(Π) is finite, unbounded otherwise.

For the organization flow Π1 of Fig. 1(a), there are 2 enactments of length 1, i.e.,
EΠ1(1)={RP, RA}; also, EΠ1(2)={RPA, RPS}, EΠ1 (3)={RPSM}, EΠ1(4)={RPSMP,
RPSMA}, EΠ1 (5)={RPSMPS, RPSMPA}, and EΠ1 (6)={RPSMPSM}. In general, for
each n � 3, EcntΠ1(n)=1 if n = 3k for some integer k, and EcntΠ1(n)=2 other-
wise. Therefore, DN(Π1) is bounded and is equal to 2.
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For Π2 in Fig. 1(b), EΠ2(1)={FI}, EΠ2(2)={FIB, FIC}, EΠ2 (3) = {FIBI, FICC,
FICD}, EΠ2 (4) = {FIBIB, FIBIC, FICCC, FICCD}, EΠ2(5) = {FIBIBI, FIBICC, FIBICD,
FICCCC, FICCCD}, and so on. It is not too hard to see that EcntΠ2(n) = n and thus
DN(Π2) is unbounded.

The following is the technical problem we study in this section: For a given organi-
zation flow Π , is DN(Π) bounded? If it is, compute DN(Π).

To decide the boundedness, one idea could be to first identify strongly connected
components (SCCs) of an organization flow and then check if one SCC can reach an-
other SCC. Although the existence of such SCCs correctly indicates unbounded de-
grees, the converse is not true since one SCC may already have unbounded degree of
nondeterminism. In the following, we state a key property that nicely corresponds to
the unbounded degree property.

Definition. Let Π be an organization flow and r = v0v1···vn a complete enactment
of Π . The enactment r is dual-cyclic if r = uvxyz for some location sequences
u, v, x, y, z such that

1. v, y, and z are nonempty, and
2. for each i � 1 and each j � 1, uvixyjz is a complete enactment.

Lemma 2.2. Let Π be an organization flow. DN(Π) is unbounded iff there exists a
dual-cyclic enactment of Π .

Proof. (Sketch) For the “If” direction, let r = uvxyz be a dual-cyclic complete enact-
ment in Π where v, y, z are nonempty and uvixyjz are complete enactments in Π for
all i, j � 1. Let k > 0 be an arbitrary integer. Clearly EcntΠ(n) > k, if we choose
n = k · |v| · |y|+ |uxz| (|w| denotes the length of w). And thus DN(Π) is unbounded.

For the “Only if” direction, we can translate Π into an equivalent finite state machine
M over the alphabet of locations in Π . We can show that if DN(Π) is not bounded, then
there is some union-free regular expression contained in M with at least two stars (∗).
It can then be shown that Π has a dual-cyclic complete enactment.

Intuitively, Lemma 2.2 states that the boundedness of nondeterminism degree depends
on the nonexistence of two cycles on the way (enactment) to a terminal node in the
graph of the organization flow. The first cycle would keep one active state and “send
out” (through nondeterministic transitions) another active state to the second cycle. The
second cycle does a similar thing for each active state it gets. Thus the number of en-
actments will keep increasing in the second cycle.

Theorem 2.3. Let Π = (V, E, s, F ) be an organization flow. It can be decided in
O(|V |+|E|) time if DN(Π) is bounded.

We prove this result by constructing an algorithm that decides boundedness. Let Π be a
fixed organization flow and treated as a graph. The algorithm consists of the following
three main steps:

1. Identify nodes that lie on at least one complete enactment (path) of Π ,
2. Identify cycles in Π , and
3. Identify connectivity between distinct cycles.
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In Step 1, we remove nodes that are not on any complete enactment. This can be done
by two runs of depth-first-search (DFS). If there are more than one terminal nodes, we
pick one terminal node and connect all other terminal nodes to it. The first DFS starts
from the (chosen) terminal node on the graph (with added edges) with all edges reversed
their directions. It marks the nodes that are reachable, (i.e., there are paths from them
to the terminal node). The second DFS starts from the initial node in the usual way and
marks nodes reachable from initial location. All nodes missing a mark are removed.

During Step 2, we identify cycles (on some complete enactments). This step can
be done by detecting back edges in the second DFS and marking all nodes which lie
between the starting and end nodes of back edges.

During Step 3, we determine if there is a path between any two cycles. Since all
cycles were identified during the second step, this step is reduced to searching paths
between nodes that belong to two distinct cycles.

All three steps can be done during two DFS passes. The first DFS simply marks the
nodes from which it can reach the final node. The second DFS is more intricate and
accomplishes all three steps by traversing only the nodes marked during the first DFS.

We provide more detail of Steps 2 and 3 in the following. To detect back edges during
the second DFS, for every node v, we use two types of vertex numbering:

1. preorder[v] : pre-order traverse numbering, and
2. postorder[v] : post-order traverse numbering

We also introduce a node marking loop[v] = ‘S’, ‘E’, ‘L’, or ‘∅’ for each node v ∈ V .
It encodes the order in which the cycle nodes are discovered by the DFS and distin-
guishes them from the other nodes not on any cycle. Initially, loop[v]=‘∅’ for every
node v. As soon as a back edge (u, v) is detected by the DFS (starting from the initial
node), locations u and v are marked as follows: loop[u]=‘E’ and loop[v]=‘S’. Such
markings define the boundary of the cycle, and allow us to mark all intermediate cycle
members between u and v by ‘L’, when the DFS returns from its recursive calls.

We now focus on Step 3. First, we consider cycles sharing common nodes. Let
preorder[v] denote the DFS pre-order number of a node v. We define a single global
least preorder number with the following operations:

– reset GLP : let GLP = −1 (when no cycles are being detected),
– revise GLP if (u, v) is a new-found back edge:

(Case 1) set GLP = preorder[v] if current value GLP = −1,
(Case 2) set GLP = min(preorder[v], GLP) if current value GLP �= −1.

Intuitively, GLP is the smallest DFS preorder number of nodes on some cycle. It is easy
to see that if GLP(v) �= −1, then location v is inside some cycle. More specifically,
when Case 1 of revising GLP happens, v is on a cycle. When Case 2 happens, then the
parent of v belongs to a cycle, and one more back edge is detected. Hence, the node v
is on two cycles. We call Case 2 GLP double revision.

We now consider detecting positive length paths between cycles. Since cycles are al-
ready identified, we only need to find nodes on a path from the initial node to a terminal
node passing through nodes belonging to different cycles. To do this, we introduce a
note marking Path[v] = {true, or false} to indicate if a node v has a path to some cycle.
The marking is assigned as follows, for every v ∈ V :



On Nondeterministic Workflow Executions 181

Algorithm 1. Deciding Boundedness
1. Set GLP := −1; {Global Least Preorder number}
2. Set loop[v] := ∅ and Path[v] := false for every v ∈ V ;
3. bounded := true;
4. Let Children(u) be a set of children of node u;
5. Mark all nodes which lie on complete enactments with label ‘R’;
6. Boundedness(s); {s is the initial node}

Algorithm 2. Boundedness(u)
1. if u is unvisited, marked by ‘R’, and not in F then
2. mark u as visited;
3. for all v in Children(u), v �∈ F and marked with ‘R’ do
4. if v is not visited then
5. Boundedness(v);
6. end if
7. if Path[v] = true or (loop[v] �= 0 and postorder[v] �= 0 and GLP = −1) then
8. Path[u] := true ;
9. end if

10. if backedge detected then
11. revise GLP ;
12. loop[u] := E; loop[v] := S; {mark u and v as loop boundary nodes}
13. end if
14. if loop[u] �= S and loop[u] �= E and u �= v and GLP = −1 then
15. loop[u] := L; {mark u during back traverse as a loop node}
16. end if
17. end for
18. end if
19. if GLP has double revision or (loop[u] �= ‘∅’ and Path[u] = true) then
20. bounded := false;
21. end if
22. reset GLP ;

1. Path[v] = false if postorder[v] = 0 (DFS has not yet completed traversal on this
node) or v does not have a path to any cycle.

2. Path[v] = true if node has a path to some cycle.

If the organizational flow Π contains a node on a path from the initial node to a final
node marked as (‘S’, true), (‘L’, true), or (‘E’, true), then there exist a path from the
initial node to a terminal node passing through two cycles.

Algorithm 1 decides boundedness by setting the Boolean variable bounded. It initial-
izes node markings and global variables GLP and bounded (Lines 1-3). Line 5 marks
nodes having a path to a terminal node. In Line 6, procedure Boundedness is called on
the initial node s, during which the variable bounded is changed to false if Π has an
unbounded DN.

Algorithm 2 (Boundedness) processes only nodes that can reach a terminal node.
GLP revision is in Line 11. The cycle detection is done in Lines 12, 14-15, detection of
paths between cycles in Lines 7-8. At Line 20, the global flag bounded is set to false if
path between cycles was detected (i.e. organization workflow has unbounded DN).

The complexity of Boundedness is the same as the time complexity of DFS. Hence,
the total time complexity is O(|V |+|E|).
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We now consider the computation of the degree of nondeterminism of organization
flows. The basic idea of the algorithm is to “simulate” the organization flow Π . The
simulation is processed in topological order (all nodes in a cycle are collapsed into
one). For every node and every execution length we store the numbers of paths arriving
in this node. If a cycle is reached, cycle nodes will be propagated before proceeding to
other nodes. If Π has a bounded DN then the total number of paths will be obtained at
the end. The algorithm has two main steps:

1. Given a number n ∈ N and a location v ∈ V , compute the number ai of enactments
of length i that ends in v (for every i ∈ [1..n]),

2. Find the maximum sum of ai’s of every v ∈ V and every i ∈ [1..n] : amax =
maxi∈[1..n]Σv∈V (ai).

In the first step, for each node v ∈ V we keep a sequence of numbers such that position
i in this sequence corresponds to the number of enactments of length i and ends in v. In
the second step, for every node v ∈ V we sum up all of sequences element by element.
In the obtained sequence we find the maximum element.

We now discuss details of the first step. For every v ∈ V we define log(v) = (a1, ...,
ai, ...) where ai is the total number of enactments of length i that ends at node v.

For Fig. 1(a), log(R) is (1, 0, 0, ...). It means that there exists only one enactment of
1 ending in R. The log(P) is (0, 1, 0, 0, 1, 0, 0, 1, ...): there exists one enactment ending
in P of lengths 2, 5, 8, and so on.

In the following discussion, we assume that if Π has bounded DN. For every v ∈ V ,
the length of log(·) equals to the maximum distance between the initial node and a
terminal node, denoted as MaxDist. It can be shown that for organization flows with at
most one cycle, the maximal value of ai will appear in the first MaxDist elements of
log for every node v ∈ V .

Lemma 2.4. If (V, E, s, F ) is an organization flow with at most one cycle and v∈V a
location on a complete enactment, log(v) can be computed in at most MaxDist steps.

Let Π be an organization flow such as DN(Π) is bounded. For every node v ∈ V the
log(v) of size no more than Length(Π) is needed to compute DN.

We will compute enactments inside a loop and outside a loop separately. Consider
two types of enactments:
1. simple enactments v1, ..., vn where all vi’s are distinct, and
2. all other enactments (i.e., with repeated nodes) are called composite.

For every location v we split log(v) into 2 parts:
1. base[v] = (ab

1, ..., a
b
MaxDist), where ab

i is the total number of simple and composite
enactments of length i ending in node v and are directly from outside of the cycle.

2. shift[v] = (as
1, ..., a

s
MaxDist), where as

i is the total number of composite enactments
of length i ending in node v and are contributed from inside the cycle.

Then, log(v) = base[v] + shift[v].
To compute base[·] and shift[·] we need to know the period (size) of the cycle. Us-

ing node markings by procedure Boundedness, the period can be easily computed by
modifying slightly the DFS part of the Boundedness procedure. To compute log(v), we
process nodes in the topological order. For the initial node s, base[s] = (1, 0, 0, ...).
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Algorithm 3. Compute Degree of Nondeterminism
1. Set base[s] := (1, 0, ..., 0), and base[v] := 0 for every v∈V −{s}; {s is the initial node}
2. Set shift[v] := 0 for every v ∈ V ;
3. for all u in topological sort order do
4. if loop[u] is not ‘∅’ {the first node in a cycle} then
5. for all nodes v on the cycle, starting from u do
6. Propogate base[v] with period of the cycle;
7. if base[v] is not a zero vector then
8. shift := RIGHT-SHIFT(base);
9. for all traversed nodes l starting from v in cycle do

10. shift[l] := shift[l] + shift ;
11. shift := RIGHT-SHIFT(shift);
12. end for
13. end if
14. end for
15. end if
16. base[u] := base[u] + shift[u];
17. for every v in Children[u] do
18. if loop[v] = ‘∅’ or loop[u] = ‘∅’ then
19. base[v] := base[v] + RIGHT-SHIFT(base[u]);
20. end if
21. end for
22. end for
23. DN(Π) := maxai

∑
v∈V (base(v)); return DN(Π);

Now, for every v ∈ V (in topological order) we do the following:

1. if loop[v] = ‘∅’ then compute base[v],
2. if loop[v] �= ‘∅’ then

(a) if loop[u] = ‘∅’ where u is a parent of v, then compute base[u] in the same
way as in step 1.

(b) for every node l in the cycle, propagate base[l] with its period P .
(c) for every node l in cycle such that base[l] is not equal to zero vector, traverse

cycle once and compute shift[l].

Let v̄ = (n1, ..., nm) be a vector. We define the operation RIGHT-SHIFT(v̄) =
(0, n1, ..., nm−1). If a node u can reach node v, and base[u] = (ab

1, ..., a
b
MaxDist). The

base of v is computed as follows (Step 1):

base[v] := base[v] + RIGHT-SHIFT(base[u]).

For the second step, we will first show how to propagate the base of the cycle members.
If node v belongs to the cycle, then every ai in base[u] will appear with the frequency
of the period P of the cycle. We will call such a log a propagated base[v] with period
P .

We also need to compute shift during cycle traversing. Let v be the cycle mem-
ber such that loop[v] �= ‘∅’ and base[v] �= 0, and let the cycle consist of the nodes
(v, v1, v2, ..., vn). The shift for every node is defined recursively:

– shift[v1] := shift[v1] + RIGHT-SHIFT(base[v]).
– shift[vi] := shift[vi] + RIGHT-SHIFT(shift[vi−1]), for each i = 2, ..., n.
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Consider the organization flow Π1 of Fig. 1(a). base[R] = (1, 0, 0, 0, 0). Node P is a
loop member of cycle with period = 3. To obtain the base[P] we need to:

1. Shift the base[R]: base[P] = (0, 1, 0, 0, 0),
2. Propagate log with period P = 3: base[P] = (0, 1, 0, 0, 1)

To obtain shift[S], we need to shift base[P], and so on.
After processing all nodes in topological order, we compute the degree of nondeter-

minism: for each node v, log(v)=base[v]+shift[v] and DN(Π) = maxi

∑
v∈V (log(v)).

For the organization flow in Fig. 1(a), log(R)=(1, 0, 0, 0, 0), log(P)=(0, 1, 0, 0, 1),
log(S)=(0, 0, 1, 0, 0), log(M)=(0, 0, 0, 1, 0), log(A)=(0, 1, 1, 0, 1). DN(Π) = 2.

During topological order traversing, we compute base for children of every node,
hence the complexity of this operation is O(|V |+|E|). To traverse cycle, for every
cycle member, we need to find the a child, with non-zero loop marking. Hence, the
complexity of traversing is O(|V |+|E|). Base propagation operation should be done for
every non-zero element of base, hence the complexity is O(V ). The total complexity of
the algorithm is at most O(|V |(|V |+|E|)2). However, each edge will then be traversed
at most |V | (one for each node on a cycle) times. Since the size of log vectors is at most
|V |, the total complexity of the algorithm is O(|V |2|E|). Note that the algorithm works
correctly if the input organization flow has at most one cycle (and thus bounded). For
the general case, the complexity of computing the degree is higher.

3 Workflows and Executions

In this section we present a general model for workflows that are essentially compo-
sitions of services using finite state machines (FSAs). The FSA part of the workflow
model is roughly the Roman service model [2,5,10]. The formal model is extended
from the organization flow model in Section 2 in two aspects. First, edges are labeled
with task names to reflect the activities to be done along the edge. Second, locations
are indirectly modeled by mappings that assign states in FSAs to locations. This allows
the ability to model tasks and locations similar to modeling workflows with “lanes” in
BPMN. Due to these extensions, the notion of an enactment includes task names and
the notion of degree of nondeterminism also considers “co-location” of enactments.

We now outline the general model and revise the core notions including degree of
nondeterminism below. Intuitively, at the core of a workflow is a FSA. The two main
differences of the notion of nondeterminism degree for workflows and for organization
flows are (1) the former will take into consideration of input word (or task sequence),
and (2) if a proper prefix w′ of a word w is accepted, the execution of the portion of w
beyond w′ will not happen since the execution halts on the first opportunity. We note
that in an organization flow, if there is a complete enactment of length �, there may still
be enactments of some lengths > � that still contribute to the degree of nondeterminism.
It is interesting to note that if we only make the first change, the resulting notion would
measure the “degree of parallelism”, which is not studied in this paper.

Example 3.1. Fig. 2(a) shows a travel planning workflow for a travel agency with nodes
denotes the desks (agents) and edge labels denote tasks to be performed. In the exam-
ple, a denotes getting request details, b represents revising the draft itinerary (possibly
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Fig. 2. Example Workflows

interacting with the customer), c is for processing payments. A customer could make
a supplemental for additional changes made after the first payment. The agents could
be in the same room in which their verbal communication could help managing the
service for a customer. The location information isn’t specified in the figure. An order
fulfillment workflow is shown in Fig. 2(b) with two warehouses (v2, v3).

As illustrated in Example 3.1, a node in a workflow may represent the control point
of a task or service, or a service provider (i.e., a location or lane), and should have the
execution flow control during the execution; an edge typically represents a request (e.g.,
a requested task) or transmission of the control.

In the formal setting, we use standard nondeterministic finite state machines. We
briefly review the key (standard) concepts, and omit some details (see [8]).

A (nondeterministic) finite state machine (FSA) is a tuple (Σ, V, s, F, Δ) where Σ
is a finite set (i.e. alphabet) of symbols, V a finite set of states, s ∈ V the initial state,
F ⊆ V a set of final (or terminal) states, and Δ ⊆ V×Σ×V a transition relation.

Let n � 0 be an integer, M = (Σ, V, s, F, Δ) an FSA, and w = a1···an a word of
length n over Σ. A run (of w) (in M ) is an alternating sequence of states and symbols
r = v0a1v1a2···anvn such that v0 = s (the initial state) and for each i ∈ [1..n], vi ∈ V ,
and (vi−1, ai, vi) ∈ Δ is a transition in M . Furthermore, the run r is terminating if
vn ∈ F . The word w is accepted by M if there is a terminating run of w in M . Let
L(M) denote set of all words accepted by M and RUNM (w) denote the set of all runs
of w over M . We denote RUNM (w) simply as RUN(w) if M is clear from the context.

We now define workflows, which FSAs with the following modifications:

1. Each state is assigned a location indicating where the execution (control point) is
currently located, and

2. Each symbol in the alphabet of the FSA is viewed as an activity or “task”.

The treatment of symbols as tasks (Item 2) resembles the Roman model of services
[2,5]; in the remainder of this paper, we will use the words “symbol” and “task” inter-
changeably. The inclusion of locations seems new in formal models, though practically
it is hardly new. Intuitively, a location corresponds to the concept of a “lane” in BPMN.

Definition. A workflow (schema) is a pair Π = (M, λ) where M is an FSA with a set
V of states, and λ is a total mapping from V into L (locations).

Note that different states can be mapped to the same location. For convenience, we may
also refer to states as “nodes”.
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Since the core of a workflow Π = (M, λ) is an FSA M , the notions (e.g., runs)
are easily carried over with an important change: a workflow “enactment” requires to
be “prefix-free”, as explained below. Intuitively, no enactments should have a proper
prefix w as a complete execution (enactment). Note that this is defined semantically
(rather than syntactically).

A word w′ is a (proper) prefix of another w if there is a (resp. nonempty) word u
such that w = w′u. A set of words is prefix-free if it does not contain two words such
that one is a proper prefix of another.

Definition. Let Π = (M, λ) be a workflow over a set Σ of tasks. A word w over Σ is a
request in Π if every proper prefix of w is not in L(M). A request is complete if it is in
L(M). The capability of Π , denoted as CP(Π), is a set of all complete requests in Π .

Alternatively, the capability of a workflow is the maximum prefix-free subset of the lan-
guage accepted by the FSA in the workflow. Complete workflow requests are supported
by (executions of) the workflow.

Consider the workflow Π3 in Fig. 2(a) with five states and three tasks. The word abbc
is a complete request, abb is a request but not complete. The word abbcc is not a request
since its proper prefix abbc is a complete request.

We now extend the central notion of degree of nondeterminism. Consider a workflow
Π with its nodes spread over different locations. If we are to execute Π for a request
w, we need a mechanism for controlling the execution flow. If the FSA in Π is deter-
ministic, the flow control management is simple, e.g., once the execution completes at
the current location (state), the control moves to the the unique next location (state).
However, the management is complicated when Π is nondeterministic. For example,
the current location (state) v may have two possible next locations (states) v′ and v′′. In
this case, the execution control at v will split to two execution control points at v and
v′, resp. Both need to be managed for further execution of w. It is conceivable that such
split could happen throughout the execution for a workflow request. In the most general
case, there may not even be an upper bound on the number of control points at one time
instant. The remainder of this paper focuses on the maximum number of such execution
control points to be managed to complete executions for workflow requests.

Let Π = (M, λ) be a workflow where M = (Σ, V, s, F, Δ). We extend the location
mapping λ to the domain V ∪Σ such that λ(a) = ε (the empty word) for each a ∈ Σ.

Definition. Let Π = (M, λ) be a workflow and w a request in Π . Each run in RUN(w)
is also an enactment of Π . Two enactments π, π′ of w are co-located w.r.t. w if λ(π) =
λ(π′), i.e., they travel through the same sequence of locations.

Assuming Π, M the same as above, it is easy to see that co-location is an equivalence
relation over the set RUN(w) for each workflow request w. For each workflow request
w, we define the set EXEC(w) = {[r] | r ∈ RUN(w)}, where [r] denotes the equivalence
class containing r. Furthermore, we define Ecnt(w) to be the cardinality of EXEC(w).

Definition. The degree of nondeterminism of a workflow Π is defined as: DN(Π) =
max{Ecnt(w) | w is a proper prefix of u, u ∈ CP(Π)}. The degree of nondeterminism
of Π is bounded if DN(Π) is finite, unbounded otherwise.
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Example 3.2. For workflow Π3 in Fig. 2(a), assuming states are assigned distinct
locations,

RUN(a) = {�1a�2, �1a�3} and Ecnt(a) = 2,
RUN(ab) = {�1a�2b�2, �1a�3b�3, �1a�3b�4} and Ecnt(ab) = 3,
RUN(abb) = {�1a�2b�2b�2, �1a�3b�3b�3, �1a�3b�3b�4} and Ecnt(abb) = 3,

Ecnt(abc) = 3, and Ecnt(abbc) = 3. It can be shown that DN(Π3) is bounded and
= 3. It is interesting to note that if we view Π3 as an organization flow (i.e., ignore the
edge labels), the degree of nondeterminism is actually unbounded. For workflow Π4 in
Fig. 2(b) with states assigned distinct locations,

RUN(a) = {�1a�2},
RUN(aa) = {�1a�2a�2, �1a�2a�3},
RUN(aaa) = {�1a�2a�2a�2, �1a�2a�2a�3, �1a�2a�3a�3},

and so on. It is not too hard to see that Ecnt(an) = n and thus DN(Π4) is unbounded.

4 Management of Workflow Executions

In this section, we focus on management of workflow executions. In particular, we study
the problems of deciding if the degree of nondeterminism is bounded and computing the
bound. We consider two subclasses of workflows, “fully distributed” workflows where
each state is assigned a distinct location, and “transformation flows” where all states
are assigned the same location. For the former, we show that the problems are solvable
and outline the algorithms. For the latter, the degree of nondeterminism is always 1 by
definition. However, one can still use the same techniques to minimize the number of
enactments needed during execution. We show that each transformation flow can be
optimally executed with only 1 enactment.

4.1 Fully Distributed Workflows

We now consider the first subclass of workflows called fully distributed workflows.

Definition. A workflow Π = (M, λ) is fully distributed if λ is a one-to-one mapping.

Theorem 4.1. It can be decided if a given fully distributed workflow has a bounded
degree of nondeterminism.

We now briefly discuss the proof of the above theorem. The key idea is to reduce the
problem to the boundedness problem of “vector addition” systems [14].

A vector addition system is a triple S = (k, z0, A) where k is a non-negative integer,
z0 a k-vector of integers, and A a finite set of k-vectors of integers. A path to a vector z
in S is a sequence z0, z1, ..., zn such that z = zn and for each i ∈ [1..n], zi−zi−1 ∈ A.
A vector addition system is bounded if there exists an integer � such that whenever there
is a path to z, z.i (the i-th component of z) is � �.

We now proceed to describe the reduction. Let Π = (M, λ) be a fully distributed
workflow where M = (Σ, V, s, F, Δ) is an FSA. We fix Π and M in the following
discussions.

Lemma 4.2. For each request w of Π and two enactments r, r′ in RUN(w) are
co-located iff r = r′ (they are identical).
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The above lemma follows from the fact that the workflow Π is fully distributed.
The semantics of workflow restricts workflow requests to only those words over Σ

that have no proper prefixes accepted by the FSA M . Thus not every run in M is an
enactment. Thus we need the following.

Lemma 4.3. CP(Π) is a regular language.

It is easy to see that CP(Π) is the maximal prefix-free subset of L(M). Results from
[7,18] states that such maximal prefix-free subsets of regular languages are also regular.
Let M ′ be an FSA such that L(M ′) = CP(Π).

We now construct the (standard) product FSA M ′′ of M and M ′ such thatL(M ′′) =
L(M) ∩ L(M ′) = L(M) ∩ CP(Π). States in M ′′ are pairs of states from M and M ′

respectively. Without loss of generality, we further assume that each state in M ′′ is
reachable from the initial state and can reach a final state. We extend the mapping λ to
a mapping λ′ over states in M ′′ such that it assigns locations according to λ.

Lemma 4.4. The following are all true.

1. Π ′ = (M ′′, λ′) is a workflow.
2. CP(Π ′) = CP(Π).
3. For each prefix w of each word in L(M ′′), there is a 1-1 mapping from RUNΠ′ (w)

into RUNΠ(w).
4. DN(Π ′) = DN(Π).

We now describe the reduction from Π ′ to vector addition systems. Let k be the number
of states in M ′′. Without loss of generality, let v1, ..., vk be an enumeration of states
in M ′′ and v1 is the initial state. Let z0 = (1, 0, ..., 0). We construct the set A of
vectors according to transitions. If on state v3 and symbol a, the next possible states are
{v2, v4}, we construct a vector (0, 1,−1, 1, 0, ..., 0). It is straightforward to see that the
vector addition system is bounded iff DN(Π ′) is finite. The decidability of boundedness
for degree of nondeterminism follows from [14], with an exponential space complexity.

Theorem 4.5. Let Π be a fully distributed workflow such that DN(Π) exists (i.e.,
bounded). Then, DN(Π) can be effectively computed.

The proof of Theorem 4.5 is very similar to the proof of Theorem 4.1. Specifically, we
also construct the FSA M ′′ that captured the prefix-free set CP(Π) and the workflow
Π ′. Instead of mapping Π ′ to a vector addition system, we construct a Petri net [13]
using the idea similar. Specifically, each state is mapped to a place, a set of transition
from a state on an input symbol is mapped to a transition. Using the technique in [4], we
can construct a “coverability graph” of the Petri net, from which we can find the largest
number of enactments at one time instant, i.e., DN(Π ′). By Lemma 4.4, DN(Π) is
obtained. Since the coverability graph is exponential to the input Petri net, it follows
that the complexity of this problem is also in exponential space.

4.2 Transformation Flow

In this section we focus on a subclass of workflows called “transformation flows”. In-
tuitively, transformation flows are insensitive to locations; specifically, all states are
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mapped to a predetermined location. In this case, the degree of nondeterminism is al-
ways 1, according to the definition. This means that nondeterministic executions can be
managed since they are all contained in one location.

However, for each request w in a workflow Π , the set RUNΠ(w) of enactments for
the request still needs to be managed during the execution. In this subsection, we use the
standard techniques to show that we could construct an alternative workflow Π ′ such
that Π and Π ′ have the same capability (i.e., are “equivalent”) and for each request in
Π ′, there is a unique enactment.

We now proceed with the technical discussions.

Definition. A workflow (M, λ) is transformational if λ is a contant function.

Theorem 4.6. For each transformational flow Π , we can effectively construct another
transformational flow Π ′ such that CP(Π) = CP(Π ′) and for each request w, RUNΠ′(w)
is a singleton set.

Let Π = (M, λ) be a transformational flow. The key idea in optimizing execution of
a nondeterministic transformation flow is to construct an equivalent deterministic FSA.
By Lemma 4.3, CP(Π) is a regular language. Therefore, there exists a deterministic
FSA M ′ such that L(M ′′) = CP(Π). Letting Π ′ = (M ′, λ), it is easy to see that Π ′

satisfies the conditions in Theorem 4.6. Finally, we note that the key construction here is
to turn a nondeterministic FSA into a deterministic one; combining results from [7,18]
on constructing prefix-free subset, the complexity of constructing Π ′ is thus exponential
time.

5 Conclusions

In this paper we formulate a new notion of degree of nondeterminism for nondetermin-
ism workflows and service compositions and initiate a study on the decision and compu-
tation problems. Although preliminary results are obtained, many interesting questions
remain to be explored. For example, can Algorithm 3 be generalized and improved?
Also, it is not clear if the complexity upper bounds of the decision and computation
problems for fully distributed workflows can be further improved.
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